prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import plotly.express as px import plotly.graph_objects as go from plotly.offline import plot,iplot from scipy.stats import norm, kurtosis import os from scipy.signal import butter, lfilter, freqz from scipy import signal from sklearn.model_selection import train_test_split from collections import Counter import warnings warnings.filterwarnings(action='once') plt.rcParams["figure.figsize"] = 16,12 def create_labels(): labels =
pd.read_csv('../data/RawData/labels.txt', sep=" ", header=None)
pandas.read_csv
import numpy as np import pandas as pd import matplotlib.pyplot as plt import matplotlib.mlab as mlab import os import argparse from pathlib import Path import joblib import scipy.sparse import string import nltk from nltk import word_tokenize nltk.download('punkt') from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.preprocessing import LabelBinarizer from imblearn.over_sampling import RandomOverSampler from imblearn.under_sampling import RandomUnderSampler ''' Preprocessing and preperation of data: The purpose of this script is to prepare and preproces the raw textual data and the admission data needed for training and testing the classification model. This proces includes the following steps: 1. Clean and prepare admission data 2. Extract discharge summaries from note data 3. Remove newborn cases and in-hospital deaths 4. Bind note-data to 30-day readmission information 5. Split into train, validation and test set and balance training data by oversampling positive cases 6. Removal of special characters, numbers and de-identified brackets 7. Vectorise all discharge notes: 7a. Remove stop-words, most common words and very rare words (benchmarks need to be defined) 7b. Create set of TF-IDF weighted tokenised discharge notes 8. Output datasets and labels as CSV-files ''' # Defining main function def main(args): notes_file = args.nf admissions_file = args.af NotePreprocessing(notes_file = notes_file, admissions_file = admissions_file) # Defining class 'NotePreprocessing' class NotePreprocessing: def __init__(self, notes_file, admissions_file): # Setting directory of input data data_dir = self.setting_data_directory() # Setting directory of output plots out_dir = self.setting_output_directory() # Loading notes if notes_file is None: notes = pd.read_csv(data_dir / "NOTEEVENT.csv") else: notes = pd.read_csv(data_dir / notes_file) # Loading general admission data if admissions_file is None: admissions = pd.read_csv(data_dir / "ADMISSIONS.csv") else: noadmissionstes = pd.read_csv(admissions_file) #-#-# PREPROCESSING ADMISSIONS DATA #-#-# # Convert to datetime admissions.ADMITTIME = pd.to_datetime(admissions.ADMITTIME, format = '%Y-%m-%d %H:%M:%S', errors = 'coerce') admissions.DISCHTIME =
pd.to_datetime(admissions.DISCHTIME, format = '%Y-%m-%d %H:%M:%S', errors = 'coerce')
pandas.to_datetime
import numpy as np import pandas as pd from numba import njit, typeof from numba.typed import List from datetime import datetime, timedelta import pytest import vectorbt as vbt from vectorbt.portfolio.enums import * from vectorbt.generic.enums import drawdown_dt from vectorbt import settings from vectorbt.utils.random import set_seed from vectorbt.portfolio import nb from tests.utils import record_arrays_close seed = 42 day_dt = np.timedelta64(86400000000000) settings.returns['year_freq'] = '252 days' # same as empyrical price = pd.Series([1., 2., 3., 4., 5.], index=pd.Index([ datetime(2020, 1, 1), datetime(2020, 1, 2), datetime(2020, 1, 3), datetime(2020, 1, 4), datetime(2020, 1, 5) ])) price_wide = price.vbt.tile(3, keys=['a', 'b', 'c']) big_price = pd.DataFrame(np.random.uniform(size=(1000,))) big_price.index = [datetime(2018, 1, 1) + timedelta(days=i) for i in range(1000)] big_price_wide = big_price.vbt.tile(1000) # ############# nb ############# # def assert_same_tuple(tup1, tup2): for i in range(len(tup1)): assert tup1[i] == tup2[i] or np.isnan(tup1[i]) and np.isnan(tup2[i]) def test_process_order_nb(): # Errors, ignored and rejected orders log_record = np.empty(1, dtype=log_dt)[0] log_record[0] = 0 log_record[1] = 0 log_record[2] = 0 log_record[3] = 0 log_record[-1] = 0 cash_now, shares_now, order_result = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(), log_record) assert cash_now == 100. assert shares_now == 100. assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=1, status_info=0)) cash_now, shares_now, order_result = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10), log_record) assert cash_now == 100. assert shares_now == 100. assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=1, status_info=1)) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( -100., 100., 10., 1100., nb.create_order_nb(size=10, price=10), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( np.nan, 100., 10., 1100., nb.create_order_nb(size=10, price=10), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., np.inf, 10., 1100., nb.create_order_nb(size=10, price=10), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., np.nan, 10., 1100., nb.create_order_nb(size=10, price=10), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, size_type=-2), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, size_type=20), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, direction=-2), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, direction=20), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., -100., 10., 1100., nb.create_order_nb(size=10, price=10, direction=Direction.LongOnly), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, direction=Direction.ShortOnly), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=np.inf), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=-10), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, fees=np.inf), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, fees=-1), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, fixed_fees=np.inf), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, fixed_fees=-1), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, slippage=np.inf), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, slippage=-1), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, min_size=np.inf), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, min_size=-1), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, max_size=0), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, max_size=-10), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, reject_prob=np.nan), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, reject_prob=-1), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, reject_prob=2), log_record) cash_now, shares_now, order_result = nb.process_order_nb( 100., 100., 10., np.nan, nb.create_order_nb(size=1, price=10, size_type=SizeType.TargetPercent), log_record) assert cash_now == 100. assert shares_now == 100. assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=1, status_info=3)) cash_now, shares_now, order_result = nb.process_order_nb( 100., 100., 10., -10., nb.create_order_nb(size=1, price=10, size_type=SizeType.TargetPercent), log_record) assert cash_now == 100. assert shares_now == 100. assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=4)) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., np.inf, 1100., nb.create_order_nb(size=10, price=10, size_type=SizeType.TargetValue), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., -10., 1100., nb.create_order_nb(size=10, price=10, size_type=SizeType.TargetValue), log_record) cash_now, shares_now, order_result = nb.process_order_nb( 100., 100., np.nan, 1100., nb.create_order_nb(size=10, price=10, size_type=SizeType.TargetValue), log_record) assert cash_now == 100. assert shares_now == 100. assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=1, status_info=2)) cash_now, shares_now, order_result = nb.process_order_nb( 100., -10., 10., 1100., nb.create_order_nb(size=np.inf, price=10, direction=Direction.ShortOnly), log_record) assert cash_now == 100. assert shares_now == -10. assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=6)) cash_now, shares_now, order_result = nb.process_order_nb( 100., -10., 10., 1100., nb.create_order_nb(size=-np.inf, price=10, direction=Direction.All), log_record) assert cash_now == 100. assert shares_now == -10. assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=6)) cash_now, shares_now, order_result = nb.process_order_nb( 100., 10., 10., 1100., nb.create_order_nb(size=0, price=10), log_record) assert cash_now == 100. assert shares_now == 10. assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=1, status_info=5)) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=15, price=10, max_size=10, allow_partial=False, raise_reject=True), log_record) cash_now, shares_now, order_result = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=15, price=10, max_size=10, allow_partial=False), log_record) assert cash_now == 100. assert shares_now == 100. assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=9)) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, reject_prob=1., raise_reject=True), log_record) cash_now, shares_now, order_result = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, reject_prob=1.), log_record) assert cash_now == 100. assert shares_now == 100. assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=10)) cash_now, shares_now, order_result = nb.process_order_nb( 0., 100., 10., 1100., nb.create_order_nb(size=10, price=10, direction=Direction.LongOnly), log_record) assert cash_now == 0. assert shares_now == 100. assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=7)) cash_now, shares_now, order_result = nb.process_order_nb( 0., 100., 10., 1100., nb.create_order_nb(size=10, price=10, direction=Direction.All), log_record) assert cash_now == 0. assert shares_now == 100. assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=7)) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( np.inf, 100., 10., 1100., nb.create_order_nb(size=np.inf, price=10, direction=Direction.LongOnly), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( np.inf, 100., 10., 1100., nb.create_order_nb(size=np.inf, price=10, direction=Direction.All), log_record) cash_now, shares_now, order_result = nb.process_order_nb( 100., 0., 10., 1100., nb.create_order_nb(size=-10, price=10, direction=Direction.ShortOnly), log_record) assert cash_now == 100. assert shares_now == 0. assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=8)) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( np.inf, 100., 10., 1100., nb.create_order_nb(size=np.inf, price=10, direction=Direction.ShortOnly), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( np.inf, 100., 10., 1100., nb.create_order_nb(size=-np.inf, price=10, direction=Direction.All), log_record) cash_now, shares_now, order_result = nb.process_order_nb( 100., 0., 10., 1100., nb.create_order_nb(size=-10, price=10, direction=Direction.LongOnly), log_record) assert cash_now == 100. assert shares_now == 0. assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=8)) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, fixed_fees=100, raise_reject=True), log_record) cash_now, shares_now, order_result = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, fixed_fees=100), log_record) assert cash_now == 100. assert shares_now == 100. assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=11)) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, min_size=100, raise_reject=True), log_record) cash_now, shares_now, order_result = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, min_size=100), log_record) assert cash_now == 100. assert shares_now == 100. assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=12)) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=100, price=10, allow_partial=False, raise_reject=True), log_record) cash_now, shares_now, order_result = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=100, price=10, allow_partial=False), log_record) assert cash_now == 100. assert shares_now == 100. assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=13)) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=-10, price=10, min_size=100, raise_reject=True), log_record) cash_now, shares_now, order_result = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=-10, price=10, min_size=100), log_record) assert cash_now == 100. assert shares_now == 100. assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=12)) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=-200, price=10, direction=Direction.LongOnly, allow_partial=False, raise_reject=True), log_record) cash_now, shares_now, order_result = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=-200, price=10, direction=Direction.LongOnly, allow_partial=False), log_record) assert cash_now == 100. assert shares_now == 100. assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=13)) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=-10, price=10, fixed_fees=1000, raise_reject=True), log_record) cash_now, shares_now, order_result = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=-10, price=10, fixed_fees=1000), log_record) assert cash_now == 100. assert shares_now == 100. assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=11)) # Calculations cash_now, shares_now, order_result = nb.process_order_nb( 100., 0., 10., 100., nb.create_order_nb(size=10, price=10, fees=0.1, fixed_fees=1, slippage=0.1), log_record) assert cash_now == 0. assert shares_now == 8.18181818181818 assert_same_tuple(order_result, OrderResult( size=8.18181818181818, price=11.0, fees=10.000000000000014, side=0, status=0, status_info=-1)) cash_now, shares_now, order_result = nb.process_order_nb( 100., 0., 10., 100., nb.create_order_nb(size=100, price=10, fees=0.1, fixed_fees=1, slippage=0.1), log_record) assert cash_now == 0. assert shares_now == 8.18181818181818 assert_same_tuple(order_result, OrderResult( size=8.18181818181818, price=11.0, fees=10.000000000000014, side=0, status=0, status_info=-1)) cash_now, shares_now, order_result = nb.process_order_nb( 100., 0., 10., 100., nb.create_order_nb(size=-10, price=10, fees=0.1, fixed_fees=1, slippage=0.1), log_record) assert cash_now == 180. assert shares_now == -10. assert_same_tuple(order_result, OrderResult( size=10.0, price=9.0, fees=10.0, side=1, status=0, status_info=-1)) cash_now, shares_now, order_result = nb.process_order_nb( 100., 0., 10., 100., nb.create_order_nb(size=-100, price=10, fees=0.1, fixed_fees=1, slippage=0.1), log_record) assert cash_now == 909. assert shares_now == -100. assert_same_tuple(order_result, OrderResult( size=100.0, price=9.0, fees=91.0, side=1, status=0, status_info=-1)) cash_now, shares_now, order_result = nb.process_order_nb( 100., 0., 10., 100., nb.create_order_nb(size=10, price=10, size_type=SizeType.TargetShares), log_record) assert cash_now == 0. assert shares_now == 10. assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=0, status=0, status_info=-1)) cash_now, shares_now, order_result = nb.process_order_nb( 100., 0., 10., 100., nb.create_order_nb(size=-10, price=10, size_type=SizeType.TargetShares), log_record) assert cash_now == 200. assert shares_now == -10. assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=1, status=0, status_info=-1)) cash_now, shares_now, order_result = nb.process_order_nb( 100., 0., 10., 100., nb.create_order_nb(size=100, price=10, size_type=SizeType.TargetValue), log_record) assert cash_now == 0. assert shares_now == 10. assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=0, status=0, status_info=-1)) cash_now, shares_now, order_result = nb.process_order_nb( 100., 0., 10., 100., nb.create_order_nb(size=-100, price=10, size_type=SizeType.TargetValue), log_record) assert cash_now == 200. assert shares_now == -10. assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=1, status=0, status_info=-1)) cash_now, shares_now, order_result = nb.process_order_nb( 100., 0., 10., 100., nb.create_order_nb(size=1, price=10, size_type=SizeType.TargetPercent), log_record) assert cash_now == 0. assert shares_now == 10. assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=0, status=0, status_info=-1)) cash_now, shares_now, order_result = nb.process_order_nb( 100., 0., 10., 100., nb.create_order_nb(size=-1, price=10, size_type=SizeType.TargetPercent), log_record) assert cash_now == 200. assert shares_now == -10. assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=1, status=0, status_info=-1)) cash_now, shares_now, order_result = nb.process_order_nb( 100., 0., 10., 100., nb.create_order_nb(size=1, price=10, size_type=SizeType.Percent), log_record) assert cash_now == 0. assert shares_now == 10. assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=0, status=0, status_info=-1)) cash_now, shares_now, order_result = nb.process_order_nb( 100., 0., 10., 100., nb.create_order_nb(size=0.5, price=10, size_type=SizeType.Percent, fixed_fees=1.), log_record) assert cash_now == 50. assert shares_now == 4.9 assert_same_tuple(order_result, OrderResult( size=4.9, price=10.0, fees=1., side=0, status=0, status_info=-1)) cash_now, shares_now, order_result = nb.process_order_nb( 0., 10., 10., 100., nb.create_order_nb(size=-1, price=10, size_type=SizeType.Percent), log_record) assert cash_now == 100. assert shares_now == 0. assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=1, status=0, status_info=-1)) cash_now, shares_now, order_result = nb.process_order_nb( 0., 10., 10., 100., nb.create_order_nb(size=-0.5, price=10, size_type=SizeType.Percent, fixed_fees=1.), log_record) assert cash_now == 49. assert shares_now == 5. assert_same_tuple(order_result, OrderResult( size=5., price=10.0, fees=1., side=1, status=0, status_info=-1)) cash_now, shares_now, order_result = nb.process_order_nb( 100., -10., 10., 100., nb.create_order_nb(size=1., price=10, size_type=SizeType.Percent), log_record) assert cash_now == 0. assert shares_now == 0. assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=0, status=0, status_info=-1)) cash_now, shares_now, order_result = nb.process_order_nb( 0., -10., 10., 100., nb.create_order_nb(size=-1., price=10, size_type=SizeType.Percent), log_record) assert cash_now == 100. assert shares_now == -20. assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=1, status=0, status_info=-1)) cash_now, shares_now, order_result = nb.process_order_nb( 100., 0., 10., 100., nb.create_order_nb(size=np.inf, price=10), log_record) assert cash_now == 0. assert shares_now == 10. assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=0, status=0, status_info=-1)) cash_now, shares_now, order_result = nb.process_order_nb( 100., 0., 10., 100., nb.create_order_nb(size=-np.inf, price=10), log_record) assert cash_now == 200. assert shares_now == -10. assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=1, status=0, status_info=-1)) cash_now, shares_now, order_result = nb.process_order_nb( 150., -5., 10., 100., nb.create_order_nb(size=-np.inf, price=10), log_record) assert cash_now == 200. assert shares_now == -10. assert_same_tuple(order_result, OrderResult( size=5., price=10.0, fees=0., side=1, status=0, status_info=-1)) # Logging _ = nb.process_order_nb( 100., 0., 10., 100., nb.create_order_nb(log=True), log_record) assert_same_tuple(log_record, ( 0, 0, 0, 0, 100., 0., 10., 100., np.nan, 0, 2, np.nan, 0., 0., 0., 0., np.inf, 0., True, False, True, 100., 0., np.nan, np.nan, np.nan, -1, 1, 0, 0 )) _ = nb.process_order_nb( 100., 0., 10., 100., nb.create_order_nb(size=np.inf, price=10, log=True), log_record) assert_same_tuple(log_record, ( 0, 0, 0, 0, 100., 0., 10., 100., np.inf, 0, 2, 10., 0., 0., 0., 0., np.inf, 0., True, False, True, 0., 10., 10., 10., 0., 0, 0, -1, 0 )) _ = nb.process_order_nb( 100., 0., 10., 100., nb.create_order_nb(size=-np.inf, price=10, log=True), log_record) assert_same_tuple(log_record, ( 0, 0, 0, 0, 100., 0., 10., 100., -np.inf, 0, 2, 10., 0., 0., 0., 0., np.inf, 0., True, False, True, 200., -10., 10., 10., 0., 1, 0, -1, 0 )) def test_build_call_seq_nb(): group_lens = np.array([1, 2, 3, 4]) np.testing.assert_array_equal( nb.build_call_seq_nb((10, 10), group_lens, CallSeqType.Default), nb.build_call_seq((10, 10), group_lens, CallSeqType.Default) ) np.testing.assert_array_equal( nb.build_call_seq_nb((10, 10), group_lens, CallSeqType.Reversed), nb.build_call_seq((10, 10), group_lens, CallSeqType.Reversed) ) set_seed(seed) out1 = nb.build_call_seq_nb((10, 10), group_lens, CallSeqType.Random) set_seed(seed) out2 = nb.build_call_seq((10, 10), group_lens, CallSeqType.Random) np.testing.assert_array_equal(out1, out2) # ############# from_signals ############# # entries = pd.Series([True, True, True, False, False], index=price.index) entries_wide = entries.vbt.tile(3, keys=['a', 'b', 'c']) exits = pd.Series([False, False, True, True, True], index=price.index) exits_wide = exits.vbt.tile(3, keys=['a', 'b', 'c']) def from_signals_all(price=price, entries=entries, exits=exits, **kwargs): return vbt.Portfolio.from_signals(price, entries, exits, direction='all', **kwargs) def from_signals_longonly(price=price, entries=entries, exits=exits, **kwargs): return vbt.Portfolio.from_signals(price, entries, exits, direction='longonly', **kwargs) def from_signals_shortonly(price=price, entries=entries, exits=exits, **kwargs): return vbt.Portfolio.from_signals(price, entries, exits, direction='shortonly', **kwargs) class TestFromSignals: def test_one_column(self): record_arrays_close( from_signals_all().order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 3, 0, 200., 4., 0., 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly().order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 3, 0, 100., 4., 0., 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly().order_records, np.array([ (0, 0, 0, 100., 1., 0., 1), (1, 3, 0, 50., 4., 0., 0) ], dtype=order_dt) ) portfolio = from_signals_all() pd.testing.assert_index_equal( portfolio.wrapper.index, pd.DatetimeIndex(['2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04', '2020-01-05']) ) pd.testing.assert_index_equal( portfolio.wrapper.columns, pd.Int64Index([0], dtype='int64') ) assert portfolio.wrapper.ndim == 1 assert portfolio.wrapper.freq == day_dt assert portfolio.wrapper.grouper.group_by is None def test_multiple_columns(self): record_arrays_close( from_signals_all(price=price_wide).order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 3, 0, 200., 4., 0., 1), (2, 0, 1, 100., 1., 0., 0), (3, 3, 1, 200., 4., 0., 1), (4, 0, 2, 100., 1., 0., 0), (5, 3, 2, 200., 4., 0., 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(price=price_wide).order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 3, 0, 100., 4., 0., 1), (2, 0, 1, 100., 1., 0., 0), (3, 3, 1, 100., 4., 0., 1), (4, 0, 2, 100., 1., 0., 0), (5, 3, 2, 100., 4., 0., 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(price=price_wide).order_records, np.array([ (0, 0, 0, 100., 1., 0., 1), (1, 3, 0, 50., 4., 0., 0), (2, 0, 1, 100., 1., 0., 1), (3, 3, 1, 50., 4., 0., 0), (4, 0, 2, 100., 1., 0., 1), (5, 3, 2, 50., 4., 0., 0) ], dtype=order_dt) ) portfolio = from_signals_all(price=price_wide) pd.testing.assert_index_equal( portfolio.wrapper.index, pd.DatetimeIndex(['2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04', '2020-01-05']) ) pd.testing.assert_index_equal( portfolio.wrapper.columns, pd.Index(['a', 'b', 'c'], dtype='object') ) assert portfolio.wrapper.ndim == 2 assert portfolio.wrapper.freq == day_dt assert portfolio.wrapper.grouper.group_by is None def test_size(self): record_arrays_close( from_signals_all(size=[[-1, 0, 1, np.inf]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 3, 0, 2.0, 4.0, 0.0, 1), (2, 0, 2, 1.0, 1.0, 0.0, 0), (3, 3, 2, 2.0, 4.0, 0.0, 1), (4, 0, 3, 100.0, 1.0, 0.0, 0), (5, 3, 3, 200.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=[[-1, 0, 1, np.inf]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 3, 0, 1.0, 4.0, 0.0, 1), (2, 0, 2, 1.0, 1.0, 0.0, 0), (3, 3, 2, 1.0, 4.0, 0.0, 1), (4, 0, 3, 100.0, 1.0, 0.0, 0), (5, 3, 3, 100.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=[[-1, 0, 1, np.inf]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 3, 0, 1.0, 4.0, 0.0, 0), (2, 0, 2, 1.0, 1.0, 0.0, 1), (3, 3, 2, 1.0, 4.0, 0.0, 0), (4, 0, 3, 100.0, 1.0, 0.0, 1), (5, 3, 3, 50.0, 4.0, 0.0, 0) ], dtype=order_dt) ) def test_percent(self): with pytest.raises(Exception) as e_info: _ = from_signals_all(size=0.5, size_type='percent') record_arrays_close( from_signals_all(size=0.5, size_type='percent', close_first=True).order_records, np.array([ (0, 0, 0, 50., 1., 0., 0), (1, 3, 0, 50., 4., 0., 1) ], dtype=order_dt) ) record_arrays_close( from_signals_all(size=0.5, size_type='percent', close_first=True, accumulate=True).order_records, np.array([ (0, 0, 0, 50., 1., 0., 0), (1, 1, 0, 12.5, 2., 0., 0), (2, 3, 0, 31.25, 4., 0., 1), (3, 4, 0, 15.625, 5., 0., 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=0.5, size_type='percent').order_records, np.array([ (0, 0, 0, 50., 1., 0., 0), (1, 3, 0, 50., 4., 0., 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=0.5, size_type='percent').order_records, np.array([], dtype=order_dt) ) record_arrays_close( from_signals_longonly( price=price_wide, size=0.5, size_type='percent', group_by=np.array([0, 0, 0]), cash_sharing=True).order_records, np.array([ (0, 0, 0, 50., 1., 0., 0), (1, 0, 1, 25., 1., 0., 0), (2, 0, 2, 12.5, 1., 0., 0), (3, 3, 0, 50., 4., 0., 1), (4, 3, 1, 25., 4., 0., 1), (5, 3, 2, 12.5, 4., 0., 1) ], dtype=order_dt) ) def test_price(self): record_arrays_close( from_signals_all(price=price * 1.01).order_records, np.array([ (0, 0, 0, 99.00990099009901, 1.01, 0.0, 0), (1, 3, 0, 198.01980198019803, 4.04, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(price=price * 1.01).order_records, np.array([ (0, 0, 0, 99.00990099, 1.01, 0., 0), (1, 3, 0, 99.00990099, 4.04, 0., 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(price=price * 1.01).order_records, np.array([ (0, 0, 0, 99.00990099009901, 1.01, 0.0, 1), (1, 3, 0, 49.504950495049506, 4.04, 0.0, 0) ], dtype=order_dt) ) def test_fees(self): record_arrays_close( from_signals_all(size=1, fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 3, 0, 2.0, 4.0, 0.0, 1), (2, 0, 1, 1.0, 1.0, 0.1, 0), (3, 3, 1, 2.0, 4.0, 0.8, 1), (4, 0, 2, 1.0, 1.0, 1.0, 0), (5, 3, 2, 2.0, 4.0, 8.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1, fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 3, 0, 1.0, 4.0, 0.0, 1), (2, 0, 1, 1.0, 1.0, 0.1, 0), (3, 3, 1, 1.0, 4.0, 0.4, 1), (4, 0, 2, 1.0, 1.0, 1.0, 0), (5, 3, 2, 1.0, 4.0, 4.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=1, fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 3, 0, 1.0, 4.0, 0.0, 0), (2, 0, 1, 1.0, 1.0, 0.1, 1), (3, 3, 1, 1.0, 4.0, 0.4, 0), (4, 0, 2, 1.0, 1.0, 1.0, 1), (5, 3, 2, 1.0, 4.0, 4.0, 0) ], dtype=order_dt) ) def test_fixed_fees(self): record_arrays_close( from_signals_all(size=1, fixed_fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 3, 0, 2.0, 4.0, 0.0, 1), (2, 0, 1, 1.0, 1.0, 0.1, 0), (3, 3, 1, 2.0, 4.0, 0.1, 1), (4, 0, 2, 1.0, 1.0, 1.0, 0), (5, 3, 2, 2.0, 4.0, 1.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1, fixed_fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 3, 0, 1.0, 4.0, 0.0, 1), (2, 0, 1, 1.0, 1.0, 0.1, 0), (3, 3, 1, 1.0, 4.0, 0.1, 1), (4, 0, 2, 1.0, 1.0, 1.0, 0), (5, 3, 2, 1.0, 4.0, 1.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=1, fixed_fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 3, 0, 1.0, 4.0, 0.0, 0), (2, 0, 1, 1.0, 1.0, 0.1, 1), (3, 3, 1, 1.0, 4.0, 0.1, 0), (4, 0, 2, 1.0, 1.0, 1.0, 1), (5, 3, 2, 1.0, 4.0, 1.0, 0) ], dtype=order_dt) ) def test_slippage(self): record_arrays_close( from_signals_all(size=1, slippage=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 3, 0, 2.0, 4.0, 0.0, 1), (2, 0, 1, 1.0, 1.1, 0.0, 0), (3, 3, 1, 2.0, 3.6, 0.0, 1), (4, 0, 2, 1.0, 2.0, 0.0, 0), (5, 3, 2, 2.0, 0.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1, slippage=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 3, 0, 1.0, 4.0, 0.0, 1), (2, 0, 1, 1.0, 1.1, 0.0, 0), (3, 3, 1, 1.0, 3.6, 0.0, 1), (4, 0, 2, 1.0, 2.0, 0.0, 0), (5, 3, 2, 1.0, 0.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=1, slippage=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 3, 0, 1.0, 4.0, 0.0, 0), (2, 0, 1, 1.0, 0.9, 0.0, 1), (3, 3, 1, 1.0, 4.4, 0.0, 0), (4, 0, 2, 1.0, 0.0, 0.0, 1), (5, 3, 2, 1.0, 8.0, 0.0, 0) ], dtype=order_dt) ) def test_min_size(self): record_arrays_close( from_signals_all(size=1, min_size=[[0., 1., 2.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 3, 0, 2.0, 4.0, 0.0, 1), (2, 0, 1, 1.0, 1.0, 0.0, 0), (3, 3, 1, 2.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1, min_size=[[0., 1., 2.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 3, 0, 1.0, 4.0, 0.0, 1), (2, 0, 1, 1.0, 1.0, 0.0, 0), (3, 3, 1, 1.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=1, min_size=[[0., 1., 2.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 3, 0, 1.0, 4.0, 0.0, 0), (2, 0, 1, 1.0, 1.0, 0.0, 1), (3, 3, 1, 1.0, 4.0, 0.0, 0) ], dtype=order_dt) ) def test_max_size(self): record_arrays_close( from_signals_all(size=1, max_size=[[0.5, 1., np.inf]]).order_records, np.array([ (0, 0, 0, 0.5, 1.0, 0.0, 0), (1, 3, 0, 0.5, 4.0, 0.0, 1), (2, 4, 0, 0.5, 5.0, 0.0, 1), (3, 0, 1, 1.0, 1.0, 0.0, 0), (4, 3, 1, 1.0, 4.0, 0.0, 1), (5, 4, 1, 1.0, 5.0, 0.0, 1), (6, 0, 2, 1.0, 1.0, 0.0, 0), (7, 3, 2, 2.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1, max_size=[[0.5, 1., np.inf]]).order_records, np.array([ (0, 0, 0, 0.5, 1.0, 0.0, 0), (1, 3, 0, 0.5, 4.0, 0.0, 1), (2, 0, 1, 1.0, 1.0, 0.0, 0), (3, 3, 1, 1.0, 4.0, 0.0, 1), (4, 0, 2, 1.0, 1.0, 0.0, 0), (5, 3, 2, 1.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=1, max_size=[[0.5, 1., np.inf]]).order_records, np.array([ (0, 0, 0, 0.5, 1.0, 0.0, 1), (1, 3, 0, 0.5, 4.0, 0.0, 0), (2, 0, 1, 1.0, 1.0, 0.0, 1), (3, 3, 1, 1.0, 4.0, 0.0, 0), (4, 0, 2, 1.0, 1.0, 0.0, 1), (5, 3, 2, 1.0, 4.0, 0.0, 0) ], dtype=order_dt) ) def test_reject_prob(self): record_arrays_close( from_signals_all(size=1., reject_prob=[[0., 0.5, 1.]], seed=42).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 3, 0, 2.0, 4.0, 0.0, 1), (2, 1, 1, 1.0, 2.0, 0.0, 0), (3, 3, 1, 2.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1., reject_prob=[[0., 0.5, 1.]], seed=42).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 3, 0, 1.0, 4.0, 0.0, 1), (2, 1, 1, 1.0, 2.0, 0.0, 0), (3, 3, 1, 1.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=1., reject_prob=[[0., 0.5, 1.]], seed=42).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 3, 0, 1.0, 4.0, 0.0, 0), (2, 1, 1, 1.0, 2.0, 0.0, 1), (3, 3, 1, 1.0, 4.0, 0.0, 0) ], dtype=order_dt) ) def test_close_first(self): record_arrays_close( from_signals_all(close_first=[[False, True]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 3, 0, 200.0, 4.0, 0.0, 1), (2, 0, 1, 100.0, 1.0, 0.0, 0), (3, 3, 1, 100.0, 4.0, 0.0, 1), (4, 4, 1, 80.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_all( price=pd.Series(price.values[::-1], index=price.index), entries=pd.Series(entries.values[::-1], index=price.index), exits=pd.Series(exits.values[::-1], index=price.index), close_first=[[False, True]] ).order_records, np.array([ (0, 0, 0, 20.0, 5.0, 0.0, 1), (1, 3, 0, 100.0, 2.0, 0.0, 0), (2, 0, 1, 20.0, 5.0, 0.0, 1), (3, 3, 1, 20.0, 2.0, 0.0, 0), (4, 4, 1, 160.0, 1.0, 0.0, 0) ], dtype=order_dt) ) def test_allow_partial(self): record_arrays_close( from_signals_all(size=1000, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 3, 0, 1100.0, 4.0, 0.0, 1), (2, 3, 1, 1000.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1000, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 3, 0, 100.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=1000, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 1000.0, 1.0, 0.0, 1), (1, 3, 0, 275.0, 4.0, 0.0, 0), (2, 0, 1, 1000.0, 1.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_all(size=np.inf, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 3, 0, 200.0, 4.0, 0.0, 1), (2, 0, 1, 100.0, 1.0, 0.0, 0), (3, 3, 1, 200.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=np.inf, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 3, 0, 100.0, 4.0, 0.0, 1), (2, 0, 1, 100.0, 1.0, 0.0, 0), (3, 3, 1, 100.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=np.inf, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1), (1, 3, 0, 50.0, 4.0, 0.0, 0), (2, 0, 1, 100.0, 1.0, 0.0, 1) ], dtype=order_dt) ) def test_raise_reject(self): record_arrays_close( from_signals_all(size=1000, allow_partial=True, raise_reject=True).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 3, 0, 1100.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1000, allow_partial=True, raise_reject=True).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 3, 0, 100.0, 4.0, 0.0, 1) ], dtype=order_dt) ) with pytest.raises(Exception) as e_info: _ = from_signals_shortonly(size=1000, allow_partial=True, raise_reject=True).order_records with pytest.raises(Exception) as e_info: _ = from_signals_all(size=1000, allow_partial=False, raise_reject=True).order_records with pytest.raises(Exception) as e_info: _ = from_signals_longonly(size=1000, allow_partial=False, raise_reject=True).order_records with pytest.raises(Exception) as e_info: _ = from_signals_shortonly(size=1000, allow_partial=False, raise_reject=True).order_records def test_accumulate(self): record_arrays_close( from_signals_all(size=1, accumulate=True).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 1, 0, 1.0, 2.0, 0.0, 0), (2, 3, 0, 1.0, 4.0, 0.0, 1), (3, 4, 0, 1.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1, accumulate=True).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 1, 0, 1.0, 2.0, 0.0, 0), (2, 3, 0, 1.0, 4.0, 0.0, 1), (3, 4, 0, 1.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=1, accumulate=True).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 1, 0, 1.0, 2.0, 0.0, 1), (2, 3, 0, 1.0, 4.0, 0.0, 0), (3, 4, 0, 1.0, 5.0, 0.0, 0) ], dtype=order_dt) ) def test_log(self): record_arrays_close( from_signals_all(log=True).log_records, np.array([ (0, 0, 0, 0, 100.0, 0.0, 1.0, 100.0, np.inf, 0, 2, 1.0, 0.0, 0.0, 0.0, 1e-08, np.inf, 0.0, True, False, True, 0.0, 100.0, 100.0, 1.0, 0.0, 0, 0, -1, 0), (1, 3, 0, 0, 0.0, 100.0, 4.0, 400.0, -np.inf, 0, 2, 4.0, 0.0, 0.0, 0.0, 1e-08, np.inf, 0.0, True, False, True, 800.0, -100.0, 200.0, 4.0, 0.0, 1, 0, -1, 1) ], dtype=log_dt) ) def test_conflict_mode(self): kwargs = dict( price=price.iloc[:3], entries=pd.DataFrame([ [True, True, True, True, True], [True, True, True, True, False], [True, True, True, True, True] ]), exits=pd.DataFrame([ [True, True, True, True, True], [False, False, False, False, True], [True, True, True, True, True] ]), size=1., conflict_mode=[[ 'ignore', 'entry', 'exit', 'opposite', 'opposite' ]] ) record_arrays_close( from_signals_all(**kwargs).order_records, np.array([ (0, 1, 0, 1.0, 2.0, 0.0, 0), (1, 0, 1, 1.0, 1.0, 0.0, 0), (2, 0, 2, 1.0, 1.0, 0.0, 1), (3, 1, 2, 2.0, 2.0, 0.0, 0), (4, 2, 2, 2.0, 3.0, 0.0, 1), (5, 1, 3, 1.0, 2.0, 0.0, 0), (6, 2, 3, 2.0, 3.0, 0.0, 1), (7, 1, 4, 1.0, 2.0, 0.0, 1), (8, 2, 4, 2.0, 3.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(**kwargs).order_records, np.array([ (0, 1, 0, 1.0, 2.0, 0.0, 0), (1, 0, 1, 1.0, 1.0, 0.0, 0), (2, 1, 2, 1.0, 2.0, 0.0, 0), (3, 2, 2, 1.0, 3.0, 0.0, 1), (4, 1, 3, 1.0, 2.0, 0.0, 0), (5, 2, 3, 1.0, 3.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(**kwargs).order_records, np.array([ (0, 1, 0, 1.0, 2.0, 0.0, 1), (1, 0, 1, 1.0, 1.0, 0.0, 1), (2, 1, 2, 1.0, 2.0, 0.0, 1), (3, 2, 2, 1.0, 3.0, 0.0, 0), (4, 1, 3, 1.0, 2.0, 0.0, 1), (5, 2, 3, 1.0, 3.0, 0.0, 0) ], dtype=order_dt) ) def test_init_cash(self): record_arrays_close( from_signals_all(price=price_wide, size=1., init_cash=[0., 1., 100.]).order_records, np.array([ (0, 3, 0, 1.0, 4.0, 0.0, 1), (1, 0, 1, 1.0, 1.0, 0.0, 0), (2, 3, 1, 2.0, 4.0, 0.0, 1), (3, 0, 2, 1.0, 1.0, 0.0, 0), (4, 3, 2, 2.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(price=price_wide, size=1., init_cash=[0., 1., 100.]).order_records, np.array([ (0, 0, 1, 1.0, 1.0, 0.0, 0), (1, 3, 1, 1.0, 4.0, 0.0, 1), (2, 0, 2, 1.0, 1.0, 0.0, 0), (3, 3, 2, 1.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(price=price_wide, size=1., init_cash=[0., 1., 100.]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 3, 0, 0.25, 4.0, 0.0, 0), (2, 0, 1, 1.0, 1.0, 0.0, 1), (3, 3, 1, 0.5, 4.0, 0.0, 0), (4, 0, 2, 1.0, 1.0, 0.0, 1), (5, 3, 2, 1.0, 4.0, 0.0, 0) ], dtype=order_dt) ) with pytest.raises(Exception) as e_info: _ = from_signals_all(init_cash=np.inf).order_records with pytest.raises(Exception) as e_info: _ = from_signals_longonly(init_cash=np.inf).order_records with pytest.raises(Exception) as e_info: _ = from_signals_shortonly(init_cash=np.inf).order_records def test_group_by(self): portfolio = from_signals_all(price=price_wide, group_by=np.array([0, 0, 1])) record_arrays_close( portfolio.order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 3, 0, 200.0, 4.0, 0.0, 1), (2, 0, 1, 100.0, 1.0, 0.0, 0), (3, 3, 1, 200.0, 4.0, 0.0, 1), (4, 0, 2, 100.0, 1.0, 0.0, 0), (5, 3, 2, 200.0, 4.0, 0.0, 1) ], dtype=order_dt) ) pd.testing.assert_index_equal( portfolio.wrapper.grouper.group_by, pd.Int64Index([0, 0, 1], dtype='int64') ) pd.testing.assert_series_equal( portfolio.init_cash, pd.Series([200., 100.], index=pd.Int64Index([0, 1], dtype='int64')).rename('init_cash') ) assert not portfolio.cash_sharing def test_cash_sharing(self): portfolio = from_signals_all(price=price_wide, group_by=np.array([0, 0, 1]), cash_sharing=True) record_arrays_close( portfolio.order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 3, 0, 200.0, 4.0, 0.0, 1), (2, 3, 1, 200.0, 4.0, 0.0, 1), (3, 0, 2, 100.0, 1.0, 0.0, 0), (4, 3, 2, 200.0, 4.0, 0.0, 1) ], dtype=order_dt) ) pd.testing.assert_index_equal( portfolio.wrapper.grouper.group_by, pd.Int64Index([0, 0, 1], dtype='int64') ) pd.testing.assert_series_equal( portfolio.init_cash, pd.Series([100., 100.], index=pd.Int64Index([0, 1], dtype='int64')).rename('init_cash') ) assert portfolio.cash_sharing with pytest.raises(Exception) as e_info: _ = portfolio.regroup(group_by=False) def test_call_seq(self): portfolio = from_signals_all(price=price_wide, group_by=np.array([0, 0, 1]), cash_sharing=True) record_arrays_close( portfolio.order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 3, 0, 200.0, 4.0, 0.0, 1), (2, 3, 1, 200.0, 4.0, 0.0, 1), (3, 0, 2, 100.0, 1.0, 0.0, 0), (4, 3, 2, 200.0, 4.0, 0.0, 1) ], dtype=order_dt) ) np.testing.assert_array_equal( portfolio.call_seq.values, np.array([ [0, 1, 0], [0, 1, 0], [0, 1, 0], [0, 1, 0], [0, 1, 0] ]) ) portfolio = from_signals_all( price=price_wide, group_by=np.array([0, 0, 1]), cash_sharing=True, call_seq='reversed') record_arrays_close( portfolio.order_records, np.array([ (0, 0, 1, 100.0, 1.0, 0.0, 0), (1, 3, 1, 200.0, 4.0, 0.0, 1), (2, 3, 0, 200.0, 4.0, 0.0, 1), (3, 0, 2, 100.0, 1.0, 0.0, 0), (4, 3, 2, 200.0, 4.0, 0.0, 1) ], dtype=order_dt) ) np.testing.assert_array_equal( portfolio.call_seq.values, np.array([ [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0] ]) ) portfolio = from_signals_all( price=price_wide, group_by=np.array([0, 0, 1]), cash_sharing=True, call_seq='random', seed=seed) record_arrays_close( portfolio.order_records, np.array([ (0, 0, 1, 100.0, 1.0, 0.0, 0), (1, 3, 1, 200.0, 4.0, 0.0, 1), (2, 3, 0, 200.0, 4.0, 0.0, 1), (3, 0, 2, 100.0, 1.0, 0.0, 0), (4, 3, 2, 200.0, 4.0, 0.0, 1) ], dtype=order_dt) ) np.testing.assert_array_equal( portfolio.call_seq.values, np.array([ [1, 0, 0], [0, 1, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0] ]) ) kwargs = dict( price=1., entries=pd.DataFrame([ [False, False, True], [False, True, False], [True, False, False], [False, False, True], [False, True, False], ]), exits=pd.DataFrame([ [False, False, False], [False, False, True], [False, True, False], [True, False, False], [False, False, True], ]), group_by=np.array([0, 0, 0]), cash_sharing=True, call_seq='auto' ) portfolio = from_signals_all(**kwargs) record_arrays_close( portfolio.order_records, np.array([ (0, 0, 2, 100.0, 1.0, 0.0, 0), (1, 1, 2, 200.0, 1.0, 0.0, 1), (2, 1, 1, 200.0, 1.0, 0.0, 0), (3, 2, 1, 400.0, 1.0, 0.0, 1), (4, 2, 0, 400.0, 1.0, 0.0, 0), (5, 3, 0, 800.0, 1.0, 0.0, 1), (6, 3, 2, 800.0, 1.0, 0.0, 0), (7, 4, 2, 1400.0, 1.0, 0.0, 1), (8, 4, 1, 1400.0, 1.0, 0.0, 0) ], dtype=order_dt) ) np.testing.assert_array_equal( portfolio.call_seq.values, np.array([ [0, 1, 2], [2, 0, 1], [1, 2, 0], [0, 1, 2], [2, 0, 1] ]) ) portfolio = from_signals_longonly(**kwargs) record_arrays_close( portfolio.order_records, np.array([ (0, 0, 2, 100.0, 1.0, 0.0, 0), (1, 1, 2, 100.0, 1.0, 0.0, 1), (2, 1, 1, 100.0, 1.0, 0.0, 0), (3, 2, 1, 100.0, 1.0, 0.0, 1), (4, 2, 0, 100.0, 1.0, 0.0, 0), (5, 3, 0, 100.0, 1.0, 0.0, 1), (6, 3, 2, 100.0, 1.0, 0.0, 0), (7, 4, 2, 100.0, 1.0, 0.0, 1), (8, 4, 1, 100.0, 1.0, 0.0, 0) ], dtype=order_dt) ) np.testing.assert_array_equal( portfolio.call_seq.values, np.array([ [0, 1, 2], [2, 0, 1], [1, 2, 0], [0, 1, 2], [2, 0, 1] ]) ) portfolio = from_signals_shortonly(**kwargs) record_arrays_close( portfolio.order_records, np.array([ (0, 0, 2, 100.0, 1.0, 0.0, 1), (1, 1, 1, 200.0, 1.0, 0.0, 1), (2, 1, 2, 100.0, 1.0, 0.0, 0), (3, 2, 0, 300.0, 1.0, 0.0, 1), (4, 2, 1, 200.0, 1.0, 0.0, 0), (5, 3, 2, 400.0, 1.0, 0.0, 1), (6, 3, 0, 300.0, 1.0, 0.0, 0), (7, 4, 1, 500.0, 1.0, 0.0, 1), (8, 4, 2, 400.0, 1.0, 0.0, 0) ], dtype=order_dt) ) np.testing.assert_array_equal( portfolio.call_seq.values, np.array([ [2, 0, 1], [1, 0, 2], [0, 2, 1], [2, 1, 0], [1, 0, 2] ]) ) portfolio = from_signals_longonly(**kwargs, size=1., size_type='percent') record_arrays_close( portfolio.order_records, np.array([ (0, 0, 2, 100.0, 1.0, 0.0, 0), (1, 1, 2, 100.0, 1.0, 0.0, 1), (2, 1, 1, 100.0, 1.0, 0.0, 0), (3, 2, 1, 100.0, 1.0, 0.0, 1), (4, 2, 0, 100.0, 1.0, 0.0, 0), (5, 3, 0, 100.0, 1.0, 0.0, 1), (6, 3, 2, 100.0, 1.0, 0.0, 0), (7, 4, 2, 100.0, 1.0, 0.0, 1), (8, 4, 1, 100.0, 1.0, 0.0, 0) ], dtype=order_dt) ) np.testing.assert_array_equal( portfolio.call_seq.values, np.array([ [0, 1, 2], [2, 0, 1], [1, 0, 2], [0, 1, 2], [2, 0, 1] ]) ) def test_max_orders(self): _ = from_signals_all(price=price_wide) _ = from_signals_all(price=price_wide, max_orders=6) with pytest.raises(Exception) as e_info: _ = from_signals_all(price=price_wide, max_orders=5) def test_max_logs(self): _ = from_signals_all(price=price_wide, log=True) _ = from_signals_all(price=price_wide, log=True, max_logs=6) with pytest.raises(Exception) as e_info: _ = from_signals_all(price=price_wide, log=True, max_logs=5) # ############# from_holding ############# # class TestFromHolding: def test_from_holding(self): record_arrays_close( vbt.Portfolio.from_holding(price).order_records, vbt.Portfolio.from_signals(price, True, False, accumulate=False).order_records ) # ############# from_random_signals ############# # class TestFromRandom: def test_from_random_n(self): result = vbt.Portfolio.from_random_signals(price, n=2, seed=seed) record_arrays_close( result.order_records, vbt.Portfolio.from_signals( price, [True, False, True, False, False], [False, True, False, False, True] ).order_records ) pd.testing.assert_index_equal( result.wrapper.index, price.vbt.wrapper.index ) pd.testing.assert_index_equal( result.wrapper.columns, price.vbt.wrapper.columns ) result = vbt.Portfolio.from_random_signals(price, n=[1, 2], seed=seed) record_arrays_close( result.order_records, vbt.Portfolio.from_signals( price, [[False, True], [True, False], [False, True], [False, False], [False, False]], [[False, False], [False, True], [False, False], [False, True], [True, False]] ).order_records ) pd.testing.assert_index_equal( result.wrapper.index, pd.DatetimeIndex([ '2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04', '2020-01-05' ], dtype='datetime64[ns]', freq=None) ) pd.testing.assert_index_equal( result.wrapper.columns, pd.Int64Index([1, 2], dtype='int64', name='rand_n') ) def test_from_random_prob(self): result = vbt.Portfolio.from_random_signals(price, prob=0.5, seed=seed) record_arrays_close( result.order_records, vbt.Portfolio.from_signals( price, [True, False, False, False, False], [False, False, False, False, True] ).order_records ) pd.testing.assert_index_equal( result.wrapper.index, price.vbt.wrapper.index ) pd.testing.assert_index_equal( result.wrapper.columns, price.vbt.wrapper.columns ) result = vbt.Portfolio.from_random_signals(price, prob=[0.25, 0.5], seed=seed) record_arrays_close( result.order_records, vbt.Portfolio.from_signals( price, [[False, True], [False, False], [False, False], [False, False], [True, False]], [[False, False], [False, True], [False, False], [False, False], [False, False]] ).order_records ) pd.testing.assert_index_equal( result.wrapper.index, pd.DatetimeIndex([ '2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04', '2020-01-05' ], dtype='datetime64[ns]', freq=None) ) pd.testing.assert_index_equal( result.wrapper.columns, pd.MultiIndex.from_tuples([(0.25, 0.25), (0.5, 0.5)], names=['rprob_entry_prob', 'rprob_exit_prob']) ) # ############# from_orders ############# # order_size = pd.Series([np.inf, -np.inf, np.nan, np.inf, -np.inf], index=price.index) order_size_wide = order_size.vbt.tile(3, keys=['a', 'b', 'c']) order_size_one = pd.Series([1, -1, np.nan, 1, -1], index=price.index) def from_orders_all(price=price, size=order_size, **kwargs): return vbt.Portfolio.from_orders(price, size, direction='all', **kwargs) def from_orders_longonly(price=price, size=order_size, **kwargs): return vbt.Portfolio.from_orders(price, size, direction='longonly', **kwargs) def from_orders_shortonly(price=price, size=order_size, **kwargs): return vbt.Portfolio.from_orders(price, size, direction='shortonly', **kwargs) class TestFromOrders: def test_one_column(self): record_arrays_close( from_orders_all().order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 200.0, 2.0, 0.0, 1), (2, 3, 0, 100.0, 4.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly().order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 100.0, 2.0, 0.0, 1), (2, 3, 0, 50.0, 4.0, 0.0, 0), (3, 4, 0, 50.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly().order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1), (1, 1, 0, 100.0, 2.0, 0.0, 0) ], dtype=order_dt) ) portfolio = from_orders_all() pd.testing.assert_index_equal( portfolio.wrapper.index, pd.DatetimeIndex(['2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04', '2020-01-05']) ) pd.testing.assert_index_equal( portfolio.wrapper.columns, pd.Int64Index([0], dtype='int64') ) assert portfolio.wrapper.ndim == 1 assert portfolio.wrapper.freq == day_dt assert portfolio.wrapper.grouper.group_by is None def test_multiple_columns(self): record_arrays_close( from_orders_all(price=price_wide).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 200.0, 2.0, 0.0, 1), (2, 3, 0, 100.0, 4.0, 0.0, 0), (3, 0, 1, 100.0, 1.0, 0.0, 0), (4, 1, 1, 200.0, 2.0, 0.0, 1), (5, 3, 1, 100.0, 4.0, 0.0, 0), (6, 0, 2, 100.0, 1.0, 0.0, 0), (7, 1, 2, 200.0, 2.0, 0.0, 1), (8, 3, 2, 100.0, 4.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(price=price_wide).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 100.0, 2.0, 0.0, 1), (2, 3, 0, 50.0, 4.0, 0.0, 0), (3, 4, 0, 50.0, 5.0, 0.0, 1), (4, 0, 1, 100.0, 1.0, 0.0, 0), (5, 1, 1, 100.0, 2.0, 0.0, 1), (6, 3, 1, 50.0, 4.0, 0.0, 0), (7, 4, 1, 50.0, 5.0, 0.0, 1), (8, 0, 2, 100.0, 1.0, 0.0, 0), (9, 1, 2, 100.0, 2.0, 0.0, 1), (10, 3, 2, 50.0, 4.0, 0.0, 0), (11, 4, 2, 50.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(price=price_wide).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1), (1, 1, 0, 100.0, 2.0, 0.0, 0), (2, 0, 1, 100.0, 1.0, 0.0, 1), (3, 1, 1, 100.0, 2.0, 0.0, 0), (4, 0, 2, 100.0, 1.0, 0.0, 1), (5, 1, 2, 100.0, 2.0, 0.0, 0) ], dtype=order_dt) ) portfolio = from_orders_all(price=price_wide) pd.testing.assert_index_equal( portfolio.wrapper.index, pd.DatetimeIndex(['2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04', '2020-01-05']) ) pd.testing.assert_index_equal( portfolio.wrapper.columns, pd.Index(['a', 'b', 'c'], dtype='object') ) assert portfolio.wrapper.ndim == 2 assert portfolio.wrapper.freq == day_dt assert portfolio.wrapper.grouper.group_by is None def test_size_inf(self): record_arrays_close( from_orders_all(size=[[np.inf, -np.inf]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 100.0, 1.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=[[np.inf, -np.inf]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=[[np.inf, -np.inf]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1) ], dtype=order_dt) ) def test_price(self): record_arrays_close( from_orders_all(price=price * 1.01).order_records, np.array([ (0, 0, 0, 99.00990099009901, 1.01, 0.0, 0), (1, 1, 0, 198.01980198019803, 2.02, 0.0, 1), (2, 3, 0, 99.00990099009901, 4.04, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(price=price * 1.01).order_records, np.array([ (0, 0, 0, 99.00990099009901, 1.01, 0.0, 0), (1, 1, 0, 99.00990099009901, 2.02, 0.0, 1), (2, 3, 0, 49.504950495049506, 4.04, 0.0, 0), (3, 4, 0, 49.504950495049506, 5.05, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(price=price * 1.01).order_records, np.array([ (0, 0, 0, 99.00990099009901, 1.01, 0.0, 1), (1, 1, 0, 99.00990099009901, 2.02, 0.0, 0) ], dtype=order_dt) ) def test_fees(self): record_arrays_close( from_orders_all(size=order_size_one, fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 1, 0, 1.0, 2.0, 0.0, 1), (2, 3, 0, 1.0, 4.0, 0.0, 0), (3, 4, 0, 1.0, 5.0, 0.0, 1), (4, 0, 1, 1.0, 1.0, 0.1, 0), (5, 1, 1, 1.0, 2.0, 0.2, 1), (6, 3, 1, 1.0, 4.0, 0.4, 0), (7, 4, 1, 1.0, 5.0, 0.5, 1), (8, 0, 2, 1.0, 1.0, 1.0, 0), (9, 1, 2, 1.0, 2.0, 2.0, 1), (10, 3, 2, 1.0, 4.0, 4.0, 0), (11, 4, 2, 1.0, 5.0, 5.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one, fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 1, 0, 1.0, 2.0, 0.0, 1), (2, 3, 0, 1.0, 4.0, 0.0, 0), (3, 4, 0, 1.0, 5.0, 0.0, 1), (4, 0, 1, 1.0, 1.0, 0.1, 0), (5, 1, 1, 1.0, 2.0, 0.2, 1), (6, 3, 1, 1.0, 4.0, 0.4, 0), (7, 4, 1, 1.0, 5.0, 0.5, 1), (8, 0, 2, 1.0, 1.0, 1.0, 0), (9, 1, 2, 1.0, 2.0, 2.0, 1), (10, 3, 2, 1.0, 4.0, 4.0, 0), (11, 4, 2, 1.0, 5.0, 5.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one, fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 1, 0, 1.0, 2.0, 0.0, 0), (2, 3, 0, 1.0, 4.0, 0.0, 1), (3, 4, 0, 1.0, 5.0, 0.0, 0), (4, 0, 1, 1.0, 1.0, 0.1, 1), (5, 1, 1, 1.0, 2.0, 0.2, 0), (6, 3, 1, 1.0, 4.0, 0.4, 1), (7, 4, 1, 1.0, 5.0, 0.5, 0), (8, 0, 2, 1.0, 1.0, 1.0, 1), (9, 1, 2, 1.0, 2.0, 2.0, 0), (10, 3, 2, 1.0, 4.0, 4.0, 1), (11, 4, 2, 1.0, 5.0, 5.0, 0) ], dtype=order_dt) ) def test_fixed_fees(self): record_arrays_close( from_orders_all(size=order_size_one, fixed_fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 1, 0, 1.0, 2.0, 0.0, 1), (2, 3, 0, 1.0, 4.0, 0.0, 0), (3, 4, 0, 1.0, 5.0, 0.0, 1), (4, 0, 1, 1.0, 1.0, 0.1, 0), (5, 1, 1, 1.0, 2.0, 0.1, 1), (6, 3, 1, 1.0, 4.0, 0.1, 0), (7, 4, 1, 1.0, 5.0, 0.1, 1), (8, 0, 2, 1.0, 1.0, 1.0, 0), (9, 1, 2, 1.0, 2.0, 1.0, 1), (10, 3, 2, 1.0, 4.0, 1.0, 0), (11, 4, 2, 1.0, 5.0, 1.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one, fixed_fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 1, 0, 1.0, 2.0, 0.0, 1), (2, 3, 0, 1.0, 4.0, 0.0, 0), (3, 4, 0, 1.0, 5.0, 0.0, 1), (4, 0, 1, 1.0, 1.0, 0.1, 0), (5, 1, 1, 1.0, 2.0, 0.1, 1), (6, 3, 1, 1.0, 4.0, 0.1, 0), (7, 4, 1, 1.0, 5.0, 0.1, 1), (8, 0, 2, 1.0, 1.0, 1.0, 0), (9, 1, 2, 1.0, 2.0, 1.0, 1), (10, 3, 2, 1.0, 4.0, 1.0, 0), (11, 4, 2, 1.0, 5.0, 1.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one, fixed_fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 1, 0, 1.0, 2.0, 0.0, 0), (2, 3, 0, 1.0, 4.0, 0.0, 1), (3, 4, 0, 1.0, 5.0, 0.0, 0), (4, 0, 1, 1.0, 1.0, 0.1, 1), (5, 1, 1, 1.0, 2.0, 0.1, 0), (6, 3, 1, 1.0, 4.0, 0.1, 1), (7, 4, 1, 1.0, 5.0, 0.1, 0), (8, 0, 2, 1.0, 1.0, 1.0, 1), (9, 1, 2, 1.0, 2.0, 1.0, 0), (10, 3, 2, 1.0, 4.0, 1.0, 1), (11, 4, 2, 1.0, 5.0, 1.0, 0) ], dtype=order_dt) ) def test_slippage(self): record_arrays_close( from_orders_all(size=order_size_one, slippage=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 1, 0, 1.0, 2.0, 0.0, 1), (2, 3, 0, 1.0, 4.0, 0.0, 0), (3, 4, 0, 1.0, 5.0, 0.0, 1), (4, 0, 1, 1.0, 1.1, 0.0, 0), (5, 1, 1, 1.0, 1.8, 0.0, 1), (6, 3, 1, 1.0, 4.4, 0.0, 0), (7, 4, 1, 1.0, 4.5, 0.0, 1), (8, 0, 2, 1.0, 2.0, 0.0, 0), (9, 1, 2, 1.0, 0.0, 0.0, 1), (10, 3, 2, 1.0, 8.0, 0.0, 0), (11, 4, 2, 1.0, 0.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one, slippage=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 1, 0, 1.0, 2.0, 0.0, 1), (2, 3, 0, 1.0, 4.0, 0.0, 0), (3, 4, 0, 1.0, 5.0, 0.0, 1), (4, 0, 1, 1.0, 1.1, 0.0, 0), (5, 1, 1, 1.0, 1.8, 0.0, 1), (6, 3, 1, 1.0, 4.4, 0.0, 0), (7, 4, 1, 1.0, 4.5, 0.0, 1), (8, 0, 2, 1.0, 2.0, 0.0, 0), (9, 1, 2, 1.0, 0.0, 0.0, 1), (10, 3, 2, 1.0, 8.0, 0.0, 0), (11, 4, 2, 1.0, 0.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one, slippage=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 1, 0, 1.0, 2.0, 0.0, 0), (2, 3, 0, 1.0, 4.0, 0.0, 1), (3, 4, 0, 1.0, 5.0, 0.0, 0), (4, 0, 1, 1.0, 0.9, 0.0, 1), (5, 1, 1, 1.0, 2.2, 0.0, 0), (6, 3, 1, 1.0, 3.6, 0.0, 1), (7, 4, 1, 1.0, 5.5, 0.0, 0), (8, 0, 2, 1.0, 0.0, 0.0, 1), (9, 1, 2, 1.0, 4.0, 0.0, 0), (10, 3, 2, 1.0, 0.0, 0.0, 1), (11, 4, 2, 1.0, 10.0, 0.0, 0) ], dtype=order_dt) ) def test_min_size(self): record_arrays_close( from_orders_all(size=order_size_one, min_size=[[0., 1., 2.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 1, 0, 1.0, 2.0, 0.0, 1), (2, 3, 0, 1.0, 4.0, 0.0, 0), (3, 4, 0, 1.0, 5.0, 0.0, 1), (4, 0, 1, 1.0, 1.0, 0.0, 0), (5, 1, 1, 1.0, 2.0, 0.0, 1), (6, 3, 1, 1.0, 4.0, 0.0, 0), (7, 4, 1, 1.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one, min_size=[[0., 1., 2.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 1, 0, 1.0, 2.0, 0.0, 1), (2, 3, 0, 1.0, 4.0, 0.0, 0), (3, 4, 0, 1.0, 5.0, 0.0, 1), (4, 0, 1, 1.0, 1.0, 0.0, 0), (5, 1, 1, 1.0, 2.0, 0.0, 1), (6, 3, 1, 1.0, 4.0, 0.0, 0), (7, 4, 1, 1.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one, min_size=[[0., 1., 2.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 1, 0, 1.0, 2.0, 0.0, 0), (2, 3, 0, 1.0, 4.0, 0.0, 1), (3, 4, 0, 1.0, 5.0, 0.0, 0), (4, 0, 1, 1.0, 1.0, 0.0, 1), (5, 1, 1, 1.0, 2.0, 0.0, 0), (6, 3, 1, 1.0, 4.0, 0.0, 1), (7, 4, 1, 1.0, 5.0, 0.0, 0) ], dtype=order_dt) ) def test_max_size(self): record_arrays_close( from_orders_all(size=order_size_one, max_size=[[0.5, 1., np.inf]]).order_records, np.array([ (0, 0, 0, 0.5, 1.0, 0.0, 0), (1, 1, 0, 0.5, 2.0, 0.0, 1), (2, 3, 0, 0.5, 4.0, 0.0, 0), (3, 4, 0, 0.5, 5.0, 0.0, 1), (4, 0, 1, 1.0, 1.0, 0.0, 0), (5, 1, 1, 1.0, 2.0, 0.0, 1), (6, 3, 1, 1.0, 4.0, 0.0, 0), (7, 4, 1, 1.0, 5.0, 0.0, 1), (8, 0, 2, 1.0, 1.0, 0.0, 0), (9, 1, 2, 1.0, 2.0, 0.0, 1), (10, 3, 2, 1.0, 4.0, 0.0, 0), (11, 4, 2, 1.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one, max_size=[[0.5, 1., np.inf]]).order_records, np.array([ (0, 0, 0, 0.5, 1.0, 0.0, 0), (1, 1, 0, 0.5, 2.0, 0.0, 1), (2, 3, 0, 0.5, 4.0, 0.0, 0), (3, 4, 0, 0.5, 5.0, 0.0, 1), (4, 0, 1, 1.0, 1.0, 0.0, 0), (5, 1, 1, 1.0, 2.0, 0.0, 1), (6, 3, 1, 1.0, 4.0, 0.0, 0), (7, 4, 1, 1.0, 5.0, 0.0, 1), (8, 0, 2, 1.0, 1.0, 0.0, 0), (9, 1, 2, 1.0, 2.0, 0.0, 1), (10, 3, 2, 1.0, 4.0, 0.0, 0), (11, 4, 2, 1.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one, max_size=[[0.5, 1., np.inf]]).order_records, np.array([ (0, 0, 0, 0.5, 1.0, 0.0, 1), (1, 1, 0, 0.5, 2.0, 0.0, 0), (2, 3, 0, 0.5, 4.0, 0.0, 1), (3, 4, 0, 0.5, 5.0, 0.0, 0), (4, 0, 1, 1.0, 1.0, 0.0, 1), (5, 1, 1, 1.0, 2.0, 0.0, 0), (6, 3, 1, 1.0, 4.0, 0.0, 1), (7, 4, 1, 1.0, 5.0, 0.0, 0), (8, 0, 2, 1.0, 1.0, 0.0, 1), (9, 1, 2, 1.0, 2.0, 0.0, 0), (10, 3, 2, 1.0, 4.0, 0.0, 1), (11, 4, 2, 1.0, 5.0, 0.0, 0) ], dtype=order_dt) ) def test_reject_prob(self): record_arrays_close( from_orders_all(size=order_size_one, reject_prob=[[0., 0.5, 1.]], seed=42).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 1, 0, 1.0, 2.0, 0.0, 1), (2, 3, 0, 1.0, 4.0, 0.0, 0), (3, 4, 0, 1.0, 5.0, 0.0, 1), (4, 1, 1, 1.0, 2.0, 0.0, 1), (5, 3, 1, 1.0, 4.0, 0.0, 0), (6, 4, 1, 1.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one, reject_prob=[[0., 0.5, 1.]], seed=42).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 1, 0, 1.0, 2.0, 0.0, 1), (2, 3, 0, 1.0, 4.0, 0.0, 0), (3, 4, 0, 1.0, 5.0, 0.0, 1), (4, 3, 1, 1.0, 4.0, 0.0, 0), (5, 4, 1, 1.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one, reject_prob=[[0., 0.5, 1.]], seed=42).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 1, 0, 1.0, 2.0, 0.0, 0), (2, 3, 0, 1.0, 4.0, 0.0, 1), (3, 4, 0, 1.0, 5.0, 0.0, 0), (4, 3, 1, 1.0, 4.0, 0.0, 1), (5, 4, 1, 1.0, 5.0, 0.0, 0) ], dtype=order_dt) ) def test_allow_partial(self): record_arrays_close( from_orders_all(size=order_size_one * 1000, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 1000.0, 2.0, 0.0, 1), (2, 3, 0, 500.0, 4.0, 0.0, 0), (3, 4, 0, 1000.0, 5.0, 0.0, 1), (4, 1, 1, 1000.0, 2.0, 0.0, 1), (5, 4, 1, 1000.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one * 1000, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 100.0, 2.0, 0.0, 1), (2, 3, 0, 50.0, 4.0, 0.0, 0), (3, 4, 0, 50.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one * 1000, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 1000.0, 1.0, 0.0, 1), (1, 1, 0, 550.0, 2.0, 0.0, 0), (2, 3, 0, 1000.0, 4.0, 0.0, 1), (3, 4, 0, 800.0, 5.0, 0.0, 0), (4, 0, 1, 1000.0, 1.0, 0.0, 1), (5, 3, 1, 1000.0, 4.0, 0.0, 1), (6, 4, 1, 1000.0, 5.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_all(size=order_size, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 200.0, 2.0, 0.0, 1), (2, 3, 0, 100.0, 4.0, 0.0, 0), (3, 0, 1, 100.0, 1.0, 0.0, 0), (4, 1, 1, 200.0, 2.0, 0.0, 1), (5, 3, 1, 100.0, 4.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 100.0, 2.0, 0.0, 1), (2, 3, 0, 50.0, 4.0, 0.0, 0), (3, 4, 0, 50.0, 5.0, 0.0, 1), (4, 0, 1, 100.0, 1.0, 0.0, 0), (5, 1, 1, 100.0, 2.0, 0.0, 1), (6, 3, 1, 50.0, 4.0, 0.0, 0), (7, 4, 1, 50.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1), (1, 1, 0, 100.0, 2.0, 0.0, 0), (2, 0, 1, 100.0, 1.0, 0.0, 1), (3, 1, 1, 100.0, 2.0, 0.0, 0) ], dtype=order_dt) ) def test_raise_reject(self): record_arrays_close( from_orders_all(size=order_size_one * 1000, allow_partial=True, raise_reject=True).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 1000.0, 2.0, 0.0, 1), (2, 3, 0, 500.0, 4.0, 0.0, 0), (3, 4, 0, 1000.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one * 1000, allow_partial=True, raise_reject=True).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 100.0, 2.0, 0.0, 1), (2, 3, 0, 50.0, 4.0, 0.0, 0), (3, 4, 0, 50.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one * 1000, allow_partial=True, raise_reject=True).order_records, np.array([ (0, 0, 0, 1000.0, 1.0, 0.0, 1), (1, 1, 0, 550.0, 2.0, 0.0, 0), (2, 3, 0, 1000.0, 4.0, 0.0, 1), (3, 4, 0, 800.0, 5.0, 0.0, 0) ], dtype=order_dt) ) with pytest.raises(Exception) as e_info: _ = from_orders_all(size=order_size_one * 1000, allow_partial=False, raise_reject=True).order_records with pytest.raises(Exception) as e_info: _ = from_orders_longonly(size=order_size_one * 1000, allow_partial=False, raise_reject=True).order_records with pytest.raises(Exception) as e_info: _ = from_orders_shortonly(size=order_size_one * 1000, allow_partial=False, raise_reject=True).order_records def test_log(self): record_arrays_close( from_orders_all(log=True).log_records, np.array([ (0, 0, 0, 0, 100.0, 0.0, 1.0, 100.0, np.inf, 0, 2, 1.0, 0.0, 0.0, 0.0, 1e-08, np.inf, 0.0, True, False, True, 0.0, 100.0, 100.0, 1.0, 0.0, 0, 0, -1, 0), (1, 1, 0, 0, 0.0, 100.0, 2.0, 200.0, -np.inf, 0, 2, 2.0, 0.0, 0.0, 0.0, 1e-08, np.inf, 0.0, True, False, True, 400.0, -100.0, 200.0, 2.0, 0.0, 1, 0, -1, 1), (2, 2, 0, 0, 400.0, -100.0, 3.0, 100.0, np.nan, 0, 2, 3.0, 0.0, 0.0, 0.0, 1e-08, np.inf, 0.0, True, False, True, 400.0, -100.0, np.nan, np.nan, np.nan, -1, 1, 0, -1), (3, 3, 0, 0, 400.0, -100.0, 4.0, 0.0, np.inf, 0, 2, 4.0, 0.0, 0.0, 0.0, 1e-08, np.inf, 0.0, True, False, True, 0.0, 0.0, 100.0, 4.0, 0.0, 0, 0, -1, 2), (4, 4, 0, 0, 0.0, 0.0, 5.0, 0.0, -np.inf, 0, 2, 5.0, 0.0, 0.0, 0.0, 1e-08, np.inf, 0.0, True, False, True, 0.0, 0.0, np.nan, np.nan, np.nan, -1, 2, 6, -1) ], dtype=log_dt) ) def test_group_by(self): portfolio = from_orders_all(price=price_wide, group_by=np.array([0, 0, 1])) record_arrays_close( portfolio.order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 200.0, 2.0, 0.0, 1), (2, 3, 0, 100.0, 4.0, 0.0, 0), (3, 0, 1, 100.0, 1.0, 0.0, 0), (4, 1, 1, 200.0, 2.0, 0.0, 1), (5, 3, 1, 100.0, 4.0, 0.0, 0), (6, 0, 2, 100.0, 1.0, 0.0, 0), (7, 1, 2, 200.0, 2.0, 0.0, 1), (8, 3, 2, 100.0, 4.0, 0.0, 0) ], dtype=order_dt) ) pd.testing.assert_index_equal( portfolio.wrapper.grouper.group_by, pd.Int64Index([0, 0, 1], dtype='int64') ) pd.testing.assert_series_equal( portfolio.init_cash, pd.Series([200., 100.], index=pd.Int64Index([0, 1], dtype='int64')).rename('init_cash') ) assert not portfolio.cash_sharing def test_cash_sharing(self): portfolio = from_orders_all(price=price_wide, group_by=np.array([0, 0, 1]), cash_sharing=True) record_arrays_close( portfolio.order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 200.0, 2.0, 0.0, 1), (2, 1, 1, 200.0, 2.0, 0.0, 1), (3, 3, 0, 200.0, 4.0, 0.0, 0), (4, 4, 0, 200.0, 5.0, 0.0, 1), (5, 0, 2, 100.0, 1.0, 0.0, 0), (6, 1, 2, 200.0, 2.0, 0.0, 1), (7, 3, 2, 100.0, 4.0, 0.0, 0) ], dtype=order_dt) ) pd.testing.assert_index_equal( portfolio.wrapper.grouper.group_by, pd.Int64Index([0, 0, 1], dtype='int64') ) pd.testing.assert_series_equal( portfolio.init_cash, pd.Series([100., 100.], index=pd.Int64Index([0, 1], dtype='int64')).rename('init_cash') ) assert portfolio.cash_sharing with pytest.raises(Exception) as e_info: _ = portfolio.regroup(group_by=False) def test_call_seq(self): portfolio = from_orders_all(price=price_wide, group_by=np.array([0, 0, 1]), cash_sharing=True) record_arrays_close( portfolio.order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 200.0, 2.0, 0.0, 1), (2, 1, 1, 200.0, 2.0, 0.0, 1), (3, 3, 0, 200.0, 4.0, 0.0, 0), (4, 4, 0, 200.0, 5.0, 0.0, 1), (5, 0, 2, 100.0, 1.0, 0.0, 0), (6, 1, 2, 200.0, 2.0, 0.0, 1), (7, 3, 2, 100.0, 4.0, 0.0, 0) ], dtype=order_dt) ) np.testing.assert_array_equal( portfolio.call_seq.values, np.array([ [0, 1, 0], [0, 1, 0], [0, 1, 0], [0, 1, 0], [0, 1, 0] ]) ) portfolio = from_orders_all( price=price_wide, group_by=np.array([0, 0, 1]), cash_sharing=True, call_seq='reversed') record_arrays_close( portfolio.order_records, np.array([ (0, 0, 1, 100.0, 1.0, 0.0, 0), (1, 1, 1, 200.0, 2.0, 0.0, 1), (2, 1, 0, 200.0, 2.0, 0.0, 1), (3, 3, 1, 200.0, 4.0, 0.0, 0), (4, 4, 1, 200.0, 5.0, 0.0, 1), (5, 0, 2, 100.0, 1.0, 0.0, 0), (6, 1, 2, 200.0, 2.0, 0.0, 1), (7, 3, 2, 100.0, 4.0, 0.0, 0) ], dtype=order_dt) ) np.testing.assert_array_equal( portfolio.call_seq.values, np.array([ [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0] ]) ) portfolio = from_orders_all( price=price_wide, group_by=np.array([0, 0, 1]), cash_sharing=True, call_seq='random', seed=seed) record_arrays_close( portfolio.order_records, np.array([ (0, 0, 1, 100.0, 1.0, 0.0, 0), (1, 1, 1, 200.0, 2.0, 0.0, 1), (2, 3, 1, 100.0, 4.0, 0.0, 0), (3, 0, 2, 100.0, 1.0, 0.0, 0), (4, 1, 2, 200.0, 2.0, 0.0, 1), (5, 3, 2, 100.0, 4.0, 0.0, 0) ], dtype=order_dt) ) np.testing.assert_array_equal( portfolio.call_seq.values, np.array([ [1, 0, 0], [0, 1, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0] ]) ) kwargs = dict( price=1., size=pd.DataFrame([ [0., 0., np.inf], [0., np.inf, -np.inf], [np.inf, -np.inf, 0.], [-np.inf, 0., np.inf], [0., np.inf, -np.inf], ]), group_by=np.array([0, 0, 0]), cash_sharing=True, call_seq='auto' ) portfolio = from_orders_all(**kwargs) record_arrays_close( portfolio.order_records, np.array([ (0, 0, 2, 100.0, 1.0, 0.0, 0), (1, 1, 2, 200.0, 1.0, 0.0, 1), (2, 1, 1, 200.0, 1.0, 0.0, 0), (3, 2, 1, 400.0, 1.0, 0.0, 1), (4, 2, 0, 400.0, 1.0, 0.0, 0), (5, 3, 0, 800.0, 1.0, 0.0, 1), (6, 3, 2, 800.0, 1.0, 0.0, 0), (7, 4, 2, 1400.0, 1.0, 0.0, 1), (8, 4, 1, 1400.0, 1.0, 0.0, 0) ], dtype=order_dt) ) np.testing.assert_array_equal( portfolio.call_seq.values, np.array([ [0, 1, 2], [2, 0, 1], [1, 2, 0], [0, 1, 2], [2, 0, 1] ]) ) portfolio = from_orders_longonly(**kwargs) record_arrays_close( portfolio.order_records, np.array([ (0, 0, 2, 100.0, 1.0, 0.0, 0), (1, 1, 2, 100.0, 1.0, 0.0, 1), (2, 1, 1, 100.0, 1.0, 0.0, 0), (3, 2, 1, 100.0, 1.0, 0.0, 1), (4, 2, 0, 100.0, 1.0, 0.0, 0), (5, 3, 0, 100.0, 1.0, 0.0, 1), (6, 3, 2, 100.0, 1.0, 0.0, 0), (7, 4, 2, 100.0, 1.0, 0.0, 1), (8, 4, 1, 100.0, 1.0, 0.0, 0) ], dtype=order_dt) ) np.testing.assert_array_equal( portfolio.call_seq.values, np.array([ [0, 1, 2], [2, 0, 1], [1, 2, 0], [0, 1, 2], [2, 0, 1] ]) ) portfolio = from_orders_shortonly(**kwargs) record_arrays_close( portfolio.order_records, np.array([ (0, 0, 2, 100.0, 1.0, 0.0, 1), (1, 1, 1, 200.0, 1.0, 0.0, 1), (2, 1, 2, 100.0, 1.0, 0.0, 0), (3, 2, 0, 300.0, 1.0, 0.0, 1), (4, 2, 1, 200.0, 1.0, 0.0, 0), (5, 3, 2, 400.0, 1.0, 0.0, 1), (6, 3, 0, 300.0, 1.0, 0.0, 0), (7, 4, 1, 500.0, 1.0, 0.0, 1), (8, 4, 2, 400.0, 1.0, 0.0, 0) ], dtype=order_dt) ) np.testing.assert_array_equal( portfolio.call_seq.values, np.array([ [2, 0, 1], [1, 0, 2], [0, 2, 1], [2, 1, 0], [1, 0, 2] ]) ) def test_target_shares(self): record_arrays_close( from_orders_all(size=[[75., -75.]], size_type='targetshares').order_records, np.array([ (0, 0, 0, 75.0, 1.0, 0.0, 0), (1, 0, 1, 75.0, 1.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=[[75., -75.]], size_type='targetshares').order_records, np.array([ (0, 0, 0, 75.0, 1.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=[[75., -75.]], size_type='targetshares').order_records, np.array([ (0, 0, 0, 75.0, 1.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_all( price=price_wide, size=75., size_type='targetshares', group_by=np.array([0, 0, 0]), cash_sharing=True).order_records, np.array([ (0, 0, 0, 75.0, 1.0, 0.0, 0), (1, 0, 1, 25.0, 1.0, 0.0, 0) ], dtype=order_dt) ) def test_target_value(self): record_arrays_close( from_orders_all(size=[[50., -50.]], size_type='targetvalue').order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 0), (1, 1, 0, 25.0, 2.0, 0.0, 1), (2, 2, 0, 8.333333333333332, 3.0, 0.0, 1), (3, 3, 0, 4.166666666666668, 4.0, 0.0, 1), (4, 4, 0, 2.5, 5.0, 0.0, 1), (5, 0, 1, 50.0, 1.0, 0.0, 1), (6, 1, 1, 25.0, 2.0, 0.0, 0), (7, 2, 1, 8.333333333333332, 3.0, 0.0, 0), (8, 3, 1, 4.166666666666668, 4.0, 0.0, 0), (9, 4, 1, 2.5, 5.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=[[50., -50.]], size_type='targetvalue').order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 0), (1, 1, 0, 25.0, 2.0, 0.0, 1), (2, 2, 0, 8.333333333333332, 3.0, 0.0, 1), (3, 3, 0, 4.166666666666668, 4.0, 0.0, 1), (4, 4, 0, 2.5, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=[[50., -50.]], size_type='targetvalue').order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 1), (1, 1, 0, 25.0, 2.0, 0.0, 0), (2, 2, 0, 8.333333333333332, 3.0, 0.0, 0), (3, 3, 0, 4.166666666666668, 4.0, 0.0, 0), (4, 4, 0, 2.5, 5.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_all( price=price_wide, size=50., size_type='targetvalue', group_by=np.array([0, 0, 0]), cash_sharing=True).order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 0), (1, 0, 1, 50.0, 1.0, 0.0, 0), (2, 1, 0, 25.0, 2.0, 0.0, 1), (3, 1, 1, 25.0, 2.0, 0.0, 1), (4, 1, 2, 25.0, 2.0, 0.0, 0), (5, 2, 0, 8.333333333333332, 3.0, 0.0, 1), (6, 2, 1, 8.333333333333332, 3.0, 0.0, 1), (7, 2, 2, 8.333333333333332, 3.0, 0.0, 1), (8, 3, 0, 4.166666666666668, 4.0, 0.0, 1), (9, 3, 1, 4.166666666666668, 4.0, 0.0, 1), (10, 3, 2, 4.166666666666668, 4.0, 0.0, 1), (11, 4, 0, 2.5, 5.0, 0.0, 1), (12, 4, 1, 2.5, 5.0, 0.0, 1), (13, 4, 2, 2.5, 5.0, 0.0, 1) ], dtype=order_dt) ) def test_target_percent(self): record_arrays_close( from_orders_all(size=[[0.5, -0.5]], size_type='targetpercent').order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 0), (1, 1, 0, 12.5, 2.0, 0.0, 1), (2, 2, 0, 6.25, 3.0, 0.0, 1), (3, 3, 0, 3.90625, 4.0, 0.0, 1), (4, 4, 0, 2.734375, 5.0, 0.0, 1), (5, 0, 1, 50.0, 1.0, 0.0, 1), (6, 1, 1, 37.5, 2.0, 0.0, 0), (7, 2, 1, 6.25, 3.0, 0.0, 0), (8, 3, 1, 2.34375, 4.0, 0.0, 0), (9, 4, 1, 1.171875, 5.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=[[0.5, -0.5]], size_type='targetpercent').order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 0), (1, 1, 0, 12.5, 2.0, 0.0, 1), (2, 2, 0, 6.25, 3.0, 0.0, 1), (3, 3, 0, 3.90625, 4.0, 0.0, 1), (4, 4, 0, 2.734375, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=[[0.5, -0.5]], size_type='targetpercent').order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 1), (1, 1, 0, 37.5, 2.0, 0.0, 0), (2, 2, 0, 6.25, 3.0, 0.0, 0), (3, 3, 0, 2.34375, 4.0, 0.0, 0), (4, 4, 0, 1.171875, 5.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_all( price=price_wide, size=0.5, size_type='targetpercent', group_by=np.array([0, 0, 0]), cash_sharing=True).order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 0), (1, 0, 1, 50.0, 1.0, 0.0, 0) ], dtype=order_dt) ) def test_percent(self): record_arrays_close( from_orders_all(size=[[0.5, -0.5]], size_type='percent').order_records, np.array([ (0, 0, 0, 50., 1., 0., 0), (1, 1, 0, 12.5, 2., 0., 0), (2, 2, 0, 4.16666667, 3., 0., 0), (3, 3, 0, 1.5625, 4., 0., 0), (4, 4, 0, 0.625, 5., 0., 0) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=[[0.5, -0.5]], size_type='percent').order_records, np.array([ (0, 0, 0, 50., 1., 0., 0), (1, 1, 0, 12.5, 2., 0., 0), (2, 2, 0, 4.16666667, 3., 0., 0), (3, 3, 0, 1.5625, 4., 0., 0), (4, 4, 0, 0.625, 5., 0., 0) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=[[0.5, -0.5]], size_type='percent').order_records, np.array([], dtype=order_dt) ) record_arrays_close( from_orders_all( price=price_wide, size=0.5, size_type='percent', group_by=np.array([0, 0, 0]), cash_sharing=True).order_records, np.array([ (0, 0, 0, 5.00000000e+01, 1., 0., 0), (1, 0, 1, 2.50000000e+01, 1., 0., 0), (2, 0, 2, 1.25000000e+01, 1., 0., 0), (3, 1, 0, 3.12500000e+00, 2., 0., 0), (4, 1, 1, 1.56250000e+00, 2., 0., 0), (5, 1, 2, 7.81250000e-01, 2., 0., 0), (6, 2, 0, 2.60416667e-01, 3., 0., 0), (7, 2, 1, 1.30208333e-01, 3., 0., 0), (8, 2, 2, 6.51041667e-02, 3., 0., 0), (9, 3, 0, 2.44140625e-02, 4., 0., 0), (10, 3, 1, 1.22070312e-02, 4., 0., 0), (11, 3, 2, 6.10351562e-03, 4., 0., 0), (12, 4, 0, 2.44140625e-03, 5., 0., 0), (13, 4, 1, 1.22070312e-03, 5., 0., 0), (14, 4, 2, 6.10351562e-04, 5., 0., 0) ], dtype=order_dt) ) def test_auto_seq(self): target_hold_value = pd.DataFrame({ 'a': [0., 70., 30., 0., 70.], 'b': [30., 0., 70., 30., 30.], 'c': [70., 30., 0., 70., 0.] }, index=price.index) pd.testing.assert_frame_equal( from_orders_all( price=1., size=target_hold_value, size_type='targetvalue', group_by=np.array([0, 0, 0]), cash_sharing=True, call_seq='auto').holding_value(group_by=False), target_hold_value ) pd.testing.assert_frame_equal( from_orders_all( price=1., size=target_hold_value / 100, size_type='targetpercent', group_by=np.array([0, 0, 0]), cash_sharing=True, call_seq='auto').holding_value(group_by=False), target_hold_value ) def test_max_orders(self): _ = from_orders_all(price=price_wide) _ = from_orders_all(price=price_wide, max_orders=9) with pytest.raises(Exception) as e_info: _ = from_orders_all(price=price_wide, max_orders=8) def test_max_logs(self): _ = from_orders_all(price=price_wide, log=True) _ = from_orders_all(price=price_wide, log=True, max_logs=15) with pytest.raises(Exception) as e_info: _ = from_orders_all(price=price_wide, log=True, max_logs=14) # ############# from_order_func ############# # @njit def order_func_nb(oc, size): return nb.create_order_nb(size=size if oc.i % 2 == 0 else -size, price=oc.close[oc.i, oc.col]) @njit def log_order_func_nb(oc, size): return nb.create_order_nb(size=size if oc.i % 2 == 0 else -size, price=oc.close[oc.i, oc.col], log=True) class TestFromOrderFunc: @pytest.mark.parametrize( "test_row_wise", [False, True], ) def test_one_column(self, test_row_wise): portfolio = vbt.Portfolio.from_order_func(price.tolist(), order_func_nb, np.inf, row_wise=test_row_wise) record_arrays_close( portfolio.order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 200.0, 2.0, 0.0, 1), (2, 2, 0, 133.33333333333334, 3.0, 0.0, 0), (3, 3, 0, 66.66666666666669, 4.0, 0.0, 1), (4, 4, 0, 53.33333333333335, 5.0, 0.0, 0) ], dtype=order_dt) ) portfolio = vbt.Portfolio.from_order_func(price, order_func_nb, np.inf, row_wise=test_row_wise) record_arrays_close( portfolio.order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 200.0, 2.0, 0.0, 1), (2, 2, 0, 133.33333333333334, 3.0, 0.0, 0), (3, 3, 0, 66.66666666666669, 4.0, 0.0, 1), (4, 4, 0, 53.33333333333335, 5.0, 0.0, 0) ], dtype=order_dt) ) pd.testing.assert_index_equal( portfolio.wrapper.index, pd.DatetimeIndex(['2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04', '2020-01-05']) ) pd.testing.assert_index_equal( portfolio.wrapper.columns, pd.Int64Index([0], dtype='int64') ) assert portfolio.wrapper.ndim == 1 assert portfolio.wrapper.freq == day_dt assert portfolio.wrapper.grouper.group_by is None @pytest.mark.parametrize( "test_row_wise", [False, True], ) def test_multiple_columns(self, test_row_wise): portfolio = vbt.Portfolio.from_order_func(price_wide, order_func_nb, np.inf, row_wise=test_row_wise) if test_row_wise: record_arrays_close( portfolio.order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 100.0, 1.0, 0.0, 0), (2, 0, 2, 100.0, 1.0, 0.0, 0), (3, 1, 0, 200.0, 2.0, 0.0, 1), (4, 1, 1, 200.0, 2.0, 0.0, 1), (5, 1, 2, 200.0, 2.0, 0.0, 1), (6, 2, 0, 133.33333333333334, 3.0, 0.0, 0), (7, 2, 1, 133.33333333333334, 3.0, 0.0, 0), (8, 2, 2, 133.33333333333334, 3.0, 0.0, 0), (9, 3, 0, 66.66666666666669, 4.0, 0.0, 1), (10, 3, 1, 66.66666666666669, 4.0, 0.0, 1), (11, 3, 2, 66.66666666666669, 4.0, 0.0, 1), (12, 4, 0, 53.33333333333335, 5.0, 0.0, 0), (13, 4, 1, 53.33333333333335, 5.0, 0.0, 0), (14, 4, 2, 53.33333333333335, 5.0, 0.0, 0) ], dtype=order_dt) ) else: record_arrays_close( portfolio.order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 200.0, 2.0, 0.0, 1), (2, 2, 0, 133.33333333333334, 3.0, 0.0, 0), (3, 3, 0, 66.66666666666669, 4.0, 0.0, 1), (4, 4, 0, 53.33333333333335, 5.0, 0.0, 0), (5, 0, 1, 100.0, 1.0, 0.0, 0), (6, 1, 1, 200.0, 2.0, 0.0, 1), (7, 2, 1, 133.33333333333334, 3.0, 0.0, 0), (8, 3, 1, 66.66666666666669, 4.0, 0.0, 1), (9, 4, 1, 53.33333333333335, 5.0, 0.0, 0), (10, 0, 2, 100.0, 1.0, 0.0, 0), (11, 1, 2, 200.0, 2.0, 0.0, 1), (12, 2, 2, 133.33333333333334, 3.0, 0.0, 0), (13, 3, 2, 66.66666666666669, 4.0, 0.0, 1), (14, 4, 2, 53.33333333333335, 5.0, 0.0, 0) ], dtype=order_dt) ) pd.testing.assert_index_equal( portfolio.wrapper.index, pd.DatetimeIndex(['2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04', '2020-01-05']) ) pd.testing.assert_index_equal( portfolio.wrapper.columns, pd.Index(['a', 'b', 'c'], dtype='object') ) assert portfolio.wrapper.ndim == 2 assert portfolio.wrapper.freq == day_dt assert portfolio.wrapper.grouper.group_by is None @pytest.mark.parametrize( "test_row_wise", [False, True], ) def test_target_shape(self, test_row_wise): portfolio = vbt.Portfolio.from_order_func( price, order_func_nb, np.inf, target_shape=(5,), row_wise=test_row_wise) pd.testing.assert_index_equal( portfolio.wrapper.columns, pd.Int64Index([0], dtype='int64') ) assert portfolio.wrapper.ndim == 1 portfolio = vbt.Portfolio.from_order_func( price, order_func_nb, np.inf, target_shape=(5, 1), row_wise=test_row_wise) pd.testing.assert_index_equal( portfolio.wrapper.columns, pd.Int64Index([0], dtype='int64', name='iteration_idx') ) assert portfolio.wrapper.ndim == 2 portfolio = vbt.Portfolio.from_order_func( price, order_func_nb, np.inf, target_shape=(5, 1), row_wise=test_row_wise, keys=pd.Index(['first'], name='custom')) pd.testing.assert_index_equal( portfolio.wrapper.columns, pd.Index(['first'], dtype='object', name='custom') ) assert portfolio.wrapper.ndim == 2 portfolio = vbt.Portfolio.from_order_func( price, order_func_nb, np.inf, target_shape=(5, 3), row_wise=test_row_wise) pd.testing.assert_index_equal( portfolio.wrapper.columns, pd.Int64Index([0, 1, 2], dtype='int64', name='iteration_idx') ) assert portfolio.wrapper.ndim == 2 portfolio = vbt.Portfolio.from_order_func( price, order_func_nb, np.inf, target_shape=(5, 3), row_wise=test_row_wise, keys=pd.Index(['first', 'second', 'third'], name='custom')) pd.testing.assert_index_equal( portfolio.wrapper.columns, pd.Index(['first', 'second', 'third'], dtype='object', name='custom') ) assert portfolio.wrapper.ndim == 2 @pytest.mark.parametrize( "test_row_wise", [False, True], ) def test_group_by(self, test_row_wise): portfolio = vbt.Portfolio.from_order_func( price_wide, order_func_nb, np.inf, group_by=np.array([0, 0, 1]), row_wise=test_row_wise) if test_row_wise: record_arrays_close( portfolio.order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 100.0, 1.0, 0.0, 0), (2, 0, 2, 100.0, 1.0, 0.0, 0), (3, 1, 0, 200.0, 2.0, 0.0, 1), (4, 1, 1, 200.0, 2.0, 0.0, 1), (5, 1, 2, 200.0, 2.0, 0.0, 1), (6, 2, 0, 133.33333333333334, 3.0, 0.0, 0), (7, 2, 1, 133.33333333333334, 3.0, 0.0, 0), (8, 2, 2, 133.33333333333334, 3.0, 0.0, 0), (9, 3, 0, 66.66666666666669, 4.0, 0.0, 1), (10, 3, 1, 66.66666666666669, 4.0, 0.0, 1), (11, 3, 2, 66.66666666666669, 4.0, 0.0, 1), (12, 4, 0, 53.33333333333335, 5.0, 0.0, 0), (13, 4, 1, 53.33333333333335, 5.0, 0.0, 0), (14, 4, 2, 53.33333333333335, 5.0, 0.0, 0) ], dtype=order_dt) ) else: record_arrays_close( portfolio.order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 100.0, 1.0, 0.0, 0), (2, 1, 0, 200.0, 2.0, 0.0, 1), (3, 1, 1, 200.0, 2.0, 0.0, 1), (4, 2, 0, 133.33333333333334, 3.0, 0.0, 0), (5, 2, 1, 133.33333333333334, 3.0, 0.0, 0), (6, 3, 0, 66.66666666666669, 4.0, 0.0, 1), (7, 3, 1, 66.66666666666669, 4.0, 0.0, 1), (8, 4, 0, 53.33333333333335, 5.0, 0.0, 0), (9, 4, 1, 53.33333333333335, 5.0, 0.0, 0), (10, 0, 2, 100.0, 1.0, 0.0, 0), (11, 1, 2, 200.0, 2.0, 0.0, 1), (12, 2, 2, 133.33333333333334, 3.0, 0.0, 0), (13, 3, 2, 66.66666666666669, 4.0, 0.0, 1), (14, 4, 2, 53.33333333333335, 5.0, 0.0, 0) ], dtype=order_dt) ) pd.testing.assert_index_equal( portfolio.wrapper.grouper.group_by, pd.Int64Index([0, 0, 1], dtype='int64') ) pd.testing.assert_series_equal( portfolio.init_cash, pd.Series([200., 100.], index=pd.Int64Index([0, 1], dtype='int64')).rename('init_cash') ) assert not portfolio.cash_sharing @pytest.mark.parametrize( "test_row_wise", [False, True], ) def test_cash_sharing(self, test_row_wise): portfolio = vbt.Portfolio.from_order_func( price_wide, order_func_nb, np.inf, group_by=np.array([0, 0, 1]), cash_sharing=True, row_wise=test_row_wise) if test_row_wise: record_arrays_close( portfolio.order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 2, 100.0, 1.0, 0.0, 0), (2, 1, 0, 200.0, 2.0, 0.0, 1), (3, 1, 1, 200.0, 2.0, 0.0, 1), (4, 1, 2, 200.0, 2.0, 0.0, 1), (5, 2, 0, 266.6666666666667, 3.0, 0.0, 0), (6, 2, 2, 133.33333333333334, 3.0, 0.0, 0), (7, 3, 0, 333.33333333333337, 4.0, 0.0, 1), (8, 3, 2, 66.66666666666669, 4.0, 0.0, 1), (9, 4, 0, 266.6666666666667, 5.0, 0.0, 0), (10, 4, 2, 53.33333333333335, 5.0, 0.0, 0) ], dtype=order_dt) ) else: record_arrays_close( portfolio.order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 200.0, 2.0, 0.0, 1), (2, 1, 1, 200.0, 2.0, 0.0, 1), (3, 2, 0, 266.6666666666667, 3.0, 0.0, 0), (4, 3, 0, 333.33333333333337, 4.0, 0.0, 1), (5, 4, 0, 266.6666666666667, 5.0, 0.0, 0), (6, 0, 2, 100.0, 1.0, 0.0, 0), (7, 1, 2, 200.0, 2.0, 0.0, 1), (8, 2, 2, 133.33333333333334, 3.0, 0.0, 0), (9, 3, 2, 66.66666666666669, 4.0, 0.0, 1), (10, 4, 2, 53.33333333333335, 5.0, 0.0, 0) ], dtype=order_dt) ) pd.testing.assert_index_equal( portfolio.wrapper.grouper.group_by, pd.Int64Index([0, 0, 1], dtype='int64') ) pd.testing.assert_series_equal( portfolio.init_cash, pd.Series([100., 100.], index=pd.Int64Index([0, 1], dtype='int64')).rename('init_cash') ) assert portfolio.cash_sharing @pytest.mark.parametrize( "test_row_wise", [False, True], ) def test_call_seq(self, test_row_wise): portfolio = vbt.Portfolio.from_order_func( price_wide, order_func_nb, np.inf, group_by=np.array([0, 0, 1]), cash_sharing=True, row_wise=test_row_wise) if test_row_wise: record_arrays_close( portfolio.order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 2, 100.0, 1.0, 0.0, 0), (2, 1, 0, 200.0, 2.0, 0.0, 1), (3, 1, 1, 200.0, 2.0, 0.0, 1), (4, 1, 2, 200.0, 2.0, 0.0, 1), (5, 2, 0, 266.6666666666667, 3.0, 0.0, 0), (6, 2, 2, 133.33333333333334, 3.0, 0.0, 0), (7, 3, 0, 333.33333333333337, 4.0, 0.0, 1), (8, 3, 2, 66.66666666666669, 4.0, 0.0, 1), (9, 4, 0, 266.6666666666667, 5.0, 0.0, 0), (10, 4, 2, 53.33333333333335, 5.0, 0.0, 0) ], dtype=order_dt) ) else: record_arrays_close( portfolio.order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 200.0, 2.0, 0.0, 1), (2, 1, 1, 200.0, 2.0, 0.0, 1), (3, 2, 0, 266.6666666666667, 3.0, 0.0, 0), (4, 3, 0, 333.33333333333337, 4.0, 0.0, 1), (5, 4, 0, 266.6666666666667, 5.0, 0.0, 0), (6, 0, 2, 100.0, 1.0, 0.0, 0), (7, 1, 2, 200.0, 2.0, 0.0, 1), (8, 2, 2, 133.33333333333334, 3.0, 0.0, 0), (9, 3, 2, 66.66666666666669, 4.0, 0.0, 1), (10, 4, 2, 53.33333333333335, 5.0, 0.0, 0) ], dtype=order_dt) ) np.testing.assert_array_equal( portfolio.call_seq.values, np.array([ [0, 1, 0], [0, 1, 0], [0, 1, 0], [0, 1, 0], [0, 1, 0] ]) ) portfolio = vbt.Portfolio.from_order_func( price_wide, order_func_nb, np.inf, group_by=np.array([0, 0, 1]), cash_sharing=True, call_seq='reversed', row_wise=test_row_wise) if test_row_wise: record_arrays_close( portfolio.order_records, np.array([ (0, 0, 1, 100.0, 1.0, 0.0, 0), (1, 0, 2, 100.0, 1.0, 0.0, 0), (2, 1, 1, 200.0, 2.0, 0.0, 1), (3, 1, 0, 200.0, 2.0, 0.0, 1), (4, 1, 2, 200.0, 2.0, 0.0, 1), (5, 2, 1, 266.6666666666667, 3.0, 0.0, 0), (6, 2, 2, 133.33333333333334, 3.0, 0.0, 0), (7, 3, 1, 333.33333333333337, 4.0, 0.0, 1), (8, 3, 2, 66.66666666666669, 4.0, 0.0, 1), (9, 4, 1, 266.6666666666667, 5.0, 0.0, 0), (10, 4, 2, 53.33333333333335, 5.0, 0.0, 0) ], dtype=order_dt) ) else: record_arrays_close( portfolio.order_records, np.array([ (0, 0, 1, 100.0, 1.0, 0.0, 0), (1, 1, 1, 200.0, 2.0, 0.0, 1), (2, 1, 0, 200.0, 2.0, 0.0, 1), (3, 2, 1, 266.6666666666667, 3.0, 0.0, 0), (4, 3, 1, 333.33333333333337, 4.0, 0.0, 1), (5, 4, 1, 266.6666666666667, 5.0, 0.0, 0), (6, 0, 2, 100.0, 1.0, 0.0, 0), (7, 1, 2, 200.0, 2.0, 0.0, 1), (8, 2, 2, 133.33333333333334, 3.0, 0.0, 0), (9, 3, 2, 66.66666666666669, 4.0, 0.0, 1), (10, 4, 2, 53.33333333333335, 5.0, 0.0, 0) ], dtype=order_dt) ) np.testing.assert_array_equal( portfolio.call_seq.values, np.array([ [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0] ]) ) portfolio = vbt.Portfolio.from_order_func( price_wide, order_func_nb, np.inf, group_by=np.array([0, 0, 1]), cash_sharing=True, call_seq='random', seed=seed, row_wise=test_row_wise) if test_row_wise: record_arrays_close( portfolio.order_records, np.array([ (0, 0, 1, 100.0, 1.0, 0.0, 0), (1, 0, 2, 100.0, 1.0, 0.0, 0), (2, 1, 1, 200.0, 2.0, 0.0, 1), (3, 1, 2, 200.0, 2.0, 0.0, 1), (4, 2, 1, 133.33333333333334, 3.0, 0.0, 0), (5, 2, 2, 133.33333333333334, 3.0, 0.0, 0), (6, 3, 1, 66.66666666666669, 4.0, 0.0, 1), (7, 3, 0, 66.66666666666669, 4.0, 0.0, 1), (8, 3, 2, 66.66666666666669, 4.0, 0.0, 1), (9, 4, 1, 106.6666666666667, 5.0, 0.0, 0), (10, 4, 2, 53.33333333333335, 5.0, 0.0, 0) ], dtype=order_dt) ) else: record_arrays_close( portfolio.order_records, np.array([ (0, 0, 1, 100.0, 1.0, 0.0, 0), (1, 1, 1, 200.0, 2.0, 0.0, 1), (2, 2, 1, 133.33333333333334, 3.0, 0.0, 0), (3, 3, 1, 66.66666666666669, 4.0, 0.0, 1), (4, 3, 0, 66.66666666666669, 4.0, 0.0, 1), (5, 4, 1, 106.6666666666667, 5.0, 0.0, 0), (6, 0, 2, 100.0, 1.0, 0.0, 0), (7, 1, 2, 200.0, 2.0, 0.0, 1), (8, 2, 2, 133.33333333333334, 3.0, 0.0, 0), (9, 3, 2, 66.66666666666669, 4.0, 0.0, 1), (10, 4, 2, 53.33333333333335, 5.0, 0.0, 0) ], dtype=order_dt) ) np.testing.assert_array_equal( portfolio.call_seq.values, np.array([ [1, 0, 0], [0, 1, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0] ]) ) with pytest.raises(Exception) as e_info: _ = vbt.Portfolio.from_order_func( price_wide, order_func_nb, np.inf, group_by=np.array([0, 0, 1]), cash_sharing=True, call_seq='auto', row_wise=test_row_wise ) target_hold_value = pd.DataFrame({ 'a': [0., 70., 30., 0., 70.], 'b': [30., 0., 70., 30., 30.], 'c': [70., 30., 0., 70., 0.] }, index=price.index) @njit def segment_prep_func_nb(sc, target_hold_value): order_size = np.copy(target_hold_value[sc.i, sc.from_col:sc.to_col]) order_size_type = np.full(sc.group_len, SizeType.TargetValue) direction = np.full(sc.group_len, Direction.All) order_value_out = np.empty(sc.group_len, dtype=np.float_) sc.last_val_price[sc.from_col:sc.to_col] = sc.close[sc.i, sc.from_col:sc.to_col] nb.sort_call_seq_nb(sc, order_size, order_size_type, direction, order_value_out) return order_size, order_size_type, direction @njit def pct_order_func_nb(oc, order_size, order_size_type, direction): col_i = oc.call_seq_now[oc.call_idx] return nb.create_order_nb( size=order_size[col_i], size_type=order_size_type[col_i], price=oc.close[oc.i, col_i], direction=direction[col_i] ) portfolio = vbt.Portfolio.from_order_func( price_wide * 0 + 1, pct_order_func_nb, group_by=np.array([0, 0, 0]), cash_sharing=True, segment_prep_func_nb=segment_prep_func_nb, segment_prep_args=(target_hold_value.values,), row_wise=test_row_wise) np.testing.assert_array_equal( portfolio.call_seq.values, np.array([ [0, 1, 2], [2, 1, 0], [0, 2, 1], [1, 0, 2], [2, 1, 0] ]) ) pd.testing.assert_frame_equal( portfolio.holding_value(group_by=False), target_hold_value ) @pytest.mark.parametrize( "test_row_wise", [False, True], ) def test_target_value(self, test_row_wise): @njit def target_val_segment_prep_func_nb(sc, val_price): sc.last_val_price[sc.from_col:sc.to_col] = val_price[sc.i] return () @njit def target_val_order_func_nb(oc): return nb.create_order_nb(size=50., size_type=SizeType.TargetValue, price=oc.close[oc.i, oc.col]) portfolio = vbt.Portfolio.from_order_func( price.iloc[1:], target_val_order_func_nb, row_wise=test_row_wise) if test_row_wise: record_arrays_close( portfolio.order_records, np.array([ (0, 1, 0, 25.0, 3.0, 0.0, 0), (1, 2, 0, 8.333333333333332, 4.0, 0.0, 1), (2, 3, 0, 4.166666666666668, 5.0, 0.0, 1) ], dtype=order_dt) ) else: record_arrays_close( portfolio.order_records, np.array([ (0, 1, 0, 25.0, 3.0, 0.0, 0), (1, 2, 0, 8.333333333333332, 4.0, 0.0, 1), (2, 3, 0, 4.166666666666668, 5.0, 0.0, 1) ], dtype=order_dt) ) portfolio = vbt.Portfolio.from_order_func( price.iloc[1:], target_val_order_func_nb, segment_prep_func_nb=target_val_segment_prep_func_nb, segment_prep_args=(price.iloc[:-1].values,), row_wise=test_row_wise) if test_row_wise: record_arrays_close( portfolio.order_records, np.array([ (0, 0, 0, 50.0, 2.0, 0.0, 0), (1, 1, 0, 25.0, 3.0, 0.0, 1), (2, 2, 0, 8.333333333333332, 4.0, 0.0, 1), (3, 3, 0, 4.166666666666668, 5.0, 0.0, 1) ], dtype=order_dt) ) else: record_arrays_close( portfolio.order_records, np.array([ (0, 0, 0, 50.0, 2.0, 0.0, 0), (1, 1, 0, 25.0, 3.0, 0.0, 1), (2, 2, 0, 8.333333333333332, 4.0, 0.0, 1), (3, 3, 0, 4.166666666666668, 5.0, 0.0, 1) ], dtype=order_dt) ) @pytest.mark.parametrize( "test_row_wise", [False, True], ) def test_target_percent(self, test_row_wise): @njit def target_pct_segment_prep_func_nb(sc, val_price): sc.last_val_price[sc.from_col:sc.to_col] = val_price[sc.i] return () @njit def target_pct_order_func_nb(oc): return nb.create_order_nb(size=0.5, size_type=SizeType.TargetPercent, price=oc.close[oc.i, oc.col]) portfolio = vbt.Portfolio.from_order_func( price.iloc[1:], target_pct_order_func_nb, row_wise=test_row_wise) if test_row_wise: record_arrays_close( portfolio.order_records, np.array([ (0, 1, 0, 25.0, 3.0, 0.0, 0), (1, 2, 0, 8.333333333333332, 4.0, 0.0, 1), (2, 3, 0, 1.0416666666666679, 5.0, 0.0, 1) ], dtype=order_dt) ) else: record_arrays_close( portfolio.order_records, np.array([ (0, 1, 0, 25.0, 3.0, 0.0, 0), (1, 2, 0, 8.333333333333332, 4.0, 0.0, 1), (2, 3, 0, 1.0416666666666679, 5.0, 0.0, 1) ], dtype=order_dt) ) portfolio = vbt.Portfolio.from_order_func( price.iloc[1:], target_pct_order_func_nb, segment_prep_func_nb=target_pct_segment_prep_func_nb, segment_prep_args=(price.iloc[:-1].values,), row_wise=test_row_wise) if test_row_wise: record_arrays_close( portfolio.order_records, np.array([ (0, 0, 0, 50.0, 2.0, 0.0, 0), (1, 1, 0, 25.0, 3.0, 0.0, 1), (2, 3, 0, 3.125, 5.0, 0.0, 1) ], dtype=order_dt) ) else: record_arrays_close( portfolio.order_records, np.array([ (0, 0, 0, 50.0, 2.0, 0.0, 0), (1, 1, 0, 25.0, 3.0, 0.0, 1), (2, 3, 0, 3.125, 5.0, 0.0, 1) ], dtype=order_dt) ) @pytest.mark.parametrize( "test_row_wise", [False, True], ) def test_init_cash(self, test_row_wise): portfolio = vbt.Portfolio.from_order_func( price_wide, order_func_nb, 10., row_wise=test_row_wise, init_cash=[1., 10., np.inf]) if test_row_wise: record_arrays_close( portfolio.order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 10.0, 1.0, 0.0, 0), (2, 0, 2, 10.0, 1.0, 0.0, 0), (3, 1, 0, 10.0, 2.0, 0.0, 1), (4, 1, 1, 10.0, 2.0, 0.0, 1), (5, 1, 2, 10.0, 2.0, 0.0, 1), (6, 2, 0, 6.666666666666667, 3.0, 0.0, 0), (7, 2, 1, 6.666666666666667, 3.0, 0.0, 0), (8, 2, 2, 10.0, 3.0, 0.0, 0), (9, 3, 0, 10.0, 4.0, 0.0, 1), (10, 3, 1, 10.0, 4.0, 0.0, 1), (11, 3, 2, 10.0, 4.0, 0.0, 1), (12, 4, 0, 8.0, 5.0, 0.0, 0), (13, 4, 1, 8.0, 5.0, 0.0, 0), (14, 4, 2, 10.0, 5.0, 0.0, 0) ], dtype=order_dt) ) else: record_arrays_close( portfolio.order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 1, 0, 10.0, 2.0, 0.0, 1), (2, 2, 0, 6.666666666666667, 3.0, 0.0, 0), (3, 3, 0, 10.0, 4.0, 0.0, 1), (4, 4, 0, 8.0, 5.0, 0.0, 0), (5, 0, 1, 10.0, 1.0, 0.0, 0), (6, 1, 1, 10.0, 2.0, 0.0, 1), (7, 2, 1, 6.666666666666667, 3.0, 0.0, 0), (8, 3, 1, 10.0, 4.0, 0.0, 1), (9, 4, 1, 8.0, 5.0, 0.0, 0), (10, 0, 2, 10.0, 1.0, 0.0, 0), (11, 1, 2, 10.0, 2.0, 0.0, 1), (12, 2, 2, 10.0, 3.0, 0.0, 0), (13, 3, 2, 10.0, 4.0, 0.0, 1), (14, 4, 2, 10.0, 5.0, 0.0, 0) ], dtype=order_dt) ) assert type(portfolio._init_cash) == np.ndarray base_portfolio = vbt.Portfolio.from_order_func( price_wide, order_func_nb, 10., row_wise=test_row_wise, init_cash=np.inf) portfolio = vbt.Portfolio.from_order_func( price_wide, order_func_nb, 10., row_wise=test_row_wise, init_cash=InitCashMode.Auto) record_arrays_close( portfolio.order_records, base_portfolio.orders.values ) assert portfolio._init_cash == InitCashMode.Auto portfolio = vbt.Portfolio.from_order_func( price_wide, order_func_nb, 10., row_wise=test_row_wise, init_cash=InitCashMode.AutoAlign) record_arrays_close( portfolio.order_records, base_portfolio.orders.values ) assert portfolio._init_cash == InitCashMode.AutoAlign def test_func_calls(self): @njit def prep_func_nb(simc, call_i, sim_lst): call_i[0] += 1 sim_lst.append(call_i[0]) return (call_i,) @njit def group_prep_func_nb(gc, call_i, group_lst): call_i[0] += 1 group_lst.append(call_i[0]) return (call_i,) @njit def segment_prep_func_nb(sc, call_i, segment_lst): call_i[0] += 1 segment_lst.append(call_i[0]) return (call_i,) @njit def order_func_nb(oc, call_i, order_lst): call_i[0] += 1 order_lst.append(call_i[0]) return NoOrder call_i = np.array([0]) sim_lst = List.empty_list(typeof(0)) group_lst = List.empty_list(typeof(0)) segment_lst = List.empty_list(typeof(0)) order_lst = List.empty_list(typeof(0)) _ = vbt.Portfolio.from_order_func( price_wide, order_func_nb, order_lst, group_by=np.array([0, 0, 1]), prep_func_nb=prep_func_nb, prep_args=(call_i, sim_lst), group_prep_func_nb=group_prep_func_nb, group_prep_args=(group_lst,), segment_prep_func_nb=segment_prep_func_nb, segment_prep_args=(segment_lst,) ) assert call_i[0] == 28 assert list(sim_lst) == [1] assert list(group_lst) == [2, 18] assert list(segment_lst) == [3, 6, 9, 12, 15, 19, 21, 23, 25, 27] assert list(order_lst) == [4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 20, 22, 24, 26, 28] call_i = np.array([0]) sim_lst = List.empty_list(typeof(0)) group_lst = List.empty_list(typeof(0)) segment_lst = List.empty_list(typeof(0)) order_lst = List.empty_list(typeof(0)) active_mask = np.array([ [False, True], [False, False], [False, True], [False, False], [False, True], ]) _ = vbt.Portfolio.from_order_func( price_wide, order_func_nb, order_lst, group_by=np.array([0, 0, 1]), prep_func_nb=prep_func_nb, prep_args=(call_i, sim_lst), group_prep_func_nb=group_prep_func_nb, group_prep_args=(group_lst,), segment_prep_func_nb=segment_prep_func_nb, segment_prep_args=(segment_lst,), active_mask=active_mask ) assert call_i[0] == 8 assert list(sim_lst) == [1] assert list(group_lst) == [2] assert list(segment_lst) == [3, 5, 7] assert list(order_lst) == [4, 6, 8] def test_func_calls_row_wise(self): @njit def prep_func_nb(simc, call_i, sim_lst): call_i[0] += 1 sim_lst.append(call_i[0]) return (call_i,) @njit def row_prep_func_nb(gc, call_i, row_lst): call_i[0] += 1 row_lst.append(call_i[0]) return (call_i,) @njit def segment_prep_func_nb(sc, call_i, segment_lst): call_i[0] += 1 segment_lst.append(call_i[0]) return (call_i,) @njit def order_func_nb(oc, call_i, order_lst): call_i[0] += 1 order_lst.append(call_i[0]) return NoOrder call_i = np.array([0]) sim_lst = List.empty_list(typeof(0)) row_lst = List.empty_list(typeof(0)) segment_lst = List.empty_list(typeof(0)) order_lst = List.empty_list(typeof(0)) _ = vbt.Portfolio.from_order_func( price_wide, order_func_nb, order_lst, group_by=np.array([0, 0, 1]), prep_func_nb=prep_func_nb, prep_args=(call_i, sim_lst), row_prep_func_nb=row_prep_func_nb, row_prep_args=(row_lst,), segment_prep_func_nb=segment_prep_func_nb, segment_prep_args=(segment_lst,), row_wise=True ) assert call_i[0] == 31 assert list(sim_lst) == [1] assert list(row_lst) == [2, 8, 14, 20, 26] assert list(segment_lst) == [3, 6, 9, 12, 15, 18, 21, 24, 27, 30] assert list(order_lst) == [4, 5, 7, 10, 11, 13, 16, 17, 19, 22, 23, 25, 28, 29, 31] call_i = np.array([0]) sim_lst = List.empty_list(typeof(0)) row_lst = List.empty_list(typeof(0)) segment_lst = List.empty_list(typeof(0)) order_lst = List.empty_list(typeof(0)) active_mask = np.array([ [False, False], [False, True], [True, False], [True, True], [False, False], ]) _ = vbt.Portfolio.from_order_func( price_wide, order_func_nb, order_lst, group_by=np.array([0, 0, 1]), prep_func_nb=prep_func_nb, prep_args=(call_i, sim_lst), row_prep_func_nb=row_prep_func_nb, row_prep_args=(row_lst,), segment_prep_func_nb=segment_prep_func_nb, segment_prep_args=(segment_lst,), active_mask=active_mask, row_wise=True ) assert call_i[0] == 14 assert list(sim_lst) == [1] assert list(row_lst) == [2, 5, 9] assert list(segment_lst) == [3, 6, 10, 13] assert list(order_lst) == [4, 7, 8, 11, 12, 14] @pytest.mark.parametrize( "test_row_wise", [False, True], ) def test_max_orders(self, test_row_wise): _ = vbt.Portfolio.from_order_func( price_wide, order_func_nb, np.inf, row_wise=test_row_wise) _ = vbt.Portfolio.from_order_func( price_wide, order_func_nb, np.inf, row_wise=test_row_wise, max_orders=15) with pytest.raises(Exception) as e_info: _ = vbt.Portfolio.from_order_func( price_wide, order_func_nb, np.inf, row_wise=test_row_wise, max_orders=14) @pytest.mark.parametrize( "test_row_wise", [False, True], ) def test_max_logs(self, test_row_wise): _ = vbt.Portfolio.from_order_func( price_wide, log_order_func_nb, np.inf, row_wise=test_row_wise) _ = vbt.Portfolio.from_order_func( price_wide, log_order_func_nb, np.inf, row_wise=test_row_wise, max_logs=15) with pytest.raises(Exception) as e_info: _ = vbt.Portfolio.from_order_func( price_wide, log_order_func_nb, np.inf, row_wise=test_row_wise, max_logs=14) # ############# Portfolio ############# # price_na = pd.DataFrame({ 'a': [np.nan, 2., 3., 4., 5.], 'b': [1., 2., np.nan, 4., 5.], 'c': [1., 2., 3., 4., np.nan] }, index=price.index) order_size_new = pd.Series([1., 0.1, -1., -0.1, 1.]) directions = ['longonly', 'shortonly', 'all'] group_by = pd.Index(['first', 'first', 'second'], name='group') portfolio = vbt.Portfolio.from_orders( price_na, order_size_new, size_type='shares', direction=directions, fees=0.01, fixed_fees=0.1, slippage=0.01, log=True, call_seq='reversed', group_by=None, init_cash=[100., 100., 100.], freq='1D' ) # independent portfolio_grouped = vbt.Portfolio.from_orders( price_na, order_size_new, size_type='shares', direction=directions, fees=0.01, fixed_fees=0.1, slippage=0.01, log=True, call_seq='reversed', group_by=group_by, cash_sharing=False, init_cash=[100., 100., 100.], freq='1D' ) # grouped portfolio_shared = vbt.Portfolio.from_orders( price_na, order_size_new, size_type='shares', direction=directions, fees=0.01, fixed_fees=0.1, slippage=0.01, log=True, call_seq='reversed', group_by=group_by, cash_sharing=True, init_cash=[200., 100.], freq='1D' ) # shared class TestPortfolio: def test_config(self, tmp_path): assert vbt.Portfolio.loads(portfolio['a'].dumps()) == portfolio['a'] assert vbt.Portfolio.loads(portfolio.dumps()) == portfolio portfolio.save(tmp_path / 'portfolio') assert vbt.Portfolio.load(tmp_path / 'portfolio') == portfolio def test_wrapper(self): pd.testing.assert_index_equal( portfolio.wrapper.index, price_na.index ) pd.testing.assert_index_equal( portfolio.wrapper.columns, price_na.columns ) assert portfolio.wrapper.ndim == 2 assert portfolio.wrapper.grouper.group_by is None assert portfolio.wrapper.grouper.allow_enable assert portfolio.wrapper.grouper.allow_disable assert portfolio.wrapper.grouper.allow_modify pd.testing.assert_index_equal( portfolio_grouped.wrapper.index, price_na.index ) pd.testing.assert_index_equal( portfolio_grouped.wrapper.columns, price_na.columns ) assert portfolio_grouped.wrapper.ndim == 2 pd.testing.assert_index_equal( portfolio_grouped.wrapper.grouper.group_by, group_by ) assert portfolio_grouped.wrapper.grouper.allow_enable assert portfolio_grouped.wrapper.grouper.allow_disable assert portfolio_grouped.wrapper.grouper.allow_modify pd.testing.assert_index_equal( portfolio_shared.wrapper.index, price_na.index ) pd.testing.assert_index_equal( portfolio_shared.wrapper.columns, price_na.columns ) assert portfolio_shared.wrapper.ndim == 2 pd.testing.assert_index_equal( portfolio_shared.wrapper.grouper.group_by, group_by ) assert not portfolio_shared.wrapper.grouper.allow_enable assert portfolio_shared.wrapper.grouper.allow_disable assert not portfolio_shared.wrapper.grouper.allow_modify def test_indexing(self): assert portfolio['a'].wrapper == portfolio.wrapper['a'] assert portfolio['a'].orders == portfolio.orders['a'] assert portfolio['a'].logs == portfolio.logs['a'] assert portfolio['a'].init_cash == portfolio.init_cash['a'] pd.testing.assert_series_equal(portfolio['a'].call_seq, portfolio.call_seq['a']) assert portfolio['c'].wrapper == portfolio.wrapper['c'] assert portfolio['c'].orders == portfolio.orders['c'] assert portfolio['c'].logs == portfolio.logs['c'] assert portfolio['c'].init_cash == portfolio.init_cash['c'] pd.testing.assert_series_equal(portfolio['c'].call_seq, portfolio.call_seq['c']) assert portfolio[['c']].wrapper == portfolio.wrapper[['c']] assert portfolio[['c']].orders == portfolio.orders[['c']] assert portfolio[['c']].logs == portfolio.logs[['c']] pd.testing.assert_series_equal(portfolio[['c']].init_cash, portfolio.init_cash[['c']]) pd.testing.assert_frame_equal(portfolio[['c']].call_seq, portfolio.call_seq[['c']]) assert portfolio_grouped['first'].wrapper == portfolio_grouped.wrapper['first'] assert portfolio_grouped['first'].orders == portfolio_grouped.orders['first'] assert portfolio_grouped['first'].logs == portfolio_grouped.logs['first'] assert portfolio_grouped['first'].init_cash == portfolio_grouped.init_cash['first'] pd.testing.assert_frame_equal(portfolio_grouped['first'].call_seq, portfolio_grouped.call_seq[['a', 'b']]) assert portfolio_grouped[['first']].wrapper == portfolio_grouped.wrapper[['first']] assert portfolio_grouped[['first']].orders == portfolio_grouped.orders[['first']] assert portfolio_grouped[['first']].logs == portfolio_grouped.logs[['first']] pd.testing.assert_series_equal( portfolio_grouped[['first']].init_cash, portfolio_grouped.init_cash[['first']]) pd.testing.assert_frame_equal(portfolio_grouped[['first']].call_seq, portfolio_grouped.call_seq[['a', 'b']]) assert portfolio_grouped['second'].wrapper == portfolio_grouped.wrapper['second'] assert portfolio_grouped['second'].orders == portfolio_grouped.orders['second'] assert portfolio_grouped['second'].logs == portfolio_grouped.logs['second'] assert portfolio_grouped['second'].init_cash == portfolio_grouped.init_cash['second'] pd.testing.assert_series_equal(portfolio_grouped['second'].call_seq, portfolio_grouped.call_seq['c']) assert portfolio_grouped[['second']].orders == portfolio_grouped.orders[['second']] assert portfolio_grouped[['second']].wrapper == portfolio_grouped.wrapper[['second']] assert portfolio_grouped[['second']].orders == portfolio_grouped.orders[['second']] assert portfolio_grouped[['second']].logs == portfolio_grouped.logs[['second']] pd.testing.assert_series_equal( portfolio_grouped[['second']].init_cash, portfolio_grouped.init_cash[['second']]) pd.testing.assert_frame_equal(portfolio_grouped[['second']].call_seq, portfolio_grouped.call_seq[['c']]) assert portfolio_shared['first'].wrapper == portfolio_shared.wrapper['first'] assert portfolio_shared['first'].orders == portfolio_shared.orders['first'] assert portfolio_shared['first'].logs == portfolio_shared.logs['first'] assert portfolio_shared['first'].init_cash == portfolio_shared.init_cash['first'] pd.testing.assert_frame_equal(portfolio_shared['first'].call_seq, portfolio_shared.call_seq[['a', 'b']]) assert portfolio_shared[['first']].orders == portfolio_shared.orders[['first']] assert portfolio_shared[['first']].wrapper == portfolio_shared.wrapper[['first']] assert portfolio_shared[['first']].orders == portfolio_shared.orders[['first']] assert portfolio_shared[['first']].logs == portfolio_shared.logs[['first']] pd.testing.assert_series_equal( portfolio_shared[['first']].init_cash, portfolio_shared.init_cash[['first']]) pd.testing.assert_frame_equal(portfolio_shared[['first']].call_seq, portfolio_shared.call_seq[['a', 'b']]) assert portfolio_shared['second'].wrapper == portfolio_shared.wrapper['second'] assert portfolio_shared['second'].orders == portfolio_shared.orders['second'] assert portfolio_shared['second'].logs == portfolio_shared.logs['second'] assert portfolio_shared['second'].init_cash == portfolio_shared.init_cash['second'] pd.testing.assert_series_equal(portfolio_shared['second'].call_seq, portfolio_shared.call_seq['c']) assert portfolio_shared[['second']].wrapper == portfolio_shared.wrapper[['second']] assert portfolio_shared[['second']].orders == portfolio_shared.orders[['second']] assert portfolio_shared[['second']].logs == portfolio_shared.logs[['second']] pd.testing.assert_series_equal( portfolio_shared[['second']].init_cash, portfolio_shared.init_cash[['second']]) pd.testing.assert_frame_equal(portfolio_shared[['second']].call_seq, portfolio_shared.call_seq[['c']]) def test_regroup(self): assert portfolio.regroup(None) == portfolio assert portfolio.regroup(False) == portfolio assert portfolio.regroup(group_by) != portfolio pd.testing.assert_index_equal(portfolio.regroup(group_by).wrapper.grouper.group_by, group_by) assert portfolio_grouped.regroup(None) == portfolio_grouped assert portfolio_grouped.regroup(False) != portfolio_grouped assert portfolio_grouped.regroup(False).wrapper.grouper.group_by is None assert portfolio_grouped.regroup(group_by) == portfolio_grouped assert portfolio_shared.regroup(None) == portfolio_shared with pytest.raises(Exception) as e_info: _ = portfolio_shared.regroup(False) assert portfolio_shared.regroup(group_by) == portfolio_shared def test_cash_sharing(self): assert not portfolio.cash_sharing assert not portfolio_grouped.cash_sharing assert portfolio_shared.cash_sharing def test_call_seq(self): pd.testing.assert_frame_equal( portfolio.call_seq, pd.DataFrame( np.array([ [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0] ]), index=price_na.index, columns=price_na.columns ) ) pd.testing.assert_frame_equal( portfolio_grouped.call_seq, pd.DataFrame( np.array([ [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0] ]), index=price_na.index, columns=price_na.columns ) ) pd.testing.assert_frame_equal( portfolio_shared.call_seq, pd.DataFrame( np.array([ [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0] ]), index=price_na.index, columns=price_na.columns ) ) def test_incl_unrealized(self): assert not vbt.Portfolio.from_orders(price_na, 1000., incl_unrealized=False).incl_unrealized assert vbt.Portfolio.from_orders(price_na, 1000., incl_unrealized=True).incl_unrealized def test_orders(self): record_arrays_close( portfolio.orders.values, np.array([ (0, 1, 0, 0.1, 2.02, 0.10202, 0), (1, 2, 0, 0.1, 2.9699999999999998, 0.10297, 1), (2, 4, 0, 1.0, 5.05, 0.1505, 0), (3, 0, 1, 1.0, 0.99, 0.10990000000000001, 1), (4, 1, 1, 0.1, 1.98, 0.10198, 1), (5, 3, 1, 0.1, 4.04, 0.10404000000000001, 0), (6, 4, 1, 1.0, 4.95, 0.14950000000000002, 1), (7, 0, 2, 1.0, 1.01, 0.1101, 0), (8, 1, 2, 0.1, 2.02, 0.10202, 0), (9, 2, 2, 1.0, 2.9699999999999998, 0.1297, 1), (10, 3, 2, 0.1, 3.96, 0.10396000000000001, 1) ], dtype=order_dt) ) result = pd.Series( np.array([3, 4, 4]), index=price_na.columns ).rename('count') pd.testing.assert_series_equal( portfolio.orders.count(), result ) pd.testing.assert_series_equal( portfolio_grouped.get_orders(group_by=False).count(), result ) pd.testing.assert_series_equal( portfolio_shared.get_orders(group_by=False).count(), result ) result = pd.Series( np.array([7, 4]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('count') pd.testing.assert_series_equal( portfolio.get_orders(group_by=group_by).count(), result ) pd.testing.assert_series_equal( portfolio_grouped.orders.count(), result ) pd.testing.assert_series_equal( portfolio_shared.orders.count(), result ) def test_logs(self): record_arrays_close( portfolio.logs.values, np.array([ (0, 0, 0, 0, 100.0, 0.0, np.nan, 100.0, 1.0, 0, 0, np.nan, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, True, False, True, 100.0, 0.0, np.nan, np.nan, np.nan, -1, 1, 1, -1), (1, 1, 0, 0, 100.0, 0.0, 2.0, 100.0, 0.1, 0, 0, 2.0, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, True, False, True, 99.69598, 0.1, 0.1, 2.02, 0.10202, 0, 0, -1, 0), (2, 2, 0, 0, 99.69598, 0.1, 3.0, 99.99598, -1.0, 0, 0, 3.0, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, True, False, True, 99.89001, 0.0, 0.1, 2.9699999999999998, 0.10297, 1, 0, -1, 1), (3, 3, 0, 0, 99.89001, 0.0, 4.0, 99.89001, -0.1, 0, 0, 4.0, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, True, False, True, 99.89001, 0.0, np.nan, np.nan, np.nan, -1, 2, 8, -1), (4, 4, 0, 0, 99.89001, 0.0, 5.0, 99.89001, 1.0, 0, 0, 5.0, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, True, False, True, 94.68951, 1.0, 1.0, 5.05, 0.1505, 0, 0, -1, 2), (5, 0, 1, 1, 100.0, 0.0, 1.0, 100.0, 1.0, 0, 1, 1.0, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, True, False, True, 100.8801, -1.0, 1.0, 0.99, 0.10990000000000001, 1, 0, -1, 3), (6, 1, 1, 1, 100.8801, -1.0, 2.0, 98.8801, 0.1, 0, 1, 2.0, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, True, False, True, 100.97612, -1.1, 0.1, 1.98, 0.10198, 1, 0, -1, 4), (7, 2, 1, 1, 100.97612, -1.1, np.nan, np.nan, -1.0, 0, 1, np.nan, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, True, False, True, 100.97612, -1.1, np.nan, np.nan, np.nan, -1, 1, 1, -1), (8, 3, 1, 1, 100.97612, -1.1, 4.0, 96.57611999999999, -0.1, 0, 1, 4.0, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, True, False, True, 100.46808, -1.0, 0.1, 4.04, 0.10404000000000001, 0, 0, -1, 5), (9, 4, 1, 1, 100.46808, -1.0, 5.0, 95.46808, 1.0, 0, 1, 5.0, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, True, False, True, 105.26858, -2.0, 1.0, 4.95, 0.14950000000000002, 1, 0, -1, 6), (10, 0, 2, 2, 100.0, 0.0, 1.0, 100.0, 1.0, 0, 2, 1.0, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, True, False, True, 98.8799, 1.0, 1.0, 1.01, 0.1101, 0, 0, -1, 7), (11, 1, 2, 2, 98.8799, 1.0, 2.0, 100.8799, 0.1, 0, 2, 2.0, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, True, False, True, 98.57588000000001, 1.1, 0.1, 2.02, 0.10202, 0, 0, -1, 8), (12, 2, 2, 2, 98.57588000000001, 1.1, 3.0, 101.87588000000001, -1.0, 0, 2, 3.0, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, True, False, True, 101.41618000000001, 0.10000000000000009, 1.0, 2.9699999999999998, 0.1297, 1, 0, -1, 9), (13, 3, 2, 2, 101.41618000000001, 0.10000000000000009, 4.0, 101.81618000000002, -0.1, 0, 2, 4.0, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, True, False, True, 101.70822000000001, 0.0, 0.1, 3.96, 0.10396000000000001, 1, 0, -1, 10), (14, 4, 2, 2, 101.70822000000001, 0.0, np.nan, 101.70822000000001, 1.0, 0, 2, np.nan, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, True, False, True, 101.70822000000001, 0.0, np.nan, np.nan, np.nan, -1, 1, 1, -1) ], dtype=log_dt) ) result = pd.Series( np.array([5, 5, 5]), index=price_na.columns ).rename('count') pd.testing.assert_series_equal( portfolio.logs.count(), result ) pd.testing.assert_series_equal( portfolio_grouped.get_logs(group_by=False).count(), result ) pd.testing.assert_series_equal( portfolio_shared.get_logs(group_by=False).count(), result ) result = pd.Series( np.array([10, 5]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('count') pd.testing.assert_series_equal( portfolio.get_logs(group_by=group_by).count(), result ) pd.testing.assert_series_equal( portfolio_grouped.logs.count(), result ) pd.testing.assert_series_equal( portfolio_shared.logs.count(), result ) def test_trades(self): record_arrays_close( portfolio.trades.values, np.array([ (0, 0, 0.1, 1, 2.02, 0.10202, 2, 2.9699999999999998, 0.10297, -0.10999000000000003, -0.5445049504950497, 0, 1, 0), (1, 0, 1.0, 4, 5.05, 0.1505, 4, 5.0, 0.0, -0.20049999999999982, -0.03970297029702967, 0, 0, 1), (2, 1, 0.1, 0, 1.0799999999999998, 0.019261818181818182, 3, 4.04, 0.10404000000000001, -0.4193018181818182, -3.882424242424243, 1, 1, 2), (3, 1, 2.0, 0, 3.015, 0.3421181818181819, 4, 5.0, 0.0, -4.312118181818182, -0.7151108095884214, 1, 0, 2), (4, 2, 1.0, 0, 1.1018181818181818, 0.19283636363636364, 2, 2.9699999999999998, 0.1297, 1.5456454545454543, 1.4028135313531351, 0, 1, 3), (5, 2, 0.10000000000000009, 0, 1.1018181818181818, 0.019283636363636378, 3, 3.96, 0.10396000000000001, 0.1625745454545457, 1.4755115511551162, 0, 1, 3) ], dtype=trade_dt) ) result = pd.Series( np.array([2, 2, 2]), index=price_na.columns ).rename('count') pd.testing.assert_series_equal( portfolio.trades.count(), result ) pd.testing.assert_series_equal( portfolio_grouped.get_trades(group_by=False).count(), result ) pd.testing.assert_series_equal( portfolio_shared.get_trades(group_by=False).count(), result ) result = pd.Series( np.array([4, 2]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('count') pd.testing.assert_series_equal( portfolio.get_trades(group_by=group_by).count(), result ) pd.testing.assert_series_equal( portfolio_grouped.trades.count(), result ) pd.testing.assert_series_equal( portfolio_shared.trades.count(), result ) def test_positions(self): record_arrays_close( portfolio.positions.values, np.array([ (0, 0, 0.1, 1, 2.02, 0.10202, 2, 2.9699999999999998, 0.10297, -0.10999000000000003, -0.5445049504950497, 0, 1), (1, 0, 1.0, 4, 5.05, 0.1505, 4, 5.0, 0.0, -0.20049999999999982, -0.03970297029702967, 0, 0), (2, 1, 2.1, 0, 2.9228571428571426, 0.36138000000000003, 4, 4.954285714285714, 0.10404000000000001, -4.731420000000001, -0.7708406647116326, 1, 0), (3, 2, 1.1, 0, 1.1018181818181818, 0.21212000000000003, 3, 3.06, 0.23366000000000003, 1.7082200000000003, 1.4094224422442245, 0, 1) ], dtype=position_dt) ) result = pd.Series( np.array([2, 1, 1]), index=price_na.columns ).rename('count') pd.testing.assert_series_equal( portfolio.positions.count(), result ) pd.testing.assert_series_equal( portfolio_grouped.get_positions(group_by=False).count(), result ) pd.testing.assert_series_equal( portfolio_shared.get_positions(group_by=False).count(), result ) result = pd.Series( np.array([3, 1]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('count') pd.testing.assert_series_equal( portfolio.get_positions(group_by=group_by).count(), result ) pd.testing.assert_series_equal( portfolio_grouped.positions.count(), result ) pd.testing.assert_series_equal( portfolio_shared.positions.count(), result ) def test_drawdowns(self): record_arrays_close( portfolio.drawdowns.values, np.array([ (0, 0, 0, 4, 4, 0), (1, 1, 0, 4, 4, 0), (2, 2, 2, 3, 4, 0) ], dtype=drawdown_dt) ) result = pd.Series( np.array([1, 1, 1]), index=price_na.columns ).rename('count') pd.testing.assert_series_equal( portfolio.drawdowns.count(), result ) pd.testing.assert_series_equal( portfolio_grouped.get_drawdowns(group_by=False).count(), result ) pd.testing.assert_series_equal( portfolio_shared.get_drawdowns(group_by=False).count(), result ) result = pd.Series( np.array([1, 1]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('count') pd.testing.assert_series_equal( portfolio.get_drawdowns(group_by=group_by).count(), result ) pd.testing.assert_series_equal( portfolio_grouped.drawdowns.count(), result ) pd.testing.assert_series_equal( portfolio_shared.drawdowns.count(), result ) def test_close(self): pd.testing.assert_frame_equal(portfolio.close, price_na) pd.testing.assert_frame_equal(portfolio_grouped.close, price_na) pd.testing.assert_frame_equal(portfolio_shared.close, price_na) def test_fill_close(self): pd.testing.assert_frame_equal( portfolio.fill_close(ffill=False, bfill=False), price_na ) pd.testing.assert_frame_equal( portfolio.fill_close(ffill=True, bfill=False), price_na.ffill() ) pd.testing.assert_frame_equal( portfolio.fill_close(ffill=False, bfill=True), price_na.bfill() ) pd.testing.assert_frame_equal( portfolio.fill_close(ffill=True, bfill=True), price_na.ffill().bfill() ) def test_share_flow(self): pd.testing.assert_frame_equal( portfolio.share_flow(direction='longonly'), pd.DataFrame( np.array([ [0., 0., 1.], [0.1, 0., 0.1], [-0.1, 0., -1.], [0., 0., -0.1], [1., 0., 0.] ]), index=price_na.index, columns=price_na.columns ) ) pd.testing.assert_frame_equal( portfolio.share_flow(direction='shortonly'), pd.DataFrame( np.array([ [0., 1., 0.], [0., 0.1, 0.], [0., 0., 0.], [0., -0.1, 0.], [0., 1., 0.] ]), index=price_na.index, columns=price_na.columns ) ) result = pd.DataFrame( np.array([ [0., -1., 1.], [0.1, -0.1, 0.1], [-0.1, 0., -1.], [0., 0.1, -0.1], [1., -1., 0.] ]), index=price_na.index, columns=price_na.columns ) pd.testing.assert_frame_equal( portfolio.share_flow(), result ) pd.testing.assert_frame_equal( portfolio_grouped.share_flow(), result ) pd.testing.assert_frame_equal( portfolio_shared.share_flow(), result ) def test_shares(self): pd.testing.assert_frame_equal( portfolio.shares(direction='longonly'), pd.DataFrame( np.array([ [0., 0., 1.], [0.1, 0., 1.1], [0., 0., 0.1], [0., 0., 0.], [1., 0., 0.] ]), index=price_na.index, columns=price_na.columns ) ) pd.testing.assert_frame_equal( portfolio.shares(direction='shortonly'), pd.DataFrame( np.array([ [0., 1., 0.], [0., 1.1, 0.], [0., 1.1, 0.], [0., 1., 0.], [0., 2., 0.] ]), index=price_na.index, columns=price_na.columns ) ) result = pd.DataFrame( np.array([ [0., -1., 1.], [0.1, -1.1, 1.1], [0., -1.1, 0.1], [0., -1., 0.], [1., -2., 0.] ]), index=price_na.index, columns=price_na.columns ) pd.testing.assert_frame_equal( portfolio.shares(), result ) pd.testing.assert_frame_equal( portfolio_grouped.shares(), result ) pd.testing.assert_frame_equal( portfolio_shared.shares(), result ) def test_pos_mask(self): pd.testing.assert_frame_equal( portfolio.pos_mask(direction='longonly'), pd.DataFrame( np.array([ [False, False, True], [True, False, True], [False, False, True], [False, False, False], [True, False, False] ]), index=price_na.index, columns=price_na.columns ) ) pd.testing.assert_frame_equal( portfolio.pos_mask(direction='shortonly'), pd.DataFrame( np.array([ [False, True, False], [False, True, False], [False, True, False], [False, True, False], [False, True, False] ]), index=price_na.index, columns=price_na.columns ) ) result = pd.DataFrame( np.array([ [False, True, True], [True, True, True], [False, True, True], [False, True, False], [True, True, False] ]), index=price_na.index, columns=price_na.columns ) pd.testing.assert_frame_equal( portfolio.pos_mask(), result ) pd.testing.assert_frame_equal( portfolio_grouped.pos_mask(group_by=False), result ) pd.testing.assert_frame_equal( portfolio_shared.pos_mask(group_by=False), result ) result = pd.DataFrame( np.array([ [True, True], [True, True], [True, True], [True, False], [True, False] ]), index=price_na.index, columns=pd.Index(['first', 'second'], dtype='object', name='group') ) pd.testing.assert_frame_equal( portfolio.pos_mask(group_by=group_by), result ) pd.testing.assert_frame_equal( portfolio_grouped.pos_mask(), result ) pd.testing.assert_frame_equal( portfolio_shared.pos_mask(), result ) def test_pos_coverage(self): pd.testing.assert_series_equal( portfolio.pos_coverage(direction='longonly'), pd.Series(np.array([0.4, 0., 0.6]), index=price_na.columns).rename('pos_coverage') ) pd.testing.assert_series_equal( portfolio.pos_coverage(direction='shortonly'), pd.Series(np.array([0., 1., 0.]), index=price_na.columns).rename('pos_coverage') ) result = pd.Series(np.array([0.4, 1., 0.6]), index=price_na.columns).rename('pos_coverage') pd.testing.assert_series_equal( portfolio.pos_coverage(), result ) pd.testing.assert_series_equal( portfolio_grouped.pos_coverage(group_by=False), result ) pd.testing.assert_series_equal( portfolio_shared.pos_coverage(group_by=False), result ) result = pd.Series( np.array([0.7, 0.6]), pd.Index(['first', 'second'], dtype='object', name='group') ).rename('pos_coverage') pd.testing.assert_series_equal( portfolio.pos_coverage(group_by=group_by), result ) pd.testing.assert_series_equal( portfolio_grouped.pos_coverage(), result ) pd.testing.assert_series_equal( portfolio_shared.pos_coverage(), result ) def test_cash_flow(self): pd.testing.assert_frame_equal( portfolio.cash_flow(short_cash=False), pd.DataFrame( np.array([ [0., -1.0999, -1.1201], [-0.30402, -0.29998, -0.30402], [0.19403, 0., 2.8403], [0., 0.29996, 0.29204], [-5.2005, -5.0995, 0.] ]), index=price_na.index, columns=price_na.columns ) ) result = pd.DataFrame( np.array([ [0., 0.8801, -1.1201], [-0.30402, 0.09602, -0.30402], [0.19403, 0., 2.8403], [0., -0.50804, 0.29204], [-5.2005, 4.8005, 0.] ]), index=price_na.index, columns=price_na.columns ) pd.testing.assert_frame_equal( portfolio.cash_flow(), result ) pd.testing.assert_frame_equal( portfolio_grouped.cash_flow(group_by=False), result ) pd.testing.assert_frame_equal( portfolio_shared.cash_flow(group_by=False), result ) result = pd.DataFrame( np.array([ [0.8801, -1.1201], [-0.208, -0.30402], [0.19403, 2.8403], [-0.50804, 0.29204], [-0.4, 0.] ]), index=price_na.index, columns=pd.Index(['first', 'second'], dtype='object', name='group') ) pd.testing.assert_frame_equal( portfolio.cash_flow(group_by=group_by), result ) pd.testing.assert_frame_equal( portfolio_grouped.cash_flow(), result ) pd.testing.assert_frame_equal( portfolio_shared.cash_flow(), result ) def test_init_cash(self): pd.testing.assert_series_equal( portfolio.init_cash, pd.Series(np.array([100., 100., 100.]), index=price_na.columns).rename('init_cash') ) pd.testing.assert_series_equal( portfolio_grouped.get_init_cash(group_by=False), pd.Series(np.array([100., 100., 100.]), index=price_na.columns).rename('init_cash') ) pd.testing.assert_series_equal( portfolio_shared.get_init_cash(group_by=False), pd.Series(np.array([200., 200., 100.]), index=price_na.columns).rename('init_cash') ) result = pd.Series( np.array([200., 100.]), pd.Index(['first', 'second'], dtype='object', name='group') ).rename('init_cash') pd.testing.assert_series_equal( portfolio.get_init_cash(group_by=group_by), result ) pd.testing.assert_series_equal( portfolio_grouped.init_cash, result ) pd.testing.assert_series_equal( portfolio_shared.init_cash, result ) pd.testing.assert_series_equal( vbt.Portfolio.from_orders( price_na, 1000., init_cash=InitCashMode.Auto, group_by=None).init_cash, pd.Series( np.array([14000., 12000., 10000.]), index=price_na.columns ).rename('init_cash') ) pd.testing.assert_series_equal( vbt.Portfolio.from_orders( price_na, 1000., init_cash=InitCashMode.Auto, group_by=group_by).init_cash, pd.Series( np.array([26000.0, 10000.0]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('init_cash') ) pd.testing.assert_series_equal( vbt.Portfolio.from_orders( price_na, 1000., init_cash=InitCashMode.Auto, group_by=group_by, cash_sharing=True).init_cash, pd.Series( np.array([26000.0, 10000.0]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('init_cash') ) pd.testing.assert_series_equal( vbt.Portfolio.from_orders( price_na, 1000., init_cash=InitCashMode.AutoAlign, group_by=None).init_cash, pd.Series( np.array([14000., 14000., 14000.]), index=price_na.columns ).rename('init_cash') ) pd.testing.assert_series_equal( vbt.Portfolio.from_orders( price_na, 1000., init_cash=InitCashMode.AutoAlign, group_by=group_by).init_cash, pd.Series( np.array([26000.0, 26000.0]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('init_cash') ) pd.testing.assert_series_equal( vbt.Portfolio.from_orders( price_na, 1000., init_cash=InitCashMode.AutoAlign, group_by=group_by, cash_sharing=True).init_cash, pd.Series( np.array([26000.0, 26000.0]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('init_cash') ) def test_cash(self): pd.testing.assert_frame_equal( portfolio.cash(short_cash=False), pd.DataFrame( np.array([ [100., 98.9001, 98.8799], [99.69598, 98.60012, 98.57588], [99.89001, 98.60012, 101.41618], [99.89001, 98.90008, 101.70822], [94.68951, 93.80058, 101.70822] ]), index=price_na.index, columns=price_na.columns ) ) result = pd.DataFrame( np.array([ [100., 100.8801, 98.8799], [99.69598, 100.97612, 98.57588], [99.89001, 100.97612, 101.41618], [99.89001, 100.46808, 101.70822], [94.68951, 105.26858, 101.70822] ]), index=price_na.index, columns=price_na.columns ) pd.testing.assert_frame_equal( portfolio.cash(), result ) pd.testing.assert_frame_equal( portfolio_grouped.cash(group_by=False), result ) pd.testing.assert_frame_equal( portfolio_shared.cash(group_by=False), pd.DataFrame( np.array([ [200., 200.8801, 98.8799], [199.69598, 200.97612, 98.57588], [199.89001, 200.97612, 101.41618], [199.89001, 200.46808, 101.70822], [194.68951, 205.26858, 101.70822] ]), index=price_na.index, columns=price_na.columns ) ) pd.testing.assert_frame_equal( portfolio_shared.cash(group_by=False, in_sim_order=True), pd.DataFrame( np.array([ [200.8801, 200.8801, 98.8799], [200.6721, 200.97612, 98.57588000000001], [200.86613, 200.6721, 101.41618000000001], [200.35809, 200.35809, 101.70822000000001], [199.95809, 205.15859, 101.70822000000001] ]), index=price_na.index, columns=price_na.columns ) ) result = pd.DataFrame( np.array([ [200.8801, 98.8799], [200.6721, 98.57588], [200.86613, 101.41618], [200.35809, 101.70822], [199.95809, 101.70822] ]), index=price_na.index, columns=pd.Index(['first', 'second'], dtype='object', name='group') ) pd.testing.assert_frame_equal( portfolio.cash(group_by=group_by), result ) pd.testing.assert_frame_equal( portfolio_grouped.cash(), result ) pd.testing.assert_frame_equal( portfolio_shared.cash(), result ) def test_holding_value(self): pd.testing.assert_frame_equal( portfolio.holding_value(direction='longonly'), pd.DataFrame( np.array([ [0., 0., 1.], [0.2, 0., 2.2], [0., 0., 0.3], [0., 0., 0.], [5., 0., 0.] ]), index=price_na.index, columns=price_na.columns ) ) pd.testing.assert_frame_equal( portfolio.holding_value(direction='shortonly'), pd.DataFrame( np.array([ [0., 1., 0.], [0., 2.2, 0.], [0., np.nan, 0.], [0., 4., 0.], [0., 10., 0.] ]), index=price_na.index, columns=price_na.columns ) ) result = pd.DataFrame( np.array([ [0., -1., 1.], [0.2, -2.2, 2.2], [0., np.nan, 0.3], [0., -4., 0.], [5., -10., 0.] ]), index=price_na.index, columns=price_na.columns ) pd.testing.assert_frame_equal( portfolio.holding_value(), result ) pd.testing.assert_frame_equal( portfolio_grouped.holding_value(group_by=False), result ) pd.testing.assert_frame_equal( portfolio_shared.holding_value(group_by=False), result ) result = pd.DataFrame( np.array([ [-1., 1.], [-2., 2.2], [np.nan, 0.3], [-4., 0.], [-5., 0.] ]), index=price_na.index, columns=pd.Index(['first', 'second'], dtype='object', name='group') ) pd.testing.assert_frame_equal( portfolio.holding_value(group_by=group_by), result ) pd.testing.assert_frame_equal( portfolio_grouped.holding_value(), result ) pd.testing.assert_frame_equal( portfolio_shared.holding_value(), result ) def test_gross_exposure(self): pd.testing.assert_frame_equal( portfolio.gross_exposure(direction='longonly'), pd.DataFrame( np.array([ [0., 0., 0.01001202], [0.00200208, 0., 0.02183062], [0., 0., 0.00294938], [0., 0., 0.], [0.05015573, 0., 0.] ]), index=price_na.index, columns=price_na.columns ) ) pd.testing.assert_frame_equal( portfolio.gross_exposure(direction='shortonly'), pd.DataFrame( np.array([ [0., 0.01001, 0.], [0., 0.02182537, 0.], [0., np.nan, 0.], [0., 0.03887266, 0.], [0., 0.09633858, 0.] ]), index=price_na.index, columns=price_na.columns ) ) result = pd.DataFrame( np.array([ [0., -0.01021449, 0.01001202], [0.00200208, -0.02282155, 0.02183062], [0., np.nan, 0.00294938], [0., -0.0421496, 0.], [0.05015573, -0.11933092, 0.] ]), index=price_na.index, columns=price_na.columns ) pd.testing.assert_frame_equal( portfolio.gross_exposure(), result ) pd.testing.assert_frame_equal( portfolio_grouped.gross_exposure(group_by=False), result ) pd.testing.assert_frame_equal( portfolio_shared.gross_exposure(group_by=False), pd.DataFrame( np.array([ [0., -0.00505305, 0.01001202], [0.00100052, -0.01120162, 0.02183062], [0., np.nan, 0.00294938], [0., -0.02052334, 0.], [0.02503887, -0.05440679, 0.] ]), index=price_na.index, columns=price_na.columns ) ) result = pd.DataFrame( np.array([ [-0.005003, 0.01001202], [-0.01006684, 0.02183062], [np.nan, 0.00294938], [-0.02037095, 0.], [-0.02564654, 0.] ]), index=price_na.index, columns=pd.Index(['first', 'second'], dtype='object', name='group') ) pd.testing.assert_frame_equal( portfolio.gross_exposure(group_by=group_by), result ) pd.testing.assert_frame_equal( portfolio_grouped.gross_exposure(), result ) pd.testing.assert_frame_equal( portfolio_shared.gross_exposure(), result ) def test_net_exposure(self): result = pd.DataFrame( np.array([ [0., -0.01001, 0.01001202], [0.00200208, -0.02182537, 0.02183062], [0., np.nan, 0.00294938], [0., -0.03887266, 0.], [0.05015573, -0.09633858, 0.] ]), index=price_na.index, columns=price_na.columns ) pd.testing.assert_frame_equal( portfolio.net_exposure(), result ) pd.testing.assert_frame_equal( portfolio_grouped.net_exposure(group_by=False), result ) pd.testing.assert_frame_equal( portfolio_shared.net_exposure(group_by=False), pd.DataFrame( np.array([ [0., -0.0050025, 0.01001202], [0.00100052, -0.01095617, 0.02183062], [0., np.nan, 0.00294938], [0., -0.01971414, 0.], [0.02503887, -0.04906757, 0.] ]), index=price_na.index, columns=price_na.columns ) ) result = pd.DataFrame( np.array([ [-0.00495344, 0.01001202], [-0.00984861, 0.02183062], [np.nan, 0.00294938], [-0.01957348, 0.], [-0.02323332, 0.] ]), index=price_na.index, columns=pd.Index(['first', 'second'], dtype='object', name='group') ) pd.testing.assert_frame_equal( portfolio.net_exposure(group_by=group_by), result ) pd.testing.assert_frame_equal( portfolio_grouped.net_exposure(), result ) pd.testing.assert_frame_equal( portfolio_shared.net_exposure(), result ) def test_value(self): result = pd.DataFrame( np.array([ [100., 99.8801, 99.8799], [99.89598, 98.77612, 100.77588], [99.89001, np.nan, 101.71618], [99.89001, 96.46808, 101.70822], [99.68951, 95.26858, 101.70822] ]), index=price_na.index, columns=price_na.columns ) pd.testing.assert_frame_equal( portfolio.value(), result ) pd.testing.assert_frame_equal( portfolio_grouped.value(group_by=False), result ) pd.testing.assert_frame_equal( portfolio_shared.value(group_by=False), pd.DataFrame( np.array([ [200., 199.8801, 99.8799], [199.89598, 198.77612, 100.77588], [199.89001, np.nan, 101.71618], [199.89001, 196.46808, 101.70822], [199.68951, 195.26858, 101.70822] ]), index=price_na.index, columns=price_na.columns ) ) pd.testing.assert_frame_equal( portfolio_shared.value(group_by=False, in_sim_order=True), pd.DataFrame( np.array([ [199.8801, 199.8801, 99.8799], [198.6721, 198.77612000000002, 100.77588000000002], [np.nan, np.nan, 101.71618000000001], [196.35809, 196.35809, 101.70822000000001], [194.95809, 195.15859, 101.70822000000001] ]), index=price_na.index, columns=price_na.columns ) ) result = pd.DataFrame( np.array([ [199.8801, 99.8799], [198.6721, 100.77588], [np.nan, 101.71618], [196.35809, 101.70822], [194.95809, 101.70822] ]), index=price_na.index, columns=pd.Index(['first', 'second'], dtype='object', name='group') ) pd.testing.assert_frame_equal( portfolio.value(group_by=group_by), result ) pd.testing.assert_frame_equal( portfolio_grouped.value(), result ) pd.testing.assert_frame_equal( portfolio_shared.value(), result ) def test_total_profit(self): result = pd.Series( np.array([-0.31049, -4.73142, 1.70822]), index=price_na.columns ).rename('total_profit') pd.testing.assert_series_equal( portfolio.total_profit(), result ) pd.testing.assert_series_equal( portfolio_grouped.total_profit(group_by=False), result ) pd.testing.assert_series_equal( portfolio_shared.total_profit(group_by=False), result ) result = pd.Series( np.array([-5.04191, 1.70822]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('total_profit') pd.testing.assert_series_equal( portfolio.total_profit(group_by=group_by), result ) pd.testing.assert_series_equal( portfolio_grouped.total_profit(), result ) pd.testing.assert_series_equal( portfolio_shared.total_profit(), result ) def test_final_value(self): result = pd.Series( np.array([99.68951, 95.26858, 101.70822]), index=price_na.columns ).rename('final_value') pd.testing.assert_series_equal( portfolio.final_value(), result ) pd.testing.assert_series_equal( portfolio_grouped.final_value(group_by=False), result ) pd.testing.assert_series_equal( portfolio_shared.final_value(group_by=False), pd.Series( np.array([199.68951, 195.26858, 101.70822]), index=price_na.columns ).rename('final_value') ) result = pd.Series( np.array([194.95809, 101.70822]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('final_value') pd.testing.assert_series_equal( portfolio.final_value(group_by=group_by), result ) pd.testing.assert_series_equal( portfolio_grouped.final_value(), result ) pd.testing.assert_series_equal( portfolio_shared.final_value(), result ) def test_total_return(self): result = pd.Series( np.array([-0.0031049, -0.0473142, 0.0170822]), index=price_na.columns ).rename('total_return') pd.testing.assert_series_equal( portfolio.total_return(), result ) pd.testing.assert_series_equal( portfolio_grouped.total_return(group_by=False), result ) pd.testing.assert_series_equal( portfolio_shared.total_return(group_by=False), pd.Series( np.array([-0.00155245, -0.0236571, 0.0170822]), index=price_na.columns ).rename('total_return') ) result = pd.Series( np.array([-0.02520955, 0.0170822]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('total_return') pd.testing.assert_series_equal( portfolio.total_return(group_by=group_by), result ) pd.testing.assert_series_equal( portfolio_grouped.total_return(), result ) pd.testing.assert_series_equal( portfolio_shared.total_return(), result ) def test_returns(self): result = pd.DataFrame( np.array([ [0.00000000e+00, -1.19900000e-03, -1.20100000e-03], [-1.04020000e-03, -1.10530526e-02, 8.97057366e-03], [-5.97621646e-05, np.nan, 9.33060570e-03], [0.00000000e+00, np.nan, -7.82569695e-05], [-2.00720773e-03, -1.24341648e-02, 0.00000000e+00] ]), index=price_na.index, columns=price_na.columns ) pd.testing.assert_frame_equal( portfolio.returns(), result ) pd.testing.assert_frame_equal( portfolio_grouped.returns(group_by=False), result ) pd.testing.assert_frame_equal( portfolio_shared.returns(group_by=False), pd.DataFrame( np.array([ [0.00000000e+00, -5.99500000e-04, -1.20100000e-03], [-5.20100000e-04, -5.52321117e-03, 8.97057366e-03], [-2.98655331e-05, np.nan, 9.33060570e-03], [0.00000000e+00, np.nan, -7.82569695e-05], [-1.00305163e-03, -6.10531746e-03, 0.00000000e+00] ]), index=price_na.index, columns=price_na.columns ) ) pd.testing.assert_frame_equal( portfolio_shared.returns(group_by=False, in_sim_order=True), pd.DataFrame( np.array([ [0.0, -0.0005995000000000062, -1.20100000e-03], [-0.0005233022960706736, -0.005523211165093367, 8.97057366e-03], [np.nan, np.nan, 9.33060570e-03], [0.0, np.nan, -7.82569695e-05], [-0.0010273695869600474, -0.0061087373583639994, 0.00000000e+00] ]), index=price_na.index, columns=price_na.columns ) ) result = pd.DataFrame( np.array([ [-5.99500000e-04, -1.20100000e-03], [-6.04362315e-03, 8.97057366e-03], [np.nan, 9.33060570e-03], [np.nan, -7.82569695e-05], [-7.12983101e-03, 0.00000000e+00] ]), index=price_na.index, columns=pd.Index(['first', 'second'], dtype='object', name='group') ) pd.testing.assert_frame_equal( portfolio.returns(group_by=group_by), result ) pd.testing.assert_frame_equal( portfolio_grouped.returns(), result ) pd.testing.assert_frame_equal( portfolio_shared.returns(), result ) def test_active_returns(self): result = pd.DataFrame( np.array([ [0., -np.inf, -np.inf], [-np.inf, -1.10398, 0.89598], [-0.02985, np.nan, 0.42740909], [0., np.nan, -0.02653333], [-np.inf, -0.299875, 0.] ]), index=price_na.index, columns=price_na.columns ) pd.testing.assert_frame_equal( portfolio.active_returns(), result ) pd.testing.assert_frame_equal( portfolio_grouped.active_returns(group_by=False), result ) pd.testing.assert_frame_equal( portfolio_shared.active_returns(group_by=False), result ) result = pd.DataFrame( np.array([ [-np.inf, -np.inf], [-1.208, 0.89598], [np.nan, 0.42740909], [np.nan, -0.02653333], [-0.35, 0.] ]), index=price_na.index, columns=pd.Index(['first', 'second'], dtype='object', name='group') ) pd.testing.assert_frame_equal( portfolio.active_returns(group_by=group_by), result ) pd.testing.assert_frame_equal( portfolio_grouped.active_returns(), result ) pd.testing.assert_frame_equal( portfolio_shared.active_returns(), result ) def test_market_value(self): result = pd.DataFrame( np.array([ [100., 100., 100.], [100., 200., 200.], [150., 200., 300.], [200., 400., 400.], [250., 500., 400.] ]), index=price_na.index, columns=price_na.columns ) pd.testing.assert_frame_equal( portfolio.market_value(), result ) pd.testing.assert_frame_equal( portfolio_grouped.market_value(group_by=False), result ) pd.testing.assert_frame_equal( portfolio_shared.market_value(group_by=False), pd.DataFrame( np.array([ [200., 200., 100.], [200., 400., 200.], [300., 400., 300.], [400., 800., 400.], [500., 1000., 400.] ]), index=price_na.index, columns=price_na.columns ) ) result = pd.DataFrame( np.array([ [200., 100.], [300., 200.], [350., 300.], [600., 400.], [750., 400.] ]), index=price_na.index, columns=pd.Index(['first', 'second'], dtype='object', name='group') ) pd.testing.assert_frame_equal( portfolio.market_value(group_by=group_by), result ) pd.testing.assert_frame_equal( portfolio_grouped.market_value(), result ) pd.testing.assert_frame_equal( portfolio_shared.market_value(), result ) def test_market_returns(self): result = pd.DataFrame( np.array([ [0., 0., 0.], [0., 1., 1.], [0.5, 0., 0.5], [0.33333333, 1., 0.33333333], [0.25, 0.25, 0.] ]), index=price_na.index, columns=price_na.columns ) pd.testing.assert_frame_equal( portfolio.market_returns(), result ) pd.testing.assert_frame_equal( portfolio_grouped.market_returns(group_by=False), result ) pd.testing.assert_frame_equal( portfolio_shared.market_returns(group_by=False), result ) result = pd.DataFrame( np.array([ [0., 0.], [0.5, 1.], [0.16666667, 0.5], [0.71428571, 0.33333333], [0.25, 0.] ]), index=price_na.index, columns=pd.Index(['first', 'second'], dtype='object', name='group') ) pd.testing.assert_frame_equal( portfolio.market_returns(group_by=group_by), result ) pd.testing.assert_frame_equal( portfolio_grouped.market_returns(), result ) pd.testing.assert_frame_equal( portfolio_shared.market_returns(), result ) def test_total_market_return(self): result = pd.Series( np.array([1.5, 4., 3.]), index=price_na.columns ).rename('total_market_return') pd.testing.assert_series_equal( portfolio.total_market_return(), result ) pd.testing.assert_series_equal( portfolio_grouped.total_market_return(group_by=False), result ) pd.testing.assert_series_equal( portfolio_shared.total_market_return(group_by=False), result ) result = pd.Series( np.array([2.75, 3.]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('total_market_return') pd.testing.assert_series_equal( portfolio.total_market_return(group_by=group_by), result ) pd.testing.assert_series_equal( portfolio_grouped.total_market_return(), result ) pd.testing.assert_series_equal( portfolio_shared.total_market_return(), result ) def test_return_method(self): pd.testing.assert_frame_equal( portfolio_shared.cumulative_returns(), pd.DataFrame( np.array([ [-0.0005995, -0.001201], [-0.0066395, 0.0077588], [-0.0066395, 0.0171618], [-0.0066395, 0.0170822], [-0.01372199, 0.0170822] ]), index=price_na.index, columns=pd.Index(['first', 'second'], dtype='object', name='group') ) ) pd.testing.assert_frame_equal( portfolio_shared.cumulative_returns(group_by=False), pd.DataFrame( np.array([ [0., -0.0005995, -0.001201], [-0.0005201, -0.0061194, 0.0077588], [-0.00054995, -0.0061194, 0.0171618], [-0.00054995, -0.0061194, 0.0170822], [-0.00155245, -0.01218736, 0.0170822] ]), index=price_na.index, columns=price_na.columns ) ) pd.testing.assert_series_equal( portfolio_shared.sharpe_ratio(), pd.Series( np.array([-20.82791491, 10.2576347]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('sharpe_ratio') ) pd.testing.assert_series_equal( portfolio_shared.sharpe_ratio(risk_free=0.01), pd.Series( np.array([-66.19490297745766, -19.873024060759022]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('sharpe_ratio') ) pd.testing.assert_series_equal( portfolio_shared.sharpe_ratio(year_freq='365D'), pd.Series( np.array([-25.06639947, 12.34506527]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('sharpe_ratio') ) pd.testing.assert_series_equal( portfolio_shared.sharpe_ratio(group_by=False), pd.Series( np.array([-11.058998255347488, -21.39151322377427, 10.257634695847853]), index=price_na.columns ).rename('sharpe_ratio') ) def test_stats(self): pd.testing.assert_series_equal( portfolio.stats(), pd.Series( np.array([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-05 00:00:00'), pd.Timedelta('5 days 00:00:00'), 100.0, -1.1112299999999966, -1.1112299999999966, 283.3333333333333, 66.66666666666667, 1.6451238489727062, 1.6451238489727062, pd.Timedelta('3 days 08:00:00'), pd.Timedelta('3 days 08:00:00'), 1.3333333333333333, 33.333333333333336, -98.38058805880588, -100.8038553855386, -99.59222172217225, pd.Timedelta('2 days 08:00:00'), pd.Timedelta('2 days 04:00:00'), 0.10827272727272726, 1.2350921335789007, -0.01041305691622876, -7.373390156195147, 25.695952942372134, 5717.085878360386 ]), index=pd.Index([ 'Start', 'End', 'Duration', 'Init. Cash', 'Total Profit', 'Total Return [%]', 'Benchmark Return [%]', 'Position Coverage [%]', 'Max. Drawdown [%]', 'Avg. Drawdown [%]', 'Max. Drawdown Duration', 'Avg. Drawdown Duration', 'Num. Trades', 'Win Rate [%]', 'Best Trade [%]', 'Worst Trade [%]', 'Avg. Trade [%]', 'Max. Trade Duration', 'Avg. Trade Duration', 'Expectancy', 'SQN', 'Gross Exposure', 'Sharpe Ratio', 'Sortino Ratio', 'Calmar Ratio' ], dtype='object'), name='stats_mean') ) pd.testing.assert_series_equal( portfolio['a'].stats(), pd.Series( np.array([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-05 00:00:00'), pd.Timedelta('5 days 00:00:00'), 100.0, -0.3104900000000015, -0.3104900000000015, 150.0, 40.0, 0.3104900000000015, 0.3104900000000015,
pd.Timedelta('4 days 00:00:00')
pandas.Timedelta
import seaborn as sns import matplotlib.pyplot as plt import numpy as np import re from math import ceil import pandas as pd from sklearn.metrics import classification_report from scipy.stats import shapiro, boxcox, yeojohnson from scipy.stats import probplot from sklearn.preprocessing import LabelEncoder, PowerTransformer from category_encoders.target_encoder import TargetEncoder from sklearn.impute import SimpleImputer, MissingIndicator from sklearn.pipeline import Pipeline, FeatureUnion from sklearn.compose import ColumnTransformer, make_column_transformer from sklearn.linear_model import LinearRegression, LogisticRegression # from .charts.classification_visualization import classification_visualization # from .charts.charts import Plot, ScatterChart from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split from sklearn.utils.multiclass import unique_labels from sklearn.manifold import TSNE from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor import json from pyod.models.hbos import HBOS from statsmodels.api import ProbPlot # from .charts.charts_extras import ( # feature_importances_plot, # regression_viz, # classification_viz, # ) from sklearn.ensemble import ( RandomForestClassifier, GradientBoostingClassifier, RandomForestRegressor, GradientBoostingRegressor, ) from sklearn.svm import LinearSVC import warnings warnings.filterwarnings("ignore") sns.set_palette("colorblind") class CrawtoDS: def __init__( self, data, target, test_data=None, time_dependent=False, features="infer", problem="infer", ): self.input_data = data self.target = target self.features = features self.problem = problem self.test_data = test_data self.timedependent = time_dependent if self.problem == "binary classification": self.train_data, self.valid_data = train_test_split( self.input_data, shuffle=True, stratify=self.input_data[self.target], ) elif self.problem == "regression": self.train_data, self.valid_data = train_test_split( self.input_data, shuffle=True, ) def nan_features(input_data): """a little complicated. map creates a %nan values and returns the feature if greater than the threshold. filter simply filters out the false values """ f = input_data.columns.values len_df = len(input_data) nan_features = list( filter( lambda x: x is not False, map( lambda x: x if self.input_data[x].isna().sum() / len_df > 0.25 else False, f, ), ) ) return nan_features def problematic_features(self): f = self.input_data.columns.values problematic_features = [] for i in f: if "Id" in i: problematic_features.append(i) elif "ID" in i: problematic_features.append(i) return problematic_features def undefined_features(self): if self.features == "infer": undefined_features = list(self.input_data.columns) undefined_features.remove(self.target) for i in self.nan_features: undefined_features.remove(i) for i in self.problematic_features: undefined_features.remove(i) return undefined_features def numeric_features(self): numeric_features = [] l = self.undefined_features for i in l: if self.input_data[i].dtype in ["float64", "float", "int", "int64"]: if len(self.input_data[i].value_counts()) / len(self.input_data) < 0.1: pass else: numeric_features.append(i) return numeric_features def categorical_features(self, threshold=10): self.undefined_features categorical_features = [] to_remove = [] l = self.undefined_features for i in l: if len(self.input_data[i].value_counts()) / len(self.input_data[i]) < 0.10: categorical_features.append(i) return categorical_features def indicator(self): indicator = MissingIndicator(features="all") indicator.fit(self.train_data[self.undefined_features]) return indicator def train_missing_indicator_df(self): x = self.indicator.transform(self.train_data[self.undefined_features]) x_labels = ["missing_" + i for i in self.undefined_features] missing_indicator_df = pd.DataFrame(x, columns=x_labels) columns = [ i for i in list(missing_indicator_df.columns.values) if missing_indicator_df[i].max() == True ] return missing_indicator_df[columns].replace({True: 1, False: 0}) def valid_missing_indicator_df(self): x = self.indicator.transform(self.valid_data[self.undefined_features]) x_labels = ["missing_" + i for i in self.undefined_features] missing_indicator_df = pd.DataFrame(x, columns=x_labels) columns = list(self.train_missing_indicator_df) return missing_indicator_df[columns].replace({True: 1, False: 0}) def numeric_imputer(self): numeric_imputer = SimpleImputer(strategy="median", copy=True) numeric_imputer.fit(self.train_data[self.numeric_features]) return numeric_imputer def categorical_imputer(self): categorical_imputer = SimpleImputer(strategy="most_frequent", copy=True) categorical_imputer.fit(self.train_data[self.categorical_features]) return categorical_imputer def train_imputed_numeric_df(self): x = self.numeric_imputer.transform(self.train_data[self.numeric_features]) x_labels = [i + "_imputed" for i in self.numeric_features] imputed_numeric_df = pd.DataFrame(x, columns=x_labels) return imputed_numeric_df def valid_imputed_numeric_df(self): x = self.numeric_imputer.transform(self.valid_data[self.numeric_features]) x_labels = [i + "_imputed" for i in self.numeric_features] imputed_numeric_df = pd.DataFrame(x, columns=x_labels) return imputed_numeric_df def yeo_johnson_transformer(self): yeo_johnson_transformer = PowerTransformer(method="yeo-johnson", copy=True) yeo_johnson_transformer.fit(self.train_imputed_numeric_df) return yeo_johnson_transformer def yeo_johnson_target_transformer(self): yeo_johnson_target_transformer = PowerTransformer(method="yeo-johnson", copy=True) yeo_johnson_target_transformer.fit( np.array(self.train_data[self.target]).reshape(-1, 1) ) return yeo_johnson_target_transformer def train_yeojohnson_df(self): yj = self.yeo_johnson_transformer.transform(self.train_imputed_numeric_df) columns = self.train_imputed_numeric_df.columns.values columns = [i + "_yj" for i in columns] yj = pd.DataFrame(yj, columns=columns) return yj def valid_yeojohnson_df(self): yj = self.yeo_johnson_transformer.transform(self.valid_imputed_numeric_df) columns = self.valid_imputed_numeric_df.columns.values columns = [i + "_yj" for i in columns] yj = pd.DataFrame(yj, columns=columns) return yj def train_transformed_target(self): if self.problem == "binary classification": return self.train_data[self.target] elif self.problem == "regression": s = self.yeo_johnson_target_transformer.transform( np.array(self.train_data[self.target]).reshape(-1, 1) ) s = pd.DataFrame(s, columns=[self.target]) return s def valid_transformed_target(self): if self.problem == "binary classification": return self.valid_data[self.target] elif self.problem == "regression": s = self.yeo_johnson_target_transformer.transform( np.array(self.valid_data[self.target]).reshape(-1, 1) ) s = pd.DataFrame(s, columns=[self.target]) return s def train_imputed_categorical_df(self): x = self.categorical_imputer.transform(self.train_data[self.categorical_features]) x_labels = [i + "_imputed" for i in self.categorical_features] imputed_categorical_df = pd.DataFrame(x, columns=x_labels) return imputed_categorical_df def valid_imputed_categorical_df(self): x = self.categorical_imputer.transform(self.valid_data[self.categorical_features]) x_labels = [i + "_imputed" for i in self.categorical_features] imputed_categorical_df = pd.DataFrame(x, columns=x_labels) return imputed_categorical_df def hbos_transformer(self): hbos = HBOS() hbos.fit(self.train_transformed_data) return hbos def train_hbos_column(self): hbos_t = self.hbos_transformer.predict(self.train_transformed_data) return hbos_t def valid_hbos_column(self): hbos_v = self.hbos_transformer.predict(self.valid_transformed_data) return hbos_v def test_hbos_column(self): hbos_test = self.hbos_transformer.predict(self.test_transformed_data) return hbos_test def target_encoder(self): te = TargetEncoder(cols=self.train_imputed_categorical_df.columns.values) te.fit(X=self.train_imputed_categorical_df, y=self.train_transformed_target) return te def train_target_encoded_df(self): te = self.target_encoder.transform(self.train_imputed_categorical_df) columns = list( map( lambda x: re.sub(r"_imputed", "_target_encoded", x), list(self.train_imputed_categorical_df.columns.values), ) ) te =
pd.DataFrame(data=te)
pandas.DataFrame
import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from web3 import Web3 import time import json import io plt.rc('figure', titleweight='bold') plt.rc('axes', grid='True', linewidth=1.2, titlepad=20) plt.rc('font', weight='bold', size=16) plt.rc('lines', linewidth=3.5) eXRD_rewards = '0xDF191bFbdE2e3E178e3336E63C18DD20d537c421' with open('./infura.json') as f: INFURA_URL = json.load(f)['url'] w3 = Web3(Web3.HTTPProvider(INFURA_URL)) with open('./eXRD_rewards.json') as f: ABI = json.load(f)['result'] rewardsContract = w3.eth.contract(address=eXRD_rewards, abi=ABI) emissionTimestamps = np.array([1605629336, 1608221336, 1608221858, 1610813858]) class RewardTrender(): baseIndex = pd.date_range(start='17-11-2020 17:00', periods=180*4, freq='6H') emissionIndex =
pd.DatetimeIndex(emissionTimestamps*1e9)
pandas.DatetimeIndex
# -*- coding: utf-8 -*- """ Created on Tue Sep 7 19:06:46 2021 @author: saUzu """ #%% Gerekli Kütüphaneler import numpy as np import matplotlib.pyplot as plt import pandas as pd #%% Dolar/Lira ve eğitim verisini hazırlama #hamVeriler = pd.read_csv('02-21_egitim_verileri.csv') # bitcoin için değişkenler ve değerler hamVeriler = pd.read_csv('Bitcoin_USD_ogrenme.csv') hamVeriler['Price'] = hamVeriler['Price'].str.replace(',','') hamVeriler['Open'] = hamVeriler['Open'].str.replace(',','') hamVeriler['High'] = hamVeriler['High'].str.replace(',','') hamVeriler['Low'] = hamVeriler['Low'].str.replace(',','') # bitcoin için bitiş hamVeriler['Date'] = pd.to_datetime(hamVeriler['Date']) hamVeriler = hamVeriler.sort_values(by='Date') egitimVerisi = hamVeriler.iloc[:, 1:2].values #%% Eğitim verisini ölçeklendirme from sklearn.preprocessing import MinMaxScaler olcek = MinMaxScaler(feature_range=(0, 1)) olcekli_egitimVerisi = olcek.fit_transform(egitimVerisi) #%% Eğitim verilerini 60'a böldüm. Her 60 günde bir tahmin yaparak öğrenme işlemini gerçekleştirecek X_egitim = [] y_egitim = [] for i in range(60, 4080): X_egitim.append(olcekli_egitimVerisi[i-60:i, 0]) y_egitim.append(olcekli_egitimVerisi[i, 0]) X_egitim, y_egitim = np.array(X_egitim), np.array(y_egitim) #%% Eğitim verilerini yeniden şekillendirme işlemi X_egitim = np.reshape(X_egitim, (X_egitim.shape[0], X_egitim.shape[1], 1)) #%% LSTM için keras kütüphanesi from keras.models import Sequential from keras.layers import Dense from keras.layers import LSTM from keras.layers import Dropout #%% RNN oluşturma gerileme = Sequential() #%% LSTM'nin ilk katmanı gerileme.add(LSTM(units = 100, return_sequences = True, input_shape = (X_egitim.shape[1], 1))) gerileme.add(Dropout(0.2)) #%% LSTM'nin ikinci katmanı gerileme.add(LSTM(units = 100, return_sequences = True)) gerileme.add(Dropout(0.2)) #%% LSTM'nin üçüncü katmanı gerileme.add(LSTM(units = 100, return_sequences = True)) gerileme.add(Dropout(0.2)) #%% LSTM'nin dördüncü katmanı gerileme.add(LSTM(units = 100)) gerileme.add(Dropout(0.2)) #%% LSTM'nin Çıkış katmanı gerileme.add(Dense(units = 1)) #%% RNN'yi çalıştırma gerileme.compile(optimizer = 'adam', loss = 'mean_squared_error') #%% RNN'yi eğitim verileri ile uyuşması işlemi gerileme.fit(X_egitim, y_egitim, epochs = 100, batch_size = 100) #%% Gerçek veriler #denemeVerileri = pd.read_csv('deneme_verileri2.csv') # bitcoin için değerler ve değişkenle denemeVerileri = pd.read_csv('Bitcoin_USD_deneme.csv') denemeVerileri['Price'] = denemeVerileri['Price'].str.replace(',','') denemeVerileri['Open'] = denemeVerileri['Open'].str.replace(',','') denemeVerileri['High'] = denemeVerileri['High'].str.replace(',','') denemeVerileri['Low'] = denemeVerileri['Low'].str.replace(',','') # bitcoin için bitiş denemeVerileri['Date'] =
pd.to_datetime(denemeVerileri['Date'])
pandas.to_datetime
from io import StringIO import pandas as pd import numpy as np import pytest import bioframe import bioframe.core.checks as checks # import pyranges as pr # def bioframe_to_pyranges(df): # pydf = df.copy() # pydf.rename( # {"chrom": "Chromosome", "start": "Start", "end": "End"}, # axis="columns", # inplace=True, # ) # return pr.PyRanges(pydf) # def pyranges_to_bioframe(pydf): # df = pydf.df # df.rename( # {"Chromosome": "chrom", "Start": "start", "End": "end", "Count": "n_intervals"}, # axis="columns", # inplace=True, # ) # return df # def pyranges_overlap_to_bioframe(pydf): # ## convert the df output by pyranges join into a bioframe-compatible format # df = pydf.df.copy() # df.rename( # { # "Chromosome": "chrom_1", # "Start": "start_1", # "End": "end_1", # "Start_b": "start_2", # "End_b": "end_2", # }, # axis="columns", # inplace=True, # ) # df["chrom_1"] = df["chrom_1"].values.astype("object") # to remove categories # df["chrom_2"] = df["chrom_1"].values # return df chroms = ["chr12", "chrX"] def mock_bioframe(num_entries=100): pos = np.random.randint(1, 1e7, size=(num_entries, 2)) df = pd.DataFrame() df["chrom"] = np.random.choice(chroms, num_entries) df["start"] = np.min(pos, axis=1) df["end"] = np.max(pos, axis=1) df.sort_values(["chrom", "start"], inplace=True) return df ############# tests ##################### def test_select(): df1 = pd.DataFrame( [["chrX", 3, 8], ["chr1", 4, 5], ["chrX", 1, 5]], columns=["chrom", "start", "end"], ) region1 = "chr1:4-10" df_result = pd.DataFrame([["chr1", 4, 5]], columns=["chrom", "start", "end"]) pd.testing.assert_frame_equal( df_result, bioframe.select(df1, region1).reset_index(drop=True) ) region1 = "chrX" df_result = pd.DataFrame( [["chrX", 3, 8], ["chrX", 1, 5]], columns=["chrom", "start", "end"] ) pd.testing.assert_frame_equal( df_result, bioframe.select(df1, region1).reset_index(drop=True) ) region1 = "chrX:4-6" df_result = pd.DataFrame( [["chrX", 3, 8], ["chrX", 1, 5]], columns=["chrom", "start", "end"] ) pd.testing.assert_frame_equal( df_result, bioframe.select(df1, region1).reset_index(drop=True) ) ### select with non-standard column names region1 = "chrX:4-6" new_names = ["chr", "chrstart", "chrend"] df1 = pd.DataFrame( [["chrX", 3, 8], ["chr1", 4, 5], ["chrX", 1, 5]], columns=new_names, ) df_result = pd.DataFrame( [["chrX", 3, 8], ["chrX", 1, 5]], columns=new_names, ) pd.testing.assert_frame_equal( df_result, bioframe.select(df1, region1, cols=new_names).reset_index(drop=True) ) region1 = "chrX" pd.testing.assert_frame_equal( df_result, bioframe.select(df1, region1, cols=new_names).reset_index(drop=True) ) ### select from a DataFrame with NaNs colnames = ["chrom", "start", "end", "view_region"] df = pd.DataFrame( [ ["chr1", -6, 12, "chr1p"], [pd.NA, pd.NA, pd.NA, "chr1q"], ["chrX", 1, 8, "chrX_0"], ], columns=colnames, ).astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}) df_result = pd.DataFrame( [["chr1", -6, 12, "chr1p"]], columns=colnames, ).astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}) region1 = "chr1:0-1" pd.testing.assert_frame_equal( df_result, bioframe.select(df, region1).reset_index(drop=True) ) def test_trim(): ### trim with view_df view_df = pd.DataFrame( [ ["chr1", 0, 12, "chr1p"], ["chr1", 13, 26, "chr1q"], ["chrX", 1, 8, "chrX_0"], ], columns=["chrom", "start", "end", "name"], ) df = pd.DataFrame( [ ["chr1", -6, 12, "chr1p"], ["chr1", 0, 12, "chr1p"], ["chr1", 32, 36, "chr1q"], ["chrX", 1, 8, "chrX_0"], ], columns=["chrom", "start", "end", "view_region"], ) df_trimmed = pd.DataFrame( [ ["chr1", 0, 12, "chr1p"], ["chr1", 0, 12, "chr1p"], ["chr1", 26, 26, "chr1q"], ["chrX", 1, 8, "chrX_0"], ], columns=["chrom", "start", "end", "view_region"], ) with pytest.raises(ValueError): bioframe.trim(df, view_df=view_df) # df_view_col already exists, so need to specify it: pd.testing.assert_frame_equal( df_trimmed, bioframe.trim(df, view_df=view_df, df_view_col="view_region") ) ### trim with view_df interpreted from dictionary for chromsizes chromsizes = {"chr1": 20, "chrX_0": 5} df = pd.DataFrame( [ ["chr1", 0, 12], ["chr1", 13, 26], ["chrX_0", 1, 8], ], columns=["chrom", "startFunky", "end"], ) df_trimmed = pd.DataFrame( [ ["chr1", 0, 12], ["chr1", 13, 20], ["chrX_0", 1, 5], ], columns=["chrom", "startFunky", "end"], ).astype({"startFunky": pd.Int64Dtype(), "end": pd.Int64Dtype()}) pd.testing.assert_frame_equal( df_trimmed, bioframe.trim( df, view_df=chromsizes, cols=["chrom", "startFunky", "end"], return_view_columns=False, ), ) ### trim with default limits=None and negative values df = pd.DataFrame( [ ["chr1", -4, 12], ["chr1", 13, 26], ["chrX", -5, -1], ], columns=["chrom", "start", "end"], ) df_trimmed = pd.DataFrame( [ ["chr1", 0, 12], ["chr1", 13, 26], ["chrX", 0, 0], ], columns=["chrom", "start", "end"], ) pd.testing.assert_frame_equal(df_trimmed, bioframe.trim(df)) ### trim when there are NaN intervals df = pd.DataFrame( [ ["chr1", -4, 12, "chr1p"], [pd.NA, pd.NA, pd.NA, "chr1q"], ["chrX", -5, -1, "chrX_0"], ], columns=["chrom", "start", "end", "region"], ).astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}) df_trimmed = pd.DataFrame( [ ["chr1", 0, 12, "chr1p"], [pd.NA, pd.NA, pd.NA, "chr1q"], ["chrX", 0, 0, "chrX_0"], ], columns=["chrom", "start", "end", "region"], ).astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}) pd.testing.assert_frame_equal(df_trimmed, bioframe.trim(df)) ### trim with view_df and NA intervals view_df = pd.DataFrame( [ ["chr1", 0, 12, "chr1p"], ["chr1", 13, 26, "chr1q"], ["chrX", 1, 12, "chrX_0"], ], columns=["chrom", "start", "end", "name"], ) df = pd.DataFrame( [ ["chr1", -6, 12], ["chr1", 0, 12], [pd.NA, pd.NA, pd.NA], ["chrX", 1, 20], ], columns=["chrom", "start", "end"], ).astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}) df_trimmed = pd.DataFrame( [ ["chr1", 0, 12, "chr1p"], ["chr1", 0, 12, "chr1p"], [pd.NA, pd.NA, pd.NA, pd.NA], ["chrX", 1, 12, "chrX_0"], ], columns=["chrom", "start", "end", "view_region"], ).astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}) # infer df_view_col with assign_view and ignore NAs pd.testing.assert_frame_equal( df_trimmed, bioframe.trim(df, view_df=view_df, df_view_col=None, return_view_columns=True)[ ["chrom", "start", "end", "view_region"] ], ) def test_expand(): d = """chrom start end 0 chr1 1 5 1 chr1 50 55 2 chr2 100 200""" fake_bioframe = pd.read_csv(StringIO(d), sep=r"\s+") expand_bp = 10 fake_expanded = bioframe.expand(fake_bioframe, expand_bp) d = """chrom start end 0 chr1 -9 15 1 chr1 40 65 2 chr2 90 210""" df = pd.read_csv(StringIO(d), sep=r"\s+") pd.testing.assert_frame_equal(df, fake_expanded) # expand with negative pad expand_bp = -10 fake_expanded = bioframe.expand(fake_bioframe, expand_bp) d = """chrom start end 0 chr1 3 3 1 chr1 52 52 2 chr2 110 190""" df = pd.read_csv(StringIO(d), sep=r"\s+") pd.testing.assert_frame_equal(df, fake_expanded) expand_bp = -10 fake_expanded = bioframe.expand(fake_bioframe, expand_bp, side="left") d = """chrom start end 0 chr1 3 5 1 chr1 52 55 2 chr2 110 200""" df = pd.read_csv(StringIO(d), sep=r"\s+") pd.testing.assert_frame_equal(df, fake_expanded) # expand with multiplicative pad mult = 0 fake_expanded = bioframe.expand(fake_bioframe, pad=None, scale=mult) d = """chrom start end 0 chr1 3 3 1 chr1 52 52 2 chr2 150 150""" df = pd.read_csv(StringIO(d), sep=r"\s+") pd.testing.assert_frame_equal(df, fake_expanded) mult = 2.0 fake_expanded = bioframe.expand(fake_bioframe, pad=None, scale=mult) d = """chrom start end 0 chr1 -1 7 1 chr1 48 58 2 chr2 50 250""" df = pd.read_csv(StringIO(d), sep=r"\s+") pd.testing.assert_frame_equal(df, fake_expanded) # expand with NA and non-integer multiplicative pad d = """chrom start end 0 chr1 1 5 1 NA NA NA 2 chr2 100 200""" fake_bioframe = pd.read_csv(StringIO(d), sep=r"\s+").astype( {"start": pd.Int64Dtype(), "end": pd.Int64Dtype()} ) mult = 1.10 fake_expanded = bioframe.expand(fake_bioframe, pad=None, scale=mult) d = """chrom start end 0 chr1 1 5 1 NA NA NA 2 chr2 95 205""" df = pd.read_csv(StringIO(d), sep=r"\s+").astype( {"start": pd.Int64Dtype(), "end": pd.Int64Dtype()} ) pd.testing.assert_frame_equal(df, fake_expanded) def test_overlap(): ### test consistency of overlap(how='inner') with pyranges.join ### ### note does not test overlap_start or overlap_end columns of bioframe.overlap df1 = mock_bioframe() df2 = mock_bioframe() assert df1.equals(df2) == False # p1 = bioframe_to_pyranges(df1) # p2 = bioframe_to_pyranges(df2) # pp = pyranges_overlap_to_bioframe(p1.join(p2, how=None))[ # ["chrom_1", "start_1", "end_1", "chrom_2", "start_2", "end_2"] # ] # bb = bioframe.overlap(df1, df2, how="inner")[ # ["chrom_1", "start_1", "end_1", "chrom_2", "start_2", "end_2"] # ] # pp = pp.sort_values( # ["chrom_1", "start_1", "end_1", "chrom_2", "start_2", "end_2"], # ignore_index=True, # ) # bb = bb.sort_values( # ["chrom_1", "start_1", "end_1", "chrom_2", "start_2", "end_2"], # ignore_index=True, # ) # pd.testing.assert_frame_equal(bb, pp, check_dtype=False, check_exact=False) # print("overlap elements agree") ### test overlap on= [] ### df1 = pd.DataFrame( [ ["chr1", 8, 12, "+", "cat"], ["chr1", 8, 12, "-", "cat"], ["chrX", 1, 8, "+", "cat"], ], columns=["chrom1", "start", "end", "strand", "animal"], ) df2 = pd.DataFrame( [["chr1", 6, 10, "+", "dog"], ["chrX", 7, 10, "-", "dog"]], columns=["chrom2", "start2", "end2", "strand", "animal"], ) b = bioframe.overlap( df1, df2, on=["animal"], how="left", cols1=("chrom1", "start", "end"), cols2=("chrom2", "start2", "end2"), return_index=True, return_input=False, ) assert np.sum(pd.isna(b["index_"].values)) == 3 b = bioframe.overlap( df1, df2, on=["strand"], how="left", cols1=("chrom1", "start", "end"), cols2=("chrom2", "start2", "end2"), return_index=True, return_input=False, ) assert np.sum(pd.isna(b["index_"].values)) == 2 b = bioframe.overlap( df1, df2, on=None, how="left", cols1=("chrom1", "start", "end"), cols2=("chrom2", "start2", "end2"), return_index=True, return_input=False, ) assert np.sum(pd.isna(b["index_"].values)) == 0 ### test overlap 'left', 'outer', and 'right' b = bioframe.overlap( df1, df2, on=None, how="outer", cols1=("chrom1", "start", "end"), cols2=("chrom2", "start2", "end2"), ) assert len(b) == 3 b = bioframe.overlap( df1, df2, on=["animal"], how="outer", cols1=("chrom1", "start", "end"), cols2=("chrom2", "start2", "end2"), ) assert len(b) == 5 b = bioframe.overlap( df1, df2, on=["animal"], how="inner", cols1=("chrom1", "start", "end"), cols2=("chrom2", "start2", "end2"), ) assert len(b) == 0 b = bioframe.overlap( df1, df2, on=["animal"], how="right", cols1=("chrom1", "start", "end"), cols2=("chrom2", "start2", "end2"), ) assert len(b) == 2 b = bioframe.overlap( df1, df2, on=["animal"], how="left", cols1=("chrom1", "start", "end"), cols2=("chrom2", "start2", "end2"), ) assert len(b) == 3 ### test keep_order and NA handling df1 = pd.DataFrame( [ ["chr1", 8, 12, "+"], [pd.NA, pd.NA, pd.NA, "-"], ["chrX", 1, 8, "+"], ], columns=["chrom", "start", "end", "strand"], ).astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}) df2 = pd.DataFrame( [["chr1", 6, 10, "+"], [pd.NA, pd.NA, pd.NA, "-"], ["chrX", 7, 10, "-"]], columns=["chrom2", "start2", "end2", "strand"], ).astype({"start2": pd.Int64Dtype(), "end2": pd.Int64Dtype()}) assert df1.equals( bioframe.overlap( df1, df2, how="left", keep_order=True, cols2=["chrom2", "start2", "end2"] )[["chrom", "start", "end", "strand"]] ) assert ~df1.equals( bioframe.overlap( df1, df2, how="left", keep_order=False, cols2=["chrom2", "start2", "end2"] )[["chrom", "start", "end", "strand"]] ) df1 = pd.DataFrame( [ ["chr1", 8, 12, "+", pd.NA], [pd.NA, pd.NA, pd.NA, "-", pd.NA], ["chrX", 1, 8, pd.NA, pd.NA], ], columns=["chrom", "start", "end", "strand", "animal"], ).astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}) df2 = pd.DataFrame( [["chr1", 6, 10, pd.NA, "tiger"]], columns=["chrom2", "start2", "end2", "strand", "animal"], ).astype({"start2": pd.Int64Dtype(), "end2": pd.Int64Dtype()}) assert ( bioframe.overlap( df1, df2, how="outer", cols2=["chrom2", "start2", "end2"], return_index=True, keep_order=False, ).shape == (3, 12) ) ### result of overlap should still have bedframe-like properties overlap_df = bioframe.overlap( df1, df2, how="outer", cols2=["chrom2", "start2", "end2"], return_index=True, suffixes=("", ""), ) assert checks.is_bedframe( overlap_df[df1.columns], ) assert checks.is_bedframe( overlap_df[df2.columns], cols=["chrom2", "start2", "end2"] ) overlap_df = bioframe.overlap( df1, df2, how="innter", cols2=["chrom2", "start2", "end2"], return_index=True, suffixes=("", ""), ) assert checks.is_bedframe( overlap_df[df1.columns], ) assert checks.is_bedframe( overlap_df[df2.columns], cols=["chrom2", "start2", "end2"] ) # test keep_order incompatible if how!= 'left' with pytest.raises(ValueError): bioframe.overlap( df1, df2, how="outer", on=["animal"], cols2=["chrom2", "start2", "end2"], keep_order=True, ) def test_cluster(): df1 = pd.DataFrame( [ ["chr1", 1, 5], ["chr1", 3, 8], ["chr1", 8, 10], ["chr1", 12, 14], ], columns=["chrom", "start", "end"], ) df_annotated = bioframe.cluster(df1) assert ( df_annotated["cluster"].values == np.array([0, 0, 0, 1]) ).all() # the last interval does not overlap the first three df_annotated = bioframe.cluster(df1, min_dist=2) assert ( df_annotated["cluster"].values == np.array([0, 0, 0, 0]) ).all() # all intervals part of the same cluster df_annotated = bioframe.cluster(df1, min_dist=None) assert ( df_annotated["cluster"].values == np.array([0, 0, 1, 2]) ).all() # adjacent intervals not clustered df1.iloc[0, 0] = "chrX" df_annotated = bioframe.cluster(df1) assert ( df_annotated["cluster"].values == np.array([2, 0, 0, 1]) ).all() # do not cluster intervals across chromosomes # test consistency with pyranges (which automatically sorts df upon creation and uses 1-based indexing for clusters) # assert ( # (bioframe_to_pyranges(df1).cluster(count=True).df["Cluster"].values - 1) # == bioframe.cluster(df1.sort_values(["chrom", "start"]))["cluster"].values # ).all() # test on=[] argument df1 = pd.DataFrame( [ ["chr1", 3, 8, "+", "cat", 5.5], ["chr1", 3, 8, "-", "dog", 6.5], ["chr1", 6, 10, "-", "cat", 6.5], ["chrX", 6, 10, "-", "cat", 6.5], ], columns=["chrom", "start", "end", "strand", "animal", "location"], ) assert ( bioframe.cluster(df1, on=["animal"])["cluster"].values == np.array([0, 1, 0, 2]) ).all() assert ( bioframe.cluster(df1, on=["strand"])["cluster"].values == np.array([0, 1, 1, 2]) ).all() assert ( bioframe.cluster(df1, on=["location", "animal"])["cluster"].values == np.array([0, 2, 1, 3]) ).all() ### test cluster with NAs df1 = pd.DataFrame( [ ["chrX", 1, 8, pd.NA, pd.NA], [pd.NA, pd.NA, pd.NA, "-", pd.NA], ["chr1", 8, 12, "+", pd.NA], ["chr1", 1, 8, np.nan, pd.NA], [pd.NA, np.nan, pd.NA, "-", pd.NA], ], columns=["chrom", "start", "end", "strand", "animal"], ).astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}) assert bioframe.cluster(df1)["cluster"].max() == 3 assert bioframe.cluster(df1, on=["strand"])["cluster"].max() == 4 pd.testing.assert_frame_equal(df1, bioframe.cluster(df1)[df1.columns]) assert checks.is_bedframe( bioframe.cluster(df1, on=["strand"]), cols=["chrom", "cluster_start", "cluster_end"], ) assert checks.is_bedframe( bioframe.cluster(df1), cols=["chrom", "cluster_start", "cluster_end"] ) assert checks.is_bedframe(bioframe.cluster(df1)) def test_merge(): df1 = pd.DataFrame( [ ["chr1", 1, 5], ["chr1", 3, 8], ["chr1", 8, 10], ["chr1", 12, 14], ], columns=["chrom", "start", "end"], ) # the last interval does not overlap the first three with default min_dist=0 assert (bioframe.merge(df1)["n_intervals"].values == np.array([3, 1])).all() # adjacent intervals are not clustered with min_dist=none assert ( bioframe.merge(df1, min_dist=None)["n_intervals"].values == np.array([2, 1, 1]) ).all() # all intervals part of one cluster assert ( bioframe.merge(df1, min_dist=2)["n_intervals"].values == np.array([4]) ).all() df1.iloc[0, 0] = "chrX" assert ( bioframe.merge(df1, min_dist=None)["n_intervals"].values == np.array([1, 1, 1, 1]) ).all() assert ( bioframe.merge(df1, min_dist=0)["n_intervals"].values == np.array([2, 1, 1]) ).all() # total number of intervals should equal length of original dataframe mock_df = mock_bioframe() assert np.sum(bioframe.merge(mock_df, min_dist=0)["n_intervals"].values) == len( mock_df ) # # test consistency with pyranges # pd.testing.assert_frame_equal( # pyranges_to_bioframe(bioframe_to_pyranges(df1).merge(count=True)), # bioframe.merge(df1), # check_dtype=False, # check_exact=False, # ) # test on=['chrom',...] argument df1 = pd.DataFrame( [ ["chr1", 3, 8, "+", "cat", 5.5], ["chr1", 3, 8, "-", "dog", 6.5], ["chr1", 6, 10, "-", "cat", 6.5], ["chrX", 6, 10, "-", "cat", 6.5], ], columns=["chrom", "start", "end", "strand", "animal", "location"], ) assert len(bioframe.merge(df1, on=None)) == 2 assert len(bioframe.merge(df1, on=["strand"])) == 3 assert len(bioframe.merge(df1, on=["strand", "location"])) == 3 assert len(bioframe.merge(df1, on=["strand", "location", "animal"])) == 4 d = """ chrom start end animal n_intervals 0 chr1 3 10 cat 2 1 chr1 3 8 dog 1 2 chrX 6 10 cat 1""" df = pd.read_csv(StringIO(d), sep=r"\s+") pd.testing.assert_frame_equal( df, bioframe.merge(df1, on=["animal"]), check_dtype=False, ) # merge with repeated indices df = pd.DataFrame( {"chrom": ["chr1", "chr2"], "start": [100, 400], "end": [110, 410]} ) df.index = [0, 0] pd.testing.assert_frame_equal( df.reset_index(drop=True), bioframe.merge(df)[["chrom", "start", "end"]] ) # test merge with NAs df1 = pd.DataFrame( [ ["chrX", 1, 8, pd.NA, pd.NA], [pd.NA, pd.NA, pd.NA, "-", pd.NA], ["chr1", 8, 12, "+", pd.NA], ["chr1", 1, 8, np.nan, pd.NA], [pd.NA, np.nan, pd.NA, "-", pd.NA], ], columns=["chrom", "start", "end", "strand", "animal"], ).astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}) assert bioframe.merge(df1).shape[0] == 4 assert bioframe.merge(df1)["start"].iloc[0] == 1 assert bioframe.merge(df1)["end"].iloc[0] == 12 assert bioframe.merge(df1, on=["strand"]).shape[0] == df1.shape[0] assert bioframe.merge(df1, on=["animal"]).shape[0] == df1.shape[0] assert bioframe.merge(df1, on=["animal"]).shape[1] == df1.shape[1] + 1 assert checks.is_bedframe(bioframe.merge(df1, on=["strand", "animal"])) def test_complement(): ### complementing a df with no intervals in chrX by a view with chrX should return entire chrX region df1 = pd.DataFrame( [["chr1", 1, 5], ["chr1", 3, 8], ["chr1", 8, 10], ["chr1", 12, 14]], columns=["chrom", "start", "end"], ) df1_chromsizes = {"chr1": 100, "chrX": 100} df1_complement = pd.DataFrame( [ ["chr1", 0, 1, "chr1:0-100"], ["chr1", 10, 12, "chr1:0-100"], ["chr1", 14, 100, "chr1:0-100"], ["chrX", 0, 100, "chrX:0-100"], ], columns=["chrom", "start", "end", "view_region"], ) pd.testing.assert_frame_equal( bioframe.complement(df1, view_df=df1_chromsizes), df1_complement ) ### test complement with two chromosomes ### df1.iloc[0, 0] = "chrX" df1_complement = pd.DataFrame( [ ["chr1", 0, 3, "chr1:0-100"], ["chr1", 10, 12, "chr1:0-100"], ["chr1", 14, 100, "chr1:0-100"], ["chrX", 0, 1, "chrX:0-100"], ["chrX", 5, 100, "chrX:0-100"], ], columns=["chrom", "start", "end", "view_region"], ) pd.testing.assert_frame_equal( bioframe.complement(df1, view_df=df1_chromsizes), df1_complement ) ### test complement with no view_df and a negative interval df1 = pd.DataFrame( [["chr1", -5, 5], ["chr1", 10, 20]], columns=["chrom", "start", "end"] ) df1_complement = pd.DataFrame( [ ["chr1", 5, 10, "chr1:0-9223372036854775807"], ["chr1", 20, np.iinfo(np.int64).max, "chr1:0-9223372036854775807"], ], columns=["chrom", "start", "end", "view_region"], ) pd.testing.assert_frame_equal(bioframe.complement(df1), df1_complement) ### test complement with an overhanging interval df1 = pd.DataFrame( [["chr1", -5, 5], ["chr1", 10, 20]], columns=["chrom", "start", "end"] ) chromsizes = {"chr1": 15} df1_complement = pd.DataFrame( [ ["chr1", 5, 10, "chr1:0-15"], ], columns=["chrom", "start", "end", "view_region"], ) pd.testing.assert_frame_equal( bioframe.complement(df1, view_df=chromsizes, view_name_col="VR"), df1_complement ) ### test complement where an interval from df overlaps two different regions from view ### test complement with no view_df and a negative interval df1 = pd.DataFrame([["chr1", 5, 15]], columns=["chrom", "start", "end"]) chromsizes = [("chr1", 0, 9, "chr1p"), ("chr1", 11, 20, "chr1q")] df1_complement = pd.DataFrame( [["chr1", 0, 5, "chr1p"], ["chr1", 15, 20, "chr1q"]], columns=["chrom", "start", "end", "view_region"], ) pd.testing.assert_frame_equal(bioframe.complement(df1, chromsizes), df1_complement) ### test complement with NAs df1 = pd.DataFrame( [[pd.NA, pd.NA, pd.NA], ["chr1", 5, 15], [pd.NA, pd.NA, pd.NA]], columns=["chrom", "start", "end"], ).astype( { "start": pd.Int64Dtype(), "end": pd.Int64Dtype(), } ) pd.testing.assert_frame_equal(bioframe.complement(df1, chromsizes), df1_complement) with pytest.raises(ValueError): # no NAs allowed in chromsizes bioframe.complement( df1, [("chr1", pd.NA, 9, "chr1p"), ("chr1", 11, 20, "chr1q")] ) assert checks.is_bedframe(bioframe.complement(df1, chromsizes)) def test_closest(): df1 = pd.DataFrame( [ ["chr1", 1, 5], ], columns=["chrom", "start", "end"], ) df2 = pd.DataFrame( [["chr1", 4, 8], ["chr1", 10, 11]], columns=["chrom", "start", "end"] ) ### closest(df1,df2,k=1) ### d = """chrom start end chrom_ start_ end_ distance 0 chr1 1 5 chr1 4 8 0""" df = pd.read_csv(StringIO(d), sep=r"\s+").astype( { "start_": pd.Int64Dtype(), "end_": pd.Int64Dtype(), "distance": pd.Int64Dtype(), } ) pd.testing.assert_frame_equal(df, bioframe.closest(df1, df2, k=1)) ### closest(df1,df2, ignore_overlaps=True)) ### d = """chrom_1 start_1 end_1 chrom_2 start_2 end_2 distance 0 chr1 1 5 chr1 10 11 5""" df = pd.read_csv(StringIO(d), sep=r"\s+").astype( { "start_2": pd.Int64Dtype(), "end_2": pd.Int64Dtype(), "distance": pd.Int64Dtype(), } ) pd.testing.assert_frame_equal( df, bioframe.closest(df1, df2, suffixes=("_1", "_2"), ignore_overlaps=True) ) ### closest(df1,df2,k=2) ### d = """chrom_1 start_1 end_1 chrom_2 start_2 end_2 distance 0 chr1 1 5 chr1 4 8 0 1 chr1 1 5 chr1 10 11 5""" df = pd.read_csv(StringIO(d), sep=r"\s+").astype( { "start_2": pd.Int64Dtype(), "end_2": pd.Int64Dtype(), "distance": pd.Int64Dtype(), } ) pd.testing.assert_frame_equal( df, bioframe.closest(df1, df2, suffixes=("_1", "_2"), k=2) ) ### closest(df2,df1) ### d = """chrom_1 start_1 end_1 chrom_2 start_2 end_2 distance 0 chr1 4 8 chr1 1 5 0 1 chr1 10 11 chr1 1 5 5 """ df = pd.read_csv(StringIO(d), sep=r"\s+").astype( { "start_2": pd.Int64Dtype(), "end_2": pd.Int64Dtype(), "distance": pd.Int64Dtype(), } ) pd.testing.assert_frame_equal(df, bioframe.closest(df2, df1, suffixes=("_1", "_2"))) ### change first interval to new chrom ### df2.iloc[0, 0] = "chrA" d = """chrom start end chrom_ start_ end_ distance 0 chr1 1 5 chr1 10 11 5""" df = pd.read_csv(StringIO(d), sep=r"\s+").astype( { "start_": pd.Int64Dtype(), "end_": pd.Int64Dtype(), "distance": pd.Int64Dtype(), } ) pd.testing.assert_frame_equal(df, bioframe.closest(df1, df2, k=1)) ### test other return arguments ### df2.iloc[0, 0] = "chr1" d = """ index index_ have_overlap overlap_start overlap_end distance 0 0 0 True 4 5 0 1 0 1 False <NA> <NA> 5 """ df = pd.read_csv(StringIO(d), sep=r"\s+") pd.testing.assert_frame_equal( df, bioframe.closest( df1, df2, k=2, return_overlap=True, return_index=True, return_input=False, return_distance=True, ), check_dtype=False, ) # closest should ignore empty groups (e.g. from categorical chrom) df = pd.DataFrame( [ ["chrX", 1, 8], ["chrX", 2, 10], ], columns=["chrom", "start", "end"], ) d = """ chrom_1 start_1 end_1 chrom_2 start_2 end_2 distance 0 chrX 1 8 chrX 2 10 0 1 chrX 2 10 chrX 1 8 0""" df_closest = pd.read_csv(StringIO(d), sep=r"\s+") df_cat = pd.CategoricalDtype(categories=["chrX", "chr1"], ordered=True) df = df.astype({"chrom": df_cat}) pd.testing.assert_frame_equal( df_closest, bioframe.closest(df, suffixes=("_1", "_2")), check_dtype=False, check_categorical=False, ) # closest should ignore null rows: code will need to be modified # as for overlap if an on=[] option is added df1 = pd.DataFrame( [ [pd.NA, pd.NA, pd.NA], ["chr1", 1, 5], ], columns=["chrom", "start", "end"], ).astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}) df2 = pd.DataFrame( [ [pd.NA, pd.NA, pd.NA], ["chr1", 4, 8], [pd.NA, pd.NA, pd.NA], ["chr1", 10, 11], ], columns=["chrom", "start", "end"], ).astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}) d = """chrom_1 start_1 end_1 chrom_2 start_2 end_2 distance 0 chr1 1 5 chr1 10 11 5""" df = pd.read_csv(StringIO(d), sep=r"\s+").astype( { "start_1": pd.Int64Dtype(), "end_1": pd.Int64Dtype(), "start_2": pd.Int64Dtype(), "end_2": pd.Int64Dtype(), "distance": pd.Int64Dtype(), } ) pd.testing.assert_frame_equal( df, bioframe.closest(df1, df2, suffixes=("_1", "_2"), ignore_overlaps=True, k=5) ) with pytest.raises(ValueError): # inputs must be valid bedFrames df1.iloc[0, 0] = "chr10" bioframe.closest(df1, df2) def test_coverage(): #### coverage does not exceed length of original interval df1 = pd.DataFrame([["chr1", 3, 8]], columns=["chrom", "start", "end"]) df2 = pd.DataFrame([["chr1", 2, 10]], columns=["chrom", "start", "end"]) d = """chrom start end coverage 0 chr1 3 8 5""" df = pd.read_csv(StringIO(d), sep=r"\s+") pd.testing.assert_frame_equal(df, bioframe.coverage(df1, df2)) ### coverage of interval on different chrom returns zero for coverage and n_overlaps df1 = pd.DataFrame([["chr1", 3, 8]], columns=["chrom", "start", "end"]) df2 = pd.DataFrame([["chrX", 3, 8]], columns=["chrom", "start", "end"]) d = """chrom start end coverage 0 chr1 3 8 0 """ df = pd.read_csv(StringIO(d), sep=r"\s+") pd.testing.assert_frame_equal(df, bioframe.coverage(df1, df2)) ### when a second overlap starts within the first df1 = pd.DataFrame([["chr1", 3, 8]], columns=["chrom", "start", "end"]) df2 = pd.DataFrame( [["chr1", 3, 6], ["chr1", 5, 8]], columns=["chrom", "start", "end"] ) d = """chrom start end coverage 0 chr1 3 8 5""" df = pd.read_csv(StringIO(d), sep=r"\s+") pd.testing.assert_frame_equal(df, bioframe.coverage(df1, df2)) ### coverage of NA interval returns zero for coverage df1 = pd.DataFrame( [ ["chr1", 10, 20], [pd.NA, pd.NA, pd.NA], ["chr1", 3, 8], [pd.NA, pd.NA, pd.NA], ], columns=["chrom", "start", "end"], ) df2 = pd.DataFrame( [["chr1", 3, 6], ["chr1", 5, 8], [pd.NA, pd.NA, pd.NA]], columns=["chrom", "start", "end"], ) df1 = bioframe.sanitize_bedframe(df1) df2 = bioframe.sanitize_bedframe(df2) df_coverage = pd.DataFrame( [ ["chr1", 10, 20, 0], [pd.NA, pd.NA, pd.NA, 0], ["chr1", 3, 8, 5], [pd.NA, pd.NA, pd.NA, 0], ], columns=["chrom", "start", "end", "coverage"], ).astype( {"start": pd.Int64Dtype(), "end": pd.Int64Dtype(), "coverage": pd.Int64Dtype()} ) pd.testing.assert_frame_equal(df_coverage, bioframe.coverage(df1, df2)) ### coverage without return_input returns a single column dataFrame assert ( bioframe.coverage(df1, df2, return_input=False)["coverage"].values == np.array([0, 0, 5, 0]) ).all() def test_subtract(): ### no intervals should be left after self-subtraction df1 = pd.DataFrame( [["chrX", 3, 8], ["chr1", 4, 7], ["chrX", 1, 5]], columns=["chrom", "start", "end"], ) assert len(bioframe.subtract(df1, df1)) == 0 ### no intervals on chrX should remain after subtracting a longer interval ### interval on chr1 should be split. ### additional column should be propagated to children. df2 = pd.DataFrame( [ ["chrX", 0, 18], ["chr1", 5, 6], ], columns=["chrom", "start", "end"], ) df1["animal"] = "sea-creature" df_result = pd.DataFrame( [["chr1", 4, 5, "sea-creature"], ["chr1", 6, 7, "sea-creature"]], columns=["chrom", "start", "end", "animal"], ).astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}) pd.testing.assert_frame_equal( df_result, bioframe.subtract(df1, df2) .sort_values(["chrom", "start", "end"]) .reset_index(drop=True), ) ### no intervals on chrX should remain after subtracting a longer interval df2 = pd.DataFrame( [["chrX", 0, 4], ["chr1", 6, 6], ["chrX", 4, 9]], columns=["chrom", "start", "end"], ) df1["animal"] = "sea-creature" df_result = pd.DataFrame( [["chr1", 4, 6, "sea-creature"], ["chr1", 6, 7, "sea-creature"]], columns=["chrom", "start", "end", "animal"], ) pd.testing.assert_frame_equal( df_result.astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}), bioframe.subtract(df1, df2) .sort_values(["chrom", "start", "end"]) .reset_index(drop=True), ) ### subtracting dataframes funny column names funny_cols = ["C", "chromStart", "chromStop"] df1 = pd.DataFrame( [["chrX", 3, 8], ["chr1", 4, 7], ["chrX", 1, 5]], columns=funny_cols, ) df1["strand"] = "+" assert len(bioframe.subtract(df1, df1, cols1=funny_cols, cols2=funny_cols)) == 0 funny_cols2 = ["chr", "st", "e"] df2 = pd.DataFrame( [ ["chrX", 0, 18], ["chr1", 5, 6], ], columns=funny_cols2, ) df_result = pd.DataFrame( [["chr1", 4, 5, "+"], ["chr1", 6, 7, "+"]], columns=funny_cols + ["strand"], ) df_result = df_result.astype( {funny_cols[1]: pd.Int64Dtype(), funny_cols[2]: pd.Int64Dtype()} ) pd.testing.assert_frame_equal( df_result, bioframe.subtract(df1, df2, cols1=funny_cols, cols2=funny_cols2) .sort_values(funny_cols) .reset_index(drop=True), ) # subtract should ignore empty groups df1 = pd.DataFrame( [ ["chrX", 1, 8], ["chrX", 2, 10], ], columns=["chrom", "start", "end"], ) df2 = pd.DataFrame( [ ["chrX", 1, 8], ], columns=["chrom", "start", "end"], ) df_cat = pd.CategoricalDtype(categories=["chrX", "chr1"], ordered=True) df1 = df1.astype({"chrom": df_cat}) df_subtracted = pd.DataFrame( [ ["chrX", 8, 10], ], columns=["chrom", "start", "end"], ) assert bioframe.subtract(df1, df1).empty pd.testing.assert_frame_equal( df_subtracted.astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}), bioframe.subtract(df1, df2), check_dtype=False, check_categorical=False, ) ## test transferred from deprecated bioframe.split df1 = pd.DataFrame( [["chrX", 3, 8], ["chr1", 4, 7], ["chrX", 1, 5]], columns=["chrom", "start", "end"], ) df2 = pd.DataFrame( [ ["chrX", 4], ["chr1", 5], ], columns=["chrom", "pos"], ) df2["start"] = df2["pos"] df2["end"] = df2["pos"] df_result = ( pd.DataFrame( [ ["chrX", 1, 4], ["chrX", 3, 4], ["chrX", 4, 5], ["chrX", 4, 8], ["chr1", 5, 7], ["chr1", 4, 5], ], columns=["chrom", "start", "end"], ) .sort_values(["chrom", "start", "end"]) .reset_index(drop=True) .astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}) ) pd.testing.assert_frame_equal( df_result, bioframe.subtract(df1, df2) .sort_values(["chrom", "start", "end"]) .reset_index(drop=True), ) # Test the case when a chromosome should not be split (now implemented with subtract) df1 = pd.DataFrame( [ ["chrX", 3, 8], ["chr1", 4, 7], ], columns=["chrom", "start", "end"], ) df2 = pd.DataFrame([["chrX", 4]], columns=["chrom", "pos"]) df2["start"] = df2["pos"].values df2["end"] = df2["pos"].values df_result = ( pd.DataFrame( [ ["chrX", 3, 4], ["chrX", 4, 8], ["chr1", 4, 7], ], columns=["chrom", "start", "end"], ) .sort_values(["chrom", "start", "end"]) .reset_index(drop=True) ) pd.testing.assert_frame_equal( df_result.astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}), bioframe.subtract(df1, df2) .sort_values(["chrom", "start", "end"]) .reset_index(drop=True), ) # subtract should ignore null rows df1 = pd.DataFrame( [[pd.NA, pd.NA, pd.NA], ["chr1", 1, 5]], columns=["chrom", "start", "end"], ).astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}) df2 = pd.DataFrame( [ ["chrX", 1, 5], [pd.NA, pd.NA, pd.NA], ["chr1", 4, 8], [pd.NA, pd.NA, pd.NA], ["chr1", 10, 11], ], columns=["chrom", "start", "end"], ).astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}) df_subtracted = pd.DataFrame( [ ["chr1", 1, 4], ], columns=["chrom", "start", "end"], ).astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}) pd.testing.assert_frame_equal(df_subtracted, bioframe.subtract(df1, df2)) df1 = pd.DataFrame( [ [pd.NA, pd.NA, pd.NA], ], columns=["chrom", "start", "end"], ).astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}) assert len(bioframe.subtract(df1, df2)) == 0 # empty df1 but valid chroms in df2 with pytest.raises(ValueError): # no non-null chromosomes bioframe.subtract(df1, df1) df2 = pd.DataFrame( [ [pd.NA, pd.NA, pd.NA], [pd.NA, pd.NA, pd.NA], ], columns=["chrom", "start", "end"], ).astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}) with pytest.raises(ValueError): # no non-null chromosomes bioframe.subtract(df1, df2) def test_setdiff(): cols1 = ["chrom1", "start", "end"] cols2 = ["chrom2", "start", "end"] df1 = pd.DataFrame( [ ["chr1", 8, 12, "+", "cat"], ["chr1", 8, 12, "-", "cat"], ["chrX", 1, 8, "+", "cat"], ], columns=cols1 + ["strand", "animal"], ) df2 = pd.DataFrame( [ ["chrX", 7, 10, "-", "dog"], ["chr1", 6, 10, "-", "cat"], ["chr1", 6, 10, "-", "cat"], ], columns=cols2 + ["strand", "animal"], ) assert ( len( bioframe.setdiff( df1, df2, cols1=cols1, cols2=cols2, on=None, ) ) == 0 ) # everything overlaps assert ( len( bioframe.setdiff( df1, df2, cols1=cols1, cols2=cols2, on=["animal"], ) ) == 1 ) # two overlap, one remains assert ( len( bioframe.setdiff( df1, df2, cols1=cols1, cols2=cols2, on=["strand"], ) ) == 2 ) # one overlaps, two remain # setdiff should ignore nan rows df1 = pd.concat([pd.DataFrame([pd.NA]), df1, pd.DataFrame([pd.NA])])[ ["chrom1", "start", "end", "strand", "animal"] ] df1 = df1.astype( { "start": pd.Int64Dtype(), "end": pd.Int64Dtype(), } ) df2 = pd.concat([pd.DataFrame([pd.NA]), df2, pd.DataFrame([pd.NA])])[ ["chrom2", "start", "end", "strand", "animal"] ] df2 = df2.astype( { "start": pd.Int64Dtype(), "end": pd.Int64Dtype(), } ) assert (2, 5) == np.shape(bioframe.setdiff(df1, df1, cols1=cols1, cols2=cols1)) assert (2, 5) == np.shape(bioframe.setdiff(df1, df2, cols1=cols1, cols2=cols2)) assert (4, 5) == np.shape( bioframe.setdiff(df1, df2, on=["strand"], cols1=cols1, cols2=cols2) ) def test_count_overlaps(): df1 = pd.DataFrame( [ ["chr1", 8, 12, "+", "cat"], ["chr1", 8, 12, "-", "cat"], ["chrX", 1, 8, "+", "cat"], ], columns=["chrom1", "start", "end", "strand", "animal"], ) df2 = pd.DataFrame( [ ["chr1", 6, 10, "+", "dog"], ["chr1", 6, 10, "+", "dog"], ["chrX", 7, 10, "+", "dog"], ["chrX", 7, 10, "+", "dog"], ], columns=["chrom2", "start2", "end2", "strand", "animal"], ) assert ( bioframe.count_overlaps( df1, df2, on=None, cols1=("chrom1", "start", "end"), cols2=("chrom2", "start2", "end2"), )["count"].values == np.array([2, 2, 2]) ).all() assert ( bioframe.count_overlaps( df1, df2, on=["strand"], cols1=("chrom1", "start", "end"), cols2=("chrom2", "start2", "end2"), )["count"].values == np.array([2, 0, 2]) ).all() assert ( bioframe.count_overlaps( df1, df2, on=["strand", "animal"], cols1=("chrom1", "start", "end"), cols2=("chrom2", "start2", "end2"), )["count"].values == np.array([0, 0, 0]) ).all() # overlaps with pd.NA counts_no_nans = bioframe.count_overlaps( df1, df2, on=None, cols1=("chrom1", "start", "end"), cols2=("chrom2", "start2", "end2"), ) df1_na = (pd.concat([pd.DataFrame([pd.NA]), df1, pd.DataFrame([pd.NA])])).astype( { "start": pd.Int64Dtype(), "end": pd.Int64Dtype(), } )[["chrom1", "start", "end", "strand", "animal"]] df2_na = (pd.concat([pd.DataFrame([pd.NA]), df2, pd.DataFrame([pd.NA])])).astype( { "start2": pd.Int64Dtype(), "end2": pd.Int64Dtype(), } )[["chrom2", "start2", "end2", "strand", "animal"]] counts_nans_inserted_after = ( pd.concat([pd.DataFrame([pd.NA]), counts_no_nans, pd.DataFrame([pd.NA])]) ).astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype(),})[ ["chrom1", "start", "end", "strand", "animal", "count"] ] counts_nans = bioframe.count_overlaps( df1_na, df2_na, on=None, cols1=("chrom1", "start", "end"), cols2=("chrom2", "start2", "end2"), ) pd.testing.assert_frame_equal( counts_nans, bioframe.count_overlaps( df1_na, df2, on=None, cols1=("chrom1", "start", "end"), cols2=("chrom2", "start2", "end2"), ), ) assert ( counts_nans["count"].values == counts_nans_inserted_after["count"].fillna(0).values ).all() ### coverage without return_input returns a single column dataFrame pd.testing.assert_frame_equal( bioframe.count_overlaps( df1_na, df2_na, cols1=("chrom1", "start", "end"), cols2=("chrom2", "start2", "end2"), return_input=False, ), pd.DataFrame(counts_nans["count"]), ) def test_assign_view(): ## default assignment case view_df = pd.DataFrame( [ ["chr11", 1, 8, "chr11p"], ], columns=["chrom", "start", "end", "name"], ) df = pd.DataFrame( [ ["chr11", 0, 10, "+"], ], columns=["chrom", "start", "end", "strand"], ) df_assigned = pd.DataFrame( [ ["chr11", 0, 10, "+", "chr11p"], ], columns=["chrom", "start", "end", "strand", "view_region"], ) df_assigned = df_assigned.astype( {"chrom": str, "start": pd.Int64Dtype(), "end": pd.Int64Dtype()} ) pd.testing.assert_frame_equal(df_assigned, bioframe.assign_view(df, view_df)) # assignment with funny view_name_col and an interval on chr2 not cataloged in the view_df view_df = pd.DataFrame( [ ["chrX", 1, 8, "oranges"], ["chrX", 8, 20, "grapefruit"], ["chr1", 0, 10, "apples"], ], columns=["chrom", "start", "end", "fruit"], ) df = pd.DataFrame( [ ["chr1", 0, 10, "+"], ["chrX", 5, 10, "+"], ["chrX", 0, 5, "+"], ["chr2", 5, 10, "+"], ], columns=["chrom", "start", "end", "strand"], ) df_assigned = pd.DataFrame( [ ["chr1", 0, 10, "+", "apples"], ["chrX", 5, 10, "+", "oranges"], ["chrX", 0, 5, "+", "oranges"], ], columns=["chrom", "start", "end", "strand", "funny_view_region"], ) df_assigned = df_assigned.astype( {"chrom": str, "start": pd.Int64Dtype(), "end": pd.Int64Dtype()} ) pd.testing.assert_frame_equal( df_assigned, bioframe.assign_view( df, view_df, view_name_col="fruit", df_view_col="funny_view_region", drop_unassigned=True, ), ) ### keep the interval with NA as its region if drop_unassigned is False df_assigned = pd.DataFrame( [ ["chr1", 0, 10, "+", "apples"], ["chrX", 5, 10, "+", "oranges"], ["chrX", 0, 5, "+", "oranges"], ["chr2", 5, 10, "+", pd.NA], ], columns=["chrom", "start", "end", "strand", "funny_view_region"], ) df_assigned = df_assigned.astype( {"chrom": str, "start": pd.Int64Dtype(), "end": pd.Int64Dtype()} ) pd.testing.assert_frame_equal( df_assigned, bioframe.assign_view( df, view_df, view_name_col="fruit", df_view_col="funny_view_region", drop_unassigned=False, ), ) ### assign_view with NA values assigns a view of none df = pd.DataFrame( [ ["chr1", 0, 10, "+"], ["chrX", 5, 10, "+"], [pd.NA, pd.NA, pd.NA, "+"], ["chrX", 0, 5, "+"], ["chr2", 5, 10, "+"], ], columns=["chrom", "start", "end", "strand"], ).astype({"start": pd.Int64Dtype(), "end":
pd.Int64Dtype()
pandas.Int64Dtype
"""Script to import trodes, micro-controller, and config data """ import glob import pickle import os from collections import defaultdict import numpy as np import pandas as pd from tqdm import tqdm from software.preprocessing.video_data.DLC.Reconstruction import get_kinematic_data from software.preprocessing.config_data.config_parser import import_config_data from software.preprocessing.controller_data.controller_data_parser import import_controller_data, get_reach_indices, get_reach_times from software.preprocessing.reaching_without_borders.rwb import match_times, get_successful_trials from software.preprocessing.trodes_data.experiment_data_parser import import_trodes_data from software.preprocessing.trodes_data.calibration_data_parser import get_traces_frame def load_files(trodes_dir, exp_name, controller_path, config_dir, rat, session,video_path, analysis=False, cns_flag=False, pns=False,positional=False, force_rerun_of_data = True, sample_rate = 150): """ Parameters ---------- save_path : str, path location to save data extraction at ex '/larry/lobsters/home/book/' trodes_dir : directory containing trodes .rec file exp_name : name of folder containing .rec file/ video file controller_path : full path to micro-controller data config_dir : directory containing .json file with configuration parameters rat : name of rat eg RM16 session : name of experimental session eg S1 analysis : boolean, set as True to extract experimental analysis video_path : path to video data cns_flag : boolean, manual set of cns path pns : boolean, manual set of pns path Returns ------- dataframe : pandas dataframe containing experimental values for a single experimental session """ # importing data exp_names = exp_name[2:-1] exp_names = exp_names.rsplit('.', 1)[0] trodes_dir = trodes_dir.rsplit('/', 1)[0] # search trodes_dir for files named experimental_data_found = 0 for ff in glob.glob(trodes_dir +'/**experimental_df.h5'): experimental_data_found = ff if force_rerun_of_data: experimental_data_found = 0 if experimental_data_found: dataframe = pd.read_hdf(experimental_data_found) else: print('Generating sensor data manually!') if positional: positional_data = get_traces_frame(trodes_dir, exp_names) r_x = positional_data['x_start_position'] r_y = positional_data['y_start_position'] r_z = positional_data['z_start_position'] t_x = positional_data['x_duration'] d_x = positional_data['x_displacement'] t_y = positional_data['y_duration'] d_y = positional_data['y_displacement'] t_z = positional_data['z_duration'] d_z = positional_data['z_displacement'] if cns_flag: os.chdir(cns_flag) trodes_data = import_trodes_data(trodes_dir, exp_names,sampling_rate = sample_rate ) # take first entry of list (starmap returns list) if pns: os.chdir(pns) try: config_data = import_config_data(config_dir) controller_data = import_controller_data(controller_path) except: print('Cant get config or controller data') if analysis: x_pot=trodes_data['analog']['x_pot'] y_pot=trodes_data['analog']['y_pot'] z_pot=trodes_data['analog']['z_pot'] lick_data = trodes_data['DIO']['IR_beam'] true_time = match_times(controller_data, trodes_data) reach_indices = get_reach_indices(controller_data) successful_trials = get_successful_trials(controller_data, true_time, trodes_data) reach_masks = get_reach_times(true_time, reach_indices) reach_masks_start = np.asarray(reach_masks['start']) reach_masks_stop = np.asarray(reach_masks['stop']) reach_indices_start = reach_indices['start'] reach_indices_stop = reach_indices['stop'] trial_masks = trial_mask(true_time, reach_indices_start, reach_indices_stop, successful_trials) dataframe = to_df(exp_names, config_data, true_time, successful_trials, trial_masks, rat, session, lick_data, controller_data, reach_indices, x_pot,y_pot,z_pot,reach_masks_start,reach_masks_stop) exp_save_dir = trodes_dir + '/experimental_df.h5' dataframe.to_hdf(exp_save_dir,key='df') return dataframe def name_scrape(file): """ Parameters ---------- file - string of a file name pns - string, address of pns folder Returns ------- controller_file - string containing address of controller file trodes_files - string containing address of trodes files config_file - string containing address of config file exp_name - string containing experiment name eg 'RMxxYYYYMMDD_time', found through parsing the trodes file """ # controller_data name = file.split('/')[6] path_d = file.rsplit('/', 2)[0] path_d = file.replace('/cns', '/PNS_data') path_d = path_d.rsplit('/R', 2)[0] config_path = path_d + '/workspaces' controller_path = path_d + '/sensor_data' video_path = path_d + '/videos/**.csv' # trodes_data n = file.rsplit('/', 1)[1] if '/S' in file: sess = file.rsplit('/S') sess = str(sess[1]) # get 'session' part of the namestring ix = 'S' + sess[0] exp_name = str(ix) + n return controller_path, config_path, exp_name, name, ix, n, video_path def host_off(cns,save_path = False): """ Parameters ---------- save_path : path to save experimental dataframe cns : path to cns Returns ------- save_df : complete experimental data frame """ pns = '/clusterfs/NSDS_data/brnelson/PNS_data/' cns_pattern = cns + '/**/*.rec' print(cns_pattern) # cns is laid out rat/day/session/file_name/localdir (we want to be in localdir) # search for all directory paths containing .rec files save_df = pd.DataFrame() for file in tqdm(glob.glob(cns_pattern,recursive=True)): controller_path, config_path, exp_name, name, ix, trodes_name,video_path = name_scrape(file) print(exp_name + ' is being added..') list_of_df = load_files(file, exp_name, controller_path, config_path, name, ix,video_path, analysis=True, cns_flag=cns, pns=pns,force_rerun_of_data = True, sample_rate = 600) save_df=
pd.concat([save_df,list_of_df])
pandas.concat
# -*- coding: utf-8 -*- """ Tests that dialects are properly handled during parsing for all of the parsers defined in parsers.py """ import csv import pytest from pandas.compat import StringIO from pandas.errors import ParserWarning from pandas import DataFrame import pandas.util.testing as tm def test_dialect(all_parsers): parser = all_parsers data = """\ label1,label2,label3 index1,"a,c,e index2,b,d,f """ dia = csv.excel() dia.quoting = csv.QUOTE_NONE # Conflicting dialect quoting. with tm.assert_produces_warning(ParserWarning): df = parser.read_csv(StringIO(data), dialect=dia) data = """\ label1,label2,label3 index1,a,c,e index2,b,d,f """ exp = parser.read_csv(StringIO(data)) exp.replace("a", "\"a", inplace=True) tm.assert_frame_equal(df, exp) def test_dialect_str(all_parsers): dialect_name = "mydialect" parser = all_parsers data = """\ fruit:vegetable apple:broccoli pear:tomato """ exp = DataFrame({ "fruit": ["apple", "pear"], "vegetable": ["broccoli", "tomato"] }) csv.register_dialect(dialect_name, delimiter=":") # Conflicting dialect delimiter. with
tm.assert_produces_warning(ParserWarning)
pandas.util.testing.assert_produces_warning
import numpy as np import pandas as pd from matplotlib import * # .........................Series.......................# x1 = np.array([1, 2, 3, 4]) s = pd.Series(x1, index=[1, 2, 3, 4]) print(s) # .......................DataFrame......................# x2 = np.array([1, 2, 3, 4, 5, 6]) s = pd.DataFrame(x2) print(s) x3 = np.array([['Alex', 10], ['Nishit', 21], ['Aman', 22]]) s = pd.DataFrame(x3, columns=['Name', 'Age']) print(s) data = {'Name': ['Tom', 'Jack', 'Steve', 'Ricky'], 'Age': [28, 34, 29, 42]} df =
pd.DataFrame(data, index=['rank1', 'rank2', 'rank3', 'rank4'])
pandas.DataFrame
from pm4py.objects.log.importer.xes import importer as xes_importer from pm4py.statistics.variants.log import get as variants_module from pm4py.objects.conversion.log.versions.to_dataframe import get_dataframe_from_event_stream import pm4py import pandas as pd from scipy.stats import wasserstein_distance import collections import time from amun.guessing_advantage import AggregateType def earth_mover_dist_freq(log1, log2): dfg1, start_activities, end_activities = pm4py.discover_dfg(log1) del log1 dfg2, start_activities, end_activities = pm4py.discover_dfg(log2) del log2 dic1=dict(dfg1) dic2=dict(dfg2) keys = set(list(dic1.keys()) + list(dic2.keys())) for key in keys: if key not in dic1.keys(): dic1[key] = 0 if key not in dic2.keys(): dic2[key] = 0 dic1 = collections.OrderedDict(sorted(dic1.items())) dic2 = collections.OrderedDict(sorted(dic2.items())) v1=list(dic1.values()) v2=list(dic2.values()) distance = wasserstein_distance(v1,v2) return distance def earth_mover_dist_time(log1, log2): start = time.time() data = get_dataframe_from_event_stream(log1) dfg1= get_dfg_time(data) del log1 del data data = get_dataframe_from_event_stream(log2) dfg2= get_dfg_time(data) del log2 del data end = time.time() diff = end - start print("log to DFG : %s (minutes)" % (diff / 60.0)) start=time.time() keys = set(list(dfg1.keys()) + list(dfg2.keys())) for key in keys: if key not in dfg1.keys(): dfg1[key] = 0 if key not in dfg2.keys(): dfg2[key] = 0 end = time.time() diff = end - start print("keys loop : %s (minutes)" % (diff / 60.0)) dic1 = collections.OrderedDict(sorted(dfg1.items())) dic2 = collections.OrderedDict(sorted(dfg2.items())) v1=list(dic1.values()) v2=list(dic2.values()) start = time.time() distance = wasserstein_distance(v1,v2) end = time.time() diff = end - start print("wasserstein_distance : %s (minutes)" % (diff / 60.0)) return distance def get_dfg_time(data): """ Returns the DFG matrix as a dictionary of lists. The key is the pair of acitivities and the value is a list of values """ #moving first row to the last one temp_row= data.iloc[0] data2=data.copy() data2.drop(data2.index[0], inplace=True) data2=data2.append(temp_row) #changing column names columns= data2.columns columns= [i+"_2" for i in columns] data2.columns=columns #combining the two dataframes into one data = data.reset_index() data2=data2.reset_index() data=pd.concat([data, data2], axis=1) #filter the rows with the same case data=data[data['case:concept:name'] == data['case:concept:name_2']] #calculating time difference data['time:timestamp']=pd.to_datetime(data['time:timestamp'],utc=True) data['time:timestamp_2'] =
pd.to_datetime(data['time:timestamp_2'],utc=True)
pandas.to_datetime
import unittest, os, json, gc from ovejero import hierarchical_inference, model_trainer from baobab import configs from lenstronomy.Util.param_util import ellipticity2phi_q from baobab import distributions import numpy as np from scipy import stats, special import tensorflow as tf import pandas as pd import matplotlib.pyplot as plt class HierarchicalnferenceTest(unittest.TestCase): def setUp(self): # Open up the config file. np.random.seed(2) self.root_path = os.path.dirname(os.path.abspath(__file__))+'/test_data/' self.cfg = configs.BaobabConfig.from_file(self.root_path + 'test_baobab_cfg.py') self.cfg_pr = hierarchical_inference.load_prior_config(self.root_path + 'test_ovejero_cfg_prior.py') self.cfg_cov = hierarchical_inference.load_prior_config(self.root_path + 'test_emp_cfg_prior.py') self.lens_params = ['external_shear_gamma_ext','external_shear_psi_ext', 'lens_mass_center_x','lens_mass_center_y', 'lens_mass_e1','lens_mass_e2', 'lens_mass_gamma','lens_mass_theta_E'] self.lens_params_cov = ['external_shear_gamma_ext', 'external_shear_psi_ext', 'lens_mass_center_x','lens_mass_center_y', 'lens_mass_q','lens_mass_phi', 'lens_mass_gamma','lens_mass_theta_E'] self.eval_dict = hierarchical_inference.build_eval_dict(self.cfg, self.lens_params) self.eval_dict_prior = hierarchical_inference.build_eval_dict( self.cfg_pr,self.lens_params,baobab_config=False) self.eval_dict_cov = hierarchical_inference.build_eval_dict( self.cfg_cov,self.lens_params_cov,baobab_config=False) def tearDown(self): # Clean up for memory self.cfg = None self.cfg_pr = None self.cfg_cov = None self.eval_dict = None self.eval_dict_prior = None self.eval_dict_cov = None def test_build_eval_dict(self): # Check that the eval dictionary is built correctly for a test config. n_lens_param_p_params = [2,5,2,2,4,4,2,2] # First we test the case without priors. self.assertEqual(self.eval_dict['hyp_len'],23) self.assertListEqual(list(self.eval_dict['hyp_values']),[-2.73,1.05,0.0, 0.5*np.pi,10.0,-0.5*np.pi,0.5*np.pi,0.0,0.102,0.0,0.102,4.0,4.0, -0.55,0.55,4.0,4.0,-0.55,0.55,0.7,0.1,0.0,0.1]) self.assertListEqual(self.eval_dict['hyp_names'],[ 'external_shear_gamma_ext:mu','external_shear_gamma_ext:sigma', 'external_shear_psi_ext:mu','external_shear_psi_ext:alpha', 'external_shear_psi_ext:p','external_shear_psi_ext:lower', 'external_shear_psi_ext:upper','lens_mass_center_x:mu', 'lens_mass_center_x:sigma','lens_mass_center_y:mu', 'lens_mass_center_y:sigma','lens_mass_e1:a', 'lens_mass_e1:b','lens_mass_e1:lower','lens_mass_e1:upper', 'lens_mass_e2:a','lens_mass_e2:b','lens_mass_e2:lower', 'lens_mass_e2:upper','lens_mass_gamma:mu', 'lens_mass_gamma:sigma','lens_mass_theta_E:mu', 'lens_mass_theta_E:sigma']) total = 0 for li,lens_param in enumerate(self.lens_params): n_p = n_lens_param_p_params[li] self.assertListEqual(list(self.eval_dict[lens_param]['hyp_ind']), list(range(total,total+n_p))) self.assertFalse(self.eval_dict[lens_param]['eval_fn_kwargs']) if n_p == 2: self.assertTrue((self.eval_dict[lens_param]['eval_fn'] is distributions.eval_normal_logpdf_approx) or ( self.eval_dict[lens_param]['eval_fn'] is distributions.eval_lognormal_logpdf_approx)) if n_p == 4: self.assertTrue(self.eval_dict[lens_param]['eval_fn'] is distributions.eval_beta_logpdf_approx) if n_p == 5: self.assertTrue(self.eval_dict[lens_param]['eval_fn'] is distributions.eval_generalized_normal_logpdf_approx) total += n_p # Now we test the case with priors. self.assertEqual(self.eval_dict_prior['hyp_len'],14) self.assertListEqual(list(self.eval_dict_prior['hyp_init']),[-2.73,1.05, 0.0,0.102,0.0,0.102,0.0,0.1,0.0,0.1,0.7,0.1,0.0,0.1]) self.assertListEqual(list(self.eval_dict_prior['hyp_sigma']),[0.5,0.05, 0.2,0.03,0.2,0.03,0.3,0.01,0.3,0.01,0.3,0.01,0.3,0.01]) self.assertListEqual(self.eval_dict_prior['hyp_names'],[ 'external_shear_gamma_ext:mu','external_shear_gamma_ext:sigma', 'lens_mass_center_x:mu','lens_mass_center_x:sigma', 'lens_mass_center_y:mu','lens_mass_center_y:sigma','lens_mass_e1:mu', 'lens_mass_e1:sigma','lens_mass_e2:mu','lens_mass_e2:sigma', 'lens_mass_gamma:mu','lens_mass_gamma:sigma','lens_mass_theta_E:mu', 'lens_mass_theta_E:sigma']) n_lens_param_p_params = [2,0,2,2,2,2,2,2] total = 0 for li, lens_param in enumerate(self.lens_params): n_p = n_lens_param_p_params[li] if n_p==0: self.assertFalse(list(self.eval_dict_prior[lens_param]['hyp_ind'] )) self.assertTrue((self.eval_dict_prior[lens_param]['eval_fn'] is distributions.eval_uniform_logpdf_approx)) else: self.assertListEqual(list(self.eval_dict_prior[lens_param]['hyp_ind']), list(range(total,total+n_p))) self.assertTrue((self.eval_dict_prior[lens_param]['eval_fn'] is distributions.eval_normal_logpdf_approx) or ( self.eval_dict_prior[lens_param]['eval_fn'] is distributions.eval_lognormal_logpdf_approx)) total += n_p hyp_eval_values = np.log([1/10,1/10,1/10,1/10,1/10,1/10,1/2,1/10,1/2, 1/10,1/10,1/10,1/10,1/10]) self.assertEqual(len(hyp_eval_values),len( self.eval_dict_prior['hyp_prior'])) for hpi, hyp_prior in enumerate(self.eval_dict_prior['hyp_prior']): self.assertAlmostEqual(hyp_eval_values[hpi],hyp_prior(0.5)) hyp_eval_values = np.log([1/10,0,1/10,0,1/10,0,1/2, 0,1/2,0,1/10,0,1/10,0,1/10,0]) for hpi, hyp_prior in enumerate(self.eval_dict_prior['hyp_prior']): self.assertAlmostEqual(hyp_eval_values[hpi],hyp_prior(-0.5)) # Now test a distribution with a covariance self.assertEqual(self.eval_dict_cov['hyp_len'],15) self.assertListEqual(list(self.eval_dict_cov['hyp_init']),[-2.73,1.05, 0.0,0.102,0.0,0.102,0.242, -0.408, 0.696,0.5,0.5,0.5,0.4,0.4,0.4]) self.assertListEqual(list(self.eval_dict_cov['hyp_sigma']),[0.5,0.05, 0.2,0.03,0.2,0.03,0.1,0.1,0.1,0.5,0.5,0.5,0.4,0.4,0.4]) self.assertListEqual(self.eval_dict_cov['hyp_names'],[ 'external_shear_gamma_ext:mu','external_shear_gamma_ext:sigma', 'lens_mass_center_x:mu','lens_mass_center_x:sigma', 'lens_mass_center_y:mu','lens_mass_center_y:sigma','cov_mu_0', 'cov_mu_1','cov_mu_2','cov_tril_0','cov_tril_1','cov_tril_2', 'cov_tril_3','cov_tril_4','cov_tril_5']) def test_log_p_omega(self): # Check that the log_p_omega function returns the desired value for both # dicts. hyp=np.ones(14)*0.5 self.assertAlmostEqual(hierarchical_inference.log_p_omega(hyp, self.eval_dict_prior),np.sum(np.log([1/10,1/10,1/10,1/10,1/10,1/10, 1/2,1/10,1/2,1/10,1/10,1/10,1/10,1/10]))) hyp=-np.ones(14)*0.5 self.assertAlmostEqual(hierarchical_inference.log_p_omega(hyp, self.eval_dict_prior),-np.inf) hyp=np.ones(15)*0.5 self.assertAlmostEqual(hierarchical_inference.log_p_omega(hyp, self.eval_dict_cov),np.log(1/10)*15) hyp[-1] = -1 self.assertAlmostEqual(hierarchical_inference.log_p_omega(hyp, self.eval_dict_cov),-np.inf) def test_log_p_xi_omega(self): # Test that the log_p_xi_omega function returns the correct value # for some sample data points. hyp = np.array([-2.73,1.05,0.0,0.102,0.0,0.102,0.0,0.1,0.0,0.1,0.7,0.1, 0.0,0.1]) samples = np.ones((8,2,2))*0.3 def hand_calc_log_pdf(samples,hyp): # Add each one of the probabilities scipy_pdf = stats.lognorm.logpdf(samples[0],scale=np.exp(hyp[0]), s=hyp[1]) scipy_pdf += stats.uniform.logpdf(samples[1],loc=-0.5*np.pi, scale=np.pi) scipy_pdf += stats.norm.logpdf(samples[2],loc=hyp[2],scale=hyp[3]) scipy_pdf += stats.norm.logpdf(samples[3],loc=hyp[4],scale=hyp[5]) scipy_pdf += stats.norm.logpdf(samples[4],loc=hyp[6],scale=hyp[7]) scipy_pdf += stats.norm.logpdf(samples[5],loc=hyp[8],scale=hyp[9]) scipy_pdf += stats.lognorm.logpdf(samples[6],scale=np.exp( hyp[10]),s=hyp[11]) scipy_pdf += stats.lognorm.logpdf(samples[7],scale=np.exp( hyp[12]),s=hyp[13]) return scipy_pdf def hand_calc_log_pdf_cov(samples,hyp): # Add each one of the probabilities scipy_pdf = stats.lognorm.logpdf(samples[0],scale=np.exp(hyp[0]), s=hyp[1]) scipy_pdf += stats.uniform.logpdf(samples[1],loc=-0.5*np.pi, scale=np.pi) scipy_pdf += stats.norm.logpdf(samples[2],loc=hyp[2],scale=hyp[3]) scipy_pdf += stats.norm.logpdf(samples[3],loc=hyp[4],scale=hyp[5]) scipy_pdf += stats.uniform.logpdf(samples[5],loc=-0.5*np.pi, scale=np.pi) # Now calculate the covariance matrix values. cov_samples = samples[[7,4,6]] mu = [0.242,-0.408,0.696] cov = np.array([[0.25, 0.25, 0.2], [0.25, 0.5, 0.4],[0.2, 0.4, 0.48]]) for i in range(len(scipy_pdf)): for j in range(len(scipy_pdf[0])): scipy_pdf[i,j] += stats.multivariate_normal.logpdf( np.log(cov_samples[:,i,j]),mean=mu,cov=cov) scipy_pdf[i,j] -= np.log(stats.norm(mu[1], np.sqrt(cov[1,1])).cdf(1)) return scipy_pdf np.testing.assert_array_almost_equal( hierarchical_inference.log_p_xi_omega(samples,hyp, self.eval_dict_prior,self.lens_params), hand_calc_log_pdf(samples,hyp)) samples = np.random.uniform(size=(8,2,3))*0.3 np.testing.assert_array_almost_equal( hierarchical_inference.log_p_xi_omega(samples,hyp, self.eval_dict_prior,self.lens_params), hand_calc_log_pdf(samples,hyp)) hyp = np.array([-2.73,1.10,0.0,0.2,0.1,0.2,0.0,0.1,0.0,0.1,0.8,0.1, 0.0,0.1]) np.testing.assert_array_almost_equal( hierarchical_inference.log_p_xi_omega(samples,hyp, self.eval_dict_prior,self.lens_params), hand_calc_log_pdf(samples,hyp)) hyp = np.array([-2.73,1.05,0.0,0.102,0.0,0.102,0.242,-0.408,0.696,0.5, 0.5,0.5,0.4,0.4,0.4]) np.testing.assert_array_almost_equal( hierarchical_inference.log_p_xi_omega(samples,hyp, self.eval_dict_cov,self.lens_params_cov), hand_calc_log_pdf_cov(samples,hyp)) class HierarchicalClassTest(unittest.TestCase): def setUp(self): # Open up the config file. self.root_path = os.path.dirname(os.path.abspath(__file__))+'/test_data/' with open(self.root_path+'test.json','r') as json_f: self.cfg = json.load(json_f) self.interim_baobab_omega_path = self.root_path+'test_baobab_cfg.py' self.target_ovejero_omega_path = self.root_path+'test_ovejero_cfg_prior.py' self.target_baobab_omega_path = self.root_path+'test_baobab_cfg_target.py' self.lens_params = self.cfg['dataset_params']['lens_params'] self.num_params = len(self.lens_params) self.batch_size = 20 self.normalized_param_path = self.root_path + 'new_metadata.csv' self.normalization_constants_path = self.root_path + 'norm.csv' self.final_params = self.cfg['training_params']['final_params'] self.cfg['dataset_params']['normalization_constants_path'] = 'norm.csv' self.cfg['training_params']['bnn_type'] = 'diag' self.tf_record_path = self.root_path+self.cfg['validation_params'][ 'tf_record_path'] # We'll have to make the tf record and clean it up at the end model_trainer.prepare_tf_record(self.cfg,self.root_path, self.tf_record_path,self.final_params, train_or_test='train') self.hclass = hierarchical_inference.HierarchicalClass(self.cfg, self.interim_baobab_omega_path,self.target_ovejero_omega_path, self.root_path,self.tf_record_path,self.target_baobab_omega_path, lite_class=True) os.remove(self.tf_record_path) def tearDown(self): # Do some cleanup for memory management self.hclass.infer_class = None self.hclass = None self.cfg = None # Force collection gc.collect() def test_init(self): # Check that the true hyperparameter values were correctly initialized. true_hyp_values = [-2.73,1.05,0.0,0.102,0.0,0.102,0.0,0.1,0.0,0.1,0.7, 0.1,0.0,0.1] self.assertListEqual(self.hclass.true_hyp_values,true_hyp_values) def test_gen_samples(self): # Test that generating samples gives reasonable outputs. class ToyModel(): def __init__(self,mean,covariance,batch_size,al_std): # We want to make sure our performance is consistent for a # test np.random.seed(4) self.mean=mean self.covariance = covariance self.batch_size = batch_size self.al_std = al_std def predict(self,image): # We won't actually be using the image. We just want it for # testing. return tf.constant(np.concatenate([np.random.multivariate_normal( self.mean,self.covariance,self.batch_size),np.zeros(( self.batch_size,len(self.mean)))+self.al_std],axis=-1), tf.float32) # Start with a simple covariance matrix example. mean = np.ones(self.num_params)*2 covariance = np.diag(np.ones(self.num_params)) al_std = -1000 diag_model = ToyModel(mean,covariance,self.batch_size,al_std) # We don't want any flipping going on self.hclass.infer_class.flip_mat_list = [ np.diag(np.ones(self.num_params))] # Create tf record. This won't be used, but it has to be there for # the function to be able to pull some images. # Make fake norms data fake_norms = {} for lens_param in self.final_params + self.lens_params: fake_norms[lens_param] = np.array([0.0,1.0]) fake_norms =
pd.DataFrame(data=fake_norms)
pandas.DataFrame
import matplotlib.pylab as plt import pandas as pd from statsmodels.tsa.arima_model import ARIMA from statsmodels.tsa.arima_model import ARMA from statsmodels.tsa.stattools import adfuller from statsmodels.graphics.tsaplots import plot_acf, plot_pacf from pandas import Series from pandas import DataFrame from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import mean_squared_error from math import sqrt import numpy as np import sys def test_stationarity(timeseries): # Determing rolling statistics rolmean = pd.rolling_mean(timeseries, window=30) rolstd = pd.rolling_std(timeseries, window=30) # Plot rolling statistics: orig = plt.plot(timeseries, color='blue', label='Original') mean = plt.plot(rolmean, color='red', label='Rolling Mean') std = plt.plot(rolstd, color='black', label='Rolling Std') plt.legend(loc='best') plt.title('Rolling Mean & Standard Deviation') plt.show(block=False) # Perform Dickey-Fuller test: print ('Results of Dickey-Fuller Test:') dftest = adfuller(timeseries, autolag='AIC') dfoutput = pd.Series(dftest[0:4], index=['Test Statistic', 'p-value', '#Lags Used', 'Number of Observations Used']) for key, value in dftest[4].items(): dfoutput['Critical Value (%s)' % key] = value print(dfoutput) def _proper_model(ts_log_diff, maxLag): best_p = 0 best_q = 0 best_bic = sys.maxsize best_model=None for p in np.arange(maxLag): for q in np.arange(maxLag): model = ARMA(ts_log_diff, order=(p, q)) try: results_ARMA = model.fit(disp=-1) except: continue bic = results_ARMA.bic print (bic, best_bic) if bic < best_bic: best_p = p best_q = q best_bic = bic best_model = results_ARMA return best_p,best_q,best_model df =
pd.read_csv('user_balance_table_all.csv', index_col='user_id', names=['user_id', 'report_date', 'tBalance', 'yBalance', 'total_purchase_amt', 'direct_purchase_amt', 'purchase_bal_amt', 'purchase_bank_amt', 'total_redeem_amt', 'consume_amt', 'transfer_amt', 'tftobal_amt', 'tftocard_amt', 'share_amt', 'category1', 'category2', 'category3', 'category4' ], parse_dates=[1])
pandas.read_csv
import pandas as pd import S3Api from sklearn.feature_extraction.text import CountVectorizer, ENGLISH_STOP_WORDS, TfidfVectorizer from sklearn.model_selection import train_test_split from sklearn.naive_bayes import MultinomialNB from sklearn.svm import LinearSVC, SVC from nltk.stem import WordNetLemmatizer import nltk from sklearn.metrics import ConfusionMatrixDisplay import matplotlib.pyplot as plt import glob from wordcloud import WordCloud, STOPWORDS import numpy as np words = set(nltk.corpus.words.words()) lemmatizer = WordNetLemmatizer() class CustomSearchNB_SVM: def __init__(self, file_storage, s3_api): """ Create a new instance of the CustomSearchNB_SVM class Parameters ---------- :param file_storage: FileStorage, Required The file storage class used to store raw/processed data :param s3_api: S3_API, Required The S3 api wrapper class used to store data in AWS S3 ---------- """ self._file_storage = file_storage self._s3_api = s3_api self.__processed_data_location = 'processed_data/search_results/cleaned_search_data.csv' self.__processed_pdf_data_location = '/Users/sampastoriza/Documents/Programming/DataScienceDevelopment/DataSciencePortfolioCode/PandemicComparison/processed_data/corpus_data/cleaned_corpus_data.csv' self.__naive_bayes_data_location = 'naive_bayes_data/search_results/' self.__naive_bayes_data_visualizations_location = 'naive_bayes_data_visualizations/search_results/' self.__svm_data_location = 'svm_data/search_results/' self.__svm_data_visualizations_location = 'svm_data_visualizations/search_results/' self._file_storage.create_directory_if_not_exists(self.__naive_bayes_data_location) self._file_storage.create_directory_if_not_exists(self.__naive_bayes_data_visualizations_location) self._file_storage.create_directory_if_not_exists(self.__svm_data_location) self._file_storage.create_directory_if_not_exists(self.__svm_data_visualizations_location) self._additional_stop_words = ['title', 'journal', 'volume', 'author', 'scholar', 'article', 'issue', 'food', 'hunger', 'people', 'million', 'world', 'security', 'insecurity', 'covid', 'locust', 'drought', 'ebola'] self._defined_stop_words = set(ENGLISH_STOP_WORDS.union(self._additional_stop_words)) def filter_non_english_words(self, corpus): """ Filters, lowercases, and lemmatizes non english words using the nltk word list. Partial credit goes to this Stackoverflow answer https://stackoverflow.com/questions/41290028/removing-non-english-words-from-text-using-python Parameters ---------- :param corpus: String, Required The corpus of text ---------- Returns ------- :return: String A corpus of text without non-english words ------- """ filtered_vocabulary = [lemmatizer.lemmatize(w.lower()) for w in nltk.wordpunct_tokenize(corpus) if w.lower() in words] filtered_vocabulary = [w for w in filtered_vocabulary if len(w) > 2 and w not in self._defined_stop_words] return " ".join(filtered_vocabulary) def run_analysis(self): processed_df = pd.read_csv(self.__processed_data_location, index_col=False) processed_pdf_df = pd.read_csv(self.__processed_pdf_data_location, index_col=False) df = pd.concat([processed_df, processed_pdf_df], ignore_index=True) df['text'] = df['text'].apply(self.filter_non_english_words) self.visualize_processed_search_data(df) labels = list(set(df['topic'])) print('Labels', labels) vectorizer = CountVectorizer() v = vectorizer.fit_transform(df['text']) vocab = vectorizer.get_feature_names_out() values = v.toarray() v_df = pd.DataFrame(values, columns=vocab) v_df.insert(loc=0, column='LABEL', value=df['topic']) print('Resulting dataframe', v_df) file_path = f'{self.__naive_bayes_data_location}labeled_dataframe_count.csv' v_df.to_csv(file_path, index=False) print('Wrote labeled dataframe to csv') train_df, test_df = train_test_split(v_df, test_size=0.3) train_df.to_csv(f'{self.__naive_bayes_data_location}training_set_count.csv', index=False) train_df.to_csv(f'{self.__naive_bayes_data_location}testing_set_count.csv', index=False) print('Split data into training and testing sets') self.__run_naive_bayes_analysis(train_df, test_df, vectorizer) vectorizer = TfidfVectorizer() v = vectorizer.fit_transform(df['text']) vocab = vectorizer.get_feature_names_out() values = v.toarray() v_df = pd.DataFrame(values, columns=vocab) v_df.insert(loc=0, column='LABEL', value=df['topic']) print('Resulting dataframe', v_df) file_path = f'{self.__svm_data_location}labeled_dataframe_tfidf.csv' v_df.to_csv(file_path, index=False) print('Wrote labeled dataframe to csv') train_df, test_df = train_test_split(v_df, test_size=0.3) train_df.to_csv(f'{self.__svm_data_location}training_set_tfidf.csv', index=False) train_df.to_csv(f'{self.__svm_data_location}testing_set_tfidf.csv', index=False) self.__run_svm_analysis(train_df, test_df) def __run_naive_bayes_analysis(self, train_df, test_df, vectorizer): print('Running Naive Bayes Analysis') train_labels = train_df['LABEL'] train_df = train_df.drop(['LABEL'], axis=1) test_labels = test_df['LABEL'] test_df = test_df.drop(['LABEL'], axis=1) nb_model = MultinomialNB() nb_model.fit(train_df, train_labels) nb_prediction = nb_model.predict(test_df) nb_confusion = pd.crosstab(test_labels, nb_prediction, rownames=['Actual'], colnames=['Predicted'], margins=True) nb_confusion.to_csv(f'{self.__naive_bayes_data_location}confusion_matrix_nb.csv') print('Made predictions based on the text. Below is the confusion matrix.') print(nb_confusion) ConfusionMatrixDisplay.from_predictions(test_labels, nb_prediction) plt.savefig(f'{self.__naive_bayes_data_visualizations_location}confusion_matrix_visual_nb.png') zipped = list(zip(vectorizer.get_feature_names_out(), np.exp(nb_model.feature_log_prob_[0]))) sorted_zip = sorted(zipped, key=lambda t: t[1], reverse=True) x, y = zip(*sorted_zip[:10]) feature_importance_df = pd.DataFrame({'TopFeatures': x, 'Importance': y}) feature_importance_df.to_csv(f'{self.__naive_bayes_data_location}feature_importance_nb_{nb_model.classes_[0]}.csv', index=False) self.__plot_variable_importance(x, y, nb_model.classes_[0]) zipped = list(zip(vectorizer.get_feature_names_out(), np.exp(nb_model.feature_log_prob_[1]))) sorted_zip = sorted(zipped, key=lambda t: t[1], reverse=True) x, y = zip(*sorted_zip[:10]) feature_importance_df = pd.DataFrame({'TopFeatures': x, 'Importance': y}) feature_importance_df.to_csv(f'{self.__naive_bayes_data_location}feature_importance_nb_{nb_model.classes_[1]}.csv', index=False) self.__plot_variable_importance(x, y, nb_model.classes_[1]) zipped = list(zip(vectorizer.get_feature_names_out(), np.exp(nb_model.feature_log_prob_[2]))) sorted_zip = sorted(zipped, key=lambda t: t[1], reverse=True) x, y = zip(*sorted_zip[:10]) feature_importance_df = pd.DataFrame({'TopFeatures': x, 'Importance': y}) feature_importance_df.to_csv(f'{self.__naive_bayes_data_location}feature_importance_nb_{nb_model.classes_[2]}.csv', index=False) self.__plot_variable_importance(x, y, nb_model.classes_[2]) print(nb_model.feature_log_prob_) zipped = list(zip(vectorizer.get_feature_names_out(), np.exp(nb_model.feature_log_prob_[3]))) sorted_zip = sorted(zipped, key=lambda t: t[1], reverse=True) x, y = zip(*sorted_zip[:10]) feature_importance_df =
pd.DataFrame({'TopFeatures': x, 'Importance': y})
pandas.DataFrame
import numpy as np import pandas as pd import json # %matplotlib inline # from plotly.graph_objs import * import statsmodels.api as sm import warnings import yfinance as yf warnings.filterwarnings('ignore') import seaborn as sns import itertools def forecastwithoption(compName, day): comp = yf.Ticker(compName) # get historical market data df = comp.history(period="max") # Exploratory Data Analysis: df.isnull().sum() print(df.shape) # transform to datetime object here.. df.index = pd.to_datetime(df.index) df_groupby = df.groupby(['Date'])['Close'].mean() df_groupby.sort_index(inplace=True) y = df_groupby y = y.tail(110) print(y) lastDayOfDf = y.index.max().strftime("%m/%d/%Y") firstDayOfDf = y.index.min().strftime("%m/%d/%Y") print("first day: " + firstDayOfDf + ", Last day: " + lastDayOfDf) """ onemonthlater = pd.date_range(y.index.max(), periods=30, freq='1D') threemonthlater = pd.date_range(y.index.max(), periods=90, freq='1D') sixmonthlater = pd.date_range(y.index.max(), periods=180, freq='1D') """ # ARIMA stands for Auto Regression Integrated Moving Average. # It is specified by three ordered parameters (p,d,q). Where: # p is the order of the autoregressive model(number of time lags) # d is the degree of differencing (number of times the data have had past values subtracted) # q is the order of moving average model. Before building an ARIMA model, # we have to make sure our data is stationary. p = d = q = range(0, 2) pdq = list(itertools.product(p, d, q)) seasonal_pdq = [(x[0], x[1], x[2], 12) for x in list(itertools.product(p, d, q))] print('Examples of parameter for SARIMA...') print('SARIMAX: {} x {}'.format(pdq[1], seasonal_pdq[1])) print('SARIMAX: {} x {}'.format(pdq[1], seasonal_pdq[2])) print('SARIMAX: {} x {}'.format(pdq[2], seasonal_pdq[3])) print('SARIMAX: {} x {}'.format(pdq[2], seasonal_pdq[4])) for param in pdq: for param_seasonal in seasonal_pdq: try: mod = sm.tsa.statespace.SARIMAX(y, order=param, seasonal_order=param_seasonal) results = mod.fit(max_iter=50, method='powell') print('SARIMA{},{} - AIC:{}'.format(param, param_seasonal, results.aic)) except Exception as ex: print('Exception: ', ex) """mod = sm.tsa.statespace.SARIMAX(y, order=param, seasonal_order=param_seasonal, enforce_stationarity=False, enforce_invertibility=False)""" print(results.summary().tables[1]) pred = results.get_prediction(start=pd.to_datetime(firstDayOfDf), end=pd.to_datetime(lastDayOfDf), dynamic=False) pred_ci = pred.conf_int() print(pred_ci) pred_uc = results.get_forecast(steps=90) pred_ci = pred_uc.conf_int() forecast = pred_uc.predicted_mean print(forecast.head(day)) forecast = forecast.head(day) jsonfiles = json.loads(forecast.to_json(orient='records')) return jsonfiles def forecastwithuploadcsv(csv, day): df = csv df.index =
pd.to_datetime(df.index)
pandas.to_datetime
import numpy as np import pandas as pd import pandas.testing as pdt import pytest from src.create_initial_states.create_initial_conditions import ( _scale_up_empirical_new_infections, ) from src.create_initial_states.create_initial_conditions import ( create_group_specific_share_known_cases, ) from src.create_initial_states.create_initial_infections import ( _add_variant_info_to_infections, ) from src.create_initial_states.create_initial_infections import ( _calculate_group_infection_probs, ) @pytest.fixture def empirical_infections(): start = pd.Timestamp("2020-09-30") a_day = pd.Timedelta(days=1) df = pd.DataFrame() df["date"] = [start + i * a_day for i in range(5)] * 4 df = df.sort_values("date") df.reset_index(drop=True, inplace=True) df["county"] = list("AABB") * 5 df["age_group_rki"] = ["young", "old"] * 10 np.random.seed(3984) df["newly_infected"] = np.random.choice([0, 1], 20) sr = df.set_index(["date", "county", "age_group_rki"]) return sr @pytest.fixture def cases(): ind_tuples = [("A", "young"), ("A", "old"), ("B", "young"), ("B", "old")] index = pd.MultiIndex.from_tuples(ind_tuples, names=["county", "age_group_rki"]) df = pd.DataFrame(index=index) df["2020-10-01"] = [1, 0, 0, 1] df["2020-10-02"] = [1, 1, 0, 0] df["2020-10-03"] = [1, 0, 0, 1] return df @pytest.fixture def synthetic_data(): df = pd.DataFrame() df["county"] = list("AABBBBAAA") df["age_group_rki"] = ["young"] * 4 + ["old"] * 5 return df def test_calculate_group_infection_probs(synthetic_data, cases): pop_size = 14 undetected_multiplier = 1.5 res = _calculate_group_infection_probs( synthetic_data=synthetic_data, cases=undetected_multiplier * cases, population_size=pop_size, ) expected_on_synthetic_data = pd.DataFrame( index=synthetic_data.index, columns=cases.columns ) group_shares = np.array([2, 2, 2, 2, 2, 2, 3, 3, 3]) / 9 scaled_up_group_sizes = pop_size * group_shares p1 = ( undetected_multiplier * np.array([1, 1, 0, 0, 1, 1, 0, 0, 0]) / scaled_up_group_sizes ) p2 = ( undetected_multiplier * np.array([1, 1, 0, 0, 0, 0, 1, 1, 1]) / scaled_up_group_sizes ) p3 = ( undetected_multiplier * np.array([1, 1, 0, 0, 1, 1, 0, 0, 0]) / scaled_up_group_sizes ) expected_on_synthetic_data["2020-10-01"] = p1 expected_on_synthetic_data["2020-10-02"] = p2 expected_on_synthetic_data["2020-10-03"] = p3 expected = expected_on_synthetic_data.loc[[0, 2, 4, 6]] expected.index = pd.MultiIndex.from_tuples( [("A", "young"), ("B", "young"), ("B", "old"), ("A", "old")] ) expected.index.names = ["county", "age_group_rki"] pdt.assert_frame_equal(res.sort_index(), expected.sort_index()) def test_add_variant_info_to_infections(): df = pd.DataFrame() dates = [pd.Timestamp("2021-03-14"), pd.Timestamp("2021-03-15")] df[dates[0]] = [False, True] * 5 df[dates[1]] = [False] * 8 + [True, False] virus_shares = { "base_strain": pd.Series([1, 0.5], index=dates), "other_strain": pd.Series([0, 0.5], index=dates), } np.random.seed(39223) expected =
pd.DataFrame()
pandas.DataFrame
from functools import wraps import numpy as np import datetime as dt import pandas as pd from pandas.api.types import is_numeric_dtype, is_categorical, infer_dtype, is_object_dtype, is_string_dtype from sklearn.decomposition import NMF, TruncatedSVD from sklearn.feature_extraction.text import HashingVectorizer, TfidfTransformer from sklearn.pipeline import make_pipeline #TODO - create a simple class to dummify date columns def dummify_date_cols(df): if 'giadmd' in df.columns: df['giadmd'] = pd.to_datetime(df['giadmd'], errors='coerce') df['giadmd_year'] = df['giadmd'].dt.year.astype('Int64').astype('object') df['giadmd_month'] = df['giadmd'].dt.month.astype('Int64').astype('object') df = df.drop('giadmd', axis=1) if 'girefs' in df.columns: df['girefs'] = pd.to_datetime(df['girefs'], errors='coerce') df['girefs_year'] = df['girefs'].dt.year.astype('Int64').astype('object') df['girefs_month'] = df['girefs'].dt.month.astype('Int64').astype('object') df = df.drop('girefs', axis=1) if 'gidscd' in df.columns: df['gidscd'] = pd.to_datetime(df['gidscd'], errors='coerce') df['gidscd_year'] = df['gidscd'].dt.year.astype('Int64').astype('object') df['gidscd_month'] = df['gidscd'].dt.month.astype('Int64').astype('object') df = df.drop('gidscd', axis=1) print("Shape after dummify:", df.shape) return df def format_missings(df): for column in df.columns: if is_numeric_dtype(df[column]): fill_value = df[column].mean() df[column] = df[column].fillna(fill_value, downcast=False) elif is_object_dtype(df[column]) or is_string_dtype(df[column]): df[column] = df[column].fillna('MISSING', downcast=False) print("Shape after format_missing:", df.shape) return df def remove_features_with_missing_values(df, na_thres): return df.loc[:, df.isna().mean() < na_thres] def clean_floats(x): if pd.isnull(x): return x elif type(x) is float: return str(int(x)) else: return x def clean_up_floats(df): for col in df.columns: if is_object_dtype(df[col]) or is_string_dtype(df[col]): df[col] = df[col].apply(clean_floats) print('Shape after clean_floats:', df.shape) return df #Decorator to log information on functions def log_pipe_step(func): """Decorator to log information about functions. Use function.unwrapped to turn the decorator off. """ @wraps(func) def wrapper(*args, **kwargs): tic = dt.datetime.now() result = func(*args, **kwargs) time_taken = str(dt.datetime.now() - tic) print(f"Ran {func.__name__} DF shape={result.shape} took {time_taken}s") return result wrapper.unwrapped = func return wrapper @log_pipe_step def rev_codes_one_hot(df, n_codes=50): """Takes a df and the n_codes, returns a one_hot df. Usage Example: df.pipe(rev_codes_one_hot, 10) """ df_copy = df.copy() # single_code_map = df_copy.rev_codes.str.contains(';') # top_codes = df_copy.loc[~single_code_map].rev_codes.value_counts(normalize=True).nlargest(n_codes).index top_codes = ['300', '403', '320', '510', '402', '450', '420', '761', '981', 'MISSING', '972', '921', '480', '352', '511', '483', '333', '610', '612', '943', '310', '740', '920', '430', '942', '401', '540', '351', '324', '456', '521', '440', '350', '301', '730', '311', '300LA', '964', '611', '987', '360', '361', '460', '731', '424', '510CL', '306', '413', '940', '948', '482', '985', '320RA', '305', '983', '922', '450ER', '434', '614', '780', '982', '410', '918', '636', '619', '469', '912', '250', '444', '420PT'] for code in top_codes[:n_codes]: df_copy[f'rev_code_{code}'] = df_copy.rev_codes.str.contains(code).astype('int') df_copy = df_copy.drop('rev_codes', axis=1) return df_copy def rev_codes_nmf(df, n_components=10): """Takes a df and the n_codes, returns a nmf df. Usage Example: df.pipe(rev_codes_nmf, 10) """ df_copy = df.copy() # single_code_map = df_copy.rev_codes.str.contains(';') # top_codes = df_copy.loc[~single_code_map].rev_codes.value_counts(normalize=True).nlargest(60).index top_codes = ['300', '403', '320', '510', '402', '450', '420', '761', '981', 'MISSING', '972', '921', '480', '352', '511', '483', '333', '610', '612', '943', '310', '740', '920', '430', '942', '401', '540', '351', '324', '456', '521', '440', '350', '301', '730', '311', '300LA', '964', '611', '987', '360', '361', '460', '731', '424', '510CL', '306', '413', '940', '948', '482', '985', '320RA', '305', '983', '922', '450ER', '434', '614', '780', '982', '410', '918', '636', '619', '469', '912', '250', '444', '420PT'] codes_df = pd.DataFrame() for code in top_codes: codes_df[f'rev_codes_{code}'] = df_copy.rev_codes.str.contains(code).astype('int') print('Starting NMF') nmf = NMF(n_components=n_components) W = nmf.fit_transform(codes_df) col_names = [f"rev_component_{i}" for i in range(n_components)] for i, name in enumerate(col_names): df_copy[name] = W[:,i] df_copy = df_copy.drop('rev_codes', axis=1) return df_copy def transform_diagnosis(df): """Transform the text diagnosis to features for classification. The HashingVectorizer converts text to matrics, while the TfidfTransformer provides inverse document frequencies, resulting in a sparse matrix. Last, the SVD reduces dimensions to improve the work of Tree-based models. Inspired by https://scikit-learn.org/stable/auto_examples/text/plot_document_clustering.html#sphx-glr-auto-examples-text-plot-document-clustering-py Usage: df.pipe(transform_diagnosis) """ n_features = 10000 n_components=25 dataset = df.fddiagtx hasher = HashingVectorizer(n_features=n_features, stop_words='english', alternate_sign=False, norm=None) vectorizer = make_pipeline(hasher, TfidfTransformer()) sparse_matrix = vectorizer.fit_transform(dataset) svd = TruncatedSVD(n_components=n_components) regr = svd.fit_transform(sparse_matrix) col_names = [f"diag_component_{i}" for i in range(n_components)] for i, name in enumerate(col_names): df[name] = regr[:,i] df = df.drop('fddiagtx', axis=1) return df def clean_floats(x): if pd.isnull(x): return x elif type(x) is float: return str(int(x)) else: return x def clean_up_floats(df): for col in df.columns: if is_object_dtype(df[col]) or is_string_dtype(df[col]): df[col] = df[col].apply(clean_floats) print('Shape after clean_floats:', df.shape) return df def remove_rows_with_many_nas(df, portion_nonna): thresh = portion_nonna*df.shape[1] return df.dropna(thresh=thresh) def fillna_with_missing(df, subset): if not isinstance(subset, list): subset = [subset] print('Mean NAs Before filling with MISSING') print(df.loc[:, subset].isna().mean()) df.loc[:, subset] = df.loc[:, subset].loc[:, subset].fillna('MISSING') return df def get_query(query): sql_query ="" with open(query, 'r') as fh: for line in fh: line = line.replace("\n",' ') sql_query= sql_query + line #print(line) return sql_query def most_common_token(s, n): if is_numeric_dtype(s): s = s.astype('string') long_string = s.str.cat(sep=' ') c = Counter(long_string.split(' ')) del c['MISSING'] for k in c.keys(): c[k] = round(c[k]/len(s), 3) return c.most_common(n) def get_zero_variance(df): features = ['giclnt_string', 'giatyp_string', 'gicfac_string', 'rev_string', 'APC_string', 'appaynam_string', 'applan__string', 'mue_string', 'rarc_string', 'ub4bx67_string', 'sum(trpadj)', 'dbantp', 'dbaqtr', 'dbaday', 'dbctyp', 'ud4ubseq', 'unit', 'modifier', 'lgmid', 'er_flag', 'ddstatus', 'ddrcause', 'rddesc', 'ddcode', 'pass_thru_flag', 'lsat_flag'] mapper = df.loc[:, features].nunique().loc[df.loc[:, features].nunique() == 1] filters = [col for col in mapper.index.values if col in features] if len(filters) > 0: df_results = df.loc[:, filters].mode().T.to_dict()[0] df_results = dict(sorted(df_results.items())) result = str(df_results) result = result.replace("{", "").replace("}", "") return result else: return np.nan def get_clusters_summary(df,cluster_columns, cols_to_summarize): cluster_grouping = df.groupby(cluster_columns) common_features_per_cluster = cluster_grouping.apply(get_zero_variance).reset_index(name='cluster_common_features') for col in cols_to_summarize: result_ = cluster_grouping[col].apply(most_common_token,3).reset_index(name=f'top_most_frequent_{col}') common_features_per_cluster = common_features_per_cluster.merge(result_, how='left', on = cluster_columns ) common_features_per_cluster.columns = [col.replace("_string", "") for col in common_features_per_cluster.columns] return common_features_per_cluster def pull_account_number_and_fac_id(data, chunksize=9999): """Takes the cluster/novelty report as input. Returns a pandas DF with Account dbmid, dbref1 and dbcfac for the dbmid in the report""" list_of_ids = data['dbmid'].astype('string').to_list() n_chunks = len(list_of_ids)//chunksize final_result = pd.DataFrame() for i in range(n_chunks+1): id_chunk = list_of_ids[i*chunksize: (1+i)*chunksize] query = f"""SELECT DISTINCT dbmid, dbref1, dbcfac FROM acedta.dbinfo WHERE dbmid in ({','.join(id_chunk)})""" interim_result = pd.read_sql(query, con=process()) final_result = pd.concat([final_result, interim_result]) return final_result.reset_index(drop=True) def add_nthrive(data, chunksize=9999): """Takes the cluster/novelty report as input. Returns a pandas DF with nThrive report for accounts with the same concat(_FAC, '_', accountnumber) as combined_key in the report """ list_of_ids = data['combined_key'].astype('string').to_list() n_chunks = len(list_of_ids)//chunksize final_result = pd.DataFrame() for i in range(n_chunks+1): id_chunk = list_of_ids[i*chunksize: (1+i)*chunksize] query = f"""SELECT *, concat(_FAC, '_', accountnumber) as combined_key FROM datascience.nTrive_dataset WHERE concat(_FAC, '_', accountnumber) in ({",".join(f"'{w}'" for w in id_chunk)})""" interim_result = pd.read_sql(query, con=process()) final_result =
pd.concat([final_result, interim_result])
pandas.concat
import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import base64 import glob from scipy.signal import medfilt from scipy.integrate import trapz import xml.etree.ElementTree as et from datetime import date today = date.today() np.warnings.filterwarnings('ignore') sns.set(style="darkgrid") roots = [] root_names = [] for n in glob.glob('*.xml'): roots.append(et.parse(n).getroot()) root_names.append(n) def modified_z_score(intensity): median_int = np.median(intensity) mad_int = np.median([np.abs(intensity - median_int)]) if mad_int == 0: mad_int = 1 modified_z_scores = 0.6745 * (intensity - median_int) / mad_int return modified_z_scores def df_fixer(y,n): threshold = 0 x = 0 while threshold == 0: if np.nanquantile(abs(np.array(modified_z_score(np.diff(y)))), 1) > 150: if abs(np.array(modified_z_score(np.diff(y))))[int(data.Qonset[n*12])+x:int(data.Qoffset[n*12])+30].max() < np.nanquantile(abs(np.array(modified_z_score(np.diff(y)))), .98)+55: threshold = abs(np.array(modified_z_score(np.diff(y))))[int(data.Qonset[n*12])+x:int(data.Qoffset[n*12])+30].max() + 1 elif abs(np.array(modified_z_score(np.diff(y))))[int(data.Qonset[n*12])+x:int(data.Qoffset[n*12])+30].max() > np.nanquantile(abs(np.array(modified_z_score(np.diff(y)))), .98)+55: x += 5 elif np.nanquantile(abs(np.array(modified_z_score(np.diff(y)))), 1) <= 150: if abs(np.array(modified_z_score(np.diff(y))))[int(data.Qonset[n*12])+x:int(data.Qoffset[n*12])+30].max() < np.nanquantile(abs(np.array(modified_z_score(np.diff(y)))), .992)+55: threshold = abs(np.array(modified_z_score(np.diff(y))))[int(data.Qonset[n*12])+x:int(data.Qoffset[n*12])+30].max() + 1 elif abs(np.array(modified_z_score(np.diff(y))))[int(data.Qonset[n*12])+x:int(data.Qoffset[n*12])+30].max() > np.nanquantile(abs(np.array(modified_z_score(np.diff(y)))), .992)+55: x += 5 spikes = abs(np.array(modified_z_score(np.diff(y)))) > threshold y_out = y.copy() for i in np.arange(len(spikes)): if spikes[i] != 0: y_out[i+y_out.index[0]] = None return y_out def half_df_fixer(y,n): threshold = 0 x = 0 while threshold == 0: if np.nanquantile(abs(np.array(modified_z_score(np.diff(y)))), 1) > 150: if abs(np.array(modified_z_score(np.diff(y))))[int(half_data.Qonset[n*12])+x:int(half_data.Qoffset[n*12])+30].max() < np.nanquantile(abs(np.array(modified_z_score(np.diff(y)))), .98)+60: threshold = abs(np.array(modified_z_score(np.diff(y))))[int(half_data.Qonset[n*12])+x:int(half_data.Qoffset[n*12])+30].max() + 1 elif abs(np.array(modified_z_score(np.diff(y))))[int(half_data.Qonset[n*12])+x:int(half_data.Qoffset[n*12])+30].max() > np.nanquantile(abs(np.array(modified_z_score(np.diff(y)))), .98)+60: x += 2 elif np.nanquantile(abs(np.array(modified_z_score(np.diff(y)))), 1) <= 150: if abs(np.array(modified_z_score(np.diff(y))))[int(half_data.Qonset[n*12])+x:int(half_data.Qoffset[n*12])+30].max() < np.nanquantile(abs(np.array(modified_z_score(np.diff(y)))), .992)+60: threshold = abs(np.array(modified_z_score(np.diff(y))))[int(half_data.Qonset[n*12])+x:int(half_data.Qoffset[n*12])+30].max() + 1 elif abs(np.array(modified_z_score(np.diff(y))))[int(half_data.Qonset[n*12])+x:int(half_data.Qoffset[n*12])+30].max() > np.nanquantile(abs(np.array(modified_z_score(np.diff(y)))), .992)+60: x += 2 spikes = abs(np.array(modified_z_score(np.diff(y)))) > threshold y_out = y.copy() for i in np.arange(len(spikes)): if spikes[i] != 0: y_out[i+y_out.index[0]] = None return y_out def hanging_line(point1, point2): a = (point2[1] - point1[1])/(np.cosh(point2[0] % 600) - np.cosh(point1[0] % 600)) b = point1[1] - a*np.cosh(point1[0] % 600) x = np.linspace(point1[0], point2[0], (point2[0] - point1[0])+1) y = a*np.cosh(x % 600) + b return (x,y) Tags = {'tags':[]} tags = {'tags':[]} for root in roots: if len(root.find('{http://www3.medical.philips.com}waveforms').getchildren()) == 2: if int(root.find('{http://www3.medical.philips.com}waveforms')[1].attrib['samplespersec']) == 1000: for elem in root.find('{http://www3.medical.philips.com}waveforms')[1]: tag = {} tag['Lead'] = elem.attrib['leadname'] if (root[6][1][0][14].text == 'Invalid' or elem[0].text == 'Invalid') and root[6].tag == '{http://www3.medical.philips.com}internalmeasurements': if root[6][1][0][14].text == None or root[7][0].find('{http://www3.medical.philips.com}globalmeasurements')[5].text == 'Invalid' or root[6][1][0][14].text == '\n ' or root[6][1][0][14].text == 'Failed': tag['Ponset'] = 0 tag['Pdur'] = 0 tag['Print'] = 0 tag['Poffset'] = 0 else: tag['Ponset'] = int(root[7][0].find('{http://www3.medical.philips.com}globalmeasurements')[5].text) - int(root[6][1][0][14].text) tag['Pdur'] = 0 tag['Print'] = int(root[6][1][0][14].text) tag['Poffset'] = (int(root[7][0].find('{http://www3.medical.philips.com}globalmeasurements')[5].text) - int(root[6][1][0][14].text)) + 0 elif root[7][0].find('{http://www3.medical.philips.com}globalmeasurements')[5].text == 'Invalid' or root[6][1][0][14].text == None or root[7][0].find('{http://www3.medical.philips.com}globalmeasurements')[5].text == 'Failed' or root[6][1][0][14].text == 'Failed' or (root[6][1][0][14].text == 'Invalid' or elem[0].text == 'Invalid'): tag['Ponset'] = 0 tag['Pdur'] = 0 tag['Print'] = 0 tag['Poffset'] = 0 else: tag['Ponset'] = int(root[7][0].find('{http://www3.medical.philips.com}globalmeasurements')[5].text) - int(root[6][1][0][14].text) tag['Pdur'] = int(elem[0].text) tag['Print'] = int(root[6][1][0][14].text) tag['Poffset'] = (int(root[7][0].find('{http://www3.medical.philips.com}globalmeasurements')[5].text) - int(root[6][1][0][14].text)) + int(elem[0].text) if (root[7][0].find('{http://www3.medical.philips.com}globalmeasurements')[5].text == 'Invalid' or root[6][0][29].text == 'Invalid' or elem[4].text == 'Invalid' or root[6][1][0][18].text == 'Invalid'): tag['Qonset'] = np.nan tag['Qrsdur'] = np.nan tag['Qoffset'] = np.nan tag['Tonset'] = np.nan tag['Qtint'] = np.nan tag['Toffset'] = np.nan tag['Tdur'] = np.nan else: tag['Qonset'] = int(root[7][0].find('{http://www3.medical.philips.com}globalmeasurements')[5].text) tag['Qrsdur'] = int(root[6][0][29].text) tag['Qoffset'] = tag['Qonset'] + tag['Qrsdur'] tag['Tonset'] = int(elem[4].text) tag['Qtint'] = int(root[6][1][0][18].text) tag['Toffset'] = tag['Qonset'] + tag['Qtint'] tag['Tdur'] = tag['Qoffset'] - tag['Qonset'] if root[7].tag == '{http://www3.medical.philips.com}interpretations' and root[6].tag == '{http://www3.medical.philips.com}internalmeasurements': if root[7][0][1][0].text != None and (root[7][0][1][0].text).isdigit(): tag['HeartRate'] = int(root[7][0][1][0].text) if root[7][0].find('{http://www3.medical.philips.com}globalmeasurements')[1].text != None: tag['RRint'] = int(root[7][0].find('{http://www3.medical.philips.com}globalmeasurements')[1].text) if root[6][1][0][9].text != None: tag['AtrialRate'] = int(root[6][1][0][9].text) if root[6][0][15].text != None and root[6][0][15].text != 'Indeterminate': tag['QRSFrontAxis'] = int(root[6][0][15].text) if root[6][0][31].text != None and root[6][0][31].text != 'Failed': tag['QTC'] = int(root[6][0][31].text) tag['Target'] = [] for n in range(len(root[7][0][root[7][0].getchildren().index(root[7][0].find('{http://www3.medical.philips.com}statement')):])): tag['Target'].append(root[7][0][root[7][0].getchildren().index(root[7][0].find('{http://www3.medical.philips.com}statement')):][n][0].text) else: tag['HeartRate'] = np.nan tag['RRint'] = np.nan tag['AtrialRate'] = np.nan tag['QRSFrontAxis'] = np.nan tag['QTC'] = np.nan tag['Target'] = [] if root[3].tag == '{http://www3.medical.philips.com}reportinfo' and root[5].tag == '{http://www3.medical.philips.com}patient': time = root[3].attrib tag['Date'] = time['date'] tag['Time'] = time['time'] tag['Sex'] = root[5][0][6].text tag['ID'] = root[5][0][0].text tag['Name'] = root[5][0].find('{http://www3.medical.philips.com}name')[0].text + ', ' + root[5][0].find('{http://www3.medical.philips.com}name')[1].text if root[5][0].find('{http://www3.medical.philips.com}age')[0].tag == '{http://www3.medical.philips.com}dateofbirth': tag['Age'] = int(today.strftime("%Y")) - int(root[5][0].find('{http://www3.medical.philips.com}age')[0].text[0:4]) if root[5][0].find('{http://www3.medical.philips.com}age')[0].tag == '{http://www3.medical.philips.com}years': tag['Age'] = int(root[5][0].find('{http://www3.medical.philips.com}age')[0].text) tag['Waveform'] = elem[6].text # tag['LongWaveform'] = root[8][0].text tags['tags'].append(tag) else: for elem in root.find('{http://www3.medical.philips.com}waveforms')[1]: Tag = {} Tag['Lead'] = elem.attrib['leadname'] if (root[6][1][0][14].text == 'Invalid' or elem[0].text == 'Invalid') and root[6].tag == '{http://www3.medical.philips.com}internalmeasurements': if root[6][1][0][14].text == None or root[7][0].find('{http://www3.medical.philips.com}globalmeasurements')[5].text == 'Invalid' or root[6][1][0][14].text == '\n ' or root[6][1][0][14].text == 'Failed': Tag['Ponset'] = 0 Tag['Pdur'] = 0 Tag['Print'] = 0 Tag['Poffset'] = 0 else: Tag['Ponset'] = float(root[7][0].find('{http://www3.medical.philips.com}globalmeasurements')[5].text) - int(root[6][1][0][14].text) Tag['Pdur'] = 0 Tag['Print'] = int(root[6][1][0][14].text) Tag['Poffset'] = (int(root[7][0].find('{http://www3.medical.philips.com}globalmeasurements')[5].text) - int(root[6][1][0][14].text)) + 0 elif root[7][0].find('{http://www3.medical.philips.com}globalmeasurements')[5].text == 'Invalid' or root[6][1][0][14].text == None or root[7][0].find('{http://www3.medical.philips.com}globalmeasurements')[5].text == None or root[6][1][0][14].text == 'Invalid' or elem[0].text == 'Invalid' and root[6].tag == '{http://www3.medical.philips.com}internalmeasurements': Tag['Ponset'] = 0 Tag['Pdur'] = 0 Tag['Print'] = 0 Tag['Poffset'] = 0 else: Tag['Ponset'] = int(root[7][0].find('{http://www3.medical.philips.com}globalmeasurements')[5].text) - int(root[6][1][0][14].text) Tag['Pdur'] = int(elem[0].text) Tag['Print'] = int(root[6][1][0][14].text) Tag['Poffset'] = (int(root[7][0].find('{http://www3.medical.philips.com}globalmeasurements')[5].text) - int(root[6][1][0][14].text)) + int(elem[0].text) if (root[7][0].find('{http://www3.medical.philips.com}globalmeasurements')[5].text == 'Invalid' or root[6][1][0][18].text == None or root[6][0][29].text == 'Invalid' or elem[4].text == 'Invalid' or root[6][1][0][18].text == 'Invalid'): Tag['Qonset'] = np.nan Tag['Qrsdur'] = np.nan Tag['Qoffset'] = np.nan Tag['Tonset'] = np.nan Tag['Qtint'] = np.nan Tag['Toffset'] = np.nan Tag['Tdur'] = np.nan else: Tag['Qonset'] = int(root[7][0].find('{http://www3.medical.philips.com}globalmeasurements')[5].text) Tag['Qrsdur'] = int(root[6][0][29].text) Tag['Qoffset'] = Tag['Qonset'] + Tag['Qrsdur'] Tag['Tonset'] = int(elem[4].text) Tag['Qtint'] = int(root[6][1][0][18].text) Tag['Toffset'] = Tag['Qonset'] + Tag['Qtint'] Tag['Tdur'] = Tag['Qoffset'] - Tag['Qonset'] if root[7].tag == '{http://www3.medical.philips.com}interpretations' and root[6].tag == '{http://www3.medical.philips.com}internalmeasurements': if root[7][0][1][0].text != None and (root[7][0][1][0].text).isdigit(): Tag['HeartRate'] = int(root[7][0][1][0].text) if root[7][0].find('{http://www3.medical.philips.com}globalmeasurements')[1].text != None: Tag['RRint'] = int(root[7][0].find('{http://www3.medical.philips.com}globalmeasurements')[1].text) if root[6][1][0][9].text != None: Tag['AtrialRate'] = int(root[6][1][0][9].text) if root[6][0][15].text != None and root[6][0][15].text != 'Indeterminate': Tag['QRSFrontAxis'] = int(root[6][0][15].text) if root[6][0][31].text != None: Tag['QTC'] = int(root[6][0][31].text) Tag['Target'] = [] for n in range(len(root[7][0][root[7][0].getchildren().index(root[7][0].find('{http://www3.medical.philips.com}statement')):])): Tag['Target'].append(root[7][0][root[7][0].getchildren().index(root[7][0].find('{http://www3.medical.philips.com}statement')):][n][0].text) else: Tag['HeartRate'] = np.nan Tag['RRint'] = np.nan Tag['AtrialRate'] = np.nan Tag['QRSFrontAxis'] = np.nan Tag['QTC'] = np.nan Tag['Target'] = [] if root[3].tag == '{http://www3.medical.philips.com}reportinfo' and root[5].tag == '{http://www3.medical.philips.com}patient': time = root[3].attrib Tag['Date'] = time['date'] Tag['Time'] = time['time'] Tag['Sex'] = root[5][0][6].text Tag['ID'] = root[5][0][0].text Tag['Name'] = root[5][0].find('{http://www3.medical.philips.com}name')[0].text + ', ' + root[5][0].find('{http://www3.medical.philips.com}name')[1].text if len(root[5][0].find('{http://www3.medical.philips.com}age')) > 0: if root[5][0].find('{http://www3.medical.philips.com}age')[0].tag == '{http://www3.medical.philips.com}dateofbirth': Tag['Age'] = int(today.strftime("%Y")) - int(root[5][0].find('{http://www3.medical.philips.com}age')[0].text[0:4]) if root[5][0].find('{http://www3.medical.philips.com}age')[0].tag == '{http://www3.medical.philips.com}years': Tag['Age'] = int(root[5][0].find('{http://www3.medical.philips.com}age')[0].text) Tag['Waveform'] = elem[6].text # Tag['LongWaveform'] = root[8][0].text Tags['tags'].append(Tag) half_data = pd.DataFrame(Tags['tags']) data = pd.DataFrame(tags['tags']) del roots del root del elem count1000 = int(len(data)/12) count500 = int(len(half_data)/12) count = count1000 + count500 if len(data) > 0: array = np.unique(data[data.isnull().any(axis=1)][['ID', 'Date', 'Time']]) missing_data = data.loc[data['ID'].isin(array) & data['Date'].isin(array) & data['Time'].isin(array)] data.drop(missing_data.index, axis=0,inplace=True) missing_data = missing_data.reset_index(drop=True) del tag del tags data = data.reset_index(drop=True) for n in range(count1000): data.Tonset[n*12:(n+1)*12] = np.repeat(int(data.Tonset[n*12:(n+1)*12].sum()/12), 12) data.Pdur[n*12:(n+1)*12] = np.repeat(int(data.Pdur[n*12:(n+1)*12].sum()/12), 12) x = 0 p = [] for x in range(len(data.Waveform)): t = base64.b64decode(data.Waveform[x]) p.append(np.asarray(t)) x+=1 p = np.asarray(p) a = [] for i in p: o = [] for x in i: o.append(x) a.append(o) df = pd.DataFrame(a) df.insert(0, 'Lead', data['Lead']) blank = [] for n in range(count1000): blank.append(pd.pivot_table(df[(n*12):(n+1)*12], columns=df.Lead)) test =
pd.concat(blank)
pandas.concat
import dask import glob import matplotlib import matplotlib.pyplot as plt from matplotlib.backends.backend_pdf import PdfPages import numpy as np import os import pandas as pd from pymicro.view.vol_utils import compute_affine_transform import scipy import scipy.optimize import secrets matplotlib.use("Agg") TRACKID = "track" X = "x" Y = "y" Z = "z" FRAME = "frame" CELLID = "cell" def drop_matched(matched: pd.DataFrame, df1: pd.DataFrame, df2: pd.DataFrame): """Remove the matched rows from df1 and df2. Matched results from merging df1 with df2. Important order of df1 and df2 matters.""" # extract df1 and df2 from matched matched_x = matched[[x for x in matched.columns if "_x" in x]].copy() matched_y = matched[[y for y in matched.columns if "_y" in y]].copy() matched_x.columns = [x.replace("_x", "") for x in matched_x.columns] matched_y.columns = [y.replace("_y", "") for y in matched_y.columns] # Add frame column and reorder matched_x[FRAME] = matched[FRAME] matched_y[FRAME] = matched[FRAME] matched_x[CELLID] = matched[CELLID] matched_y[CELLID] = matched[CELLID] matched_x = matched_x[df1.columns] matched_y = matched_y[df2.columns] df1_new = pd.concat([df1, matched_x]) df2_new = pd.concat([df2, matched_y]) df1_new = df1_new.drop_duplicates(keep=False) df2_new = df2_new.drop_duplicates(keep=False) return df1_new, df2_new def filter_tracks(df: pd.DataFrame, min_length: int = 10) -> pd.DataFrame: """Filter tracks based on length. Arg: df: dataframe containing the tracked data min_length: integer specifying the min track length Return: filtered data frame.""" df = df[[X, Y, Z, FRAME, TRACKID, CELLID]] df = df[df[CELLID] != 0].copy() distribution_length = df[TRACKID].value_counts() selection = distribution_length.index.values[ distribution_length.values > min_length ] df = df[df[TRACKID].isin(selection)] return df def filter_overlapping(df: pd.DataFrame, max_overlaps: float = 0.5): """Return data.frame where tracks with overlaps higher than max_overlaps are filtered out. Args: df: dataframe with tracks to stitch max_overlaps: maximum fraction of track that can overlap. Tracks with higher overlaps will be filtered out. Return: filtered dataframe. """ while True: # count number of duplicated timepoints per track duplicated = df[df[FRAME].isin(df[df[FRAME].duplicated()][FRAME])][ TRACKID ].value_counts() if len(duplicated) < 1: return df # duplicated track id duplicated_tracks = duplicated.index.values # number of duplication duplicated_values = duplicated.values # count number of timepoints per track count_tracks_length = df[TRACKID].value_counts() # if number of track is 1, by definition there is no overlapping if len(count_tracks_length) == 1: return df # count track length of overlapping tracks count_tracks_overlapping = count_tracks_length[ count_tracks_length.index.isin(duplicated_tracks) ] # extract track id of shortest overlapping tracks shortest_track_overlapping_idx = count_tracks_overlapping.idxmin() # too long overlaps? toolong = False for track, value in zip(duplicated_tracks, duplicated_values): fraction = value / len(df[df[TRACKID] == track]) if fraction > max_overlaps: toolong = True # if we found too many overlaps, remove shortest track and restart if toolong: df = df[df[TRACKID] != shortest_track_overlapping_idx].copy() # if no too long overlaps, remove duplicates and return dataframe if not toolong: df = df.drop_duplicates(FRAME) return df def stitch(df: pd.DataFrame, max_dist: float = 1.6, max_overlaps: float = 0.5): """Stitch tracks with the same cell id. If tracks overlap, filters out tracks with overlap higher than max_overlaps. Overlapping frames are filtered out randomly. Arg: df: dataframe containing the tracked data. max_dist: maximum distance to match tracks from the same cell. max_overlaps: maximum overlap allowed for each track. Return: dataframe with stitched tracks.""" res =
pd.DataFrame()
pandas.DataFrame
#!/usr/bin/env python # -*- coding: utf-8 -*- import pandas as pd import pytest from cardea.fhir import Patient @pytest.fixture() def patient_df(): return pd.DataFrame({"identifier": [0, 1, 2, 3], "gender": ['female', 'female', 'male', 'female'], "birthDate": ['10/21/2000', '7/2/2000', '1/10/2000', '9/16/2000'], "active": ['True', 'True', 'False', 'False']}) @pytest.fixture() def patient_object(patient_df): object_values = patient_df.to_dict('list') return Patient(object_values) @pytest.fixture() def patient_object_df(patient_object): return patient_object.get_dataframe() def test_object_number_of_attributes(patient_object_df, patient_df): assert len(patient_object_df.columns) == len(patient_df.columns) def test_object_number_of_tuples(patient_object_df, patient_df): assert len(patient_object_df) == len(patient_df) def test_get_id(patient_object): assert patient_object.get_id() == 'identifier' def test_get_relationships(patient_object): relationships = patient_object.get_relationships() assert len(relationships) == 12 def test_get_eligible_relationships(patient_object): elig_relationships = patient_object.get_eligible_relationships() assert len(elig_relationships) == 1 def test_get_id_lookup_error(patient_df): df = patient_df[['gender', 'birthDate']] object_values = df.to_dict('list') object = Patient(object_values) with pytest.raises(LookupError): object.get_id() def test_assert_type_enum(): df =
pd.DataFrame({"identifier": [0, 1], "gender": ['female', 'F']})
pandas.DataFrame
import re import numpy as np import pytest from pandas.core.dtypes.cast import construct_1d_object_array_from_listlike import pandas as pd from pandas import IntervalIndex, MultiIndex, RangeIndex import pandas.util.testing as tm def test_labels_dtypes(): # GH 8456 i = MultiIndex.from_tuples([("A", 1), ("A", 2)]) assert i.codes[0].dtype == "int8" assert i.codes[1].dtype == "int8" i = MultiIndex.from_product([["a"], range(40)]) assert i.codes[1].dtype == "int8" i = MultiIndex.from_product([["a"], range(400)]) assert i.codes[1].dtype == "int16" i = MultiIndex.from_product([["a"], range(40000)]) assert i.codes[1].dtype == "int32" i = pd.MultiIndex.from_product([["a"], range(1000)]) assert (i.codes[0] >= 0).all() assert (i.codes[1] >= 0).all() def test_values_boxed(): tuples = [ (1, pd.Timestamp("2000-01-01")), (2, pd.NaT), (3, pd.Timestamp("2000-01-03")), (1, pd.Timestamp("2000-01-04")), (2, pd.Timestamp("2000-01-02")), (3, pd.Timestamp("2000-01-03")), ] result = pd.MultiIndex.from_tuples(tuples) expected = construct_1d_object_array_from_listlike(tuples) tm.assert_numpy_array_equal(result.values, expected) # Check that code branches for boxed values produce identical results tm.assert_numpy_array_equal(result.values[:4], result[:4].values) def test_values_multiindex_datetimeindex(): # Test to ensure we hit the boxing / nobox part of MI.values ints = np.arange(10 ** 18, 10 ** 18 + 5) naive = pd.DatetimeIndex(ints) # TODO(GH-24559): Remove the FutureWarning with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): aware = pd.DatetimeIndex(ints, tz="US/Central") idx = pd.MultiIndex.from_arrays([naive, aware]) result = idx.values outer = pd.DatetimeIndex([x[0] for x in result]) tm.assert_index_equal(outer, naive) inner = pd.DatetimeIndex([x[1] for x in result]) tm.assert_index_equal(inner, aware) # n_lev > n_lab result = idx[:2].values outer = pd.DatetimeIndex([x[0] for x in result]) tm.assert_index_equal(outer, naive[:2]) inner = pd.DatetimeIndex([x[1] for x in result]) tm.assert_index_equal(inner, aware[:2]) def test_values_multiindex_periodindex(): # Test to ensure we hit the boxing / nobox part of MI.values ints = np.arange(2007, 2012) pidx = pd.PeriodIndex(ints, freq="D") idx = pd.MultiIndex.from_arrays([ints, pidx]) result = idx.values outer =
pd.Int64Index([x[0] for x in result])
pandas.Int64Index
import time import argparse import networkx as nx import numpy as np import scipy.sparse as sp from sklearn import preprocessing import os import pandas as pd from math import ceil from datetime import date, timedelta import itertools import pandas as pd from sklearn.preprocessing import MinMaxScaler import numpy as np import os from functools import reduce from utils import generate_graphs_britain, generate_graphs_by_day step = 5 start_exp = 15 window = 7 os.chdir("/Italy") labels = pd.read_csv("italy_labels.csv") labels.loc[labels["name"]=="reggio_di_calabria","name"] = "reggio_calabria" labels.loc[labels["name"]=="reggio_nell'emilia","name"] = "reggio_emilia" labels.loc[labels["name"]=="bolzano","name"] = "bolzano_bozen" labels.loc[labels["name"]=="l'aquila","name"] = "la_aquila" del labels["id"] labels = labels.set_index("name") sdate = date(2020, 2, 24) edate = date(2020, 5, 12) delta = edate - sdate dates = [sdate + timedelta(days=i) for i in range(delta.days+1)] dates = [str(date) for date in dates] Gs = generate_graphs_by_day(dates,"IT") #labels = labels[,:] labels = labels.loc[Gs[0].nodes(),:] labels = labels.loc[labels.sum(1).values>10,dates] gs_adj = [nx.adjacency_matrix(kgs).toarray().T for kgs in Gs] y = list() for i,G in enumerate(Gs): y.append(list()) for node in G.nodes(): y[i].append(labels.loc[node,dates[i]]) nodez = Gs[0].nodes() main = pd.DataFrame(labels.loc[nodez,labels.columns[start_exp]:].mean(1)) main.columns = ["avg_cases"] main["cases"] = pd.DataFrame(labels.loc[nodez,labels.columns[start_exp]:].sum(1)) main = main.reset_index() #df = pd.DataFrame(labels.iloc[:,start_exp:].mean(1)) #df.columns = ["avg_cases"] #df["cases"] = pd.DataFrame(labels.iloc[:,start_exp:].sum(1)) #df = df.reset_index() os.chdir("/output") x0 = [] x1 = [] x2 = [] x3 = [] x4 = [] for i in range(15,79): try: x0.append(pd.read_csv("out_IT_"+str(i)+"_0.csv")) #df.drop(df.columns[0],1)) except: print(i) try: x1.append(pd.read_csv("out_IT_"+str(i)+"_1.csv")) #df.drop(df.columns[0],1)) except: print(i) try: x2.append(pd.read_csv("out_IT_"+str(i)+"_2.csv")) #df.drop(df.columns[0],1)) except: print(i) try: x3.append(pd.read_csv("out_IT_"+str(i)+"_3.csv")) #df.drop(df.columns[0],1)) except: print(i) try: x4.append(pd.read_csv("out_IT_"+str(i)+"_4.csv")) #df.drop(df.columns[0],1)) except: print(i) n = x0[0]["n"] cnt = 0 pds = [] pds_r = [] for i in range(0,len(x4)): tmpx = [x0[i],x1[i],x2[i],x3[i],x4[i]] # step = 5 d = reduce(lambda p, l: p.add(l, fill_value=0), tmpx) del d["n"] d = d/step par = d["l"].copy() par[par<1]=1 pds.append(abs(d["o"]-d["l"])) pds_r.append(abs(d["o"]-d["l"])/par) pds_r = reduce(lambda p, l: p.add(l, fill_value=0), pds_r)/i pds = reduce(lambda p, l: p.add(l, fill_value=0), pds)/i df = pd.DataFrame({"relative":pds_r.values,"real":pds.values,"name":n }) tmp = df.merge(main,on='name') tmp.to_csv("it_map_plot_"+str(step)+".csv") #------------------------------------- os.chdir("/Spain") labels = pd.read_csv("spain_labels.csv") labels = labels.set_index("name") sdate = date(2020, 3, 12) edate = date(2020, 5, 12) #--- series of graphs and their respective dates delta = edate - sdate dates = [sdate + timedelta(days=i) for i in range(delta.days+1)] dates = [str(date) for date in dates] Gs = generate_graphs_by_day(dates,"ES") l = Gs[0].nodes() #l.remove("zaragoza") labels = labels.loc[l,:] labels = labels.loc[labels.sum(1).values>10,dates] #nodez = Gs[0].nodes() main = pd.DataFrame(labels.loc[:,labels.columns[start_exp]:].mean(1)) main.columns = ["avg_cases"] main["cases"] = pd.DataFrame(labels.loc[:,labels.columns[start_exp]:].sum(1)) main = main.reset_index() #df = pd.DataFrame(labels.iloc[:,start_exp:].mean(1)) #df.columns = ["avg_cases"] #df["cases"] = pd.DataFrame(labels.iloc[:,start_exp:].sum(1)) #df = df.reset_index() os.chdir("/output") x0 = [] x1 = [] x2 = [] x3 = [] x4 = [] for i in range(15,62-step): try: x0.append(pd.read_csv("out_ES_"+str(i)+"_0.csv")) #df.drop(df.columns[0],1)) except: print(i) try: x1.append(pd.read_csv("out_ES_"+str(i)+"_1.csv")) #df.drop(df.columns[0],1)) except: print(i) try: x2.append(pd.read_csv("out_ES_"+str(i)+"_2.csv")) #df.drop(df.columns[0],1)) except: print(i) try: x3.append(pd.read_csv("out_ES_"+str(i)+"_3.csv")) #df.drop(df.columns[0],1)) except: print(i) try: x4.append(pd.read_csv("out_ES_"+str(i)+"_4.csv")) #df.drop(df.columns[0],1)) except: print(i) n = x0[0]["n"] cnt = 0 pds = [] pds_r = [] for i in range(0,len(x4)): tmpx = [x0[i],x1[i],x2[i],x3[i],x4[i]] # step = 5 d = reduce(lambda p, l: p.add(l, fill_value=0), tmpx) del d["n"] d = d/step par = d["l"].copy() par[par<1]=1 pds.append(abs(d["o"]-d["l"])) pds_r.append(abs(d["o"]-d["l"])/par) pds_r = reduce(lambda p, l: p.add(l, fill_value=0), pds_r)/i pds = reduce(lambda p, l: p.add(l, fill_value=0), pds)/i df = pd.DataFrame({"relative":pds_r.values,"real":pds.values,"name":n }) tmp = df.merge(main,on='name') tmp.to_csv("es_map_plot_"+str(step)+".csv") #--------------------------------- os.chdir("/France") labels = pd.read_csv("france_labels.csv") #del labels["id"] labels = labels.set_index("name") sdate = date(2020, 3, 10) edate = date(2020, 5, 12) #Gs = generate_graphs(dates) delta = edate - sdate dates = [sdate + timedelta(days=i) for i in range(delta.days+1)] dates = [str(date) for date in dates] labels = labels.loc[labels.sum(1).values>10,dates] Gs = generate_graphs_by_day(dates,"FR") labels = labels.loc[Gs[0].nodes(),:] #nodez = Gs[0].nodes() main = pd.DataFrame(labels.loc[:,labels.columns[start_exp]:].mean(1)) main.columns = ["avg_cases"] main["cases"] = pd.DataFrame(labels.loc[:,labels.columns[start_exp]:].sum(1)) main = main.reset_index() os.chdir("/output") x0 = [] x1 = [] x2 = [] x3 = [] x4 = [] for i in range(15,64-step): try: x0.append(pd.read_csv("out_FR_"+str(i)+"_0.csv")) #df.drop(df.columns[0],1)) except: print(i) try: x1.append(pd.read_csv("out_FR_"+str(i)+"_1.csv")) #df.drop(df.columns[0],1)) except: print(i) try: x2.append(pd.read_csv("out_FR_"+str(i)+"_2.csv")) #df.drop(df.columns[0],1)) except: print(i) try: x3.append(pd.read_csv("out_FR_"+str(i)+"_3.csv")) #df.drop(df.columns[0],1)) except: print(i) try: x4.append(pd.read_csv("out_FR_"+str(i)+"_4.csv")) #df.drop(df.columns[0],1)) except: print(i) n = x0[0]["n"] cnt = 0 pds = [] pds_r = [] for i in range(0,len(x4)): tmpx = [x0[i],x1[i],x2[i],x3[i],x4[i]] # step = 5 d = reduce(lambda p, l: p.add(l, fill_value=0), tmpx) del d["n"] d = d/step par = d["l"].copy() par[par<1]=1 pds.append(abs(d["o"]-d["l"])) pds_r.append(abs(d["o"]-d["l"])/par) pds_r = reduce(lambda p, l: p.add(l, fill_value=0), pds_r)/i pds = reduce(lambda p, l: p.add(l, fill_value=0), pds)/i df = pd.DataFrame({"relative":pds_r.values,"real":pds.values,"name":n }) tmp = df.merge(main,on='name') tmp.to_csv("fr_map_plot_"+str(step)+".csv") #--------------------------------- os.chdir("/Britain") labels =
pd.read_csv("england_labels.csv")
pandas.read_csv
from sqlalchemy import create_engine import pandas as pd from datetime import datetime todays_date = datetime.today() import json import logging logging.basicConfig(format=f"""%(asctime)s [%(levelname)s]\t%(message)s""",datefmt='%Y-%m-%d %H:%M:%S',level=logging.DEBUG) import smtplib from email.mime.text import MIMEText from email.mime.multipart import MIMEMultipart from email.mime.base import MIMEBase from email import encoders import os.path def get_data_from_sql(query) : engine = create_engine("""mssql+pyodbc://%s:%s@%s:1433/%s?driver=ODBC+Driver+17+for+SQL+Server""" % ('userbob','<PASSWORD>','ip-0-0-0-0.ec2.internal','maindb'),echo=False) df =
pd.DataFrame()
pandas.DataFrame
#!/usr/bin/python ######-*- coding: utf-8 -*- import os, datetime, requests from bs4 import BeautifulSoup import pandas as pd url = 'https://docs.google.com/spreadsheets/d/e/2PACX-1vQuDj0R6K85sdtI8I-Tc7RCx8CnIxKUQue0TCUdrFOKDw9G3JRtGhl64laDd3apApEvIJTdPFJ9fEUL/pubhtml?gid=0&single=true' work_path = '/path/to/working/dir' def get_table(): req = requests.session() response = req.get(url,headers={'Accept-Language': 'zh-TW'}) soup = BeautifulSoup(response.text, "lxml") table = soup.find('table', {'class': 'waffle'}) trs = table.find_all('tr')[1:] rows = list() for tr in trs: rows.append([td.text.replace('\n', '') for td in tr.find_all('td')]) columns = rows[0][:] columns[0] = columns[0][4:] columns[2:5] = [columns[0],columns[0],columns[0]] rows = [r[1:] for r in rows] df = pd.DataFrame(data=rows, columns=columns[1:]) return df def biuld_nation(): df = get_table() df_nation = df.drop(columns=columns[2]) df_nation.to_csv('nation.csv',index=False) def biuld_database(): database = pd.read_csv('nation.csv') df_nation.to_csv('database.csv',index=False) def update_database(): database = pd.read_csv('database.csv') df = get_table() new =
pd.merge(database,df,on='Nation')
pandas.merge
# coding: utf-8 import pandas as pd import numpy as np import matplotlib.pyplot as plt SSQ = { 'S1_pitch': [6, 18], 'S1_yaw': [10], 'S1_roll':[9], 'S1_surge': [9], 'S1_heave': [], 'S1_sway': [7, 14], 'S2_pitch': [6, 16], 'S2_yaw': [5,6,16], 'S2_roll':[5,6,7,9,16,17], 'S2_surge': [6,7], 'S2_heave': [], 'S2_sway': [6,7,13], 'S3_pitch': [10,11,14,19], 'S3_yaw': [6,10], 'S3_roll':[5], 'S3_surge': [4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20], 'S3_heave': [], 'S3_sway': [3,4,5,6,7,8,12], 'S4': [2,3,4,5,6,7,12,15,22,23,24,25,26,27,33,43,54], 'S5': [7,8,24,25, 42, 54], 'S6': [3,4,17,18,19,20,21,22,23,36,37,38,39,40,41,42] } EXP_SET = {'S1_pitch': 20, 'S1_yaw': 20, 'S1_roll': 20, 'S1_surge': 20, 'S1_heave': 10, 'S1_sway': 20, 'S2_pitch': 20, 'S2_yaw': 20, 'S2_roll': 20, 'S2_surge': 20, 'S2_heave': 10, 'S2_sway': 20, 'S3_pitch': 20, 'S3_yaw': 20, 'S3_roll': 20, 'S3_surge': 20, 'S3_heave': 10, 'S3_sway': 20, 'S4': 60, 'S5': 60, 'S6': 60} tmp = {} base = {} for key in EXP_SET.keys(): base[key] = np.zeros(EXP_SET[key]) for key in SSQ.keys(): for sickness_occured in SSQ[key]: base[key][sickness_occured - 1] = 1 base['S2_yaw'][6] = 2 base['S2_yaw'][6] base['S2_roll'][6] = 2 base['S2_roll'][16] = 2 base['S2_surge'][8] = 4 save_path = './data/raw/ssq/' for key in base.keys(): df = pd.DataFrame(base[key]) df.to_csv(save_path + key + '.csv') for key in SSQ.keys(): df =
pd.read_csv(save_path + key + '.csv')
pandas.read_csv
# Arithmetic tests for DataFrame/Series/Index/Array classes that should # behave identically. # Specifically for Period dtype import operator import numpy as np import pytest from pandas._libs.tslibs.period import IncompatibleFrequency from pandas.errors import PerformanceWarning import pandas as pd from pandas import Period, PeriodIndex, Series, period_range from pandas.core import ops from pandas.core.arrays import TimedeltaArray import pandas.util.testing as tm from pandas.tseries.frequencies import to_offset # ------------------------------------------------------------------ # Comparisons class TestPeriodArrayLikeComparisons: # Comparison tests for PeriodDtype vectors fully parametrized over # DataFrame/Series/PeriodIndex/PeriodArray. Ideally all comparison # tests will eventually end up here. def test_compare_zerodim(self, box_with_array): # GH#26689 make sure we unbox zero-dimensional arrays xbox = box_with_array if box_with_array is not pd.Index else np.ndarray pi = pd.period_range("2000", periods=4) other = np.array(pi.to_numpy()[0]) pi = tm.box_expected(pi, box_with_array) result = pi <= other expected = np.array([True, False, False, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) class TestPeriodIndexComparisons: # TODO: parameterize over boxes @pytest.mark.parametrize("other", ["2017", 2017]) def test_eq(self, other): idx = PeriodIndex(["2017", "2017", "2018"], freq="D") expected = np.array([True, True, False]) result = idx == other tm.assert_numpy_array_equal(result, expected) def test_pi_cmp_period(self): idx = period_range("2007-01", periods=20, freq="M") result = idx < idx[10] exp = idx.values < idx.values[10] tm.assert_numpy_array_equal(result, exp) # TODO: moved from test_datetime64; de-duplicate with version below def test_parr_cmp_period_scalar2(self, box_with_array): xbox = box_with_array if box_with_array is not pd.Index else np.ndarray pi = pd.period_range("2000-01-01", periods=10, freq="D") val = Period("2000-01-04", freq="D") expected = [x > val for x in pi] ser = tm.box_expected(pi, box_with_array) expected = tm.box_expected(expected, xbox) result = ser > val tm.assert_equal(result, expected) val = pi[5] result = ser > val expected = [x > val for x in pi] expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) @pytest.mark.parametrize("freq", ["M", "2M", "3M"]) def test_parr_cmp_period_scalar(self, freq, box_with_array): # GH#13200 xbox = np.ndarray if box_with_array is pd.Index else box_with_array base = PeriodIndex(["2011-01", "2011-02", "2011-03", "2011-04"], freq=freq) base = tm.box_expected(base, box_with_array) per = Period("2011-02", freq=freq) exp = np.array([False, True, False, False]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base == per, exp) tm.assert_equal(per == base, exp) exp = np.array([True, False, True, True]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base != per, exp) tm.assert_equal(per != base, exp) exp = np.array([False, False, True, True]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base > per, exp) tm.assert_equal(per < base, exp) exp = np.array([True, False, False, False]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base < per, exp) tm.assert_equal(per > base, exp) exp = np.array([False, True, True, True]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base >= per, exp) tm.assert_equal(per <= base, exp) exp = np.array([True, True, False, False]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base <= per, exp) tm.assert_equal(per >= base, exp) @pytest.mark.parametrize("freq", ["M", "2M", "3M"]) def test_parr_cmp_pi(self, freq, box_with_array): # GH#13200 xbox = np.ndarray if box_with_array is pd.Index else box_with_array base = PeriodIndex(["2011-01", "2011-02", "2011-03", "2011-04"], freq=freq) base = tm.box_expected(base, box_with_array) # TODO: could also box idx? idx = PeriodIndex(["2011-02", "2011-01", "2011-03", "2011-05"], freq=freq) exp = np.array([False, False, True, False]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base == idx, exp) exp = np.array([True, True, False, True]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base != idx, exp) exp = np.array([False, True, False, False]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base > idx, exp) exp = np.array([True, False, False, True]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base < idx, exp) exp = np.array([False, True, True, False]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base >= idx, exp) exp = np.array([True, False, True, True]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base <= idx, exp) @pytest.mark.parametrize("freq", ["M", "2M", "3M"]) def test_parr_cmp_pi_mismatched_freq_raises(self, freq, box_with_array): # GH#13200 # different base freq base = PeriodIndex(["2011-01", "2011-02", "2011-03", "2011-04"], freq=freq) base = tm.box_expected(base, box_with_array) msg = "Input has different freq=A-DEC from " with pytest.raises(IncompatibleFrequency, match=msg): base <= Period("2011", freq="A") with pytest.raises(IncompatibleFrequency, match=msg): Period("2011", freq="A") >= base # TODO: Could parametrize over boxes for idx? idx = PeriodIndex(["2011", "2012", "2013", "2014"], freq="A") rev_msg = ( r"Input has different freq=(M|2M|3M) from " r"PeriodArray\(freq=A-DEC\)" ) idx_msg = rev_msg if box_with_array is tm.to_array else msg with pytest.raises(IncompatibleFrequency, match=idx_msg): base <= idx # Different frequency msg = "Input has different freq=4M from " with pytest.raises(IncompatibleFrequency, match=msg): base <= Period("2011", freq="4M") with pytest.raises(IncompatibleFrequency, match=msg): Period("2011", freq="4M") >= base idx = PeriodIndex(["2011", "2012", "2013", "2014"], freq="4M") rev_msg = r"Input has different freq=(M|2M|3M) from " r"PeriodArray\(freq=4M\)" idx_msg = rev_msg if box_with_array is tm.to_array else msg with pytest.raises(IncompatibleFrequency, match=idx_msg): base <= idx @pytest.mark.parametrize("freq", ["M", "2M", "3M"]) def test_pi_cmp_nat(self, freq): idx1 = PeriodIndex(["2011-01", "2011-02", "NaT", "2011-05"], freq=freq) result = idx1 > Period("2011-02", freq=freq) exp = np.array([False, False, False, True]) tm.assert_numpy_array_equal(result, exp) result = Period("2011-02", freq=freq) < idx1 tm.assert_numpy_array_equal(result, exp) result = idx1 == Period("NaT", freq=freq) exp = np.array([False, False, False, False]) tm.assert_numpy_array_equal(result, exp) result = Period("NaT", freq=freq) == idx1 tm.assert_numpy_array_equal(result, exp) result = idx1 != Period("NaT", freq=freq) exp = np.array([True, True, True, True]) tm.assert_numpy_array_equal(result, exp) result = Period("NaT", freq=freq) != idx1 tm.assert_numpy_array_equal(result, exp) idx2 = PeriodIndex(["2011-02", "2011-01", "2011-04", "NaT"], freq=freq) result = idx1 < idx2 exp = np.array([True, False, False, False]) tm.assert_numpy_array_equal(result, exp) result = idx1 == idx2 exp = np.array([False, False, False, False]) tm.assert_numpy_array_equal(result, exp) result = idx1 != idx2 exp = np.array([True, True, True, True]) tm.assert_numpy_array_equal(result, exp) result = idx1 == idx1 exp = np.array([True, True, False, True]) tm.assert_numpy_array_equal(result, exp) result = idx1 != idx1 exp = np.array([False, False, True, False]) tm.assert_numpy_array_equal(result, exp) @pytest.mark.parametrize("freq", ["M", "2M", "3M"]) def test_pi_cmp_nat_mismatched_freq_raises(self, freq): idx1 = PeriodIndex(["2011-01", "2011-02", "NaT", "2011-05"], freq=freq) diff = PeriodIndex(["2011-02", "2011-01", "2011-04", "NaT"], freq="4M") msg = "Input has different freq=4M from Period(Array|Index)" with pytest.raises(IncompatibleFrequency, match=msg): idx1 > diff with pytest.raises(IncompatibleFrequency, match=msg): idx1 == diff # TODO: De-duplicate with test_pi_cmp_nat @pytest.mark.parametrize("dtype", [object, None]) def test_comp_nat(self, dtype): left = pd.PeriodIndex( [pd.Period("2011-01-01"), pd.NaT, pd.Period("2011-01-03")] ) right = pd.PeriodIndex([pd.NaT, pd.NaT, pd.Period("2011-01-03")]) if dtype is not None: left = left.astype(dtype) right = right.astype(dtype) result = left == right expected = np.array([False, False, True]) tm.assert_numpy_array_equal(result, expected) result = left != right expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(left == pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT == right, expected) expected = np.array([True, True, True]) tm.assert_numpy_array_equal(left != pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT != left, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(left < pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT > left, expected) class TestPeriodSeriesComparisons: def test_cmp_series_period_series_mixed_freq(self): # GH#13200 base = Series( [ Period("2011", freq="A"), Period("2011-02", freq="M"), Period("2013", freq="A"), Period("2011-04", freq="M"), ] ) ser = Series( [ Period("2012", freq="A"), Period("2011-01", freq="M"), Period("2013", freq="A"), Period("2011-05", freq="M"), ] ) exp = Series([False, False, True, False]) tm.assert_series_equal(base == ser, exp) exp = Series([True, True, False, True]) tm.assert_series_equal(base != ser, exp) exp = Series([False, True, False, False]) tm.assert_series_equal(base > ser, exp) exp = Series([True, False, False, True]) tm.assert_series_equal(base < ser, exp) exp = Series([False, True, True, False]) tm.assert_series_equal(base >= ser, exp) exp = Series([True, False, True, True]) tm.assert_series_equal(base <= ser, exp) class TestPeriodIndexSeriesComparisonConsistency: """ Test PeriodIndex and Period Series Ops consistency """ # TODO: needs parametrization+de-duplication def _check(self, values, func, expected): # Test PeriodIndex and Period Series Ops consistency idx = pd.PeriodIndex(values) result = func(idx) # check that we don't pass an unwanted type to tm.assert_equal assert isinstance(expected, (pd.Index, np.ndarray)) tm.assert_equal(result, expected) s = pd.Series(values) result = func(s) exp = pd.Series(expected, name=values.name) tm.assert_series_equal(result, exp) def test_pi_comp_period(self): idx = PeriodIndex( ["2011-01", "2011-02", "2011-03", "2011-04"], freq="M", name="idx" ) f = lambda x: x == pd.Period("2011-03", freq="M") exp = np.array([False, False, True, False], dtype=np.bool) self._check(idx, f, exp) f = lambda x: pd.Period("2011-03", freq="M") == x self._check(idx, f, exp) f = lambda x: x != pd.Period("2011-03", freq="M") exp = np.array([True, True, False, True], dtype=np.bool) self._check(idx, f, exp) f = lambda x: pd.Period("2011-03", freq="M") != x self._check(idx, f, exp) f = lambda x: pd.Period("2011-03", freq="M") >= x exp = np.array([True, True, True, False], dtype=np.bool) self._check(idx, f, exp) f = lambda x: x > pd.Period("2011-03", freq="M") exp = np.array([False, False, False, True], dtype=np.bool) self._check(idx, f, exp) f = lambda x: pd.Period("2011-03", freq="M") >= x exp = np.array([True, True, True, False], dtype=np.bool) self._check(idx, f, exp) def test_pi_comp_period_nat(self): idx = PeriodIndex( ["2011-01", "NaT", "2011-03", "2011-04"], freq="M", name="idx" ) f = lambda x: x == pd.Period("2011-03", freq="M") exp = np.array([False, False, True, False], dtype=np.bool) self._check(idx, f, exp) f = lambda x: pd.Period("2011-03", freq="M") == x self._check(idx, f, exp) f = lambda x: x == pd.NaT exp = np.array([False, False, False, False], dtype=np.bool) self._check(idx, f, exp) f = lambda x: pd.NaT == x self._check(idx, f, exp) f = lambda x: x != pd.Period("2011-03", freq="M") exp = np.array([True, True, False, True], dtype=np.bool) self._check(idx, f, exp) f = lambda x: pd.Period("2011-03", freq="M") != x self._check(idx, f, exp) f = lambda x: x != pd.NaT exp = np.array([True, True, True, True], dtype=np.bool) self._check(idx, f, exp) f = lambda x: pd.NaT != x self._check(idx, f, exp) f = lambda x: pd.Period("2011-03", freq="M") >= x exp = np.array([True, False, True, False], dtype=np.bool) self._check(idx, f, exp) f = lambda x: x < pd.Period("2011-03", freq="M") exp = np.array([True, False, False, False], dtype=np.bool) self._check(idx, f, exp) f = lambda x: x > pd.NaT exp = np.array([False, False, False, False], dtype=np.bool) self._check(idx, f, exp) f = lambda x: pd.NaT >= x exp = np.array([False, False, False, False], dtype=np.bool) self._check(idx, f, exp) # ------------------------------------------------------------------ # Arithmetic class TestPeriodFrameArithmetic: def test_ops_frame_period(self): # GH#13043 df = pd.DataFrame( { "A": [pd.Period("2015-01", freq="M"), pd.Period("2015-02", freq="M")], "B": [pd.Period("2014-01", freq="M"), pd.Period("2014-02", freq="M")], } ) assert df["A"].dtype == "Period[M]" assert df["B"].dtype == "Period[M]" p = pd.Period("2015-03", freq="M") off = p.freq # dtype will be object because of original dtype exp = pd.DataFrame( { "A": np.array([2 * off, 1 * off], dtype=object), "B": np.array([14 * off, 13 * off], dtype=object), } ) tm.assert_frame_equal(p - df, exp) tm.assert_frame_equal(df - p, -1 * exp) df2 = pd.DataFrame( { "A": [pd.Period("2015-05", freq="M"), pd.Period("2015-06", freq="M")], "B": [pd.Period("2015-05", freq="M"), pd.Period("2015-06", freq="M")], } ) assert df2["A"].dtype == "Period[M]" assert df2["B"].dtype == "Period[M]" exp = pd.DataFrame( { "A": np.array([4 * off, 4 * off], dtype=object), "B": np.array([16 * off, 16 * off], dtype=object), } ) tm.assert_frame_equal(df2 - df, exp) tm.assert_frame_equal(df - df2, -1 * exp) class TestPeriodIndexArithmetic: # --------------------------------------------------------------- # __add__/__sub__ with PeriodIndex # PeriodIndex + other is defined for integers and timedelta-like others # PeriodIndex - other is defined for integers, timedelta-like others, # and PeriodIndex (with matching freq) def test_parr_add_iadd_parr_raises(self, box_with_array): rng = pd.period_range("1/1/2000", freq="D", periods=5) other = pd.period_range("1/6/2000", freq="D", periods=5) # TODO: parametrize over boxes for other? rng = tm.box_expected(rng, box_with_array) # An earlier implementation of PeriodIndex addition performed # a set operation (union). This has since been changed to # raise a TypeError. See GH#14164 and GH#13077 for historical # reference. with pytest.raises(TypeError): rng + other with pytest.raises(TypeError): rng += other def test_pi_sub_isub_pi(self): # GH#20049 # For historical reference see GH#14164, GH#13077. # PeriodIndex subtraction originally performed set difference, # then changed to raise TypeError before being implemented in GH#20049 rng = pd.period_range("1/1/2000", freq="D", periods=5) other = pd.period_range("1/6/2000", freq="D", periods=5) off = rng.freq expected = pd.Index([-5 * off] * 5) result = rng - other tm.assert_index_equal(result, expected) rng -= other tm.assert_index_equal(rng, expected) def test_pi_sub_pi_with_nat(self): rng = pd.period_range("1/1/2000", freq="D", periods=5) other = rng[1:].insert(0, pd.NaT) assert other[1:].equals(rng[1:]) result = rng - other off = rng.freq expected = pd.Index([pd.NaT, 0 * off, 0 * off, 0 * off, 0 * off]) tm.assert_index_equal(result, expected) def test_parr_sub_pi_mismatched_freq(self, box_with_array): rng = pd.period_range("1/1/2000", freq="D", periods=5) other = pd.period_range("1/6/2000", freq="H", periods=5) # TODO: parametrize over boxes for other? rng = tm.box_expected(rng, box_with_array) with pytest.raises(IncompatibleFrequency): rng - other @pytest.mark.parametrize("n", [1, 2, 3, 4]) def test_sub_n_gt_1_ticks(self, tick_classes, n): # GH 23878 p1_d = "19910905" p2_d = "19920406" p1 = pd.PeriodIndex([p1_d], freq=tick_classes(n)) p2 = pd.PeriodIndex([p2_d], freq=tick_classes(n)) expected = pd.PeriodIndex([p2_d], freq=p2.freq.base) - pd.PeriodIndex( [p1_d], freq=p1.freq.base ) tm.assert_index_equal((p2 - p1), expected) @pytest.mark.parametrize("n", [1, 2, 3, 4]) @pytest.mark.parametrize( "offset, kwd_name", [ (pd.offsets.YearEnd, "month"), (pd.offsets.QuarterEnd, "startingMonth"), (pd.offsets.MonthEnd, None), (pd.offsets.Week, "weekday"), ], ) def test_sub_n_gt_1_offsets(self, offset, kwd_name, n): # GH 23878 kwds = {kwd_name: 3} if kwd_name is not None else {} p1_d = "19910905" p2_d = "19920406" freq = offset(n, normalize=False, **kwds) p1 = pd.PeriodIndex([p1_d], freq=freq) p2 = pd.PeriodIndex([p2_d], freq=freq) result = p2 - p1 expected = pd.PeriodIndex([p2_d], freq=freq.base) - pd.PeriodIndex( [p1_d], freq=freq.base ) tm.assert_index_equal(result, expected) # ------------------------------------------------------------- # Invalid Operations @pytest.mark.parametrize("other", [3.14, np.array([2.0, 3.0])]) @pytest.mark.parametrize("op", [operator.add, ops.radd, operator.sub, ops.rsub]) def test_parr_add_sub_float_raises(self, op, other, box_with_array): dti = pd.DatetimeIndex(["2011-01-01", "2011-01-02"], freq="D") pi = dti.to_period("D") pi = tm.box_expected(pi, box_with_array) with pytest.raises(TypeError): op(pi, other) @pytest.mark.parametrize( "other", [ # datetime scalars pd.Timestamp.now(), pd.Timestamp.now().to_pydatetime(), pd.Timestamp.now().to_datetime64(), # datetime-like arrays pd.date_range("2016-01-01", periods=3, freq="H"), pd.date_range("2016-01-01", periods=3, tz="Europe/Brussels"), pd.date_range("2016-01-01", periods=3, freq="S")._data, pd.date_range("2016-01-01", periods=3, tz="Asia/Tokyo")._data, # Miscellaneous invalid types ], ) def test_parr_add_sub_invalid(self, other, box_with_array): # GH#23215 rng = pd.period_range("1/1/2000", freq="D", periods=3) rng = tm.box_expected(rng, box_with_array) with pytest.raises(TypeError): rng + other with pytest.raises(TypeError): other + rng with pytest.raises(TypeError): rng - other with pytest.raises(TypeError): other - rng # ----------------------------------------------------------------- # __add__/__sub__ with ndarray[datetime64] and ndarray[timedelta64] def test_pi_add_sub_td64_array_non_tick_raises(self): rng = pd.period_range("1/1/2000", freq="Q", periods=3) tdi = pd.TimedeltaIndex(["-1 Day", "-1 Day", "-1 Day"]) tdarr = tdi.values with pytest.raises(IncompatibleFrequency): rng + tdarr with pytest.raises(IncompatibleFrequency): tdarr + rng with pytest.raises(IncompatibleFrequency): rng - tdarr with pytest.raises(TypeError): tdarr - rng def test_pi_add_sub_td64_array_tick(self): # PeriodIndex + Timedelta-like is allowed only with # tick-like frequencies rng = pd.period_range("1/1/2000", freq="90D", periods=3) tdi = pd.TimedeltaIndex(["-1 Day", "-1 Day", "-1 Day"]) tdarr = tdi.values expected = pd.period_range("12/31/1999", freq="90D", periods=3) result = rng + tdi tm.assert_index_equal(result, expected) result = rng + tdarr tm.assert_index_equal(result, expected) result = tdi + rng tm.assert_index_equal(result, expected) result = tdarr + rng tm.assert_index_equal(result, expected) expected = pd.period_range("1/2/2000", freq="90D", periods=3) result = rng - tdi tm.assert_index_equal(result, expected) result = rng - tdarr tm.assert_index_equal(result, expected) with pytest.raises(TypeError): tdarr - rng with pytest.raises(TypeError): tdi - rng # ----------------------------------------------------------------- # operations with array/Index of DateOffset objects @pytest.mark.parametrize("box", [np.array, pd.Index]) def test_pi_add_offset_array(self, box): # GH#18849 pi = pd.PeriodIndex([pd.Period("2015Q1"), pd.Period("2016Q2")]) offs = box( [ pd.offsets.QuarterEnd(n=1, startingMonth=12), pd.offsets.QuarterEnd(n=-2, startingMonth=12), ] ) expected = pd.PeriodIndex([pd.Period("2015Q2"), pd.Period("2015Q4")]) with tm.assert_produces_warning(PerformanceWarning): res = pi + offs tm.assert_index_equal(res, expected) with tm.assert_produces_warning(PerformanceWarning): res2 = offs + pi tm.assert_index_equal(res2, expected) unanchored = np.array([pd.offsets.Hour(n=1), pd.offsets.Minute(n=-2)]) # addition/subtraction ops with incompatible offsets should issue # a PerformanceWarning and _then_ raise a TypeError. with pytest.raises(IncompatibleFrequency): with tm.assert_produces_warning(PerformanceWarning): pi + unanchored with pytest.raises(IncompatibleFrequency): with tm.assert_produces_warning(PerformanceWarning): unanchored + pi @pytest.mark.parametrize("box", [np.array, pd.Index]) def test_pi_sub_offset_array(self, box): # GH#18824 pi = pd.PeriodIndex([pd.Period("2015Q1"), pd.Period("2016Q2")]) other = box( [ pd.offsets.QuarterEnd(n=1, startingMonth=12), pd.offsets.QuarterEnd(n=-2, startingMonth=12), ] ) expected = PeriodIndex([pi[n] - other[n] for n in range(len(pi))]) with tm.assert_produces_warning(PerformanceWarning): res = pi - other tm.assert_index_equal(res, expected) anchored = box([pd.offsets.MonthEnd(), pd.offsets.Day(n=2)]) # addition/subtraction ops with anchored offsets should issue # a PerformanceWarning and _then_ raise a TypeError. with pytest.raises(IncompatibleFrequency): with tm.assert_produces_warning(PerformanceWarning): pi - anchored with pytest.raises(IncompatibleFrequency): with tm.assert_produces_warning(PerformanceWarning): anchored - pi def test_pi_add_iadd_int(self, one): # Variants of `one` for #19012 rng = pd.period_range("2000-01-01 09:00", freq="H", periods=10) result = rng + one expected = pd.period_range("2000-01-01 10:00", freq="H", periods=10) tm.assert_index_equal(result, expected) rng += one tm.assert_index_equal(rng, expected) def test_pi_sub_isub_int(self, one): """ PeriodIndex.__sub__ and __isub__ with several representations of the integer 1, e.g. int, np.int64, np.uint8, ... """ rng = pd.period_range("2000-01-01 09:00", freq="H", periods=10) result = rng - one expected = pd.period_range("2000-01-01 08:00", freq="H", periods=10) tm.assert_index_equal(result, expected) rng -= one tm.assert_index_equal(rng, expected) @pytest.mark.parametrize("five", [5, np.array(5, dtype=np.int64)]) def test_pi_sub_intlike(self, five): rng = period_range("2007-01", periods=50) result = rng - five exp = rng + (-five) tm.assert_index_equal(result, exp) def test_pi_sub_isub_offset(self): # offset # DateOffset rng = pd.period_range("2014", "2024", freq="A") result = rng - pd.offsets.YearEnd(5) expected = pd.period_range("2009", "2019", freq="A") tm.assert_index_equal(result, expected) rng -= pd.offsets.YearEnd(5) tm.assert_index_equal(rng, expected) rng = pd.period_range("2014-01", "2016-12", freq="M") result = rng - pd.offsets.MonthEnd(5) expected = pd.period_range("2013-08", "2016-07", freq="M") tm.assert_index_equal(result, expected) rng -= pd.offsets.MonthEnd(5) tm.assert_index_equal(rng, expected) def test_pi_add_offset_n_gt1(self, box_transpose_fail): # GH#23215 # add offset to PeriodIndex with freq.n > 1 box, transpose = box_transpose_fail per = pd.Period("2016-01", freq="2M") pi = pd.PeriodIndex([per]) expected = pd.PeriodIndex(["2016-03"], freq="2M") pi = tm.box_expected(pi, box, transpose=transpose) expected = tm.box_expected(expected, box, transpose=transpose) result = pi + per.freq tm.assert_equal(result, expected) result = per.freq + pi tm.assert_equal(result, expected) def test_pi_add_offset_n_gt1_not_divisible(self, box_with_array): # GH#23215 # PeriodIndex with freq.n > 1 add offset with offset.n % freq.n != 0 pi = pd.PeriodIndex(["2016-01"], freq="2M") expected = pd.PeriodIndex(["2016-04"], freq="2M") # FIXME: with transposing these tests fail pi = tm.box_expected(pi, box_with_array, transpose=False) expected = tm.box_expected(expected, box_with_array, transpose=False) result = pi + to_offset("3M") tm.assert_equal(result, expected) result = to_offset("3M") + pi tm.assert_equal(result, expected) # --------------------------------------------------------------- # __add__/__sub__ with integer arrays @pytest.mark.parametrize("int_holder", [np.array, pd.Index]) @pytest.mark.parametrize("op", [operator.add, ops.radd]) def test_pi_add_intarray(self, int_holder, op): # GH#19959 pi = pd.PeriodIndex([
pd.Period("2015Q1")
pandas.Period
import click import logging import numpy as np import os import pandas as pd import requests import sys logger = logging.getLogger(__name__) CSV_FILE = 'data/cacem-dechets.csv' ANALYSE_DIR = 'data/analyse' def requests_retry_session(retries=10, backoff_factor=0.5, status_forcelist=(500, 502, 504), session=None): session = session or requests.Session() retry = requests.packages.urllib3.util.retry.Retry( total=retries, read=retries, connect=retries, backoff_factor=backoff_factor, status_forcelist=status_forcelist, ) adapter = requests.adapters.HTTPAdapter(max_retries=retry) session.mount('https://', adapter) return session def collect_to_df(collecte_ids): data = [] s = requests.Session() for collecte_id in collecte_ids: r = requests_retry_session(session=s).get(f'https://collecte-dechets.cacem.fr/get/collectes/{collecte_id}') data_json = r.json() data += [ [ data_json['adresse']['id'], collecte['title'], day, collecte['week_type'] ] for collecte in data_json['collectes'] for day in collecte['days'] ] df = pd.DataFrame(data, columns=['adresse_id', 'type_collecte', 'jour', 'type_semaine']) return df def get_data(output_file): communes = (pd.read_json('https://collecte-dechets.cacem.fr/get/communes', orient='record') .rename(columns={'id': 'commune_id', 'name': 'commune_name'})) quartiers = (pd.read_json('https://collecte-dechets.cacem.fr/get/quartiers', orient='record') .rename(columns={'id': 'quartier_id', 'name': 'quartier_name'})) adresses = (
pd.read_json('https://collecte-dechets.cacem.fr/get/adresses', orient='record')
pandas.read_json
# -*- coding: utf-8 -*- import re import warnings from datetime import timedelta from itertools import product import pytest import numpy as np import pandas as pd from pandas import (CategoricalIndex, DataFrame, Index, MultiIndex, compat, date_range, period_range) from pandas.compat import PY3, long, lrange, lzip, range, u, PYPY from pandas.errors import PerformanceWarning, UnsortedIndexError from pandas.core.dtypes.dtypes import CategoricalDtype from pandas.core.indexes.base import InvalidIndexError from pandas.core.dtypes.cast import construct_1d_object_array_from_listlike from pandas._libs.tslib import Timestamp import pandas.util.testing as tm from pandas.util.testing import assert_almost_equal, assert_copy from .common import Base class TestMultiIndex(Base): _holder = MultiIndex _compat_props = ['shape', 'ndim', 'size'] def setup_method(self, method): major_axis = Index(['foo', 'bar', 'baz', 'qux']) minor_axis = Index(['one', 'two']) major_labels = np.array([0, 0, 1, 2, 3, 3]) minor_labels = np.array([0, 1, 0, 1, 0, 1]) self.index_names = ['first', 'second'] self.indices = dict(index=MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels ], names=self.index_names, verify_integrity=False)) self.setup_indices() def create_index(self): return self.index def test_can_hold_identifiers(self): idx = self.create_index() key = idx[0] assert idx._can_hold_identifiers_and_holds_name(key) is True def test_boolean_context_compat2(self): # boolean context compat # GH7897 i1 = MultiIndex.from_tuples([('A', 1), ('A', 2)]) i2 = MultiIndex.from_tuples([('A', 1), ('A', 3)]) common = i1.intersection(i2) def f(): if common: pass tm.assert_raises_regex(ValueError, 'The truth value of a', f) def test_labels_dtypes(self): # GH 8456 i = MultiIndex.from_tuples([('A', 1), ('A', 2)]) assert i.labels[0].dtype == 'int8' assert i.labels[1].dtype == 'int8' i = MultiIndex.from_product([['a'], range(40)]) assert i.labels[1].dtype == 'int8' i = MultiIndex.from_product([['a'], range(400)]) assert i.labels[1].dtype == 'int16' i = MultiIndex.from_product([['a'], range(40000)]) assert i.labels[1].dtype == 'int32' i = pd.MultiIndex.from_product([['a'], range(1000)]) assert (i.labels[0] >= 0).all() assert (i.labels[1] >= 0).all() def test_where(self): i = MultiIndex.from_tuples([('A', 1), ('A', 2)]) def f(): i.where(True) pytest.raises(NotImplementedError, f) def test_where_array_like(self): i = MultiIndex.from_tuples([('A', 1), ('A', 2)]) klasses = [list, tuple, np.array, pd.Series] cond = [False, True] for klass in klasses: def f(): return i.where(klass(cond)) pytest.raises(NotImplementedError, f) def test_repeat(self): reps = 2 numbers = [1, 2, 3] names = np.array(['foo', 'bar']) m = MultiIndex.from_product([ numbers, names], names=names) expected = MultiIndex.from_product([ numbers, names.repeat(reps)], names=names) tm.assert_index_equal(m.repeat(reps), expected) with tm.assert_produces_warning(FutureWarning): result = m.repeat(n=reps) tm.assert_index_equal(result, expected) def test_numpy_repeat(self): reps = 2 numbers = [1, 2, 3] names = np.array(['foo', 'bar']) m = MultiIndex.from_product([ numbers, names], names=names) expected = MultiIndex.from_product([ numbers, names.repeat(reps)], names=names) tm.assert_index_equal(np.repeat(m, reps), expected) msg = "the 'axis' parameter is not supported" tm.assert_raises_regex( ValueError, msg, np.repeat, m, reps, axis=1) def test_set_name_methods(self): # so long as these are synonyms, we don't need to test set_names assert self.index.rename == self.index.set_names new_names = [name + "SUFFIX" for name in self.index_names] ind = self.index.set_names(new_names) assert self.index.names == self.index_names assert ind.names == new_names with tm.assert_raises_regex(ValueError, "^Length"): ind.set_names(new_names + new_names) new_names2 = [name + "SUFFIX2" for name in new_names] res = ind.set_names(new_names2, inplace=True) assert res is None assert ind.names == new_names2 # set names for specific level (# GH7792) ind = self.index.set_names(new_names[0], level=0) assert self.index.names == self.index_names assert ind.names == [new_names[0], self.index_names[1]] res = ind.set_names(new_names2[0], level=0, inplace=True) assert res is None assert ind.names == [new_names2[0], self.index_names[1]] # set names for multiple levels ind = self.index.set_names(new_names, level=[0, 1]) assert self.index.names == self.index_names assert ind.names == new_names res = ind.set_names(new_names2, level=[0, 1], inplace=True) assert res is None assert ind.names == new_names2 @pytest.mark.parametrize('inplace', [True, False]) def test_set_names_with_nlevel_1(self, inplace): # GH 21149 # Ensure that .set_names for MultiIndex with # nlevels == 1 does not raise any errors expected = pd.MultiIndex(levels=[[0, 1]], labels=[[0, 1]], names=['first']) m = pd.MultiIndex.from_product([[0, 1]]) result = m.set_names('first', level=0, inplace=inplace) if inplace: result = m tm.assert_index_equal(result, expected) def test_set_levels_labels_directly(self): # setting levels/labels directly raises AttributeError levels = self.index.levels new_levels = [[lev + 'a' for lev in level] for level in levels] labels = self.index.labels major_labels, minor_labels = labels major_labels = [(x + 1) % 3 for x in major_labels] minor_labels = [(x + 1) % 1 for x in minor_labels] new_labels = [major_labels, minor_labels] with pytest.raises(AttributeError): self.index.levels = new_levels with pytest.raises(AttributeError): self.index.labels = new_labels def test_set_levels(self): # side note - you probably wouldn't want to use levels and labels # directly like this - but it is possible. levels = self.index.levels new_levels = [[lev + 'a' for lev in level] for level in levels] def assert_matching(actual, expected, check_dtype=False): # avoid specifying internal representation # as much as possible assert len(actual) == len(expected) for act, exp in zip(actual, expected): act = np.asarray(act) exp = np.asarray(exp) tm.assert_numpy_array_equal(act, exp, check_dtype=check_dtype) # level changing [w/o mutation] ind2 = self.index.set_levels(new_levels) assert_matching(ind2.levels, new_levels) assert_matching(self.index.levels, levels) # level changing [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_levels(new_levels, inplace=True) assert inplace_return is None assert_matching(ind2.levels, new_levels) # level changing specific level [w/o mutation] ind2 = self.index.set_levels(new_levels[0], level=0) assert_matching(ind2.levels, [new_levels[0], levels[1]]) assert_matching(self.index.levels, levels) ind2 = self.index.set_levels(new_levels[1], level=1) assert_matching(ind2.levels, [levels[0], new_levels[1]]) assert_matching(self.index.levels, levels) # level changing multiple levels [w/o mutation] ind2 = self.index.set_levels(new_levels, level=[0, 1]) assert_matching(ind2.levels, new_levels) assert_matching(self.index.levels, levels) # level changing specific level [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_levels(new_levels[0], level=0, inplace=True) assert inplace_return is None assert_matching(ind2.levels, [new_levels[0], levels[1]]) assert_matching(self.index.levels, levels) ind2 = self.index.copy() inplace_return = ind2.set_levels(new_levels[1], level=1, inplace=True) assert inplace_return is None assert_matching(ind2.levels, [levels[0], new_levels[1]]) assert_matching(self.index.levels, levels) # level changing multiple levels [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_levels(new_levels, level=[0, 1], inplace=True) assert inplace_return is None assert_matching(ind2.levels, new_levels) assert_matching(self.index.levels, levels) # illegal level changing should not change levels # GH 13754 original_index = self.index.copy() for inplace in [True, False]: with tm.assert_raises_regex(ValueError, "^On"): self.index.set_levels(['c'], level=0, inplace=inplace) assert_matching(self.index.levels, original_index.levels, check_dtype=True) with tm.assert_raises_regex(ValueError, "^On"): self.index.set_labels([0, 1, 2, 3, 4, 5], level=0, inplace=inplace) assert_matching(self.index.labels, original_index.labels, check_dtype=True) with tm.assert_raises_regex(TypeError, "^Levels"): self.index.set_levels('c', level=0, inplace=inplace) assert_matching(self.index.levels, original_index.levels, check_dtype=True) with tm.assert_raises_regex(TypeError, "^Labels"): self.index.set_labels(1, level=0, inplace=inplace) assert_matching(self.index.labels, original_index.labels, check_dtype=True) def test_set_labels(self): # side note - you probably wouldn't want to use levels and labels # directly like this - but it is possible. labels = self.index.labels major_labels, minor_labels = labels major_labels = [(x + 1) % 3 for x in major_labels] minor_labels = [(x + 1) % 1 for x in minor_labels] new_labels = [major_labels, minor_labels] def assert_matching(actual, expected): # avoid specifying internal representation # as much as possible assert len(actual) == len(expected) for act, exp in zip(actual, expected): act = np.asarray(act) exp = np.asarray(exp, dtype=np.int8) tm.assert_numpy_array_equal(act, exp) # label changing [w/o mutation] ind2 = self.index.set_labels(new_labels) assert_matching(ind2.labels, new_labels) assert_matching(self.index.labels, labels) # label changing [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_labels(new_labels, inplace=True) assert inplace_return is None assert_matching(ind2.labels, new_labels) # label changing specific level [w/o mutation] ind2 = self.index.set_labels(new_labels[0], level=0) assert_matching(ind2.labels, [new_labels[0], labels[1]]) assert_matching(self.index.labels, labels) ind2 = self.index.set_labels(new_labels[1], level=1) assert_matching(ind2.labels, [labels[0], new_labels[1]]) assert_matching(self.index.labels, labels) # label changing multiple levels [w/o mutation] ind2 = self.index.set_labels(new_labels, level=[0, 1]) assert_matching(ind2.labels, new_labels) assert_matching(self.index.labels, labels) # label changing specific level [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_labels(new_labels[0], level=0, inplace=True) assert inplace_return is None assert_matching(ind2.labels, [new_labels[0], labels[1]]) assert_matching(self.index.labels, labels) ind2 = self.index.copy() inplace_return = ind2.set_labels(new_labels[1], level=1, inplace=True) assert inplace_return is None assert_matching(ind2.labels, [labels[0], new_labels[1]]) assert_matching(self.index.labels, labels) # label changing multiple levels [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_labels(new_labels, level=[0, 1], inplace=True) assert inplace_return is None assert_matching(ind2.labels, new_labels) assert_matching(self.index.labels, labels) # label changing for levels of different magnitude of categories ind = pd.MultiIndex.from_tuples([(0, i) for i in range(130)]) new_labels = range(129, -1, -1) expected = pd.MultiIndex.from_tuples( [(0, i) for i in new_labels]) # [w/o mutation] result = ind.set_labels(labels=new_labels, level=1) assert result.equals(expected) # [w/ mutation] result = ind.copy() result.set_labels(labels=new_labels, level=1, inplace=True) assert result.equals(expected) def test_set_levels_labels_names_bad_input(self): levels, labels = self.index.levels, self.index.labels names = self.index.names with tm.assert_raises_regex(ValueError, 'Length of levels'): self.index.set_levels([levels[0]]) with tm.assert_raises_regex(ValueError, 'Length of labels'): self.index.set_labels([labels[0]]) with tm.assert_raises_regex(ValueError, 'Length of names'): self.index.set_names([names[0]]) # shouldn't scalar data error, instead should demand list-like with tm.assert_raises_regex(TypeError, 'list of lists-like'): self.index.set_levels(levels[0]) # shouldn't scalar data error, instead should demand list-like with tm.assert_raises_regex(TypeError, 'list of lists-like'): self.index.set_labels(labels[0]) # shouldn't scalar data error, instead should demand list-like with tm.assert_raises_regex(TypeError, 'list-like'): self.index.set_names(names[0]) # should have equal lengths with tm.assert_raises_regex(TypeError, 'list of lists-like'): self.index.set_levels(levels[0], level=[0, 1]) with tm.assert_raises_regex(TypeError, 'list-like'): self.index.set_levels(levels, level=0) # should have equal lengths with tm.assert_raises_regex(TypeError, 'list of lists-like'): self.index.set_labels(labels[0], level=[0, 1]) with tm.assert_raises_regex(TypeError, 'list-like'): self.index.set_labels(labels, level=0) # should have equal lengths with tm.assert_raises_regex(ValueError, 'Length of names'): self.index.set_names(names[0], level=[0, 1]) with tm.assert_raises_regex(TypeError, 'string'): self.index.set_names(names, level=0) def test_set_levels_categorical(self): # GH13854 index = MultiIndex.from_arrays([list("xyzx"), [0, 1, 2, 3]]) for ordered in [False, True]: cidx = CategoricalIndex(list("bac"), ordered=ordered) result = index.set_levels(cidx, 0) expected = MultiIndex(levels=[cidx, [0, 1, 2, 3]], labels=index.labels) tm.assert_index_equal(result, expected) result_lvl = result.get_level_values(0) expected_lvl = CategoricalIndex(list("bacb"), categories=cidx.categories, ordered=cidx.ordered) tm.assert_index_equal(result_lvl, expected_lvl) def test_metadata_immutable(self): levels, labels = self.index.levels, self.index.labels # shouldn't be able to set at either the top level or base level mutable_regex = re.compile('does not support mutable operations') with tm.assert_raises_regex(TypeError, mutable_regex): levels[0] = levels[0] with tm.assert_raises_regex(TypeError, mutable_regex): levels[0][0] = levels[0][0] # ditto for labels with tm.assert_raises_regex(TypeError, mutable_regex): labels[0] = labels[0] with tm.assert_raises_regex(TypeError, mutable_regex): labels[0][0] = labels[0][0] # and for names names = self.index.names with tm.assert_raises_regex(TypeError, mutable_regex): names[0] = names[0] def test_inplace_mutation_resets_values(self): levels = [['a', 'b', 'c'], [4]] levels2 = [[1, 2, 3], ['a']] labels = [[0, 1, 0, 2, 2, 0], [0, 0, 0, 0, 0, 0]] mi1 = MultiIndex(levels=levels, labels=labels) mi2 = MultiIndex(levels=levels2, labels=labels) vals = mi1.values.copy() vals2 = mi2.values.copy() assert mi1._tuples is not None # Make sure level setting works new_vals = mi1.set_levels(levels2).values tm.assert_almost_equal(vals2, new_vals) # Non-inplace doesn't kill _tuples [implementation detail] tm.assert_almost_equal(mi1._tuples, vals) # ...and values is still same too tm.assert_almost_equal(mi1.values, vals) # Inplace should kill _tuples mi1.set_levels(levels2, inplace=True) tm.assert_almost_equal(mi1.values, vals2) # Make sure label setting works too labels2 = [[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0]] exp_values = np.empty((6,), dtype=object) exp_values[:] = [(long(1), 'a')] * 6 # Must be 1d array of tuples assert exp_values.shape == (6,) new_values = mi2.set_labels(labels2).values # Not inplace shouldn't change tm.assert_almost_equal(mi2._tuples, vals2) # Should have correct values tm.assert_almost_equal(exp_values, new_values) # ...and again setting inplace should kill _tuples, etc mi2.set_labels(labels2, inplace=True) tm.assert_almost_equal(mi2.values, new_values) def test_copy_in_constructor(self): levels = np.array(["a", "b", "c"]) labels = np.array([1, 1, 2, 0, 0, 1, 1]) val = labels[0] mi = MultiIndex(levels=[levels, levels], labels=[labels, labels], copy=True) assert mi.labels[0][0] == val labels[0] = 15 assert mi.labels[0][0] == val val = levels[0] levels[0] = "PANDA" assert mi.levels[0][0] == val def test_set_value_keeps_names(self): # motivating example from #3742 lev1 = ['hans', 'hans', 'hans', 'grethe', 'grethe', 'grethe'] lev2 = ['1', '2', '3'] * 2 idx = pd.MultiIndex.from_arrays([lev1, lev2], names=['Name', 'Number']) df = pd.DataFrame( np.random.randn(6, 4), columns=['one', 'two', 'three', 'four'], index=idx) df = df.sort_index() assert df._is_copy is None assert df.index.names == ('Name', 'Number') df.at[('grethe', '4'), 'one'] = 99.34 assert df._is_copy is None assert df.index.names == ('Name', 'Number') def test_copy_names(self): # Check that adding a "names" parameter to the copy is honored # GH14302 multi_idx = pd.Index([(1, 2), (3, 4)], names=['MyName1', 'MyName2']) multi_idx1 = multi_idx.copy() assert multi_idx.equals(multi_idx1) assert multi_idx.names == ['MyName1', 'MyName2'] assert multi_idx1.names == ['MyName1', 'MyName2'] multi_idx2 = multi_idx.copy(names=['NewName1', 'NewName2']) assert multi_idx.equals(multi_idx2) assert multi_idx.names == ['MyName1', 'MyName2'] assert multi_idx2.names == ['NewName1', 'NewName2'] multi_idx3 = multi_idx.copy(name=['NewName1', 'NewName2']) assert multi_idx.equals(multi_idx3) assert multi_idx.names == ['MyName1', 'MyName2'] assert multi_idx3.names == ['NewName1', 'NewName2'] def test_names(self): # names are assigned in setup names = self.index_names level_names = [level.name for level in self.index.levels] assert names == level_names # setting bad names on existing index = self.index tm.assert_raises_regex(ValueError, "^Length of names", setattr, index, "names", list(index.names) + ["third"]) tm.assert_raises_regex(ValueError, "^Length of names", setattr, index, "names", []) # initializing with bad names (should always be equivalent) major_axis, minor_axis = self.index.levels major_labels, minor_labels = self.index.labels tm.assert_raises_regex(ValueError, "^Length of names", MultiIndex, levels=[major_axis, minor_axis], labels=[major_labels, minor_labels], names=['first']) tm.assert_raises_regex(ValueError, "^Length of names", MultiIndex, levels=[major_axis, minor_axis], labels=[major_labels, minor_labels], names=['first', 'second', 'third']) # names are assigned index.names = ["a", "b"] ind_names = list(index.names) level_names = [level.name for level in index.levels] assert ind_names == level_names def test_astype(self): expected = self.index.copy() actual = self.index.astype('O') assert_copy(actual.levels, expected.levels) assert_copy(actual.labels, expected.labels) self.check_level_names(actual, expected.names) with tm.assert_raises_regex(TypeError, "^Setting.*dtype.*object"): self.index.astype(np.dtype(int)) @pytest.mark.parametrize('ordered', [True, False]) def test_astype_category(self, ordered): # GH 18630 msg = '> 1 ndim Categorical are not supported at this time' with tm.assert_raises_regex(NotImplementedError, msg): self.index.astype(CategoricalDtype(ordered=ordered)) if ordered is False: # dtype='category' defaults to ordered=False, so only test once with tm.assert_raises_regex(NotImplementedError, msg): self.index.astype('category') def test_constructor_single_level(self): result = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux']], labels=[[0, 1, 2, 3]], names=['first']) assert isinstance(result, MultiIndex) expected = Index(['foo', 'bar', 'baz', 'qux'], name='first') tm.assert_index_equal(result.levels[0], expected) assert result.names == ['first'] def test_constructor_no_levels(self): tm.assert_raises_regex(ValueError, "non-zero number " "of levels/labels", MultiIndex, levels=[], labels=[]) both_re = re.compile('Must pass both levels and labels') with tm.assert_raises_regex(TypeError, both_re): MultiIndex(levels=[]) with tm.assert_raises_regex(TypeError, both_re): MultiIndex(labels=[]) def test_constructor_mismatched_label_levels(self): labels = [np.array([1]), np.array([2]), np.array([3])] levels = ["a"] tm.assert_raises_regex(ValueError, "Length of levels and labels " "must be the same", MultiIndex, levels=levels, labels=labels) length_error = re.compile('>= length of level') label_error = re.compile(r'Unequal label lengths: \[4, 2\]') # important to check that it's looking at the right thing. with tm.assert_raises_regex(ValueError, length_error): MultiIndex(levels=[['a'], ['b']], labels=[[0, 1, 2, 3], [0, 3, 4, 1]]) with tm.assert_raises_regex(ValueError, label_error): MultiIndex(levels=[['a'], ['b']], labels=[[0, 0, 0, 0], [0, 0]]) # external API with tm.assert_raises_regex(ValueError, length_error): self.index.copy().set_levels([['a'], ['b']]) with tm.assert_raises_regex(ValueError, label_error): self.index.copy().set_labels([[0, 0, 0, 0], [0, 0]]) def test_constructor_nonhashable_names(self): # GH 20527 levels = [[1, 2], [u'one', u'two']] labels = [[0, 0, 1, 1], [0, 1, 0, 1]] names = ((['foo'], ['bar'])) message = "MultiIndex.name must be a hashable type" tm.assert_raises_regex(TypeError, message, MultiIndex, levels=levels, labels=labels, names=names) # With .rename() mi = MultiIndex(levels=[[1, 2], [u'one', u'two']], labels=[[0, 0, 1, 1], [0, 1, 0, 1]], names=('foo', 'bar')) renamed = [['foor'], ['barr']] tm.assert_raises_regex(TypeError, message, mi.rename, names=renamed) # With .set_names() tm.assert_raises_regex(TypeError, message, mi.set_names, names=renamed) @pytest.mark.parametrize('names', [['a', 'b', 'a'], ['1', '1', '2'], ['1', 'a', '1']]) def test_duplicate_level_names(self, names): # GH18872 pytest.raises(ValueError, pd.MultiIndex.from_product, [[0, 1]] * 3, names=names) # With .rename() mi = pd.MultiIndex.from_product([[0, 1]] * 3) tm.assert_raises_regex(ValueError, "Duplicated level name:", mi.rename, names) # With .rename(., level=) mi.rename(names[0], level=1, inplace=True) tm.assert_raises_regex(ValueError, "Duplicated level name:", mi.rename, names[:2], level=[0, 2]) def assert_multiindex_copied(self, copy, original): # Levels should be (at least, shallow copied) tm.assert_copy(copy.levels, original.levels) tm.assert_almost_equal(copy.labels, original.labels) # Labels doesn't matter which way copied tm.assert_almost_equal(copy.labels, original.labels) assert copy.labels is not original.labels # Names doesn't matter which way copied assert copy.names == original.names assert copy.names is not original.names # Sort order should be copied assert copy.sortorder == original.sortorder def test_copy(self): i_copy = self.index.copy() self.assert_multiindex_copied(i_copy, self.index) def test_shallow_copy(self): i_copy = self.index._shallow_copy() self.assert_multiindex_copied(i_copy, self.index) def test_view(self): i_view = self.index.view() self.assert_multiindex_copied(i_view, self.index) def check_level_names(self, index, names): assert [level.name for level in index.levels] == list(names) def test_changing_names(self): # names should be applied to levels level_names = [level.name for level in self.index.levels] self.check_level_names(self.index, self.index.names) view = self.index.view() copy = self.index.copy() shallow_copy = self.index._shallow_copy() # changing names should change level names on object new_names = [name + "a" for name in self.index.names] self.index.names = new_names self.check_level_names(self.index, new_names) # but not on copies self.check_level_names(view, level_names) self.check_level_names(copy, level_names) self.check_level_names(shallow_copy, level_names) # and copies shouldn't change original shallow_copy.names = [name + "c" for name in shallow_copy.names] self.check_level_names(self.index, new_names) def test_get_level_number_integer(self): self.index.names = [1, 0] assert self.index._get_level_number(1) == 0 assert self.index._get_level_number(0) == 1 pytest.raises(IndexError, self.index._get_level_number, 2) tm.assert_raises_regex(KeyError, 'Level fourth not found', self.index._get_level_number, 'fourth') def test_from_arrays(self): arrays = [] for lev, lab in zip(self.index.levels, self.index.labels): arrays.append(np.asarray(lev).take(lab)) # list of arrays as input result = MultiIndex.from_arrays(arrays, names=self.index.names) tm.assert_index_equal(result, self.index) # infer correctly result = MultiIndex.from_arrays([[pd.NaT, Timestamp('20130101')], ['a', 'b']]) assert result.levels[0].equals(Index([Timestamp('20130101')])) assert result.levels[1].equals(Index(['a', 'b'])) def test_from_arrays_iterator(self): # GH 18434 arrays = [] for lev, lab in zip(self.index.levels, self.index.labels): arrays.append(np.asarray(lev).take(lab)) # iterator as input result = MultiIndex.from_arrays(iter(arrays), names=self.index.names) tm.assert_index_equal(result, self.index) # invalid iterator input with tm.assert_raises_regex( TypeError, "Input must be a list / sequence of array-likes."): MultiIndex.from_arrays(0) def test_from_arrays_index_series_datetimetz(self): idx1 = pd.date_range('2015-01-01 10:00', freq='D', periods=3, tz='US/Eastern') idx2 = pd.date_range('2015-01-01 10:00', freq='H', periods=3, tz='Asia/Tokyo') result = pd.MultiIndex.from_arrays([idx1, idx2]) tm.assert_index_equal(result.get_level_values(0), idx1) tm.assert_index_equal(result.get_level_values(1), idx2) result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2)]) tm.assert_index_equal(result2.get_level_values(0), idx1) tm.assert_index_equal(result2.get_level_values(1), idx2) tm.assert_index_equal(result, result2) def test_from_arrays_index_series_timedelta(self): idx1 = pd.timedelta_range('1 days', freq='D', periods=3) idx2 = pd.timedelta_range('2 hours', freq='H', periods=3) result = pd.MultiIndex.from_arrays([idx1, idx2]) tm.assert_index_equal(result.get_level_values(0), idx1) tm.assert_index_equal(result.get_level_values(1), idx2) result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2)]) tm.assert_index_equal(result2.get_level_values(0), idx1) tm.assert_index_equal(result2.get_level_values(1), idx2) tm.assert_index_equal(result, result2) def test_from_arrays_index_series_period(self): idx1 = pd.period_range('2011-01-01', freq='D', periods=3) idx2 = pd.period_range('2015-01-01', freq='H', periods=3) result = pd.MultiIndex.from_arrays([idx1, idx2]) tm.assert_index_equal(result.get_level_values(0), idx1) tm.assert_index_equal(result.get_level_values(1), idx2) result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2)]) tm.assert_index_equal(result2.get_level_values(0), idx1) tm.assert_index_equal(result2.get_level_values(1), idx2) tm.assert_index_equal(result, result2) def test_from_arrays_index_datetimelike_mixed(self): idx1 = pd.date_range('2015-01-01 10:00', freq='D', periods=3, tz='US/Eastern') idx2 = pd.date_range('2015-01-01 10:00', freq='H', periods=3) idx3 = pd.timedelta_range('1 days', freq='D', periods=3) idx4 = pd.period_range('2011-01-01', freq='D', periods=3) result = pd.MultiIndex.from_arrays([idx1, idx2, idx3, idx4]) tm.assert_index_equal(result.get_level_values(0), idx1) tm.assert_index_equal(result.get_level_values(1), idx2) tm.assert_index_equal(result.get_level_values(2), idx3) tm.assert_index_equal(result.get_level_values(3), idx4) result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2), pd.Series(idx3), pd.Series(idx4)]) tm.assert_index_equal(result2.get_level_values(0), idx1) tm.assert_index_equal(result2.get_level_values(1), idx2) tm.assert_index_equal(result2.get_level_values(2), idx3) tm.assert_index_equal(result2.get_level_values(3), idx4) tm.assert_index_equal(result, result2) def test_from_arrays_index_series_categorical(self): # GH13743 idx1 = pd.CategoricalIndex(list("abcaab"), categories=list("bac"), ordered=False) idx2 = pd.CategoricalIndex(list("abcaab"), categories=list("bac"), ordered=True) result = pd.MultiIndex.from_arrays([idx1, idx2]) tm.assert_index_equal(result.get_level_values(0), idx1) tm.assert_index_equal(result.get_level_values(1), idx2) result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2)]) tm.assert_index_equal(result2.get_level_values(0), idx1) tm.assert_index_equal(result2.get_level_values(1), idx2) result3 = pd.MultiIndex.from_arrays([idx1.values, idx2.values]) tm.assert_index_equal(result3.get_level_values(0), idx1) tm.assert_index_equal(result3.get_level_values(1), idx2) def test_from_arrays_empty(self): # 0 levels with tm.assert_raises_regex( ValueError, "Must pass non-zero number of levels/labels"): MultiIndex.from_arrays(arrays=[]) # 1 level result = MultiIndex.from_arrays(arrays=[[]], names=['A']) assert isinstance(result, MultiIndex) expected = Index([], name='A') tm.assert_index_equal(result.levels[0], expected) # N levels for N in [2, 3]: arrays = [[]] * N names = list('ABC')[:N] result = MultiIndex.from_arrays(arrays=arrays, names=names) expected = MultiIndex(levels=[[]] * N, labels=[[]] * N, names=names) tm.assert_index_equal(result, expected) def test_from_arrays_invalid_input(self): invalid_inputs = [1, [1], [1, 2], [[1], 2], 'a', ['a'], ['a', 'b'], [['a'], 'b']] for i in invalid_inputs: pytest.raises(TypeError, MultiIndex.from_arrays, arrays=i) def test_from_arrays_different_lengths(self): # see gh-13599 idx1 = [1, 2, 3] idx2 = ['a', 'b'] tm.assert_raises_regex(ValueError, '^all arrays must ' 'be same length$', MultiIndex.from_arrays, [idx1, idx2]) idx1 = [] idx2 = ['a', 'b'] tm.assert_raises_regex(ValueError, '^all arrays must ' 'be same length$', MultiIndex.from_arrays, [idx1, idx2]) idx1 = [1, 2, 3] idx2 = [] tm.assert_raises_regex(ValueError, '^all arrays must ' 'be same length$', MultiIndex.from_arrays, [idx1, idx2]) def test_from_product(self): first = ['foo', 'bar', 'buz'] second = ['a', 'b', 'c'] names = ['first', 'second'] result = MultiIndex.from_product([first, second], names=names) tuples = [('foo', 'a'), ('foo', 'b'), ('foo', 'c'), ('bar', 'a'), ('bar', 'b'), ('bar', 'c'), ('buz', 'a'), ('buz', 'b'), ('buz', 'c')] expected = MultiIndex.from_tuples(tuples, names=names) tm.assert_index_equal(result, expected) def test_from_product_iterator(self): # GH 18434 first = ['foo', 'bar', 'buz'] second = ['a', 'b', 'c'] names = ['first', 'second'] tuples = [('foo', 'a'), ('foo', 'b'), ('foo', 'c'), ('bar', 'a'), ('bar', 'b'), ('bar', 'c'), ('buz', 'a'), ('buz', 'b'), ('buz', 'c')] expected = MultiIndex.from_tuples(tuples, names=names) # iterator as input result = MultiIndex.from_product(iter([first, second]), names=names) tm.assert_index_equal(result, expected) # Invalid non-iterable input with tm.assert_raises_regex( TypeError, "Input must be a list / sequence of iterables."): MultiIndex.from_product(0) def test_from_product_empty(self): # 0 levels with tm.assert_raises_regex( ValueError, "Must pass non-zero number of levels/labels"): MultiIndex.from_product([]) # 1 level result = MultiIndex.from_product([[]], names=['A']) expected = pd.Index([], name='A') tm.assert_index_equal(result.levels[0], expected) # 2 levels l1 = [[], ['foo', 'bar', 'baz'], []] l2 = [[], [], ['a', 'b', 'c']] names = ['A', 'B'] for first, second in zip(l1, l2): result = MultiIndex.from_product([first, second], names=names) expected = MultiIndex(levels=[first, second], labels=[[], []], names=names) tm.assert_index_equal(result, expected) # GH12258 names = ['A', 'B', 'C'] for N in range(4): lvl2 = lrange(N) result = MultiIndex.from_product([[], lvl2, []], names=names) expected = MultiIndex(levels=[[], lvl2, []], labels=[[], [], []], names=names) tm.assert_index_equal(result, expected) def test_from_product_invalid_input(self): invalid_inputs = [1, [1], [1, 2], [[1], 2], 'a', ['a'], ['a', 'b'], [['a'], 'b']] for i in invalid_inputs: pytest.raises(TypeError, MultiIndex.from_product, iterables=i) def test_from_product_datetimeindex(self): dt_index = date_range('2000-01-01', periods=2) mi = pd.MultiIndex.from_product([[1, 2], dt_index]) etalon = construct_1d_object_array_from_listlike([(1, pd.Timestamp( '2000-01-01')), (1, pd.Timestamp('2000-01-02')), (2, pd.Timestamp( '2000-01-01')), (2, pd.Timestamp('2000-01-02'))]) tm.assert_numpy_array_equal(mi.values, etalon) def test_from_product_index_series_categorical(self): # GH13743 first = ['foo', 'bar'] for ordered in [False, True]: idx = pd.CategoricalIndex(list("abcaab"), categories=list("bac"), ordered=ordered) expected = pd.CategoricalIndex(list("abcaab") + list("abcaab"), categories=list("bac"), ordered=ordered) for arr in [idx, pd.Series(idx), idx.values]: result = pd.MultiIndex.from_product([first, arr]) tm.assert_index_equal(result.get_level_values(1), expected) def test_values_boxed(self): tuples = [(1, pd.Timestamp('2000-01-01')), (2, pd.NaT), (3, pd.Timestamp('2000-01-03')), (1, pd.Timestamp('2000-01-04')), (2, pd.Timestamp('2000-01-02')), (3, pd.Timestamp('2000-01-03'))] result = pd.MultiIndex.from_tuples(tuples) expected = construct_1d_object_array_from_listlike(tuples) tm.assert_numpy_array_equal(result.values, expected) # Check that code branches for boxed values produce identical results tm.assert_numpy_array_equal(result.values[:4], result[:4].values) def test_values_multiindex_datetimeindex(self): # Test to ensure we hit the boxing / nobox part of MI.values ints = np.arange(10 ** 18, 10 ** 18 + 5) naive = pd.DatetimeIndex(ints) aware = pd.DatetimeIndex(ints, tz='US/Central') idx = pd.MultiIndex.from_arrays([naive, aware]) result = idx.values outer = pd.DatetimeIndex([x[0] for x in result]) tm.assert_index_equal(outer, naive) inner = pd.DatetimeIndex([x[1] for x in result]) tm.assert_index_equal(inner, aware) # n_lev > n_lab result = idx[:2].values outer = pd.DatetimeIndex([x[0] for x in result]) tm.assert_index_equal(outer, naive[:2]) inner = pd.DatetimeIndex([x[1] for x in result]) tm.assert_index_equal(inner, aware[:2]) def test_values_multiindex_periodindex(self): # Test to ensure we hit the boxing / nobox part of MI.values ints = np.arange(2007, 2012) pidx = pd.PeriodIndex(ints, freq='D') idx = pd.MultiIndex.from_arrays([ints, pidx]) result = idx.values outer = pd.Int64Index([x[0] for x in result]) tm.assert_index_equal(outer, pd.Int64Index(ints)) inner = pd.PeriodIndex([x[1] for x in result]) tm.assert_index_equal(inner, pidx) # n_lev > n_lab result = idx[:2].values outer = pd.Int64Index([x[0] for x in result]) tm.assert_index_equal(outer, pd.Int64Index(ints[:2])) inner = pd.PeriodIndex([x[1] for x in result]) tm.assert_index_equal(inner, pidx[:2]) def test_append(self): result = self.index[:3].append(self.index[3:]) assert result.equals(self.index) foos = [self.index[:1], self.index[1:3], self.index[3:]] result = foos[0].append(foos[1:]) assert result.equals(self.index) # empty result = self.index.append([]) assert result.equals(self.index) def test_append_mixed_dtypes(self): # GH 13660 dti = date_range('2011-01-01', freq='M', periods=3, ) dti_tz = date_range('2011-01-01', freq='M', periods=3, tz='US/Eastern') pi = period_range('2011-01', freq='M', periods=3) mi = MultiIndex.from_arrays([[1, 2, 3], [1.1, np.nan, 3.3], ['a', 'b', 'c'], dti, dti_tz, pi]) assert mi.nlevels == 6 res = mi.append(mi) exp = MultiIndex.from_arrays([[1, 2, 3, 1, 2, 3], [1.1, np.nan, 3.3, 1.1, np.nan, 3.3], ['a', 'b', 'c', 'a', 'b', 'c'], dti.append(dti), dti_tz.append(dti_tz), pi.append(pi)]) tm.assert_index_equal(res, exp) other = MultiIndex.from_arrays([['x', 'y', 'z'], ['x', 'y', 'z'], ['x', 'y', 'z'], ['x', 'y', 'z'], ['x', 'y', 'z'], ['x', 'y', 'z']]) res = mi.append(other) exp = MultiIndex.from_arrays([[1, 2, 3, 'x', 'y', 'z'], [1.1, np.nan, 3.3, 'x', 'y', 'z'], ['a', 'b', 'c', 'x', 'y', 'z'], dti.append(pd.Index(['x', 'y', 'z'])), dti_tz.append(pd.Index(['x', 'y', 'z'])), pi.append(pd.Index(['x', 'y', 'z']))]) tm.assert_index_equal(res, exp) def test_get_level_values(self): result = self.index.get_level_values(0) expected = Index(['foo', 'foo', 'bar', 'baz', 'qux', 'qux'], name='first') tm.assert_index_equal(result, expected) assert result.name == 'first' result = self.index.get_level_values('first') expected = self.index.get_level_values(0) tm.assert_index_equal(result, expected) # GH 10460 index = MultiIndex( levels=[CategoricalIndex(['A', 'B']), CategoricalIndex([1, 2, 3])], labels=[np.array([0, 0, 0, 1, 1, 1]), np.array([0, 1, 2, 0, 1, 2])]) exp = CategoricalIndex(['A', 'A', 'A', 'B', 'B', 'B']) tm.assert_index_equal(index.get_level_values(0), exp) exp = CategoricalIndex([1, 2, 3, 1, 2, 3]) tm.assert_index_equal(index.get_level_values(1), exp) def test_get_level_values_int_with_na(self): # GH 17924 arrays = [['a', 'b', 'b'], [1, np.nan, 2]] index = pd.MultiIndex.from_arrays(arrays) result = index.get_level_values(1) expected = Index([1, np.nan, 2]) tm.assert_index_equal(result, expected) arrays = [['a', 'b', 'b'], [np.nan, np.nan, 2]] index = pd.MultiIndex.from_arrays(arrays) result = index.get_level_values(1) expected = Index([np.nan, np.nan, 2]) tm.assert_index_equal(result, expected) def test_get_level_values_na(self): arrays = [[np.nan, np.nan, np.nan], ['a', np.nan, 1]] index = pd.MultiIndex.from_arrays(arrays) result = index.get_level_values(0) expected = pd.Index([np.nan, np.nan, np.nan]) tm.assert_index_equal(result, expected) result = index.get_level_values(1) expected = pd.Index(['a', np.nan, 1]) tm.assert_index_equal(result, expected) arrays = [['a', 'b', 'b'], pd.DatetimeIndex([0, 1, pd.NaT])] index = pd.MultiIndex.from_arrays(arrays) result = index.get_level_values(1) expected = pd.DatetimeIndex([0, 1, pd.NaT]) tm.assert_index_equal(result, expected) arrays = [[], []] index = pd.MultiIndex.from_arrays(arrays) result = index.get_level_values(0) expected = pd.Index([], dtype=object) tm.assert_index_equal(result, expected) def test_get_level_values_all_na(self): # GH 17924 when level entirely consists of nan arrays = [[np.nan, np.nan, np.nan], ['a', np.nan, 1]] index = pd.MultiIndex.from_arrays(arrays) result = index.get_level_values(0) expected = pd.Index([np.nan, np.nan, np.nan], dtype=np.float64) tm.assert_index_equal(result, expected) result = index.get_level_values(1) expected = pd.Index(['a', np.nan, 1], dtype=object) tm.assert_index_equal(result, expected) def test_reorder_levels(self): # this blows up tm.assert_raises_regex(IndexError, '^Too many levels', self.index.reorder_levels, [2, 1, 0]) def test_nlevels(self): assert self.index.nlevels == 2 def test_iter(self): result = list(self.index) expected = [('foo', 'one'), ('foo', 'two'), ('bar', 'one'), ('baz', 'two'), ('qux', 'one'), ('qux', 'two')] assert result == expected def test_legacy_pickle(self): if PY3: pytest.skip("testing for legacy pickles not " "support on py3") path = tm.get_data_path('multiindex_v1.pickle') obj = pd.read_pickle(path) obj2 = MultiIndex.from_tuples(obj.values) assert obj.equals(obj2) res = obj.get_indexer(obj) exp = np.arange(len(obj), dtype=np.intp) assert_almost_equal(res, exp) res = obj.get_indexer(obj2[::-1]) exp = obj.get_indexer(obj[::-1]) exp2 = obj2.get_indexer(obj2[::-1]) assert_almost_equal(res, exp) assert_almost_equal(exp, exp2) def test_legacy_v2_unpickle(self): # 0.7.3 -> 0.8.0 format manage path = tm.get_data_path('mindex_073.pickle') obj = pd.read_pickle(path) obj2 = MultiIndex.from_tuples(obj.values) assert obj.equals(obj2) res = obj.get_indexer(obj) exp = np.arange(len(obj), dtype=np.intp) assert_almost_equal(res, exp) res = obj.get_indexer(obj2[::-1]) exp = obj.get_indexer(obj[::-1]) exp2 = obj2.get_indexer(obj2[::-1]) assert_almost_equal(res, exp) assert_almost_equal(exp, exp2) def test_roundtrip_pickle_with_tz(self): # GH 8367 # round-trip of timezone index = MultiIndex.from_product( [[1, 2], ['a', 'b'], date_range('20130101', periods=3, tz='US/Eastern') ], names=['one', 'two', 'three']) unpickled = tm.round_trip_pickle(index) assert index.equal_levels(unpickled) def test_from_tuples_index_values(self): result = MultiIndex.from_tuples(self.index) assert (result.values == self.index.values).all() def test_contains(self): assert ('foo', 'two') in self.index assert ('bar', 'two') not in self.index assert None not in self.index def test_contains_top_level(self): midx = MultiIndex.from_product([['A', 'B'], [1, 2]]) assert 'A' in midx assert 'A' not in midx._engine def test_contains_with_nat(self): # MI with a NaT mi = MultiIndex(levels=[['C'], pd.date_range('2012-01-01', periods=5)], labels=[[0, 0, 0, 0, 0, 0], [-1, 0, 1, 2, 3, 4]], names=[None, 'B']) assert ('C', pd.Timestamp('2012-01-01')) in mi for val in mi.values: assert val in mi def test_is_all_dates(self): assert not self.index.is_all_dates def test_is_numeric(self): # MultiIndex is never numeric assert not self.index.is_numeric() def test_getitem(self): # scalar assert self.index[2] == ('bar', 'one') # slice result = self.index[2:5] expected = self.index[[2, 3, 4]] assert result.equals(expected) # boolean result = self.index[[True, False, True, False, True, True]] result2 = self.index[np.array([True, False, True, False, True, True])] expected = self.index[[0, 2, 4, 5]] assert result.equals(expected) assert result2.equals(expected) def test_getitem_group_select(self): sorted_idx, _ = self.index.sortlevel(0) assert sorted_idx.get_loc('baz') == slice(3, 4) assert sorted_idx.get_loc('foo') == slice(0, 2) def test_get_loc(self): assert self.index.get_loc(('foo', 'two')) == 1 assert self.index.get_loc(('baz', 'two')) == 3 pytest.raises(KeyError, self.index.get_loc, ('bar', 'two')) pytest.raises(KeyError, self.index.get_loc, 'quux') pytest.raises(NotImplementedError, self.index.get_loc, 'foo', method='nearest') # 3 levels index = MultiIndex(levels=[Index(lrange(4)), Index(lrange(4)), Index( lrange(4))], labels=[np.array([0, 0, 1, 2, 2, 2, 3, 3]), np.array( [0, 1, 0, 0, 0, 1, 0, 1]), np.array([1, 0, 1, 1, 0, 0, 1, 0])]) pytest.raises(KeyError, index.get_loc, (1, 1)) assert index.get_loc((2, 0)) == slice(3, 5) def test_get_loc_duplicates(self): index = Index([2, 2, 2, 2]) result = index.get_loc(2) expected = slice(0, 4) assert result == expected # pytest.raises(Exception, index.get_loc, 2) index = Index(['c', 'a', 'a', 'b', 'b']) rs = index.get_loc('c') xp = 0 assert rs == xp def test_get_value_duplicates(self): index = MultiIndex(levels=[['D', 'B', 'C'], [0, 26, 27, 37, 57, 67, 75, 82]], labels=[[0, 0, 0, 1, 2, 2, 2, 2, 2, 2], [1, 3, 4, 6, 0, 2, 2, 3, 5, 7]], names=['tag', 'day']) assert index.get_loc('D') == slice(0, 3) with pytest.raises(KeyError): index._engine.get_value(np.array([]), 'D') def test_get_loc_level(self): index = MultiIndex(levels=[Index(lrange(4)), Index(lrange(4)), Index( lrange(4))], labels=[np.array([0, 0, 1, 2, 2, 2, 3, 3]), np.array( [0, 1, 0, 0, 0, 1, 0, 1]), np.array([1, 0, 1, 1, 0, 0, 1, 0])]) loc, new_index = index.get_loc_level((0, 1)) expected = slice(1, 2) exp_index = index[expected].droplevel(0).droplevel(0) assert loc == expected assert new_index.equals(exp_index) loc, new_index = index.get_loc_level((0, 1, 0)) expected = 1 assert loc == expected assert new_index is None pytest.raises(KeyError, index.get_loc_level, (2, 2)) index = MultiIndex(levels=[[2000], lrange(4)], labels=[np.array( [0, 0, 0, 0]), np.array([0, 1, 2, 3])]) result, new_index = index.get_loc_level((2000, slice(None, None))) expected = slice(None, None) assert result == expected assert new_index.equals(index.droplevel(0)) @pytest.mark.parametrize('level', [0, 1]) @pytest.mark.parametrize('null_val', [np.nan, pd.NaT, None]) def test_get_loc_nan(self, level, null_val): # GH 18485 : NaN in MultiIndex levels = [['a', 'b'], ['c', 'd']] key = ['b', 'd'] levels[level] = np.array([0, null_val], dtype=type(null_val)) key[level] = null_val idx = MultiIndex.from_product(levels) assert idx.get_loc(tuple(key)) == 3 def test_get_loc_missing_nan(self): # GH 8569 idx = MultiIndex.from_arrays([[1.0, 2.0], [3.0, 4.0]]) assert isinstance(idx.get_loc(1), slice) pytest.raises(KeyError, idx.get_loc, 3) pytest.raises(KeyError, idx.get_loc, np.nan) pytest.raises(KeyError, idx.get_loc, [np.nan]) @pytest.mark.parametrize('dtype1', [int, float, bool, str]) @pytest.mark.parametrize('dtype2', [int, float, bool, str]) def test_get_loc_multiple_dtypes(self, dtype1, dtype2): # GH 18520 levels = [np.array([0, 1]).astype(dtype1), np.array([0, 1]).astype(dtype2)] idx = pd.MultiIndex.from_product(levels) assert idx.get_loc(idx[2]) == 2 @pytest.mark.parametrize('level', [0, 1]) @pytest.mark.parametrize('dtypes', [[int, float], [float, int]]) def test_get_loc_implicit_cast(self, level, dtypes): # GH 18818, GH 15994 : as flat index, cast int to float and vice-versa levels = [['a', 'b'], ['c', 'd']] key = ['b', 'd'] lev_dtype, key_dtype = dtypes levels[level] = np.array([0, 1], dtype=lev_dtype) key[level] = key_dtype(1) idx = MultiIndex.from_product(levels) assert idx.get_loc(tuple(key)) == 3 def test_get_loc_cast_bool(self): # GH 19086 : int is casted to bool, but not vice-versa levels = [[False, True], np.arange(2, dtype='int64')] idx = MultiIndex.from_product(levels) assert idx.get_loc((0, 1)) == 1 assert idx.get_loc((1, 0)) == 2 pytest.raises(KeyError, idx.get_loc, (False, True)) pytest.raises(KeyError, idx.get_loc, (True, False)) def test_slice_locs(self): df = tm.makeTimeDataFrame() stacked = df.stack() idx = stacked.index slob = slice(*idx.slice_locs(df.index[5], df.index[15])) sliced = stacked[slob] expected = df[5:16].stack() tm.assert_almost_equal(sliced.values, expected.values) slob = slice(*idx.slice_locs(df.index[5] + timedelta(seconds=30), df.index[15] - timedelta(seconds=30))) sliced = stacked[slob] expected = df[6:15].stack() tm.assert_almost_equal(sliced.values, expected.values) def test_slice_locs_with_type_mismatch(self): df = tm.makeTimeDataFrame() stacked = df.stack() idx = stacked.index tm.assert_raises_regex(TypeError, '^Level type mismatch', idx.slice_locs, (1, 3)) tm.assert_raises_regex(TypeError, '^Level type mismatch', idx.slice_locs, df.index[5] + timedelta( seconds=30), (5, 2)) df = tm.makeCustomDataframe(5, 5) stacked = df.stack() idx = stacked.index with tm.assert_raises_regex(TypeError, '^Level type mismatch'): idx.slice_locs(timedelta(seconds=30)) # TODO: Try creating a UnicodeDecodeError in exception message with tm.assert_raises_regex(TypeError, '^Level type mismatch'): idx.slice_locs(df.index[1], (16, "a")) def test_slice_locs_not_sorted(self): index = MultiIndex(levels=[Index(lrange(4)), Index(lrange(4)), Index( lrange(4))], labels=[np.array([0, 0, 1, 2, 2, 2, 3, 3]), np.array( [0, 1, 0, 0, 0, 1, 0, 1]), np.array([1, 0, 1, 1, 0, 0, 1, 0])]) tm.assert_raises_regex(KeyError, "[Kk]ey length.*greater than " "MultiIndex lexsort depth", index.slice_locs, (1, 0, 1), (2, 1, 0)) # works sorted_index, _ = index.sortlevel(0) # should there be a test case here??? sorted_index.slice_locs((1, 0, 1), (2, 1, 0)) def test_slice_locs_partial(self): sorted_idx, _ = self.index.sortlevel(0) result = sorted_idx.slice_locs(('foo', 'two'), ('qux', 'one')) assert result == (1, 5) result = sorted_idx.slice_locs(None, ('qux', 'one')) assert result == (0, 5) result = sorted_idx.slice_locs(('foo', 'two'), None) assert result == (1, len(sorted_idx)) result = sorted_idx.slice_locs('bar', 'baz') assert result == (2, 4) def test_slice_locs_not_contained(self): # some searchsorted action index = MultiIndex(levels=[[0, 2, 4, 6], [0, 2, 4]], labels=[[0, 0, 0, 1, 1, 2, 3, 3, 3], [0, 1, 2, 1, 2, 2, 0, 1, 2]], sortorder=0) result = index.slice_locs((1, 0), (5, 2)) assert result == (3, 6) result = index.slice_locs(1, 5) assert result == (3, 6) result = index.slice_locs((2, 2), (5, 2)) assert result == (3, 6) result = index.slice_locs(2, 5) assert result == (3, 6) result = index.slice_locs((1, 0), (6, 3)) assert result == (3, 8) result = index.slice_locs(-1, 10) assert result == (0, len(index)) def test_consistency(self): # need to construct an overflow major_axis = lrange(70000) minor_axis = lrange(10) major_labels = np.arange(70000) minor_labels = np.repeat(lrange(10), 7000) # the fact that is works means it's consistent index = MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels]) # inconsistent major_labels = np.array([0, 0, 1, 1, 1, 2, 2, 3, 3]) minor_labels = np.array([0, 1, 0, 1, 1, 0, 1, 0, 1]) index = MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels]) assert not index.is_unique def test_truncate(self): major_axis = Index(lrange(4)) minor_axis = Index(lrange(2)) major_labels = np.array([0, 0, 1, 2, 3, 3]) minor_labels = np.array([0, 1, 0, 1, 0, 1]) index = MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels]) result = index.truncate(before=1) assert 'foo' not in result.levels[0] assert 1 in result.levels[0] result = index.truncate(after=1) assert 2 not in result.levels[0] assert 1 in result.levels[0] result = index.truncate(before=1, after=2) assert len(result.levels[0]) == 2 # after < before pytest.raises(ValueError, index.truncate, 3, 1) def test_get_indexer(self): major_axis = Index(lrange(4)) minor_axis = Index(lrange(2)) major_labels = np.array([0, 0, 1, 2, 2, 3, 3], dtype=np.intp) minor_labels = np.array([0, 1, 0, 0, 1, 0, 1], dtype=np.intp) index = MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels]) idx1 = index[:5] idx2 = index[[1, 3, 5]] r1 = idx1.get_indexer(idx2) assert_almost_equal(r1, np.array([1, 3, -1], dtype=np.intp)) r1 = idx2.get_indexer(idx1, method='pad') e1 = np.array([-1, 0, 0, 1, 1], dtype=np.intp) assert_almost_equal(r1, e1) r2 = idx2.get_indexer(idx1[::-1], method='pad') assert_almost_equal(r2, e1[::-1]) rffill1 = idx2.get_indexer(idx1, method='ffill') assert_almost_equal(r1, rffill1) r1 = idx2.get_indexer(idx1, method='backfill') e1 = np.array([0, 0, 1, 1, 2], dtype=np.intp) assert_almost_equal(r1, e1) r2 = idx2.get_indexer(idx1[::-1], method='backfill') assert_almost_equal(r2, e1[::-1]) rbfill1 = idx2.get_indexer(idx1, method='bfill') assert_almost_equal(r1, rbfill1) # pass non-MultiIndex r1 = idx1.get_indexer(idx2.values) rexp1 = idx1.get_indexer(idx2) assert_almost_equal(r1, rexp1) r1 = idx1.get_indexer([1, 2, 3]) assert (r1 == [-1, -1, -1]).all() # create index with duplicates idx1 = Index(lrange(10) + lrange(10)) idx2 = Index(lrange(20)) msg = "Reindexing only valid with uniquely valued Index objects" with tm.assert_raises_regex(InvalidIndexError, msg): idx1.get_indexer(idx2) def test_get_indexer_nearest(self): midx = MultiIndex.from_tuples([('a', 1), ('b', 2)]) with pytest.raises(NotImplementedError): midx.get_indexer(['a'], method='nearest') with pytest.raises(NotImplementedError): midx.get_indexer(['a'], method='pad', tolerance=2) def test_hash_collisions(self): # non-smoke test that we don't get hash collisions index = MultiIndex.from_product([np.arange(1000), np.arange(1000)], names=['one', 'two']) result = index.get_indexer(index.values) tm.assert_numpy_array_equal(result, np.arange( len(index), dtype='intp')) for i in [0, 1, len(index) - 2, len(index) - 1]: result = index.get_loc(index[i]) assert result == i def test_format(self): self.index.format() self.index[:0].format() def test_format_integer_names(self): index = MultiIndex(levels=[[0, 1], [0, 1]], labels=[[0, 0, 1, 1], [0, 1, 0, 1]], names=[0, 1]) index.format(names=True) def test_format_sparse_display(self): index = MultiIndex(levels=[[0, 1], [0, 1], [0, 1], [0]], labels=[[0, 0, 0, 1, 1, 1], [0, 0, 1, 0, 0, 1], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0]]) result = index.format() assert result[3] == '1 0 0 0' def test_format_sparse_config(self): warn_filters = warnings.filters warnings.filterwarnings('ignore', category=FutureWarning, module=".*format") # GH1538 pd.set_option('display.multi_sparse', False) result = self.index.format() assert result[1] == 'foo two' tm.reset_display_options() warnings.filters = warn_filters def test_to_frame(self): tuples = [(1, 'one'), (1, 'two'), (2, 'one'), (2, 'two')] index = MultiIndex.from_tuples(tuples) result = index.to_frame(index=False) expected = DataFrame(tuples) tm.assert_frame_equal(result, expected) result = index.to_frame() expected.index = index tm.assert_frame_equal(result, expected) tuples = [(1, 'one'), (1, 'two'), (2, 'one'), (2, 'two')] index = MultiIndex.from_tuples(tuples, names=['first', 'second']) result = index.to_frame(index=False) expected = DataFrame(tuples) expected.columns = ['first', 'second'] tm.assert_frame_equal(result, expected) result = index.to_frame() expected.index = index tm.assert_frame_equal(result, expected) index = MultiIndex.from_product([range(5), pd.date_range('20130101', periods=3)]) result = index.to_frame(index=False) expected = DataFrame( {0: np.repeat(np.arange(5, dtype='int64'), 3), 1: np.tile(pd.date_range('20130101', periods=3), 5)}) tm.assert_frame_equal(result, expected) index = MultiIndex.from_product([range(5), pd.date_range('20130101', periods=3)]) result = index.to_frame() expected.index = index tm.assert_frame_equal(result, expected) def test_to_hierarchical(self): index = MultiIndex.from_tuples([(1, 'one'), (1, 'two'), (2, 'one'), ( 2, 'two')]) result = index.to_hierarchical(3) expected = MultiIndex(levels=[[1, 2], ['one', 'two']], labels=[[0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1], [0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1]]) tm.assert_index_equal(result, expected) assert result.names == index.names # K > 1 result = index.to_hierarchical(3, 2) expected = MultiIndex(levels=[[1, 2], ['one', 'two']], labels=[[0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1], [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]]) tm.assert_index_equal(result, expected) assert result.names == index.names # non-sorted index = MultiIndex.from_tuples([(2, 'c'), (1, 'b'), (2, 'a'), (2, 'b')], names=['N1', 'N2']) result = index.to_hierarchical(2) expected = MultiIndex.from_tuples([(2, 'c'), (2, 'c'), (1, 'b'), (1, 'b'), (2, 'a'), (2, 'a'), (2, 'b'), (2, 'b')], names=['N1', 'N2']) tm.assert_index_equal(result, expected) assert result.names == index.names def test_bounds(self): self.index._bounds def test_equals_multi(self): assert self.index.equals(self.index) assert not self.index.equals(self.index.values) assert self.index.equals(Index(self.index.values)) assert self.index.equal_levels(self.index) assert not self.index.equals(self.index[:-1]) assert not self.index.equals(self.index[-1]) # different number of levels index = MultiIndex(levels=[Index(lrange(4)), Index(lrange(4)), Index( lrange(4))], labels=[np.array([0, 0, 1, 2, 2, 2, 3, 3]), np.array( [0, 1, 0, 0, 0, 1, 0, 1]), np.array([1, 0, 1, 1, 0, 0, 1, 0])]) index2 = MultiIndex(levels=index.levels[:-1], labels=index.labels[:-1]) assert not index.equals(index2) assert not index.equal_levels(index2) # levels are different major_axis = Index(lrange(4)) minor_axis = Index(lrange(2)) major_labels = np.array([0, 0, 1, 2, 2, 3]) minor_labels = np.array([0, 1, 0, 0, 1, 0]) index = MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels]) assert not self.index.equals(index) assert not self.index.equal_levels(index) # some of the labels are different major_axis = Index(['foo', 'bar', 'baz', 'qux']) minor_axis = Index(['one', 'two']) major_labels = np.array([0, 0, 2, 2, 3, 3]) minor_labels = np.array([0, 1, 0, 1, 0, 1]) index = MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels]) assert not self.index.equals(index) def test_equals_missing_values(self): # make sure take is not using -1 i = pd.MultiIndex.from_tuples([(0, pd.NaT), (0, pd.Timestamp('20130101'))]) result = i[0:1].equals(i[0]) assert not result result = i[1:2].equals(i[1]) assert not result def test_identical(self): mi = self.index.copy() mi2 = self.index.copy() assert mi.identical(mi2) mi = mi.set_names(['new1', 'new2']) assert mi.equals(mi2) assert not mi.identical(mi2) mi2 = mi2.set_names(['new1', 'new2']) assert mi.identical(mi2) mi3 = Index(mi.tolist(), names=mi.names) mi4 = Index(mi.tolist(), names=mi.names, tupleize_cols=False) assert mi.identical(mi3) assert not mi.identical(mi4) assert mi.equals(mi4) def test_is_(self): mi = MultiIndex.from_tuples(lzip(range(10), range(10))) assert mi.is_(mi) assert mi.is_(mi.view()) assert mi.is_(mi.view().view().view().view()) mi2 = mi.view() # names are metadata, they don't change id mi2.names = ["A", "B"] assert mi2.is_(mi) assert mi.is_(mi2) assert mi.is_(mi.set_names(["C", "D"])) mi2 = mi.view() mi2.set_names(["E", "F"], inplace=True) assert mi.is_(mi2) # levels are inherent properties, they change identity mi3 = mi2.set_levels([lrange(10), lrange(10)]) assert not mi3.is_(mi2) # shouldn't change assert mi2.is_(mi) mi4 = mi3.view() # GH 17464 - Remove duplicate MultiIndex levels mi4.set_levels([lrange(10), lrange(10)], inplace=True) assert not mi4.is_(mi3) mi5 = mi.view() mi5.set_levels(mi5.levels, inplace=True) assert not mi5.is_(mi) def test_union(self): piece1 = self.index[:5][::-1] piece2 = self.index[3:] the_union = piece1 | piece2 tups = sorted(self.index.values) expected = MultiIndex.from_tuples(tups) assert the_union.equals(expected) # corner case, pass self or empty thing: the_union = self.index.union(self.index) assert the_union is self.index the_union = self.index.union(self.index[:0]) assert the_union is self.index # won't work in python 3 # tuples = self.index.values # result = self.index[:4] | tuples[4:] # assert result.equals(tuples) # not valid for python 3 # def test_union_with_regular_index(self): # other = Index(['A', 'B', 'C']) # result = other.union(self.index) # assert ('foo', 'one') in result # assert 'B' in result # result2 = self.index.union(other) # assert result.equals(result2) def test_intersection(self): piece1 = self.index[:5][::-1] piece2 = self.index[3:] the_int = piece1 & piece2 tups = sorted(self.index[3:5].values) expected = MultiIndex.from_tuples(tups) assert the_int.equals(expected) # corner case, pass self the_int = self.index.intersection(self.index) assert the_int is self.index # empty intersection: disjoint empty = self.index[:2] & self.index[2:] expected = self.index[:0] assert empty.equals(expected) # can't do in python 3 # tuples = self.index.values # result = self.index & tuples # assert result.equals(tuples) def test_sub(self): first = self.index # - now raises (previously was set op difference) with pytest.raises(TypeError): first - self.index[-3:] with pytest.raises(TypeError): self.index[-3:] - first with pytest.raises(TypeError): self.index[-3:] - first.tolist() with pytest.raises(TypeError): first.tolist() - self.index[-3:] def test_difference(self): first = self.index result = first.difference(self.index[-3:]) expected = MultiIndex.from_tuples(sorted(self.index[:-3].values), sortorder=0, names=self.index.names) assert isinstance(result, MultiIndex) assert result.equals(expected) assert result.names == self.index.names # empty difference: reflexive result = self.index.difference(self.index) expected = self.index[:0] assert result.equals(expected) assert result.names == self.index.names # empty difference: superset result = self.index[-3:].difference(self.index) expected = self.index[:0] assert result.equals(expected) assert result.names == self.index.names # empty difference: degenerate result = self.index[:0].difference(self.index) expected = self.index[:0] assert result.equals(expected) assert result.names == self.index.names # names not the same chunklet = self.index[-3:] chunklet.names = ['foo', 'baz'] result = first.difference(chunklet) assert result.names == (None, None) # empty, but non-equal result = self.index.difference(self.index.sortlevel(1)[0]) assert len(result) == 0 # raise Exception called with non-MultiIndex result = first.difference(first.values) assert result.equals(first[:0]) # name from empty array result = first.difference([]) assert first.equals(result) assert first.names == result.names # name from non-empty array result = first.difference([('foo', 'one')]) expected = pd.MultiIndex.from_tuples([('bar', 'one'), ('baz', 'two'), ( 'foo', 'two'), ('qux', 'one'), ('qux', 'two')]) expected.names = first.names assert first.names == result.names tm.assert_raises_regex(TypeError, "other must be a MultiIndex " "or a list of tuples", first.difference, [1, 2, 3, 4, 5]) def test_from_tuples(self): tm.assert_raises_regex(TypeError, 'Cannot infer number of levels ' 'from empty list', MultiIndex.from_tuples, []) expected = MultiIndex(levels=[[1, 3], [2, 4]], labels=[[0, 1], [0, 1]], names=['a', 'b']) # input tuples result = MultiIndex.from_tuples(((1, 2), (3, 4)), names=['a', 'b']) tm.assert_index_equal(result, expected) def test_from_tuples_iterator(self): # GH 18434 # input iterator for tuples expected = MultiIndex(levels=[[1, 3], [2, 4]], labels=[[0, 1], [0, 1]], names=['a', 'b']) result = MultiIndex.from_tuples(zip([1, 3], [2, 4]), names=['a', 'b']) tm.assert_index_equal(result, expected) # input non-iterables with tm.assert_raises_regex( TypeError, 'Input must be a list / sequence of tuple-likes.'): MultiIndex.from_tuples(0) def test_from_tuples_empty(self): # GH 16777 result = MultiIndex.from_tuples([], names=['a', 'b']) expected = MultiIndex.from_arrays(arrays=[[], []], names=['a', 'b']) tm.assert_index_equal(result, expected) def test_argsort(self): result = self.index.argsort() expected = self.index.values.argsort() tm.assert_numpy_array_equal(result, expected) def test_sortlevel(self): import random tuples = list(self.index) random.shuffle(tuples) index = MultiIndex.from_tuples(tuples) sorted_idx, _ = index.sortlevel(0) expected = MultiIndex.from_tuples(sorted(tuples)) assert sorted_idx.equals(expected) sorted_idx, _ = index.sortlevel(0, ascending=False) assert sorted_idx.equals(expected[::-1]) sorted_idx, _ = index.sortlevel(1) by1 = sorted(tuples, key=lambda x: (x[1], x[0])) expected = MultiIndex.from_tuples(by1) assert sorted_idx.equals(expected) sorted_idx, _ = index.sortlevel(1, ascending=False) assert sorted_idx.equals(expected[::-1]) def test_sortlevel_not_sort_remaining(self): mi = MultiIndex.from_tuples([[1, 1, 3], [1, 1, 1]], names=list('ABC')) sorted_idx, _ = mi.sortlevel('A', sort_remaining=False) assert sorted_idx.equals(mi) def test_sortlevel_deterministic(self): tuples = [('bar', 'one'), ('foo', 'two'), ('qux', 'two'), ('foo', 'one'), ('baz', 'two'), ('qux', 'one')] index = MultiIndex.from_tuples(tuples) sorted_idx, _ = index.sortlevel(0) expected = MultiIndex.from_tuples(sorted(tuples)) assert sorted_idx.equals(expected) sorted_idx, _ = index.sortlevel(0, ascending=False) assert sorted_idx.equals(expected[::-1]) sorted_idx, _ = index.sortlevel(1) by1 = sorted(tuples, key=lambda x: (x[1], x[0])) expected = MultiIndex.from_tuples(by1) assert sorted_idx.equals(expected) sorted_idx, _ = index.sortlevel(1, ascending=False) assert sorted_idx.equals(expected[::-1]) def test_dims(self): pass def test_drop(self): dropped = self.index.drop([('foo', 'two'), ('qux', 'one')]) index = MultiIndex.from_tuples([('foo', 'two'), ('qux', 'one')]) dropped2 = self.index.drop(index) expected = self.index[[0, 2, 3, 5]] tm.assert_index_equal(dropped, expected) tm.assert_index_equal(dropped2, expected) dropped = self.index.drop(['bar']) expected = self.index[[0, 1, 3, 4, 5]] tm.assert_index_equal(dropped, expected) dropped = self.index.drop('foo') expected = self.index[[2, 3, 4, 5]] tm.assert_index_equal(dropped, expected) index = MultiIndex.from_tuples([('bar', 'two')]) pytest.raises(KeyError, self.index.drop, [('bar', 'two')]) pytest.raises(KeyError, self.index.drop, index) pytest.raises(KeyError, self.index.drop, ['foo', 'two']) # partially correct argument mixed_index = MultiIndex.from_tuples([('qux', 'one'), ('bar', 'two')]) pytest.raises(KeyError, self.index.drop, mixed_index) # error='ignore' dropped = self.index.drop(index, errors='ignore') expected = self.index[[0, 1, 2, 3, 4, 5]] tm.assert_index_equal(dropped, expected) dropped = self.index.drop(mixed_index, errors='ignore') expected = self.index[[0, 1, 2, 3, 5]] tm.assert_index_equal(dropped, expected) dropped = self.index.drop(['foo', 'two'], errors='ignore') expected = self.index[[2, 3, 4, 5]] tm.assert_index_equal(dropped, expected) # mixed partial / full drop dropped = self.index.drop(['foo', ('qux', 'one')]) expected = self.index[[2, 3, 5]] tm.assert_index_equal(dropped, expected) # mixed partial / full drop / error='ignore' mixed_index = ['foo', ('qux', 'one'), 'two'] pytest.raises(KeyError, self.index.drop, mixed_index) dropped = self.index.drop(mixed_index, errors='ignore') expected = self.index[[2, 3, 5]] tm.assert_index_equal(dropped, expected) def test_droplevel_with_names(self): index = self.index[self.index.get_loc('foo')] dropped = index.droplevel(0) assert dropped.name == 'second' index = MultiIndex( levels=[Index(lrange(4)), Index(lrange(4)), Index(lrange(4))], labels=[np.array([0, 0, 1, 2, 2, 2, 3, 3]), np.array( [0, 1, 0, 0, 0, 1, 0, 1]), np.array([1, 0, 1, 1, 0, 0, 1, 0])], names=['one', 'two', 'three']) dropped = index.droplevel(0) assert dropped.names == ('two', 'three') dropped = index.droplevel('two') expected = index.droplevel(1) assert dropped.equals(expected) def test_droplevel_list(self): index = MultiIndex( levels=[Index(lrange(4)), Index(lrange(4)), Index(lrange(4))], labels=[np.array([0, 0, 1, 2, 2, 2, 3, 3]), np.array( [0, 1, 0, 0, 0, 1, 0, 1]), np.array([1, 0, 1, 1, 0, 0, 1, 0])], names=['one', 'two', 'three']) dropped = index[:2].droplevel(['three', 'one']) expected = index[:2].droplevel(2).droplevel(0) assert dropped.equals(expected) dropped = index[:2].droplevel([]) expected = index[:2] assert dropped.equals(expected) with pytest.raises(ValueError): index[:2].droplevel(['one', 'two', 'three']) with pytest.raises(KeyError): index[:2].droplevel(['one', 'four']) def test_drop_not_lexsorted(self): # GH 12078 # define the lexsorted version of the multi-index tuples = [('a', ''), ('b1', 'c1'), ('b2', 'c2')] lexsorted_mi = MultiIndex.from_tuples(tuples, names=['b', 'c']) assert lexsorted_mi.is_lexsorted() # and the not-lexsorted version df = pd.DataFrame(columns=['a', 'b', 'c', 'd'], data=[[1, 'b1', 'c1', 3], [1, 'b2', 'c2', 4]]) df = df.pivot_table(index='a', columns=['b', 'c'], values='d') df = df.reset_index() not_lexsorted_mi = df.columns assert not not_lexsorted_mi.is_lexsorted() # compare the results tm.assert_index_equal(lexsorted_mi, not_lexsorted_mi) with tm.assert_produces_warning(PerformanceWarning): tm.assert_index_equal(lexsorted_mi.drop('a'), not_lexsorted_mi.drop('a')) def test_insert(self): # key contained in all levels new_index = self.index.insert(0, ('bar', 'two')) assert new_index.equal_levels(self.index) assert new_index[0] == ('bar', 'two') # key not contained in all levels new_index = self.index.insert(0, ('abc', 'three')) exp0 = Index(list(self.index.levels[0]) + ['abc'], name='first') tm.assert_index_equal(new_index.levels[0], exp0) exp1 = Index(list(self.index.levels[1]) + ['three'], name='second') tm.assert_index_equal(new_index.levels[1], exp1) assert new_index[0] == ('abc', 'three') # key wrong length msg = "Item must have length equal to number of levels" with tm.assert_raises_regex(ValueError, msg): self.index.insert(0, ('foo2',)) left = pd.DataFrame([['a', 'b', 0], ['b', 'd', 1]], columns=['1st', '2nd', '3rd']) left.set_index(['1st', '2nd'], inplace=True) ts = left['3rd'].copy(deep=True) left.loc[('b', 'x'), '3rd'] = 2 left.loc[('b', 'a'), '3rd'] = -1 left.loc[('b', 'b'), '3rd'] = 3 left.loc[('a', 'x'), '3rd'] = 4 left.loc[('a', 'w'), '3rd'] = 5 left.loc[('a', 'a'), '3rd'] = 6 ts.loc[('b', 'x')] = 2 ts.loc['b', 'a'] = -1 ts.loc[('b', 'b')] = 3 ts.loc['a', 'x'] = 4 ts.loc[('a', 'w')] = 5 ts.loc['a', 'a'] = 6 right = pd.DataFrame([['a', 'b', 0], ['b', 'd', 1], ['b', 'x', 2], ['b', 'a', -1], ['b', 'b', 3], ['a', 'x', 4], ['a', 'w', 5], ['a', 'a', 6]], columns=['1st', '2nd', '3rd']) right.set_index(['1st', '2nd'], inplace=True) # FIXME data types changes to float because # of intermediate nan insertion; tm.assert_frame_equal(left, right, check_dtype=False) tm.assert_series_equal(ts, right['3rd']) # GH9250 idx = [('test1', i) for i in range(5)] + \ [('test2', i) for i in range(6)] + \ [('test', 17), ('test', 18)] left = pd.Series(np.linspace(0, 10, 11), pd.MultiIndex.from_tuples(idx[:-2])) left.loc[('test', 17)] = 11 left.loc[('test', 18)] = 12 right = pd.Series(np.linspace(0, 12, 13), pd.MultiIndex.from_tuples(idx)) tm.assert_series_equal(left, right) def test_take_preserve_name(self): taken = self.index.take([3, 0, 1]) assert taken.names == self.index.names def test_take_fill_value(self): # GH 12631 vals = [['A', 'B'], [pd.Timestamp('2011-01-01'), pd.Timestamp('2011-01-02')]] idx = pd.MultiIndex.from_product(vals, names=['str', 'dt']) result = idx.take(np.array([1, 0, -1])) exp_vals = [('A', pd.Timestamp('2011-01-02')), ('A', pd.Timestamp('2011-01-01')), ('B', pd.Timestamp('2011-01-02'))] expected = pd.MultiIndex.from_tuples(exp_vals, names=['str', 'dt']) tm.assert_index_equal(result, expected) # fill_value result = idx.take(np.array([1, 0, -1]), fill_value=True) exp_vals = [('A', pd.Timestamp('2011-01-02')), ('A', pd.Timestamp('2011-01-01')), (np.nan, pd.NaT)] expected = pd.MultiIndex.from_tuples(exp_vals, names=['str', 'dt']) tm.assert_index_equal(result, expected) # allow_fill=False result = idx.take(np.array([1, 0, -1]), allow_fill=False, fill_value=True) exp_vals = [('A', pd.Timestamp('2011-01-02')), ('A', pd.Timestamp('2011-01-01')), ('B', pd.Timestamp('2011-01-02'))] expected = pd.MultiIndex.from_tuples(exp_vals, names=['str', 'dt']) tm.assert_index_equal(result, expected) msg = ('When allow_fill=True and fill_value is not None, ' 'all indices must be >= -1') with tm.assert_raises_regex(ValueError, msg): idx.take(np.array([1, 0, -2]), fill_value=True) with tm.assert_raises_regex(ValueError, msg): idx.take(np.array([1, 0, -5]), fill_value=True) with pytest.raises(IndexError): idx.take(np.array([1, -5])) def take_invalid_kwargs(self): vals = [['A', 'B'], [pd.Timestamp('2011-01-01'), pd.Timestamp('2011-01-02')]] idx = pd.MultiIndex.from_product(vals, names=['str', 'dt']) indices = [1, 2] msg = r"take\(\) got an unexpected keyword argument 'foo'" tm.assert_raises_regex(TypeError, msg, idx.take, indices, foo=2) msg = "the 'out' parameter is not supported" tm.assert_raises_regex(ValueError, msg, idx.take, indices, out=indices) msg = "the 'mode' parameter is not supported" tm.assert_raises_regex(ValueError, msg, idx.take, indices, mode='clip') @pytest.mark.parametrize('other', [Index(['three', 'one', 'two']), Index(['one']), Index(['one', 'three'])]) def test_join_level(self, other, join_type): join_index, lidx, ridx = other.join(self.index, how=join_type, level='second', return_indexers=True) exp_level = other.join(self.index.levels[1], how=join_type) assert join_index.levels[0].equals(self.index.levels[0]) assert join_index.levels[1].equals(exp_level) # pare down levels mask = np.array( [x[1] in exp_level for x in self.index], dtype=bool) exp_values = self.index.values[mask] tm.assert_numpy_array_equal(join_index.values, exp_values) if join_type in ('outer', 'inner'): join_index2, ridx2, lidx2 = \ self.index.join(other, how=join_type, level='second', return_indexers=True) assert join_index.equals(join_index2) tm.assert_numpy_array_equal(lidx, lidx2) tm.assert_numpy_array_equal(ridx, ridx2) tm.assert_numpy_array_equal(join_index2.values, exp_values) def test_join_level_corner_case(self): # some corner cases idx = Index(['three', 'one', 'two']) result = idx.join(self.index, level='second') assert isinstance(result, MultiIndex) tm.assert_raises_regex(TypeError, "Join.*MultiIndex.*ambiguous", self.index.join, self.index, level=1) def test_join_self(self, join_type): res = self.index joined = res.join(res, how=join_type) assert res is joined def test_join_multi(self): # GH 10665 midx = pd.MultiIndex.from_product( [np.arange(4), np.arange(4)], names=['a', 'b']) idx = pd.Index([1, 2, 5], name='b') # inner jidx, lidx, ridx = midx.join(idx, how='inner', return_indexers=True) exp_idx = pd.MultiIndex.from_product( [np.arange(4), [1, 2]], names=['a', 'b']) exp_lidx = np.array([1, 2, 5, 6, 9, 10, 13, 14], dtype=np.intp) exp_ridx = np.array([0, 1, 0, 1, 0, 1, 0, 1], dtype=np.intp) tm.assert_index_equal(jidx, exp_idx) tm.assert_numpy_array_equal(lidx, exp_lidx) tm.assert_numpy_array_equal(ridx, exp_ridx) # flip jidx, ridx, lidx = idx.join(midx, how='inner', return_indexers=True) tm.assert_index_equal(jidx, exp_idx) tm.assert_numpy_array_equal(lidx, exp_lidx) tm.assert_numpy_array_equal(ridx, exp_ridx) # keep MultiIndex jidx, lidx, ridx = midx.join(idx, how='left', return_indexers=True) exp_ridx = np.array([-1, 0, 1, -1, -1, 0, 1, -1, -1, 0, 1, -1, -1, 0, 1, -1], dtype=np.intp) tm.assert_index_equal(jidx, midx) assert lidx is None tm.assert_numpy_array_equal(ridx, exp_ridx) # flip jidx, ridx, lidx = idx.join(midx, how='right', return_indexers=True) tm.assert_index_equal(jidx, midx) assert lidx is None tm.assert_numpy_array_equal(ridx, exp_ridx) def test_reindex(self): result, indexer = self.index.reindex(list(self.index[:4])) assert isinstance(result, MultiIndex) self.check_level_names(result, self.index[:4].names) result, indexer = self.index.reindex(list(self.index)) assert isinstance(result, MultiIndex) assert indexer is None self.check_level_names(result, self.index.names) def test_reindex_level(self): idx = Index(['one']) target, indexer = self.index.reindex(idx, level='second') target2, indexer2 = idx.reindex(self.index, level='second') exp_index = self.index.join(idx, level='second', how='right') exp_index2 = self.index.join(idx, level='second', how='left') assert target.equals(exp_index) exp_indexer = np.array([0, 2, 4]) tm.assert_numpy_array_equal(indexer, exp_indexer, check_dtype=False) assert target2.equals(exp_index2) exp_indexer2 = np.array([0, -1, 0, -1, 0, -1]) tm.assert_numpy_array_equal(indexer2, exp_indexer2, check_dtype=False) tm.assert_raises_regex(TypeError, "Fill method not supported", self.index.reindex, self.index, method='pad', level='second') tm.assert_raises_regex(TypeError, "Fill method not supported", idx.reindex, idx, method='bfill', level='first') def test_duplicates(self): assert not self.index.has_duplicates assert self.index.append(self.index).has_duplicates index = MultiIndex(levels=[[0, 1], [0, 1, 2]], labels=[ [0, 0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 0, 1, 2]]) assert index.has_duplicates # GH 9075 t = [(u('x'), u('out'), u('z'), 5, u('y'), u('in'), u('z'), 169), (u('x'), u('out'), u('z'), 7, u('y'), u('in'), u('z'), 119), (u('x'), u('out'), u('z'), 9, u('y'), u('in'), u('z'), 135), (u('x'), u('out'), u('z'), 13, u('y'), u('in'), u('z'), 145), (u('x'), u('out'), u('z'), 14, u('y'), u('in'), u('z'), 158), (u('x'), u('out'), u('z'), 16, u('y'), u('in'), u('z'), 122), (u('x'), u('out'), u('z'), 17, u('y'), u('in'), u('z'), 160), (u('x'), u('out'), u('z'), 18, u('y'), u('in'), u('z'), 180), (u('x'), u('out'), u('z'), 20, u('y'), u('in'), u('z'), 143), (u('x'), u('out'), u('z'), 21, u('y'), u('in'), u('z'), 128), (u('x'), u('out'), u('z'), 22, u('y'), u('in'), u('z'), 129), (u('x'), u('out'), u('z'), 25, u('y'), u('in'), u('z'), 111), (u('x'), u('out'), u('z'), 28, u('y'), u('in'), u('z'), 114), (u('x'), u('out'), u('z'), 29, u('y'), u('in'),
u('z')
pandas.compat.u
# Copyright 2021 Prayas Energy Group(https://www.prayaspune.org/peg/) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """demand io layer. mainly data loading and validation functions. Function and variable from this module are available in Demand.yml for validation. Few function are also used by processing layer. Important note: Some functions are just imported and not used are for yaml validation. All definations(including those which are imported from other modules) from this module are available in yaml validation. """ import csv import functools import itertools import os import logging from rumi.io import functionstore as fs from rumi.io import loaders from rumi.io import filemanager from rumi.io import config from rumi.io import constant from rumi.io import common from rumi.io import utilities import pandas as pd from rumi.io.common import balancing_area, balancing_time from rumi.io.utilities import check_consumer_validity from rumi.io.utilities import check_geographic_validity from rumi.io.utilities import check_time_validity from rumi.io.multiprocessutils import execute_in_process_pool logger = logging.getLogger(__name__) def get_consumer_levels(ds): """get number of consumer levels defined for given demand sector Parameters ---------- ds: str Demand sector name Returns ------- 1 or 2 """ DS_Cons1_Map = loaders.get_parameter("DS_Cons1_Map") type1 = DS_Cons1_Map[ds][-1] Cons1_Cons2_Map = loaders.get_parameter("Cons1_Cons2_Map") if Cons1_Cons2_Map and Cons1_Cons2_Map.get(type1, None): return 2 return 1 def get_cons_columns(ds): """get maximum consumer columns for given demand sector Parameters ----------- ds: str Demand sector name Returns ------- a list of consumer columns for given demand sector """ return list(constant.CONSUMER_TYPES[:get_consumer_levels(ds)]) def get_consumer_granularity(ds, specified_gran): """Converts CONSUMERALL to actual granularity Parameters ----------- demand_specs: str Demand sector Returns ------- one of CONSUMERTYPE1,CONSUMERTYPE2 """ if specified_gran != "CONSUMERALL": return specified_gran if get_consumer_levels(ds) == 1: return "CONSUMERTYPE1" else: return "CONSUMERTYPE1" def get_geographic_granularity(demand_sector, energy_service, energy_carrier): DS_ES_EC_DemandGranularity_Map = loaders.get_parameter( "DS_ES_EC_DemandGranularity_Map") granularity_map = DS_ES_EC_DemandGranularity_Map.set_index(['DemandSector', 'EnergyService', 'EnergyCarrier']) return granularity_map.loc[(demand_sector, energy_service, energy_carrier)]['GeographicGranularity'] def get_type(demand_sector, energy_service): """find type of service BOTTOMUP,EXTRANEOUS,GDPELASTICITY or RESIDUAL """ DS_ES_Map = loaders.get_parameter('DS_ES_Map') DS_ES_Map = DS_ES_Map.set_index(['DemandSector', 'EnergyService']) return DS_ES_Map.loc[(demand_sector, energy_service)]['InputType'] def get_BaseYearDemand(demand_sector): """loader function for parameter BaseYearDemand """ return get_demand_sector_parameter('BaseYearDemand', demand_sector) def get_DemandElasticity(demand_sector): """loader function for parameter DemandElasticity """ return get_demand_sector_parameter('DemandElasticity', demand_sector) def get_ExtraneousDemand(demand_sector): """loader function for parameter ExtraneousDemand """ extraneous = get_demand_sector_parameter('ExtraneousDemand', demand_sector) return extraneous def get_ST_Efficiency(demand_sector): """ST_Efficiency loader function """ return get_demand_sector_parameter("ST_Efficiency", demand_sector) def get_ST_EmissionDetails(demand_sector): """ST_EmissionDetails loader function """ return get_demand_sector_parameter("ST_EmissionDetails", demand_sector) def get_ResidualDemand(demand_sector): """loader function for parameter ResidualDemand """ return get_demand_sector_parameter("ResidualDemand", demand_sector) def get_NumConsumers(demand_sector): """loader function for parameter NumConsumers """ return get_demand_sector_parameter('NumConsumers', demand_sector) def get_NumInstances(demand_sector, energy_service): """loader function for parameter NumInstances """ return get_DS_ES_parameter('NumInstances', demand_sector, energy_service) def get_EfficiencyLevelSplit(demand_sector, energy_service): """loader function for parameter EfficiencyLevelSplit """ return get_DS_ES_parameter('EfficiencyLevelSplit', demand_sector, energy_service) def get_ES_Demand(demand_sector, energy_service, service_tech): """loader function for parameter ES_Demand should not be used directly. use loaders.get_parameter instead. """ prefix = f"{service_tech}_" filepath = find_custom_DS_ES_filepath(demand_sector, energy_service, 'ES_Demand', prefix) logger.debug(f"Reading {prefix}ES_Demand from file {filepath}") return pd.read_csv(filepath) def get_Penetration(demand_sector, energy_service, ST_combination): """loader function for parameter Penetration """ for item in itertools.permutations(ST_combination): prefix = constant.ST_SEPARATOR_CHAR.join( item) + constant.ST_SEPARATOR_CHAR filepath = find_custom_DS_ES_filepath(demand_sector, energy_service, 'Penetration', prefix) logger.debug(f"Searching for file {filepath}") if os.path.exists(filepath): logger.debug(f"Reading {prefix} from file {filepath}") return pd.read_csv(filepath) def get_demand_sector_parameter(param_name, demand_sector): """loads demand sector parameter which lies inside demand_sector folder """ filepath = find_custom_demand_path(demand_sector, param_name) logger.debug(f"Reading {param_name} from file {filepath}") cols = list(filemanager.demand_specs()[param_name]['columns'].keys()) d = pd.read_csv(filepath) return d[[c for c in cols if c in d.columns]] def get_DS_ES_parameter(param_name, demand_sector, energy_service): """loads parameter which is inside demand_sector/energy_service folder """ filepath = find_custom_DS_ES_filepath(demand_sector, energy_service, param_name, "") logger.debug(f"Reading {param_name} from file {filepath}") cols = list(filemanager.demand_specs()[param_name]['columns'].keys()) d = pd.read_csv(filepath) return d[[c for c in cols if c in d.columns]] def find_custom_DS_ES_filepath(demand_sector, energy_service, name, prefix): """find actual location of data in case some data lies in scenario """ return find_custom_demand_path(demand_sector, name, energy_service, prefix) def find_custom_demand_path(demand_sector, name, energy_service="", prefix=""): """find actual location of data in case some data lies in scenario """ return filemanager.find_filepath(name, demand_sector, energy_service, fileprefix=prefix) def get_mapped_items(DS_ES_EC_Map): """returns list of ECS from DS_ES_EC_Map """ return fs.flatten(fs.drop_columns(DS_ES_EC_Map, 2)) def get_RESIDUAL_ECs(DS_ES_Map, DS_ES_EC_Map): df = DS_ES_Map.query("InputType == 'RESIDUAL'")[ ['DemandSector', 'EnergyService']] DS_ES = zip(df['DemandSector'], df['EnergyService']) ECs = {(DS, ES): row[2:] for DS, ES in DS_ES for row in DS_ES_EC_Map if DS == row[0] and ES == row[1]} return ECs def derive_ES_EC(demand_sector, input_type): """return set of ES,EC combinations for given demand_sector and input_type but not_BOTTOMUP """ DS_ES_Map = loaders.get_parameter('DS_ES_Map') DS_ES_EC_Map = loaders.get_parameter('DS_ES_EC_Map') es_ec = fs.concat(*[[(row[1], ec) for ec in row[2:]] for row in DS_ES_EC_Map if row[0] == demand_sector]) return [(es, ec) for es, ec in es_ec if len(DS_ES_Map.query(f"DemandSector=='{demand_sector}' & EnergyService=='{es}' & InputType=='{input_type}'")) > 0] def check_RESIDUAL_EC(DS_ES_Map, DS_ES_EC_Map): """Each EC specified for a <DS, ES> combination, whose InputType in DS_ES_Map is RESIDUAL, must occur at least once in another <DS, ES> combination for the same DS """ def x_in_y(x, y): return any([ix in y for ix in x]) ECS = get_RESIDUAL_ECs(DS_ES_Map, DS_ES_EC_Map) items1 = [row for row in DS_ES_EC_Map for DS, ES in ECS if row[0] == DS and row[1] != ES and x_in_y(ECS[(DS, ES)], row[2:])] if len(items1) == 0 and ECS: DS_ES_ST = expand_DS_ES_ST() ST_Info = loaders.get_parameter('ST_Info') items2 = [] for ECs in ECS.values(): for EC in ECs: STS = ST_Info.query(f"EnergyCarrier == '{EC}'")[ 'ServiceTech'] items2.extend([row for row in DS_ES_ST for DS, ES in ECS if row[0] == DS and row[1] != ES and x_in_y(STS, row[2:])]) return not ECS or len(items1) > 0 or len(items2) > 0 def are_BOTTOMUP(DS_ES_X_Map, DS_ES_Map): DS_ES = fs.transpose(fs.take_columns(DS_ES_X_Map, 2)) df = fs.combined_key_subset(DS_ES, DS_ES_Map).query( "InputType != 'BOTTOMUP'") return len(df) == 0 def not_BOTTOMUP(DS_ES_X_Map, DS_ES_Map): DS_ES = fs.transpose(fs.take_columns(DS_ES_X_Map, 2)) df = fs.combined_key_subset(DS_ES, DS_ES_Map).query( "InputType == 'BOTTOMUP'") return len(df) == 0 def check_ALL_DS(DS_ES_X_Map): """ ES used with ALL as DS can not be used with any other DS. This function checks if this is true. """ ES_with_ALL = [row[1] for row in DS_ES_X_Map if row[0] == "ALL"] ES_without_ALL = [ES for ES in ES_with_ALL for row in DS_ES_X_Map if row[0] != "ALL"] return len(ES_without_ALL) == 0 def listcols(df): return [df[c] for c in df.columns] def check_ALL_ES(DS_ES_EC_DemandGranularity_Map): """function for validation """ DS_EC_ALL = DS_ES_EC_DemandGranularity_Map.query( "EnergyService == 'ALL'")[['DemandSector', 'EnergyCarrier']] DS_EC_NOALL = DS_ES_EC_DemandGranularity_Map.query( "EnergyService != 'ALL'")[['DemandSector', 'EnergyCarrier']] ALL = set(zip(*listcols(DS_EC_ALL))) NOALL = set(zip(*listcols(DS_EC_NOALL))) return not ALL & NOALL def expand_DS_ALL(BOTTOMUP): """ Expands Map when DS is ALL """ if BOTTOMUP: cond = "==" data = loaders.load_param("DS_ES_ST_Map") else: data = loaders.load_param("DS_ES_EC_Map") cond = "!=" DS_ES_Map = loaders.load_param("DS_ES_Map") ESs = [row for row in data if row[0] == 'ALL'] for row in ESs: ES = row[1] data.remove(row) nonbottomup = DS_ES_Map.query( f"EnergyService == '{ES}' & InputType {cond} 'BOTTOMUP'") if len(nonbottomup) > 0: ds = nonbottomup['DemandSector'] for eachds in ds: newrow = row.copy() newrow[0] = eachds data.append(newrow) return data def expand_DS_ES_EC(): return expand_DS_ALL(BOTTOMUP=False) def expand_DS_ES_ST(): return expand_DS_ALL(BOTTOMUP=True) def is_valid(DS, EC): DS_ES_EC_Map = loaders.load_param("DS_ES_EC_Map") DS_ES_ST_Map = loaders.load_param("DS_ES_ST_Map") ST_Info = loaders.get_parameter("ST_Info") ECS = [row for row in DS_ES_EC_Map if row[0] == DS and row[1] == EC] STS = ST_Info.query(f"EnergyCarrier == '{EC}'")['ServiceTech'] DSS = [row[0] for row in DS_ES_ST_Map for ST in STS if row[2] == ST] return ECS or DS in DSS @functools.lru_cache() def expand_DS_ES_EC_DemandGranularity_Map(): DS_ES_EC_DemandGranularity_Map = loaders.load_param( "DS_ES_EC_DemandGranularity_Map") DS_ES_Map = loaders.get_parameter("DS_ES_Map") data = DS_ES_EC_DemandGranularity_Map.to_dict(orient="records") DSs = [d for d in data if d['EnergyService'] == 'ALL'] for DS in DSs: data.remove(DS) DemandSector = DS['DemandSector'] ALL_DS_ES = DS_ES_Map.query(f"DemandSector == '{DemandSector}'")[ ['DemandSector', 'EnergyService']].to_dict(orient="records") for item in ALL_DS_ES: d = DS.copy() d.update(item) if is_valid(d['DemandSector'], d['EnergyCarrier']): data.append(d) return
pd.DataFrame(data)
pandas.DataFrame
from challenge.agoda_cancellation_estimator import AgodaCancellationEstimator from IMLearn.utils import split_train_test from typing import Tuple from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.preprocessing import PolynomialFeatures from sklearn.pipeline import make_pipeline import numpy as np import pandas as pd import datetime def load_data(filename: str, is_train: bool = False): """ Load Agoda booking cancellation dataset Parameters ---------- filename: str Path to house prices dataset Returns ------- Design matrix and response vector in either of the following formats: 1) Single dataframe with last column representing the response 2) Tuple of pandas.DataFrame and Series 3) Tuple of ndarray of shape (n_samples, n_features) and ndarray of shape (n_samples,) """ df =
pd.read_csv(filename)
pandas.read_csv
# Import Libraries, some are uncessary right now import configparser import pandas as pd import numpy as np import sys import os import random import copy import math import scanpy as sc from matplotlib import pyplot as plt import matplotlib as mpl import seaborn as sns # null distribution fitting from scipy.stats import norm # bonferroni correction from statsmodels.stats.multitest import multipletests #CountsFile = sys.argv[1] np.seterr(all = 'warn') cfgFile = sys.argv[1] # '../switchy/SS2.ini' # Helper functions # Load the data a get filter into a usable form def prepareData(CountsFile, datatype, highly_variable, n_highly_variable, onlyClones, remove_immune_receptors, normalize, filterCells): """ Accepts: H5ad file where the adata.obs has a column "CLONE" denoting the clonal membership of the cell dataype: "scaled" or anything else would make it return log Returns: adata after filtering""" adata = sc.read_h5ad(CountsFile) adata, df = preprocessWScanpy(adata, datatype, highly_variable, n_highly_variable, remove_immune_receptors, normalize, filterCells) # After filtering select only cells which are clones if onlyClones == True: # Logic for dropping non-clones from the klein dataset #adata.obs.CLONE.fillna('None', inplace = True) adata = adata[adata.obs.CLONE != 'NaN' ,:] # Select only clones (applies to my dataset mostly) selector = adata.obs.CLONE.value_counts() > 1 selector = selector[selector == True] adata = adata[adata.obs.CLONE.isin(selector.index), :] df = df[df.index.isin(adata.obs.index)] return adata, df def readConfig(cfgFile): config = configparser.ConfigParser() config.read(cfgFile) stat_parameters = config['stat_parameters'] io = config['IO'] CountsFile = io['CountsFile'] out_dir = io['out_dir'] return stat_parameters, io, config # Filter Genes and Cells to get a manageable datafram def preprocessWScanpy(adata, datatype, highly_variable, n_highly_variable, remove_immune_receptors, normalize, filterCells): # TODO: make this into an argument # What is the best way to control parameters, probably a yaml file? #sc.pp.calculate_qc_metrics(adata, inplace=True) if remove_immune_receptors == True: immune_receptors = pd.read_csv('/home/mswift/B_cells/CSR/sc_RNAseq/data_tables/metadata/immune_receptor_genes_keepConstantRegion.csv', index_col=0) immune_receptors.columns = ['genes'] print("removing variable immune receptor genes which may drive clustering") adata = adata[:, ~adata.var.index.isin(immune_receptors.genes)] if filterCells == True: # Filter Cells and Genes sc.pp.filter_cells(adata, min_genes=800, inplace = True) sc.pp.filter_cells(adata, min_counts=100000, inplace = True) # always filter out the lowest expressed genes for computation time sc.pp.filter_genes(adata, min_cells=4, inplace = True) sc.pp.filter_genes(adata, min_counts=200, inplace = True) print(adata.obs.shape, adata.var.shape, "shape of adata after filtering ") # Make parameter in cfg if normalize == True: sc.pp.normalize_total(adata, target_sum=1e6) sc.pp.log1p(adata, base = 10) adata.raw = adata sc.pp.highly_variable_genes(adata, n_top_genes=n_highly_variable) # datatype logic if datatype == 'scaled': sc.pp.scale(adata) else: pass #Subset to highly variable gene if highly_variable == True: adata = adata[:,adata.var['highly_variable'] == True] highly_variable_genes = adata.var.index[adata.var["highly_variable"] == True] df = convertSparsetoDataFrame(adata) return adata, df def convertSparsetoDataFrame(adata): """ Input: anndata object with sparse matrix as .X attribute Returns: Pandas dataframe with rows as cells and columns as genes My take: This is inefficient but convenient, I wrote the code based on this, which is in hindsight a bad idea, but it it more readable possibly?""" # Get the gene expression values for each cell x gene columns = adata.var.index.to_list() index = adata.obs.index.to_list() try: denseArray = adata.X.toarray() except: denseArray = adata.X df = pd.DataFrame(data = denseArray, index = index , columns = columns ) return df def plotWaterfall(df, adata_obs, gene, label): LabelsTesting = adata_obs.copy() # Implementing the Hodgkin Protocol fig, ax1 = plt.subplots(1,1) LabelsTesting.loc[:,gene] = df[gene] order = LabelsTesting.groupby(label)[gene].mean().sort_values(ascending = False).index g = sns.stripplot(ax=ax1, data = LabelsTesting, x = LabelsTesting[label], y = gene, order = order, color = None) #save_figure(fig, '{}_{}'.format(label, str(gene))) return g def plotCI(df, adata_obs, num_shuffles, gene, label, alpha): # This is expensive to do twice, like this because I really am only plotting a subset of hits LabelsTesting = pd.merge(adata.obs[label], df[gene], left_index=True, right_index=True) tested_gene = [] statistics = [] # get the ordered means of the true labeling observedlabel_mean = LabelsTesting.groupby(label)[gene].mean().sort_values(ascending = False) ci_df = pd.DataFrame(observedlabel_mean) # set up shuffling loop #mean_shuffled_variances #initialize dataframe #mean_observedlabel_variance = .mean() for i in range(num_shuffles): # create copy out of superstition LabelsTestingCopy = LabelsTesting.copy(deep = True) # shuffle labels LabelsTestingCopy[label] = np.random.permutation(LabelsTestingCopy[label].values) # shuffled_means = LabelsTestingCopy.groupby(label)[gene].mean() ci_df = pd.merge(ci_df, shuffled_means, left_index=True, right_index=True) #ci_df.iloc[:,1:].mean() true_ordered_means = ci_df.iloc[:,0] shuffled_means = ci_df.iloc[:,1:] # Using T distribution shuffled_means['lower'] = shuffled_means.apply(lambda row: scipy.stats.t.interval(alpha, row.shape[0]-1, loc = row.median(), scale=row.sem())[0], axis = 1) shuffled_means['upper'] = shuffled_means.apply(lambda row: scipy.stats.t.interval(alpha, row.shape[0]-1, loc = row.median(), scale=row.sem())[1], axis = 1) shuffled_means['lower_quant'] = shuffled_means.quantile(q = 0.025, axis = 1) shuffled_means['upper_quant'] = shuffled_means.quantile(q = 0.975, axis = 1) # merge data for plotting data = pd.merge(true_ordered_means, shuffled_means, left_index = True, right_index= True) data.reset_index(inplace = True) data[label] = data[label].astype('str') fig, ax = plt.subplots() x = data[label] # Frequentist confidence intervals f_lowci = data['lower_quant'] f_upci = data['upper_quant'] true_data = true_ordered_means g_lowci = data['lower'] g_upci = data['upper'] ax.plot(x, true_data, label = 'True Data Order') #ax.plot(x, upci) #ax.plot(x, lowci) ax.fill_between(x, f_lowci, f_upci, alpha = 0.2, color = 'k', label = 'CI using real quantiles') ax.fill_between(x, g_lowci, g_upci, alpha = 0.2, color = 'r', label = 'CI using T distribution') plt.xlabel(label) plt.ylabel(gene + ' \n mean expression (log CPM)') plt.xticks() ax.legend() return data, shuffled_means def plotTestHist(df, adata_obs, num_shuffles, gene, label): # This is expensive to do twice, like this because I really am only plotting a subset of hits LabelsTesting = adata_obs.copy() tested_gene = [] statistics = [] LabelsTesting[gene] = df.loc[:,gene] # get the ordered means of the true labeling mean_shuffled_variances = [] observedlabel_var = LabelsTesting.groupby(label)[gene].var() mean_observedlabel_variance = observedlabel_var.mean() for i in range(num_shuffles): # create copy LabelsTestingCopy = LabelsTesting.copy(deep = True) # shuffle labels LabelsTestingCopy.loc[:,label] = np.random.permutation(LabelsTestingCopy[label].values) shuffled_variances = LabelsTestingCopy.groupby(label)[gene].var() # No need to have it ordered at this point mean_shuffled_variances.append(shuffled_variances.mean()) mean_shuffled_variances = pd.Series(mean_shuffled_variances) # Plot fig, ax = plt.subplots(1,1) data = mean_shuffled_variances xmax = data.max() + 0.2 bins = np.linspace(0, xmax, 100) plt.hist(data, bins = bins, color = 'midnightblue', alpha = 0.5) plt.hist(data, bins = bins, color = 'midnightblue', histtype='step') plt.axvline(mean_observedlabel_variance, 0, 1, c = 'red', ls = '--') plt.yscale('log') plt.xscale('linear') plt.xlim(0, xmax) plt.title(gene+'_'+label) #save_figure(fig, gene+'_'+label, 'figures/permutationTests') def compareVariances(df, LabelsTesting, num_shuffles, label, gene): "For each gene compare the mean variances of a shuffled labeling to the observed labeling" LabelsTesting.loc[:,'gene_name'] = df[gene] mean_shuffled_variances = [] observedlabel_var = LabelsTesting.groupby(label)['gene_name'].var() mean_observedlabel_variance = observedlabel_var.mean() # do the shuffling for i in range(num_shuffles): # create copy LabelsTestingCopy = LabelsTesting.copy(deep = True) #shuffle labels LabelsTestingCopy.loc[:, label] = np.random.permutation(LabelsTesting[label].values) # groupby by label and compute variance shuffled_variances = LabelsTestingCopy.groupby(label)['gene_name'].var() # Mean variance of every labeled group mean_shuffled_variances.append(shuffled_variances.mean()) #make list into series TODO refactor to just add to a series? #This is the distribution of shuffled variances mean_shuffled_variances = pd.Series(mean_shuffled_variances) # Number of times shuffled variances are less than observed label variance, higher number would be intragroup variance is higher test = mean_shuffled_variances <= mean_observedlabel_variance # less equal to observed (i.e. True's) by the number of tests # stat of 1 would be that shuffled variances always less or equal, 0 would be shuffled variances always more # this is a frequentist p value? kinda ... we'll call it a score gene_score = test.sum() / test.shape[0] return gene_score, gene, mean_shuffled_variances, mean_observedlabel_variance def calculatePvalue(mean_shuffled_variances, mean_observedlabel_variance): # Fit a normal distribution to the null variances I calculated mu, sigma = norm.fit(mean_shuffled_variances) if sigma == 0: #print('no p value possible for because null is not gaussian (sigma of zero)') pvalue = np.nan else: pvalue = norm.cdf(mean_observedlabel_variance, loc = mu, scale = sigma) return pvalue def permuteCompareVariances2(df, adata_obs, num_shuffles, label): """ df is the cell x gene dataframe, adata_obs is metadataframe that contains cells as the index and a column called the label""" # Get Annotation (clone data) and only what is in the scaled or transformed gene expression df LabelsTesting = adata_obs[adata_obs.index.isin(df.index)] tested_genes = [] gene_scores = [] pvals = [] genes = df.columns print("Running Permutation Test with", label, "and", num_shuffles, 'Shuffles') for gene in genes: gene_score, gene, mean_shuffled_variances, mean_observedlabel_variance = compareVariances(df, LabelsTesting, num_shuffles, label, gene) tested_genes.append(gene) gene_scores.append(gene_score) # Calculate p-value by fitting Gaussian to null distribution #model = 'Gaussian' TODO could be other models pval = calculatePvalue(mean_shuffled_variances, mean_observedlabel_variance) pvals.append(pval) print('Testing', gene) scoresColumn =
pd.Series(gene_scores)
pandas.Series
# coding: utf-8 # # 3 class discrimination of trialtype. # ### Using sklean and skflow. Comparison to each of the 4 mice # In[163]: import tensorflow as tf import tensorflow.contrib.learn as skflow import numpy as np import matplotlib.pyplot as plt # get_ipython().magic('matplotlib inline') import pandas as pd import seaborn as sns import random from scipy.signal import resample from scipy.stats import zscore from scipy import interp from sklearn.linear_model import LogisticRegression from sklearn.metrics import confusion_matrix from sklearn.metrics import accuracy_score from sklearn import metrics from sklearn import cross_validation from IPython import display # For plotting intermediate results # In[365]: # data loading function def data_loader(mouse_name): theta = pd.read_csv('~/work/whiskfree/data/theta_' + mouse_name + '.csv',header=None) kappa = pd.read_csv('~/work/whiskfree/data/kappa_' + mouse_name + '.csv',header=None) tt = pd.read_csv('~/work/whiskfree/data/trialtype_' + mouse_name + '.csv',header=None) ch = pd.read_csv('~/work/whiskfree/data/choice_' + mouse_name + '.csv',header=None) return theta, kappa, tt, ch def data_parser(theta,kappa,tt,ch,tt_ch): theta_r = np.array([[resample(theta.values.squeeze()[i,950:1440],50)] for i in range(0,theta.shape[0])]) theta_r = zscore(theta_r.squeeze(),axis=None) kappa_r = np.array([[resample(kappa.values.squeeze()[i,950:1440],50)] for i in range(0,kappa.shape[0])]) kappa_r = zscore(kappa_r.squeeze(),axis=None) kappa_df = pd.DataFrame(kappa_r) theta_df = pd.DataFrame(theta_r) both_df =
pd.concat([theta_df,kappa_df],axis=1)
pandas.concat
"""Tests for the sdv.constraints.tabular module.""" import uuid from datetime import datetime from unittest.mock import Mock import numpy as np import pandas as pd import pytest from sdv.constraints.errors import MissingConstraintColumnError from sdv.constraints.tabular import ( Between, ColumnFormula, CustomConstraint, GreaterThan, Negative, OneHotEncoding, Positive, Rounding, Unique, UniqueCombinations) def dummy_transform_table(table_data): return table_data def dummy_reverse_transform_table(table_data): return table_data def dummy_is_valid_table(table_data): return [True] * len(table_data) def dummy_transform_table_column(table_data, column): return table_data def dummy_reverse_transform_table_column(table_data, column): return table_data def dummy_is_valid_table_column(table_data, column): return [True] * len(table_data[column]) def dummy_transform_column(column_data): return column_data def dummy_reverse_transform_column(column_data): return column_data def dummy_is_valid_column(column_data): return [True] * len(column_data) class TestCustomConstraint(): def test___init__(self): """Test the ``CustomConstraint.__init__`` method. The ``transform``, ``reverse_transform`` and ``is_valid`` methods should be replaced by the given ones, importing them if necessary. Setup: - Create dummy functions (created above this class). Input: - dummy transform and revert_transform + is_valid FQN Output: - Instance with all the methods replaced by the dummy versions. """ is_valid_fqn = __name__ + '.dummy_is_valid_table' # Run instance = CustomConstraint( transform=dummy_transform_table, reverse_transform=dummy_reverse_transform_table, is_valid=is_valid_fqn ) # Assert assert instance._transform == dummy_transform_table assert instance._reverse_transform == dummy_reverse_transform_table assert instance._is_valid == dummy_is_valid_table def test__run_transform_table(self): """Test the ``CustomConstraint._run`` method. The ``_run`` method excutes ``transform`` and ``reverse_transform`` based on the signature of the functions. In this test, we evaluate the execution of "table" based functions. Setup: - Pass dummy transform function with ``table_data`` argument. Side Effects: - Run transform function once with ``table_data`` as input. Output: - applied identity transformation "table_data = transformed". """ # Setup table_data = pd.DataFrame({'a': [1, 2, 3]}) dummy_transform_mock = Mock(side_effect=dummy_transform_table, return_value=table_data) # Run instance = CustomConstraint(transform=dummy_transform_mock) transformed = instance.transform(table_data) # Asserts called = dummy_transform_mock.call_args dummy_transform_mock.assert_called_once() pd.testing.assert_frame_equal(called[0][0], table_data) pd.testing.assert_frame_equal(transformed, dummy_transform_mock.return_value) def test__run_reverse_transform_table(self): """Test the ``CustomConstraint._run`` method. The ``_run`` method excutes ``transform`` and ``reverse_transform`` based on the signature of the functions. In this test, we evaluate the execution of "table" based functions. Setup: - Pass dummy reverse transform function with ``table_data`` argument. Side Effects: - Run reverse transform function once with ``table_data`` as input. Output: - applied identity transformation "table_data = reverse_transformed". """ # Setup table_data = pd.DataFrame({'a': [1, 2, 3]}) dummy_reverse_transform_mock = Mock(side_effect=dummy_reverse_transform_table, return_value=table_data) # Run instance = CustomConstraint(reverse_transform=dummy_reverse_transform_mock) reverse_transformed = instance.reverse_transform(table_data) # Asserts called = dummy_reverse_transform_mock.call_args dummy_reverse_transform_mock.assert_called_once() pd.testing.assert_frame_equal(called[0][0], table_data) pd.testing.assert_frame_equal( reverse_transformed, dummy_reverse_transform_mock.return_value) def test__run_is_valid_table(self): """Test the ``CustomConstraint._run_is_valid`` method. The ``_run_is_valid`` method excutes ``is_valid`` based on the signature of the functions. In this test, we evaluate the execution of "table" based functions. Setup: - Pass dummy is valid function with ``table_data`` argument. Side Effects: - Run is valid function once with ``table_data`` as input. Output: - Return a list of [True] of length ``table_data``. """ # Setup table_data = pd.DataFrame({'a': [1, 2, 3]}) dummy_is_valid_mock = Mock(side_effect=dummy_is_valid_table) # Run instance = CustomConstraint(is_valid=dummy_is_valid_mock) is_valid = instance.is_valid(table_data) # Asserts expected_out = [True] * len(table_data) called = dummy_is_valid_mock.call_args dummy_is_valid_mock.assert_called_once() pd.testing.assert_frame_equal(called[0][0], table_data) np.testing.assert_array_equal(is_valid, expected_out) def test__run_transform_table_column(self): """Test the ``CustomConstraint._run`` method. The ``_run`` method excutes ``transform`` and ``reverse_transform`` based on the signature of the functions. In this test, we evaluate the execution of "table" and "column" based functions. Setup: - Pass dummy transform function with ``table_data`` and ``column`` arguments. Side Effects: - Run transform function once with ``table_data`` and ``column`` as input. Output: - applied identity transformation "table_data = transformed". """ # Setup table_data = pd.DataFrame({'a': [1, 2, 3]}) dummy_transform_mock = Mock(side_effect=dummy_transform_table_column, return_value=table_data) # Run instance = CustomConstraint(columns='a', transform=dummy_transform_mock) transformed = instance.transform(table_data) # Asserts called = dummy_transform_mock.call_args assert called[0][1] == 'a' dummy_transform_mock.assert_called_once() pd.testing.assert_frame_equal(called[0][0], table_data) pd.testing.assert_frame_equal(transformed, dummy_transform_mock.return_value) def test__run_reverse_transform_table_column(self): """Test the ``CustomConstraint._run`` method. The ``_run`` method excutes ``transform`` and ``reverse_transform`` based on the signature of the functions. In this test, we evaluate the execution of "table" and "column" based functions. Setup: - Pass dummy reverse transform function with ``table_data`` and ``column`` arguments. Side Effects: - Run reverse transform function once with ``table_data`` and ``column`` as input. Output: - applied identity transformation "table_data = transformed". """ # Setup table_data = pd.DataFrame({'a': [1, 2, 3]}) dummy_reverse_transform_mock = Mock(side_effect=dummy_reverse_transform_table_column, return_value=table_data) # Run instance = CustomConstraint(columns='a', reverse_transform=dummy_reverse_transform_mock) reverse_transformed = instance.reverse_transform(table_data) # Asserts called = dummy_reverse_transform_mock.call_args assert called[0][1] == 'a' dummy_reverse_transform_mock.assert_called_once() pd.testing.assert_frame_equal(called[0][0], table_data) pd.testing.assert_frame_equal( reverse_transformed, dummy_reverse_transform_mock.return_value) def test__run_is_valid_table_column(self): """Test the ``CustomConstraint._run_is_valid`` method. The ``_run_is_valid`` method excutes ``is_valid`` based on the signature of the functions. In this test, we evaluate the execution of "table" and "column" based functions. Setup: - Pass dummy is valid function with ``table_data`` and ``column`` argument. Side Effects: - Run is valid function once with ``table_data`` and ``column`` as input. Output: - Return a list of [True] of length ``table_data``. """ # Setup table_data = pd.DataFrame({'a': [1, 2, 3]}) dummy_is_valid_mock = Mock(side_effect=dummy_is_valid_table_column) # Run instance = CustomConstraint(columns='a', is_valid=dummy_is_valid_mock) is_valid = instance.is_valid(table_data) # Asserts expected_out = [True] * len(table_data) called = dummy_is_valid_mock.call_args assert called[0][1] == 'a' dummy_is_valid_mock.assert_called_once() pd.testing.assert_frame_equal(called[0][0], table_data) np.testing.assert_array_equal(is_valid, expected_out) def test__run_transform_column(self): """Test the ``CustomConstraint._run`` method. The ``_run`` method excutes ``transform`` and ``reverse_transform`` based on the signature of the functions. In this test, we evaluate the execution of "column" based functions. Setup: - Pass dummy transform function with ``column_data`` argument. Side Effects: - Run transform function twice, once with the attempt of ``table_data`` and ``column`` and second with ``column_data`` as input. Output: - applied identity transformation "table_data = transformed". """ # Setup table_data = pd.DataFrame({'a': [1, 2, 3]}) dummy_transform_mock = Mock(side_effect=dummy_transform_column, return_value=table_data) # Run instance = CustomConstraint(columns='a', transform=dummy_transform_mock) transformed = instance.transform(table_data) # Asserts called = dummy_transform_mock.call_args_list assert len(called) == 2 # call 1 (try) assert called[0][0][1] == 'a' pd.testing.assert_frame_equal(called[0][0][0], table_data) # call 2 (catch TypeError) pd.testing.assert_series_equal(called[1][0][0], table_data['a']) pd.testing.assert_frame_equal(transformed, dummy_transform_mock.return_value) def test__run_reverse_transform_column(self): """Test the ``CustomConstraint._run`` method. The ``_run`` method excutes ``transform`` and ``reverse_transform`` based on the signature of the functions. In this test, we evaluate the execution of "column" based functions. Setup: - Pass dummy reverse transform function with ``column_data`` argument. Side Effects: - Run reverse transform function twice, once with the attempt of ``table_data`` and ``column`` and second with ``column_data`` as input. Output: - Applied identity transformation "table_data = transformed". """ # Setup table_data = pd.DataFrame({'a': [1, 2, 3]}) dummy_reverse_transform_mock = Mock(side_effect=dummy_reverse_transform_column, return_value=table_data) # Run instance = CustomConstraint(columns='a', reverse_transform=dummy_reverse_transform_mock) reverse_transformed = instance.reverse_transform(table_data) # Asserts called = dummy_reverse_transform_mock.call_args_list assert len(called) == 2 # call 1 (try) assert called[0][0][1] == 'a' pd.testing.assert_frame_equal(called[0][0][0], table_data) # call 2 (catch TypeError) pd.testing.assert_series_equal(called[1][0][0], table_data['a']) pd.testing.assert_frame_equal( reverse_transformed, dummy_reverse_transform_mock.return_value) def test__run_is_valid_column(self): """Test the ``CustomConstraint._run_is_valid`` method. The ``_run_is_valid`` method excutes ``is_valid`` based on the signature of the functions. In this test, we evaluate the execution of "column" based functions. Setup: - Pass dummy is valid function with ``column_data`` argument. Side Effects: - Run is valid function twice, once with the attempt of ``table_data`` and ``column`` and second with ``column_data`` as input. Output: - Return a list of [True] of length ``table_data``. """ # Setup table_data = pd.DataFrame({'a': [1, 2, 3]}) dummy_is_valid_mock = Mock(side_effect=dummy_is_valid_column) # Run instance = CustomConstraint(columns='a', is_valid=dummy_is_valid_mock) is_valid = instance.is_valid(table_data) # Asserts expected_out = [True] * len(table_data) called = dummy_is_valid_mock.call_args_list assert len(called) == 2 # call 1 (try) assert called[0][0][1] == 'a' pd.testing.assert_frame_equal(called[0][0][0], table_data) # call 2 (catch TypeError) pd.testing.assert_series_equal(called[1][0][0], table_data['a']) np.testing.assert_array_equal(is_valid, expected_out) class TestUniqueCombinations(): def test___init__(self): """Test the ``UniqueCombinations.__init__`` method. It is expected to create a new Constraint instance and receiving the names of the columns that need to produce unique combinations. Side effects: - instance._colums == columns """ # Setup columns = ['b', 'c'] # Run instance = UniqueCombinations(columns=columns) # Assert assert instance._columns == columns def test___init__sets_rebuild_columns_if_not_reject_sampling(self): """Test the ``UniqueCombinations.__init__`` method. The rebuild columns should only be set if the ``handling_strategy`` is not ``reject_sampling``. Side effects: - instance.rebuild_columns are set """ # Setup columns = ['b', 'c'] # Run instance = UniqueCombinations(columns=columns, handling_strategy='transform') # Assert assert instance.rebuild_columns == tuple(columns) def test___init__does_not_set_rebuild_columns_reject_sampling(self): """Test the ``UniqueCombinations.__init__`` method. The rebuild columns should not be set if the ``handling_strategy`` is ``reject_sampling``. Side effects: - instance.rebuild_columns are empty """ # Setup columns = ['b', 'c'] # Run instance = UniqueCombinations(columns=columns, handling_strategy='reject_sampling') # Assert assert instance.rebuild_columns == () def test___init__with_one_column(self): """Test the ``UniqueCombinations.__init__`` method with only one constraint column. Expect a ``ValueError`` because UniqueCombinations requires at least two constraint columns. Side effects: - A ValueError is raised """ # Setup columns = ['c'] # Run and assert with pytest.raises(ValueError): UniqueCombinations(columns=columns) def test_fit(self): """Test the ``UniqueCombinations.fit`` method. The ``UniqueCombinations.fit`` method is expected to: - Call ``UniqueCombinations._valid_separator``. - Find a valid separator for the data and generate the joint column name. Input: - Table data (pandas.DataFrame) """ # Setup columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) # Run table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) instance.fit(table_data) # Asserts expected_combinations = pd.DataFrame({ 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) assert instance._separator == '#' assert instance._joint_column == 'b#c' pd.testing.assert_frame_equal(instance._combinations, expected_combinations) def test_is_valid_true(self): """Test the ``UniqueCombinations.is_valid`` method. If the input data satisfies the constraint, result is a series of ``True`` values. Input: - Table data (pandas.DataFrame), satisfying the constraint. Output: - Series of ``True`` values (pandas.Series) Side effects: - Since the ``is_valid`` method needs ``self._combinations``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run out = instance.is_valid(table_data) expected_out = pd.Series([True, True, True], name='b#c') pd.testing.assert_series_equal(expected_out, out) def test_is_valid_false(self): """Test the ``UniqueCombinations.is_valid`` method. If the input data doesn't satisfy the constraint, result is a series of ``False`` values. Input: - Table data (pandas.DataFrame), which does not satisfy the constraint. Output: - Series of ``False`` values (pandas.Series) Side effects: - Since the ``is_valid`` method needs ``self._combinations``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run incorrect_table = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['D', 'E', 'F'], 'c': ['g', 'h', 'i'] }) out = instance.is_valid(incorrect_table) # Assert expected_out = pd.Series([False, False, False], name='b#c') pd.testing.assert_series_equal(expected_out, out) def test_is_valid_non_string_true(self): """Test the ``UniqueCombinations.is_valid`` method with non string columns. If the input data satisfies the constraint, result is a series of ``True`` values. Input: - Table data (pandas.DataFrame), satisfying the constraint. Output: - Series of ``True`` values (pandas.Series) Side effects: - Since the ``is_valid`` method needs ``self._combinations``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': [1, 2, 3], 'c': ['g', 'h', 'i'], 'd': [2.4, 1.23, 5.6] }) columns = ['b', 'c', 'd'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run out = instance.is_valid(table_data) expected_out = pd.Series([True, True, True], name='b#c#d') pd.testing.assert_series_equal(expected_out, out) def test_is_valid_non_string_false(self): """Test the ``UniqueCombinations.is_valid`` method with non string columns. If the input data doesn't satisfy the constraint, result is a series of ``False`` values. Input: - Table data (pandas.DataFrame), which does not satisfy the constraint. Output: - Series of ``False`` values (pandas.Series) Side effects: - Since the ``is_valid`` method needs ``self._combinations``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': [1, 2, 3], 'c': ['g', 'h', 'i'], 'd': [2.4, 1.23, 5.6] }) columns = ['b', 'c', 'd'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run incorrect_table = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': [6, 7, 8], 'c': ['g', 'h', 'i'], 'd': [2.4, 1.23, 5.6] }) out = instance.is_valid(incorrect_table) # Assert expected_out = pd.Series([False, False, False], name='b#c#d') pd.testing.assert_series_equal(expected_out, out) def test_transform(self): """Test the ``UniqueCombinations.transform`` method. It is expected to return a Table data with the columns concatenated by the separator. Input: - Table data (pandas.DataFrame) Output: - Table data transformed, with the columns concatenated (pandas.DataFrame) Side effects: - Since the ``transform`` method needs ``self._joint_column``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run out = instance.transform(table_data) # Assert assert instance._combinations_to_uuids is not None assert instance._uuids_to_combinations is not None expected_out_a = pd.Series(['a', 'b', 'c'], name='a') pd.testing.assert_series_equal(expected_out_a, out['a']) try: [uuid.UUID(u) for c, u in out['b#c'].items()] except ValueError: assert False def test_transform_non_string(self): """Test the ``UniqueCombinations.transform`` method with non strings. It is expected to return a Table data with the columns concatenated by the separator. Input: - Table data (pandas.DataFrame) Output: - Table data transformed, with the columns as UUIDs. Side effects: - Since the ``transform`` method needs ``self._joint_column``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': [1, 2, 3], 'c': ['g', 'h', 'i'], 'd': [2.4, 1.23, 5.6] }) columns = ['b', 'c', 'd'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run out = instance.transform(table_data) # Assert assert instance._combinations_to_uuids is not None assert instance._uuids_to_combinations is not None expected_out_a = pd.Series(['a', 'b', 'c'], name='a') pd.testing.assert_series_equal(expected_out_a, out['a']) try: [uuid.UUID(u) for c, u in out['b#c#d'].items()] except ValueError: assert False def test_transform_not_all_columns_provided(self): """Test the ``UniqueCombinations.transform`` method. If some of the columns needed for the transform are missing, and ``fit_columns_model`` is False, it will raise a ``MissingConstraintColumnError``. Input: - Table data (pandas.DataFrame) Output: - Raises ``MissingConstraintColumnError``. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) columns = ['b', 'c'] instance = UniqueCombinations(columns=columns, fit_columns_model=False) instance.fit(table_data) # Run/Assert with pytest.raises(MissingConstraintColumnError): instance.transform(pd.DataFrame({'a': ['a', 'b', 'c']})) def test_reverse_transform(self): """Test the ``UniqueCombinations.reverse_transform`` method. It is expected to return the original data separating the concatenated columns. Input: - Table data transformed (pandas.DataFrame) Output: - Original table data, with the concatenated columns separated (pandas.DataFrame) Side effects: - Since the ``transform`` method needs ``self._joint_column``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run transformed_data = instance.transform(table_data) out = instance.reverse_transform(transformed_data) # Assert assert instance._combinations_to_uuids is not None assert instance._uuids_to_combinations is not None expected_out = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) pd.testing.assert_frame_equal(expected_out, out) def test_reverse_transform_non_string(self): """Test the ``UniqueCombinations.reverse_transform`` method with a non string column. It is expected to return the original data separating the concatenated columns. Input: - Table data transformed (pandas.DataFrame) Output: - Original table data, with the concatenated columns separated (pandas.DataFrame) Side effects: - Since the ``transform`` method needs ``self._joint_column``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': [1, 2, 3], 'c': ['g', 'h', 'i'], 'd': [2.4, 1.23, 5.6] }) columns = ['b', 'c', 'd'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run transformed_data = instance.transform(table_data) out = instance.reverse_transform(transformed_data) # Assert assert instance._combinations_to_uuids is not None assert instance._uuids_to_combinations is not None expected_out = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': [1, 2, 3], 'c': ['g', 'h', 'i'], 'd': [2.4, 1.23, 5.6] }) pd.testing.assert_frame_equal(expected_out, out) class TestGreaterThan(): def test__validate_scalar(self): """Test the ``_validate_scalar`` method. This method validates the inputs if and transforms them into the correct format. Input: - scalar_column = 0 - column_names = 'b' Output: - column_names == ['b'] """ # Setup scalar_column = 0 column_names = 'b' scalar = 'high' # Run out = GreaterThan._validate_scalar(scalar_column, column_names, scalar) # Assert out == ['b'] def test__validate_scalar_list(self): """Test the ``_validate_scalar`` method. This method validates the inputs if and transforms them into the correct format. Input: - scalar_column = 0 - column_names = ['b'] Output: - column_names == ['b'] """ # Setup scalar_column = 0 column_names = ['b'] scalar = 'low' # Run out = GreaterThan._validate_scalar(scalar_column, column_names, scalar) # Assert out == ['b'] def test__validate_scalar_error(self): """Test the ``_validate_scalar`` method. This method raises an error when the the scalar column is a list. Input: - scalar_column = 0 - column_names = 'b' Side effect: - Raise error since the scalar is a list """ # Setup scalar_column = [0] column_names = 'b' scalar = 'high' # Run / Assert with pytest.raises(TypeError): GreaterThan._validate_scalar(scalar_column, column_names, scalar) def test__validate_inputs_high_is_scalar(self): """Test the ``_validate_inputs`` method. This method checks ``scalar`` and formats the data based on what is expected to be a list or not. In addition, it returns the ``constraint_columns``. Input: - low = 'a' - high = 3 - scalar = 'high' Output: - low == ['a'] - high == 3 - constraint_columns = ('a') """ # Setup / Run low, high, constraint_columns = GreaterThan._validate_inputs( low='a', high=3, scalar='high', drop=None) # Assert low == ['a'] high == 3 constraint_columns == ('a',) def test__validate_inputs_low_is_scalar(self): """Test the ``_validate_inputs`` method. This method checks ``scalar`` and formats the data based on what is expected to be a list or not. In addition, it returns the ``constraint_columns``. Input: - low = 3 - high = 'b' - scalar = 'low' - drop = None Output: - low == 3 - high == ['b'] - constraint_columns = ('b') """ # Setup / Run low, high, constraint_columns = GreaterThan._validate_inputs( low=3, high='b', scalar='low', drop=None) # Assert low == 3 high == ['b'] constraint_columns == ('b',) def test__validate_inputs_scalar_none(self): """Test the ``_validate_inputs`` method. This method checks ``scalar`` and formats the data based on what is expected to be a list or not. In addition, it returns the ``constraint_columns``. Input: - low = 'a' - high = 3 # where 3 is a column name - scalar = None - drop = None Output: - low == ['a'] - high == [3] - constraint_columns = ('a', 3) """ # Setup / Run low, high, constraint_columns = GreaterThan._validate_inputs( low='a', high=3, scalar=None, drop=None) # Assert low == ['a'] high == [3] constraint_columns == ('a', 3) def test__validate_inputs_scalar_none_lists(self): """Test the ``_validate_inputs`` method. This method checks ``scalar`` and formats the data based on what is expected to be a list or not. In addition, it returns the ``constraint_columns``. Input: - low = ['a'] - high = ['b', 'c'] - scalar = None - drop = None Output: - low == ['a'] - high == ['b', 'c'] - constraint_columns = ('a', 'b', 'c') """ # Setup / Run low, high, constraint_columns = GreaterThan._validate_inputs( low=['a'], high=['b', 'c'], scalar=None, drop=None) # Assert low == ['a'] high == ['b', 'c'] constraint_columns == ('a', 'b', 'c') def test__validate_inputs_scalar_none_two_lists(self): """Test the ``_validate_inputs`` method. This method checks ``scalar`` and formats the data based on what is expected to be a list or not. In addition, it returns the ``constraint_columns``. Input: - low = ['a', 0] - high = ['b', 'c'] - scalar = None - drop = None Side effect: - Raise error because both high and low are more than one column """ # Run / Assert with pytest.raises(ValueError): GreaterThan._validate_inputs(low=['a', 0], high=['b', 'c'], scalar=None, drop=None) def test__validate_inputs_scalar_unknown(self): """Test the ``_validate_inputs`` method. This method checks ``scalar`` and formats the data based on what is expected to be a list or not. In addition, it returns the ``constraint_columns``. Input: - low = 'a' - high = 'b' - scalar = 'unknown' - drop = None Side effect: - Raise error because scalar is unknown """ # Run / Assert with pytest.raises(ValueError): GreaterThan._validate_inputs(low='a', high='b', scalar='unknown', drop=None) def test__validate_inputs_drop_error_low(self): """Test the ``_validate_inputs`` method. Make sure the method raises an error if ``drop``==``scalar`` when ``scalar`` is not ``None``. Input: - low = 2 - high = 'b' - scalar = 'low' - drop = 'low' Side effect: - Raise error because scalar is unknown """ # Run / Assert with pytest.raises(ValueError): GreaterThan._validate_inputs(low=2, high='b', scalar='low', drop='low') def test__validate_inputs_drop_error_high(self): """Test the ``_validate_inputs`` method. Make sure the method raises an error if ``drop``==``scalar`` when ``scalar`` is not ``None``. Input: - low = 'a' - high = 3 - scalar = 'high' - drop = 'high' Side effect: - Raise error because scalar is unknown """ # Run / Assert with pytest.raises(ValueError): GreaterThan._validate_inputs(low='a', high=3, scalar='high', drop='high') def test__validate_inputs_drop_success(self): """Test the ``_validate_inputs`` method. Make sure the method raises an error if ``drop``==``scalar`` when ``scalar`` is not ``None``. Input: - low = 'a' - high = 'b' - scalar = 'high' - drop = 'low' Output: - low = ['a'] - high = 0 - constraint_columns == ('a') """ # Run / Assert low, high, constraint_columns = GreaterThan._validate_inputs( low='a', high=0, scalar='high', drop='low') assert low == ['a'] assert high == 0 assert constraint_columns == ('a',) def test___init___(self): """Test the ``GreaterThan.__init__`` method. The passed arguments should be stored as attributes. Input: - low = 'a' - high = 'b' Side effects: - instance._low == 'a' - instance._high == 'b' - instance._strict == False """ # Run instance = GreaterThan(low='a', high='b') # Asserts assert instance._low == ['a'] assert instance._high == ['b'] assert instance._strict is False assert instance._scalar is None assert instance._drop is None assert instance.constraint_columns == ('a', 'b') def test___init__sets_rebuild_columns_if_not_reject_sampling(self): """Test the ``GreaterThan.__init__`` method. The rebuild columns should only be set if the ``handling_strategy`` is not ``reject_sampling``. Side effects: - instance.rebuild_columns are set """ # Run instance = GreaterThan(low='a', high='b', handling_strategy='transform') # Assert assert instance.rebuild_columns == ['b'] def test___init__does_not_set_rebuild_columns_reject_sampling(self): """Test the ``GreaterThan.__init__`` method. The rebuild columns should not be set if the ``handling_strategy`` is ``reject_sampling``. Side effects: - instance.rebuild_columns are empty """ # Run instance = GreaterThan(low='a', high='b', handling_strategy='reject_sampling') # Assert assert instance.rebuild_columns == () def test___init___high_is_scalar(self): """Test the ``GreaterThan.__init__`` method. The passed arguments should be stored as attributes. Make sure ``scalar`` is set to ``'high'``. Input: - low = 'a' - high = 0 - strict = True - drop = 'low' - scalar = 'high' Side effects: - instance._low == 'a' - instance._high == 0 - instance._strict == True - instance._drop = 'low' - instance._scalar == 'high' """ # Run instance = GreaterThan(low='a', high=0, strict=True, drop='low', scalar='high') # Asserts assert instance._low == ['a'] assert instance._high == 0 assert instance._strict is True assert instance._scalar == 'high' assert instance._drop == 'low' assert instance.constraint_columns == ('a',) def test___init___low_is_scalar(self): """Test the ``GreaterThan.__init__`` method. The passed arguments should be stored as attributes. Make sure ``scalar`` is set to ``'high'``. Input: - low = 0 - high = 'a' - strict = True - drop = 'high' - scalar = 'low' Side effects: - instance._low == 0 - instance._high == 'a' - instance._stric == True - instance._drop = 'high' - instance._scalar == 'low' """ # Run instance = GreaterThan(low=0, high='a', strict=True, drop='high', scalar='low') # Asserts assert instance._low == 0 assert instance._high == ['a'] assert instance._strict is True assert instance._scalar == 'low' assert instance._drop == 'high' assert instance.constraint_columns == ('a',) def test___init___strict_is_false(self): """Test the ``GreaterThan.__init__`` method. Ensure that ``operator`` is set to ``np.greater_equal`` when ``strict`` is set to ``False``. Input: - low = 'a' - high = 'b' - strict = False """ # Run instance = GreaterThan(low='a', high='b', strict=False) # Assert assert instance.operator == np.greater_equal def test___init___strict_is_true(self): """Test the ``GreaterThan.__init__`` method. Ensure that ``operator`` is set to ``np.greater`` when ``strict`` is set to ``True``. Input: - low = 'a' - high = 'b' - strict = True """ # Run instance = GreaterThan(low='a', high='b', strict=True) # Assert assert instance.operator == np.greater def test__init__get_columns_to_reconstruct_default(self): """Test the ``GreaterThan._get_columns_to_reconstruct`` method. This method returns: - ``_high`` if drop is "high" - ``_low`` if drop is "low" - ``_low`` if scalar is "high" - ``_high`` otherwise Setup: - low = 'a' - high = 'b' Side effects: - self._columns_to_reconstruct == ['b'] """ # Setup instance = GreaterThan(low='a', high='b') instance._columns_to_reconstruct == ['b'] def test__init__get_columns_to_reconstruct_drop_high(self): """Test the ``GreaterThan._get_columns_to_reconstruct`` method. This method returns: - ``_high`` if drop is "high" - ``_low`` if drop is "low" - ``_low`` if scalar is "high" - ``_high`` otherwise Setup: - low = 'a' - high = 'b' - drop = 'high' Side effects: - self._columns_to_reconstruct == ['b'] """ # Setup instance = GreaterThan(low='a', high='b', drop='high') instance._columns_to_reconstruct == ['b'] def test__init__get_columns_to_reconstruct_drop_low(self): """Test the ``GreaterThan._get_columns_to_reconstruct`` method. This method returns: - ``_high`` if drop is "high" - ``_low`` if drop is "low" - ``_low`` if scalar is "high" - ``_high`` otherwise Setup: - low = 'a' - high = 'b' - drop = 'low' Side effects: - self._columns_to_reconstruct == ['a'] """ # Setup instance = GreaterThan(low='a', high='b', drop='low') instance._columns_to_reconstruct == ['a'] def test__init__get_columns_to_reconstruct_scalar_high(self): """Test the ``GreaterThan._get_columns_to_reconstruct`` method. This method returns: - ``_high`` if drop is "high" - ``_low`` if drop is "low" - ``_low`` if scalar is "high" - ``_high`` otherwise Setup: - low = 'a' - high = 0 - scalar = 'high' Side effects: - self._columns_to_reconstruct == ['a'] """ # Setup instance = GreaterThan(low='a', high=0, scalar='high') instance._columns_to_reconstruct == ['a'] def test__get_value_column_list(self): """Test the ``GreaterThan._get_value`` method. This method returns a scalar or a ndarray of values depending on the type of the ``field``. Input: - Table with given data. - field = 'low' """ # Setup instance = GreaterThan(low='a', high='b') table_data = pd.DataFrame({ 'a': [1, 2, 4], 'b': [4, 5, 6], 'c': [7, 8, 9] }) out = instance._get_value(table_data, 'low') # Assert expected = table_data[['a']].values np.testing.assert_array_equal(out, expected) def test__get_value_scalar(self): """Test the ``GreaterThan._get_value`` method. This method returns a scalar or a ndarray of values depending on the type of the ``field``. Input: - Table with given data. - field = 'low' - scalar = 'low' """ # Setup instance = GreaterThan(low=3, high='b', scalar='low') table_data = pd.DataFrame({ 'a': [1, 2, 4], 'b': [4, 5, 6], 'c': [7, 8, 9] }) out = instance._get_value(table_data, 'low') # Assert expected = 3 assert out == expected def test__get_diff_columns_name_low_is_scalar(self): """Test the ``GreaterThan._get_diff_columns_name`` method. The returned names should be equal to the given columns plus tokenized with '#'. Input: - Table with given data. """ # Setup instance = GreaterThan(low=0, high=['a', 'b#'], scalar='low') table_data = pd.DataFrame({ 'a': [1, 2, 4], 'b#': [4, 5, 6] }) out = instance._get_diff_columns_name(table_data) # Assert expected = ['a#', 'b##'] assert out == expected def test__get_diff_columns_name_high_is_scalar(self): """Test the ``GreaterThan._get_diff_columns_name`` method. The returned names should be equal to the given columns plus tokenized with '#'. Input: - Table with given data. """ # Setup instance = GreaterThan(low=['a', 'b'], high=0, scalar='high') table_data = pd.DataFrame({ 'a': [1, 2, 4], 'b': [4, 5, 6] }) out = instance._get_diff_columns_name(table_data) # Assert expected = ['a#', 'b#'] assert out == expected def test__get_diff_columns_name_scalar_is_none(self): """Test the ``GreaterThan._get_diff_columns_name`` method. The returned names should be equal one name of the two columns with a token between them. Input: - Table with given data. """ # Setup instance = GreaterThan(low='a', high='b#', scalar=None) table_data = pd.DataFrame({ 'a': [1, 2, 4], 'b#': [4, 5, 6] }) out = instance._get_diff_columns_name(table_data) # Assert expected = ['b##a'] assert out == expected def test__get_diff_columns_name_scalar_is_none_multi_column_low(self): """Test the ``GreaterThan._get_diff_columns_name`` method. The returned names should be equal one name of the two columns with a token between them. Input: - Table with given data. """ # Setup instance = GreaterThan(low=['a#', 'c'], high='b', scalar=None) table_data = pd.DataFrame({ 'a#': [1, 2, 4], 'b': [4, 5, 6], 'c#': [7, 8, 9] }) out = instance._get_diff_columns_name(table_data) # Assert expected = ['a##b', 'c#b'] assert out == expected def test__get_diff_columns_name_scalar_is_none_multi_column_high(self): """Test the ``GreaterThan._get_diff_columns_name`` method. The returned names should be equal one name of the two columns with a token between them. Input: - Table with given data. """ # Setup instance = GreaterThan(low=0, high=['b', 'c'], scalar=None) table_data = pd.DataFrame({ 0: [1, 2, 4], 'b': [4, 5, 6], 'c#': [7, 8, 9] }) out = instance._get_diff_columns_name(table_data) # Assert expected = ['b#0', 'c#0'] assert out == expected def test__check_columns_exist_success(self): """Test the ``GreaterThan._check_columns_exist`` method. This method raises an error if the specified columns in ``low`` or ``high`` do not exist. Input: - Table with given data. """ # Setup instance = GreaterThan(low='a', high='b') # Run / Assert table_data = pd.DataFrame({ 'a': [1, 2, 4], 'b': [4, 5, 6] }) instance._check_columns_exist(table_data, 'low') instance._check_columns_exist(table_data, 'high') def test__check_columns_exist_error(self): """Test the ``GreaterThan._check_columns_exist`` method. This method raises an error if the specified columns in ``low`` or ``high`` do not exist. Input: - Table with given data. """ # Setup instance = GreaterThan(low='a', high='c') # Run / Assert table_data = pd.DataFrame({ 'a': [1, 2, 4], 'b': [4, 5, 6] }) instance._check_columns_exist(table_data, 'low') with pytest.raises(KeyError): instance._check_columns_exist(table_data, 'high') def test__fit_only_one_datetime_arg(self): """Test the ``Between._fit`` method by passing in only one arg as datetime. If only one of the high / low args is a datetime type, expect a ValueError. Input: - low is an int column - high is a datetime Output: - n/a Side Effects: - ValueError """ # Setup instance = GreaterThan(low='a', high=pd.to_datetime('2021-01-01'), scalar='high') # Run and assert table_data = pd.DataFrame({ 'a': [1., 2., 3.], 'b': [4, 5, 6] }) with pytest.raises(ValueError): instance._fit(table_data) def test__fit__low_is_not_found_and_scalar_is_none(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should raise an error if the ``low`` is set to a value not seen in ``table_data``. Input: - Table without ``low`` in columns. Side Effect: - KeyError. """ # Setup instance = GreaterThan(low=3, high='b') # Run / Assert table_data = pd.DataFrame({ 'a': [1., 2., 3.], 'b': [4, 5, 6] }) with pytest.raises(KeyError): instance._fit(table_data) def test__fit__high_is_not_found_and_scalar_is_none(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should raise an error if the ``high`` is set to a value not seen in ``table_data``. Input: - Table without ``high`` in columns. Side Effect: - KeyError. """ # Setup instance = GreaterThan(low='a', high=3) # Run / Assert table_data = pd.DataFrame({ 'a': [1., 2., 3.], 'b': [4, 5, 6] }) with pytest.raises(KeyError): instance._fit(table_data) def test__fit__low_is_not_found_scalar_is_high(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should raise an error if the ``low`` is set to a value not seen in ``table_data``. Input: - Table without ``low`` in columns. Side Effect: - KeyError. """ # Setup instance = GreaterThan(low='c', high=3, scalar='high') # Run / Assert table_data = pd.DataFrame({ 'a': [1., 2., 3.], 'b': [4, 5, 6] }) with pytest.raises(KeyError): instance._fit(table_data) def test__fit__high_is_not_found_scalar_is_high(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should raise an error if the ``high`` is set to a value not seen in ``table_data``. Input: - Table without ``high`` in columns. Side Effect: - KeyError. """ # Setup instance = GreaterThan(low=3, high='c', scalar='low') # Run / Assert table_data = pd.DataFrame({ 'a': [1., 2., 3.], 'b': [4, 5, 6] }) with pytest.raises(KeyError): instance._fit(table_data) def test__fit__columns_to_reconstruct_drop_high(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should set ``_columns_to_reconstruct`` to ``instance._high`` if ``instance_drop`` is `high`. Input: - Table with two columns. Side Effect: - ``_columns_to_reconstruct`` is ``instance._high`` """ # Setup instance = GreaterThan(low='a', high='b', drop='high') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6] }) instance._fit(table_data) # Asserts assert instance._columns_to_reconstruct == ['b'] def test__fit__columns_to_reconstruct_drop_low(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should set ``_columns_to_reconstruct`` to ``instance._low`` if ``instance_drop`` is `low`. Input: - Table with two columns. Side Effect: - ``_columns_to_reconstruct`` is ``instance._low`` """ # Setup instance = GreaterThan(low='a', high='b', drop='low') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6] }) instance._fit(table_data) # Asserts assert instance._columns_to_reconstruct == ['a'] def test__fit__columns_to_reconstruct_default(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should set ``_columns_to_reconstruct`` to `high` by default. Input: - Table with two columns. Side Effect: - ``_columns_to_reconstruct`` is ``instance._high`` """ # Setup instance = GreaterThan(low='a', high='b') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6] }) instance._fit(table_data) # Asserts assert instance._columns_to_reconstruct == ['b'] def test__fit__columns_to_reconstruct_high_is_scalar(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should set ``_columns_to_reconstruct`` to `low` if ``instance._scalar`` is ``'high'``. Input: - Table with two columns. Side Effect: - ``_columns_to_reconstruct`` is ``instance._low`` """ # Setup instance = GreaterThan(low='a', high='b', scalar='high') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6] }) instance._fit(table_data) # Asserts assert instance._columns_to_reconstruct == ['a'] def test__fit__columns_to_reconstruct_low_is_scalar(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should set ``_columns_to_reconstruct`` to `high` if ``instance._scalar`` is ``'low'``. Input: - Table with two columns. Side Effect: - ``_columns_to_reconstruct`` is ``instance._high`` """ # Setup instance = GreaterThan(low='a', high='b', scalar='low') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6] }) instance._fit(table_data) # Asserts assert instance._columns_to_reconstruct == ['b'] def test__fit__diff_columns_one_column(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should set ``_diff_columns`` to the one column in ``instance.constraint_columns`` plus a token if there is only one column in that set. Input: - Table with one column. Side Effect: - ``_columns_to_reconstruct`` is ``instance._low`` """ # Setup instance = GreaterThan(low='a', high=3, scalar='high') # Run table_data = pd.DataFrame({'a': [1, 2, 3]}) instance._fit(table_data) # Asserts assert instance._diff_columns == ['a#'] def test__fit__diff_columns_multiple_columns(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should set ``_diff_columns`` to the two columns in ``instance.constraint_columns`` separated by a token if there both columns are in that set. Input: - Table with two column. Side Effect: - ``_columns_to_reconstruct`` is ``instance._low`` """ # Setup instance = GreaterThan(low='a', high='b') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6] }) instance._fit(table_data) # Asserts assert instance._diff_columns == ['b#a'] def test__fit_int(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should only learn and store the ``dtype`` of the ``high`` column as the ``_dtype`` attribute if ``_low_is_scalar`` and ``high_is_scalar`` are ``False``. Input: - Table that contains two constrained columns with the high one being made of integers. Side Effect: - The _dtype attribute gets `int` as the value even if the low column has a different dtype. """ # Setup instance = GreaterThan(low='a', high='b') # Run table_data = pd.DataFrame({ 'a': [1., 2., 3.], 'b': [4, 5, 6], 'c': [7, 8, 9] }) instance._fit(table_data) # Asserts assert all([dtype.kind == 'i' for dtype in instance._dtype]) def test__fit_float(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should only learn and store the ``dtype`` of the ``high`` column as the ``_dtype`` attribute if ``_low_is_scalar`` and ``high_is_scalar`` are ``False``. Input: - Table that contains two constrained columns with the high one being made of float values. Side Effect: - The _dtype attribute gets `float` as the value even if the low column has a different dtype. """ # Setup instance = GreaterThan(low='a', high='b') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4., 5., 6.], 'c': [7, 8, 9] }) instance._fit(table_data) # Asserts assert all([dtype.kind == 'f' for dtype in instance._dtype]) def test__fit_datetime(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should only learn and store the ``dtype`` of the ``high`` column as the ``_dtype`` attribute if ``_low_is_scalar`` and ``high_is_scalar`` are ``False``. Input: - Table that contains two constrained columns of datetimes. Side Effect: - The _dtype attribute gets `datetime` as the value. """ # Setup instance = GreaterThan(low='a', high='b') # Run table_data = pd.DataFrame({ 'a': pd.to_datetime(['2020-01-01']), 'b': pd.to_datetime(['2020-01-02']) }) instance._fit(table_data) # Asserts assert all([dtype.kind == 'M' for dtype in instance._dtype]) def test__fit_type__high_is_scalar(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should learn and store the ``dtype`` of the ``low`` column as the ``_dtype`` attribute if ``_scalar`` is ``'high'``. Input: - Table that contains two constrained columns with the low one being made of floats. Side Effect: - The _dtype attribute gets `float` as the value. """ # Setup instance = GreaterThan(low='a', high=3, scalar='high') # Run table_data = pd.DataFrame({ 'a': [1., 2., 3.], 'b': [4, 5, 6], 'c': [7, 8, 9] }) instance._fit(table_data) # Asserts assert all([dtype.kind == 'f' for dtype in instance._dtype]) def test__fit_type__low_is_scalar(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should learn and store the ``dtype`` of the ``high`` column as the ``_dtype`` attribute if ``_scalar`` is ``'low'``. Input: - Table that contains two constrained columns with the high one being made of floats. Side Effect: - The _dtype attribute gets `float` as the value. """ # Setup instance = GreaterThan(low=3, high='b', scalar='low') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4., 5., 6.], 'c': [7, 8, 9] }) instance._fit(table_data) # Asserts assert all([dtype.kind == 'f' for dtype in instance._dtype]) def test__fit_high_is_scalar_multi_column(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should learn and store the ``dtype`` of the ``high`` column as the ``_dtype`` attribute. Input: - Table that contains two constrained columns with different dtype. """ # Setup instance = GreaterThan(low=['a', 'b'], high=0, scalar='high') dtype_int = pd.Series([1]).dtype dtype_float = np.dtype('float') table_data = pd.DataFrame({ 'a': [1, 2, 4], 'b': [4., 5., 6.] }) instance._fit(table_data) # Assert expected_diff_columns = ['a#', 'b#'] expected_dtype = pd.Series([dtype_int, dtype_float], index=table_data.columns) assert instance._diff_columns == expected_diff_columns pd.testing.assert_series_equal(instance._dtype, expected_dtype) def test__fit_low_is_scalar_multi_column(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should learn and store the ``dtype`` of the ``high`` column as the ``_dtype`` attribute. Input: - Table that contains two constrained columns with different dtype. """ # Setup instance = GreaterThan(low=0, high=['a', 'b'], scalar='low') dtype_int = pd.Series([1]).dtype dtype_float = np.dtype('float') table_data = pd.DataFrame({ 'a': [1, 2, 4], 'b': [4., 5., 6.] }) instance._fit(table_data) # Assert expected_diff_columns = ['a#', 'b#'] expected_dtype = pd.Series([dtype_int, dtype_float], index=table_data.columns) assert instance._diff_columns == expected_diff_columns pd.testing.assert_series_equal(instance._dtype, expected_dtype) def test_is_valid_strict_false(self): """Test the ``GreaterThan.is_valid`` method with strict False. If strict is False, equal values should count as valid. Input: - Table with a strictly valid row, a strictly invalid row and a row that has the same value for both high and low. Output: - False should be returned for the strictly invalid row and True for the other two. """ # Setup instance = GreaterThan(low='a', high='b', strict=False) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 2, 2], 'c': [7, 8, 9] }) out = instance.is_valid(table_data) # Assert expected_out = [True, True, False] np.testing.assert_array_equal(expected_out, out) def test_is_valid_strict_true(self): """Test the ``GreaterThan.is_valid`` method with strict True. If strict is True, equal values should count as invalid. Input: - Table with a strictly valid row, a strictly invalid row and a row that has the same value for both high and low. Output: - True should be returned for the strictly valid row and False for the other two. """ # Setup instance = GreaterThan(low='a', high='b', strict=True) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 2, 2], 'c': [7, 8, 9] }) out = instance.is_valid(table_data) # Assert expected_out = [True, False, False] np.testing.assert_array_equal(expected_out, out) def test_is_valid_low_is_scalar_high_is_column(self): """Test the ``GreaterThan.is_valid`` method. If low is a scalar, and high is a column name, then the values in that column should all be higher than ``instance._low``. Input: - Table with values above and below low. Output: - True should be returned for the rows where the high column is above low. """ # Setup instance = GreaterThan(low=3, high='b', strict=False, scalar='low') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 2, 2], 'c': [7, 8, 9] }) out = instance.is_valid(table_data) # Assert expected_out = [True, False, False] np.testing.assert_array_equal(expected_out, out) def test_is_valid_high_is_scalar_low_is_column(self): """Test the ``GreaterThan.is_valid`` method. If high is a scalar, and low is a column name, then the values in that column should all be lower than ``instance._high``. Input: - Table with values above and below high. Output: - True should be returned for the rows where the low column is below high. """ # Setup instance = GreaterThan(low='a', high=2, strict=False, scalar='high') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 2, 2], 'c': [7, 8, 9] }) out = instance.is_valid(table_data) # Assert expected_out = [True, True, False] np.testing.assert_array_equal(expected_out, out) def test_is_valid_high_is_scalar_multi_column(self): """Test the ``GreaterThan.is_valid`` method. If high is a scalar, and low is multi column, then the values in that column should all be lower than ``instance._high``. Input: - Table with values above and below high. Output: - True should be returned for the rows where the low column is below high. """ # Setup instance = GreaterThan(low=['a', 'b'], high=2, strict=False, scalar='high') table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 2, 2], 'c': [7, 8, 9] }) out = instance.is_valid(table_data) # Assert expected_out = [False, True, False] np.testing.assert_array_equal(expected_out, out) def test_is_valid_low_is_scalar_multi_column(self): """Test the ``GreaterThan.is_valid`` method. If low is a scalar, and high is multi column, then the values in that column should all be higher than ``instance._low``. Input: - Table with values above and below low. Output: - True should be returned for the rows where the high column is above low. """ # Setup instance = GreaterThan(low=2, high=['a', 'b'], strict=False, scalar='low') table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 2, 2], 'c': [7, 8, 9] }) out = instance.is_valid(table_data) # Assert expected_out = [False, True, True] np.testing.assert_array_equal(expected_out, out) def test_is_valid_scalar_is_none_multi_column(self): """Test the ``GreaterThan.is_valid`` method. If scalar is none, and high is multi column, then the values in that column should all be higher than in the low column. Input: - Table with values above and below low. Output: - True should be returned for the rows where the high column is above low. """ # Setup instance = GreaterThan(low='b', high=['a', 'c'], strict=False) table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 2, 2], 'c': [7, 8, 9] }) # Run out = instance.is_valid(table_data) # Assert expected_out = [False, True, True] np.testing.assert_array_equal(expected_out, out) def test_is_valid_high_is_datetime(self): """Test the ``GreaterThan.is_valid`` method. If high is a datetime and low is a column, the values in that column should all be lower than ``instance._high``. Input: - Table with values above and below `high`. Output: - True should be returned for the rows where the low column is below `high`. """ # Setup high_dt = pd.to_datetime('8/31/2021') instance = GreaterThan(low='a', high=high_dt, strict=False, scalar='high') table_data = pd.DataFrame({ 'a': [datetime(2020, 5, 17), datetime(2020, 2, 1), datetime(2021, 9, 1)], 'b': [4, 2, 2], }) # Run out = instance.is_valid(table_data) # Assert expected_out = [True, True, False] np.testing.assert_array_equal(expected_out, out) def test_is_valid_low_is_datetime(self): """Test the ``GreaterThan.is_valid`` method. If low is a datetime and high is a column, the values in that column should all be higher than ``instance._low``. Input: - Table with values above and below `low`. Output: - True should be returned for the rows where the high column is above `low`. """ # Setup low_dt = pd.to_datetime('8/31/2021') instance = GreaterThan(low=low_dt, high='a', strict=False, scalar='low') table_data = pd.DataFrame({ 'a': [datetime(2021, 9, 17), datetime(2021, 7, 1), datetime(2021, 9, 1)], 'b': [4, 2, 2], }) # Run out = instance.is_valid(table_data) # Assert expected_out = [True, False, True] np.testing.assert_array_equal(expected_out, out) def test_is_valid_two_cols_with_nans(self): """Test the ``GreaterThan.is_valid`` method with nan values. If there is a NaN row, expect that `is_valid` returns True. Input: - Table with a NaN row Output: - True should be returned for the NaN row. """ # Setup instance = GreaterThan(low='a', high='b', strict=True) # Run table_data = pd.DataFrame({ 'a': [1, None, 3], 'b': [4, None, 2], 'c': [7, 8, 9] }) out = instance.is_valid(table_data) # Assert expected_out = [True, True, False] np.testing.assert_array_equal(expected_out, out) def test_is_valid_two_cols_with_one_nan(self): """Test the ``GreaterThan.is_valid`` method with nan values. If there is a row in which we compare one NaN value with one non-NaN value, expect that `is_valid` returns True. Input: - Table with a row that contains only one NaN value. Output: - True should be returned for the row with the NaN value. """ # Setup instance = GreaterThan(low='a', high='b', strict=True) # Run table_data = pd.DataFrame({ 'a': [1, None, 3], 'b': [4, 5, 2], 'c': [7, 8, 9] }) out = instance.is_valid(table_data) # Assert expected_out = [True, True, False] np.testing.assert_array_equal(expected_out, out) def test__transform_int_drop_none(self): """Test the ``GreaterThan._transform`` method passing a high column of type int. The ``GreaterThan._transform`` method is expected to compute the distance between the high and low columns and create a diff column with the logarithm of the distance + 1. Setup: - ``_drop`` is set to ``None``, so all original columns will be in output. Input: - Table with two columns two constrained columns at a constant distance of exactly 3 and one additional dummy column. Output: - Same table with a diff column of the logarithms of the distances + 1, which is np.log(4). """ # Setup instance = GreaterThan(low='a', high='b', strict=True) instance._diff_columns = ['a#b'] # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], }) out = instance._transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], 'a#b': [np.log(4)] * 3, }) pd.testing.assert_frame_equal(out, expected_out) def test__transform_int_drop_high(self): """Test the ``GreaterThan._transform`` method passing a high column of type int. The ``GreaterThan._transform`` method is expected to compute the distance between the high and low columns and create a diff column with the logarithm of the distance + 1. It should also drop the high column. Setup: - ``_drop`` is set to ``high``. Input: - Table with two columns two constrained columns at a constant distance of exactly 3 and one additional dummy column. Output: - Same table with a diff column of the logarithms of the distances + 1, which is np.log(4) and the high column dropped. """ # Setup instance = GreaterThan(low='a', high='b', strict=True, drop='high') instance._diff_columns = ['a#b'] # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], }) out = instance._transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'c': [7, 8, 9], 'a#b': [np.log(4)] * 3, }) pd.testing.assert_frame_equal(out, expected_out) def test__transform_int_drop_low(self): """Test the ``GreaterThan._transform`` method passing a high column of type int. The ``GreaterThan._transform`` method is expected to compute the distance between the high and low columns and create a diff column with the logarithm of the distance + 1. It should also drop the low column. Setup: - ``_drop`` is set to ``low``. Input: - Table with two columns two constrained columns at a constant distance of exactly 3 and one additional dummy column. Output: - Same table with a diff column of the logarithms of the distances + 1, which is np.log(4) and the low column dropped. """ # Setup instance = GreaterThan(low='a', high='b', strict=True, drop='low') instance._diff_columns = ['a#b'] # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], }) out = instance._transform(table_data) # Assert expected_out = pd.DataFrame({ 'b': [4, 5, 6], 'c': [7, 8, 9], 'a#b': [np.log(4)] * 3, }) pd.testing.assert_frame_equal(out, expected_out) def test__transform_float_drop_none(self): """Test the ``GreaterThan._transform`` method passing a high column of type float. The ``GreaterThan._transform`` method is expected to compute the distance between the high and low columns and create a diff column with the logarithm of the distance + 1. Setup: - ``_drop`` is set to ``None``, so all original columns will be in output. Input: - Table with two constrained columns at a constant distance of exactly 3 and one additional dummy column. Output: - Same table with a diff column of the logarithms of the distances + 1, which is np.log(4). """ # Setup instance = GreaterThan(low='a', high='b', strict=True) instance._diff_columns = ['a#b'] # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4., 5., 6.], 'c': [7, 8, 9], }) out = instance._transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4., 5., 6.], 'c': [7, 8, 9], 'a#b': [np.log(4)] * 3, }) pd.testing.assert_frame_equal(out, expected_out) def test__transform_datetime_drop_none(self): """Test the ``GreaterThan._transform`` method passing a high column of type datetime. If the columns are of type datetime, ``_transform`` is expected to convert the timedelta distance into numeric before applying the +1 and logarithm. Setup: - ``_drop`` is set to ``None``, so all original columns will be in output. Input: - Table with values at a distance of exactly 1 second. Output: - Same table with a diff column of the logarithms of the dinstance in nanoseconds + 1, which is np.log(1_000_000_001). """ # Setup instance = GreaterThan(low='a', high='b', strict=True) instance._diff_columns = ['a#b'] instance._is_datetime = True # Run table_data = pd.DataFrame({ 'a': pd.to_datetime(['2020-01-01T00:00:00', '2020-01-02T00:00:00']), 'b': pd.to_datetime(['2020-01-01T00:00:01', '2020-01-02T00:00:01']), 'c': [1, 2], }) out = instance._transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': pd.to_datetime(['2020-01-01T00:00:00', '2020-01-02T00:00:00']), 'b': pd.to_datetime(['2020-01-01T00:00:01', '2020-01-02T00:00:01']), 'c': [1, 2], 'a#b': [np.log(1_000_000_001), np.log(1_000_000_001)], }) pd.testing.assert_frame_equal(out, expected_out) def test_transform_not_all_columns_provided(self): """Test the ``GreaterThan.transform`` method. If some of the columns needed for the transform are missing, it will raise a ``MissingConstraintColumnError``. Input: - Table data (pandas.DataFrame) Output: - Raises ``MissingConstraintColumnError``. """ # Setup instance = GreaterThan(low='a', high='b', strict=True, fit_columns_model=False) # Run/Assert with pytest.raises(MissingConstraintColumnError): instance.transform(pd.DataFrame({'a': ['a', 'b', 'c']})) def test__transform_high_is_scalar(self): """Test the ``GreaterThan._transform`` method with high as scalar. The ``GreaterThan._transform`` method is expected to compute the distance between the high scalar value and the low column and create a diff column with the logarithm of the distance + 1. Setup: - ``_high`` is set to 5 and ``_scalar`` is ``'high'``. Input: - Table with one low column and two dummy columns. Output: - Same table with a diff column of the logarithms of the distances + 1, which is np.log(4). """ # Setup instance = GreaterThan(low='a', high=5, strict=True, scalar='high') instance._diff_columns = ['a#b'] instance.constraint_columns = ['a'] # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], }) out = instance._transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], 'a#b': [np.log(5), np.log(4), np.log(3)], }) pd.testing.assert_frame_equal(out, expected_out) def test__transform_low_is_scalar(self): """Test the ``GreaterThan._transform`` method with high as scalar. The ``GreaterThan._transform`` method is expected to compute the distance between the high scalar value and the low column and create a diff column with the logarithm of the distance + 1. Setup: - ``_high`` is set to 5 and ``_scalar`` is ``'low'``. Input: - Table with one low column and two dummy columns. Output: - Same table with a diff column of the logarithms of the distances + 1, which is np.log(4). """ # Setup instance = GreaterThan(low=2, high='b', strict=True, scalar='low') instance._diff_columns = ['a#b'] instance.constraint_columns = ['b'] # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], }) out = instance._transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], 'a#b': [np.log(3), np.log(4), np.log(5)], }) pd.testing.assert_frame_equal(out, expected_out) def test__transform_high_is_scalar_multi_column(self): """Test the ``GreaterThan._transform`` method. The ``GreaterThan._transform`` method is expected to compute the logarithm of given columns + 1. Input: - Table with given data. Output: - Same table with additional columns of the logarithms + 1. """ # Setup instance = GreaterThan(low=['a', 'b'], high=3, strict=True, scalar='high') instance._diff_columns = ['a#', 'b#'] instance.constraint_columns = ['a', 'b'] # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], }) out = instance._transform(table_data) # Assert expected = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], 'a#': [np.log(3), np.log(2), np.log(1)], 'b#': [np.log(0), np.log(-1), np.log(-2)], }) pd.testing.assert_frame_equal(out, expected) def test__transform_low_is_scalar_multi_column(self): """Test the ``GreaterThan._transform`` method. The ``GreaterThan._transform`` method is expected to compute the logarithm of given columns + 1. Input: - Table with given data. Output: - Same table with additional columns of the logarithms + 1. """ # Setup instance = GreaterThan(low=3, high=['a', 'b'], strict=True, scalar='low') instance._diff_columns = ['a#', 'b#'] instance.constraint_columns = ['a', 'b'] # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], }) out = instance._transform(table_data) # Assert expected = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], 'a#': [np.log(-1), np.log(0), np.log(1)], 'b#': [np.log(2), np.log(3), np.log(4)], }) pd.testing.assert_frame_equal(out, expected) def test__transform_scalar_is_none_multi_column(self): """Test the ``GreaterThan._transform`` method. The ``GreaterThan._transform`` method is expected to compute the logarithm of given columns + 1. Input: - Table with given data. Output: - Same table with additional columns of the logarithms + 1. """ # Setup instance = GreaterThan(low=['a', 'c'], high='b', strict=True) instance._diff_columns = ['a#', 'c#'] instance.constraint_columns = ['a', 'c'] # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], }) out = instance._transform(table_data) # Assert expected = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], 'a#': [np.log(4)] * 3, 'c#': [np.log(-2)] * 3, }) pd.testing.assert_frame_equal(out, expected) def test_reverse_transform_int_drop_high(self): """Test the ``GreaterThan.reverse_transform`` method for dtype int. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - add the low column - convert the output to integers - add back the dropped column Setup: - ``_drop`` is set to ``high``. Input: - Table with a diff column that contains the constant np.log(4). Output: - Same table with the high column replaced by the low one + 3, as int and the diff column dropped. """ # Setup instance = GreaterThan(low='a', high='b', strict=True, drop='high') instance._dtype = [pd.Series([1]).dtype] # exact dtype (32 or 64) depends on OS instance._diff_columns = ['a#b'] instance._columns_to_reconstruct = ['b'] # Run transformed = pd.DataFrame({ 'a': [1, 2, 3], 'c': [7, 8, 9], 'a#b': [np.log(4)] * 3, }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'c': [7, 8, 9], 'b': [4, 5, 6], }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_float_drop_high(self): """Test the ``GreaterThan.reverse_transform`` method for dtype float. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - add the low column - convert the output to float values - add back the dropped column Setup: - ``_drop`` is set to ``high``. Input: - Table with a diff column that contains the constant np.log(4). Output: - Same table with the high column replaced by the low one + 3, as float values and the diff column dropped. """ # Setup instance = GreaterThan(low='a', high='b', strict=True, drop='high') instance._dtype = [np.dtype('float')] instance._diff_columns = ['a#b'] instance._columns_to_reconstruct = ['b'] # Run transformed = pd.DataFrame({ 'a': [1.1, 2.2, 3.3], 'c': [7, 8, 9], 'a#b': [np.log(4)] * 3, }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'a': [1.1, 2.2, 3.3], 'c': [7, 8, 9], 'b': [4.1, 5.2, 6.3], }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_datetime_drop_high(self): """Test the ``GreaterThan.reverse_transform`` method for dtype datetime. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - convert the distance to a timedelta - add the low column - convert the output to datetimes Setup: - ``_drop`` is set to ``high``. Input: - Table with a diff column that contains the constant np.log(1_000_000_001). Output: - Same table with the high column replaced by the low one + one second and the diff column dropped. """ # Setup instance = GreaterThan(low='a', high='b', strict=True, drop='high') instance._dtype = [np.dtype('<M8[ns]')] instance._diff_columns = ['a#b'] instance._is_datetime = True instance._columns_to_reconstruct = ['b'] # Run transformed = pd.DataFrame({ 'a': pd.to_datetime(['2020-01-01T00:00:00', '2020-01-02T00:00:00']), 'c': [1, 2], 'a#b': [np.log(1_000_000_001), np.log(1_000_000_001)], }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'a': pd.to_datetime(['2020-01-01T00:00:00', '2020-01-02T00:00:00']), 'c': [1, 2], 'b': pd.to_datetime(['2020-01-01T00:00:01', '2020-01-02T00:00:01']) }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_int_drop_low(self): """Test the ``GreaterThan.reverse_transform`` method for dtype int. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - subtract from the high column - convert the output to integers - add back the dropped column Setup: - ``_drop`` is set to ``low``. Input: - Table with a diff column that contains the constant np.log(4). Output: - Same table with the low column replaced by the high one - 3, as int and the diff column dropped. """ # Setup instance = GreaterThan(low='a', high='b', strict=True, drop='low') instance._dtype = [pd.Series([1]).dtype] # exact dtype (32 or 64) depends on OS instance._diff_columns = ['a#b'] instance._columns_to_reconstruct = ['a'] # Run transformed = pd.DataFrame({ 'b': [4, 5, 6], 'c': [7, 8, 9], 'a#b': [np.log(4)] * 3, }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'b': [4, 5, 6], 'c': [7, 8, 9], 'a': [1, 2, 3], }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_datetime_drop_low(self): """Test the ``GreaterThan.reverse_transform`` method for dtype datetime. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - convert the distance to a timedelta - subtract from the high column - convert the output to datetimes Setup: - ``_drop`` is set to ``low``. Input: - Table with a diff column that contains the constant np.log(1_000_000_001). Output: - Same table with the low column replaced by the high one - one second and the diff column dropped. """ # Setup instance = GreaterThan(low='a', high='b', strict=True, drop='low') instance._dtype = [np.dtype('<M8[ns]')] instance._diff_columns = ['a#b'] instance._is_datetime = True instance._columns_to_reconstruct = ['a'] # Run transformed = pd.DataFrame({ 'b': pd.to_datetime(['2020-01-01T00:00:01', '2020-01-02T00:00:01']), 'c': [1, 2], 'a#b': [np.log(1_000_000_001), np.log(1_000_000_001)], }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'b': pd.to_datetime(['2020-01-01T00:00:01', '2020-01-02T00:00:01']), 'c': [1, 2], 'a': pd.to_datetime(['2020-01-01T00:00:00', '2020-01-02T00:00:00']) }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_int_drop_none(self): """Test the ``GreaterThan.reverse_transform`` method for dtype int. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - add the low column when the row is invalid - convert the output to integers Setup: - ``_drop`` is set to ``None``. Input: - Table with a diff column that contains the constant np.log(4). The table should have one invalid row where the low column is higher than the high column. Output: - Same table with the high column replaced by the low one + 3 for all invalid rows, as int and the diff column dropped. """ # Setup instance = GreaterThan(low='a', high='b', strict=True) instance._dtype = [pd.Series([1]).dtype] # exact dtype (32 or 64) depends on OS instance._diff_columns = ['a#b'] instance._columns_to_reconstruct = ['b'] # Run transformed = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 1, 6], 'c': [7, 8, 9], 'a#b': [np.log(4)] * 3, }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_datetime_drop_none(self): """Test the ``GreaterThan.reverse_transform`` method for dtype datetime. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - convert the distance to a timedelta - add the low column when the row is invalid - convert the output to datetimes Setup: - ``_drop`` is set to ``None``. Input: - Table with a diff column that contains the constant np.log(1_000_000_001). The table should have one invalid row where the low column is higher than the high column. Output: - Same table with the high column replaced by the low one + one second for all invalid rows, and the diff column dropped. """ # Setup instance = GreaterThan(low='a', high='b', strict=True) instance._dtype = [np.dtype('<M8[ns]')] instance._diff_columns = ['a#b'] instance._is_datetime = True instance._columns_to_reconstruct = ['b'] # Run transformed = pd.DataFrame({ 'a': pd.to_datetime(['2020-01-01T00:00:00', '2020-01-02T00:00:00']), 'b': pd.to_datetime(['2020-01-01T00:00:01', '2020-01-01T00:00:01']), 'c': [1, 2], 'a#b': [np.log(1_000_000_001), np.log(1_000_000_001)], }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'a': pd.to_datetime(['2020-01-01T00:00:00', '2020-01-02T00:00:00']), 'b': pd.to_datetime(['2020-01-01T00:00:01', '2020-01-02T00:00:01']), 'c': [1, 2] }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_low_is_scalar(self): """Test the ``GreaterThan.reverse_transform`` method with low as a scalar. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - add the low value when the row is invalid - convert the output to integers Setup: - ``_drop`` is set to ``None``. - ``_low`` is set to an int and ``_scalar`` is ``'low'``. Input: - Table with a diff column that contains the constant np.log(4). The table should have one invalid row where the low value is higher than the high column. Output: - Same table with the high column replaced by the low value + 3 for all invalid rows, as int and the diff column dropped. """ # Setup instance = GreaterThan(low=3, high='b', strict=True, scalar='low') instance._dtype = [pd.Series([1]).dtype] # exact dtype (32 or 64) depends on OS instance._diff_columns = ['a#b'] instance._columns_to_reconstruct = ['b'] # Run transformed = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 1, 6], 'c': [7, 8, 9], 'a#b': [np.log(4)] * 3, }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 6, 6], 'c': [7, 8, 9], }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_high_is_scalar(self): """Test the ``GreaterThan.reverse_transform`` method with high as a scalar. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - subtract from the high value when the row is invalid - convert the output to integers Setup: - ``_drop`` is set to ``None``. - ``_high`` is set to an int and ``_scalar`` is ``'high'``. Input: - Table with a diff column that contains the constant np.log(4). The table should have one invalid row where the low column is higher than the high value. Output: - Same table with the low column replaced by the high one - 3 for all invalid rows, as int and the diff column dropped. """ # Setup instance = GreaterThan(low='a', high=3, strict=True, scalar='high') instance._dtype = [pd.Series([1]).dtype] # exact dtype (32 or 64) depends on OS instance._diff_columns = ['a#b'] instance._columns_to_reconstruct = ['a'] # Run transformed = pd.DataFrame({ 'a': [1, 2, 4], 'b': [4, 5, 6], 'c': [7, 8, 9], 'a#b': [np.log(4)] * 3, }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 0], 'b': [4, 5, 6], 'c': [7, 8, 9], })
pd.testing.assert_frame_equal(out, expected_out)
pandas.testing.assert_frame_equal
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # This file contains dummy data for the model unit tests import numpy as np import pandas as pd AIR_FCST_LINEAR_95 = pd.DataFrame( { "time": { 0: pd.Timestamp("1961-01-01 00:00:00"), 1: pd.Timestamp("1961-02-01 00:00:00"), 2: pd.Timestamp("1961-03-01 00:00:00"), 3: pd.Timestamp("1961-04-01 00:00:00"), 4: pd.Timestamp("1961-05-01 00:00:00"), 5: pd.Timestamp("1961-06-01 00:00:00"), 6: pd.Timestamp("1961-07-01 00:00:00"), 7: pd.Timestamp("1961-08-01 00:00:00"), 8: pd.Timestamp("1961-09-01 00:00:00"), 9: pd.Timestamp("1961-10-01 00:00:00"), 10: pd.Timestamp("1961-11-01 00:00:00"), 11: pd.Timestamp("1961-12-01 00:00:00"), 12: pd.Timestamp("1962-01-01 00:00:00"), 13: pd.Timestamp("1962-02-01 00:00:00"), 14: pd.Timestamp("1962-03-01 00:00:00"), 15: pd.Timestamp("1962-04-01 00:00:00"), 16: pd.Timestamp("1962-05-01 00:00:00"), 17: pd.Timestamp("1962-06-01 00:00:00"), 18: pd.Timestamp("1962-07-01 00:00:00"), 19: pd.Timestamp("1962-08-01 00:00:00"), 20: pd.Timestamp("1962-09-01 00:00:00"), 21: pd.Timestamp("1962-10-01 00:00:00"), 22: pd.Timestamp("1962-11-01 00:00:00"), 23: pd.Timestamp("1962-12-01 00:00:00"), 24: pd.Timestamp("1963-01-01 00:00:00"), 25: pd.Timestamp("1963-02-01 00:00:00"), 26: pd.Timestamp("1963-03-01 00:00:00"), 27: pd.Timestamp("1963-04-01 00:00:00"), 28: pd.Timestamp("1963-05-01 00:00:00"), 29: pd.Timestamp("1963-06-01 00:00:00"), }, "fcst": { 0: 472.9444444444443, 1: 475.60162835249025, 2: 478.2588122605362, 3: 480.9159961685822, 4: 483.57318007662815, 5: 486.23036398467417, 6: 488.88754789272014, 7: 491.5447318007661, 8: 494.20191570881207, 9: 496.85909961685803, 10: 499.516283524904, 11: 502.17346743295, 12: 504.830651340996, 13: 507.48783524904195, 14: 510.1450191570879, 15: 512.8022030651339, 16: 515.4593869731799, 17: 518.1165708812258, 18: 520.7737547892718, 19: 523.4309386973177, 20: 526.0881226053638, 21: 528.7453065134097, 22: 531.4024904214557, 23: 534.0596743295017, 24: 536.7168582375476, 25: 539.3740421455936, 26: 542.0312260536396, 27: 544.6884099616856, 28: 547.3455938697316, 29: 550.0027777777775, }, "fcst_lower": { 0: 380.6292037661305, 1: 383.26004701147235, 2: 385.8905370924373, 3: 388.52067431512216, 4: 391.1504589893095, 5: 393.7798914284503, 6: 396.4089719496461, 7: 399.0377008736321, 8: 401.66607852475926, 9: 404.2941052309762, 10: 406.9217813238114, 11: 409.54910713835505, 12: 412.1760830132403, 13: 414.80270929062544, 14: 417.42898631617453, 15: 420.0549144390392, 16: 422.68049401183924, 17: 425.3057253906438, 18: 427.93060893495215, 19: 430.555145007674, 20: 433.1793339751107, 21: 435.8031762069345, 22: 438.42667207616984, 23: 441.0498219591729, 24: 443.6726262356114, 25: 446.2950852884452, 26: 448.91719950390507, 27: 451.53896927147304, 28: 454.1603949838614, 29: 456.78147703699216, }, "fcst_upper": { 0: 565.2596851227581, 1: 567.9432096935082, 2: 570.6270874286351, 3: 573.3113180220422, 4: 575.9959011639468, 5: 578.680836540898, 6: 581.3661238357942, 7: 584.0517627279, 8: 586.7377528928648, 9: 589.4240940027398, 10: 592.1107857259966, 11: 594.797827727545, 12: 597.4852196687516, 13: 600.1729612074585, 14: 602.8610519980012, 15: 605.5494916912286, 16: 608.2382799345206, 17: 610.9274163718079, 18: 613.6169006435915, 19: 616.3067323869615, 20: 618.9969112356168, 21: 621.6874368198849, 22: 624.3783087667415, 23: 627.0695266998305, 24: 629.7610902394838, 25: 632.4529990027421, 26: 635.145252603374, 27: 637.8378506518982, 28: 640.5307927556019, 29: 643.2240785185628, }, } ) AIR_FCST_LINEAR_99 = pd.DataFrame( { "time": { 0: pd.Timestamp("1961-01-01 00:00:00"), 1: pd.Timestamp("1961-02-01 00:00:00"), 2: pd.Timestamp("1961-03-01 00:00:00"), 3: pd.Timestamp("1961-04-01 00:00:00"), 4: pd.Timestamp("1961-05-01 00:00:00"), 5: pd.Timestamp("1961-06-01 00:00:00"), 6: pd.Timestamp("1961-07-01 00:00:00"), 7: pd.Timestamp("1961-08-01 00:00:00"), 8: pd.Timestamp("1961-09-01 00:00:00"), 9: pd.Timestamp("1961-10-01 00:00:00"), 10: pd.Timestamp("1961-11-01 00:00:00"), 11: pd.Timestamp("1961-12-01 00:00:00"), 12: pd.Timestamp("1962-01-01 00:00:00"), 13: pd.Timestamp("1962-02-01 00:00:00"), 14: pd.Timestamp("1962-03-01 00:00:00"), 15: pd.Timestamp("1962-04-01 00:00:00"), 16: pd.Timestamp("1962-05-01 00:00:00"), 17: pd.Timestamp("1962-06-01 00:00:00"), 18: pd.Timestamp("1962-07-01 00:00:00"), 19: pd.Timestamp("1962-08-01 00:00:00"), 20: pd.Timestamp("1962-09-01 00:00:00"), 21: pd.Timestamp("1962-10-01 00:00:00"), 22: pd.Timestamp("1962-11-01 00:00:00"), 23: pd.Timestamp("1962-12-01 00:00:00"), 24: pd.Timestamp("1963-01-01 00:00:00"), 25: pd.Timestamp("1963-02-01 00:00:00"), 26: pd.Timestamp("1963-03-01 00:00:00"), 27: pd.Timestamp("1963-04-01 00:00:00"), 28: pd.Timestamp("1963-05-01 00:00:00"), 29: pd.Timestamp("1963-06-01 00:00:00"), }, "fcst": { 0: 472.9444444444443, 1: 475.60162835249025, 2: 478.2588122605362, 3: 480.9159961685822, 4: 483.57318007662815, 5: 486.23036398467417, 6: 488.88754789272014, 7: 491.5447318007661, 8: 494.20191570881207, 9: 496.85909961685803, 10: 499.516283524904, 11: 502.17346743295, 12: 504.830651340996, 13: 507.48783524904195, 14: 510.1450191570879, 15: 512.8022030651339, 16: 515.4593869731799, 17: 518.1165708812258, 18: 520.7737547892718, 19: 523.4309386973177, 20: 526.0881226053638, 21: 528.7453065134097, 22: 531.4024904214557, 23: 534.0596743295017, 24: 536.7168582375476, 25: 539.3740421455936, 26: 542.0312260536396, 27: 544.6884099616856, 28: 547.3455938697316, 29: 550.0027777777775, }, "fcst_lower": { 0: 351.01805478037915, 1: 353.64044896268456, 2: 356.2623766991775, 3: 358.883838394139, 4: 361.50483445671773, 5: 364.12536530090745, 6: 366.74543134552374, 7: 369.3650330141812, 8: 371.98417073526997, 9: 374.6028449419319, 10: 377.2210560720369, 11: 379.83880456815905, 12: 382.45609087755207, 13: 385.07291545212513, 14: 387.68927874841813, 15: 390.3051812275768, 16: 392.92062335532785, 17: 395.5356056019535, 18: 398.15012844226646, 19: 400.764192355584, 20: 403.37779782570226, 21: 405.99094534087044, 22: 408.60363539376465, 23: 411.2158684814615, 24: 413.82764510541136, 25: 416.4389657714128, 26: 419.04983098958445, 27: 421.66024127433906, 28: 424.2701971443558, 29: 426.8796991225531, }, "fcst_upper": { 0: 594.8708341085095, 1: 597.562807742296, 2: 600.255247821895, 3: 602.9481539430253, 4: 605.6415256965386, 5: 608.3353626684409, 6: 611.0296644399166, 7: 613.724430587351, 8: 616.4196606823541, 9: 619.1153542917842, 10: 621.8115109777711, 11: 624.508130297741, 12: 627.2052118044398, 13: 629.9027550459588, 14: 632.6007595657577, 15: 635.299224902691, 16: 637.998150591032, 17: 640.6975361604982, 18: 643.3973811362772, 19: 646.0976850390515, 20: 648.7984473850253, 21: 651.4996676859489, 22: 654.2013454491467, 23: 656.903480177542, 24: 659.6060713696838, 25: 662.3091185197744, 26: 665.0126211176946, 27: 667.716578649032, 28: 670.4209905951075, 29: 673.1258564330019, }, } ) PEYTON_FCST_LINEAR_95 = pd.DataFrame( { "time": { 0: pd.Timestamp("2013-05-01 00:00:00"), 1: pd.Timestamp("2013-05-02 00:00:00"), 2: pd.Timestamp("2013-05-03 00:00:00"), 3: pd.Timestamp("2013-05-04 00:00:00"), 4: pd.Timestamp("2013-05-05 00:00:00"), 5: pd.Timestamp("2013-05-06 00:00:00"), 6: pd.Timestamp("2013-05-07 00:00:00"), 7: pd.Timestamp("2013-05-08 00:00:00"), 8: pd.Timestamp("2013-05-09 00:00:00"), 9: pd.Timestamp("2013-05-10 00:00:00"), 10: pd.Timestamp("2013-05-11 00:00:00"), 11: pd.Timestamp("2013-05-12 00:00:00"), 12: pd.Timestamp("2013-05-13 00:00:00"), 13: pd.Timestamp("2013-05-14 00:00:00"), 14: pd.Timestamp("2013-05-15 00:00:00"), 15: pd.Timestamp("2013-05-16 00:00:00"), 16: pd.Timestamp("2013-05-17 00:00:00"), 17: pd.Timestamp("2013-05-18 00:00:00"), 18: pd.Timestamp("2013-05-19 00:00:00"), 19: pd.Timestamp("2013-05-20 00:00:00"), 20: pd.Timestamp("2013-05-21 00:00:00"), 21: pd.Timestamp("2013-05-22 00:00:00"), 22: pd.Timestamp("2013-05-23 00:00:00"), 23: pd.Timestamp("2013-05-24 00:00:00"), 24: pd.Timestamp("2013-05-25 00:00:00"), 25: pd.Timestamp("2013-05-26 00:00:00"), 26: pd.Timestamp("2013-05-27 00:00:00"), 27: pd.Timestamp("2013-05-28 00:00:00"), 28: pd.Timestamp("2013-05-29 00:00:00"), 29: pd.Timestamp("2013-05-30 00:00:00"), }, "fcst": { 0: 8.479624727157459, 1: 8.479984673362159, 2: 8.480344619566859, 3: 8.48070456577156, 4: 8.48106451197626, 5: 8.48142445818096, 6: 8.481784404385662, 7: 8.482144350590362, 8: 8.482504296795062, 9: 8.482864242999762, 10: 8.483224189204464, 11: 8.483584135409163, 12: 8.483944081613863, 13: 8.484304027818565, 14: 8.484663974023265, 15: 8.485023920227965, 16: 8.485383866432667, 17: 8.485743812637367, 18: 8.486103758842066, 19: 8.486463705046766, 20: 8.486823651251468, 21: 8.487183597456168, 22: 8.487543543660868, 23: 8.48790348986557, 24: 8.48826343607027, 25: 8.48862338227497, 26: 8.48898332847967, 27: 8.489343274684371, 28: 8.489703220889071, 29: 8.490063167093771, }, "fcst_lower": { 0: 7.055970485245664, 1: 7.056266316358524, 2: 7.056561800026597, 3: 7.056856936297079, 4: 7.057151725217398, 5: 7.05744616683524, 6: 7.057740261198534, 7: 7.058034008355445, 8: 7.058327408354395, 9: 7.058620461244044, 10: 7.0589131670733005, 11: 7.059205525891312, 12: 7.059497537747475, 13: 7.059789202691431, 14: 7.0600805207730595, 15: 7.060371492042489, 16: 7.060662116550093, 17: 7.060952394346479, 18: 7.06124232548251, 19: 7.0615319100092835, 20: 7.061821147978145, 21: 7.062110039440677, 22: 7.062398584448709, 23: 7.062686783054313, 24: 7.0629746353098, 25: 7.063262141267724, 26: 7.063549300980883, 27: 7.063836114502315, 28: 7.0641225818852975, 29: 7.064408703183352, }, "fcst_upper": { 0: 9.903278969069254, 1: 9.903703030365794, 2: 9.90412743910712, 3: 9.904552195246042, 4: 9.904977298735123, 5: 9.90540274952668, 6: 9.90582854757279, 7: 9.906254692825279, 8: 9.90668118523573, 9: 9.90710802475548, 10: 9.907535211335626, 11: 9.907962744927016, 12: 9.908390625480251, 13: 9.9088188529457, 14: 9.90924742727347, 15: 9.909676348413441, 16: 9.91010561631524, 17: 9.910535230928254, 18: 9.910965192201623, 19: 9.91139550008425, 20: 9.91182615452479, 21: 9.912257155471659, 22: 9.912688502873028, 23: 9.913120196676825, 24: 9.91355223683074, 25: 9.913984623282214, 26: 9.914417355978456, 27: 9.914850434866427, 28: 9.915283859892844, 29: 9.91571763100419, }, } ) PEYTON_FCST_LINEAR_99 = pd.DataFrame( { "time": { 0: pd.Timestamp("2013-05-01 00:00:00"), 1: pd.Timestamp("2013-05-02 00:00:00"), 2: pd.Timestamp("2013-05-03 00:00:00"), 3: pd.Timestamp("2013-05-04 00:00:00"), 4: pd.Timestamp("2013-05-05 00:00:00"), 5: pd.Timestamp("2013-05-06 00:00:00"), 6: pd.Timestamp("2013-05-07 00:00:00"), 7: pd.Timestamp("2013-05-08 00:00:00"), 8: pd.Timestamp("2013-05-09 00:00:00"), 9: pd.Timestamp("2013-05-10 00:00:00"), 10: pd.Timestamp("2013-05-11 00:00:00"), 11: pd.Timestamp("2013-05-12 00:00:00"), 12: pd.Timestamp("2013-05-13 00:00:00"), 13: pd.Timestamp("2013-05-14 00:00:00"), 14: pd.Timestamp("2013-05-15 00:00:00"), 15: pd.Timestamp("2013-05-16 00:00:00"), 16: pd.Timestamp("2013-05-17 00:00:00"), 17: pd.Timestamp("2013-05-18 00:00:00"), 18: pd.Timestamp("2013-05-19 00:00:00"), 19: pd.Timestamp("2013-05-20 00:00:00"), 20: pd.Timestamp("2013-05-21 00:00:00"), 21: pd.Timestamp("2013-05-22 00:00:00"), 22: pd.Timestamp("2013-05-23 00:00:00"), 23: pd.Timestamp("2013-05-24 00:00:00"), 24: pd.Timestamp("2013-05-25 00:00:00"), 25: pd.Timestamp("2013-05-26 00:00:00"), 26: pd.Timestamp("2013-05-27 00:00:00"), 27: pd.Timestamp("2013-05-28 00:00:00"), 28: pd.Timestamp("2013-05-29 00:00:00"), 29: pd.Timestamp("2013-05-30 00:00:00"), }, "fcst": { 0: 8.479624727157459, 1: 8.479984673362159, 2: 8.480344619566859, 3: 8.48070456577156, 4: 8.48106451197626, 5: 8.48142445818096, 6: 8.481784404385662, 7: 8.482144350590362, 8: 8.482504296795062, 9: 8.482864242999762, 10: 8.483224189204464, 11: 8.483584135409163, 12: 8.483944081613863, 13: 8.484304027818565, 14: 8.484663974023265, 15: 8.485023920227965, 16: 8.485383866432667, 17: 8.485743812637367, 18: 8.486103758842066, 19: 8.486463705046766, 20: 8.486823651251468, 21: 8.487183597456168, 22: 8.487543543660868, 23: 8.48790348986557, 24: 8.48826343607027, 25: 8.48862338227497, 26: 8.48898332847967, 27: 8.489343274684371, 28: 8.489703220889071, 29: 8.490063167093771, }, "fcst_lower": { 0: 6.605000045325637, 1: 6.605275566724015, 2: 6.605550630617649, 3: 6.605825237068679, 4: 6.606099386139563, 5: 6.60637307789309, 6: 6.606646312392368, 7: 6.606919089700827, 8: 6.607191409882221, 9: 6.607463273000626, 10: 6.607734679120443, 11: 6.608005628306389, 12: 6.608276120623508, 13: 6.608546156137163, 14: 6.608815734913038, 15: 6.609084857017139, 16: 6.609353522515795, 17: 6.609621731475649, 18: 6.609889483963668, 19: 6.610156780047143, 20: 6.61042361979368, 21: 6.610690003271204, 22: 6.610955930547961, 23: 6.611221401692519, 24: 6.611486416773756, 25: 6.611750975860878, 26: 6.612015079023405, 27: 6.612278726331177, 28: 6.612541917854348, 29: 6.612804653663393, }, "fcst_upper": { 0: 10.354249408989281, 1: 10.354693780000304, 2: 10.355138608516068, 3: 10.355583894474442, 4: 10.356029637812957, 5: 10.35647583846883, 6: 10.356922496378955, 7: 10.357369611479896, 8: 10.357817183707903, 9: 10.358265212998898, 10: 10.358713699288483, 11: 10.359162642511938, 12: 10.359612042604219, 13: 10.360061899499968, 14: 10.360512213133493, 15: 10.36096298343879, 16: 10.361414210349539, 17: 10.361865893799084, 18: 10.362318033720465, 19: 10.36277063004639, 20: 10.363223682709256, 21: 10.363677191641132, 22: 10.364131156773775, 23: 10.364585578038621, 24: 10.365040455366783, 25: 10.365495788689062, 26: 10.365951577935935, 27: 10.366407823037564, 28: 10.366864523923793, 29: 10.36732168052415, }, } ) PEYTON_FCST_LINEAR_INVALID_ZERO = pd.DataFrame( { "time": { 0: pd.Timestamp("2012-05-02 00:00:00"), 1: pd.Timestamp("2012-05-03 00:00:00"), 2: pd.Timestamp("2012-05-04 00:00:00"), 3: pd.Timestamp("2012-05-05 00:00:00"), 4: pd.Timestamp("2012-05-06 00:00:00"), 5: pd.Timestamp("2012-05-07 00:00:00"), 6: pd.Timestamp("2012-05-08 00:00:00"), 7: pd.Timestamp("2012-05-09 00:00:00"), 8: pd.Timestamp("2012-05-10 00:00:00"), 9: pd.Timestamp("2012-05-11 00:00:00"), 10: pd.Timestamp("2012-05-12 00:00:00"), 11: pd.Timestamp("2012-05-13 00:00:00"), 12: pd.Timestamp("2012-05-14 00:00:00"), 13: pd.Timestamp("2012-05-15 00:00:00"), 14: pd.Timestamp("2012-05-16 00:00:00"), 15: pd.Timestamp("2012-05-17 00:00:00"), 16: pd.Timestamp("2012-05-18 00:00:00"), 17: pd.Timestamp("2012-05-19 00:00:00"), 18: pd.Timestamp("2012-05-20 00:00:00"), 19: pd.Timestamp("2012-05-21 00:00:00"), 20: pd.Timestamp("2012-05-22 00:00:00"), 21: pd.Timestamp("2012-05-23 00:00:00"), 22: pd.Timestamp("2012-05-24 00:00:00"), 23: pd.Timestamp("2012-05-25 00:00:00"), 24: pd.Timestamp("2012-05-26 00:00:00"), 25: pd.Timestamp("2012-05-27 00:00:00"), 26: pd.Timestamp("2012-05-28 00:00:00"), 27: pd.Timestamp("2012-05-29 00:00:00"), 28: pd.Timestamp("2012-05-30 00:00:00"), 29: pd.Timestamp("2012-05-31 00:00:00"), 30: pd.Timestamp("2012-06-01 00:00:00"), 31: pd.Timestamp("2012-06-02 00:00:00"), 32: pd.Timestamp("2012-06-03 00:00:00"), 33: pd.Timestamp("2012-06-04 00:00:00"), 34: pd.Timestamp("2012-06-05 00:00:00"), 35: pd.Timestamp("2012-06-06 00:00:00"), 36: pd.Timestamp("2012-06-07 00:00:00"), 37: pd.Timestamp("2012-06-08 00:00:00"), 38: pd.Timestamp("2012-06-09 00:00:00"), 39: pd.Timestamp("2012-06-10 00:00:00"), 40: pd.Timestamp("2012-06-11 00:00:00"), 41: pd.Timestamp("2012-06-12 00:00:00"), 42: pd.Timestamp("2012-06-13 00:00:00"), 43: pd.Timestamp("2012-06-14 00:00:00"), 44: pd.Timestamp("2012-06-15 00:00:00"), 45: pd.Timestamp("2012-06-16 00:00:00"), 46: pd.Timestamp("2012-06-17 00:00:00"), 47: pd.Timestamp("2012-06-18 00:00:00"), 48: pd.Timestamp("2012-06-19 00:00:00"), 49: pd.Timestamp("2012-06-20 00:00:00"), 50: pd.Timestamp("2012-06-21 00:00:00"), 51: pd.Timestamp("2012-06-22 00:00:00"), 52: pd.Timestamp("2012-06-23 00:00:00"), 53: pd.Timestamp("2012-06-24 00:00:00"), 54: pd.Timestamp("2012-06-25 00:00:00"), 55: pd.Timestamp("2012-06-26 00:00:00"), 56: pd.Timestamp("2012-06-27 00:00:00"), 57: pd.Timestamp("2012-06-28 00:00:00"), 58: pd.Timestamp("2012-06-29 00:00:00"), 59: pd.Timestamp("2012-06-30 00:00:00"), 60: pd.Timestamp("2012-07-01 00:00:00"), 61: pd.Timestamp("2012-07-02 00:00:00"), 62: pd.Timestamp("2012-07-03 00:00:00"), 63: pd.Timestamp("2012-07-04 00:00:00"), 64: pd.Timestamp("2012-07-05 00:00:00"), 65: pd.Timestamp("2012-07-06 00:00:00"), 66: pd.Timestamp("2012-07-07 00:00:00"), 67: pd.Timestamp("2012-07-08 00:00:00"), 68: pd.Timestamp("2012-07-09 00:00:00"), 69: pd.Timestamp("2012-07-10 00:00:00"), 70: pd.Timestamp("2012-07-11 00:00:00"), 71: pd.Timestamp("2012-07-12 00:00:00"), 72: pd.Timestamp("2012-07-13 00:00:00"), 73: pd.Timestamp("2012-07-14 00:00:00"), 74: pd.Timestamp("2012-07-15 00:00:00"), 75: pd.Timestamp("2012-07-16 00:00:00"), 76: pd.Timestamp("2012-07-17 00:00:00"), 77: pd.Timestamp("2012-07-18 00:00:00"), 78: pd.Timestamp("2012-07-19 00:00:00"), 79: pd.Timestamp("2012-07-20 00:00:00"), 80: pd.Timestamp("2012-07-21 00:00:00"), 81: pd.Timestamp("2012-07-22 00:00:00"), 82: pd.Timestamp("2012-07-23 00:00:00"), 83: pd.Timestamp("2012-07-24 00:00:00"), 84: pd.Timestamp("2012-07-25 00:00:00"), 85: pd.Timestamp("2012-07-26 00:00:00"), 86: pd.Timestamp("2012-07-27 00:00:00"), 87: pd.Timestamp("2012-07-28 00:00:00"), 88: pd.Timestamp("2012-07-29 00:00:00"), 89: pd.Timestamp("2012-07-30 00:00:00"), 90: pd.Timestamp("2012-07-31 00:00:00"), 91: pd.Timestamp("2012-08-01 00:00:00"), 92: pd.Timestamp("2012-08-02 00:00:00"), 93: pd.Timestamp("2012-08-03 00:00:00"), 94: pd.Timestamp("2012-08-04 00:00:00"), 95: pd.Timestamp("2012-08-05 00:00:00"), 96: pd.Timestamp("2012-08-06 00:00:00"), 97: pd.Timestamp("2012-08-07 00:00:00"), 98: pd.Timestamp("2012-08-08 00:00:00"), 99: pd.Timestamp("2012-08-09 00:00:00"), 100: pd.Timestamp("2012-08-10 00:00:00"), 101: pd.Timestamp("2012-08-11 00:00:00"), 102: pd.Timestamp("2012-08-12 00:00:00"), 103: pd.Timestamp("2012-08-13 00:00:00"), 104: pd.Timestamp("2012-08-14 00:00:00"), 105: pd.Timestamp("2012-08-15 00:00:00"), 106: pd.Timestamp("2012-08-16 00:00:00"), 107: pd.Timestamp("2012-08-17 00:00:00"), 108: pd.Timestamp("2012-08-18 00:00:00"), 109: pd.Timestamp("2012-08-19 00:00:00"), 110: pd.Timestamp("2012-08-20 00:00:00"), 111: pd.Timestamp("2012-08-21 00:00:00"), 112: pd.Timestamp("2012-08-22 00:00:00"), 113: pd.Timestamp("2012-08-23 00:00:00"), 114: pd.Timestamp("2012-08-24 00:00:00"), 115: pd.Timestamp("2012-08-25 00:00:00"), 116: pd.Timestamp("2012-08-26 00:00:00"), 117: pd.Timestamp("2012-08-27 00:00:00"), 118: pd.Timestamp("2012-08-28 00:00:00"), 119: pd.Timestamp("2012-08-29 00:00:00"), 120: pd.Timestamp("2012-08-30 00:00:00"), 121: pd.Timestamp("2012-08-31 00:00:00"), 122: pd.Timestamp("2012-09-01 00:00:00"), 123: pd.Timestamp("2012-09-02 00:00:00"), 124: pd.Timestamp("2012-09-03 00:00:00"), 125: pd.Timestamp("2012-09-04 00:00:00"), 126: pd.Timestamp("2012-09-05 00:00:00"), 127: pd.Timestamp("2012-09-06 00:00:00"), 128: pd.Timestamp("2012-09-07 00:00:00"), 129: pd.Timestamp("2012-09-08 00:00:00"), 130: pd.Timestamp("2012-09-09 00:00:00"), 131: pd.Timestamp("2012-09-10 00:00:00"), 132: pd.Timestamp("2012-09-11 00:00:00"), 133: pd.Timestamp("2012-09-12 00:00:00"), 134: pd.Timestamp("2012-09-13 00:00:00"), 135: pd.Timestamp("2012-09-14 00:00:00"), 136: pd.Timestamp("2012-09-15 00:00:00"), 137: pd.Timestamp("2012-09-16 00:00:00"), 138: pd.Timestamp("2012-09-17 00:00:00"), 139: pd.Timestamp("2012-09-18 00:00:00"), 140: pd.Timestamp("2012-09-19 00:00:00"), 141: pd.Timestamp("2012-09-20 00:00:00"), 142: pd.Timestamp("2012-09-21 00:00:00"), 143: pd.Timestamp("2012-09-22 00:00:00"), 144: pd.Timestamp("2012-09-23 00:00:00"), 145: pd.Timestamp("2012-09-24 00:00:00"), 146: pd.Timestamp("2012-09-25 00:00:00"), 147: pd.Timestamp("2012-09-26 00:00:00"), 148: pd.Timestamp("2012-09-27 00:00:00"), 149: pd.Timestamp("2012-09-28 00:00:00"), 150: pd.Timestamp("2012-09-29 00:00:00"), 151: pd.Timestamp("2012-09-30 00:00:00"), 152: pd.Timestamp("2012-10-01 00:00:00"), 153: pd.Timestamp("2012-10-02 00:00:00"), 154: pd.Timestamp("2012-10-03 00:00:00"), 155: pd.Timestamp("2012-10-04 00:00:00"), 156: pd.Timestamp("2012-10-05 00:00:00"), 157: pd.Timestamp("2012-10-06 00:00:00"), 158: pd.Timestamp("2012-10-07 00:00:00"), 159: pd.Timestamp("2012-10-08 00:00:00"), 160: pd.Timestamp("2012-10-09 00:00:00"), 161: pd.Timestamp("2012-10-10 00:00:00"), 162: pd.Timestamp("2012-10-11 00:00:00"), 163: pd.Timestamp("2012-10-12 00:00:00"), 164: pd.Timestamp("2012-10-13 00:00:00"), 165: pd.Timestamp("2012-10-14 00:00:00"), 166: pd.Timestamp("2012-10-15 00:00:00"), 167: pd.Timestamp("2012-10-16 00:00:00"), 168: pd.Timestamp("2012-10-17 00:00:00"), 169: pd.Timestamp("2012-10-18 00:00:00"), 170: pd.Timestamp("2012-10-19 00:00:00"), 171: pd.Timestamp("2012-10-20 00:00:00"), 172: pd.Timestamp("2012-10-21 00:00:00"), 173: pd.Timestamp("2012-10-22 00:00:00"), 174: pd.Timestamp("2012-10-23 00:00:00"), 175: pd.Timestamp("2012-10-24 00:00:00"), 176: pd.Timestamp("2012-10-25 00:00:00"), 177: pd.Timestamp("2012-10-26 00:00:00"), 178: pd.Timestamp("2012-10-27 00:00:00"), 179: pd.Timestamp("2012-10-28 00:00:00"), 180: pd.Timestamp("2012-10-29 00:00:00"), 181: pd.Timestamp("2012-10-30 00:00:00"), 182: pd.Timestamp("2012-10-31 00:00:00"), 183: pd.Timestamp("2012-11-01 00:00:00"), 184: pd.Timestamp("2012-11-02 00:00:00"), 185: pd.Timestamp("2012-11-03 00:00:00"), 186: pd.Timestamp("2012-11-04 00:00:00"), 187: pd.Timestamp("2012-11-05 00:00:00"), 188: pd.Timestamp("2012-11-06 00:00:00"), 189: pd.Timestamp("2012-11-07 00:00:00"), 190: pd.Timestamp("2012-11-08 00:00:00"), 191: pd.Timestamp("2012-11-09 00:00:00"), 192: pd.Timestamp("2012-11-10 00:00:00"), 193: pd.Timestamp("2012-11-11 00:00:00"), 194: pd.Timestamp("2012-11-12 00:00:00"), 195: pd.Timestamp("2012-11-13 00:00:00"), 196: pd.Timestamp("2012-11-14 00:00:00"), 197: pd.Timestamp("2012-11-15 00:00:00"), 198: pd.Timestamp("2012-11-16 00:00:00"), 199: pd.Timestamp("2012-11-17 00:00:00"), 200: pd.Timestamp("2012-11-18 00:00:00"), 201: pd.Timestamp("2012-11-19 00:00:00"), 202: pd.Timestamp("2012-11-20 00:00:00"), 203: pd.Timestamp("2012-11-21 00:00:00"), 204: pd.Timestamp("2012-11-22 00:00:00"), 205: pd.Timestamp("2012-11-23 00:00:00"), 206: pd.Timestamp("2012-11-24 00:00:00"), 207: pd.Timestamp("2012-11-25 00:00:00"), 208: pd.Timestamp("2012-11-26 00:00:00"), 209: pd.Timestamp("2012-11-27 00:00:00"), 210: pd.Timestamp("2012-11-28 00:00:00"), 211: pd.Timestamp("2012-11-29 00:00:00"), 212: pd.Timestamp("2012-11-30 00:00:00"), 213: pd.Timestamp("2012-12-01 00:00:00"), 214: pd.Timestamp("2012-12-02 00:00:00"), 215: pd.Timestamp("2012-12-03 00:00:00"), 216: pd.Timestamp("2012-12-04 00:00:00"), 217: pd.Timestamp("2012-12-05 00:00:00"), 218: pd.Timestamp("2012-12-06 00:00:00"), 219: pd.Timestamp("2012-12-07 00:00:00"), 220: pd.Timestamp("2012-12-08 00:00:00"), 221: pd.Timestamp("2012-12-09 00:00:00"), 222: pd.Timestamp("2012-12-10 00:00:00"), 223: pd.Timestamp("2012-12-11 00:00:00"), 224: pd.Timestamp("2012-12-12 00:00:00"), 225: pd.Timestamp("2012-12-13 00:00:00"), 226: pd.Timestamp("2012-12-14 00:00:00"), 227: pd.Timestamp("2012-12-15 00:00:00"), 228: pd.Timestamp("2012-12-16 00:00:00"), 229: pd.Timestamp("2012-12-17 00:00:00"), 230: pd.Timestamp("2012-12-18 00:00:00"), 231: pd.Timestamp("2012-12-19 00:00:00"), 232: pd.Timestamp("2012-12-20 00:00:00"), 233: pd.Timestamp("2012-12-21 00:00:00"), 234: pd.Timestamp("2012-12-22 00:00:00"), 235: pd.Timestamp("2012-12-23 00:00:00"), 236: pd.Timestamp("2012-12-24 00:00:00"), 237: pd.Timestamp("2012-12-25 00:00:00"), 238: pd.Timestamp("2012-12-26 00:00:00"), 239: pd.Timestamp("2012-12-27 00:00:00"), 240: pd.Timestamp("2012-12-28 00:00:00"), 241: pd.Timestamp("2012-12-29 00:00:00"), 242: pd.Timestamp("2012-12-30 00:00:00"), 243: pd.Timestamp("2012-12-31 00:00:00"), 244: pd.Timestamp("2013-01-01 00:00:00"), 245: pd.Timestamp("2013-01-02 00:00:00"), 246: pd.Timestamp("2013-01-03 00:00:00"), 247: pd.Timestamp("2013-01-04 00:00:00"), 248: pd.Timestamp("2013-01-05 00:00:00"), 249: pd.Timestamp("2013-01-06 00:00:00"), 250: pd.Timestamp("2013-01-07 00:00:00"), 251: pd.Timestamp("2013-01-08 00:00:00"), 252: pd.Timestamp("2013-01-09 00:00:00"), 253: pd.Timestamp("2013-01-10 00:00:00"), 254: pd.Timestamp("2013-01-11 00:00:00"), 255: pd.Timestamp("2013-01-12 00:00:00"), 256: pd.Timestamp("2013-01-13 00:00:00"), 257: pd.Timestamp("2013-01-14 00:00:00"), 258: pd.Timestamp("2013-01-15 00:00:00"), 259: pd.Timestamp("2013-01-16 00:00:00"), 260: pd.Timestamp("2013-01-17 00:00:00"), 261: pd.Timestamp("2013-01-18 00:00:00"), 262: pd.Timestamp("2013-01-19 00:00:00"), 263: pd.Timestamp("2013-01-20 00:00:00"), 264: pd.Timestamp("2013-01-21 00:00:00"), 265: pd.Timestamp("2013-01-22 00:00:00"), 266: pd.Timestamp("2013-01-23 00:00:00"), 267: pd.Timestamp("2013-01-24 00:00:00"), 268: pd.Timestamp("2013-01-25 00:00:00"), 269: pd.Timestamp("2013-01-26 00:00:00"), 270: pd.Timestamp("2013-01-27 00:00:00"), 271: pd.Timestamp("2013-01-28 00:00:00"), 272: pd.Timestamp("2013-01-29 00:00:00"), 273: pd.Timestamp("2013-01-30 00:00:00"), 274: pd.Timestamp("2013-01-31 00:00:00"), 275: pd.Timestamp("2013-02-01 00:00:00"), 276: pd.Timestamp("2013-02-02 00:00:00"), 277: pd.Timestamp("2013-02-03 00:00:00"), 278: pd.Timestamp("2013-02-04 00:00:00"), 279: pd.Timestamp("2013-02-05 00:00:00"), 280: pd.Timestamp("2013-02-06 00:00:00"), 281: pd.Timestamp("2013-02-07 00:00:00"), 282: pd.Timestamp("2013-02-08 00:00:00"), 283: pd.Timestamp("2013-02-09 00:00:00"), 284: pd.Timestamp("2013-02-10 00:00:00"), 285: pd.Timestamp("2013-02-11 00:00:00"), 286: pd.Timestamp("2013-02-12 00:00:00"), 287: pd.Timestamp("2013-02-13 00:00:00"), 288: pd.Timestamp("2013-02-14 00:00:00"), 289: pd.Timestamp("2013-02-15 00:00:00"), 290: pd.Timestamp("2013-02-16 00:00:00"), 291: pd.Timestamp("2013-02-17 00:00:00"), 292: pd.Timestamp("2013-02-18 00:00:00"), 293: pd.Timestamp("2013-02-19 00:00:00"), 294: pd.Timestamp("2013-02-20 00:00:00"), 295: pd.Timestamp("2013-02-21 00:00:00"), 296: pd.Timestamp("2013-02-22 00:00:00"), 297: pd.Timestamp("2013-02-23 00:00:00"), 298: pd.Timestamp("2013-02-24 00:00:00"), 299: pd.Timestamp("2013-02-25 00:00:00"), 300: pd.Timestamp("2013-02-26 00:00:00"), 301: pd.Timestamp("2013-02-27 00:00:00"), 302: pd.Timestamp("2013-02-28 00:00:00"), 303: pd.Timestamp("2013-03-01 00:00:00"), 304: pd.Timestamp("2013-03-02 00:00:00"), 305: pd.Timestamp("2013-03-03 00:00:00"), 306: pd.Timestamp("2013-03-04 00:00:00"), 307: pd.Timestamp("2013-03-05 00:00:00"), 308: pd.Timestamp("2013-03-06 00:00:00"), 309: pd.Timestamp("2013-03-07 00:00:00"), 310: pd.Timestamp("2013-03-08 00:00:00"), 311: pd.Timestamp("2013-03-09 00:00:00"), 312: pd.Timestamp("2013-03-10 00:00:00"), 313: pd.Timestamp("2013-03-11 00:00:00"), 314: pd.Timestamp("2013-03-12 00:00:00"), 315: pd.Timestamp("2013-03-13 00:00:00"), 316: pd.Timestamp("2013-03-14 00:00:00"), 317: pd.Timestamp("2013-03-15 00:00:00"), 318: pd.Timestamp("2013-03-16 00:00:00"), 319: pd.Timestamp("2013-03-17 00:00:00"), 320: pd.Timestamp("2013-03-18 00:00:00"), 321: pd.Timestamp("2013-03-19 00:00:00"), 322: pd.Timestamp("2013-03-20 00:00:00"), 323: pd.Timestamp("2013-03-21 00:00:00"), 324: pd.Timestamp("2013-03-22 00:00:00"), 325: pd.Timestamp("2013-03-23 00:00:00"), 326: pd.Timestamp("2013-03-24 00:00:00"), 327: pd.Timestamp("2013-03-25 00:00:00"), 328: pd.Timestamp("2013-03-26 00:00:00"), 329: pd.Timestamp("2013-03-27 00:00:00"), 330: pd.Timestamp("2013-03-28 00:00:00"), 331: pd.Timestamp("2013-03-29 00:00:00"), 332: pd.Timestamp("2013-03-30 00:00:00"), 333: pd.Timestamp("2013-03-31 00:00:00"), 334: pd.Timestamp("2013-04-01 00:00:00"), 335: pd.Timestamp("2013-04-02 00:00:00"), 336: pd.Timestamp("2013-04-03 00:00:00"), 337: pd.Timestamp("2013-04-04 00:00:00"), 338: pd.Timestamp("2013-04-05 00:00:00"), 339: pd.Timestamp("2013-04-06 00:00:00"), 340: pd.Timestamp("2013-04-07 00:00:00"), 341: pd.Timestamp("2013-04-08 00:00:00"), 342: pd.Timestamp("2013-04-09 00:00:00"), 343: pd.Timestamp("2013-04-10 00:00:00"), 344: pd.Timestamp("2013-04-11 00:00:00"), 345: pd.Timestamp("2013-04-12 00:00:00"), 346: pd.Timestamp("2013-04-13 00:00:00"), 347: pd.Timestamp("2013-04-14 00:00:00"), 348: pd.Timestamp("2013-04-15 00:00:00"), 349: pd.Timestamp("2013-04-16 00:00:00"), 350: pd.Timestamp("2013-04-17 00:00:00"), 351: pd.Timestamp("2013-04-18 00:00:00"), 352: pd.Timestamp("2013-04-19 00:00:00"), 353: pd.Timestamp("2013-04-20 00:00:00"), 354: pd.Timestamp("2013-04-21 00:00:00"), 355: pd.Timestamp("2013-04-22 00:00:00"), 356: pd.Timestamp("2013-04-23 00:00:00"), 357: pd.Timestamp("2013-04-24 00:00:00"), 358: pd.Timestamp("2013-04-25 00:00:00"), 359: pd.Timestamp("2013-04-26 00:00:00"), 360: pd.Timestamp("2013-04-27 00:00:00"), 361: pd.Timestamp("2013-04-28 00:00:00"), 362: pd.Timestamp("2013-04-29 00:00:00"), 363: pd.Timestamp("2013-04-30 00:00:00"), 364: pd.Timestamp("2013-05-01 00:00:00"), 365: pd.Timestamp("2013-05-02 00:00:00"), 366: pd.Timestamp("2013-05-03 00:00:00"), 367: pd.Timestamp("2013-05-04 00:00:00"), 368: pd.Timestamp("2013-05-05 00:00:00"), 369: pd.Timestamp("2013-05-06 00:00:00"), 370: pd.Timestamp("2013-05-07 00:00:00"), 371: pd.Timestamp("2013-05-08 00:00:00"), 372: pd.Timestamp("2013-05-09 00:00:00"), 373: pd.Timestamp("2013-05-10 00:00:00"), 374: pd.Timestamp("2013-05-11 00:00:00"), 375: pd.Timestamp("2013-05-12 00:00:00"), 376: pd.Timestamp("2013-05-13 00:00:00"), 377: pd.Timestamp("2013-05-14 00:00:00"), 378: pd.Timestamp("2013-05-15 00:00:00"), 379: pd.Timestamp("2013-05-16 00:00:00"), 380: pd.Timestamp("2013-05-17 00:00:00"), 381: pd.Timestamp("2013-05-18 00:00:00"), 382: pd.Timestamp("2013-05-19 00:00:00"), 383: pd.Timestamp("2013-05-20 00:00:00"), 384: pd.Timestamp("2013-05-21 00:00:00"), 385: pd.Timestamp("2013-05-22 00:00:00"), 386: pd.Timestamp("2013-05-23 00:00:00"), 387: pd.Timestamp("2013-05-24 00:00:00"), 388: pd.Timestamp("2013-05-25 00:00:00"), 389: pd.Timestamp("2013-05-26 00:00:00"), 390: pd.Timestamp("2013-05-27 00:00:00"), 391: pd.Timestamp("2013-05-28 00:00:00"), 392: pd.Timestamp("2013-05-29 00:00:00"), 393: pd.Timestamp("2013-05-30 00:00:00"), }, "fcst": { 0: 8.348604308646497, 1: 8.348964254851197, 2: 8.349324201055898, 3: 8.349684147260598, 4: 8.350044093465298, 5: 8.350404039669998, 6: 8.3507639858747, 7: 8.3511239320794, 8: 8.3514838782841, 9: 8.351843824488801, 10: 8.352203770693501, 11: 8.352563716898201, 12: 8.352923663102903, 13: 8.353283609307603, 14: 8.353643555512303, 15: 8.354003501717003, 16: 8.354363447921704, 17: 8.354723394126404, 18: 8.355083340331104, 19: 8.355443286535806, 20: 8.355803232740506, 21: 8.356163178945206, 22: 8.356523125149906, 23: 8.356883071354607, 24: 8.357243017559307, 25: 8.357602963764007, 26: 8.357962909968709, 27: 8.358322856173409, 28: 8.358682802378109, 29: 8.35904274858281, 30: 8.35940269478751, 31: 8.35976264099221, 32: 8.36012258719691, 33: 8.360482533401612, 34: 8.360842479606312, 35: 8.361202425811012, 36: 8.361562372015714, 37: 8.361922318220413, 38: 8.362282264425113, 39: 8.362642210629813, 40: 8.363002156834515, 41: 8.363362103039215, 42: 8.363722049243915, 43: 8.364081995448617, 44: 8.364441941653316, 45: 8.364801887858016, 46: 8.365161834062716, 47: 8.365521780267418, 48: 8.365881726472118, 49: 8.366241672676818, 50: 8.36660161888152, 51: 8.36696156508622, 52: 8.36732151129092, 53: 8.367681457495621, 54: 8.368041403700321, 55: 8.368401349905021, 56: 8.36876129610972, 57: 8.369121242314423, 58: 8.369481188519122, 59: 8.369841134723822, 60: 8.370201080928524, 61: 8.370561027133224, 62: 8.370920973337924, 63: 8.371280919542624, 64: 8.371640865747326, 65: 8.372000811952026, 66: 8.372360758156725, 67: 8.372720704361427, 68: 8.373080650566127, 69: 8.373440596770827, 70: 8.373800542975529, 71: 8.374160489180229, 72: 8.374520435384929, 73: 8.374880381589628, 74: 8.37524032779433, 75: 8.37560027399903, 76: 8.37596022020373, 77: 8.376320166408432, 78: 8.376680112613132, 79: 8.377040058817832, 80: 8.377400005022531, 81: 8.377759951227233, 82: 8.378119897431933, 83: 8.378479843636633, 84: 8.378839789841335, 85: 8.379199736046035, 86: 8.379559682250735, 87: 8.379919628455436, 88: 8.380279574660136, 89: 8.380639520864836, 90: 8.380999467069536, 91: 8.381359413274238, 92: 8.381719359478938, 93: 8.382079305683638, 94: 8.38243925188834, 95: 8.38279919809304, 96: 8.38315914429774, 97: 8.383519090502439, 98: 8.38387903670714, 99: 8.38423898291184, 100: 8.38459892911654, 101: 8.384958875321242, 102: 8.385318821525942, 103: 8.385678767730642, 104: 8.386038713935344, 105: 8.386398660140044, 106: 8.386758606344744, 107: 8.387118552549444, 108: 8.387478498754145, 109: 8.387838444958845, 110: 8.388198391163545, 111: 8.388558337368247, 112: 8.388918283572947, 113: 8.389278229777647, 114: 8.389638175982347, 115: 8.389998122187048, 116: 8.390358068391748, 117: 8.390718014596448, 118: 8.39107796080115, 119: 8.39143790700585, 120: 8.39179785321055, 121: 8.392157799415251, 122: 8.392517745619951, 123: 8.392877691824651, 124: 8.393237638029351, 125: 8.393597584234053, 126: 8.393957530438753, 127: 8.394317476643453, 128: 8.394677422848154, 129: 8.395037369052854, 130: 8.395397315257554, 131: 8.395757261462254, 132: 8.396117207666956, 133: 8.396477153871656, 134: 8.396837100076356, 135: 8.397197046281057, 136: 8.397556992485757, 137: 8.397916938690457, 138: 8.398276884895157, 139: 8.398636831099859, 140: 8.398996777304559, 141: 8.399356723509259, 142: 8.39971666971396, 143: 8.40007661591866, 144: 8.40043656212336, 145: 8.400796508328062, 146: 8.401156454532762, 147: 8.401516400737462, 148: 8.401876346942162, 149: 8.402236293146863, 150: 8.402596239351563, 151: 8.402956185556263, 152: 8.403316131760965, 153: 8.403676077965665, 154: 8.404036024170365, 155: 8.404395970375065, 156: 8.404755916579767, 157: 8.405115862784466, 158: 8.405475808989166, 159: 8.405835755193868, 160: 8.406195701398568, 161: 8.406555647603268, 162: 8.40691559380797, 163: 8.40727554001267, 164: 8.40763548621737, 165: 8.40799543242207, 166: 8.408355378626771, 167: 8.408715324831471, 168: 8.409075271036171, 169: 8.409435217240873, 170: 8.409795163445573, 171: 8.410155109650272, 172: 8.410515055854972, 173: 8.410875002059674, 174: 8.411234948264374, 175: 8.411594894469074, 176: 8.411954840673776, 177: 8.412314786878476, 178: 8.412674733083175, 179: 8.413034679287877, 180: 8.413394625492577, 181: 8.413754571697277, 182: 8.414114517901977, 183: 8.414474464106679, 184: 8.414834410311379, 185: 8.415194356516078, 186: 8.41555430272078, 187: 8.41591424892548, 188: 8.41627419513018, 189: 8.41663414133488, 190: 8.416994087539582, 191: 8.417354033744282, 192: 8.417713979948982, 193: 8.418073926153683, 194: 8.418433872358383, 195: 8.418793818563083, 196: 8.419153764767785, 197: 8.419513710972485, 198: 8.419873657177185, 199: 8.420233603381885, 200: 8.420593549586586, 201: 8.420953495791286, 202: 8.421313441995986, 203: 8.421673388200688, 204: 8.422033334405388, 205: 8.422393280610088, 206: 8.422753226814788, 207: 8.42311317301949, 208: 8.42347311922419, 209: 8.423833065428889, 210: 8.42419301163359, 211: 8.42455295783829, 212: 8.42491290404299, 213: 8.42527285024769, 214: 8.425632796452392, 215: 8.425992742657092, 216: 8.426352688861792, 217: 8.426712635066494, 218: 8.427072581271194, 219: 8.427432527475894, 220: 8.427792473680595, 221: 8.428152419885295, 222: 8.428512366089995, 223: 8.428872312294695, 224: 8.429232258499397, 225: 8.429592204704097, 226: 8.429952150908797, 227: 8.430312097113498, 228: 8.430672043318198, 229: 8.431031989522898, 230: 8.431391935727598, 231: 8.4317518819323, 232: 8.432111828137, 233: 8.4324717743417, 234: 8.432831720546401, 235: 8.433191666751101, 236: 8.433551612955801, 237: 8.433911559160503, 238: 8.434271505365203, 239: 8.434631451569903, 240: 8.434991397774603, 241: 8.435351343979304, 242: 8.435711290184004, 243: 8.436071236388704, 244: 8.436431182593406, 245: 8.436791128798106, 246: 8.437151075002806, 247: 8.437511021207506, 248: 8.437870967412207, 249: 8.438230913616907, 250: 8.438590859821607, 251: 8.438950806026309, 252: 8.439310752231009, 253: 8.439670698435709, 254: 8.44003064464041, 255: 8.44039059084511, 256: 8.44075053704981, 257: 8.44111048325451, 258: 8.441470429459212, 259: 8.441830375663912, 260: 8.442190321868612, 261: 8.442550268073314, 262: 8.442910214278013, 263: 8.443270160482713, 264: 8.443630106687413, 265: 8.443990052892115, 266: 8.444349999096815, 267: 8.444709945301515, 268: 8.445069891506217, 269: 8.445429837710916, 270: 8.445789783915616, 271: 8.446149730120318, 272: 8.446509676325018, 273: 8.446869622529718, 274: 8.447229568734418, 275: 8.44758951493912, 276: 8.44794946114382, 277: 8.44830940734852, 278: 8.448669353553221, 279: 8.449029299757921, 280: 8.449389245962621, 281: 8.449749192167321, 282: 8.450109138372023, 283: 8.450469084576723, 284: 8.450829030781422, 285: 8.451188976986124, 286: 8.451548923190824, 287: 8.451908869395524, 288: 8.452268815600226, 289: 8.452628761804926, 290: 8.452988708009626, 291: 8.453348654214325, 292: 8.453708600419027, 293: 8.454068546623727, 294: 8.454428492828427, 295: 8.454788439033129, 296: 8.455148385237829, 297: 8.455508331442529, 298: 8.455868277647228, 299: 8.45622822385193, 300: 8.45658817005663, 301: 8.45694811626133, 302: 8.457308062466032, 303: 8.457668008670732, 304: 8.458027954875432, 305: 8.458387901080131, 306: 8.458747847284833, 307: 8.459107793489533, 308: 8.459467739694233, 309: 8.459827685898935, 310: 8.460187632103635, 311: 8.460547578308335, 312: 8.460907524513036, 313: 8.461267470717736, 314: 8.461627416922436, 315: 8.461987363127136, 316: 8.462347309331838, 317: 8.462707255536538, 318: 8.463067201741238, 319: 8.46342714794594, 320: 8.46378709415064, 321: 8.46414704035534, 322: 8.464506986560039, 323: 8.46486693276474, 324: 8.46522687896944, 325: 8.46558682517414, 326: 8.465946771378842, 327: 8.466306717583542, 328: 8.466666663788242, 329: 8.467026609992944, 330: 8.467386556197644, 331: 8.467746502402344, 332: 8.468106448607044, 333: 8.468466394811745, 334: 8.468826341016445, 335: 8.469186287221145, 336: 8.469546233425847, 337: 8.469906179630547, 338: 8.470266125835247, 339: 8.470626072039947, 340: 8.470986018244648, 341: 8.471345964449348, 342: 8.471705910654048, 343: 8.47206585685875, 344: 8.47242580306345, 345: 8.47278574926815, 346: 8.473145695472851, 347: 8.473505641677551, 348: 8.473865587882251, 349: 8.474225534086951, 350: 8.474585480291653, 351: 8.474945426496353, 352: 8.475305372701053, 353: 8.475665318905754, 354: 8.476025265110454, 355: 8.476385211315154, 356: 8.476745157519854, 357: 8.477105103724556, 358: 8.477465049929256, 359: 8.477824996133956, 360: 8.478184942338657, 361: 8.478544888543357, 362: 8.478904834748057, 363: 8.479264780952759, 364: 8.479624727157459, 365: 8.479984673362159, 366: 8.480344619566859, 367: 8.48070456577156, 368: 8.48106451197626, 369: 8.48142445818096, 370: 8.481784404385662, 371: 8.482144350590362, 372: 8.482504296795062, 373: 8.482864242999762, 374: 8.483224189204464, 375: 8.483584135409163, 376: 8.483944081613863, 377: 8.484304027818565, 378: 8.484663974023265, 379: 8.485023920227965, 380: 8.485383866432667, 381: 8.485743812637367, 382: 8.486103758842066, 383: 8.486463705046766, 384: 8.486823651251468, 385: 8.487183597456168, 386: 8.487543543660868, 387: 8.48790348986557, 388: 8.48826343607027, 389: 8.48862338227497, 390: 8.48898332847967, 391: 8.489343274684371, 392: 8.489703220889071, 393: 8.490063167093771, }, "fcst_lower": { 0: -np.inf, 1: -np.inf, 2: -np.inf, 3: -np.inf, 4: -np.inf, 5: -np.inf, 6: -np.inf, 7: -np.inf, 8: -np.inf, 9: -np.inf, 10: -np.inf, 11: -np.inf, 12: -np.inf, 13: -np.inf, 14: -np.inf, 15: -np.inf, 16: -np.inf, 17: -np.inf, 18: -np.inf, 19: -np.inf, 20: -np.inf, 21: -np.inf, 22: -np.inf, 23: -np.inf, 24: -np.inf, 25: -np.inf, 26: -np.inf, 27: -np.inf, 28: -np.inf, 29: -np.inf, 30: -np.inf, 31: -np.inf, 32: -np.inf, 33: -np.inf, 34: -np.inf, 35: -np.inf, 36: -np.inf, 37: -np.inf, 38: -np.inf, 39: -np.inf, 40: -np.inf, 41: -np.inf, 42: -np.inf, 43: -np.inf, 44: -np.inf, 45: -np.inf, 46: -np.inf, 47: -np.inf, 48: -np.inf, 49: -np.inf, 50: -np.inf, 51: -np.inf, 52: -np.inf, 53: -np.inf, 54: -np.inf, 55: -np.inf, 56: -np.inf, 57: -np.inf, 58: -np.inf, 59: -np.inf, 60: -np.inf, 61: -np.inf, 62: -np.inf, 63: -np.inf, 64: -np.inf, 65: -np.inf, 66: -np.inf, 67: -np.inf, 68: -np.inf, 69: -np.inf, 70: -np.inf, 71: -np.inf, 72: -np.inf, 73: -np.inf, 74: -np.inf, 75: -np.inf, 76: -np.inf, 77: -np.inf, 78: -np.inf, 79: -np.inf, 80: -np.inf, 81: -np.inf, 82: -np.inf, 83: -np.inf, 84: -np.inf, 85: -np.inf, 86: -np.inf, 87: -np.inf, 88: -np.inf, 89: -np.inf, 90: -np.inf, 91: -np.inf, 92: -np.inf, 93: -np.inf, 94: -np.inf, 95: -np.inf, 96: -np.inf, 97: -np.inf, 98: -np.inf, 99: -np.inf, 100: -np.inf, 101: -np.inf, 102: -np.inf, 103: -np.inf, 104: -np.inf, 105: -np.inf, 106: -np.inf, 107: -np.inf, 108: -np.inf, 109: -np.inf, 110: -np.inf, 111: -np.inf, 112: -np.inf, 113: -np.inf, 114: -np.inf, 115: -np.inf, 116: -np.inf, 117: -np.inf, 118: -np.inf, 119: -np.inf, 120: -np.inf, 121: -np.inf, 122: -np.inf, 123: -np.inf, 124: -np.inf, 125: -np.inf, 126: -np.inf, 127: -np.inf, 128: -np.inf, 129: -np.inf, 130: -np.inf, 131: -np.inf, 132: -np.inf, 133: -np.inf, 134: -np.inf, 135: -np.inf, 136: -np.inf, 137: -np.inf, 138: -np.inf, 139: -np.inf, 140: -np.inf, 141: -np.inf, 142: -np.inf, 143: -np.inf, 144: -np.inf, 145: -np.inf, 146: -np.inf, 147: -np.inf, 148: -np.inf, 149: -np.inf, 150: -np.inf, 151: -np.inf, 152: -np.inf, 153: -np.inf, 154: -np.inf, 155: -np.inf, 156: -np.inf, 157: -np.inf, 158: -np.inf, 159: -np.inf, 160: -np.inf, 161: -np.inf, 162: -np.inf, 163: -np.inf, 164: -np.inf, 165: -np.inf, 166: -np.inf, 167: -np.inf, 168: -np.inf, 169: -np.inf, 170: -np.inf, 171: -np.inf, 172: -np.inf, 173: -np.inf, 174: -np.inf, 175: -np.inf, 176: -np.inf, 177: -np.inf, 178: -np.inf, 179: -np.inf, 180: -np.inf, 181: -np.inf, 182: -np.inf, 183: -np.inf, 184: -np.inf, 185: -np.inf, 186: -np.inf, 187: -np.inf, 188: -np.inf, 189: -np.inf, 190: -np.inf, 191: -np.inf, 192: -np.inf, 193: -np.inf, 194: -np.inf, 195: -np.inf, 196: -np.inf, 197: -np.inf, 198: -np.inf, 199: -np.inf, 200: -np.inf, 201: -np.inf, 202: -np.inf, 203: -np.inf, 204: -np.inf, 205: -np.inf, 206: -np.inf, 207: -np.inf, 208: -np.inf, 209: -np.inf, 210: -np.inf, 211: -np.inf, 212: -np.inf, 213: -np.inf, 214: -np.inf, 215: -np.inf, 216: -np.inf, 217: -np.inf, 218: -np.inf, 219: -np.inf, 220: -np.inf, 221: -np.inf, 222: -np.inf, 223: -np.inf, 224: -np.inf, 225: -np.inf, 226: -np.inf, 227: -np.inf, 228: -np.inf, 229: -np.inf, 230: -np.inf, 231: -np.inf, 232: -np.inf, 233: -np.inf, 234: -np.inf, 235: -np.inf, 236: -np.inf, 237: -np.inf, 238: -np.inf, 239: -np.inf, 240: -np.inf, 241: -np.inf, 242: -np.inf, 243: -np.inf, 244: -np.inf, 245: -np.inf, 246: -np.inf, 247: -np.inf, 248: -np.inf, 249: -np.inf, 250: -np.inf, 251: -np.inf, 252: -np.inf, 253: -np.inf, 254: -np.inf, 255: -np.inf, 256: -np.inf, 257: -np.inf, 258: -np.inf, 259: -np.inf, 260: -np.inf, 261: -np.inf, 262: -np.inf, 263: -np.inf, 264: -np.inf, 265: -np.inf, 266: -np.inf, 267: -np.inf, 268: -np.inf, 269: -np.inf, 270: -np.inf, 271: -np.inf, 272: -np.inf, 273: -np.inf, 274: -np.inf, 275: -np.inf, 276: -np.inf, 277: -np.inf, 278: -np.inf, 279: -np.inf, 280: -np.inf, 281: -np.inf, 282: -np.inf, 283: -np.inf, 284: -np.inf, 285: -np.inf, 286: -np.inf, 287: -np.inf, 288: -np.inf, 289: -np.inf, 290: -np.inf, 291: -np.inf, 292: -np.inf, 293: -np.inf, 294: -np.inf, 295: -np.inf, 296: -np.inf, 297: -np.inf, 298: -np.inf, 299: -np.inf, 300: -np.inf, 301: -np.inf, 302: -np.inf, 303: -np.inf, 304: -np.inf, 305: -np.inf, 306: -np.inf, 307: -np.inf, 308: -np.inf, 309: -np.inf, 310: -np.inf, 311: -np.inf, 312: -np.inf, 313: -np.inf, 314: -np.inf, 315: -np.inf, 316: -np.inf, 317: -np.inf, 318: -np.inf, 319: -np.inf, 320: -np.inf, 321: -np.inf, 322: -np.inf, 323: -np.inf, 324: -np.inf, 325: -np.inf, 326: -np.inf, 327: -np.inf, 328: -np.inf, 329: -np.inf, 330: -np.inf, 331: -np.inf, 332: -np.inf, 333: -np.inf, 334: -np.inf, 335: -np.inf, 336: -np.inf, 337: -np.inf, 338: -np.inf, 339: -np.inf, 340: -np.inf, 341: -np.inf, 342: -np.inf, 343: -np.inf, 344: -np.inf, 345: -np.inf, 346: -np.inf, 347: -np.inf, 348: -np.inf, 349: -np.inf, 350: -np.inf, 351: -np.inf, 352: -np.inf, 353: -np.inf, 354: -np.inf, 355: -np.inf, 356: -np.inf, 357: -np.inf, 358: -np.inf, 359: -np.inf, 360: -np.inf, 361: -np.inf, 362: -np.inf, 363: -np.inf, 364: -np.inf, 365: -np.inf, 366: -np.inf, 367: -np.inf, 368: -np.inf, 369: -np.inf, 370: -np.inf, 371: -np.inf, 372: -np.inf, 373: -np.inf, 374: -np.inf, 375: -np.inf, 376: -np.inf, 377: -np.inf, 378: -np.inf, 379: -np.inf, 380: -np.inf, 381: -np.inf, 382: -np.inf, 383: -np.inf, 384: -np.inf, 385: -np.inf, 386: -np.inf, 387: -np.inf, 388: -np.inf, 389: -np.inf, 390: -np.inf, 391: -np.inf, 392: -np.inf, 393: -np.inf, }, "fcst_upper": { 0: np.inf, 1: np.inf, 2: np.inf, 3: np.inf, 4: np.inf, 5: np.inf, 6: np.inf, 7: np.inf, 8: np.inf, 9: np.inf, 10: np.inf, 11: np.inf, 12: np.inf, 13: np.inf, 14: np.inf, 15: np.inf, 16: np.inf, 17: np.inf, 18: np.inf, 19: np.inf, 20: np.inf, 21: np.inf, 22: np.inf, 23: np.inf, 24: np.inf, 25: np.inf, 26: np.inf, 27: np.inf, 28: np.inf, 29: np.inf, 30: np.inf, 31: np.inf, 32: np.inf, 33: np.inf, 34: np.inf, 35: np.inf, 36: np.inf, 37: np.inf, 38: np.inf, 39: np.inf, 40: np.inf, 41: np.inf, 42: np.inf, 43: np.inf, 44: np.inf, 45: np.inf, 46: np.inf, 47: np.inf, 48: np.inf, 49: np.inf, 50: np.inf, 51: np.inf, 52: np.inf, 53: np.inf, 54: np.inf, 55: np.inf, 56: np.inf, 57: np.inf, 58: np.inf, 59: np.inf, 60: np.inf, 61: np.inf, 62: np.inf, 63: np.inf, 64: np.inf, 65: np.inf, 66: np.inf, 67: np.inf, 68: np.inf, 69: np.inf, 70: np.inf, 71: np.inf, 72: np.inf, 73: np.inf, 74: np.inf, 75: np.inf, 76: np.inf, 77: np.inf, 78: np.inf, 79: np.inf, 80: np.inf, 81: np.inf, 82: np.inf, 83: np.inf, 84: np.inf, 85: np.inf, 86: np.inf, 87: np.inf, 88: np.inf, 89: np.inf, 90: np.inf, 91: np.inf, 92: np.inf, 93: np.inf, 94: np.inf, 95: np.inf, 96: np.inf, 97: np.inf, 98: np.inf, 99: np.inf, 100: np.inf, 101: np.inf, 102: np.inf, 103: np.inf, 104: np.inf, 105: np.inf, 106: np.inf, 107: np.inf, 108: np.inf, 109: np.inf, 110: np.inf, 111: np.inf, 112: np.inf, 113: np.inf, 114: np.inf, 115: np.inf, 116: np.inf, 117: np.inf, 118: np.inf, 119: np.inf, 120: np.inf, 121: np.inf, 122: np.inf, 123: np.inf, 124: np.inf, 125: np.inf, 126: np.inf, 127: np.inf, 128: np.inf, 129: np.inf, 130: np.inf, 131: np.inf, 132: np.inf, 133: np.inf, 134: np.inf, 135: np.inf, 136: np.inf, 137: np.inf, 138: np.inf, 139: np.inf, 140: np.inf, 141: np.inf, 142: np.inf, 143: np.inf, 144: np.inf, 145: np.inf, 146: np.inf, 147: np.inf, 148: np.inf, 149: np.inf, 150: np.inf, 151: np.inf, 152: np.inf, 153: np.inf, 154: np.inf, 155: np.inf, 156: np.inf, 157: np.inf, 158: np.inf, 159: np.inf, 160: np.inf, 161: np.inf, 162: np.inf, 163: np.inf, 164: np.inf, 165: np.inf, 166: np.inf, 167: np.inf, 168: np.inf, 169: np.inf, 170: np.inf, 171: np.inf, 172: np.inf, 173: np.inf, 174: np.inf, 175: np.inf, 176: np.inf, 177: np.inf, 178: np.inf, 179: np.inf, 180: np.inf, 181: np.inf, 182: np.inf, 183: np.inf, 184: np.inf, 185: np.inf, 186: np.inf, 187: np.inf, 188: np.inf, 189: np.inf, 190: np.inf, 191: np.inf, 192: np.inf, 193: np.inf, 194: np.inf, 195: np.inf, 196: np.inf, 197: np.inf, 198: np.inf, 199: np.inf, 200: np.inf, 201: np.inf, 202: np.inf, 203: np.inf, 204: np.inf, 205: np.inf, 206: np.inf, 207: np.inf, 208: np.inf, 209: np.inf, 210: np.inf, 211: np.inf, 212: np.inf, 213: np.inf, 214: np.inf, 215: np.inf, 216: np.inf, 217: np.inf, 218: np.inf, 219: np.inf, 220: np.inf, 221: np.inf, 222: np.inf, 223: np.inf, 224: np.inf, 225: np.inf, 226: np.inf, 227: np.inf, 228: np.inf, 229: np.inf, 230: np.inf, 231: np.inf, 232: np.inf, 233: np.inf, 234: np.inf, 235: np.inf, 236: np.inf, 237: np.inf, 238: np.inf, 239: np.inf, 240: np.inf, 241: np.inf, 242: np.inf, 243: np.inf, 244: np.inf, 245: np.inf, 246: np.inf, 247: np.inf, 248: np.inf, 249: np.inf, 250: np.inf, 251: np.inf, 252: np.inf, 253: np.inf, 254: np.inf, 255: np.inf, 256: np.inf, 257: np.inf, 258: np.inf, 259: np.inf, 260: np.inf, 261: np.inf, 262: np.inf, 263: np.inf, 264: np.inf, 265: np.inf, 266: np.inf, 267: np.inf, 268: np.inf, 269: np.inf, 270: np.inf, 271: np.inf, 272: np.inf, 273: np.inf, 274: np.inf, 275: np.inf, 276: np.inf, 277: np.inf, 278: np.inf, 279: np.inf, 280: np.inf, 281: np.inf, 282: np.inf, 283: np.inf, 284: np.inf, 285: np.inf, 286: np.inf, 287: np.inf, 288: np.inf, 289: np.inf, 290: np.inf, 291: np.inf, 292: np.inf, 293: np.inf, 294: np.inf, 295: np.inf, 296: np.inf, 297: np.inf, 298: np.inf, 299: np.inf, 300: np.inf, 301: np.inf, 302: np.inf, 303: np.inf, 304: np.inf, 305: np.inf, 306: np.inf, 307: np.inf, 308: np.inf, 309: np.inf, 310: np.inf, 311: np.inf, 312: np.inf, 313: np.inf, 314: np.inf, 315: np.inf, 316: np.inf, 317: np.inf, 318: np.inf, 319: np.inf, 320: np.inf, 321: np.inf, 322: np.inf, 323: np.inf, 324: np.inf, 325: np.inf, 326: np.inf, 327: np.inf, 328: np.inf, 329: np.inf, 330: np.inf, 331: np.inf, 332: np.inf, 333: np.inf, 334: np.inf, 335: np.inf, 336: np.inf, 337: np.inf, 338: np.inf, 339: np.inf, 340: np.inf, 341: np.inf, 342: np.inf, 343: np.inf, 344: np.inf, 345: np.inf, 346: np.inf, 347: np.inf, 348: np.inf, 349: np.inf, 350: np.inf, 351: np.inf, 352: np.inf, 353: np.inf, 354: np.inf, 355: np.inf, 356: np.inf, 357: np.inf, 358: np.inf, 359: np.inf, 360: np.inf, 361: np.inf, 362: np.inf, 363: np.inf, 364: np.inf, 365: np.inf, 366: np.inf, 367: np.inf, 368: np.inf, 369: np.inf, 370: np.inf, 371: np.inf, 372: np.inf, 373: np.inf, 374: np.inf, 375: np.inf, 376: np.inf, 377: np.inf, 378: np.inf, 379: np.inf, 380: np.inf, 381: np.inf, 382: np.inf, 383: np.inf, 384: np.inf, 385: np.inf, 386: np.inf, 387: np.inf, 388: np.inf, 389: np.inf, 390: np.inf, 391: np.inf, 392: np.inf, 393: np.inf, }, } ) PEYTON_FCST_LINEAR_INVALID_NEG_ONE = pd.DataFrame( { "time": { 0: pd.Timestamp("2012-05-02 00:00:00"), 1: pd.Timestamp("2012-05-03 00:00:00"), 2: pd.Timestamp("2012-05-04 00:00:00"), 3: pd.Timestamp("2012-05-05 00:00:00"), 4: pd.Timestamp("2012-05-06 00:00:00"), 5: pd.Timestamp("2012-05-07 00:00:00"), 6: pd.Timestamp("2012-05-08 00:00:00"), 7: pd.Timestamp("2012-05-09 00:00:00"), 8: pd.Timestamp("2012-05-10 00:00:00"), 9: pd.Timestamp("2012-05-11 00:00:00"), 10: pd.Timestamp("2012-05-12 00:00:00"), 11: pd.Timestamp("2012-05-13 00:00:00"), 12: pd.Timestamp("2012-05-14 00:00:00"), 13: pd.Timestamp("2012-05-15 00:00:00"), 14: pd.Timestamp("2012-05-16 00:00:00"), 15: pd.Timestamp("2012-05-17 00:00:00"), 16: pd.Timestamp("2012-05-18 00:00:00"), 17: pd.Timestamp("2012-05-19 00:00:00"), 18: pd.Timestamp("2012-05-20 00:00:00"), 19: pd.Timestamp("2012-05-21 00:00:00"), 20: pd.Timestamp("2012-05-22 00:00:00"), 21: pd.Timestamp("2012-05-23 00:00:00"), 22: pd.Timestamp("2012-05-24 00:00:00"), 23: pd.Timestamp("2012-05-25 00:00:00"), 24: pd.Timestamp("2012-05-26 00:00:00"), 25: pd.Timestamp("2012-05-27 00:00:00"), 26: pd.Timestamp("2012-05-28 00:00:00"), 27: pd.Timestamp("2012-05-29 00:00:00"), 28: pd.Timestamp("2012-05-30 00:00:00"), 29: pd.Timestamp("2012-05-31 00:00:00"), 30: pd.Timestamp("2012-06-01 00:00:00"), 31: pd.Timestamp("2012-06-02 00:00:00"), 32: pd.Timestamp("2012-06-03 00:00:00"), 33: pd.Timestamp("2012-06-04 00:00:00"), 34: pd.Timestamp("2012-06-05 00:00:00"), 35: pd.Timestamp("2012-06-06 00:00:00"), 36: pd.Timestamp("2012-06-07 00:00:00"), 37: pd.Timestamp("2012-06-08 00:00:00"), 38: pd.Timestamp("2012-06-09 00:00:00"), 39: pd.Timestamp("2012-06-10 00:00:00"), 40: pd.Timestamp("2012-06-11 00:00:00"), 41: pd.Timestamp("2012-06-12 00:00:00"), 42: pd.Timestamp("2012-06-13 00:00:00"), 43: pd.Timestamp("2012-06-14 00:00:00"), 44: pd.Timestamp("2012-06-15 00:00:00"), 45: pd.Timestamp("2012-06-16 00:00:00"), 46: pd.Timestamp("2012-06-17 00:00:00"), 47: pd.Timestamp("2012-06-18 00:00:00"), 48: pd.Timestamp("2012-06-19 00:00:00"), 49: pd.Timestamp("2012-06-20 00:00:00"), 50: pd.Timestamp("2012-06-21 00:00:00"), 51: pd.Timestamp("2012-06-22 00:00:00"), 52: pd.Timestamp("2012-06-23 00:00:00"), 53: pd.Timestamp("2012-06-24 00:00:00"), 54: pd.Timestamp("2012-06-25 00:00:00"), 55: pd.Timestamp("2012-06-26 00:00:00"), 56: pd.Timestamp("2012-06-27 00:00:00"), 57: pd.Timestamp("2012-06-28 00:00:00"), 58: pd.Timestamp("2012-06-29 00:00:00"), 59: pd.Timestamp("2012-06-30 00:00:00"), 60: pd.Timestamp("2012-07-01 00:00:00"), 61: pd.Timestamp("2012-07-02 00:00:00"), 62: pd.Timestamp("2012-07-03 00:00:00"), 63: pd.Timestamp("2012-07-04 00:00:00"), 64: pd.Timestamp("2012-07-05 00:00:00"), 65: pd.Timestamp("2012-07-06 00:00:00"), 66: pd.Timestamp("2012-07-07 00:00:00"), 67: pd.Timestamp("2012-07-08 00:00:00"), 68: pd.Timestamp("2012-07-09 00:00:00"), 69: pd.Timestamp("2012-07-10 00:00:00"), 70: pd.Timestamp("2012-07-11 00:00:00"), 71: pd.Timestamp("2012-07-12 00:00:00"), 72: pd.Timestamp("2012-07-13 00:00:00"), 73: pd.Timestamp("2012-07-14 00:00:00"), 74: pd.Timestamp("2012-07-15 00:00:00"), 75: pd.Timestamp("2012-07-16 00:00:00"), 76: pd.Timestamp("2012-07-17 00:00:00"), 77: pd.Timestamp("2012-07-18 00:00:00"), 78: pd.Timestamp("2012-07-19 00:00:00"), 79: pd.Timestamp("2012-07-20 00:00:00"), 80: pd.Timestamp("2012-07-21 00:00:00"), 81:
pd.Timestamp("2012-07-22 00:00:00")
pandas.Timestamp
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright © 2017 <NAME> <<EMAIL>> # Distributed under terms of the MIT license. """ """ import sys import numpy as np import pandas as pd from sklearn.ensemble import RandomForestClassifier from sklearn.preprocessing import LabelEncoder from sklearn.metrics import roc_curve def rf_classify(metrics, trainable, testable, features, labeler, cutoffs, name, clean_cutoffs=False): """Wrapper to run random forest and assign probabilities""" rf = RandomForest(trainable, testable, features, cutoffs, labeler, name, clean_cutoffs) rf.run() metrics.loc[rf.testable.index, name] = rf.probs cutoffs = rf.cutoffs.copy() # evidence = name.split('_')[0] # rf.clean.to_csv('{0}_training.txt'.format(evidence), index=False, sep='\t') del rf.clean del rf.testable del rf.rf del rf return cutoffs class RandomForest: def __init__(self, trainable, testable, features, cutoffs, labeler, name, clean_cutoffs=False, max_train_size=100000): def has_null_features(df): return df[features].isnull().any(axis=1) self.clean = trainable.loc[~has_null_features(trainable)].copy() if self.clean.shape[0] == 0: raise Exception('No clean variants found') self.testable = testable.loc[~has_null_features(testable)].copy() self.features = features self.labeler = labeler self.encoder = LabelEncoder().fit(['Fail', 'Pass']) self.name = name self.clean_cutoffs = clean_cutoffs self.cutoff_features = cutoffs self.cutoffs = None self.max_train_size = max_train_size def run(self): sys.stderr.write('Labeling training data...\n') self.label_training_data() sys.stderr.write('Selecting training data...\n') self.select_training_data() sys.stderr.write('Learning probabilities...\n') self.learn_probs() sys.stderr.write('Learning cutoffs...\n') self.learn_cutoffs() sys.stderr.write('Trimming probabilities...\n') self.cutoff_probs() def label_training_data(self): self.clean['label'] = self.labeler.label(self.clean) def select_training_data(self): self.train = self.clean.loc[self.clean.label != 'Unlabeled'] if self.train.shape[0] >= self.max_train_size: max_subset_size = int(self.max_train_size / 2) passes = self.train.loc[self.train.label == 'Pass'] if passes.shape[0] >= max_subset_size: passes = passes.sample(max_subset_size) fails = self.train.loc[self.train.label == 'Fail'] if fails.shape[0] >= max_subset_size: fails = fails.sample(max_subset_size) self.train =
pd.concat([passes, fails])
pandas.concat
from collections import ( abc, deque, ) from decimal import Decimal from warnings import catch_warnings import numpy as np import pytest import pandas as pd from pandas import ( DataFrame, Index, MultiIndex, PeriodIndex, Series, concat, date_range, ) import pandas._testing as tm from pandas.core.arrays import SparseArray from pandas.core.construction import create_series_with_explicit_dtype from pandas.tests.extension.decimal import to_decimal class TestConcatenate: def test_append_concat(self): # GH#1815 d1 = date_range("12/31/1990", "12/31/1999", freq="A-DEC") d2 = date_range("12/31/2000", "12/31/2009", freq="A-DEC") s1 = Series(np.random.randn(10), d1) s2 = Series(np.random.randn(10), d2) s1 = s1.to_period() s2 = s2.to_period() # drops index result = concat([s1, s2]) assert isinstance(result.index, PeriodIndex) assert result.index[0] == s1.index[0] def test_concat_copy(self, using_array_manager): df = DataFrame(np.random.randn(4, 3)) df2 = DataFrame(np.random.randint(0, 10, size=4).reshape(4, 1)) df3 = DataFrame({5: "foo"}, index=range(4)) # These are actual copies. result = concat([df, df2, df3], axis=1, copy=True) for arr in result._mgr.arrays: assert arr.base is None # These are the same. result = concat([df, df2, df3], axis=1, copy=False) for arr in result._mgr.arrays: if arr.dtype.kind == "f": assert arr.base is df._mgr.arrays[0].base elif arr.dtype.kind in ["i", "u"]: assert arr.base is df2._mgr.arrays[0].base elif arr.dtype == object: if using_array_manager: # we get the same array object, which has no base assert arr is df3._mgr.arrays[0] else: assert arr.base is not None # Float block was consolidated. df4 = DataFrame(np.random.randn(4, 1)) result = concat([df, df2, df3, df4], axis=1, copy=False) for arr in result._mgr.arrays: if arr.dtype.kind == "f": if using_array_manager: # this is a view on some array in either df or df4 assert any( np.shares_memory(arr, other) for other in df._mgr.arrays + df4._mgr.arrays ) else: # the block was consolidated, so we got a copy anyway assert arr.base is None elif arr.dtype.kind in ["i", "u"]: assert arr.base is df2._mgr.arrays[0].base elif arr.dtype == object: # this is a view on df3 assert any(np.shares_memory(arr, other) for other in df3._mgr.arrays) def test_concat_with_group_keys(self): # axis=0 df = DataFrame(np.random.randn(3, 4)) df2 = DataFrame(np.random.randn(4, 4)) result = concat([df, df2], keys=[0, 1]) exp_index = MultiIndex.from_arrays( [[0, 0, 0, 1, 1, 1, 1], [0, 1, 2, 0, 1, 2, 3]] ) expected = DataFrame(np.r_[df.values, df2.values], index=exp_index) tm.assert_frame_equal(result, expected) result = concat([df, df], keys=[0, 1]) exp_index2 = MultiIndex.from_arrays([[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]]) expected = DataFrame(np.r_[df.values, df.values], index=exp_index2) tm.assert_frame_equal(result, expected) # axis=1 df = DataFrame(np.random.randn(4, 3)) df2 = DataFrame(np.random.randn(4, 4)) result = concat([df, df2], keys=[0, 1], axis=1) expected = DataFrame(np.c_[df.values, df2.values], columns=exp_index) tm.assert_frame_equal(result, expected) result = concat([df, df], keys=[0, 1], axis=1) expected = DataFrame(np.c_[df.values, df.values], columns=exp_index2) tm.assert_frame_equal(result, expected) def test_concat_keys_specific_levels(self): df = DataFrame(np.random.randn(10, 4)) pieces = [df.iloc[:, [0, 1]], df.iloc[:, [2]], df.iloc[:, [3]]] level = ["three", "two", "one", "zero"] result = concat( pieces, axis=1, keys=["one", "two", "three"], levels=[level], names=["group_key"], ) tm.assert_index_equal(result.columns.levels[0], Index(level, name="group_key")) tm.assert_index_equal(result.columns.levels[1], Index([0, 1, 2, 3])) assert result.columns.names == ["group_key", None] @pytest.mark.parametrize("mapping", ["mapping", "dict"]) def test_concat_mapping(self, mapping, non_dict_mapping_subclass): constructor = dict if mapping == "dict" else non_dict_mapping_subclass frames = constructor( { "foo": DataFrame(np.random.randn(4, 3)), "bar": DataFrame(np.random.randn(4, 3)), "baz": DataFrame(np.random.randn(4, 3)), "qux": DataFrame(np.random.randn(4, 3)), } ) sorted_keys = list(frames.keys()) result = concat(frames) expected = concat([frames[k] for k in sorted_keys], keys=sorted_keys) tm.assert_frame_equal(result, expected) result = concat(frames, axis=1) expected = concat([frames[k] for k in sorted_keys], keys=sorted_keys, axis=1) tm.assert_frame_equal(result, expected) keys = ["baz", "foo", "bar"] result = concat(frames, keys=keys) expected = concat([frames[k] for k in keys], keys=keys) tm.assert_frame_equal(result, expected) def test_concat_keys_and_levels(self): df = DataFrame(np.random.randn(1, 3)) df2 = DataFrame(np.random.randn(1, 4)) levels = [["foo", "baz"], ["one", "two"]] names = ["first", "second"] result = concat( [df, df2, df, df2], keys=[("foo", "one"), ("foo", "two"), ("baz", "one"), ("baz", "two")], levels=levels, names=names, ) expected = concat([df, df2, df, df2]) exp_index = MultiIndex( levels=levels + [[0]], codes=[[0, 0, 1, 1], [0, 1, 0, 1], [0, 0, 0, 0]], names=names + [None], ) expected.index = exp_index tm.assert_frame_equal(result, expected) # no names result = concat( [df, df2, df, df2], keys=[("foo", "one"), ("foo", "two"), ("baz", "one"), ("baz", "two")], levels=levels, ) assert result.index.names == (None,) * 3 # no levels result = concat( [df, df2, df, df2], keys=[("foo", "one"), ("foo", "two"), ("baz", "one"), ("baz", "two")], names=["first", "second"], ) assert result.index.names == ("first", "second", None) tm.assert_index_equal( result.index.levels[0], Index(["baz", "foo"], name="first") ) def test_concat_keys_levels_no_overlap(self): # GH #1406 df = DataFrame(np.random.randn(1, 3), index=["a"]) df2 = DataFrame(np.random.randn(1, 4), index=["b"]) msg = "Values not found in passed level" with pytest.raises(ValueError, match=msg): concat([df, df], keys=["one", "two"], levels=[["foo", "bar", "baz"]]) msg = "Key one not in level" with pytest.raises(ValueError, match=msg): concat([df, df2], keys=["one", "two"], levels=[["foo", "bar", "baz"]]) def test_crossed_dtypes_weird_corner(self): columns = ["A", "B", "C", "D"] df1 = DataFrame( { "A": np.array([1, 2, 3, 4], dtype="f8"), "B": np.array([1, 2, 3, 4], dtype="i8"), "C": np.array([1, 2, 3, 4], dtype="f8"), "D": np.array([1, 2, 3, 4], dtype="i8"), }, columns=columns, ) df2 = DataFrame( { "A": np.array([1, 2, 3, 4], dtype="i8"), "B": np.array([1, 2, 3, 4], dtype="f8"), "C": np.array([1, 2, 3, 4], dtype="i8"), "D": np.array([1, 2, 3, 4], dtype="f8"), }, columns=columns, ) appended = df1.append(df2, ignore_index=True) expected = DataFrame( np.concatenate([df1.values, df2.values], axis=0), columns=columns ) tm.assert_frame_equal(appended, expected) df = DataFrame(np.random.randn(1, 3), index=["a"]) df2 = DataFrame(np.random.randn(1, 4), index=["b"]) result = concat([df, df2], keys=["one", "two"], names=["first", "second"]) assert result.index.names == ("first", "second") def test_with_mixed_tuples(self, sort): # 10697 # columns have mixed tuples, so handle properly df1 = DataFrame({"A": "foo", ("B", 1): "bar"}, index=range(2)) df2 = DataFrame({"B": "foo", ("B", 1): "bar"}, index=range(2)) # it works concat([df1, df2], sort=sort) def test_concat_mixed_objs(self): # concat mixed series/frames # G2385 # axis 1 index = date_range("01-Jan-2013", periods=10, freq="H") arr = np.arange(10, dtype="int64") s1 = Series(arr, index=index) s2 = Series(arr, index=index) df = DataFrame(arr.reshape(-1, 1), index=index) expected = DataFrame( np.repeat(arr, 2).reshape(-1, 2), index=index, columns=[0, 0] ) result = concat([df, df], axis=1) tm.assert_frame_equal(result, expected) expected = DataFrame( np.repeat(arr, 2).reshape(-1, 2), index=index, columns=[0, 1] ) result = concat([s1, s2], axis=1) tm.assert_frame_equal(result, expected) expected = DataFrame( np.repeat(arr, 3).reshape(-1, 3), index=index, columns=[0, 1, 2] ) result = concat([s1, s2, s1], axis=1) tm.assert_frame_equal(result, expected) expected = DataFrame( np.repeat(arr, 5).reshape(-1, 5), index=index, columns=[0, 0, 1, 2, 3] ) result = concat([s1, df, s2, s2, s1], axis=1) tm.assert_frame_equal(result, expected) # with names s1.name = "foo" expected = DataFrame( np.repeat(arr, 3).reshape(-1, 3), index=index, columns=["foo", 0, 0] ) result = concat([s1, df, s2], axis=1) tm.assert_frame_equal(result, expected) s2.name = "bar" expected = DataFrame( np.repeat(arr, 3).reshape(-1, 3), index=index, columns=["foo", 0, "bar"] ) result = concat([s1, df, s2], axis=1) tm.assert_frame_equal(result, expected) # ignore index expected = DataFrame( np.repeat(arr, 3).reshape(-1, 3), index=index, columns=[0, 1, 2] ) result = concat([s1, df, s2], axis=1, ignore_index=True) tm.assert_frame_equal(result, expected) # axis 0 expected = DataFrame( np.tile(arr, 3).reshape(-1, 1), index=index.tolist() * 3, columns=[0] ) result = concat([s1, df, s2])
tm.assert_frame_equal(result, expected)
pandas._testing.assert_frame_equal
import argparse import sys parser = argparse.ArgumentParser() parser.add_argument("-pythonpath", "--pythonpath", type=str) parser.add_argument("-tomo_name", "--tomo_name", type=str) parser.add_argument("-config_file", "--config_file", type=str) parser.add_argument("-fold", "--fold", type=str, default="None") args = parser.parse_args() pythonpath = args.pythonpath sys.path.append(pythonpath) import os import ast from os import listdir import shutil import pandas as pd import numpy as np # import seaborn as sns from file_actions.readers.tomograms import load_tomogram from file_actions.writers.csv import build_tom_motive_list from file_actions.writers.tomogram import write_tomogram from tomogram_utils.coordinates_toolbox.clustering import get_cluster_centroids, \ get_cluster_centroids_in_contact, get_cluster_centroids_colocalization from paths.pipeline_dirs import get_probability_map_path, get_post_processed_prediction_path from constants.config import Config from constants.config import get_model_name from networks.utils import get_training_testing_lists config_file = args.config_file config = Config(user_config_file=config_file) tomo_name = args.tomo_name fold = ast.literal_eval(args.fold) calculate_motl = config.calculate_motl model_path, model_name = get_model_name(config, fold) snakemake_pattern = config.output_dir + "/predictions/" + model_name + "/" + tomo_name + "/" + config.pred_class + \ "/.{fold}.post_processed_prediction.mrc".format(fold=str(fold)) if isinstance(fold, int): tomo_training_list, tomo_testing_list = get_training_testing_lists(config=config, fold=fold) if tomo_name in tomo_testing_list: run_job = True else: run_job = False else: run_job = True if run_job: print("Processing tomo", tomo_name) tomo_output_dir, output_path = get_probability_map_path(config.output_dir, model_name, tomo_name, config.pred_class) for file in listdir(tomo_output_dir): if "motl" in file: print("A motive list already exists:", file) shutil.move(os.path.join(tomo_output_dir, file), os.path.join(tomo_output_dir, "prev_" + file)) assert os.path.isfile(output_path) prediction_dataset = load_tomogram(path_to_dataset=output_path) output_shape = prediction_dataset.shape prediction_dataset_thr = 1 * (prediction_dataset > config.threshold) # set to zero the edges of tomogram if isinstance(config.ignore_border_thickness, int): ix = config.ignore_border_thickness iy, iz = ix, ix else: ix, iy, iz = config.ignore_border_thickness if iz > 0: prediction_dataset_thr[:iz, :, :] = np.zeros_like(prediction_dataset_thr[:iz, :, :]) prediction_dataset_thr[-iz:, :, :] = np.zeros_like(prediction_dataset_thr[-iz:, :, :]) if iy > 0: prediction_dataset_thr[:, :iy, :] = np.zeros_like(prediction_dataset_thr[:, :iy, :]) prediction_dataset_thr[:, -iy:, :] = np.zeros_like(prediction_dataset_thr[:, -iy:, :]) if ix > 0: prediction_dataset_thr[:, :, :ix] = np.zeros_like(prediction_dataset_thr[:, :, :ix]) prediction_dataset_thr[:, :, -ix:] = np.zeros_like(prediction_dataset_thr[:, :, -ix:]) print("Region mask:", config.region_mask) df = pd.read_csv(config.dataset_table, dtype={"tomo_name": str}) df.set_index("tomo_name", inplace=True) masking_file = df[config.region_mask][tomo_name] clusters_output_path = get_post_processed_prediction_path(output_dir=config.output_dir, model_name=model_name, tomo_name=tomo_name, semantic_class=config.pred_class) os.makedirs(tomo_output_dir, exist_ok=True) contact_mode = config.contact_mode if np.max(prediction_dataset_thr) == 0: clusters_labeled_by_size = prediction_dataset_thr centroids_list = [] cluster_size_list = [] else: print("masking_file:", masking_file) if isinstance(masking_file, float): print("No intersecting mask available of the type {} for tomo {}.".format(config.region_mask, tomo_name)) prediction_dataset_thr = prediction_dataset_thr.astype(np.int8) clusters_labeled_by_size, centroids_list, cluster_size_list = \ get_cluster_centroids(dataset=prediction_dataset_thr, min_cluster_size=config.min_cluster_size, max_cluster_size=config.max_cluster_size, connectivity=config.clustering_connectivity) else: mask_indicator = load_tomogram(path_to_dataset=masking_file) shx, shy, shz = [np.min([shl, shp]) for shl, shp in zip(mask_indicator.shape, prediction_dataset_thr.shape)] mask_indicator = mask_indicator[:shx, :shy, :shz] prediction_dataset_thr = prediction_dataset_thr[:shx, :shy, :shz] if contact_mode == "intersection": prediction_dataset_thr = mask_indicator.astype(np.int8) * prediction_dataset_thr.astype(np.int8) if np.max(prediction_dataset_thr) > 0: clusters_labeled_by_size, centroids_list, cluster_size_list = \ get_cluster_centroids(dataset=prediction_dataset_thr, min_cluster_size=config.min_cluster_size, max_cluster_size=config.max_cluster_size, connectivity=config.clustering_connectivity) elif contact_mode == "contact": if np.max(prediction_dataset_thr) > 0: clusters_labeled_by_size, centroids_list, cluster_size_list = \ get_cluster_centroids_in_contact(dataset=prediction_dataset_thr, min_cluster_size=config.min_cluster_size, max_cluster_size=config.max_cluster_size, contact_mask=mask_indicator, connectivity=config.clustering_connectivity) else: assert contact_mode == "colocalization" if np.max(prediction_dataset_thr) > 0: clusters_labeled_by_size, centroids_list, cluster_size_list = \ get_cluster_centroids_colocalization(dataset=prediction_dataset_thr, min_cluster_size=config.min_cluster_size, max_cluster_size=config.max_cluster_size, contact_mask=mask_indicator, tol_contact=config.contact_distance, connectivity=config.clustering_connectivity) clusters_output_path = get_post_processed_prediction_path(output_dir=config.output_dir, model_name=model_name, tomo_name=tomo_name, semantic_class=config.pred_class) print("clusters_output_path", clusters_output_path) clusters_output = 1*(clusters_labeled_by_size > 0) write_tomogram(output_path=clusters_output_path, tomo_data=clusters_output) os.makedirs(tomo_output_dir, exist_ok=True) if calculate_motl: motl_name = "motl_" + str(len(centroids_list)) + ".csv" print("motl_name:", motl_name) motl_file_name = os.path.join(tomo_output_dir, motl_name) if len(centroids_list) > 0: motive_list_df = build_tom_motive_list( list_of_peak_coordinates=centroids_list, list_of_peak_scores=cluster_size_list, in_tom_format=False) motive_list_df.to_csv(motl_file_name, index=False, header=False) print("Motive list saved in", motl_file_name) else: print("Saving empty list!") motive_list_df =
pd.DataFrame({})
pandas.DataFrame
import requests as req import pandas as pd import datetime import matplotlib.pyplot as plt trades_df = pd.read_csv('trades.csv') trades_df['DateOfTrade']= pd.to_datetime(trades_df['DateOfTrade']) trades_df = trades_df.sort_values(by='DateOfTrade') comp_columns = ['StartDate','EndDate','CCY','Amount'] composition = pd.DataFrame(columns=comp_columns) for trade in trades_df.itertuples(): date_of_trade = getattr(trade,'DateOfTrade') ccy = getattr(trade,'CCY') amount = getattr(trade,'Amount') if ccy not in composition['CCY'].to_list(): start_date = date_of_trade end_date = pd.datetime(2050,12,31) new_trade_df = pd.DataFrame({'StartDate':[start_date],'EndDate':[end_date],'CCY':[ccy],'Amount':[amount]}) composition = pd.concat([composition,new_trade_df]) else: current_ccy = (composition['EndDate'] == '2050-12-31') & (composition['CCY'] == ccy) if date_of_trade > composition.loc[current_ccy]['StartDate'][0]: new_amount = composition.loc[current_ccy]['Amount'][0] + amount if new_amount==0: #deletion composition.loc[current_ccy, 'EndDate'] = date_of_trade else: composition.loc[current_ccy,'EndDate'] = date_of_trade new_trade_df =
pd.DataFrame({'StartDate': [date_of_trade], 'EndDate': [end_date], 'CCY': [ccy], 'Amount': [new_amount]})
pandas.DataFrame
from IMLearn.utils import split_train_test from IMLearn.learners.regressors import LinearRegression import IMLearn.utils.utils as utils from typing import NoReturn import numpy as np import pandas as pd import plotly.graph_objects as go import plotly.express as px from plotly.subplots import make_subplots import plotly.io as pio from IMLearn.learners.regressors.linear_regression import LinearRegression pio.templates.default = "simple_white" pd.set_option('display.max_columns', None) pd.set_option('display.width', 1000) pd.set_option('display.colheader_justify', 'center') pd.set_option('display.precision', 3) def load_data(filename: str): """ Load house prices dataset and preprocess data. Parameters ---------- filename: str Path to house prices dataset Returns ------- Design matrix and response vector (prices) - either as a single DataFrame or a Tuple[DataFrame, Series] """ houses_df =
pd.read_csv(filename)
pandas.read_csv
# -*- coding: utf-8 -*- from datetime import timedelta import pytest import numpy as np import pandas as pd import pandas.util.testing as tm from pandas import (Timedelta, period_range, Period, PeriodIndex, _np_version_under1p10) import pandas.core.indexes.period as period class TestPeriodIndexArithmetic(object): def test_pi_add_offset_array(self): # GH#18849 pi = pd.PeriodIndex([pd.Period('2015Q1'), pd.Period('2016Q2')]) offs = np.array([pd.offsets.QuarterEnd(n=1, startingMonth=12), pd.offsets.QuarterEnd(n=-2, startingMonth=12)]) res = pi + offs expected = pd.PeriodIndex([pd.Period('2015Q2'), pd.Period('2015Q4')]) tm.assert_index_equal(res, expected) unanchored = np.array([pd.offsets.Hour(n=1), pd.offsets.Minute(n=-2)]) with pytest.raises(period.IncompatibleFrequency): pi + unanchored with pytest.raises(TypeError): unanchored + pi @pytest.mark.xfail(reason='GH#18824 radd doesnt implement this case') def test_pi_radd_offset_array(self): # GH#18849 pi = pd.PeriodIndex([pd.Period('2015Q1'), pd.Period('2016Q2')]) offs = np.array([pd.offsets.QuarterEnd(n=1, startingMonth=12), pd.offsets.QuarterEnd(n=-2, startingMonth=12)]) res = offs + pi expected = pd.PeriodIndex([pd.Period('2015Q2'), pd.Period('2015Q4')]) tm.assert_index_equal(res, expected) def test_add_iadd(self): rng = pd.period_range('1/1/2000', freq='D', periods=5) other = pd.period_range('1/6/2000', freq='D', periods=5) # previously performed setop union, now raises TypeError (GH14164) with pytest.raises(TypeError): rng + other with pytest.raises(TypeError): rng += other # offset # DateOffset rng = pd.period_range('2014', '2024', freq='A') result = rng + pd.offsets.YearEnd(5) expected = pd.period_range('2019', '2029', freq='A') tm.assert_index_equal(result, expected) rng += pd.offsets.YearEnd(5) tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(365, 'D'), timedelta(365), Timedelta(days=365)]: msg = ('Input has different freq(=.+)? ' 'from PeriodIndex\\(freq=A-DEC\\)') with tm.assert_raises_regex( period.IncompatibleFrequency, msg): rng + o rng = pd.period_range('2014-01', '2016-12', freq='M') result = rng + pd.offsets.MonthEnd(5) expected = pd.period_range('2014-06', '2017-05', freq='M') tm.assert_index_equal(result, expected) rng += pd.offsets.MonthEnd(5) tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(365, 'D'), timedelta(365), Timedelta(days=365)]: rng = pd.period_range('2014-01', '2016-12', freq='M') msg = 'Input has different freq(=.+)? from PeriodIndex\\(freq=M\\)' with tm.assert_raises_regex( period.IncompatibleFrequency, msg): rng + o # Tick offsets = [pd.offsets.Day(3), timedelta(days=3), np.timedelta64(3, 'D'), pd.offsets.Hour(72), timedelta(minutes=60 * 24 * 3), np.timedelta64(72, 'h'), Timedelta('72:00:00')] for delta in offsets: rng = pd.period_range('2014-05-01', '2014-05-15', freq='D') result = rng + delta expected = pd.period_range('2014-05-04', '2014-05-18', freq='D') tm.assert_index_equal(result, expected) rng += delta tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(4, 'h'), timedelta(hours=23), Timedelta('23:00:00')]: rng = pd.period_range('2014-05-01', '2014-05-15', freq='D') msg = 'Input has different freq(=.+)? from PeriodIndex\\(freq=D\\)' with tm.assert_raises_regex( period.IncompatibleFrequency, msg): rng + o offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), pd.offsets.Minute(120), timedelta(minutes=120), np.timedelta64(120, 'm'), Timedelta(minutes=120)] for delta in offsets: rng = pd.period_range('2014-01-01 10:00', '2014-01-05 10:00', freq='H') result = rng + delta expected = pd.period_range('2014-01-01 12:00', '2014-01-05 12:00', freq='H') tm.assert_index_equal(result, expected) rng += delta tm.assert_index_equal(rng, expected) for delta in [pd.offsets.YearBegin(2), timedelta(minutes=30), np.timedelta64(30, 's'), Timedelta(seconds=30)]: rng = pd.period_range('2014-01-01 10:00', '2014-01-05 10:00', freq='H') msg = 'Input has different freq(=.+)? from PeriodIndex\\(freq=H\\)' with tm.assert_raises_regex( period.IncompatibleFrequency, msg): rng + delta with tm.assert_raises_regex( period.IncompatibleFrequency, msg): rng += delta def test_pi_add_int(self, one): # Variants of `one` for #19012 rng = pd.period_range('2000-01-01 09:00', freq='H', periods=10) result = rng + one expected = pd.period_range('2000-01-01 10:00', freq='H', periods=10) tm.assert_index_equal(result, expected) rng += one tm.assert_index_equal(rng, expected) @pytest.mark.parametrize('five', [5, np.array(5, dtype=np.int64)]) def test_sub(self, five): rng = period_range('2007-01', periods=50) result = rng - five exp = rng + (-five) tm.assert_index_equal(result, exp) def test_sub_isub(self): # previously performed setop, now raises TypeError (GH14164) # TODO needs to wait on #13077 for decision on result type rng = pd.period_range('1/1/2000', freq='D', periods=5) other = pd.period_range('1/6/2000', freq='D', periods=5) with pytest.raises(TypeError): rng - other with pytest.raises(TypeError): rng -= other # offset # DateOffset rng = pd.period_range('2014', '2024', freq='A') result = rng - pd.offsets.YearEnd(5) expected = pd.period_range('2009', '2019', freq='A') tm.assert_index_equal(result, expected) rng -= pd.offsets.YearEnd(5) tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(365, 'D'), timedelta(365)]: rng = pd.period_range('2014', '2024', freq='A') msg = ('Input has different freq(=.+)? ' 'from PeriodIndex\\(freq=A-DEC\\)') with tm.assert_raises_regex( period.IncompatibleFrequency, msg): rng - o rng = pd.period_range('2014-01', '2016-12', freq='M') result = rng - pd.offsets.MonthEnd(5) expected = pd.period_range('2013-08', '2016-07', freq='M') tm.assert_index_equal(result, expected) rng -= pd.offsets.MonthEnd(5) tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(365, 'D'), timedelta(365)]: rng = pd.period_range('2014-01', '2016-12', freq='M') msg = 'Input has different freq(=.+)? from PeriodIndex\\(freq=M\\)' with tm.assert_raises_regex( period.IncompatibleFrequency, msg): rng - o # Tick offsets = [pd.offsets.Day(3), timedelta(days=3), np.timedelta64(3, 'D'), pd.offsets.Hour(72), timedelta(minutes=60 * 24 * 3), np.timedelta64(72, 'h')] for delta in offsets: rng = pd.period_range('2014-05-01', '2014-05-15', freq='D') result = rng - delta expected = pd.period_range('2014-04-28', '2014-05-12', freq='D') tm.assert_index_equal(result, expected) rng -= delta tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(4, 'h'), timedelta(hours=23)]: rng = pd.period_range('2014-05-01', '2014-05-15', freq='D') msg = 'Input has different freq(=.+)? from PeriodIndex\\(freq=D\\)' with tm.assert_raises_regex( period.IncompatibleFrequency, msg): rng - o offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), pd.offsets.Minute(120), timedelta(minutes=120), np.timedelta64(120, 'm')] for delta in offsets: rng = pd.period_range('2014-01-01 10:00', '2014-01-05 10:00', freq='H') result = rng - delta expected = pd.period_range('2014-01-01 08:00', '2014-01-05 08:00', freq='H') tm.assert_index_equal(result, expected) rng -= delta tm.assert_index_equal(rng, expected) for delta in [pd.offsets.YearBegin(2), timedelta(minutes=30), np.timedelta64(30, 's')]: rng = pd.period_range('2014-01-01 10:00', '2014-01-05 10:00', freq='H') msg = 'Input has different freq(=.+)? from PeriodIndex\\(freq=H\\)' with tm.assert_raises_regex( period.IncompatibleFrequency, msg): rng + delta with tm.assert_raises_regex( period.IncompatibleFrequency, msg): rng += delta # int rng = pd.period_range('2000-01-01 09:00', freq='H', periods=10) result = rng - 1 expected = pd.period_range('2000-01-01 08:00', freq='H', periods=10) tm.assert_index_equal(result, expected) rng -= 1 tm.assert_index_equal(rng, expected) class TestPeriodIndexSeriesMethods(object): """ Test PeriodIndex and Period Series Ops consistency """ def _check(self, values, func, expected): idx = pd.PeriodIndex(values) result = func(idx) if isinstance(expected, pd.Index): tm.assert_index_equal(result, expected) else: # comp op results in bool tm.assert_numpy_array_equal(result, expected) s = pd.Series(values) result = func(s) exp = pd.Series(expected, name=values.name) tm.assert_series_equal(result, exp) def test_pi_ops(self): idx = PeriodIndex(['2011-01', '2011-02', '2011-03', '2011-04'], freq='M', name='idx') expected = PeriodIndex(['2011-03', '2011-04', '2011-05', '2011-06'], freq='M', name='idx') self._check(idx, lambda x: x + 2, expected) self._check(idx, lambda x: 2 + x, expected) self._check(idx + 2, lambda x: x - 2, idx) result = idx - Period('2011-01', freq='M') exp = pd.Index([0, 1, 2, 3], name='idx') tm.assert_index_equal(result, exp) result = Period('2011-01', freq='M') - idx exp = pd.Index([0, -1, -2, -3], name='idx') tm.assert_index_equal(result, exp) def test_pi_ops_errors(self): idx = PeriodIndex(['2011-01', '2011-02', '2011-03', '2011-04'], freq='M', name='idx') s = pd.Series(idx) msg = r"unsupported operand type\(s\)" for obj in [idx, s]: for ng in ["str", 1.5]: with tm.assert_raises_regex(TypeError, msg): obj + ng with pytest.raises(TypeError): # error message differs between PY2 and 3 ng + obj with tm.assert_raises_regex(TypeError, msg): obj - ng with pytest.raises(TypeError): np.add(obj, ng) if _np_version_under1p10: assert np.add(ng, obj) is NotImplemented else: with pytest.raises(TypeError): np.add(ng, obj) with pytest.raises(TypeError): np.subtract(obj, ng) if _np_version_under1p10: assert np.subtract(ng, obj) is NotImplemented else: with pytest.raises(TypeError): np.subtract(ng, obj) def test_pi_ops_nat(self): idx = PeriodIndex(['2011-01', '2011-02', 'NaT', '2011-04'], freq='M', name='idx') expected = PeriodIndex(['2011-03', '2011-04', 'NaT', '2011-06'], freq='M', name='idx') self._check(idx, lambda x: x + 2, expected) self._check(idx, lambda x: 2 + x, expected) self._check(idx, lambda x: np.add(x, 2), expected) self._check(idx + 2, lambda x: x - 2, idx) self._check(idx + 2, lambda x: np.subtract(x, 2), idx) # freq with mult idx = PeriodIndex(['2011-01', '2011-02', 'NaT', '2011-04'], freq='2M', name='idx') expected = PeriodIndex(['2011-07', '2011-08', 'NaT', '2011-10'], freq='2M', name='idx') self._check(idx, lambda x: x + 3, expected) self._check(idx, lambda x: 3 + x, expected) self._check(idx, lambda x: np.add(x, 3), expected) self._check(idx + 3, lambda x: x - 3, idx) self._check(idx + 3, lambda x: np.subtract(x, 3), idx) def test_pi_ops_array_int(self): idx = PeriodIndex(['2011-01', '2011-02', 'NaT', '2011-04'], freq='M', name='idx') f = lambda x: x + np.array([1, 2, 3, 4]) exp = PeriodIndex(['2011-02', '2011-04', 'NaT', '2011-08'], freq='M', name='idx') self._check(idx, f, exp) f = lambda x: np.add(x, np.array([4, -1, 1, 2])) exp = PeriodIndex(['2011-05', '2011-01', 'NaT', '2011-06'], freq='M', name='idx') self._check(idx, f, exp) f = lambda x: x - np.array([1, 2, 3, 4]) exp = PeriodIndex(['2010-12', '2010-12', 'NaT', '2010-12'], freq='M', name='idx') self._check(idx, f, exp) f = lambda x: np.subtract(x, np.array([3, 2, 3, -2])) exp = PeriodIndex(['2010-10', '2010-12', 'NaT', '2011-06'], freq='M', name='idx') self._check(idx, f, exp) def test_pi_ops_offset(self): idx = PeriodIndex(['2011-01-01', '2011-02-01', '2011-03-01', '2011-04-01'], freq='D', name='idx') f = lambda x: x + pd.offsets.Day() exp = PeriodIndex(['2011-01-02', '2011-02-02', '2011-03-02', '2011-04-02'], freq='D', name='idx') self._check(idx, f, exp) f = lambda x: x + pd.offsets.Day(2) exp = PeriodIndex(['2011-01-03', '2011-02-03', '2011-03-03', '2011-04-03'], freq='D', name='idx') self._check(idx, f, exp) f = lambda x: x - pd.offsets.Day(2) exp = PeriodIndex(['2010-12-30', '2011-01-30', '2011-02-27', '2011-03-30'], freq='D', name='idx') self._check(idx, f, exp) def test_pi_offset_errors(self): idx = PeriodIndex(['2011-01-01', '2011-02-01', '2011-03-01', '2011-04-01'], freq='D', name='idx') s = pd.Series(idx) # Series op is applied per Period instance, thus error is raised # from Period msg_idx = r"Input has different freq from PeriodIndex\(freq=D\)" msg_s = r"Input cannot be converted to Period\(freq=D\)" for obj, msg in [(idx, msg_idx), (s, msg_s)]: with tm.assert_raises_regex( period.IncompatibleFrequency, msg): obj + pd.offsets.Hour(2) with tm.assert_raises_regex( period.IncompatibleFrequency, msg): pd.offsets.Hour(2) + obj with tm.assert_raises_regex( period.IncompatibleFrequency, msg): obj - pd.offsets.Hour(2) def test_pi_sub_period(self): # GH 13071 idx = PeriodIndex(['2011-01', '2011-02', '2011-03', '2011-04'], freq='M', name='idx') result = idx - pd.Period('2012-01', freq='M') exp = pd.Index([-12, -11, -10, -9], name='idx') tm.assert_index_equal(result, exp) result = np.subtract(idx, pd.Period('2012-01', freq='M')) tm.assert_index_equal(result, exp) result =
pd.Period('2012-01', freq='M')
pandas.Period
# JADESOUND FP # 20211207 import numpy as np import pandas as pd import scipy as sp import pickle import scikits.bootstrap as bootstrap #if things start breaking with no warning comment out these two lines import warnings warnings.filterwarnings('ignore') import statsmodels.api as sm import statsmodels.stats as smstats import os import csv from state_abr import abr import matplotlib.pyplot as plt def leastSquares(X, y): olsFit = sm.regression.linear_model.OLS(y, sm.add_constant(X), missing='drop').fit() return olsFit def summStat(r): print(r.summary()) return def descrStats(data): descr = smstats.descriptivestats.describe(data) return descr def pearson(X, y): """ Parameters ---------- X : Column of DataFrame Variable 1 y : Column of DataFrame Variable 2 Returns ------- pearson_p : tuple Value one = Pearson's correlation coefficient Value two = two-tailed p-value """ pearson_p = sp.stats.pearsonr(X, y) return pearson_p def calc_county_percents(data, pop_data, variable): outdata = pd.DataFrame(columns=["State", "Percentage", "Confidence Interval", "Population"]) state_df = pop_data[["State","County","Value"]] state_df['State'].str.strip() var_df = data.loc[data["Variable_Code"] == variable][["State", "County", "Variable_Code", "Value"]] for state in abr.values(): try: var_counts = var_df.loc[var_df["State"] == state] pop_counts = state_df.loc[state_df["State"] == state][["County", "Value"]] merged = pd.merge(var_counts, pop_counts, on="County") merged["Normalized"] = merged["Value_x"] * merged["Value_y"] normalized_total = merged["Normalized"].sum() total_pop = pop_counts["Value"].sum() perc_pop = normalized_total/total_pop ci = bootstrap.ci(var_counts["Value"]) except KeyError: total_pop = 0 ci = [0, 0] perc_pop = 0 new_line = {"State":state, "Percentage":perc_pop, "Confidence Interval":ci, "Population":total_pop} outdata = outdata.append(new_line, ignore_index=True) return outdata def process_indicator_data(data): outdata = pd.DataFrame(columns=["State", "Percentage", "Confidence Interval"]) for state in abr.keys(): state_abr = abr[state] try: state_data = data.loc[data["State"] == state] percent = state_data["Value"].sum()/len(state_data["Value"]) ci = bootstrap.ci(state_data["Value"]) except: percent = 0 ci = [0,0] new_line = {"State":state_abr, "Percentage":percent, "Confidence Interval":ci} outdata = outdata.append(new_line, ignore_index=True) return outdata def scatter_plot(x, y, x_axis, y_axis, title): x = x.sort_values(by="State") y = y.sort_values(by="State") plt.scatter(x["Percentage"], y["Percentage"]) results = leastSquares(x["Percentage"], y["Percentage"]) print(title) print(results.summary()) plt.plot(x['Percentage'], x['Percentage']*results.params[1] + results.params[0]) text = 'p-value=' + str(round(results.pvalues[1],5)) plt.text(x["Percentage"].max()-4, y['Percentage'].min(), text) plt.xlabel(x_axis) plt.ylabel(y_axis) plt.title(title) plt.show() def test(): d = [1,2,3,4,5,6,7,8,9,10] d1 = [10,9,8,7,6,5,4,3,2,1] dataframe = {'X':d,"y":d1} df = pd.DataFrame(dataframe) fit = leastSquares(d, d1) summStat(fit) descriptions = descrStats(df) print(descriptions) if __name__ == '__main__': indicator_seven_days = pd.read_csv("data/Indicators_of_Anxiety_or_Depression_Based_on_Reported_Frequency_of_Symptoms_During_Last_7_Days.csv") indicator_four_weeks = pd.read_csv("data/Indicators_of_Reduced_Access_to_Care_Due_to_the_Coronavirus_Pandemic_During_Last_4_Weeks.csv") state_and_county =
pd.read_csv("data/StateAndCountyData.csv")
pandas.read_csv
from src.typeDefs.section_1_7.section_1_7_2 import ISection_1_7_2 import datetime as dt from src.repos.metricsData.metricsDataRepo import MetricsDataRepo import pandas as pd def fetchSection1_7_2Context(appDbConnStr: str, startDt: dt.datetime, endDt: dt.datetime) -> ISection_1_7_2: mRepo = MetricsDataRepo(appDbConnStr) # get voltage data for this month maxVoltData = mRepo.getDailyVoltDataByLevel(400, "Max", startDt, endDt) maxVoltDf = pd.DataFrame(maxVoltData) maxVoltDf["data_val"] = pd.to_numeric( maxVoltDf["data_val"], errors='coerce') maxVoltSeries = maxVoltDf.groupby("entity_name").apply(getMax) maxVoltSeries = maxVoltSeries.round() maxVoltSeries = maxVoltSeries.rename("max_vol") minVoltData = mRepo.getDailyVoltDataByLevel(400, "Min", startDt, endDt) minVoltDf = pd.DataFrame(minVoltData) minVoltDf["data_val"] = pd.to_numeric( minVoltDf["data_val"], errors='coerce') minVoltSeries = minVoltDf.groupby("entity_name").apply(getMin) minVoltSeries = minVoltSeries.round() minVoltSeries = minVoltSeries.rename("min_vol") lessVoltPercData = mRepo.getDailyVoltDataByLevel( 400, "%Time <380 or 728", startDt, endDt) lessVoltPercDf = pd.DataFrame(lessVoltPercData) lessVoltPercDf["data_val"] = pd.to_numeric( lessVoltPercDf["data_val"], errors='coerce') lessVoltPercSeries = lessVoltPercDf.groupby("entity_name").apply(getMean) lessVoltPercSeries = lessVoltPercSeries.round(2) lessVoltPercSeries = lessVoltPercSeries.rename("less_perc") bandVoltPercData = mRepo.getDailyVoltDataByLevel( 400, "%Time within IEGC Band", startDt, endDt) bandVoltPercDf =
pd.DataFrame(bandVoltPercData)
pandas.DataFrame
import IndeedInfoGetter import PopulationCPIHolder import pandas class IndexComputer: @staticmethod def ComputeIndex(Skill): CompleteObjArray = [] print(type(PopulationCPIHolder.PopulationCPIHolder.getPopCpi())) colOne = [] colTwo = [] for x in PopulationCPIHolder.PopulationCPIHolder.getPopCpi(): x.numOfJobs = IndeedInfoGetter.IndeedInfoGetter.getNumberOfJobs(Skill, x.City.split(', ')[0], x.City.split(', ')[1]) x.avgSalary = IndeedInfoGetter.IndeedInfoGetter.getAverageSalary(Skill, x.City.split(', ')[0], x.City.split(', ')[1]) colOne.append(float(x.numOfJobs.replace(',',''))/x.Population) colTwo.append(x.avgSalary/x.CPI) CompleteObjArray.append(x) df =
pandas.DataFrame(data={'One':colOne,'Two':colTwo})
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 # # Breast Cancer Detection # In[1]: import warnings warnings.filterwarnings('ignore') # In[2]: import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns # In[3]: df = pd.read_csv("breast.csv") # In[4]: df # In[5]: df.head() # In[6]: df.columns # In[7]: df.info() # In[8]: df['Unnamed: 32'] # In[9]: df = df.drop("Unnamed: 32", axis=1) # In[10]: df.head() # In[11]: df.drop('id', axis=1, inplace=True) # In[12]: l=list(df.columns) l # In[13]: df.head(2) # In[14]: df['diagnosis'].unique() # In[15]: sns.countplot(df['diagnosis'], label="Count",); # In[16]: df['diagnosis'].value_counts() # In[17]: df.shape # # Explore The Data # In[18]: df.describe() # In[19]: #correlation plot corr = df.corr() corr # In[20]: corr.shape # In[21]: plt.figure(figsize=(10,10)) sns.heatmap(corr); # In[22]: #sns.pairplot(df) #plt.show() # In[23]: df.head() # In[24]: df['diagnosis'] = df['diagnosis'].map({'M':1, 'B':0}) df.to_csv('tits.csv') df.head() # In[25]: df['diagnosis'].unique() # In[26]: X=df.drop('diagnosis',axis=1) X.head() # In[27]: y=df['diagnosis'] y.head() # # Train Test Split # In[28]: from sklearn.model_selection import train_test_split X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.3) # In[29]: print(X_train.shape ,X_test.shape) print(y_train.shape, y_test.shape) # In[30]: X_train.head(1) # In[31]: from sklearn.preprocessing import StandardScaler sc= StandardScaler() X_train=sc.fit_transform(X_train) X_test=sc.transform(X_test) # In[32]: X_train # In[33]: X_test # # Machine learning Models # ## Logistic Regression # In[34]: from sklearn.linear_model import LogisticRegression lr= LogisticRegression(random_state = 5) lr.fit(X_train,y_train) # In[35]: y_pred = lr.predict(X_test) y_pred # In[36]: y_test # In[37]: from sklearn.metrics import confusion_matrix, accuracy_score, classification_report cm = confusion_matrix(y_test, y_pred) print('Confusion Matrix') print(cm) print("Accuracy Score : ",accuracy_score(y_test, y_pred)) print(classification_report(y_test,y_pred, digits=5)) # In[38]: lr_acc = accuracy_score(y_test, y_pred) # In[39]: results = pd.DataFrame() results # In[40]: tempResult = pd.DataFrame({'Algorithm':['Logistic Regression Method'], 'Accuracy':[lr_acc]}) results = pd.concat([results, tempResult]) results # # Decision Tree Classifier # In[41]: from sklearn.tree import DecisionTreeClassifier dtc = DecisionTreeClassifier() dtc.fit(X_train, y_train) # In[42]: y_pred = dtc.predict(X_test) y_pred # In[43]: from sklearn.metrics import confusion_matrix, accuracy_score, classification_report cm = confusion_matrix(y_test, y_pred) print('Confusion Matrix') print(cm) print("Accuracy Score : ",accuracy_score(y_test, y_pred)) print(classification_report(y_test,y_pred, digits=5)) # In[44]: dtc_acc = accuracy_score(y_test, y_pred) # In[45]: tempResult = pd.DataFrame({'Algorithm':['Decision Tree Classifier Method'], 'Accuracy':[dtc_acc]}) results = pd.concat([results, tempResult]) results = results[['Algorithm','Accuracy']] results # # Random Forest Classifier # In[46]: from sklearn.ensemble import RandomForestClassifier rfc = RandomForestClassifier(n_estimators = 10, criterion = 'entropy', random_state = 0) rfc.fit(X_train, y_train) # In[47]: y_pred = rfc.predict(X_test) y_pred # In[48]: from sklearn.metrics import confusion_matrix, accuracy_score, classification_report cm = confusion_matrix(y_test, y_pred) print('Confusion Matrix') print(cm) print("Accuracy Score : ",accuracy_score(y_test, y_pred)) print(classification_report(y_test,y_pred, digits=5)) # In[49]: rfc_acc = accuracy_score(y_test, y_pred) print(rfc_acc) # In[50]: tempResults = pd.DataFrame({'Algorithm':['Random Forest Classifier Method'], 'Accuracy':[rfc_acc]}) results = pd.concat( [results, tempResults] ) results = results[['Algorithm','Accuracy']] results # # Support Vector Classifier # In[51]: from sklearn import svm svc = svm.SVC() svc.fit(X_train,y_train) # In[52]: y_pred = svc.predict(X_test) y_pred # In[53]: from sklearn.metrics import confusion_matrix, accuracy_score, classification_report cm = confusion_matrix(y_test, y_pred) print('Confusion Matrix') print(cm) print("Accuracy Score : ",accuracy_score(y_test, y_pred)) print(classification_report(y_test,y_pred, digits=5)) # In[54]: svc_acc = accuracy_score(y_test, y_pred) print(svc_acc) # In[55]: tempResults = pd.DataFrame({'Algorithm':['Support Vector Classifier Method'], 'Accuracy':[svc_acc]}) results = pd.concat( [results, tempResults] ) results = results[['Algorithm','Accuracy']] results # # KNN Classifier # In[56]: from sklearn.neighbors import KNeighborsClassifier knn = KNeighborsClassifier(n_neighbors = 3, metric = 'euclidean', p = 2) knn.fit(X_train, y_train) # In[57]: y_pred = knn.predict(X_test) y_pred # In[58]: from sklearn.metrics import confusion_matrix, accuracy_score, classification_report cm = confusion_matrix(y_test, y_pred) print('Confusion Matrix') print(cm) print("Accuracy Score : ",accuracy_score(y_test, y_pred)) print(classification_report(y_test,y_pred, digits=5)) # In[59]: knn_acc = accuracy_score(y_test, y_pred) print(knn_acc) # In[60]: tempResults =
pd.DataFrame({'Algorithm':['K-Nearest-Neighbor Classification Method'], 'Accuracy':[knn_acc]})
pandas.DataFrame
import numpy as np import pytest from pandas._libs.tslibs import iNaT from pandas._libs.tslibs.period import IncompatibleFrequency import pandas as pd import pandas._testing as tm from pandas.core.arrays import PeriodArray, period_array @pytest.mark.parametrize( "data, freq, expected", [ ([pd.Period("2017", "D")], None, [17167]), ([pd.Period("2017", "D")], "D", [17167]), ([2017], "D", [17167]), (["2017"], "D", [17167]), ([pd.Period("2017", "D")], pd.tseries.offsets.Day(), [17167]), ([pd.Period("2017", "D"), None], None, [17167, iNaT]), (pd.Series(pd.date_range("2017", periods=3)), None, [17167, 17168, 17169]), (pd.date_range("2017", periods=3), None, [17167, 17168, 17169]), (pd.period_range("2017", periods=4, freq="Q"), None, [188, 189, 190, 191]), ], ) def test_period_array_ok(data, freq, expected): result = period_array(data, freq=freq).asi8 expected = np.asarray(expected, dtype=np.int64) tm.assert_numpy_array_equal(result, expected) def test_period_array_readonly_object(): # https://github.com/pandas-dev/pandas/issues/25403 pa = period_array([pd.Period("2019-01-01")]) arr = np.asarray(pa, dtype="object") arr.setflags(write=False) result = period_array(arr) tm.assert_period_array_equal(result, pa) result = pd.Series(arr) tm.assert_series_equal(result, pd.Series(pa)) result = pd.DataFrame({"A": arr}) tm.assert_frame_equal(result, pd.DataFrame({"A": pa})) def test_from_datetime64_freq_changes(): # https://github.com/pandas-dev/pandas/issues/23438 arr = pd.date_range("2017", periods=3, freq="D") result = PeriodArray._from_datetime64(arr, freq="M") expected = period_array(["2017-01-01", "2017-01-01", "2017-01-01"], freq="M") tm.assert_period_array_equal(result, expected) @pytest.mark.parametrize( "data, freq, msg", [ ( [pd.Period("2017", "D"), pd.Period("2017", "A")], None, "Input has different freq", ), ([pd.Period("2017", "D")], "A", "Input has different freq"), ], ) def test_period_array_raises(data, freq, msg): with pytest.raises(IncompatibleFrequency, match=msg): period_array(data, freq) def test_period_array_non_period_series_raies(): ser =
pd.Series([1, 2, 3])
pandas.Series
from django.db.models import Q from django.db import models from django.db.utils import OperationalError from django.utils.translation import ugettext_lazy as _ from django.utils import timezone from django.utils.functional import lazy from django.core.cache import cache from django.core.validators import MinValueValidator,MaxValueValidator import datetime import sys import os import json from EventsAPP.consumers import PublishEvent from django.dispatch import receiver from django.db.models.signals import pre_save,post_save,post_delete,pre_delete from django.contrib.contenttypes.fields import GenericRelation from MainAPP.constants import REGISTERS_DB_PATH,SUBSYSTEMS_CHOICES import MainAPP.signals import utils.BBDD import pandas as pd import numpy as np import logging from abc import abstractstaticmethod logger = logging.getLogger("project") from django.contrib.contenttypes.fields import GenericForeignKey from django.contrib.contenttypes.models import ContentType # settings from https://steelkiwi.com/blog/practical-application-singleton-design-pattern/ class SingletonModel(models.Model): class Meta: abstract = True def save(self, *args, **kwargs): self.pk = 1 super(SingletonModel, self).save(*args, **kwargs) self.set_cache() def set_cache(self): cache.set(self.__class__.__name__, self) @classmethod def checkIfExists(cls): try: obj = cls.objects.get(pk=1) return True except cls.DoesNotExist: return False @classmethod def load(cls): if cache.get(cls.__name__) is None: obj, created = cls.objects.get_or_create(pk=1) if not created: obj.set_cache() return cache.get(cls.__name__) class SiteSettings(SingletonModel): class Meta: verbose_name = _('Settings') FACILITY_NAME= models.CharField(verbose_name=_('Name of the installation'),max_length=100, help_text=_('Descriptive name for the installation.'),default='My house') SITE_DNS= models.CharField(verbose_name=_('Name of the domain to access the application'), help_text=_('This is the DNS address that gives access to the application from the internet.'), max_length=100,default='myDIY4dot0House.net') VERSION_AUTO_DETECT=models.BooleanField(verbose_name=_('Autodetect new software releases'), help_text=_('Automatically checks the repository for new software'),default=True) VERSION_AUTO_UPDATE=models.BooleanField(verbose_name=_('Apply automatically new software releases'), help_text=_('Automatically updates to (and applies) the latest software'),default=False) VERSION_CODE= models.CharField(verbose_name=_('Code of the version of the application framework'), max_length=100,default='',blank=True) VERSION_DEVELOPER=models.BooleanField(verbose_name=_('Follow the beta development versions'), help_text=_('Tracks the development versions (may result in unstable behaviour)'),default=False) NTPSERVER_RESTART_TIMEDELTA=models.PositiveSmallIntegerField(verbose_name=_('NTP server restart time delta'), help_text=_('Time difference in minutes that will trigger a restart of the NTP server'),default=5) WIFI_SSID= models.CharField(verbose_name=_('WIFI network identificator'), help_text=_('This is the name of the WiFi network generated to communicate with the slaves'), max_length=50,default='DIY4dot0') WIFI_PASSW= models.CharField(verbose_name=_('WIFI network passphrase'), help_text=_('This is the encryption password for the WIFI network'), max_length=50,default='<PASSWORD>') WIFI_IP= models.GenericIPAddressField(verbose_name=_('IP address for the WIFI network'), help_text=_('This is the IP address for the WiFi network generated to communicate with the slaves'), protocol='IPv4', default='10.10.10.1') WIFI_MASK= models.GenericIPAddressField(verbose_name=_('WIFI network mask'), help_text=_('This is the mask of the WiFi network generated to communicate with the slaves'), protocol='IPv4', default='255.255.255.0') WIFI_GATE= models.GenericIPAddressField(verbose_name=_('WIFI network gateway'), help_text=_('This is the gateway for the WiFi network generated to communicate with the slaves'), protocol='IPv4', default='10.10.10.1') ETH_DHCP=models.BooleanField(verbose_name=_('Enable DHCP on the LAN network'), help_text=_('Includes the server in the DHCP pool'),default=True) ETH_IP= models.GenericIPAddressField(verbose_name=_('IP address for the LAN network'), help_text=_('This is the IP for the LAN network that is providing the internet access.'), protocol='IPv4', default='172.16.31.10') ETH_MASK= models.GenericIPAddressField(verbose_name=_('Mask for the LAN network'), help_text=_('This is the mask for the LAN network that is providing the internet access.'), protocol='IPv4', default='255.255.255.0') ETH_GATE= models.GenericIPAddressField(verbose_name=_('Gateway of the LAN network'), help_text=_('This is the gateway IP of the LAN network that is providing the internet access.'), protocol='IPv4', default='1.1.1.1') PROXY_AUTO_DENYIP=models.BooleanField(verbose_name=_('Enable automatic IP blocking'), help_text=_('Feature that blocks automatically WAN IPs with more than certain denied attempts in 24 h.'),default=True) AUTODENY_ATTEMPTS=models.PositiveSmallIntegerField(verbose_name=_('Number of denied attempts needed to block an IP'), help_text=_('The number of denied accesses in 24h that will result in an IP being blocked.'),default=40) PROXY_CREDENTIALS=models.BooleanField(verbose_name=_('Require credentials to access the server'), help_text=_('Increased access security by including an additional barrier on the proxy.'),default=True) PROXY_USER1=models.CharField(verbose_name=_('Username 1'), max_length=10,help_text=_('First username enabled to get through the proxy barrier.'),default='user1') PROXY_PASSW1=models.CharField(verbose_name=_('Password for username 1'), max_length=10,help_text=_('First username password.'),default='<PASSWORD>') PROXY_USER2=models.CharField(verbose_name=_('Username 2'), max_length=10,help_text=_('First username enabled to get through the proxy barrier.'),default='user2') PROXY_PASSW2=models.CharField(verbose_name=_('Password for username 2'), max_length=10,help_text=_('First username password.'),default='<PASSWORD>') TELEGRAM_TOKEN=models.CharField(verbose_name=_('Token for the telegram bot'),blank=True, max_length=100,help_text=_('The token assigned by the BothFather'),default='') TELEGRAM_CHATID=models.CharField(verbose_name=_('Chat ID'),blank=True, max_length=100,help_text=_('The ID of the chat to use'),default='') IBERDROLA_USER=models.CharField(verbose_name=_('Iberdrola username'),blank=True, max_length=50,help_text=_('Username registered into the Iberdrola Distribucion webpage'),default='') IBERDROLA_PASSW=models.CharField(verbose_name=_('Iberdrola password'),blank=True, max_length=50,help_text=_('Password registered on the Iberdrola Distribucion webpage'),default='') OWM_TOKEN=models.CharField(verbose_name=_('Token for the openweathermap page'),blank=True, max_length=100,help_text=_('The token assigned by the OpenWeatherMap service. You should ask yours following https://openweathermap.org/appid'),default='') ESIOS_TOKEN=models.CharField(verbose_name=_('Token for the ESIOS page'),blank=True, max_length=100,help_text=_('The token assigned by the ESIOS service. You should ask for yours to: Consultas Sios <consult<EMAIL>>'),default='') def store2DB(self,update_fields=None): try: self.save(update_fields=update_fields) except OperationalError: logger.error("Operational error on Django. System restarted") import os os.system("sudo reboot") if update_fields!=None: self.applyChanges(update_fields=update_fields) @classmethod def onBootTasks(cls): cls.checkInternetConnection() IP=cls.getMyLANIP() SETTINGS=cls.load() if IP != SETTINGS.ETH_IP: SETTINGS.applyChanges(update_fields=['ETH_IP',]) def dailyTasks(self): self.checkRepository() self.checkDeniableIPs(attempts=self.AUTODENY_ATTEMPTS,hours=24) def hourlyTasks(self): self.checkDeniableIPs(attempts=self.AUTODENY_ATTEMPTS/10,hours=1) def set_TELEGRAM_CHATID(self,value): self.TELEGRAM_CHATID=str(value) self.store2DB() @staticmethod def getMyLANIP(): import socket s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) try: s.connect(('172.16.31.10', 1027)) except socket.error: return None return s.getsockname()[0] @staticmethod def checkInternetConnection(): import requests try: r = requests.get('http://google.com',timeout=1) if r.status_code==200: return True else: return False except: return False def checkRepository(self,force=False): from django.core.cache import cache cache.set(key='loading',value=True,timeout=60) if self.VERSION_AUTO_DETECT or force: from utils.GitHub import checkDeveloperUpdates,checkReleaseUpdates,updateDeveloper,updateRelease from .constants import GIT_PATH if self.VERSION_DEVELOPER: release=checkDeveloperUpdates(root=GIT_PATH) else: release=checkReleaseUpdates(root=GIT_PATH,currentVersion=self.VERSION_CODE) if release['tag']!=None: self.VERSION_CODE=release['tag'] self.save(update_fields=['VERSION_CODE',]) if release['update'] and (self.VERSION_AUTO_UPDATE or force): from utils.Watchdogs import WATCHDOG from DevicesAPP.constants import POLLING_WATCHDOG_TIMER,POLLING_WATCHDOG_VAR #process=WATCHDOG(name='PollingWatchdog',interval=POLLING_WATCHDOG_TIMER,cachevar=POLLING_WATCHDOG_VAR) #process.pause() try: if self.VERSION_DEVELOPER: revision=updateDeveloper(root=GIT_PATH) else: revision=updateRelease(root=GIT_PATH,tag=release['tag']) if revision!=None: self.VERSION_CODE=revision self.save(update_fields=['VERSION_CODE',]) except Exception as exc: logger.error('Error checking repository: ' + str(exc)) #process.resume() cache.set(key='loading',value=False,timeout=None) def addressInNetwork(self,ip2check): import ipaddress "Is an address from the ETH network" CIDR=sum([bin(int(x)).count("1") for x in self.ETH_MASK.split(".")]) host = ipaddress.ip_interface(self.ETH_IP+'/'+str(CIDR)) return ipaddress.ip_address(ip2check) in host.network.hosts() def checkDeniableIPs(self,attempts,hours): if self.PROXY_AUTO_DENYIP: from utils.combinedLog import CombinedLogParser updated=False instance=CombinedLogParser() for element in instance.getNginxAccessIPs(hours=int(hours),codemin=400): if element['trials']>=attempts and not self.addressInNetwork(ip2check=element['IP']): from utils.Nginx import NginxManager if NginxManager.blockIP(IP=element['IP'])!=-1: updated=True if updated: NginxManager.reload() @staticmethod def update_hostapd(WIFI_SSID,WIFI_PASSW,updated): from .constants import HOSTAPD_CONF_PATH,HOSTAPD_GENERIC_CONF_PATH try: f1 = open(HOSTAPD_GENERIC_CONF_PATH, 'r') open(HOSTAPD_CONF_PATH, 'w').close() # deletes the contents f2 = open(HOSTAPD_CONF_PATH, 'w') except: text=_('Error opening the file ') + HOSTAPD_CONF_PATH PublishEvent(Severity=2,Text=text,Persistent=True,Code='FileIOError-0') return for line in f1: f2.write(line.replace('WIFI_SSID', WIFI_SSID) .replace('WIFI_PASSW', WIFI_PASSW)) f1.close() f2.close() if 'WIFI_SSID' in updated: text='Modified Hostapd field WIFI_SSID to ' + str(WIFI_SSID) PublishEvent(Severity=0,Text=text,Persistent=True,Code='Hostapd-WIFI_SSID') if 'WIFI_PASSW' in updated: text='Modified Hostapd field WIFI_PASSW to ' + str(WIFI_PASSW) PublishEvent(Severity=0,Text=text,Persistent=True,Code='Hostapd-WIFI_PASSW') @staticmethod def execute_certbot(): from subprocess import Popen, PIPE from .constants import CERTBOT_PATH cmd='sudo ' + CERTBOT_PATH + ' --nginx --no-self-upgrade' process = Popen(cmd, shell=True, stdout=PIPE,stdin=PIPE, stderr=PIPE,universal_newlines=True) stdout, err = process.communicate(input='1') if 'Some challenges have failed.' in err: text=_('Some challenge failed. Check that the domain is directed to the WAN IP and the port 80 is directed to the DIY4dot0 server') PublishEvent(Severity=0,Text=text,Persistent=True,Code='Certbot-Fail') @staticmethod def update_interfaces(ETH_DHCP,ETH_IP,ETH_MASK,ETH_GATE,WIFI_IP,WIFI_MASK,WIFI_GATE,updated): from .constants import INTERFACES_CONF_PATH,INTERFACES_GENERIC_CONF_PATH try: f1 = open(INTERFACES_GENERIC_CONF_PATH, 'r') open(INTERFACES_CONF_PATH, 'w').close() # deletes the contents f2 = open(INTERFACES_CONF_PATH, 'w') except: text=_('Error opening the file ') + INTERFACES_CONF_PATH PublishEvent(Severity=2,Text=text,Persistent=True,Code='FileIOError-0') return if not ETH_DHCP: for line in f1: f2.write(line.replace('ETH_IP', ETH_IP) .replace('ETH_MASK', ETH_MASK) .replace('ETH_GATE', ETH_GATE) .replace('WIFI_IP', WIFI_IP) .replace('WIFI_MASK', WIFI_MASK) .replace('WIFI_GATE', WIFI_GATE)) else: for line in f1: f2.write(line.replace('iface eth0 inet static', 'iface eth0 inet dhcp') .replace('address ETH_IP', '') .replace('netmask ETH_MASK', '') .replace('gateway ETH_GATE', '') .replace('WIFI_IP', WIFI_IP) .replace('WIFI_MASK', WIFI_MASK) .replace('WIFI_GATE', WIFI_GATE)) f1.close() f2.close() if ('ETH_DHCP' in updated) or ('ETH_IP' in updated) or ('ETH_MASK' in updated) or ('ETH_GATE' in updated): text='Reconfiguring LAN interface eth0' PublishEvent(Severity=0,Text=text,Persistent=False,Code='Interfaces-ETH_ETH0') #os.system('sudo ip addr flush eth0') #os.system('sudo systemctl restart networking') if ('WIFI_IP' in updated) or ('WIFI_MASK' in updated) or ('WIFI_GATE' in updated): text='Reconfiguring WIFI interface wlan0' PublishEvent(Severity=0,Text=text,Persistent=False,Code='Interfaces-ETH_WLAN0') #os.system('sudo ip addr flush wlan0') #os.system('sudo systemctl restart networking') if 'ETH_DHCP' in updated: text='Modified Interfaces field ETH_DHCP to ' + str(ETH_DHCP) PublishEvent(Severity=0,Text=text,Persistent=True,Code='Interfaces-ETH_DHCP') if 'ETH_IP' in updated: text='Modified Interfaces field ETH_IP to ' + str(ETH_IP) PublishEvent(Severity=0,Text=text,Persistent=True,Code='Interfaces-ETH_IP') if 'ETH_MASK' in updated: text='Modified Interfaces field ETH_MASK to ' + str(ETH_MASK) PublishEvent(Severity=0,Text=text,Persistent=True,Code='Interfaces-ETH_MASK') if 'ETH_GATE' in updated: text='Modified Interfaces field ETH_GATE to ' + str(ETH_GATE) PublishEvent(Severity=0,Text=text,Persistent=True,Code='Interfaces-ETH_GATE') if 'WIFI_IP' in updated: text='Modified Interfaces field WIFI_IP to ' + str(WIFI_IP) PublishEvent(Severity=0,Text=text,Persistent=True,Code='Interfaces-WIFI_IP') if 'WIFI_MASK' in updated: text='Modified Interfaces field WIFI_MASK to ' + str(WIFI_MASK) PublishEvent(Severity=0,Text=text,Persistent=True,Code='Interfaces-WIFI_MASK') if 'WIFI_GATE' in updated: text='Modified Interfaces field WIFI_GATE to ' + str(WIFI_GATE) PublishEvent(Severity=0,Text=text,Persistent=True,Code='Interfaces-WIFI_GATE') def applyChanges(self,update_fields): from django.core.cache import cache cache.set(key='loading',value=True,timeout=60) if ('SITE_DNS' in update_fields): SiteSettings.execute_certbot() if ('SITE_DNS' in update_fields) or ('ETH_IP' in update_fields): # update /etc/nginx/sites-available/HomeAutomation.nginxconf from utils.Nginx import NginxManager NginxManager.editConfigFile(SITE_DNS=getattr(self,'SITE_DNS'),ETH_IP=getattr(self,'ETH_IP')) # yet does not work, it does not write the file NginxManager.reload() # update allowed_hosts in settings.local.env from .constants import LOCALENV_PATH self.editUniqueKeyedFile(path=LOCALENV_PATH,key='ALLOWED_HOSTS',delimiter='=', newValue=getattr(self,'SITE_DNS')+','+getattr(self,'ETH_IP')+',127.0.0.1', endChar='\n',addKey=True) if (('ETH_DHCP' in update_fields) or ('ETH_IP' in update_fields) or ('ETH_MASK' in update_fields) or ('ETH_GATE' in update_fields) or ('WIFI_IP' in update_fields) or ('WIFI_MASK' in update_fields) or ('WIFI_GATE' in update_fields)): SiteSettings.update_interfaces(ETH_DHCP=getattr(self,'ETH_DHCP'), ETH_IP=getattr(self,'ETH_IP'),ETH_MASK=getattr(self,'ETH_MASK'), ETH_GATE=getattr(self,'ETH_GATE'),WIFI_IP=getattr(self,'WIFI_IP'), WIFI_MASK=getattr(self,'WIFI_MASK'),WIFI_GATE=getattr(self,'WIFI_GATE'), updated=update_fields) if ('WIFI_SSID' in update_fields) or ('WIFI_PASSW' in update_fields): SiteSettings.update_hostapd(WIFI_SSID=getattr(self,'WIFI_SSID'),WIFI_PASSW=getattr(self,'WIFI_PASSW') ,updated=update_fields) # update /etc/nginx/sites-available/HomeAutomation.nginxconf if ('PROXY_CREDENTIALS' in update_fields): from utils.Nginx import NginxManager NginxManager.setProxyCredential(PROXY_CREDENTIALS=getattr(self,'PROXY_CREDENTIALS')) NginxManager.reload() if (('PROXY_USER1' in update_fields) or ('PROXY_PASSW1' in update_fields) or ('PROXY_USER2' in update_fields) or ('PROXY_PASSW2' in update_fields)): if getattr(self,'PROXY_CREDENTIALS'): from utils.Nginx import NginxManager NginxManager.createUser(user=self.PROXY_USER1,passw=self.PROXY_PASSW1,firstUser=True) NginxManager.createUser(user=self.PROXY_USER2,passw=self.PROXY_PASSW2,firstUser=False) NginxManager.reload() if ('VERSION_DEVELOPER' in update_fields): self.checkRepository(force=True) for field in update_fields: if field in ['TELEGRAM_TOKEN','IBERDROLA_USER','IBERDROLA_PASSW','OWM_TOKEN','ESIOS_TOKEN']: value=getattr(self,field).strip() if value!='': # update TELEGRAM_TOKEN in settings.local.env from .constants import LOCALENV_PATH self.editUniqueKeyedFile(path=LOCALENV_PATH,key=field,delimiter='=', newValue=value, endChar='\n',addKey=True) cache.set(key='loading',value=False,timeout=None) @staticmethod def editKeyedFile(path,key,newValue,endChar=' ',nextLine=True): ''' :param key: determines the text to look for the place to write :param nextLine: determines if once the key is found, it is the next line where it should write ''' try: file = open(path, 'r') except: text=_('Error opening the file ') + path PublishEvent(Severity=2,Text=text,Persistent=True,Code='FileIOError-0') lines=file.readlines() if len(lines)>0: keyFound=False for i,line in enumerate(lines): if key in line or keyFound: if not nextLine: lines[i]=newValue+key+endChar keyFound=False elif keyFound: lines[i]=newValue+endChar keyFound=False else: keyFound=True fileString=''.join(lines) file.close() from subprocess import Popen, PIPE cmd="echo '"+fileString+"' | sudo tee "+ path process = Popen(cmd, shell=True, stdout=PIPE,stdin=PIPE, stderr=PIPE,universal_newlines=True) stdout, err = process.communicate() if err=='': text='The key '+key+' on the file ' + path+ ' has been modified to ' +newValue severity=0 else: text='Error updating key ' + key+ 'on the file ' + path+ 'Error: ' + err severity=3 PublishEvent(Severity=severity,Text=text,Persistent=True,Code='EditFile-'+key) @staticmethod def editUniqueKeyedFile(path,key,delimiter,newValue,endChar='',addKey=True): try: file = open(path, 'r') except: text=_('Error opening the file ') + path PublishEvent(Severity=2,Text=text,Persistent=True,Code='FileIOError-0') lines=file.readlines() if len(lines)>0: keyFound=False for i,line in enumerate(lines): contents=line.split(delimiter) if len(contents)==2: thisKey=contents[0] if thisKey==key: keyFound=True lines[i]=key+delimiter+newValue+endChar if not keyFound and addKey: if not '\n' in lines[-1]: lines[-1]=lines[-1]+'\n' lines.append(key+delimiter+newValue+endChar) fileString=''.join(lines) file.close() from subprocess import Popen, PIPE cmd="echo '"+fileString+"' | sudo tee "+ path #logger.info(cmd) process = Popen(cmd, shell=True, stdout=PIPE,stdin=PIPE, stderr=PIPE,universal_newlines=True) stdout, err = process.communicate() if err=='': text='The key '+key+' on the file ' + path+ ' has been modified to ' +newValue severity=0 else: text='Error updating key ' + key+ ' on the file ' + path+ 'Error: ' + err severity=3 PublishEvent(Severity=severity,Text=text,Persistent=True,Code='EditFile-'+key) @receiver(post_save, sender=SiteSettings, dispatch_uid="update_SiteSettings") def update_SiteSettings(sender, instance, update_fields,**kwargs): pass class Permissions(models.Model): class Meta: verbose_name = _('Permission') verbose_name_plural = _('Permissions') permissions = ( ("view_heating_subsystem", "Can view the Heating subsystem"), ("view_garden_subsystem", "Can view the Garden subsystem"), ("view_access_subsystem", "Can view the Access subsystem"), ("view_user_track", "Can view the position of the tracked users"), ("reset_system", "Can force a reset of the system"), ("check_updates", "Can check for updates of the system"), ("view_devicesapp", "Can view the devicesAPP"), ("view_reportingapp", "Can view the reportingAPP"), ("view_subsystemsapp", "Can view the subsystemsAPP"), ("view_configurationapp", "Can access to the configurationAPP"), ("change_automationvar", "Can change the value of an automation variable"), ) class Subsystems(models.Model): class Meta: verbose_name = _('Subsystem') verbose_name_plural = _('Subsystems') content_type = models.ForeignKey(ContentType) object_id = models.CharField(max_length=50) content_object = GenericForeignKey('content_type', 'object_id') Name = models.PositiveSmallIntegerField(choices=SUBSYSTEMS_CHOICES) @staticmethod def getName2Display(Name): for name in SUBSYSTEMS_CHOICES: if name[0]==Name: return name[1] return None def __str__(self): return self.get_Name_display() class AdditionalCalculations(models.Model): class Meta: verbose_name = _('Additional calculation') verbose_name_plural = _('Additional calculations') TIMESPAN_CHOICES=( (0,_('An hour')), (1,_('A day')), (2,_('A week')), (3,_('A month')), ) PERIODICITY_CHOICES=( (0,_('With every new value')), (1,_('Every hour')), (2,_('Every day at 0h')), (3,_('Every week')), (4,_('Every month')), ) CALCULATION_CHOICES=( (0,_('Duty cycle OFF')), (1,_('Duty cycle ON')), (2,_('Mean value')), (3,_('Max value')), (4,_('Min value')), (5,_('Cummulative sum')), (6,_('Integral over time')), (7,_('Operation with two variables')), ) TWOVARS_OPERATION_CHOICES=( (0,_('Sum')), (1,_('Substraction')), (2,_('Product')), (3,_('Division')), (4,_('Sum then sum')), (5,_('Product then sum')), ) SinkVar= models.ForeignKey('MainAPP.AutomationVariables',on_delete=models.CASCADE,related_name='sinkvar',blank=True,null=True) # variable that holds the calculation SourceVar= models.ForeignKey('MainAPP.AutomationVariables',on_delete=models.DO_NOTHING,related_name='sourcevar') # variable whose change triggers the calculation Scale=models.FloatField(help_text=_('Constant to multiply the result of the calculation'),default=1) Timespan= models.PositiveSmallIntegerField(help_text=_('What is the time span for the calculation'),choices=TIMESPAN_CHOICES,default=1) Periodicity= models.PositiveSmallIntegerField(help_text=_('How often the calculation will be updated'),choices=PERIODICITY_CHOICES) Calculation= models.PositiveSmallIntegerField(choices=CALCULATION_CHOICES) Delay= models.PositiveSmallIntegerField(help_text=_('What is the delay (in hours) for the calculation from 00:00 h'),default=0,validators=[MinValueValidator(0),MaxValueValidator(23)]) Miscelaneous = models.CharField(max_length=1000,blank=True,null=True) # field that gathers data in json for calculations on more variables def __init__(self,*args,**kwargs): try: self.df=kwargs.pop('df') self.key=kwargs.pop('key') except: self.df=pd.DataFrame() self.key='' super(AdditionalCalculations, self).__init__(*args, **kwargs) def store2DB(self): from DevicesAPP.constants import DTYPE_FLOAT label= str(self) if self.SinkVar: sinkVAR=self.SinkVar if self.Calculation==7: # it is a two var calculation Misc=json.loads(self.Miscelaneous) sinkVAR.updateLabel(label) sinkVAR.updateUnits(Misc['Units']) else: sinkVAR.updateLabel(label) else: if not self.Calculation in [0,1,7]: # it is not a duty calculation nor a two var calc data={'Label':label,'Value':0,'DataType':DTYPE_FLOAT,'Units':self.SourceVar.Units,'UserEditable':False} elif self.Calculation==7: # it is a two var calculation Misc=json.loads(self.Miscelaneous) data={'Label':label,'Value':0,'DataType':DTYPE_FLOAT,'Units':Misc['Units'],'UserEditable':False} else: data={'Label':label,'Value':0,'DataType':DTYPE_FLOAT,'Units':'%','UserEditable':False} MainAPP.signals.SignalCreateMainDeviceVars.send(sender=None,Data=data) sinkVAR=AutomationVariables.objects.get(Label=label) self.SinkVar=sinkVAR try: self.save() except OperationalError: logger.error("Operational error on Django. System restarted") import os os.system("sudo reboot") def __str__(self): try: if self.Calculation!=7: return str(self.get_Calculation_display())+'('+self.SourceVar.Label + ')' else: Misc=json.loads(self.Miscelaneous) AVAR=AutomationVariables.objects.get(pk=int(Misc['SourceVar2'])) operation=str(self.TWOVARS_OPERATION_CHOICES[int(Misc['TwoVarsOperation'])][1]) return operation+'('+self.SourceVar.Label +' vs ' +AVAR.Label+')' except: return self.key def checkTrigger(self): # if self.Calculation==7: # return True if self.Periodicity==0: return False else: import datetime now=datetime.datetime.now() if self.Periodicity==1 and now.minute==0: # hourly calculation launched at minute XX:00 return True elif now.hour==self.Delay and now.minute==0: if self.Periodicity==2: # daily calculation launched on next day at 00:00 return True elif self.Periodicity==3 and now.weekday()==0: # weekly calculation launched on Monday at 00:00 return True elif self.Periodicity==4 and now.day==1: # monthly calculation launched on 1st day at 00:00 return True return False def initializeDB(self): import datetime import calendar import pytz from tzlocal import get_localzone local_tz=get_localzone() localdate = local_tz.localize(datetime.datetime.now()) now=datetime.datetime.now() start_date = '01-01-' + str(now.year)+' 00:00:00' date_format = '%d-%m-%Y %H:%M:%S' if self.Timespan==0: # Every hour offset=datetime.timedelta(hours=1) elif self.Timespan==1: # Every day offset=datetime.timedelta(hours=24) elif self.Timespan==2: # Every week offset=datetime.timedelta(weeks=1) elif self.Timespan==3: # Every month days=calendar.monthrange(now.year, 1)[1] offset=datetime.timedelta(hours=days*24) else: return toDate=pytz.utc.localize(datetime.datetime.strptime(start_date, date_format))+offset-localdate.utcoffset() while toDate<=pytz.utc.localize(datetime.datetime.now()): now=toDate if self.Timespan==0: # Every hour offset=datetime.timedelta(hours=1) elif self.Timespan==1: # Every day offset=datetime.timedelta(hours=24) elif self.Timespan==2: # Every week offset=datetime.timedelta(weeks=1) elif self.Timespan==3: # Every month days=calendar.monthrange(now.year, now.month)[1] offset=datetime.timedelta(hours=days*24) try: self.calculate(toDate=toDate) except Exception as exc: logger.error(str(exc)) return toDate=toDate+offset def calculate(self,DBDate=None,toDate=None): import datetime import calendar if toDate==None: toDate=timezone.now()-datetime.timedelta(hours=self.Delay) now=datetime.datetime.now() else: now=toDate #toDate=datetime.datetime(year=2019,month=4,day=7) if self.Timespan==0: # Every hour offset=datetime.timedelta(hours=1) elif self.Timespan==1: # Every day offset=datetime.timedelta(hours=24) elif self.Timespan==2: # Every week offset=datetime.timedelta(weeks=1) elif self.Timespan==3: # Every month days=calendar.monthrange(now.year, now.month)[1] offset=datetime.timedelta(hours=days*24) else: return fromDate=toDate-offset if DBDate==None: DBDate=toDate-offset/2 toDate=toDate-datetime.timedelta(minutes=1) query=self.SourceVar.getQuery(fromDate=fromDate,toDate=toDate) self.df=pd.read_sql_query(sql=query['sql'],con=query['conn'],index_col='timestamp') if not self.df.empty: self.key=self.SourceVar.Tag # TO FORCE THAT THE INITIAL ROW CONTAINS THE INITIAL DATE addedtime=
pd.to_datetime(arg=self.df.index.values[0])
pandas.to_datetime
import joblib, argparse import numpy as np import pandas as pd from sklearn.metrics import f1_score from sklearn.linear_model import LogisticRegression def parse_arguments(parser): parser.add_argument('--data_dir', type=str, default='C:/data/niosh_ifund/') parser.add_argument('--mode', type=str, default='test') parser.add_argument('--test_file', type=str, default='test.tsv') parser.add_argument('--text_only', type=bool, default=True) parser.add_argument('--train_blender', type=bool, default=True) args = parser.parse_args() return args if __name__ == '__main__': parser = argparse.ArgumentParser() args = parse_arguments(parser) # Importing the event code dictionary to convert the BERT indices code_df = pd.read_csv(args.data_dir + 'code_dict.csv') code_dict = dict(zip(code_df.value, code_df.event_code)) # Importing the scores from the 4 BERT runs if args.mode == 'validate': run_folder = 'val_runs' elif args.mode == 'test': run_folder = 'test_runs' run1_probs = np.array(pd.read_csv(args.data_dir + run_folder + '/run_1/test_results.tsv', sep='\t', header=None)) run2_probs = np.array(pd.read_csv(args.data_dir + run_folder + '/run_2/test_results.tsv', sep='\t', header=None)) run3_probs = np.array(pd.read_csv(args.data_dir + run_folder + '/run_3/test_results.tsv', sep='\t', header=None)) run4_probs = np.array(pd.read_csv(args.data_dir + run_folder + '/run_4/test_results.tsv', sep='\t', header=None)) prob_list = [run1_probs, run2_probs, run3_probs, run4_probs] # Grouping the probabilities for regular averaging avg_probs = np.mean(prob_list, axis=0) avg_guesses = np.array([code_dict[code] for code in np.argmax(avg_probs, axis=1)]) # Grouping the probabilities for blending wide_probs = np.concatenate(prob_list, axis=1) # Producing guesses when only the input text is available if args.text_only: # Loading the blender model # lgr = joblib.load(args.data_dir + 'blender.joblib') # blend_guesses = lgr.predict(wide_probs) # blend_probs = np.max(lgr.predict_proba(wide_probs), axis=1) # print(blend_probs[0]) # Exporting the guesses to disk ids = pd.read_csv(args.data_dir + args.test_file, sep='\t')['id'] guess_df = pd.DataFrame(pd.concat([ids,
pd.Series(avg_guesses)
pandas.Series
from datetime import datetime from typing import TypedDict import pandas as pd import pandas_datareader.data as web from dateutil.relativedelta import relativedelta class VolatilityLevels(TypedDict): """ VolatilityLevels defines a dict of volatility levels to categorize volatility """ minimum: float moderate: float average: float elevated: float extreme: float def barometer() -> float: """ barometer retrieves various VIX data to calculate the percentile rank of crossovers :return: float most recent barometer value """ # set helpful date values three_years_ago = datetime.now() - relativedelta(years=3) today = datetime.now() # retrieve VIX9D vix9d = pd.read_csv('https://cdn.cboe.com/api/global/us_indices/daily_prices/VIX9D_History.csv') vix9d['DATE'] = pd.to_datetime(vix9d['DATE']) vix9d = vix9d[['DATE', 'CLOSE']].rename(columns={'CLOSE': 'vix9d'}).set_index('DATE') # retrieve VIX3M vix3m =
pd.read_csv('https://cdn.cboe.com/api/global/us_indices/daily_prices/VIX3M_History.csv')
pandas.read_csv
# !/usr/bin/env python # -*- coding:utf-8 -*- """ Test the projection module """ import unittest import numpy as np import pandas as pd from numpy.polynomial import legendre from pyrotor.projection import trajectory_to_coef from pyrotor.projection import trajectories_to_coefs from pyrotor.projection import compute_weighted_coef from pyrotor.projection import coef_to_trajectory def test_trajectory_to_coef(): # Test Legendre y = pd.DataFrame({"A": [1, 2, 3, 4, 5], "B": [-4, -1, 4, 11, 20]}) basis_dimension = {"A": 3, "B": 2} basis_features = basis_dimension basis = "legendre" expected_coef = np.array([3., 2., 0., 6., 12.], dtype='float64') result = trajectory_to_coef(y, basis, basis_features, basis_dimension) np.testing.assert_almost_equal(expected_coef, result) # Test B-spline x = np.linspace(0, 1, 20) y = pd.DataFrame({"A": x, "B": x**2}) basis_features = {"knots": [.25, .5, .75], "A": 2, "B": 3} basis_dimension = {"A": 6, "B": 7} basis = "bspline" expected_coef = np.array([0., .125, .375, .625, .875, 1., 0., 0., 4.16666667e-02, 2.29166667e-01, 5.41666667e-01, 8.33333333e-01, 1.], dtype='float64') result = trajectory_to_coef(y, basis, basis_features, basis_dimension) np.testing.assert_almost_equal(expected_coef, result) def test_trajectories_to_coefs(): # Test Legendre y = [
pd.DataFrame({"A": [1, 2, 3, 4, 5]})
pandas.DataFrame
# # K2S-O: Real-time, multi-processed, multi-threaded time-series anomaly detection # # K2so pulls data from a time-series database on a pre-defined timing schedule, adding to an in-memory buffer each time. # Median and wavelet filters are applied against the in-memory buffer to reduce noise. The resultant signal is then detrended # using STLOESS and then run through a Season Hybrid Extreme Studentized Deviate to assess the waveform for statistical # anomalies. Those anomalies are returned, paired with the original signal (as well as the filtered signal for cross-referencing) and # then reported to OSNDS's alerting API. Logic has been added to group nomalies together into "events"; this is not an association approach, # but rather a nearby clustering method prescribed by an end-user's set "reset time window". This limitation is intentional as we have aimed to # make this code as applicable to multiple mission areas as possible. Performing association would require us to make certain assumptions # of either the originating event of interest or the phenomenology of the data collection method. We highly encourage researchers to fork this # code and embed their own association algorithims. # # This python script was collaboratively written by members of AFTAC/SI (<NAME>, <NAME>, and <NAME>), based upon the excellent work # (written in R) by <NAME> (AFTAC/SI) which leveraged the foundational work of Twitter's Reasearch Team (as well as numerous open-source packages). # Please see the end of this file for a full list of usage credits. # # Usage instructions: # # This code is ultimately called and executed from another script "k2so.py. You can call k2so.py via: # # python k2so.py -s [stations] # # Wherein the "-s" is an argument flag for "stations", as in which stations you would like k2so to monitor against. # You must follow this flag by each station's ID, separated by spaces (single-word alphaumerics are accepted). For example: # # python k2so.py -s 1 2 3 4 X1 X12 # # We will soon be adding a "-d" argument to the scripts execution that will force K2SO to operate in a DEBUG MODE. This mode will provide the # end user with a log of K-2SO's output labed by Station ID. This feature is still in work. # import pdb import sys import warnings import numpy from numpy.core.numeric import NaN #from scipy.signal import waveforms, wavelets from src import file_handler as logic warnings.simplefilter(action='ignore', category=FutureWarning) import tad import scipy import pandas as pd import matplotlib.pyplot as plt import os, math, time, requests, json from influxdb import DataFrameClient from twisted.internet import task, reactor import skimage from skimage.restoration import denoise_wavelet, estimate_sigma import pprint from pprint import pprint # print(sys) # print(warnings) # print(numpy) # print(tad) # print(scipy) # print(pd) # print(plt) # print(os) # print(math) # print(time) # print(requests) # print(json) # print(DataFrameClient) # print(task) # print(reactor) # print(skimage) # print(pprint) pd.set_option('display.max_rows', 4000) class DataStore(): dict = [] last_event_id = 0 previous_valid_first_index = 0 previous_valid_first_value = 0 previous_valid_last_index = 0 previous_valid_last_value = 0 waveform = pd.DataFrame() med_x = None med_y = None med_z = None report_ID_buffer = [] class InfluxStore(): client = None query_median = "" query_data = "" class Settings(): config = None station = 0 trigger_cooldown = 0 debug = True filter_coefficients = None # create instances for each class, therby passing initial values for each downtsream variable settings = Settings() influx = InfluxStore() data = DataStore() def initialize_k2so(): kill = False # All of k2so's settings (with the exception of which stations you;re running against) are assignable in the JSON file # This function loads the JSON file and stores all of the user settings as a list, "config" station_configuration = str('config/k2so_configuration_osnds_'+str(settings.station)+'.json') print('\nOSNDS Station {0}: Attempting to load configuration file'.format(settings.station)) if settings.debug == True else None try: with open(station_configuration) as config: try: settings.config = json.load(config) except Exception as e: print('\nOSNDS Station {0}: There was an error parsing the configuration file'.format(settings.station)) if settings.debug == True else None print(' Error: {0}'.format(e)) if settings.debug == True else None kill = True return kill print('\nOSNDS Station {0}: The configuration file has been loaded'.format(settings.station)) if settings.debug == True else None except FileNotFoundError as f: print('\nOSNDS Station {0}: There appears to be no configuration file for\n this station. Please ensure that the following\n file exists:\n\n {1}'.format(settings.station, station_configuration)) print(' Error: {0}'.format(f)) if settings.debug == True else None kill = True return kill kill = logic.file_handler(settings.station, settings.config) if kill == True: return kill try: influx.client = DataFrameClient(host = settings.config['influx']['host'], # (default) storage.osnds.net port = settings.config['influx']['port'], # (default) 8086 database = settings.config['influx']['database'], # (default) livestream-test username = settings.config['influx']['username'], # (default) <redacted> password = settings.config['influx']['password'],) # (default) <redacted> except Exception as e: print('\nOSNDS Station {0}: There was an error initializing the client\n Please check your connection settings'.format(settings.station)) print(' Error: {0}'.format(e)) if settings.debug == True else None kill = True return kill # InfluxDB (1.x) queries follow a similar style to SQL; "select * from <db>", etc. # # Influx will perform math for you as well. In this instance, InfluxDB is being asked to return (3) separate values: # - Median of the X component over the past (2) minutes # - Median of the Y component over the past (2) minutes # - Median of the Z component over the past (2) minutes # # Since InfluxDB uses timestamps for its unique IDs, you have to include the time range "where time > now()-2m". # now() = current time in ns since epoch # # The "topic" is specific to how OSNDS receives MQTT streams, in this case, its how we specify which OSNDS station we wish to pull from data.last_event_id = settings.config['k2s0']['last_event_id'] settings.trigger_cooldown = settings.config['k2s0']['trigger_cooldown_s']*10**9 settings.debug = settings.config['k2s0']['debug'] influx.query_median = str("SELECT median(x), median(y), median(z) FROM {0}.{1}.{2} WHERE time > now()-{3}m AND data='{4}';".format(settings.config['influx']['database'], settings.config['influx']['retention'], settings.config['influx']['measurment'], str(settings.config['k2s0']['median_window_m']), settings.config['k2s0']['data_stream'])) # query, compute, and store the median values (based upon the query above) kill = pull_medianValues() # Influx will perform math for you. In this instance, InfluxDB is being asked to subtract the median values of X, Y, and Z from all future data pulls (respectively) # All three components are then added together. This is to ensure that k2so triggers off of an anomaly in any component influx.query_data = str("SELECT (x-({0})) + (y-({1})) + (z-({2})) FROM {3}.{4}.{5} WHERE time > now()-{6}s AND data='{7}' fill(previous);".format(str(data.med_x),str(data.med_y),str(data.med_z),settings.config['influx']['database'], settings.config['influx']['retention'], settings.config['influx']['measurment'], str(settings.config['k2s0']['time_window_s']), settings.config['k2s0']['data_stream'])) #k2s0_arguments = (settings.station, influx.query_data, influx.client, settings.config) if kill == True: return kill else: print('\nOSNDS Station {0}: K-2S0 has been successfully configured'.format(settings.station)) if settings.debug == True else None return kill def pull_medianValues(): if data.med_x == None: # this try statement catches an error where the Influx DataFrameClient is unable to run the specified query # this error will only occur if there is an issue with the client settings or query syntax try: #print(influx.query_median) response = influx.client.query(influx.query_median) # send the initialization query to InfluxDB # this try statement catches an error where the Influx DataFrameClient successfully connected to the database but there was no data to pull # this happens when the user points k2s0 to a station that either doesnt exist or is currently offline try: median_values = response[settings.config['influx']['measurment']] # get the "livestream" dataframe from the returned list of dataframes "response" data.med_x = median_values.loc[:,'median'][0] # get the median of X from the dataframe data.med_y = median_values.loc[:,'median_1'][0] # get the median of Y from the dataframe data.med_z = median_values.loc[:,'median_2'][0] # get the median of Z from the dataframe kill = False except Exception as e: print('\nOSNDS Station {0}: The station appears to be offline at the moment (pull: median)'.format(settings.station)) print(' Error: {0}'.format(e)) if settings.debug == True else None kill = True return kill except Exception as e: print('\nOSNDS Station {0}: The Influx client experienced an error retrieving the median values'.format(settings.station)) print(' Error: {0}'.format(e)) if settings.debug == True else None kill = True return kill else: # store the current median values in temporary variables previous_med_x = data.med_x previous_med_y = data.med_y previous_med_z = data.med_z # get new median values response = influx.client.query(influx.query_median) # send the initialization query to InfluxDB median_values = response[settings.config['influx']['measurment']] # get the "livestream" dataframe from the returned list of dataframes "response" # store new median values in a temporary variables current_med_x = median_values.loc[:,'median'][0] # get the median of X from the dataframe current_med_y = median_values.loc[:,'median_1'][0] # get the median of Y from the dataframe current_med_z = median_values.loc[:,'median_2'][0] # get the median of Z from the dataframe # average the current and previous median values data.med_x = (current_med_x + previous_med_x) / 2 # return the average of the current and previous median values for X data.med_y = (current_med_y + previous_med_y) / 2 # return the average of the current and previous median values for Y data.med_z = (current_med_z + previous_med_z) / 2 # return the average of the current and previous median values for Z print('\nOSNDS Station {0}: Updated median offset values are...\n \n X = {1} m/s2\n Y = {2} m/s2\n Z = {3} m/s2'.format(settings.station, data.med_x, data.med_y, data.med_z)) if settings.debug == True else None return def pull_fromInflux(): #print(influx.query_data) response = influx.client.query(influx.query_data) # send the initialization query to InfluxDB try: signal = response[settings.config['influx']['measurment']] # get the "livestream" dataframe from the returned list of dataframes "response" if signal.isnull().values.any() == False: # validate that there are no "NA" values within the dataframe signal.index = pd.to_datetime(signal.index, format='%Y-%m-%d %H:%M:%S.%f%z', unit='ns') # convert the <string> datetime to a datetime type signal.index = signal.index.astype('datetime64[ns]') # force the datetime type to be "datetime64[ns]" else: print('\nOSNDS Station {0}: The latest pull from InfluxDB returned null values'.format(settings.station)) if len(data.waveform) < settings.config['k2s0']['buffer']: data.waveform = data.waveform.combine_first(signal) print('\nOSNDS Station {0}: Successfully pulled new data (Buffer: {1} %)'.format(settings.station,math.ceil((len(data.waveform['x_y_z'])/settings.config['k2s0']['buffer'])*100))) if settings.debug == True else None else: data.waveform = data.waveform.combine_first(signal) data.waveform = data.waveform.iloc[len(signal):] print('\nOSNDS Station {0}: Successfully pulled new data (Buffer: {1} %)'.format(settings.station,math.ceil((len(data.waveform['x_y_z'])/settings.config['k2s0']['buffer'])*100))) if settings.debug == True else None return except KeyError as k: print('\nOSNDS Station {0}: X - The station appears to be offline at the moment (pull: live).'.format(settings.station)) print(' Error: {0}'.format(k)) if settings.debug == True else None return def filter_waveform(): # Scipy's median filter applys a median filter to the input array using a local window-size given by "kernel_size". The array will automatically be zero-padded. # Median filters are a great way to reduce higher-frequency noise, but you should be mindful that they essentially serve as a low-pass filter with a low, gaussian roll-off factor. # print(f'entering filter_waveform') if settings.debug == True: start = time.time() # get start time if settings.config['filtering']['enabled'] and settings.config['filtering']['bandpass_filter']['enabled'] == True: sos = scipy.signal.butter(3, 4, 'hp', fs=settings.config['fft_processing']['sample_rate'], output='sos') filtered = scipy.signal.sosfilt(sos, data.waveform['filtered']) data.waveform['filtered'] = filtered if settings.config['filtering']['enabled'] and settings.config['filtering']['median_filter']['enabled'] == True: data.waveform['filtered'] = scipy.signal.medfilt(volume = data.waveform['filtered'], # input 1D signal kernel_size = settings.config['filtering']['median_filter']['kernel_size']) # (defualt) 3 if settings.config['filtering']['enabled'] and settings.config['filtering']['wavelet_filter']['enabled'] == True: # Skimage's wavelet filter sigma_est = estimate_sigma( image = data.waveform['filtered'], # in this case, we are treating our 1D signal array as an image with a depth of 1-pixel and a length of n-pixels multichannel=False) # color images are mutli-channeled (R, loop_value, B) whereas black/white images (or in our case a 1D signal array) are single-channeled data.waveform['filtered'] = denoise_wavelet( image = data.waveform['filtered'], # in this case, we are treating our 1D signal array as an image with a depth of 1-pixel and a length of n-pixels sigma = sigma_est, # here we are incorporating the estimated sigma for the median-filtered signal wavelet = settings.config['filtering']['wavelet_filter']['wavelet'], # multichannel = False, # color images are mutli-channeled (R, loop_value, B) whereas black/white images (or in our case a 1D signal array) are single-channeled rescale_sigma = True, # method = settings.config['filtering']['wavelet_filter']['method'], # mode = settings.config['filtering']['wavelet_filter']['thresholding']) # if settings.config['plot_signal']['enabled'] == True: plt.plot(data.waveform['x_y_z'], label='Original Signal') plt.plot(data.waveform['filtered'], label='Filtered Signal') plt.xlabel('Time Window (UTC)') plt.ylabel(str(settings.config['plot_signal']['y_label']+" $"+settings.config['plot_signal']['y_units']+"$")) plt.title('Filtered Signal Output') plt.legend() plt.show(block=False) plt.pause(2) plt.close() if settings.debug == True: end = time.time() print('\nOSNDS Station {0}: {1} records filtered in {2} seconds'.format(settings.station, len(data.waveform.filtered), math.ceil((end-start)*10000)/10000)) if settings.debug == True else None return def detect_anomalies(): sample_rate = settings.config['fft_processing']['sample_rate'] signal_length = len(data.waveform['filtered']) if settings.config['anomaly_detector'] == "tad": # print(f'data.waveform[\'filtered\']:\n{1}',data.waveform['filtered'][1:5]) anomalies = tad.anomaly_detect_vec( x=data.waveform['filtered'], # pass the combined X+Y+Z waveform to the to the anomaly detector alpha=.0001, # only return points that are deemed be be anomalous with a 99.9% threshold of confidence period=math.ceil(signal_length/sample_rate), # 20% of the length of the signal, rounded up to an integer direction="both", # look at both the positive and negative aspects of the signal e_value=True, # add an additional column to the anoms output containing the expected value plot=False) # plot the seasonal and linear trends of the signal, as well as the residual (detrended) data # print(f'2. Detect anomalies:\n{1}',anomalies[1:5]) if settings.config['anomaly_detector'] == "global_shed_grubbs": None if settings.config['anomaly_detector'] == "global_shed_grubbs": None print('\nOSNDS Station {0}: K-2S0 detected {1} anomalies'.format(settings.station, len(anomalies))) if settings.debug == True else None if len(anomalies) > settings.config['k2s0']['anomaly_threshold']: # serves as a basic filter for random suprious "anomalies" that can arise from any of the detection algorithims # print(f'3. Anomaly length test:\n{1}',len(anomalies)) data.waveform['anomalies'] = anomalies # print(f'4. Waveform anomalies:\n{1}',data.waveform['anomalies'][1:5]) data.waveform['anomalies'] = data.waveform['anomalies'].notna() # replaces NA values with boolean False, True values stay True # print(f'5. Waveform anomalies replace NA values:\n{1}',data.waveform['anomalies'])[1:5] error_handling() parse_anomalies() return else: data.waveform['anomalies'] = False # ensures that (in the case of no anomalies) all 'anomalies' values are False data.waveform['id'] = NaN data.waveform['reported'] = NaN data.waveform['grafanaID'] = NaN return def error_handling(): # ensures there is an 'id' column within the dataframe on the first run (this prevents errors downstream) #None if "id" in data.waveform else data.waveform['id'] = NaN # ensures there is a 'reported' column within the dataframe on the first run (this prevents errors downstream) #None if "reported" in data.waveform else data.waveform['reported'] = NaN # ensures there is a 'grafanaID' column within the dataframe on the first run (this prevents errors downstream) #None if "grafanaID" in data.waveform else data.waveform['grafanaID'] = NaN return def filter_dataframe_by_val(df,dict,val): return (df.loc[df[dict]==val]) def parse_anomalies(): #just assigns event_ID to the events anomalies_found_table = filter_dataframe_by_val(data.waveform,'anomalies',True) # print(f'6. Parse_anomalies, anomalies found table:\n{1}',anomalies_found_table[1:5]) for index, loop_value in data.waveform.groupby([(data.waveform.anomalies != data.waveform.anomalies.shift()).cumsum()]): if loop_value.anomalies.all() == True: # has this anomaly group already been reported to OSNDS? if data.waveform.loc[loop_value.first_valid_index():loop_value.last_valid_index(),'reported'].sum() > 0: pass else: # is this anomaly group part of the previous anomaly group? # print('settings.trigger_cooldown',settings.trigger_cooldown) if (float(loop_value.first_valid_index().value) <= (data.previous_valid_last_value + settings.trigger_cooldown)): data.waveform.loc[data.previous_valid_first_index:loop_value.last_valid_index(),'id'] = int(data.last_event_id) data.previous_valid_last_index = loop_value.last_valid_index() data.previous_valid_last_value = loop_value.last_valid_index().value else: data.last_event_id = data.last_event_id + 1 # saves the current unique event ID to a new column within the dataframe called "id" - this event id is only applied to the indexes # bounded by the groupby function (e.loop_value. start index for group loop_value = loop_value.first_valid_index | ending index for group loop_value = loop_value.last_valid_index) data.waveform.loc[loop_value.first_valid_index():loop_value.last_valid_index(),'id'] = int(data.last_event_id) # store the timestamp of the first anomalous amplitude within the anomaly group data.previous_valid_first_index = loop_value.first_valid_index() data.previous_valid_first_value = loop_value.first_valid_index().value # store the timestamp of the last anomalous amplitude within the anomaly group data.previous_valid_last_index = loop_value.last_valid_index() data.previous_valid_last_value = loop_value.last_valid_index().value data.waveform['id'].fillna(0) return # def pumpkin_score_transmit(start,stop): # print("here") # influx.query_median = str("SELECT median(x), median(y), median(z) FROM {0}.{1}.{2} WHERE time between {3} and {4} AND data='{4}';".format(settings.config['influx']['database'], settings.config['influx']['retention'], settings.config['influx']['measurment'], str(settings.config['k2s0']['median_window_m']), settings.config['k2s0']['data_stream'])) # response=influx.client.query(influx.query_median) # median_values = response[settings.config['influx']['measurment']] # get the "livestream" dataframe from the returned list of dataframes "response" # data.med_x = median_values.loc[:,'median'][0] # get the median of X from the dataframe # data.med_y = median_values.loc[:,'median_1'][0] # get the median of Y from the dataframe # data.med_z = median_values.loc[:,'median_2'][0] # get the median of Z from the dataframe # print() def send_alert(alert_message): alert_payload = {} alert_url = "https://config.osnds.net/api/alerts" # OSNDS API URL for alerts (see Node-Red or NiFi for message handling) utc_local_offset = ('{}{:0>2}{:0>2}'.format('-' if time.altzone > 0 else '+', abs(time.altzone) // 3600, abs(time.altzone // 60) % 60)) if alert_message['status'] == 'new': alert_payload = { "station" : int(settings.station), # which station the event occurred on "k2so_id" : alert_message['id'], # unique event ID "start_ns" : alert_message['start_ns'], # start time in nanoseconds since epoch "stop_ns" : alert_message['stop_ns'], # stop time in nanoseconds since epoch "start_real": alert_message['start_real'].strftime("%d-%b-%Y (%H:%M:%S.%f)-UTC"), # new startreal "rss_time" : alert_message['start_real'].strftime("%a, %d %b %Y %H:%M:%S {}").format(utc_local_offset), # new startreal "message" : alert_message['status'] # general event message (this is mostly a placeholder) } if alert_message['status'] == 'update': alert_payload = { "grafana_id" : alert_message['grafanaID'], "k2so_id" : alert_message['id'], # unique event ID "start_ns" : alert_message['start_ns'], "stop_ns" : alert_message['stop_ns'], "start_real": alert_message['start_real'].strftime("%d-%b-%Y (%H:%M:%S.%f)-UTC"), #start stopreal "rss_time" : alert_message['start_real'].strftime("%a, %d %b %Y %H:%M:%S {}").format(utc_local_offset), # new startreal "message" : alert_message['status'] } if alert_message['status'] == 'stop': # pumpkin_score_transmit(alert_message['start_ns'],alert_message['stop_ns']) alert_payload = { "station" : int(settings.station), "k2so_id" : alert_message['id'], # unique event ID "start_ns" : alert_message['start_ns'], "stop_ns" : alert_message['stop_ns'], "message" : alert_message['status'], "start_real": alert_message['start_real'].strftime("%d-%b-%Y (%H:%M:%S.%f)-UTC"), #start stopreal "stop_real": alert_message['stop_real'].strftime("%d-%b-%Y (%H:%M:%S.%f)-UTC"), #stop stopreal "rss_time" : alert_message['start_real'].strftime("%a, %d %b %Y %H:%M:%S {}").format(utc_local_offset), # new startreal "grafana_id" : alert_message['grafanaID'], "vpp" : alert_message['score'] } try: alert_post = requests.post(alert_url, json=alert_payload, timeout = 1) # post message payload to the API URL and store the response print('\nOSNDS Station {0}: API POST returned with code ({1}) and repsonse ({2})'.format(settings.station, alert_post.status_code, alert_post.text)) if settings.debug == True else None if alert_post.status_code == 200: if alert_message['status'] == 'new': returnJSON = alert_post.text returnDict = json.loads(str(returnJSON)) annotID = returnDict['id'] return {alert_post.status_code, annotID} if alert_message['status'] == 'update': return alert_post.status_code print('\nOSNDS Station {0}: A new anomaly has been reported:\n Event ID: {1}\n Start Time (ns): {2}\n End Time (ns): {3}'.format(settings.station, data.last_event_id, alert_message['start_ns'], alert_message['stop_ns'])) #if settings.debug == True else None else: print('\nOSNDS Station {0}: A new anomaly has been detected but failed to be reported to OSNDS (Status Code: {1})'.format(settings.station, alert_post.status_code)) except Exception as e: print('\nOSNDS Station {0}: A new anomaly has been detected but failed to be reported to OSNDS - please check internet connection'.format(settings.station)) print(' Error: {0}'.format(e)) if settings.debug == True else None return def event_publisher(): # event publisher operates by using a list of dictionaries. each detected event is group into a single entry in the list. # print(f'entering event publisher routine') # print(f'data.waveform:\n{1}\n',data.waveform[1:5]) # print(f'data.waveform.empty?:\n{1}\n',data.waveform.empty) if data.waveform.empty: pass else: # print(f'DataStore.dict',DataStore.dict) if not DataStore.dict: print('data DOESNT exist') else: print('data exists') # print('time check', data.waveform.first_valid_index().value) # print(DataStore.dict[0]['stop_ns']) # print(data.waveform.first_valid_index().value-DataStore.dict[0]['stop_ns']) if (data.waveform.first_valid_index().value)-DataStore.dict[0]['stop_ns'] > 2*settings.trigger_cooldown: print('time exceeded!!') # try: ############################################################################## ############ PUMPKIN CHUNKIN VPP RECORD AND SEND ############################# ############################################################################## # print(f"ID: {DataStore.dict[0]}") # print(f"ID: {DataStore.dict[0]['id']}") event_start_time_ns = data.waveform.loc[data.waveform.id==DataStore.dict[0]['id']].first_valid_index() #first timestamp for that event number event_stop_time_ns = data.waveform.loc[data.waveform.id==DataStore.dict[0]['id']].last_valid_index() #last timestamp for that event number df_slice = data.waveform[event_start_time_ns:event_stop_time_ns] print(f"test date frame:\n{df_slice}\n") xyz = df_slice["x_y_z"] max_xyz = xyz.max() min_xyz = xyz.min() print(max_xyz, min_xyz) vpp = (max_xyz-min_xyz)*100 print(vpp) vpp_payload = { "score" : int(vpp), "user_id" : "auto", # unique event ID } pumpkin_chunkin_vpp_url = "https://config.osnds.net/pumpkin-contest/postJSON" vpp_post = requests.post(pumpkin_chunkin_vpp_url, json=vpp_payload, timeout = 1) ############################################################################ ############### PUMPKIN CHUNKIN VPP RECORD AND SEND STOP ################### ############################################################################ DataStore.dict[0].update( { 'status' : 'stop', "score" : int(vpp), } ) send_alert(DataStore.dict[0]) # except: # print("++++++++++++ error sending new event ++++++++++++") pprint('!!!! POP{} !!!!'.format(0)) DataStore.dict.pop(0) else: print('time not exceeded') try: print(data.waveform[1:5]) # time.sleep(2) unique_event_numbers = data.waveform.id.unique() # get unique values in events, i.e. null,1,2,3 except KeyError as k: data.waveform['id'] = NaN return # debuging code here # print('data.waveform',data.waveform) # print('filter by anomalies',filter_dataframe_by_val(data.waveform,'anomalies',True)) filtered_unique_event_numbers = unique_event_numbers[~
pd.isna(unique_event_numbers)
pandas.isna
#!/usr/bin/python3 # -*- coding: utf-8 -*- # *****************************************************************************/ # * Authors: <NAME> # *****************************************************************************/ """transformCSV.py This module contains the basic functions for creating the content of a configuration file from CSV. Args: --inFile: Path for the configuration file where the time series data values CSV --outFile: Path for the configuration file where the time series data values INI --debug: Boolean flag to activate verbose printing for debug use Example: Default usage: $ python transformCSV.py Specific usage: $ python transformCSV.py --inFile C:\raad\src\software\time-series.csv --outFile C:\raad\src\software\time-series.ini --debug True """ import sys import datetime import optparse import traceback import pandas import numpy import os import pprint import csv if sys.version_info.major > 2: import configparser as cF else: import ConfigParser as cF class TransformMetaData(object): debug = False fileName = None fileLocation = None columnsList = None analysisFrameFormat = None uniqueLists = None analysisFrame = None def __init__(self, inputFileName=None, debug=False, transform=False, sectionName=None, outFolder=None, outFile='time-series-madness.ini'): if isinstance(debug, bool): self.debug = debug if inputFileName is None: return elif os.path.exists(os.path.abspath(inputFileName)): self.fileName = inputFileName self.fileLocation = os.path.exists(os.path.abspath(inputFileName)) (analysisFrame, analysisFrameFormat, uniqueLists, columnNamesList) = self.CSVtoFrame( inputFileName=self.fileName) self.analysisFrame = analysisFrame self.columnsList = columnNamesList self.analysisFrameFormat = analysisFrameFormat self.uniqueLists = uniqueLists if transform: passWrite = self.frameToINI(analysisFrame=analysisFrame, sectionName=sectionName, outFolder=outFolder, outFile=outFile) print(f"Pass Status is : {passWrite}") return def getColumnList(self): return self.columnsList def getAnalysisFrameFormat(self): return self.analysisFrameFormat def getuniqueLists(self): return self.uniqueLists def getAnalysisFrame(self): return self.analysisFrame @staticmethod def getDateParser(formatString="%Y-%m-%d %H:%M:%S.%f"): return (lambda x: pandas.datetime.strptime(x, formatString)) # 2020-06-09 19:14:00.000 def getHeaderFromFile(self, headerFilePath=None, method=1): if headerFilePath is None: return (None, None) if method == 1: fieldnames = pandas.read_csv(headerFilePath, index_col=0, nrows=0).columns.tolist() elif method == 2: with open(headerFilePath, 'r') as infile: reader = csv.DictReader(infile) fieldnames = list(reader.fieldnames) elif method == 3: fieldnames = list(pandas.read_csv(headerFilePath, nrows=1).columns) else: fieldnames = None fieldDict = {} for indexName, valueName in enumerate(fieldnames): fieldDict[valueName] = pandas.StringDtype() return (fieldnames, fieldDict) def CSVtoFrame(self, inputFileName=None): if inputFileName is None: return (None, None) # Load File print("Processing File: {0}...\n".format(inputFileName)) self.fileLocation = inputFileName # Create data frame analysisFrame = pandas.DataFrame() analysisFrameFormat = self._getDataFormat() inputDataFrame = pandas.read_csv(filepath_or_buffer=inputFileName, sep='\t', names=self._getDataFormat(), # dtype=self._getDataFormat() # header=None # float_precision='round_trip' # engine='c', # parse_dates=['date_column'], # date_parser=True, # na_values=['NULL'] ) if self.debug: # Preview data. print(inputDataFrame.head(5)) # analysisFrame.astype(dtype=analysisFrameFormat) # Cleanup data analysisFrame = inputDataFrame.copy(deep=True) analysisFrame.apply(pandas.to_numeric, errors='coerce') # Fill in bad data with Not-a-Number (NaN) # Create lists of unique strings uniqueLists = [] columnNamesList = [] for columnName in analysisFrame.columns: if self.debug: print('Column Name : ', columnName) print('Column Contents : ', analysisFrame[columnName].values) if isinstance(analysisFrame[columnName].dtypes, str): columnUniqueList = analysisFrame[columnName].unique().tolist() else: columnUniqueList = None columnNamesList.append(columnName) uniqueLists.append([columnName, columnUniqueList]) if self.debug: # Preview data. print(analysisFrame.head(5)) return (analysisFrame, analysisFrameFormat, uniqueLists, columnNamesList) def frameToINI(self, analysisFrame=None, sectionName='Unknown', outFolder=None, outFile='nil.ini'): if analysisFrame is None: return False try: if outFolder is None: outFolder = os.getcwd() configFilePath = os.path.join(outFolder, outFile) configINI = cF.ConfigParser() configINI.add_section(sectionName) for (columnName, columnData) in analysisFrame: if self.debug: print('Column Name : ', columnName) print('Column Contents : ', columnData.values) print("Column Contents Length:", len(columnData.values)) print("Column Contents Type", type(columnData.values)) writeList = "[" for colIndex, colValue in enumerate(columnData): writeList = f"{writeList}'{colValue}'" if colIndex < len(columnData) - 1: writeList = f"{writeList}, " writeList = f"{writeList}]" configINI.set(sectionName, columnName, writeList) if not os.path.exists(configFilePath) or os.stat(configFilePath).st_size == 0: with open(configFilePath, 'w') as configWritingFile: configINI.write(configWritingFile) noErrors = True except ValueError as e: errorString = ("ERROR in {__file__} @{framePrintNo} with {ErrorFound}".format(__file__=str(__file__), framePrintNo=str( sys._getframe().f_lineno), ErrorFound=e)) print(errorString) noErrors = False return noErrors @staticmethod def _validNumericalFloat(inValue): """ Determines if the value is a valid numerical object. Args: inValue: floating-point value Returns: Value in floating-point or Not-A-Number. """ try: return numpy.float128(inValue) except ValueError: return numpy.nan @staticmethod def _calculateMean(x): """ Calculates the mean in a multiplication method since division produces an infinity or NaN Args: x: Input data set. We use a data frame. Returns: Calculated mean for a vector data frame. """ try: mean = numpy.float128(numpy.average(x, weights=numpy.ones_like(numpy.float128(x)) / numpy.float128(x.size))) except ValueError: mean = 0 pass return mean def _calculateStd(self, data): """ Calculates the standard deviation in a multiplication method since division produces a infinity or NaN Args: data: Input data set. We use a data frame. Returns: Calculated standard deviation for a vector data frame. """ sd = 0 try: n = numpy.float128(data.size) if n <= 1: return numpy.float128(0.0) # Use multiplication version of mean since numpy bug causes infinity. mean = self._calculateMean(data) sd = numpy.float128(mean) # Calculate standard deviation for el in data: diff = numpy.float128(el) - numpy.float128(mean) sd += (diff) ** 2 points = numpy.float128(n - 1) sd = numpy.float128(numpy.sqrt(numpy.float128(sd) / numpy.float128(points))) except ValueError: pass return sd def _determineQuickStats(self, dataAnalysisFrame, columnName=None, multiplierSigma=3.0): """ Determines stats based on a vector to get the data shape. Args: dataAnalysisFrame: Dataframe to do analysis on. columnName: Column name of the data frame. multiplierSigma: Sigma range for the stats. Returns: Set of stats. """ meanValue = 0 sigmaValue = 0 sigmaRangeValue = 0 topValue = 0 try: # Clean out anomoly due to random invalid inputs. if (columnName is not None): meanValue = self._calculateMean(dataAnalysisFrame[columnName]) if meanValue == numpy.nan: meanValue = numpy.float128(1) sigmaValue = self._calculateStd(dataAnalysisFrame[columnName]) if float(sigmaValue) is float(numpy.nan): sigmaValue = numpy.float128(1) multiplier = numpy.float128(multiplierSigma) # Stats: 1 sigma = 68%, 2 sigma = 95%, 3 sigma = 99.7 sigmaRangeValue = (sigmaValue * multiplier) if float(sigmaRangeValue) is float(numpy.nan): sigmaRangeValue = numpy.float128(1) topValue = numpy.float128(meanValue + sigmaRangeValue) print("Name:{} Mean= {}, Sigma= {}, {}*Sigma= {}".format(columnName, meanValue, sigmaValue, multiplier, sigmaRangeValue)) except ValueError: pass return (meanValue, sigmaValue, sigmaRangeValue, topValue) def _cleanZerosForColumnInFrame(self, dataAnalysisFrame, columnName='cycles'): """ Cleans the data frame with data values that are invalid. I.E. inf, NaN Args: dataAnalysisFrame: Dataframe to do analysis on. columnName: Column name of the data frame. Returns: Cleaned dataframe. """ dataAnalysisCleaned = None try: # Clean out anomoly due to random invalid inputs. (meanValue, sigmaValue, sigmaRangeValue, topValue) = self._determineQuickStats( dataAnalysisFrame=dataAnalysisFrame, columnName=columnName) # dataAnalysisCleaned = dataAnalysisFrame[dataAnalysisFrame[columnName] != 0] # When the cycles are negative or zero we missed cleaning up a row. # logicVector = (dataAnalysisFrame[columnName] != 0) # dataAnalysisCleaned = dataAnalysisFrame[logicVector] logicVector = (dataAnalysisCleaned[columnName] >= 1) dataAnalysisCleaned = dataAnalysisCleaned[logicVector] # These timed out mean + 2 * sd logicVector = (dataAnalysisCleaned[columnName] < topValue) # Data range dataAnalysisCleaned = dataAnalysisCleaned[logicVector] except ValueError: pass return dataAnalysisCleaned def _cleanFrame(self, dataAnalysisTemp, cleanColumn=False, columnName='cycles'): """ Args: dataAnalysisTemp: Dataframe to do analysis on. cleanColumn: Flag to clean the data frame. columnName: Column name of the data frame. Returns: cleaned dataframe """ try: replacementList = [pandas.NaT, numpy.Infinity, numpy.NINF, 'NaN', 'inf', '-inf', 'NULL'] if cleanColumn is True: dataAnalysisTemp = self._cleanZerosForColumnInFrame(dataAnalysisTemp, columnName=columnName) dataAnalysisTemp = dataAnalysisTemp.replace(to_replace=replacementList, value=numpy.nan) dataAnalysisTemp = dataAnalysisTemp.dropna() except ValueError: pass return dataAnalysisTemp @staticmethod def _getDataFormat(): """ Return the dataframe setup for the CSV file generated from server. Returns: dictionary data format for pandas. """ dataFormat = { "Serial_Number": pandas.StringDtype(), "LogTime0": pandas.StringDtype(), # @todo force rename "Id0": pandas.StringDtype(), # @todo force rename "DriveId": pandas.StringDtype(), "JobRunId": pandas.StringDtype(), "LogTime1": pandas.StringDtype(), # @todo force rename "Comment0": pandas.StringDtype(), # @todo force rename "CriticalWarning": pandas.StringDtype(), "Temperature": pandas.StringDtype(), "AvailableSpare": pandas.StringDtype(), "AvailableSpareThreshold": pandas.StringDtype(), "PercentageUsed": pandas.StringDtype(), "DataUnitsReadL": pandas.StringDtype(), "DataUnitsReadU": pandas.StringDtype(), "DataUnitsWrittenL": pandas.StringDtype(), "DataUnitsWrittenU": pandas.StringDtype(), "HostReadCommandsL": pandas.StringDtype(), "HostReadCommandsU": pandas.StringDtype(), "HostWriteCommandsL": pandas.StringDtype(), "HostWriteCommandsU": pandas.StringDtype(), "ControllerBusyTimeL": pandas.StringDtype(), "ControllerBusyTimeU": pandas.StringDtype(), "PowerCyclesL": pandas.StringDtype(), "PowerCyclesU": pandas.StringDtype(), "PowerOnHoursL": pandas.StringDtype(), "PowerOnHoursU": pandas.StringDtype(), "UnsafeShutdownsL": pandas.StringDtype(), "UnsafeShutdownsU": pandas.StringDtype(), "MediaErrorsL": pandas.StringDtype(), "MediaErrorsU": pandas.StringDtype(), "NumErrorInfoLogsL": pandas.StringDtype(), "NumErrorInfoLogsU": pandas.StringDtype(), "ProgramFailCountN": pandas.StringDtype(), "ProgramFailCountR": pandas.StringDtype(), "EraseFailCountN": pandas.StringDtype(), "EraseFailCountR": pandas.StringDtype(), "WearLevelingCountN": pandas.StringDtype(), "WearLevelingCountR": pandas.StringDtype(), "E2EErrorDetectCountN": pandas.StringDtype(), "E2EErrorDetectCountR": pandas.StringDtype(), "CRCErrorCountN": pandas.StringDtype(), "CRCErrorCountR": pandas.StringDtype(), "MediaWearPercentageN": pandas.StringDtype(), "MediaWearPercentageR": pandas.StringDtype(), "HostReadsN": pandas.StringDtype(), "HostReadsR": pandas.StringDtype(), "TimedWorkloadN": pandas.StringDtype(), "TimedWorkloadR": pandas.StringDtype(), "ThermalThrottleStatusN": pandas.StringDtype(), "ThermalThrottleStatusR": pandas.StringDtype(), "RetryBuffOverflowCountN": pandas.StringDtype(), "RetryBuffOverflowCountR": pandas.StringDtype(), "PLLLockLossCounterN": pandas.StringDtype(), "PLLLockLossCounterR": pandas.StringDtype(), "NandBytesWrittenN": pandas.StringDtype(), "NandBytesWrittenR": pandas.StringDtype(), "HostBytesWrittenN": pandas.StringDtype(), "HostBytesWrittenR": pandas.StringDtype(), "SystemAreaLifeRemainingN": pandas.StringDtype(), "SystemAreaLifeRemainingR": pandas.StringDtype(), "RelocatableSectorCountN": pandas.StringDtype(), "RelocatableSectorCountR": pandas.StringDtype(), "SoftECCErrorRateN": pandas.StringDtype(), "SoftECCErrorRateR": pandas.StringDtype(), "UnexpectedPowerLossN": pandas.StringDtype(), "UnexpectedPowerLossR": pandas.StringDtype(), "MediaErrorCountN": pandas.StringDtype(), "MediaErrorCountR": pandas.StringDtype(), "NandBytesReadN": pandas.StringDtype(), "NandBytesReadR": pandas.StringDtype(), "WarningCompTempTime": pandas.StringDtype(), "CriticalCompTempTime": pandas.StringDtype(), "TempSensor1": pandas.StringDtype(), "TempSensor2": pandas.StringDtype(), "TempSensor3": pandas.StringDtype(), "TempSensor4": pandas.StringDtype(), "TempSensor5": pandas.StringDtype(), "TempSensor6": pandas.StringDtype(), "TempSensor7": pandas.StringDtype(), "TempSensor8": pandas.StringDtype(), "ThermalManagementTemp1TransitionCount": pandas.StringDtype(), "ThermalManagementTemp2TransitionCount": pandas.StringDtype(), "TotalTimeForThermalManagementTemp1": pandas.StringDtype(), "TotalTimeForThermalManagementTemp2": pandas.StringDtype(), "Core_Num": pandas.StringDtype(), "Id1": pandas.StringDtype(), # @todo force rename "Job_Run_Id": pandas.StringDtype(), "Stats_Time": pandas.StringDtype(), "HostReads": pandas.StringDtype(), "HostWrites": pandas.StringDtype(), "NandReads": pandas.StringDtype(), "NandWrites": pandas.StringDtype(), "ProgramErrors": pandas.StringDtype(), "EraseErrors": pandas.StringDtype(), "ErrorCount": pandas.StringDtype(), "BitErrorsHost1": pandas.StringDtype(), "BitErrorsHost2": pandas.StringDtype(), "BitErrorsHost3": pandas.StringDtype(), "BitErrorsHost4": pandas.StringDtype(), "BitErrorsHost5": pandas.StringDtype(), "BitErrorsHost6": pandas.StringDtype(), "BitErrorsHost7": pandas.StringDtype(), "BitErrorsHost8": pandas.StringDtype(), "BitErrorsHost9": pandas.StringDtype(), "BitErrorsHost10": pandas.StringDtype(), "BitErrorsHost11": pandas.StringDtype(), "BitErrorsHost12": pandas.StringDtype(), "BitErrorsHost13": pandas.StringDtype(), "BitErrorsHost14": pandas.StringDtype(), "BitErrorsHost15": pandas.StringDtype(), "ECCFail": pandas.StringDtype(), "GrownDefects": pandas.StringDtype(), "FreeMemory": pandas.StringDtype(), "WriteAllowance": pandas.StringDtype(), "ModelString": pandas.StringDtype(), "ValidBlocks": pandas.StringDtype(), "TokenBlocks": pandas.StringDtype(), "SpuriousPFCount": pandas.StringDtype(), "SpuriousPFLocations1": pandas.StringDtype(), "SpuriousPFLocations2": pandas.StringDtype(), "SpuriousPFLocations3": pandas.StringDtype(), "SpuriousPFLocations4": pandas.StringDtype(), "SpuriousPFLocations5": pandas.StringDtype(), "SpuriousPFLocations6": pandas.StringDtype(), "SpuriousPFLocations7": pandas.StringDtype(), "SpuriousPFLocations8": pandas.StringDtype(), "BitErrorsNonHost1": pandas.StringDtype(), "BitErrorsNonHost2": pandas.StringDtype(), "BitErrorsNonHost3": pandas.StringDtype(), "BitErrorsNonHost4": pandas.StringDtype(), "BitErrorsNonHost5": pandas.StringDtype(), "BitErrorsNonHost6": pandas.StringDtype(), "BitErrorsNonHost7": pandas.StringDtype(), "BitErrorsNonHost8": pandas.StringDtype(), "BitErrorsNonHost9": pandas.StringDtype(), "BitErrorsNonHost10": pandas.StringDtype(), "BitErrorsNonHost11": pandas.StringDtype(), "BitErrorsNonHost12": pandas.StringDtype(), "BitErrorsNonHost13": pandas.StringDtype(), "BitErrorsNonHost14": pandas.StringDtype(), "BitErrorsNonHost15": pandas.StringDtype(), "ECCFailNonHost": pandas.StringDtype(), "NSversion": pandas.StringDtype(), "numBands": pandas.StringDtype(), "minErase": pandas.StringDtype(), "maxErase": pandas.StringDtype(), "avgErase": pandas.StringDtype(), "minMVolt": pandas.StringDtype(), "maxMVolt": pandas.StringDtype(), "avgMVolt": pandas.StringDtype(), "minMAmp": pandas.StringDtype(), "maxMAmp": pandas.StringDtype(), "avgMAmp": pandas.StringDtype(), "comment1": pandas.StringDtype(), # @todo force rename "minMVolt12v": pandas.StringDtype(), "maxMVolt12v": pandas.StringDtype(), "avgMVolt12v": pandas.StringDtype(), "minMAmp12v": pandas.StringDtype(), "maxMAmp12v": pandas.StringDtype(), "avgMAmp12v": pandas.StringDtype(), "nearMissSector": pandas.StringDtype(), "nearMissDefect": pandas.StringDtype(), "nearMissOverflow": pandas.StringDtype(), "replayUNC": pandas.StringDtype(), "Drive_Id": pandas.StringDtype(), "indirectionMisses": pandas.StringDtype(), "BitErrorsHost16": pandas.StringDtype(), "BitErrorsHost17": pandas.StringDtype(), "BitErrorsHost18": pandas.StringDtype(), "BitErrorsHost19": pandas.StringDtype(), "BitErrorsHost20": pandas.StringDtype(), "BitErrorsHost21": pandas.StringDtype(), "BitErrorsHost22": pandas.StringDtype(), "BitErrorsHost23": pandas.StringDtype(), "BitErrorsHost24": pandas.StringDtype(), "BitErrorsHost25": pandas.StringDtype(), "BitErrorsHost26": pandas.StringDtype(), "BitErrorsHost27": pandas.StringDtype(), "BitErrorsHost28": pandas.StringDtype(), "BitErrorsHost29": pandas.StringDtype(), "BitErrorsHost30": pandas.StringDtype(), "BitErrorsHost31": pandas.StringDtype(), "BitErrorsHost32": pandas.StringDtype(), "BitErrorsHost33": pandas.StringDtype(), "BitErrorsHost34": pandas.StringDtype(), "BitErrorsHost35": pandas.StringDtype(), "BitErrorsHost36": pandas.StringDtype(), "BitErrorsHost37": pandas.StringDtype(), "BitErrorsHost38": pandas.StringDtype(), "BitErrorsHost39": pandas.StringDtype(), "BitErrorsHost40": pandas.StringDtype(), "XORRebuildSuccess": pandas.StringDtype(), "XORRebuildFail": pandas.StringDtype(), "BandReloForError": pandas.StringDtype(), "mrrSuccess": pandas.StringDtype(), "mrrFail": pandas.StringDtype(), "mrrNudgeSuccess": pandas.StringDtype(), "mrrNudgeHarmless": pandas.StringDtype(), "mrrNudgeFail": pandas.StringDtype(), "totalErases": pandas.StringDtype(), "dieOfflineCount": pandas.StringDtype(), "curtemp": pandas.StringDtype(), "mintemp": pandas.StringDtype(), "maxtemp": pandas.StringDtype(), "oventemp": pandas.StringDtype(), "allZeroSectors": pandas.StringDtype(), "ctxRecoveryEvents": pandas.StringDtype(), "ctxRecoveryErases": pandas.StringDtype(), "NSversionMinor": pandas.StringDtype(), "lifeMinTemp": pandas.StringDtype(), "lifeMaxTemp": pandas.StringDtype(), "powerCycles": pandas.StringDtype(), "systemReads": pandas.StringDtype(), "systemWrites": pandas.StringDtype(), "readRetryOverflow": pandas.StringDtype(), "unplannedPowerCycles": pandas.StringDtype(), "unsafeShutdowns": pandas.StringDtype(), "defragForcedReloCount": pandas.StringDtype(), "bandReloForBDR": pandas.StringDtype(), "bandReloForDieOffline": pandas.StringDtype(), "bandReloForPFail": pandas.StringDtype(), "bandReloForWL": pandas.StringDtype(), "provisionalDefects": pandas.StringDtype(), "uncorrectableProgErrors": pandas.StringDtype(), "powerOnSeconds": pandas.StringDtype(), "bandReloForChannelTimeout": pandas.StringDtype(), "fwDowngradeCount": pandas.StringDtype(), "dramCorrectablesTotal": pandas.StringDtype(), "hb_id": pandas.StringDtype(), "dramCorrectables1to1": pandas.StringDtype(), "dramCorrectables4to1": pandas.StringDtype(), "dramCorrectablesSram": pandas.StringDtype(), "dramCorrectablesUnknown": pandas.StringDtype(), "pliCapTestInterval": pandas.StringDtype(), "pliCapTestCount": pandas.StringDtype(), "pliCapTestResult": pandas.StringDtype(), "pliCapTestTimeStamp": pandas.StringDtype(), "channelHangSuccess": pandas.StringDtype(), "channelHangFail": pandas.StringDtype(), "BitErrorsHost41": pandas.StringDtype(), "BitErrorsHost42": pandas.StringDtype(), "BitErrorsHost43": pandas.StringDtype(), "BitErrorsHost44": pandas.StringDtype(), "BitErrorsHost45": pandas.StringDtype(), "BitErrorsHost46": pandas.StringDtype(), "BitErrorsHost47": pandas.StringDtype(), "BitErrorsHost48": pandas.StringDtype(), "BitErrorsHost49": pandas.StringDtype(), "BitErrorsHost50":
pandas.StringDtype()
pandas.StringDtype
import os import time import fire import random import numpy as np import pandas as pd from sklearn.metrics import confusion_matrix, auc, roc_curve from xgboost import XGBClassifier ## to detach from monitor import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from helpers import save_obj, load_obj def get_submission( X_train, X_valid, y_train, y_valid, X_test, train_params={}, eval_metric='auc', save=False, load=False, mdl_name='xgb_class' ): start_time = time.time() end_time = start_time if load: classifier = load_obj(mdl_name) else: classifier = XGBClassifier(**train_params) classifier.fit(X_train.values, y_train.values.ravel(), eval_metric=eval_metric) end_time = time.time() if save: save_obj(classifier, mdl_name) print('model saved') train_pred = classifier.predict(X_train.values) valid_pred = classifier.predict(X_valid.values) test_pred = classifier.predict(X_test.values) fpr, tpr, _ = roc_curve(y_train.values, train_pred, pos_label=1) train_loss = auc(fpr, tpr) fpr, tpr, _ = roc_curve(y_valid.values, valid_pred, pos_label=1) valid_loss = auc(fpr, tpr) feature_importances = classifier.feature_importances_ feature_names = X_train.columns.values sorted_idx = np.argsort(feature_importances*-1) # descending order summary = '====== XGBClassifier Training Summary ======\n' for idx in sorted_idx: summary += '[{:<25s}] | {:<10.4f}\n'.format(feature_names[idx], feature_importances[idx]) summary += '>>> training_time={:10.2f}min\n'.format((end_time-start_time)/60) summary += '>>> Final AUC: {:10.4f}(Training), {:10.4f}(Validation)\n'.format(train_loss,valid_loss) # Generate submission submission = pd.DataFrame(data=test_pred,index=X_test.index, columns=['Next_Premium']) submission_train = pd.DataFrame(data=train_pred,index=X_train.index, columns=['Next_Premium']) submission_valid =
pd.DataFrame(data=valid_pred,index=X_valid.index, columns=['Next_Premium'])
pandas.DataFrame
# ---------------------------------------------------------------------------- # Copyright (c) 2017-2021, QIIME 2 development team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file LICENSE, distributed with this software. # ---------------------------------------------------------------------------- import os import pandas as pd import pandas.testing as pdt import biom import shutil import json import numpy as np from sklearn.metrics import mean_squared_error, accuracy_score from sklearn.ensemble import AdaBoostClassifier from sklearn.feature_extraction import DictVectorizer from sklearn.pipeline import Pipeline import skbio import qiime2 from q2_types.feature_table import (FeatureTable, PercentileNormalized) from qiime2.plugins import sample_classifier from q2_sample_classifier.tests.test_base_class import \ SampleClassifierTestPluginBase from q2_sample_classifier.classify import ( regress_samples_ncv, classify_samples_ncv, fit_classifier, fit_regressor, detect_outliers, split_table, predict_classification, predict_regression) from q2_sample_classifier.utilities import ( _set_parameters_and_estimator, _train_adaboost_base_estimator, _match_series_or_die, _extract_features) from q2_sample_classifier import ( SampleEstimatorDirFmt, PickleFormat) class SampleEstimatorTestBase(SampleClassifierTestPluginBase): package = 'q2_sample_classifier.tests' def setUp(self): super().setUp() def _load_biom(table_fp): table_fp = self.get_data_path(table_fp) table = qiime2.Artifact.load(table_fp) table = table.view(biom.Table) return table def _load_cmc(md_fp, column): md_fp = self.get_data_path(md_fp) md = pd.read_csv(md_fp, sep='\t', header=0, index_col=0) md = qiime2.CategoricalMetadataColumn(md[column]) return md table_chard_fp = _load_biom('chardonnay.table.qza') mdc_chard_fp = _load_cmc('chardonnay.map.txt', 'Region') pipeline, importances = fit_classifier( table_chard_fp, mdc_chard_fp, random_state=123, n_estimators=2, n_jobs=1, optimize_feature_selection=True, parameter_tuning=True, missing_samples='ignore') transformer = self.get_transformer( Pipeline, SampleEstimatorDirFmt) self._sklp = transformer(pipeline) sklearn_pipeline = self._sklp.sklearn_pipeline.view(PickleFormat) self.sklearn_pipeline = str(sklearn_pipeline) self.pipeline = pipeline def _custom_setup(self, version): with open(os.path.join(self.temp_dir.name, 'sklearn_version.json'), 'w') as fh: fh.write(json.dumps({'sklearn-version': version})) shutil.copy(self.sklearn_pipeline, self.temp_dir.name) return SampleEstimatorDirFmt( self.temp_dir.name, mode='r') class EstimatorsTests(SampleClassifierTestPluginBase): def setUp(self): super().setUp() def _load_biom(table_fp): table_fp = self.get_data_path(table_fp) table = qiime2.Artifact.load(table_fp) table = table.view(biom.Table) return table def _load_md(md_fp): md_fp = self.get_data_path(md_fp) md = pd.read_csv(md_fp, sep='\t', header=0, index_col=0) md = qiime2.Metadata(md) return md def _load_nmc(md_fp, column): md_fp = self.get_data_path(md_fp) md = pd.read_csv(md_fp, sep='\t', header=0, index_col=0) md = qiime2.NumericMetadataColumn(md[column]) return md def _load_cmc(md_fp, column): md_fp = self.get_data_path(md_fp) md = pd.read_csv(md_fp, sep='\t', header=0, index_col=0) md = qiime2.CategoricalMetadataColumn(md[column]) return md self.table_chard_fp = _load_biom('chardonnay.table.qza') self.md_chard_fp = _load_md('chardonnay.map.txt') self.mdc_chard_fp = _load_cmc('chardonnay.map.txt', 'Region') self.table_ecam_fp = _load_biom('ecam-table-maturity.qza') self.md_ecam_fp = _load_md('ecam_map_maturity.txt') self.mdc_ecam_fp = _load_nmc('ecam_map_maturity.txt', 'month') self.exp_imp = pd.read_csv( self.get_data_path('importance.tsv'), sep='\t', header=0, index_col=0, names=['feature', 'importance']) self.exp_pred = pd.read_csv( self.get_data_path('predictions.tsv'), sep='\t', header=0, index_col=0, squeeze=True) index = pd.Index(['A', 'B', 'C', 'D'], name='id') self.table_percnorm = qiime2.Artifact.import_data( FeatureTable[PercentileNormalized], pd.DataFrame( [[20.0, 20.0, 50.0, 10.0], [10.0, 10.0, 70.0, 10.0], [90.0, 8.0, 1.0, 1.0], [30.0, 15.0, 20.0, 35.0]], index=index, columns=['feat1', 'feat2', 'feat3', 'feat4'])).view(biom.Table) self.mdc_percnorm = qiime2.CategoricalMetadataColumn( pd.Series(['X', 'X', 'Y', 'Y'], index=index, name='name')) # test feature extraction def test_extract_features(self): table = self.table_ecam_fp dicts = _extract_features(table) dv = DictVectorizer() dv.fit(dicts) features = table.ids('observation') self.assertEqual(set(dv.get_feature_names()), set(features)) self.assertEqual(len(dicts), len(table.ids())) for dict_row, (table_row, _, _) in zip(dicts, table.iter()): for feature, count in zip(features, table_row): if count == 0: self.assertTrue(feature not in dict_row) else: self.assertEqual(dict_row[feature], count) def test_classify_samples_from_dist(self): # -- setup -- # # 1,2 are a group, 3,4 are a group sample_ids = ('f1', 'f2', 's1', 's2') distance_matrix = skbio.DistanceMatrix([ [0, 1, 4, 4], [1, 0, 4, 4], [4, 4, 0, 1], [4, 4, 1, 0], ], ids=sample_ids) dm = qiime2.Artifact.import_data('DistanceMatrix', distance_matrix) categories = pd.Series(('skinny', 'skinny', 'fat', 'fat'), index=sample_ids[::-1], name='body_mass') categories.index.name = 'SampleID' metadata = qiime2.CategoricalMetadataColumn(categories) # -- test -- # res = sample_classifier.actions.classify_samples_from_dist( distance_matrix=dm, metadata=metadata, k=1) pred = res[0].view(pd.Series).sort_values() expected = pd.Series(('fat', 'skinny', 'fat', 'skinny'), index=['f1', 's1', 'f2', 's2']) not_expected = pd.Series(('fat', 'fat', 'fat', 'skinny'), index=sample_ids) # order matters for pd.Series.equals() self.assertTrue(expected.sort_index().equals(pred.sort_index())) self.assertFalse(not_expected.sort_index().equals(pred.sort_index())) def test_classify_samples_from_dist_with_group_of_single_item(self): # -- setup -- # # 1 is a group, 2,3,4 are a group sample_ids = ('f1', 's1', 's2', 's3') distance_matrix = skbio.DistanceMatrix([ [0, 2, 3, 3], [2, 0, 1, 1], [3, 1, 0, 1], [3, 1, 1, 0], ], ids=sample_ids) dm = qiime2.Artifact.import_data('DistanceMatrix', distance_matrix) categories = pd.Series(('fat', 'skinny', 'skinny', 'skinny'), index=sample_ids, name='body_mass') categories.index.name = 'SampleID' metadata = qiime2.CategoricalMetadataColumn(categories) # -- test -- # res = sample_classifier.actions.classify_samples_from_dist( distance_matrix=dm, metadata=metadata, k=1) pred = res[0].view(pd.Series) expected = pd.Series(('skinny', 'skinny', 'skinny', 'skinny'), index=sample_ids) self.assertTrue(expected.sort_index().equals(pred.sort_index())) def test_2nn(self): # -- setup -- # # 2 nearest neighbors of each sample are # f1: s1, s2 (classified as skinny) # s1: f1, s2 (closer to f1 so fat) # s2: f1, (s1 or s3) (closer to f1 so fat) # s3: s1, s2 (skinny) sample_ids = ('f1', 's1', 's2', 's3') distance_matrix = skbio.DistanceMatrix([ [0, 2, 1, 5], [2, 0, 3, 4], [1, 3, 0, 3], [5, 4, 3, 0], ], ids=sample_ids) dm = qiime2.Artifact.import_data('DistanceMatrix', distance_matrix) categories = pd.Series(('fat', 'skinny', 'skinny', 'skinny'), index=sample_ids, name='body_mass') categories.index.name = 'SampleID' metadata = qiime2.CategoricalMetadataColumn(categories) # -- test -- # res = sample_classifier.actions.classify_samples_from_dist( distance_matrix=dm, metadata=metadata, k=2) pred = res[0].view(pd.Series) expected = pd.Series(('skinny', 'fat', 'fat', 'skinny'), index=sample_ids) self.assertTrue(expected.sort_index().equals(pred.sort_index())) # test that each classifier works and delivers an expected accuracy result # when a random seed is set. def test_classifiers(self): for classifier in ['RandomForestClassifier', 'ExtraTreesClassifier', 'GradientBoostingClassifier', 'AdaBoostClassifier', 'LinearSVC', 'SVC', 'KNeighborsClassifier']: table_fp = self.get_data_path('chardonnay.table.qza') table = qiime2.Artifact.load(table_fp) res = sample_classifier.actions.classify_samples( table=table, metadata=self.mdc_chard_fp, test_size=0.5, cv=1, n_estimators=10, n_jobs=1, estimator=classifier, random_state=123, parameter_tuning=False, optimize_feature_selection=False, missing_samples='ignore') pred = res[2].view(pd.Series) pred, truth = _match_series_or_die( pred, self.mdc_chard_fp.to_series(), 'ignore') accuracy = accuracy_score(truth, pred) self.assertAlmostEqual( accuracy, seeded_results[classifier], places=4, msg='Accuracy of %s classifier was %f, but expected %f' % ( classifier, accuracy, seeded_results[classifier])) # test if training classifier with pipeline classify_samples raises # warning when test_size = 0.0 def test_classify_samples_w_all_train_set(self): with self.assertWarnsRegex(Warning, "not representative of " "your model's performance"): table_fp = self.get_data_path('chardonnay.table.qza') table = qiime2.Artifact.load(table_fp) sample_classifier.actions.classify_samples( table=table, metadata=self.mdc_chard_fp, test_size=0.0, cv=1, n_estimators=10, n_jobs=1, estimator='RandomForestClassifier', random_state=123, parameter_tuning=False, optimize_feature_selection=False, missing_samples='ignore') # test that the plugin methods/visualizers work def test_regress_samples_ncv(self): y_pred, importances = regress_samples_ncv( self.table_ecam_fp, self.mdc_ecam_fp, random_state=123, n_estimators=2, n_jobs=1, stratify=True, parameter_tuning=True, missing_samples='ignore') def test_classify_samples_ncv(self): y_pred, importances, probabilities = classify_samples_ncv( self.table_chard_fp, self.mdc_chard_fp, random_state=123, n_estimators=2, n_jobs=1, missing_samples='ignore') # test reproducibility of classifier results, probabilities def test_classify_samples_ncv_accuracy(self): dat = biom.Table(np.array( [[4446, 9828, 3208, 776, 118, 4175, 657, 251, 7505, 617], [1855, 8716, 3257, 1251, 3205, 2557, 4251, 7405, 1417, 1215], [6616, 281, 8616, 291, 261, 253, 9075, 252, 7385, 4068]]), observation_ids=['o1', 'o2', 'o3'], sample_ids=['s1', 's2', 's3', 's4', 's5', 's6', 's7', 's8', 's9', 's10']) md = qiime2.CategoricalMetadataColumn(pd.Series( ['red', 'red', 'red', 'red', 'red', 'blue', 'blue', 'blue', 'blue', 'blue'], index=pd.Index(['s1', 's2', 's3', 's4', 's5', 's6', 's7', 's8', 's9', 's10'], name='sample-id'), name='color')) y_pred, importances, probabilities = classify_samples_ncv( dat, md, random_state=123, n_estimators=2, n_jobs=1, missing_samples='ignore') exp_pred = pd.Series( ['blue', 'red', 'red', 'blue', 'blue', 'blue', 'blue', 'red', 'blue', 'blue'], index=pd.Index(['s4', 's6', 's1', 's10', 's5', 's8', 's2', 's9', 's3', 's7'], dtype='object', name='SampleID'), name='prediction') exp_importances = pd.DataFrame( [0.595111111111111, 0.23155555555555551, 0.17333333333333334], index=pd.Index(['o3', 'o1', 'o2'], name='feature'), columns=['importance']) exp_probabilities = pd.DataFrame( [[0.5, 0.5], [0., 1.], [0., 1.], [0.5, 0.5], [0.5, 0.5], [0.5, 0.5], [0.5, 0.5], [0., 1.], [1., 0.], [1., 0.]], index=pd.Index(['s4', 's6', 's1', 's10', 's5', 's8', 's2', 's9', 's3', 's7'], name='SampleID'), columns=['blue', 'red']) pdt.assert_series_equal(y_pred, exp_pred)
pdt.assert_frame_equal(importances, exp_importances)
pandas.testing.assert_frame_equal
# -*- coding: utf-8 -*- from warnings import catch_warnings import numpy as np from datetime import datetime from pandas.util import testing as tm import pandas as pd from pandas.core import config as cf from pandas.compat import u from pandas._libs.tslib import iNaT from pandas import (NaT, Float64Index, Series, DatetimeIndex, TimedeltaIndex, date_range) from pandas.core.dtypes.dtypes import DatetimeTZDtype from pandas.core.dtypes.missing import ( array_equivalent, isnull, notnull, na_value_for_dtype) def test_notnull(): assert notnull(1.) assert not notnull(None) assert not notnull(np.NaN) with cf.option_context("mode.use_inf_as_null", False): assert notnull(np.inf) assert notnull(-np.inf) arr = np.array([1.5, np.inf, 3.5, -np.inf]) result = notnull(arr) assert result.all() with cf.option_context("mode.use_inf_as_null", True): assert not notnull(np.inf) assert not notnull(-np.inf) arr = np.array([1.5, np.inf, 3.5, -np.inf]) result = notnull(arr) assert result.sum() == 2 with cf.option_context("mode.use_inf_as_null", False): for s in [tm.makeFloatSeries(), tm.makeStringSeries(), tm.makeObjectSeries(), tm.makeTimeSeries(), tm.makePeriodSeries()]: assert (isinstance(isnull(s), Series)) class TestIsNull(object): def test_0d_array(self): assert isnull(np.array(np.nan)) assert not isnull(np.array(0.0)) assert not isnull(np.array(0)) # test object dtype assert isnull(np.array(np.nan, dtype=object)) assert not isnull(np.array(0.0, dtype=object)) assert not isnull(np.array(0, dtype=object)) def test_empty_object(self): for shape in [(4, 0), (4,)]: arr = np.empty(shape=shape, dtype=object) result = isnull(arr) expected = np.ones(shape=shape, dtype=bool) tm.assert_numpy_array_equal(result, expected) def test_isnull(self): assert not isnull(1.) assert isnull(None) assert isnull(np.NaN) assert float('nan') assert not isnull(np.inf) assert not isnull(-np.inf) # series for s in [tm.makeFloatSeries(), tm.makeStringSeries(), tm.makeObjectSeries(), tm.makeTimeSeries(), tm.makePeriodSeries()]: assert isinstance(isnull(s), Series) # frame for df in [tm.makeTimeDataFrame(), tm.makePeriodFrame(), tm.makeMixedDataFrame()]: result = isnull(df) expected = df.apply(isnull) tm.assert_frame_equal(result, expected) # panel with catch_warnings(record=True): for p in [tm.makePanel(), tm.makePeriodPanel(), tm.add_nans(tm.makePanel())]: result = isnull(p) expected = p.apply(isnull) tm.assert_panel_equal(result, expected) # panel 4d with catch_warnings(record=True): for p in [tm.makePanel4D(), tm.add_nans_panel4d(
tm.makePanel4D()
pandas.util.testing.makePanel4D
# -*- coding: utf-8 -*- """ Created on Sun Apr 25 17:40:53 2021 @author: ali_d """ #Pandas import pandas as pd import numpy as np #data numbers = [20,30,40,50] print("----") leters = ["a","b","c","d",40] pandas_pd = pd.Series(numbers) pandas_pd1 = pd.Series(leters) print(pandas_pd) print(type(pandas_pd)) print(pandas_pd1) scalers = 5 print(pd.Series(scalers)) print("---") pandas_series1 = pd.Series(numbers,["a","b","c","d"]) print(pandas_series1) print("---") dict = {"a":15,"b":25,"c":35,"d":45} pandas_series2 = pd.Series(dict) print(pandas_series2) print("---") a = np.random.randint(10,100,5) pandas_series3 = pd.Series(a) print(pandas_series3) print("---") pandas_series3 = pd.Series(a,["a","b","c","d","e"]) print(pandas_series3) print("---") pandas_series4 = pd.Series([20,30,40,50],["a","b","c","d"]) print(pandas_series4[0]) print(pandas_series4["a"]) print(pandas_series4[:2]) print(pandas_series4[-2]) print(pandas_series4["a"]) print(pandas_series4["d"]) print(pandas_series4["a"]) # print(pandas_series4.ndim) #1boyutlu liste oldugunu soyluyor print(pandas_series4.dtype)#type print(pandas_series4.shape) print(pandas_series4.sum()) print(pandas_series4.max())#max print(pandas_series4.min())#min print(pandas_series4+pandas_series4) print(pandas_series4+1000) print("---") print(pandas_series4>35) print("---") result = pandas_series4 % 2 ==0 print(result) print("---") print(pandas_series4[pandas_series4 %2 ==0]) print(pandas_series4[pandas_series4 %2 ==1]) print("---") opel2018 = pd.Series([20,30,40,10],["astra","corsa","mokka","insignia"]) opel2019 = pd.Series([20,80,40,20,None],["astra","corsa","mokka","insignia","Grandland"]) total = opel2018+opel2019 print(total) #%% Pandas dataFrame import pandas as pd s1 = pd.Series([3,2,0,1]) s2 = pd.Series([0,3,7,2]) data = dict(apples=s1,oranges = s2) print(data) print("---") df=pd.DataFrame(data) print(df) print("-------") # " # df1= pd.DateFrame() # print(df1) # " df1 = pd.DataFrame([1,2,3,4,5]) print(df1) print("---") df2 = pd.DataFrame([["Ahmet",50],["Ali",60],["Yağmur",70],["Çınar",80]],columns = ["Name","Grade"],index=[1,2,3,4]) print(df2) #columns = sütünlar print("---") dict1 = {"Name":["Ahmet","Ali","Yağmur","Çınar"], "Grade":[50,60,70,80] } #Grade =sınıf pd4= pd.DataFrame(dict1) print(pd4) liste = [["Ahmet",50],["Ali",60],["Yağmur",70],["Çınar",80]] ## dict1 = {"Name":["Ahmet","Ali","Yağmur","Çınar"], "Grade":[50,60,70,80]} a1 = (pd.DataFrame(dict1,index=["212","232","236","456"])) dict_list=[ {"Name":"Ahmet","Grade":50}, {"Name":"Alis","Grade":60}, {"Name":"Uğurcan","Grade":70}, {"Name":"Hasan","Grade":80}, {"Name":"Miray","Grade":90} ] a2 = pd.DataFrame(dict_list) #%% Pandas ile DataFrame calısma import pandas as pd import numpy as np a=np.random.randn(3,3) df = pd.DataFrame(a,index=["A","B","C"],columns=["Column1","Column2","Column3"]) print(df) result = df print("---") print(result["Column1"]) print("---") print(type(result["Column1"])) print("---") result = df[["Column1","Column2"]] print(result) print("---") result1 = df.loc["A"] print(result1) print("---") result2 = type(df.loc["A"]) print(result2) print("---") result3 = df.loc[:] print(result3) print("---") result4 = df.loc[:,["Column1","Column2"]] print(result4) print("---") result5 = df.loc[:,["Column1","Column3"]] print(result5) print("---") result6 = df.loc["A":"B","Column2"] print(result6) print("---") a=df.iloc[1] print(a) print("---1") b =df.iloc[2] print(b) print("---2") c=df.iloc[0] print(c) print("---3") #%% fitlreleme data = np.random.randint(10,100,75).reshape(15,5) dfx = pd.DataFrame(data,columns=["Columns1","Columns2","Columns3","Columns4","Columns5"]) print(dfx) print("---") df = dfx.columns print(df) print("---") df = dfx.head() print(df) print("---") df =dfx.head(10) print(df) print("---") df =dfx.tail() print(df) print("---") df = dfx.tail(10) print(df) print("---") df =dfx["Columns1"].head() print(df) print("---") df=dfx.Columns1.head() print(df) print("---") df = dfx[["Columns1","Columns2"]].head() print(df) print("----") df = dfx[["Columns1","Columns2"]].tail() print(df) print("---") #df = dfx[5:15] 5 -15 arasındakılerı alırım df = dfx[5:15][["Columns1","Columns2"]].head() print(df) print("---") df = dfx[5:15][["Columns1","Columns2"]].tail() print(df) print("---"*10) df = dfx > 50 print(df) print("----") df = dfx[dfx > 50] print(df) print("---") df = dfx[dfx % 2 == 0] print(df) print("---") df = dfx[df["Columns1"] > 50] print(df) print("---") df = dfx[df["Columns1"] > 50][["Columns1","Columns2"]] print(df) print("---") #df = dfx.query("Columns1 >= 10 & Columns1 % 2 == 1") #df = dfx.query("Columns1 >= 10 & Columns1 % 2 == 1")[["Columns1","Columns2"]] #(df) #Query = Sorgu #%% DataFrame GroupBy import pandas as pd import numpy as np peronel = {"Çalışan":["<NAME>","<NAME>","<NAME>","<NAME>","<NAME>","<NAME>","<NAME>"], "Departman":["İnsan kaynakları","Bilgi İşlem","Muhasebe","İnsan Kaynakları","Bilgi İşlem","Muhasebe","Bilgi İşlem"], "Yaş":[30,25,45,50,23,34,42], "Semt":["KadıKöy","Tuzla","Maltepe","Tuzla","Maltepe","Tuzla","KadıKöy"], "Maaş":[5000,3000,4000,3500,2750,6500,4500]} df = pd.DataFrame(peronel) print(df) print("---") result = df["Maaş"].sum() print(result) print("---") result1 = df.groupby("Departman") print(result1) print("---") result2 = df.groupby("Departman").groups print(result2) print("---") result3 = df.groupby(["Departman","Semt"]).groups print(result3) print() print("---") semtler = df.groupby("Semt") for name,group in semtler: print(name) print(group) print() print("---") print() for name,group in df.groupby("Departman"): print(name) print(group) print() print("--------------") print() xv = df.groupby("Semt").get_group("KadıKöy") print(xv) print("--------------") xv1 = df.groupby("Departman").get_group("Muhasebe") print(xv1) print("---------------") xv2 = df.groupby("Departman").sum() print(xv2) print("---------------") xv3 = df.groupby("Departman").mean() print(xv3) print("--------------") xv4 = df.groupby("Departman")["Maaş"].mean() print(xv4) print("--------------") xv5 = df.groupby("Semt")["Çalışan"].count() print(xv5) print("-------------") xv6 = df.groupby("Departman")["Yaş"].max() print(xv6) print("-------------") xv7 = df.groupby("Departman")["Maaş"].max()["Muhasebe"] print(xv7) print("-------------") xv8 = df.groupby("Departman").agg([np.sum,np.mean,np.max,np.min]).loc["Muhasebe"] print(xv8) #%% Pandas ile Kayıp ve Bozuk Veri Analizi import pandas as pd import numpy as np data = np.random.randint(20,200,15).reshape(5,3) print(data) df = pd.DataFrame(data,index = ["a","c","e","f","h"], columns = ["Column1","Column2","Column3"]) print(df) print("---") df = df.reindex(["a","b","c","d","e","f","g","h"]) print(df) print("---") newColumn =[np.nan,30,np.nan,51,np.nan,30,np.nan,10] df["Column4"]=newColumn result =df result=df.drop("Column1",axis =1) print("---") result=df.drop(["Column1","Column2"],axis =1) print("---") result = df.drop("a",axis=0) print("---") result = df.drop(["a","b","c"],axis=0) print("---") result = df.isnull() print(result) print("---") result = df.notnull() print(result) print("---") result = df.isnull().sum() print(result) print("---") result = df["Column1"].isnull().sum() print(result) print() result =df["Column2"].isnull().sum() print(result) print("---") result = df[df["Column1"].isnull()] print(result) print("---") result = df[df["Column1"].isnull()]["Column1"] print(result) print("---") result = df[df["Column1"].notnull()]["Column1"] print(result) print("---") print() result = df.dropna() print(result) print("---") print(df) print("---") result = df.dropna(axis = 1) print(result) print("---") result = df.dropna(how="any") print(result) print("---") result = df.dropna(how="all") print(result) print("---") result = df.dropna(subset=["Column1","Column2"],how="all") print(result) print("----") result = df.dropna(subset=["Column1","Column2"],how="all") print(result) print("---") result = df.dropna(thresh=2) print(result) print("---") result = df.dropna(thresh=4) print(result) print("----") result = df.fillna(value = "no input") print(result) print("---") result = df.fillna(value = 1) print(result) print("---") result = df.sum().sum() print(result) print("---") result = df.size print(result) print("---") result = df.isnull().sum() print(result) print("---") result = df.isnull().sum().sum() print(result) print("----") ############## def ortalama(df): toplam = df.sum().sum() adet = df.size - df.isnull().sum().sum() return toplam / adet result = df.fillna(value = ortalama(df)) print(result) ############## #%% Pandas ile String Fonksiyonlar import pandas as pd customers = { "CostomerId":[1,2,3,4], "firstName":["Ahmet","Ali","Hasan","Can"], "lastName":["Yılmaz","Korkmaz","Çelik","Toprak"], } orders = { "OrderId":[10,11,12,13], "CustomerId":[1,2,5,7], "OrderDate":["2010-07-04","2010-08-04","2010-07-07","2012-07-04"], } df_customers = pd.DataFrame(customers,columns=["CostomerId","firstName","lastName"]) df_orders = pd.DataFrame(orders,columns=["OrderId","CustomerId","OrderDate"]) result = pd.merge(left_on = df_customers,right_on= df_orders, how="inner") #Merge = Birleştirmek #%% customersA = { "CostomerId":[1,2,3,4], "firstName":["Ahmet","Ali","Hasan","Can"], "lastName":["Yılmaz","Korkmaz","Çelik","Toprak"] } ordersB = { "OrderId":[10,11,12,13], "FirstName":["Yağmur","Çınar","Cengiz","Can"], "LastName":["Bilge","Turan","Yılmaz","Turan"] } df_customersA = pd.DataFrame(customersA,columns=["CostomerId","firstName","lastName"]) df_ordersB = pd.DataFrame(ordersB,columns=["OrderId","CustomerId","OrderDate"]) result = pd.concat([df_customersA,df_ordersB]) print(result) #%% np.random.seed(0) left = pd.DataFrame({'key': ['A', 'B', 'C', 'D'], 'value': np.random.randn(4)}) right = pd.DataFrame({'key': ['B', 'D', 'E', 'F'], 'value': np.random.randn(4)}) #%% Pandas ile DataFrame Metotları import pandas as pd import numpy as np data = { "Column1":[1,2,3,4,5], "Column2":[10,20,13,45,25], "Column3":["abc","bca","ade","cba","dea"] } df =
pd.DataFrame(data)
pandas.DataFrame
""" Wrappers to help with Vowpal Wabbit (VW). """ import sys from collections import Counter import pandas as pd import numpy as np from scipy.special import gammaln, digamma, psi # gamma function utils from . import text_processors from ..common import smart_open, TokenError from ..common_math import series_to_frame ############################################################################### # Globals ############################################################################### EPS = 1e-100 def parse_varinfo(varinfo_file): """ Uses the output of the vw-varinfo utility to get a DataFrame with variable info. Parameters ---------- varinfo_file : Path or buffer The output of vw-varinfo """ with smart_open(varinfo_file) as open_file: # For some reason, pandas is confused...so just split the lines # Create a dict {item1: [...], item2: [...],...} for each item in the # header header = open_file.next().split() rows = {col_name: [] for col_name in header} for line in open_file: for i, item in enumerate(line.split()): rows[header[i]].append(item) # Create a data frame varinfo =
pd.DataFrame(rows)
pandas.DataFrame
# -*- coding: utf-8 -*- import os import pandas as pd from collections import deque import matplotlib.pyplot as plt import rrcf # Read data def data_explore(is_show=True): abs_path = os.path.abspath(__file__) data_paths = abs_path.strip().split("/")[:-1] data_paths.extend(["..", "resources", "website_flow.csv"]) data_path = os.path.join(*data_paths) if not data_path.startswith("/"): data_path = "/" + data_path data_frame = pd.read_csv(data_path) data_frame.sort_values(["time"], inplace=True) data_frame["time"] =
pd.to_datetime(data_frame["time"], unit="s")
pandas.to_datetime
import hashlib import json import re import os from pathlib import Path from typing import Callable, Optional import numpy as np import pandas as pd from phc.easy.query.fhir_aggregation import FhirAggregation from phc.util.csv_writer import CSVWriter TABLE_REGEX = r"^[^F]+FROM (\w+)" DIR = "~/Downloads/phc/api-cache" DATE_FORMAT_REGEX = ( r"\d{4}-\d{2}-\d{2}T\d{2}:\d{2}:\d{2}(\.\d{3})?([-+]\d{4}|Z)" ) DATA_LAKE = "data_lake" FHIR_DSL = "fhir_dsl" class APICache: @staticmethod def filename_for_sql(sql: str, extension: str = "parquet"): results = re.findall(TABLE_REGEX, sql) table_name = results[0] if len(results) > 0 else "table" hexdigest = hashlib.sha256(sql.encode("utf-8")).hexdigest()[0:8] return "_".join([DATA_LAKE, table_name, hexdigest]) + "." + extension @staticmethod def does_cache_for_sql_exist(sql: str, extension: str = "parquet") -> bool: return ( Path(DIR) .expanduser() .joinpath(APICache.filename_for_sql(sql, extension)) .exists() ) @staticmethod def filename_for_query(query: dict, namespace: Optional[str] = None): "Descriptive filename with hash of query for easy retrieval" is_aggregation = FhirAggregation.is_aggregation_query(query) agg_description = "agg" if is_aggregation else "" column_description = ( f"{len(query.get('columns', []))}col" if not is_aggregation and isinstance(query.get("columns"), list) else "" ) where_description = "where" if query.get("where") else "" unique_hash = hashlib.sha256( json.dumps(query).encode("utf-8") ).hexdigest()[0:8] path_name = [ # Exclude UUIDs but not paths with dashes c.replace("-", "_") for c in query.get("path", "").split("/") if "-" not in c or len(c) != 36 ] components = [ namespace or "", *path_name, *[d.get("table", "") for d in query.get("from", [])], agg_description, column_description, where_description, unique_hash, ] extension = "json" if is_aggregation else "csv" return "_".join([c for c in components if len(c) > 0]) + "." + extension @staticmethod def does_cache_for_query_exist( query: dict, namespace: Optional[str] = None ) -> bool: return ( Path(DIR) .expanduser() .joinpath(APICache.filename_for_query(query, namespace)) .exists() ) @staticmethod def load_cache_for_query( query: dict, namespace: Optional[str] = None ) -> pd.DataFrame: filename = str( Path(DIR) .expanduser() .joinpath(APICache.filename_for_query(query, namespace)) ) print(f'[CACHE] Loading from "{filename}"') if FhirAggregation.is_aggregation_query(query): with open(filename, "r") as f: return FhirAggregation(json.load(f)) return APICache.read_csv(filename) @staticmethod def build_cache_callback( query: dict, transform: Callable[[pd.DataFrame], pd.DataFrame], nested_key: Optional[str] = "_source", namespace: Optional[str] = None, ): "Build a CSV callback (not used for aggregations)" folder = Path(DIR).expanduser() folder.mkdir(parents=True, exist_ok=True) filename = str( folder.joinpath(APICache.filename_for_query(query, namespace)) ) writer = CSVWriter(filename) def handle_batch(batch, is_finished): batch = ( batch if nested_key is None else map(lambda r: r[nested_key], batch) ) df = pd.DataFrame(batch) if len(df) != 0: writer.write(transform(df)) if is_finished and not os.path.exists(filename): return
pd.DataFrame()
pandas.DataFrame
import numpy as np import pandas as pd import sys import glob import torch from rdkit import Chem from rdkit import DataStructs from rdkit.Chem import AllChem from rdkit import RDLogger #from moses.script_utils import read_smiles_csv def detokenize(inp,vocab): output = "" for i in inp: token = list(vocab.keys())[list(vocab.values()).index(int(i))] if(token=='<bos>'): continue elif(token=='<eos>'): break else: output = output+token return output def get_smiles_from_lbann_tensors(fdir, vocab_path): ################### # First input files ################### input_files = glob.glob(fdir+"*_input_seq.csv") ins = np.loadtxt(input_files[0], delimiter=",") for i, f in enumerate(input_files): if(i > 0) : ins = np.concatenate((ins, np.loadtxt(f,delimiter=","))) num_cols = ins.shape[1] print("Num cols ", num_cols) num_samples = ins.shape[0] print("Num samples ", num_samples) vocab = pd.read_csv(vocab_file, delimiter=" ", header=None).to_dict()[0] vocab = dict([(v,k) for k,v in vocab.items()]) samples = [detokenize(i_x,vocab) for i_x in ins[:,0:]] samples = pd.DataFrame(samples, columns=['SMILES']) print("Save gt files to " , "gt_"+"smiles.txt") samples.to_csv("gt_"+"smiles.txt", index=False) #################### # Second input files #################### input_files = glob.glob(fdir+"*_pred_seq.csv") ins = np.loadtxt(input_files[0], delimiter=",") for i, f in enumerate(input_files): if(i > 0) : ins = np.concatenate((ins, np.loadtxt(f,delimiter=","))) num_cols = ins.shape[1] print("Num cols ", num_cols) num_samples = ins.shape[0] print("Num samples ", num_samples) vocab =
pd.read_csv(vocab_file, delimiter=" ", header=None)
pandas.read_csv
import csv from io import StringIO import os import numpy as np import pytest from pandas.errors import ParserError import pandas as pd from pandas import ( DataFrame, Index, MultiIndex, NaT, Series, Timestamp, date_range, read_csv, to_datetime, ) import pandas._testing as tm import pandas.core.common as com from pandas.io.common import get_handle MIXED_FLOAT_DTYPES = ["float16", "float32", "float64"] MIXED_INT_DTYPES = [ "uint8", "uint16", "uint32", "uint64", "int8", "int16", "int32", "int64", ] class TestDataFrameToCSV: def read_csv(self, path, **kwargs): params = {"index_col": 0, "parse_dates": True} params.update(**kwargs) return read_csv(path, **params) def test_to_csv_from_csv1(self, float_frame, datetime_frame): with tm.ensure_clean("__tmp_to_csv_from_csv1__") as path: float_frame["A"][:5] = np.nan float_frame.to_csv(path) float_frame.to_csv(path, columns=["A", "B"]) float_frame.to_csv(path, header=False) float_frame.to_csv(path, index=False) # test roundtrip # freq does not roundtrip datetime_frame.index = datetime_frame.index._with_freq(None) datetime_frame.to_csv(path) recons = self.read_csv(path) tm.assert_frame_equal(datetime_frame, recons) datetime_frame.to_csv(path, index_label="index") recons = self.read_csv(path, index_col=None) assert len(recons.columns) == len(datetime_frame.columns) + 1 # no index datetime_frame.to_csv(path, index=False) recons = self.read_csv(path, index_col=None) tm.assert_almost_equal(datetime_frame.values, recons.values) # corner case dm = DataFrame( { "s1": Series(range(3), index=np.arange(3)), "s2": Series(range(2), index=np.arange(2)), } ) dm.to_csv(path) recons = self.read_csv(path) tm.assert_frame_equal(dm, recons) def test_to_csv_from_csv2(self, float_frame): with tm.ensure_clean("__tmp_to_csv_from_csv2__") as path: # duplicate index df = DataFrame( np.random.randn(3, 3), index=["a", "a", "b"], columns=["x", "y", "z"] ) df.to_csv(path) result = self.read_csv(path) tm.assert_frame_equal(result, df) midx = MultiIndex.from_tuples([("A", 1, 2), ("A", 1, 2), ("B", 1, 2)]) df = DataFrame(np.random.randn(3, 3), index=midx, columns=["x", "y", "z"]) df.to_csv(path) result = self.read_csv(path, index_col=[0, 1, 2], parse_dates=False) tm.assert_frame_equal(result, df, check_names=False) # column aliases col_aliases = Index(["AA", "X", "Y", "Z"]) float_frame.to_csv(path, header=col_aliases) rs = self.read_csv(path) xp = float_frame.copy() xp.columns = col_aliases tm.assert_frame_equal(xp, rs) msg = "Writing 4 cols but got 2 aliases" with pytest.raises(ValueError, match=msg): float_frame.to_csv(path, header=["AA", "X"]) def test_to_csv_from_csv3(self): with tm.ensure_clean("__tmp_to_csv_from_csv3__") as path: df1 = DataFrame(np.random.randn(3, 1)) df2 = DataFrame(np.random.randn(3, 1)) df1.to_csv(path) df2.to_csv(path, mode="a", header=False) xp = pd.concat([df1, df2]) rs = read_csv(path, index_col=0) rs.columns = [int(label) for label in rs.columns] xp.columns = [int(label) for label in xp.columns] tm.assert_frame_equal(xp, rs) def test_to_csv_from_csv4(self): with tm.ensure_clean("__tmp_to_csv_from_csv4__") as path: # GH 10833 (TimedeltaIndex formatting) dt = pd.Timedelta(seconds=1) df = DataFrame( {"dt_data": [i * dt for i in range(3)]}, index=Index([i * dt for i in range(3)], name="dt_index"), ) df.to_csv(path) result = read_csv(path, index_col="dt_index") result.index = pd.to_timedelta(result.index) result["dt_data"] = pd.to_timedelta(result["dt_data"]) tm.assert_frame_equal(df, result, check_index_type=True) def test_to_csv_from_csv5(self, timezone_frame): # tz, 8260 with tm.ensure_clean("__tmp_to_csv_from_csv5__") as path: timezone_frame.to_csv(path) result = read_csv(path, index_col=0, parse_dates=["A"]) converter = ( lambda c: to_datetime(result[c]) .dt.tz_convert("UTC") .dt.tz_convert(timezone_frame[c].dt.tz) ) result["B"] = converter("B") result["C"] = converter("C") tm.assert_frame_equal(result, timezone_frame) def test_to_csv_cols_reordering(self): # GH3454 chunksize = 5 N = int(chunksize * 2.5) df = tm.makeCustomDataframe(N, 3) cs = df.columns cols = [cs[2], cs[0]] with tm.ensure_clean() as path: df.to_csv(path, columns=cols, chunksize=chunksize) rs_c = read_csv(path, index_col=0) tm.assert_frame_equal(df[cols], rs_c, check_names=False) def test_to_csv_new_dupe_cols(self): def _check_df(df, cols=None): with tm.ensure_clean() as path: df.to_csv(path, columns=cols, chunksize=chunksize) rs_c = read_csv(path, index_col=0) # we wrote them in a different order # so compare them in that order if cols is not None: if df.columns.is_unique: rs_c.columns = cols else: indexer, missing = df.columns.get_indexer_non_unique(cols) rs_c.columns = df.columns.take(indexer) for c in cols: obj_df = df[c] obj_rs = rs_c[c] if isinstance(obj_df, Series): tm.assert_series_equal(obj_df, obj_rs) else: tm.assert_frame_equal(obj_df, obj_rs, check_names=False) # wrote in the same order else: rs_c.columns = df.columns tm.assert_frame_equal(df, rs_c, check_names=False) chunksize = 5 N = int(chunksize * 2.5) # dupe cols df = tm.makeCustomDataframe(N, 3) df.columns = ["a", "a", "b"] _check_df(df, None) # dupe cols with selection cols = ["b", "a"] _check_df(df, cols) @pytest.mark.slow def test_to_csv_dtnat(self): # GH3437 def make_dtnat_arr(n, nnat=None): if nnat is None: nnat = int(n * 0.1) # 10% s = list(date_range("2000", freq="5min", periods=n)) if nnat: for i in np.random.randint(0, len(s), nnat): s[i] = NaT i = np.random.randint(100) s[-i] = NaT s[i] = NaT return s chunksize = 1000 # N=35000 s1 = make_dtnat_arr(chunksize + 5) s2 = make_dtnat_arr(chunksize + 5, 0) # s3=make_dtnjat_arr(chunksize+5,0) with tm.ensure_clean("1.csv") as pth: df = DataFrame({"a": s1, "b": s2}) df.to_csv(pth, chunksize=chunksize) recons = self.read_csv(pth).apply(to_datetime) tm.assert_frame_equal(df, recons, check_names=False) @pytest.mark.slow def test_to_csv_moar(self): def _do_test( df, r_dtype=None, c_dtype=None, rnlvl=None, cnlvl=None, dupe_col=False ): kwargs = {"parse_dates": False} if cnlvl: if rnlvl is not None: kwargs["index_col"] = list(range(rnlvl)) kwargs["header"] = list(range(cnlvl)) with tm.ensure_clean("__tmp_to_csv_moar__") as path: df.to_csv(path, encoding="utf8", chunksize=chunksize) recons = self.read_csv(path, **kwargs) else: kwargs["header"] = 0 with tm.ensure_clean("__tmp_to_csv_moar__") as path: df.to_csv(path, encoding="utf8", chunksize=chunksize) recons = self.read_csv(path, **kwargs) def _to_uni(x): if not isinstance(x, str): return x.decode("utf8") return x if dupe_col: # read_Csv disambiguates the columns by # labeling them dupe.1,dupe.2, etc'. monkey patch columns recons.columns = df.columns if rnlvl and not cnlvl: delta_lvl = [recons.iloc[:, i].values for i in range(rnlvl - 1)] ix = MultiIndex.from_arrays([list(recons.index)] + delta_lvl) recons.index = ix recons = recons.iloc[:, rnlvl - 1 :] type_map = {"i": "i", "f": "f", "s": "O", "u": "O", "dt": "O", "p": "O"} if r_dtype: if r_dtype == "u": # unicode r_dtype = "O" recons.index = np.array( [_to_uni(label) for label in recons.index], dtype=r_dtype ) df.index = np.array( [_to_uni(label) for label in df.index], dtype=r_dtype ) elif r_dtype == "dt": # unicode r_dtype = "O" recons.index = np.array( [Timestamp(label) for label in recons.index], dtype=r_dtype ) df.index = np.array( [Timestamp(label) for label in df.index], dtype=r_dtype ) elif r_dtype == "p": r_dtype = "O" idx_list = to_datetime(recons.index) recons.index = np.array( [Timestamp(label) for label in idx_list], dtype=r_dtype ) df.index = np.array( list(map(Timestamp, df.index.to_timestamp())), dtype=r_dtype ) else: r_dtype = type_map.get(r_dtype) recons.index = np.array(recons.index, dtype=r_dtype) df.index = np.array(df.index, dtype=r_dtype) if c_dtype: if c_dtype == "u": c_dtype = "O" recons.columns = np.array( [_to_uni(label) for label in recons.columns], dtype=c_dtype ) df.columns = np.array( [_to_uni(label) for label in df.columns], dtype=c_dtype ) elif c_dtype == "dt": c_dtype = "O" recons.columns = np.array( [Timestamp(label) for label in recons.columns], dtype=c_dtype ) df.columns = np.array( [Timestamp(label) for label in df.columns], dtype=c_dtype ) elif c_dtype == "p": c_dtype = "O" col_list = to_datetime(recons.columns) recons.columns = np.array( [Timestamp(label) for label in col_list], dtype=c_dtype ) col_list = df.columns.to_timestamp() df.columns = np.array( [Timestamp(label) for label in col_list], dtype=c_dtype ) else: c_dtype = type_map.get(c_dtype) recons.columns = np.array(recons.columns, dtype=c_dtype) df.columns = np.array(df.columns, dtype=c_dtype) tm.assert_frame_equal(df, recons, check_names=False) N = 100 chunksize = 1000 ncols = 4 base = chunksize // ncols for nrows in [ 2, 10, N - 1, N, N + 1, N + 2, 2 * N - 2, 2 * N - 1, 2 * N, 2 * N + 1, 2 * N + 2, base - 1, base, base + 1, ]: _do_test( tm.makeCustomDataframe(nrows, ncols, r_idx_type="dt", c_idx_type="s"), "dt", "s", ) for r_idx_type, c_idx_type in [("i", "i"), ("s", "s"), ("u", "dt"), ("p", "p")]: for ncols in [1, 2, 3, 4]: base = chunksize // ncols for nrows in [ 2, 10, N - 1, N, N + 1, N + 2, 2 * N - 2, 2 * N - 1, 2 * N, 2 * N + 1, 2 * N + 2, base - 1, base, base + 1, ]: _do_test( tm.makeCustomDataframe( nrows, ncols, r_idx_type=r_idx_type, c_idx_type=c_idx_type ), r_idx_type, c_idx_type, ) for ncols in [1, 2, 3, 4]: base = chunksize // ncols for nrows in [ 10, N - 2, N - 1, N, N + 1, N + 2, 2 * N - 2, 2 * N - 1, 2 * N, 2 * N + 1, 2 * N + 2, base - 1, base, base + 1, ]: _do_test(tm.makeCustomDataframe(nrows, ncols)) for nrows in [10, N - 2, N - 1, N, N + 1, N + 2]: df = tm.makeCustomDataframe(nrows, 3) cols = list(df.columns) cols[:2] = ["dupe", "dupe"] cols[-2:] = ["dupe", "dupe"] ix = list(df.index) ix[:2] = ["rdupe", "rdupe"] ix[-2:] = ["rdupe", "rdupe"] df.index = ix df.columns = cols _do_test(df, dupe_col=True) _do_test(DataFrame(index=np.arange(10))) _do_test( tm.makeCustomDataframe(chunksize // 2 + 1, 2, r_idx_nlevels=2), rnlvl=2 ) for ncols in [2, 3, 4]: base = int(chunksize // ncols) for nrows in [ 10, N - 2, N - 1, N, N + 1, N + 2, 2 * N - 2, 2 * N - 1, 2 * N, 2 * N + 1, 2 * N + 2, base - 1, base, base + 1, ]: _do_test(tm.makeCustomDataframe(nrows, ncols, r_idx_nlevels=2), rnlvl=2) _do_test(tm.makeCustomDataframe(nrows, ncols, c_idx_nlevels=2), cnlvl=2) _do_test( tm.makeCustomDataframe( nrows, ncols, r_idx_nlevels=2, c_idx_nlevels=2 ), rnlvl=2, cnlvl=2, ) def test_to_csv_from_csv_w_some_infs(self, float_frame): # test roundtrip with inf, -inf, nan, as full columns and mix float_frame["G"] = np.nan f = lambda x: [np.inf, np.nan][np.random.rand() < 0.5] float_frame["H"] = float_frame.index.map(f) with tm.ensure_clean() as path: float_frame.to_csv(path) recons = self.read_csv(path) tm.assert_frame_equal(float_frame, recons) tm.assert_frame_equal(np.isinf(float_frame), np.isinf(recons)) def test_to_csv_from_csv_w_all_infs(self, float_frame): # test roundtrip with inf, -inf, nan, as full columns and mix float_frame["E"] = np.inf float_frame["F"] = -np.inf with tm.ensure_clean() as path: float_frame.to_csv(path) recons = self.read_csv(path) tm.assert_frame_equal(float_frame, recons) tm.assert_frame_equal(np.isinf(float_frame), np.isinf(recons)) def test_to_csv_no_index(self): # GH 3624, after appending columns, to_csv fails with tm.ensure_clean("__tmp_to_csv_no_index__") as path: df = DataFrame({"c1": [1, 2, 3], "c2": [4, 5, 6]}) df.to_csv(path, index=False) result = read_csv(path) tm.assert_frame_equal(df, result) df["c3"] = Series([7, 8, 9], dtype="int64") df.to_csv(path, index=False) result = read_csv(path) tm.assert_frame_equal(df, result) def test_to_csv_with_mix_columns(self): # gh-11637: incorrect output when a mix of integer and string column # names passed as columns parameter in to_csv df = DataFrame({0: ["a", "b", "c"], 1: ["aa", "bb", "cc"]}) df["test"] = "txt" assert df.to_csv() == df.to_csv(columns=[0, 1, "test"]) def test_to_csv_headers(self): # GH6186, the presence or absence of `index` incorrectly # causes to_csv to have different header semantics. from_df = DataFrame([[1, 2], [3, 4]], columns=["A", "B"]) to_df = DataFrame([[1, 2], [3, 4]], columns=["X", "Y"]) with tm.ensure_clean("__tmp_to_csv_headers__") as path: from_df.to_csv(path, header=["X", "Y"]) recons = self.read_csv(path) tm.assert_frame_equal(to_df, recons) from_df.to_csv(path, index=False, header=["X", "Y"]) recons = self.read_csv(path) return_value = recons.reset_index(inplace=True) assert return_value is None tm.assert_frame_equal(to_df, recons) def test_to_csv_multiindex(self, float_frame, datetime_frame): frame = float_frame old_index = frame.index arrays = np.arange(len(old_index) * 2).reshape(2, -1) new_index = MultiIndex.from_arrays(arrays, names=["first", "second"]) frame.index = new_index with tm.ensure_clean("__tmp_to_csv_multiindex__") as path: frame.to_csv(path, header=False) frame.to_csv(path, columns=["A", "B"]) # round trip frame.to_csv(path) df = self.read_csv(path, index_col=[0, 1], parse_dates=False) # TODO to_csv drops column name tm.assert_frame_equal(frame, df, check_names=False) assert frame.index.names == df.index.names # needed if setUp becomes a class method float_frame.index = old_index # try multiindex with dates tsframe = datetime_frame old_index = tsframe.index new_index = [old_index, np.arange(len(old_index))] tsframe.index = MultiIndex.from_arrays(new_index) tsframe.to_csv(path, index_label=["time", "foo"]) recons = self.read_csv(path, index_col=[0, 1]) # TODO to_csv drops column name
tm.assert_frame_equal(tsframe, recons, check_names=False)
pandas._testing.assert_frame_equal
# -*- coding: utf-8 -*- """Análisis.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1IgGsebdiJRAdXOeW7I9wXXZQAtyPXlXQ Install dependencies """ #%reset -f #!pip install psycopg2 """Import libraries""" import psycopg2 import numpy as np import pandas as pd import time pd.set_option('display.max_rows', 500) pd.set_option('display.max_columns', 500) pd.set_option('display.width', 1000) """[Connect to database](https://pynative.com/python-postgresql-tutorial/)""" def algoritmo(): try: connection = psycopg2.connect(user = "postgres", password = "<PASSWORD>", host = "192.168.3.11", port = "5432", database = "dataproject1") cursor = connection.cursor() # Print PostgreSQL Connection properties print ( connection.get_dsn_parameters(),"\n") # Print PostgreSQL version cursor.execute("SELECT version();") record = cursor.fetchone() print("You are connected to - ", record,"\n") except (Exception, psycopg2.Error) as error : print ("Error while connecting to PostgreSQL", error) """Obtain "datos" of the cities and columns names""" cursor.execute("SELECT * FROM datos;") record = cursor.fetchall() cursor.execute("SELECT COLUMN_NAME FROM INFORMATION_SCHEMA.COLUMNS WHERE TABLE_NAME = N'datos'") columns_name = cursor.fetchall() """Convert array of arrays to single array""" array_columns_name = np.array(columns_name) array_columns_name = np.concatenate( array_columns_name, axis=0 ) #print(array_columns_name) """Transform result of query to a pandas dataframe""" df = pd.DataFrame(record, columns=array_columns_name) df.head() """Obtain "clientes" of the clients responses""" cursor.execute("SELECT * FROM clientes ORDER BY client_id DESC;") record = cursor.fetchall() cursor.execute("SELECT COLUMN_NAME FROM INFORMATION_SCHEMA.COLUMNS WHERE TABLE_NAME = N'clientes'") columns_name = cursor.fetchall() array_columns_name = np.array(columns_name) array_columns_name = np.concatenate( array_columns_name, axis=0 ) clientes =
pd.DataFrame(record, columns=array_columns_name)
pandas.DataFrame
import pytest import numpy as np import pandas as pd from datetime import datetime from pandas.util import testing as tm from pandas import DataFrame, MultiIndex, compat, Series, bdate_range, Index def test_apply_issues(): # GH 5788 s = """2011.05.16,00:00,1.40893 2011.05.16,01:00,1.40760 2011.05.16,02:00,1.40750 2011.05.16,03:00,1.40649 2011.05.17,02:00,1.40893 2011.05.17,03:00,1.40760 2011.05.17,04:00,1.40750 2011.05.17,05:00,1.40649 2011.05.18,02:00,1.40893 2011.05.18,03:00,1.40760 2011.05.18,04:00,1.40750 2011.05.18,05:00,1.40649""" df = pd.read_csv( compat.StringIO(s), header=None, names=['date', 'time', 'value'], parse_dates=[['date', 'time']]) df = df.set_index('date_time') expected = df.groupby(df.index.date).idxmax() result = df.groupby(df.index.date).apply(lambda x: x.idxmax()) tm.assert_frame_equal(result, expected) # GH 5789 # don't auto coerce dates df = pd.read_csv( compat.StringIO(s), header=None, names=['date', 'time', 'value']) exp_idx = pd.Index( ['2011.05.16', '2011.05.17', '2011.05.18' ], dtype=object, name='date') expected = Series(['00:00', '02:00', '02:00'], index=exp_idx) result = df.groupby('date').apply( lambda x: x['time'][x['value'].idxmax()]) tm.assert_series_equal(result, expected) def test_apply_trivial(): # GH 20066 # trivial apply: ignore input and return a constant dataframe. df = pd.DataFrame({'key': ['a', 'a', 'b', 'b', 'a'], 'data': [1.0, 2.0, 3.0, 4.0, 5.0]}, columns=['key', 'data']) expected = pd.concat([df.iloc[1:], df.iloc[1:]], axis=1, keys=['float64', 'object']) result = df.groupby([str(x) for x in df.dtypes], axis=1).apply(lambda x: df.iloc[1:]) tm.assert_frame_equal(result, expected) @pytest.mark.xfail(reason="GH#20066; function passed into apply " "returns a DataFrame with the same index " "as the one to create GroupBy object.", strict=True) def test_apply_trivial_fail(): # GH 20066 # trivial apply fails if the constant dataframe has the same index # with the one used to create GroupBy object. df = pd.DataFrame({'key': ['a', 'a', 'b', 'b', 'a'], 'data': [1.0, 2.0, 3.0, 4.0, 5.0]}, columns=['key', 'data']) expected = pd.concat([df, df], axis=1, keys=['float64', 'object']) result = df.groupby([str(x) for x in df.dtypes], axis=1).apply(lambda x: df) tm.assert_frame_equal(result, expected) def test_fast_apply(): # make sure that fast apply is correctly called # rather than raising any kind of error # otherwise the python path will be callsed # which slows things down N = 1000 labels = np.random.randint(0, 2000, size=N) labels2 = np.random.randint(0, 3, size=N) df = DataFrame({'key': labels, 'key2': labels2, 'value1': np.random.randn(N), 'value2': ['foo', 'bar', 'baz', 'qux'] * (N // 4)}) def f(g): return 1 g = df.groupby(['key', 'key2']) grouper = g.grouper splitter = grouper._get_splitter(g._selected_obj, axis=g.axis) group_keys = grouper._get_group_keys() values, mutated = splitter.fast_apply(f, group_keys) assert not mutated def test_apply_with_mixed_dtype(): # GH3480, apply with mixed dtype on axis=1 breaks in 0.11 df = DataFrame({'foo1': np.random.randn(6), 'foo2': ['one', 'two', 'two', 'three', 'one', 'two']}) result = df.apply(lambda x: x, axis=1) tm.assert_series_equal(df.get_dtype_counts(), result.get_dtype_counts()) # GH 3610 incorrect dtype conversion with as_index=False df = DataFrame({"c1": [1, 2, 6, 6, 8]}) df["c2"] = df.c1 / 2.0 result1 = df.groupby("c2").mean().reset_index().c2 result2 = df.groupby("c2", as_index=False).mean().c2 tm.assert_series_equal(result1, result2) def test_groupby_as_index_apply(df): # GH #4648 and #3417 df = DataFrame({'item_id': ['b', 'b', 'a', 'c', 'a', 'b'], 'user_id': [1, 2, 1, 1, 3, 1], 'time': range(6)}) g_as = df.groupby('user_id', as_index=True) g_not_as = df.groupby('user_id', as_index=False) res_as = g_as.head(2).index res_not_as = g_not_as.head(2).index exp = Index([0, 1, 2, 4]) tm.assert_index_equal(res_as, exp) tm.assert_index_equal(res_not_as, exp) res_as_apply = g_as.apply(lambda x: x.head(2)).index res_not_as_apply = g_not_as.apply(lambda x: x.head(2)).index # apply doesn't maintain the original ordering # changed in GH5610 as the as_index=False returns a MI here exp_not_as_apply = MultiIndex.from_tuples([(0, 0), (0, 2), (1, 1), ( 2, 4)]) tp = [(1, 0), (1, 2), (2, 1), (3, 4)] exp_as_apply = MultiIndex.from_tuples(tp, names=['user_id', None]) tm.assert_index_equal(res_as_apply, exp_as_apply) tm.assert_index_equal(res_not_as_apply, exp_not_as_apply) ind = Index(list('abcde')) df = DataFrame([[1, 2], [2, 3], [1, 4], [1, 5], [2, 6]], index=ind) res = df.groupby(0, as_index=False).apply(lambda x: x).index tm.assert_index_equal(res, ind) def test_apply_concat_preserve_names(three_group): grouped = three_group.groupby(['A', 'B']) def desc(group): result = group.describe() result.index.name = 'stat' return result def desc2(group): result = group.describe() result.index.name = 'stat' result = result[:len(group)] # weirdo return result def desc3(group): result = group.describe() # names are different result.index.name = 'stat_%d' % len(group) result = result[:len(group)] # weirdo return result result = grouped.apply(desc) assert result.index.names == ('A', 'B', 'stat') result2 = grouped.apply(desc2) assert result2.index.names == ('A', 'B', 'stat') result3 = grouped.apply(desc3) assert result3.index.names == ('A', 'B', None) def test_apply_series_to_frame(): def f(piece): with np.errstate(invalid='ignore'): logged = np.log(piece) return DataFrame({'value': piece, 'demeaned': piece - piece.mean(), 'logged': logged}) dr = bdate_range('1/1/2000', periods=100) ts = Series(np.random.randn(100), index=dr) grouped = ts.groupby(lambda x: x.month) result = grouped.apply(f) assert isinstance(result, DataFrame) tm.assert_index_equal(result.index, ts.index) def test_apply_series_yield_constant(df): result = df.groupby(['A', 'B'])['C'].apply(len) assert result.index.names[:2] == ('A', 'B') def test_apply_frame_yield_constant(df): # GH13568 result = df.groupby(['A', 'B']).apply(len) assert isinstance(result, Series) assert result.name is None result = df.groupby(['A', 'B'])[['C', 'D']].apply(len) assert isinstance(result, Series) assert result.name is None def test_apply_frame_to_series(df): grouped = df.groupby(['A', 'B']) result = grouped.apply(len) expected = grouped.count()['C'] tm.assert_index_equal(result.index, expected.index) tm.assert_numpy_array_equal(result.values, expected.values) def test_apply_frame_concat_series(): def trans(group): return group.groupby('B')['C'].sum().sort_values()[:2] def trans2(group): grouped = group.groupby(df.reindex(group.index)['B']) return grouped.sum().sort_values()[:2] df = DataFrame({'A': np.random.randint(0, 5, 1000), 'B': np.random.randint(0, 5, 1000), 'C': np.random.randn(1000)}) result = df.groupby('A').apply(trans) exp = df.groupby('A')['C'].apply(trans2) tm.assert_series_equal(result, exp, check_names=False) assert result.name == 'C' def test_apply_transform(ts): grouped = ts.groupby(lambda x: x.month) result = grouped.apply(lambda x: x * 2) expected = grouped.transform(lambda x: x * 2) tm.assert_series_equal(result, expected) def test_apply_multikey_corner(tsframe): grouped = tsframe.groupby([lambda x: x.year, lambda x: x.month]) def f(group): return group.sort_values('A')[-5:] result = grouped.apply(f) for key, group in grouped: tm.assert_frame_equal(result.loc[key], f(group)) def test_apply_chunk_view(): # Low level tinkering could be unsafe, make sure not df = DataFrame({'key': [1, 1, 1, 2, 2, 2, 3, 3, 3], 'value': compat.lrange(9)}) # return view f = lambda x: x[:2] result = df.groupby('key', group_keys=False).apply(f) expected = df.take([0, 1, 3, 4, 6, 7]) tm.assert_frame_equal(result, expected) def test_apply_no_name_column_conflict(): df = DataFrame({'name': [1, 1, 1, 1, 1, 1, 2, 2, 2, 2], 'name2': [0, 0, 0, 1, 1, 1, 0, 0, 1, 1], 'value': compat.lrange(10)[::-1]}) # it works! #2605 grouped = df.groupby(['name', 'name2']) grouped.apply(lambda x: x.sort_values('value', inplace=True)) def test_apply_typecast_fail(): df = DataFrame({'d': [1., 1., 1., 2., 2., 2.], 'c': np.tile( ['a', 'b', 'c'], 2), 'v': np.arange(1., 7.)}) def f(group): v = group['v'] group['v2'] = (v - v.min()) / (v.max() - v.min()) return group result = df.groupby('d').apply(f) expected = df.copy() expected['v2'] = np.tile([0., 0.5, 1], 2) tm.assert_frame_equal(result, expected) def test_apply_multiindex_fail(): index = MultiIndex.from_arrays([[0, 0, 0, 1, 1, 1], [1, 2, 3, 1, 2, 3] ]) df = DataFrame({'d': [1., 1., 1., 2., 2., 2.], 'c': np.tile(['a', 'b', 'c'], 2), 'v': np.arange(1., 7.)}, index=index) def f(group): v = group['v'] group['v2'] = (v - v.min()) / (v.max() - v.min()) return group result = df.groupby('d').apply(f) expected = df.copy() expected['v2'] = np.tile([0., 0.5, 1], 2) tm.assert_frame_equal(result, expected) def test_apply_corner(tsframe): result = tsframe.groupby(lambda x: x.year).apply(lambda x: x * 2) expected = tsframe * 2 tm.assert_frame_equal(result, expected) def test_apply_without_copy(): # GH 5545 # returning a non-copy in an applied function fails data = DataFrame({'id_field': [100, 100, 200, 300], 'category': ['a', 'b', 'c', 'c'], 'value': [1, 2, 3, 4]}) def filt1(x): if x.shape[0] == 1: return x.copy() else: return x[x.category == 'c'] def filt2(x): if x.shape[0] == 1: return x else: return x[x.category == 'c'] expected = data.groupby('id_field').apply(filt1) result = data.groupby('id_field').apply(filt2) tm.assert_frame_equal(result, expected) def test_apply_corner_cases(): # #535, can't use sliding iterator N = 1000 labels = np.random.randint(0, 100, size=N) df = DataFrame({'key': labels, 'value1': np.random.randn(N), 'value2': ['foo', 'bar', 'baz', 'qux'] * (N // 4)}) grouped = df.groupby('key') def f(g): g['value3'] = g['value1'] * 2 return g result = grouped.apply(f) assert 'value3' in result def test_apply_numeric_coercion_when_datetime(): # In the past, group-by/apply operations have been over-eager # in converting dtypes to numeric, in the presence of datetime # columns. Various GH issues were filed, the reproductions # for which are here. # GH 15670 df = pd.DataFrame({'Number': [1, 2], 'Date': ["2017-03-02"] * 2, 'Str': ["foo", "inf"]}) expected = df.groupby(['Number']).apply(lambda x: x.iloc[0]) df.Date = pd.to_datetime(df.Date) result = df.groupby(['Number']).apply(lambda x: x.iloc[0]) tm.assert_series_equal(result['Str'], expected['Str']) # GH 15421 df = pd.DataFrame({'A': [10, 20, 30], 'B': ['foo', '3', '4'], 'T': [pd.Timestamp("12:31:22")] * 3}) def get_B(g): return g.iloc[0][['B']] result = df.groupby('A').apply(get_B)['B'] expected = df.B expected.index = df.A tm.assert_series_equal(result, expected) # GH 14423 def predictions(tool): out = pd.Series(index=['p1', 'p2', 'useTime'], dtype=object) if 'step1' in list(tool.State): out['p1'] = str(tool[tool.State == 'step1'].Machine.values[0]) if 'step2' in list(tool.State): out['p2'] = str(tool[tool.State == 'step2'].Machine.values[0]) out['useTime'] = str( tool[tool.State == 'step2'].oTime.values[0]) return out df1 = pd.DataFrame({'Key': ['B', 'B', 'A', 'A'], 'State': ['step1', 'step2', 'step1', 'step2'], 'oTime': ['', '2016-09-19 05:24:33', '', '2016-09-19 23:59:04'], 'Machine': ['23', '36L', '36R', '36R']}) df2 = df1.copy() df2.oTime = pd.to_datetime(df2.oTime) expected = df1.groupby('Key').apply(predictions).p1 result = df2.groupby('Key').apply(predictions).p1 tm.assert_series_equal(expected, result) def test_time_field_bug(): # Test a fix for the following error related to GH issue 11324 When # non-key fields in a group-by dataframe contained time-based fields # that were not returned by the apply function, an exception would be # raised. df = pd.DataFrame({'a': 1, 'b': [datetime.now() for nn in range(10)]}) def func_with_no_date(batch): return pd.Series({'c': 2}) def func_with_date(batch): return pd.Series({'b': datetime(2015, 1, 1), 'c': 2}) dfg_no_conversion = df.groupby(by=['a']).apply(func_with_no_date) dfg_no_conversion_expected = pd.DataFrame({'c': 2}, index=[1]) dfg_no_conversion_expected.index.name = 'a' dfg_conversion = df.groupby(by=['a']).apply(func_with_date) dfg_conversion_expected = pd.DataFrame( {'b': datetime(2015, 1, 1), 'c': 2}, index=[1]) dfg_conversion_expected.index.name = 'a' tm.assert_frame_equal(dfg_no_conversion, dfg_no_conversion_expected) tm.assert_frame_equal(dfg_conversion, dfg_conversion_expected) def test_gb_apply_list_of_unequal_len_arrays(): # GH1738 df = DataFrame({'group1': ['a', 'a', 'a', 'b', 'b', 'b', 'a', 'a', 'a', 'b', 'b', 'b'], 'group2': ['c', 'c', 'd', 'd', 'd', 'e', 'c', 'c', 'd', 'd', 'd', 'e'], 'weight': [1.1, 2, 3, 4, 5, 6, 2, 4, 6, 8, 1, 2], 'value': [7.1, 8, 9, 10, 11, 12, 8, 7, 6, 5, 4, 3]}) df = df.set_index(['group1', 'group2']) df_grouped = df.groupby(level=['group1', 'group2'], sort=True) def noddy(value, weight): out = np.array(value * weight).repeat(3) return out # the kernel function returns arrays of unequal length # pandas sniffs the first one, sees it's an array and not # a list, and assumed the rest are of equal length # and so tries a vstack # don't die df_grouped.apply(lambda x: noddy(x.value, x.weight)) def test_groupby_apply_all_none(): # Tests to make sure no errors if apply function returns all None # values. Issue 9684. test_df = DataFrame({'groups': [0, 0, 1, 1], 'random_vars': [8, 7, 4, 5]}) def test_func(x): pass result = test_df.groupby('groups').apply(test_func) expected = DataFrame() tm.assert_frame_equal(result, expected) def test_groupby_apply_none_first(): # GH 12824. Tests if apply returns None first. test_df1 =
DataFrame({'groups': [1, 1, 1, 2], 'vars': [0, 1, 2, 3]})
pandas.DataFrame
import pandas as pd import difflib as df from fuzzywuzzy import fuzz from cleanco import cleanco import numpy as np def merge_files(df,df1,vendor_name_column,actual_name_column): try: merged=pd.merge(df,df1,how='left',left_on=vendor_name_column,right_on=actual_name_column,indicator=True) merged_leftout=merged[merged['_merge'].isin(['left_only'])].dropna(how='all') merged_leftout=merged_leftout.drop_duplicates() merged_leftout= merged_leftout.drop('_merge',axis=1) merged_leftout=merged_leftout.dropna(subset=[vendor_name_column]) merged_leftout=merged_leftout.drop_duplicates(subset=vendor_name_column) return merged_leftout except Exception as e: print(type(e),e) def vendor_name_match(vendor_names_file_path, actual_vendor_names_file_path,special_cases,actual_name_column,vendor_name_column,replace=False): """ Matches the partial vendor names to the actual vendor names paramerters ============= - vendor_names_file_path : path of excel/csv file name for which vendor name to be matched - actual_vendor_names_file_path : path of excel/csv file name containing actual vendor name - actual_name_column: column name of the file containing actual vendor name - vendor_name_column: column name of the file containing vendor name to be matched - replace : True if vendor name are to be replaced with actual vendor names Returns =========== dataframe """ index_to_be_removed=[] if vendor_names_file_path.endswith('.xlsx'): try: data=pd.read_excel(vendor_names_file_path) except Exception as e: print(type(e),e) elif vendor_names_file_path.endswith('.csv'): try: data=pd.read_csv(vendor_names_file_path) except Exception as e: print(type(e),e) else: raise TypeError('File to be matched should be either .xlsx or .csv format') if actual_vendor_names_file_path.endswith('.xlsx'): try: actuals =
pd.read_excel(actual_vendor_names_file_path,usecols=[actual_name_column])
pandas.read_excel
# -*- coding: utf-8 -*- """ Created on Tue Mar 17 10:49:28 2020 @author: <NAME> """ import os import json import pandas as pd import numpy as np import configparser as cp from tensorflow.keras.models import load_model from support_modules.readers import log_reader as lr from support_modules import support as sup from model_prediction import interfaces as it from model_prediction.analyzers import sim_evaluator as ev class ModelPredictor(): """ This is the man class encharged of the model evaluation """ def __init__(self, parms): self.output_route = os.path.join('output_files', parms['folder']) self.parms = parms # load parameters self.load_parameters() self.model_name, _ = os.path.splitext(parms['model_file']) self.model = load_model(os.path.join(self.output_route, parms['model_file'])) self.log = self.load_log_test(self.output_route, self.parms) self.samples = dict() self.predictions = None self.run_num = 0 self.model_def = dict() self.read_model_definition(self.parms['model_type']) print(self.model_def) self.parms['additional_columns'] = self.model_def['additional_columns'] self.acc = self.execute_predictive_task() def execute_predictive_task(self): # create examples for next event and suffix if self.parms['activity'] == 'pred_log': self.parms['num_cases'] = len(self.log.caseid.unique()) else: sampler = it.SamplesCreator() sampler.create(self, self.parms['activity']) # predict self.imp = self.parms ['variant'] self.run_num = 0 for i in range(0, self.parms['rep']): self.predict_values() self.run_num += 1 # export predictions self.export_predictions() # assesment evaluator = EvaluateTask() if self.parms['activity'] == 'pred_log': data = self.append_sources(self.log, self.predictions, self.parms['one_timestamp']) data['caseid'] = data['caseid'].astype(str) return evaluator.evaluate(self.parms, data) else: return evaluator.evaluate(self.parms, self.predictions) def predict_values(self): # Predict values executioner = it.PredictionTasksExecutioner() executioner.predict(self, self.parms['activity']) @staticmethod def load_log_test(output_route, parms): df_test = lr.LogReader( os.path.join(output_route, 'parameters', 'test_log.csv'), parms['read_options']) df_test = pd.DataFrame(df_test.data) df_test = df_test[~df_test.task.isin(['Start', 'End'])] return df_test def load_parameters(self): # Loading of parameters from training path = os.path.join(self.output_route, 'parameters', 'model_parameters.json') with open(path) as file: data = json.load(file) if 'activity' in data: del data['activity'] self.parms = {**self.parms, **{k: v for k, v in data.items()}} self.parms['dim'] = {k: int(v) for k, v in data['dim'].items()} if self.parms['one_timestamp']: self.parms['scale_args'] = { k: float(v) for k, v in data['scale_args'].items()} else: for key in data['scale_args'].keys(): self.parms['scale_args'][key] = { k: float(v) for k, v in data['scale_args'][key].items()} self.parms['index_ac'] = {int(k): v for k, v in data['index_ac'].items()} self.parms['index_rl'] = {int(k): v for k, v in data['index_rl'].items()} file.close() self.ac_index = {v: k for k, v in self.parms['index_ac'].items()} self.rl_index = {v: k for k, v in self.parms['index_rl'].items()} def sampling(self, sampler): sampler.register_sampler(self.parms['model_type'], self.model_def['vectorizer']) self.samples = sampler.create_samples( self.parms, self.log, self.ac_index, self.rl_index, self.model_def['additional_columns']) def predict(self, executioner): results = executioner.predict(self.parms, self.model, self.samples, self.imp, self.model_def['vectorizer']) results = pd.DataFrame(results) results['run_num'] = self.run_num results['implementation'] = self.imp if self.predictions is None: self.predictions = results else: self.predictions = self.predictions.append(results, ignore_index=True) def export_predictions(self): output_folder = os.path.join(self.output_route, 'results') if not os.path.exists(output_folder): os.makedirs(output_folder) filename = self.model_name + '_' + self.parms['activity'] + '.csv' self.predictions.to_csv(os.path.join(output_folder, filename), index=False) @staticmethod def append_sources(source_log, source_predictions, one_timestamp): log = source_log.copy() columns = ['caseid', 'task', 'end_timestamp', 'role'] if not one_timestamp: columns += ['start_timestamp'] log = log[columns] log['run_num'] = 0 log['implementation'] = 'log' predictions = source_predictions.copy() columns = log.columns predictions = predictions[columns] return log.append(predictions, ignore_index=True) @staticmethod def scale_feature(log, feature, parms, replace=False): """Scales a number given a technique. Args: log: Event-log to be scaled. feature: Feature to be scaled. method: Scaling method max, lognorm, normal, per activity. replace (optional): replace the original value or keep both. Returns: Scaleded value between 0 and 1. """ method = parms['norm_method'] scale_args = parms['scale_args'] if method == 'lognorm': log[feature + '_log'] = np.log1p(log[feature]) max_value = scale_args['max_value'] min_value = scale_args['min_value'] log[feature+'_norm'] = np.divide( np.subtract(log[feature+'_log'], min_value), (max_value - min_value)) log = log.drop((feature + '_log'), axis=1) elif method == 'normal': max_value = scale_args['max_value'] min_value = scale_args['min_value'] log[feature+'_norm'] = np.divide( np.subtract(log[feature], min_value), (max_value - min_value)) elif method == 'standard': mean = scale_args['mean'] std = scale_args['std'] log[feature + '_norm'] = np.divide(np.subtract(log[feature], mean), std) elif method == 'max': max_value = scale_args['max_value'] log[feature + '_norm'] = (np.divide(log[feature], max_value) if max_value > 0 else 0) elif method is None: log[feature+'_norm'] = log[feature] else: raise ValueError(method) if replace: log = log.drop(feature, axis=1) return log def read_model_definition(self, model_type): Config = cp.ConfigParser(interpolation=None) Config.read('models_spec.ini') #File name with extension self.model_def['additional_columns'] = sup.reduce_list( Config.get(model_type,'additional_columns'), dtype='str') self.model_def['vectorizer'] = Config.get(model_type, 'vectorizer') class EvaluateTask(): def evaluate(self, parms, data): sampler = self._get_evaluator(parms['activity']) return sampler(data, parms) def _get_evaluator(self, activity): if activity == 'predict_next': return self._evaluate_predict_next elif activity == 'pred_sfx': return self._evaluate_pred_sfx elif activity == 'pred_log': return self._evaluate_predict_log else: raise ValueError(activity) def _evaluate_predict_next(self, data, parms): exp_desc = self.clean_parameters(parms.copy()) evaluator = ev.Evaluator(parms['one_timestamp']) ac_sim = evaluator.measure('accuracy', data, 'ac') rl_sim = evaluator.measure('accuracy', data, 'rl') mean_ac = ac_sim.accuracy.mean() exp_desc = pd.DataFrame([exp_desc]) exp_desc = pd.concat([exp_desc]*len(ac_sim), ignore_index=True) ac_sim =
pd.concat([ac_sim, exp_desc], axis=1)
pandas.concat
# 兼容 pythone2,3 from __future__ import print_function # 导入相关python库 import os import numpy as np import pandas as pd #设定随机数种子 np.random.seed(36) #使用matplotlib库画图 import matplotlib import seaborn import matplotlib.pyplot as plot from sklearn import datasets #读取数据 housing = pd.read_csv('kc_train.csv') target = pd.read_csv('kc_train2.csv') #销售价格 t = pd.read_csv('kc_test.csv') #测试数据 #this is a new branch #数据预处理 housing.info() #查看是否有缺失值 #特征缩放 from sklearn.preprocessing import MinMaxScaler minmax_scaler = MinMaxScaler() minmax_scaler.fit(housing) #进行内部拟合,内部参数会发生变化 scaler_housing = minmax_scaler.transform(housing) scaler_housing =
pd.DataFrame(scaler_housing, columns=housing.columns)
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Jul 10 04:11:27 2017 @author: konodera nohup python -u 501_concat.py & """ import pandas as pd import numpy as np from tqdm import tqdm import multiprocessing as mp import gc import utils utils.start(__file__) #============================================================================== # def #============================================================================== def user_feature(df, name): if 'train' in name: name_ = 'trainT-0' elif name == 'test': name_ = 'test' df = pd.merge(df, pd.read_pickle('../feature/{}/f101_order.p'.format(name_)),# same on='order_id', how='left') # timezone df = pd.merge(df, pd.read_pickle('../input/mk/timezone.p'), on='order_hour_of_day', how='left') df = pd.merge(df, pd.read_pickle('../feature/{}/f102_user.p'.format(name)), on='user_id', how='left') df = pd.merge(df, pd.read_pickle('../feature/{}/f103_user.p'.format(name)), on='user_id', how='left') df = pd.merge(df, pd.read_pickle('../feature/{}/f104_user.p'.format(name)), on='user_id', how='left') df = pd.merge(df, pd.read_pickle('../feature/{}/f105_order.p'.format(name_)),# same on='order_id', how='left') df = pd.merge(df, pd.read_pickle('../feature/{}/f110_order.p'.format(name_)),# same on='order_id', how='left') gc.collect() return df def item_feature(df, name): # aisle = pd.read_pickle('../input/mk/goods.p')[['product_id', 'aisle_id']] # aisle = pd.get_dummies(aisle.rename(columns={'aisle_id':'item_aisle'}), columns=['item_aisle']) # df = pd.merge(df, aisle, on='product_id', how='left') organic = pd.read_pickle('../input/mk/products_feature.p') df = pd.merge(df, organic, on='product_id', how='left') # this could be worse df = pd.merge(df, pd.read_pickle('../feature//{}/f202_product_hour.p'.format(name)), on=['product_id','order_hour_of_day'], how='left') df = pd.merge(df, pd.read_pickle('../feature/{}/f202_uniq_product_hour.p'.format(name)), on=['product_id','order_hour_of_day'], how='left') df = pd.merge(df, pd.read_pickle('../feature/{}/f202_product_dow.p'.format(name)), on=['product_id','order_dow'], how='left') df = pd.merge(df, pd.read_pickle('../feature/{}/f202_uniq_product_dow.p'.format(name)), on=['product_id','order_dow'], how='left') gc.collect() # low importance df = pd.merge(df, pd.read_pickle('../feature/{}/f202_product_timezone.p'.format(name)), on=['product_id','timezone'], how='left') df = pd.merge(df, pd.read_pickle('../feature/{}/f202_uniq_product_timezone.p'.format(name)), on=['product_id','timezone'], how='left') # low importance df = pd.merge(df, pd.read_pickle('../feature/{}/f202_product_dow-timezone.p'.format(name)), on=['product_id', 'order_dow', 'timezone'], how='left') df = pd.merge(df, pd.read_pickle('../feature/{}/f202_uniq_product_dow-timezone.p'.format(name)), on=['product_id', 'order_dow', 'timezone'], how='left') # no boost df = pd.merge(df, pd.read_pickle('../feature/{}/f202_flat_product.p'.format(name)), on=['product_id'], how='left') df = pd.merge(df, pd.read_pickle('../feature/{}/f203_product.p'.format(name)), on='product_id', how='left') df = pd.merge(df, pd.read_pickle('../feature/{}/f205_order_product.p'.format(name)), on=['order_id', 'product_id'], how='left') df = pd.merge(df, pd.read_pickle('../feature/{}/f207_product.p'.format(name)), on='product_id', how='left') df = pd.merge(df, pd.read_pickle('../feature/{}/f208_product.p'.format(name)), on='product_id', how='left') # low imp df = pd.merge(df, pd.read_pickle('../feature/{}/f209_product.p'.format(name)), on='product_id', how='left') df = pd.merge(df, pd.read_pickle('../feature/{}/f210_product.p'.format(name)), on='product_id', how='left') df = pd.merge(df, pd.read_pickle('../feature/{}/f211_product.p'.format(name)), on='product_id', how='left') df = pd.merge(df, pd.read_pickle('../feature/{}/f212_product.p'.format(name)), on='product_id', how='left') df = pd.merge(df, pd.read_pickle('../feature/{}/f213_product-dow.p'.format(name)), on=['product_id','order_dow'], how='left') df = pd.merge(df, pd.read_pickle('../feature/{}/f214_product.p'.format(name)), on='product_id', how='left') df = pd.merge(df, pd.read_pickle('../feature/{}/f215_product.p'.format(name)), on='product_id', how='left') gc.collect() return df def user_item_feature(df, name): df = pd.merge(df, pd.read_pickle('../feature/{}/f301_order-product.p'.format(name)), on=['order_id', 'product_id'],how='left') df = pd.merge(df, pd.read_pickle('../feature/{}/f301_order-product_n5.p'.format(name)), on=['order_id', 'product_id'],how='left') df = pd.merge(df, pd.read_pickle('../feature/{}/f302_order-product_all.p'.format(name)), on=['order_id', 'product_id'],how='left') df = pd.merge(df, pd.read_pickle('../feature/{}/f303_order-product.p'.format(name)), on=['order_id', 'product_id'],how='left') df = pd.merge(df, pd.read_pickle('../feature/{}/f304-1_order-product.p'.format(name)), on=['order_id', 'product_id'],how='left') df = pd.merge(df, pd.read_pickle('../feature/{}/f304-2_order-product.p'.format(name)), on=['order_id', 'product_id'],how='left') df = pd.merge(df, pd.read_pickle('../feature/{}/f304-3_order-product.p'.format(name)), on=['order_id', 'product_id'],how='left') df = pd.merge(df, pd.read_pickle('../feature/{}/f305_order-product.p'.format(name)), on=['order_id', 'product_id'], how='left') df = pd.merge(df, pd.read_pickle('../feature/{}/f306_user-product.p'.format(name)), on=['user_id', 'product_id'], how='left') df = pd.merge(df, pd.read_pickle('../feature/{}/f306_user-product_n5.p'.format(name)), on=['user_id', 'product_id'], how='left') gc.collect() df = pd.merge(df, pd.read_pickle('../feature/{}/f307_user-product-timezone.p'.format(name)), on=['user_id', 'product_id','timezone'], how='left') df = pd.merge(df, pd.read_pickle('../feature/{}/f307_user-product-dow.p'.format(name)), on=['user_id', 'product_id','order_dow'], how='left') df = pd.merge(df, pd.read_pickle('../feature/{}/f308_user-product-timezone.p'.format(name)), on=['user_id', 'product_id','timezone'], how='left') df = pd.merge(df, pd.read_pickle('../feature/{}/f308_user-product-dow.p'.format(name)), on=['user_id', 'product_id','order_dow'], how='left') df = pd.merge(df, pd.read_pickle('../feature/{}/f309_user-product.p'.format(name)), on=['user_id', 'product_id'], how='left') df = pd.merge(df, pd.read_pickle('../feature/{}/f309_user-product_n5.p'.format(name)), on=['user_id', 'product_id'], how='left') df = pd.merge(df, pd.read_pickle('../feature/{}/f310_user-product.p'.format(name)), on=['user_id', 'product_id'], how='left') df = pd.merge(df, pd.read_pickle('../feature/{}/f312_user_product.p'.format(name)), on=['user_id', 'product_id'], how='left') df = pd.merge(df, pd.read_pickle('../feature/{}/f312_user_product_n5.p'.format(name)), on=['user_id', 'product_id'], how='left') df = pd.merge(df, pd.read_pickle('../feature/{}/f313_user_aisle.p'.format(name)), on=['user_id', 'aisle_id'], how='left') df = pd.merge(df, pd.read_pickle('../feature/{}/f313_user_dep.p'.format(name)), on=['user_id', 'department_id'], how='left') df = pd.merge(df, pd.read_pickle('../feature/{}/f314_user-product.p'.format(name)), on=['user_id', 'product_id'], how='left') df = pd.merge(df, pd.read_pickle('../feature/{}/f315-1_order-product.p'.format(name)), on=['order_id', 'product_id'],how='left') df = pd.merge(df, pd.read_pickle('../feature/{}/f315-2_order-product.p'.format(name)), on=['order_id', 'product_id'],how='left') df = pd.merge(df, pd.read_pickle('../feature/{}/f315-3_order-product.p'.format(name)), on=['order_id', 'product_id'],how='left') df = pd.merge(df, pd.read_pickle('../feature/{}/f316_order_product.p'.format(name)), on=['order_id', 'product_id'],how='left') gc.collect() return df def daytime_feature(df, name): df = pd.merge(df, pd.read_pickle('../feature/{}/f401_dow.p'.format(name)), on=['order_dow'], how='left') df = pd.merge(df, pd.read_pickle('../feature/{}/f401_hour.p'.format(name)), on=['order_hour_of_day'], how='left') return df def concat_pred_item(T, dryrun=False): if T==-1: name = 'test' else: name = 'trainT-'+str(T) #============================================================================== print('load label') #============================================================================== # NOTE: order_id is label print('load t3') X_base = pd.read_pickle('../feature/X_base_t3.p') label = pd.read_pickle('../feature/{}/label_reordered.p'.format(name)) # 'inner' for removing t-n_order_id == NaN if 'train' in name: df = pd.merge(X_base[X_base.is_train==1], label, on='order_id', how='inner') elif name == 'test': df = pd.merge(X_base[X_base.is_train==0], label, on='order_id', how='inner') if dryrun: print('dryrun') df = df.sample(9999) df = pd.merge(df, pd.read_pickle('../input/mk/goods.p')[['product_id', 'aisle_id', 'department_id']], on='product_id', how='left') print('{}.shape:{}\n'.format(name, df.shape)) #============================================================================== print('user feature') #============================================================================== df = user_feature(df, name) print('{}.shape:{}\n'.format(name, df.shape)) #============================================================================== print('item feature') #============================================================================== df = item_feature(df, name) print('{}.shape:{}\n'.format(name, df.shape)) #============================================================================== print('reduce memory') #============================================================================== utils.reduce_memory(df) ix_end = df.shape[1] #============================================================================== print('user x item') #============================================================================== df = user_item_feature(df, name) print('{}.shape:{}\n'.format(name, df.shape)) #============================================================================== print('user x item') #============================================================================== def compress(df, key): """ key: str """ df_ = df.drop_duplicates(key)[[key]].set_index(key) dtypes = df.dtypes col = dtypes[dtypes!='O'].index col = [c for c in col if '_id' not in c] gr = df.groupby(key) for c in col: df_[c+'-min'] = gr[c].min() df_[c+'-mean'] = gr[c].mean() df_[c+'-median'] = gr[c].median() df_[c+'-max'] = gr[c].max() df_[c+'-std'] = gr[c].std() var = df_.var() col = var[var==0].index df_.drop(col, axis=1, inplace=True) gc.collect() return df_.reset_index() key = 'order_id' feature = compress(pd.read_pickle('../feature/{}/f301_order-product.p'.format(name)), key) df = pd.merge(df, feature, on=key, how='left') feature = compress(pd.read_pickle('../feature/{}/f301_order-product_n5.p'.format(name)), key) df = pd.merge(df, feature, on=key, how='left') key = 'order_id' feature = compress(pd.read_pickle('../feature/{}/f302_order-product_all.p'.format(name)), key) df = pd.merge(df, feature, on=key, how='left') key = 'order_id' feature = compress(pd.read_pickle('../feature/{}/f303_order-product.p'.format(name)), key) df = pd.merge(df, feature, on=key, how='left') key = 'order_id' feature = compress(pd.read_pickle('../feature/{}/f304-1_order-product.p'.format(name)), key) df = pd.merge(df, feature, on=key, how='left') key = 'order_id' feature = compress(pd.read_pickle('../feature/{}/f304-2_order-product.p'.format(name)), key) df = pd.merge(df, feature, on=key, how='left') key = 'order_id' feature = compress(pd.read_pickle('../feature/{}/f304-3_order-product.p'.format(name)), key) df = pd.merge(df, feature, on=key, how='left') key = 'order_id' feature = compress(pd.read_pickle('../feature/{}/f305_order-product.p'.format(name)), key) df = pd.merge(df, feature, on=key, how='left') gc.collect() key = 'user_id' feature = compress(pd.read_pickle('../feature/{}/f306_user-product.p'.format(name)), key) df = pd.merge(df, feature, on=key, how='left') feature = compress(pd.read_pickle('../feature/{}/f306_user-product_n5.p'.format(name)), key) df = pd.merge(df, feature, on=key, how='left') key = 'user_id' feature = compress(pd.read_pickle('../feature/{}/f307_user-product-timezone.p'.format(name)), key) df = pd.merge(df, feature, on=key, how='left') key = 'user_id' feature = compress(pd.read_pickle('../feature/{}/f308_user-product-timezone.p'.format(name)), key) df = pd.merge(df, feature, on=key, how='left') key = 'user_id' feature = compress(pd.read_pickle('../feature/{}/f308_user-product-dow.p'.format(name)), key) df = pd.merge(df, feature, on=key, how='left') key = 'user_id' feature = compress(pd.read_pickle('../feature/{}/f309_user-product.p'.format(name)), key) df = pd.merge(df, feature, on=key, how='left') feature = compress(pd.read_pickle('../feature/{}/f309_user-product_n5.p'.format(name)), key) df =
pd.merge(df, feature, on=key, how='left')
pandas.merge
#!python #!/usr/bin/env python import pandas as pd import seaborn as sns import matplotlib.pyplot as plt class bcolors: HEADER = '\033[95m' OKBLUE = '\033[94m' OKCYAN = '\033[96m' OKGREEN = '\033[92m' WARNING = '\033[93m' FAIL = '\033[91m' ENDC = '\033[0m' BOLD = '\033[1m' UNDERLINE = '\033[4m' def plot_stx_mt(nc_mr): nc_mr = pd.DataFrame.from_records(nc_mr) nc_mr.columns =["Mutation Rate (%)", "NC IR 0", "NC IR 2", "NC DIFF", "NBDM", "NC (PAQ)"] ax = sns.lineplot(data=
pd.melt(nc_mr, ['Mutation Rate (%)'],var_name='Legend', value_name='NC')
pandas.melt
import pandas import numpy as np import scipy.stats as stats import matplotlib.pyplot as plt import seaborn as sns def evaluate_components(clf, x, y, n_iterations=500, check = 100, evaluate = True, plot = True, thr = 0.95, metric=None, random_state=123): if type(x) != type(pandas.DataFrame()): x = pandas.DataFrame(x) # fit model clf.fit(x,y) n_comps = clf.n_components # prepare output results = pandas.DataFrame(index = range(n_comps * (n_iterations+1)), columns = ['score', 'component', 'model']) results.loc[:,'component'] = list(range(n_comps))*(n_iterations+1) results.loc[range(n_comps),'model'] = ['True']*n_comps results.loc[range(n_comps,n_comps*(n_iterations+1)), 'model' ] = ['Null']*(n_comps*n_iterations) if not metric: true_scores = [stats.pearsonr(clf.x_scores_[:,x], clf.y_scores_[:,x] )[0]**2 for x in range(n_comps)] else: true_scores = [metric(clf.x_scores_[:,x], clf.y_scores_[:,x] ) for x in range(n_comps)] results.loc[results[results.model=='True'].index,'score'] = true_scores k = clf.n_components # permute and refit model rs = np.random.RandomState(random_state) x.index = range(len(x.index)) for i in range(n_iterations): new_ind = rs.permutation(x.index) new_x = x.iloc[new_ind] newmod = clf.fit(new_x,y) if not metric: new_scores = [stats.pearsonr(newmod.x_scores_[:,x], newmod.y_scores_[:,x] )[0]**2 for x in range(n_comps)] else: new_scores = [metric(newmod.x_scores_[:,x], newmod.y_scores_[:,x] ) for x in range(n_comps)] results.loc[range(k, k+n_comps), 'score'] = new_scores if check: if i % check == 0: print('finished iteration',i) k += n_comps if evaluate: if plot: cr = display_results(results, thr) else: cr = display_results(results, thr, False) return results, cr def display_results(results, thr = 0.95, plot=True): if plot: # plot components sns.set_context('paper') plt.close() sns.catplot(x='component', y = 'score', hue='model', data=results,kind='point') plt.show() # get p-values comp_results = pandas.DataFrame(index=results.component.unique(), columns = ['r','p','sig']) for i in results.component.unique(): nullz = results[(results.component==i) & (results.model=='Null') ]['score'].sort_values().values real = results[(results.component==i) & (results.model=='True')]['score'].values[0] comp_results.loc[i,'r'] = real p = (len(nullz[nullz>real])+1) / len(nullz) if p < (1 - thr): comp_results.loc[i,['p','sig']] = [p, 1] print('component %s: p = %s ***'%(i,p)) else: comp_results.loc[i,['p','sig']] = [p, 0] print('component %s: p = %s'%(i,p)) return comp_results def bootstrap_features(clf, fit_model, X, y, n_iterations=500, check = 100, on ='x'): if type(X) != type(pandas.DataFrame()): X = pandas.DataFrame(X) if type(y) != type(pandas.DataFrame()): y = pandas.DataFrame(y) # fit model orig = fit_model # prepare output n_feats_x = X.shape[-1] n_feats_y = y.shape[-1] all_results_x = {} all_results_y = {} for i in range(orig.n_components): results = pandas.DataFrame(index = range(n_iterations), columns = range(n_feats_x)) all_results_x.update({i: results}) results = pandas.DataFrame(index = range(n_iterations), columns = range(n_feats_y)) all_results_y.update({i: results}) bs_ratio_x = pandas.DataFrame(index = range(orig.n_components), columns = range(n_feats_x)) bs_ratio_y = pandas.DataFrame(index = range(orig.n_components), columns = range(n_feats_y)) # bootstrap for i in range(n_iterations): n_ind = np.random.choice(X.index, len(X.index)) n_samp = pandas.DataFrame(X.loc[n_ind],copy=True) ny =
pandas.DataFrame(y.loc[n_ind],copy=True)
pandas.DataFrame
import pandas as pd import json df =
pd.read_csv('baseDesafio.csv')
pandas.read_csv
import pendulum as pdl import sys sys.path.append(".") # the memoization-related library import loguru import itertools import portion import klepto.keymaps import CacheIntervals as ci from CacheIntervals.utils import flatten from CacheIntervals.utils import pdl2pd, pd2pdl from CacheIntervals.utils import Timer from CacheIntervals.Intervals import pd2po, po2pd from CacheIntervals.RecordInterval import RecordIntervals, RecordIntervalsPandas class QueryRecorder: ''' A helper class ''' pass class MemoizationWithIntervals(object): ''' The purpose of this class is to optimise the number of call to a function retrieving possibly disjoint intervals: - do standard caching for a given function - additively call for a date posterior to one already cached is supposed to yield a pandas Frame which can be obtained by concatenating the cached result and a -- hopefully much -- smaller query Maintains a list of intervals that have been called. With a new interval: - ''' keymapper = klepto.keymaps.stringmap(typed=False, flat=False) def __init__(self, pos_args=None, names_kwarg=None, classrecorder=RecordIntervalsPandas, aggregation=lambda listdfs: pd.concat(listdfs, axis=0), debug=False, # memoization=klepto.lru_cache( # cache=klepto.archives.hdf_archive( # f'{pdl.today().to_date_string()}_memoization.hdf5'), # keymap=keymapper), memoization=klepto.lru_cache( cache=klepto.archives.dict_archive(), keymap=keymapper), **kwargs): ''' :param pos_args: the indices of the positional arguments that will be handled as intervals :param names_kwarg: the name of the named parameters that will be handled as intervals :param classrecorder: the interval recorder type we want to use :param memoization: a memoization algorithm ''' # A dictionary of positional arguments indices # that are intervals self.argsi = {} self.kwargsi = {} # if pos_args is not None: # for posarg in pos_args: # self.argsi[posarg] = classrecorder(**kwargs) self.pos_args_itvl = pos_args if pos_args is not None else [] #print(self.args) # if names_kwarg is not None: # for namedarg in names_kwarg: # self.kwargsi[namedarg] = classrecorder(**kwargs) self.names_kwargs_itvl = names_kwarg if names_kwarg is not None else {} #print(self.kwargs) self.memoization = memoization self.aggregation = aggregation self.debugQ = debug self.argsdflt = None self.kwargsdflt = None self.time_last_call = pdl.today() self.classrecorder = classrecorder self.kwargsrecorder = kwargs self.argssolver = None self.query_recorder = QueryRecorder() def __call__(self, f): ''' The interval memoization leads to several calls to the standard memoised function and generates a list of return values. The aggregation is needed for the doubly lazy function to have the same signature as the To access, the underlying memoized function pass get_function_cachedQ=True to the kwargs of the overloaded call (not of this function :param f: the function to memoize :return: the wrapper to the memoized function ''' if self.argssolver is None: self.argssolver = ci.Functions.ArgsSolver(f, split_args_kwargsQ=True) @self.memoization def f_cached(*args, **kwargs): ''' The cached function is used for a double purpose: 1. for standard calls, will act as the memoised function in a traditional way 2. Additively when pass parameters of type QueryRecorder, it will create or retrieve the interval recorders associated with the values of non-interval parameters. In this context, we use the cached function as we would a dictionary. ''' QueryRecorderQ = False args_new = [] kwargs_new = {} ''' check whether this is a standard call to the user function or a request for the interval recorders ''' for i,arg in enumerate(args): if isinstance(arg, QueryRecorder): args_new.append(self.classrecorder(**self.kwargsrecorder)) QueryRecorderQ = True else: args_new.append(args[i]) for name in kwargs: if isinstance(kwargs[name], QueryRecorder): kwargs_new[name] = self.classrecorder(**self.kwargsrecorder) QueryRecorderQ = True else: kwargs_new[name] = kwargs[name] if QueryRecorderQ: return args_new, kwargs_new return f(*args, **kwargs) def wrapper(*args, **kwargs): if kwargs.get('get_function_cachedQ', False): return f_cached #loguru.logger.debug(f'function passed: {f_cached}') loguru.logger.debug(f'args passed: {args}') loguru.logger.debug(f'kwargs passed: {kwargs}') # First pass: resolve the recorders dargs_exp, kwargs_exp = self.argssolver(*args, **kwargs) # Intervals are identified by position and keyword name # 1. First get the interval recorders args_exp = list(dargs_exp.values()) args_exp_copy = args_exp.copy() kwargs_exp_copy = kwargs_exp.copy() for i in self.pos_args_itvl: args_exp_copy[i] = self.query_recorder for name in self.names_kwargs_itvl: kwargs_exp_copy[name] = self.query_recorder args_with_ri, kwargs_with_ri = f_cached(*args_exp_copy, **kwargs_exp_copy) # 2. Now get the the actual list of intervals for i in self.pos_args_itvl: # reuse args_exp_copy to store the list args_exp_copy[i] = args_with_ri[i](args_exp[i]) for name in self.names_kwargs_itvl: # reuse kwargs_exp_copy to store the list kwargs_exp_copy[name] = kwargs_with_ri[name](kwargs_exp[name]) '''3. Then generate all combination of parameters 3.a - args''' ns_args = range(len(args_exp)) lists_possible_args = [[args_exp[i]] if i not in self.pos_args_itvl else args_exp_copy[i] for i in ns_args] # Take the cartesian product of these calls_args = list( map(list,itertools.product(*lists_possible_args))) '''3.b kwargs''' #kwargs_exp_vals = kwargs_exp_copy.values() names_kwargs = list(kwargs_exp_copy.keys()) lists_possible_kwargs = [[kwargs_exp[name]] if name not in self.names_kwargs_itvl else kwargs_exp_copy[name] for name in names_kwargs] calls_kwargs = list(map(lambda l: dict(zip(names_kwargs,l)), itertools.product(*lists_possible_kwargs))) calls = list(itertools.product(calls_args, calls_kwargs)) if self.debugQ: results = [] for call in calls: with Timer() as timer: results.append(f_cached(*call[0], **call[1]) ) print('Timer to demonstrate caching:') timer.display(printQ=True) else: results = [f_cached(*call[0], **call[1]) for call in calls] result = self.aggregation(results) return result return wrapper if __name__ == "__main__": import logging import daiquiri import pandas as pd import time daiquiri.setup(logging.DEBUG) logging.getLogger('OneTick64').setLevel(logging.WARNING) logging.getLogger('databnpp.ODCB').setLevel(logging.WARNING) logging.getLogger('requests_kerberos').setLevel(logging.WARNING) pd.set_option('display.max_rows', 200) pd.set_option('display.width', 600) pd.set_option('display.max_columns', 200) tssixdaysago = pdl2pd(pdl.yesterday('UTC').add(days=-5)) tsfivedaysago = pdl2pd(pdl.yesterday('UTC').add(days=-4)) tsfourdaysago = pdl2pd(pdl.yesterday('UTC').add(days=-3)) tsthreedaysago = pdl2pd(pdl.yesterday('UTC').add(days=-2)) tstwodaysago = pdl2pd(pdl.yesterday('UTC').add(days=-1)) tsyesterday = pdl2pd(pdl.yesterday('UTC')) tstoday = pdl2pd(pdl.today('UTC')) tstomorrow = pdl2pd(pdl.tomorrow('UTC')) tsintwodays = pdl2pd(pdl.tomorrow('UTC').add(days=1)) tsinthreedays = pdl2pd(pdl.tomorrow('UTC').add(days=2)) def print_calls(calls): print( list( map( lambda i: (i.left, i.right), calls))) def print_calls_dates(calls): print( list( map( lambda i: (pd2pdl(i.left).to_date_string(), pd2pdl(i.right).to_date_string()), calls))) def display_calls(calls): loguru.logger.info( list( map( lambda i: (pd2pdl(i.left).to_date_string(), pd2pdl(i.right).to_date_string()), calls))) # Testing record intervals -> ok if True: itvals = RecordIntervals() calls = itvals(portion.closed(pdl.yesterday(), pdl.today())) print(list(map( lambda i: (i.lower.to_date_string(), i.upper.to_date_string()), calls))) print(list(map(lambda i: type(i), calls))) calls = itvals( portion.closed(pdl.yesterday().add(days=-1), pdl.today().add(days=1))) #print(calls) print( list( map( lambda i: (i.lower.to_date_string(), i.upper.to_date_string()), calls))) # Testing record intervals pandas -> ok if True: itvals = RecordIntervalsPandas() # yesterday -> today calls = itvals(pd.Interval(pdl2pd(pdl.yesterday()), pdl2pd(pdl.today()), closed='left')) print( list( map( lambda i: (pd2pdl(i.left).to_date_string(), pd2pdl(i.right).to_date_string()), calls))) # day before yesterday -> tomorrow: should yield 3 intervals calls = itvals(pd.Interval(pdl2pd(pdl.yesterday().add(days=-1)), pdl2pd(pdl.today().add(days=1)))) print( list( map( lambda i: (pd2pdl(i.left).to_date_string(), pd2pdl(i.right).to_date_string()), calls))) # day before yesterday -> day after tomorrow: should yield 4 intervals calls = itvals( pd.Interval(pdl2pd(pdl.yesterday().add(days=-1)), pdl2pd(pdl.tomorrow().add(days=1)))) print( list( map( lambda i: (pd2pdl(i.left).to_date_string(), pd2pdl(i.right).to_date_string()), calls))) # 2 days before yesterday -> 2day after tomorrow: should yield 6 intervals calls = itvals( pd.Interval(pdl2pd(pdl.yesterday().add(days=-2)), pdl2pd(pdl.tomorrow().add(days=2)))) print(list(map( lambda i: (pd2pdl(i.left).to_date_string(), pd2pdl(i.right).to_date_string()), calls))) # Further tests on record intervals pandas if False: itvals = RecordIntervalsPandas() calls = itvals(pd.Interval(tstwodaysago, tstomorrow, closed='left')) display_calls(calls) calls = itvals( pd.Interval(tstwodaysago, tsyesterday)) display_calls(calls) calls = itvals( pd.Interval(tstwodaysago, tsintwodays)) display_calls(calls) calls = itvals( pd.Interval(pdl2pd(pdl.yesterday().add(days=-2)), pdl2pd(pdl.tomorrow().add(days=2)))) display_calls(calls) # proof-of_concept of decorator to modify function parameters if False: class dector_arg: # a toy model def __init__(self, pos_arg=None, f_arg=None, name_kwarg=None, f_kwarg=None): ''' :param pos_arg: the positional argument :param f_arg: the function to apply to the positional argument :param name_kwarg: the keyword argument :param f_kwarg: the function to apply to the keyword argument ''' self.args = {} self.kwargs = {} if pos_arg: self.args[pos_arg] = f_arg print(self.args) if name_kwarg: self.kwargs[name_kwarg] = f_kwarg print(self.kwargs) def __call__(self, f): ''' the decorator action :param f: the function to decorate :return: a function whose arguments have the function f_args and f_kwargs pre-applied. ''' self.f = f def inner_func(*args, **kwargs): print(f'function passed: {self.f}') print(f'args passed: {args}') print(f'kwargs passed: {kwargs}') largs = list(args) for i, f in self.args.items(): print(i) print(args[i]) largs[i] = f(args[i]) for name, f in self.kwargs.items(): kwargs[name] = f(kwargs[name]) return self.f(*largs, **kwargs) return inner_func dec = dector_arg(pos_arg=0, f_arg=lambda x: x + 1, name_kwarg='z', f_kwarg=lambda x: x + 1) @dector_arg(1, lambda x: x + 1, 'z', lambda x: x + 1) def g(x, y, z=3): ''' The decorated function should add one to the second positional argument and :param x: :param y: :param z: :return: ''' print(f'x->{x}') print(f'y->{y}') print(f'z->{z}') g(1, 10, z=100) if False: memo = MemoizationWithIntervals() # testing MemoizationWithIntervals # typical mechanism if False: @MemoizationWithIntervals( None, ['interval'], aggregation=list, debug=True, memoization=klepto.lru_cache( maxsize=200, cache=klepto.archives.hdf_archive( f'{pdl.today().to_date_string()}_memoisation.hdf5'), keymap=klepto.keymaps.stringmap(typed=False, flat=False))) def function_with_interval_param(dummy1,dummy2, kdummy=1, interval=pd.Interval(tstwodaysago, tstomorrow)): time.sleep(1) print('****') print(f'dummy1: {dummy1}, dummy2: {dummy2}') print(f'kdummy: {kdummy}') print(f'interval: {interval}') return [dummy1, dummy2, kdummy, interval] print('=*=*=*=* MECHANISM DEMONSTRATION =*=*=*=*') print('==== First pass ===') print("initialisation with an interval from yesterday to today") # function_with_interval_params(pd.Interval(pdl.yesterday(), pdl.today(),closed='left'), # interval1 = pd.Interval(pdl.yesterday().add(days=0), # pdl.today(), closed='both') # ) print( f'Final result:\n{function_with_interval_param(0, 1, interval=pd.Interval(tsyesterday, tstoday))}') print('==== Second pass ===') print("request for data from the day before yesterday to today") print("expected split in two intervals with results from yesterday to today being cached") print( f'Final result: {function_with_interval_param(0,1, interval=pd.Interval(tstwodaysago, tstoday))}' ) print('==== 3rd pass ===') print("request for data from three days to yesterday") print("expected split in two intervals") print(f'Final result:\n {function_with_interval_param(0,1, interval=pd.Interval(tsthreedaysago, tsyesterday))}' ) print('==== 4th pass ===') print("request for data from three days to tomorrow") print("expected split in three intervals") print(f'Final result:\n\ {function_with_interval_param(0,1, interval1= pd.Interval(tsthreedaysago, tstomorrow))}' ) print('==== 5th pass ===') print("request for data from two days ago to today with different first argument") print("No caching expected and one interval") print( f'Final result:\n{function_with_interval_param(1, 1, interval=pd.Interval(tstwodaysago, tstoday))}' ) print('==== 6th pass ===') print("request for data from three days ago to today with different first argument") print("Two intervals expected") print( f'Final result: {function_with_interval_param(1, 1, interval=pd.Interval(tsthreedaysago, tstoday))}' ) # Testing with an interval as position argument and one interval as keyword argument if False: @MemoizationWithIntervals( [0], ['interval1'], aggregation=list, debug=True, memoization=klepto.lru_cache( maxsize=200, cache=klepto.archives.hdf_archive( f'{pdl.today().to_date_string()}_memoisation.hdf5'), keymap=klepto.keymaps.stringmap(typed=False, flat=False))) def function_with_interval_params(interval0, interval1=pd.Interval(tstwodaysago, tstomorrow)): time.sleep(1) print('***') print(f'interval0: {interval0}') print(f'interval1: {interval1}') return (interval0, interval1) print('=*=*=*=* DEMONSTRATION WITH TWO INTERVAL PARAMETERS =*=*=*=*') print('==== First pass ===') print(f'Initialisation: first interval:\nyest to tday - second interval: two days ago to tomorrow') print(f'Final result:\n{function_with_interval_params(pd.Interval(tsyesterday, tstoday))}') print('==== Second pass ===') print(f'Call with first interval:\n3 days ago to tday - second interval: unchanged') print('Expected caching and split of first interval in two') print( f'Final result: {function_with_interval_params(pd.Interval(tsthreedaysago, tstoday))}' ) print('==== 3rd pass ===') print(f'Call with first interval:\nunchanged - second interval: yest to today') print('Expected only cached results and previous split of first interval') print(f'Final result:\n {function_with_interval_params(pd.Interval(tsthreedaysago, tstoday), interval1 = pd.Interval(tsyesterday, tstoday))}' ) print('==== 4th pass ===') print(f'Call with first interval:\n3 days ago to today - second interval: yest to today') print('Expected only cached results and only split of first interval') print(f'Final result:\n {function_with_interval_params(pd.Interval(tsthreedaysago, tstoday), interval1 = pd.Interval(tsyesterday, tstoday))}' ) print('==== 5th pass ===') print(f'Call with first interval:\n3 days ago to yesterday - second interval: 3 days ago to tomorrow') print('Expected no split of first interval and split of second interval in two. Only one none-cached call') print(f'Final result:\n\ {function_with_interval_params(pd.Interval(tsthreedaysago, tsyesterday), interval1= pd.Interval(tsthreedaysago, tstomorrow))}' ) print('==== 6th pass ===') print(f'Call with first interval:\n3 days ago to today - second interval: 3 days ago to tomorrow') print('Expected split of first interval in two and split of second interval in two. One non-cached call: today - tomorrow x ') print(f'Final result:\n\ {function_with_interval_params(pd.Interval(tsthreedaysago, tstoday), interval1=pd.Interval(tsthreedaysago, tstomorrow))}' ) # Showing the issue with the current version if False: @MemoizationWithIntervals(None, ['interval'], aggregation=list, debug=True, memoization=klepto.lru_cache( maxsize=200, keymap=klepto.keymaps.stringmap(typed=False, flat=False))) def function_with_interval_param(valint, interval=pd.Interval(tstwodaysago, tstomorrow)): time.sleep(1) print('**********************************') print(f'valint: {valint}') print(f'interval: {interval}') return (valint, interval) print('==== First pass ===') print( f'Final result:\n{function_with_interval_param(2, interval=pd.Interval(tsyesterday, tstoday))}') print('==== Second pass ===') print(f'Final result: {function_with_interval_param(2, interval=
pd.Interval(tsthreedaysago, tstoday)
pandas.Interval
import pandas as pd from io import StringIO from datetime import timedelta from portfolio_construction import OptimisationPortfolioConstructionModel from execution import Execution from charting import InitCharts, PlotPerformanceChart, PlotExposureChart, PlotCountryExposureChart def normalise(series, equal_ls=True): if equal_ls: series -= series.mean() sum = series.abs().sum() return series.apply(lambda x: x / sum) class StockifySentiment(QCAlgorithm): def Initialize(self): self.SetStartDate(2017, 1, 1) # Set Start Date self.SetEndDate(2020, 5, 20) self.SetCash(100000) # Set Strategy Cash # Weighting style - normalise or alpha_max (alpha maximisation w/ optimisation) self.weighting_style = 'normalise' # Market neutral self.mkt_neutral = True # Audio feature to use self.audio_feature = 'valence' # Get data self.data, self.etf_list, self.etf_country = self.DataSetup() # Add ETFs for etf in self.etf_list: self.AddEquity(etf, Resolution.Minute) # Portfolio construction model self.CustomPortfolioConstructionModel = OptimisationPortfolioConstructionModel(turnover=1, max_wt=0.2, longshort=True, mkt_neutral=self.mkt_neutral) # Execution model self.CustomExecution = Execution(liq_tol=0.005) # Schedule rebalancing self.Schedule.On(self.DateRules.Every(DayOfWeek.Wednesday), self.TimeRules.BeforeMarketClose('IVV', 210), Action(self.RebalancePortfolio)) # Init charting InitCharts(self) # Schedule charting self.Schedule.On(self.DateRules.Every(DayOfWeek.Wednesday), self.TimeRules.BeforeMarketClose('IVV', 5), Action(self.PlotCharts)) def OnData(self, data): pass def RebalancePortfolio(self): df = self.data.loc[self.Time - timedelta(7):self.Time].reset_index().set_index('symbol') if self.weighting_style == 'normalise': portfolio = normalise(df['alpha_score'], equal_ls=self.mkt_neutral) elif self.weighting_style == 'alpha_max': df = df[['alpha_score']] portfolio = self.CustomPortfolioConstructionModel.GenerateOptimalPortfolio(self, df) else: raise Exception('Invalid weighting style') self.CustomExecution.ExecutePortfolio(self, portfolio) def PlotCharts(self): PlotPerformanceChart(self) PlotExposureChart(self) PlotCountryExposureChart(self) def DataSetup(self): df = pd.read_csv(StringIO( self.Download('https://raw.githubusercontent.com/Ollie-Hooper/StockifySentiment/master/data/scores.csv'))) data = df[['date', 'country', f's_{self.audio_feature}']].copy() data['date'] = pd.to_datetime(data['date']) data.rename(columns={f's_{self.audio_feature}': 'alpha_score'}, inplace=True) etf_df = pd.read_csv(StringIO( self.Download('https://raw.githubusercontent.com/Ollie-Hooper/StockifySentiment/master/data/etf.csv'))) data =
pd.merge(data, etf_df)
pandas.merge
from collections import deque from datetime import datetime import operator import re import numpy as np import pytest import pytz import pandas as pd from pandas import DataFrame, MultiIndex, Series import pandas._testing as tm import pandas.core.common as com from pandas.core.computation.expressions import _MIN_ELEMENTS, _NUMEXPR_INSTALLED from pandas.tests.frame.common import _check_mixed_float, _check_mixed_int # ------------------------------------------------------------------- # Comparisons class TestFrameComparisons: # Specifically _not_ flex-comparisons def test_frame_in_list(self): # GH#12689 this should raise at the DataFrame level, not blocks df = pd.DataFrame(np.random.randn(6, 4), columns=list("ABCD")) msg = "The truth value of a DataFrame is ambiguous" with pytest.raises(ValueError, match=msg): df in [None] def test_comparison_invalid(self): def check(df, df2): for (x, y) in [(df, df2), (df2, df)]: # we expect the result to match Series comparisons for # == and !=, inequalities should raise result = x == y expected = pd.DataFrame( {col: x[col] == y[col] for col in x.columns}, index=x.index, columns=x.columns, ) tm.assert_frame_equal(result, expected) result = x != y expected = pd.DataFrame( {col: x[col] != y[col] for col in x.columns}, index=x.index, columns=x.columns, ) tm.assert_frame_equal(result, expected) msgs = [ r"Invalid comparison between dtype=datetime64\[ns\] and ndarray", "invalid type promotion", ( # npdev 1.20.0 r"The DTypes <class 'numpy.dtype\[.*\]'> and " r"<class 'numpy.dtype\[.*\]'> do not have a common DType." ), ] msg = "|".join(msgs) with pytest.raises(TypeError, match=msg): x >= y with pytest.raises(TypeError, match=msg): x > y with pytest.raises(TypeError, match=msg): x < y with pytest.raises(TypeError, match=msg): x <= y # GH4968 # invalid date/int comparisons df = pd.DataFrame(np.random.randint(10, size=(10, 1)), columns=["a"]) df["dates"] = pd.date_range("20010101", periods=len(df)) df2 = df.copy() df2["dates"] = df["a"] check(df, df2) df = pd.DataFrame(np.random.randint(10, size=(10, 2)), columns=["a", "b"]) df2 = pd.DataFrame( { "a": pd.date_range("20010101", periods=len(df)), "b": pd.date_range("20100101", periods=len(df)), } ) check(df, df2) def test_timestamp_compare(self): # make sure we can compare Timestamps on the right AND left hand side # GH#4982 df = pd.DataFrame( { "dates1": pd.date_range("20010101", periods=10), "dates2": pd.date_range("20010102", periods=10), "intcol": np.random.randint(1000000000, size=10), "floatcol": np.random.randn(10), "stringcol": list(tm.rands(10)), } ) df.loc[np.random.rand(len(df)) > 0.5, "dates2"] = pd.NaT ops = {"gt": "lt", "lt": "gt", "ge": "le", "le": "ge", "eq": "eq", "ne": "ne"} for left, right in ops.items(): left_f = getattr(operator, left) right_f = getattr(operator, right) # no nats if left in ["eq", "ne"]: expected = left_f(df, pd.Timestamp("20010109")) result = right_f(pd.Timestamp("20010109"), df) tm.assert_frame_equal(result, expected) else: msg = ( "'(<|>)=?' not supported between " "instances of 'numpy.ndarray' and 'Timestamp'" ) with pytest.raises(TypeError, match=msg): left_f(df, pd.Timestamp("20010109")) with pytest.raises(TypeError, match=msg): right_f(pd.Timestamp("20010109"), df) # nats expected = left_f(df, pd.Timestamp("nat")) result = right_f(pd.Timestamp("nat"), df) tm.assert_frame_equal(result, expected) def test_mixed_comparison(self): # GH#13128, GH#22163 != datetime64 vs non-dt64 should be False, # not raise TypeError # (this appears to be fixed before GH#22163, not sure when) df = pd.DataFrame([["1989-08-01", 1], ["1989-08-01", 2]]) other = pd.DataFrame([["a", "b"], ["c", "d"]]) result = df == other assert not result.any().any() result = df != other assert result.all().all() def test_df_boolean_comparison_error(self): # GH#4576, GH#22880 # comparing DataFrame against list/tuple with len(obj) matching # len(df.columns) is supported as of GH#22800 df = pd.DataFrame(np.arange(6).reshape((3, 2))) expected = pd.DataFrame([[False, False], [True, False], [False, False]]) result = df == (2, 2) tm.assert_frame_equal(result, expected) result = df == [2, 2] tm.assert_frame_equal(result, expected) def test_df_float_none_comparison(self): df = pd.DataFrame( np.random.randn(8, 3), index=range(8), columns=["A", "B", "C"] ) result = df.__eq__(None) assert not result.any().any() def test_df_string_comparison(self): df = pd.DataFrame([{"a": 1, "b": "foo"}, {"a": 2, "b": "bar"}]) mask_a = df.a > 1 tm.assert_frame_equal(df[mask_a], df.loc[1:1, :]) tm.assert_frame_equal(df[-mask_a], df.loc[0:0, :]) mask_b = df.b == "foo" tm.assert_frame_equal(df[mask_b], df.loc[0:0, :]) tm.assert_frame_equal(df[-mask_b], df.loc[1:1, :]) class TestFrameFlexComparisons: # TODO: test_bool_flex_frame needs a better name def test_bool_flex_frame(self): data = np.random.randn(5, 3) other_data = np.random.randn(5, 3) df = pd.DataFrame(data) other = pd.DataFrame(other_data) ndim_5 = np.ones(df.shape + (1, 3)) # Unaligned def _check_unaligned_frame(meth, op, df, other): part_o = other.loc[3:, 1:].copy() rs = meth(part_o) xp = op(df, part_o.reindex(index=df.index, columns=df.columns)) tm.assert_frame_equal(rs, xp) # DataFrame assert df.eq(df).values.all() assert not df.ne(df).values.any() for op in ["eq", "ne", "gt", "lt", "ge", "le"]: f = getattr(df, op) o = getattr(operator, op) # No NAs tm.assert_frame_equal(f(other), o(df, other)) _check_unaligned_frame(f, o, df, other) # ndarray tm.assert_frame_equal(f(other.values), o(df, other.values)) # scalar tm.assert_frame_equal(f(0), o(df, 0)) # NAs msg = "Unable to coerce to Series/DataFrame" tm.assert_frame_equal(f(np.nan), o(df, np.nan)) with pytest.raises(ValueError, match=msg): f(ndim_5) # Series def _test_seq(df, idx_ser, col_ser): idx_eq = df.eq(idx_ser, axis=0) col_eq = df.eq(col_ser) idx_ne = df.ne(idx_ser, axis=0) col_ne = df.ne(col_ser) tm.assert_frame_equal(col_eq, df == pd.Series(col_ser)) tm.assert_frame_equal(col_eq, -col_ne) tm.assert_frame_equal(idx_eq, -idx_ne) tm.assert_frame_equal(idx_eq, df.T.eq(idx_ser).T) tm.assert_frame_equal(col_eq, df.eq(list(col_ser))) tm.assert_frame_equal(idx_eq, df.eq(pd.Series(idx_ser), axis=0)) tm.assert_frame_equal(idx_eq, df.eq(list(idx_ser), axis=0)) idx_gt = df.gt(idx_ser, axis=0) col_gt = df.gt(col_ser) idx_le = df.le(idx_ser, axis=0) col_le = df.le(col_ser) tm.assert_frame_equal(col_gt, df > pd.Series(col_ser)) tm.assert_frame_equal(col_gt, -col_le) tm.assert_frame_equal(idx_gt, -idx_le) tm.assert_frame_equal(idx_gt, df.T.gt(idx_ser).T) idx_ge = df.ge(idx_ser, axis=0) col_ge = df.ge(col_ser) idx_lt = df.lt(idx_ser, axis=0) col_lt = df.lt(col_ser) tm.assert_frame_equal(col_ge, df >= pd.Series(col_ser)) tm.assert_frame_equal(col_ge, -col_lt) tm.assert_frame_equal(idx_ge, -idx_lt) tm.assert_frame_equal(idx_ge, df.T.ge(idx_ser).T) idx_ser = pd.Series(np.random.randn(5)) col_ser = pd.Series(np.random.randn(3)) _test_seq(df, idx_ser, col_ser) # list/tuple _test_seq(df, idx_ser.values, col_ser.values) # NA df.loc[0, 0] = np.nan rs = df.eq(df) assert not rs.loc[0, 0] rs = df.ne(df) assert rs.loc[0, 0] rs = df.gt(df) assert not rs.loc[0, 0] rs = df.lt(df) assert not rs.loc[0, 0] rs = df.ge(df) assert not rs.loc[0, 0] rs = df.le(df) assert not rs.loc[0, 0] def test_bool_flex_frame_complex_dtype(self): # complex arr = np.array([np.nan, 1, 6, np.nan]) arr2 = np.array([2j, np.nan, 7, None]) df = pd.DataFrame({"a": arr}) df2 = pd.DataFrame({"a": arr2}) msg = "|".join( [ "'>' not supported between instances of '.*' and 'complex'", r"unorderable types: .*complex\(\)", # PY35 ] ) with pytest.raises(TypeError, match=msg): # inequalities are not well-defined for complex numbers df.gt(df2) with pytest.raises(TypeError, match=msg): # regression test that we get the same behavior for Series df["a"].gt(df2["a"]) with pytest.raises(TypeError, match=msg): # Check that we match numpy behavior here df.values > df2.values rs = df.ne(df2) assert rs.values.all() arr3 = np.array([2j, np.nan, None]) df3 = pd.DataFrame({"a": arr3}) with pytest.raises(TypeError, match=msg): # inequalities are not well-defined for complex numbers df3.gt(2j) with pytest.raises(TypeError, match=msg): # regression test that we get the same behavior for Series df3["a"].gt(2j) with pytest.raises(TypeError, match=msg): # Check that we match numpy behavior here df3.values > 2j def test_bool_flex_frame_object_dtype(self): # corner, dtype=object df1 = pd.DataFrame({"col": ["foo", np.nan, "bar"]}) df2 = pd.DataFrame({"col": ["foo", datetime.now(), "bar"]}) result = df1.ne(df2) exp = pd.DataFrame({"col": [False, True, False]}) tm.assert_frame_equal(result, exp) def test_flex_comparison_nat(self): # GH 15697, GH 22163 df.eq(pd.NaT) should behave like df == pd.NaT, # and _definitely_ not be NaN df = pd.DataFrame([pd.NaT]) result = df == pd.NaT # result.iloc[0, 0] is a np.bool_ object assert result.iloc[0, 0].item() is False result = df.eq(pd.NaT) assert result.iloc[0, 0].item() is False result = df != pd.NaT assert result.iloc[0, 0].item() is True result = df.ne(pd.NaT) assert result.iloc[0, 0].item() is True @pytest.mark.parametrize("opname", ["eq", "ne", "gt", "lt", "ge", "le"]) def test_df_flex_cmp_constant_return_types(self, opname): # GH 15077, non-empty DataFrame df = pd.DataFrame({"x": [1, 2, 3], "y": [1.0, 2.0, 3.0]}) const = 2 result = getattr(df, opname)(const).dtypes.value_counts() tm.assert_series_equal(result, pd.Series([2], index=[np.dtype(bool)])) @pytest.mark.parametrize("opname", ["eq", "ne", "gt", "lt", "ge", "le"]) def test_df_flex_cmp_constant_return_types_empty(self, opname): # GH 15077 empty DataFrame df = pd.DataFrame({"x": [1, 2, 3], "y": [1.0, 2.0, 3.0]}) const = 2 empty = df.iloc[:0] result = getattr(empty, opname)(const).dtypes.value_counts() tm.assert_series_equal(result, pd.Series([2], index=[np.dtype(bool)])) def test_df_flex_cmp_ea_dtype_with_ndarray_series(self): ii = pd.IntervalIndex.from_breaks([1, 2, 3]) df = pd.DataFrame({"A": ii, "B": ii}) ser = pd.Series([0, 0]) res = df.eq(ser, axis=0) expected = pd.DataFrame({"A": [False, False], "B": [False, False]}) tm.assert_frame_equal(res, expected) ser2 = pd.Series([1, 2], index=["A", "B"]) res2 = df.eq(ser2, axis=1) tm.assert_frame_equal(res2, expected) # ------------------------------------------------------------------- # Arithmetic class TestFrameFlexArithmetic: def test_floordiv_axis0(self): # make sure we df.floordiv(ser, axis=0) matches column-wise result arr = np.arange(3) ser = pd.Series(arr) df = pd.DataFrame({"A": ser, "B": ser}) result = df.floordiv(ser, axis=0) expected = pd.DataFrame({col: df[col] // ser for col in df.columns}) tm.assert_frame_equal(result, expected) result2 = df.floordiv(ser.values, axis=0) tm.assert_frame_equal(result2, expected) @pytest.mark.skipif(not _NUMEXPR_INSTALLED, reason="numexpr not installed") @pytest.mark.parametrize("opname", ["floordiv", "pow"]) def test_floordiv_axis0_numexpr_path(self, opname): # case that goes through numexpr and has to fall back to masked_arith_op op = getattr(operator, opname) arr = np.arange(_MIN_ELEMENTS + 100).reshape(_MIN_ELEMENTS // 100 + 1, -1) * 100 df = pd.DataFrame(arr) df["C"] = 1.0 ser = df[0] result = getattr(df, opname)(ser, axis=0) expected = pd.DataFrame({col: op(df[col], ser) for col in df.columns}) tm.assert_frame_equal(result, expected) result2 = getattr(df, opname)(ser.values, axis=0) tm.assert_frame_equal(result2, expected) def test_df_add_td64_columnwise(self): # GH 22534 Check that column-wise addition broadcasts correctly dti = pd.date_range("2016-01-01", periods=10) tdi = pd.timedelta_range("1", periods=10) tser = pd.Series(tdi) df = pd.DataFrame({0: dti, 1: tdi}) result = df.add(tser, axis=0) expected = pd.DataFrame({0: dti + tdi, 1: tdi + tdi}) tm.assert_frame_equal(result, expected) def test_df_add_flex_filled_mixed_dtypes(self): # GH 19611 dti = pd.date_range("2016-01-01", periods=3) ser = pd.Series(["1 Day", "NaT", "2 Days"], dtype="timedelta64[ns]") df =
pd.DataFrame({"A": dti, "B": ser})
pandas.DataFrame
from __future__ import division from functools import wraps import pandas as pd import numpy as np import time import csv, sys import os.path import logging from .ted_functions import TedFunctions from .ted_aggregate_methods import TedAggregateMethods from base.uber_model import UberModel, ModelSharedInputs class TedSpeciesProperties(object): """ Listing of species properties that will eventually be read in from a SQL db """ def __init__(self): """Class representing Species properties""" super(TedSpeciesProperties, self).__init__() self.sci_name = pd.Series([], dtype='object') self.com_name = pd.Series([], dtype='object') self.taxa = pd.Series([], dtype='object') self.order = pd.Series([], dtype='object') self.usfws_id = pd.Series([], dtype='object') self.body_wgt = pd.Series([], dtype='object') self.diet_item = pd.Series([], dtype='object') self.h2o_cont = pd.Series([], dtype='float') def read_species_properties(self): # this is a temporary method to initiate the species/diet food items lists (this will be replaced with # a method to access a SQL database containing the properties #filename = './ted/tests/TEDSpeciesProperties.csv' filename = os.path.join(os.path.dirname(__file__),'tests/TEDSpeciesProperties.csv') try: with open(filename,'rt') as csvfile: # csv.DictReader uses first line in file for column headings by default dr = pd.read_csv(csvfile) # comma is default delimiter except csv.Error as e: sys.exit('file: %s, %s' (filename, e)) print(dr) self.sci_name = dr.ix[:,'Scientific Name'] self.com_name = dr.ix[:,'Common Name'] self.taxa = dr.ix[:,'Taxa'] self.order = dr.ix[:,'Order'] self.usfws_id = dr.ix[:,'USFWS Species ID (ENTITY_ID)'] self.body_wgt= dr.ix[:,'BW (g)'] self.diet_item = dr.ix[:,'Food item'] self.h2o_cont = dr.ix[:,'Water content of diet'] class TedInputs(ModelSharedInputs): """ Required inputs class for Ted. """ def __init__(self): """Class representing the inputs for Ted""" super(TedInputs, self).__init__() # Inputs: Assign object attribute variables from the input Pandas DataFrame self.chemical_name = pd.Series([], dtype="object", name="chemical_name") # application parameters for min/max application scenarios self.crop_min = pd.Series([], dtype="object", name="crop") self.app_method_min = pd.Series([], dtype="object", name="app_method_min") self.app_rate_min = pd.Series([], dtype="float", name="app_rate_min") self.num_apps_min = pd.Series([], dtype="int", name="num_apps_min") self.app_interval_min = pd.Series([], dtype="int", name="app_interval_min") self.droplet_spec_min = pd.Series([], dtype="object", name="droplet_spec_min") self.boom_hgt_min = pd.Series([], dtype="object", name="droplet_spec_min") self.pest_incorp_depth_min = pd.Series([], dtype="object", name="pest_incorp_depth") self.crop_max = pd.Series([], dtype="object", name="crop") self.app_method_max = pd.Series([], dtype="object", name="app_method_max") self.app_rate_max = pd.Series([], dtype="float", name="app_rate_max") self.num_apps_max = pd.Series([], dtype="int", name="num_app_maxs") self.app_interval_max = pd.Series([], dtype="int", name="app_interval_max") self.droplet_spec_max = pd.Series([], dtype="object", name="droplet_spec_max") self.boom_hgt_max = pd.Series([], dtype="object", name="droplet_spec_max") self.pest_incorp_depth_max = pd.Series([], dtype="object", name="pest_incorp_depth") # physical, chemical, and fate properties of pesticide self.foliar_diss_hlife = pd.Series([], dtype="float", name="foliar_diss_hlife") self.aerobic_soil_meta_hlife = pd.Series([], dtype="float", name="aerobic_soil_meta_hlife") self.frac_retained_mamm = pd.Series([], dtype="float", name="frac_retained_mamm") self.frac_retained_birds = pd.Series([], dtype="float", name="frac_retained_birds") self.log_kow = pd.Series([], dtype="float", name="log_kow") self.koc = pd.Series([], dtype="float", name="koc") self.solubility = pd.Series([], dtype="float", name="solubility") self.henry_law_const = pd.Series([], dtype="float", name="henry_law_const") # bio concentration factors (ug active ing/kg-ww) / (ug active ing/liter) self.aq_plant_algae_bcf_mean = pd.Series([], dtype="float", name="aq_plant_algae_bcf_mean") self.aq_plant_algae_bcf_upper = pd.Series([], dtype="float", name="aq_plant_algae_bcf_upper") self.inv_bcf_mean = pd.Series([], dtype="float", name="inv_bcf_mean") self.inv_bcf_upper = pd.Series([], dtype="float", name="inv_bcf_upper") self.fish_bcf_mean = pd.Series([], dtype="float", name="fish_bcf_mean") self.fish_bcf_upper = pd.Series([], dtype="float", name="fish_bcf_upper") # bounding water concentrations (ug active ing/liter) self.water_conc_1 = pd.Series([], dtype="float", name="water_conc_1") # lower bound self.water_conc_2 = pd.Series([], dtype="float", name="water_conc_2") # upper bound # health value inputs # naming convention (based on listing from OPP TED Excel spreadsheet 'inputs' worksheet): # dbt: dose based toxicity # cbt: concentration-based toxicity # arbt: application rate-based toxicity # 1inmill_mort: 1/million mortality (note initial character is numeral 1, not letter l) # 1inten_mort: 10% mortality (note initial character is numeral 1, not letter l) # others are self explanatory # dose based toxicity(dbt): mammals (mg-pest/kg-bw) & weight of test animal (grams) self.dbt_mamm_1inmill_mort = pd.Series([], dtype="float", name="dbt_mamm_1inmill_mort") self.dbt_mamm_1inten_mort = pd.Series([], dtype="float", name="dbt_mamm_1inten_mort") self.dbt_mamm_low_ld50 = pd.Series([], dtype="float", name="dbt_mamm_low_ld50") self.dbt_mamm_rat_oral_ld50 = pd.Series([], dtype="float", name="dbt_mamm_1inten_mort") self.dbt_mamm_rat_derm_ld50 = pd.Series([], dtype="float", name="dbt_mamm_rat_derm_ld50") self.dbt_mamm_rat_inhal_ld50 = pd.Series([], dtype="float", name="dbt_mamm_rat_inhal_ld50") self.dbt_mamm_sub_direct = pd.Series([], dtype="float", name="dbt_mamm_sub_direct") self.dbt_mamm_sub_indirect = pd.Series([], dtype="float", name="dbt_mamm_sub_indirect") self.dbt_mamm_1inmill_mort_wgt = pd.Series([], dtype="float", name="dbt_mamm_1inmill_mort_wgt") self.dbt_mamm_1inten_mort_wgt = pd.Series([], dtype="float", name="dbt_mamm_1inten_mort_wgt") self.dbt_mamm_low_ld50_wgt = pd.Series([], dtype="float", name="dbt_mamm_low_ld50_wgt") self.dbt_mamm_rat_oral_ld50_wgt = pd.Series([], dtype="float", name="dbt_mamm_1inten_mort_wgt") self.dbt_mamm_rat_derm_ld50_wgt = pd.Series([], dtype="float", name="dbt_mamm_rat_derm_ld50_wgt") self.dbt_mamm_rat_inhal_ld50_wgt = pd.Series([], dtype="float", name="dbt_mamm_rat_inhal_ld50_wgt") self.dbt_mamm_sub_direct_wgt = pd.Series([], dtype="float", name="dbt_mamm_sub_direct_wgt") self.dbt_mamm_sub_indirect_wgt =
pd.Series([], dtype="float", name="dbt_mamm_sub_indirect_wgt")
pandas.Series
# -*- coding: utf-8 -*- import numpy as np import pandas as pd import os myfile="../files/train_final.csv" if os.path.isfile(myfile): os.remove(myfile) with open("../files/train.csv", "r") as rd: with open("../files/train_final.csv", "a") as wr: for i in range(1, 13): wr.write("x" + str(i)) if (i != 12): wr.write(",") wr.write("\n") for line in rd: line = line.strip() if (line.startswith("[")): line = line[1:len(line)] if (line.endswith("]")): line = line[:len(line) - 1] wr.write(line + "\n") train = pd.read_csv("../files/train_final.csv") train["x1"] = pd.to_numeric(train["x1"], errors='coerce') train["x2"] = pd.to_numeric(train["x2"], errors='coerce') train["x3"] = pd.to_numeric(train["x3"], errors='coerce') train["x4"] = pd.to_numeric(train["x4"], errors='coerce') train["x5"] = pd.to_numeric(train["x5"], errors='coerce') train["x6"] = pd.to_numeric(train["x6"], errors='coerce') train["x7"] =
pd.to_numeric(train["x7"], errors='coerce')
pandas.to_numeric
#!/usr/bin/env python3 # Pancancer_Aberrant_Pathway_Activity_Analysis scripts/targene_count_heatmaps.py import os import sys import pandas as pd import argparse import matplotlib matplotlib.use('agg') import matplotlib.pyplot as plt import seaborn as sns sys.path.insert(0, os.path.join(os.path.dirname(os.path.realpath(__file__)), '..', 'papaa')) from tcga_util import add_version_argument parser = argparse.ArgumentParser() add_version_argument(parser) parser.add_argument('-g', '--genes', default= 'ERBB2,PIK3CA,KRAS,AKT1', help='string of the genes to extract or gene list file') parser.add_argument('-p', '--path_genes', help='pathway gene list file') parser.add_argument('-s', '--classifier_decisions', help='string of the location of classifier decisions file with predictions/scores') parser.add_argument('-x', '--x_matrix', default=None, help='Filename of features to use in model') parser.add_argument( '--filename_mut', default=None, help='Filename of sample/gene mutations to use in model') parser.add_argument( '--filename_mut_burden', default=None, help='Filename of sample mutation burden to use in model') parser.add_argument( '--filename_sample', default=None, help='Filename of patient/samples to use in model') parser.add_argument( '--filename_copy_loss', default=None, help='Filename of copy number loss') parser.add_argument( '--filename_copy_gain', default=None, help='Filename of copy number gain') parser.add_argument( '--filename_cancer_gene_classification', default=None, help='Filename of cancer gene classification table') args = parser.parse_args() # Load Constants alt_folder = args.classifier_decisions rnaseq_file = args.x_matrix mut_file = args.filename_mut sample_freeze_file = args.filename_sample cancer_gene_file = args.filename_cancer_gene_classification copy_loss_file = args.filename_copy_loss copy_gain_file = args.filename_copy_gain mutation_burden_file = args.filename_mut_burden mutation_df = pd.read_table(mut_file, index_col=0) sample_freeze = pd.read_table(sample_freeze_file, index_col=0) copy_loss_df = pd.read_table(copy_loss_file, index_col=0) copy_gain_df = pd.read_table(copy_gain_file, index_col=0) cancer_genes_df = pd.read_table(cancer_gene_file) results_path = alt_folder try: genes = args.genes genes_df = pd.read_table(genes) genes = genes_df['genes'].tolist() except: genes = args.genes.split(',') # if list of pathway genes are provided in a file try: path_genes = args.path_genes pathgenes_df = pd.read_table(path_genes) path_genes = pathgenes_df['genes'].tolist() except: path_genes = path_genes.split(',') n = pathgenes_df['og_tsg'].tolist() n_OG = n.count('OG') n_TSG = n.count('TSG') # Subset mutation data mutation_sub_df = mutation_df.loc[:, pathgenes_df['genes']] # Find if the input genes are in this master list genes_sub = cancer_genes_df[cancer_genes_df['Gene Symbol'].isin(pathgenes_df['genes'])] # Add status to the Y matrix depending on if the gene is a tumor suppressor # or an oncogene. An oncogene can be activated with copy number gains, but # a tumor suppressor is inactivated with copy number loss tumor_suppressor = pathgenes_df[pathgenes_df['og_tsg'] == 'TSG'] oncogene = pathgenes_df[pathgenes_df['og_tsg'] == 'OG'] # Subset copy number information copy_loss_sub_df = copy_loss_df[tumor_suppressor['genes']] copy_gain_sub_df = copy_gain_df[oncogene['genes']] # ## Output Mutation, Copy Number, and Total Heatmap (Gene by Cancer-type) mutation_sub_total_df = mutation_sub_df.assign(Total=mutation_sub_df.max(axis=1)) mut_disease_df = mutation_sub_total_df.merge(sample_freeze, left_index=True, right_on='SAMPLE_BARCODE') mut_heatmap_df = mut_disease_df.groupby('DISEASE').mean() gene_avg = mut_disease_df.mean() gene_avg.name = 'Total' mut_heatmap_df = mut_heatmap_df.append(gene_avg) sns.set_style("whitegrid") plt.figure(figsize = (10,10),dpi= 300) sns.heatmap(mut_heatmap_df, linewidths=0.2, linecolor='black', cmap='Blues_r', square=True, cbar=True) plt.autoscale(enable=True, axis ='x', tight = True) plt.autoscale(enable=True, axis ='y', tight = True) plt.ylabel('Cancer Types', fontsize=16) plt.xlabel('Pathway Genes', fontsize=16) plt.savefig(os.path.join(results_path, 'cancer_type_mutation_heatmap.pdf')) copy_df = pd.concat([copy_gain_sub_df, copy_loss_sub_df], axis=1) copy_total_df = copy_df.assign(Total=copy_df.max(axis=1)) copy_disease_df = copy_total_df.merge(sample_freeze, left_index=True, right_on='SAMPLE_BARCODE') copy_heatmap_df = copy_disease_df.groupby('DISEASE').mean() copy_avg = copy_disease_df.mean() copy_avg.name = 'Total' copy_heatmap_df = copy_heatmap_df.append(copy_avg) sns.set_style("whitegrid") plt.figure(figsize = (10,10),dpi= 300) sns.heatmap(copy_heatmap_df, linewidths=0.2, linecolor='black', cmap='Blues_r', square=True) plt.ylabel('Cancer Types', fontsize=16) plt.xlabel('Pathway Genes', fontsize=16) plt.autoscale(enable=True, axis ='x', tight = True) plt.autoscale(enable=True, axis ='y', tight = True) plt.savefig(os.path.join(results_path, 'cancer_type_copy_number_heatmap.pdf')) # Combined heatmap comb_heat = mutation_sub_df + copy_df comb_heat[comb_heat == 2] = 1 # Replace duplicates with just one comb_heat_df = comb_heat.merge(sample_freeze, left_index=True, right_on='SAMPLE_BARCODE') comb_heat_total_df = comb_heat_df.assign(Total=comb_heat_df.max(axis=1)) comb_heatmap_df = comb_heat_total_df.groupby('DISEASE').mean() comb_avg = comb_heat_total_df.mean() comb_avg.name = 'Total' comb_heatmap_plot = comb_heatmap_df.append(comb_avg) sns.set_style("whitegrid") plt.figure(figsize = (10,10),dpi= 300) sns.heatmap(comb_heatmap_plot, linewidths=0.2, linecolor='black', cmap='Blues_r', square=True) plt.ylabel('Cancer Types', fontsize=16) plt.xlabel('Pathway Genes', fontsize=16) plt.autoscale(enable=True, axis ='x', tight = True) plt.autoscale(enable=True, axis ='y', tight = True) plt.tight_layout() plt.savefig(os.path.join(results_path, 'cancer_type_combined_total_heatmap.pdf')) # ## Generating Pathway Mapper Text Files summary_score_df = ( pd.DataFrame( [mut_heatmap_df.loc['Total', :], copy_heatmap_df.loc['Total', :]] ) .transpose() ) summary_score_df.columns = ['mutation', 'copy_number'] summary_score_df = summary_score_df * 100 summary_score_df = summary_score_df.round(decimals = 1) # Create negative percentages for tumor suppressors in the Pathway tum_sup_mult = pd.Series([1] * n_OG + [-1] * n_TSG + [1]) tum_sup_mult.index = summary_score_df.index summary_score_df = summary_score_df.mul(tum_sup_mult, axis=0) pathway_mapper_file = os.path.join(results_path, 'tables', 'pathway_mapper_percentages.txt') summary_score_df.to_csv(pathway_mapper_file, sep='\t') # ## Output number of targene events per sample decision_file = os.path.join(results_path, 'classifier_decisions.tsv') decisions_df =
pd.read_table(decision_file)
pandas.read_table
# -*- coding: utf-8 -*- import pandas as pd import six from tigeropen.common.response import TigerResponse from tigeropen.common.util.string_utils import get_string COLUMNS = ['symbol', 'field', 'date', 'value'] class FinancialDailyResponse(TigerResponse): def __init__(self): super(FinancialDailyResponse, self).__init__() self.financial_daily = None self._is_success = None def parse_response_content(self, response_content): response = super(FinancialDailyResponse, self).parse_response_content(response_content) if 'is_success' in response: self._is_success = response['is_success'] if self.data and isinstance(self.data, list): items = list() for item in self.data: item_values = dict() for key, value in item.items(): if isinstance(value, six.string_types): value = get_string(value) item_values[key] = value items.append(item_values) self.financial_daily =
pd.DataFrame(items, columns=COLUMNS)
pandas.DataFrame
"""Filter copy number segments.""" import functools import logging import numpy as np import pandas as pd import hashlib from .descriptives import weighted_median def require_column(*colnames): """Wrapper to coordinate the segment-filtering functions. Verify that the given columns are in the CopyNumArray the wrapped function takes. Also log the number of rows in the array before and after filtration. """ if len(colnames) == 1: msg = "'{}' filter requires column '{}'" else: msg = "'{}' filter requires columns " + \ ", ".join(["'{}'"] * len(colnames)) def wrap(func): @functools.wraps(func) def wrapped_f(segarr): filtname = func.__name__ if any(c not in segarr for c in colnames): raise ValueError(msg.format(filtname, *colnames)) result = func(segarr) logging.info("Filtered by '%s' from %d to %d rows", filtname, len(segarr), len(result)) return result return wrapped_f return wrap def squash_by_groups(cnarr, levels, by_arm=False): """Reduce CopyNumArray rows to a single row within each given level.""" # Enumerate runs of identical values change_levels = enumerate_changes(levels) assert (change_levels.index == levels.index).all() assert cnarr.data.index.is_unique assert levels.index.is_unique assert change_levels.index.is_unique if by_arm: # Enumerate chromosome arms arm_levels = [] for i, (_chrom, cnarm) in enumerate(cnarr.by_arm()): arm_levels.append(np.repeat(i, len(cnarm))) change_levels += np.concatenate(arm_levels) else: # Enumerate chromosomes chrom_names = cnarr['chromosome'].unique() chrom_col = (cnarr['chromosome'] .replace(chrom_names, np.arange(len(chrom_names)))) change_levels += chrom_col data = cnarr.data.assign(_group=change_levels) groupkey = ['_group'] if 'cn1' in cnarr: # Keep allele-specific CNAs separate data['_g1'] = enumerate_changes(cnarr['cn1']) data['_g2'] = enumerate_changes(cnarr['cn2']) groupkey.extend(['_g1', '_g2']) data = (data.groupby(groupkey, as_index=False, group_keys=False, sort=False) .apply(squash_region) .reset_index(drop=True)) return cnarr.as_dataframe(data) def enumerate_changes(levels): """Assign a unique integer to each run of identical values. Repeated but non-consecutive values will be assigned different integers. """ return levels.diff().fillna(0).abs().cumsum().astype(int) def squash_region(cnarr): """Reduce a CopyNumArray to 1 row, keeping fields sensible. Most fields added by the `segmetrics` command will be dropped. """ assert 'weight' in cnarr out = {'chromosome': [cnarr['chromosome'].iat[0]], 'start': cnarr['start'].iat[0], 'end': cnarr['end'].iat[-1], } region_weight = cnarr['weight'].sum() if region_weight > 0: out['log2'] = np.average(cnarr['log2'], weights=cnarr['weight']) else: out['log2'] = np.mean(cnarr['log2']) out['gene'] = ','.join(cnarr['gene'].drop_duplicates()) out['probes'] = cnarr['probes'].sum() if 'probes' in cnarr else len(cnarr) out['weight'] = region_weight if 'depth' in cnarr: if region_weight > 0: out['depth'] = np.average(cnarr['depth'], weights=cnarr['weight']) else: out['depth'] = np.mean(cnarr['depth']) if 'baf' in cnarr: if region_weight > 0: out['baf'] = np.average(cnarr['baf'], weights=cnarr['weight']) else: out['baf'] = np.mean(cnarr['baf']) if 'cn' in cnarr: if region_weight > 0: out['cn'] = weighted_median(cnarr['cn'], cnarr['weight']) else: out['cn'] = np.median(cnarr['cn']) if 'cn1' in cnarr: if region_weight > 0: out['cn1'] = weighted_median(cnarr['cn1'], cnarr['weight']) else: out['cn1'] = np.median(cnarr['cn1']) out['cn2'] = out['cn'] - out['cn1'] if 'p_bintest' in cnarr: # Only relevant for single-bin segments, but this seems safe/conservative out['p_bintest'] = cnarr['p_bintest'].max() return
pd.DataFrame(out)
pandas.DataFrame
import pytest import pandas.util._test_decorators as td import pandas as pd import pandas._testing as tm arrays = [pd.array([1, 2, 3, None], dtype=dtype) for dtype in tm.ALL_EA_INT_DTYPES] arrays += [pd.array([0.1, 0.2, 0.3, None], dtype=dtype) for dtype in tm.FLOAT_EA_DTYPES] arrays += [pd.array([True, False, True, None], dtype="boolean")] @pytest.fixture(params=arrays, ids=[a.dtype.name for a in arrays]) def data(request): return request.param @
td.skip_if_no("pyarrow", min_version="0.15.0")
pandas.util._test_decorators.skip_if_no
# -*- coding: utf-8 -*- """ Created on Sun Apr 14 16:03:03 2019 @author: prasas """ import pandas as pd import statistics as stats import math as math import xlwt def loadData(filename): # load dataset rawdata = pd.read_csv(filename,header=None); dataset = pd.DataFrame(rawdata) rawY=dataset.iloc[:, 20] X=dataset.iloc[:, 0:20] #fix the class output Y f = lambda i : 1 if i > 0 else 0; Y = list(map(f, rawY)); #fix the features for feature in X: # print(x[feature]); median = stats.median(X[feature]); #print(median); X[feature] = list(map(lambda a: 1 if a >= median else 0, X[feature])) #print(X[0]) #print(Y) return X,Y def loadtestData(filename): # load dataset rawdata = pd.read_csv(filename,header=None); dataset =
pd.DataFrame(rawdata)
pandas.DataFrame
# What's Cooking? kaggle competition. # https://www.kaggle.com/c/whats-cooking-kernels-only # # Neural network with dense layer using Keras # # Input: list of ingredients # Output: cuisine # # Author # https://www.kaggle.com/vpapenko import pandas as pd from keras.preprocessing.text import Tokenizer from sklearn.preprocessing import LabelBinarizer from keras.models import Sequential from keras.layers import Dense train =
pd.read_json('../input/train.json')
pandas.read_json
''' General utility scripts ''' import os import ndjson import pandas as pd def validate_input(texts) -> list: ''' Make sure texts are in the right format before training PMI-SVD embeddings. If no exceptions are raised, returns a list in the following format: output[document][word] ''' # check if empty if not texts: raise ValueError('"texts" input is empty!') # check for string input elif isinstance(texts, str): # if there is a single line, parse as one doc if texts.count('/n') == 0: output = [[word.lower() for word in texts.split()]] # if multiple lines, each line is a new doc else: texts = texts.split('\n') output = [[word for word in doc.split()] for doc in texts] # check for input list elif isinstance(texts, list): # if the list is nested if all(isinstance(doc, list) for doc in texts): # validate that all items of sublists are str unnest = [word for doc in texts for word in doc] if all(isinstance(item, str) for item in unnest): output = texts else: raise ValueError( "input: all items in texts[i][j] must be strings") # if the list is not nested elif all(isinstance(doc, str) for doc in texts): output = [[word for word in doc.split()] for doc in texts] # if any texts[i] are other types throw error else: raise ValueError("input: incompatible data type in texts[i]") # break when input is neither str or list else: raise ValueError('texts must be str or list') return output def load_data(ndjson_path): ''' Read a preprocessed file & convert to ttx format. ''' with open(ndjson_path, 'r') as f: obj = ndjson.load(f) obj_dfs = [pd.DataFrame(dat) for dat in obj] return obj_dfs def make_folders(out_dir): ''' Create folders for saving many models out_dir : str path to export models to ''' # create main folder if not os.path.exists(out_dir): os.mkdir(out_dir) # get output paths report_dir = os.path.join(out_dir, "report_lines", "") model_dir = os.path.join(out_dir, "models", "") plot_dir = os.path.join(out_dir, "plots", "") doctop_dir = os.path.join(out_dir, "doctop_mats", "") # create sub-folders for folder in [report_dir, model_dir, plot_dir, doctop_dir]: # check if dir already exists if not os.path.exists(folder): os.mkdir(folder) return None def export_serialized(df, column='text', path=None): ''' Serialize column to a dictionary, where keys are ID and values are col. Parameters ---------- df : pd.DataFrame dataframe to unpack column : str (default: 'text') name of df's column to export path : str, optional where to save the resulting .ndjson object ''' # get ID column df_id = ( df .reset_index() .rename(columns={'index': 'ID'}) ) # convert data to list of dicts serial_output = [] for i, row in df_id.iterrows(): doc = {'ID': row['ID'], column: row[column]} serial_output.append(doc) # if path is specified, save & be silent if path: with open(path, 'w') as f: ndjson.dump(serial_output, f) return None # if no path, return list of dicts else: return serial_output def compile_report(report_dir): ''' Join partial reports from LDA training into one DF. Returns a DF sorted in descending order by avg topic coherence in that model. Parameters ---------- report_dir : str path to directory, where reports are saved. Report are serialized tuples in .ndjson format. See lda training scripts for details. ''' # get a list of paths to import report_paths = [] for file in os.listdir(report_dir): if file.endswith(".ndjson"): # tuple with whole path and file name path_and_file = tuple([report_dir + file, file]) # append both report_paths.append(path_and_file) # iterate through paths, converting them into DF rows dfs =
pd.DataFrame([])
pandas.DataFrame
#!/usr/bin/python ######-*- coding: utf-8 -*- import os, datetime, requests from bs4 import BeautifulSoup import pandas as pd url = 'https://docs.google.com/spreadsheets/d/e/2PACX-1vQuDj0R6K85sdtI8I-Tc7RCx8CnIxKUQue0TCUdrFOKDw9G3JRtGhl64laDd3apApEvIJTdPFJ9fEUL/pubhtml?gid=0&single=true' work_path = '/path/to/working/dir' def get_table(): req = requests.session() response = req.get(url,headers={'Accept-Language': 'zh-TW'}) soup = BeautifulSoup(response.text, "lxml") table = soup.find('table', {'class': 'waffle'}) trs = table.find_all('tr')[1:] rows = list() for tr in trs: rows.append([td.text.replace('\n', '') for td in tr.find_all('td')]) columns = rows[0][:] columns[0] = columns[0][4:] columns[2:5] = [columns[0],columns[0],columns[0]] rows = [r[1:] for r in rows] df = pd.DataFrame(data=rows, columns=columns[1:]) return df def biuld_nation(): df = get_table() df_nation = df.drop(columns=columns[2]) df_nation.to_csv('nation.csv',index=False) def biuld_database(): database =
pd.read_csv('nation.csv')
pandas.read_csv
# -*- coding: utf-8 -*- """ Created on Wed May 03 15:01:31 2017 @author: jdkern """ import pandas as pd import numpy as np #read generator parameters into DataFrame df_gen = pd.read_excel('NEISO_data_file/generators.xlsx',header=0) #read transmission path parameters into DataFrame df_paths = pd.read_csv('NEISO_data_file/paths.csv',header=0) #list zones zones = ['CT', 'ME', 'NH', 'NEMA', 'RI', 'SEMA', 'VT', 'WCMA'] ##time series of load for each zone df_load_all = pd.read_csv('../Time_series_data/Synthetic_demand_pathflows/Sim_hourly_load.csv',header=0) df_load_all = df_load_all[zones] ##daily hydropower availability df_hydro = pd.read_csv('Hydro_setup/NEISO_dispatchable_hydro.csv',header=0) #must run resources (LFG,ag_waste,nuclear) df_must = pd.read_excel('NEISO_data_file/must_run.xlsx',header=0) # must run generation must_run_CT = [] must_run_ME = [] must_run_NEMA = [] must_run_NH = [] must_run_RI = [] must_run_SEMA = [] must_run_VT = [] must_run_WCMA = [] must_run_CT = np.ones((8760,1))*df_must.loc[0,'CT'] must_run_ME = np.ones((8760,1))*df_must.loc[0,'ME'] must_run_NEMA = np.ones((8760,1))*df_must.loc[0,'NEMA'] must_run_NH = np.ones((8760,1))*df_must.loc[0,'NH'] must_run_RI = np.ones((8760,1))*df_must.loc[0,'RI'] must_run_SEMA = np.ones((8760,1))*df_must.loc[0,'SEMA'] must_run_VT = np.ones((8760,1))*df_must.loc[0,'VT'] must_run_WCMA = np.ones((8760,1))*df_must.loc[0,'WCMA'] must_run = np.column_stack((must_run_CT,must_run_ME,must_run_NEMA,must_run_NH,must_run_RI,must_run_SEMA,must_run_VT,must_run_WCMA)) df_total_must_run = pd.DataFrame(must_run,columns=('CT','ME','NEMA','NH','RI','SEMA','VT','WCMA')) df_total_must_run.to_csv('NEISO_data_file/must_run_hourly.csv') #natural gas prices df_ng_all = pd.read_excel('../Time_series_data/Gas_prices/NG.xlsx', header=0) df_ng_all = df_ng_all[zones] #oil prices df_oil_all = pd.read_excel('../Time_series_data/Oil_prices/Oil_prices.xlsx', header=0) df_oil_all = df_oil_all[zones] # time series of offshore wind generation for each zone df_offshore_wind_all = pd.read_excel('../Time_series_data/Synthetic_wind_power/offshore_wind_power_sim.xlsx',header=0) # time series of solar generation df_solar = pd.read_excel('NEISO_data_file/hourly_solar_gen.xlsx',header=0) solar_caps = pd.read_excel('NEISO_data_file/solar_caps.xlsx',header=0) # time series of onshore wind generation df_onshore_wind = pd.read_excel('NEISO_data_file/hourly_onshore_wind_gen.xlsx',header=0) onshore_wind_caps = pd.read_excel('NEISO_data_file/wind_onshore_caps.xlsx',header=0) def setup(year, Hub_height, Offshore_capacity): ##time series of natural gas prices for each zone df_ng = globals()['df_ng_all'].copy() df_ng = df_ng.reset_index() ##time series of oil prices for each zone df_oil = globals()['df_oil_all'].copy() df_oil = df_oil.reset_index() ##time series of load for each zone df_load = globals()['df_load_all'].loc[year*8760:year*8760+8759].copy() df_load = df_load.reset_index(drop=True) ##time series of operational reserves for each zone rv= df_load.values reserves = np.zeros((len(rv),1)) for i in range(0,len(rv)): reserves[i] = np.sum(rv[i,:])*.04 df_reserves = pd.DataFrame(reserves) df_reserves.columns = ['reserves'] ##daily time series of dispatchable imports by path df_imports =
pd.read_csv('Path_setup/NEISO_dispatchable_imports.csv',header=0)
pandas.read_csv
# coding=utf-8 # pylint: disable-msg=E1101,W0612 from datetime import datetime, timedelta import operator from itertools import product, starmap from numpy import nan, inf import numpy as np import pandas as pd from pandas import (Index, Series, DataFrame, isnull, bdate_range, NaT, date_range, timedelta_range, _np_version_under1p8) from pandas.tseries.index import Timestamp from pandas.tseries.tdi import Timedelta import pandas.core.nanops as nanops from pandas.compat import range, zip from pandas import compat from pandas.util.testing import assert_series_equal, assert_almost_equal import pandas.util.testing as tm from .common import TestData class TestSeriesOperators(TestData, tm.TestCase): _multiprocess_can_split_ = True def test_comparisons(self): left = np.random.randn(10) right = np.random.randn(10) left[:3] = np.nan result = nanops.nangt(left, right) with np.errstate(invalid='ignore'): expected = (left > right).astype('O') expected[:3] = np.nan assert_almost_equal(result, expected) s = Series(['a', 'b', 'c']) s2 = Series([False, True, False]) # it works! exp = Series([False, False, False]) tm.assert_series_equal(s == s2, exp) tm.assert_series_equal(s2 == s, exp) def test_op_method(self): def check(series, other, check_reverse=False): simple_ops = ['add', 'sub', 'mul', 'floordiv', 'truediv', 'pow'] if not compat.PY3: simple_ops.append('div') for opname in simple_ops: op = getattr(Series, opname) if op == 'div': alt = operator.truediv else: alt = getattr(operator, opname) result = op(series, other) expected = alt(series, other) tm.assert_almost_equal(result, expected) if check_reverse: rop = getattr(Series, "r" + opname) result = rop(series, other) expected = alt(other, series) tm.assert_almost_equal(result, expected) check(self.ts, self.ts * 2) check(self.ts, self.ts[::2]) check(self.ts, 5, check_reverse=True) check(tm.makeFloatSeries(), tm.makeFloatSeries(), check_reverse=True) def test_neg(self): assert_series_equal(-self.series, -1 * self.series) def test_invert(self): assert_series_equal(-(self.series < 0), ~(self.series < 0)) def test_div(self): with np.errstate(all='ignore'): # no longer do integer div for any ops, but deal with the 0's p = DataFrame({'first': [3, 4, 5, 8], 'second': [0, 0, 0, 3]}) result = p['first'] / p['second'] expected = Series( p['first'].values.astype(float) / p['second'].values, dtype='float64') expected.iloc[0:3] = np.inf assert_series_equal(result, expected) result = p['first'] / 0 expected = Series(np.inf, index=p.index, name='first') assert_series_equal(result, expected) p = p.astype('float64') result = p['first'] / p['second'] expected = Series(p['first'].values / p['second'].values) assert_series_equal(result, expected) p = DataFrame({'first': [3, 4, 5, 8], 'second': [1, 1, 1, 1]}) result = p['first'] / p['second'] assert_series_equal(result, p['first'].astype('float64'), check_names=False) self.assertTrue(result.name is None) self.assertFalse(np.array_equal(result, p['second'] / p['first'])) # inf signing s = Series([np.nan, 1., -1.]) result = s / 0 expected = Series([np.nan, np.inf, -np.inf]) assert_series_equal(result, expected) # float/integer issue # GH 7785 p = DataFrame({'first': (1, 0), 'second': (-0.01, -0.02)}) expected = Series([-0.01, -np.inf]) result = p['second'].div(p['first']) assert_series_equal(result, expected, check_names=False) result = p['second'] / p['first'] assert_series_equal(result, expected) # GH 9144 s = Series([-1, 0, 1]) result = 0 / s expected = Series([0.0, nan, 0.0]) assert_series_equal(result, expected) result = s / 0 expected = Series([-inf, nan, inf]) assert_series_equal(result, expected) result = s // 0 expected = Series([-inf, nan, inf]) assert_series_equal(result, expected) def test_operators(self): def _check_op(series, other, op, pos_only=False, check_dtype=True): left = np.abs(series) if pos_only else series right = np.abs(other) if pos_only else other cython_or_numpy = op(left, right) python = left.combine(right, op) tm.assert_series_equal(cython_or_numpy, python, check_dtype=check_dtype) def check(series, other): simple_ops = ['add', 'sub', 'mul', 'truediv', 'floordiv', 'mod'] for opname in simple_ops: _check_op(series, other, getattr(operator, opname)) _check_op(series, other, operator.pow, pos_only=True) _check_op(series, other, lambda x, y: operator.add(y, x)) _check_op(series, other, lambda x, y: operator.sub(y, x)) _check_op(series, other, lambda x, y: operator.truediv(y, x)) _check_op(series, other, lambda x, y: operator.floordiv(y, x)) _check_op(series, other, lambda x, y: operator.mul(y, x)) _check_op(series, other, lambda x, y: operator.pow(y, x), pos_only=True) _check_op(series, other, lambda x, y: operator.mod(y, x)) check(self.ts, self.ts * 2) check(self.ts, self.ts * 0) check(self.ts, self.ts[::2]) check(self.ts, 5) def check_comparators(series, other, check_dtype=True): _check_op(series, other, operator.gt, check_dtype=check_dtype) _check_op(series, other, operator.ge, check_dtype=check_dtype) _check_op(series, other, operator.eq, check_dtype=check_dtype) _check_op(series, other, operator.lt, check_dtype=check_dtype) _check_op(series, other, operator.le, check_dtype=check_dtype) check_comparators(self.ts, 5) check_comparators(self.ts, self.ts + 1, check_dtype=False) def test_operators_empty_int_corner(self): s1 = Series([], [], dtype=np.int32) s2 = Series({'x': 0.}) tm.assert_series_equal(s1 * s2, Series([np.nan], index=['x'])) def test_operators_timedelta64(self): # invalid ops self.assertRaises(Exception, self.objSeries.__add__, 1) self.assertRaises(Exception, self.objSeries.__add__, np.array(1, dtype=np.int64)) self.assertRaises(Exception, self.objSeries.__sub__, 1) self.assertRaises(Exception, self.objSeries.__sub__, np.array(1, dtype=np.int64)) # seriese ops v1 = date_range('2012-1-1', periods=3, freq='D') v2 = date_range('2012-1-2', periods=3, freq='D') rs = Series(v2) - Series(v1) xp = Series(1e9 * 3600 * 24, rs.index).astype('int64').astype('timedelta64[ns]') assert_series_equal(rs, xp) self.assertEqual(rs.dtype, 'timedelta64[ns]') df = DataFrame(dict(A=v1)) td = Series([timedelta(days=i) for i in range(3)]) self.assertEqual(td.dtype, 'timedelta64[ns]') # series on the rhs result = df['A'] - df['A'].shift() self.assertEqual(result.dtype, 'timedelta64[ns]') result = df['A'] + td self.assertEqual(result.dtype, 'M8[ns]') # scalar Timestamp on rhs maxa = df['A'].max() tm.assertIsInstance(maxa, Timestamp) resultb = df['A'] - df['A'].max() self.assertEqual(resultb.dtype, 'timedelta64[ns]') # timestamp on lhs result = resultb + df['A'] values = [Timestamp('20111230'), Timestamp('20120101'), Timestamp('20120103')] expected = Series(values, name='A') assert_series_equal(result, expected) # datetimes on rhs result = df['A'] - datetime(2001, 1, 1) expected = Series( [timedelta(days=4017 + i) for i in range(3)], name='A') assert_series_equal(result, expected) self.assertEqual(result.dtype, 'm8[ns]') d = datetime(2001, 1, 1, 3, 4) resulta = df['A'] - d self.assertEqual(resulta.dtype, 'm8[ns]') # roundtrip resultb = resulta + d assert_series_equal(df['A'], resultb) # timedeltas on rhs td = timedelta(days=1) resulta = df['A'] + td resultb = resulta - td assert_series_equal(resultb, df['A']) self.assertEqual(resultb.dtype, 'M8[ns]') # roundtrip td = timedelta(minutes=5, seconds=3) resulta = df['A'] + td resultb = resulta - td assert_series_equal(df['A'], resultb) self.assertEqual(resultb.dtype, 'M8[ns]') # inplace value = rs[2] + np.timedelta64(timedelta(minutes=5, seconds=1)) rs[2] += np.timedelta64(timedelta(minutes=5, seconds=1)) self.assertEqual(rs[2], value) def test_operator_series_comparison_zerorank(self): # GH 13006 result = np.float64(0) > pd.Series([1, 2, 3]) expected = 0.0 > pd.Series([1, 2, 3]) self.assert_series_equal(result, expected) result = pd.Series([1, 2, 3]) < np.float64(0) expected = pd.Series([1, 2, 3]) < 0.0 self.assert_series_equal(result, expected) result = np.array([0, 1, 2])[0] > pd.Series([0, 1, 2]) expected = 0.0 > pd.Series([1, 2, 3]) self.assert_series_equal(result, expected) def test_timedeltas_with_DateOffset(self): # GH 4532 # operate with pd.offsets s = Series([Timestamp('20130101 9:01'), Timestamp('20130101 9:02')]) result = s + pd.offsets.Second(5) result2 = pd.offsets.Second(5) + s expected = Series([Timestamp('20130101 9:01:05'), Timestamp( '20130101 9:02:05')]) assert_series_equal(result, expected) assert_series_equal(result2, expected) result = s - pd.offsets.Second(5) result2 = -pd.offsets.Second(5) + s expected = Series([Timestamp('20130101 9:00:55'), Timestamp( '20130101 9:01:55')]) assert_series_equal(result, expected) assert_series_equal(result2, expected) result = s + pd.offsets.Milli(5) result2 = pd.offsets.Milli(5) + s expected = Series([Timestamp('20130101 9:01:00.005'), Timestamp( '20130101 9:02:00.005')]) assert_series_equal(result, expected) assert_series_equal(result2, expected) result = s + pd.offsets.Minute(5) + pd.offsets.Milli(5) expected = Series([Timestamp('20130101 9:06:00.005'), Timestamp( '20130101 9:07:00.005')]) assert_series_equal(result, expected) # operate with np.timedelta64 correctly result = s + np.timedelta64(1, 's') result2 = np.timedelta64(1, 's') + s expected = Series([Timestamp('20130101 9:01:01'), Timestamp( '20130101 9:02:01')]) assert_series_equal(result, expected) assert_series_equal(result2, expected) result = s + np.timedelta64(5, 'ms') result2 = np.timedelta64(5, 'ms') + s expected = Series([Timestamp('20130101 9:01:00.005'), Timestamp( '20130101 9:02:00.005')]) assert_series_equal(result, expected) assert_series_equal(result2, expected) # valid DateOffsets for do in ['Hour', 'Minute', 'Second', 'Day', 'Micro', 'Milli', 'Nano']: op = getattr(pd.offsets, do) s + op(5) op(5) + s def test_timedelta_series_ops(self): # GH11925 s = Series(timedelta_range('1 day', periods=3)) ts = Timestamp('2012-01-01') expected = Series(date_range('2012-01-02', periods=3)) assert_series_equal(ts + s, expected) assert_series_equal(s + ts, expected) expected2 = Series(date_range('2011-12-31', periods=3, freq='-1D')) assert_series_equal(ts - s, expected2) assert_series_equal(ts + (-s), expected2) def test_timedelta64_operations_with_DateOffset(self): # GH 10699 td = Series([timedelta(minutes=5, seconds=3)] * 3) result = td + pd.offsets.Minute(1) expected = Series([timedelta(minutes=6, seconds=3)] * 3) assert_series_equal(result, expected) result = td - pd.offsets.Minute(1) expected = Series([timedelta(minutes=4, seconds=3)] * 3) assert_series_equal(result, expected) result = td + Series([pd.offsets.Minute(1), pd.offsets.Second(3), pd.offsets.Hour(2)]) expected = Series([timedelta(minutes=6, seconds=3), timedelta( minutes=5, seconds=6), timedelta(hours=2, minutes=5, seconds=3)]) assert_series_equal(result, expected) result = td + pd.offsets.Minute(1) + pd.offsets.Second(12) expected = Series([timedelta(minutes=6, seconds=15)] * 3) assert_series_equal(result, expected) # valid DateOffsets for do in ['Hour', 'Minute', 'Second', 'Day', 'Micro', 'Milli', 'Nano']: op = getattr(pd.offsets, do) td + op(5) op(5) + td td - op(5) op(5) - td def test_timedelta64_operations_with_timedeltas(self): # td operate with td td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td2 = timedelta(minutes=5, seconds=4) result = td1 - td2 expected = Series([timedelta(seconds=0)] * 3) - Series([timedelta( seconds=1)] * 3) self.assertEqual(result.dtype, 'm8[ns]') assert_series_equal(result, expected) result2 = td2 - td1 expected = (Series([timedelta(seconds=1)] * 3) - Series([timedelta( seconds=0)] * 3)) assert_series_equal(result2, expected) # roundtrip assert_series_equal(result + td2, td1) # Now again, using pd.to_timedelta, which should build # a Series or a scalar, depending on input. td1 = Series(pd.to_timedelta(['00:05:03'] * 3)) td2 = pd.to_timedelta('00:05:04') result = td1 - td2 expected = Series([timedelta(seconds=0)] * 3) - Series([timedelta( seconds=1)] * 3) self.assertEqual(result.dtype, 'm8[ns]') assert_series_equal(result, expected) result2 = td2 - td1 expected = (Series([timedelta(seconds=1)] * 3) - Series([timedelta( seconds=0)] * 3)) assert_series_equal(result2, expected) # roundtrip assert_series_equal(result + td2, td1) def test_timedelta64_operations_with_integers(self): # GH 4521 # divide/multiply by integers startdate = Series(date_range('2013-01-01', '2013-01-03')) enddate = Series(date_range('2013-03-01', '2013-03-03')) s1 = enddate - startdate s1[2] = np.nan s2 = Series([2, 3, 4]) expected = Series(s1.values.astype(np.int64) / s2, dtype='m8[ns]') expected[2] = np.nan result = s1 / s2 assert_series_equal(result, expected) s2 = Series([20, 30, 40]) expected = Series(s1.values.astype(np.int64) / s2, dtype='m8[ns]') expected[2] = np.nan result = s1 / s2 assert_series_equal(result, expected) result = s1 / 2 expected = Series(s1.values.astype(np.int64) / 2, dtype='m8[ns]') expected[2] = np.nan assert_series_equal(result, expected) s2 = Series([20, 30, 40]) expected = Series(s1.values.astype(np.int64) * s2, dtype='m8[ns]') expected[2] = np.nan result = s1 * s2 assert_series_equal(result, expected) for dtype in ['int32', 'int16', 'uint32', 'uint64', 'uint32', 'uint16', 'uint8']: s2 = Series([20, 30, 40], dtype=dtype) expected = Series( s1.values.astype(np.int64) * s2.astype(np.int64), dtype='m8[ns]') expected[2] = np.nan result = s1 * s2 assert_series_equal(result, expected) result = s1 * 2 expected = Series(s1.values.astype(np.int64) * 2, dtype='m8[ns]') expected[2] = np.nan assert_series_equal(result, expected) result = s1 * -1 expected = Series(s1.values.astype(np.int64) * -1, dtype='m8[ns]') expected[2] = np.nan assert_series_equal(result, expected) # invalid ops assert_series_equal(s1 / s2.astype(float), Series([Timedelta('2 days 22:48:00'), Timedelta( '1 days 23:12:00'), Timedelta('NaT')])) assert_series_equal(s1 / 2.0, Series([Timedelta('29 days 12:00:00'), Timedelta( '29 days 12:00:00'), Timedelta('NaT')])) for op in ['__add__', '__sub__']: sop = getattr(s1, op, None) if sop is not None: self.assertRaises(TypeError, sop, 1) self.assertRaises(TypeError, sop, s2.values) def test_timedelta64_conversions(self): startdate = Series(date_range('2013-01-01', '2013-01-03')) enddate = Series(date_range('2013-03-01', '2013-03-03')) s1 = enddate - startdate s1[2] = np.nan for m in [1, 3, 10]: for unit in ['D', 'h', 'm', 's', 'ms', 'us', 'ns']: # op expected = s1.apply(lambda x: x / np.timedelta64(m, unit)) result = s1 / np.timedelta64(m, unit) assert_series_equal(result, expected) if m == 1 and unit != 'ns': # astype result = s1.astype("timedelta64[{0}]".format(unit)) assert_series_equal(result, expected) # reverse op expected = s1.apply( lambda x: Timedelta(np.timedelta64(m, unit)) / x) result = np.timedelta64(m, unit) / s1 # astype s = Series(date_range('20130101', periods=3)) result = s.astype(object) self.assertIsInstance(result.iloc[0], datetime) self.assertTrue(result.dtype == np.object_) result = s1.astype(object) self.assertIsInstance(result.iloc[0], timedelta) self.assertTrue(result.dtype == np.object_) def test_timedelta64_equal_timedelta_supported_ops(self): ser = Series([Timestamp('20130301'), Timestamp('20130228 23:00:00'), Timestamp('20130228 22:00:00'), Timestamp( '20130228 21:00:00')]) intervals = 'D', 'h', 'm', 's', 'us' # TODO: unused # npy16_mappings = {'D': 24 * 60 * 60 * 1000000, # 'h': 60 * 60 * 1000000, # 'm': 60 * 1000000, # 's': 1000000, # 'us': 1} def timedelta64(*args): return sum(starmap(np.timedelta64, zip(args, intervals))) for op, d, h, m, s, us in product([operator.add, operator.sub], *([range(2)] * 5)): nptd = timedelta64(d, h, m, s, us) pytd = timedelta(days=d, hours=h, minutes=m, seconds=s, microseconds=us) lhs = op(ser, nptd) rhs = op(ser, pytd) try: assert_series_equal(lhs, rhs) except: raise AssertionError( "invalid comparsion [op->{0},d->{1},h->{2},m->{3}," "s->{4},us->{5}]\n{6}\n{7}\n".format(op, d, h, m, s, us, lhs, rhs)) def test_operators_datetimelike(self): def run_ops(ops, get_ser, test_ser): # check that we are getting a TypeError # with 'operate' (from core/ops.py) for the ops that are not # defined for op_str in ops: op = getattr(get_ser, op_str, None) with tm.assertRaisesRegexp(TypeError, 'operate'): op(test_ser) # ## timedelta64 ### td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td1.iloc[2] = np.nan td2 = timedelta(minutes=5, seconds=4) ops = ['__mul__', '__floordiv__', '__pow__', '__rmul__', '__rfloordiv__', '__rpow__'] run_ops(ops, td1, td2) td1 + td2 td2 + td1 td1 - td2 td2 - td1 td1 / td2 td2 / td1 # ## datetime64 ### dt1 = Series([Timestamp('20111230'), Timestamp('20120101'), Timestamp('20120103')]) dt1.iloc[2] = np.nan dt2 = Series([Timestamp('20111231'), Timestamp('20120102'), Timestamp('20120104')]) ops = ['__add__', '__mul__', '__floordiv__', '__truediv__', '__div__', '__pow__', '__radd__', '__rmul__', '__rfloordiv__', '__rtruediv__', '__rdiv__', '__rpow__'] run_ops(ops, dt1, dt2) dt1 - dt2 dt2 - dt1 # ## datetime64 with timetimedelta ### ops = ['__mul__', '__floordiv__', '__truediv__', '__div__', '__pow__', '__rmul__', '__rfloordiv__', '__rtruediv__', '__rdiv__', '__rpow__'] run_ops(ops, dt1, td1) dt1 + td1 td1 + dt1 dt1 - td1 # TODO: Decide if this ought to work. # td1 - dt1 # ## timetimedelta with datetime64 ### ops = ['__sub__', '__mul__', '__floordiv__', '__truediv__', '__div__', '__pow__', '__rmul__', '__rfloordiv__', '__rtruediv__', '__rdiv__', '__rpow__'] run_ops(ops, td1, dt1) td1 + dt1 dt1 + td1 # 8260, 10763 # datetime64 with tz ops = ['__mul__', '__floordiv__', '__truediv__', '__div__', '__pow__', '__rmul__', '__rfloordiv__', '__rtruediv__', '__rdiv__', '__rpow__'] tz = 'US/Eastern' dt1 = Series(date_range('2000-01-01 09:00:00', periods=5, tz=tz), name='foo') dt2 = dt1.copy() dt2.iloc[2] = np.nan td1 = Series(timedelta_range('1 days 1 min', periods=5, freq='H')) td2 = td1.copy() td2.iloc[1] = np.nan run_ops(ops, dt1, td1) result = dt1 + td1[0] exp = (dt1.dt.tz_localize(None) + td1[0]).dt.tz_localize(tz) assert_series_equal(result, exp) result = dt2 + td2[0] exp = (dt2.dt.tz_localize(None) + td2[0]).dt.tz_localize(tz) assert_series_equal(result, exp) # odd numpy behavior with scalar timedeltas if not _np_version_under1p8: result = td1[0] + dt1 exp = (dt1.dt.tz_localize(None) + td1[0]).dt.tz_localize(tz) assert_series_equal(result, exp) result = td2[0] + dt2 exp = (dt2.dt.tz_localize(None) + td2[0]).dt.tz_localize(tz) assert_series_equal(result, exp) result = dt1 - td1[0] exp = (dt1.dt.tz_localize(None) - td1[0]).dt.tz_localize(tz) assert_series_equal(result, exp) self.assertRaises(TypeError, lambda: td1[0] - dt1) result = dt2 - td2[0] exp = (dt2.dt.tz_localize(None) - td2[0]).dt.tz_localize(tz) assert_series_equal(result, exp) self.assertRaises(TypeError, lambda: td2[0] - dt2) result = dt1 + td1 exp = (dt1.dt.tz_localize(None) + td1).dt.tz_localize(tz) assert_series_equal(result, exp) result = dt2 + td2 exp = (dt2.dt.tz_localize(None) + td2).dt.tz_localize(tz) assert_series_equal(result, exp) result = dt1 - td1 exp = (dt1.dt.tz_localize(None) - td1).dt.tz_localize(tz) assert_series_equal(result, exp) result = dt2 - td2 exp = (dt2.dt.tz_localize(None) - td2).dt.tz_localize(tz) assert_series_equal(result, exp) self.assertRaises(TypeError, lambda: td1 - dt1) self.assertRaises(TypeError, lambda: td2 - dt2) def test_sub_single_tz(self): # GH12290 s1 = Series([pd.Timestamp('2016-02-10', tz='America/Sao_Paulo')]) s2 = Series([pd.Timestamp('2016-02-08', tz='America/Sao_Paulo')]) result = s1 - s2 expected = Series([Timedelta('2days')]) assert_series_equal(result, expected) result = s2 - s1 expected = Series([Timedelta('-2days')]) assert_series_equal(result, expected) def test_ops_nat(self): # GH 11349 timedelta_series = Series([NaT, Timedelta('1s')]) datetime_series = Series([NaT, Timestamp('19900315')]) nat_series_dtype_timedelta = Series( [NaT, NaT], dtype='timedelta64[ns]') nat_series_dtype_timestamp = Series([NaT, NaT], dtype='datetime64[ns]') single_nat_dtype_datetime = Series([NaT], dtype='datetime64[ns]') single_nat_dtype_timedelta = Series([NaT], dtype='timedelta64[ns]') # subtraction assert_series_equal(timedelta_series - NaT, nat_series_dtype_timedelta) assert_series_equal(-NaT + timedelta_series, nat_series_dtype_timedelta) assert_series_equal(timedelta_series - single_nat_dtype_timedelta, nat_series_dtype_timedelta) assert_series_equal(-single_nat_dtype_timedelta + timedelta_series, nat_series_dtype_timedelta) assert_series_equal(datetime_series - NaT, nat_series_dtype_timestamp) assert_series_equal(-NaT + datetime_series, nat_series_dtype_timestamp) assert_series_equal(datetime_series - single_nat_dtype_datetime, nat_series_dtype_timedelta) with tm.assertRaises(TypeError): -single_nat_dtype_datetime + datetime_series assert_series_equal(datetime_series - single_nat_dtype_timedelta, nat_series_dtype_timestamp) assert_series_equal(-single_nat_dtype_timedelta + datetime_series, nat_series_dtype_timestamp) # without a Series wrapping the NaT, it is ambiguous # whether it is a datetime64 or timedelta64 # defaults to interpreting it as timedelta64 assert_series_equal(nat_series_dtype_timestamp - NaT, nat_series_dtype_timestamp) assert_series_equal(-NaT + nat_series_dtype_timestamp, nat_series_dtype_timestamp) assert_series_equal(nat_series_dtype_timestamp - single_nat_dtype_datetime, nat_series_dtype_timedelta) with tm.assertRaises(TypeError): -single_nat_dtype_datetime + nat_series_dtype_timestamp assert_series_equal(nat_series_dtype_timestamp - single_nat_dtype_timedelta, nat_series_dtype_timestamp) assert_series_equal(-single_nat_dtype_timedelta + nat_series_dtype_timestamp, nat_series_dtype_timestamp) with tm.assertRaises(TypeError): timedelta_series - single_nat_dtype_datetime # addition assert_series_equal(nat_series_dtype_timestamp + NaT, nat_series_dtype_timestamp) assert_series_equal(NaT + nat_series_dtype_timestamp, nat_series_dtype_timestamp) assert_series_equal(nat_series_dtype_timestamp + single_nat_dtype_timedelta, nat_series_dtype_timestamp) assert_series_equal(single_nat_dtype_timedelta + nat_series_dtype_timestamp, nat_series_dtype_timestamp) assert_series_equal(nat_series_dtype_timedelta + NaT, nat_series_dtype_timedelta) assert_series_equal(NaT + nat_series_dtype_timedelta, nat_series_dtype_timedelta) assert_series_equal(nat_series_dtype_timedelta + single_nat_dtype_timedelta, nat_series_dtype_timedelta) assert_series_equal(single_nat_dtype_timedelta + nat_series_dtype_timedelta, nat_series_dtype_timedelta) assert_series_equal(timedelta_series + NaT, nat_series_dtype_timedelta) assert_series_equal(NaT + timedelta_series, nat_series_dtype_timedelta) assert_series_equal(timedelta_series + single_nat_dtype_timedelta, nat_series_dtype_timedelta) assert_series_equal(single_nat_dtype_timedelta + timedelta_series, nat_series_dtype_timedelta) assert_series_equal(nat_series_dtype_timestamp + NaT, nat_series_dtype_timestamp) assert_series_equal(NaT + nat_series_dtype_timestamp, nat_series_dtype_timestamp) assert_series_equal(nat_series_dtype_timestamp + single_nat_dtype_timedelta, nat_series_dtype_timestamp) assert_series_equal(single_nat_dtype_timedelta + nat_series_dtype_timestamp, nat_series_dtype_timestamp) assert_series_equal(nat_series_dtype_timedelta + NaT, nat_series_dtype_timedelta) assert_series_equal(NaT + nat_series_dtype_timedelta, nat_series_dtype_timedelta) assert_series_equal(nat_series_dtype_timedelta + single_nat_dtype_timedelta, nat_series_dtype_timedelta) assert_series_equal(single_nat_dtype_timedelta + nat_series_dtype_timedelta, nat_series_dtype_timedelta) assert_series_equal(nat_series_dtype_timedelta + single_nat_dtype_datetime, nat_series_dtype_timestamp) assert_series_equal(single_nat_dtype_datetime + nat_series_dtype_timedelta, nat_series_dtype_timestamp) # multiplication assert_series_equal(nat_series_dtype_timedelta * 1.0, nat_series_dtype_timedelta) assert_series_equal(1.0 * nat_series_dtype_timedelta, nat_series_dtype_timedelta) assert_series_equal(timedelta_series * 1, timedelta_series) assert_series_equal(1 * timedelta_series, timedelta_series) assert_series_equal(timedelta_series * 1.5, Series([NaT, Timedelta('1.5s')])) assert_series_equal(1.5 * timedelta_series, Series([NaT, Timedelta('1.5s')])) assert_series_equal(timedelta_series * nan, nat_series_dtype_timedelta) assert_series_equal(nan * timedelta_series, nat_series_dtype_timedelta) with tm.assertRaises(TypeError): datetime_series * 1 with tm.assertRaises(TypeError): nat_series_dtype_timestamp * 1 with tm.assertRaises(TypeError): datetime_series * 1.0 with tm.assertRaises(TypeError): nat_series_dtype_timestamp * 1.0 # division assert_series_equal(timedelta_series / 2, Series([NaT, Timedelta('0.5s')])) assert_series_equal(timedelta_series / 2.0, Series([NaT, Timedelta('0.5s')])) assert_series_equal(timedelta_series / nan, nat_series_dtype_timedelta) with tm.assertRaises(TypeError): nat_series_dtype_timestamp / 1.0 with tm.assertRaises(TypeError): nat_series_dtype_timestamp / 1 def test_ops_datetimelike_align(self): # GH 7500 # datetimelike ops need to align dt = Series(date_range('2012-1-1', periods=3, freq='D')) dt.iloc[2] = np.nan dt2 = dt[::-1] expected = Series([timedelta(0), timedelta(0), pd.NaT]) # name is reset result = dt2 - dt assert_series_equal(result, expected) expected = Series(expected, name=0) result = (dt2.to_frame() - dt.to_frame())[0] assert_series_equal(result, expected) def test_object_comparisons(self): s = Series(['a', 'b', np.nan, 'c', 'a']) result = s == 'a' expected = Series([True, False, False, False, True]) assert_series_equal(result, expected) result = s < 'a' expected = Series([False, False, False, False, False]) assert_series_equal(result, expected) result = s != 'a' expected = -(s == 'a') assert_series_equal(result, expected) def test_comparison_tuples(self): # GH11339 # comparisons vs tuple s = Series([(1, 1), (1, 2)]) result = s == (1, 2) expected = Series([False, True]) assert_series_equal(result, expected) result = s != (1, 2) expected = Series([True, False]) assert_series_equal(result, expected) result = s == (0, 0) expected = Series([False, False]) assert_series_equal(result, expected) result = s != (0, 0) expected = Series([True, True]) assert_series_equal(result, expected) s = Series([(1, 1), (1, 1)]) result = s == (1, 1) expected = Series([True, True]) assert_series_equal(result, expected) result = s != (1, 1) expected = Series([False, False]) assert_series_equal(result, expected) s = Series([frozenset([1]), frozenset([1, 2])]) result = s == frozenset([1]) expected = Series([True, False]) assert_series_equal(result, expected) def test_comparison_operators_with_nas(self): s = Series(bdate_range('1/1/2000', periods=10), dtype=object) s[::2] = np.nan # test that comparisons work ops = ['lt', 'le', 'gt', 'ge', 'eq', 'ne'] for op in ops: val = s[5] f = getattr(operator, op) result = f(s, val) expected = f(s.dropna(), val).reindex(s.index) if op == 'ne': expected = expected.fillna(True).astype(bool) else: expected = expected.fillna(False).astype(bool) assert_series_equal(result, expected) # fffffffuuuuuuuuuuuu # result = f(val, s) # expected = f(val, s.dropna()).reindex(s.index) # assert_series_equal(result, expected) # boolean &, |, ^ should work with object arrays and propagate NAs ops = ['and_', 'or_', 'xor'] mask = s.isnull() for bool_op in ops: f = getattr(operator, bool_op) filled = s.fillna(s[0]) result = f(s < s[9], s > s[3]) expected = f(filled < filled[9], filled > filled[3]) expected[mask] = False assert_series_equal(result, expected) def test_comparison_object_numeric_nas(self): s = Series(np.random.randn(10), dtype=object) shifted = s.shift(2) ops = ['lt', 'le', 'gt', 'ge', 'eq', 'ne'] for op in ops: f = getattr(operator, op) result = f(s, shifted) expected = f(s.astype(float), shifted.astype(float)) assert_series_equal(result, expected) def test_comparison_invalid(self): # GH4968 # invalid date/int comparisons s = Series(range(5)) s2 = Series(date_range('20010101', periods=5)) for (x, y) in [(s, s2), (s2, s)]: self.assertRaises(TypeError, lambda: x == y) self.assertRaises(TypeError, lambda: x != y) self.assertRaises(TypeError, lambda: x >= y) self.assertRaises(TypeError, lambda: x > y) self.assertRaises(TypeError, lambda: x < y) self.assertRaises(TypeError, lambda: x <= y) def test_more_na_comparisons(self): for dtype in [None, object]: left = Series(['a', np.nan, 'c'], dtype=dtype) right = Series(['a', np.nan, 'd'], dtype=dtype) result = left == right expected = Series([True, False, False]) assert_series_equal(result, expected) result = left != right expected = Series([False, True, True]) assert_series_equal(result, expected) result = left == np.nan expected = Series([False, False, False]) assert_series_equal(result, expected) result = left != np.nan expected = Series([True, True, True]) assert_series_equal(result, expected) def test_nat_comparisons(self): data = [([pd.Timestamp('2011-01-01'), pd.NaT, pd.Timestamp('2011-01-03')], [pd.NaT, pd.NaT, pd.Timestamp('2011-01-03')]), ([pd.Timedelta('1 days'), pd.NaT, pd.Timedelta('3 days')], [pd.NaT, pd.NaT, pd.Timedelta('3 days')]), ([pd.Period('2011-01', freq='M'), pd.NaT, pd.Period('2011-03', freq='M')], [pd.NaT, pd.NaT, pd.Period('2011-03', freq='M')])] # add lhs / rhs switched data data = data + [(r, l) for l, r in data] for l, r in data: for dtype in [None, object]: left = Series(l, dtype=dtype) # Series, Index for right in [Series(r, dtype=dtype), Index(r, dtype=dtype)]: expected = Series([False, False, True]) assert_series_equal(left == right, expected) expected = Series([True, True, False]) assert_series_equal(left != right, expected) expected = Series([False, False, False]) assert_series_equal(left < right, expected) expected = Series([False, False, False]) assert_series_equal(left > right, expected) expected = Series([False, False, True]) assert_series_equal(left >= right, expected) expected = Series([False, False, True]) assert_series_equal(left <= right, expected) def test_nat_comparisons_scalar(self): data = [[pd.Timestamp('2011-01-01'), pd.NaT, pd.Timestamp('2011-01-03')], [pd.Timedelta('1 days'), pd.NaT, pd.Timedelta('3 days')], [pd.Period('2011-01', freq='M'), pd.NaT, pd.Period('2011-03', freq='M')]] for l in data: for dtype in [None, object]: left = Series(l, dtype=dtype) expected = Series([False, False, False]) assert_series_equal(left == pd.NaT, expected) assert_series_equal(pd.NaT == left, expected) expected = Series([True, True, True]) assert_series_equal(left != pd.NaT, expected) assert_series_equal(pd.NaT != left, expected) expected = Series([False, False, False]) assert_series_equal(left < pd.NaT, expected) assert_series_equal(pd.NaT > left, expected) assert_series_equal(left <= pd.NaT, expected) assert_series_equal(pd.NaT >= left, expected) assert_series_equal(left > pd.NaT, expected) assert_series_equal(pd.NaT < left, expected) assert_series_equal(left >= pd.NaT, expected) assert_series_equal(pd.NaT <= left, expected) def test_comparison_different_length(self): a = Series(['a', 'b', 'c']) b = Series(['b', 'a']) self.assertRaises(ValueError, a.__lt__, b) a = Series([1, 2]) b = Series([2, 3, 4]) self.assertRaises(ValueError, a.__eq__, b) def test_comparison_label_based(self): # GH 4947 # comparisons should be label based a = Series([True, False, True], list('bca')) b = Series([False, True, False], list('abc')) expected = Series([False, True, False], list('abc')) result = a & b assert_series_equal(result, expected) expected = Series([True, True, False], list('abc')) result = a | b assert_series_equal(result, expected) expected = Series([True, False, False], list('abc')) result = a ^ b assert_series_equal(result, expected) # rhs is bigger a = Series([True, False, True], list('bca')) b = Series([False, True, False, True], list('abcd')) expected = Series([False, True, False, False], list('abcd')) result = a & b assert_series_equal(result, expected) expected = Series([True, True, False, False], list('abcd')) result = a | b assert_series_equal(result, expected) # filling # vs empty result = a & Series([]) expected = Series([False, False, False], list('bca')) assert_series_equal(result, expected) result = a | Series([]) expected = Series([True, False, True], list('bca')) assert_series_equal(result, expected) # vs non-matching result = a & Series([1], ['z']) expected = Series([False, False, False, False], list('abcz')) assert_series_equal(result, expected) result = a | Series([1], ['z']) expected = Series([True, True, False, False], list('abcz')) assert_series_equal(result, expected) # identity # we would like s[s|e] == s to hold for any e, whether empty or not for e in [Series([]), Series([1], ['z']), Series(np.nan, b.index), Series(np.nan, a.index)]: result = a[a | e] assert_series_equal(result, a[a]) for e in [Series(['z'])]: if compat.PY3: with tm.assert_produces_warning(RuntimeWarning): result = a[a | e] else: result = a[a | e] assert_series_equal(result, a[a]) # vs scalars index = list('bca') t = Series([True, False, True]) for v in [True, 1, 2]: result = Series([True, False, True], index=index) | v expected = Series([True, True, True], index=index) assert_series_equal(result, expected) for v in [np.nan, 'foo']: self.assertRaises(TypeError, lambda: t | v) for v in [False, 0]: result = Series([True, False, True], index=index) | v expected = Series([True, False, True], index=index) assert_series_equal(result, expected) for v in [True, 1]: result = Series([True, False, True], index=index) & v expected = Series([True, False, True], index=index) assert_series_equal(result, expected) for v in [False, 0]: result = Series([True, False, True], index=index) & v expected = Series([False, False, False], index=index) assert_series_equal(result, expected) for v in [np.nan]: self.assertRaises(TypeError, lambda: t & v) def test_comparison_flex_basic(self): left = pd.Series(np.random.randn(10)) right = pd.Series(np.random.randn(10)) tm.assert_series_equal(left.eq(right), left == right) tm.assert_series_equal(left.ne(right), left != right) tm.assert_series_equal(left.le(right), left < right) tm.assert_series_equal(left.lt(right), left <= right) tm.assert_series_equal(left.gt(right), left > right) tm.assert_series_equal(left.ge(right), left >= right) # axis for axis in [0, None, 'index']: tm.assert_series_equal(left.eq(right, axis=axis), left == right) tm.assert_series_equal(left.ne(right, axis=axis), left != right) tm.assert_series_equal(left.le(right, axis=axis), left < right) tm.assert_series_equal(left.lt(right, axis=axis), left <= right) tm.assert_series_equal(left.gt(right, axis=axis), left > right) tm.assert_series_equal(left.ge(right, axis=axis), left >= right) # msg = 'No axis named 1 for object type' for op in ['eq', 'ne', 'le', 'le', 'gt', 'ge']: with tm.assertRaisesRegexp(ValueError, msg): getattr(left, op)(right, axis=1) def test_comparison_flex_alignment(self): left = Series([1, 3, 2], index=list('abc')) right = Series([2, 2, 2], index=list('bcd')) exp = pd.Series([False, False, True, False], index=list('abcd')) tm.assert_series_equal(left.eq(right), exp) exp = pd.Series([True, True, False, True], index=list('abcd')) tm.assert_series_equal(left.ne(right), exp) exp = pd.Series([False, False, True, False], index=list('abcd')) tm.assert_series_equal(left.le(right), exp) exp = pd.Series([False, False, False, False], index=list('abcd')) tm.assert_series_equal(left.lt(right), exp) exp = pd.Series([False, True, True, False], index=list('abcd')) tm.assert_series_equal(left.ge(right), exp) exp = pd.Series([False, True, False, False], index=list('abcd')) tm.assert_series_equal(left.gt(right), exp) def test_comparison_flex_alignment_fill(self): left = Series([1, 3, 2], index=list('abc')) right = Series([2, 2, 2], index=list('bcd')) exp = pd.Series([False, False, True, True], index=list('abcd')) tm.assert_series_equal(left.eq(right, fill_value=2), exp) exp = pd.Series([True, True, False, False], index=list('abcd')) tm.assert_series_equal(left.ne(right, fill_value=2), exp) exp = pd.Series([False, False, True, True], index=list('abcd')) tm.assert_series_equal(left.le(right, fill_value=0), exp) exp = pd.Series([False, False, False, True], index=list('abcd')) tm.assert_series_equal(left.lt(right, fill_value=0), exp) exp = pd.Series([True, True, True, False], index=list('abcd')) tm.assert_series_equal(left.ge(right, fill_value=0), exp) exp = pd.Series([True, True, False, False], index=list('abcd')) tm.assert_series_equal(left.gt(right, fill_value=0), exp) def test_operators_bitwise(self): # GH 9016: support bitwise op for integer types index = list('bca') s_tft = Series([True, False, True], index=index) s_fff = Series([False, False, False], index=index) s_tff = Series([True, False, False], index=index) s_empty = Series([]) # TODO: unused # s_0101 = Series([0, 1, 0, 1]) s_0123 = Series(range(4), dtype='int64') s_3333 = Series([3] * 4) s_4444 = Series([4] * 4) res = s_tft & s_empty expected = s_fff assert_series_equal(res, expected) res = s_tft | s_empty expected = s_tft assert_series_equal(res, expected) res = s_0123 & s_3333 expected = Series(range(4), dtype='int64') assert_series_equal(res, expected) res = s_0123 | s_4444 expected = Series(range(4, 8), dtype='int64') assert_series_equal(res, expected) s_a0b1c0 = Series([1], list('b')) res = s_tft & s_a0b1c0 expected = s_tff.reindex(list('abc')) assert_series_equal(res, expected) res = s_tft | s_a0b1c0 expected = s_tft.reindex(list('abc')) assert_series_equal(res, expected) n0 = 0 res = s_tft & n0 expected = s_fff assert_series_equal(res, expected) res = s_0123 & n0 expected = Series([0] * 4) assert_series_equal(res, expected) n1 = 1 res = s_tft & n1 expected = s_tft assert_series_equal(res, expected) res = s_0123 & n1 expected = Series([0, 1, 0, 1]) assert_series_equal(res, expected) s_1111 = Series([1] * 4, dtype='int8') res = s_0123 & s_1111 expected = Series([0, 1, 0, 1], dtype='int64') assert_series_equal(res, expected) res = s_0123.astype(np.int16) | s_1111.astype(np.int32) expected = Series([1, 1, 3, 3], dtype='int32') assert_series_equal(res, expected) self.assertRaises(TypeError, lambda: s_1111 & 'a') self.assertRaises(TypeError, lambda: s_1111 & ['a', 'b', 'c', 'd']) self.assertRaises(TypeError, lambda: s_0123 & np.NaN) self.assertRaises(TypeError, lambda: s_0123 & 3.14) self.assertRaises(TypeError, lambda: s_0123 & [0.1, 4, 3.14, 2]) # s_0123 will be all false now because of reindexing like s_tft if compat.PY3: # unable to sort incompatible object via .union. exp = Series([False] * 7, index=['b', 'c', 'a', 0, 1, 2, 3]) with tm.assert_produces_warning(RuntimeWarning): assert_series_equal(s_tft & s_0123, exp) else: exp = Series([False] * 7, index=[0, 1, 2, 3, 'a', 'b', 'c']) assert_series_equal(s_tft & s_0123, exp) # s_tft will be all false now because of reindexing like s_0123 if compat.PY3: # unable to sort incompatible object via .union. exp = Series([False] * 7, index=[0, 1, 2, 3, 'b', 'c', 'a']) with tm.assert_produces_warning(RuntimeWarning): assert_series_equal(s_0123 & s_tft, exp) else: exp = Series([False] * 7, index=[0, 1, 2, 3, 'a', 'b', 'c']) assert_series_equal(s_0123 & s_tft, exp) assert_series_equal(s_0123 & False, Series([False] * 4)) assert_series_equal(s_0123 ^ False, Series([False, True, True, True])) assert_series_equal(s_0123 & [False], Series([False] * 4)) assert_series_equal(s_0123 & (False), Series([False] * 4)) assert_series_equal(s_0123 & Series([False, np.NaN, False, False]), Series([False] * 4)) s_ftft = Series([False, True, False, True]) assert_series_equal(s_0123 & Series([0.1, 4, -3.14, 2]), s_ftft) s_abNd = Series(['a', 'b', np.NaN, 'd']) res = s_0123 & s_abNd expected = s_ftft assert_series_equal(res, expected) def test_scalar_na_cmp_corners(self): s = Series([2, 3, 4, 5, 6, 7, 8, 9, 10]) def tester(a, b): return a & b self.assertRaises(TypeError, tester, s, datetime(2005, 1, 1)) s = Series([2, 3, 4, 5, 6, 7, 8, 9, datetime(2005, 1, 1)]) s[::2] = np.nan expected = Series(True, index=s.index) expected[::2] = False assert_series_equal(tester(s, list(s)), expected) d = DataFrame({'A': s}) # TODO: Fix this exception - needs to be fixed! (see GH5035) # (previously this was a TypeError because series returned # NotImplemented # this is an alignment issue; these are equivalent # https://github.com/pydata/pandas/issues/5284 self.assertRaises(ValueError, lambda: d.__and__(s, axis='columns')) self.assertRaises(ValueError, tester, s, d) # this is wrong as its not a boolean result # result = d.__and__(s,axis='index') def test_operators_corner(self): series = self.ts empty = Series([], index=Index([])) result = series + empty self.assertTrue(np.isnan(result).all()) result = empty + Series([], index=Index([])) self.assertEqual(len(result), 0) # TODO: this returned NotImplemented earlier, what to do? # deltas = Series([timedelta(1)] * 5, index=np.arange(5)) # sub_deltas = deltas[::2] # deltas5 = deltas * 5 # deltas = deltas + sub_deltas # float + int int_ts = self.ts.astype(int)[:-5] added = self.ts + int_ts expected = Series(self.ts.values[:-5] + int_ts.values, index=self.ts.index[:-5], name='ts') self.assert_series_equal(added[:-5], expected) def test_operators_reverse_object(self): # GH 56 arr = Series(np.random.randn(10), index=np.arange(10), dtype=object) def _check_op(arr, op): result = op(1., arr) expected = op(1., arr.astype(float)) assert_series_equal(result.astype(float), expected) _check_op(arr, operator.add) _check_op(arr, operator.sub) _check_op(arr, operator.mul) _check_op(arr, operator.truediv) _check_op(arr, operator.floordiv) def test_arith_ops_df_compat(self): # GH 1134 s1 = pd.Series([1, 2, 3], index=list('ABC'), name='x') s2 = pd.Series([2, 2, 2], index=list('ABD'), name='x') exp = pd.Series([3.0, 4.0, np.nan, np.nan], index=list('ABCD'), name='x') tm.assert_series_equal(s1 + s2, exp) tm.assert_series_equal(s2 + s1, exp) exp = pd.DataFrame({'x': [3.0, 4.0, np.nan, np.nan]}, index=list('ABCD')) tm.assert_frame_equal(s1.to_frame() + s2.to_frame(), exp) tm.assert_frame_equal(s2.to_frame() + s1.to_frame(), exp) # different length s3 = pd.Series([1, 2, 3], index=list('ABC'), name='x') s4 = pd.Series([2, 2, 2, 2], index=list('ABCD'), name='x') exp = pd.Series([3, 4, 5, np.nan], index=list('ABCD'), name='x') tm.assert_series_equal(s3 + s4, exp) tm.assert_series_equal(s4 + s3, exp) exp = pd.DataFrame({'x': [3, 4, 5, np.nan]}, index=list('ABCD')) tm.assert_frame_equal(s3.to_frame() + s4.to_frame(), exp) tm.assert_frame_equal(s4.to_frame() + s3.to_frame(), exp) def test_comp_ops_df_compat(self): # GH 1134 s1 = pd.Series([1, 2, 3], index=list('ABC'), name='x') s2 = pd.Series([2, 2, 2], index=list('ABD'), name='x') s3 = pd.Series([1, 2, 3], index=list('ABC'), name='x') s4 = pd.Series([2, 2, 2, 2], index=list('ABCD'), name='x') for l, r in [(s1, s2), (s2, s1), (s3, s4), (s4, s3)]: msg = "Can only compare identically-labeled Series objects" with tm.assertRaisesRegexp(ValueError, msg): l == r with tm.assertRaisesRegexp(ValueError, msg): l != r with tm.assertRaisesRegexp(ValueError, msg): l < r msg = "Can only compare identically-labeled DataFrame objects" with tm.assertRaisesRegexp(ValueError, msg): l.to_frame() == r.to_frame() with tm.assertRaisesRegexp(ValueError, msg): l.to_frame() != r.to_frame() with tm.assertRaisesRegexp(ValueError, msg): l.to_frame() < r.to_frame() def test_bool_ops_df_compat(self): # GH 1134 s1 = pd.Series([True, False, True], index=list('ABC'), name='x') s2 = pd.Series([True, True, False], index=list('ABD'), name='x') exp = pd.Series([True, False, False, False], index=list('ABCD'), name='x') tm.assert_series_equal(s1 & s2, exp) tm.assert_series_equal(s2 & s1, exp) # True | np.nan => True exp = pd.Series([True, True, True, False], index=list('ABCD'), name='x') tm.assert_series_equal(s1 | s2, exp) # np.nan | True => np.nan, filled with False exp = pd.Series([True, True, False, False], index=list('ABCD'), name='x') tm.assert_series_equal(s2 | s1, exp) # DataFrame doesn't fill nan with False exp = pd.DataFrame({'x': [True, False, np.nan, np.nan]}, index=list('ABCD')) tm.assert_frame_equal(s1.to_frame() & s2.to_frame(), exp) tm.assert_frame_equal(s2.to_frame() & s1.to_frame(), exp) exp = pd.DataFrame({'x': [True, True, np.nan, np.nan]}, index=list('ABCD')) tm.assert_frame_equal(s1.to_frame() | s2.to_frame(), exp) tm.assert_frame_equal(s2.to_frame() | s1.to_frame(), exp) # different length s3 = pd.Series([True, False, True], index=list('ABC'), name='x') s4 = pd.Series([True, True, True, True], index=list('ABCD'), name='x') exp = pd.Series([True, False, True, False], index=list('ABCD'), name='x') tm.assert_series_equal(s3 & s4, exp) tm.assert_series_equal(s4 & s3, exp) # np.nan | True => np.nan, filled with False exp = pd.Series([True, True, True, False], index=list('ABCD'), name='x') tm.assert_series_equal(s3 | s4, exp) # True | np.nan => True exp = pd.Series([True, True, True, True], index=list('ABCD'), name='x') tm.assert_series_equal(s4 | s3, exp) exp = pd.DataFrame({'x': [True, False, True, np.nan]}, index=list('ABCD')) tm.assert_frame_equal(s3.to_frame() & s4.to_frame(), exp) tm.assert_frame_equal(s4.to_frame() & s3.to_frame(), exp) exp = pd.DataFrame({'x': [True, True, True, np.nan]}, index=list('ABCD')) tm.assert_frame_equal(s3.to_frame() | s4.to_frame(), exp) tm.assert_frame_equal(s4.to_frame() | s3.to_frame(), exp) def test_series_frame_radd_bug(self): # GH 353 vals = Series(tm.rands_array(5, 10)) result = 'foo_' + vals expected = vals.map(lambda x: 'foo_' + x) assert_series_equal(result, expected) frame = DataFrame({'vals': vals}) result = 'foo_' + frame expected = DataFrame({'vals': vals.map(lambda x: 'foo_' + x)}) tm.assert_frame_equal(result, expected) # really raise this time with tm.assertRaises(TypeError): datetime.now() + self.ts with tm.assertRaises(TypeError): self.ts + datetime.now() def test_series_radd_more(self): data = [[1, 2, 3], [1.1, 2.2, 3.3], [pd.Timestamp('2011-01-01'), pd.Timestamp('2011-01-02'), pd.NaT], ['x', 'y', 1]] for d in data: for dtype in [None, object]: s = Series(d, dtype=dtype) with tm.assertRaises(TypeError): 'foo_' + s for dtype in [None, object]: res = 1 + pd.Series([1, 2, 3], dtype=dtype) exp = pd.Series([2, 3, 4], dtype=dtype) tm.assert_series_equal(res, exp) res = pd.Series([1, 2, 3], dtype=dtype) + 1 tm.assert_series_equal(res, exp) res = np.nan + pd.Series([1, 2, 3], dtype=dtype) exp = pd.Series([np.nan, np.nan, np.nan], dtype=dtype) tm.assert_series_equal(res, exp) res = pd.Series([1, 2, 3], dtype=dtype) + np.nan tm.assert_series_equal(res, exp) s = pd.Series([pd.Timedelta('1 days'), pd.Timedelta('2 days'), pd.Timedelta('3 days')], dtype=dtype) exp = pd.Series([pd.Timedelta('4 days'), pd.Timedelta('5 days'), pd.Timedelta('6 days')]) tm.assert_series_equal(pd.Timedelta('3 days') + s, exp) tm.assert_series_equal(s + pd.Timedelta('3 days'), exp) s = pd.Series(['x', np.nan, 'x']) tm.assert_series_equal('a' + s, pd.Series(['ax', np.nan, 'ax'])) tm.assert_series_equal(s + 'a', pd.Series(['xa', np.nan, 'xa'])) def test_frame_radd_more(self): data = [[1, 2, 3], [1.1, 2.2, 3.3], [pd.Timestamp('2011-01-01'), pd.Timestamp('2011-01-02'), pd.NaT], ['x', 'y', 1]] for d in data: for dtype in [None, object]: s = DataFrame(d, dtype=dtype) with tm.assertRaises(TypeError): 'foo_' + s for dtype in [None, object]: res = 1 + pd.DataFrame([1, 2, 3], dtype=dtype) exp = pd.DataFrame([2, 3, 4], dtype=dtype) tm.assert_frame_equal(res, exp) res = pd.DataFrame([1, 2, 3], dtype=dtype) + 1 tm.assert_frame_equal(res, exp) res = np.nan + pd.DataFrame([1, 2, 3], dtype=dtype) exp = pd.DataFrame([np.nan, np.nan, np.nan], dtype=dtype) tm.assert_frame_equal(res, exp) res = pd.DataFrame([1, 2, 3], dtype=dtype) + np.nan tm.assert_frame_equal(res, exp) df = pd.DataFrame(['x', np.nan, 'x']) tm.assert_frame_equal('a' + df, pd.DataFrame(['ax', np.nan, 'ax'])) tm.assert_frame_equal(df + 'a', pd.DataFrame(['xa', np.nan, 'xa'])) def test_operators_frame(self): # rpow does not work with DataFrame df = DataFrame({'A': self.ts}) tm.assert_series_equal(self.ts + self.ts, self.ts + df['A'], check_names=False) tm.assert_series_equal(self.ts ** self.ts, self.ts ** df['A'], check_names=False) tm.assert_series_equal(self.ts < self.ts, self.ts < df['A'], check_names=False) tm.assert_series_equal(self.ts / self.ts, self.ts / df['A'], check_names=False) def test_operators_combine(self): def _check_fill(meth, op, a, b, fill_value=0): exp_index = a.index.union(b.index) a = a.reindex(exp_index) b = b.reindex(exp_index) amask = isnull(a) bmask = isnull(b) exp_values = [] for i in range(len(exp_index)): with np.errstate(all='ignore'): if amask[i]: if bmask[i]: exp_values.append(nan) continue exp_values.append(op(fill_value, b[i])) elif bmask[i]: if amask[i]: exp_values.append(nan) continue exp_values.append(op(a[i], fill_value)) else: exp_values.append(op(a[i], b[i])) result = meth(a, b, fill_value=fill_value) expected = Series(exp_values, exp_index) assert_series_equal(result, expected) a = Series([nan, 1., 2., 3., nan], index=np.arange(5)) b = Series([nan, 1, nan, 3, nan, 4.], index=np.arange(6)) pairings = [] for op in ['add', 'sub', 'mul', 'pow', 'truediv', 'floordiv']: fv = 0 lop = getattr(Series, op) lequiv = getattr(operator, op) rop = getattr(Series, 'r' + op) # bind op at definition time... requiv = lambda x, y, op=op: getattr(operator, op)(y, x) pairings.append((lop, lequiv, fv)) pairings.append((rop, requiv, fv)) if compat.PY3: pairings.append((Series.div, operator.truediv, 1)) pairings.append((Series.rdiv, lambda x, y: operator.truediv(y, x), 1)) else: pairings.append((Series.div, operator.div, 1)) pairings.append((Series.rdiv, lambda x, y: operator.div(y, x), 1)) for op, equiv_op, fv in pairings: result = op(a, b) exp = equiv_op(a, b) assert_series_equal(result, exp) _check_fill(op, equiv_op, a, b, fill_value=fv) # should accept axis=0 or axis='rows' op(a, b, axis=0) def test_ne(self): ts =
Series([3, 4, 5, 6, 7], [3, 4, 5, 6, 7], dtype=float)
pandas.Series
import datetime import logging import os import queue import threading import typing from functools import partial from io import StringIO import pandas as pd import psycopg2 from dateutil import tz from dateutil.relativedelta import relativedelta from atpy.data.cache.lmdb_cache import write from atpy.data.ts_util import slice_periods class BarsFilter(typing.NamedTuple): ticker: str interval_len: int interval_type: str bgn_prd: datetime.datetime create_bars = \ """ -- Table: public.{0} DROP TABLE IF EXISTS public.{0}; CREATE TABLE public.{0} ( "timestamp" timestamp without time zone NOT NULL, symbol character varying COLLATE pg_catalog."default" NOT NULL, open real NOT NULL, high real NOT NULL, low real NOT NULL, close real NOT NULL, volume integer NOT NULL, "interval" character varying COLLATE pg_catalog."default" NOT NULL ) WITH ( OIDS = FALSE ) TABLESPACE pg_default; """ bars_indices = \ """ -- Index: {0}_timestamp_ind -- DROP INDEX public.{0}_timestamp_ind; CREATE INDEX {0}_timestamp_ind ON public.{0} USING btree ("timestamp") TABLESPACE pg_default; ALTER TABLE public.{0} CLUSTER ON {0}_timestamp_ind; CLUSTER {0}; -- Index: {0}_symbol_ind -- DROP INDEX public.{0}_symbol_ind; CREATE INDEX {0}_symbol_ind ON public.{0} USING btree (symbol COLLATE pg_catalog."default") TABLESPACE pg_default; -- Index: interval_ind -- DROP INDEX public.{0}_interval_ind; CREATE INDEX {0}_interval_ind ON public.{0} USING btree ("interval" COLLATE pg_catalog."default") TABLESPACE pg_default; """ create_json_data = \ """ -- Table: public.{0} DROP TABLE IF EXISTS public.{0}; CREATE TABLE public.{0} ( json_data jsonb NOT NULL ) WITH ( OIDS = FALSE ) TABLESPACE pg_default; """ def update_to_latest(url: str, bars_table: str, noncache_provider: typing.Callable, symbols: set = None, time_delta_back: relativedelta = relativedelta(years=5), skip_if_older_than: relativedelta = None, cluster: bool = False): con = psycopg2.connect(url) con.autocommit = True cur = con.cursor() cur.execute("SELECT to_regclass('public.{0}')".format(bars_table)) exists = [t for t in cur][0][0] is not None if not exists: cur.execute(create_bars.format(bars_table)) if exists: logging.getLogger(__name__).info("Skim off the top...") cur.execute("delete from {0} where (symbol, timestamp, interval) in (select symbol, max(timestamp) as timestamp, interval from {0} group by symbol, interval)".format(bars_table)) logging.getLogger(__name__).info("Ranges...") ranges = pd.read_sql("select symbol, max(timestamp) as timestamp, interval from {0} group by symbol, interval".format(bars_table), con=con, index_col=['symbol']) if not ranges.empty: ranges['timestamp'] = ranges['timestamp'].dt.tz_localize('UTC') new_symbols = set() if symbols is None else symbols if skip_if_older_than is not None: skip_if_older_than = datetime.datetime.utcnow().replace(tzinfo=tz.gettz('UTC')) - skip_if_older_than filters = dict() for row in ranges.iterrows(): interval_len, interval_type = int(row[1][1].split('_')[0]), row[1][1].split('_')[1] if (row[0], interval_len, interval_type) in new_symbols: new_symbols.remove((row[0], interval_len, interval_type)) bgn_prd = row[1][0].to_pydatetime() if skip_if_older_than is None or bgn_prd > skip_if_older_than: filters[BarsFilter(ticker=row[0], bgn_prd=bgn_prd, interval_len=interval_len, interval_type=interval_type)] = None bgn_prd = datetime.datetime.combine(datetime.datetime.utcnow().date() - time_delta_back, datetime.datetime.min.time()).replace(tzinfo=tz.gettz('UTC')) for (symbol, interval_len, interval_type) in new_symbols: filters[BarsFilter(ticker=symbol, bgn_prd=bgn_prd, interval_len=interval_len, interval_type=interval_type)] = None logging.getLogger(__name__).info("Updating " + str(len(filters)) + " total symbols and intervals; New symbols and intervals: " + str(len(new_symbols))) q = queue.Queue(maxsize=100) threading.Thread(target=partial(noncache_provider, filters=filters, q=q), daemon=True).start() global_counter = {"counter": 0} def worker(): con = psycopg2.connect(url) con.autocommit = True while True: tupl = q.get() if tupl is None: q.put(None) return ft, df = filters[tupl[0]], tupl[1] # Prepare data for c in [c for c in df.columns if c not in ['symbol', 'open', 'high', 'low', 'close', 'volume']]: del df[c] df['interval'] = str(ft.interval_len) + '_' + ft.interval_type if df.iloc[0].name == ft.bgn_prd: df = df.iloc[1:] try: insert_df(con, bars_table, df) except Exception as err: logging.getLogger(__name__).error("Error saving " + ft.ticker) logging.getLogger(__name__).exception(err) global_counter['counter'] += 1 i = global_counter['counter'] if i > 0 and (i % 20 == 0 or i == len(filters)): logging.getLogger(__name__).info("Cached " + str(i) + " queries") threads = [threading.Thread(target=worker) for _ in range(2)] for t in threads: t.start() for t in threads: t.join() logging.getLogger(__name__).info("Done inserting data") if not exists: logging.getLogger(__name__).info("Creating indices...") cur.execute(bars_indices.format(bars_table)) elif cluster: logging.getLogger(__name__).info("Cluster...") cur.execute("CLUSTER {0}".format(bars_table)) def request_bars(conn, bars_table: str, interval_len: int, interval_type: str, symbol: typing.Union[list, str] = None, bgn_prd: datetime.datetime = None, end_prd: datetime.datetime = None, ascending=True, selection='*'): """ Request bar data :param conn: connection :param bars_table: table name :param interval_len: interval len :param interval_type: interval type :param symbol: symbol or a list of symbols :param bgn_prd: start period (including) :param end_prd: end period (excluding) :param ascending: asc/desc :param selection: what to select :return: dataframe """ where, params = __bars_query_where(interval_len=interval_len, interval_type=interval_type, symbol=symbol, bgn_prd=bgn_prd, end_prd=end_prd) sort = 'ASC' if ascending else 'DESC' df = pd.read_sql("SELECT " + selection + " FROM " + bars_table + where + " ORDER BY timestamp " + sort + ", symbol", con=conn, index_col=['timestamp', 'symbol'], params=params) if not df.empty: del df['interval'] df = df.tz_localize('UTC', level='timestamp', copy=False) if isinstance(symbol, str): df.reset_index(level='symbol', inplace=True, drop=True) for c in [c for c in ['volume', 'total_volume', 'number_of_trades'] if c in df.columns]: df[c] = df[c].astype('uint64') return df def request_symbol_counts(conn, bars_table: str, interval_len: int, interval_type: str, symbol: typing.Union[list, str] = None, bgn_prd: datetime.datetime = None, end_prd: datetime.datetime = None): """ Request number of bars for each symbol :param conn: connection :param bars_table: table name :param interval_len: interval len :param interval_type: interval type :param symbol: symbol or a list of symbols :param bgn_prd: start period (including) :param end_prd: end period (excluding) :return: series """ where, params = __bars_query_where(interval_len=interval_len, interval_type=interval_type, symbol=symbol, bgn_prd=bgn_prd, end_prd=end_prd) result = pd.read_sql("SELECT symbol, count(*) as count FROM " + bars_table + where + " GROUP BY symbol ORDER BY symbol ASC", con=conn, index_col='symbol', params=params) if not result.empty: result['count'] = result['count'].astype('uint64') return result['count'] def __bars_query_where(interval_len: int, interval_type: str, symbol: typing.Union[list, str] = None, bgn_prd: datetime.datetime = None, end_prd: datetime.datetime = None): where = " WHERE 1=1" params = list() if isinstance(symbol, list): where += " AND symbol IN (%s)" % ','.join(['%s'] * len(symbol)) params += symbol elif isinstance(symbol, str): where += " AND symbol = %s" params.append(symbol) if interval_len is not None and interval_type is not None: where += " AND interval = %s" params.append(str(interval_len) + '_' + interval_type) if bgn_prd is not None: where += " AND timestamp >= %s" params.append(str(bgn_prd)) if end_prd is not None: where += " AND timestamp <= %s" params.append(str(end_prd)) return where, params def insert_df(conn, table_name: str, df: pd.DataFrame): """ insert dataframe to the database :param conn: db connection :param table_name: table name :param df: dataframe to insert """ # To CSV output = StringIO() df.to_csv(output, sep='\t', header=False) output.seek(0) # Insert data cursor = conn.cursor() if isinstance(df.index, pd.MultiIndex): columns = list(df.index.names) + list(df.columns) else: columns = [df.index.name] + list(df.columns) cursor.copy_from(output, table_name, sep='\t', null='', columns=columns) conn.commit() cursor.close() def insert_df_json(conn, table_name: str, df: pd.DataFrame): """ insert dataframe in json table :param conn: db connection :param table_name: table name :param df: list of adjustments of the type [(timestamp: datetime.date, symbol: str, typ: str, value), ...] """ insert_json(conn=conn, table_name=table_name, data=df.reset_index().to_json(orient='records', lines=True)) def insert_json(conn, table_name: str, data: str): """ insert json data :param conn: db connection :param table_name: table name :param data: json string (or strings, separated by new line character) """ output = StringIO(data) # Insert data cursor = conn.cursor() cursor.copy_from(output, table_name, null='', columns=['json_data']) conn.commit() cursor.close() def request_adjustments(conn, table_name: str, symbol: typing.Union[list, str] = None, bgn_prd: datetime.datetime = None, end_prd: datetime.datetime = None, adj_type: str = None, provider: str = None): """ add a list of splits/dividends to the database :param conn: db connection :param table_name: db connection :param symbol: symbol / list of symbols :param bgn_prd: begin period :param end_prd: end period :param provider: data provider :param adj_type: adjustment type (split/dividend) """ where = " WHERE 1=1" params = list() if isinstance(symbol, list): where += " AND json_data ->> 'symbol' IN (%s)" % ','.join(['%s'] * len(symbol)) params += symbol elif isinstance(symbol, str): where += " AND json_data ->> 'symbol' = %s" params.append(symbol) if bgn_prd is not None: where += " AND CAST(json_data ->> 'timestamp' AS BIGINT) >= %s" params.append(int(bgn_prd.timestamp() * 1000)) if end_prd is not None: where += " AND CAST(json_data ->> 'timestamp' AS BIGINT) <= %s" params.append(int(end_prd.timestamp() * 1000)) if provider is not None: where += " AND json_data ->> 'provider' = %s" params.append(provider) if adj_type is not None: where += " AND json_data ->> 'type' = %s" params.append(adj_type) else: where += " AND json_data ->> 'type' in ('split', 'dividend')" cursor = conn.cursor() cursor.execute("select * from {0} {1}".format(table_name, where), params) records = cursor.fetchall() if len(records) > 0: df =
pd.DataFrame([x[0] for x in records])
pandas.DataFrame
import time import numpy as np import pandas as pd from pyomo.environ import * from sklearn.cluster import AgglomerativeClustering, KMeans from sklearn.neighbors import kneighbors_graph from sklearn.preprocessing import MinMaxScaler def time_model_solve(inputs, renewable, load, weight=None): # Benchmark method horizon = len(load) # Time horizon m = ConcreteModel() # Model preparation and initial parameters m.eta = inputs["effi"] m.rps = inputs["rps"] m.horizon = horizon m.H = RangeSet(0, m.horizon - 1) m.renewable = renewable renewable_type = len(renewable) m.R = RangeSet(0, renewable_type - 1) m.load = load m.c_bat = inputs["c_bat"] m.c_bat_power = inputs["c_bat_power"] m.c_renewable = [inputs['c_wind'], inputs['c_pv']] m.c_gen_inv = inputs["c_gen_inv"] m.mdc = inputs["mdc"] m.c_gen_a = inputs["c_gen_a"] m.c_gen_b = inputs["c_gen_b"] if weight is None: weight = np.ones(horizon) m.weight = weight sum_load = np.sum(m.load[i]*m.weight[i] for i in m.H) m.renewable_cap = Var(m.R, domain=NonNegativeReals) m.max_energy = Var(domain=NonNegativeReals) # Battery energy capacity m.max_power = Var(domain=NonNegativeReals) # Battery power capacity m.pd = Var(m.H, domain=Reals) # Battery discharging power at time i m.pc = Var(m.H, domain=Reals) # Battery charging power at time i m.e = Var(m.H, domain=Reals) # Battery Energy Stored (SOC) at time i m.curtail = Var(m.H, domain=Reals) # Curtailed renewable energy at time i m.gen = Var(m.H, domain=Reals) # Thermal generator power output at time i m.total_cost = Var(domain=Reals) m.cost_sto_inv = Var(domain=Reals) m.cost_pv_inv = Var(domain=Reals) m.cost_gen_inv = Var(domain=Reals) m.cost_var = Var(domain=Reals) # Number of online thermal generator units at time i m.n = Var(m.H, domain=NonNegativeIntegers) # Number of starting-up thermal generator units at time i m.n_start = Var(m.H, domain=NonNegativeIntegers) # Number of shutting-down thermal generator units at time i m.n_shut = Var(m.H, domain=NonNegativeIntegers) # Number of thermal generator unit number m.N = Var(domain=NonNegativeIntegers) m.gen_cap = inputs["gen_cap"] m.up_time = inputs["up_time"] # Minimum online time m.down_time = inputs["down_time"] # Minimum offline time # constraints set function_i = 0 function_list = [] def fun(m, i): return m.gen[i] + sum(m.renewable_cap[r] * renewable[r][i] for r in m.R) + m.pd[i] - m.pc[i] - m.curtail[i] - \ m.load[i] == 0 function_list.append(fun) m.balance_cons = Constraint(m.H, rule=function_list[function_i]) # Load balance function_i += 1 def fun(m, i): if i == 0: return m.e[i] - m.e[m.horizon - 1] + m.pd[m.horizon - 1] / m.eta - m.pc[m.horizon - 1] * m.eta == 0 else: return m.e[i] - (m.e[i - 1] - m.pd[i - 1] / m.eta + m.pc[i - 1] * m.eta) == 0 function_list.append(fun) m.soc3 = Constraint(m.H, rule=function_list[function_i]) # Storage constraints-storage change function_i += 1 def fun(m, i): return m.e[i] >= 0 function_list.append(fun) m.soc1 = Constraint(m.H, rule=function_list[function_i]) # Storage constraints-nonnegative storage function_i += 1 def fun(m, i): return m.e[i] - m.max_energy <= 0 function_list.append(fun) m.soc2 = Constraint(m.H, rule=function_list[function_i]) # Storage constraints-maximum storage function_i += 1 def fun(m, i): return m.pc[i] >= 0 function_list.append(fun) m.var_b6 = Constraint(m.H, rule=function_list[function_i]) # Storage constraints-nonnegative charging function_i += 1 def fun(m, i): return m.pd[i] >= 0 function_list.append(fun) m.var_b7 = Constraint(m.H, rule=function_list[function_i]) # Storage constraints-nonnegative discharging function_i += 1 def fun(m, i): return m.pc[i] <= m.max_power function_list.append(fun) m.var_b8 = Constraint(m.H, rule=function_list[function_i]) # Storage constraints-maximum charging power function_i += 1 def fun(m, i): return m.pd[i] <= m.max_power function_list.append(fun) m.var_b9 = Constraint(m.H, rule=function_list[function_i]) # Storage constraints-maximum discharging power function_i += 1 def fun(m, i): return m.curtail[i] >= 0 function_list.append(fun) m.var_b3 = Constraint(m.H, rule=function_list[function_i]) # function_i += 1 def fun(m, i): return m.gen[i] - 0.1 * m.gen_cap * m.n[i] >= 0 function_list.append(fun) m.var_gen1 = Constraint(m.H, rule=function_list[function_i]) # Thermal generator constraints-minimum generation percentage(0.1) function_i += 1 def fun(m, i): return m.gen[i] - m.n[i] * m.gen_cap <= 0 function_list.append(fun) m.var_gen2 = Constraint(m.H, rule=function_list[function_i]) # Thermal generator constraints-maximum generation percentage(1.0) function_i += 1 def fun(m, i): return m.n[i] - m.N <= 0 function_list.append(fun) m.var_gen3 = Constraint(m.H, rule=function_list[function_i]) # Thermal generator constraints-maximum units function_i += 1 def fun(m, i): return m.n[i] >= 0 function_list.append(fun) m.var_gen4 = Constraint(m.H, rule=function_list[function_i]) # Thermal generator constraints-minimum units function_i += 1 def fun(m, i): if i == 0: return m.n[i] - m.n[m.horizon - 1] - (m.n_start[m.horizon - 1] - m.n_shut[m.horizon - 1]) == 0 else: return m.n[i] - m.n[i - 1] - (m.n_start[i - 1] - m.n_shut[i - 1]) == 0 function_list.append(fun) m.var_gen5 = Constraint(m.H, rule=function_list[function_i]) # Thermal generator constraints-units change function_i += 1 def fun(m, i): return m.n_start[i] >= 0 function_list.append(fun) m.var_gen6 = Constraint(m.H, rule=function_list[function_i]) # Thermal generator constraints-nonnegative start_up function_i += 1 def fun(m, i): if i >= m.up_time: t_start_list = np.arange(i - m.up_time, i) else: t_start_list = np.arange(0, i) return m.n[i] - sum(m.n_start[k] for k in t_start_list) >= 0 function_list.append(fun) m.var_gen7 = Constraint(m.H, rule=function_list[function_i]) # Thermal generator constraints-up_time function_i += 1 def fun(m, i): if i >= m.down_time: t_shut_list = np.arange(i - m.down_time, i) else: t_shut_list = np.arange(0, i) return m.N - m.n[i] - sum(m.n_shut[k] for k in t_shut_list) >= 0 function_list.append(fun) m.var_gen8 = Constraint(m.H, rule=function_list[function_i]) # Thermal generator constraints-down_time function_i += 1 def fun(m, i): return m.n_shut[i] >= 0 function_list.append(fun) m.var_gen9 = Constraint(m.H, rule=function_list[function_i]) # Thermal generator constraints-nonnegative shut_down function_i += 1 def fun(m): return sum(m.gen[i]*m.weight[i] for i in m.H) / sum_load - (1 - m.rps) <= 0 function_list.append(fun) m.rps_limit = Constraint(rule=function_list[function_i]) # Thermal generator constraints-total percentage function_i += 1 def obj_value(m): return m.total_cost def obj_function(m): return m.total_cost == m.cost_var + m.cost_sto_inv + m.cost_pv_inv + m.cost_gen_inv m.OF = Constraint(rule=obj_function) def cost_gen_cal(m): return m.cost_var == sum(m.weight[i] * (m.pd[i] + m.pc[i]) for i in m.H) * m.mdc + \ sum(m.weight[i] * m.gen[i] for i in m.H) * m.c_gen_b # Weight of variable costs m.rev = Constraint(rule=cost_gen_cal) def cost_storage_cal(m): return m.cost_sto_inv == m.max_energy * m.c_bat + m.max_power * m.c_bat_power m.cost_bat = Constraint(rule=cost_storage_cal) # Storage cost def cost_renewable_cal(m): return m.cost_pv_inv == sum(m.renewable_cap[r] * m.c_renewable[r] for r in m.R) m.cost_pv = Constraint(rule=cost_renewable_cal) # Renewable cost def cost_gen_cal(m): return m.cost_gen_inv == m.gen_cap * m.c_gen_inv * m.N m.cost_gen = Constraint(rule=cost_gen_cal) # Thermal cost m.OBJ = Objective(rule=obj_value, sense=minimize) # Solver if inputs["solver"] == 1: opt = SolverFactory('gurobi', executable="/usr/local/gurobi/linux64/bin/gurobi.sh") opt.options['timelimit'] = inputs["timelimit"] if inputs["print_log"] ==1: results = opt.solve(m,tee=True) else: results = opt.solve(m) else: opt = SolverFactory('cplex') opt.options['timelimit'] = inputs["timelimit"] if inputs["print_log"] ==1: results = opt.solve(m,tee=True) else: results = opt.solve(m) return(m) def sim_features(config, wind_all, pv_all, load_all): """ Run the optimization model for each period and generate a DataFrame containing the simulated features specified in settings from config. """ inputs = config['inputs'] settings = config['settings'] inputs['c_renewable'] = [inputs['c_wind'], inputs['c_pv']] features = [] feature_set = settings['feature_set'] period = settings['period'] day_num = settings['day_num'] periods = settings['day_num']*24//period time_set = np.arange(24*day_num) # Time horizon specified to hour renewable = [wind_all[time_set, settings['profile_id']], pv_all[time_set, settings['profile_id']]] if 'profile_id' in settings\ else [wind_all[time_set], pv_all[time_set]] # for NE nrenewable = len(renewable) period_renewable = [renewable[r].reshape( periods, period) for r in range(nrenewable)] period_load = load_all[time_set].reshape(periods, period) for w in range(periods): renewable = [r[w] for r in period_renewable] load = period_load[w] m = time_model_solve(inputs, renewable, load) results = {} for v in feature_set: var_object = getattr(m, v) if var_object.is_indexed(): for t in range(len(var_object)): results[v+'_'+str(t)] = var_object[t].value else: results[v] = var_object.value features.append(results) return pd.DataFrame(features) def cluster(settings, data, cluster_log=False): """ Given a dictionary of settings and a dataframe of data points to cluster, return the weight of each representative week and the representative renewable and load values. If cluster_log=True, returns a dictionary mapping cluster labels to points in each cluster. """ method = settings['method'] # Used for kmeans random state init = settings['init'] if 'init' in settings else None connectivity = settings['connectivity'] if 'connectivity' in settings else False chronology = settings['chronology'] if 'chronology' in settings else False ncluster = settings['ncluster'] df = data.copy() period = settings['period'] periods = settings['periods'] nrenewable = settings['nrenewable'] period_df = settings['period_df'] renewable_range = [np.arange(r*period, (r+1)*period) for r in range(nrenewable)] load_range = np.arange(nrenewable*period, (nrenewable+1)*period) if method == 'kmeans': kmeans = KMeans(n_clusters=ncluster, random_state=init) kmeans.fit(df) centroids = kmeans.cluster_centers_ labels = kmeans.labels_ df['cluster'] = labels else: if connectivity: # generate connectivity matrix connections = kneighbors_graph(df, 10, include_self=False) else: connections = None agglomerative = AgglomerativeClustering( n_clusters=ncluster, linkage=method, connectivity=connections) agglomerative.fit(df) labels = agglomerative.labels_ n_features = len(df.columns) df['cluster'] = labels lens = {} centroids = {} for w in range(periods): label = df.loc[w, 'cluster'] centroids.setdefault(label, [0]*n_features) centroids[label] += df.loc[w, df.columns != 'cluster'] lens.setdefault(label, 0) lens[label] += 1 for k in centroids: centroids[k] /= float(lens[k]) weights = np.bincount(labels) # per period weight = np.repeat(weights, period) clusters = {} for k in range(ncluster): clusters[k] = df.loc[df['cluster'] == k] # assuming only for combined case if 'centroid' in settings and settings['centroid'] and settings['trial'] == 'combined': rep_renewable = [np.concatenate([centroids[k][r] for k in range(ncluster)]) for r in renewable_range] rep_load = np.concatenate([centroids[k][load_range] for k in range(ncluster)])*100 else: # Find representative points rep = [None]*ncluster for k in range(ncluster): dist = {} for j in range(weights[k]): dist[clusters[k].index[j]] = np.linalg.norm( df.loc[clusters[k].index[j], df.columns != 'cluster']-centroids[k][:]) rep[k] = min(dist, key=lambda k: dist[k]) if chronology: rep.sort() #print('representative week indices:', rep) renewable = [period_df.loc[rep, r] for r in renewable_range] load = period_df.loc[rep, load_range]*100 rep_renewable = [np.concatenate( [renewable[r].loc[j, :] for j in rep]) for r in range(nrenewable)] rep_load = np.concatenate([load.loc[j, :] for j in rep]) if cluster_log: return weight, rep_renewable, rep_load, clusters return weight, rep_renewable, rep_load def test_clustering(inputs, settings, expected, data): """ Cluster the data using the settings, run the optimization model with the representative scenario generated, and calculate the relative error with respect to the benchmark (expected). """ feature_set = ['renewable_cap', 'N', 'max_energy', 'max_power', 'total_cost'] \ if inputs['gen_cap'] == 1 else [ 'renewable_cap', 'max_energy', 'max_power', 'total_cost'] error_terms = ['renewable_cap_0', 'renewable_cap_1', 'N', 'max_energy', 'max_power', 'total_cost'] \ if inputs['gen_cap'] == 1 else [ 'renewable_cap_0', 'renewable_cap_1', 'max_energy', 'max_power', 'total_cost'] weight, rep_renewable, rep_load = cluster(settings, data) m = time_model_solve(inputs, rep_renewable, rep_load, weight) opt_results = {} errors = {} # for v in m.component_objects(Var, active=True): for v in feature_set: var_object = getattr(m, str(v)) if var_object.is_indexed(): opt_results[str(v)] = [] for t in range(len(var_object)): opt_results[v].append(var_object[t].value) elif len(var_object) == 1: opt_results[v] = var_object.value for re in range(len(opt_results['renewable_cap'])): opt_results['renewable_cap_{}'.format(re)] = opt_results['renewable_cap'][re] for e in error_terms: errors[e + '_err'] = abs(opt_results[e] - expected[e])/(expected[e]+0.0001) results = {**opt_results, **errors, 'mae': sum(value for value in errors.values()) / len(errors)} return results def run_trials(config, wind_all, pv_all, load_all, expected, features): """ Export a dataframe containing the results of clustering with the specified settings. """ inputs = config['inputs'] settings = config['settings'] ranges = config['ranges'] day_num = settings['day_num'] time_set = np.arange(24*day_num) if 'profile_id' in settings: profile_id = settings['profile_id'] renewable = [wind_all[time_set, profile_id],pv_all[time_set, profile_id]] else: # Denote that first profile is used and no other profile exists. profile_id = -1 renewable = [wind_all[time_set], pv_all[time_set]] nrenewable = len(renewable) settings['nrenewable'] = nrenewable period = settings['period'] periods = settings['day_num']*24//period settings['periods'] = periods period_renewable = [renewable[r].reshape( periods, period) for r in range(nrenewable)] period_load = load_all[time_set].reshape(periods, period) period_data = np.hstack(period_renewable+[period_load]) period_df =
pd.DataFrame(period_data)
pandas.DataFrame
import pandas as pd import numpy as np import h5py from tqdm import tqdm class PredExpr: def __init__(self, fn): self.fn = fn with h5py.File(self.fn, 'r') as f: tmp = f['samples'][:].astype(str) self.samples = pd.DataFrame({ 'eid': tmp, 'idx': [ i for i in range(len(tmp)) ] }) tmp = f['genes'][:].astype(str) self.genes = pd.DataFrame({ 'gene': tmp, 'idx': [ i for i in range(len(tmp)) ] }) @staticmethod def _get_range(n, chunksize=500): tmp = list(np.arange(0, n, chunksize)) if tmp[-1] != n: tmp = list(tmp) + [ n ] return tmp[:-1].copy(), tmp[1:].copy() def mul_weights(self, df_weight, samples, max_n=None, chunksize=1000): df_sample_sub = pd.merge( self.samples, pd.DataFrame({'eid': samples}), on='eid' ) if max_n is not None and max_n < df_sample_sub.shape[0]: df_sample_sub = df_sample_sub.iloc[:max_n, :].reset_index(drop=True) df_weight_sub = pd.merge( self.genes[['gene']], df_weight, on='gene', how='left' ) df_weight_sub.fillna(0, inplace=True) weight_mat = df_weight_sub.drop(columns=['gene']).values header = list(df_weight_sub.drop(columns=['gene']).columns) sample_idx = df_sample_sub.idx.values starts, ends = self._get_range(sample_idx.shape[0], chunksize=chunksize) o = [] f = h5py.File(self.fn, 'r') for s, e in tqdm(zip(starts, ends), total=len(starts)): mat = f['pred_expr'][:, sample_idx[s:e]] mat = mat.T @ weight_mat o.append(mat) f.close() o = np.concatenate(o, axis=0) o = pd.DataFrame(o, columns=header) o = pd.concat([ pd.DataFrame({'eid': df_sample_sub.eid}), o ], axis=1) return o def pxcan2weight(df_spxcan, pval_cutoffs, weight_col='effect_size'): pp = np.sort(np.array(pval_cutoffs)) oo = None cols = [ 'gene' ] for p in pp[::-1]: sub = df_spxcan[ df_spxcan.pvalue <= p ][['gene', weight_col]].copy() if oo is None: oo = sub else: oo =
pd.merge(oo, sub, on='gene', how='left')
pandas.merge
from __future__ import division from contextlib import contextmanager from datetime import datetime from functools import wraps import locale import os import re from shutil import rmtree import string import subprocess import sys import tempfile import traceback import warnings import numpy as np from numpy.random import rand, randn from pandas._libs import testing as _testing import pandas.compat as compat from pandas.compat import ( PY2, PY3, Counter, StringIO, callable, filter, httplib, lmap, lrange, lzip, map, raise_with_traceback, range, string_types, u, unichr, zip) from pandas.core.dtypes.common import ( is_bool, is_categorical_dtype, is_datetime64_dtype, is_datetime64tz_dtype, is_datetimelike_v_numeric, is_datetimelike_v_object, is_extension_array_dtype, is_interval_dtype, is_list_like, is_number, is_period_dtype, is_sequence, is_timedelta64_dtype, needs_i8_conversion) from pandas.core.dtypes.missing import array_equivalent import pandas as pd from pandas import ( Categorical, CategoricalIndex, DataFrame, DatetimeIndex, Index, IntervalIndex, MultiIndex, Panel, PeriodIndex, RangeIndex, Series, bdate_range) from pandas.core.algorithms import take_1d from pandas.core.arrays import ( DatetimeArrayMixin as DatetimeArray, ExtensionArray, IntervalArray, PeriodArray, TimedeltaArrayMixin as TimedeltaArray, period_array) import pandas.core.common as com from pandas.io.common import urlopen from pandas.io.formats.printing import pprint_thing N = 30 K = 4 _RAISE_NETWORK_ERROR_DEFAULT = False # set testing_mode _testing_mode_warnings = (DeprecationWarning, compat.ResourceWarning) def set_testing_mode(): # set the testing mode filters testing_mode = os.environ.get('PANDAS_TESTING_MODE', 'None') if 'deprecate' in testing_mode: warnings.simplefilter('always', _testing_mode_warnings) def reset_testing_mode(): # reset the testing mode filters testing_mode = os.environ.get('PANDAS_TESTING_MODE', 'None') if 'deprecate' in testing_mode: warnings.simplefilter('ignore', _testing_mode_warnings) set_testing_mode() def reset_display_options(): """ Reset the display options for printing and representing objects. """ pd.reset_option('^display.', silent=True) def round_trip_pickle(obj, path=None): """ Pickle an object and then read it again. Parameters ---------- obj : pandas object The object to pickle and then re-read. path : str, default None The path where the pickled object is written and then read. Returns ------- round_trip_pickled_object : pandas object The original object that was pickled and then re-read. """ if path is None: path = u('__{random_bytes}__.pickle'.format(random_bytes=rands(10))) with ensure_clean(path) as path: pd.to_pickle(obj, path) return pd.read_pickle(path) def round_trip_pathlib(writer, reader, path=None): """ Write an object to file specified by a pathlib.Path and read it back Parameters ---------- writer : callable bound to pandas object IO writing function (e.g. DataFrame.to_csv ) reader : callable IO reading function (e.g. pd.read_csv ) path : str, default None The path where the object is written and then read. Returns ------- round_trip_object : pandas object The original object that was serialized and then re-read. """ import pytest Path = pytest.importorskip('pathlib').Path if path is None: path = '___pathlib___' with ensure_clean(path) as path: writer(Path(path)) obj = reader(Path(path)) return obj def round_trip_localpath(writer, reader, path=None): """ Write an object to file specified by a py.path LocalPath and read it back Parameters ---------- writer : callable bound to pandas object IO writing function (e.g. DataFrame.to_csv ) reader : callable IO reading function (e.g. pd.read_csv ) path : str, default None The path where the object is written and then read. Returns ------- round_trip_object : pandas object The original object that was serialized and then re-read. """ import pytest LocalPath = pytest.importorskip('py.path').local if path is None: path = '___localpath___' with ensure_clean(path) as path: writer(LocalPath(path)) obj = reader(LocalPath(path)) return obj @contextmanager def decompress_file(path, compression): """ Open a compressed file and return a file object Parameters ---------- path : str The path where the file is read from compression : {'gzip', 'bz2', 'zip', 'xz', None} Name of the decompression to use Returns ------- f : file object """ if compression is None: f = open(path, 'rb') elif compression == 'gzip': import gzip f = gzip.open(path, 'rb') elif compression == 'bz2': import bz2 f = bz2.BZ2File(path, 'rb') elif compression == 'xz': lzma = compat.import_lzma() f = lzma.LZMAFile(path, 'rb') elif compression == 'zip': import zipfile zip_file = zipfile.ZipFile(path) zip_names = zip_file.namelist() if len(zip_names) == 1: f = zip_file.open(zip_names.pop()) else: raise ValueError('ZIP file {} error. Only one file per ZIP.' .format(path)) else: msg = 'Unrecognized compression type: {}'.format(compression) raise ValueError(msg) try: yield f finally: f.close() if compression == "zip": zip_file.close() def assert_almost_equal(left, right, check_dtype="equiv", check_less_precise=False, **kwargs): """ Check that the left and right objects are approximately equal. By approximately equal, we refer to objects that are numbers or that contain numbers which may be equivalent to specific levels of precision. Parameters ---------- left : object right : object check_dtype : bool / string {'equiv'}, default 'equiv' Check dtype if both a and b are the same type. If 'equiv' is passed in, then `RangeIndex` and `Int64Index` are also considered equivalent when doing type checking. check_less_precise : bool or int, default False Specify comparison precision. 5 digits (False) or 3 digits (True) after decimal points are compared. If int, then specify the number of digits to compare. When comparing two numbers, if the first number has magnitude less than 1e-5, we compare the two numbers directly and check whether they are equivalent within the specified precision. Otherwise, we compare the **ratio** of the second number to the first number and check whether it is equivalent to 1 within the specified precision. """ if isinstance(left, pd.Index): return assert_index_equal(left, right, check_exact=False, exact=check_dtype, check_less_precise=check_less_precise, **kwargs) elif isinstance(left, pd.Series): return assert_series_equal(left, right, check_exact=False, check_dtype=check_dtype, check_less_precise=check_less_precise, **kwargs) elif isinstance(left, pd.DataFrame): return assert_frame_equal(left, right, check_exact=False, check_dtype=check_dtype, check_less_precise=check_less_precise, **kwargs) else: # Other sequences. if check_dtype: if is_number(left) and is_number(right): # Do not compare numeric classes, like np.float64 and float. pass elif is_bool(left) and is_bool(right): # Do not compare bool classes, like np.bool_ and bool. pass else: if (isinstance(left, np.ndarray) or isinstance(right, np.ndarray)): obj = "numpy array" else: obj = "Input" assert_class_equal(left, right, obj=obj) return _testing.assert_almost_equal( left, right, check_dtype=check_dtype, check_less_precise=check_less_precise, **kwargs) def _check_isinstance(left, right, cls): """ Helper method for our assert_* methods that ensures that the two objects being compared have the right type before proceeding with the comparison. Parameters ---------- left : The first object being compared. right : The second object being compared. cls : The class type to check against. Raises ------ AssertionError : Either `left` or `right` is not an instance of `cls`. """ err_msg = "{name} Expected type {exp_type}, found {act_type} instead" cls_name = cls.__name__ if not isinstance(left, cls): raise AssertionError(err_msg.format(name=cls_name, exp_type=cls, act_type=type(left))) if not isinstance(right, cls): raise AssertionError(err_msg.format(name=cls_name, exp_type=cls, act_type=type(right))) def assert_dict_equal(left, right, compare_keys=True): _check_isinstance(left, right, dict) return _testing.assert_dict_equal(left, right, compare_keys=compare_keys) def randbool(size=(), p=0.5): return rand(*size) <= p RANDS_CHARS = np.array(list(string.ascii_letters + string.digits), dtype=(np.str_, 1)) RANDU_CHARS = np.array(list(u("").join(map(unichr, lrange(1488, 1488 + 26))) + string.digits), dtype=(np.unicode_, 1)) def rands_array(nchars, size, dtype='O'): """Generate an array of byte strings.""" retval = (np.random.choice(RANDS_CHARS, size=nchars * np.prod(size)) .view((np.str_, nchars)).reshape(size)) if dtype is None: return retval else: return retval.astype(dtype) def randu_array(nchars, size, dtype='O'): """Generate an array of unicode strings.""" retval = (np.random.choice(RANDU_CHARS, size=nchars * np.prod(size)) .view((np.unicode_, nchars)).reshape(size)) if dtype is None: return retval else: return retval.astype(dtype) def rands(nchars): """ Generate one random byte string. See `rands_array` if you want to create an array of random strings. """ return ''.join(np.random.choice(RANDS_CHARS, nchars)) def randu(nchars): """ Generate one random unicode string. See `randu_array` if you want to create an array of random unicode strings. """ return ''.join(np.random.choice(RANDU_CHARS, nchars)) def close(fignum=None): from matplotlib.pyplot import get_fignums, close as _close if fignum is None: for fignum in get_fignums(): _close(fignum) else: _close(fignum) # ----------------------------------------------------------------------------- # locale utilities def check_output(*popenargs, **kwargs): # shamelessly taken from Python 2.7 source r"""Run command with arguments and return its output as a byte string. If the exit code was non-zero it raises a CalledProcessError. The CalledProcessError object will have the return code in the returncode attribute and output in the output attribute. The arguments are the same as for the Popen constructor. Example: >>> check_output(["ls", "-l", "/dev/null"]) 'crw-rw-rw- 1 root root 1, 3 Oct 18 2007 /dev/null\n' The stdout argument is not allowed as it is used internally. To capture standard error in the result, use stderr=STDOUT. >>> check_output(["/bin/sh", "-c", ... "ls -l non_existent_file ; exit 0"], ... stderr=STDOUT) 'ls: non_existent_file: No such file or directory\n' """ if 'stdout' in kwargs: raise ValueError('stdout argument not allowed, it will be overridden.') process = subprocess.Popen(stdout=subprocess.PIPE, stderr=subprocess.PIPE, *popenargs, **kwargs) output, unused_err = process.communicate() retcode = process.poll() if retcode: cmd = kwargs.get("args") if cmd is None: cmd = popenargs[0] raise subprocess.CalledProcessError(retcode, cmd, output=output) return output def _default_locale_getter(): try: raw_locales = check_output(['locale -a'], shell=True) except subprocess.CalledProcessError as e: raise type(e)("{exception}, the 'locale -a' command cannot be found " "on your system".format(exception=e)) return raw_locales def get_locales(prefix=None, normalize=True, locale_getter=_default_locale_getter): """Get all the locales that are available on the system. Parameters ---------- prefix : str If not ``None`` then return only those locales with the prefix provided. For example to get all English language locales (those that start with ``"en"``), pass ``prefix="en"``. normalize : bool Call ``locale.normalize`` on the resulting list of available locales. If ``True``, only locales that can be set without throwing an ``Exception`` are returned. locale_getter : callable The function to use to retrieve the current locales. This should return a string with each locale separated by a newline character. Returns ------- locales : list of strings A list of locale strings that can be set with ``locale.setlocale()``. For example:: locale.setlocale(locale.LC_ALL, locale_string) On error will return None (no locale available, e.g. Windows) """ try: raw_locales = locale_getter() except Exception: return None try: # raw_locales is "\n" separated list of locales # it may contain non-decodable parts, so split # extract what we can and then rejoin. raw_locales = raw_locales.split(b'\n') out_locales = [] for x in raw_locales: if PY3: out_locales.append(str( x, encoding=pd.options.display.encoding)) else: out_locales.append(str(x)) except TypeError: pass if prefix is None: return _valid_locales(out_locales, normalize) pattern = re.compile('{prefix}.*'.format(prefix=prefix)) found = pattern.findall('\n'.join(out_locales)) return _valid_locales(found, normalize) @contextmanager def set_locale(new_locale, lc_var=locale.LC_ALL): """Context manager for temporarily setting a locale. Parameters ---------- new_locale : str or tuple A string of the form <language_country>.<encoding>. For example to set the current locale to US English with a UTF8 encoding, you would pass "en_US.UTF-8". lc_var : int, default `locale.LC_ALL` The category of the locale being set. Notes ----- This is useful when you want to run a particular block of code under a particular locale, without globally setting the locale. This probably isn't thread-safe. """ current_locale = locale.getlocale() try: locale.setlocale(lc_var, new_locale) normalized_locale = locale.getlocale() if com._all_not_none(*normalized_locale): yield '.'.join(normalized_locale) else: yield new_locale finally: locale.setlocale(lc_var, current_locale) def can_set_locale(lc, lc_var=locale.LC_ALL): """ Check to see if we can set a locale, and subsequently get the locale, without raising an Exception. Parameters ---------- lc : str The locale to attempt to set. lc_var : int, default `locale.LC_ALL` The category of the locale being set. Returns ------- is_valid : bool Whether the passed locale can be set """ try: with set_locale(lc, lc_var=lc_var): pass except (ValueError, locale.Error): # horrible name for a Exception subclass return False else: return True def _valid_locales(locales, normalize): """Return a list of normalized locales that do not throw an ``Exception`` when set. Parameters ---------- locales : str A string where each locale is separated by a newline. normalize : bool Whether to call ``locale.normalize`` on each locale. Returns ------- valid_locales : list A list of valid locales. """ if normalize: normalizer = lambda x: locale.normalize(x.strip()) else: normalizer = lambda x: x.strip() return list(filter(can_set_locale, map(normalizer, locales))) # ----------------------------------------------------------------------------- # Stdout / stderr decorators @contextmanager def set_defaultencoding(encoding): """ Set default encoding (as given by sys.getdefaultencoding()) to the given encoding; restore on exit. Parameters ---------- encoding : str """ if not PY2: raise ValueError("set_defaultencoding context is only available " "in Python 2.") orig = sys.getdefaultencoding() reload(sys) # noqa:F821 sys.setdefaultencoding(encoding) try: yield finally: sys.setdefaultencoding(orig) def capture_stdout(f): r""" Decorator to capture stdout in a buffer so that it can be checked (or suppressed) during testing. Parameters ---------- f : callable The test that is capturing stdout. Returns ------- f : callable The decorated test ``f``, which captures stdout. Examples -------- >>> from pandas.util.testing import capture_stdout >>> import sys >>> >>> @capture_stdout ... def test_print_pass(): ... print("foo") ... out = sys.stdout.getvalue() ... assert out == "foo\n" >>> >>> @capture_stdout ... def test_print_fail(): ... print("foo") ... out = sys.stdout.getvalue() ... assert out == "bar\n" ... AssertionError: assert 'foo\n' == 'bar\n' """ @compat.wraps(f) def wrapper(*args, **kwargs): try: sys.stdout = StringIO() f(*args, **kwargs) finally: sys.stdout = sys.__stdout__ return wrapper def capture_stderr(f): r""" Decorator to capture stderr in a buffer so that it can be checked (or suppressed) during testing. Parameters ---------- f : callable The test that is capturing stderr. Returns ------- f : callable The decorated test ``f``, which captures stderr. Examples -------- >>> from pandas.util.testing import capture_stderr >>> import sys >>> >>> @capture_stderr ... def test_stderr_pass(): ... sys.stderr.write("foo") ... out = sys.stderr.getvalue() ... assert out == "foo\n" >>> >>> @capture_stderr ... def test_stderr_fail(): ... sys.stderr.write("foo") ... out = sys.stderr.getvalue() ... assert out == "bar\n" ... AssertionError: assert 'foo\n' == 'bar\n' """ @compat.wraps(f) def wrapper(*args, **kwargs): try: sys.stderr = StringIO() f(*args, **kwargs) finally: sys.stderr = sys.__stderr__ return wrapper # ----------------------------------------------------------------------------- # Console debugging tools def debug(f, *args, **kwargs): from pdb import Pdb as OldPdb try: from IPython.core.debugger import Pdb kw = dict(color_scheme='Linux') except ImportError: Pdb = OldPdb kw = {} pdb = Pdb(**kw) return pdb.runcall(f, *args, **kwargs) def pudebug(f, *args, **kwargs): import pudb return pudb.runcall(f, *args, **kwargs) def set_trace(): from IPython.core.debugger import Pdb try: Pdb(color_scheme='Linux').set_trace(sys._getframe().f_back) except Exception: from pdb import Pdb as OldPdb OldPdb().set_trace(sys._getframe().f_back) # ----------------------------------------------------------------------------- # contextmanager to ensure the file cleanup @contextmanager def ensure_clean(filename=None, return_filelike=False): """Gets a temporary path and agrees to remove on close. Parameters ---------- filename : str (optional) if None, creates a temporary file which is then removed when out of scope. if passed, creates temporary file with filename as ending. return_filelike : bool (default False) if True, returns a file-like which is *always* cleaned. Necessary for savefig and other functions which want to append extensions. """ filename = filename or '' fd = None if return_filelike: f = tempfile.TemporaryFile(suffix=filename) try: yield f finally: f.close() else: # don't generate tempfile if using a path with directory specified if len(os.path.dirname(filename)): raise ValueError("Can't pass a qualified name to ensure_clean()") try: fd, filename = tempfile.mkstemp(suffix=filename) except UnicodeEncodeError: import pytest pytest.skip('no unicode file names on this system') try: yield filename finally: try: os.close(fd) except Exception: print("Couldn't close file descriptor: {fdesc} (file: {fname})" .format(fdesc=fd, fname=filename)) try: if os.path.exists(filename): os.remove(filename) except Exception as e: print("Exception on removing file: {error}".format(error=e)) @contextmanager def ensure_clean_dir(): """ Get a temporary directory path and agrees to remove on close. Yields ------ Temporary directory path """ directory_name = tempfile.mkdtemp(suffix='') try: yield directory_name finally: try: rmtree(directory_name) except Exception: pass @contextmanager def ensure_safe_environment_variables(): """ Get a context manager to safely set environment variables All changes will be undone on close, hence environment variables set within this contextmanager will neither persist nor change global state. """ saved_environ = dict(os.environ) try: yield finally: os.environ.clear() os.environ.update(saved_environ) # ----------------------------------------------------------------------------- # Comparators def equalContents(arr1, arr2): """Checks if the set of unique elements of arr1 and arr2 are equivalent. """ return frozenset(arr1) == frozenset(arr2) def assert_index_equal(left, right, exact='equiv', check_names=True, check_less_precise=False, check_exact=True, check_categorical=True, obj='Index'): """Check that left and right Index are equal. Parameters ---------- left : Index right : Index exact : bool / string {'equiv'}, default 'equiv' Whether to check the Index class, dtype and inferred_type are identical. If 'equiv', then RangeIndex can be substituted for Int64Index as well. check_names : bool, default True Whether to check the names attribute. check_less_precise : bool or int, default False Specify comparison precision. Only used when check_exact is False. 5 digits (False) or 3 digits (True) after decimal points are compared. If int, then specify the digits to compare check_exact : bool, default True Whether to compare number exactly. check_categorical : bool, default True Whether to compare internal Categorical exactly. obj : str, default 'Index' Specify object name being compared, internally used to show appropriate assertion message """ __tracebackhide__ = True def _check_types(l, r, obj='Index'): if exact: assert_class_equal(l, r, exact=exact, obj=obj) # Skip exact dtype checking when `check_categorical` is False if check_categorical: assert_attr_equal('dtype', l, r, obj=obj) # allow string-like to have different inferred_types if l.inferred_type in ('string', 'unicode'): assert r.inferred_type in ('string', 'unicode') else: assert_attr_equal('inferred_type', l, r, obj=obj) def _get_ilevel_values(index, level): # accept level number only unique = index.levels[level] labels = index.codes[level] filled = take_1d(unique.values, labels, fill_value=unique._na_value) values = unique._shallow_copy(filled, name=index.names[level]) return values # instance validation _check_isinstance(left, right, Index) # class / dtype comparison _check_types(left, right, obj=obj) # level comparison if left.nlevels != right.nlevels: msg1 = '{obj} levels are different'.format(obj=obj) msg2 = '{nlevels}, {left}'.format(nlevels=left.nlevels, left=left) msg3 = '{nlevels}, {right}'.format(nlevels=right.nlevels, right=right) raise_assert_detail(obj, msg1, msg2, msg3) # length comparison if len(left) != len(right): msg1 = '{obj} length are different'.format(obj=obj) msg2 = '{length}, {left}'.format(length=len(left), left=left) msg3 = '{length}, {right}'.format(length=len(right), right=right) raise_assert_detail(obj, msg1, msg2, msg3) # MultiIndex special comparison for little-friendly error messages if left.nlevels > 1: for level in range(left.nlevels): # cannot use get_level_values here because it can change dtype llevel = _get_ilevel_values(left, level) rlevel = _get_ilevel_values(right, level) lobj = 'MultiIndex level [{level}]'.format(level=level) assert_index_equal(llevel, rlevel, exact=exact, check_names=check_names, check_less_precise=check_less_precise, check_exact=check_exact, obj=lobj) # get_level_values may change dtype _check_types(left.levels[level], right.levels[level], obj=obj) # skip exact index checking when `check_categorical` is False if check_exact and check_categorical: if not left.equals(right): diff = np.sum((left.values != right.values) .astype(int)) * 100.0 / len(left) msg = '{obj} values are different ({pct} %)'.format( obj=obj, pct=np.round(diff, 5)) raise_assert_detail(obj, msg, left, right) else: _testing.assert_almost_equal(left.values, right.values, check_less_precise=check_less_precise, check_dtype=exact, obj=obj, lobj=left, robj=right) # metadata comparison if check_names: assert_attr_equal('names', left, right, obj=obj) if isinstance(left, pd.PeriodIndex) or isinstance(right, pd.PeriodIndex): assert_attr_equal('freq', left, right, obj=obj) if (isinstance(left, pd.IntervalIndex) or isinstance(right, pd.IntervalIndex)): assert_interval_array_equal(left.values, right.values) if check_categorical: if is_categorical_dtype(left) or is_categorical_dtype(right): assert_categorical_equal(left.values, right.values, obj='{obj} category'.format(obj=obj)) def assert_class_equal(left, right, exact=True, obj='Input'): """checks classes are equal.""" __tracebackhide__ = True def repr_class(x): if isinstance(x, Index): # return Index as it is to include values in the error message return x try: return x.__class__.__name__ except AttributeError: return repr(type(x)) if exact == 'equiv': if type(left) != type(right): # allow equivalence of Int64Index/RangeIndex types = {type(left).__name__, type(right).__name__} if len(types - {'Int64Index', 'RangeIndex'}): msg = '{obj} classes are not equivalent'.format(obj=obj) raise_assert_detail(obj, msg, repr_class(left), repr_class(right)) elif exact: if type(left) != type(right): msg = '{obj} classes are different'.format(obj=obj) raise_assert_detail(obj, msg, repr_class(left), repr_class(right)) def assert_attr_equal(attr, left, right, obj='Attributes'): """checks attributes are equal. Both objects must have attribute. Parameters ---------- attr : str Attribute name being compared. left : object right : object obj : str, default 'Attributes' Specify object name being compared, internally used to show appropriate assertion message """ __tracebackhide__ = True left_attr = getattr(left, attr) right_attr = getattr(right, attr) if left_attr is right_attr: return True elif (is_number(left_attr) and np.isnan(left_attr) and is_number(right_attr) and np.isnan(right_attr)): # np.nan return True try: result = left_attr == right_attr except TypeError: # datetimetz on rhs may raise TypeError result = False if not isinstance(result, bool): result = result.all() if result: return True else: msg = 'Attribute "{attr}" are different'.format(attr=attr) raise_assert_detail(obj, msg, left_attr, right_attr) def assert_is_valid_plot_return_object(objs): import matplotlib.pyplot as plt if isinstance(objs, (pd.Series, np.ndarray)): for el in objs.ravel(): msg = ("one of 'objs' is not a matplotlib Axes instance, type " "encountered {name!r}").format(name=el.__class__.__name__) assert isinstance(el, (plt.Axes, dict)), msg else: assert isinstance(objs, (plt.Artist, tuple, dict)), ( 'objs is neither an ndarray of Artist instances nor a ' 'single Artist instance, tuple, or dict, "objs" is a {name!r}' .format(name=objs.__class__.__name__)) def isiterable(obj): return hasattr(obj, '__iter__') def is_sorted(seq): if isinstance(seq, (Index, Series)): seq = seq.values # sorting does not change precisions return assert_numpy_array_equal(seq, np.sort(np.array(seq))) def assert_categorical_equal(left, right, check_dtype=True, check_category_order=True, obj='Categorical'): """Test that Categoricals are equivalent. Parameters ---------- left : Categorical right : Categorical check_dtype : bool, default True Check that integer dtype of the codes are the same check_category_order : bool, default True Whether the order of the categories should be compared, which implies identical integer codes. If False, only the resulting values are compared. The ordered attribute is checked regardless. obj : str, default 'Categorical' Specify object name being compared, internally used to show appropriate assertion message """ _check_isinstance(left, right, Categorical) if check_category_order: assert_index_equal(left.categories, right.categories, obj='{obj}.categories'.format(obj=obj)) assert_numpy_array_equal(left.codes, right.codes, check_dtype=check_dtype, obj='{obj}.codes'.format(obj=obj)) else: assert_index_equal(left.categories.sort_values(), right.categories.sort_values(), obj='{obj}.categories'.format(obj=obj)) assert_index_equal(left.categories.take(left.codes), right.categories.take(right.codes), obj='{obj}.values'.format(obj=obj)) assert_attr_equal('ordered', left, right, obj=obj) def assert_interval_array_equal(left, right, exact='equiv', obj='IntervalArray'): """Test that two IntervalArrays are equivalent. Parameters ---------- left, right : IntervalArray The IntervalArrays to compare. exact : bool / string {'equiv'}, default 'equiv' Whether to check the Index class, dtype and inferred_type are identical. If 'equiv', then RangeIndex can be substituted for Int64Index as well. obj : str, default 'IntervalArray' Specify object name being compared, internally used to show appropriate assertion message """ _check_isinstance(left, right, IntervalArray) assert_index_equal(left.left, right.left, exact=exact, obj='{obj}.left'.format(obj=obj)) assert_index_equal(left.right, right.right, exact=exact, obj='{obj}.left'.format(obj=obj)) assert_attr_equal('closed', left, right, obj=obj) def assert_period_array_equal(left, right, obj='PeriodArray'): _check_isinstance(left, right, PeriodArray) assert_numpy_array_equal(left._data, right._data, obj='{obj}.values'.format(obj=obj)) assert_attr_equal('freq', left, right, obj=obj) def assert_datetime_array_equal(left, right, obj='DatetimeArray'): __tracebackhide__ = True _check_isinstance(left, right, DatetimeArray) assert_numpy_array_equal(left._data, right._data, obj='{obj}._data'.format(obj=obj)) assert_attr_equal('freq', left, right, obj=obj) assert_attr_equal('tz', left, right, obj=obj) def assert_timedelta_array_equal(left, right, obj='TimedeltaArray'): __tracebackhide__ = True _check_isinstance(left, right, TimedeltaArray) assert_numpy_array_equal(left._data, right._data, obj='{obj}._data'.format(obj=obj)) assert_attr_equal('freq', left, right, obj=obj) def raise_assert_detail(obj, message, left, right, diff=None): __tracebackhide__ = True if isinstance(left, np.ndarray): left = pprint_thing(left) elif is_categorical_dtype(left): left = repr(left) if PY2 and isinstance(left, string_types): # left needs to be printable in native text type in python2 left = left.encode('utf-8') if isinstance(right, np.ndarray): right = pprint_thing(right) elif is_categorical_dtype(right): right = repr(right) if PY2 and isinstance(right, string_types): # right needs to be printable in native text type in python2 right = right.encode('utf-8') msg = """{obj} are different {message} [left]: {left} [right]: {right}""".format(obj=obj, message=message, left=left, right=right) if diff is not None: msg += "\n[diff]: {diff}".format(diff=diff) raise AssertionError(msg) def assert_numpy_array_equal(left, right, strict_nan=False, check_dtype=True, err_msg=None, check_same=None, obj='numpy array'): """ Checks that 'np.ndarray' is equivalent Parameters ---------- left : np.ndarray or iterable right : np.ndarray or iterable strict_nan : bool, default False If True, consider NaN and None to be different. check_dtype: bool, default True check dtype if both a and b are np.ndarray err_msg : str, default None If provided, used as assertion message check_same : None|'copy'|'same', default None Ensure left and right refer/do not refer to the same memory area obj : str, default 'numpy array' Specify object name being compared, internally used to show appropriate assertion message """ __tracebackhide__ = True # instance validation # Show a detailed error message when classes are different assert_class_equal(left, right, obj=obj) # both classes must be an np.ndarray _check_isinstance(left, right, np.ndarray) def _get_base(obj): return obj.base if getattr(obj, 'base', None) is not None else obj left_base = _get_base(left) right_base = _get_base(right) if check_same == 'same': if left_base is not right_base: msg = "{left!r} is not {right!r}".format( left=left_base, right=right_base) raise AssertionError(msg) elif check_same == 'copy': if left_base is right_base: msg = "{left!r} is {right!r}".format( left=left_base, right=right_base) raise AssertionError(msg) def _raise(left, right, err_msg): if err_msg is None: if left.shape != right.shape: raise_assert_detail(obj, '{obj} shapes are different' .format(obj=obj), left.shape, right.shape) diff = 0 for l, r in zip(left, right): # count up differences if not array_equivalent(l, r, strict_nan=strict_nan): diff += 1 diff = diff * 100.0 / left.size msg = '{obj} values are different ({pct} %)'.format( obj=obj, pct=np.round(diff, 5)) raise_assert_detail(obj, msg, left, right) raise AssertionError(err_msg) # compare shape and values if not array_equivalent(left, right, strict_nan=strict_nan): _raise(left, right, err_msg) if check_dtype: if isinstance(left, np.ndarray) and isinstance(right, np.ndarray): assert_attr_equal('dtype', left, right, obj=obj) return True def assert_extension_array_equal(left, right, check_dtype=True, check_less_precise=False, check_exact=False): """Check that left and right ExtensionArrays are equal. Parameters ---------- left, right : ExtensionArray The two arrays to compare check_dtype : bool, default True Whether to check if the ExtensionArray dtypes are identical. check_less_precise : bool or int, default False Specify comparison precision. Only used when check_exact is False. 5 digits (False) or 3 digits (True) after decimal points are compared. If int, then specify the digits to compare. check_exact : bool, default False Whether to compare number exactly. Notes ----- Missing values are checked separately from valid values. A mask of missing values is computed for each and checked to match. The remaining all-valid values are cast to object dtype and checked. """ assert isinstance(left, ExtensionArray), 'left is not an ExtensionArray' assert isinstance(right, ExtensionArray), 'right is not an ExtensionArray' if check_dtype: assert_attr_equal('dtype', left, right, obj='ExtensionArray') left_na = np.asarray(left.isna()) right_na = np.asarray(right.isna()) assert_numpy_array_equal(left_na, right_na, obj='ExtensionArray NA mask') left_valid = np.asarray(left[~left_na].astype(object)) right_valid = np.asarray(right[~right_na].astype(object)) if check_exact: assert_numpy_array_equal(left_valid, right_valid, obj='ExtensionArray') else: _testing.assert_almost_equal(left_valid, right_valid, check_dtype=check_dtype, check_less_precise=check_less_precise, obj='ExtensionArray') # This could be refactored to use the NDFrame.equals method def assert_series_equal(left, right, check_dtype=True, check_index_type='equiv', check_series_type=True, check_less_precise=False, check_names=True, check_exact=False, check_datetimelike_compat=False, check_categorical=True, obj='Series'): """Check that left and right Series are equal. Parameters ---------- left : Series right : Series check_dtype : bool, default True Whether to check the Series dtype is identical. check_index_type : bool / string {'equiv'}, default 'equiv' Whether to check the Index class, dtype and inferred_type are identical. check_series_type : bool, default True Whether to check the Series class is identical. check_less_precise : bool or int, default False Specify comparison precision. Only used when check_exact is False. 5 digits (False) or 3 digits (True) after decimal points are compared. If int, then specify the digits to compare. check_names : bool, default True Whether to check the Series and Index names attribute. check_exact : bool, default False Whether to compare number exactly. check_datetimelike_compat : bool, default False Compare datetime-like which is comparable ignoring dtype. check_categorical : bool, default True Whether to compare internal Categorical exactly. obj : str, default 'Series' Specify object name being compared, internally used to show appropriate assertion message. """ __tracebackhide__ = True # instance validation _check_isinstance(left, right, Series) if check_series_type: # ToDo: There are some tests using rhs is sparse # lhs is dense. Should use assert_class_equal in future assert isinstance(left, type(right)) # assert_class_equal(left, right, obj=obj) # length comparison if len(left) != len(right): msg1 = '{len}, {left}'.format(len=len(left), left=left.index) msg2 = '{len}, {right}'.format(len=len(right), right=right.index) raise_assert_detail(obj, 'Series length are different', msg1, msg2) # index comparison assert_index_equal(left.index, right.index, exact=check_index_type, check_names=check_names, check_less_precise=check_less_precise, check_exact=check_exact, check_categorical=check_categorical, obj='{obj}.index'.format(obj=obj)) if check_dtype: # We want to skip exact dtype checking when `check_categorical` # is False. We'll still raise if only one is a `Categorical`, # regardless of `check_categorical` if (is_categorical_dtype(left) and is_categorical_dtype(right) and not check_categorical): pass else: assert_attr_equal('dtype', left, right) if check_exact: assert_numpy_array_equal(left.get_values(), right.get_values(), check_dtype=check_dtype, obj='{obj}'.format(obj=obj),) elif check_datetimelike_compat: # we want to check only if we have compat dtypes # e.g. integer and M|m are NOT compat, but we can simply check # the values in that case if (is_datetimelike_v_numeric(left, right) or is_datetimelike_v_object(left, right) or needs_i8_conversion(left) or needs_i8_conversion(right)): # datetimelike may have different objects (e.g. datetime.datetime # vs Timestamp) but will compare equal if not Index(left.values).equals(Index(right.values)): msg = ('[datetimelike_compat=True] {left} is not equal to ' '{right}.').format(left=left.values, right=right.values) raise AssertionError(msg) else: assert_numpy_array_equal(left.get_values(), right.get_values(), check_dtype=check_dtype) elif is_interval_dtype(left) or is_interval_dtype(right): assert_interval_array_equal(left.array, right.array) elif (is_extension_array_dtype(left) and not is_categorical_dtype(left) and is_extension_array_dtype(right) and not is_categorical_dtype(right)): return assert_extension_array_equal(left.array, right.array) else: _testing.assert_almost_equal(left.get_values(), right.get_values(), check_less_precise=check_less_precise, check_dtype=check_dtype, obj='{obj}'.format(obj=obj)) # metadata comparison if check_names: assert_attr_equal('name', left, right, obj=obj) if check_categorical: if is_categorical_dtype(left) or is_categorical_dtype(right): assert_categorical_equal(left.values, right.values, obj='{obj} category'.format(obj=obj)) # This could be refactored to use the NDFrame.equals method def assert_frame_equal(left, right, check_dtype=True, check_index_type='equiv', check_column_type='equiv', check_frame_type=True, check_less_precise=False, check_names=True, by_blocks=False, check_exact=False, check_datetimelike_compat=False, check_categorical=True, check_like=False, obj='DataFrame'): """ Check that left and right DataFrame are equal. This function is intended to compare two DataFrames and output any differences. Is is mostly intended for use in unit tests. Additional parameters allow varying the strictness of the equality checks performed. Parameters ---------- left : DataFrame First DataFrame to compare. right : DataFrame Second DataFrame to compare. check_dtype : bool, default True Whether to check the DataFrame dtype is identical. check_index_type : bool / string {'equiv'}, default 'equiv' Whether to check the Index class, dtype and inferred_type are identical. check_column_type : bool / string {'equiv'}, default 'equiv' Whether to check the columns class, dtype and inferred_type are identical. Is passed as the ``exact`` argument of :func:`assert_index_equal`. check_frame_type : bool, default True Whether to check the DataFrame class is identical. check_less_precise : bool or int, default False Specify comparison precision. Only used when check_exact is False. 5 digits (False) or 3 digits (True) after decimal points are compared. If int, then specify the digits to compare. check_names : bool, default True Whether to check that the `names` attribute for both the `index` and `column` attributes of the DataFrame is identical, i.e. * left.index.names == right.index.names * left.columns.names == right.columns.names by_blocks : bool, default False Specify how to compare internal data. If False, compare by columns. If True, compare by blocks. check_exact : bool, default False Whether to compare number exactly. check_datetimelike_compat : bool, default False Compare datetime-like which is comparable ignoring dtype. check_categorical : bool, default True Whether to compare internal Categorical exactly. check_like : bool, default False If True, ignore the order of index & columns. Note: index labels must match their respective rows (same as in columns) - same labels must be with the same data. obj : str, default 'DataFrame' Specify object name being compared, internally used to show appropriate assertion message. See Also -------- assert_series_equal : Equivalent method for asserting Series equality. DataFrame.equals : Check DataFrame equality. Examples -------- This example shows comparing two DataFrames that are equal but with columns of differing dtypes. >>> from pandas.util.testing import assert_frame_equal >>> df1 = pd.DataFrame({'a': [1, 2], 'b': [3, 4]}) >>> df2 = pd.DataFrame({'a': [1, 2], 'b': [3.0, 4.0]}) df1 equals itself. >>> assert_frame_equal(df1, df1) df1 differs from df2 as column 'b' is of a different type. >>> assert_frame_equal(df1, df2) Traceback (most recent call last): AssertionError: Attributes are different Attribute "dtype" are different [left]: int64 [right]: float64 Ignore differing dtypes in columns with check_dtype. >>> assert_frame_equal(df1, df2, check_dtype=False) """ __tracebackhide__ = True # instance validation _check_isinstance(left, right, DataFrame) if check_frame_type: # ToDo: There are some tests using rhs is SparseDataFrame # lhs is DataFrame. Should use assert_class_equal in future assert isinstance(left, type(right)) # assert_class_equal(left, right, obj=obj) # shape comparison if left.shape != right.shape: raise_assert_detail(obj, 'DataFrame shape mismatch', '{shape!r}'.format(shape=left.shape), '{shape!r}'.format(shape=right.shape)) if check_like: left, right = left.reindex_like(right), right # index comparison assert_index_equal(left.index, right.index, exact=check_index_type, check_names=check_names, check_less_precise=check_less_precise, check_exact=check_exact, check_categorical=check_categorical, obj='{obj}.index'.format(obj=obj)) # column comparison assert_index_equal(left.columns, right.columns, exact=check_column_type, check_names=check_names, check_less_precise=check_less_precise, check_exact=check_exact, check_categorical=check_categorical, obj='{obj}.columns'.format(obj=obj)) # compare by blocks if by_blocks: rblocks = right._to_dict_of_blocks() lblocks = left._to_dict_of_blocks() for dtype in list(set(list(lblocks.keys()) + list(rblocks.keys()))): assert dtype in lblocks assert dtype in rblocks assert_frame_equal(lblocks[dtype], rblocks[dtype], check_dtype=check_dtype, obj='DataFrame.blocks') # compare by columns else: for i, col in enumerate(left.columns): assert col in right lcol = left.iloc[:, i] rcol = right.iloc[:, i] assert_series_equal( lcol, rcol, check_dtype=check_dtype, check_index_type=check_index_type, check_less_precise=check_less_precise, check_exact=check_exact, check_names=check_names, check_datetimelike_compat=check_datetimelike_compat, check_categorical=check_categorical, obj='DataFrame.iloc[:, {idx}]'.format(idx=i)) def assert_panel_equal(left, right, check_dtype=True, check_panel_type=False, check_less_precise=False, check_names=False, by_blocks=False, obj='Panel'): """Check that left and right Panels are equal. Parameters ---------- left : Panel (or nd) right : Panel (or nd) check_dtype : bool, default True Whether to check the Panel dtype is identical. check_panel_type : bool, default False Whether to check the Panel class is identical. check_less_precise : bool or int, default False Specify comparison precision. Only used when check_exact is False. 5 digits (False) or 3 digits (True) after decimal points are compared. If int, then specify the digits to compare check_names : bool, default True Whether to check the Index names attribute. by_blocks : bool, default False Specify how to compare internal data. If False, compare by columns. If True, compare by blocks. obj : str, default 'Panel' Specify the object name being compared, internally used to show the appropriate assertion message. """ if check_panel_type: assert_class_equal(left, right, obj=obj) for axis in left._AXIS_ORDERS: left_ind = getattr(left, axis) right_ind = getattr(right, axis) assert_index_equal(left_ind, right_ind, check_names=check_names) if by_blocks: rblocks = right._to_dict_of_blocks() lblocks = left._to_dict_of_blocks() for dtype in list(set(list(lblocks.keys()) + list(rblocks.keys()))): assert dtype in lblocks assert dtype in rblocks array_equivalent(lblocks[dtype].values, rblocks[dtype].values) else: # can potentially be slow for i, item in enumerate(left._get_axis(0)): msg = "non-matching item (right) '{item}'".format(item=item) assert item in right, msg litem = left.iloc[i] ritem = right.iloc[i] assert_frame_equal(litem, ritem, check_less_precise=check_less_precise, check_names=check_names) for i, item in enumerate(right._get_axis(0)): msg = "non-matching item (left) '{item}'".format(item=item) assert item in left, msg def assert_equal(left, right, **kwargs): """ Wrapper for tm.assert_*_equal to dispatch to the appropriate test function. Parameters ---------- left : Index, Series, DataFrame, ExtensionArray, or np.ndarray right : Index, Series, DataFrame, ExtensionArray, or np.ndarray **kwargs """ __tracebackhide__ = True if isinstance(left, pd.Index): assert_index_equal(left, right, **kwargs) elif isinstance(left, pd.Series): assert_series_equal(left, right, **kwargs) elif isinstance(left, pd.DataFrame): assert_frame_equal(left, right, **kwargs) elif isinstance(left, IntervalArray): assert_interval_array_equal(left, right, **kwargs) elif isinstance(left, PeriodArray): assert_period_array_equal(left, right, **kwargs) elif isinstance(left, DatetimeArray): assert_datetime_array_equal(left, right, **kwargs) elif isinstance(left, TimedeltaArray): assert_timedelta_array_equal(left, right, **kwargs) elif isinstance(left, ExtensionArray): assert_extension_array_equal(left, right, **kwargs) elif isinstance(left, np.ndarray): assert_numpy_array_equal(left, right, **kwargs) else: raise NotImplementedError(type(left)) def box_expected(expected, box_cls, transpose=True): """ Helper function to wrap the expected output of a test in a given box_class. Parameters ---------- expected : np.ndarray, Index, Series box_cls : {Index, Series, DataFrame} Returns ------- subclass of box_cls """ if box_cls is pd.Index: expected = pd.Index(expected) elif box_cls is pd.Series: expected = pd.Series(expected) elif box_cls is pd.DataFrame: expected = pd.Series(expected).to_frame() if transpose: # for vector operations, we we need a DataFrame to be a single-row, # not a single-column, in order to operate against non-DataFrame # vectors of the same length. expected = expected.T elif box_cls is PeriodArray: # the PeriodArray constructor is not as flexible as period_array expected = period_array(expected) elif box_cls is DatetimeArray: expected = DatetimeArray(expected) elif box_cls is TimedeltaArray: expected = TimedeltaArray(expected) elif box_cls is np.ndarray: expected = np.array(expected) elif box_cls is to_array: expected = to_array(expected) else: raise NotImplementedError(box_cls) return expected def to_array(obj): # temporary implementation until we get pd.array in place if is_period_dtype(obj): return period_array(obj) elif is_datetime64_dtype(obj) or is_datetime64tz_dtype(obj): return DatetimeArray._from_sequence(obj) elif is_timedelta64_dtype(obj): return TimedeltaArray._from_sequence(obj) else: return np.array(obj) # ----------------------------------------------------------------------------- # Sparse def assert_sp_array_equal(left, right, check_dtype=True, check_kind=True, check_fill_value=True, consolidate_block_indices=False): """Check that the left and right SparseArray are equal. Parameters ---------- left : SparseArray right : SparseArray check_dtype : bool, default True Whether to check the data dtype is identical. check_kind : bool, default True Whether to just the kind of the sparse index for each column. check_fill_value : bool, default True Whether to check that left.fill_value matches right.fill_value consolidate_block_indices : bool, default False Whether to consolidate contiguous blocks for sparse arrays with a BlockIndex. Some operations, e.g. concat, will end up with block indices that could be consolidated. Setting this to true will create a new BlockIndex for that array, with consolidated block indices. """ _check_isinstance(left, right, pd.SparseArray) assert_numpy_array_equal(left.sp_values, right.sp_values, check_dtype=check_dtype) # SparseIndex comparison assert isinstance(left.sp_index, pd._libs.sparse.SparseIndex) assert isinstance(right.sp_index, pd._libs.sparse.SparseIndex) if not check_kind: left_index = left.sp_index.to_block_index() right_index = right.sp_index.to_block_index() else: left_index = left.sp_index right_index = right.sp_index if consolidate_block_indices and left.kind == 'block': # we'll probably remove this hack... left_index = left_index.to_int_index().to_block_index() right_index = right_index.to_int_index().to_block_index() if not left_index.equals(right_index): raise_assert_detail('SparseArray.index', 'index are not equal', left_index, right_index) else: # Just ensure a pass if check_fill_value: assert_attr_equal('fill_value', left, right) if check_dtype: assert_attr_equal('dtype', left, right) assert_numpy_array_equal(left.values, right.values, check_dtype=check_dtype) def assert_sp_series_equal(left, right, check_dtype=True, exact_indices=True, check_series_type=True, check_names=True, check_kind=True, check_fill_value=True, consolidate_block_indices=False, obj='SparseSeries'): """Check that the left and right SparseSeries are equal. Parameters ---------- left : SparseSeries right : SparseSeries check_dtype : bool, default True Whether to check the Series dtype is identical. exact_indices : bool, default True check_series_type : bool, default True Whether to check the SparseSeries class is identical. check_names : bool, default True Whether to check the SparseSeries name attribute. check_kind : bool, default True Whether to just the kind of the sparse index for each column. check_fill_value : bool, default True Whether to check that left.fill_value matches right.fill_value consolidate_block_indices : bool, default False Whether to consolidate contiguous blocks for sparse arrays with a BlockIndex. Some operations, e.g. concat, will end up with block indices that could be consolidated. Setting this to true will create a new BlockIndex for that array, with consolidated block indices. obj : str, default 'SparseSeries' Specify the object name being compared, internally used to show the appropriate assertion message. """ _check_isinstance(left, right, pd.SparseSeries) if check_series_type: assert_class_equal(left, right, obj=obj) assert_index_equal(left.index, right.index, obj='{obj}.index'.format(obj=obj)) assert_sp_array_equal(left.values, right.values, check_kind=check_kind, check_fill_value=check_fill_value, consolidate_block_indices=consolidate_block_indices) if check_names: assert_attr_equal('name', left, right) if check_dtype: assert_attr_equal('dtype', left, right) assert_numpy_array_equal(np.asarray(left.values), np.asarray(right.values)) def assert_sp_frame_equal(left, right, check_dtype=True, exact_indices=True, check_frame_type=True, check_kind=True, check_fill_value=True, consolidate_block_indices=False, obj='SparseDataFrame'): """Check that the left and right SparseDataFrame are equal. Parameters ---------- left : SparseDataFrame right : SparseDataFrame check_dtype : bool, default True Whether to check the Series dtype is identical. exact_indices : bool, default True SparseSeries SparseIndex objects must be exactly the same, otherwise just compare dense representations. check_frame_type : bool, default True Whether to check the SparseDataFrame class is identical. check_kind : bool, default True Whether to just the kind of the sparse index for each column. check_fill_value : bool, default True Whether to check that left.fill_value matches right.fill_value consolidate_block_indices : bool, default False Whether to consolidate contiguous blocks for sparse arrays with a BlockIndex. Some operations, e.g. concat, will end up with block indices that could be consolidated. Setting this to true will create a new BlockIndex for that array, with consolidated block indices. obj : str, default 'SparseDataFrame' Specify the object name being compared, internally used to show the appropriate assertion message. """ _check_isinstance(left, right, pd.SparseDataFrame) if check_frame_type: assert_class_equal(left, right, obj=obj) assert_index_equal(left.index, right.index, obj='{obj}.index'.format(obj=obj)) assert_index_equal(left.columns, right.columns, obj='{obj}.columns'.format(obj=obj)) if check_fill_value: assert_attr_equal('default_fill_value', left, right, obj=obj) for col, series in compat.iteritems(left): assert (col in right) # trade-off? if exact_indices: assert_sp_series_equal( series, right[col], check_dtype=check_dtype, check_kind=check_kind, check_fill_value=check_fill_value, consolidate_block_indices=consolidate_block_indices ) else: assert_series_equal(series.to_dense(), right[col].to_dense(), check_dtype=check_dtype) # do I care? # assert(left.default_kind == right.default_kind) for col in right: assert (col in left) # ----------------------------------------------------------------------------- # Others def assert_contains_all(iterable, dic): for k in iterable: assert k in dic, "Did not contain item: '{key!r}'".format(key=k) def assert_copy(iter1, iter2, **eql_kwargs): """ iter1, iter2: iterables that produce elements comparable with assert_almost_equal Checks that the elements are equal, but not the same object. (Does not check that items in sequences are also not the same object) """ for elem1, elem2 in zip(iter1, iter2): assert_almost_equal(elem1, elem2, **eql_kwargs) msg = ("Expected object {obj1!r} and object {obj2!r} to be " "different objects, but they were the same object." ).format(obj1=type(elem1), obj2=type(elem2)) assert elem1 is not elem2, msg def getCols(k): return string.ascii_uppercase[:k] def getArangeMat(): return np.arange(N * K).reshape((N, K)) # make index def makeStringIndex(k=10, name=None): return Index(rands_array(nchars=10, size=k), name=name) def makeUnicodeIndex(k=10, name=None): return Index(randu_array(nchars=10, size=k), name=name) def makeCategoricalIndex(k=10, n=3, name=None, **kwargs): """ make a length k index or n categories """ x = rands_array(nchars=4, size=n) return CategoricalIndex(np.random.choice(x, k), name=name, **kwargs) def makeIntervalIndex(k=10, name=None, **kwargs): """ make a length k IntervalIndex """ x = np.linspace(0, 100, num=(k + 1)) return IntervalIndex.from_breaks(x, name=name, **kwargs) def makeBoolIndex(k=10, name=None): if k == 1: return Index([True], name=name) elif k == 2: return Index([False, True], name=name) return Index([False, True] + [False] * (k - 2), name=name) def makeIntIndex(k=10, name=None): return Index(lrange(k), name=name) def makeUIntIndex(k=10, name=None): return Index([2**63 + i for i in
lrange(k)
pandas.compat.lrange
''' Author: <NAME> filename: DORIS_NGS.py Description: NGS strand analaysis for the DORIS project ''' ###GLOBALS### reverse_primer={ "type1":"CAGGTACGCAGTTAGCACTC" #constant across all file-sets } payload={ #dictionary used for payloads "type1": "CGTACTGCTCGATGAGTACTCTGCTCGACGAGATGAGACGAGTCTCTCGTAGACGAGAGCAGACTCAGTCATCGCGCTAGAGAGCA", #conanical payload1 5-bases (used in file sets 1-3), G at end is from promoter "type2": "ACTGCTCGATGAGTACTCTGCTCGACGAGATGAGACGAGTCTCTCGTAGACGAGAGCAGACTCAGTCATCGCGCTAGAGAGCATAGAGTCGTG", #conanical payload 3 bases (used in file sets 1-3) "type3": "CGTACTGCTCGATGAGTACTCTGCTCGACGAGATGAGACGAGTCTCTCGTAGACGAGAGCA" #payload for file-set 4 } payload_to_forward={#sequences between the payload and forward sequences, used for file-set 1 "type1":"GCGCGCTATAGTGAGTCGTATTANNNNN", "type2":"GCGCGCTATAGTGAGTCGTATTA", "type3":""#empty--> not used } forward_primer={#dictionary used for forward primers "type1": "TCCGTAGTCATATTGCCACG", #conanical forward primer, set-1 files "type2": "GCGCGCAAAAAAAAAAAAAA", #forward primer for set-2 files "type3": "GCGCGCAGTCAGATCAGCTATTACTG", #forward primer for set-3 files "type4": "GACTCAGTCATCGCGCTAG" #forward primer for set-4 files } ''' complete strand = reverse_primer+*5-barcode*+*payload*+*3-barcode*+payload_to_forward+forward_primer --barcode will depend on what sequence occurs after the reverse_primer. Test if there is an indiviual base G: indicates 5 base barcode. Or test for a short sequence after the primer: ACTGCT indicates a 3 base barcode. --there should be two payload versions for each set corresponding to each barcode ''' file_strand_archs={ #holds characteristics for each file studied "dsLi": { "reverse_primer":"type1", "forward_primer":"type1", "payload_1":"type1", "payload_2":"type2", "payload_to_forward_1":"type1", "payload_to_forward_2":"type2", "set": 1 }, "hyLi": { "reverse_primer":"type1", "forward_primer":"type1", "payload_1":"type1", "payload_2":"type2", "payload_to_forward_1":"type1", "payload_to_forward_2":"type2", "set": 1 }, "Pool_Stock": { "reverse_primer":"type1", "forward_primer":"type1", "payload_1":"type1", "payload_2":"type2", "payload_to_forward_1":"type1", "payload_to_forward_2":"type2", "set": 1 }, "dsLi_cDNA_Tailed": { "reverse_primer":"type1", "forward_primer":"type2", "payload_1":"type1", "payload_2":"type2", "payload_to_forward_1":"type3", "payload_to_forward_2":"type3", "set": 2 }, "hyLi_cDNA_Tailed": { "reverse_primer":"type1", "forward_primer":"type2", "payload_1":"type1", "payload_2":"type2", "payload_to_forward_1":"type3", "payload_to_forward_2":"type3", "set": 2 }, "hyLi_cDNA_GC": { "reverse_primer":"type1", "forward_primer":"type3", "payload_1":"type1", "payload_2":"type2", "payload_to_forward_1":"type3", "payload_to_forward_2":"type3", "set": 3 }, "dsLi_cDNA_GC": { "reverse_primer":"type1", "forward_primer":"type3", "payload_1":"type1", "payload_2":"type2", "payload_to_forward_1":"type3", "payload_to_forward_2":"type3", "set": 3 }, "hyLi_cDNA_26": { "reverse_primer":"type1", "forward_primer":"type4", "payload_1":"type3", "payload_2":"type3", "payload_to_forward_1":"type3", "payload_to_forward_2":"type3", "set": 4 }, "dsLi_cDNA_26": { "reverse_primer":"type1", "forward_primer":"type4", "payload_1":"type3", "payload_2":"type3", "payload_to_forward_1":"type3", "payload_to_forward_2":"type3", "set": 4 } } ##############END GLOBALS############################# reverse_table={'A':'T','T':'A','G':'C','C':'G','N':'N', '\x00':'N'} def calculate_reverse_compliment(strand): reverse=strand[::-1] #print strand return ''.join([reverse_table[nuc] for nuc in reverse]) def convertBaseHelper(base,dec,s): bases = ['A', 'C', 'G', 'T'] m = int(dec % base) q = int(dec / base) #print(s) s = s + bases[m] #print(s) if q > 0: return convertBaseHelper(base,q,s) else: return s def convertBase(base,dec,length): bases=['A','C','G','T'] s = convertBaseHelper(base,dec,'') s = s.ljust(length,bases[0]) return s def get_experiment_base_name(experiment_file): exper_base=experiment_file.split("_rep_")[0] assert not exper_base == "" if "rep" in exper_base: exper_base=exper_base.split("-rep-")[0] assert not exper_base == "" return exper_base barcode_to_index_dict={} def init_barcode_to_index_dict(): #for however many barcodes we have (1088) generate the corresponding sequence #mapping is simply a base 4 mapping global barcode_to_index_dict index_array=range(0,1088) base_3_array=[] base_5_array=[] for i in range(0,64): barcode_to_index_dict[convertBase(4,i,3)[::-1]]=i #reverse it so most sig character is from left to right base_3_array.append(convertBase(4,i,3)[::-1]) for i in range(64,1088): barcode_to_index_dict[convertBase(4,i-64,5)[::-1]]=i base_5_array.append(convertBase(4,i-64,5)[::-1]) #print convertBase(4,i-64,5)[::-1] assert len(barcode_to_index_dict)==1088 assert len(base_3_array)==64 assert len(base_5_array)==1024 return base_3_array+base_5_array #mapping: barcode --> index def barcode_to_index(barcode): global barcode_to_index_dict #print barcode_to_index_dict return barcode_to_index_dict[barcode] def analyze_strands(file_base_name,file_key_name,strand_array,data_dictionary): global reverse_primer global file_strand_archs global payload #initialize keys used for data collection, key to data dictionary should acount for file name count_key=file_key_name+"_"+"count" error_rate_key=fq_file+"_"+"error_rate" for strand in strand_array: if len(strand)<100: continue #remove largely short strands reverse_p=reverse_primer[file_strand_archs[file_base_name]["reverse_primer"]] reverse_p_RC=calculate_reverse_compliment(reverse_p) find_FW=strand.find(reverse_p) find_RC=strand.find(reverse_p_RC) _strand="" #check if strand is forward or reverse, then find the start and endpoints for the reverse primer if not find_FW == -1: #found forward strand start_point=find_FW end_point=min(find_FW+len(reverse_p),len(strand)) _strand=strand #print "forward way start {} end {}".format(start_point,end_point) assert end_point>=0 assert start_point>=0 elif not find_RC == -1: #found the reverse complement of a strand, calculate the reverse complement _strand=calculate_reverse_compliment(strand) end_point=min(len(strand)-find_RC,len(_strand)-1) start_point=end_point-len(reverse_p) #print "reverse way start {} end {}".format(start_point,end_point) assert end_point>=0 assert start_point>=0 else: continue #did not find either assert not _strand == "" #know the bound points, end_points are non-inclusive, process _strand now if _strand[end_point]=='G':#First base after reverse primer should be 'G' for NNNNN barcoes #calculate the edit distance between the payload of the strand with that of the expected strand N_5_payload=payload[file_strand_archs[file_base_name]["payload_1"]] N_5_start=min(end_point+6,len(_strand)-1) N_5_end=min(end_point+6+len(N_5_payload),len(_strand)) lv_N_5_payload=lv.distance(N_5_payload,_strand[N_5_start:N_5_end]) payload_ld=lv.distance(payload[file_strand_archs[file_base_name]["payload_1"]],payload[file_strand_archs[file_base_name]["payload_2"]]) #compare edit_distance(ngs,N_5) and edit_distance(N_5,N3) if lv_N_5_payload < payload_ld/2 or (payload_ld==0 and lv_N_5_payload<7): #we have a NNNNN-5 base barcode strand barcode_start=end_point+1 barcode_end=barcode_start+5 barcode=_strand[barcode_start:barcode_end] assert len(barcode)==5 data_dictionary[count_key][barcode_to_index(barcode)]+=1 #count barcode occurance #calculate error rates for the NNNNN barcodes if lv_N_5_payload < payload_ld/2 or (payload_ld==0 and lv_N_5_payload<7): edit_operations=lv.editops(N_5_payload,_strand[end_point+6:end_point+6+len(N_5_payload)]) for op in edit_operations: if data_dictionary[error_rate_key]["NNNNN"][op[0]][op[1]]==-1: data_dictionary[error_rate_key]["NNNNN"][op[0]][op[1]]=1 else: data_dictionary[error_rate_key]["NNNNN"][op[0]][op[1]]+=1 data_dictionary[error_rate_key]["NNNNN"]["total"]+=1 else: #assume we have a NNN-3 base barcode strand #use part of promoter region to be reference closest to the 3-base barcode, common across all the files studied reference="GCGCGC" #print "NNN 3 barcode" reference_start=_strand.find(reference) if reference_start==-1: continue #reference occurs after the barcode #calculate edit distance for ngs strand NNN_3_payload=payload[file_strand_archs[file_base_name]["payload_2"]] lv_NNN_3_payload=lv.distance(NNN_3_payload,_strand[end_point:end_point+len(NNN_3_payload)]) pre_barcode_start=reference_start-4 #caclulate edit distance for payload_1 and payload 2 payload_ld=lv.distance(payload[file_strand_archs[file_base_name]["payload_1"]],payload[file_strand_archs[file_base_name]["payload_2"]]) #make sure edit distance is close enough to payload_2 to ensure high confidence in NNN strand if _strand[pre_barcode_start]=='A' and lv_NNN_3_payload<payload_ld/2: #high confidence we found a barcode barcode_start=pre_barcode_start+1 barcode=_strand[barcode_start:reference_start] assert len(barcode)==3 data_dictionary[count_key][barcode_to_index(barcode)]+=1 #calculate error rates for the NNN barcode if lv_NNN_3_payload<payload_ld/2: edit_operations=lv.editops(NNN_3_payload,_strand[end_point:end_point+len(NNN_3_payload)]) for op in edit_operations: if data_dictionary[error_rate_key]["NNN"][op[0]][op[1]]==-1: data_dictionary[error_rate_key]["NNN"][op[0]][op[1]]=1 else: data_dictionary[error_rate_key]["NNN"][op[0]][op[1]]+=1 data_dictionary[error_rate_key]["NNN"]["total"]+=1 if __name__=="__main__": import argparse import os import pandas as pd #going to dump things out using data frames import pickle as pi import numpy as np import Levenshtein as lv barcode_array=init_barcode_to_index_dict() #this array will be used as row labels in the data frame parser = argparse.ArgumentParser(description="Analyze strands for Doris") parser.add_argument('--range', dest="fq_range", action="store", default="1-10", help="Range for fastq files") parser.add_argument('--fastq_directory',dest="fq_dir", action="store", default=None, help="Directory for stripped fastq files") args = parser.parse_args() lower,upper=args.fq_range.split("-") lower_int = int(lower) upper_int = int(upper) sample_files=[] dir_sorted=os.listdir(args.fq_dir) dir_sorted.sort() data_dictionary={} #get the working set of sample files based on fq_range for _file in dir_sorted[lower_int:upper_int+1]: if os.path.isfile(args.fq_dir+'/'+_file): sample_files.append(_file) #create output directory for DORIS Data if not os.path.exists("DORIS_DATA"): os.mkdir("DORIS_DATA") for fq_file in sample_files: print (fq_file) file_path=args.fq_dir+'/'+fq_file file_base_name=get_experiment_base_name(_file) sequence_strands=[line.rstrip('\n') for line in open(file_path)] #generate result dictionary keys, count_key --> barcode counting, total_reads --> sum of all barcodes, error_rate --> positional error rate within the strand count_key=fq_file+"_"+"count" total_reads_key=fq_file+"_"+"total_reads" error_rate_key=fq_file+"_"+"error_rate" if count_key not in data_dictionary: #initialize an array of counters for counting each barcode data_dictionary[count_key]=[0]*1088 if total_reads_key not in data_dictionary: data_dictionary[total_reads_key]=['--']*1088 data_dictionary[total_reads_key][0]=len(sequence_strands) if error_rate_key not in data_dictionary: data_dictionary[error_rate_key]={} data_dictionary[error_rate_key]["NNN"]={} data_dictionary[error_rate_key]["NNNNN"]={} data_dictionary[error_rate_key]["NNN"]["replace"]=[-1]*200 data_dictionary[error_rate_key]["NNN"]["delete"]=[-1]*200 data_dictionary[error_rate_key]["NNN"]["insert"]=[-1]*200 data_dictionary[error_rate_key]["NNN"]["total"]=0 data_dictionary[error_rate_key]["NNNNN"]["replace"]=[-1]*200 data_dictionary[error_rate_key]["NNNNN"]["delete"]=[-1]*200 data_dictionary[error_rate_key]["NNNNN"]["insert"]=[-1]*200 data_dictionary[error_rate_key]["NNNNN"]["total"]=0 analyze_strands(file_base_name,fq_file,sequence_strands,data_dictionary) #make a data frame using the collected data count_dump_path="DORIS_DATA/"+get_experiment_base_name(sample_files[0])+'_count.csv' error_rate_dump_path="DORIS_DATA/"+get_experiment_base_name(sample_files[0])+'_error_rate.csv' count_file=open(count_dump_path,'w+') error_rate_file=open(error_rate_dump_path,'w+') #arrange the error rate and conut results into individual directories to dump results as dataframes count_dict={} error_rate_dict={} for key in sorted(data_dictionary.keys()): if "count" in key or "total_reads" in key: count_dict[key]=data_dictionary[key] elif "error_rate" in key: for strand_type in data_dictionary[key]: for error_type in data_dictionary[key][strand_type]: if "total" in error_type: continue error_rate_dict_key=key.split('error_rate')[0]+error_type+"_"+strand_type error_rate_dict[error_rate_dict_key]=data_dictionary[key][strand_type][error_type] for count_index, count in enumerate(error_rate_dict[error_rate_dict_key]): if count==-1: error_rate_dict[error_rate_dict_key][count_index]=0 else: error_rate_dict[error_rate_dict_key][count_index]=float(count)/float(data_dictionary[key][strand_type]["total"]) error_rate_frame=pd.DataFrame(error_rate_dict) count_frame=
pd.DataFrame(count_dict,index=barcode_array)
pandas.DataFrame
"""Step 2: Solving the problem under uncertainty.""" import cvxpy as cp import fledge import cobmo import numpy as np import os import pandas as pd import plotly.express as px import plotly.graph_objects as go import shutil import time import tslearn.utils import tslearn.clustering def main( scenario_in_sample_number=None, scenarios_probability_weighted=None ): # Settings. scenario_name = 'course_project_step_2' results_path = os.path.join(os.path.dirname(os.path.dirname(os.path.normpath(__file__))), 'results', 'step_2') # Note that the same number of in-sample scenarios may yield different results, due to the clustering algorithm. scenario_in_sample_number = 30 if scenario_in_sample_number is None else scenario_in_sample_number scenarios_probability_weighted = True if scenarios_probability_weighted is None else scenarios_probability_weighted results_path += f'_{scenario_in_sample_number}_weighted{scenarios_probability_weighted}' # Clear / instantiate results directory. try: if os.path.isdir(results_path): shutil.rmtree(results_path) os.mkdir(results_path) except PermissionError: pass # STEP 2.0: SETUP MODELS. # Obtain data & models. # Flexible DERs. der_model_set = fledge.der_models.DERModelSet(scenario_name) # Thermal grid. thermal_grid_model = fledge.thermal_grid_models.ThermalGridModel(scenario_name) thermal_grid_model.cooling_plant_efficiency = 10.0 # Change model parameter to incentivize use of thermal grid. thermal_power_flow_solution_reference = fledge.thermal_grid_models.ThermalPowerFlowSolution(thermal_grid_model) linear_thermal_grid_model = ( fledge.thermal_grid_models.LinearThermalGridModel(thermal_grid_model, thermal_power_flow_solution_reference) ) # Define arbitrary operation limits. node_head_vector_minimum = 1.5 * thermal_power_flow_solution_reference.node_head_vector branch_flow_vector_maximum = 10.0 * thermal_power_flow_solution_reference.branch_flow_vector # Electric grid. electric_grid_model = fledge.electric_grid_models.ElectricGridModelDefault(scenario_name) power_flow_solution_reference = fledge.electric_grid_models.PowerFlowSolutionFixedPoint(electric_grid_model) linear_electric_grid_model = ( fledge.electric_grid_models.LinearElectricGridModelGlobal(electric_grid_model, power_flow_solution_reference) ) # Define arbitrary operation limits. node_voltage_magnitude_vector_minimum = 0.5 * np.abs(electric_grid_model.node_voltage_vector_reference) node_voltage_magnitude_vector_maximum = 1.5 * np.abs(electric_grid_model.node_voltage_vector_reference) branch_power_magnitude_vector_maximum = 10.0 * electric_grid_model.branch_power_vector_magnitude_reference # Energy price. price_data_day_ahead = fledge.data_interface.PriceData(scenario_name) price_data_real_time = fledge.data_interface.PriceData(scenario_name) # Obtain time step index shorthands. scenario_data = fledge.data_interface.ScenarioData(scenario_name) timesteps = scenario_data.timesteps timestep_interval_hours = (timesteps[1] - timesteps[0]) / pd.Timedelta('1h') # Invert sign of losses. # - Power values of loads are negative by convention. Hence, sign of losses should be negative for power balance. # Thermal grid. linear_thermal_grid_model.sensitivity_pump_power_by_der_power *= -1.0 linear_thermal_grid_model.thermal_power_flow_solution.pump_power *= -1.0 # Electric grid. linear_electric_grid_model.sensitivity_loss_active_by_der_power_active *= -1.0 linear_electric_grid_model.sensitivity_loss_active_by_der_power_reactive *= -1.0 linear_electric_grid_model.sensitivity_loss_reactive_by_der_power_active *= -1.0 linear_electric_grid_model.sensitivity_loss_reactive_by_der_power_reactive *= -1.0 linear_electric_grid_model.power_flow_solution.loss *= -1.0 # Apply base power / voltage scaling. # - Scale values to avoid numerical issues. base_power = 1e6 # in MW. base_voltage = 1e3 # in kV. # Flexible DERs. for der_model in der_model_set.flexible_der_models.values(): der_model.mapping_active_power_by_output *= 1 / base_power der_model.mapping_reactive_power_by_output *= 1 / base_power der_model.mapping_thermal_power_by_output *= 1 / base_power # Thermal grid. linear_thermal_grid_model.sensitivity_node_head_by_der_power *= base_power linear_thermal_grid_model.sensitivity_branch_flow_by_der_power *= base_power linear_thermal_grid_model.sensitivity_pump_power_by_der_power *= 1 # Electric grid. linear_electric_grid_model.sensitivity_voltage_magnitude_by_der_power_active *= base_power / base_voltage linear_electric_grid_model.sensitivity_voltage_magnitude_by_der_power_reactive *= base_power / base_voltage linear_electric_grid_model.sensitivity_branch_power_1_magnitude_by_der_power_active *= 1 linear_electric_grid_model.sensitivity_branch_power_1_magnitude_by_der_power_reactive *= 1 linear_electric_grid_model.sensitivity_branch_power_2_magnitude_by_der_power_active *= 1 linear_electric_grid_model.sensitivity_branch_power_2_magnitude_by_der_power_reactive *= 1 linear_electric_grid_model.sensitivity_loss_active_by_der_power_active *= 1 linear_electric_grid_model.sensitivity_loss_active_by_der_power_reactive *= 1 linear_electric_grid_model.sensitivity_loss_reactive_by_der_power_active *= 1 linear_electric_grid_model.sensitivity_loss_reactive_by_der_power_reactive *= 1 linear_electric_grid_model.power_flow_solution.der_power_vector *= 1 / base_power linear_electric_grid_model.power_flow_solution.branch_power_vector_1 *= 1 / base_power linear_electric_grid_model.power_flow_solution.branch_power_vector_2 *= 1 / base_power linear_electric_grid_model.power_flow_solution.loss *= 1 / base_power linear_electric_grid_model.power_flow_solution.node_voltage_vector *= 1 / base_voltage # Limits node_voltage_magnitude_vector_minimum /= base_voltage node_voltage_magnitude_vector_maximum /= base_voltage branch_power_magnitude_vector_maximum /= base_power # Energy price. # - Conversion of price values from S$/kWh to S$/p.u. for convenience. Currency S$ is SGD. # - Power values of loads are negative by convention. Hence, sign of price values is inverted here. price_data_day_ahead.price_timeseries *= -1.0 * base_power / 1e3 * timestep_interval_hours price_data_real_time.price_timeseries *= -2.0 * base_power / 1e3 * timestep_interval_hours # STEP 2.1: GENERATE SCENARIOS. # Load irradiation data from CoBMo. irradiation_timeseries = ( pd.read_sql( "SELECT time, irradiation_horizontal FROM weather_timeseries WHERE weather_type = 'singapore_iwec'", con=cobmo.data_interface.connect_database(), parse_dates=['time'], index_col='time' ) ) # Resample / down-sample if needed. irradiation_timeseries = ( irradiation_timeseries.resample( pd.Timedelta(f'{timestep_interval_hours}h'), label='left' # Using zero-order hold in the simulation. ).mean() ) # Interpolate / up-sample if needed. irradiation_timeseries = ( irradiation_timeseries.reindex( pd.date_range( irradiation_timeseries.index[0], irradiation_timeseries.index[-1], freq=pd.Timedelta(f'{timestep_interval_hours}h') ) ).interpolate(method='linear') ) # Drop last time step (first hour of next year). irradiation_timeseries = irradiation_timeseries.iloc[0:-1, :] # Normalize. irradiation_timeseries /= irradiation_timeseries.max().max() # Obtain out-of-sample scenarios. # - Pivot irradiation timeseries into table with column for each day of the year. irradiation_timeseries.loc[:, 'dayofyear'] = irradiation_timeseries.index.dayofyear irradiation_timeseries.loc[:, 'time_string'] = irradiation_timeseries.index.strftime('%H:%M') irradiation_out_of_sample = ( irradiation_timeseries.pivot_table( index='time_string', columns='dayofyear', values='irradiation_horizontal', aggfunc=np.nanmean, fill_value=0.0 ) ) # Append time step to match length of scenario time horizon. irradiation_out_of_sample.loc['24:00', :] = 0.0 # Obtain scenario index short-hand. out_of_sample_scenarios = irradiation_out_of_sample.columns # Obtain in-sample scenarios. # - Select representative scenarios by time series clustering. clustering = tslearn.clustering.TimeSeriesKMeans(n_clusters=scenario_in_sample_number) clustering = clustering.fit((tslearn.utils.to_time_series_dataset(irradiation_out_of_sample.transpose()))) irradiation_in_sample_mapping = ( pd.Index( clustering.predict(tslearn.utils.to_time_series_dataset(irradiation_out_of_sample.transpose())) ) ) irradiation_in_sample = ( pd.DataFrame( clustering.cluster_centers_[:, :, 0].transpose(), index=irradiation_out_of_sample.index, columns=range(clustering.cluster_centers_.shape[0]) ) ) # Obtain scenario index short-hand. in_sample_scenarios = irradiation_in_sample.columns # STEP 2.2: SOLVE STOCHASTIC PROBLEM. # Instantiate problem. # - Utility object for optimization problem definition with CVXPY. in_sample_problem = fledge.utils.OptimizationProblem() # Define variables. # - Scenario dimension is added by using dicts. in_sample_problem.state_vector = dict.fromkeys(in_sample_scenarios) in_sample_problem.control_vector = dict.fromkeys(in_sample_scenarios) in_sample_problem.output_vector = dict.fromkeys(in_sample_scenarios) in_sample_problem.der_thermal_power_vector = dict.fromkeys(in_sample_scenarios) in_sample_problem.der_active_power_vector = dict.fromkeys(in_sample_scenarios) in_sample_problem.der_reactive_power_vector = dict.fromkeys(in_sample_scenarios) in_sample_problem.source_thermal_power_real_time = dict.fromkeys(in_sample_scenarios) in_sample_problem.source_active_power_real_time = dict.fromkeys(in_sample_scenarios) for scenario in in_sample_scenarios: # Flexible DERs: State space vectors. # - CVXPY only allows for 2-dimensional variables. Using dicts below to represent 3rd dimension. in_sample_problem.state_vector[scenario] = dict.fromkeys(der_model_set.flexible_der_names) in_sample_problem.control_vector[scenario] = dict.fromkeys(der_model_set.flexible_der_names) in_sample_problem.output_vector[scenario] = dict.fromkeys(der_model_set.flexible_der_names) for der_name in der_model_set.flexible_der_names: in_sample_problem.state_vector[scenario][der_name] = ( cp.Variable(( len(der_model_set.flexible_der_models[der_name].timesteps), len(der_model_set.flexible_der_models[der_name].states) )) ) in_sample_problem.control_vector[scenario][der_name] = ( cp.Variable(( len(der_model_set.flexible_der_models[der_name].timesteps), len(der_model_set.flexible_der_models[der_name].controls) )) ) in_sample_problem.output_vector[scenario][der_name] = ( cp.Variable(( len(der_model_set.flexible_der_models[der_name].timesteps), len(der_model_set.flexible_der_models[der_name].outputs) )) ) # Flexible DERs: Power vectors. in_sample_problem.der_thermal_power_vector[scenario] = ( cp.Variable((len(timesteps), len(thermal_grid_model.ders))) ) in_sample_problem.der_active_power_vector[scenario] = ( cp.Variable((len(timesteps), len(electric_grid_model.ders))) ) in_sample_problem.der_reactive_power_vector[scenario] = ( cp.Variable((len(timesteps), len(electric_grid_model.ders))) ) # Source variables: Real time. in_sample_problem.source_thermal_power_real_time[scenario] = cp.Variable((len(timesteps), 1), nonpos=True) in_sample_problem.source_active_power_real_time[scenario] = cp.Variable((len(timesteps), 1), nonpos=True) # Source variables: Day ahead. # in_sample_problem.source_thermal_power_day_ahead = cp.Variable((len(timesteps), 1), nonpos=True) in_sample_problem.source_active_power_day_ahead = cp.Variable((len(timesteps), 1), nonpos=True) # Define constraints. for scenario in in_sample_scenarios: # Flexible DERs. for der_model in der_model_set.flexible_der_models.values(): # Initial state. in_sample_problem.constraints.append( in_sample_problem.state_vector[scenario][der_model.der_name][0, :] == der_model.state_vector_initial.values ) # State equation. in_sample_problem.constraints.append( in_sample_problem.state_vector[scenario][der_model.der_name][1:, :] == cp.transpose( der_model.state_matrix.values @ cp.transpose(in_sample_problem.state_vector[scenario][der_model.der_name][:-1, :]) + der_model.control_matrix.values @ cp.transpose(in_sample_problem.control_vector[scenario][der_model.der_name][:-1, :]) + der_model.disturbance_matrix.values @ np.transpose(der_model.disturbance_timeseries.iloc[:-1, :].values) ) ) # Output equation. in_sample_problem.constraints.append( in_sample_problem.output_vector[scenario][der_model.der_name] == cp.transpose( der_model.state_output_matrix.values @ cp.transpose(in_sample_problem.state_vector[scenario][der_model.der_name]) + der_model.control_output_matrix.values @ cp.transpose(in_sample_problem.control_vector[scenario][der_model.der_name]) + der_model.disturbance_output_matrix.values @ np.transpose(der_model.disturbance_timeseries.values) ) ) # Output limits. in_sample_problem.constraints.append( in_sample_problem.output_vector[scenario][der_model.der_name] >= der_model.output_minimum_timeseries.values ) # For PV power plant, adjust maximum generation limit according to scenario. if der_model.der_type == 'flexible_generator': output_maximum_timeseries = ( pd.concat([ der_model.active_power_nominal * irradiation_in_sample.loc[:, scenario].rename('active_power'), der_model.reactive_power_nominal * irradiation_in_sample.loc[:, scenario].rename('reactive_power') ], axis='columns') ) in_sample_problem.constraints.append( in_sample_problem.output_vector[scenario][der_model.der_name] <= output_maximum_timeseries.replace(np.inf, 1e3).values ) else: in_sample_problem.constraints.append( in_sample_problem.output_vector[scenario][der_model.der_name] <= der_model.output_maximum_timeseries.replace(np.inf, 1e3).values ) # Power mapping. der_index = int(fledge.utils.get_index(electric_grid_model.ders, der_name=der_model.der_name)) in_sample_problem.constraints.append( in_sample_problem.der_active_power_vector[scenario][:, [der_index]] == cp.transpose( der_model.mapping_active_power_by_output.values @ cp.transpose(in_sample_problem.output_vector[scenario][der_model.der_name]) ) ) in_sample_problem.constraints.append( in_sample_problem.der_reactive_power_vector[scenario][:, [der_index]] == cp.transpose( der_model.mapping_reactive_power_by_output.values @ cp.transpose(in_sample_problem.output_vector[scenario][der_model.der_name]) ) ) # - Thermal grid power mapping only for DERs which are connected to the thermal grid. if der_model.der_name in thermal_grid_model.ders.get_level_values('der_name'): der_index = int(fledge.utils.get_index(thermal_grid_model.ders, der_name=der_model.der_name)) in_sample_problem.constraints.append( in_sample_problem.der_thermal_power_vector[scenario][:, [der_index]] == cp.transpose( der_model.mapping_thermal_power_by_output.values @ cp.transpose(in_sample_problem.output_vector[scenario][der_model.der_name]) ) ) # Thermal grid. # Node head limit. in_sample_problem.constraints.append( np.array([node_head_vector_minimum.ravel()]) <= cp.transpose( linear_thermal_grid_model.sensitivity_node_head_by_der_power @ cp.transpose(in_sample_problem.der_thermal_power_vector[scenario]) ) ) # Branch flow limit. in_sample_problem.constraints.append( cp.transpose( linear_thermal_grid_model.sensitivity_branch_flow_by_der_power @ cp.transpose(in_sample_problem.der_thermal_power_vector[scenario]) ) <= np.array([branch_flow_vector_maximum.ravel()]) ) # Power balance. in_sample_problem.constraints.append( thermal_grid_model.cooling_plant_efficiency ** -1 * ( # in_sample_problem.source_thermal_power_day_ahead in_sample_problem.source_thermal_power_real_time[scenario] + cp.sum(-1.0 * ( in_sample_problem.der_thermal_power_vector[scenario] ), axis=1, keepdims=True) # Sum along DERs, i.e. sum for each timestep. ) == cp.transpose( linear_thermal_grid_model.sensitivity_pump_power_by_der_power @ cp.transpose(in_sample_problem.der_thermal_power_vector[scenario]) ) ) # Electric grid. # Voltage limits. in_sample_problem.constraints.append( np.array([node_voltage_magnitude_vector_minimum.ravel()]) <= np.array([np.abs(linear_electric_grid_model.power_flow_solution.node_voltage_vector.ravel())]) + cp.transpose( linear_electric_grid_model.sensitivity_voltage_magnitude_by_der_power_active @ cp.transpose( in_sample_problem.der_active_power_vector[scenario] - np.array([np.real(linear_electric_grid_model.power_flow_solution.der_power_vector.ravel())]) ) + linear_electric_grid_model.sensitivity_voltage_magnitude_by_der_power_reactive @ cp.transpose( in_sample_problem.der_reactive_power_vector[scenario] - np.array([np.imag(linear_electric_grid_model.power_flow_solution.der_power_vector.ravel())]) ) ) ) in_sample_problem.constraints.append( np.array([np.abs(linear_electric_grid_model.power_flow_solution.node_voltage_vector.ravel())]) + cp.transpose( linear_electric_grid_model.sensitivity_voltage_magnitude_by_der_power_active @ cp.transpose( in_sample_problem.der_active_power_vector[scenario] - np.array([np.real(linear_electric_grid_model.power_flow_solution.der_power_vector.ravel())]) ) + linear_electric_grid_model.sensitivity_voltage_magnitude_by_der_power_reactive @ cp.transpose( in_sample_problem.der_reactive_power_vector[scenario] - np.array([np.imag(linear_electric_grid_model.power_flow_solution.der_power_vector.ravel())]) ) ) <= np.array([node_voltage_magnitude_vector_maximum.ravel()]) ) # Branch flow limits. in_sample_problem.constraints.append( np.array([np.abs(linear_electric_grid_model.power_flow_solution.branch_power_vector_1.ravel())]) + cp.transpose( linear_electric_grid_model.sensitivity_branch_power_1_magnitude_by_der_power_active @ cp.transpose( in_sample_problem.der_active_power_vector[scenario] - np.array([np.real(linear_electric_grid_model.power_flow_solution.der_power_vector.ravel())]) ) + linear_electric_grid_model.sensitivity_branch_power_1_magnitude_by_der_power_reactive @ cp.transpose( in_sample_problem.der_reactive_power_vector[scenario] - np.array([np.imag(linear_electric_grid_model.power_flow_solution.der_power_vector.ravel())]) ) ) <= np.array([branch_power_magnitude_vector_maximum.ravel()]) ) in_sample_problem.constraints.append( np.array([np.abs(linear_electric_grid_model.power_flow_solution.branch_power_vector_2.ravel())]) + cp.transpose( linear_electric_grid_model.sensitivity_branch_power_2_magnitude_by_der_power_active @ cp.transpose( in_sample_problem.der_active_power_vector[scenario] - np.array([np.real(linear_electric_grid_model.power_flow_solution.der_power_vector.ravel())]) ) + linear_electric_grid_model.sensitivity_branch_power_2_magnitude_by_der_power_reactive @ cp.transpose( in_sample_problem.der_reactive_power_vector[scenario] - np.array([np.imag(linear_electric_grid_model.power_flow_solution.der_power_vector.ravel())]) ) ) <= np.array([branch_power_magnitude_vector_maximum.ravel()]) ) # Power balance. in_sample_problem.constraints.append( in_sample_problem.source_active_power_day_ahead + in_sample_problem.source_active_power_real_time[scenario] + cp.sum(-1.0 * ( in_sample_problem.der_active_power_vector[scenario] ), axis=1, keepdims=True) # Sum along DERs, i.e. sum for each timestep. - ( in_sample_problem.source_thermal_power_real_time[scenario] * thermal_grid_model.cooling_plant_efficiency ** -1 ) == np.real(linear_electric_grid_model.power_flow_solution.loss) + cp.transpose( linear_electric_grid_model.sensitivity_loss_active_by_der_power_active @ cp.transpose( in_sample_problem.der_active_power_vector[scenario] - np.array([np.real(linear_electric_grid_model.power_flow_solution.der_power_vector.ravel())]) ) + linear_electric_grid_model.sensitivity_loss_active_by_der_power_reactive @ cp.transpose( in_sample_problem.der_reactive_power_vector[scenario] - np.array([np.imag(linear_electric_grid_model.power_flow_solution.der_power_vector.ravel())]) ) ) ) # Define objective. # Define variables for the objective components for convenience. in_sample_problem.objective_day_ahead = cp.Variable((1,)) in_sample_problem.objective_real_time = cp.Variable((len(in_sample_scenarios,))) # Day-ahead. in_sample_problem.constraints.append( in_sample_problem.objective_day_ahead == # ( # price_data_day_ahead.price_timeseries.loc[:, ('active_power', 'source', 'source')].values.T # @ in_sample_problem.source_thermal_power_day_ahead # * thermal_grid_model.cooling_plant_efficiency ** -1 # ) ( price_data_day_ahead.price_timeseries.loc[:, ('active_power', 'source', 'source')].values.T @ in_sample_problem.source_active_power_day_ahead ) ) in_sample_problem.objective += cp.sum(in_sample_problem.objective_day_ahead) # Real-time. for scenario_index, scenario in enumerate(in_sample_scenarios): in_sample_problem.constraints.append( in_sample_problem.objective_real_time[scenario_index] == # ( # price_data_real_time.price_timeseries.loc[:, ('active_power', 'source', 'source')].values.T # @ in_sample_problem.source_thermal_power_real_time[scenario] # * thermal_grid_model.cooling_plant_efficiency ** -1 # ) ( price_data_real_time.price_timeseries.loc[:, ('active_power', 'source', 'source')].values.T @ in_sample_problem.source_active_power_real_time[scenario] ) ) if scenarios_probability_weighted: in_sample_problem.objective += ( (np.sum(irradiation_in_sample_mapping == scenario) / len(irradiation_in_sample_mapping)) * cp.sum(in_sample_problem.objective_real_time[scenario_index]) ) else: in_sample_problem.objective += ( len(in_sample_scenarios) ** -1 # Assuming equal probability. * cp.sum(in_sample_problem.objective_real_time[scenario_index]) ) # Solve problem. in_sample_time = -1.0 * time.time() in_sample_problem.solve() in_sample_time += time.time() # Obtain results. in_sample_objective_day_ahead = ( pd.Series(in_sample_problem.objective_day_ahead.value, index=['total']) ) in_sample_objective_real_time = ( pd.Series(in_sample_problem.objective_real_time.value, index=in_sample_scenarios) ) # in_sample_source_thermal_power_day_ahead = ( # pd.DataFrame(in_sample_problem.source_thermal_power_day_ahead.value, index=timesteps, columns=['total']) # ) in_sample_source_active_power_day_ahead = ( pd.DataFrame(in_sample_problem.source_active_power_day_ahead.value, index=timesteps, columns=['total']) ) in_sample_source_thermal_power_real_time = pd.DataFrame(0.0, index=timesteps, columns=in_sample_scenarios) in_sample_source_active_power_real_time =
pd.DataFrame(0.0, index=timesteps, columns=in_sample_scenarios)
pandas.DataFrame
import math from datetime import timedelta, datetime from enum import Enum from typing import Optional import numpy as np import pandas as pd from feast import FeatureView, Feature, ValueType, FeatureStore from feast.data_source import DataSource from pytz import FixedOffset, timezone, utc DEFAULT_ENTITY_DF_EVENT_TIMESTAMP_COL = "event_timestamp" class EventTimestampType(Enum): TZ_NAIVE = 0 TZ_AWARE_UTC = 1 TZ_AWARE_FIXED_OFFSET = 2 TZ_AWARE_US_PACIFIC = 3 def _convert_event_timestamp(event_timestamp: pd.Timestamp, t: EventTimestampType): if t == EventTimestampType.TZ_NAIVE: return event_timestamp elif t == EventTimestampType.TZ_AWARE_UTC: return event_timestamp.replace(tzinfo=utc) elif t == EventTimestampType.TZ_AWARE_FIXED_OFFSET: return event_timestamp.replace(tzinfo=utc).astimezone(FixedOffset(60)) elif t == EventTimestampType.TZ_AWARE_US_PACIFIC: return event_timestamp.replace(tzinfo=utc).astimezone(timezone("US/Pacific")) def create_orders_df( customers, drivers, start_date, end_date, order_count, infer_event_timestamp_col=False, ) -> pd.DataFrame: """ Example df generated by this function: | order_id | driver_id | customer_id | order_is_success | event_timestamp | +----------+-----------+-------------+------------------+---------------------+ | 100 | 5004 | 1007 | 0 | 2021-03-10 19:31:15 | | 101 | 5003 | 1006 | 0 | 2021-03-11 22:02:50 | | 102 | 5010 | 1005 | 0 | 2021-03-13 00:34:24 | | 103 | 5010 | 1001 | 1 | 2021-03-14 03:05:59 | """ df = pd.DataFrame() df["order_id"] = [order_id for order_id in range(100, 100 + order_count)] df["driver_id"] = np.random.choice(drivers, order_count) df["customer_id"] = np.random.choice(customers, order_count) df["order_is_success"] = np.random.randint(0, 2, size=order_count).astype(np.int32) if infer_event_timestamp_col: df["e_ts"] = [ _convert_event_timestamp( pd.Timestamp(dt, unit="ms", tz="UTC").round("ms"), EventTimestampType(3), ) for idx, dt in enumerate( pd.date_range(start=start_date, end=end_date, periods=order_count) ) ] df.sort_values( by=["e_ts", "order_id", "driver_id", "customer_id"], inplace=True, ) else: df[DEFAULT_ENTITY_DF_EVENT_TIMESTAMP_COL] = [ _convert_event_timestamp( pd.Timestamp(dt, unit="ms", tz="UTC").round("ms"), EventTimestampType(idx % 4), ) for idx, dt in enumerate( pd.date_range(start=start_date, end=end_date, periods=order_count) ) ] df.sort_values( by=[ DEFAULT_ENTITY_DF_EVENT_TIMESTAMP_COL, "order_id", "driver_id", "customer_id", ], inplace=True, ) return df def create_driver_hourly_stats_df(drivers, start_date, end_date) -> pd.DataFrame: """ Example df generated by this function: | event_timestamp | driver_id | conv_rate | acc_rate | avg_daily_trips | created | |------------------+-----------+-----------+----------+-----------------+------------------| | 2021-03-17 19:31 | 5010 | 0.229297 | 0.685843 | 861 | 2021-03-24 19:34 | | 2021-03-17 20:31 | 5010 | 0.781655 | 0.861280 | 769 | 2021-03-24 19:34 | | 2021-03-17 21:31 | 5010 | 0.150333 | 0.525581 | 778 | 2021-03-24 19:34 | | 2021-03-17 22:31 | 5010 | 0.951701 | 0.228883 | 570 | 2021-03-24 19:34 | | 2021-03-17 23:31 | 5010 | 0.819598 | 0.262503 | 473 | 2021-03-24 19:34 | | | ... | ... | ... | ... | | | 2021-03-24 16:31 | 5001 | 0.061585 | 0.658140 | 477 | 2021-03-24 19:34 | | 2021-03-24 17:31 | 5001 | 0.088949 | 0.303897 | 618 | 2021-03-24 19:34 | | 2021-03-24 18:31 | 5001 | 0.096652 | 0.747421 | 480 | 2021-03-24 19:34 | | 2021-03-17 19:31 | 5005 | 0.142936 | 0.707596 | 466 | 2021-03-24 19:34 | | 2021-03-17 19:31 | 5005 | 0.142936 | 0.707596 | 466 | 2021-03-24 19:34 | """ df_hourly = pd.DataFrame( { "event_timestamp": [ pd.Timestamp(dt, unit="ms", tz="UTC").round("ms") for dt in pd.date_range( start=start_date, end=end_date, freq="1H", closed="left" ) ] # include a fixed timestamp for get_historical_features in the quickstart + [ pd.Timestamp( year=2021, month=4, day=12, hour=7, minute=0, second=0, tz="UTC" ) ] } ) df_all_drivers = pd.DataFrame() for driver in drivers: df_hourly_copy = df_hourly.copy() df_hourly_copy["driver_id"] = driver df_all_drivers = pd.concat([df_hourly_copy, df_all_drivers]) df_all_drivers.reset_index(drop=True, inplace=True) rows = df_all_drivers["event_timestamp"].count() df_all_drivers["conv_rate"] = np.random.random(size=rows).astype(np.float32) df_all_drivers["acc_rate"] = np.random.random(size=rows).astype(np.float32) df_all_drivers["avg_daily_trips"] = np.random.randint(0, 1000, size=rows).astype( np.int32 ) df_all_drivers["created"] = pd.to_datetime(pd.Timestamp.now(tz=None).round("ms")) # Create duplicate rows that should be filtered by created timestamp # TODO: These duplicate rows area indirectly being filtered out by the point in time join already. We need to # inject a bad row at a timestamp where we know it will get joined to the entity dataframe, and then test that # we are actually filtering it with the created timestamp late_row = df_all_drivers[rows // 2 : rows // 2 + 1] df_all_drivers = pd.concat([df_all_drivers, late_row, late_row], ignore_index=True) return df_all_drivers def create_customer_daily_profile_df(customers, start_date, end_date) -> pd.DataFrame: """ Example df generated by this function: | event_timestamp | customer_id | current_balance | avg_passenger_count | lifetime_trip_count | created | |------------------+-------------+-----------------+---------------------+---------------------+------------------| | 2021-03-17 19:31 | 1010 | 0.889188 | 0.049057 | 412 | 2021-03-24 19:38 | | 2021-03-18 19:31 | 1010 | 0.979273 | 0.212630 | 639 | 2021-03-24 19:38 | | 2021-03-19 19:31 | 1010 | 0.976549 | 0.176881 | 70 | 2021-03-24 19:38 | | 2021-03-20 19:31 | 1010 | 0.273697 | 0.325012 | 68 | 2021-03-24 19:38 | | 2021-03-21 19:31 | 1010 | 0.438262 | 0.313009 | 192 | 2021-03-24 19:38 | | | ... | ... | ... | ... | | | 2021-03-19 19:31 | 1001 | 0.738860 | 0.857422 | 344 | 2021-03-24 19:38 | | 2021-03-20 19:31 | 1001 | 0.848397 | 0.745989 | 106 | 2021-03-24 19:38 | | 2021-03-21 19:31 | 1001 | 0.301552 | 0.185873 | 812 | 2021-03-24 19:38 | | 2021-03-22 19:31 | 1001 | 0.943030 | 0.561219 | 322 | 2021-03-24 19:38 | | 2021-03-23 19:31 | 1001 | 0.354919 | 0.810093 | 273 | 2021-03-24 19:38 | """ df_daily = pd.DataFrame( { "event_timestamp": [
pd.Timestamp(dt, unit="ms", tz="UTC")
pandas.Timestamp
import enum import pandas as pd import copy from . import Parser from .rule import Rule class NormType(enum.Enum): RAW = 0 NORM = 1 BASE = 2 class Path: def __init__(self, word, base, rule): self.word = word self.base = base self.rule = rule def __repr__(self): return "<Path:{} {}>".format(self.word, repr(self.rule)) class MorphemeMerger: def __init__(self, mecab_args=''): self.rule = None self.mecab_args = mecab_args def get_rule_pattern(self, text, norm=NormType.NORM, skip=True): """ :param str text: Target text :param NormType norm: :return: (word, poss) """ parser = Parser(mecab_args=self.mecab_args) morphemes = parser.parse(text) i = 0 words = [] poss = [] n = len(morphemes) while i < n: paths, _i = self._rec_tree_check(morphemes, i, norm=norm) if paths is not None: if skip: i = _i else: i += 1 words.append(''.join([path.word for path in paths])) poss.append([path.rule.poss for path in paths]) else: i += 1 return words, poss def _default_noun_rule(self): root = {} rule = Rule(['名詞', 'nan', 'nan', 'nan', 'nan']) root[rule] = {rule: {rule: {None: None}}} return root def set_rule_from_csv(self, rule_file_path, sep=','): """Create rule tree from csv file. :param rule_file_path: Rule file path :param str sep: default=',' :return: None """ rules =
pd.read_csv(rule_file_path, sep=sep)
pandas.read_csv
import argparse import glob import csv import numpy as np import pandas as pd def parse_arguments(): parser = argparse.ArgumentParser("Trains a simple BiLSTM to detect sentential arguments across multiple topics.") parser.add_argument("--data", type=str, help="The path to the folder containing the TSV files with the training data.") return parser.parse_args() def read_data(data_path): data =
pd.read_csv(data_path, sep="\t", names=["motion", "hypothesis", "evidence", "evidenceclass"], index_col=0)
pandas.read_csv
# Este arquivo contém as funções usadas para ajustar as curvas PV # e outras funções úteis ############################################################### BIBLIOTECAS: import numpy as np # para fazer contas e mexer com matrizes import pandas as pd # para montar DataFrames (tabelas de bancos de dados) from pathlib import Path # para trabalhar com diretorios e arquivos import pickle # para gravar e ler dados import matplotlib.pyplot as plt # para gráficos import seaborn as sns # para gráficos com DataFrames from scipy.optimize import curve_fit # para ajuste das curvas dos modelos import math # para erf() from scipy.interpolate import interp1d # para interpolar os pontos PV ############################################################### MODELOS: # função usada para fitar o modelo PV sigmoide (doente) # b b # V(x) = a + ---------------------- = a + ------------------------ # 1 + exp(-(x/d) + (c/d) 1 + exp(-x/d).exp(c/d) # # lim (x-> inf) V(x) = a + b def sigmoidvenegas1(x, a, b, c, d): return a + b/(1 + np.exp(-(x-c)/d)) ########## paiva def sigmoidpaiva(x,TLC,k1,k2): return TLC/(1+(k1*np.exp(-k2*x))) # modificação nossa: incluindo offset def sigmoidpaivaoffset1(x,TLC,k1,k2,offset): return TLC/(1+(k1*np.exp(-k2*x))) + offset # baseado no artigo original do paiva1975, e incluindo offset: def sigmoidpaivaoffset(x,TLC,k1,k2,offset): return TLC/(1+(k1*TLC*np.exp(-k2*x))) + offset ######### venegas2 def sigmoidvenegas2(x,TLC,B,k,c,d): return (TLC-(B*np.exp(-k*x)))/(1 + np.exp(-(x-c)/d)) # modificação nossa: incluindo offset def sigmoidvenegas2offset(x,TLC,B,k,c,d,offset): return (TLC-(B*np.exp(-k*x)))/(1 + np.exp(-(x-c)/d)) + offset # sinal original: incorreto, pois aqui quando P -> c, V -> infty def sigmoidvenegas2original(x,TLC,B,k,c,d): return (TLC-(B*np.exp(-k*x)))/(1 - np.exp(-(x-c)/d)) ######### murphy e engel def sigmoidmurphy(x,VM,Vm,k1,k2,k3): ### CUIDADO: P = f(V) !!! return ( k1/(VM-x) ) + ( k2/(Vm-x) ) + k3 # modificação nossa: incluindo offset ######### murphy e engel def sigmoidmurphyoffset(x,TLC,offset,k1,k2,k3): ### CUIDADO: P = f(V) !!! return ( k1/((TLC+offset)-x) ) + ( k2/(offset-x) ) + k3 ######### recruit_unit # Modelo exponencial simples de curva PV pulmonar (Salazar 1964) # Volume = Vmax*(1-e^(-K*Paw)) # Paw = pressão na via aérea # K = 'constante de tempo' da exponencial def expsalazar(x,Vo,K): return Vo*(1-np.exp(-K*x)) # modelo de unidades recrutadas com erf() # ajustando a função para uma entrada array (para curve_fit) def meu_erf_vec(Paw,mi,sigma): saida_lst = [] for x_in in Paw: x = (x_in-mi)/(sigma*1.5) merf = math.erf(x) saida_lst.append((merf/2)+0.5) return np.array(saida_lst) # modelo proposto pelo grupo (nós) def sigmoid_recruit_units(Paw,K,Vmax,mi,sigma,offset): Vmax_recrutado = Vmax*meu_erf_vec(Paw,mi,sigma) V = Vmax_recrutado*(1-np.exp(-K*Paw)) + offset return V ############################################################### FUNÇÕES: ''' Carrega os arquivos .pickle das subpastas da pasta './porquinhos/' e retorna um DataFrame com os dados. As manobras C contém apenas 4 passos, e as D, apenas 5 passos. ''' def carrega_pickles(folder = 'porquinhos'): dataframes_lst = [] # lista de dataframe: Cada elemento da lista corresponde a um dataframe de um porco/manobra/dados PV for file_name in Path(folder).rglob('*.pickle'): print(f"\rLendo {file_name.name}\t\t\t") with open(file_name, "rb") as file: # abre o arquivo.pickle porquinho = pickle.load(file) for manobra in porquinho: #Para cada manobra if manobra == "D": # Posso fazer 3,4,5 passos n_steps = 5 elif manobra == "C": # Posso fazer 3,4 passos n_steps = 4 elif manobra == "B": # Posso fazer 3 passos n_steps = 3 # Formato os dados de entrada format_data = [] for pi, pe, wi, we in zip(porquinho[manobra]["p_i"], porquinho[manobra]["p_e"], porquinho[manobra]["w_i"], porquinho[manobra]["w_e"]): format_data.extend([pi,wi,pe,we]) format_data = np.array(format_data).reshape(-1,2) # monta matriz de N linhas e 2 colunas ########################################################## caso = [] caso.append(porquinho.name) caso.append(manobra) caso.append(format_data) caso.append(n_steps) casodf = pd.DataFrame(caso, index = ['Animal', 'Manobra', 'Dados', 'n_steps']).T dataframes_lst.append(casodf) # Junta todos os dataframes da lista em um único DataFrame: dadosdf = pd.concat(dataframes_lst, ignore_index=True) # Extrai os dados de pressão e volume dos dados raw dos arquivos pickle: pv_lst = [] for idx,caso in dadosdf.iterrows(): pv = [] ps,vs = Data2PV(caso.Dados) pv.append(ps) pv.append(vs) pvdf = pd.DataFrame([pv], columns = ['Pressoes', 'Volumes']) pv_lst.append(pvdf) pvdf_all =
pd.concat(pv_lst, ignore_index=True)
pandas.concat
#!/usr/bin/env python3 import h5py import pandas as pd import tempfile import random import math from tqdm import tqdm import numpy as np import time import cdt # cdt.SETTINGS import networkx as nx import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier as CLF import torch from torch import nn, optim from cdt.data import load_dataset from cdt.causality.pairwise import ANM, NCC, RCC from cdt.causality.graph import GES, LiNGAM, PC, SAM, CAM from baseline_common import compute_metrics def test_networkx(): g = nx.DiGraph() # initialize a directed graph l = list(g.nodes()) # list of nodes in the graph a = nx.adj_matrix(g).todense() # Output the adjacency matrix of the graph e = list(g.edges()) # list of edges in the graph def test_ANM(): data, labels = load_dataset('tuebingen') obj = ANM() # This example uses the predict() method # NOTE This is too slow output = obj.predict(data) # This example uses the orient_graph() method. The dataset used # can be loaded using the cdt.data module data, graph = load_dataset('sachs') output = obj.orient_graph(data, nx.DiGraph(graph)) # To view the directed graph run the following command nx.draw_networkx(output, font_size=8) plt.show() def test_NCC(): data, labels = load_dataset('tuebingen') X_tr, X_te, y_tr, y_te = train_test_split(data, labels, train_size=.5) obj = NCC() obj.fit(X_tr, y_tr) # This example uses the predict() method output = obj.predict(X_te) # NOTE: I'll need to compare with this # This example uses the orient_graph() method. The dataset used # can be loaded using the cdt.data module data, graph = load_dataset("sachs") output = obj.orient_graph(data, nx.Graph(graph)) #To view the directed graph run the following command nx.draw_networkx(output, font_size=8) plt.show() def test(): os.chdir('julia/src') fname = 'data/SF-10/d=10_k=1_gtype=SF_noise=Gaussian_mat=COR.hdf5' f = h5py.File(fname, 'r') raw_x = f['raw_x'] raw_y = f['raw_y'] x = raw_x[0] y = raw_y[0] df = pd.DataFrame(x.transpose()) # 1. make training corpus train_dfx, train_dfy, test_dfx, test_dfy = construct_df(raw_x, raw_y) # train # test for performance # # CAUTION this is the training corpus # # FIXME this is even slower than training sum(np.array(test_dfy ==1)) test_dfx[np.array(test_dfy == 1).ravel()] pred = obj.predict(test_dfx[np.array(test_dfy == 1).ravel()].sample(20)) pred = obj.predict(test_dfx[np.array(test_dfy == 0).ravel()].sample(20)) pred = obj.predict(train_dfx[np.array(train_dfy == 1).ravel()].sample(20)) pred = obj.predict(train_dfx[np.array(train_dfy == 0).ravel()].sample(20)) # NOTE: it cannot even fit the training data well # # TODO I'm going to implement a neural network to fit the feature vector obj.predict(aug_dfx[np.array(aug_dfy == 1).ravel()].sample(20)) obj.predict(aug_dfx[np.array(aug_dfy == 0).ravel()].sample(20)) obj.predict_NN_preprocess(aug_dfx[np.array(aug_dfy == 1).ravel()].sample(20)) obj.predict_NN_preprocess(aug_dfx[np.array(aug_dfy == 0).ravel()].sample(20)) pred = obj.predict(test_dfx[0:10]) type(pred) pred_v = np.array(pred).reshape(-1) y_v = np.array(dfy).reshape(-1).shape # wrong for half on training data (pred_v == y_v) tmp = [obj.featurize_row(row.iloc[0], row.iloc[1]) for idx, row in aug_dfx[0:8].iterrows()] train = np.array([obj.featurize_row(row.iloc[0], row.iloc[1]) for idx, row in aug_dfx.iterrows()]) class MyRCC(RCC): def __init__(self): super().__init__() def preprocess(self, dfx, dfy): # this is very slow, so I'm adding a separete method for computing this print('constructing x (featurizing might be very slow) ..') # FIXME this is very slow x = np.vstack((np.array([self.featurize_row(row.iloc[0], row.iloc[1]) for idx, row in dfx.iterrows()]),)) print(x.shape) print('constructing labels ..') y = np.vstack((dfy,)).ravel() return x, y def fit(self, x, y): # CAUTION this x and y should not be dataframe, but preprocessed above print('training CLF ..') verbose = 1 if self.verbose else 0 # FIXME and this is very im-balanced self.clf = CLF(verbose=verbose, min_samples_leaf=self.L, n_estimators=self.E, max_depth=self.max_depth, n_jobs=self.njobs).fit(x, y) def fit_NN(self, x, y, num_epochs=1000): d = x.shape[1] # tx = torch.Tensor(x) # ty = torch.Tensor(y).type(torch.long) # ty = torch.Tensor(y) model = nn.Sequential(nn.Linear(d, 100), nn.Sigmoid(), nn.Linear(100, 1), nn.Sigmoid()) self.fc = model # fit the fc model opt = optim.Adam(model.parameters(), lr=1e-3) # FIXME whehter to apply sigmoid first for this loss? # FIXME binary or n-class? # loss_fn = nn.CrossEntropyLoss() # FIXME this requires y to be float # FIXME do this need sigmoid? loss_fn = nn.BCELoss() for i in tqdm(range(num_epochs)): outputs = nn.Sigmoid()(model(torch.Tensor(x))) loss = loss_fn(outputs, torch.unsqueeze(torch.Tensor(y), 1)) opt.zero_grad() loss.backward() opt.step() running_loss = loss.item() # UPDATE disabled because this is distracting from tqdm progressbar # if i % 100 == 0: # print('running loss:', running_loss) def predict(self, npx): _dfx = pd.DataFrame(npx.transpose()) _dfx = construct_df_mat(_dfx) print('featurizing x ..') _x = np.vstack((np.array([self.featurize_row(row.iloc[0], row.iloc[1]) for idx, row in _dfx.iterrows()]),)) # run on this mat = self.clf.predict(_x) # FIXME change this into a adjacency matrix d = int(math.sqrt(mat.shape[0])) mat = mat.reshape(d, d) # set diagonal to 0 np.diag(mat) np.fill_diagonal(mat, 0) # TODO return networkx graph instance graph = nx.DiGraph(mat) # (outputs.squeeze() > 0.5).numpy().astype(np.int) return graph def predict_NN(self, npx): # I want a whole graph to be predicted # npx = test_x[0] _dfx = pd.DataFrame(npx.transpose()) _dfx = construct_df_mat(_dfx) print('featurizing x ..') _x = np.vstack((np.array([self.featurize_row(row.iloc[0], row.iloc[1]) for idx, row in _dfx.iterrows()]),)) # I'll directly return the adjacency matrix # FIXME or just return a networkx graph instance? tx = torch.Tensor(_x) outputs = self.fc(tx).detach().numpy() mat = outputs.squeeze() > 0.5 # FIXME change this into a adjacency matrix d = int(math.sqrt(mat.shape[0])) mat = mat.reshape(d, d) # set diagonal to 0 np.diag(mat) np.fill_diagonal(mat, 0) # TODO return networkx graph instance graph = nx.DiGraph(mat) # (outputs.squeeze() > 0.5).numpy().astype(np.int) return graph def balance_df(dfx, dfy): dfx.shape dfy.shape # 10% is 1, I'm going to make it 50% by duplicate 1 by 5 sum(np.array(dfy == 1).ravel()) one_index = np.array(dfy == 1) zero_index = np.array(dfy == 0) # OPTION 1: but the trained model seems to be still balanced towards 0, even # on training data. Probably because the duplication of data # # and the data is smaller to train aug_dfx = dfx.append([dfx[one_index]] * 9) aug_dfy = dfy.append([dfy[one_index]] * 9) # OPTION 2: reduce the number of 0 labels num_1 = len(dfx[one_index]) num_0 = len(dfx[zero_index]) num_1 num_0 sample_index = random.sample(range(num_0), num_1) aug_dfx = dfx[zero_index].take(sample_index).append(dfx[one_index]) aug_dfy = dfy[zero_index].take(sample_index).append(dfy[one_index]) aug_dfx.shape aug_dfy.shape sum(np.array(aug_dfy == 1)) return aug_dfx, aug_dfy def construct_df_mat(x): dfx = pd.DataFrame(columns={'A', 'B'}) d = x.shape[1] ct = 0 for a in range(d): for b in range(d): name = "pair{}".format(ct) ct+=1 dfx.loc[name] = pd.Series({'A': np.array(x[a]), 'B': np.array(x[b])}) return dfx def construct_df(raw_x, raw_y): # the data format should be: # # X: cols: variables # rows: name: pairID, value: vector for each variable # Y: cols: target, 0 or 1 # rows: name: pairID, it should be "whether there's an edge from A to B?" # # UPDATE the internal automatically train on reverse edge, using -y. I can # add 0 as label, and the reverse will be 0 as well, and that duplicated # training should be fine. # # I'll use 10 graphs from raw_x to make training pairs, and use the 10 # graphs for testing # ct = 0 dfx =
pd.DataFrame(columns={'A', 'B'})
pandas.DataFrame
# coding: utf-8 # # --------------------------- Bibliotecas Utilizadas --------------------------- # In[1]: get_ipython().run_line_magic('matplotlib', 'inline') from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier from sklearn.feature_selection import RFE from sklearn.linear_model import LogisticRegression from sklearn import tree from sklearn.svm import SVC import sklearn.metrics as metrics import sklearn.preprocessing as preprocessing import pandas as pd import numpy as np pd.options.display.max_rows = 999 # # --------------------------- Read Files --------------------------- # In[2]: # Load in the data with `read_csv()` horsesDataSet = pd.read_csv('horse.csv', header=0, delimiter=',') horsesDataSetTest = pd.read_csv("horseTest.csv", header=0, delimiter=',') #description of dataSet descriptionHorsesDataSet = horsesDataSet.describe(include='all') descriptionHorsesDataSetTest = horsesDataSetTest.describe(include='all') # In[3]: print('Base de Trieno (Arquivo horse.csv)\n') descriptionHorsesDataSet # In[4]: print('\nBase de Teste (Arquivo horseTest.csv)\n') descriptionHorsesDataSetTest # # --------------------------- Exploratory analysis --------------------------- # In[5]: #first 5 and last 5 entries in dataSet firstRowsDataSet = horsesDataSet.head(5) lastRowsDataSet = horsesDataSet.tail(5) # In[6]: firstRowsDataSet # In[7]: lastRowsDataSet # In[8]: # sampling data # Take a sample of 5 horsesDataSetSample = horsesDataSet.sample(5) horsesDataSetSample # In[9]: #Nulls result = pd.isnull(horsesDataSet) result # # --------------------------- Pre processing --------------------------- # In[10]: # iterate through each attribute and define the percentage of missing values # populate array with zeros with column dimensions of dataset qtd_nan = [0 for x in range(horsesDataSet.shape[1])] # populate array with zeros with column dimensions of dataset qtd_total = [0 for x in range(horsesDataSet.shape[1])] i = 0 while i < horsesDataSet.shape[1]: # get array of boolean describing each line as null or not for i attribute attributeLinesIsNA = pd.isna(horsesDataSet.iloc[:, i]) # get current attribute label name currentAttributeLabel = list(horsesDataSet)[i] qtd_nan[i] = horsesDataSet.loc[attributeLinesIsNA, currentAttributeLabel].shape[0] qtd_total[i] = horsesDataSet.loc[:, currentAttributeLabel].shape[0] i = i+1 percentageArray = np.divide(qtd_nan, qtd_total) # In[11]: # dropping atributes threshold = 0.5 PreProcessedHorseDataSet = horsesDataSet PreProcessedHorseDataSetTest = horsesDataSetTest i = 0 while i < horsesDataSet.shape[1]: if percentageArray[i] > threshold: # get current attribute label name currentAttributeLabel = list(horsesDataSet)[i] # drop attribute column if na values > threshold PreProcessedHorseDataSet = PreProcessedHorseDataSet.drop(columns=currentAttributeLabel) #drop from test PreProcessedHorseDataSetTest = PreProcessedHorseDataSetTest.drop(columns=currentAttributeLabel) i = i + 1 # In[12]: # fill remaining lines with mean values (only numerical) PreProcessedHorseDataSet = PreProcessedHorseDataSet.fillna(horsesDataSet.mean()) #PreProcessedHorseDataSetTest = PreProcessedHorseDataSetTest.fillna(horsesDataSetTest.mean()) # Show Statistics of DataSet StatisticsPreProcessedHorseDataSet = PreProcessedHorseDataSet.describe(include='all') # Altering Categorical missing values to Mode Value (value that appear the most often) i = 0 while i < PreProcessedHorseDataSet.shape[1]: # return the most frequent value (first index because mode() returns a DataFrame) attributeMode = PreProcessedHorseDataSet.mode().iloc[0, i] currentAttributeLabel = list(PreProcessedHorseDataSet)[i] PreProcessedHorseDataSet[currentAttributeLabel] = PreProcessedHorseDataSet[currentAttributeLabel].fillna(attributeMode) i = i+1 # Altering missing values [DATASET TEST] #Saving values from train to insret in TEST with variable v v = [0 for x in range(horsesDataSet.shape[1])] i=0 while i < PreProcessedHorseDataSet.shape[1]: if PreProcessedHorseDataSet.dtypes[i] == 'O': v[i] = PreProcessedHorseDataSet.mode().iloc[0, i] else: v[i] = PreProcessedHorseDataSet.iloc[0, i].mean() currentAttributeLabel = list(PreProcessedHorseDataSetTest)[i] PreProcessedHorseDataSetTest[currentAttributeLabel] = PreProcessedHorseDataSetTest[currentAttributeLabel].fillna(v[i]) i = i+1 #i = 0 #while i < PreProcessedHorseDataSetTest.shape[1]: # attributeMode = PreProcessedHorseDataSetTest.mode().iloc[0, i] # currentAttributeLabel = list(PreProcessedHorseDataSetTest)[i] # PreProcessedHorseDataSetTest[currentAttributeLabel] = PreProcessedHorseDataSetTest[currentAttributeLabel].fillna(attributeMode) # i = i+1 # In[13]: # categorical attribute binarization categoricalHorseDataSet = PreProcessedHorseDataSet.select_dtypes(include='object') categoricalHorseDataSet = categoricalHorseDataSet.drop('outcome', axis=1) categoricalHorseDataSetDummy = pd.get_dummies(categoricalHorseDataSet) PreProcessedHorseDataSet = pd.concat([categoricalHorseDataSetDummy, PreProcessedHorseDataSet.loc[:, 'outcome']], axis=1) # categorical attribute binarization [DATASET TEST] categoricalHorseDataSetTest = PreProcessedHorseDataSetTest.select_dtypes(include='object') categoricalHorseDataSetTest = categoricalHorseDataSetTest.drop('outcome', axis=1) categoricalHorseDataSetDummy = pd.get_dummies(categoricalHorseDataSetTest) PreProcessedHorseDataSetTest = pd.concat([categoricalHorseDataSetDummy, PreProcessedHorseDataSetTest.loc[:, 'outcome']], axis=1) # In[14]: # Change values from euthanized to died AttributesHorseDataSet = PreProcessedHorseDataSet.drop('outcome', axis=1) TargetHorseDataSet = PreProcessedHorseDataSet.loc[:, 'outcome'] # mapping 'euthanized' values to 'died' to tune fitting TargetHorseDataSet = TargetHorseDataSet.map(lambda x: 'died' if x == 'euthanized' else x) PreProcessedHorseDataSet = pd.concat([AttributesHorseDataSet, TargetHorseDataSet], axis=1) # Change values from euthanized to died [DATASET TEST] AttributesHorseDataSetTest = PreProcessedHorseDataSetTest.drop('outcome', axis=1) TargetHorseDataSetTest = PreProcessedHorseDataSetTest.loc[:, 'outcome'] # mapping 'euthanized' values to 'died' to tune fitting TargetHorseDataSetTest = TargetHorseDataSetTest.map(lambda x: 'died' if x == 'euthanized' else x) PreProcessedHorseDataSetTest =
pd.concat([AttributesHorseDataSetTest, TargetHorseDataSetTest], axis=1)
pandas.concat
# -*- coding: utf-8 -*- from __future__ import print_function import pytest import operator from collections import OrderedDict from datetime import datetime from itertools import chain import warnings import numpy as np from pandas import (notna, DataFrame, Series, MultiIndex, date_range, Timestamp, compat) import pandas as pd from pandas.core.dtypes.dtypes import CategoricalDtype from pandas.core.apply import frame_apply from pandas.util.testing import (assert_series_equal, assert_frame_equal) import pandas.util.testing as tm from pandas.conftest import _get_cython_table_params from pandas.tests.frame.common import TestData class TestDataFrameApply(TestData): def test_apply(self): with np.errstate(all='ignore'): # ufunc applied = self.frame.apply(np.sqrt) tm.assert_series_equal(np.sqrt(self.frame['A']), applied['A']) # aggregator applied = self.frame.apply(np.mean) assert applied['A'] == np.mean(self.frame['A']) d = self.frame.index[0] applied = self.frame.apply(np.mean, axis=1) assert applied[d] == np.mean(self.frame.xs(d)) assert applied.index is self.frame.index # want this # invalid axis df = DataFrame( [[1, 2, 3], [4, 5, 6], [7, 8, 9]], index=['a', 'a', 'c']) pytest.raises(ValueError, df.apply, lambda x: x, 2) # see gh-9573 df = DataFrame({'c0': ['A', 'A', 'B', 'B'], 'c1': ['C', 'C', 'D', 'D']}) df = df.apply(lambda ts: ts.astype('category')) assert df.shape == (4, 2) assert isinstance(df['c0'].dtype, CategoricalDtype) assert isinstance(df['c1'].dtype, CategoricalDtype) def test_apply_mixed_datetimelike(self): # mixed datetimelike # GH 7778 df = DataFrame({'A': date_range('20130101', periods=3), 'B': pd.to_timedelta(np.arange(3), unit='s')}) result = df.apply(lambda x: x, axis=1) assert_frame_equal(result, df) def test_apply_empty(self): # empty applied = self.empty.apply(np.sqrt) assert applied.empty applied = self.empty.apply(np.mean) assert applied.empty no_rows = self.frame[:0] result = no_rows.apply(lambda x: x.mean()) expected = Series(np.nan, index=self.frame.columns) assert_series_equal(result, expected) no_cols = self.frame.loc[:, []] result = no_cols.apply(lambda x: x.mean(), axis=1) expected = Series(np.nan, index=self.frame.index) assert_series_equal(result, expected) # 2476 xp = DataFrame(index=['a']) rs = xp.apply(lambda x: x['a'], axis=1) assert_frame_equal(xp, rs) def test_apply_with_reduce_empty(self): # reduce with an empty DataFrame x = [] result = self.empty.apply(x.append, axis=1, result_type='expand') assert_frame_equal(result, self.empty) result = self.empty.apply(x.append, axis=1, result_type='reduce') assert_series_equal(result, Series( [], index=pd.Index([], dtype=object))) empty_with_cols = DataFrame(columns=['a', 'b', 'c']) result = empty_with_cols.apply(x.append, axis=1, result_type='expand') assert_frame_equal(result, empty_with_cols) result = empty_with_cols.apply(x.append, axis=1, result_type='reduce') assert_series_equal(result, Series( [], index=pd.Index([], dtype=object))) # Ensure that x.append hasn't been called assert x == [] def test_apply_deprecate_reduce(self): with warnings.catch_warnings(record=True): x = [] self.empty.apply(x.append, axis=1, result_type='reduce') def test_apply_standard_nonunique(self): df = DataFrame( [[1, 2, 3], [4, 5, 6], [7, 8, 9]], index=['a', 'a', 'c']) rs = df.apply(lambda s: s[0], axis=1) xp = Series([1, 4, 7], ['a', 'a', 'c']) assert_series_equal(rs, xp) rs = df.T.apply(lambda s: s[0], axis=0) assert_series_equal(rs, xp) def test_with_string_args(self): for arg in ['sum', 'mean', 'min', 'max', 'std']: result = self.frame.apply(arg) expected = getattr(self.frame, arg)() tm.assert_series_equal(result, expected) result = self.frame.apply(arg, axis=1) expected = getattr(self.frame, arg)(axis=1) tm.assert_series_equal(result, expected) def test_apply_broadcast_deprecated(self): with tm.assert_produces_warning(FutureWarning): self.frame.apply(np.mean, broadcast=True) def test_apply_broadcast(self): # scalars result = self.frame.apply(np.mean, result_type='broadcast') expected = DataFrame([self.frame.mean()], index=self.frame.index) tm.assert_frame_equal(result, expected) result = self.frame.apply(np.mean, axis=1, result_type='broadcast') m = self.frame.mean(axis=1) expected = DataFrame({c: m for c in self.frame.columns}) tm.assert_frame_equal(result, expected) # lists result = self.frame.apply( lambda x: list(range(len(self.frame.columns))), axis=1, result_type='broadcast') m = list(range(len(self.frame.columns))) expected = DataFrame([m] * len(self.frame.index), dtype='float64', index=self.frame.index, columns=self.frame.columns) tm.assert_frame_equal(result, expected) result = self.frame.apply(lambda x: list(range(len(self.frame.index))), result_type='broadcast') m = list(range(len(self.frame.index))) expected = DataFrame({c: m for c in self.frame.columns}, dtype='float64', index=self.frame.index) tm.assert_frame_equal(result, expected) # preserve columns df = DataFrame(np.tile(np.arange(3), 6).reshape(6, -1) + 1, columns=list('ABC')) result = df.apply(lambda x: [1, 2, 3], axis=1, result_type='broadcast') tm.assert_frame_equal(result, df) df = DataFrame(np.tile(np.arange(3), 6).reshape(6, -1) + 1, columns=list('ABC')) result = df.apply(lambda x: Series([1, 2, 3], index=list('abc')), axis=1, result_type='broadcast') expected = df.copy() tm.assert_frame_equal(result, expected) def test_apply_broadcast_error(self): df = DataFrame( np.tile(np.arange(3, dtype='int64'), 6).reshape(6, -1) + 1, columns=['A', 'B', 'C']) # > 1 ndim with pytest.raises(ValueError): df.apply(lambda x: np.array([1, 2]).reshape(-1, 2), axis=1, result_type='broadcast') # cannot broadcast with pytest.raises(ValueError): df.apply(lambda x: [1, 2], axis=1, result_type='broadcast') with pytest.raises(ValueError): df.apply(lambda x: Series([1, 2]), axis=1, result_type='broadcast') def test_apply_raw(self): result0 = self.frame.apply(np.mean, raw=True) result1 = self.frame.apply(np.mean, axis=1, raw=True) expected0 = self.frame.apply(lambda x: x.values.mean()) expected1 = self.frame.apply(lambda x: x.values.mean(), axis=1) assert_series_equal(result0, expected0) assert_series_equal(result1, expected1) # no reduction result = self.frame.apply(lambda x: x * 2, raw=True) expected = self.frame * 2 assert_frame_equal(result, expected) def test_apply_axis1(self): d = self.frame.index[0] tapplied = self.frame.apply(np.mean, axis=1) assert tapplied[d] == np.mean(self.frame.xs(d)) def test_apply_ignore_failures(self): result = frame_apply(self.mixed_frame, np.mean, 0, ignore_failures=True).apply_standard() expected = self.mixed_frame._get_numeric_data().apply(np.mean) assert_series_equal(result, expected) def test_apply_mixed_dtype_corner(self): df = DataFrame({'A': ['foo'], 'B': [1.]}) result = df[:0].apply(np.mean, axis=1) # the result here is actually kind of ambiguous, should it be a Series # or a DataFrame? expected = Series(np.nan, index=pd.Index([], dtype='int64')) assert_series_equal(result, expected) df = DataFrame({'A': ['foo'], 'B': [1.]}) result = df.apply(lambda x: x['A'], axis=1) expected = Series(['foo'], index=[0]) assert_series_equal(result, expected) result = df.apply(lambda x: x['B'], axis=1) expected = Series([1.], index=[0]) assert_series_equal(result, expected) def test_apply_empty_infer_type(self): no_cols = DataFrame(index=['a', 'b', 'c']) no_index = DataFrame(columns=['a', 'b', 'c']) def _check(df, f): with warnings.catch_warnings(record=True): test_res = f(np.array([], dtype='f8')) is_reduction = not isinstance(test_res, np.ndarray) def _checkit(axis=0, raw=False): res = df.apply(f, axis=axis, raw=raw) if is_reduction: agg_axis = df._get_agg_axis(axis) assert isinstance(res, Series) assert res.index is agg_axis else: assert isinstance(res, DataFrame) _checkit() _checkit(axis=1) _checkit(raw=True) _checkit(axis=0, raw=True) with np.errstate(all='ignore'): _check(no_cols, lambda x: x) _check(no_cols, lambda x: x.mean()) _check(no_index, lambda x: x) _check(no_index, lambda x: x.mean()) result = no_cols.apply(lambda x: x.mean(), result_type='broadcast') assert isinstance(result, DataFrame) def test_apply_with_args_kwds(self): def add_some(x, howmuch=0): return x + howmuch def agg_and_add(x, howmuch=0): return x.mean() + howmuch def subtract_and_divide(x, sub, divide=1): return (x - sub) / divide result = self.frame.apply(add_some, howmuch=2) exp = self.frame.apply(lambda x: x + 2) assert_frame_equal(result, exp) result = self.frame.apply(agg_and_add, howmuch=2) exp = self.frame.apply(lambda x: x.mean() + 2) assert_series_equal(result, exp) res = self.frame.apply(subtract_and_divide, args=(2,), divide=2) exp = self.frame.apply(lambda x: (x - 2.) / 2.) assert_frame_equal(res, exp) def test_apply_yield_list(self): result = self.frame.apply(list) assert_frame_equal(result, self.frame) def test_apply_reduce_Series(self): self.frame.loc[::2, 'A'] = np.nan expected = self.frame.mean(1) result = self.frame.apply(np.mean, axis=1) assert_series_equal(result, expected) def test_apply_differently_indexed(self): df = DataFrame(np.random.randn(20, 10)) result0 = df.apply(Series.describe, axis=0) expected0 = DataFrame(dict((i, v.describe()) for i, v in compat.iteritems(df)), columns=df.columns) assert_frame_equal(result0, expected0) result1 = df.apply(Series.describe, axis=1) expected1 = DataFrame(dict((i, v.describe()) for i, v in compat.iteritems(df.T)), columns=df.index).T assert_frame_equal(result1, expected1) def test_apply_modify_traceback(self): data = DataFrame({'A': ['foo', 'foo', 'foo', 'foo', 'bar', 'bar', 'bar', 'bar', 'foo', 'foo', 'foo'], 'B': ['one', 'one', 'one', 'two', 'one', 'one', 'one', 'two', 'two', 'two', 'one'], 'C': ['dull', 'dull', 'shiny', 'dull', 'dull', 'shiny', 'shiny', 'dull', 'shiny', 'shiny', 'shiny'], 'D': np.random.randn(11), 'E': np.random.randn(11), 'F': np.random.randn(11)}) data.loc[4, 'C'] = np.nan def transform(row): if row['C'].startswith('shin') and row['A'] == 'foo': row['D'] = 7 return row def transform2(row): if (notna(row['C']) and row['C'].startswith('shin') and row['A'] == 'foo'): row['D'] = 7 return row try: data.apply(transform, axis=1) except AttributeError as e: assert len(e.args) == 2 assert e.args[1] == 'occurred at index 4' assert e.args[0] == "'float' object has no attribute 'startswith'" def test_apply_bug(self): # GH 6125 positions = pd.DataFrame([[1, 'ABC0', 50], [1, 'YUM0', 20], [1, 'DEF0', 20], [2, 'ABC1', 50], [2, 'YUM1', 20], [2, 'DEF1', 20]], columns=['a', 'market', 'position']) def f(r): return r['market'] expected = positions.apply(f, axis=1) positions = DataFrame([[datetime(2013, 1, 1), 'ABC0', 50], [datetime(2013, 1, 2), 'YUM0', 20], [datetime(2013, 1, 3), 'DEF0', 20], [datetime(2013, 1, 4), 'ABC1', 50], [datetime(2013, 1, 5), 'YUM1', 20], [datetime(2013, 1, 6), 'DEF1', 20]], columns=['a', 'market', 'position']) result = positions.apply(f, axis=1) assert_series_equal(result, expected) def test_apply_convert_objects(self): data = DataFrame({'A': ['foo', 'foo', 'foo', 'foo', 'bar', 'bar', 'bar', 'bar', 'foo', 'foo', 'foo'], 'B': ['one', 'one', 'one', 'two', 'one', 'one', 'one', 'two', 'two', 'two', 'one'], 'C': ['dull', 'dull', 'shiny', 'dull', 'dull', 'shiny', 'shiny', 'dull', 'shiny', 'shiny', 'shiny'], 'D': np.random.randn(11), 'E': np.random.randn(11), 'F': np.random.randn(11)}) result = data.apply(lambda x: x, axis=1) assert_frame_equal(result._convert(datetime=True), data) def test_apply_attach_name(self): result = self.frame.apply(lambda x: x.name) expected = Series(self.frame.columns, index=self.frame.columns) assert_series_equal(result, expected) result = self.frame.apply(lambda x: x.name, axis=1) expected = Series(self.frame.index, index=self.frame.index) assert_series_equal(result, expected) # non-reductions result = self.frame.apply(lambda x: np.repeat(x.name, len(x))) expected = DataFrame(np.tile(self.frame.columns, (len(self.frame.index), 1)), index=self.frame.index, columns=self.frame.columns) assert_frame_equal(result, expected) result = self.frame.apply(lambda x: np.repeat(x.name, len(x)), axis=1) expected = Series(np.repeat(t[0], len(self.frame.columns)) for t in self.frame.itertuples()) expected.index = self.frame.index assert_series_equal(result, expected) def test_apply_multi_index(self): index = MultiIndex.from_arrays([['a', 'a', 'b'], ['c', 'd', 'd']]) s = DataFrame([[1, 2], [3, 4], [5, 6]], index=index, columns=['col1', 'col2']) result = s.apply( lambda x: Series({'min': min(x), 'max': max(x)}), 1) expected = DataFrame([[1, 2], [3, 4], [5, 6]], index=index, columns=['min', 'max']) assert_frame_equal(result, expected, check_like=True) def test_apply_dict(self): # GH 8735 A = DataFrame([['foo', 'bar'], ['spam', 'eggs']]) A_dicts = Series([dict([(0, 'foo'), (1, 'spam')]), dict([(0, 'bar'), (1, 'eggs')])]) B = DataFrame([[0, 1], [2, 3]]) B_dicts = Series([dict([(0, 0), (1, 2)]), dict([(0, 1), (1, 3)])]) fn = lambda x: x.to_dict() for df, dicts in [(A, A_dicts), (B, B_dicts)]: reduce_true = df.apply(fn, result_type='reduce') reduce_false = df.apply(fn, result_type='expand') reduce_none = df.apply(fn) assert_series_equal(reduce_true, dicts) assert_frame_equal(reduce_false, df) assert_series_equal(reduce_none, dicts) def test_applymap(self): applied = self.frame.applymap(lambda x: x * 2) tm.assert_frame_equal(applied, self.frame * 2) self.frame.applymap(type) # gh-465: function returning tuples result = self.frame.applymap(lambda x: (x, x)) assert isinstance(result['A'][0], tuple) # gh-2909: object conversion to float in constructor? df = DataFrame(data=[1, 'a']) result = df.applymap(lambda x: x) assert result.dtypes[0] == object df = DataFrame(data=[1., 'a']) result = df.applymap(lambda x: x) assert result.dtypes[0] == object # see gh-2786 df = DataFrame(np.random.random((3, 4))) df2 = df.copy() cols = ['a', 'a', 'a', 'a'] df.columns = cols expected = df2.applymap(str) expected.columns = cols result = df.applymap(str) tm.assert_frame_equal(result, expected) # datetime/timedelta df['datetime'] = Timestamp('20130101') df['timedelta'] = pd.Timedelta('1 min') result = df.applymap(str) for f in ['datetime', 'timedelta']: assert result.loc[0, f] == str(df.loc[0, f]) # see gh-8222 empty_frames = [pd.DataFrame(), pd.DataFrame(columns=list('ABC')), pd.DataFrame(index=list('ABC')), pd.DataFrame({'A': [], 'B': [], 'C': []})] for frame in empty_frames: for func in [round, lambda x: x]: result = frame.applymap(func) tm.assert_frame_equal(result, frame) def test_applymap_box_timestamps(self): # #2689, #2627 ser = pd.Series(date_range('1/1/2000', periods=10)) def func(x): return (x.hour, x.day, x.month) # it works! pd.DataFrame(ser).applymap(func) def test_applymap_box(self): # ufunc will not be boxed. Same test cases as the test_map_box df = pd.DataFrame({'a': [pd.Timestamp('2011-01-01'), pd.Timestamp('2011-01-02')], 'b': [pd.Timestamp('2011-01-01', tz='US/Eastern'), pd.Timestamp('2011-01-02', tz='US/Eastern')], 'c': [pd.Timedelta('1 days'), pd.Timedelta('2 days')], 'd': [pd.Period('2011-01-01', freq='M'), pd.Period('2011-01-02', freq='M')]}) res = df.applymap(lambda x: '{0}'.format(x.__class__.__name__)) exp = pd.DataFrame({'a': ['Timestamp', 'Timestamp'], 'b': ['Timestamp', 'Timestamp'], 'c': ['Timedelta', 'Timedelta'], 'd': ['Period', 'Period']}) tm.assert_frame_equal(res, exp) def test_frame_apply_dont_convert_datetime64(self): from pandas.tseries.offsets import BDay df = DataFrame({'x1': [datetime(1996, 1, 1)]}) df = df.applymap(lambda x: x + BDay()) df = df.applymap(lambda x: x + BDay()) assert df.x1.dtype == 'M8[ns]' def test_apply_non_numpy_dtype(self): # See gh-12244 df = DataFrame({'dt': pd.date_range( "2015-01-01", periods=3, tz='Europe/Brussels')}) result = df.apply(lambda x: x) assert_frame_equal(result, df) result = df.apply(lambda x: x + pd.Timedelta('1day')) expected = DataFrame({'dt': pd.date_range( "2015-01-02", periods=3, tz='Europe/Brussels')}) assert_frame_equal(result, expected) df = DataFrame({'dt': ['a', 'b', 'c', 'a']}, dtype='category') result = df.apply(lambda x: x) assert_frame_equal(result, df) def test_apply_dup_names_multi_agg(self): # GH 21063 df = pd.DataFrame([[0, 1], [2, 3]], columns=['a', 'a']) expected = pd.DataFrame([[0, 1]], columns=['a', 'a'], index=['min']) result = df.agg(['min']) tm.assert_frame_equal(result, expected) class TestInferOutputShape(object): # the user has supplied an opaque UDF where # they are transforming the input that requires # us to infer the output def test_infer_row_shape(self): # gh-17437 # if row shape is changing, infer it df = pd.DataFrame(np.random.rand(10, 2)) result = df.apply(np.fft.fft, axis=0) assert result.shape == (10, 2) result = df.apply(np.fft.rfft, axis=0) assert result.shape == (6, 2) def test_with_dictlike_columns(self): # gh 17602 df = DataFrame([[1, 2], [1, 2]], columns=['a', 'b']) result = df.apply(lambda x: {'s': x['a'] + x['b']}, axis=1) expected = Series([{'s': 3} for t in df.itertuples()]) assert_series_equal(result, expected) df['tm'] = [pd.Timestamp('2017-05-01 00:00:00'), pd.Timestamp('2017-05-02 00:00:00')] result = df.apply(lambda x: {'s': x['a'] + x['b']}, axis=1) assert_series_equal(result, expected) # compose a series result = (df['a'] + df['b']).apply(lambda x: {'s': x}) expected = Series([{'s': 3}, {'s': 3}]) assert_series_equal(result, expected) # gh-18775 df = DataFrame() df["author"] = ["X", "Y", "Z"] df["publisher"] = ["BBC", "NBC", "N24"] df["date"] = pd.to_datetime(['17-10-2010 07:15:30', '13-05-2011 08:20:35', '15-01-2013 09:09:09']) result = df.apply(lambda x: {}, axis=1) expected = Series([{}, {}, {}]) assert_series_equal(result, expected) def test_with_dictlike_columns_with_infer(self): # gh 17602 df = DataFrame([[1, 2], [1, 2]], columns=['a', 'b']) result = df.apply(lambda x: {'s': x['a'] + x['b']}, axis=1, result_type='expand') expected = DataFrame({'s': [3, 3]}) assert_frame_equal(result, expected) df['tm'] = [pd.Timestamp('2017-05-01 00:00:00'), pd.Timestamp('2017-05-02 00:00:00')] result = df.apply(lambda x: {'s': x['a'] + x['b']}, axis=1, result_type='expand') assert_frame_equal(result, expected) def test_with_listlike_columns(self): # gh-17348 df = DataFrame({'a': Series(np.random.randn(4)), 'b': ['a', 'list', 'of', 'words'], 'ts': date_range('2016-10-01', periods=4, freq='H')}) result = df[['a', 'b']].apply(tuple, axis=1) expected = Series([t[1:] for t in df[['a', 'b']].itertuples()]) assert_series_equal(result, expected) result = df[['a', 'ts']].apply(tuple, axis=1) expected = Series([t[1:] for t in df[['a', 'ts']].itertuples()]) assert_series_equal(result, expected) # gh-18919 df = DataFrame({'x': Series([['a', 'b'], ['q']]), 'y': Series([['z'], ['q', 't']])}) df.index = MultiIndex.from_tuples([('i0', 'j0'), ('i1', 'j1')]) result = df.apply( lambda row: [el for el in row['x'] if el in row['y']], axis=1) expected = Series([[], ['q']], index=df.index) assert_series_equal(result, expected) def test_infer_output_shape_columns(self): # gh-18573 df = DataFrame({'number': [1., 2.], 'string': ['foo', 'bar'], 'datetime': [pd.Timestamp('2017-11-29 03:30:00'), pd.Timestamp('2017-11-29 03:45:00')]}) result = df.apply(lambda row: (row.number, row.string), axis=1) expected = Series([(t.number, t.string) for t in df.itertuples()]) assert_series_equal(result, expected) def test_infer_output_shape_listlike_columns(self): # gh-16353 df = DataFrame(np.random.randn(6, 3), columns=['A', 'B', 'C']) result = df.apply(lambda x: [1, 2, 3], axis=1) expected = Series([[1, 2, 3] for t in df.itertuples()]) assert_series_equal(result, expected) result = df.apply(lambda x: [1, 2], axis=1) expected = Series([[1, 2] for t in df.itertuples()]) assert_series_equal(result, expected) # gh-17970 df = DataFrame({"a": [1, 2, 3]}, index=list('abc')) result = df.apply(lambda row: np.ones(1), axis=1) expected = Series([np.ones(1) for t in df.itertuples()], index=df.index) assert_series_equal(result, expected) result = df.apply(lambda row: np.ones(2), axis=1) expected = Series([np.ones(2) for t in df.itertuples()], index=df.index) assert_series_equal(result, expected) # gh-17892 df = pd.DataFrame({'a': [pd.Timestamp('2010-02-01'), pd.Timestamp('2010-02-04'), pd.Timestamp('2010-02-05'), pd.Timestamp('2010-02-06')], 'b': [9, 5, 4, 3], 'c': [5, 3, 4, 2], 'd': [1, 2, 3, 4]}) def fun(x): return (1, 2) result = df.apply(fun, axis=1) expected = Series([(1, 2) for t in df.itertuples()]) assert_series_equal(result, expected) def test_consistent_coerce_for_shapes(self): # we want column names to NOT be propagated # just because the shape matches the input shape df = DataFrame(np.random.randn(4, 3), columns=['A', 'B', 'C']) result = df.apply(lambda x: [1, 2, 3], axis=1) expected = Series([[1, 2, 3] for t in df.itertuples()]) assert_series_equal(result, expected) result = df.apply(lambda x: [1, 2], axis=1) expected = Series([[1, 2] for t in df.itertuples()]) assert_series_equal(result, expected) def test_consistent_names(self): # if a Series is returned, we should use the resulting index names df = DataFrame( np.tile(np.arange(3, dtype='int64'), 6).reshape(6, -1) + 1, columns=['A', 'B', 'C']) result = df.apply(lambda x: Series([1, 2, 3], index=['test', 'other', 'cols']), axis=1) expected = DataFrame( np.tile(np.arange(3, dtype='int64'), 6).reshape(6, -1) + 1, columns=['test', 'other', 'cols']) assert_frame_equal(result, expected) result = df.apply( lambda x: pd.Series([1, 2], index=['test', 'other']), axis=1) expected = DataFrame( np.tile(np.arange(2, dtype='int64'), 6).reshape(6, -1) + 1, columns=['test', 'other']) assert_frame_equal(result, expected) def test_result_type(self): # result_type should be consistent no matter which # path we take in the code df = DataFrame( np.tile(np.arange(3, dtype='int64'), 6).reshape(6, -1) + 1, columns=['A', 'B', 'C']) result = df.apply(lambda x: [1, 2, 3], axis=1, result_type='expand') expected = df.copy() expected.columns = [0, 1, 2] assert_frame_equal(result, expected) result = df.apply(lambda x: [1, 2], axis=1, result_type='expand') expected = df[['A', 'B']].copy() expected.columns = [0, 1] assert_frame_equal(result, expected) # broadcast result result = df.apply(lambda x: [1, 2, 3], axis=1, result_type='broadcast') expected = df.copy() assert_frame_equal(result, expected) columns = ['other', 'col', 'names'] result = df.apply( lambda x: pd.Series([1, 2, 3], index=columns), axis=1, result_type='broadcast') expected = df.copy() assert_frame_equal(result, expected) # series result result = df.apply(lambda x: Series([1, 2, 3], index=x.index), axis=1) expected = df.copy() assert_frame_equal(result, expected) # series result with other index columns = ['other', 'col', 'names'] result = df.apply( lambda x: pd.Series([1, 2, 3], index=columns), axis=1) expected = df.copy() expected.columns = columns assert_frame_equal(result, expected) @pytest.mark.parametrize("result_type", ['foo', 1]) def test_result_type_error(self, result_type): # allowed result_type df = DataFrame( np.tile(np.arange(3, dtype='int64'), 6).reshape(6, -1) + 1, columns=['A', 'B', 'C']) with pytest.raises(ValueError): df.apply(lambda x: [1, 2, 3], axis=1, result_type=result_type) @pytest.mark.parametrize( "box", [lambda x: list(x), lambda x: tuple(x), lambda x: np.array(x, dtype='int64')], ids=['list', 'tuple', 'array']) def test_consistency_for_boxed(self, box): # passing an array or list should not affect the output shape df = DataFrame( np.tile(np.arange(3, dtype='int64'), 6).reshape(6, -1) + 1, columns=['A', 'B', 'C']) result = df.apply(lambda x: box([1, 2]), axis=1) expected = Series([box([1, 2]) for t in df.itertuples()]) assert_series_equal(result, expected) result = df.apply(lambda x: box([1, 2]), axis=1, result_type='expand') expected = DataFrame( np.tile(np.arange(2, dtype='int64'), 6).reshape(6, -1) + 1) assert_frame_equal(result, expected) def zip_frames(frames, axis=1): """ take a list of frames, zip them together under the assumption that these all have the first frames' index/columns. Returns ------- new_frame : DataFrame """ if axis == 1: columns = frames[0].columns zipped = [f.loc[:, c] for c in columns for f in frames] return pd.concat(zipped, axis=1) else: index = frames[0].index zipped = [f.loc[i, :] for i in index for f in frames] return pd.DataFrame(zipped) class TestDataFrameAggregate(TestData): def test_agg_transform(self, axis): other_axis = 1 if axis in {0, 'index'} else 0 with np.errstate(all='ignore'): f_abs = np.abs(self.frame) f_sqrt = np.sqrt(self.frame) # ufunc result = self.frame.transform(np.sqrt, axis=axis) expected = f_sqrt.copy() assert_frame_equal(result, expected) result = self.frame.apply(np.sqrt, axis=axis) assert_frame_equal(result, expected) result = self.frame.transform(np.sqrt, axis=axis) assert_frame_equal(result, expected) # list-like result = self.frame.apply([np.sqrt], axis=axis) expected = f_sqrt.copy() if axis in {0, 'index'}: expected.columns = pd.MultiIndex.from_product( [self.frame.columns, ['sqrt']]) else: expected.index = pd.MultiIndex.from_product( [self.frame.index, ['sqrt']]) assert_frame_equal(result, expected) result = self.frame.transform([np.sqrt], axis=axis) assert_frame_equal(result, expected) # multiple items in list # these are in the order as if we are applying both # functions per series and then concatting result = self.frame.apply([np.abs, np.sqrt], axis=axis) expected = zip_frames([f_abs, f_sqrt], axis=other_axis) if axis in {0, 'index'}: expected.columns = pd.MultiIndex.from_product( [self.frame.columns, ['absolute', 'sqrt']]) else: expected.index = pd.MultiIndex.from_product( [self.frame.index, ['absolute', 'sqrt']]) assert_frame_equal(result, expected) result = self.frame.transform([np.abs, 'sqrt'], axis=axis) assert_frame_equal(result, expected) def test_transform_and_agg_err(self, axis): # cannot both transform and agg def f(): self.frame.transform(['max', 'min'], axis=axis) pytest.raises(ValueError, f) def f(): with np.errstate(all='ignore'): self.frame.agg(['max', 'sqrt'], axis=axis) pytest.raises(ValueError, f) def f(): with np.errstate(all='ignore'): self.frame.transform(['max', 'sqrt'], axis=axis) pytest.raises(ValueError, f) df = pd.DataFrame({'A': range(5), 'B': 5}) def f(): with np.errstate(all='ignore'): df.agg({'A': ['abs', 'sum'], 'B': ['mean', 'max']}, axis=axis) @pytest.mark.parametrize('method', [ 'abs', 'shift', 'pct_change', 'cumsum', 'rank', ]) def test_transform_method_name(self, method): # https://github.com/pandas-dev/pandas/issues/19760 df = pd.DataFrame({"A": [-1, 2]}) result = df.transform(method) expected = operator.methodcaller(method)(df)
tm.assert_frame_equal(result, expected)
pandas.util.testing.assert_frame_equal
import datetime import json import math import os from dash import Dash import dash_bootstrap_components as dbc import dash_core_components as dcc from dash.dependencies import Input, Output, State, ALL from dash.exceptions import PreventUpdate import dash_html_components as html import dash_table from dateutil import tz import numpy as np import pandas as pd import plotly.graph_objs as go from application import util from application.models import db, Activity def add_dashboard_to_flask(server): """Create a Plotly Dash dashboard with the specified server. This is actually used to create a dashboard that piggybacks on a Flask app, using that app its server. """ dash_app = Dash( __name__, server=server, routes_pathname_prefix='/dash-log/', external_stylesheets=[ dbc.themes.BOOTSTRAP, # '/static/css/styles.css', # Not yet. ], ) dash_app.layout = dbc.Container( [ html.H1('Activity Summary (Training Log)'), html.Hr(), html.H2('Training Stress'), dcc.Graph( id='tss-graph', figure=go.Figure(), ), html.Hr(), html.H2('Weekly Log'), dbc.Row( [ dbc.Col( dcc.Dropdown( id='bubble-dropdown', options=[ {'label': x, 'value': x} for x in ['Distance', 'Time', 'Elevation', 'TSS'] ], value='Distance', searchable=False, clearable=False, style={'font-size': '12px'} ), width=2, ), dbc.Col( dbc.Row( [ dbc.Col( day, style={'text-align': 'center', 'font-size': '11px'} ) for day in ['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun'] ], # justify='around', # justify='center', no_gutters=True, ), align='center', width=10, ) ], id='calendar-header', className='mb-3 pb-2 border-bottom', style={'position': 'sticky', 'top': 0, 'zIndex': 1, 'background-color': 'white'} ), # html.Hr(), html.Div(id='calendar-rows'), dbc.Row( dbc.Button('Add more weeks', id='add-weeks', color='primary'), justify='center', className='mb-2', ), dcc.Location(id='url'), # dcc.Store(id='activity-data'), # data streams # dcc.Store(id='activity-stats'), # could be strava response etc # dcc.Store(id='calc-stats'), # storage for DF-to-stats calc ], id='dash-container', fluid=True, ) @dash_app.callback( Output('tss-graph', 'figure'), Input('url', 'pathname') ) def update_figure(path): # Load dates and TSS from db in to DF. activities=Activity.query.all() fields = ['recorded', 'tss', 'title', 'elapsed_time_s'] df = pd.DataFrame( [[getattr(a, field) for field in fields] for a in activities], columns=fields ) df = df.sort_values(by='recorded', axis=0) # For now, convert to my tz - suggests setting TZ by user, # not by activity. df['recorded'] = df['recorded'].dt.tz_localize(tz.tzutc()).dt.tz_convert(tz.gettz('America/Denver')) calc_ctl_atl(df) return create_tss_fig(df) @dash_app.callback( Output('calendar-rows', 'children'), # Input('url', 'pathname'), Input('add-weeks', 'n_clicks'), # Input('bubble-dropdown', 'value'), State('calendar-rows', 'children'), ) def update_calendar(n_clicks, children): n_clicks = n_clicks or 0 # Load dates and TSS from db in to DF. # TODO: Consider querying the database for dates, rather than # loading them all into a DataFrame. activities=Activity.query.all() fields = ['id', 'recorded', 'tss', 'title', 'description', 'elapsed_time_s', 'moving_time_s', 'distance_m', 'elevation_m'] df = pd.DataFrame( [[getattr(a, field) for field in fields] for a in activities], columns=fields ) df = df.sort_values(by='recorded', axis=0) # For now, convert to my tz - suggests setting TZ by user, # not by activity. df['recorded'] = df['recorded'].dt.tz_localize(tz.tzutc()).dt.tz_convert(tz.gettz('America/Denver')) df['weekday'] = df['recorded'].dt.weekday # ** Coming soon: Special calendar view for current week ** children = children or [] today = datetime.datetime.today().date() idx = today.weekday() # MON = 0, SUN = 6 # idx = (today.weekday() + 1) % 7 # MON = 0, SUN = 6 -> SUN = 0 .. SAT = 6 for i in range(3 * n_clicks, 3 * (n_clicks + 1)): ix = idx + 7 * (i - 1) mon_latest = today - datetime.timedelta(ix) # 0-6 days ago mon_last = today - datetime.timedelta(ix+7) # 1+ weeks ago df_week = df[ (df['recorded'].dt.date < mon_latest) & (df['recorded'].dt.date >= mon_last) ] children.append(dbc.Row([ dbc.Col( children=create_week_sum(df_week, mon_last), id=f'week-summary-{i}', width=2, ), dbc.Col( # Eventually this will be just one part of one row. dcc.Graph( # id=f'week-cal-{i}', id={'type': 'week-cal', 'index': i}, figure=create_week_cal(df_week), config=dict(displayModeBar=False), ), width=10, ) ])) return children @dash_app.callback( Output({'type': 'week-cal', 'index': ALL}, 'figure'), # Input('url', 'pathname'), Input('bubble-dropdown', 'value'), # Input('bubble-dropdown', 'value'), State({'type': 'week-cal', 'index': ALL}, 'figure'), # if I do this, adding rows does not work right if not using distance: # prevent_initial_call=True, ) def update_calendar(bubble_type, figures): figures = [update_week_cal(figure, bubble_type) for figure in figures] return figures # init_callbacks(dash_app) return dash_app.server def calc_ctl_atl(df): """Add power-related columns to the DataFrame. For more, see boulderhikes.views.ActivityListView """ # atl_pre = [0.0] atl_0 = 0.0 atl_pre = [atl_0] atl_post = [ df['tss'].iloc[0] / 7.0 + atl_0] # ctl_pre = [0.0] ctl_0 = 0.0 ctl_pre = [ctl_0] ctl_post = [ df['tss'].iloc[0] / 42.0 + ctl_0] for i in range(1, len(df)): delta_t_days = ( df['recorded'].iloc[i] - df['recorded'].iloc[i-1] ).total_seconds() / (3600 * 24) atl_pre.append( (atl_pre[i-1] + df['tss'].iloc[i-1] / 7.0) * (6.0 / 7.0) ** delta_t_days ) atl_post.append( df['tss'].iloc[i] / 7.0 + atl_post[i-1] * (6.0 / 7.0) ** delta_t_days ) ctl_pre.append( (ctl_pre[i-1] + df['tss'].iloc[i-1] / 42.0) * (41.0 / 42.0) ** delta_t_days ) ctl_post.append( df['tss'].iloc[i] / 42.0 + ctl_post[i-1] * (41.0 / 42.0) ** delta_t_days ) df['ATL_pre'] = atl_pre df['CTL_pre'] = ctl_pre df['ATL_post'] = atl_post df['CTL_post'] = ctl_post def create_tss_fig(df): """Catch-all controller function for dashboard layout logic. Args: df (pd.DataFrame): A DataFrame representing a time-indexed DataFrame containing TSS for each recorded activity. Returns: plotly.graph_objs.Figure: fig to be used as child of a html.Div element. """ df_stress = pd.DataFrame.from_dict({ 'ctl':
pd.concat([df['CTL_pre'], df['CTL_post']])
pandas.concat
"""HGNC.""" import re import sys import json import logging import numpy as np import pandas as pd from tqdm import tqdm from typing import Dict from pyorient import OrientDB from collections import namedtuple from ebel.tools import get_file_path from ebel.manager.orientdb.constants import HGNC from ebel.manager.orientdb import odb_meta, urls, odb_structure from ebel.manager.rdbms.models import hgnc logger = logging.getLogger(__name__) HgncEntry4Update = namedtuple("HgncEntrySimple", ['hgnc_rid', 'label', 'location', 'symbol', 'suggested_corrections']) class Hgnc(odb_meta.Graph): """HGNC class definition.""" def __init__(self, client: OrientDB = None): """Init HGNC.""" self.client = client self.biodb_name = HGNC self.urls = {self.biodb_name: urls.HGNC_JSON, 'human_ortholog': urls.HCOP_GZIP} super().__init__(generics=odb_structure.hgnc_generics, tables_base=hgnc.Base, indices=odb_structure.hgnc_indices, nodes=odb_structure.hgnc_nodes, urls=self.urls, biodb_name=self.biodb_name) def __contains__(self, hgnc_id: object) -> bool: """Test existence of hgnc_id.""" if isinstance(hgnc_id, int): hgnc_id = "HGNC:{}".format(hgnc_id) r = self.execute("Select count(*) from bel where hgnc.id = '{}' limit 1".format(hgnc_id)) return bool(len(r[0].oRecordData['count'])) def __len__(self): """Count number of hgnc links in BEL graph.""" r = self.execute("Select count(*) from bel where hgnc IS NOT NULL") return r[0].oRecordData['count'] def __repr__(self) -> str: """Represent HGNC.""" template = "{{BioDatabase:Hgnc}}[url:{url}, nodes:{nodes}, generics:{generics}]" representation = template.format( url=self.urls, nodes=self.number_of_nodes, generics=self.number_of_generics ) return representation def insert_data(self) -> Dict[str, int]: """Check if files missing for download or generic table empty. If True then insert data.""" inserted = dict() inserted['hgnc'] = self.import_hgnc() inserted['hgnc_rdbms'] = self.import_hgnc_into_rdbms() inserted['human_orthologs'] = self.insert_orthologs() self.session.commit() return inserted def import_hgnc_into_rdbms(self) -> int: """Insert HGNC database into RDBMS.""" logger.info('Insert HGNC database into RDBMS.') file_path = get_file_path(self.urls[self.biodb_name], self.biodb_name) df = pd.DataFrame(json.loads(open(file_path, 'r').read())['response']['docs']) self._standardize_dataframe(df) columns = ['hgnc_id', 'version', 'bioparadigms_slc', 'cd', 'cosmic', 'date_approved_reserved', 'date_modified', 'date_name_changed', 'date_symbol_changed', 'ensembl_gene_id', 'entrez_id', 'homeodb', 'horde_id', 'imgt', 'intermediate_filament_db', 'iuphar', 'lncipedia', 'lncrnadb', 'location', 'location_sortable', 'locus_group', 'locus_type', 'mamit_trnadb', 'merops', 'mirbase', 'name', 'orphanet', 'pseudogene_org', 'snornabase', 'status', 'symbol', 'ucsc_id', 'uuid', 'vega_id', 'agr'] df['id'] = pd.to_numeric(df.hgnc_id.str.split(':').str[1]) df.set_index('id', inplace=True) df[columns].to_sql(hgnc.Hgnc.__tablename__, self.engine, if_exists='append') df.hgnc_id = pd.to_numeric(df.hgnc_id.str.split(':').str[1]) for df_col, model, m_col in (('prev_symbol', hgnc.PrevSymbol, None), ('alias_symbol', hgnc.AliasSymbol, None), ('alias_name', hgnc.AliasName, None), ('ccds_id', hgnc.Ccds, 'identifier'), ('ena', hgnc.Ena, 'identifier'), ('enzyme_id', hgnc.Enzyme, 'ec_number'), ('gene_group', hgnc.GeneGroupName, 'name'), ('gene_group_id', hgnc.GeneGroupId, 'identifier'), ('uniprot_ids', hgnc.UniProt, 'accession'), ('rna_central_id', hgnc.RnaCentral, 'identifier'), ('rgd_id', hgnc.Rgd, 'identifier'), ('refseq_accession', hgnc.RefSeq, 'accession'), ('pubmed_id', hgnc.PubMed, 'pmid'), ('prev_name', hgnc.PrevName, None), ('omim_id', hgnc.Omim, 'identifier'), ('mgd_id', hgnc.Mgd, 'identifier'), ('lsdb', hgnc.Lsdb, 'identifier')): df_1n_table = df[[df_col, 'hgnc_id']].explode(df_col).dropna() if m_col: df_1n_table.rename(columns={df_col: m_col}, inplace=True) df_1n_table.to_sql( model.__tablename__, self.engine, if_exists='append', index=False) return df.shape[0] def import_hgnc(self) -> int: """Import HGNC into OrientDB.""" # if new hgnc is imported all hgnc links should be reset and hgnc table should be empty self.execute('Update genetic_flow set hgnc=null') self.execute('Delete from hgnc') file_path = get_file_path(self.urls[self.biodb_name], self.biodb_name) rows = json.loads(open(file_path, 'r').read().replace(u"\xa0", u" "))['response']['docs'] df =
pd.DataFrame(rows)
pandas.DataFrame
# Built with python 3, dependencies installed with pip # library to generate images - Pillow # https://pillow.readthedocs.io/en/stable/installation.html from PIL import Image # library to work with arrays and dataframe # https://numpy.org/ # https://pandas.pydata.org/ import numpy as np import pandas as pd import csv import json # library to interact with the operating system import os # library to generate random integer values from random import seed from random import randint import sys #print(sys.getrecursionlimit()) sys.setrecursionlimit(10000) #print(sys.getrecursionlimit()) # gets path to be used in image creation mechanism, using os dirname = os.path.dirname(os.path.abspath(__file__)) Races = ["Unknown","Halflings", "Men", "Elves", "Dwarves", "Gobelins", "Orcs", "Wizards", "Daemons", "Wraiths", "Dark Riders", "Dark Lord"] Types = ["Male", "Female","Firebeards","Blacklocks","Broadbeams","Stiffbeards","Stonefoots","Ironfists","Longbeards","White", "Grey", "Wood", "Blue", "Tower", "None"] Skins = ["Red","Eggplant","Granite","Dark Grey","Charcoal","Albino","Light","Mid","Dark","Purple","Camel","Wattle","Smokey Grey","Moon Grey","Sand","Green","Peach","Dust","Bone","Silk","None"] Ears = ["Earring", "None"] Haircolors = ["Black","Bronze","Mango","Dark Grey","Persian Blue","Sapphire","Indigo","Topaz","Burning Orange","Taupe & Cookie Brown","Brown & Cookie Brown","Taupe & Graphite","Brown & Graphite","Seashell & Grey","Seashell & Carbon Grey","Smokey Grey & Charcoal","Grey & Carbon Grey","Dark Grey & Silver","Granite & Seashell","Dark Grey & Black","Black & Granite","Carbon Grey","Seashell","Silver","Granite","Grey Goose","Mango & Brown","Ginger & Fair","Bronze & Chocolate","Fair & Wattle","Orange & Black Rose","Dark Grey & Silver","Butter","Red","Blond","Blonde","Orange","Fair","Grey","Ginger","Black Rose","Brown","None"] Haircuts = ["Braids","Long Hair","Medium Layers","The Bob","Left Side Hair","Right Side Hair","Curly Hair","Prince Hair","King Hair","Straight Hair","Grunge Hair","Wild Hair","Perm Hair","Bedhead","Hockey Hair","Bald","Wedge Hair","Feathered Hair","Ponytail","None"] Hairprops = ["Orc Helmet","Gobelins Crown","Dwarf Helmet","Elfic Tiara","Elfic Crown","Circlet","Punk Hat","Beanie","Fedora","Bandana","Knitted Cap","Men Crown","Police","Top Hat","Cap Forward","Cowboy Hat","Cap","Tiara","Flower","Shire Hat","Headband","Pilot Helmet","None"] Necks = ["Choker","Gold Chain","Silver Chain","Ring Onchain","Brooch","None"] Facialhairs = ["Big Beard","Muttonchops","Mustache","Handlebars","Front Beard Dark","Front Beard","Normal Beard","Normal Beard Black","Luxurious Beard","Goat","Chinstrap","Shadow Beard","None"] Mouthprops = ["Cigarette","Medical Mask","Pipe","Vape","None"] Eyecolors = ["Orange Eye Shadow","Orange","Purple","Blue Eye Shadow","Purple Eye Shadow","Green Eye Shadow","Black","Peach","Blue","White","Yellow","Red","None"] Eyeprops = ["3D Glasses","VR","Classic Shades","Small Shades","Eye Patch","Nerd Glasses","Big Shades","Eye Mask","Horned Rim Glasses","Regular Shades","Welding Goggles","None"] Noses = ["Clown Nose","None"] Blemishes = ["Scare","Rosy Cheeks","Mole","None"] Toothcolors = ["Brown","White","Gold","Blood","None"] Mouths = ["Smile","Frown","None","Black Lipstick","Hot Lipstick","Purple Lipstick","Orange Lipstick"] #Metada prep def createCombo(): trait = {} #trait["Name"] = name_ep trait["Race"] = race_ep trait["Type"] = type_ep trait["Skin Tone"] = skin_ep trait["Ears"] = ears_ep trait["Hair Color"] = hair_color_ep trait["Haircut"] = haircut_ep trait["Hair Prop"] = hair_prop_ep trait["Neck"] = neck_ep trait["Facial Hair"] = facial_hair_ep trait["Mouth Prop"] = mouth_prop_ep trait["Eyes Color"] = eyes_color_ep trait["Eyes Prop"] = eyes_prop_ep trait["Nose"] = nose_ep trait["Blemishe"] = blemishe_ep trait["Tooth Color"] = tooth_color_ep trait["Mouth"] = mouth_ep if trait in traits: filterlist1.append(x) else: return trait traits = [] # sets final image dimensions as 480x480 pixels # the original 24x24 pixel image will be expanded to these dimensions dimensions = 480, 480 s=(24,24) none = np.zeros(s) # Variables to define the colors with the RGB system nr = (0,0,0) bl = (255,255,255) BG1 = (0,110,110) FR1 = nr FR2 = bl BR1 = nr BR2 = bl FR3 = nr DE1 = bl SK3 = bl BE1 = nr BE2 = (204,154,39) BE3 = (102,28,51) BE4 = (128,97,21) BE7 = (104,70,31) CG2 = (198,198,198) CG3 = (241,68,0) CG4 = (157,178,187) CG1 = (0,0,0) PI2 = (139,78,0) PI3 = (109,57,0) PI1 = (0,0,0) PI4 = (139,160,169) MO1 = (156,141,138) MO2 = (148,118,83) MO3 = (121,95,64) MO4 = (86,48,21) SM1 = (0,0,0) FW1 = (0,0,0) VP3 = (89,89,89) VP2 = (57,0,255) VP1 = (0,0,0) CN1 = (231,0,0) RC1 = (215,154,104) HRG3 = (213,200,183) HRG2 = (184,163,135) HRG4 = (209,189,164) HRG5 = (87,101,113) HRG1 = (0,0,0) MK1 = (201,201,201) MK2 = (177,177,177) ER2 = (255,221,0) ER1 = (0,0,0) GC1 = (255,203,0) RG1 = (255,160,0) BO1 = (35,165,115) SV1 = (223,223,223) KR1 = (0,0,0) HL1 = (212,0,0) PL1 = (226,0,203) NL1 = (122,0,0) BL1 = (0,0,0) CH1 = (127,73,0) CH2 = (84,45,0) CA1 = (145,0,185) CA2 = (194,60,221) BN1 = (2,85,198) BN3 = (221,244,0) BN2 = (231,0,0) BN4 = (0,208,0) BN5 = (0,0,0) TH1 = (0,0,0) TH2 = (238,0,0) KC2 = (216,56,0) KC3 = (157,39,0) KC1 = (0,0,0) HB1 = (255,255,255) HB2 = (25,100,216) FC2 = (81,81,81) FC3 = (53,53,53) FC1 = (0,0,0) BA1 = (48,36,203) BA2 = (39,31,167) BA3 = (30,29,126) FD1 = (63,47,28) FD2 = (0,0,0) PC2 = (38,47,75) PC4 = (255,220,0) PC1 = (0,0,0) PC3 = (255,255,255) TD1 = (240,240,240) TD3 = (44,131,255) TD2 = (255,0,0) VR2 = (180,180,180) VR3 = (141,141,141) VR1 = (0,0,0) CSH2 = (96,55,4) CSH3 = (209,111,0) CSH1 = (0,0,0) SSH1 = (0,0,0) EP1 = (0,0,0) ND1 = (97,224,220) ND2 = (0,0,0) BSH2 = (115,0,67) BSH3 = (153,0,89) BSH4 = (188,0,92) BSH1 = (0,0,0) EM2 = (215,215,215) EM1 = (0,0,0) RSH1 = (0,0,0) TI1 = (255,186,0) TI2 = (255,0,0) MH2 = (255,255,255) MH1 = (0,0,0) PH2 = (97,224,220) PH1 = (250,128,114) PH3 = (0,0,0) WG3 = (97,224,220) WG2 = (82,78,0) WG1 = (28,27,0) OH2 = (50,40,40) OH1 = (90,65,55) ETI = SV1 #(0,223,138) HOB1 = (255,192,0) HOB2 = (255,255,0) HOB3 = (255,0,0) HOB4 = (146,208,80) HOB5 = (192,0,0) GCR1 = (191,191,191) GCR2 = (128,128,128) GCR3 = (219,219,219) GCR4 = (219,227,115) GCR5 = (255,192,0) KGC = (159,109,9) FL1 = (219,227,115) FL2 = (255,192,0) FL3 = (146,208,80) FL4 = (255,255,0) EOY1 = (255,192,0) EOY2 = (255,255,0) ELT = (255,192,0) DHL1 = (190,130,70) DHL2 = (80,50,30) DHL3 = (0,0,0) THR1=(200,140,90) # The matrix of each atty ORC_HELMET=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,OH2,OH2,OH2,OH2,OH2,OH2,OH2,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,OH2,OH2,OH2,OH2,OH2,OH2,OH2,OH2,OH2,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,OH2,OH2,OH2,OH2,OH2,OH2,OH2,OH2,OH2,OH2,OH2,0,0,0,0,0,0], [0,0,0,0,0,0,OH2,OH2,OH2,OH1,OH1,OH1,OH1,OH1,OH1,OH1,OH2,OH2,OH2,0,0,0,0,0], [0,0,0,0,0,0,0,0,OH1,OH1,OH1,OH1,OH1,OH1,OH1,OH1,OH1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,OH1,OH1,OH1,OH1,OH1,OH1,OH1,OH1,OH1,OH1,OH1,0,0,0,0,0,0], [0,0,0,0,0,0,0,OH1,OH1,OH1,OH1,OH1,OH1,OH1,OH1,OH1,OH1,OH1,0,0,0,0,0,0], [0,0,0,0,0,0,0,OH1,OH1,OH1,OH1,OH1,OH1,OH1,OH1,OH1,OH1,OH1,0,0,0,0,0,0], [0,0,0,0,0,0,0,OH1,OH1,OH1,OH1,OH1,OH1,OH1,OH1,OH1,OH1,OH1,0,OH1,0,0,0,0], [0,0,0,0,0,0,0,OH1,OH1,OH1,OH1,OH1,OH1,OH1,OH1,OH1,OH1,OH1,OH1,0,0,0,0,0], [0,0,0,0,0,0,0,OH1,0,0,OH1,OH1,OH1,0,0,OH1,OH1,OH1,0,0,0,0,0,0], [0,0,0,0,0,0,0,OH1,0,0,OH1,OH1,OH1,0,0,OH1,OH1,OH1,0,0,0,0,0,0], [0,0,0,0,0,0,0,OH1,OH1,OH1,OH1,OH1,OH1,OH1,OH1,OH1,OH1,OH1,0,OH1,0,0,0,0], [0,0,0,0,0,0,0,OH1,OH1,OH1,OH1,OH1,OH1,OH1,OH1,OH1,OH1,OH1,0,OH1,0,0,0,0], [0,0,0,0,0,0,0,OH1,OH1,OH1,OH1,OH1,OH1,OH1,OH1,OH1,OH1,OH1,OH1,OH1,0,0,0,0], [0,0,0,0,0,0,0,OH1,OH1,OH1,OH1,OH1,OH1,OH1,OH1,OH1,OH1,OH1,0,OH1,0,0,0,0], [0,0,0,0,0,0,0,OH1,OH1,0,0,0,0,0,0,OH1,OH1,OH1,0,0,0,0,0,0], [0,0,0,0,0,0,0,OH1,OH1,0,0,0,0,0,0,OH1,OH1,OH1,0,0,0,0,0,0], [0,0,0,0,0,0,0,OH1,OH1,0,0,0,0,0,0,OH1,OH1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,OH1,OH1,0,0,0,0,OH1,OH1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] CIGARETTE=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,CG4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,CG4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,CG4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,CG4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,CG4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,CG4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,CG1,CG1,CG1,CG1,CG1,CG1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,CG1,CG3,CG2,CG2,CG2,CG2,CG2,CG1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,CG1,CG1,CG1,CG1,CG1,CG1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] PIPE=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,PI4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,PI4,PI4,PI4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,PI4,PI4,PI4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,PI4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,PI4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,PI1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,PI1,PI1,PI1,PI1,PI1,0,0,PI1,PI2,PI1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,PI1,PI2,PI2,PI2,PI1,0,PI1,PI2,PI1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,PI1,PI3,PI2,PI3,PI1,PI1,PI2,PI1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,PI1,PI3,PI2,PI2,PI2,PI1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,PI1,PI1,PI1,PI1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] MOLE=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,MO1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] MOLE_2=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,MO1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] SMILE=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,SM1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] FROWN=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,FW1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] VAPE=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,VP1,VP1,VP1,VP1,VP1,VP1,VP1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,VP1,VP2,VP3,VP3,VP3,VP3,VP3,VP1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,VP1,VP1,VP1,VP1,VP1,VP1,VP1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] NOSE_1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,CN1,CN1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,CN1,CN1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] NOSE_2=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,CN1,CN1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,CN1,CN1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] NOSE_3=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,CN1,CN1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,CN1,CN1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] ROSY_1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,RC1,0,0,0,0,RC1,RC1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,RC1,0,0,0,0,0,RC1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] ROSY_2=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,RC1,RC1,0,0,0,RC1,RC1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] MASK_1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,MK1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,MK1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,MK1,0,0,0,0,0,0,MK1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,MK1,MK1,MK2,MK1,MK1,MK1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,MK1,MK1,MK1,MK1,MK1,MK1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,MK2,MK1,MK1,MK1,MK1,MK2,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,MK1,MK1,MK1,MK1,MK1,MK1,MK1,MK1,MK1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,MK1,MK1,MK1,MK1,MK1,MK1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,MK1,MK1,MK1,MK1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] MASK_2=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,MK1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,MK1,0,0,0,0,0,0,MK1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,MK1,MK1,MK2,MK1,MK1,MK1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,MK1,MK1,MK1,MK1,MK1,MK1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,MK2,MK1,MK1,MK1,MK1,MK2,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,MK1,MK1,MK1,MK1,MK1,MK1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,MK1,MK1,MK1,MK1,MK1,MK1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,MK1,MK1,MK1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] EARS_0=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,ER1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,ER1,ER2,ER1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,ER1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] EARS_1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,ER1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,ER1,ER2,ER1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,ER1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] EARS_2=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,ER1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,ER1,ER2,ER1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,ER1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] EARS_3=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,ER1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,ER1,ER2,ER1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,ER1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] EARS_4=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,ER1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,ER1,ER2,ER1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,ER1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] GoldChain_1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,GC1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,GC1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,GC1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] SCR1 = (20,20,20) SCARE_1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] SCARE_2=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] GoldChain_4=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,GC1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,GC1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,GC1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] RING_1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,RG1,0,RG1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,RG1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] BROCHE_1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,BO1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,BO1,BO1,BO1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,BO1,0,0,0,0,0,0,0] ] BROCHE_2=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,BO1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,BO1,BO1,BO1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,BO1,0,0,0,0,0,0,0,0] ] BROCHE_3=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,BO1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,BO1,BO1,BO1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,BO1,0,0,0,0,0,0,0,0,0] ] SilverChain_1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,SV1,SV1,SV1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] SilverChain_2=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,SV1,SV1,SV1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] GoldChain_2=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,GC1,GC1,GC1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] RING_2=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,RG1,0,RG1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,RG1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] SilverChain_3=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,SV1,SV1,SV1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] GoldChain_3=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,GC1,GC1,GC1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] CHOKER=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,KR1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,KR1,KR1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,KR1,KR1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] RING_3=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,RG1,0,RG1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,RG1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] CAP_1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,CA1,CA1,CA1,CA1,CA1,CA1,CA1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,CA1,CA1,CA2,CA1,CA1,CA1,CA1,CA1,CA1,BG1,0,0,0,0,0,0], [0,0,0,0,0,0,0,BG1,CA1,CA2,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,BG1,0,0,0,0,0], [0,0,0,0,0,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,BG1,0,0,0,0,0], [0,0,0,0,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,0,0,0,0,0,0], [0,0,0,0,0,0,BG1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] CAP_7=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,BG1,BG1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,BG1,0,0,0,0,0,0,0], [0,0,0,0,0,0,BG1,BG1,CA1,CA1,CA2,CA1,CA1,CA1,CA1,CA1,CA1,BG1,0,0,0,0,0,0], [0,0,0,0,0,BG1,BG1,BG1,CA1,CA2,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,BG1,0,0,0,0,0], [0,0,0,0,0,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,BG1,0,0,0,0,0], [0,0,0,0,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] BEANI_1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,BG1,BG1,BG1,BG1,BG1,BG1,BG1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,BG1,BN1,BN1,BN1,BN1,BN1,BG1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,BG1,BG1,BG1,BG1,BN5,BG1,BG1,BG1,BG1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,BG1,BG1,BN2,BN2,BN3,BN3,BN3,BN1,BN1,BG1,BG1,0,0,0,0,0,0], [0,0,0,0,0,0,BG1,BG1,BN2,BN2,BN2,BN3,BN3,BN3,BN1,BN1,BN1,BG1,BG1,0,0,0,0,0], [0,0,0,0,0,0,BG1,BN2,BN2,BN2,BN3,BN3,BN3,BN3,BN3,BN1,BN1,BN1,BG1,0,0,0,0,0], [0,0,0,0,0,0,BG1,BN2,BN2,BN3,BN3,BN3,BN3,BN3,BN3,BN3,BN1,BN1,BG1,0,0,0,0,0], [0,0,0,0,0,0,BG1,0,0,BN4,BN4,BN4,BN4,BN4,BN4,BN4,0,0,0,BG1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] BEANI_7=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,0,0,0,0,0,0], [0,0,0,0,0,0,0,BG1,BG1,BG1,BN1,BN1,BN1,BN1,BN1,BG1,BG1,0,0,0,0,0,0,0], [0,0,0,0,0,0,BG1,BG1,BG1,BG1,BG1,BG1,BN5,BG1,BG1,BG1,BG1,BG1,0,0,0,0,0,0], [0,0,0,0,0,BG1,BG1,BG1,BG1,BN2,BN2,BN3,BN3,BN3,BN1,BN1,BG1,BG1,BG1,0,0,0,0,0], [0,0,0,0,0,BG1,BG1,BG1,BN2,BN2,BN2,BN3,BN3,BN3,BN1,BN1,BN1,BG1,BG1,0,0,0,0,0], [0,0,0,0,0,BG1,BG1,BN2,BN2,BN2,BN3,BN3,BN3,BN3,BN3,BN1,BN1,BN1,BG1,0,0,0,0,0], [0,0,0,0,0,BG1,BG1,BN2,BN2,BN3,BN3,BN3,BN3,BN3,BN3,BN3,BN1,BN1,BG1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,BN4,BN4,BN4,BN4,BN4,BN4,BN4,0,0,BG1,BG1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] TOPHAT_1=[ [0,0,0,0,0,0,0,0,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,0,0,0,0,0,0], [0,0,0,0,0,0,0,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,0,0,0,0,0,0], [0,0,0,0,0,0,0,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,0,0,0,0,0,0], [0,0,0,0,0,0,0,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,0,0,0,0,0,0], [0,0,0,0,0,0,0,TH2,TH2,TH2,TH2,TH2,TH2,TH2,TH2,TH2,TH2,TH2,0,0,0,0,0,0], [0,0,0,0,0,0,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,0,0,0,0,0], [0,0,0,0,0,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,0,0,0,0], [0,0,0,0,0,BG1,0,0,0,0,0,0,0,0,0,0,0,0,BG1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] TOPHAT_7=[ [0,0,0,0,0,0,0,0,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,0,0,0,0,0,0], [0,0,0,0,0,0,0,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,0,0,0,0,0,0], [0,0,0,0,0,0,0,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,0,0,0,0,0,0], [0,0,0,0,0,0,BG1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,0,0,0,0,0,0], [0,0,0,0,0,BG1,BG1,TH2,TH2,TH2,TH2,TH2,TH2,TH2,TH2,TH2,TH2,TH2,BG1,0,0,0,0,0], [0,0,0,0,0,BG1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,0,0,0,0,0], [0,0,0,0,0,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] KNITTED_1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,BG1,KC1,KC1,KC1,KC1,KC1,KC1,KC1,BG1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,BG1,KC1,KC2,KC2,KC2,KC2,KC2,KC2,KC2,KC1,BG1,0,0,0,0,0,0], [0,0,0,0,0,0,BG1,KC1,KC2,KC2,KC2,KC2,KC2,KC2,KC2,KC2,KC2,KC1,BG1,0,0,0,0,0], [0,0,0,0,0,BG1,KC1,KC3,KC3,KC3,KC3,KC3,KC3,KC3,KC3,KC3,KC3,KC3,KC1,BG1,0,0,0,0], [0,0,0,0,0,BG1,KC1,KC3,KC2,KC3,KC2,KC3,KC2,KC3,KC2,KC3,KC2,KC3,KC1,BG1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] KNITTED_7=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,BG1,BG1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,0,0,0,0,0,0], [0,0,0,0,0,0,BG1,BG1,BG1,KC1,KC1,KC1,KC1,KC1,KC1,KC1,BG1,BG1,0,0,0,0,0,0], [0,0,0,0,0,BG1,BG1,BG1,KC1,KC2,KC2,KC2,KC2,KC2,KC2,KC2,KC1,BG1,BG1,0,0,0,0,0], [0,0,0,0,0,BG1,BG1,KC1,KC2,KC2,KC2,KC2,KC2,KC2,KC2,KC2,KC2,KC1,BG1,0,0,0,0,0], [0,0,0,0,0,BG1,KC1,KC3,KC3,KC3,KC3,KC3,KC3,KC3,KC3,KC3,KC3,KC3,KC1,BG1,0,0,0,0], [0,0,0,0,0,BG1,KC1,KC3,KC2,KC3,KC2,KC3,KC2,KC3,KC2,KC3,KC2,KC3,KC1,BG1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] HEADBAND_1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,HB1,HB1,HB1,HB1,HB1,HB1,HB1,HB1,HB1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,HB2,HB2,HB2,HB2,HB2,HB2,HB2,HB2,HB2,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] COWBOY_1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,CH1,CH1,0,0,0,CH1,CH1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,BG1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,BG1,0,0,0,0,0,0], [0,0,0,CH1,0,0,BG1,CH2,CH2,CH2,CH2,CH2,CH2,CH2,CH2,CH2,CH2,CH2,BG1,0,0,CH1,0,0], [0,0,0,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,0,0], [0,0,0,0,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,BG1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] COWBOY_7=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,CH1,CH1,0,0,0,CH1,CH1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,BG1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,0,0,0,0,0,0,0], [0,0,0,0,0,0,BG1,BG1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,BG1,0,0,0,0,0,0], [0,0,0,0,0,BG1,BG1,BG1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,BG1,BG1,0,0,0,0,0], [0,0,0,CH1,0,BG1,BG1,CH2,CH2,CH2,CH2,CH2,CH2,CH2,CH2,CH2,CH2,CH2,BG1,0,0,CH1,0,0], [0,0,0,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,0,0], [0,0,0,0,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,BG1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] FORCAP_1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,FC1,FC1,FC1,FC1,FC1,FC1,FC1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,FC1,FC2,FC2,FC2,FC2,FC2,FC2,FC3,FC1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,FC1,FC2,FC2,FC2,FC2,FC2,FC2,FC2,FC2,FC3,FC1,0,0,0,0,0,0], [0,0,0,0,0,0,FC1,FC1,FC1,FC1,FC1,FC1,FC1,FC1,FC2,FC2,FC2,FC1,BG1,0,0,0,0,0], [0,0,0,0,0,FC1,FC3,FC3,FC3,FC3,FC3,FC3,FC3,FC3,FC1,FC2,FC2,FC1,0,0,0,0,0,0], [0,0,0,0,0,FC1,FC1,FC1,FC1,FC1,FC1,FC1,FC1,FC1,FC1,FC1,FC1,FC1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] FORCAP_7=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,BG1,BG1,FC1,FC1,FC1,FC1,FC1,FC1,FC1,BG1,0,0,0,0,0,0,0], [0,0,0,0,0,0,BG1,BG1,FC1,FC2,FC2,FC2,FC2,FC2,FC2,FC3,FC1,BG1,0,0,0,0,0,0], [0,0,0,0,0,BG1,BG1,FC1,FC2,FC2,FC2,FC2,FC2,FC2,FC2,FC2,FC3,FC1,BG1,0,0,0,0,0], [0,0,0,0,0,BG1,FC1,FC1,FC1,FC1,FC1,FC1,FC1,FC1,FC2,FC2,FC2,FC1,BG1,0,0,0,0,0], [0,0,0,0,0,FC1,FC3,FC3,FC3,FC3,FC3,FC3,FC3,FC3,FC1,FC2,FC2,FC1,0,0,0,0,0,0], [0,0,0,0,0,FC1,FC1,FC1,FC1,FC1,FC1,FC1,FC1,FC1,FC1,FC1,FC1,FC1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] BANDANA_1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,BA2,BA2,BA2,BA2,BA2,BA2,BA2,BA2,BG1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,BA2,BA1,BA1,BA1,BA1,BA1,BA1,BA1,BA1,BA2,BG1,0,0,0,0,0,0], [0,0,0,0,0,BG1,0,BA2,BA1,BA1,BA1,BA1,BA1,BA1,BA1,BA1,BA1,BA2,BG1,0,0,0,0,0], [0,0,0,0,0,0,0,0,BA2,BA1,BA1,BA1,BA2,BA2,BA2,BA2,BA1,BA3,BA2,BA1,BA2,BA1,0,0], [0,0,0,0,0,0,0,0,0,BA2,BA2,BA2,0,0,0,0,0,0,BA3,BA2,BA1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,BA3,BA1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,BA1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] BANDANA_7=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,0,0,0,0,0,0], [0,0,0,0,0,0,BG1,BG1,BA2,BA2,BA2,BA2,BA2,BA2,BA2,BA2,BG1,BG1,0,0,0,0,0,0], [0,0,0,0,0,BG1,BG1,BA2,BA1,BA1,BA1,BA1,BA1,BA1,BA1,BA1,BA2,BG1,BG1,0,0,0,0,0], [0,0,0,0,0,BG1,BG1,BA2,BA1,BA1,BA1,BA1,BA1,BA1,BA1,BA1,BA1,BA2,BG1,0,0,0,0,0], [0,0,0,0,0,BG1,0,0,BA2,BA1,BA1,BA1,BA2,BA2,BA2,BA2,BA1,BA3,BA2,BA1,BA2,BA1,0,0], [0,0,0,0,0,0,0,0,0,BA2,BA2,BA2,0,0,0,0,0,0,BA3,BA2,BA1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,BA3,BA1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,BA1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] FEDORA_1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,FD1,FD1,FD1,FD1,FD1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,FD1,FD1,FD1,FD1,FD1,FD1,FD1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,BG1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,BG1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,BG1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,BG1,0,0,0,0,0,0], [0,0,0,0,0,0,0,FD2,FD2,FD2,FD2,FD2,FD2,FD2,FD2,FD2,FD2,FD2,BG1,0,0,0,0,0], [0,0,0,0,0,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,0,0,0,0], [0,0,0,0,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] FEDORA_7=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,FD1,FD1,FD1,FD1,FD1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,BG1,BG1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,BG1,0,0,0,0,0,0,0], [0,0,0,0,0,0,BG1,BG1,BG1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,BG1,BG1,0,0,0,0,0,0], [0,0,0,0,0,BG1,BG1,BG1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,BG1,BG1,0,0,0,0,0], [0,0,0,0,0,BG1,BG1,FD2,FD2,FD2,FD2,FD2,FD2,FD2,FD2,FD2,FD2,FD2,BG1,0,0,0,0,0], [0,0,0,0,0,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,0,0,0,0], [0,0,0,0,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] POLICE_1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,PC1,PC1,PC1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,PC1,PC1,PC1,PC1,PC2,PC2,PC2,PC1,PC1,PC1,PC1,0,0,0,0,0,0], [0,0,0,0,0,0,PC1,PC2,PC2,PC2,PC2,PC2,PC4,PC2,PC2,PC2,PC2,PC2,PC1,0,0,0,0,0], [0,0,0,0,0,0,PC1,PC2,PC2,PC2,PC2,PC2,PC2,PC2,PC2,PC2,PC2,PC2,PC1,0,0,0,0,0], [0,0,0,0,0,0,BG1,PC1,PC3,PC1,PC3,PC1,PC3,PC1,PC3,PC1,PC3,PC1,0,0,0,0,0,0], [0,0,0,0,0,0,PC1,PC2,PC2,PC2,PC2,PC2,PC2,PC2,PC2,PC1,PC1,PC1,0,0,0,0,0,0], [0,0,0,0,0,0,PC1,PC1,PC1,PC1,PC1,PC1,PC1,PC1,PC1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] POLICE_7=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,PC1,PC1,PC1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,PC1,PC1,PC1,PC1,PC2,PC2,PC2,PC1,PC1,PC1,PC1,0,0,0,0,0,0], [0,0,0,0,0,0,PC1,PC2,PC2,PC2,PC2,PC2,PC4,PC2,PC2,PC2,PC2,PC2,PC1,0,0,0,0,0], [0,0,0,0,0,BG1,PC1,PC2,PC2,PC2,PC2,PC2,PC2,PC2,PC2,PC2,PC2,PC2,PC1,0,0,0,0,0], [0,0,0,0,0,0,0,PC1,PC3,PC1,PC3,PC1,PC3,PC1,PC3,PC1,PC3,PC1,0,0,0,0,0,0], [0,0,0,0,0,0,PC1,PC2,PC2,PC2,PC2,PC2,PC2,PC2,PC2,PC1,PC1,PC1,0,0,0,0,0,0], [0,0,0,0,0,0,PC1,PC1,PC1,PC1,PC1,PC1,PC1,PC1,PC1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] CAP_2=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,BG1,BG1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,BG1,BG1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,BG1,BG1,BG1,BG1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,BG1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,0,0,0,0,0,0,0,0], [0,0,0,0,BG1,BG1,BG1,BG1,CA1,CA1,CA2,CA1,CA1,CA1,CA1,CA1,CA1,BG1,BG1,BG1,BG1,0,0,0], [0,0,0,0,BG1,BG1,BG1,BG1,CA1,CA2,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,BG1,BG1,BG1,0,0,0], [0,0,0,0,0,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,BG1,BG1,0,0,0,0], [0,0,0,0,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,0,BG1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] BEANI_2=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,BG1,BG1,BG1,BG1,BG1,BG1,BG1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,BG1,BN1,BN1,BN1,BN1,BN1,BG1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,BG1,BG1,BG1,BN5,BG1,BG1,BG1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,BG1,BN2,BN2,BN3,BN3,BN3,BN1,BN1,BG1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,BG1,BN2,BN2,BN2,BN3,BN3,BN3,BN1,BN1,BN1,BG1,0,0,0,0,0,0], [0,0,0,0,0,0,BG1,BN2,BN2,BN2,BN3,BN3,BN3,BN3,BN3,BN1,BN1,BN1,BG1,0,0,0,0,0], [0,0,0,0,0,0,BG1,BN2,BN2,BN3,BN3,BN3,BN3,BN3,BN3,BN3,BN1,BN1,BG1,0,0,0,0,0], [0,0,0,0,0,0,BG1,0,0,BN4,BN4,BN4,BN4,BN4,BN4,BN4,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] BEANI_3=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,BN1,BN1,BN1,BN1,BN1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,BN5,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,BN2,BN2,BN3,BN3,BN1,BN1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,BN2,BN2,BN2,BN3,BN3,BN1,BN1,BN1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,BN2,BN2,BN2,BN3,BN3,BN3,BN3,BN1,BN1,BN1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,BN2,BN2,BN3,BN3,BN3,BN3,BN3,BN3,BN1,BN1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,BN4,BN4,BN4,BN4,BN4,BN4,BN4,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] TOPHAT_2=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,0,0,0,0,0,0], [0,0,0,0,0,0,0,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,0,0,0,0,0,0], [0,0,0,0,0,0,0,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,0,0,0,0,0,0], [0,0,0,0,BG1,BG1,BG1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,BG1,BG1,BG1,0,0,0], [0,0,0,0,BG1,BG1,BG1,TH2,TH2,TH2,TH2,TH2,TH2,TH2,TH2,TH2,TH2,TH2,BG1,BG1,BG1,0,0,0], [0,0,0,0,0,BG1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,BG1,0,0,0,0], [0,0,0,0,0,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] TOPHAT_3=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,TH2,TH2,TH2,TH2,TH2,TH2,TH2,TH2,TH2,TH2,0,0,0,0,0,0,0], [0,0,0,0,0,0,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,0,0,0,0,0,0], [0,0,0,0,0,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] KNITTED_2=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,BG1,KC1,KC1,KC1,KC1,KC1,KC1,KC1,BG1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,BG1,KC1,KC2,KC2,KC2,KC2,KC2,KC2,KC2,KC1,BG1,0,0,0,0,0,0], [0,0,0,0,0,0,BG1,KC1,KC2,KC2,KC2,KC2,KC2,KC2,KC2,KC2,KC2,KC1,BG1,0,0,0,0,0], [0,0,0,0,0,BG1,KC1,KC3,KC3,KC3,KC3,KC3,KC3,KC3,KC3,KC3,KC3,KC3,KC1,BG1,0,0,0,0], [0,0,0,0,0,BG1,KC1,KC3,KC2,KC3,KC2,KC3,KC2,KC3,KC2,KC3,KC2,KC3,KC1,BG1,0,0,0,0], [0,0,0,0,0,BG1,BG1,0,0,0,0,0,0,0,0,0,0,0,0,BG1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] KNITTED_6=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,BG1,KC1,KC1,KC1,KC1,KC1,KC1,KC1,BG1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,BG1,KC1,KC2,KC2,KC2,KC2,KC2,KC2,KC2,KC1,BG1,0,0,0,0,0,0], [0,0,0,0,0,0,BG1,KC1,KC2,KC2,KC2,KC2,KC2,KC2,KC2,KC2,KC2,KC1,BG1,0,0,0,0,0], [0,0,0,0,0,BG1,KC1,KC3,KC3,KC3,KC3,KC3,KC3,KC3,KC3,KC3,KC3,KC3,KC1,0,0,0,0,0], [0,0,0,0,0,BG1,KC1,KC3,KC2,KC3,KC2,KC3,KC2,KC3,KC2,KC3,KC2,KC3,KC1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] KNITTED_5=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,BG1,KC1,KC1,KC1,KC1,KC1,KC1,KC1,BG1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,BG1,KC1,KC2,KC2,KC2,KC2,KC2,KC2,KC2,KC1,BG1,0,0,0,0,0,0], [0,0,0,0,0,0,BG1,KC1,KC2,KC2,KC2,KC2,KC2,KC2,KC2,KC2,KC2,KC1,BG1,0,0,0,0,0], [0,0,0,0,0,BG1,KC1,KC3,KC3,KC3,KC3,KC3,KC3,KC3,KC3,KC3,KC3,KC3,KC1,BG1,0,0,0,0], [0,0,0,0,0,BG1,KC1,KC3,KC2,KC3,KC2,KC3,KC2,KC3,KC2,KC3,KC2,KC3,KC1,BG1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] HEADBAND_2=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,HB1,HB1,HB1,HB1,HB1,HB1,HB1,HB1,HB1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,HB2,HB2,HB2,HB2,HB2,HB2,HB2,HB2,HB2,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] COWBOY_2=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,BG1,BG1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,BG1,BG1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,CH1,CH1,BG1,BG1,BG1,CH1,CH1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,0,0,0,0,0,0,0], [0,0,0,0,BG1,BG1,BG1,BG1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,BG1,BG1,BG1,BG1,0,0,0], [0,0,0,0,BG1,BG1,BG1,BG1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,BG1,BG1,BG1,BG1,0,0,0], [0,0,0,CH1,0,BG1,BG1,CH2,CH2,CH2,CH2,CH2,CH2,CH2,CH2,CH2,CH2,CH2,BG1,BG1,0,CH1,0,0], [0,0,0,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,0,0], [0,0,0,0,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,0,0,0], [0,0,0,0,0,BG1,0,0,0,0,0,0,0,0,0,0,0,0,0,BG1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] COWBOY_4=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,CH1,CH1,0,0,0,CH1,CH1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,BG1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,BG1,0,0,0,0,0,0], [0,0,0,CH1,0,0,BG1,CH2,CH2,CH2,CH2,CH2,CH2,CH2,CH2,CH2,CH2,CH2,BG1,0,0,CH1,0,0], [0,0,0,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,0,0], [0,0,0,0,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] COWBOY_3=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,CH1,CH1,0,0,CH1,CH1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,BG1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,BG1,0,0,0,0,0,0,0], [0,0,0,CH1,0,0,BG1,CH2,CH2,CH2,CH2,CH2,CH2,CH2,CH2,CH2,CH2,BG1,0,0,CH1,0,0,0], [0,0,0,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,0,0,0], [0,0,0,0,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] COWBOY_5=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,CH1,CH1,0,0,0,CH1,CH1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,BG1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,BG1,0,0,0,0,0,0], [0,0,0,CH1,0,0,BG1,CH2,CH2,CH2,CH2,CH2,CH2,CH2,CH2,CH2,CH2,CH2,BG1,0,0,CH1,0,0], [0,0,0,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,0,0], [0,0,0,0,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] FORCAP_2=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,BG1,BG1,BG1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,BG1,BG1,BG1,BG1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,BG1,FC1,FC1,FC1,FC1,FC1,FC1,FC1,BG1,0,0,0,0,0,0,0], [0,0,0,0,BG1,BG1,BG1,BG1,FC1,FC2,FC2,FC2,FC2,FC2,FC2,FC3,FC1,BG1,BG1,BG1,BG1,0,0,0], [0,0,0,0,BG1,BG1,BG1,FC1,FC2,FC2,FC2,FC2,FC2,FC2,FC2,FC2,FC3,FC1,BG1,BG1,BG1,0,0,0], [0,0,0,0,0,BG1,FC1,FC1,FC1,FC1,FC1,FC1,FC1,FC1,FC2,FC2,FC2,FC1,BG1,BG1,0,0,0,0], [0,0,0,0,0,FC1,FC3,FC3,FC3,FC3,FC3,FC3,FC3,FC3,FC1,FC2,FC2,FC1,0,BG1,0,0,0,0], [0,0,0,0,0,FC1,FC1,FC1,FC1,FC1,FC1,FC1,FC1,FC1,FC1,FC1,FC1,FC1,0,0,0,0,0,0], [0,0,0,0,0,BG1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] FORCAP_3=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,FC1,FC1,FC1,FC1,FC1,FC1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,FC1,FC2,FC2,FC2,FC2,FC2,FC3,FC1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,FC1,FC2,FC2,FC2,FC2,FC2,FC2,FC2,FC3,FC1,0,0,0,0,0,0,0], [0,0,0,0,0,0,FC1,FC1,FC1,FC1,FC1,FC1,FC1,FC2,FC2,FC2,FC1,0,0,0,0,0,0,0], [0,0,0,0,0,FC1,FC3,FC3,FC3,FC3,FC3,FC3,FC3,FC1,FC2,FC2,FC1,0,0,0,0,0,0,0], [0,0,0,0,0,FC1,FC1,FC1,FC1,FC1,FC1,FC1,FC1,FC1,FC1,FC1,FC1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] BANDANA_2=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,BG1,BG1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,BG1,BG1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,BG1,BG1,BG1,BG1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,0,0,0,0,0,0], [0,0,0,0,BG1,BG1,BG1,BG1,BA2,BA2,BA2,BA2,BA2,BA2,BA2,BA2,BG1,BG1,BG1,BG1,BG1,0,0,0], [0,0,0,0,BG1,BG1,BG1,BA2,BA1,BA1,BA1,BA1,BA1,BA1,BA1,BA1,BA2,BG1,BG1,BG1,BG1,0,0,0], [0,0,0,0,0,BG1,BG1,BA2,BA1,BA1,BA1,BA1,BA1,BA1,BA1,BA1,BA1,BA2,BG1,BG1,0,0,0,0], [0,0,0,0,0,BG1,BG1,0,BA2,BA1,BA1,BA1,BA2,BA2,BA2,BA2,BA1,BA3,BA2,BA1,BA2,BA1,0,0], [0,0,0,0,0,BG1,0,0,0,BA2,BA2,BA2,0,0,0,0,0,0,BA3,BA2,BA1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,BA3,BA1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,BA1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] FEDORA_2=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,BG1,BG1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,BG1,BG1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,BG1,FD1,FD1,FD1,FD1,FD1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,BG1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,0,0,0,0,0,0,0,0], [0,0,0,0,BG1,BG1,BG1,BG1,BG1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,BG1,BG1,BG1,BG1,BG1,0,0,0], [0,0,0,0,BG1,BG1,BG1,BG1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,BG1,BG1,BG1,BG1,0,0,0], [0,0,0,0,0,BG1,BG1,FD2,FD2,FD2,FD2,FD2,FD2,FD2,FD2,FD2,FD2,FD2,BG1,BG1,0,0,0,0], [0,0,0,0,0,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,0,0,0,0], [0,0,0,0,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,BG1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] FEDORA_5=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,FD1,FD1,FD1,FD1,FD1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,FD1,FD1,FD1,FD1,FD1,FD1,FD1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,BG1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,BG1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,BG1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,BG1,0,0,0,0,0,0], [0,0,0,0,0,0,BG1,FD2,FD2,FD2,FD2,FD2,FD2,FD2,FD2,FD2,FD2,FD2,BG1,0,0,0,0,0], [0,0,0,0,0,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,0,0,0,0], [0,0,0,0,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] POLICE_2=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,BG1,BG1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,BG1,BG1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,BG1,PC1,PC1,PC1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,PC1,PC1,PC1,PC1,PC2,PC2,PC2,PC1,PC1,PC1,PC1,0,0,0,0,0,0], [0,0,0,0,BG1,BG1,PC1,PC2,PC2,PC2,PC2,PC2,PC4,PC2,PC2,PC2,PC2,PC2,PC1,BG1,BG1,0,0,0], [0,0,0,0,BG1,BG1,PC1,PC2,PC2,PC2,PC2,PC2,PC2,PC2,PC2,PC2,PC2,PC2,PC1,BG1,BG1,0,0,0], [0,0,0,0,0,BG1,BG1,PC1,PC3,PC1,PC3,PC1,PC3,PC1,PC3,PC1,PC3,PC1,BG1,BG1,0,0,0,0], [0,0,0,0,0,BG1,PC1,PC2,PC2,PC2,PC2,PC2,PC2,PC2,PC2,PC1,PC1,PC1,0,BG1,0,0,0,0], [0,0,0,0,0,0,PC1,PC1,PC1,PC1,PC1,PC1,PC1,PC1,PC1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] POLICE_3=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,BG1,BG1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,BG1,BG1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,BG1,PC1,PC1,PC1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,PC1,PC1,PC1,PC1,PC2,PC2,PC2,PC1,PC1,PC1,PC1,0,0,0,0,0,0], [0,0,0,0,BG1,BG1,PC1,PC2,PC2,PC2,PC2,PC2,PC4,PC2,PC2,PC2,PC2,PC2,PC1,BG1,BG1,0,0,0], [0,0,0,0,BG1,BG1,PC1,PC2,PC2,PC2,PC2,PC2,PC2,PC2,PC2,PC2,PC2,PC2,PC1,BG1,BG1,0,0,0], [0,0,0,0,0,BG1,BG1,PC1,PC3,PC1,PC3,PC1,PC3,PC1,PC3,PC1,PC3,PC1,BG1,BG1,0,0,0,0], [0,0,0,0,0,0,PC1,PC2,PC2,PC2,PC2,PC2,PC2,PC2,PC2,PC1,PC1,PC1,0,BG1,0,0,0,0], [0,0,0,0,0,0,PC1,PC1,PC1,PC1,PC1,PC1,PC1,PC1,PC1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] CAP_6=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,CA1,CA1,CA1,CA1,CA1,CA1,CA1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,CA1,CA1,CA2,CA1,CA1,CA1,CA1,CA1,CA1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,CA1,CA2,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,0,0,0,0,0,0], [0,0,0,0,0,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,0,0,0,0,0,0], [0,0,0,0,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] CAP_8=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,BG1,BG1,BG1,0,BG1,0,BG1,BG1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,BG1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,BG1,BG1,0,0,0,0,0,0], [0,0,0,0,0,0,BG1,BG1,CA1,CA1,CA2,CA1,CA1,CA1,CA1,CA1,CA1,BG1,BG1,0,0,0,0,0], [0,0,0,0,0,BG1,0,BG1,CA1,CA2,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,BG1,BG1,0,0,0,0], [0,0,0,0,0,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,0,0,BG1,0,0,0], [0,0,0,0,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,0,0,0,BG1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] TOPHAT_6=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,0], [0,BG1,BG1,BG1,BG1,BG1,BG1,BG1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,BG1,BG1,BG1,BG1,BG1,BG1,0], [0,BG1,BG1,BG1,BG1,BG1,BG1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,BG1,BG1,BG1,BG1,BG1,0], [0,BG1,BG1,BG1,BG1,BG1,BG1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,BG1,BG1,BG1,BG1,BG1,0], [0,BG1,BG1,BG1,BG1,BG1,BG1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,BG1,BG1,BG1,BG1,BG1,0], [0,BG1,BG1,BG1,BG1,BG1,BG1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,BG1,BG1,BG1,BG1,BG1,0], [0,BG1,BG1,BG1,BG1,BG1,BG1,TH2,TH2,TH2,TH2,TH2,TH2,TH2,TH2,TH2,TH2,TH2,BG1,BG1,BG1,BG1,BG1,0], [0,BG1,BG1,BG1,BG1,BG1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,BG1,BG1,BG1,BG1,0], [0,BG1,BG1,BG1,BG1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,TH1,BG1,BG1,BG1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] HEADBAND_6=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,HB1,HB1,HB1,HB1,HB1,HB1,HB1,HB1,HB1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,HB2,HB2,HB2,HB2,HB2,HB2,HB2,HB2,HB2,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] COWBOY_6=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,CH1,CH1,0,0,0,CH1,CH1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,0,0,0,0,0,0,0], [0,0,0,CH1,0,0,0,CH2,CH2,CH2,CH2,CH2,CH2,CH2,CH2,CH2,CH2,CH2,0,0,0,CH1,0,0], [0,0,0,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,0,0], [0,0,0,0,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] COWBOY_8=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,CH1,CH1,BG1,0,BG1,CH1,CH1,BG1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,BG1,0,0,0,0,0,0], [0,0,0,0,0,0,BG1,BG1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,BG1,BG1,0,0,0,0,0], [0,0,0,0,0,BG1,BG1,BG1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,BG1,BG1,BG1,0,0,0,0], [0,0,0,CH1,0,BG1,BG1,CH2,CH2,CH2,CH2,CH2,CH2,CH2,CH2,CH2,CH2,CH2,BG1,BG1,BG1,CH1,0,0], [0,0,0,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,0,0], [0,0,0,0,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] FORCAP_6=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,0], [0,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,0], [0,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,0], [0,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,0], [0,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FC1,FC1,FC1,FC1,FC1,FC1,FC1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,0], [0,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FC1,FC2,FC2,FC2,FC2,FC2,FC2,FC3,FC1,BG1,BG1,BG1,BG1,BG1,BG1,0], [0,BG1,BG1,BG1,BG1,BG1,BG1,FC1,FC2,FC2,FC2,FC2,FC2,FC2,FC2,FC2,FC3,FC1,BG1,BG1,BG1,BG1,BG1,0], [0,BG1,BG1,BG1,BG1,BG1,FC1,FC1,FC1,FC1,FC1,FC1,FC1,FC1,FC2,FC2,FC2,FC1,0,BG1,BG1,BG1,BG1,0], [0,BG1,BG1,BG1,BG1,FC1,FC3,FC3,FC3,FC3,FC3,FC3,FC3,FC3,FC1,FC2,FC2,FC1,0,BG1,BG1,BG1,BG1,0], [0,BG1,BG1,BG1,BG1,FC1,FC1,FC1,FC1,FC1,FC1,FC1,FC1,FC1,FC1,FC1,FC1,FC1,0,BG1,BG1,BG1,BG1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] FORCAP_8=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,0], [0,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,0], [0,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,0], [0,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,0], [0,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FC1,FC1,FC1,FC1,FC1,FC1,FC1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,0], [0,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FC1,FC2,FC2,FC2,FC2,FC2,FC2,FC3,FC1,BG1,BG1,BG1,BG1,BG1,BG1,0], [0,BG1,BG1,BG1,BG1,BG1,BG1,FC1,FC2,FC2,FC2,FC2,FC2,FC2,FC2,FC2,FC3,FC1,BG1,BG1,BG1,BG1,BG1,0], [0,BG1,BG1,BG1,BG1,BG1,FC1,FC1,FC1,FC1,FC1,FC1,FC1,FC1,FC2,FC2,FC2,FC1,0,BG1,BG1,BG1,BG1,0], [0,BG1,BG1,BG1,BG1,FC1,FC3,FC3,FC3,FC3,FC3,FC3,FC3,FC3,FC1,FC2,FC2,FC1,0,0,BG1,BG1,BG1,0], [0,BG1,BG1,BG1,BG1,FC1,FC1,FC1,FC1,FC1,FC1,FC1,FC1,FC1,FC1,FC1,FC1,FC1,0,0,0,BG1,BG1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] BANDANA_6=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,BA2,BA2,BA2,BA2,BA2,BA2,BA2,BA2,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,BA2,BA1,BA1,BA1,BA1,BA1,BA1,BA1,BA1,BA2,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,BA2,BA1,BA1,BA1,BA1,BA1,BA1,BA1,BA1,BA1,BA2,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,BA2,BA1,BA1,BA1,BA2,BA2,BA2,BA2,BA1,BA3,BA2,BA1,BA2,BA1,0,0], [0,0,0,0,0,0,0,0,0,BA2,BA2,BA2,0,0,0,0,0,0,BA3,BA2,BA1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,BA3,BA1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,BA1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] FEDORA_6=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,FD1,FD1,FD1,FD1,FD1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,FD1,FD1,FD1,FD1,FD1,FD1,FD1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,FD1,FD1,FD1,FD1,FD1,FD1,FD1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,FD2,FD2,FD2,FD2,FD2,FD2,FD2,FD2,FD2,FD2,FD2,0,0,0,0,0,0], [0,0,0,0,0,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,0,0,0,0], [0,0,0,0,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,FD1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] POLICE_6=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,0], [0,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,0], [0,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,0], [0,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,PC1,PC1,PC1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,0], [0,BG1,BG1,BG1,BG1,BG1,BG1,PC1,PC1,PC1,PC1,PC2,PC2,PC2,PC1,PC1,PC1,PC1,BG1,BG1,BG1,BG1,BG1,0], [0,BG1,BG1,BG1,BG1,BG1,PC1,PC2,PC2,PC2,PC2,PC2,PC4,PC2,PC2,PC2,PC2,PC2,PC1,BG1,BG1,BG1,BG1,0], [0,BG1,BG1,BG1,BG1,BG1,PC1,PC2,PC2,PC2,PC2,PC2,PC2,PC2,PC2,PC2,PC2,PC2,PC1,BG1,BG1,BG1,BG1,0], [0,BG1,BG1,BG1,BG1,BG1,BG1,PC1,PC3,PC1,PC3,PC1,PC3,PC1,PC3,PC1,PC3,PC1,0,BG1,BG1,BG1,BG1,0], [0,BG1,BG1,BG1,BG1,BG1,PC1,PC2,PC2,PC2,PC2,PC2,PC2,PC2,PC2,PC1,PC1,PC1,0,BG1,BG1,BG1,BG1,0], [0,BG1,BG1,BG1,BG1,BG1,PC1,PC1,PC1,PC1,PC1,PC1,PC1,PC1,PC1,0,0,0,0,0,BG1,BG1,BG1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] TD_1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,TD1,TD1,TD1,TD1,TD1,TD1,TD1,TD1,TD1,TD1,TD1,0,0,0,0,0,0], [0,0,0,0,0,0,0,TD1,TD2,TD2,TD2,TD1,TD3,TD3,TD3,TD1,TD1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,TD1,TD2,TD2,TD2,TD1,TD3,TD3,TD3,TD1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,TD1,TD1,TD1,TD1,TD1,TD1,TD1,TD1,TD1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] VR_1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,VR1,VR1,VR1,VR1,VR1,VR1,VR1,VR1,VR1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,VR1,VR3,VR2,VR2,VR2,VR2,VR2,VR2,VR2,VR3,VR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,VR1,VR2,VR1,VR1,VR1,VR1,VR1,VR1,VR1,VR2,VR3,VR1,0,0,0,0,0,0], [0,0,0,0,0,0,VR1,VR2,VR1,VR1,VR1,VR1,VR1,VR1,VR1,VR2,VR3,VR1,0,0,0,0,0,0], [0,0,0,0,0,0,VR1,VR3,VR2,VR2,VR2,VR2,VR2,VR2,VR2,VR3,VR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,VR1,VR1,VR1,VR1,VR1,VR1,VR1,VR1,VR1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] ClassicShades_1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,CSH1,CSH1,CSH1,CSH1,CSH1,CSH1,CSH1,CSH1,CSH1,CSH1,CSH1,0,0,0,0,0,0], [0,0,0,0,0,0,0,CSH1,CSH2,CSH2,CSH1,0,CSH1,CSH2,CSH2,CSH1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,CSH1,CSH3,CSH3,CSH1,0,CSH1,CSH3,CSH3,CSH1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,CSH1,CSH1,0,0,0,CSH1,CSH1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] SmallShades_1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,SSH1,SSH1,SSH1,SSH1,SSH1,SSH1,SSH1,SSH1,SSH1,SSH1,SSH1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,SSH1,SSH1,0,0,0,SSH1,SSH1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,SSH1,SSH1,0,0,0,SSH1,SSH1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] EyePatch_1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,EP1,EP1,EP1,EP1,EP1,EP1,EP1,EP1,EP1,EP1,EP1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,EP1,EP1,EP1,EP1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,EP1,EP1,EP1,EP1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,EP1,EP1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] NerdGlasses_1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,ND2,ND2,ND2,ND2,0,ND2,ND2,ND2,ND2,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,ND2,ND1,ND1,ND2,ND2,ND2,ND1,ND1,ND2,ND2,ND2,0,0,0,0,0,0], [0,0,0,0,0,0,0,ND2,ND1,ND1,ND2,0,ND2,ND1,ND1,ND2,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,ND2,ND2,ND2,ND2,0,ND2,ND2,ND2,ND2,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] BigShades_1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,BSH1,BSH1,BSH1,BSH1,BSH1,0,BSH1,BSH1,BSH1,BSH1,BSH1,0,0,0,0,0,0,0], [0,0,0,0,0,0,BSH1,BSH2,BSH2,BSH2,BSH1,BSH1,BSH1,BSH2,BSH2,BSH2,BSH1,0,0,0,0,0,0,0], [0,0,0,0,0,0,BSH1,BSH3,BSH3,BSH3,BSH1,0,BSH1,BSH3,BSH3,BSH3,BSH1,0,0,0,0,0,0,0], [0,0,0,0,0,0,BSH1,BSH4,BSH4,BSH4,BSH1,0,BSH1,BSH4,BSH4,BSH4,BSH1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,BSH1,BSH1,BSH1,0,0,0,BSH1,BSH1,BSH1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] EyeMask_1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,EM1,EM1,EM1,EM1,EM1,EM1,EM1,EM1,EM1,EM1,EM1,0,0,0,0,0,0], [0,0,0,0,0,0,0,EM1,0,0,EM1,EM1,EM1,0,0,EM1,EM1,EM1,0,0,0,0,0,0], [0,0,0,0,0,0,0,EM1,0,EM2,EM1,EM1,EM1,0,EM2,EM1,EM1,EM1,0,0,0,0,0,0], [0,0,0,0,0,0,0,EM1,EM1,EM1,EM1,EM1,EM1,EM1,EM1,EM1,EM1,EM1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] HornedRimGlasses_1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,HRG1,HRG1,HRG1,HRG1,HRG1,HRG1,HRG1,HRG1,HRG1,HRG1,HRG1,HRG1,0,0,0,0,0,0], [0,0,0,0,0,0,HRG1,HRG1,HRG2,HRG2,HRG3,HRG1,HRG1,HRG2,HRG2,HRG3,HRG1,HRG1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,HRG4,HRG5,HRG3,0,0,HRG4,HRG5,HRG3,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,HRG3,HRG3,HRG3,0,0,HRG3,HRG3,HRG3,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] HornedRimGlasses_7=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,HRG1,HRG1,HRG1,HRG1,HRG1,HRG1,HRG1,HRG1,HRG1,HRG1,HRG1,HRG1,0,0,0,0,0,0], [0,0,0,0,0,0,HRG1,HRG1,HRG2,HRG2,HRG3,HRG1,HRG1,HRG2,HRG2,HRG3,HRG1,HRG1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,HRG4,HRG5,HRG3,0,0,HRG4,HRG5,HRG3,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,HRG3,HRG3,0,0,0,HRG3,HRG3,HRG3,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] RegularShades_1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,RSH1,RSH1,RSH1,RSH1,RSH1,RSH1,RSH1,RSH1,RSH1,RSH1,RSH1,RSH1,0,0,0,0,0,0], [0,0,0,0,0,0,RSH1,RSH1,RSH1,RSH1,0,0,RSH1,RSH1,RSH1,RSH1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,RSH1,RSH1,0,0,0,0,RSH1,RSH1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] TD_2=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,TD1,TD1,TD1,TD1,TD1,TD1,TD1,TD1,TD1,TD1,TD1,0,0,0,0,0,0], [0,0,0,0,0,0,0,TD1,TD2,TD2,TD2,TD1,TD3,TD3,TD3,TD1,TD1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,TD1,TD2,TD2,TD2,TD1,TD3,TD3,TD3,TD1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,TD1,TD1,TD1,TD1,TD1,TD1,TD1,TD1,TD1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] VR_2=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,VR1,VR1,VR1,VR1,VR1,VR1,VR1,VR1,VR1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,VR1,VR3,VR2,VR2,VR2,VR2,VR2,VR2,VR2,VR3,VR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,VR1,VR2,VR1,VR1,VR1,VR1,VR1,VR1,VR1,VR2,VR3,VR1,0,0,0,0,0,0], [0,0,0,0,0,0,VR1,VR2,VR1,VR1,VR1,VR1,VR1,VR1,VR1,VR2,VR3,VR1,0,0,0,0,0,0], [0,0,0,0,0,0,VR1,VR3,VR2,VR2,VR2,VR2,VR2,VR2,VR2,VR3,VR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,VR1,VR1,VR1,VR1,VR1,VR1,VR1,VR1,VR1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] ClassicShades_2=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,CSH1,CSH1,CSH1,CSH1,CSH1,CSH1,CSH1,CSH1,CSH1,CSH1,CSH1,0,0,0,0,0,0], [0,0,0,0,0,0,0,CSH1,CSH2,CSH2,CSH1,0,CSH1,CSH2,CSH2,CSH1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,CSH1,CSH3,CSH3,CSH1,0,CSH1,CSH3,CSH3,CSH1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,CSH1,CSH1,0,0,0,CSH1,CSH1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] SmallShades_2=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,SSH1,SSH1,SSH1,SSH1,SSH1,SSH1,SSH1,SSH1,SSH1,SSH1,SSH1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,SSH1,SSH1,0,0,0,SSH1,SSH1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,SSH1,SSH1,0,0,0,SSH1,SSH1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] EyePatch_2=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,EP1,EP1,EP1,EP1,EP1,EP1,EP1,EP1,EP1,EP1,EP1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,EP1,EP1,EP1,EP1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,EP1,EP1,EP1,EP1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,EP1,EP1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] NerdGlasses_2=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,ND2,ND2,ND2,ND2,0,ND2,ND2,ND2,ND2,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,ND2,ND1,ND1,ND2,ND2,ND2,ND1,ND1,ND2,ND2,ND2,0,0,0,0,0,0], [0,0,0,0,0,0,0,ND2,ND1,ND1,ND2,0,ND2,ND1,ND1,ND2,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,ND2,ND2,ND2,ND2,0,ND2,ND2,ND2,ND2,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] BigShades_2=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,BSH1,BSH1,BSH1,BSH1,BSH1,0,BSH1,BSH1,BSH1,BSH1,BSH1,0,0,0,0,0,0,0], [0,0,0,0,0,0,BSH1,BSH2,BSH2,BSH2,BSH1,BSH1,BSH1,BSH2,BSH2,BSH2,BSH1,0,0,0,0,0,0,0], [0,0,0,0,0,0,BSH1,BSH3,BSH3,BSH3,BSH1,0,BSH1,BSH3,BSH3,BSH3,BSH1,0,0,0,0,0,0,0], [0,0,0,0,0,0,BSH1,BSH4,BSH4,BSH4,BSH1,0,BSH1,BSH4,BSH4,BSH4,BSH1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,BSH1,BSH1,BSH1,0,0,0,BSH1,BSH1,BSH1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] EyeMask_2=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,EM1,EM1,EM1,EM1,EM1,EM1,EM1,EM1,EM1,EM1,EM1,0,0,0,0,0,0], [0,0,0,0,0,0,0,EM1,0,0,EM1,EM1,EM1,0,0,EM1,EM1,EM1,0,0,0,0,0,0], [0,0,0,0,0,0,0,EM1,0,EM2,EM1,EM1,EM1,0,EM2,EM1,EM1,EM1,0,0,0,0,0,0], [0,0,0,0,0,0,0,EM1,EM1,EM1,EM1,EM1,EM1,EM1,EM1,EM1,EM1,EM1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] HornedRimGlasses_2=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,HRG1,HRG1,HRG1,HRG1,HRG1,HRG1,HRG1,HRG1,HRG1,HRG1,HRG1,HRG1,0,0,0,0,0,0], [0,0,0,0,0,0,HRG1,HRG1,HRG2,HRG2,HRG3,HRG1,HRG1,HRG2,HRG2,HRG3,HRG1,HRG1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,HRG4,HRG1,HRG3,0,0,HRG4,HRG1,HRG3,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,HRG3,HRG3,HRG3,0,0,HRG3,HRG3,HRG3,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] RegularShades_2=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,RSH1,RSH1,RSH1,RSH1,RSH1,RSH1,RSH1,RSH1,RSH1,RSH1,RSH1,RSH1,0,0,0,0,0,0], [0,0,0,0,0,0,RSH1,RSH1,RSH1,RSH1,0,0,RSH1,RSH1,RSH1,RSH1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,RSH1,RSH1,0,0,0,0,RSH1,RSH1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] TD_6=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,TD1,TD1,TD1,TD1,TD1,TD1,TD1,TD1,TD1,TD1,TD1,0,0,0,0,0,0], [0,0,0,0,0,0,0,TD1,TD2,TD2,TD2,TD1,TD3,TD3,TD3,TD1,TD1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,TD1,TD2,TD2,TD2,TD1,TD3,TD3,TD3,TD1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,TD1,TD1,TD1,TD1,TD1,TD1,TD1,TD1,TD1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] VR_6=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,VR1,VR1,VR1,VR1,VR1,VR1,VR1,VR1,VR1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,VR1,VR3,VR2,VR2,VR2,VR2,VR2,VR2,VR2,VR3,VR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,VR1,VR2,VR1,VR1,VR1,VR1,VR1,VR1,VR1,VR2,VR3,VR1,0,0,0,0,0,0], [0,0,0,0,0,0,VR1,VR2,VR1,VR1,VR1,VR1,VR1,VR1,VR1,VR2,VR3,VR1,0,0,0,0,0,0], [0,0,0,0,0,0,VR1,VR3,VR2,VR2,VR2,VR2,VR2,VR2,VR2,VR3,VR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,VR1,VR1,VR1,VR1,VR1,VR1,VR1,VR1,VR1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] ClassicShades_6=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,CSH1,CSH1,CSH1,CSH1,CSH1,CSH1,CSH1,CSH1,CSH1,CSH1,CSH1,0,0,0,0,0,0], [0,0,0,0,0,0,0,CSH1,CSH2,CSH2,CSH1,0,CSH1,CSH2,CSH2,CSH1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,CSH1,CSH3,CSH3,CSH1,0,CSH1,CSH3,CSH3,CSH1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,CSH1,CSH1,0,0,0,CSH1,CSH1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] SmallShades_6=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,SSH1,SSH1,SSH1,SSH1,SSH1,SSH1,SSH1,SSH1,SSH1,SSH1,SSH1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,SSH1,SSH1,0,0,0,SSH1,SSH1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,SSH1,SSH1,0,0,0,SSH1,SSH1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] EyePatch_6=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,EP1,EP1,EP1,EP1,EP1,EP1,EP1,EP1,EP1,EP1,EP1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,EP1,EP1,EP1,EP1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,EP1,EP1,EP1,EP1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,EP1,EP1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] NerdGlasses_6=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,ND2,ND2,ND2,ND2,0,ND2,ND2,ND2,ND2,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,ND2,ND1,ND1,ND2,ND2,ND2,ND1,ND1,ND2,ND2,ND2,0,0,0,0,0,0], [0,0,0,0,0,0,0,ND2,ND1,ND1,ND2,0,ND2,ND1,ND1,ND2,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,ND2,ND2,ND2,ND2,0,ND2,ND2,ND2,ND2,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] BigShades_6=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,BSH1,BSH1,BSH1,BSH1,BSH1,0,BSH1,BSH1,BSH1,BSH1,BSH1,0,0,0,0,0,0,0], [0,0,0,0,0,0,BSH1,BSH2,BSH2,BSH2,BSH1,BSH1,BSH1,BSH2,BSH2,BSH2,BSH1,0,0,0,0,0,0,0], [0,0,0,0,0,0,BSH1,BSH3,BSH3,BSH3,BSH1,0,BSH1,BSH3,BSH3,BSH3,BSH1,0,0,0,0,0,0,0], [0,0,0,0,0,0,BSH1,BSH4,BSH4,BSH4,BSH1,0,BSH1,BSH4,BSH4,BSH4,BSH1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,BSH1,BSH1,BSH1,0,0,0,BSH1,BSH1,BSH1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] EyeMask_6=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,EM1,EM1,EM1,EM1,EM1,EM1,EM1,EM1,EM1,EM1,EM1,0,0,0,0,0,0], [0,0,0,0,0,0,0,EM1,0,0,EM1,EM1,EM1,0,0,EM1,EM1,EM1,0,0,0,0,0,0], [0,0,0,0,0,0,0,EM1,0,EM2,EM1,EM1,EM1,0,EM2,EM1,EM1,EM1,0,0,0,0,0,0], [0,0,0,0,0,0,0,EM1,EM1,EM1,EM1,EM1,EM1,EM1,EM1,EM1,EM1,EM1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] HornedRimGlasses_6=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,HRG1,HRG1,HRG1,HRG1,HRG1,HRG1,HRG1,HRG1,HRG1,HRG1,HRG1,HRG1,0,0,0,0,0,0], [0,0,0,0,0,0,HRG1,HRG1,HRG2,HRG2,HRG3,HRG1,HRG1,HRG2,HRG2,HRG3,HRG1,HRG1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,HRG4,HRG1,HRG3,0,0,HRG4,HRG1,HRG3,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,HRG3,HRG3,HRG3,0,0,HRG3,HRG3,HRG3,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] RegularShades_6=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,RSH1,RSH1,RSH1,RSH1,RSH1,RSH1,RSH1,RSH1,RSH1,RSH1,RSH1,RSH1,0,0,0,0,0,0], [0,0,0,0,0,0,RSH1,RSH1,RSH1,RSH1,0,0,RSH1,RSH1,RSH1,RSH1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,RSH1,RSH1,0,0,0,0,RSH1,RSH1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] TIARA_1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,TI1,TI1,0,TI1,TI1,TI1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,TI1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,TI1,TI2,TI1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,TI1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] KNITTED_3=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,BG1,KC1,KC1,KC1,KC1,KC1,KC1,BG1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,BG1,KC1,KC2,KC2,KC2,KC2,KC2,KC2,KC1,BG1,0,0,0,0,0,0,0], [0,0,0,0,0,0,BG1,KC1,KC2,KC2,KC2,KC2,KC2,KC2,KC2,KC2,KC1,BG1,0,0,0,0,0,0], [0,0,0,0,0,BG1,KC1,KC3,KC3,KC3,KC3,KC3,KC3,KC3,KC3,KC3,KC3,KC1,BG1,0,0,0,0,0], [0,0,0,0,0,BG1,KC1,KC2,KC3,KC2,KC3,KC2,KC3,KC2,KC3,KC2,KC3,KC1,BG1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] HEADBAND_3=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,HB1,HB1,HB1,HB1,HB1,HB1,HB1,HB1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,HB2,HB2,HB2,HB2,HB2,HB2,HB2,HB2,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] HEADBAND_5=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,HB1,HB1,HB1,HB1,HB1,HB1,HB1,HB1,HB1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,HB2,HB2,HB2,HB2,HB2,HB2,HB2,HB2,HB2,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] MILICAP_1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,BG1,MH1,MH1,MH1,MH1,MH1,MH1,BG1,BG1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,BG1,MH1,MH1,MH1,MH1,MH2,MH1,MH1,MH1,BG1,BG1,0,0,0,0,0,0], [0,0,0,0,0,0,BG1,MH1,MH1,MH1,MH1,MH2,MH1,MH1,MH1,MH1,MH1,BG1,0,0,0,0,0,0], [0,0,0,0,0,0,BG1,MH1,MH1,MH1,MH1,MH1,MH1,MH1,MH1,MH1,MH1,BG1,0,0,0,0,0,0], [0,0,0,0,0,0,BG1,0,0,0,0,0,0,0,0,0,0,BG1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] BANDANA_3=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,BG1,BG1,BG1,BG1,BG1,BG1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,BA2,BA2,BA2,BA2,BA2,BA2,BA2,BA2,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,BA2,BA1,BA1,BA1,BA1,BA1,BA1,BA1,BA1,BA2,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,BA2,BA1,BA1,BA1,BA1,BA1,BA1,BA1,BA1,BA1,BA2,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,BA2,BA1,BA1,BA1,BA2,BA2,BA2,BA2,BA1,BA3,BA2,BA1,BA2,BA1,0,0], [0,0,0,0,0,0,0,0,0,BA2,BA2,BA2,0,0,0,0,0,0,BA3,BA2,BA1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,BA3,BA1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,BA1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] PILOT_1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,PH1,PH1,PH1,PH1,PH1,PH1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,PH3,PH3,PH3,PH3,PH3,PH3,PH3,PH3,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,PH3,PH2,PH2,PH2,PH3,PH3,PH2,PH2,PH2,PH3,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,PH3,PH2,PH2,PH3,PH3,PH3,PH3,PH2,PH2,PH3,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,PH3,PH3,PH3,PH3,PH1,PH1,PH3,PH3,PH3,PH3,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,PH1,PH1,PH1,PH1,PH1,PH1,PH1,PH1,PH1,PH1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,PH1,0,0,0,0,0,0,0,0,PH1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,PH1,0,0,0,0,0,0,0,0,PH1,PH1,0,0,0,0,0,0], [0,0,0,0,0,0,0,PH1,0,0,0,0,0,0,0,0,PH1,PH1,0,0,0,0,0,0], [0,0,0,0,0,0,0,PH1,0,0,0,0,0,0,0,0,PH1,PH1,0,0,0,0,0,0], [0,0,0,0,0,0,0,PH1,0,0,0,0,0,0,0,0,PH1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,PH1,0,0,0,0,0,0,0,0,PH1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,PH1,0,0,0,0,0,0,0,0,PH1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,PH1,0,0,0,0,0,0,0,0,PH1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,PH1,0,0,0,0,0,0,0,0,PH1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,PH1,0,0,0,0,0,0,0,0,PH1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] CAP_3=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,CA1,CA1,CA1,CA1,CA1,CA1,CA1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,CA1,CA1,CA2,CA1,CA1,CA1,CA1,CA1,CA1,BG1,0,0,0,0,0,0,0], [0,0,0,0,0,0,BG1,CA1,CA2,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,BG1,0,0,0,0,0,0], [0,0,0,0,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,BG1,0,0,0,0,0,0], [0,0,0,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] EyePatch_3=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,EP1,EP1,EP1,EP1,EP1,EP1,EP1,EP1,EP1,EP1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,EP1,EP1,EP1,EP1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,EP1,EP1,EP1,EP1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,EP1,EP1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] GOGOLES_1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,WG1,WG2,WG2,WG1,WG1,WG1,WG2,WG2,WG1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,WG2,WG3,WG3,WG2,WG1,WG2,WG3,WG3,WG2,WG1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,WG2,WG3,WG3,WG2,WG1,WG2,WG3,WG3,WG2,WG1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,WG1,WG2,WG2,WG1,0,WG1,WG2,WG2,WG1,WG1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,WG1,0,0,0,0,0,0,0,0,WG1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] VR_3=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,VR1,VR1,VR1,VR1,VR1,VR1,VR1,VR1,VR1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,VR1,VR3,VR2,VR2,VR2,VR2,VR2,VR2,VR2,VR3,VR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,VR1,VR2,VR1,VR1,VR1,VR1,VR1,VR1,VR1,VR2,VR3,VR1,0,0,0,0,0,0], [0,0,0,0,0,0,VR1,VR2,VR1,VR1,VR1,VR1,VR1,VR1,VR1,VR2,VR3,VR1,0,0,0,0,0,0], [0,0,0,0,0,0,VR1,VR3,VR2,VR2,VR2,VR2,VR2,VR2,VR2,VR3,VR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,VR1,VR1,VR1,VR1,VR1,VR1,VR1,VR1,VR1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] RegularShades_3=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,RSH1,RSH1,RSH1,RSH1,RSH1,RSH1,RSH1,RSH1,RSH1,RSH1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,RSH1,RSH1,RSH1,RSH1,0,RSH1,RSH1,RSH1,RSH1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,RSH1,RSH1,0,0,0,RSH1,RSH1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] TD_3=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,TD1,TD1,TD1,TD1,TD1,TD1,TD1,TD1,TD1,TD1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,TD1,TD2,TD2,TD2,TD1,TD3,TD3,TD3,TD1,TD1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,TD1,TD2,TD2,TD2,TD1,TD3,TD3,TD3,TD1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,TD1,TD1,TD1,TD1,TD1,TD1,TD1,TD1,TD1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] NerdGlasses_3=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,ND2,ND2,ND2,ND2,0,ND2,ND2,ND2,ND2,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,ND2,ND1,ND1,ND2,ND2,ND2,ND1,ND1,ND2,ND2,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,ND2,ND1,ND1,ND2,0,ND2,ND1,ND1,ND2,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,ND2,ND2,0,0,0,ND2,ND2,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] ClassicShades_3=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,CSH1,CSH1,CSH1,CSH1,CSH1,CSH1,CSH1,CSH1,CSH1,CSH1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,CSH1,CSH2,CSH2,CSH1,0,CSH1,CSH2,CSH2,CSH1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,CSH1,CSH3,CSH3,CSH1,0,CSH1,CSH3,CSH3,CSH1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,CSH1,CSH1,0,0,0,CSH1,CSH1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] HornedRimGlasses_3=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,HRG1,HRG1,HRG1,HRG1,HRG1,HRG1,HRG1,HRG1,HRG1,HRG1,HRG1,0,0,0,0,0,0,0], [0,0,0,0,0,0,HRG1,HRG1,HRG2,HRG2,HRG3,HRG1,HRG1,HRG2,HRG2,HRG3,HRG1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,HRG4,HRG1,HRG3,0,0,HRG4,HRG1,HRG3,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,HRG3,HRG3,HRG3,0,0,HRG3,HRG3,HRG3,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] BigShades_3=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,BSH1,BSH1,BSH1,BSH1,BSH1,0,BSH1,BSH1,BSH1,BSH1,BSH1,0,0,0,0,0,0,0], [0,0,0,0,0,0,BSH1,BSH2,BSH2,BSH2,BSH1,BSH1,BSH1,BSH2,BSH2,BSH2,BSH1,0,0,0,0,0,0,0], [0,0,0,0,0,0,BSH1,BSH3,BSH3,BSH3,BSH1,0,BSH1,BSH3,BSH3,BSH3,BSH1,0,0,0,0,0,0,0], [0,0,0,0,0,0,BSH1,BSH4,BSH4,BSH4,BSH1,0,BSH1,BSH4,BSH4,BSH4,BSH1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,BSH1,BSH1,BSH1,0,0,0,BSH1,BSH1,BSH1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] EyeMask_3=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,EM1,EM1,EM1,EM1,EM1,EM1,EM1,EM1,EM1,EM1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,EM1,0,0,EM1,EM1,EM1,0,0,EM1,EM1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,EM1,0,EM2,EM1,EM1,EM1,0,EM2,EM1,EM1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,EM1,EM1,EM1,EM1,EM1,EM1,EM1,EM1,EM1,EM1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] TIARA_2=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,TI1,TI1,0,TI1,TI1,TI1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,TI1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,TI1,TI2,TI1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,TI1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] TIARA_3=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,TI1,TI1,TI1,0,TI1,TI1,TI1,TI1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,TI1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,TI1,TI2,TI1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,TI1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] KNITTED_4=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,BG1,KC1,KC1,KC1,KC1,KC1,KC1,BG1,BG1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,BG1,KC1,KC2,KC2,KC2,KC2,KC2,KC2,KC1,BG1,BG1,0,0,0,0,0,0], [0,0,0,0,0,0,BG1,KC1,KC2,KC2,KC2,KC2,KC2,KC2,KC2,KC2,KC1,BG1,0,0,0,0,0,0], [0,0,0,0,0,BG1,KC1,KC3,KC3,KC3,KC3,KC3,KC3,KC3,KC3,KC3,KC3,KC1,BG1,0,0,0,0,0], [0,0,0,0,0,BG1,KC1,KC2,KC3,KC2,KC3,KC2,KC3,KC2,KC3,KC2,KC3,KC1,BG1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] HEADBAND_4=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,HB1,HB1,HB1,HB1,HB1,HB1,HB1,HB1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,HB2,HB2,HB2,HB2,HB2,HB2,HB2,HB2,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] HEADBAND_7=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,HB1,HB1,HB1,HB1,HB1,HB1,HB1,HB1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,HB2,HB2,HB2,HB2,HB2,HB2,HB2,HB2,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] MILICAP_2=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,BG1,MH1,MH1,MH1,MH1,MH1,MH1,BG1,BG1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,BG1,MH1,MH1,MH1,MH1,MH2,MH1,MH1,MH1,BG1,BG1,0,0,0,0,0,0], [0,0,0,0,0,0,BG1,MH1,MH1,MH1,MH1,MH2,MH1,MH1,MH1,MH1,MH1,BG1,0,0,0,0,0,0], [0,0,0,0,0,0,BG1,MH1,MH1,MH1,MH1,MH1,MH1,MH1,MH1,MH1,MH1,0,0,0,0,0,0,0], [0,0,0,0,0,0,BG1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] BANDANA_4=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,BG1,BA2,BA2,BA2,BA2,BA2,BA2,BA2,BA2,BG1,0,0,0,0,0,0,0], [0,0,0,0,0,0,BG1,BA2,BA1,BA1,BA1,BA1,BA1,BA1,BA1,BA1,BA2,BG1,0,0,0,0,0,0], [0,0,0,0,0,0,BG1,BA2,BA1,BA1,BA1,BA1,BA1,BA1,BA1,BA1,BA1,BA2,BG1,0,0,0,0,0], [0,0,0,0,0,0,0,0,BA2,BA1,BA1,BA1,BA2,BA2,BA2,BA2,BA1,BA3,BA2,BA1,BA2,BA1,0,0], [0,0,0,0,0,0,0,0,0,BA2,BA2,BA2,0,0,0,0,0,0,BA3,BA2,BA1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,BA3,BA1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,BA1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] BANDANA_5=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,BG1,BA2,BA2,BA2,BA2,BA2,BA2,BA2,BA2,BG1,0,0,0,0,0,0,0], [0,0,0,0,0,0,BG1,BA2,BA1,BA1,BA1,BA1,BA1,BA1,BA1,BA1,BA2,BG1,0,0,0,0,0,0], [0,0,0,0,0,0,BG1,BA2,BA1,BA1,BA1,BA1,BA1,BA1,BA1,BA1,BA1,BA2,BG1,0,0,0,0,0], [0,0,0,0,0,0,0,0,BA2,BA1,BA1,BA1,BA2,BA2,BA2,BA2,BA1,BA3,BA2,BA1,BA2,BA1,0,0], [0,0,0,0,0,0,0,0,0,BA2,BA2,BA2,0,0,0,0,0,0,BA3,BA2,BA1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,BA3,BA1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,BA1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] PILOT_2=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,PH1,PH1,PH1,PH1,PH1,PH1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,PH3,PH3,PH3,PH3,PH3,PH3,PH3,PH3,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,PH3,PH2,PH2,PH2,PH3,PH3,PH2,PH2,PH2,PH3,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,PH3,PH2,PH2,PH3,PH3,PH3,PH3,PH2,PH2,PH3,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,PH3,PH3,PH3,PH3,PH1,PH1,PH3,PH3,PH3,PH3,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,PH1,PH1,PH1,PH1,PH1,PH1,PH1,PH1,PH1,PH1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,PH1,0,0,0,0,0,0,0,0,PH1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,PH1,0,0,0,0,0,0,0,0,PH1,PH1,0,0,0,0,0,0], [0,0,0,0,0,0,0,PH1,0,0,0,0,0,0,0,0,PH1,PH1,0,0,0,0,0,0], [0,0,0,0,0,0,0,PH1,0,0,0,0,0,0,0,0,PH1,PH1,0,0,0,0,0,0], [0,0,0,0,0,0,0,PH1,0,0,0,0,0,0,0,0,PH1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,PH1,0,0,0,0,0,0,0,0,PH1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,PH1,0,0,0,0,0,0,0,0,PH1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,PH1,0,0,0,0,0,0,0,0,PH1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,PH1,0,0,0,0,0,0,0,0,PH1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,PH1,0,0,0,0,0,0,0,0,PH1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] CAP_4=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,CA1,CA1,CA1,CA1,CA1,CA1,CA1,BG1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,CA1,CA1,CA2,CA1,CA1,CA1,CA1,CA1,CA1,BG1,0,0,0,0,0,0,0], [0,0,0,0,0,0,BG1,CA1,CA2,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,BG1,0,0,0,0,0,0], [0,0,0,0,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,BG1,0,0,0,0,0,0], [0,0,0,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] CAP_5=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,CA1,CA1,CA1,CA1,CA1,CA1,CA1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,CA1,CA1,CA2,CA1,CA1,CA1,CA1,CA1,CA1,BG1,0,0,0,0,0,0,0], [0,0,0,0,0,0,BG1,CA1,CA2,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,BG1,0,0,0,0,0,0], [0,0,0,0,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,BG1,0,0,0,0,0,0], [0,0,0,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,CA1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] EyePatch_4=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,EP1,EP1,EP1,EP1,EP1,EP1,EP1,EP1,EP1,EP1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,EP1,EP1,EP1,EP1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,EP1,EP1,EP1,EP1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,EP1,EP1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] GOGOLES_2=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,WG1,WG2,WG2,WG1,WG1,WG1,WG2,WG2,WG1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,WG2,WG3,WG3,WG2,WG1,WG2,WG3,WG3,WG2,WG1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,WG2,WG3,WG3,WG2,WG1,WG2,WG3,WG3,WG2,WG1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,WG1,WG2,WG2,WG1,0,WG1,WG2,WG2,WG1,WG1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,WG1,0,0,0,0,0,0,0,0,WG1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] VR_4=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,VR1,VR1,VR1,VR1,VR1,VR1,VR1,VR1,VR1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,VR1,VR3,VR2,VR2,VR2,VR2,VR2,VR2,VR2,VR3,VR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,VR1,VR2,VR1,VR1,VR1,VR1,VR1,VR1,VR1,VR2,VR3,VR1,0,0,0,0,0,0], [0,0,0,0,0,0,VR1,VR2,VR1,VR1,VR1,VR1,VR1,VR1,VR1,VR2,VR3,VR1,0,0,0,0,0,0], [0,0,0,0,0,0,VR1,VR3,VR2,VR2,VR2,VR2,VR2,VR2,VR2,VR3,VR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,VR1,VR1,VR1,VR1,VR1,VR1,VR1,VR1,VR1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] RegularShades_4=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,RSH1,RSH1,RSH1,RSH1,RSH1,RSH1,RSH1,RSH1,RSH1,RSH1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,RSH1,RSH1,RSH1,RSH1,0,RSH1,RSH1,RSH1,RSH1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,RSH1,RSH1,0,0,0,RSH1,RSH1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] TD_4=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,TD1,TD1,TD1,TD1,TD1,TD1,TD1,TD1,TD1,TD1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,TD1,TD2,TD2,TD2,TD1,TD3,TD3,TD3,TD1,TD1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,TD1,TD2,TD2,TD2,TD1,TD3,TD3,TD3,TD1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,TD1,TD1,TD1,TD1,TD1,TD1,TD1,TD1,TD1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] NerdGlasses_4=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,ND2,ND2,ND2,ND2,0,ND2,ND2,ND2,ND2,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,ND2,ND1,ND1,ND2,ND2,ND2,ND1,ND1,ND2,ND2,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,ND2,ND1,ND1,ND2,0,ND2,ND1,ND1,ND2,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,ND2,ND2,0,0,0,ND2,ND2,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] ClassicShades_4=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,CSH1,CSH1,CSH1,CSH1,CSH1,CSH1,CSH1,CSH1,CSH1,CSH1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,CSH1,CSH2,CSH2,CSH1,0,CSH1,CSH2,CSH2,CSH1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,CSH1,CSH3,CSH3,CSH1,0,CSH1,CSH3,CSH3,CSH1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,CSH1,CSH1,0,0,0,CSH1,CSH1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] HornedRimGlasses_4=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,HRG1,HRG1,HRG1,HRG1,HRG1,HRG1,HRG1,HRG1,HRG1,HRG1,HRG1,0,0,0,0,0,0,0], [0,0,0,0,0,0,HRG1,HRG1,HRG2,HRG2,HRG3,HRG1,HRG1,HRG2,HRG2,HRG3,HRG1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,HRG4,HRG1,HRG3,0,0,HRG4,HRG1,HRG3,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,HRG3,HRG3,HRG3,0,0,HRG3,HRG3,HRG3,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] BigShades_4=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,BSH1,BSH1,BSH1,BSH1,BSH1,0,BSH1,BSH1,BSH1,BSH1,BSH1,0,0,0,0,0,0,0], [0,0,0,0,0,0,BSH1,BSH2,BSH2,BSH2,BSH1,BSH1,BSH1,BSH2,BSH2,BSH2,BSH1,0,0,0,0,0,0,0], [0,0,0,0,0,0,BSH1,BSH3,BSH3,BSH3,BSH1,0,BSH1,BSH3,BSH3,BSH3,BSH1,0,0,0,0,0,0,0], [0,0,0,0,0,0,BSH1,BSH4,BSH4,BSH4,BSH1,0,BSH1,BSH4,BSH4,BSH4,BSH1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,BSH1,BSH1,BSH1,0,0,0,BSH1,BSH1,BSH1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] EyeMask_4=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,EM1,EM1,EM1,EM1,EM1,EM1,EM1,EM1,EM1,EM1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,EM1,0,0,EM1,EM1,EM1,0,0,EM1,EM1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,EM1,0,EM2,EM1,EM1,EM1,0,EM2,EM1,EM1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,EM1,EM1,EM1,EM1,EM1,EM1,EM1,EM1,EM1,EM1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] BigBeard=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,BE1,BE2,BE2,BE2,BE2,BE2,BE2,BE2,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,BE1,BE2,BE2,BE2,BE2,BE2,BE2,BE2,BE2,BE2,BE2,BE1,0,0,0,0,0,0], [0,0,0,0,0,0,BE1,BE2,BE2,BE2,BE1,BE1,BE1,BE2,BE2,BE2,BE2,BE2,BE1,0,0,0,0,0], [0,0,0,0,0,0,BE1,BE2,BE2,BE2,BE2,BE2,BE2,BE2,BE2,BE2,BE2,BE2,BE1,0,0,0,0,0], [0,0,0,0,0,0,BE1,BE2,BE2,BE2,BE2,BE2,BE2,BE2,BE2,BE2,BE2,BE2,BE1,0,0,0,0,0], [0,0,0,0,0,0,BE1,BE2,BE2,BE2,BE2,BE2,BE2,BE2,BE2,BE2,BE1,BE1,0,0,0,0,0,0], [0,0,0,0,0,0,0,BE1,BE2,BE2,BE2,BE2,BE2,BE2,BE1,BE1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,BE1,BE1,BE1,BE1,BE1,BE1,0,0,0,0,0,0,0,0,0,0] ] NormalBeardBlack=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,BE1,0,0,0,0,0,0], [0,0,0,0,0,0,0,BE1,0,0,0,0,0,0,0,0,BE1,BE1,0,0,0,0,0,0], [0,0,0,0,0,0,0,BE1,BE1,0,0,0,0,0,0,BE1,BE1,BE1,0,0,0,0,0,0], [0,0,0,0,0,0,0,BE1,BE1,BE1,BE1,BE1,BE1,BE1,BE1,BE1,BE1,BE1,0,0,0,0,0,0], [0,0,0,0,0,0,0,BE1,BE1,BE1,BE3,BE3,BE3,BE1,BE1,BE1,BE1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,BE1,BE1,BE1,BE1,BE1,BE1,BE1,BE1,BE1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,BE1,BE1,BE1,BE1,BE1,BE1,BE1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,BE1,BE1,BE1,BE1,BE1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] FrontBeard=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,BE2,BE2,BE2,BE2,BE2,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,BE2,0,0,0,BE2,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,BE2,BE2,BE2,BE2,BE2,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,BE2,BE2,BE2,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,BE1,BE2,BE2,BE2,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,BE1,BE1,BE1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] Handlebars=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,BE2,BE4,BE4,BE4,BE2,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,BE4,0,0,0,BE4,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,BE4,0,0,0,BE4,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] Muttonchops=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,BE2,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,BE2,0,0,0,0,0,0,BE2,BE2,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,BE2,0,0,0,0,0,BE2,BE2,BE2,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,BE2,0,0,0,0,0,BE2,BE2,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] Mustache=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,BE2,BE2,BE2,BE2,BE2,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] NormalBeard=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,BE2,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,BE2,0,0,0,0,0,0,BE2,BE2,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,BE2,BE2,BE2,BE2,BE2,BE2,BE2,BE2,BE2,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,BE2,BE2,0,0,0,BE2,BE2,BE2,BE2,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,BE2,BE2,BE2,BE2,BE2,BE2,BE2,BE2,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,BE2,BE2,BE2,BE2,BE2,BE2,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] Chinstrap=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,BE2,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,BE2,0,0,0,0,0,0,BE2,BE2,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,BE2,0,0,0,0,0,0,BE2,BE2,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,BE2,0,0,0,0,0,BE2,BE2,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,BE2,0,0,0,0,0,BE2,BE2,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,BE1,BE2,BE2,BE2,BE2,BE2,BE2,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,BE1,BE2,BE2,BE2,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,BE1,BE1,BE1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] Goat=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,BE1,0,BE2,BE2,BE2,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,BE1,BE2,BE2,BE2,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,BE1,BE2,BE1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,BE1,0,0,0,0,0,0,0,0,0,0,0,0] ] FrontBeardDark=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,BE7,BE7,BE7,BE7,BE7,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,BE7,0,0,0,BE7,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,BE7,BE7,BE7,BE7,BE7,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,BE7,BE7,BE7,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,BE1,BE7,BE7,BE7,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,BE1,BE1,BE1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] LuxuriousBeard=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,BE1,0,0,0,0,0,0,0,0,BE1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,BE1,BE1,0,0,0,0,0,0,BE1,BE1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,BE1,BE1,BE1,BE1,BE1,BE1,BE1,BE1,BE1,BE1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,BE1,BE1,BE1,BE3,BE3,BE3,BE1,BE1,BE1,BE1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,BE1,BE1,BE1,BE1,BE1,BE1,BE1,BE1,BE1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,BE1,BE1,BE1,BE1,BE1,BE1,BE1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,BE1,BE1,BE1,BE1,BE1,BE1,BE1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,BE1,BE1,BE1,BE1,BE1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] Elfe_Tiara =[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,ETI,0,0,0,0,0,0,0,0,ETI,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,ETI,0,0,0,0,0,0,ETI,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,ETI,ETI,0,ETI,ETI,ETI,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,ETI,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] Hob_Hat =[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,HOB2,HOB3,HOB4,HOB2,HOB3,HOB4,HOB2,HOB3,HOB4,HOB2,0,0,0,0,0,0,0], [0,0,0,0,0,HOB1,HOB1,HOB1,HOB1,HOB1,HOB1,HOB1,HOB1,HOB1,HOB1,HOB1,HOB1,HOB1,HOB1,0,0,0,0,0], [0,0,0,0,0,0,HOB1,HOB1,HOB1,HOB1,HOB1,HOB1,HOB1,HOB1,HOB1,HOB1,HOB1,HOB1,0,0,0,0,0,0], [0,0,0,0,0,BG1,0,HOB1,HOB1,HOB1,HOB1,HOB1,HOB1,HOB1,HOB1,HOB1,HOB1,BG1,0,0,0,0,0,0], [0,0,0,0,BG1,0,BG1,HOB5,HOB5,HOB5,HOB5,HOB5,HOB5,HOB5,HOB5,HOB5,HOB5,0,BG1,0,0,0,0,0], [0,0,0,BG1,BG1,BG1,HOB2,HOB2,HOB2,HOB2,HOB2,HOB2,HOB2,HOB2,HOB2,HOB2,HOB2,HOB2,BG1,BG1,0,0,0,0], [0,0,0,0,HOB1,HOB1,HOB1,HOB1,HOB1,HOB1,HOB1,HOB1,HOB1,HOB1,HOB1,HOB1,HOB1,HOB1,HOB1,HOB1,0,0,0,0], [0,0,HOB1,HOB1,HOB1,HOB1,HOB1,HOB1,HOB1,HOB1,HOB1,HOB1,HOB1,HOB1,HOB1,HOB1,HOB1,HOB1,HOB1,HOB1,HOB1,HOB1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] Gondor_Crown =[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,GCR1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,GCR1,GCR1,GCR1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,GCR1,GCR2,GCR1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,GCR1,BG1,BG1,BG1,BG1,GCR1,GCR2,GCR3,GCR2,GCR1,BG1,BG1,BG1,BG1,BG1,GCR1,0,0,0,0], [0,0,0,0,0,GCR1,GCR1,GCR1,GCR1,GCR2,GCR3,GCR2,GCR3,GCR2,GCR1,GCR1,GCR1,GCR1,GCR1,0,0,0,0,0], [0,0,0,0,0,0,GCR1,GCR1,GCR2,GCR3,GCR2,GCR4,GCR2,GCR3,GCR2,GCR1,GCR1,GCR1,0,0,0,0,0,0], [0,0,0,0,0,0,GCR1,GCR2,GCR3,GCR2,GCR4,GCR5,GCR4,GCR2,GCR3,GCR2,GCR1,GCR1,0,0,0,0,0,0], [0,0,0,0,0,0,GCR1,GCR1,GCR2,GCR4,GCR5,GCR5,GCR5,GCR4,GCR2,GCR1,GCR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,GCR5,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] Gobelin_Crown =[ [0,0,0,0,0,0,0,0,0,0,0,0,KGC,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,KGC,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,KGC,0,0,0,KGC,0,0,0,KGC,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,KGC,0,0,0,KGC,0,0,0,KGC,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,KGC,0,KGC,0,KGC,0,KGC,0,KGC,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,KGC,0,KGC,0,KGC,0,KGC,0,KGC,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,KGC,KGC,KGC,KGC,KGC,KGC,KGC,KGC,KGC,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,KGC,KGC,KGC,KGC,KGC,KGC,KGC,KGC,KGC,KGC,KGC,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] Flower =[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,FL3,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,FL4,FL2,FL4,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,FL3,FL2,FL1,FL2,FL3,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,FL4,FL2,FL4,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,FL3,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] Wo_Crown =[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,EOY2,EOY1,EOY2,EOY1,EOY2,EOY1,EOY2,EOY1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,EOY1,0,0,0,0,0,0,0,0,EOY2,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,EOY1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] Elf_Crown =[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,ELT,ELT,ELT,0,0,0,ELT,ELT,ELT,ELT,ELT,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,ELT,0,ELT,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,ELT,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] Helmet =[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,BG1,BG1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,BG1,BG1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,BG1,BG1,BG1,BG1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,BG1,DHL3,DHL1,DHL3,DHL3,DHL1,DHL3,BG1,0,0,0,0,0,0,0,0], [0,0,0,0,BG1,BG1,BG1,BG1,DHL3,DHL2,DHL1,DHL2,DHL2,DHL2,DHL1,DHL3,BG1,BG1,BG1,BG1,BG1,0,0,0], [0,0,0,0,BG1,BG1,BG1,DHL3,DHL2,DHL2,DHL1,DHL2,DHL2,DHL2,DHL1,DHL2,DHL3,BG1,BG1,BG1,BG1,0,0,0], [0,0,0,0,0,BG1,DHL3,DHL2,DHL2,DHL1,DHL2,DHL2,DHL2,DHL2,DHL2,DHL1,DHL2,DHL3,BG1,BG1,0,0,0,0], [0,0,0,0,0,BG1,DHL3,DHL2,DHL2,DHL1,DHL2,DHL2,DHL2,DHL2,DHL2,DHL1,DHL2,DHL3,0,BG1,0,0,0,0], [0,0,0,0,0,BG1,DHL3,DHL1,DHL1,DHL1,DHL1,DHL1,DHL1,DHL1,DHL1,DHL1,DHL1,DHL3,0,0,0,0,0,0], [0,0,0,0,0,0,DHL3,DHL1,0,DHL1,0,0,0,0,0,DHL1,DHL1,DHL3,0,0,0,0,0,0], [0,0,0,0,0,0,DHL3,DHL1,0,0,0,0,0,0,0,DHL1,DHL1,DHL3,0,0,0,0,0,0], [0,0,0,0,0,0,DHL3,DHL1,0,0,0,0,0,0,0,DHL1,DHL1,DHL3,0,0,0,0,0,0], [0,0,0,0,0,0,DHL3,DHL1,0,0,0,0,0,0,DHL1,DHL1,DHL3,DHL3,0,0,0,0,0,0], [0,0,0,0,0,0,0,DHL1,DHL1,0,0,0,0,0,DHL1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] Elfic_Krown=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,THR1,0,0,0,0,0,0,0,0,0,THR1,0,0,0,0,0,0], [0,0,0,0,0,THR1,0,0,THR1,0,0,0,0,0,0,0,THR1,0,0,THR1,0,0,0,0], [0,0,0,0,0,0,THR1,0,0,0,0,0,0,0,0,0,0,0,THR1,0,0,0,0,0], [0,0,0,0,THR1,0,0,THR1,0,0,0,0,0,0,0,0,0,THR1,0,0,THR1,0,0,0], [0,0,0,0,0,THR1,0,0,0,0,0,0,0,0,0,0,0,0,0,THR1,0,0,0,0], [0,0,0,0,0,THR1,0,0,0,0,0,0,0,0,0,0,0,0,0,THR1,0,0,0,0], [0,0,0,THR1,0,0,THR1,0,0,0,0,0,0,0,0,0,0,0,THR1,0,0,THR1,0,0], [0,0,0,0,THR1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,THR1,0,0,0], [0,0,0,0,0,THR1,0,0,0,0,0,0,0,0,0,0,0,0,0,THR1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] #Initiate the variables # tells how many times to iterate through the following mechanism # which equals the number of MidPunks # for x in range(0-200) # would generate 201 Midpunks numbered 0-200 list1 = range(11984) filterlist1 = [] for x in list1: a = 13080698 seed(x+a) titi=0 titin=0 titine=0 toto=0 tata=0 tutu=0 tyty=0 tete=0 toutou=0 toctoc=0 tactac=0 tuctuc=0 tonton=0 tantan=0 neyo=0 neye=0 neya=0 neyh=0 neyu=0 neyw=0 b = randint(0,1000000) if b > 950000: race_ep = 'Halflings' type_ep = 'Male' hair_color_ep = 'None' haircut_ep = 'None' hair_prop_ep = 'None' eyes_prop_ep = 'None' blemishe_ep = 'None' eyes_color_ep = 'None' facial_hair_ep = 'None' mouth_prop_ep = 'None' mouth_ep = 'None' tooth_color_ep = 'None' nose_ep = 'None' neck_ep = 'None' ears_ep = 'None' skin_ep = 'None' ears = none hair = none hair_prop = none neck = none blemishes = none #tooth color mouth = none facial_hair = none rod = none mouth_prop = none #eye color eyes = none nose = none seed(b) c=randint(0,1000000) if c > 800000: SK1 = (234,217,217) SC1 = (165,141,141) EY1 = (201,178,178) SK2 = (255,255,255) HRG3 = (220,222,234) HRG2 = (183,179,191) HRG4 = (203,200,212) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (226,187,185) MO1 = EY1 SCR1 = EY1 skin_ep = 'Albino' elif c > 500000: SK1 = (219,177,128) SC1 = (166,110,44) EY1 = (210,157,96) SK2 = (235,203,166) HRG3 = (213,200,183) HRG2 = (184,163,135) HRG4 = (209,189,164) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (215,154,104) MO1 = EY1 SCR1 = EY1 skin_ep = 'Light' elif c > 200000: SK1 = (174,139,97) SC1 = (134,88,30) EY1 = (167,124,71) SK2 = (178,138,93) HRG3 = (188,179,165) HRG2 = (166,150,128) HRG4 = (184,171,151) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (191,105,71) MO1 = EY1 SCR1 = EY1 skin_ep = 'Mid' else: SK1 = (113,63,29) SC1 = (86,39,10) EY1 = (114,55,17) SK2 = (146,79,35) HRG3 = (155,135,127) HRG2 = (139,121,111) HRG4 = (156,131,115) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (142,36,2) MO1 = EY1 SCR1 = EY1 skin_ep = 'Dark' seed(c) d=randint(0,1000000) if d > 750000: ears = EARS_2 ears_ep = 'Earring' else: ears = none ears_ep = 'None' seed(d) e=randint(0,1000000) HR0 = (255,193,0) HR2 = (251,114,7) HR3 = (210,154,0) HR4 = (166,165,165) HR5 = (165,108,0) HR6 = (111,0,48) HR7 = (85,57,23) if e > 875000: HR1 = HR0 hair_color_ep ='Blond' elif e > 750000: HR1 = nr hair_color_ep='Black' elif e > 625000: HR1 = HR2 hair_color_ep ='Orange' elif e > 500000: HR1 = HR3 hair_color_ep ='Fair' elif e > 375000: HR1 = HR4 hair_color_ep ='Grey' elif e > 250000: HR1 = HR5 hair_color_ep ='Ginger' elif e > 125000: HR1 = HR6 hair_color_ep ='Black Rose' else: HR1 = HR7 hair_color_ep ='Brown' HALFIN_HR1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,HR1,0,HR1,HR1,HR1,0,HR1,HR1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,HR1,0,0,0,0,0], [0,0,0,0,0,HR1,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0], [0,0,0,0,0,HR1,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,HR1,0,0,0], [0,0,0,0,0,0,HR1,HR1,HR1,0,0,HR1,0,HR1,0,0,HR1,HR1,HR1,HR1,0,HR1,0,0], [0,0,0,0,0,HR1,HR1,HR1,HR1,0,HR1,HR1,0,0,HR1,0,HR1,HR1,HR1,HR1,HR1,0,0,0], [0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0], [0,0,0,0,HR1,0,HR1,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0], [0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0], [0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0], [0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0], [0,0,0,0,HR1,0,HR1,0,0,0,0,0,0,0,0,0,0,0,HR1,0,HR1,HR1,0,0], [0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] HALFIN_HR2=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,HR1,0,HR1,HR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,HR1,0,HR1,HR1,HR1,0,HR1,HR1,0,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,HR1,0,0,0,0,0], [0,0,0,0,0,HR1,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0], [0,0,0,0,0,HR1,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,HR1,0,0,0], [0,0,0,0,HR1,0,HR1,HR1,HR1,0,0,HR1,0,HR1,0,0,HR1,HR1,HR1,HR1,0,HR1,0,0], [0,0,0,0,0,HR1,HR1,HR1,HR1,0,HR1,HR1,0,0,HR1,0,HR1,HR1,HR1,HR1,HR1,0,0,0], [0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0], [0,0,0,0,HR1,0,HR1,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0], [0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0], [0,0,0,0,HR1,0,HR1,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,HR1,HR1,0], [0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,0], [0,0,0,0,HR1,0,HR1,0,0,0,0,0,0,0,0,0,0,0,HR1,0,HR1,HR1,0,0], [0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,0,HR1,HR1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,0,HR1,HR1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,HR1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] HALFIN_HR3=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,HR1,HR1,0,HR1,0,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,HR1,HR1,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,HR1,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0], [0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,0,HR1,HR1,0,0,0], [0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] HALFIN_HR4=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,HR1,0,HR1,0,HR1,0,0,HR1,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,HR1,HR1,HR1,0,0,HR1,0,0,HR1,0,0,HR1,HR1,HR1,HR1,0,0,0,0], [0,0,0,0,0,HR1,HR1,0,0,0,HR1,0,0,0,HR1,HR1,0,0,HR1,HR1,0,0,0,0], [0,0,0,0,0,HR1,HR1,0,0,0,0,HR1,0,0,0,0,0,0,0,HR1,0,0,0,0], [0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,0,HR1,0,0,0,0], [0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,0,HR1,0,0,0,0], [0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0], [0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0], [0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0], [0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,0,0,0,HR1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] HALFIN_HR5=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,0,0,0,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,0,0,0,HR1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] seed(e) f=randint(0,1000000) if f > 800000: hair = HALFIN_HR1 haircut_ep ='Wild Hair' elif f > 600000: hair = HALFIN_HR2 haircut_ep ='Perm Hair' elif f > 400000: hair = HALFIN_HR3 haircut_ep ='Bedhead' elif f > 200000: hair = HALFIN_HR4 haircut_ep ='Hockey Hair' else: hair = HALFIN_HR5 haircut_ep ='Bald' seed(f) g=randint(0,1000000) if g > 970000: hair_prop = POLICE_6 hair_prop_ep = 'Police' elif g > 950000: hair_prop = TOPHAT_6 hair_prop_ep = 'Top Hat' elif e > 900000: hair_prop = HEADBAND_6 hair_prop_ep = 'Headband' elif e > 850000: hair_prop = FORCAP_8 hair_prop_ep = 'Cap Forward' elif e > 830000: hair_prop = COWBOY_8 hair_prop_ep = 'Cowboy Hat' elif e > 790000: hair_prop = CAP_8 hair_prop_ep = 'Cap' else: hair_prop = none hair_prop_ep = 'None' seed(g) h=randint(0,1000000) if h > 900000: neck = GoldChain_1 neck_ep = 'Gold Chain' elif h > 820000: neck = SilverChain_1 neck_ep = 'Silver Chain' elif h > 800000: neck = RING_1 neck_ep = 'Ring Onchain' elif h > 780000: neck = BROCHE_1 neck_ep = 'Brooch' else: neck = none neck_ep = 'None' seed(h) i=randint(0,1000000) if i > 900000: mouth_prop = CIGARETTE mouth_prop_ep = 'Cigarette' elif i > 880000: mouth_prop = MASK_1 facial_hair = none mouth_prop_ep = 'Medical Mask' elif i > 820000: mouth_prop = PIPE mouth_prop_ep = 'Pipe' elif i > 780000: mouth_prop = VAPE mouth_prop_ep = 'Vape' else: mouth_prop = none mouth_prop_ep = 'None' seed(i) j=randint(0,1000000) if j > 970000: eyes = TD_6 eyes_prop_ep ='3D Glasses' elif j > 930000: eyes = VR_6 eyes_prop_ep ='VR' elif j > 880000: eyes = ClassicShades_6 eyes_prop_ep ='Classic Shades' elif j >830000: eyes = SmallShades_6 eyes_prop_ep ='Small Shades' elif j > 780000: eyes = EyePatch_6 eyes_prop_ep ='Eye Patch' elif j > 730000: eyes = NerdGlasses_6 eyes_prop_ep ='Nerd Glasses' elif j > 680000: eyes = BigShades_6 eyes_prop_ep ='Big Shades' elif j > 650000: eyes = EyeMask_6 eyes_prop_ep ='Eye Mask' elif j > 600000: eyes = HornedRimGlasses_6 eyes_prop_ep ='Horned Rim Glasses' elif j > 550000: eyes = RegularShades_6 eyes_prop_ep ='Regular Shades' else: eyes=none eyes_prop_ep ='None' seed(j) k=randint(0,1000000) if k > 975000: mouth = SMILE mouth_ep = 'Smile' elif k > 950000: mouth = FROWN mouth_ep = 'Frown' else: mouth = none mouth_ep = 'None' MOLE=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,MO1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] SCARE_2=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] SCARE_2=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] ROSY_1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,RC1,0,0,0,0,RC1,RC1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,RC1,0,0,0,0,0,RC1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] ROSY_2=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,RC1,RC1,0,0,0,RC1,RC1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] seed(k) l=randint(0,1000000) if l > 970000: blemishes = ROSY_1 blemishe_ep = 'Rosy Cheeks' elif l > 900000: blemishes = MOLE blemishe_ep = 'Mole' elif l > 870000: blemishes = SCARE_2 blemishe_ep = 'Scare' else: blemishes = none blemishe_ep = 'None' HALFIN=[ [FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,FR1,FR1,FR1,FR1,FR1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SC1,SC1,SK1,SK1,SK1,SC1,SC1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,EY1,FR1,SK1,SK1,SK1,EY1,FR1,SK1,SK1,FR1,FR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,FR1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,FR1,FR1,FR1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,FR1,FR1,FR1,FR1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR1,SK1,SK1,SK1,FR1,FR2,FR2,FR2,FR2,FR2,FR2] ] pixels = HALFIN elif b > 900000: race_ep = 'Halflings' type_ep = 'Female' hair_color_ep = 'None' haircut_ep = 'None' hair_prop_ep = 'None' eyes_prop_ep = 'None' blemishe_ep = 'None' eyes_color_ep = 'None' facial_hair_ep = 'None' mouth_prop_ep = 'None' mouth_ep = 'None' tooth_color_ep = 'None' nose_ep = 'None' neck_ep = 'None' ears_ep = 'None' skin_ep = 'None' ears = none hair = none hair_prop = none neck = none blemishes = none #tooth color mouth = none facial_hair = none rod = none mouth_prop = none #eye color eyes = none nose = none seed(b) c=randint(0,1000000) if c > 800000: SK1 = (234,217,217) SC1 = (165,141,141) EY1 = (201,178,178) SK2 = (255,255,255) HRG3 = (220,222,234) HRG2 = (183,179,191) HRG4 = (203,200,212) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (226,187,185) LI1 = (113,28,17) MO1 = EY1 SCR1 = EY1 skin_ep = 'Albino' elif c > 500000: SK1 = (219,177,128) SC1 = (166,110,44) EY1 = (210,157,96) SK2 = (235,203,166) HRG3 = (213,200,183) HRG2 = (184,163,135) HRG4 = (209,189,164) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (215,154,104) LI1 = (113,28,17) MO1 = EY1 SCR1 = EY1 skin_ep = 'Light' elif c > 200000: SK1 = (174,139,97) SC1 = (134,88,30) EY1 = (167,124,71) SK2 = (178,138,93) HRG3 = (188,179,165) HRG2 = (166,150,128) HRG4 = (184,171,151) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (191,105,71) LI1 = (95,29,13) MO1 = EY1 SCR1 = EY1 skin_ep = 'Mid' else: SK1 = (113,63,29) SC1 = (86,39,10) EY1 = (114,55,17) SK2 = (146,79,35) HRG3 = (155,135,127) HRG2 = (139,121,111) HRG4 = (156,131,115) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (142,36,2) LI1 = (74,18,8) MO1 = EY1 SCR1 = EY1 skin_ep = 'Dark' seed(c) d=randint(0,1000000) if d > 750000: ears = EARS_3 ears_ep = 'Earring' else: ears = none ears_ep = 'None' seed(d) e=randint(0,1000000) HR0 = (255,193,0) HR2 = (251,114,7) HR3 = (210,154,0) HR4 = (166,165,165) HR5 = (165,108,0) HR6 = (111,0,48) HR7 = (85,57,23) red = (255,0,0) if e > 875000: HR1 = HR0 HR2 = red hair_color_ep ='Blonde' elif e > 750000: HR1 = nr HR2 = red hair_color_ep ='Black' elif e > 625000: HR1 = HR2 HR2 = red hair_color_ep ='Orange' elif e > 500000: HR1 = HR3 HR2 = red hair_color_ep ='Fair' elif e > 375000: HR1 = HR4 HR2 = red hair_color_ep ='Grey' elif e > 250000: HR1 = HR5 HR2 = red hair_color_ep ='Ginger' elif e > 125000: HR1 = HR6 HR2 = red hair_color_ep ='Black Rose' else: HR1 = HR7 HR2 = red hair_color_ep ='Brown' HALFINE_HR1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,0,0,HR1,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0], [0,0,0,0,0,HR1,0,0,HR1,HR1,0,HR1,HR1,HR1,0,HR1,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,HR1,0,HR1,HR1,HR1,HR1,HR1,0,HR1,0,HR1,0,HR1,0,HR1,0,0,0,0,0], [0,0,0,HR1,HR1,HR1,HR1,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0], [0,0,0,0,HR1,0,HR1,HR1,HR1,HR1,0,HR1,0,HR1,0,HR1,HR1,0,HR1,HR1,0,0,0,0], [0,0,0,0,HR1,HR1,HR1,HR1,HR1,0,HR1,0,0,0,HR1,HR1,0,HR1,HR1,HR1,HR1,0,0,0], [0,0,0,HR1,0,HR1,HR1,HR1,HR1,0,0,0,0,0,0,HR1,0,HR1,HR1,HR1,0,0,0,0], [0,0,HR1,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0], [0,0,HR1,HR1,HR1,0,HR1,0,0,0,0,0,0,0,0,0,0,0,HR1,0,HR1,0,0,0], [0,0,0,HR1,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0], [0,0,HR1,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0], [0,0,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,HR1,0,0,0], [0,0,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,0,0], [0,0,HR1,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,HR1,0,0], [0,HR1,0,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,HR1,HR1,0,0], [0,HR1,HR1,0,HR1,0,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,0,0,0], [0,0,0,HR1,0,HR1,0,HR1,0,0,0,0,0,0,0,0,0,HR1,0,HR1,0,HR1,0,0], [0,0,0,0,HR1,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,HR1,0,HR1,0,0,0], [0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] HALFINE_HR2=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,HR1,0,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,0,HR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0], [0,0,0,0,0,HR1,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,HR1,HR1,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,HR1,0,0,HR1,0,HR1,0,HR1,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,HR1,HR1,HR1,0,0,0,HR1,0,0,0,HR1,HR1,HR1,0,HR1,0,0,0,0], [0,0,0,0,HR1,0,HR1,0,0,0,0,HR1,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,HR1,HR1,0,0,0,HR1,0,0,0,0,0,0,HR1,0,HR1,0,0,0,0], [0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,0,0,0], [0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] HALFINE_HR3=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,HR1,HR1,HR1,0,0,HR1,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,HR1,0,0,0,0,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] HALFINE_HR4=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,HR1,HR1,HR1,HR1,0,0,0,0,0,0,HR1,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,HR1,0,0,0,0,0], [0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,HR1,0,0,0,0,0], [0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,HR1,0,0,0,0,0], [0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0], [0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0], [0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0], [0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0], [0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,0,0,0,0], [0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] HALFINE_HR5=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR2,HR1,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR2,0,HR1,HR1,HR1,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,HR1,HR1,HR1,HR1,0,0], [0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,HR1,HR1,HR1,0,HR1,HR1,HR1,HR1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,0,0,HR1,HR1,HR1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] MOLE_2=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,MO1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] SCARE_2=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] ROSY_2=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,RC1,RC1,0,0,0,RC1,RC1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] seed(e) f=randint(0,1000000) if f > 800000: hair = HALFINE_HR1 haircut_ep ='Perm Hair' elif f > 600000: hair = HALFINE_HR2 haircut_ep ='Wild Hair' elif f > 400000: hair = HALFINE_HR3 haircut_ep ='Wedge Hair' elif f > 200000: hair = HALFINE_HR4 haircut_ep ='Feathered Hair' else: hair = HALFINE_HR5 haircut_ep ='Ponytail' toto = 99 seed(f) g=randint(0,1000000) if g > 990000: hair_prop = TIARA_3 hair_prop_ep = 'Tiara' titine = 99 elif g > 940000: hair_prop = Flower hair_prop_ep = 'Flower' elif g > 900000 and toto != 99: hair_prop = Hob_Hat hair_prop_ep = 'Shire Hat' elif g > 860000: hair_prop = HEADBAND_4 hair_prop_ep = 'Headband' elif g > 850000: hair = none hair_prop = PILOT_2 hair_prop_ep = 'Pilot Helmet' titine = 99 else: hair_prop = none hair_prop_ep = 'None' seed(g) h=randint(0,1000000) if h > 900000: EY1 = (110,152,77) SC1 = (92,133,57) eyes_color_ep = 'Green Eye Shadow' elif h > 800000: EY1 = (93,121,117) SC1 = (80,106,101) eyes_color_ep = 'Blue Eye Shadow' elif h > 700000: EY1 = (176,61,133) SC1 = (164,55,117) eyes_color_ep = 'Purple Eye Shadow' elif h > 600000: EY1 = (214,92,26) SC1 = (194,79,17) eyes_color_ep = 'Orange Eye Shadow' else: eyes_color_ep = 'None' neya = 99 seed(h) i=randint(0,1000000) if i > 900000: mouth_prop = CIGARETTE mouth_prop_ep = 'Cigarette' elif i > 880000: mouth_prop = MASK_2 mouth_prop_ep = 'Medical Mask' tactac=99 elif i > 820000: mouth_prop = PIPE mouth_prop_ep = 'Pipe' elif i > 780000: mouth_prop = VAPE mouth_prop_ep = 'Vape' else: mouth_prop = none mouth_prop_ep = 'None' seed(i) j=randint(0,1000000) if j > 970000: eyes = TD_3 eyes_prop_ep ='3D Glasses' elif j > 930000: eyes = VR_3 eyes_prop_ep ='VR' elif j > 880000: eyes = ClassicShades_4 eyes_prop_ep ='Classic Shades' elif j > 830000: eyes = EyePatch_4 eyes_prop_ep ='Eye Patch' neyh = 99 elif j > 780000: eyes = NerdGlasses_4 eyes_prop_ep ='Nerd Glasses' elif j > 730000: eyes = BigShades_4 eyes_prop_ep ='Big Shades' elif j > 700000: eyes = EyeMask_4 eyes_prop_ep ='Eye Mask' neyh = 99 elif j > 650000: eyes = HornedRimGlasses_4 eyes_prop_ep ='Horned Rim Glasses' elif j > 600000: eyes = RegularShades_4 eyes_prop_ep ='Regular Shades' elif j > 590000: eyes = GOGOLES_2 eyes_prop_ep ='Welding Goggles' hair_prop = none hair_prop_ep = 'None' toctoc = 99 else: eyes=none eyes_prop_ep ='None' neyh = 99 if titine == 99 and toctoc !=99: eyes = none eyes_prop_ep ='None' if neya != 99 and neyh !=99: eyes = none eyes_prop_ep ='None' seed(j) k=randint(0,1000000) if k > 975000: nose = NOSE_2 nose_ep = 'Clown Nose' tuctuc = 99 else: nose = none nose_ep = 'None' if tactac == 99 and tuctuc == 99: mouthprop = none mouth_prop_ep = 'None' seed(k) l=randint(0,1000000) if l > 970000: blemishes = ROSY_2 blemishe_ep = 'Rosy Cheeks' elif l > 900000: blemishes = MOLE_2 blemishe_ep = 'Mole' elif l > 870000: blemishes = SCARE_2 blemishe_ep = 'Scare' else: blemishes = none blemishe_ep = 'None' seed(l) m=randint(0,1000000) if m > 930000: LI1 = nr mouth_ep = 'Black Lipstick' elif m > 860000: LI1 = (255,0,0) mouth_ep = 'Hot Lipstick' elif m > 790000: LI1 = (208,82,203) mouth_ep = 'Purple Lipstick' elif m > 720000: LI1 = (214,92,26) mouth_ep = 'Orange Lipstick' else: mouth = none mouth_ep = 'None' seed(m) n=randint(0,1000000) if n > 900000: neck = GoldChain_3 neck_ep = 'Gold Chain' elif n > 820000: neck = SilverChain_3 neck_ep = 'Silver Chain' elif n > 800000: neck = RING_3 neck_ep = 'Ring Onchain' else: neck = none neck_ep = 'None' HALFINE=[ [FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,FR1,FR1,FR1,FR1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SC1,SC1,SK1,SK1,SK1,SC1,SC1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,EY1,FR1,SK1,SK1,SK1,EY1,FR1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,FR1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,LI1,LI1,LI1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,FR1,FR1,FR1,FR1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR1,SK1,SK1,SK1,FR1,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2] ] pixels = HALFINE elif b > 750000: race_ep = 'Men' type_ep = 'Male' hair_color_ep = 'None' haircut_ep = 'None' hair_prop_ep = 'None' eyes_prop_ep = 'None' blemishe_ep = 'None' eyes_color_ep = 'None' facial_hair_ep = 'None' mouth_prop_ep = 'None' mouth_ep = 'None' tooth_color_ep = 'None' nose_ep = 'None' neck_ep = 'None' ears_ep = 'None' skin_ep = 'None' ears = none hair = none hair_prop = none neck = none blemishes = none mouth = none facial_hair = none rod = none mouth_prop = none #eye color eyes = none nose = none BE6 = (40,27,9) seed(b) c=randint(0,1000000) if c > 800000: SK1 = (234,217,217) SC1 = (165,141,141) EY1 = (201,178,178) SK2 = (255,255,255) HRG3 = (220,222,234) HRG2 = (183,179,191) HRG4 = (203,200,212) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (226,187,185) BE5 = (163,151,131) MO1 = EY1 SCR1 = EY1 skin_ep = 'Albino' elif c > 500000: SK1 = (219,177,128) SC1 = (166,110,44) EY1 = (210,157,96) SK2 = (235,203,166) HRG3 = (213,200,183) HRG2 = (184,163,135) HRG4 = (209,189,164) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (215,154,104) BE5 = (153,124,89) MO1 = EY1 SCR1 = EY1 skin_ep = 'Light' elif c > 200000: SK1 = (174,139,97) SC1 = (134,88,30) EY1 = (167,124,71) SK2 = (178,138,93) HRG3 = (188,179,165) HRG2 = (166,150,128) HRG4 = (184,171,151) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (191,105,71) BE5 = (121,97,68) MO1 = EY1 SCR1 = EY1 skin_ep = 'Mid' else: SK1 = (113,63,29) SC1 = (86,39,10) EY1 = (114,55,17) SK2 = (146,79,35) HRG3 = (155,135,127) HRG2 = (139,121,111) HRG4 = (156,131,115) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (142,36,2) BE5 = (79,44,20) MO1 = EY1 SCR1 = EY1 skin_ep = 'Dark' seed(c) d=randint(0,1000000) if d > 750000: ears = EARS_2 ears_ep = 'Earring' else: ears = none ears_ep = 'None' seed(d) e=randint(0,1000000) HR0 = (255,193,0) HR2 = (251,114,7) HR3 = (210,154,0) HR4 = (166,165,165) HR5 = (165,108,0) HR6 = (111,0,48) HR7 = (85,57,23) red = (255,0,0) if e > 875000: HR1 = HR0 HR2 = red hair_color_ep ='Blonde' elif e > 750000: HR1 = nr HR2 = red hair_color_ep ='Black' elif e > 625000: HR1 = HR2 HR2 = red hair_color_ep ='Orange' elif e > 500000: HR1 = HR3 HR2 = red hair_color_ep ='Fair' elif e > 375000: HR1 = HR4 HR2 = red hair_color_ep ='Grey' elif e > 250000: HR1 = HR5 HR2 = red hair_color_ep ='Ginger' elif e > 125000: HR1 = HR6 HR2 = red hair_color_ep ='Black Rose' else: HR1 = HR7 HR2 = red hair_color_ep ='Brown' MAN_HR1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,HR1,HR1,0,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,HR1,HR1,0,HR1,0,HR1,0,HR1,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,HR1,0,0,HR1,0,0,HR1,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,HR1,0,0,0,HR1,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,HR1,0,HR1,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,HR1,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,HR1,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0], [0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0], [0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0], [0,0,0,0,HR1,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,HR1,0,0], [0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,0,0,0,0,HR1,0,0,0,0], [0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,0,0,0,0,HR1,0,0,0,0], [0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] MAN_HR2=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,HR1,HR1,HR1,HR1,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0], [0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0], [0,0,0,0,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,0,0,0], [0,0,0,0,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,0,0], [0,0,0,0,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,0,0], [0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,0,0], [0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,0,0], [0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,0,0,0], [0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] MAN_HR3=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,HR1,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,0,0,0,HR1,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,HR1,0,0,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,HR1,0,HR1,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0], [0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0], [0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0], [0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0], [0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0], [0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0], [0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0], [0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,0,0], [0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] MAN_HR4=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,HR1,0,HR1,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,HR1,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,HR1,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0], [0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0], [0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] MAN_HR5=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,0,HR1,0,0,0,0,HR1,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,0,0,HR1,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,0,0,0,HR1,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] seed(e) f=randint(0,1000000) if f > 800000: hair = MAN_HR1 haircut_ep = 'Grunge Hair' elif f > 600000: hair = MAN_HR2 haircut_ep = 'Prince Hair' elif f > 400000: hair = MAN_HR3 haircut_ep = 'King Hair' elif f > 200000: hair = MAN_HR4 haircut_ep = 'Bald' else: hair = MAN_HR5 haircut_ep = 'Straight Hair' seed(f) g=randint(0,1000000) if g > 960000: hair_prop = CAP_2 hair_prop_ep = 'Cap' elif g > 940000: hair_prop = COWBOY_2 hair_prop_ep = 'Cowboy Hat' elif g > 930000: hair_prop = TOPHAT_2 hair_prop_ep = 'Top Hat' elif g > 910000: hair_prop = Gondor_Crown hair_prop_ep = 'Men Crown' elif g > 870000: hair_prop = KNITTED_2 hair_prop_ep = 'Knitted Cap' elif g > 820000: hair_prop = HEADBAND_2 hair_prop_ep = 'Headband' elif g > 790000: hair_prop = FORCAP_2 hair_prop_ep = 'Cap Forward' elif g > 760000: hair_prop = BANDANA_2 hair_prop_ep = 'Bandana' elif g > 740000: hair_prop = FEDORA_2 hair_prop_ep = 'Fedora' elif g > 710000: hair_prop = POLICE_2 hair_prop_ep = 'Police' elif g > 700000: hair_prop = BEANI_2 hair_prop_ep = 'Beanie' else: hair_prop = none hair_prop_ep = 'None' seed(g) h=randint(0,1000000) if h > 900000: neck = GoldChain_1 neck_ep = 'Gold Chain' elif h > 820000: neck = SilverChain_1 neck_ep = 'Silver Chain' elif h > 800000: neck = RING_1 neck_ep = 'Ring Onchain' elif h > 780000: neck = BROCHE_1 neck_ep = 'Brooch' else: neck = none neck_ep = 'None' ShadowBeard=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,BE5,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,BE5,0,0,0,0,0,0,BE5,BE5,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,BE5,BE5,BE5,BE5,BE5,BE5,BE5,BE5,BE5,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,BE5,BE5,BE6,BE6,BE6,BE5,BE5,BE5,BE5,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,BE5,BE5,BE5,BE5,BE5,BE5,BE5,BE5,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,BE5,BE5,BE5,BE5,BE5,BE5,BE5,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,BE5,BE5,BE5,BE5,BE5,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] seed(h) i=randint(0,1000000) if i > 950000: facial_hair = BigBeard facial_hair_ep = 'Big Beard' elif i >900000: facial_hair = Muttonchops facial_hair_ep = 'Muttonchops' elif i > 850000: facial_hair = Mustache facial_hair_ep = 'Mustache' elif i > 890000: facial_hair = Handlebars facial_hair_ep = 'Handlebars' elif i > 750000: facial_hair = FrontBeardDark facial_hair_ep = 'Front Beard Dark' elif i > 700000: facial_hair = FrontBeard facial_hair_ep = 'Front Beard' elif i > 650000: facial_hair = NormalBeard facial_hair_ep = 'Normal Beard' elif i > 600000: facial_hair = NormalBeardBlack facial_hair_ep = 'Normal Beard Black' elif i > 550000: facial_hair = LuxuriousBeard facial_hair_ep = 'Luxurious Beard' elif i > 500000: facial_hair = Goat facial_hair_ep = 'Goat' elif i > 450000: facial_hair = Chinstrap facial_hair_ep = 'Chinstrap' elif i > 400000: facial_hair = ShadowBeard facial_hair_ep = 'Shadow Beard' else: facial_hair = none facial_hair_ep = 'None' seed(i) j=randint(0,1000000) if j > 900000: mouth_prop = CIGARETTE mouth_prop_ep = 'Cigarette' elif j > 880000: mouth_prop = MASK_1 mouth_prop_ep = 'Medical Mask' facial_hair = none elif j > 820000: mouth_prop = PIPE mouth_prop_ep = 'Pipe' elif j > 780000: mouth_prop = VAPE mouth_prop_ep = 'Vape' else: mouth_prop = none mouth_prop_ep = 'None' # seed(h) # i=randint(0,1000000) # if i > 300000: # EY1 = (255,255,255) # elif i > 50000: # EY1 = (0,0,255) # else: # EY1 = (0,255,0) seed(j) k=randint(0,1000000) if k > 970000: eyes = TD_2 eyes_prop_ep ='3D Glasses' elif k > 930000: eyes = VR_2 eyes_prop_ep ='VR' elif k > 880000: eyes = ClassicShades_2 eyes_prop_ep ='Classic Shades' elif k > 830000: eyes = SmallShades_2 eyes_prop_ep ='Small Shades' hair = MAN_HR3 haircut_ep = 'King Hair' elif k > 780000: eyes = EyePatch_2 eyes_prop_ep ='Eye Patch' elif k > 730000: eyes = NerdGlasses_2 eyes_prop_ep ='Nerd Glasses' elif k > 680000: eyes = BigShades_2 eyes_prop_ep ='Big Shades' elif k > 650000: eyes = EyeMask_2 eyes_prop_ep ='Eye Mask' elif k > 600000: eyes = HornedRimGlasses_2 eyes_prop_ep ='Horned Rim Glasses' elif k > 550000: eyes = RegularShades_2 eyes_prop_ep ='Regular Shades' else: eyes=none eyes_prop_ep ='None' seed(k) l=randint(0,1000000) if l > 975000: nose = NOSE_1 nose_ep = 'Clown Nose' else: nose = none nose_ep = 'None' seed(l) m=randint(0,1000000) if m > 975000: mouth = SMILE mouth_ep = 'Smile' elif m > 950000: mouth = FROWN mouth_ep = 'Frown' else: mouth = none mouth_ep = 'None' MOLE=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,MO1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] SCARE_1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] ROSY_1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,RC1,0,0,0,0,RC1,RC1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,RC1,0,0,0,0,0,RC1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] seed(m) n=randint(0,1000000) if n > 970000: blemishes = ROSY_1 blemishe_ep = 'Rosy Cheeks' elif n > 900000: blemishes = MOLE blemishe_ep = 'Mole' elif n > 870000: blemishes = SCARE_1 blemishe_ep = 'Scare' else: blemishes = none blemishe_ep = 'None' MAN=[ [FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,FR1,FR1,FR1,FR1,FR1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SC1,SC1,SK1,SK1,SK1,SC1,SC1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,EY1,FR1,SK1,SK1,SK1,EY1,FR1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,FR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,FR1,FR1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,FR1,FR1,FR1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,FR1,FR1,FR1,FR1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR1,SK1,SK1,SK1,FR1,FR2,FR2,FR2,FR2,FR2,FR2] ] pixels = MAN elif b > 600000: race_ep = 'Men' type_ep = 'Female' hair_color_ep = 'None' haircut_ep = 'None' hair_prop_ep = 'None' eyes_prop_ep = 'None' blemishe_ep = 'None' eyes_color_ep = 'None' facial_hair_ep = 'None' mouth_prop_ep = 'None' mouth_ep = 'None' tooth_color_ep = 'None' nose_ep = 'None' neck_ep = 'None' ears_ep = 'None' skin_ep = 'None' ears = none hair = none hair_prop = none neck = none blemishes = none #tooth color mouth = none facial_hair = none rod = none mouth_prop = none #eye color eyes = none nose = none seed(b) c=randint(0,1000000) if c > 800000: SK1 = (234,217,217) SC1 = (165,141,141) EY1 = (201,178,178) SK2 = (255,255,255) HRG3 = (220,222,234) HRG2 = (183,179,191) HRG4 = (203,200,212) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (226,187,185) LI1 = (113,28,17) MO1 = EY1 SCR1 = EY1 skin_ep = 'Albino' elif c > 500000: SK1 = (219,177,128) SC1 = (166,110,44) EY1 = (210,157,96) SK2 = (235,203,166) HRG3 = (213,200,183) HRG2 = (184,163,135) HRG4 = (209,189,164) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (215,154,104) LI1 = (113,28,17) MO1 = EY1 SCR1 = EY1 skin_ep = 'Light' elif c > 200000: SK1 = (174,139,97) SC1 = (134,88,30) EY1 = (167,124,71) SK2 = (178,138,93) HRG3 = (188,179,165) HRG2 = (166,150,128) HRG4 = (184,171,151) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (191,105,71) LI1 = (95,29,13) MO1 = EY1 SCR1 = EY1 skin_ep = 'Mid' else: SK1 = (113,63,29) SC1 = (86,39,10) EY1 = (114,55,17) SK2 = (146,79,35) HRG3 = (155,135,127) HRG2 = (139,121,111) HRG4 = (156,131,115) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (142,36,2) LI1 = (74,18,8) MO1 = EY1 SCR1 = EY1 skin_ep = 'Dark' seed(c) d=randint(0,1000000) if d > 750000: ears = EARS_3 ears_ep = 'Earring' else: ears = none ears_ep = 'None' seed(d) e=randint(0,1000000) HR0 = (255,193,0) HR2 = (251,114,7) HR3 = (210,154,0) HR4 = (166,165,165) HR5 = (165,108,0) HR6 = (111,0,48) HR7 = (85,57,23) red = (255,0,0) if e > 875000: HR1 = HR0 HR2 = red hair_color_ep ='Blonde' elif e > 750000: HR1 = nr HR2 = red hair_color_ep ='Black' elif e > 625000: HR1 = HR2 HR2 = red hair_color_ep ='Orange' elif e > 500000: HR1 = HR3 HR2 = red hair_color_ep ='Fair' elif e > 375000: HR1 = HR4 HR2 = red hair_color_ep ='Grey' elif e > 250000: HR1 = HR5 HR2 = red hair_color_ep ='Ginger' elif e > 125000: HR1 = HR6 HR2 = red hair_color_ep ='Black Rose' else: HR1 = HR7 HR2 = red hair_color_ep ='Brown' WOMAN_HR1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,HR1,HR1,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,HR1,HR1,0,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,0,HR1,0,0,0,0,0], [0,0,0,0,0,HR1,0,HR1,0,0,0,0,0,0,0,0,HR1,HR1,0,HR1,0,0,0,0], [0,0,0,0,0,HR1,0,HR1,0,0,0,0,0,0,0,0,HR1,HR1,0,HR1,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,0,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,0,HR1,0,0,0,0,0], [0,0,0,0,0,HR1,0,HR1,0,0,0,0,0,0,0,0,HR1,HR1,0,HR1,0,0,0,0], [0,0,0,0,0,HR1,0,HR1,0,0,0,0,0,0,0,0,HR1,HR1,0,HR1,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,HR1,0,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,HR1,0,HR1,0,0,0,0,0], [0,0,0,0,0,HR1,0,HR1,HR1,0,0,0,0,0,0,0,HR1,HR1,0,HR1,0,0,0,0], [0,0,0,0,0,HR1,0,HR1,HR1,HR1,0,0,0,0,0,0,HR1,HR1,0,HR1,0,0,0,0], [0,0,0,0,0,0,HR1,0,HR1,HR1,HR1,0,0,0,0,0,HR1,0,HR1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] WOMAN_HR2=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,HR1,HR1,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] WOMAN_HR3=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,HR1,0,HR1,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,0,0,0,0,0,0,0], [0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0,HR1,0,0,0,0,0,0,0], [0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] WOMAN_HR4=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,HR1,HR1,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] WOMAN_HR5=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,HR1,HR1,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] MOLE_2=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,MO1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] SCARE_2=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] ROSY_2=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,RC1,RC1,0,0,0,RC1,RC1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] seed(e) f=randint(0,1000000) if f > 800000: hair = WOMAN_HR1 haircut_ep = 'Curly Hair' elif f > 600000: hair = WOMAN_HR2 haircut_ep = 'Right Side Hair' elif f > 400000: hair = WOMAN_HR3 haircut_ep = 'Left Side Hair' elif f > 200000: hair = WOMAN_HR4 haircut_ep = 'The Bob' else: hair = WOMAN_HR5 haircut_ep = 'Straight Hair' seed(f) g=randint(0,1000000) if g > 960000: hair_prop = CAP_4 hair_prop_ep = 'Cap' elif g > 950000: hair_prop = TIARA_2 hair_prop_ep = 'Tiara' titi = 99 elif g > 930000: hair_prop = MILICAP_2 hair_prop_ep = 'Punk Hat' elif e > 890000: hair_prop = KNITTED_4 hair_prop_ep = 'Knitted Cap' elif g > 850000: hair_prop = HEADBAND_4 hair_prop_ep = 'Headband' elif g > 840000: hair = none hair_prop = PILOT_2 hair_prop_ep = 'Pilot Helmet' titi = 99 elif g > 810000: hair_prop = BANDANA_4 hair_prop_ep = 'Bandana' elif g > 750000: hair_prop = Wo_Crown hair_prop_ep = 'Circlet' else: hair_prop = none hair_prop_ep = 'None' seed(g) h=randint(0,1000000) if h > 900000: EY1 = (110,152,77) SC1 = (92,133,57) eyes_color_ep = 'Green Eye Shadow' elif h > 800000: EY1 = (93,121,117) SC1 = (80,106,101) eyes_color_ep = 'Blue Eye Shadow' elif h > 700000: EY1 = (176,61,133) SC1 = (164,55,117) eyes_color_ep = 'Purple Eye Shadow' elif h > 600000: EY1 = (214,92,26) SC1 = (194,79,17) eyes_color_ep = 'Orange Eye Shadow' else: eyes_color_ep = 'None' neyu = 99 seed(h) i=randint(0,1000000) if i > 900000: mouth_prop = CIGARETTE mouth_prop_ep = 'Cigarette' elif i > 880000: mouth_prop = MASK_2 mouth_prop_ep = 'Medical Mask' tactac = 99 elif i > 820000: mouth_prop = PIPE mouth_prop_ep = 'Pipe' elif i > 780000: mouth_prop = VAPE mouth_prop_ep = 'Vape' else: mouth_prop = none mouth_prop_ep = 'None' # seed(h) # i=randint(0,1000000) # if i > 300000: # EY1 = (255,255,255) # elif i > 50000: # EY1 = (0,0,255) # else: # EY1 = (0,255,0) seed(i) j=randint(0,1000000) if j > 970000: eyes = TD_3 eyes_prop_ep ='3D Glasses' elif j > 930000: eyes = VR_3 eyes_prop_ep ='VR' elif j > 880000: eyes = ClassicShades_4 eyes_prop_ep ='Classic Shades' elif j > 830000: eyes = EyePatch_4 eyes_prop_ep ='Eye Patch' neyw = 99 elif j > 780000: eyes = NerdGlasses_4 eyes_prop_ep ='Nerd Glasses' elif j > 730000: eyes = BigShades_4 eyes_prop_ep ='Big Shades' elif j > 700000: eyes = EyeMask_4 eyes_prop_ep ='Eye Mask' neyw = 99 elif j > 650000: eyes = HornedRimGlasses_4 eyes_prop_ep ='Horned Rim Glasses' elif j > 600000: eyes = RegularShades_4 eyes_prop_ep ='Regular Shades' elif j > 590000: eyes = GOGOLES_2 eyes_prop_ep ='Welding Goggles' hair_prop = none hair_prop_ep = 'None' tata = 99 else: eyes=none eyes_prop_ep ='None' neyw = 99 if titi == 99 and tata != 99: eyes = none eyes_prop_ep ='None' if neyu != 99 and neyw !=99: eyes = none eyes_prop_ep ='None' seed(j) k=randint(0,1000000) if k > 975000: nose = NOSE_2 nose_ep = 'Clown Nose' tuctuc = 99 else: nose = none nose_ep = 'None' if tactac == 99 and tuctuc == 99: mouthprop = none mouth_prop_ep = 'None' seed(k) l=randint(0,1000000) if l > 970000: blemishes = ROSY_2 blemishe_ep = 'Rosy Cheeks' elif l > 900000: blemishes = MOLE_2 blemishe_ep = 'Mole' elif l > 870000: blemishes = SCARE_2 blemishe_ep = 'Scare' else: blemishes = none blemishe_ep = 'None' seed(l) m=randint(0,1000000) if m > 930000: LI1 = nr mouth_ep = 'Black Lipstick' elif m > 860000: LI1 = (255,0,0) mouth_ep = 'Hot Lipstick' elif m > 790000: LI1 = (208,82,203) mouth_ep = 'Purple Lipstick' elif m > 720000: LI1 = (214,92,26) mouth_ep = 'Orange Lipstick' else: mouth = none mouth_ep = 'None' seed(m) n=randint(0,1000000) if n > 900000: neck = GoldChain_3 neck_ep = 'Gold Chain' elif n > 820000: neck = SilverChain_3 neck_ep = 'Silver Chain' elif n > 800000: neck = RING_3 neck_ep = 'Ring Onchain' elif n > 790000: neck = CHOKER neck_ep = 'Choker' elif n > 770000: neck = BROCHE_3 neck_ep = 'Brooch' else: neck = none neck_ep = 'None' WOMAN=[ [FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,FR1,FR1,FR1,FR1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SC1,SC1,SK1,SK1,SK1,SC1,SC1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,EY1,FR1,SK1,SK1,SK1,EY1,FR1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,FR1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,LI1,LI1,LI1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,FR1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,FR1,FR1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR1,SK1,SK1,SK1,FR1,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2] ] pixels = WOMAN elif b > 535000: race_ep = 'Elves' type_ep = 'Male' hair_color_ep = 'None' haircut_ep = 'None' hair_prop_ep = 'None' eyes_prop_ep = 'None' blemishe_ep = 'None' eyes_color_ep = 'None' facial_hair_ep = 'None' mouth_prop_ep = 'None' mouth_ep = 'None' tooth_color_ep = 'None' nose_ep = 'None' neck_ep = 'None' ears_ep = 'None' skin_ep = 'None' ears = none hair = none hair_prop = none neck = none blemishes = none #tooth color mouth = none facial_hair = none rod = none mouth_prop = none #eye color eyes = none nose = none seed(b) c=randint(0,1000000) if c > 800000: SK1 = (234,217,217) SC1 = (165,141,141) EY1 = (201,178,178) SK2 = (255,255,255) HRG3 = (220,222,234) HRG2 = (183,179,191) HRG4 = (203,200,212) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (226,187,185) MO1 = EY1 SCR1 = EY1 skin_ep = 'Albino' elif c > 500000: SK1 = (219,177,128) SC1 = (166,110,44) EY1 = (210,157,96) SK2 = (235,203,166) HRG3 = (213,200,183) HRG2 = (184,163,135) HRG4 = (209,189,164) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (215,154,104) MO1 = EY1 SCR1 = EY1 skin_ep = 'Light' elif c > 200000: SK1 = (174,139,97) SC1 = (134,88,30) EY1 = (167,124,71) SK2 = (178,138,93) HRG3 = (188,179,165) HRG2 = (166,150,128) HRG4 = (184,171,151) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (191,105,71) MO1 = EY1 SCR1 = EY1 skin_ep = 'Mid' else: SK1 = (113,63,29) SC1 = (86,39,10) EY1 = (114,55,17) SK2 = (146,79,35) HRG3 = (155,135,127) HRG2 = (139,121,111) HRG4 = (156,131,115) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (142,36,2) MO1 = EY1 SCR1 = EY1 skin_ep = 'Dark' seed(c) d=randint(0,1000000) if d > 750000: ears = EARS_1 ears_ep = 'Earring' else: ears = none ears_ep = 'None' seed(d) e=randint(0,1000000) HR0 = (255,227,72) HR2 = (255,255,153) HR3 = (165,108,0) HR4 = (61,35,32) HR5 = (111,0,48) HR6 = (255,0,0) if e > 850000: HR1 = HR0 hair_color_ep ='Blond' elif e > 700000: HR1 = HR2 hair_color_ep ='Butter' elif e > 650000: HR1 = HR3 hair_color_ep ='Ginger' elif e > 500000: HR1 = HR4 hair_color_ep ='Brown' elif e > 350000: HR1 = HR5 hair_color_ep ='Black Rose' elif e > 200000: HR1 = nr hair_color_ep='Black' else: HR1 = HR6 hair_color_ep ='Red' ELF_HR1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] ELF_HR2=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,HR1,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,0,HR1,HR1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,0,0,HR1,HR1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] ELF_HR3=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,BG1,HR1,HR1,HR1,HR1,BG1,BG1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,BG1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,BG1,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,BG1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,HR1,0,HR1,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] ELF_HR4=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,HR1,0,HR1,HR1,HR1,HR1,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,HR1,HR1,0,0,0,0,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0] ] ELF_HR5=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,HR1,HR1,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,HR1,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,HR1,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0] ] seed(e) f=randint(0,1000000) if f > 800000: hair = ELF_HR1 haircut_ep = 'Straight Hair' elif f > 600000: hair = ELF_HR2 haircut_ep = 'Braids' elif f > 400000: hair = ELF_HR3 haircut_ep = 'Left Side Hair' elif f > 200000: hair = ELF_HR4 haircut_ep = 'Long Hair' else: hair = ELF_HR5 haircut_ep = 'Medium Layers' seed(f) g=randint(0,1000000) if g > 960000: hair_prop = CAP_1 hair_prop_ep = 'Cap' elif g > 940000: hair_prop = COWBOY_1 hair_prop_ep = 'Cowboy Hat' elif g > 910000: hair_prop = TOPHAT_1 hair_prop_ep = 'Top Hat' elif e > 870000: hair_prop = KNITTED_1 hair_prop_ep = 'Knitted Cap' elif g > 865000: hair_prop = HEADBAND_1 hair_prop_ep = 'Headband' hair = ELF_HR1 haircut_ep = 'Straight Hair' elif g > 850000: hair_prop = HEADBAND_1 hair_prop_ep = 'Headband' hair = ELF_HR2 haircut_ep = 'Braids' elif g > 835000: hair_prop = HEADBAND_1 hair_prop_ep = 'Headband' hair = ELF_HR4 haircut_ep = 'Long Hair' elif g > 820000: hair_prop = HEADBAND_1 hair_prop_ep = 'Headband' hair = ELF_HR5 haircut_ep = 'Medium Layers' elif g > 790000: hair_prop = FORCAP_1 hair_prop_ep = 'Cap Forward' elif g > 760000: hair_prop = BANDANA_1 hair_prop_ep = 'Bandana' elif g > 750000: hair_prop = Elf_Crown hair_prop_ep = 'Elfic Crown' hair = ELF_HR1 haircut_ep = 'Straight Hair' elif g > 740000: hair_prop = Elf_Crown hair_prop_ep = 'Elfic Crown' hair = ELF_HR2 haircut_ep = 'Braids' elif g > 730000: hair_prop = Elf_Crown hair_prop_ep = 'Elfic Crown' hair = ELF_HR4 haircut_ep = 'Long Hair' elif g > 720000: hair_prop = Elf_Crown hair_prop_ep = 'Elfic Crown' hair = ELF_HR5 haircut_ep = 'Medium Layers' elif g > 700000: hair_prop = FEDORA_1 hair_prop_ep = 'Fedora' elif g > 670000: hair_prop = POLICE_1 hair_prop_ep = 'Police' elif g > 660000: hair_prop = BEANI_1 hair_prop_ep = 'Beanie' else: hair_prop = none hair_prop_ep = 'None' seed(g) h=randint(0,1000000) if h > 900000: neck = GoldChain_1 neck_ep = 'Gold Chain' elif h > 820000: neck = SilverChain_1 neck_ep = 'Silver Chain' elif h > 800000: neck = RING_1 neck_ep = 'Ring Onchain' elif h > 780000: neck = BROCHE_1 neck_ep = 'Brooch' else: neck = none neck_ep = 'None' seed(h) i=randint(0,1000000) if i > 900000: mouth_prop = CIGARETTE mouth_prop_ep = 'Cigarette' elif i > 880000: mouth_prop = MASK_1 mouth_prop_ep = 'Medical Mask' elif i > 820000: mouth_prop = PIPE mouth_prop_ep = 'Pipe' elif i > 780000: mouth_prop = VAPE mouth_prop_ep = 'Vape' else: mouth_prop = none mouth_prop_ep = 'None' # seed(h) # i=randint(0,1000000) # if i > 300000: # EY1 = (255,255,255) # elif i > 50000: # EY1 = (0,0,255) # else: # EY1 = (0,255,0) seed(i) j=randint(0,1000000) if j > 970000: eyes = TD_1 eyes_prop_ep ='3D Glasses' elif j > 930000: eyes = VR_1 eyes_prop_ep ='VR' elif j > 880000: eyes = ClassicShades_1 eyes_prop_ep ='Classic Shades' elif j > 830000: eyes = EyePatch_1 eyes_prop_ep ='Eye Patch' elif j > 780000: eyes = NerdGlasses_1 eyes_prop_ep ='Nerd Glasses' elif j > 730000: eyes = BigShades_1 eyes_prop_ep ='Big Shades' elif j > 700000: eyes = EyeMask_1 eyes_prop_ep ='Eye Mask' elif j > 650000: eyes = HornedRimGlasses_1 eyes_prop_ep ='Horned Rim Glasses' elif j > 600000: eyes = RegularShades_1 eyes_prop_ep ='Regular Shades' else: eyes=none eyes_prop_ep ='None' seed(j) k=randint(0,1000000) if k > 975000: nose = NOSE_1 nose_ep = 'Clown Nose' else: nose = none nose_ep = 'None' seed(k) l=randint(0,1000000) if l > 975000: mouth = SMILE mouth_ep = 'Smile' elif l > 950000: mouth = FROWN mouth_ep = 'Frown' else: mouth = none mouth_ep = 'None' MOLE=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,MO1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] SCARE_1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] ROSY_1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,RC1,0,0,0,0,RC1,RC1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,RC1,0,0,0,0,0,RC1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] seed(l) m=randint(0,1000000) if m > 970000: blemishes = ROSY_1 blemishe_ep = 'Rosy Cheeks' elif m > 900000: blemishes = MOLE blemishe_ep = 'Mole' elif m > 870000: blemishes = SCARE_1 blemishe_ep = 'Scare' else: blemishes = none blemishe_ep = 'None' ELF=[ [FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,FR1,FR1,FR1,FR1,FR1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,FR1,FR1,SC1,SC1,SK1,SK1,SK1,SC1,SC1,SK1,SK1,FR1,FR1,FR1,FR1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,FR1,SK1,FR1,EY1,FR1,SK1,SK1,SK1,EY1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,FR1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,FR1,FR1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,FR1,FR1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,FR1,FR1,FR1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,FR1,FR1,FR1,FR1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR1,SK1,SK1,SK1,FR1,FR2,FR2,FR2,FR2,FR2,FR2] ] pixels = ELF elif b > 470000: race_ep = 'Elves' type_ep = 'Female' hair_color_ep = 'None' haircut_ep = 'None' hair_prop_ep = 'None' eyes_prop_ep = 'None' blemishe_ep = 'None' eyes_color_ep = 'None' facial_hair_ep = 'None' mouth_prop_ep = 'None' mouth_ep = 'None' tooth_color_ep = 'None' nose_ep = 'None' neck_ep = 'None' ears_ep = 'None' skin_ep = 'None' ears = none hair = none hair_prop = none neck = none blemishes = none #tooth color mouth = none facial_hair = none rod = none mouth_prop = none #eye color eyes = none nose = none seed(b) c=randint(0,1000000) if c > 800000: SK1 = (234,217,217) SC1 = (165,141,141) EY1 = (201,178,178) SK2 = SK1 HRG3 = (220,222,234) HRG2 = (183,179,191) HRG4 = (203,200,212) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (226,187,185) LI1 = (113,28,17) MO1 = EY1 SCR1 = EY1 skin_ep = 'Albino' elif c > 500000: SK1 = (219,177,128) SC1 = (166,110,44) EY1 = (210,157,96) SK2 = SK1 HRG3 = (213,200,183) HRG2 = (184,163,135) HRG4 = (209,189,164) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (215,154,104) LI1 = (113,28,17) MO1 = EY1 SCR1 = EY1 skin_ep = 'Light' elif c > 200000: SK1 = (174,139,97) SC1 = (134,88,30) EY1 = (167,124,71) SK2 = SK1 HRG3 = (188,179,165) HRG2 = (166,150,128) HRG4 = (184,171,151) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (191,105,71) LI1 = (95,29,13) MO1 = EY1 SCR1 = EY1 skin_ep = 'Mid' else: SK1 = (113,63,29) SC1 = (86,39,10) EY1 = (114,55,17) SK2 = SK1 HRG3 = (155,135,127) HRG2 = (139,121,111) HRG4 = (156,131,115) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (142,36,2) LI1 = (74,18,8) MO1 = EY1 SCR1 = EY1 skin_ep = 'Dark' seed(c) d=randint(0,1000000) if d > 750000: ears = EARS_3 ears_ep = 'Earring' else: ears = none ears_ep = 'None' seed(d) e=randint(0,1000000) HR0 = (255,227,72) HR2 = (249,255,0) HR3 = (165,108,0) HR4 = (61,35,32) HR5 = (111,0,48) HR6 = (255,0,0) if e > 850000: HR1 = HR0 hair_color_ep ='Blond' elif e > 700000: HR1 = HR2 hair_color_ep ='Butter' elif e > 650000: HR1 = HR3 hair_color_ep ='Ginger' elif e > 500000: HR1 = HR4 hair_color_ep ='Brown' elif e > 350000: HR1 = HR5 hair_color_ep ='Black Rose' elif e > 200000: HR1 = nr hair_color_ep='Black' else: HR1 = HR6 hair_color_ep ='Red' ELFE_HR1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,HR1,HR1,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] ELFE_HR2=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,HR1,HR1,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,HR1,HR1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,0,0] ] ELFE_HR3=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,HR1,0,HR1,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,0,0,0,0,0,0,0], [0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] ELFE_HR4=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,HR1,0,HR1,HR1,HR1,HR1,0,HR1,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,HR1,HR1,0,0,0,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0] ] ELFE_HR5=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,HR1,0,0,0,0,HR1,0,0,0,0,0,0,0,0,0] ] MOLE_2=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,MO1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] SCARE_2=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] ROSY_2=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,RC1,RC1,0,0,0,RC1,RC1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] seed(e) f=randint(0,1000000) if f > 800000: hair = ELFE_HR1 haircut_ep = 'Straight Hair' elif f > 600000: hair = ELFE_HR2 haircut_ep = 'Braids' elif f > 400000: hair = ELFE_HR3 haircut_ep = 'Left Side Hair' elif f > 200000: hair = ELFE_HR4 haircut_ep = 'Long Hair' else: hair = ELFE_HR5 haircut_ep = 'Medium Layers' seed(f) g=randint(0,1000000) if g > 900000: hair_prop = CAP_3 hair_prop_ep = 'Cap' elif g > 700000: hair_prop = MILICAP_1 hair_prop_ep = 'Punk Hat' elif e > 600000: hair_prop = KNITTED_3 hair_prop_ep = 'Knitted Cap' elif g > 500000: hair_prop = HEADBAND_3 hair_prop_ep = 'Headband' elif g > 400000: hair = none hair_prop = PILOT_1 hair_prop_ep = 'Pilot Helmet' titin = 99 elif g > 300000: hair_prop = BANDANA_3 hair_prop_ep = 'Bandana' elif g > 100000: hair_prop = Elfe_Tiara hair_prop_ep = 'Elfic Tiara' else: hair_prop = none hair_prop_ep = 'None' seed(g) h=randint(0,1000000) if h > 900000: EY1 = (110,152,77) SC1 = (92,133,57) eyes_color_ep = 'Green Eye Shadow' elif h > 800000: EY1 = (93,121,117) SC1 = (80,106,101) eyes_color_ep = 'Blue Eye Shadow' elif h > 700000: EY1 = (176,61,133) SC1 = (164,55,117) eyes_color_ep = 'Purple Eye Shadow' elif h > 600000: EY1 = (214,92,26) SC1 = (194,79,17) eyes_color_ep = 'Orange Eye Shadow' else: eyes_color_ep = 'None' neyo = 99 seed(h) i=randint(0,1000000) if i > 900000: mouth_prop = CIGARETTE mouth_prop_ep = 'Cigarette' elif i > 880000: mouth_prop = MASK_2 mouth_prop_ep = 'Medical Mask' tactac = 99 elif i > 820000: mouth_prop = PIPE mouth_prop_ep = 'Pipe' elif i > 780000: mouth_prop = VAPE mouth_prop_ep = 'Vape' else: mouth_prop = none mouth_prop_ep = 'None' # seed(h) # i=randint(0,1000000) # if i > 300000: # EY1 = (255,255,255) # elif i > 50000: # EY1 = (0,0,255) # else: # EY1 = (0,255,0) seed(i) j=randint(0,1000000) if j > 970000: eyes = TD_3 eyes_prop_ep ='3D Glasses' elif j > 930000: eyes = VR_3 eyes_prop_ep ='VR' elif j > 880000: eyes = ClassicShades_3 eyes_prop_ep ='Classic Shades' elif j > 830000: eyes = EyePatch_3 eyes_prop_ep ='Eye Patch' neye = 99 elif j > 780000: eyes = NerdGlasses_3 eyes_prop_ep ='Nerd Glasses' elif j > 730000: eyes = BigShades_3 eyes_prop_ep ='Big Shades' elif j > 700000: eyes = EyeMask_3 eyes_prop_ep ='Eye Mask' neye = 99 elif j > 650000: eyes = HornedRimGlasses_3 eyes_prop_ep ='Horned Rim Glasses' elif j > 600000: eyes = RegularShades_3 eyes_prop_ep ='Regular Shades' elif j > 590000: eyes = GOGOLES_1 eyes_prop_ep ='Welding Goggles' hair_prop = none hair_prop_ep = 'None' toutou = 99 else: eyes=none eyes_prop_ep ='None' neye = 99 if titin == 99 and toutou != 99: eyes = none eyes_prop_ep ='None' if neyo != 99 and neye !=99: eyes = none eyes_prop_ep ='None' seed(j) k=randint(0,1000000) if k > 975000: nose = NOSE_2 nose_ep = 'Clown Nose' tuctuc = 99 else: nose = none nose_ep = 'None' if tactac == 99 and tuctuc == 99: mouthprop = none mouth_prop_ep = 'None' seed(k) l=randint(0,1000000) if l > 970000: blemishes = ROSY_2 blemishe_ep = 'Rosy Cheeks' elif l > 900000: blemishes = MOLE_2 blemishe_ep = 'Mole' elif l > 870000: blemishes = SCARE_2 blemishe_ep = 'Scare' else: blemishes = none blemishe_ep = 'None' seed(l) m=randint(0,1000000) if m > 930000: LI1 = nr mouth_ep = 'Black Lipstick' elif m > 860000: LI1 = (255,0,0) mouth_ep = 'Hot Lipstick' elif m > 790000: LI1 = (208,82,203) mouth_ep = 'Purple Lipstick' elif m > 720000: LI1 = (214,92,26) mouth_ep = 'Orange Lipstick' else: mouth = none mouth_ep = 'None' seed(m) n=randint(0,1000000) if n > 900000: neck = GoldChain_2 neck_ep = 'Gold Chain' elif n > 820000: neck = SilverChain_2 neck_ep = 'Silver Chain' elif n > 800000: neck = RING_2 neck_ep = 'Ring Onchain' elif n > 780000: neck = BROCHE_2 neck_ep = 'Brooch' else: neck = none neck_ep = 'None' ELFE=[ [FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,FR1,FR1,FR1,FR1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK2,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,FR1,FR1,SC1,SC1,SK1,SK1,SK1,SC1,SC1,SK1,FR1,FR1,FR1,FR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,FR1,SK1,FR1,EY1,FR1,SK1,SK1,SK1,EY1,FR1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,FR1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,FR1,FR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,FR1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,LI1,LI1,LI1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,FR1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,FR1,FR1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR1,SK1,SK1,SK1,FR1,FR2,FR2,FR2,FR2,FR2,FR2,FR2] ] pixels = ELFE elif b > 460000: race_ep = 'Dwarves' type_ep = 'Firebeards' hair_color_ep = 'None' haircut_ep = 'None' hair_prop_ep = 'None' eyes_prop_ep = 'None' blemishe_ep = 'None' eyes_color_ep = 'None' facial_hair_ep = 'None' mouth_prop_ep = 'None' mouth_ep = 'None' tooth_color_ep = 'None' nose_ep = 'None' neck_ep = 'None' ears_ep = 'None' skin_ep = 'None' ears = none hair = none hair_prop = none neck = none blemishes = none #tooth color mouth = none facial_hair = none rod = none mouth_prop = none #eye color eyes = none nose = none seed(b) c=randint(0,1000000) if c > 800000: SK1 = (234,217,217) SC1 = (165,141,141) EY1 = (201,178,178) SK2 = (255,255,255) HRG3 = (220,222,234) HRG2 = (183,179,191) HRG4 = (203,200,212) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (226,187,185) MO1 = EY1 SCR1 = EY1 skin_ep = 'Albino' elif c > 500000: SK1 = (219,177,128) SC1 = (166,110,44) EY1 = (210,157,96) SK2 = (235,203,166) HRG3 = (213,200,183) HRG2 = (184,163,135) HRG4 = (209,189,164) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (215,154,104) MO1 = EY1 SCR1 = EY1 skin_ep = 'Light' elif c > 200000: SK1 = (174,139,97) SC1 = (134,88,30) EY1 = (167,124,71) SK2 = (178,138,93) HRG3 = (188,179,165) HRG2 = (166,150,128) HRG4 = (184,171,151) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (191,105,71) MO1 = EY1 SCR1 = EY1 skin_ep = 'Mid' else: SK1 = (113,63,29) SC1 = (86,39,10) EY1 = (114,55,17) SK2 = (146,79,35) HRG3 = (155,135,127) HRG2 = (139,121,111) HRG4 = (156,131,115) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (142,36,2) MO1 = EY1 SCR1 = EY1 skin_ep = 'Dark' seed(c) d=randint(0,1000000) if d > 750000: ears = EARS_2 ears_ep = 'Earring' else: ears = none ears_ep = 'None' seed(d) e=randint(0,1000000) HR0 = (255,193,0) HR8 = (251,114,7) HR3 = (210,154,0) HR4 = (166,165,165) HR5 = (165,108,0) HR6 = (111,0,48) HR7 = (85,57,23) if e > 860000: HR1 = (50,50,50) #Ok HR2 = (200,200,200) hair_color_ep = 'Dark Grey & Silver' elif e > 720000: HR1 = HR8 HR2 = (111,0,48) #ok hair_color_ep = 'Orange & Black Rose' elif e > 580000: HR1 = HR3 #ok HR2 = (210,210,0) hair_color_ep = 'Fair & Wattle' elif e > 440000: HR1 = (80,50,30) #Ok HR2 = (44,4,9) hair_color_ep = 'Bronze & Chocolate' elif e > 300000: HR1 = HR5 HR2 = HR3 hair_color_ep = 'Ginger & Fair' elif e > 150000: HR1 = (220,130,0) #ok HR2 = (70,40,10) hair_color_ep = 'Mango & Brown' else: HR1 = (210,210,210) #Ok HR2 = (210,210,210) hair_color_ep = 'Grey Goose' seed(e) f=randint(0,1000000) seed(f) g=randint(0,1000000) if g > 960000: hair_prop = CAP_2 hair_prop_ep = 'Cap' elif g > 940000: hair_prop = COWBOY_2 hair_prop_ep = 'Cowboy Hat' elif g > 920000: hair_prop = TOPHAT_2 hair_prop_ep = 'Top Hat' elif g > 890000: hair_prop = Helmet hair_prop_ep = 'Dwarf Helmet' tete = 99 elif g > 870000: hair_prop = FORCAP_2 hair_prop_ep = 'Cap Forward' elif g > 850000: hair_prop = BANDANA_2 hair_prop_ep = 'Bandana' elif g > 830000: hair_prop = FEDORA_2 hair_prop_ep = 'Fedora' elif g > 800000: hair_prop = POLICE_2 hair_prop_ep = 'Police' else: hair_prop = none hair_prop_ep = 'None' seed(g) h=randint(0,1000000) if h > 900000: mouth_prop = CIGARETTE mouth_prop_ep = 'Cigarette' elif h > 840000: mouth_prop = PIPE mouth_prop_ep = 'Pipe' elif h > 800000: mouth_prop = VAPE mouth_prop_ep = 'Vape' else: mouth_prop = none mouth_prop_ep = 'None' # seed(h) # i=randint(0,1000000) # if i > 300000: # EY1 = (255,255,255) # elif i > 50000: # EY1 = (0,0,255) # else: # EY1 = (0,255,0) seed(h) i=randint(0,1000000) if i > 970000: eyes = TD_2 eyes_prop_ep ='3D Glasses' elif i > 930000: eyes = VR_2 eyes_prop_ep ='VR' elif i > 880000: eyes = ClassicShades_2 eyes_prop_ep ='Classic Shades' elif i > 830000: eyes = SmallShades_2 eyes_prop_ep ='Small Shades' elif i > 780000: eyes = EyePatch_2 eyes_prop_ep ='Eye Patch' elif i > 730000: eyes = NerdGlasses_2 eyes_prop_ep ='Nerd Glasses' elif i > 680000: eyes = BigShades_2 eyes_prop_ep ='Big Shades' elif i > 650000: eyes = EyeMask_2 eyes_prop_ep ='Eye Mask' elif i > 600000: eyes = HornedRimGlasses_2 eyes_prop_ep ='Horned Rim Glasses' elif i > 550000: eyes = RegularShades_2 eyes_prop_ep ='Regular Shades' else: eyes=none eyes_prop_ep ='None' if tete == 99: eyes = none eyes_prop_ep ='None' seed(i) j=randint(0,1000000) if j > 975000: nose = NOSE_1 nose_ep = 'Clown Nose' else: nose = none nose_ep = 'None' seed(j) k=randint(0,1000000) if k > 975000: mouth = SMILE mouth_ep = 'Smile' elif k > 950000: mouth = FROWN mouth_ep = 'Frown' else: mouth = none mouth_ep = 'None' MOLE=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,MO1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] SCARE_1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] ROSY_1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,RC1,0,0,0,0,RC1,RC1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,RC1,0,0,0,0,0,RC1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] seed(k) l=randint(0,1000000) if l > 970000: blemishes = ROSY_1 blemishe_ep = 'Rosy Cheeks' elif l > 900000: blemishes = MOLE blemishe_ep = 'Mole' elif l > 870000: blemishes = SCARE_1 blemishe_ep = 'Scare' else: blemishes = none blemishe_ep = 'None' DWARF_1=[ [FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,HR1,HR1,HR1,HR1,HR1,HR1,HR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,HR2,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR2,HR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,HR2,HR1,HR1,HR1,SK1,SK1,SK1,HR1,HR1,HR1,HR2,HR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,HR2,HR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,HR1,HR1,HR2,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,HR2,HR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,HR1,HR2,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR2,HR1,FR1,HR1,SK1,SK1,SK1,SK1,SK1,HR1,SK1,SK1,FR1,HR1,HR1,HR2,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR2,HR1,FR1,SC1,SC1,SK1,SK1,SK1,SC1,SC1,SK1,SK1,SK1,FR1,HR1,HR1,HR2,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR2,HR1,FR1,EY1,FR1,SK1,SK1,SK1,EY1,FR1,SK1,SK1,SK1,FR1,HR1,HR1,HR2,BG1,FR2], [FR2,BG1,BG1,BG1,HR2,HR1,HR1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,FR1,HR1,HR1,HR2,BG1,FR2], [FR2,BG1,BG1,BG1,HR2,HR1,HR1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,HR1,HR1,HR1,BG1,HR2,FR2], [FR2,BG1,BG1,HR2,BG1,HR1,HR1,FR1,SK1,SK1,FR1,FR1,SK1,SK1,SK1,SK1,SK1,FR1,HR1,HR1,HR1,BG1,BG1,FR2], [FR2,BG1,BG1,HR2,BG1,HR1,HR1,FR1,HR1,HR2,HR2,HR2,HR2,HR1,HR1,SK1,SK1,FR1,HR1,HR1,HR1,BG1,BG1,FR2], [FR2,BG1,HR2,BG1,BG1,HR1,FR1,HR1,HR2,HR1,HR1,HR1,HR1,HR2,HR1,HR1,HR1,FR1,HR1,HR1,HR1,HR1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,FR1,HR1,HR2,HR1,FR1,FR1,FR1,HR1,HR2,HR1,HR1,HR1,FR1,HR1,HR1,HR1,HR1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,FR1,HR1,HR2,HR1,HR1,HR1,HR1,HR1,HR2,HR1,HR1,HR1,FR1,HR1,HR1,HR1,HR1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,FR1,HR2,HR1,HR1,HR1,HR1,HR1,HR2,HR1,HR1,HR1,FR1,HR1,HR1,HR1,HR1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,HR1,HR2,FR1,HR1,HR1,HR1,HR1,HR1,HR1,HR2,FR1,FR1,BG1,BG1,HR1,HR1,HR1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,HR2,HR1,BG1,FR1,HR1,HR1,FR1,FR1,FR1,FR1,HR2,FR1,BG1,BG1,BG1,HR1,HR1,FR2], [FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR1,FR1,FR2,FR1,SK1,SK1,SK1,FR1,FR2,FR2,FR2,FR2,FR2,FR2] ] pixels = DWARF_1 elif b > 450000: race_ep = 'Dwarves' type_ep = 'Blacklocks' hair_color_ep = 'None' haircut_ep = 'None' hair_prop_ep = 'None' eyes_prop_ep = 'None' blemishe_ep = 'None' eyes_color_ep = 'None' facial_hair_ep = 'None' mouth_prop_ep = 'None' mouth_ep = 'None' tooth_color_ep = 'None' nose_ep = 'None' neck_ep = 'None' ears_ep = 'None' skin_ep = 'None' ears = none hair = none hair_prop = none neck = none blemishes = none #tooth color mouth = none facial_hair = none rod = none mouth_prop = none #eye color eyes = none nose = none seed(b) c=randint(0,1000000) if c > 800000: SK1 = (234,217,217) SC1 = (165,141,141) EY1 = (201,178,178) SK2 = (255,255,255) HRG3 = (220,222,234) HRG2 = (183,179,191) HRG4 = (203,200,212) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (226,187,185) MO1 = EY1 SCR1 = EY1 skin_ep = 'Albino' elif c > 500000: SK1 = (219,177,128) SC1 = (166,110,44) EY1 = (210,157,96) SK2 = (235,203,166) HRG3 = (213,200,183) HRG2 = (184,163,135) HRG4 = (209,189,164) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (215,154,104) MO1 = EY1 SCR1 = EY1 skin_ep = 'Light' elif c > 200000: SK1 = (174,139,97) SC1 = (134,88,30) EY1 = (167,124,71) SK2 = (178,138,93) HRG3 = (188,179,165) HRG2 = (166,150,128) HRG4 = (184,171,151) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (191,105,71) MO1 = EY1 SCR1 = EY1 skin_ep = 'Mid' else: SK1 = (113,63,29) SC1 = (86,39,10) EY1 = (114,55,17) SK2 = (146,79,35) HRG3 = (155,135,127) HRG2 = (139,121,111) HRG4 = (156,131,115) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (142,36,2) MO1 = EY1 SCR1 = EY1 skin_ep = 'Dark' seed(c) d=randint(0,1000000) if d > 750000: ears = EARS_2 ears_ep = 'Earring' else: ears = none ears_ep = 'None' seed(d) e=randint(0,1000000) HR0 = (255,193,0) HR8 = (251,114,7) HR3 = (210,154,0) HR4 = (166,165,165) HR5 = (165,108,0) HR6 = (111,0,48) HR7 = (85,57,23) if e > 860000: HR1 = (50,50,50) #Ok HR2 = (200,200,200) hair_color_ep = 'Dark Grey & Silver' elif e > 720000: HR1 = HR8 HR2 = (111,0,48) #ok hair_color_ep = 'Orange & Black Rose' elif e > 580000: HR1 = HR3 #ok HR2 = (210,210,0) hair_color_ep = 'Fair & Wattle' elif e > 440000: HR1 = (80,50,30) #Ok HR2 = (44,4,9) hair_color_ep = 'Bronze & Chocolate' elif e > 300000: HR1 = HR5 HR2 = HR3 hair_color_ep = 'Ginger & Fair' elif e > 150000: HR1 = (220,130,0) #ok HR2 = (70,40,10) hair_color_ep = 'Mango & Brown' else: HR1 = (210,210,210) #Ok HR2 = (210,210,210) hair_color_ep = 'Grey Goose' seed(e) f=randint(0,1000000) seed(f) g=randint(0,1000000) if g > 960000: hair_prop = CAP_2 hair_prop_ep = 'Cap' elif g > 940000: hair_prop = COWBOY_2 hair_prop_ep = 'Cowboy Hat' elif g > 920000: hair_prop = TOPHAT_2 hair_prop_ep = 'Top Hat' elif g > 890000: hair_prop = Helmet hair_prop_ep = 'Dwarf Helmet' tete = 99 elif g > 870000: hair_prop = FORCAP_2 hair_prop_ep = 'Cap Forward' elif g > 850000: hair_prop = BANDANA_2 hair_prop_ep = 'Bandana' elif g > 830000: hair_prop = FEDORA_2 hair_prop_ep = 'Fedora' elif g > 800000: hair_prop = POLICE_2 hair_prop_ep = 'Police' else: hair_prop = none hair_prop_ep = 'None' seed(g) h=randint(0,1000000) if h > 900000: mouth_prop = CIGARETTE mouth_prop_ep = 'Cigarette' elif h > 840000: mouth_prop = PIPE mouth_prop_ep = 'Pipe' elif h > 800000: mouth_prop = VAPE mouth_prop_ep = 'Vape' else: mouth_prop = none mouth_prop_ep = 'None' # seed(h) # i=randint(0,1000000) # if i > 300000: # EY1 = (255,255,255) # elif i > 50000: # EY1 = (0,0,255) # else: # EY1 = (0,255,0) seed(h) i=randint(0,1000000) if i > 970000: eyes = TD_2 eyes_prop_ep ='3D Glasses' elif i > 930000: eyes = VR_2 eyes_prop_ep ='VR' elif i > 880000: eyes = ClassicShades_2 eyes_prop_ep ='Classic Shades' elif i > 830000: eyes = SmallShades_2 eyes_prop_ep ='Small Shades' elif i > 780000: eyes = EyePatch_2 eyes_prop_ep ='Eye Patch' elif i > 730000: eyes = NerdGlasses_2 eyes_prop_ep ='Nerd Glasses' elif i > 680000: eyes = BigShades_2 eyes_prop_ep ='Big Shades' elif i > 650000: eyes = EyeMask_2 eyes_prop_ep ='Eye Mask' elif i > 600000: eyes = HornedRimGlasses_2 eyes_prop_ep ='Horned Rim Glasses' elif i > 550000: eyes = RegularShades_2 eyes_prop_ep ='Regular Shades' else: eyes=none eyes_prop_ep ='None' if tete == 99: eyes = none eyes_prop_ep ='None' seed(i) j=randint(0,1000000) if j > 975000: nose = NOSE_1 nose_ep = 'Clown Nose' else: nose = none nose_ep = 'None' seed(j) k=randint(0,1000000) if k > 975000: mouth = SMILE mouth_ep = 'Smile' elif k > 950000: mouth = FROWN mouth_ep = 'Frown' else: mouth = none mouth_ep = 'None' MOLE=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,MO1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] SCARE_1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] ROSY_1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,RC1,0,0,0,0,RC1,RC1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,RC1,0,0,0,0,0,RC1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] seed(k) l=randint(0,1000000) if l > 970000: blemishes = ROSY_1 blemishe_ep = 'Rosy Cheeks' elif l > 900000: blemishes = MOLE blemishe_ep = 'Mole' elif l > 870000: blemishes = SCARE_1 blemishe_ep = 'Scare' else: blemishes = none blemishe_ep = 'None' DWARF_2=[ [FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,HR1,HR1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,HR1,HR1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,HR1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,HR1,HR1,HR1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,HR1,HR1,SK1,SK1,SK1,SK1,SK1,SK1,HR1,HR1,HR1,HR1,HR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,HR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,HR1,HR1,HR1,HR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,HR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,HR1,HR1,HR1,SK1,SK1,SK1,SK1,SK1,SK1,HR1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,HR1,HR1,SC1,SC1,SK1,SK1,SK1,SC1,SC1,SK1,HR1,HR1,FR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,HR1,EY1,FR1,SK1,SK1,SK1,EY1,FR1,SK1,HR1,HR1,FR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,HR1,HR1,SK1,SK1,SK1,SK1,SK1,SK1,HR1,HR1,HR1,FR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,HR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,HR1,HR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,HR1,SK1,SK1,FR1,FR1,SK1,SK1,SK1,SK1,HR1,HR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,HR1,SK1,HR2,HR2,HR2,HR2,HR2,SK1,SK1,HR1,HR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,HR1,HR2,HR2,HR2,HR2,HR2,HR2,HR2,HR2,HR1,HR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,HR1,HR2,SK1,FR1,FR1,FR1,SK1,HR2,HR2,HR1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,HR2,HR2,HR2,SK1,HR2,HR2,HR2,SK1,SK1,HR2,HR2,HR2,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR2,BG1,HR2,HR2,SK1,SK1,HR2,SK1,SK1,SK1,HR2,HR2,FR1,HR2,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR2,BG1,HR2,HR2,FR1,FR1,HR2,FR1,FR1,SK1,HR2,HR2,FR1,HR2,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,HR2,BG1,BG1,HR2,HR2,BG1,BG1,HR2,BG1,FR1,SK1,HR2,HR2,FR1,BG1,HR2,BG1,BG1,BG1,FR2], [FR2,FR2,FR2,FR2,FR2,FR2,FR2,HR2,HR2,FR2,FR2,HR2,FR2,FR1,SK1,HR2,HR2,FR1,FR2,FR2,FR2,FR2,FR2,FR2] ] pixels = DWARF_2 elif b > 440000: race_ep = 'Dwarves' type_ep = 'Broadbeams' hair_color_ep = 'None' haircut_ep = 'None' hair_prop_ep = 'None' eyes_prop_ep = 'None' blemishe_ep = 'None' eyes_color_ep = 'None' facial_hair_ep = 'None' mouth_prop_ep = 'None' mouth_ep = 'None' tooth_color_ep = 'None' nose_ep = 'None' neck_ep = 'None' ears_ep = 'None' skin_ep = 'None' ears = none hair = none hair_prop = none neck = none blemishes = none #tooth color mouth = none facial_hair = none rod = none mouth_prop = none #eye color eyes = none nose = none seed(b) c=randint(0,1000000) if c > 800000: SK1 = (234,217,217) SC1 = (165,141,141) EY1 = (201,178,178) SK2 = (255,255,255) HRG3 = (220,222,234) HRG2 = (183,179,191) HRG4 = (203,200,212) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (226,187,185) MO1 = EY1 SCR1 = EY1 skin_ep = 'Albino' elif c > 500000: SK1 = (219,177,128) SC1 = (166,110,44) EY1 = (210,157,96) SK2 = (235,203,166) HRG3 = (213,200,183) HRG2 = (184,163,135) HRG4 = (209,189,164) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (215,154,104) MO1 = EY1 SCR1 = EY1 skin_ep = 'Light' elif c > 200000: SK1 = (174,139,97) SC1 = (134,88,30) EY1 = (167,124,71) SK2 = (178,138,93) HRG3 = (188,179,165) HRG2 = (166,150,128) HRG4 = (184,171,151) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (191,105,71) MO1 = EY1 SCR1 = EY1 skin_ep = 'Mid' else: SK1 = (113,63,29) SC1 = (86,39,10) EY1 = (114,55,17) SK2 = (146,79,35) HRG3 = (155,135,127) HRG2 = (139,121,111) HRG4 = (156,131,115) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (142,36,2) MO1 = EY1 SCR1 = EY1 skin_ep = 'Dark' seed(c) d=randint(0,1000000) if d > 750000: ears = EARS_2 ears_ep = 'Earring' else: ears = none ears_ep = 'None' seed(d) e=randint(0,1000000) HR0 = (255,193,0) HR8 = (251,114,7) HR3 = (210,154,0) HR4 = (166,165,165) HR5 = (165,108,0) HR6 = (111,0,48) HR7 = (85,57,23) if e > 860000: HR1 = (50,50,50) #Ok HR2 = (200,200,200) hair_color_ep = 'Dark Grey & Silver' elif e > 720000: HR1 = HR8 HR2 = (111,0,48) #ok hair_color_ep = 'Orange & Black Rose' elif e > 580000: HR1 = HR3 #ok HR2 = (210,210,0) hair_color_ep = 'Fair & Wattle' elif e > 440000: HR1 = (80,50,30) #Ok HR2 = (44,4,9) hair_color_ep = 'Bronze & Chocolate' elif e > 300000: HR1 = HR5 HR2 = HR3 hair_color_ep = 'Ginger & Fair' elif e > 150000: HR1 = (220,130,0) #ok HR2 = (70,40,10) hair_color_ep = 'Mango & Brown' else: HR1 = (210,210,210) #Ok HR2 = (210,210,210) hair_color_ep = 'Grey Goose' seed(e) f=randint(0,1000000) seed(f) g=randint(0,1000000) if g > 960000: hair_prop = CAP_2 hair_prop_ep = 'Cap' elif g > 940000: hair_prop = COWBOY_2 hair_prop_ep = 'Cowboy Hat' elif g > 920000: hair_prop = TOPHAT_2 hair_prop_ep = 'Top Hat' elif g > 890000: hair_prop = Helmet hair_prop_ep = 'Dwarf Helmet' tete = 99 elif g > 870000: hair_prop = FORCAP_2 hair_prop_ep = 'Cap Forward' elif g > 850000: hair_prop = BANDANA_2 hair_prop_ep = 'Bandana' elif g > 830000: hair_prop = FEDORA_2 hair_prop_ep = 'Fedora' elif g > 800000: hair_prop = POLICE_2 hair_prop_ep = 'Police' else: hair_prop = none hair_prop_ep = 'None' seed(g) h=randint(0,1000000) if h > 900000: mouth_prop = CIGARETTE mouth_prop_ep = 'Cigarette' elif h > 840000: mouth_prop = PIPE mouth_prop_ep = 'Pipe' elif h > 800000: mouth_prop = VAPE mouth_prop_ep = 'Vape' else: mouth_prop = none mouth_prop_ep = 'None' # seed(h) # i=randint(0,1000000) # if i > 300000: # EY1 = (255,255,255) # elif i > 50000: # EY1 = (0,0,255) # else: # EY1 = (0,255,0) seed(h) i=randint(0,1000000) if i > 970000: eyes = TD_2 eyes_prop_ep ='3D Glasses' elif i > 930000: eyes = VR_2 eyes_prop_ep ='VR' elif i > 880000: eyes = ClassicShades_2 eyes_prop_ep ='Classic Shades' elif i > 830000: eyes = SmallShades_2 eyes_prop_ep ='Small Shades' elif i > 780000: eyes = EyePatch_2 eyes_prop_ep ='Eye Patch' elif i > 730000: eyes = NerdGlasses_2 eyes_prop_ep ='Nerd Glasses' elif i > 680000: eyes = BigShades_2 eyes_prop_ep ='Big Shades' elif i > 650000: eyes = EyeMask_2 eyes_prop_ep ='Eye Mask' elif i > 600000: eyes = HornedRimGlasses_2 eyes_prop_ep ='Horned Rim Glasses' elif i > 550000: eyes = RegularShades_2 eyes_prop_ep ='Regular Shades' else: eyes=none eyes_prop_ep ='None' if tete == 99: eyes = none eyes_prop_ep ='None' seed(i) j=randint(0,1000000) if j > 975000: nose = NOSE_1 nose_ep = 'Clown Nose' else: nose = none nose_ep = 'None' seed(j) k=randint(0,1000000) if k > 975000: mouth = SMILE mouth_ep = 'Smile' elif k > 950000: mouth = FROWN mouth_ep = 'Frown' else: mouth = none mouth_ep = 'None' MOLE=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,MO1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] SCARE_1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] ROSY_1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,RC1,0,0,0,0,RC1,RC1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,RC1,0,0,0,0,0,RC1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] seed(k) l=randint(0,1000000) if l > 970000: blemishes = ROSY_1 blemishe_ep = 'Rosy Cheeks' elif l > 900000: blemishes = MOLE blemishe_ep = 'Mole' elif l > 870000: blemishes = SCARE_1 blemishe_ep = 'Scare' else: blemishes = none blemishe_ep = 'None' DWARF_3=[ [FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,HR1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,HR1,HR1,HR1,HR1,SK1,HR1,HR1,SK1,HR1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,HR1,HR1,SK1,SK1,SK1,SK1,SK1,SK1,HR1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,FR1,SC1,SC1,SK1,SK1,SK1,SC1,SC1,SK1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,FR1,EY1,FR1,SK1,SK1,SK1,EY1,FR1,SK1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,HR1,HR1,HR1,HR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,HR1,HR1,HR1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,HR1,HR1,HR1,HR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,HR1,HR1,HR1,FR1,HR1,SK1,FR1,FR1,SK1,SK1,SK1,HR1,HR1,HR1,HR1,HR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,HR1,HR1,BG1,FR1,HR2,HR2,HR2,HR2,HR2,HR2,HR2,FR1,HR1,FR1,HR1,HR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,HR1,BG1,FR1,HR2,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR2,FR1,FR1,BG1,HR1,HR1,BG1,BG1,FR2], [FR2,BG1,BG1,HR1,HR1,FR1,HR2,HR1,HR1,HR1,FR1,FR1,FR1,HR1,HR1,HR1,HR2,FR1,BG1,HR1,HR1,BG1,BG1,FR2], [FR2,BG1,BG1,HR1,HR1,FR1,HR2,HR1,HR1,HR1,HR1,HR2,HR1,HR1,HR1,HR1,HR2,FR1,BG1,HR1,HR1,BG1,BG1,FR2], [FR2,BG1,BG1,HR1,HR1,FR1,HR2,HR1,HR1,HR1,HR2,HR2,HR2,HR1,HR1,HR1,HR2,FR1,BG1,HR1,HR1,BG1,BG1,FR2], [FR2,BG1,BG1,HR1,HR1,BG1,FR1,HR2,HR1,HR2,HR2,HR2,HR2,HR2,HR1,HR2,FR1,FR1,BG1,HR1,HR1,BG1,BG1,FR2], [FR2,BG1,BG1,HR1,HR1,BG1,BG1,FR1,HR2,FR1,FR1,FR1,FR1,FR1,HR2,FR1,SK1,FR1,BG1,HR1,HR1,BG1,BG1,FR2], [FR2,FR2,FR2,HR1,HR1,FR2,FR2,FR2,FR1,FR2,FR2,FR2,FR2,FR1,FR1,SK1,SK1,FR1,FR2,HR1,HR1,FR2,FR2,FR2] ] pixels = DWARF_3 elif b > 430000: race_ep = 'Dwarves' type_ep = 'Stiffbeards' hair_color_ep = 'None' haircut_ep = 'None' hair_prop_ep = 'None' eyes_prop_ep = 'None' blemishe_ep = 'None' eyes_color_ep = 'None' facial_hair_ep = 'None' mouth_prop_ep = 'None' mouth_ep = 'None' tooth_color_ep = 'None' nose_ep = 'None' neck_ep = 'None' ears_ep = 'None' skin_ep = 'None' ears = none hair = none hair_prop = none neck = none blemishes = none #tooth color mouth = none facial_hair = none rod = none mouth_prop = none #eye color eyes = none nose = none seed(b) c=randint(0,1000000) if c > 800000: SK1 = (234,217,217) SC1 = (165,141,141) EY1 = (201,178,178) SK2 = (255,255,255) HRG3 = (220,222,234) HRG2 = (183,179,191) HRG4 = (203,200,212) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (226,187,185) MO1 = EY1 SCR1 = EY1 skin_ep = 'Albino' elif c > 500000: SK1 = (219,177,128) SC1 = (166,110,44) EY1 = (210,157,96) SK2 = (235,203,166) HRG3 = (213,200,183) HRG2 = (184,163,135) HRG4 = (209,189,164) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (215,154,104) MO1 = EY1 SCR1 = EY1 skin_ep = 'Light' elif c > 200000: SK1 = (174,139,97) SC1 = (134,88,30) EY1 = (167,124,71) SK2 = (178,138,93) HRG3 = (188,179,165) HRG2 = (166,150,128) HRG4 = (184,171,151) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (191,105,71) MO1 = EY1 SCR1 = EY1 skin_ep = 'Mid' else: SK1 = (113,63,29) SC1 = (86,39,10) EY1 = (114,55,17) SK2 = (146,79,35) HRG3 = (155,135,127) HRG2 = (139,121,111) HRG4 = (156,131,115) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (142,36,2) MO1 = EY1 SCR1 = EY1 skin_ep = 'Dark' seed(c) d=randint(0,1000000) if d > 750000: ears = EARS_2 ears_ep = 'Earring' else: ears = none ears_ep = 'None' seed(d) e=randint(0,1000000) HR0 = (255,193,0) HR8 = (251,114,7) HR3 = (210,154,0) HR4 = (166,165,165) HR5 = (165,108,0) HR6 = (111,0,48) HR7 = (85,57,23) if e > 860000: HR1 = (50,50,50) #Ok HR2 = (200,200,200) hair_color_ep = 'Dark Grey' elif e > 720000: HR1 = HR8 HR2 = (111,0,48) #ok hair_color_ep = 'Orange' elif e > 580000: HR1 = HR3 #ok HR2 = (210,210,0) hair_color_ep = 'Fair' elif e > 440000: HR1 = (80,50,30) #Ok HR2 = (44,4,9) hair_color_ep = 'Bronze' elif e > 300000: HR1 = HR5 HR2 = HR3 hair_color_ep = 'Ginger' elif e > 150000: HR1 = (220,130,0) #ok HR2 = (70,40,10) hair_color_ep = 'Mango' else: HR1 = (210,210,210) #Ok HR2 = (210,210,210) hair_color_ep = 'Grey Goose' seed(e) f=randint(0,1000000) seed(f) g=randint(0,1000000) if g > 960000: hair_prop = CAP_2 hair_prop_ep = 'Cap' elif g > 940000: hair_prop = COWBOY_2 hair_prop_ep = 'Cowboy Hat' elif g > 920000: hair_prop = TOPHAT_2 hair_prop_ep = 'Top Hat' elif g > 890000: hair_prop = Helmet hair_prop_ep = 'Dwarf Helmet' tete = 99 elif g > 870000: hair_prop = FORCAP_2 hair_prop_ep = 'Cap Forward' elif g > 850000: hair_prop = BANDANA_2 hair_prop_ep = 'Bandana' elif g > 830000: hair_prop = FEDORA_2 hair_prop_ep = 'Fedora' elif g > 800000: hair_prop = POLICE_2 hair_prop_ep = 'Police' else: hair_prop = none hair_prop_ep = 'None' seed(g) h=randint(0,1000000) if h > 900000: mouth_prop = CIGARETTE mouth_prop_ep = 'Cigarette' elif h > 840000: mouth_prop = PIPE mouth_prop_ep = 'Pipe' elif h > 800000: mouth_prop = VAPE mouth_prop_ep = 'Vape' else: mouth_prop = none mouth_prop_ep = 'None' # seed(h) # i=randint(0,1000000) # if i > 300000: # EY1 = (255,255,255) # elif i > 50000: # EY1 = (0,0,255) # else: # EY1 = (0,255,0) seed(h) i=randint(0,1000000) if i > 970000: eyes = TD_2 eyes_prop_ep ='3D Glasses' elif i > 930000: eyes = VR_2 eyes_prop_ep ='VR' elif i > 880000: eyes = ClassicShades_2 eyes_prop_ep ='Classic Shades' elif i > 830000: eyes = SmallShades_2 eyes_prop_ep ='Small Shades' elif i > 780000: eyes = EyePatch_2 eyes_prop_ep ='Eye Patch' elif i > 730000: eyes = NerdGlasses_2 eyes_prop_ep ='Nerd Glasses' elif i > 680000: eyes = BigShades_2 eyes_prop_ep ='Big Shades' elif i > 650000: eyes = EyeMask_2 eyes_prop_ep ='Eye Mask' elif i > 600000: eyes = HornedRimGlasses_2 eyes_prop_ep ='Horned Rim Glasses' elif i > 550000: eyes = RegularShades_2 eyes_prop_ep ='Regular Shades' else: eyes=none eyes_prop_ep ='None' if tete == 99: eyes = none eyes_prop_ep ='None' seed(i) j=randint(0,1000000) if j > 975000: nose = NOSE_1 nose_ep = 'Clown Nose' else: nose = none nose_ep = 'None' seed(j) k=randint(0,1000000) if k > 975000: mouth = SMILE mouth_ep = 'Smile' elif k > 950000: mouth = FROWN mouth_ep = 'Frown' else: mouth = none mouth_ep = 'None' MOLE=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,MO1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] SCARE_1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] ROSY_1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,RC1,0,0,0,0,RC1,RC1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,RC1,0,0,0,0,0,RC1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] seed(k) l=randint(0,1000000) if l > 970000: blemishes = ROSY_1 blemishe_ep = 'Rosy Cheeks' elif l > 900000: blemishes = MOLE blemishe_ep = 'Mole' elif l > 870000: blemishes = SCARE_1 blemishe_ep = 'Scare' else: blemishes = none blemishe_ep = 'None' DWARF_4=[ [FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,HR1,HR1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,HR1,HR1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,HR1,HR1,HR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,HR1,HR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,HR1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,HR1,HR1,SK1,SK1,SK1,SK1,SK1,HR1,HR1,SK1,HR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,HR1,HR1,SC1,SC1,SK1,SK1,SK1,SC1,SC1,SK1,SK1,HR1,HR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,HR1,HR1,EY1,FR1,SK1,SK1,SK1,EY1,FR1,SK1,SK1,HR1,HR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,HR1,HR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,HR1,HR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,HR1,HR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,HR1,HR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,HR1,HR1,SK1,SK1,FR1,FR1,SK1,SK1,SK1,SK1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,HR1,HR1,SK1,SK1,SK1,SK1,SK1,SK1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,HR1,HR1,HR1,SK1,SK1,SK1,SK1,SK1,HR1,HR1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,HR1,HR1,HR1,SK1,FR1,FR1,FR1,SK1,HR1,HR1,SK1,HR1,HR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,HR1,HR1,SK1,SK1,SK1,HR1,SK1,SK1,SK1,SK1,SK1,HR1,HR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,HR1,HR1,SK1,HR1,HR1,HR1,SK1,SK1,SK1,HR1,HR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,HR1,HR1,HR1,HR1,HR1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,FR2,FR2,FR2,FR2,FR2,FR2,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,SK1,FR1,FR2,FR2,FR2,FR2,FR2,FR2] ] pixels = DWARF_4 elif b > 420000: race_ep = 'Dwarves' type_ep = 'Stonefoots' hair_color_ep = 'None' haircut_ep = 'None' hair_prop_ep = 'None' eyes_prop_ep = 'None' blemishe_ep = 'None' eyes_color_ep = 'None' facial_hair_ep = 'None' mouth_prop_ep = 'None' mouth_ep = 'None' tooth_color_ep = 'None' nose_ep = 'None' neck_ep = 'None' ears_ep = 'None' skin_ep = 'None' ears = none hair = none hair_prop = none neck = none blemishes = none #tooth color mouth = none facial_hair = none rod = none mouth_prop = none #eye color eyes = none nose = none seed(b) c=randint(0,1000000) if c > 800000: SK1 = (234,217,217) SC1 = (165,141,141) EY1 = (201,178,178) SK2 = (255,255,255) HRG3 = (220,222,234) HRG2 = (183,179,191) HRG4 = (203,200,212) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (226,187,185) MO1 = EY1 SCR1 = EY1 skin_ep = 'Albino' elif c > 500000: SK1 = (219,177,128) SC1 = (166,110,44) EY1 = (210,157,96) SK2 = (235,203,166) HRG3 = (213,200,183) HRG2 = (184,163,135) HRG4 = (209,189,164) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (215,154,104) MO1 = EY1 SCR1 = EY1 skin_ep = 'Light' elif c > 200000: SK1 = (174,139,97) SC1 = (134,88,30) EY1 = (167,124,71) SK2 = (178,138,93) HRG3 = (188,179,165) HRG2 = (166,150,128) HRG4 = (184,171,151) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (191,105,71) MO1 = EY1 SCR1 = EY1 skin_ep = 'Mid' else: SK1 = (113,63,29) SC1 = (86,39,10) EY1 = (114,55,17) SK2 = (146,79,35) HRG3 = (155,135,127) HRG2 = (139,121,111) HRG4 = (156,131,115) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (142,36,2) MO1 = EY1 SCR1 = EY1 skin_ep = 'Dark' seed(c) d=randint(0,1000000) if d > 750000: ears = EARS_2 ears_ep = 'Earring' else: ears = none ears_ep = 'None' seed(d) e=randint(0,1000000) HR0 = (255,193,0) HR8 = (251,114,7) HR3 = (210,154,0) HR4 = (166,165,165) HR5 = (165,108,0) HR6 = (111,0,48) HR7 = (85,57,23) if e > 860000: HR1 = (50,50,50) #Ok HR2 = (200,200,200) hair_color_ep = 'Dark Grey & Silver' elif e > 720000: HR1 = HR8 HR2 = (111,0,48) #ok hair_color_ep = 'Orange & Black Rose' elif e > 580000: HR1 = HR3 #ok HR2 = (210,210,0) hair_color_ep = 'Fair & Wattle' elif e > 440000: HR1 = (80,50,30) #Ok HR2 = (44,4,9) hair_color_ep = 'Bronze & Chocolate' elif e > 300000: HR1 = HR5 HR2 = HR3 hair_color_ep = 'Ginger & Fair' elif e > 150000: HR1 = (220,130,0) #ok HR2 = (70,40,10) hair_color_ep = 'Mango & Brown' else: HR1 = (210,210,210) #Ok HR2 = (210,210,210) hair_color_ep = 'Grey Goose' seed(e) f=randint(0,1000000) seed(f) g=randint(0,1000000) if g > 960000: hair_prop = CAP_2 hair_prop_ep = 'Cap' elif g > 940000: hair_prop = COWBOY_2 hair_prop_ep = 'Cowboy Hat' elif g > 920000: hair_prop = TOPHAT_2 hair_prop_ep = 'Top Hat' elif g > 890000: hair_prop = Helmet hair_prop_ep = 'Dwarf Helmet' tete = 99 elif g > 870000: hair_prop = FORCAP_2 hair_prop_ep = 'Cap Forward' elif g > 850000: hair_prop = BANDANA_2 hair_prop_ep = 'Bandana' elif g > 830000: hair_prop = FEDORA_2 hair_prop_ep = 'Fedora' elif g > 800000: hair_prop = POLICE_2 hair_prop_ep = 'Police' else: hair_prop = none hair_prop_ep = 'None' seed(g) h=randint(0,1000000) if h > 900000: mouth_prop = CIGARETTE mouth_prop_ep = 'Cigarette' elif h > 840000: mouth_prop = PIPE mouth_prop_ep = 'Pipe' elif h > 800000: mouth_prop = VAPE mouth_prop_ep = 'Vape' else: mouth_prop = none mouth_prop_ep = 'None' # seed(h) # i=randint(0,1000000) # if i > 300000: # EY1 = (255,255,255) # elif i > 50000: # EY1 = (0,0,255) # else: # EY1 = (0,255,0) seed(h) i=randint(0,1000000) if i > 970000: eyes = TD_2 eyes_prop_ep ='3D Glasses' elif i > 930000: eyes = VR_2 eyes_prop_ep ='VR' elif i > 880000: eyes = ClassicShades_2 eyes_prop_ep ='Classic Shades' elif i > 830000: eyes = SmallShades_2 eyes_prop_ep ='Small Shades' elif i > 780000: eyes = EyePatch_2 eyes_prop_ep ='Eye Patch' elif i > 730000: eyes = NerdGlasses_2 eyes_prop_ep ='Nerd Glasses' elif i > 680000: eyes = BigShades_2 eyes_prop_ep ='Big Shades' elif i > 650000: eyes = EyeMask_2 eyes_prop_ep ='Eye Mask' elif i > 600000: eyes = HornedRimGlasses_2 eyes_prop_ep ='Horned Rim Glasses' elif i > 550000: eyes = RegularShades_2 eyes_prop_ep ='Regular Shades' else: eyes=none eyes_prop_ep ='None' if tete == 99: eyes = none eyes_prop_ep ='None' seed(i) j=randint(0,1000000) if j > 975000: nose = NOSE_1 nose_ep = 'Clown Nose' else: nose = none nose_ep = 'None' seed(j) k=randint(0,1000000) if k > 975000: mouth = SMILE mouth_ep = 'Smile' elif k > 950000: mouth = FROWN mouth_ep = 'Frown' else: mouth = none mouth_ep = 'None' MOLE=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,MO1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] SCARE_1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] ROSY_1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,RC1,0,0,0,0,RC1,RC1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,RC1,0,0,0,0,0,RC1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] seed(k) l=randint(0,1000000) if l > 970000: blemishes = ROSY_1 blemishe_ep = 'Rosy Cheeks' elif l > 900000: blemishes = MOLE blemishe_ep = 'Mole' elif l > 870000: blemishes = SCARE_1 blemishe_ep = 'Scare' else: blemishes = none blemishe_ep = 'None' DWARF_5=[ [FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,FR1,FR1,FR1,FR1,FR1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,HR1,HR1,HR1,SK1,SK1,SK1,HR1,HR1,HR1,SK1,HR1,HR1,HR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,HR1,SC1,SC1,HR1,SK1,HR1,SC1,SC1,HR1,SK1,HR1,FR1,HR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,EY1,FR1,SK1,SK1,SK1,EY1,FR1,SK1,HR1,SK1,FR1,HR1,HR1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,HR1,FR1,FR1,HR1,HR1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,HR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,HR1,FR1,BG1,HR1,HR1,HR1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,HR1,SK1,SK1,FR1,FR1,SK1,SK1,SK1,SK1,HR1,FR1,BG1,HR1,HR1,HR1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,HR1,SK1,SK1,HR2,HR2,SK1,SK1,SK1,HR1,HR1,FR1,BG1,HR1,HR1,HR1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,HR1,HR1,HR2,HR2,HR2,HR2,HR2,HR1,HR1,HR1,FR1,BG1,HR1,HR1,HR1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,HR1,HR2,HR2,FR1,FR1,FR1,HR2,HR2,HR1,HR1,FR1,BG1,HR1,HR1,HR1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,HR2,HR2,HR1,HR2,HR2,HR2,HR1,HR2,HR2,HR1,FR1,BG1,HR1,HR1,HR1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,HR2,HR2,HR1,HR2,HR2,HR2,HR2,HR2,HR1,HR2,HR2,FR1,BG1,HR1,HR1,HR1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,HR2,BG1,HR2,HR2,HR2,HR1,HR2,HR2,HR2,HR1,HR2,FR1,BG1,HR1,HR1,HR1,HR1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,HR2,BG1,HR2,HR2,BG1,BG1,BG1,HR2,HR2,HR1,HR2,FR1,BG1,BG1,HR1,HR1,HR1,FR2], [FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,HR2,FR2,FR2,FR2,FR2,FR1,HR2,SK1,SK1,FR1,FR2,FR2,FR2,FR2,FR2,FR2] ] pixels = DWARF_5 elif b > 410000: race_ep = 'Dwarves' type_ep = 'Ironfists' hair_color_ep = 'None' haircut_ep = 'None' hair_prop_ep = 'None' eyes_prop_ep = 'None' blemishe_ep = 'None' eyes_color_ep = 'None' facial_hair_ep = 'None' mouth_prop_ep = 'None' mouth_ep = 'None' tooth_color_ep = 'None' nose_ep = 'None' neck_ep = 'None' ears_ep = 'None' skin_ep = 'None' ears = none hair = none hair_prop = none neck = none blemishes = none #tooth color mouth = none facial_hair = none rod = none mouth_prop = none #eye color eyes = none nose = none seed(b) c=randint(0,1000000) if c > 800000: SK1 = (234,217,217) SC1 = (165,141,141) EY1 = (201,178,178) SK2 = (255,255,255) HRG3 = (220,222,234) HRG2 = (183,179,191) HRG4 = (203,200,212) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (226,187,185) MO1 = EY1 SCR1 = EY1 skin_ep = 'Albino' elif c > 500000: SK1 = (219,177,128) SC1 = (166,110,44) EY1 = (210,157,96) SK2 = (235,203,166) HRG3 = (213,200,183) HRG2 = (184,163,135) HRG4 = (209,189,164) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (215,154,104) MO1 = EY1 SCR1 = EY1 skin_ep = 'Light' elif c > 200000: SK1 = (174,139,97) SC1 = (134,88,30) EY1 = (167,124,71) SK2 = (178,138,93) HRG3 = (188,179,165) HRG2 = (166,150,128) HRG4 = (184,171,151) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (191,105,71) MO1 = EY1 SCR1 = EY1 skin_ep = 'Mid' else: SK1 = (113,63,29) SC1 = (86,39,10) EY1 = (114,55,17) SK2 = (146,79,35) HRG3 = (155,135,127) HRG2 = (139,121,111) HRG4 = (156,131,115) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (142,36,2) MO1 = EY1 SCR1 = EY1 skin_ep = 'Dark' seed(c) d=randint(0,1000000) if d > 750000: ears = EARS_2 ears_ep = 'Earring' else: ears = none ears_ep = 'None' seed(d) e=randint(0,1000000) HR0 = (255,193,0) HR8 = (251,114,7) HR3 = (210,154,0) HR4 = (166,165,165) HR5 = (165,108,0) HR6 = (111,0,48) HR7 = (85,57,23) if e > 860000: HR1 = (50,50,50) #Ok HR2 = (200,200,200) hair_color_ep = 'Dark Grey & Silver' elif e > 720000: HR1 = HR8 HR2 = (111,0,48) #ok hair_color_ep = 'Orange & Black Rose' elif e > 580000: HR1 = HR3 #ok HR2 = (210,210,0) hair_color_ep = 'Fair & Wattle' elif e > 440000: HR1 = (80,50,30) #Ok HR2 = (44,4,9) hair_color_ep = 'Bronze & Chocolate' elif e > 300000: HR1 = HR5 HR2 = HR3 hair_color_ep = 'Ginger & Fair' elif e > 150000: HR1 = (220,130,0) #ok HR2 = (70,40,10) hair_color_ep = 'Mango & Brown' else: HR1 = (210,210,210) #Ok HR2 = (210,210,210) hair_color_ep = 'Grey Goose' seed(e) f=randint(0,1000000) seed(f) g=randint(0,1000000) if g > 960000: hair_prop = CAP_2 hair_prop_ep = 'Cap' elif g > 940000: hair_prop = COWBOY_2 hair_prop_ep = 'Cowboy Hat' elif g > 920000: hair_prop = TOPHAT_2 hair_prop_ep = 'Top Hat' elif g > 890000: hair_prop = Helmet hair_prop_ep = 'Dwarf Helmet' tete = 99 elif g > 870000: hair_prop = FORCAP_2 hair_prop_ep = 'Cap Forward' elif g > 850000: hair_prop = BANDANA_2 hair_prop_ep = 'Bandana' elif g > 830000: hair_prop = FEDORA_2 hair_prop_ep = 'Fedora' elif g > 800000: hair_prop = POLICE_2 hair_prop_ep = 'Police' else: hair_prop = none hair_prop_ep = 'None' seed(g) h=randint(0,1000000) if h > 900000: mouth_prop = CIGARETTE mouth_prop_ep = 'Cigarette' elif h > 840000: mouth_prop = PIPE mouth_prop_ep = 'Pipe' elif h > 800000: mouth_prop = VAPE mouth_prop_ep = 'Vape' else: mouth_prop = none mouth_prop_ep = 'None' # seed(h) # i=randint(0,1000000) # if i > 300000: # EY1 = (255,255,255) # elif i > 50000: # EY1 = (0,0,255) # else: # EY1 = (0,255,0) seed(h) i=randint(0,1000000) if i > 970000: eyes = TD_2 eyes_prop_ep ='3D Glasses' elif i > 930000: eyes = VR_2 eyes_prop_ep ='VR' elif i > 880000: eyes = ClassicShades_2 eyes_prop_ep ='Classic Shades' elif i > 830000: eyes = SmallShades_2 eyes_prop_ep ='Small Shades' elif i > 780000: eyes = EyePatch_2 eyes_prop_ep ='Eye Patch' elif i > 730000: eyes = NerdGlasses_2 eyes_prop_ep ='Nerd Glasses' elif i > 680000: eyes = BigShades_2 eyes_prop_ep ='Big Shades' elif i > 650000: eyes = EyeMask_2 eyes_prop_ep ='Eye Mask' elif i > 600000: eyes = HornedRimGlasses_2 eyes_prop_ep ='Horned Rim Glasses' elif i > 550000: eyes = RegularShades_2 eyes_prop_ep ='Regular Shades' else: eyes=none eyes_prop_ep ='None' if tete == 99: eyes = none eyes_prop_ep ='None' seed(i) j=randint(0,1000000) if j > 975000: nose = NOSE_1 nose_ep = 'Clown Nose' else: nose = none nose_ep = 'None' seed(j) k=randint(0,1000000) if k > 975000: mouth = SMILE mouth_ep = 'Smile' elif k > 950000: mouth = FROWN mouth_ep = 'Frown' else: mouth = none mouth_ep = 'None' MOLE=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,MO1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] SCARE_1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] ROSY_1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,RC1,0,0,0,0,RC1,RC1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,RC1,0,0,0,0,0,RC1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] seed(k) l=randint(0,1000000) if l > 970000: blemishes = ROSY_1 blemishe_ep = 'Rosy Cheeks' elif l > 900000: blemishes = MOLE blemishe_ep = 'Mole' elif l > 870000: blemishes = SCARE_1 blemishe_ep = 'Scare' else: blemishes = none blemishe_ep = 'None' DWARF_6=[ [FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,HR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,HR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,HR1,FR1,SC1,SC1,SK1,SK1,SK1,SC1,SC1,SK1,SK1,HR2,HR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR2,FR1,EY1,FR1,SK1,SK1,SK1,EY1,FR1,SK1,SK1,HR1,HR2,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR2,HR1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,HR2,HR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR2,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,HR1,HR2,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR2,HR1,FR1,SK1,SK1,FR1,FR1,SK1,SK1,SK1,SK1,SK1,HR2,HR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR2,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,HR2,HR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,HR1,HR2,BG1,FR1,SK1,SK1,HR1,HR1,HR1,SK1,SK1,SK1,SK1,FR1,HR1,HR2,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,HR2,HR1,BG1,FR1,SK1,HR1,FR1,FR1,FR1,HR1,SK1,SK1,SK1,FR1,BG1,HR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,HR1,BG1,BG1,HR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,HR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,HR1,HR2,HR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,HR1,HR2,HR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR2,HR1,HR2,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR2,HR1,HR2,HR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR2,HR1,HR2,HR1,HR1,HR1,HR1,BG1,HR1,HR1,HR1,HR1,HR2,HR1,HR2,BG1,BG1,BG1,FR2], [FR2,FR2,FR2,FR2,FR2,HR1,HR2,HR1,FR2,HR1,HR1,FR2,FR2,FR1,HR1,HR1,SK1,HR1,HR2,HR1,FR2,FR2,FR2,FR2] ] pixels = DWARF_6 elif b > 400000: race_ep = 'Dwarves' type_ep = 'Longbeards' hair_color_ep = 'None' haircut_ep = 'None' hair_prop_ep = 'None' eyes_prop_ep = 'None' blemishe_ep = 'None' eyes_color_ep = 'None' facial_hair_ep = 'None' mouth_prop_ep = 'None' mouth_ep = 'None' tooth_color_ep = 'None' nose_ep = 'None' neck_ep = 'None' ears_ep = 'None' skin_ep = 'None' ears = none hair = none hair_prop = none neck = none blemishes = none #tooth color mouth = none facial_hair = none rod = none mouth_prop = none #eye color eyes = none nose = none seed(b) c=randint(0,1000000) if c > 800000: SK1 = (234,217,217) SC1 = (165,141,141) EY1 = (201,178,178) SK2 = (255,255,255) HRG3 = (220,222,234) HRG2 = (183,179,191) HRG4 = (203,200,212) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (226,187,185) MO1 = EY1 SCR1 = EY1 skin_ep = 'Albino' elif c > 500000: SK1 = (219,177,128) SC1 = (166,110,44) EY1 = (210,157,96) SK2 = (235,203,166) HRG3 = (213,200,183) HRG2 = (184,163,135) HRG4 = (209,189,164) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (215,154,104) MO1 = EY1 SCR1 = EY1 skin_ep = 'Light' elif c > 200000: SK1 = (174,139,97) SC1 = (134,88,30) EY1 = (167,124,71) SK2 = (178,138,93) HRG3 = (188,179,165) HRG2 = (166,150,128) HRG4 = (184,171,151) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (191,105,71) MO1 = EY1 SCR1 = EY1 skin_ep = 'Mid' else: SK1 = (113,63,29) SC1 = (86,39,10) EY1 = (114,55,17) SK2 = (146,79,35) HRG3 = (155,135,127) HRG2 = (139,121,111) HRG4 = (156,131,115) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (142,36,2) MO1 = EY1 SCR1 = EY1 skin_ep = 'Dark' seed(c) d=randint(0,1000000) if d > 750000: ears = EARS_2 ears_ep = 'Earring' else: ears = none ears_ep = 'None' seed(d) e=randint(0,1000000) HR0 = (255,193,0) HR8 = (251,114,7) HR3 = (210,154,0) HR4 = (166,165,165) HR5 = (165,108,0) HR6 = (111,0,48) HR7 = (85,57,23) if e > 860000: HR1 = (50,50,50) #Ok HR2 = (200,200,200) hair_color_ep = 'Dark Grey & Silver' elif e > 720000: HR1 = HR8 HR2 = (111,0,48) #ok hair_color_ep = 'Orange & Black Rose' elif e > 580000: HR1 = HR3 #ok HR2 = (210,210,0) hair_color_ep = 'Fair & Wattle' elif e > 440000: HR1 = (80,50,30) #Ok HR2 = (44,4,9) hair_color_ep = 'Bronze & Chocolate' elif e > 300000: HR1 = HR5 HR2 = HR3 hair_color_ep = 'Ginger & Fair' elif e > 150000: HR1 = (220,130,0) #ok HR2 = (70,40,10) hair_color_ep = 'Mango & Brown' else: HR1 = (210,210,210) #Ok HR2 = (210,210,210) hair_color_ep = 'Grey Goose' seed(e) f=randint(0,1000000) seed(f) g=randint(0,1000000) if g > 960000: hair_prop = CAP_2 hair_prop_ep = 'Cap' elif g > 940000: hair_prop = COWBOY_2 hair_prop_ep = 'Cowboy Hat' elif g > 920000: hair_prop = TOPHAT_2 hair_prop_ep = 'Top Hat' elif g > 890000: hair_prop = Helmet hair_prop_ep = 'Dwarf Helmet' tete = 99 elif g > 870000: hair_prop = FORCAP_2 hair_prop_ep = 'Cap Forward' elif g > 850000: hair_prop = BANDANA_2 hair_prop_ep = 'Bandana' elif g > 830000: hair_prop = FEDORA_2 hair_prop_ep = 'Fedora' elif g > 800000: hair_prop = POLICE_2 hair_prop_ep = 'Police' else: hair_prop = none hair_prop_ep = 'None' seed(g) h=randint(0,1000000) if h > 900000: mouth_prop = CIGARETTE mouth_prop_ep = 'Cigarette' elif h > 840000: mouth_prop = PIPE mouth_prop_ep = 'Pipe' elif h > 800000: mouth_prop = VAPE mouth_prop_ep = 'Vape' else: mouth_prop = none mouth_prop_ep = 'None' # seed(h) # i=randint(0,1000000) # if i > 300000: # EY1 = (255,255,255) # elif i > 50000: # EY1 = (0,0,255) # else: # EY1 = (0,255,0) seed(h) i=randint(0,1000000) if i > 970000: eyes = TD_2 eyes_prop_ep ='3D Glasses' elif i > 930000: eyes = VR_2 eyes_prop_ep ='VR' elif i > 880000: eyes = ClassicShades_2 eyes_prop_ep ='Classic Shades' elif i > 830000: eyes = SmallShades_2 eyes_prop_ep ='Small Shades' elif i > 780000: eyes = EyePatch_2 eyes_prop_ep ='Eye Patch' elif i > 730000: eyes = NerdGlasses_2 eyes_prop_ep ='Nerd Glasses' elif i > 680000: eyes = BigShades_2 eyes_prop_ep ='Big Shades' elif i > 650000: eyes = EyeMask_2 eyes_prop_ep ='Eye Mask' elif i > 600000: eyes = HornedRimGlasses_2 eyes_prop_ep ='Horned Rim Glasses' elif i > 550000: eyes = RegularShades_2 eyes_prop_ep ='Regular Shades' else: eyes=none eyes_prop_ep ='None' if tete == 99: eyes = none eyes_prop_ep ='None' seed(i) j=randint(0,1000000) if j > 975000: nose = NOSE_1 nose_ep = 'Clown Nose' else: nose = none nose_ep = 'None' seed(j) k=randint(0,1000000) if k > 975000: mouth = SMILE mouth_ep = 'Smile' elif k > 950000: mouth = FROWN mouth_ep = 'Frown' else: mouth = none mouth_ep = 'None' MOLE=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,MO1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] SCARE_1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] ROSY_1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,RC1,0,0,0,0,RC1,RC1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,RC1,0,0,0,0,0,RC1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] seed(k) l=randint(0,1000000) if l > 970000: blemishes = ROSY_1 blemishe_ep = 'Rosy Cheeks' elif l > 900000: blemishes = MOLE blemishe_ep = 'Mole' elif l > 870000: blemishes = SCARE_1 blemishe_ep = 'Scare' else: blemishes = none blemishe_ep = 'None' DWARF_7=[ [FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,HR1,HR1,SK1,HR1,HR1,HR1,HR1,SK1,SK1,HR1,HR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,HR1,HR2,SK1,SK1,SK1,HR1,HR1,SK1,SK1,SK1,SK1,HR2,HR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,HR2,HR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,HR1,HR2,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR2,HR1,HR2,SK1,SK1,SK1,SK1,SK1,HR2,SK1,SK1,HR1,HR2,HR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR2,HR1,SC1,SC1,SK1,SK1,SK1,SC1,SC1,SK1,SK1,HR1,HR2,HR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR2,HR1,EY1,FR1,SK1,SK1,SK1,EY1,FR1,SK1,SK1,HR1,HR2,HR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR2,HR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,HR1,HR2,HR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR2,HR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,HR1,HR2,HR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR2,HR1,HR1,SK1,SK1,FR1,FR1,SK1,SK1,SK1,SK1,HR2,HR1,HR1,HR2,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,HR1,HR2,HR1,HR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,HR2,HR1,HR1,HR2,HR1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,HR1,HR2,HR1,HR1,SK1,HR2,HR2,HR2,HR2,HR2,SK1,HR2,HR2,HR1,HR1,HR2,HR1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,HR1,HR2,HR1,HR1,SK1,HR2,FR1,FR1,FR1,HR2,SK1,HR2,HR2,HR1,HR1,HR2,HR1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,HR1,HR2,HR1,HR1,HR2,HR2,HR2,HR2,HR2,HR2,HR2,HR2,SK1,HR1,HR1,HR2,HR1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,HR1,HR2,HR1,HR1,FR1,HR2,SK1,HR2,SK1,HR2,SK1,SK1,SK1,HR1,HR1,HR2,HR1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,HR2,HR1,HR1,HR1,HR2,FR1,FR1,FR1,FR1,FR1,HR2,SK1,SK1,HR1,HR1,HR1,HR2,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,HR2,HR1,BG1,HR2,BG1,BG1,BG1,BG1,BG1,FR1,SK1,HR2,SK1,FR1,BG1,HR1,HR2,BG1,BG1,FR2], [FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR1,SK1,SK1,SK1,FR1,FR2,FR2,FR2,FR2,FR2,FR2] ] pixels = DWARF_7 elif b > 250000: race_ep = 'Gobelins' type_ep = 'None' hair_color_ep = 'None' haircut_ep = 'None' hair_prop_ep = 'None' eyes_prop_ep = 'None' blemishe_ep = 'None' eyes_color_ep = 'None' facial_hair_ep = 'None' mouth_prop_ep = 'None' mouth_ep = 'None' tooth_color_ep = 'None' nose_ep = 'None' neck_ep = 'None' ears_ep = 'None' skin_ep = 'None' ears = none hair = none hair_prop = none neck = none blemishes = none #tooth color mouth = none facial_hair = none rod = none mouth_prop = none #eye color eyes = none nose = none seed(b) c=randint(0,1000000) if c > 800000: SK1 = (112,168,104) #ZOMBO SC1 = (88,117,83) MO1 = SC1 SCR1 = SC1 skin_ep = 'Green' elif c > 700000: SK1 = (145,0,185) #PURPLE SC1 = (120,0,160) MO1 = SC1 SCR1 = SC1 skin_ep = 'Purple' elif c > 400000: SK1 = (185,160,60) #DARK GREEN SC1 = (150,125,25) MO1 = SC1 SCR1 = SC1 skin_ep = 'Camel' else: SK1 = (205,205,57) #JAUNE SC1 = (130,119,23) MO1 = SC1 SCR1 = SC1 skin_ep = 'Wattle' seed(c) d=randint(0,1000000) if d > 750000: ears = EARS_2 ears_ep = 'Earring' else: ears = none ears_ep = 'None' seed(d) e=randint(0,1000000) if e > 960000: hair_prop = CAP_2 hair_prop_ep = 'Cap' elif e > 940000: hair_prop = COWBOY_5 hair_prop_ep = 'Cowboy Hat' elif e > 920000: hair_prop = TOPHAT_2 hair_prop_ep = 'Top Hat' elif e > 870000: hair_prop = KNITTED_5 hair_prop_ep = 'Knitted Cap' elif e > 850000: hair_prop = Gobelin_Crown hair_prop_ep = 'Gobelins Crown' elif e > 830000: hair_prop = FORCAP_2 hair_prop_ep = 'Cap Forward' elif e > 800000: hair_prop = BANDANA_2 hair_prop_ep = 'Bandana' elif e > 780000: hair_prop = FEDORA_5 hair_prop_ep = 'Fedora' elif e > 750000: hair_prop = POLICE_2 hair_prop_ep = 'Police' elif e > 740000: hair_prop = BEANI_2 hair_prop_ep = 'Beanie' else: hair_prop = none hair_prop_ep = 'None' seed(e) f=randint(0,1000000) if f > 900000: neck = GoldChain_1 neck_ep = 'Gold Chain' elif f > 820000: neck = SilverChain_1 neck_ep = 'Silver Chain' elif f > 800000: neck = RING_1 neck_ep = 'Ring Onchain' else: neck = none neck_ep = 'None' seed(f) g=randint(0,1000000) if g > 300000: DE1 = (255,255,255) tooth_color_ep = 'White' elif g > 200000: DE1 = (163,110,16) tooth_color_ep = 'Brown' elif g > 80000: DE1 = (255,203,0) tooth_color_ep = 'Gold' else : DE1 = (200,0,0) tooth_color_ep = 'Blood' seed(g) h=randint(0,1000000) if h > 900000: mouth_prop = CIGARETTE mouth_prop_ep = 'Cigarette' elif h > 880000: mouth_prop = MASK_1 mouth_prop_ep = 'Medical Mask' elif h > 820000: mouth_prop = PIPE mouth_prop_ep = 'Pipe' elif h > 780000: mouth_prop = VAPE mouth_prop_ep = 'Vape' else: mouth_prop = none mouth_prop_ep = 'None' seed(h) i=randint(0,1000000) if i > 400000: EY1 = (255,255,255) eyes_color_ep = 'White' elif i > 300000: EY1 = (214,92,26) eyes_color_ep = "Orange" elif i > 200000: EY1 = (176,61,133) eyes_color_ep = "Purple" elif i > 100000: EY1 = (255,255,0) eyes_color_ep = 'Yellow' else: EY1 = (255,0,0) eyes_color_ep = 'Red' seed(i) j=randint(0,1000000) if j > 970000: eyes = TD_2 eyes_prop_ep ='3D Glasses' elif j > 930000: eyes = VR_2 eyes_prop_ep ='VR' elif j > 880000: eyes = ClassicShades_2 eyes_prop_ep ='Classic Shades' elif j > 830000: eyes = SmallShades_2 eyes_prop_ep ='Small Shades' elif j > 780000: eyes = EyePatch_2 eyes_prop_ep ='Eye Patch' elif j > 730000: eyes = NerdGlasses_2 eyes_prop_ep ='Nerd Glasses' elif j > 680000: eyes = BigShades_2 eyes_prop_ep ='Big Shades' elif j > 650000: eyes = EyeMask_2 eyes_prop_ep ='Eye Mask' elif j > 600000: eyes = HornedRimGlasses_2 eyes_prop_ep ='Horned Rim Glasses' elif j > 550000: eyes = RegularShades_2 eyes_prop_ep ='Regular Shades' else: eyes=none eyes_prop_ep ='None' MOLE=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,MO1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] SCARE_1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] ROSY_1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,RC1,0,0,0,0,RC1,RC1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,RC1,0,0,0,0,0,RC1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] seed(j) k=randint(0,1000000) if k > 970000: blemishes = MOLE blemishe_ep = 'Mole' elif k > 940000: blemishes = SCARE_1 blemishe_ep = 'Scare' else: blemishes = none blemishe_ep = 'None' GOBELIN=[ [FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,FR1,FR1,FR1,FR1,FR1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,FR1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,FR1,SK1,FR1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SC1,SC1,SK1,SK1,SK1,SC1,SC1,SK1,SK1,SK1,FR1,SK1,FR1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,EY1,FR1,SK1,SK1,SK1,EY1,FR1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,FR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,FR1,SK1,FR1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,DE1,SK1,SK1,DE1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,FR1,FR1,FR1,FR1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,FR1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,FR1,FR1,FR1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR1,SK1,SK1,SK1,FR1,FR2,FR2,FR2,FR2,FR2,FR2] ] pixels = GOBELIN elif b > 150000: race_ep = 'Orcs' type_ep = 'None' hair_color_ep = 'None' haircut_ep = 'None' hair_prop_ep = 'None' eyes_prop_ep = 'None' blemishe_ep = 'None' eyes_color_ep = 'None' facial_hair_ep = 'None' mouth_prop_ep = 'None' mouth_ep = 'None' tooth_color_ep = 'None' nose_ep = 'None' neck_ep = 'None' ears_ep = 'None' skin_ep = 'None' ears = none hair = none hair_prop = none neck = none blemishes = none #tooth color mouth = none facial_hair = none rod = none mouth_prop = none #eye color eyes = none nose = none seed(b) c=randint(0,1000000) if c > 850000: SK1 = (112,112,112) #grey SC1 = (64,64,64) MO1 = SC1 SCR1 = SC1 skin_ep = 'Smokey Grey' elif c > 600000: SK1 = (220,220,220) #brown SC1 = (180,180,180) MO1 = SC1 SCR1 = SC1 skin_ep = 'Moon Grey' elif c > 100000: SK1 = (180,145,115) #Sand SC1 = (120,100,60) MO1 = SC1 SCR1 = SC1 skin_ep = 'Sand' else: SK1 = (153,0,0) #red SC1 = (102,0,0) MO1 = SC1 SCR1 = SC1 skin_ep = 'Red' seed(c) d=randint(0,1000000) if d > 750000: ears = EARS_1 ears_ep = 'Earring' else: ears = none ears_ep = 'None' seed(d) e=randint(0,1000000) if e > 960000: hair_prop = CAP_2 hair_prop_ep = 'Cap' elif e > 940000: hair_prop = COWBOY_4 hair_prop_ep = 'Cowboy Hat' elif e > 920000: hair_prop = TOPHAT_2 hair_prop_ep = 'Top Hat' elif e > 870000: hair_prop = KNITTED_6 hair_prop_ep = 'Knitted Cap' elif e > 860000: hair_prop = HEADBAND_2 hair_prop_ep = 'Headband' elif e > 830000: hair_prop = FORCAP_2 hair_prop_ep = 'Cap Forward' elif e > 800000: hair_prop = BANDANA_2 hair_prop_ep = 'Bandana' elif e > 780000: hair_prop = FEDORA_2 hair_prop_ep = 'Fedora' elif e > 750000: hair_prop = POLICE_2 hair_prop_ep = 'Police' elif e > 740000: hair_prop = BEANI_2 hair_prop_ep = 'Beanie' elif e > 700000: hair_prop = ORC_HELMET hair_prop_ep = 'Orc Helmet' tonton = 99 else: hair_prop = none hair_prop_ep = 'None' seed(e) f=randint(0,1000000) if f > 900000: neck = GoldChain_1 neck_ep = 'Gold Chain' elif f > 820000: neck = SilverChain_1 neck_ep = 'Silver Chain' elif f > 800000: neck = RING_1 neck_ep = 'Ring Onchain' else: neck = none neck_ep = 'None' seed(f) g=randint(0,1000000) if g > 300000: DE1 = (255,255,255) tooth_color_ep = 'White' elif g > 200000: DE1 = (163,110,16) tooth_color_ep = 'Brown' elif g > 80000: DE1 = (255,203,0) tooth_color_ep = 'Gold' else : DE1 = (200,0,0) tooth_color_ep = 'Blood' seed(g) h=randint(0,1000000) if h > 900000: mouth_prop = CIGARETTE mouth_prop_ep = 'Cigarette' elif h > 880000: mouth_prop = MASK_1 mouth_prop_ep = 'Medical Mask' elif h > 820000: mouth_prop = PIPE mouth_prop_ep = 'Pipe' elif h > 780000: mouth_prop = VAPE mouth_prop_ep = 'Vape' else: mouth_prop = none mouth_prop_ep = 'None' seed(h) i=randint(0,1000000) if i > 400000: EY1 = (255,255,255) eyes_color_ep = 'White' elif i > 300000: EY1 = (214,92,26) eyes_color_ep = "Orange" elif i > 200000: EY1 = (176,61,133) eyes_color_ep = "Purple" elif i > 100000: EY1 = (255,255,0) eyes_color_ep = 'Yellow' else: EY1 = (255,0,0) eyes_color_ep = 'Red' seed(i) j=randint(0,1000000) if j > 970000: eyes = TD_2 eyes_prop_ep ='3D Glasses' elif j > 930000: eyes = VR_2 eyes_prop_ep ='VR' elif j > 880000: eyes = ClassicShades_2 eyes_prop_ep ='Classic Shades' elif j > 830000: eyes = SmallShades_2 eyes_prop_ep ='Small Shades' elif j > 780000: eyes = EyePatch_2 eyes_prop_ep ='Eye Patch' elif j > 730000: eyes = BigShades_2 eyes_prop_ep ='Big Shades' elif j > 700000: eyes = EyeMask_2 eyes_prop_ep ='Eye Mask' elif j > 650000: eyes = HornedRimGlasses_2 eyes_prop_ep ='Horned Rim Glasses' elif j > 600000: eyes = RegularShades_2 eyes_prop_ep ='Regular Shades' else: eyes=none eyes_prop_ep ='None' tantan = 99 if tonton == 99 and tantan != 99: eyes = none eyes_prop_ep = 'None' MOLE=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,MO1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] ROSY_1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,RC1,0,0,0,0,RC1,RC1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,RC1,0,0,0,0,0,RC1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] seed(j) k=randint(0,1000000) if k > 970000: blemishes = MOLE blemishe_ep = 'Mole' else: blemishes = none blemishe_ep = 'None' ORC=[ [FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,FR1,FR1,FR1,FR1,FR1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,FR1,SK1,SK1,SK1,FR1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,FR1,SK1,SK1,SK1,SK1,SK1,FR1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,FR1,SK1,SK1,FR1,SK1,FR1,SK1,SK1,FR1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,FR1,SK1,SK1,SK1,FR1,SK1,SK1,FR1,BG1,BG1,BG1,FR1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,FR1,FR1,SK1,FR1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SC1,SC1,SK1,SK1,SK1,SC1,SC1,SK1,SK1,FR1,FR1,SK1,SK1,FR1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,EY1,FR1,SK1,SK1,SK1,EY1,FR1,SK1,SK1,SK1,SK1,FR1,FR1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,FR1,SK1,FR1,SK1,SK1,SK1,SK1,FR1,FR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,FR1,SK1,SK1,SK1,SK1,SK1,FR1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,DE1,SK1,SK1,DE1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,FR1,FR1,FR1,FR1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,FR1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,FR1,FR1,FR1,FR1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR1,SK1,SK1,SK1,FR1,FR2,FR2,FR2,FR2,FR2,FR2] ] pixels = ORC elif b > 135000: race_ep = 'Wizards' type_ep = 'White' hair_color_ep = 'None' haircut_ep = 'None' hair_prop_ep = 'None' eyes_prop_ep = 'None' blemishe_ep = 'None' eyes_color_ep = 'None' facial_hair_ep = 'None' mouth_prop_ep = 'None' mouth_ep = 'None' tooth_color_ep = 'None' nose_ep = 'None' neck_ep = 'None' ears_ep = 'None' skin_ep = 'None' ears = none hair = none hair_prop = none neck = none blemishes = none #tooth color mouth = none facial_hair = none rod = none mouth_prop = none #eye color eyes = none nose = none seed(b) c=randint(0,1000000) if c > 750000: SK1 = (234,217,217) SC1 = (165,141,141) EY1 = (201,178,178) SK2 = (255,255,255) HRG3 = (220,222,234) HRG2 = (183,179,191) HRG4 = (203,200,212) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (226,187,185) MO1 = EY1 SCR1 = EY1 skin_ep = 'Albino' elif c > 500000: SK1 = (219,177,128) SC1 = (166,110,44) EY1 = (210,157,96) SK2 = (235,203,166) HRG3 = (213,200,183) HRG2 = (184,163,135) HRG4 = (209,189,164) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (215,154,104) MO1 = EY1 SCR1 = EY1 skin_ep = 'Light' elif c > 250000: SK1 = (174,139,97) SC1 = (134,88,30) EY1 = (167,124,71) SK2 = (178,138,93) HRG3 = (188,179,165) HRG2 = (166,150,128) HRG4 = (184,171,151) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (191,105,71) MO1 = EY1 SCR1 = EY1 skin_ep = 'Mid' else: SK1 = (113,63,29) SC1 = (86,39,10) EY1 = (114,55,17) SK2 = (146,79,35) HRG3 = (155,135,127) HRG2 = (139,121,111) HRG4 = (156,131,115) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (142,36,2) MO1 = EY1 SCR1 = EY1 skin_ep = 'Dark' seed(c) d=randint(0,1000000) if d > 750000: ears = EARS_1 ears_ep = 'Earring' else: ears = none ears_ep = 'None' seed(d) e=randint(0,1000000) if e > 750000: HR1 = (140,140,140) hair_color_ep = 'Granite' elif e > 500000: HR1 = (90,90,90) hair_color_ep = 'Carbon Grey' elif e > 250000: HR1 = (240,240,240) hair_color_ep = 'Seashell' else: HR1 = (190,190,190) hair_color_ep = 'Silver' seed(e) f=randint(0,1000000) if f > 900000: mouth_prop = CIGARETTE mouth_prop_ep = 'Cigarette' elif f > 840000: mouth_prop = PIPE mouth_prop_ep = 'Pipe' elif f > 800000: mouth_prop = VAPE mouth_prop_ep = 'Vape' else: mouth_prop = none mouth_prop_ep = 'None' seed(f) g=randint(0,1000000) if g > 950000: hair_prop = COWBOY_7 hair_prop_ep = 'Cowboy Hat' elif g > 900000: hair_prop = TOPHAT_7 hair_prop_ep = 'Top Hat' elif e > 850000: hair_prop = KNITTED_7 hair_prop_ep = 'Knitted Cap' elif g > 800000: hair_prop = FORCAP_7 hair_prop_ep = 'Cap Forward' elif g > 750000: hair_prop = FEDORA_7 hair_prop_ep = 'Fedora' elif g > 700000: hair_prop = BANDANA_7 hair_prop_ep = 'Bandana' elif g > 650000: hair_prop = POLICE_7 hair_prop_ep = 'Police' elif g > 600000: hair_prop = CAP_7 hair_prop_ep = 'Cap' else: hair_prop = none hair_prop_ep = 'None' MOLE=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,MO1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] ROSY_1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,RC1,0,0,0,0,RC1,RC1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,RC1,0,0,0,0,0,RC1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] seed(g) h=randint(0,1000000) if h > 970000: blemishes = ROSY_1 blemishe_ep = 'Rosy Cheeks' elif h > 900000: blemishes = MOLE blemishe_ep = 'Mole' else: blemishes = none blemishe_ep = 'None' seed(h) i=randint(0,1000000) if i > 970000: eyes = TD_1 eyes_prop_ep ='3D Glasses' elif i > 930000: eyes = VR_1 eyes_prop_ep ='VR' elif i > 880000: eyes = ClassicShades_1 eyes_prop_ep ='Classic Shades' elif i > 830000: eyes = EyePatch_1 eyes_prop_ep ='Eye Patch' elif i > 780000: eyes = NerdGlasses_1 eyes_prop_ep ='Nerd Glasses' elif i > 730000: eyes = BigShades_1 eyes_prop_ep ='Big Shades' elif i > 700000: eyes = EyeMask_1 eyes_prop_ep ='Eye Mask' elif i > 650000: eyes = HornedRimGlasses_1 eyes_prop_ep ='Horned Rim Glasses' elif i > 600000: eyes = RegularShades_1 eyes_prop_ep ='Regular Shades' else: eyes=none eyes_prop_ep ='None' seed(i) j=randint(0,1000000) if j > 975000: nose = NOSE_1 nose_ep = 'Clown Nose' else: nose = none nose_ep = 'None' seed(j) k=randint(0,1000000) if k > 975000: mouth = SMILE mouth_ep = 'Smile' elif k > 950000: mouth = FROWN mouth_ep = 'Frown' else: mouth = none mouth_ep = 'None' WIZ_WHITE=[ [FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,HR1,HR1,BG1,BG1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,HR1,HR1,HR1,SK1,SK1,HR1,HR1,SK1,SK1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,HR1,HR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,HR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,HR1,HR1,HR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,HR1,HR1,HR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,FR1,SC1,SC1,SK1,SK1,SK1,SC1,SC1,SK1,SK1,HR1,HR1,HR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,FR1,EY1,FR1,SK1,SK1,SK1,EY1,FR1,SK1,SK1,HR1,HR1,HR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,HR1,HR1,HR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,HR1,HR1,HR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,HR1,HR1,HR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,FR1,SK1,SK1,FR1,FR1,SK1,SK1,SK1,SK1,SK1,HR1,HR1,HR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,FR1,SK1,HR1,HR1,HR1,HR1,HR1,SK1,SK1,SK1,HR1,HR1,HR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,FR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,FR1,HR1,HR1,HR1,FR1,FR1,FR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,FR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,FR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,HR1,FR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,FR1,FR1,HR1,HR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,HR1,HR1,FR1,HR1,HR1,FR1,FR1,FR1,FR1,SK1,FR1,HR1,HR1,BG1,BG1,BG1,FR2], [FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR1,FR1,FR2,FR1,FR2,FR2,FR2,FR1,FR2,FR2,FR2,FR2,FR2,FR2] ] pixels = WIZ_WHITE elif b > 110000: race_ep = 'Wizards' type_ep = 'Grey' hair_color_ep = 'None' haircut_ep = 'None' hair_prop_ep = 'None' eyes_prop_ep = 'None' blemishe_ep = 'None' eyes_color_ep = 'None' facial_hair_ep = 'None' mouth_prop_ep = 'None' mouth_ep = 'None' tooth_color_ep = 'None' nose_ep = 'None' neck_ep = 'None' ears_ep = 'None' skin_ep = 'None' ears = none hair = none hair_prop = none neck = none blemishes = none #tooth color mouth = none facial_hair = none rod = none mouth_prop = none #eye color eyes = none nose = none seed(b) c=randint(0,1000000) if c > 750000: SK1 = (234,217,217) SC1 = (165,141,141) EY1 = (201,178,178) SK2 = (255,255,255) HRG3 = (220,222,234) HRG2 = (183,179,191) HRG4 = (203,200,212) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (226,187,185) MO1 = EY1 SCR1 = EY1 skin_ep = 'Albino' elif c > 500000: SK1 = (219,177,128) SC1 = (166,110,44) EY1 = (210,157,96) SK2 = (235,203,166) HRG3 = (213,200,183) HRG2 = (184,163,135) HRG4 = (209,189,164) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (215,154,104) MO1 = EY1 SCR1 = EY1 skin_ep = 'Light' elif c > 250000: SK1 = (174,139,97) SC1 = (134,88,30) EY1 = (167,124,71) SK2 = (178,138,93) HRG3 = (188,179,165) HRG2 = (166,150,128) HRG4 = (184,171,151) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (191,105,71) MO1 = EY1 SCR1 = EY1 skin_ep = 'Mid' else: SK1 = (113,63,29) SC1 = (86,39,10) EY1 = (114,55,17) SK2 = (146,79,35) HRG3 = (155,135,127) HRG2 = (139,121,111) HRG4 = (156,131,115) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (142,36,2) MO1 = EY1 SCR1 = EY1 skin_ep = 'Dark' seed(c) d=randint(0,1000000) if d > 750000: ears = EARS_1 ears_ep = 'Earring' else: ears = none ears_ep = 'None' seed(d) e=randint(0,1000000) if e > 750000: CH1 = nr CH2= (130,130,130) HR1 = (160,160,160) BR1 = (190,190,190) hair_color_ep = 'Black & Granite' elif e > 500000: CH2 = (10,10,10) CH1= (50,50,50) HR1 = (160,160,160) BR1 = (190,190,190) hair_color_ep = 'Dark Grey & Black' elif e > 250000: CH1 = (130,130,130) CH2= (230,230,230) HR1 = (160,160,160) BR1 = (190,190,190) hair_color_ep = 'Granite & Seashell' else: CH1 = (50,50,50) CH2= (200,200,200) HR1 = (160,160,160) BR1 = (190,190,190) hair_color_ep = 'Dark Grey & Silver' seed(e) f=randint(0,1000000) if f > 900000: mouth_prop = CIGARETTE mouth_prop_ep = 'Cigarette' elif f > 840000: mouth_prop = PIPE mouth_prop_ep = 'Pipe' elif f > 800000: mouth_prop = VAPE mouth_prop_ep = 'Vape' else: mouth_prop = none mouth_prop_ep = 'None' seed(f) g=randint(0,1000000) MOLE=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,MO1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] ROSY_1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,RC1,0,0,0,0,RC1,RC1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,RC1,0,0,0,0,0,RC1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] seed(g) h=randint(0,1000000) if h > 970000: blemishes = ROSY_1 blemishe_ep = 'Rosy Cheeks' elif h > 900000: blemishes = MOLE blemishe_ep = 'Mole' else: blemishes = none blemishe_ep = 'None' seed(h) i=randint(0,1000000) if i > 970000: eyes = TD_1 eyes_prop_ep ='3D Glasses' elif i > 930000: eyes = VR_1 eyes_prop_ep ='VR' elif i > 880000: eyes = ClassicShades_1 eyes_prop_ep ='Classic Shades' elif i > 830000: eyes = EyePatch_1 eyes_prop_ep ='Eye Patch' elif i > 780000: eyes = NerdGlasses_1 eyes_prop_ep ='Nerd Glasses' elif i > 730000: eyes = BigShades_1 eyes_prop_ep ='Big Shades' elif i > 700000: eyes = EyeMask_1 eyes_prop_ep ='Eye Mask' elif i > 650000: eyes = HornedRimGlasses_1 eyes_prop_ep ='Horned Rim Glasses' elif i > 600000: eyes = RegularShades_1 eyes_prop_ep ='Regular Shades' else: eyes=none eyes_prop_ep ='None' seed(i) j=randint(0,1000000) if j > 975000: nose = NOSE_1 nose_ep = 'Clown Nose' else: nose = none nose_ep = 'None' seed(j) k=randint(0,1000000) if k > 975000: mouth = SMILE mouth_ep = 'Smile' elif k > 950000: mouth = FROWN mouth_ep = 'Frown' else: mouth = none mouth_ep = 'None' WIZ_GREY=[ [FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,CH1,CH1,CH1,CH1,CH1,CH1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,CH1,CH1,CH1,CH1,CH1,BG1,CH1,CH1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,BG1,BG1,CH1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,CH2,CH2,CH2,CH2,CH2,CH2,CH2,CH2,CH2,CH2,CH2,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,BG1,BG1,FR2], [FR2,BG1,BG1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,HR1,HR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SC1,SC1,SK1,SK1,SK1,SC1,SC1,SK1,SK1,FR1,HR1,HR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,EY1,FR1,SK1,SK1,SK1,EY1,FR1,SK1,SK1,SK1,FR1,HR1,HR1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,HR1,HR1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,FR1,HR1,HR1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,HR1,HR1,HR1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,FR1,FR1,SK1,SK1,SK1,SK1,SK1,FR1,HR1,HR1,HR1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,BR1,BR1,BR1,BR1,BR1,SK1,SK1,SK1,FR1,HR1,HR1,HR1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,FR1,BR1,BR1,BR1,BR1,BR1,BR1,BR1,BR1,BR1,BR1,FR1,HR1,HR1,HR1,HR1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,FR1,BR1,BR1,BR1,FR1,FR1,FR1,BR1,BR1,BR1,BR1,BR1,FR1,HR1,HR1,HR1,HR1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,FR1,BR1,BR1,BR1,BR1,BR1,BR1,BR1,BR1,BR1,BR1,BR1,FR1,HR1,HR1,HR1,HR1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,BR1,BR1,BR1,BR1,BR1,BR1,BR1,BR1,BR1,BR1,FR1,HR1,HR1,HR1,HR1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,BR1,BR1,BR1,BR1,BR1,BR1,BR1,FR1,FR1,BG1,BG1,HR1,HR1,HR1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,BR1,BR1,FR1,FR1,FR1,FR1,SK1,FR1,BG1,BG1,BG1,HR1,HR1,FR2], [FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR1,FR1,FR2,FR1,SK1,SK1,SK1,FR1,FR2,FR2,FR2,FR2,FR2,FR2] ] pixels = WIZ_GREY elif b > 85000: race_ep = 'Wizards' type_ep = 'Tower' hair_color_ep = 'None' haircut_ep = 'None' hair_prop_ep = 'None' eyes_prop_ep = 'None' blemishe_ep = 'None' eyes_color_ep = 'None' facial_hair_ep = 'None' mouth_prop_ep = 'None' mouth_ep = 'None' tooth_color_ep = 'None' nose_ep = 'None' neck_ep = 'None' ears_ep = 'None' skin_ep = 'None' ears = none hair = none hair_prop = none neck = none blemishes = none #tooth color mouth = none facial_hair = none rod = none mouth_prop = none #eye color eyes = none nose = none seed(b) c=randint(0,1000000) if c > 750000: SK1 = (234,217,217) EY1 = (201,178,178) SK2 = (255,255,255) HRG3 = (220,222,234) HRG2 = (183,179,191) HRG4 = (203,200,212) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (226,187,185) MO1 = EY1 SCR1 = EY1 skin_ep = 'Albino' elif c > 500000: SK1 = (219,177,128) EY1 = (210,157,96) SK2 = (235,203,166) HRG3 = (213,200,183) HRG2 = (184,163,135) HRG4 = (209,189,164) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (215,154,104) MO1 = EY1 SCR1 = EY1 skin_ep = 'Light' elif c > 250000: SK1 = (174,139,97) EY1 = (167,124,71) SK2 = (178,138,93) HRG3 = (188,179,165) HRG2 = (166,150,128) HRG4 = (184,171,151) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (191,105,71) MO1 = EY1 SCR1 = EY1 skin_ep = 'Mid' else: SK1 = (113,63,29) EY1 = (114,55,17) SK2 = (146,79,35) HRG3 = (155,135,127) HRG2 = (139,121,111) HRG4 = (156,131,115) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (142,36,2) MO1 = EY1 SCR1 = EY1 skin_ep = 'Dark' seed(c) d=randint(0,1000000) if d > 750000: ears = EARS_1 ears_ep = 'Earring' else: ears = none ears_ep = 'None' seed(d) e=randint(0,1000000) if e > 750000: SC1 = (80,80,80) BR1 = (80,80,80) HR1 = (160,160,160) hair_color_ep = 'Grey & Carbon Grey' elif e > 500000: SC1 = (30,30,30) BR1 = (30,30,30) HR1 = (110,110,110) hair_color_ep = 'Smokey Grey & Charcoal' elif e > 250000: SC1 = (80,80,80) BR1 = (80,80,80) HR1 = (235,235,235) hair_color_ep = 'Seashell & Carbon Grey' else: SC1 = (155,155,155) BR1 = (155,155,155) HR1 = (235,235,235) hair_color_ep = 'Seashell & Grey' seed(e) f=randint(0,1000000) if f > 900000: mouth_prop = CIGARETTE mouth_prop_ep = 'Cigarette' elif f > 840000: mouth_prop = PIPE mouth_prop_ep = 'Pipe' elif f > 800000: mouth_prop = VAPE mouth_prop_ep = 'Vape' else: mouth_prop = none mouth_prop_ep = 'None' seed(f) g=randint(0,1000000) if g > 950000: hair_prop = COWBOY_7 hair_prop_ep = 'Cowboy Hat' elif g > 900000: hair_prop = TOPHAT_7 hair_prop_ep = 'Top Hat' elif e > 850000: hair_prop = KNITTED_7 hair_prop_ep = 'Knitted Cap' elif g > 800000: hair_prop = FORCAP_7 hair_prop_ep = 'Cap Forward' elif g > 750000: hair_prop = FEDORA_7 hair_prop_ep = 'Fedora' elif g > 700000: hair_prop = BANDANA_7 hair_prop_ep = 'Bandana' elif g > 650000: hair_prop = POLICE_7 hair_prop_ep = 'Police' elif g > 600000: hair_prop = CAP_7 hair_prop_ep = 'Cap' else: hair_prop = none hair_prop_ep = 'None' MOLE=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,MO1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] ROSY_1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,RC1,0,0,0,0,RC1,RC1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,RC1,0,0,0,0,0,RC1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] seed(g) h=randint(0,1000000) if h > 970000: blemishes = ROSY_1 blemishe_ep = 'Rosy Cheeks' elif h > 900000: blemishes = MOLE blemishe_ep = 'Mole' else: blemishes = none blemishe_ep = 'None' seed(h) i=randint(0,1000000) if i > 970000: eyes = TD_1 eyes_prop_ep ='3D Glasses' elif i > 930000: eyes = VR_1 eyes_prop_ep ='VR' elif i > 880000: eyes = ClassicShades_1 eyes_prop_ep ='Classic Shades' elif i > 830000: eyes = EyePatch_1 eyes_prop_ep ='Eye Patch' elif i > 780000: eyes = NerdGlasses_1 eyes_prop_ep ='Nerd Glasses' elif i > 730000: eyes = BigShades_1 eyes_prop_ep ='Big Shades' elif i > 700000: eyes = EyeMask_1 eyes_prop_ep ='Eye Mask' elif i > 650000: eyes = HornedRimGlasses_1 eyes_prop_ep ='Horned Rim Glasses' elif i > 600000: eyes = RegularShades_1 eyes_prop_ep ='Regular Shades' else: eyes=none eyes_prop_ep ='None' seed(i) j=randint(0,1000000) if j > 975000: nose = NOSE_1 nose_ep = 'Clown Nose' else: nose = none nose_ep = 'None' seed(j) k=randint(0,1000000) if k > 975000: mouth = SMILE mouth_ep = 'Smile' elif k > 950000: mouth = FROWN mouth_ep = 'Frown' else: mouth = none mouth_ep = 'None' WIZ_TOWER=[ [FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,HR1,SK1,SK1,HR1,HR1,HR1,SK1,SK1,HR1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,FR1,SK1,SK1,SK1,HR1,SK1,SK1,SK1,SK1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,FR1,SC1,SC1,SC1,SK1,SK1,SC1,SC1,SC1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,FR1,EY1,FR1,SK1,SK1,SK1,EY1,FR1,SK1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,FR1,SK1,SK1,FR1,FR1,SK1,SK1,SK1,SK1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,FR1,SK1,SK1,BR1,BR1,BR1,SK1,SK1,SK1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,FR1,BR1,BR1,BR1,FR1,FR1,FR1,BR1,BR1,BR1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,FR1,BR1,BR1,BR1,BR1,BR1,BR1,BR1,BR1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,BG1,FR1,BR1,BR1,BR1,BR1,BR1,BR1,FR1,SK1,HR1,HR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,BG1,BG1,BG1,FR1,BR1,BR1,BR1,BR1,FR1,SK1,SK1,FR1,HR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,BR1,FR1,FR1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR1,FR2,FR1,SK1,SK1,SK1,FR1,FR2,FR2,FR2,FR2,FR2,FR2] ] pixels = WIZ_TOWER elif b > 60000: race_ep = 'Wizards' type_ep = 'Wood' hair_color_ep = 'None' haircut_ep = 'None' hair_prop_ep = 'None' eyes_prop_ep = 'None' blemishe_ep = 'None' eyes_color_ep = 'None' facial_hair_ep = 'None' mouth_prop_ep = 'None' mouth_ep = 'None' tooth_color_ep = 'None' nose_ep = 'None' neck_ep = 'None' ears_ep = 'None' skin_ep = 'None' ears = none hair = none hair_prop = none neck = none blemishes = none #tooth color mouth = none facial_hair = none rod = none mouth_prop = none #eye color eyes = none nose = none seed(b) c=randint(0,1000000) if c > 750000: SK1 = (234,217,217) SC1 = (165,141,141) EY1 = (201,178,178) SK2 = (255,255,255) HRG3 = (220,222,234) HRG2 = (183,179,191) HRG4 = (203,200,212) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (226,187,185) MO1 = EY1 SCR1 = EY1 skin_ep = 'Albino' elif c > 500000: SK1 = (219,177,128) SC1 = (166,110,44) EY1 = (210,157,96) SK2 = (235,203,166) HRG3 = (213,200,183) HRG2 = (184,163,135) HRG4 = (209,189,164) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (215,154,104) MO1 = EY1 SCR1 = EY1 skin_ep = 'Light' elif c > 250000: SK1 = (174,139,97) SC1 = (134,88,30) EY1 = (167,124,71) SK2 = (178,138,93) HRG3 = (188,179,165) HRG2 = (166,150,128) HRG4 = (184,171,151) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (191,105,71) MO1 = EY1 SCR1 = EY1 skin_ep = 'Mid' else: SK1 = (113,63,29) SC1 = (86,39,10) EY1 = (114,55,17) SK2 = (146,79,35) HRG3 = (155,135,127) HRG2 = (139,121,111) HRG4 = (156,131,115) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (142,36,2) MO1 = EY1 SCR1 = EY1 skin_ep = 'Dark' seed(c) d=randint(0,1000000) if d > 750000: ears = EARS_1 ears_ep = 'Earring' else: ears = none ears_ep = 'None' seed(d) e=randint(0,1000000) if e > 750000: HR1 = (160,110,30) HR2 = (130,60,20) BR2 = (200,230,180) BR1 = BE2 hair_color_ep = 'Taupe & Cookie Brown' elif e > 500000: HR1 = (130,90,10) HR2 = (70,50,10) BR2 = (200,230,180) hair_color_ep = 'Brown & Cookie Brown' BR1 = BE2 elif e > 250000: HR1 = (160,110,30) HR2 = (130,60,20) BR2 = (60,200,180) BR1 = (30,20,5) hair_color_ep = 'Taupe & Graphite' else: HR1 = (130,90,10) HR2 = (70,50,10) BR2 = (60,200,180) BR1 = (30,20,5) hair_color_ep = 'Brown & Graphite' seed(e) f=randint(0,1000000) if f > 900000: mouth_prop = CIGARETTE mouth_prop_ep = 'Cigarette' elif f > 840000: mouth_prop = PIPE mouth_prop_ep = 'Pipe' elif f > 800000: mouth_prop = VAPE mouth_prop_ep = 'Vape' else: mouth_prop = none mouth_prop_ep = 'None' seed(f) g=randint(0,1000000) if g > 975000: mouth = SMILE mouth_ep = 'Smile' elif g > 950000: mouth = FROWN mouth_ep = 'Frown' else: mouth = none mouth_ep = 'None' MOLE=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,MO1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] ROSY_1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,RC1,0,0,0,0,RC1,RC1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,RC1,0,0,0,0,0,RC1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] seed(g) h=randint(0,1000000) if h > 970000: blemishes = ROSY_1 blemishe_ep = 'Rosy Cheeks' elif h > 900000: blemishes = MOLE blemishe_ep = 'Mole' else: blemishes = none blemishe_ep = 'None' seed(h) i=randint(0,1000000) if i > 970000: eyes = TD_1 eyes_prop_ep ='3D Glasses' elif i > 930000: eyes = VR_1 eyes_prop_ep ='VR' elif i > 880000: eyes = ClassicShades_1 eyes_prop_ep ='Classic Shades' elif i > 830000: eyes = EyePatch_1 eyes_prop_ep ='Eye Patch' elif i > 780000: eyes = NerdGlasses_1 eyes_prop_ep ='Nerd Glasses' elif i > 730000: eyes = BigShades_1 eyes_prop_ep ='Big Shades' elif i > 700000: eyes = EyeMask_1 eyes_prop_ep ='Eye Mask' elif i > 650000: eyes = HornedRimGlasses_1 eyes_prop_ep ='Horned Rim Glasses' elif i > 600000: eyes = RegularShades_1 eyes_prop_ep ='Regular Shades' else: eyes=none eyes_prop_ep ='None' seed(i) j=randint(0,1000000) if j > 975000: nose = NOSE_1 nose_ep = 'Clown Nose' else: nose = none nose_ep = 'None' WIZ_WOODEN=[ [FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,HR2,HR2,HR2,HR2,HR2,HR2,HR2,HR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,HR2,HR2,HR2,HR2,HR2,HR2,HR2,HR2,HR2,HR2,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,HR2,HR2,HR2,HR1,HR1,HR1,HR1,HR2,HR2,HR2,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,HR1,HR1,HR2,HR2,HR2,HR2,HR1,HR1,HR1,HR1,HR1,HR1,HR2,HR2,HR2,HR2,HR1,HR1,BG1,BG1,FR2], [FR2,BG1,HR1,HR1,HR1,HR1,HR2,HR2,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR2,HR2,HR1,HR1,HR1,HR1,BG1,FR2], [FR2,BG1,HR1,HR1,HR1,HR1,HR1,HR2,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR2,HR1,HR1,HR1,HR1,HR1,BG1,FR2], [FR2,BG1,HR1,HR1,HR1,HR1,HR1,BR2,HR2,HR1,HR1,HR1,HR1,HR1,HR1,HR2,HR1,HR1,HR1,HR1,HR1,HR1,BG1,FR2], [FR2,BG1,HR1,BG1,BG1,HR1,BR2,HR1,HR1,HR1,SK1,SK1,SK1,SK1,HR1,HR1,HR1,HR1,HR1,BG1,BG1,HR1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,HR1,BR2,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,HR1,HR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BR2,SC1,SC1,SK1,SK1,SK1,SC1,SC1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BR2,EY1,FR1,SK1,SK1,SK1,EY1,FR1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BR2,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,BR1,FR1,FR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BR2,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,BR1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,BR2,SK1,FR1,FR1,SK1,SK1,SK1,BR1,BR1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,BR1,BR2,SK1,SK1,SK1,SK1,BR1,BR1,BR1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,BR2,BR1,BR1,BR1,BR1,BR1,BR1,BR1,BR1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,BR1,BR1,FR1,FR1,FR1,BR1,BR1,BR1,BR1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,BR1,BR1,BR1,BR1,BR1,BR1,BR1,BR1,BR1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,BR1,BR1,BR1,BR1,BR1,BR1,BR1,BR1,BR1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,BR1,BR1,BR1,BR1,BR1,BR1,BR1,FR1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,BR1,BR1,BR1,BR1,BR1,FR1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR1,FR1,FR1,FR1,FR1,SK1,SK1,FR1,FR2,FR2,FR2,FR2,FR2,FR2] ] pixels = WIZ_WOODEN elif b > 35000: race_ep = 'Wizards' type_ep = 'Blue' hair_color_ep = 'None' haircut_ep = 'None' hair_prop_ep = 'None' eyes_prop_ep = 'None' blemishe_ep = 'None' eyes_color_ep = 'None' facial_hair_ep = 'None' mouth_prop_ep = 'None' mouth_ep = 'None' tooth_color_ep = 'None' nose_ep = 'None' neck_ep = 'None' ears_ep = 'None' skin_ep = 'None' ears = none hair = none hair_prop = none neck = none blemishes = none #tooth color mouth = none facial_hair = none rod = none mouth_prop = none #eye color eyes = none nose = none seed(b) c=randint(0,1000000) if c > 750000: HR1 = (30,25,200) HR2 = (255,218,0) SK1 = (234,217,217) SC1 = (190,215,240) BR1 = (190,215,240) EY1 = (201,178,178) SK2 = (255,255,255) HRG3 = (220,222,234) HRG2 = (183,179,191) HRG4 = (203,200,212) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (226,187,185) skin_ep = 'Albino' MO1 = EY1 SCR1 = EY1 hair_color_ep = 'Persian Blue' elif c > 500000: HR1 = (10,50,100) HR2 = (216,214,203) SK1 = (219,177,128) SC1 = (190,215,240) BR1 = (190,215,240) EY1 = (210,157,96) SK2 = (235,203,166) HRG3 = (213,200,183) HRG2 = (184,163,135) HRG4 = (209,189,164) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (215,154,104) MO1 = EY1 SCR1 = EY1 skin_ep = 'Light' hair_color_ep = 'Sapphire' elif c > 250000: HR1 = (60,10,145) HR2 = (255,218,0) SK1 = (174,139,97) SC1 = (190,215,240) BR1 = (190,215,240) EY1 = (167,124,71) SK2 = (178,138,93) HRG3 = (188,179,165) HRG2 = (166,150,128) HRG4 = (184,171,151) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (191,105,71) MO1 = EY1 SCR1 = EY1 skin_ep = 'Mid' hair_color_ep = 'Indigo' else: HR1 = (30,180,220) HR2 = (216,214,203) SK1 = (113,63,29) SC1 = (190,215,240) BR1 = (190,215,240) EY1 = (114,55,17) SK2 = (146,79,35) HRG3 = (155,135,127) HRG2 = (139,121,111) HRG4 = (156,131,115) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (142,36,2) MO1 = EY1 SCR1 = EY1 skin_ep = 'Dark' hair_color_ep = 'Topaz' seed(c) d=randint(0,1000000) if d > 750000: ears = EARS_1 ears_ep = 'Earring' else: ears = none ears_ep = 'None' seed(d) e=randint(0,1000000) #if e > 900000: # neck = GoldChain_1 #elif e > 700000: # neck = SilverChain_1 #elif e > 500000: # neck = RING_1 #else: # neck = none seed(e) f=randint(0,1000000) if f > 900000: mouth_prop = CIGARETTE mouth_prop_ep = 'Cigarette' elif f > 840000: mouth_prop = PIPE mouth_prop_ep = 'Pipe' elif f > 800000: mouth_prop = VAPE mouth_prop_ep = 'Vape' else: mouth_prop = none mouth_prop_ep = 'None' seed(f) g=randint(0,1000000) if g > 975000: mouth = SMILE mouth_ep = 'Smile' elif g > 950000: mouth = FROWN mouth_ep = 'Frown' else: mouth = none mouth_ep = 'None' MOLE=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,MO1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] ROSY_1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,RC1,0,0,0,0,RC1,RC1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,RC1,0,0,0,0,0,RC1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] seed(g) h=randint(0,1000000) if h > 970000: blemishes = ROSY_1 blemishe_ep = 'Rosy Cheeks' elif h > 900000: blemishes = MOLE blemishe_ep = 'Mole' else: blemishes = none blemishe_ep = 'None' seed(h) i=randint(0,1000000) if i > 970000: eyes = TD_1 eyes_prop_ep ='3D Glasses' elif i > 930000: eyes = VR_1 eyes_prop_ep ='VR' elif i > 880000: eyes = ClassicShades_1 eyes_prop_ep ='Classic Shades' elif i > 830000: eyes = EyePatch_1 eyes_prop_ep ='Eye Patch' elif i > 780000: eyes = NerdGlasses_1 eyes_prop_ep ='Nerd Glasses' elif i > 730000: eyes = BigShades_1 eyes_prop_ep ='Big Shades' elif i > 700000: eyes = EyeMask_1 eyes_prop_ep ='Eye Mask' elif i > 650000: eyes = HornedRimGlasses_1 eyes_prop_ep ='Horned Rim Glasses' elif i > 600000: eyes = RegularShades_1 eyes_prop_ep ='Regular Shades' else: eyes=none eyes_prop_ep ='None' seed(i) j=randint(0,1000000) if j > 975000: nose = NOSE_1 nose_ep = 'Clown Nose' else: nose = none nose_ep = 'None' WIZ_BLUE=[ [FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,HR1,HR1,HR1,HR2,HR2,HR2,HR2,HR2,HR2,HR2,HR1,HR1,HR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,HR1,HR2,SK1,SK1,SK1,SK1,SK1,SK1,SK1,HR2,HR1,HR1,HR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,HR2,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,HR2,HR1,HR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,HR2,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,HR2,HR1,HR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,HR2,SC1,SC1,SC1,SK1,SK1,SC1,SC1,SC1,SK1,HR2,HR1,HR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,HR2,EY1,FR1,SK1,SK1,SK1,EY1,FR1,SK1,SK1,HR2,HR1,HR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,HR2,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,HR2,HR1,HR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,HR2,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,HR2,HR1,HR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,HR2,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,HR2,HR1,HR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,HR2,SK1,SK1,FR1,FR1,SK1,SK1,SK1,SK1,SK1,HR2,HR1,HR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,HR1,HR1,HR2,BR1,BR1,BR1,BR1,BR1,BR1,BR1,BR1,BR1,BR1,BR1,HR2,HR1,HR1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,HR1,HR1,HR2,BR1,BR1,BR1,BR1,BR1,BR1,BR1,BR1,BR1,BR1,BR1,HR2,HR1,HR1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,HR1,HR1,HR2,BR1,BR1,BR1,FR1,FR1,FR1,BR1,BR1,BR1,BR1,BR1,HR2,HR1,HR1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,HR1,HR1,HR2,BR1,BR1,BR1,BR1,BR1,BR1,BR1,BR1,BR1,BR1,BR1,HR2,HR1,HR1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,HR1,HR1,HR2,BR1,BR1,BR1,BR1,BR1,BR1,BR1,BR1,BR1,FR1,FR1,HR2,HR1,HR1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,HR2,BR1,BR1,BR1,BR1,BR1,BR1,BR1,FR1,SK1,HR2,HR1,HR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,HR2,FR1,FR1,BR1,BR1,BR1,FR1,FR1,SK1,HR2,HR1,HR1,HR1,BG1,BG1,BG1,FR2], [FR2,FR2,FR2,FR2,FR2,FR2,HR1,HR1,HR2,FR2,FR1,BR1,FR1,FR1,FR2,HR2,HR1,HR1,HR1,HR1,FR2,FR2,FR2,FR2] ] pixels = WIZ_BLUE elif b > 19000: race_ep = 'Unknown' type_ep = 'Male' hair_color_ep = 'None' haircut_ep = 'None' hair_prop_ep = 'None' eyes_prop_ep = 'None' blemishe_ep = 'None' eyes_color_ep = 'None' facial_hair_ep = 'None' mouth_prop_ep = 'None' mouth_ep = 'None' tooth_color_ep = 'None' nose_ep = 'None' neck_ep = 'None' ears_ep = 'None' skin_ep = 'None' ears = none hair = none hair_prop = none neck = none blemishes = none #tooth color mouth = none facial_hair = none rod = none mouth_prop = none #eye color eyes = none nose = none seed(b) c=randint(0,1000000) if c > 750000: SK1 = (250,200,170) HR1 = (130,130,130) skin_ep = 'Peach' elif c > 500000: SK1 = (200,170,140) HR1 = (125,110,90) skin_ep = 'Dust' elif c > 250000: SK1 = (240,210,190) HR1 = (170,150,120) skin_ep = 'Bone' else: SK1 = (195,175,165) HR1 = (100,95,85) skin_ep = 'Silk' seed(c) d=randint(0,1000000) if d > 750000: ears = EARS_4 ears_ep = 'Earring' else: ears = none ears_ep = 'None' seed(d) e=randint(0,1000000) if e > 950000: hair_prop = CAP_5 hair_prop_ep = 'Cap' elif e > 900000: hair_prop = KNITTED_4 hair_prop_ep = 'Knitted Cap' elif e > 850000: hair_prop = HEADBAND_7 hair_prop_ep = 'Headband' elif e > 800000: hair_prop = FORCAP_3 hair_prop_ep = 'Cap Forward' elif e > 750000: hair_prop = COWBOY_3 hair_prop_ep = 'Cowboy Hat' elif e > 700000: hair_prop = TOPHAT_3 hair_prop_ep = 'Top Hat' else: hair_prop = none hair_prop_ep = 'None' seed(e) f=randint(0,1000000) if f > 980000: neck = RING_3 neck_ep = 'Ring Onchain' elif f > 880000: neck = GoldChain_4 neck_ep = 'Gold Chain' tutu = 99 elif f > 800000: neck = SilverChain_3 neck_ep = 'Silver Chain' else: neck = none neck_ep = 'None' seed(f) g=randint(0,1000000) if g > 975000: mouth = SMILE mouth_ep = 'Smile' elif g > 950000: mouth = FROWN mouth_ep = 'Frown' tyty = 99 else: mouth = none mouth_ep = 'None' if tutu == 99 and tyty == 99: neck = none neck_ep = 'None' seed(g) h=randint(0,1000000) if h > 900000: mouth_prop = CIGARETTE mouth_prop_ep = 'Cigarette' elif h > 840000: mouth_prop = PIPE mouth_prop_ep = 'Pipe' elif h > 800000: mouth_prop = VAPE mouth_prop_ep = 'Vape' else: mouth_prop = none mouth_prop_ep = 'None' seed(h) i=randint(0,1000000) if i > 200000: EY1 = (255,255,255) eyes_color_ep = 'White' elif i > 80000: EY1 = (230,180,100) eyes_color_ep = 'Peach' else: EY1 = (78,154,197) eyes_color_ep = 'Blue' seed(i) j=randint(0,1000000) if j > 950000: eyes = ClassicShades_4 eyes_prop_ep ='Classic Shades' elif j > 900000: eyes = EyePatch_4 eyes_prop_ep ='Eye Patch' elif j > 850000: eyes = RegularShades_4 eyes_prop_ep ='Regular Shades' else: eyes=none eyes_prop_ep ='None' GOLLUN=[ [FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,HR1,HR1,HR1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,HR1,SK1,HR1,SK1,HR1,SK1,HR1,HR1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,HR1,SK1,SK1,HR1,SK1,HR1,SK1,HR1,SK1,HR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,HR1,SK1,HR1,SK1,SK1,HR1,SK1,HR1,SK1,HR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,HR1,SK1,HR1,SK1,HR1,SK1,SK1,HR1,SK1,HR1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,HR1,EY1,EY1,SK1,SK1,SK1,EY1,EY1,SK1,HR1,SK1,FR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,HR1,EY1,FR1,SK1,SK1,SK1,EY1,FR1,SK1,HR1,SK1,FR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,HR1,SK1,HR1,SK1,SK1,SK1,SK1,HR1,SK1,HR1,SK1,FR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,HR1,SK1,SK1,SK1,FR1,SK1,SK1,SK1,SK1,FR1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,bl,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,FR1,FR1,FR1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,FR1,FR1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR1,SK1,SK1,SK1,FR1,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2] ] pixels = GOLLUN elif b > 10000: race_ep = 'Wraiths' type_ep = 'None' hair_color_ep = 'None' haircut_ep = 'None' hair_prop_ep = 'None' eyes_prop_ep = 'None' blemishe_ep = 'None' eyes_color_ep = 'None' facial_hair_ep = 'None' mouth_prop_ep = 'None' mouth_ep = 'None' tooth_color_ep = 'None' nose_ep = 'None' neck_ep = 'None' ears_ep = 'None' skin_ep = 'None' ears = none hair = none hair_prop = none neck = none blemishes = none #tooth color mouth = none facial_hair = none rod = none mouth_prop = none #eye color eyes = none nose = none seed(b) c=randint(0,1000000) if c > 500000: SK1 = (50,50,50) HR1 = (100,100,100) SC1 = nr MO1 = nr skin_ep = 'Dark Grey' elif c > 400000: SK1 = (128,128,128) HR1 = (255,193,7) #OR SC1 = nr MO1 = nr skin_ep = 'Granite' elif c > 300000: SK1 = (128,128,128) HR1 = (200,130,40) #BRONZE SC1 = nr MO1 = nr skin_ep = 'Granite' elif c > 250000: SK1 = (142,36,170) #VIOLET HR1 = (40,5,55) SC1 = (74,20,140) MO1 = SC1 skin_ep = 'Eggplant' else: SK1 = (128,128,128) HR1 = (230,230,230) SC1 = (30,30,30) MO1 = SC1 skin_ep = 'Granite' seed(c) d=randint(0,1000000) if d > 750000: ears = EARS_2 ears_ep = 'Earring' else: ears = none ears_ep = 'None' MOLE=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,MO1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] seed(d) e=randint(0,1000000) if e > 930000: blemishes = MOLE blemishe_ep = 'Mole' else: blemishes = none blemishe_ep = 'None' seed(e) f=randint(0,1000000) if f > 900000: neck = GoldChain_1 neck_ep = 'Gold Chain' elif f > 820000: neck = SilverChain_1 neck_ep = 'Silver Chain' elif f > 800000: neck = RING_1 neck_ep = 'Ring Onchain' else: neck = none neck_ep = 'None' seed(f) g=randint(0,1000000) seed(g) h=randint(0,1000000) if h > 900000: mouth_prop = CIGARETTE mouth_prop_ep = 'Cigarette' elif h > 880000: mouth_prop = MASK_1 mouth_prop_ep = 'Medical Mask' elif h > 820000: mouth_prop = PIPE mouth_prop_ep = 'Pipe' elif h > 780000: mouth_prop = VAPE mouth_prop_ep = 'Vape' else: mouth_prop = none mouth_prop_ep = 'None' seed(h) i=randint(0,1000000) if i > 400000: EY1 = (255,255,255) EY2 = nr eyes_color_ep = 'White' elif i > 300000: EY1 = (214,92,26) EY2 = nr eyes_color_ep = "Orange" elif i > 200000: EY1 = (176,61,133) EY2 = nr eyes_color_ep = "Purple" elif i > 100000: EY1 = (255,255,0) EY2 = nr eyes_color_ep = 'Yellow' else: EY1 = (255,0,0) EY2 = nr eyes_color_ep = 'Red' seed(i) j=randint(0,1000000) if j > 970000: eyes = TD_2 eyes_prop_ep ='3D Glasses' elif j > 930000: eyes = VR_2 eyes_prop_ep ='VR' elif j > 880000: eyes = ClassicShades_2 eyes_prop_ep ='Classic Shades' elif j > 830000: eyes = SmallShades_2 eyes_prop_ep ='Small Shades' elif j > 780000: eyes = EyePatch_2 eyes_prop_ep ='Eye Patch' elif j > 730000: eyes = NerdGlasses_2 eyes_prop_ep ='Nerd Glasses' elif j > 700000: eyes = EyeMask_2 eyes_prop_ep ='Eye Mask' elif j > 650000: eyes = RegularShades_2 eyes_prop_ep ='Regular Shades' else: eyes=none eyes_prop_ep ='None' seed(j) k=randint(0,1000000) if k > 975000: nose = NOSE_1 nose_ep = 'Clown Nose' else: nose = none nose_ep = 'None' SPECTRE=[ [FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,FR1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,FR1,HR1,HR1,HR1,FR1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,FR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,FR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,FR1,HR1,FR1,FR1,FR1,HR1,HR1,FR1,FR1,FR1,HR1,HR1,HR1,FR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,FR1,HR1,FR1,SK1,SK1,SK1,FR1,FR1,SK1,SK1,SK1,FR1,HR1,HR1,FR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,FR1,HR1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,HR1,FR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,FR1,HR1,FR1,SC1,SC1,SK1,SK1,SK1,SC1,SC1,SK1,SK1,FR1,HR1,HR1,FR1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,FR1,HR1,FR1,EY1,EY2,SK1,SK1,SK1,EY1,EY2,SK1,SK1,SK1,FR1,HR1,FR1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,FR1,HR1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,HR1,FR1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,FR1,HR1,FR1,SK1,SK1,SK1,FR1,SK1,SK1,SK1,SK1,SK1,FR1,FR1,HR1,FR1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,FR1,HR1,FR1,SK1,SK1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,HR1,HR1,FR1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,FR1,HR1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,HR1,FR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,FR1,HR1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,HR1,FR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,FR1,HR1,FR1,SK1,SK1,FR1,FR1,FR1,SK1,SK1,SK1,SK1,FR1,HR1,FR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,FR1,HR1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,SK1,FR1,HR1,FR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,FR1,HR1,FR1,SK1,SK1,SK1,SK1,SK1,FR1,SK1,SK1,FR1,HR1,FR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,HR1,FR1,FR1,FR1,FR1,FR1,SK1,SK1,SK1,FR1,HR1,FR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,HR1,HR1,HR1,HR1,FR1,FR1,SK1,FR1,FR1,HR1,FR1,BG1,BG1,BG1,FR2], [FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR1,FR1,FR1,HR1,HR1,HR1,FR1,HR1,HR1,HR1,FR1,FR2,FR2,FR2,FR2] ] pixels = SPECTRE elif b > 7000: race_ep = 'Dark Riders' type_ep = 'None' hair_color_ep = 'None' haircut_ep = 'None' hair_prop_ep = 'None' eyes_prop_ep = 'None' blemishe_ep = 'None' eyes_color_ep = 'None' facial_hair_ep = 'None' mouth_prop_ep = 'None' mouth_ep = 'None' tooth_color_ep = 'None' nose_ep = 'None' neck_ep = 'None' ears_ep = 'None' skin_ep = 'None' ears = none hair = none hair_prop = none neck = none blemishes = none #tooth color mouth = none facial_hair = none rod = none mouth_prop = none #eye color eyes = none nose = none SK1 = (118,113,113) SK2 = (191,191,191) SK3 = (223,223,223) skin_ep = 'None' seed(b) c=randint(0,1000000) if c > 750000: ears = EARS_1 ears_ep = 'Earring' else: ears = none ears_ep = 'None' seed(c) d=randint(0,1000000) if d > 900000: neck = GoldChain_1 neck_ep = 'Gold Chain' elif d > 820000: neck = SilverChain_1 neck_ep = 'Silver Chain' elif d > 800000: neck = RING_1 neck_ep = 'Ring Onchain' else: neck = none neck_ep = 'None' seed(d) e=randint(0,1000000) if e > 900000: mouth_prop = CIGARETTE mouth_prop_ep = 'Cigarette' elif e > 840000: mouth_prop = PIPE mouth_prop_ep = 'Pipe' elif e > 800000: mouth_prop = VAPE mouth_prop_ep = 'Vape' else: mouth_prop = none mouth_prop_ep = 'None' seed(e) f=randint(0,1000000) if f > 400000: EY1 = (255,255,255) eyes_color_ep = 'White' elif f > 300000: EY1 = (214,92,26) eyes_color_ep = "Orange" elif f > 200000: EY1 = (176,61,133) eyes_color_ep = "Purple" elif f > 100000: EY1 = (255,255,0) eyes_color_ep = 'Yellow' else: EY1 = (255,0,0) eyes_color_ep = 'Red' seed(f) g=randint(0,1000000) if g > 970000: eyes = TD_1 eyes_prop_ep ='3D Glasses' elif g > 930000: eyes = VR_1 eyes_prop_ep ='VR' elif g > 880000: eyes = ClassicShades_1 eyes_prop_ep ='Classic Shades' elif g > 830000: eyes = EyePatch_1 eyes_prop_ep ='Eye Patch' elif g > 780000: eyes = NerdGlasses_1 eyes_prop_ep ='Nerd Glasses' elif g > 730000: eyes = BigShades_1 eyes_prop_ep ='Big Shades' elif g > 700000: eyes = EyeMask_1 eyes_prop_ep ='Eye Mask' elif g > 650000: eyes = HornedRimGlasses_1 eyes_prop_ep ='Horned Rim Glasses' elif g > 600000: eyes = RegularShades_1 eyes_prop_ep ='Regular Shades' else: eyes=none eyes_prop_ep ='None' DARK_RIDER=[ [FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR1,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,BG1,FR1,SK1,SK1,SK1,FR1,BG1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,FR1,BG1,FR1,SK1,SK1,SK1,FR1,BG1,FR1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,FR1,FR1,FR1,SK1,FR1,FR1,SK1,SK1,SK1,FR1,FR1,SK1,FR1,FR1,FR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,FR1,EY1,SK1,SK1,SK1,FR1,EY1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,EY1,FR1,SK1,SK1,SK1,EY1,FR1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,FR1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,FR1,FR1,FR1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,FR1,FR1,FR1,FR1,FR1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,FR1,FR1,FR1,FR1,FR1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,FR1,FR1,FR1,FR1,FR1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,FR1,FR1,FR1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,FR1,FR1,FR1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,FR1,FR1,FR1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,FR1,FR1,FR1,FR1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR1,SK1,SK1,SK1,FR1,FR2,FR2,FR2,FR2,FR2,FR2] ] pixels = DARK_RIDER elif b > 1000: race_ep = 'Daemons' type_ep = 'None' hair_color_ep = 'None' haircut_ep = 'None' hair_prop_ep = 'None' eyes_prop_ep = 'None' blemishe_ep = 'None' eyes_color_ep = 'None' facial_hair_ep = 'None' mouth_prop_ep = 'None' mouth_ep = 'None' tooth_color_ep = 'None' nose_ep = 'None' neck_ep = 'None' ears_ep = 'None' skin_ep = 'None' ears = none hair = none hair_prop = none neck = none blemishes = none #tooth color mouth = none facial_hair = none rod = none mouth_prop = none #eye color eyes = none nose = none SK1 = (90,90,90) FR4 = (166,166,166) FR5 = (225,63,0) FR3 = (240,114,48) FR1 = nr FR2 = bl seed(b) c=randint(0,1000000) seed(c) d=randint(0,1000000) if d > 900000: neck = GoldChain_1 neck_ep = 'Gold Chain' elif d > 820000: neck = SilverChain_1 neck_ep = 'Silver Chain' elif d > 800000: neck = RING_1 neck_ep = 'Ring Onchain' else: neck = none neck_ep = 'None' seed(d) e=randint(0,1000000) if e > 900000: mouth_prop = CIGARETTE mouth_prop_ep = 'Cigarette' elif e > 840000: mouth_prop = PIPE mouth_prop_ep = 'Pipe' elif e > 800000: mouth_prop = VAPE mouth_prop_ep = 'Vape' else: mouth_prop = none mouth_prop_ep = 'None' seed(e) f=randint(0,1000000) if f > 500000: EY1 = bl eyes_color_ep = 'White' else: EY1 = nr eyes_color_ep = 'Black' seed(f) g=randint(0,1000000) if g > 970000: eyes = TD_1 eyes_prop_ep ='3D Glasses' elif g > 930000: eyes = VR_1 eyes_prop_ep ='VR' elif g > 880000: eyes = ClassicShades_1 eyes_prop_ep ='Classic Shades' elif g > 830000: eyes = EyePatch_1 eyes_prop_ep ='Eye Patch' elif g > 780000: eyes = NerdGlasses_1 eyes_prop_ep ='Nerd Glasses' elif g > 730000: eyes = BigShades_1 eyes_prop_ep ='Big Shades' elif g > 700000: eyes = EyeMask_1 eyes_prop_ep ='Eye Mask' elif g > 650000: eyes = RegularShades_1 eyes_prop_ep ='Regular Shades' else: eyes=none eyes_prop_ep ='None' seed(g) h=randint(0,1000000) if h > 750000: SK1 = (60,60,60) FR4 = (166,166,166) FR5 = (225,63,0) FR3 = (240,160,0) FR1 = nr FR2 = bl skin_ep = 'Dark Grey' hair_color_ep = 'Orange' elif h > 500000: SK1 = (30,30,30) FR4 = (166,166,166) FR5 = (225,63,0) FR3 = (240,160,0) FR1 = nr FR2 = bl skin_ep = 'Charcoal' hair_color_ep = 'Orange' elif h > 250000: SK1 = (60,60,60) FR4 = (166,166,166) FR5 = (225,63,0) FR3 = (240,114,48) FR1 = nr FR2 = bl skin_ep = 'Dark Grey' hair_color_ep = 'Burning Orange' else: SK1 = (30,30,30) FR4 = (166,166,166) FR5 = (225,63,0) FR3 = (240,114,48) FR1 = nr FR2 = bl skin_ep = 'Charcoal' hair_color_ep = 'Burning Orange' DEAMON=[ [FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,FR3,FR3,FR3,BG1,BG1,BG1,BG1,BG1,FR3,FR3,FR3,FR3,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,FR3,FR1,FR1,FR1,FR3,BG1,BG1,BG1,FR3,FR1,FR1,FR1,FR1,FR3,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,FR3,FR1,FR1,FR1,FR1,FR1,FR3,FR3,FR3,FR1,FR1,FR1,FR1,FR1,FR1,FR3,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,FR3,FR1,FR1,FR1,FR1,FR1,FR1,FR1,FR1,FR1,FR1,FR1,FR1,FR1,FR1,FR1,FR1,FR3,BG1,BG1,FR2], [FR2,BG1,FR3,FR1,FR1,FR1,FR1,FR1,FR1,FR1,FR1,FR1,FR1,FR1,FR1,FR1,FR1,FR1,FR1,FR1,FR1,FR3,BG1,FR2], [FR2,FR3,FR1,FR1,FR1,FR1,FR1,FR1,FR1,FR3,FR1,FR1,FR1,FR3,FR1,FR1,FR1,FR1,FR1,FR1,FR1,FR1,FR3,FR2], [FR2,FR3,FR1,FR1,FR1,FR1,FR1,FR3,FR3,SK1,FR3,FR1,FR3,SK1,FR3,FR3,FR1,FR1,FR1,FR1,FR1,FR1,FR3,FR2], [FR2,FR3,FR1,FR1,FR1,FR1,FR3,FR1,SK1,SK1,SK1,FR3,SK1,SK1,SK1,SK1,FR3,FR1,FR1,FR1,FR1,FR1,FR3,FR2], [FR2,FR3,FR1,FR1,FR3,FR3,BG1,FR1,FR4,FR4,SK1,SK1,SK1,FR4,FR4,SK1,SK1,FR3,FR3,FR3,FR1,FR1,FR3,FR2], [FR2,FR3,FR1,FR1,FR3,BG1,BG1,FR1,FR5,EY1,SK1,SK1,SK1,FR5,EY1,SK1,SK1,FR1,BG1,FR3,FR1,FR1,FR3,FR2], [FR2,FR3,FR1,FR1,FR3,BG1,BG1,FR1,SK1,SK1,FR3,SK1,FR3,SK1,SK1,SK1,SK1,FR1,BG1,FR3,FR1,FR1,FR3,FR2], [FR2,FR3,FR1,FR1,FR3,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,FR3,FR1,FR1,FR3,FR2], [FR2,BG1,FR3,FR1,FR1,FR3,BG1,FR1,SK1,FR3,FR3,FR3,FR3,FR3,SK1,SK1,SK1,FR1,FR3,FR1,FR1,FR3,BG1,FR2], [FR2,BG1,BG1,FR3,FR1,FR1,FR3,FR1,SK1,FR3,FR3,FR3,FR3,FR3,SK1,SK1,SK1,FR3,FR1,FR1,FR3,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,FR3,FR1,FR3,FR1,SK1,FR3,FR3,FR3,FR3,FR3,SK1,SK1,SK1,FR3,FR1,FR3,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,FR3,BG1,FR1,SK1,SK1,FR3,FR3,FR3,SK1,SK1,SK1,SK1,FR1,FR3,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,FR3,FR3,FR3,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,FR3,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,FR1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,FR1,FR1,FR1,FR1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR1,SK1,SK1,SK1,FR1,FR2,FR2,FR2,FR2,FR2,FR2] ] pixels = DEAMON else: race_ep = 'Dark Lord' type_ep = 'None' hair_color_ep = 'None' haircut_ep = 'None' hair_prop_ep = 'None' eyes_prop_ep = 'None' blemishe_ep = 'None' eyes_color_ep = 'None' facial_hair_ep = 'None' mouth_prop_ep = 'None' mouth_ep = 'None' tooth_color_ep = 'None' nose_ep = 'None' neck_ep = 'None' ears_ep = 'None' skin_ep = 'None' ears = none hair = none hair_prop = none neck = none blemishes = none #tooth color mouth = none facial_hair = none rod = none mouth_prop = none #eye color eyes = none nose = none SK1 = (113,113,113) SK2 = (160,160,160) SK3 = (223,223,223) skin_ep = 'None' seed(b) c=randint(0,1000000) if c > 750000: ears = EARS_0 ears_ep = 'Earring' else: ears = none ears_ep = 'None' seed(c) d=randint(0,1000000) if d > 700000: neck = GoldChain_1 neck_ep = 'Gold Chain' elif d > 400000: neck = SilverChain_1 neck_ep = 'Silver Chain' elif d > 100000: neck = RING_1 neck_ep = 'Ring Onchain' else: neck = none neck_ep = 'None' seed(d) e=randint(0,1000000) if e > 800000: mouth_prop = CIGARETTE mouth_prop_ep = 'Cigarette' elif e > 600000: mouth_prop = PIPE mouth_prop_ep = 'Pipe' elif e > 400000: mouth_prop = VAPE mouth_prop_ep = 'Vape' else: mouth_prop = none mouth_prop_ep = 'None' seed(e) f=randint(0,1000000) if f > 400000: EY1 = (255,255,255) eyes_color_ep = 'White' elif f > 300000: EY1 = (214,92,26) eyes_color_ep = "Orange" elif f > 200000: EY1 = (176,61,133) eyes_color_ep = "Purple" elif f > 100000: EY1 = (255,255,0) eyes_color_ep = 'Yellow' else: EY1 = (255,0,0) eyes_color_ep = 'Red' DARK_LORD=[ [FR2,FR2,FR2,FR2,FR2,FR2,FR1,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR1,FR2,FR2,FR2,FR2,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,FR1,BG1,BG1,BG1,BG1,BG1,FR1,BG1,BG1,BG1,BG1,BG1,FR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,FR1,FR1,BG1,BG1,BG1,BG1,FR1,BG1,BG1,BG1,BG1,FR1,FR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,FR1,FR1,BG1,FR1,BG1,BG1,FR1,BG1,BG1,FR1,BG1,FR1,FR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,FR1,FR1,BG1,FR1,BG1,BG1,FR1,BG1,BG1,FR1,BG1,FR1,FR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,FR1,FR1,BG1,FR1,FR1,BG1,FR1,BG1,FR1,FR1,BG1,FR1,FR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,FR1,FR1,FR1,FR1,FR1,FR1,FR1,FR1,FR1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,FR1,FR1,FR1,FR1,FR1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,FR1,FR1,FR1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,FR1,EY1,SK1,SK1,FR1,SK1,FR1,EY1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,EY1,FR1,SK1,SK1,FR1,SK1,EY1,FR1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,SK3,FR1,SK1,SK1,SK1,SK1,FR1,SK1,SK1,SK1,SK1,FR1,SK3,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,SK3,FR1,SK2,SK1,SK1,SK1,FR1,SK1,SK1,SK1,SK2,FR1,SK3,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,SK3,SK1,SK2,SK1,SK1,FR1,SK1,SK1,SK2,SK1,SK3,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK3,SK1,SK2,SK1,FR1,SK1,SK2,SK1,SK3,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK3,SK1,SK2,FR1,SK2,SK1,SK3,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK3,SK1,SK2,FR1,SK2,SK1,SK3,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK3,SK1,SK2,FR1,SK2,SK1,SK3,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK3,SK1,SK2,SK1,FR1,SK1,SK2,SK1,SK3,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,SK3,FR1,SK1,SK2,SK1,FR1,SK1,SK2,SK1,SK1,SK3,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,SK2,SK1,SK1,FR1,SK1,SK1,SK2,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,SK2,BG1,FR1,FR1,FR1,FR1,FR1,SK1,SK2,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR1,SK1,SK1,SK1,FR1,FR2,FR2,FR2,FR2,FR2,FR2] ] pixels = DARK_LORD newtraitcombo = createCombo() traits.append(newtraitcombo) FL01 = len(filterlist1) TR01 = len(traits) RESU1 = TR01 - FL01 print(RESU1) print(FL01) ######################################### def createCombo2(): trait = {} #trait["Name"] = name_ep trait["Race"] = race_ep trait["Type"] = type_ep trait["Skin Tone"] = skin_ep trait["Ears"] = ears_ep trait["Hair Color"] = hair_color_ep trait["Haircut"] = haircut_ep trait["Hair Prop"] = hair_prop_ep trait["Neck"] = neck_ep trait["Facial Hair"] = facial_hair_ep trait["Mouth Prop"] = mouth_prop_ep trait["Eyes Color"] = eyes_color_ep trait["Eyes Prop"] = eyes_prop_ep trait["Nose"] = nose_ep trait["Blemishe"] = blemishe_ep trait["Tooth Color"] = tooth_color_ep trait["Mouth"] = mouth_ep if trait in traits2: filterlist2.append(x) else: return trait traits2 = [] list2 = range(11984) #To avoid duplicates The first loop was just here for fill the filterlist1 with all the duplicates midpunks #Allways put the same number in listx and increase the number until you get the desired number of midpunks #Alaways use the same seed "a" in both loops, Here we need 11984 "loops" to get 10K unique midpunks filtered=[item for item in list2 if item not in filterlist1] jpeg = -1 for x in filtered: a = 13080698 jpeg +=1 seed(x+a ) titi=0 titin=0 titine=0 toto=0 tata=0 tutu=0 tyty=0 tete=0 toutou=0 toctoc=0 tactac=0 tuctuc=0 tonton=0 tantan=0 neyo=0 neye=0 neya=0 neyh=0 neyu=0 neyw=0 b = randint(0,1000000) if b > 950000: race_ep = 'Halflings' type_ep = 'Male' hair_color_ep = 'None' haircut_ep = 'None' hair_prop_ep = 'None' eyes_prop_ep = 'None' blemishe_ep = 'None' eyes_color_ep = 'None' facial_hair_ep = 'None' mouth_prop_ep = 'None' mouth_ep = 'None' tooth_color_ep = 'None' nose_ep = 'None' neck_ep = 'None' ears_ep = 'None' skin_ep = 'None' ears = none hair = none hair_prop = none neck = none blemishes = none #tooth color mouth = none facial_hair = none rod = none mouth_prop = none #eye color eyes = none nose = none seed(b) c=randint(0,1000000) if c > 800000: SK1 = (234,217,217) SC1 = (165,141,141) EY1 = (201,178,178) SK2 = (255,255,255) HRG3 = (220,222,234) HRG2 = (183,179,191) HRG4 = (203,200,212) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (226,187,185) MO1 = EY1 SCR1 = EY1 skin_ep = 'Albino' elif c > 500000: SK1 = (219,177,128) SC1 = (166,110,44) EY1 = (210,157,96) SK2 = (235,203,166) HRG3 = (213,200,183) HRG2 = (184,163,135) HRG4 = (209,189,164) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (215,154,104) MO1 = EY1 SCR1 = EY1 skin_ep = 'Light' elif c > 200000: SK1 = (174,139,97) SC1 = (134,88,30) EY1 = (167,124,71) SK2 = (178,138,93) HRG3 = (188,179,165) HRG2 = (166,150,128) HRG4 = (184,171,151) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (191,105,71) MO1 = EY1 SCR1 = EY1 skin_ep = 'Mid' else: SK1 = (113,63,29) SC1 = (86,39,10) EY1 = (114,55,17) SK2 = (146,79,35) HRG3 = (155,135,127) HRG2 = (139,121,111) HRG4 = (156,131,115) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (142,36,2) MO1 = EY1 SCR1 = EY1 skin_ep = 'Dark' seed(c) d=randint(0,1000000) if d > 750000: ears = EARS_2 ears_ep = 'Earring' else: ears = none ears_ep = 'None' seed(d) e=randint(0,1000000) HR0 = (255,193,0) HR2 = (251,114,7) HR3 = (210,154,0) HR4 = (166,165,165) HR5 = (165,108,0) HR6 = (111,0,48) HR7 = (85,57,23) if e > 875000: HR1 = HR0 hair_color_ep ='Blond' elif e > 750000: HR1 = nr hair_color_ep='Black' elif e > 625000: HR1 = HR2 hair_color_ep ='Orange' elif e > 500000: HR1 = HR3 hair_color_ep ='Fair' elif e > 375000: HR1 = HR4 hair_color_ep ='Grey' elif e > 250000: HR1 = HR5 hair_color_ep ='Ginger' elif e > 125000: HR1 = HR6 hair_color_ep ='Black Rose' else: HR1 = HR7 hair_color_ep ='Brown' HALFIN_HR1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,HR1,0,HR1,HR1,HR1,0,HR1,HR1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,HR1,0,0,0,0,0], [0,0,0,0,0,HR1,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0], [0,0,0,0,0,HR1,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,HR1,0,0,0], [0,0,0,0,0,0,HR1,HR1,HR1,0,0,HR1,0,HR1,0,0,HR1,HR1,HR1,HR1,0,HR1,0,0], [0,0,0,0,0,HR1,HR1,HR1,HR1,0,HR1,HR1,0,0,HR1,0,HR1,HR1,HR1,HR1,HR1,0,0,0], [0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0], [0,0,0,0,HR1,0,HR1,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0], [0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0], [0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0], [0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0], [0,0,0,0,HR1,0,HR1,0,0,0,0,0,0,0,0,0,0,0,HR1,0,HR1,HR1,0,0], [0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] HALFIN_HR2=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,HR1,0,HR1,HR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,HR1,0,HR1,HR1,HR1,0,HR1,HR1,0,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,HR1,0,0,0,0,0], [0,0,0,0,0,HR1,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0], [0,0,0,0,0,HR1,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,HR1,0,0,0], [0,0,0,0,HR1,0,HR1,HR1,HR1,0,0,HR1,0,HR1,0,0,HR1,HR1,HR1,HR1,0,HR1,0,0], [0,0,0,0,0,HR1,HR1,HR1,HR1,0,HR1,HR1,0,0,HR1,0,HR1,HR1,HR1,HR1,HR1,0,0,0], [0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0], [0,0,0,0,HR1,0,HR1,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0], [0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0], [0,0,0,0,HR1,0,HR1,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,HR1,HR1,0], [0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,0], [0,0,0,0,HR1,0,HR1,0,0,0,0,0,0,0,0,0,0,0,HR1,0,HR1,HR1,0,0], [0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,0,HR1,HR1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,0,HR1,HR1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,HR1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] HALFIN_HR3=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,HR1,HR1,0,HR1,0,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,HR1,HR1,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,HR1,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0], [0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,0,HR1,HR1,0,0,0], [0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] HALFIN_HR4=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,HR1,0,HR1,0,HR1,0,0,HR1,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,HR1,HR1,HR1,0,0,HR1,0,0,HR1,0,0,HR1,HR1,HR1,HR1,0,0,0,0], [0,0,0,0,0,HR1,HR1,0,0,0,HR1,0,0,0,HR1,HR1,0,0,HR1,HR1,0,0,0,0], [0,0,0,0,0,HR1,HR1,0,0,0,0,HR1,0,0,0,0,0,0,0,HR1,0,0,0,0], [0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,0,HR1,0,0,0,0], [0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,0,HR1,0,0,0,0], [0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0], [0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0], [0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0], [0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,0,0,0,HR1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] HALFIN_HR5=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,0,0,0,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,0,0,0,HR1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] seed(e) f=randint(0,1000000) if f > 800000: hair = HALFIN_HR1 haircut_ep ='Wild Hair' elif f > 600000: hair = HALFIN_HR2 haircut_ep ='Perm Hair' elif f > 400000: hair = HALFIN_HR3 haircut_ep ='Bedhead' elif f > 200000: hair = HALFIN_HR4 haircut_ep ='Hockey Hair' else: hair = HALFIN_HR5 haircut_ep ='Bald' seed(f) g=randint(0,1000000) if g > 970000: hair_prop = POLICE_6 hair_prop_ep = 'Police' elif g > 950000: hair_prop = TOPHAT_6 hair_prop_ep = 'Top Hat' elif e > 900000: hair_prop = HEADBAND_6 hair_prop_ep = 'Headband' elif e > 850000: hair_prop = FORCAP_8 hair_prop_ep = 'Cap Forward' elif e > 830000: hair_prop = COWBOY_8 hair_prop_ep = 'Cowboy Hat' elif e > 790000: hair_prop = CAP_8 hair_prop_ep = 'Cap' else: hair_prop = none hair_prop_ep = 'None' seed(g) h=randint(0,1000000) if h > 900000: neck = GoldChain_1 neck_ep = 'Gold Chain' elif h > 820000: neck = SilverChain_1 neck_ep = 'Silver Chain' elif h > 800000: neck = RING_1 neck_ep = 'Ring Onchain' elif h > 780000: neck = BROCHE_1 neck_ep = 'Brooch' else: neck = none neck_ep = 'None' seed(h) i=randint(0,1000000) if i > 900000: mouth_prop = CIGARETTE mouth_prop_ep = 'Cigarette' elif i > 880000: mouth_prop = MASK_1 facial_hair = none mouth_prop_ep = 'Medical Mask' elif i > 820000: mouth_prop = PIPE mouth_prop_ep = 'Pipe' elif i > 780000: mouth_prop = VAPE mouth_prop_ep = 'Vape' else: mouth_prop = none mouth_prop_ep = 'None' seed(i) j=randint(0,1000000) if j > 970000: eyes = TD_6 eyes_prop_ep ='3D Glasses' elif j > 930000: eyes = VR_6 eyes_prop_ep ='VR' elif j > 880000: eyes = ClassicShades_6 eyes_prop_ep ='Classic Shades' elif j >830000: eyes = SmallShades_6 eyes_prop_ep ='Small Shades' elif j > 780000: eyes = EyePatch_6 eyes_prop_ep ='Eye Patch' elif j > 730000: eyes = NerdGlasses_6 eyes_prop_ep ='Nerd Glasses' elif j > 680000: eyes = BigShades_6 eyes_prop_ep ='Big Shades' elif j > 650000: eyes = EyeMask_6 eyes_prop_ep ='Eye Mask' elif j > 600000: eyes = HornedRimGlasses_6 eyes_prop_ep ='Horned Rim Glasses' elif j > 550000: eyes = RegularShades_6 eyes_prop_ep ='Regular Shades' else: eyes=none eyes_prop_ep ='None' seed(j) k=randint(0,1000000) if k > 975000: mouth = SMILE mouth_ep = 'Smile' elif k > 950000: mouth = FROWN mouth_ep = 'Frown' else: mouth = none mouth_ep = 'None' MOLE=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,MO1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] SCARE_2=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] SCARE_2=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] ROSY_1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,RC1,0,0,0,0,RC1,RC1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,RC1,0,0,0,0,0,RC1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] ROSY_2=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,RC1,RC1,0,0,0,RC1,RC1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] seed(k) l=randint(0,1000000) if l > 970000: blemishes = ROSY_1 blemishe_ep = 'Rosy Cheeks' elif l > 900000: blemishes = MOLE blemishe_ep = 'Mole' elif l > 870000: blemishes = SCARE_2 blemishe_ep = 'Scare' else: blemishes = none blemishe_ep = 'None' HALFIN=[ [FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,FR1,FR1,FR1,FR1,FR1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SC1,SC1,SK1,SK1,SK1,SC1,SC1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,EY1,FR1,SK1,SK1,SK1,EY1,FR1,SK1,SK1,FR1,FR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,FR1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,FR1,FR1,FR1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,FR1,FR1,FR1,FR1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR1,SK1,SK1,SK1,FR1,FR2,FR2,FR2,FR2,FR2,FR2] ] pixels = HALFIN elif b > 900000: race_ep = 'Halflings' type_ep = 'Female' hair_color_ep = 'None' haircut_ep = 'None' hair_prop_ep = 'None' eyes_prop_ep = 'None' blemishe_ep = 'None' eyes_color_ep = 'None' facial_hair_ep = 'None' mouth_prop_ep = 'None' mouth_ep = 'None' tooth_color_ep = 'None' nose_ep = 'None' neck_ep = 'None' ears_ep = 'None' skin_ep = 'None' ears = none hair = none hair_prop = none neck = none blemishes = none #tooth color mouth = none facial_hair = none rod = none mouth_prop = none #eye color eyes = none nose = none seed(b) c=randint(0,1000000) if c > 800000: SK1 = (234,217,217) SC1 = (165,141,141) EY1 = (201,178,178) SK2 = (255,255,255) HRG3 = (220,222,234) HRG2 = (183,179,191) HRG4 = (203,200,212) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (226,187,185) LI1 = (113,28,17) MO1 = EY1 SCR1 = EY1 skin_ep = 'Albino' elif c > 500000: SK1 = (219,177,128) SC1 = (166,110,44) EY1 = (210,157,96) SK2 = (235,203,166) HRG3 = (213,200,183) HRG2 = (184,163,135) HRG4 = (209,189,164) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (215,154,104) LI1 = (113,28,17) MO1 = EY1 SCR1 = EY1 skin_ep = 'Light' elif c > 200000: SK1 = (174,139,97) SC1 = (134,88,30) EY1 = (167,124,71) SK2 = (178,138,93) HRG3 = (188,179,165) HRG2 = (166,150,128) HRG4 = (184,171,151) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (191,105,71) LI1 = (95,29,13) MO1 = EY1 SCR1 = EY1 skin_ep = 'Mid' else: SK1 = (113,63,29) SC1 = (86,39,10) EY1 = (114,55,17) SK2 = (146,79,35) HRG3 = (155,135,127) HRG2 = (139,121,111) HRG4 = (156,131,115) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (142,36,2) LI1 = (74,18,8) MO1 = EY1 SCR1 = EY1 skin_ep = 'Dark' seed(c) d=randint(0,1000000) if d > 750000: ears = EARS_3 ears_ep = 'Earring' else: ears = none ears_ep = 'None' seed(d) e=randint(0,1000000) HR0 = (255,193,0) HR2 = (251,114,7) HR3 = (210,154,0) HR4 = (166,165,165) HR5 = (165,108,0) HR6 = (111,0,48) HR7 = (85,57,23) red = (255,0,0) if e > 875000: HR1 = HR0 HR2 = red hair_color_ep ='Blonde' elif e > 750000: HR1 = nr HR2 = red hair_color_ep ='Black' elif e > 625000: HR1 = HR2 HR2 = red hair_color_ep ='Orange' elif e > 500000: HR1 = HR3 HR2 = red hair_color_ep ='Fair' elif e > 375000: HR1 = HR4 HR2 = red hair_color_ep ='Grey' elif e > 250000: HR1 = HR5 HR2 = red hair_color_ep ='Ginger' elif e > 125000: HR1 = HR6 HR2 = red hair_color_ep ='Black Rose' else: HR1 = HR7 HR2 = red hair_color_ep ='Brown' HALFINE_HR1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,0,0,HR1,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0], [0,0,0,0,0,HR1,0,0,HR1,HR1,0,HR1,HR1,HR1,0,HR1,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,HR1,0,HR1,HR1,HR1,HR1,HR1,0,HR1,0,HR1,0,HR1,0,HR1,0,0,0,0,0], [0,0,0,HR1,HR1,HR1,HR1,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0], [0,0,0,0,HR1,0,HR1,HR1,HR1,HR1,0,HR1,0,HR1,0,HR1,HR1,0,HR1,HR1,0,0,0,0], [0,0,0,0,HR1,HR1,HR1,HR1,HR1,0,HR1,0,0,0,HR1,HR1,0,HR1,HR1,HR1,HR1,0,0,0], [0,0,0,HR1,0,HR1,HR1,HR1,HR1,0,0,0,0,0,0,HR1,0,HR1,HR1,HR1,0,0,0,0], [0,0,HR1,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0], [0,0,HR1,HR1,HR1,0,HR1,0,0,0,0,0,0,0,0,0,0,0,HR1,0,HR1,0,0,0], [0,0,0,HR1,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0], [0,0,HR1,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0], [0,0,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,HR1,0,0,0], [0,0,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,0,0], [0,0,HR1,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,HR1,0,0], [0,HR1,0,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,HR1,HR1,0,0], [0,HR1,HR1,0,HR1,0,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,0,0,0], [0,0,0,HR1,0,HR1,0,HR1,0,0,0,0,0,0,0,0,0,HR1,0,HR1,0,HR1,0,0], [0,0,0,0,HR1,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,HR1,0,HR1,0,0,0], [0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] HALFINE_HR2=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,HR1,0,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,0,HR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0], [0,0,0,0,0,HR1,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,HR1,HR1,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,HR1,0,0,HR1,0,HR1,0,HR1,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,HR1,HR1,HR1,0,0,0,HR1,0,0,0,HR1,HR1,HR1,0,HR1,0,0,0,0], [0,0,0,0,HR1,0,HR1,0,0,0,0,HR1,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,HR1,HR1,0,0,0,HR1,0,0,0,0,0,0,HR1,0,HR1,0,0,0,0], [0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,0,0,0], [0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] HALFINE_HR3=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,HR1,HR1,HR1,0,0,HR1,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,HR1,0,0,0,0,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] HALFINE_HR4=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,HR1,HR1,HR1,HR1,0,0,0,0,0,0,HR1,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,HR1,0,0,0,0,0], [0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,HR1,0,0,0,0,0], [0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,HR1,0,0,0,0,0], [0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0], [0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0], [0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0], [0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0], [0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,0,0,0,0], [0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] HALFINE_HR5=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR2,HR1,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR2,0,HR1,HR1,HR1,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,HR1,HR1,HR1,HR1,0,0], [0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,HR1,HR1,HR1,0,HR1,HR1,HR1,HR1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,0,0,HR1,HR1,HR1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] MOLE_2=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,MO1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] SCARE_2=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] ROSY_2=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,RC1,RC1,0,0,0,RC1,RC1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] seed(e) f=randint(0,1000000) if f > 800000: hair = HALFINE_HR1 haircut_ep ='Perm Hair' elif f > 600000: hair = HALFINE_HR2 haircut_ep ='Wild Hair' elif f > 400000: hair = HALFINE_HR3 haircut_ep ='Wedge Hair' elif f > 200000: hair = HALFINE_HR4 haircut_ep ='Feathered Hair' else: hair = HALFINE_HR5 haircut_ep ='Ponytail' toto = 99 seed(f) g=randint(0,1000000) if g > 990000: hair_prop = TIARA_3 hair_prop_ep = 'Tiara' titine = 99 elif g > 940000: hair_prop = Flower hair_prop_ep = 'Flower' elif g > 900000 and toto != 99: hair_prop = Hob_Hat hair_prop_ep = 'Shire Hat' elif g > 860000: hair_prop = HEADBAND_4 hair_prop_ep = 'Headband' elif g > 850000: hair = none hair_prop = PILOT_2 hair_prop_ep = 'Pilot Helmet' titine = 99 else: hair_prop = none hair_prop_ep = 'None' seed(g) h=randint(0,1000000) if h > 900000: EY1 = (110,152,77) SC1 = (92,133,57) eyes_color_ep = 'Green Eye Shadow' elif h > 800000: EY1 = (93,121,117) SC1 = (80,106,101) eyes_color_ep = 'Blue Eye Shadow' elif h > 700000: EY1 = (176,61,133) SC1 = (164,55,117) eyes_color_ep = 'Purple Eye Shadow' elif h > 600000: EY1 = (214,92,26) SC1 = (194,79,17) eyes_color_ep = 'Orange Eye Shadow' else: eyes_color_ep = 'None' neya = 99 seed(h) i=randint(0,1000000) if i > 900000: mouth_prop = CIGARETTE mouth_prop_ep = 'Cigarette' elif i > 880000: mouth_prop = MASK_2 mouth_prop_ep = 'Medical Mask' tactac=99 elif i > 820000: mouth_prop = PIPE mouth_prop_ep = 'Pipe' elif i > 780000: mouth_prop = VAPE mouth_prop_ep = 'Vape' else: mouth_prop = none mouth_prop_ep = 'None' seed(i) j=randint(0,1000000) if j > 970000: eyes = TD_3 eyes_prop_ep ='3D Glasses' elif j > 930000: eyes = VR_3 eyes_prop_ep ='VR' elif j > 880000: eyes = ClassicShades_4 eyes_prop_ep ='Classic Shades' elif j > 830000: eyes = EyePatch_4 eyes_prop_ep ='Eye Patch' neyh = 99 elif j > 780000: eyes = NerdGlasses_4 eyes_prop_ep ='Nerd Glasses' elif j > 730000: eyes = BigShades_4 eyes_prop_ep ='Big Shades' elif j > 700000: eyes = EyeMask_4 eyes_prop_ep ='Eye Mask' neyh = 99 elif j > 650000: eyes = HornedRimGlasses_4 eyes_prop_ep ='Horned Rim Glasses' elif j > 600000: eyes = RegularShades_4 eyes_prop_ep ='Regular Shades' elif j > 590000: eyes = GOGOLES_2 eyes_prop_ep ='Welding Goggles' hair_prop = none hair_prop_ep = 'None' toctoc = 99 else: eyes=none eyes_prop_ep ='None' neyh = 99 if titine == 99 and toctoc !=99: eyes = none eyes_prop_ep ='None' if neya != 99 and neyh !=99: eyes = none eyes_prop_ep ='None' seed(j) k=randint(0,1000000) if k > 975000: nose = NOSE_2 nose_ep = 'Clown Nose' tuctuc = 99 else: nose = none nose_ep = 'None' if tactac == 99 and tuctuc == 99: mouthprop = none mouth_prop_ep = 'None' seed(k) l=randint(0,1000000) if l > 970000: blemishes = ROSY_2 blemishe_ep = 'Rosy Cheeks' elif l > 900000: blemishes = MOLE_2 blemishe_ep = 'Mole' elif l > 870000: blemishes = SCARE_2 blemishe_ep = 'Scare' else: blemishes = none blemishe_ep = 'None' seed(l) m=randint(0,1000000) if m > 930000: LI1 = nr mouth_ep = 'Black Lipstick' elif m > 860000: LI1 = (255,0,0) mouth_ep = 'Hot Lipstick' elif m > 790000: LI1 = (208,82,203) mouth_ep = 'Purple Lipstick' elif m > 720000: LI1 = (214,92,26) mouth_ep = 'Orange Lipstick' else: mouth = none mouth_ep = 'None' seed(m) n=randint(0,1000000) if n > 900000: neck = GoldChain_3 neck_ep = 'Gold Chain' elif n > 820000: neck = SilverChain_3 neck_ep = 'Silver Chain' elif n > 800000: neck = RING_3 neck_ep = 'Ring Onchain' else: neck = none neck_ep = 'None' HALFINE=[ [FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,FR1,FR1,FR1,FR1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SC1,SC1,SK1,SK1,SK1,SC1,SC1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,EY1,FR1,SK1,SK1,SK1,EY1,FR1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,FR1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,LI1,LI1,LI1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,FR1,FR1,FR1,FR1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR1,SK1,SK1,SK1,FR1,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2] ] pixels = HALFINE elif b > 750000: race_ep = 'Men' type_ep = 'Male' hair_color_ep = 'None' haircut_ep = 'None' hair_prop_ep = 'None' eyes_prop_ep = 'None' blemishe_ep = 'None' eyes_color_ep = 'None' facial_hair_ep = 'None' mouth_prop_ep = 'None' mouth_ep = 'None' tooth_color_ep = 'None' nose_ep = 'None' neck_ep = 'None' ears_ep = 'None' skin_ep = 'None' ears = none hair = none hair_prop = none neck = none blemishes = none mouth = none facial_hair = none rod = none mouth_prop = none #eye color eyes = none nose = none BE6 = (40,27,9) seed(b) c=randint(0,1000000) if c > 800000: SK1 = (234,217,217) SC1 = (165,141,141) EY1 = (201,178,178) SK2 = (255,255,255) HRG3 = (220,222,234) HRG2 = (183,179,191) HRG4 = (203,200,212) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (226,187,185) BE5 = (163,151,131) MO1 = EY1 SCR1 = EY1 skin_ep = 'Albino' elif c > 500000: SK1 = (219,177,128) SC1 = (166,110,44) EY1 = (210,157,96) SK2 = (235,203,166) HRG3 = (213,200,183) HRG2 = (184,163,135) HRG4 = (209,189,164) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (215,154,104) BE5 = (153,124,89) MO1 = EY1 SCR1 = EY1 skin_ep = 'Light' elif c > 200000: SK1 = (174,139,97) SC1 = (134,88,30) EY1 = (167,124,71) SK2 = (178,138,93) HRG3 = (188,179,165) HRG2 = (166,150,128) HRG4 = (184,171,151) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (191,105,71) BE5 = (121,97,68) MO1 = EY1 SCR1 = EY1 skin_ep = 'Mid' else: SK1 = (113,63,29) SC1 = (86,39,10) EY1 = (114,55,17) SK2 = (146,79,35) HRG3 = (155,135,127) HRG2 = (139,121,111) HRG4 = (156,131,115) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (142,36,2) BE5 = (79,44,20) MO1 = EY1 SCR1 = EY1 skin_ep = 'Dark' seed(c) d=randint(0,1000000) if d > 750000: ears = EARS_2 ears_ep = 'Earring' else: ears = none ears_ep = 'None' seed(d) e=randint(0,1000000) HR0 = (255,193,0) HR2 = (251,114,7) HR3 = (210,154,0) HR4 = (166,165,165) HR5 = (165,108,0) HR6 = (111,0,48) HR7 = (85,57,23) red = (255,0,0) if e > 875000: HR1 = HR0 HR2 = red hair_color_ep ='Blonde' elif e > 750000: HR1 = nr HR2 = red hair_color_ep ='Black' elif e > 625000: HR1 = HR2 HR2 = red hair_color_ep ='Orange' elif e > 500000: HR1 = HR3 HR2 = red hair_color_ep ='Fair' elif e > 375000: HR1 = HR4 HR2 = red hair_color_ep ='Grey' elif e > 250000: HR1 = HR5 HR2 = red hair_color_ep ='Ginger' elif e > 125000: HR1 = HR6 HR2 = red hair_color_ep ='Black Rose' else: HR1 = HR7 HR2 = red hair_color_ep ='Brown' MAN_HR1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,HR1,HR1,0,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,HR1,HR1,0,HR1,0,HR1,0,HR1,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,HR1,0,0,HR1,0,0,HR1,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,HR1,0,0,0,HR1,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,HR1,0,HR1,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,HR1,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,HR1,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0], [0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0], [0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0], [0,0,0,0,HR1,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,HR1,0,0], [0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,0,0,0,0,HR1,0,0,0,0], [0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,0,0,0,0,HR1,0,0,0,0], [0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] MAN_HR2=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,HR1,HR1,HR1,HR1,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0], [0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0], [0,0,0,0,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,0,0,0], [0,0,0,0,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,0,0], [0,0,0,0,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,0,0], [0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,0,0], [0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,0,0], [0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,0,0,0], [0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] MAN_HR3=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,HR1,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,0,0,0,HR1,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,HR1,0,0,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,HR1,0,HR1,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0], [0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0], [0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0], [0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0], [0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0], [0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0], [0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0], [0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,0,0], [0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] MAN_HR4=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,HR1,0,HR1,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,HR1,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,HR1,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0], [0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0], [0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] MAN_HR5=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,0,HR1,0,0,0,0,HR1,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,0,0,HR1,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,0,0,0,HR1,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] seed(e) f=randint(0,1000000) if f > 800000: hair = MAN_HR1 haircut_ep = 'Grunge Hair' elif f > 600000: hair = MAN_HR2 haircut_ep = 'Prince Hair' elif f > 400000: hair = MAN_HR3 haircut_ep = 'King Hair' elif f > 200000: hair = MAN_HR4 haircut_ep = 'Bald' else: hair = MAN_HR5 haircut_ep = 'Straight Hair' seed(f) g=randint(0,1000000) if g > 960000: hair_prop = CAP_2 hair_prop_ep = 'Cap' elif g > 940000: hair_prop = COWBOY_2 hair_prop_ep = 'Cowboy Hat' elif g > 930000: hair_prop = TOPHAT_2 hair_prop_ep = 'Top Hat' elif g > 910000: hair_prop = Gondor_Crown hair_prop_ep = 'Men Crown' elif g > 870000: hair_prop = KNITTED_2 hair_prop_ep = 'Knitted Cap' elif g > 820000: hair_prop = HEADBAND_2 hair_prop_ep = 'Headband' elif g > 790000: hair_prop = FORCAP_2 hair_prop_ep = 'Cap Forward' elif g > 760000: hair_prop = BANDANA_2 hair_prop_ep = 'Bandana' elif g > 740000: hair_prop = FEDORA_2 hair_prop_ep = 'Fedora' elif g > 710000: hair_prop = POLICE_2 hair_prop_ep = 'Police' elif g > 700000: hair_prop = BEANI_2 hair_prop_ep = 'Beanie' else: hair_prop = none hair_prop_ep = 'None' seed(g) h=randint(0,1000000) if h > 900000: neck = GoldChain_1 neck_ep = 'Gold Chain' elif h > 820000: neck = SilverChain_1 neck_ep = 'Silver Chain' elif h > 800000: neck = RING_1 neck_ep = 'Ring Onchain' elif h > 780000: neck = BROCHE_1 neck_ep = 'Brooch' else: neck = none neck_ep = 'None' ShadowBeard=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,BE5,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,BE5,0,0,0,0,0,0,BE5,BE5,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,BE5,BE5,BE5,BE5,BE5,BE5,BE5,BE5,BE5,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,BE5,BE5,BE6,BE6,BE6,BE5,BE5,BE5,BE5,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,BE5,BE5,BE5,BE5,BE5,BE5,BE5,BE5,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,BE5,BE5,BE5,BE5,BE5,BE5,BE5,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,BE5,BE5,BE5,BE5,BE5,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] seed(h) i=randint(0,1000000) if i > 950000: facial_hair = BigBeard facial_hair_ep = 'Big Beard' elif i >900000: facial_hair = Muttonchops facial_hair_ep = 'Muttonchops' elif i > 850000: facial_hair = Mustache facial_hair_ep = 'Mustache' elif i > 890000: facial_hair = Handlebars facial_hair_ep = 'Handlebars' elif i > 750000: facial_hair = FrontBeardDark facial_hair_ep = 'Front Beard Dark' elif i > 700000: facial_hair = FrontBeard facial_hair_ep = 'Front Beard' elif i > 650000: facial_hair = NormalBeard facial_hair_ep = 'Normal Beard' elif i > 600000: facial_hair = NormalBeardBlack facial_hair_ep = 'Normal Beard Black' elif i > 550000: facial_hair = LuxuriousBeard facial_hair_ep = 'Luxurious Beard' elif i > 500000: facial_hair = Goat facial_hair_ep = 'Goat' elif i > 450000: facial_hair = Chinstrap facial_hair_ep = 'Chinstrap' elif i > 400000: facial_hair = ShadowBeard facial_hair_ep = 'Shadow Beard' else: facial_hair = none facial_hair_ep = 'None' seed(i) j=randint(0,1000000) if j > 900000: mouth_prop = CIGARETTE mouth_prop_ep = 'Cigarette' elif j > 880000: mouth_prop = MASK_1 mouth_prop_ep = 'Medical Mask' facial_hair = none elif j > 820000: mouth_prop = PIPE mouth_prop_ep = 'Pipe' elif j > 780000: mouth_prop = VAPE mouth_prop_ep = 'Vape' else: mouth_prop = none mouth_prop_ep = 'None' # seed(h) # i=randint(0,1000000) # if i > 300000: # EY1 = (255,255,255) # elif i > 50000: # EY1 = (0,0,255) # else: # EY1 = (0,255,0) seed(j) k=randint(0,1000000) if k > 970000: eyes = TD_2 eyes_prop_ep ='3D Glasses' elif k > 930000: eyes = VR_2 eyes_prop_ep ='VR' elif k > 880000: eyes = ClassicShades_2 eyes_prop_ep ='Classic Shades' elif k > 830000: eyes = SmallShades_2 eyes_prop_ep ='Small Shades' hair = MAN_HR3 haircut_ep = 'King Hair' elif k > 780000: eyes = EyePatch_2 eyes_prop_ep ='Eye Patch' elif k > 730000: eyes = NerdGlasses_2 eyes_prop_ep ='Nerd Glasses' elif k > 680000: eyes = BigShades_2 eyes_prop_ep ='Big Shades' elif k > 650000: eyes = EyeMask_2 eyes_prop_ep ='Eye Mask' elif k > 600000: eyes = HornedRimGlasses_2 eyes_prop_ep ='Horned Rim Glasses' elif k > 550000: eyes = RegularShades_2 eyes_prop_ep ='Regular Shades' else: eyes=none eyes_prop_ep ='None' seed(k) l=randint(0,1000000) if l > 975000: nose = NOSE_1 nose_ep = 'Clown Nose' else: nose = none nose_ep = 'None' seed(l) m=randint(0,1000000) if m > 975000: mouth = SMILE mouth_ep = 'Smile' elif m > 950000: mouth = FROWN mouth_ep = 'Frown' else: mouth = none mouth_ep = 'None' MOLE=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,MO1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] SCARE_1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] ROSY_1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,RC1,0,0,0,0,RC1,RC1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,RC1,0,0,0,0,0,RC1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] seed(m) n=randint(0,1000000) if n > 970000: blemishes = ROSY_1 blemishe_ep = 'Rosy Cheeks' elif n > 900000: blemishes = MOLE blemishe_ep = 'Mole' elif n > 870000: blemishes = SCARE_1 blemishe_ep = 'Scare' else: blemishes = none blemishe_ep = 'None' MAN=[ [FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,FR1,FR1,FR1,FR1,FR1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SC1,SC1,SK1,SK1,SK1,SC1,SC1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,EY1,FR1,SK1,SK1,SK1,EY1,FR1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,FR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,FR1,FR1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,FR1,FR1,FR1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,FR1,FR1,FR1,FR1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR1,SK1,SK1,SK1,FR1,FR2,FR2,FR2,FR2,FR2,FR2] ] pixels = MAN elif b > 600000: race_ep = 'Men' type_ep = 'Female' hair_color_ep = 'None' haircut_ep = 'None' hair_prop_ep = 'None' eyes_prop_ep = 'None' blemishe_ep = 'None' eyes_color_ep = 'None' facial_hair_ep = 'None' mouth_prop_ep = 'None' mouth_ep = 'None' tooth_color_ep = 'None' nose_ep = 'None' neck_ep = 'None' ears_ep = 'None' skin_ep = 'None' ears = none hair = none hair_prop = none neck = none blemishes = none #tooth color mouth = none facial_hair = none rod = none mouth_prop = none #eye color eyes = none nose = none seed(b) c=randint(0,1000000) if c > 800000: SK1 = (234,217,217) SC1 = (165,141,141) EY1 = (201,178,178) SK2 = (255,255,255) HRG3 = (220,222,234) HRG2 = (183,179,191) HRG4 = (203,200,212) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (226,187,185) LI1 = (113,28,17) MO1 = EY1 SCR1 = EY1 skin_ep = 'Albino' elif c > 500000: SK1 = (219,177,128) SC1 = (166,110,44) EY1 = (210,157,96) SK2 = (235,203,166) HRG3 = (213,200,183) HRG2 = (184,163,135) HRG4 = (209,189,164) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (215,154,104) LI1 = (113,28,17) MO1 = EY1 SCR1 = EY1 skin_ep = 'Light' elif c > 200000: SK1 = (174,139,97) SC1 = (134,88,30) EY1 = (167,124,71) SK2 = (178,138,93) HRG3 = (188,179,165) HRG2 = (166,150,128) HRG4 = (184,171,151) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (191,105,71) LI1 = (95,29,13) MO1 = EY1 SCR1 = EY1 skin_ep = 'Mid' else: SK1 = (113,63,29) SC1 = (86,39,10) EY1 = (114,55,17) SK2 = (146,79,35) HRG3 = (155,135,127) HRG2 = (139,121,111) HRG4 = (156,131,115) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (142,36,2) LI1 = (74,18,8) MO1 = EY1 SCR1 = EY1 skin_ep = 'Dark' seed(c) d=randint(0,1000000) if d > 750000: ears = EARS_3 ears_ep = 'Earring' else: ears = none ears_ep = 'None' seed(d) e=randint(0,1000000) HR0 = (255,193,0) HR2 = (251,114,7) HR3 = (210,154,0) HR4 = (166,165,165) HR5 = (165,108,0) HR6 = (111,0,48) HR7 = (85,57,23) red = (255,0,0) if e > 875000: HR1 = HR0 HR2 = red hair_color_ep ='Blonde' elif e > 750000: HR1 = nr HR2 = red hair_color_ep ='Black' elif e > 625000: HR1 = HR2 HR2 = red hair_color_ep ='Orange' elif e > 500000: HR1 = HR3 HR2 = red hair_color_ep ='Fair' elif e > 375000: HR1 = HR4 HR2 = red hair_color_ep ='Grey' elif e > 250000: HR1 = HR5 HR2 = red hair_color_ep ='Ginger' elif e > 125000: HR1 = HR6 HR2 = red hair_color_ep ='Black Rose' else: HR1 = HR7 HR2 = red hair_color_ep ='Brown' WOMAN_HR1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,HR1,HR1,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,HR1,HR1,0,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,0,HR1,0,0,0,0,0], [0,0,0,0,0,HR1,0,HR1,0,0,0,0,0,0,0,0,HR1,HR1,0,HR1,0,0,0,0], [0,0,0,0,0,HR1,0,HR1,0,0,0,0,0,0,0,0,HR1,HR1,0,HR1,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,0,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,0,HR1,0,0,0,0,0], [0,0,0,0,0,HR1,0,HR1,0,0,0,0,0,0,0,0,HR1,HR1,0,HR1,0,0,0,0], [0,0,0,0,0,HR1,0,HR1,0,0,0,0,0,0,0,0,HR1,HR1,0,HR1,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,HR1,0,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,HR1,0,HR1,0,0,0,0,0], [0,0,0,0,0,HR1,0,HR1,HR1,0,0,0,0,0,0,0,HR1,HR1,0,HR1,0,0,0,0], [0,0,0,0,0,HR1,0,HR1,HR1,HR1,0,0,0,0,0,0,HR1,HR1,0,HR1,0,0,0,0], [0,0,0,0,0,0,HR1,0,HR1,HR1,HR1,0,0,0,0,0,HR1,0,HR1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] WOMAN_HR2=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,HR1,HR1,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] WOMAN_HR3=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,HR1,0,HR1,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,0,0,0,0,0,0,0], [0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0,HR1,0,0,0,0,0,0,0], [0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] WOMAN_HR4=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,HR1,HR1,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] WOMAN_HR5=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,HR1,HR1,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] MOLE_2=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,MO1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] SCARE_2=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] ROSY_2=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,RC1,RC1,0,0,0,RC1,RC1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] seed(e) f=randint(0,1000000) if f > 800000: hair = WOMAN_HR1 haircut_ep = 'Curly Hair' elif f > 600000: hair = WOMAN_HR2 haircut_ep = 'Right Side Hair' elif f > 400000: hair = WOMAN_HR3 haircut_ep = 'Left Side Hair' elif f > 200000: hair = WOMAN_HR4 haircut_ep = 'The Bob' else: hair = WOMAN_HR5 haircut_ep = 'Straight Hair' seed(f) g=randint(0,1000000) if g > 960000: hair_prop = CAP_4 hair_prop_ep = 'Cap' elif g > 950000: hair_prop = TIARA_2 hair_prop_ep = 'Tiara' titi = 99 elif g > 930000: hair_prop = MILICAP_2 hair_prop_ep = 'Punk Hat' elif e > 890000: hair_prop = KNITTED_4 hair_prop_ep = 'Knitted Cap' elif g > 850000: hair_prop = HEADBAND_4 hair_prop_ep = 'Headband' elif g > 840000: hair = none hair_prop = PILOT_2 hair_prop_ep = 'Pilot Helmet' titi = 99 elif g > 810000: hair_prop = BANDANA_4 hair_prop_ep = 'Bandana' elif g > 750000: hair_prop = Wo_Crown hair_prop_ep = 'Circlet' else: hair_prop = none hair_prop_ep = 'None' seed(g) h=randint(0,1000000) if h > 900000: EY1 = (110,152,77) SC1 = (92,133,57) eyes_color_ep = 'Green Eye Shadow' elif h > 800000: EY1 = (93,121,117) SC1 = (80,106,101) eyes_color_ep = 'Blue Eye Shadow' elif h > 700000: EY1 = (176,61,133) SC1 = (164,55,117) eyes_color_ep = 'Purple Eye Shadow' elif h > 600000: EY1 = (214,92,26) SC1 = (194,79,17) eyes_color_ep = 'Orange Eye Shadow' else: eyes_color_ep = 'None' neyu = 99 seed(h) i=randint(0,1000000) if i > 900000: mouth_prop = CIGARETTE mouth_prop_ep = 'Cigarette' elif i > 880000: mouth_prop = MASK_2 mouth_prop_ep = 'Medical Mask' tactac = 99 elif i > 820000: mouth_prop = PIPE mouth_prop_ep = 'Pipe' elif i > 780000: mouth_prop = VAPE mouth_prop_ep = 'Vape' else: mouth_prop = none mouth_prop_ep = 'None' # seed(h) # i=randint(0,1000000) # if i > 300000: # EY1 = (255,255,255) # elif i > 50000: # EY1 = (0,0,255) # else: # EY1 = (0,255,0) seed(i) j=randint(0,1000000) if j > 970000: eyes = TD_3 eyes_prop_ep ='3D Glasses' elif j > 930000: eyes = VR_3 eyes_prop_ep ='VR' elif j > 880000: eyes = ClassicShades_4 eyes_prop_ep ='Classic Shades' elif j > 830000: eyes = EyePatch_4 eyes_prop_ep ='Eye Patch' neyw = 99 elif j > 780000: eyes = NerdGlasses_4 eyes_prop_ep ='Nerd Glasses' elif j > 730000: eyes = BigShades_4 eyes_prop_ep ='Big Shades' elif j > 700000: eyes = EyeMask_4 eyes_prop_ep ='Eye Mask' neyw = 99 elif j > 650000: eyes = HornedRimGlasses_4 eyes_prop_ep ='Horned Rim Glasses' elif j > 600000: eyes = RegularShades_4 eyes_prop_ep ='Regular Shades' elif j > 590000: eyes = GOGOLES_2 eyes_prop_ep ='Welding Goggles' hair_prop = none hair_prop_ep = 'None' tata = 99 else: eyes=none eyes_prop_ep ='None' neyw = 99 if titi == 99 and tata != 99: eyes = none eyes_prop_ep ='None' if neyu != 99 and neyw !=99: eyes = none eyes_prop_ep ='None' seed(j) k=randint(0,1000000) if k > 975000: nose = NOSE_2 nose_ep = 'Clown Nose' tuctuc = 99 else: nose = none nose_ep = 'None' if tactac == 99 and tuctuc == 99: mouthprop = none mouth_prop_ep = 'None' seed(k) l=randint(0,1000000) if l > 970000: blemishes = ROSY_2 blemishe_ep = 'Rosy Cheeks' elif l > 900000: blemishes = MOLE_2 blemishe_ep = 'Mole' elif l > 870000: blemishes = SCARE_2 blemishe_ep = 'Scare' else: blemishes = none blemishe_ep = 'None' seed(l) m=randint(0,1000000) if m > 930000: LI1 = nr mouth_ep = 'Black Lipstick' elif m > 860000: LI1 = (255,0,0) mouth_ep = 'Hot Lipstick' elif m > 790000: LI1 = (208,82,203) mouth_ep = 'Purple Lipstick' elif m > 720000: LI1 = (214,92,26) mouth_ep = 'Orange Lipstick' else: mouth = none mouth_ep = 'None' seed(m) n=randint(0,1000000) if n > 900000: neck = GoldChain_3 neck_ep = 'Gold Chain' elif n > 820000: neck = SilverChain_3 neck_ep = 'Silver Chain' elif n > 800000: neck = RING_3 neck_ep = 'Ring Onchain' elif n > 790000: neck = CHOKER neck_ep = 'Choker' elif n > 770000: neck = BROCHE_3 neck_ep = 'Brooch' else: neck = none neck_ep = 'None' WOMAN=[ [FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,FR1,FR1,FR1,FR1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SC1,SC1,SK1,SK1,SK1,SC1,SC1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,EY1,FR1,SK1,SK1,SK1,EY1,FR1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,FR1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,LI1,LI1,LI1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,FR1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,FR1,FR1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR1,SK1,SK1,SK1,FR1,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2] ] pixels = WOMAN elif b > 535000: race_ep = 'Elves' type_ep = 'Male' hair_color_ep = 'None' haircut_ep = 'None' hair_prop_ep = 'None' eyes_prop_ep = 'None' blemishe_ep = 'None' eyes_color_ep = 'None' facial_hair_ep = 'None' mouth_prop_ep = 'None' mouth_ep = 'None' tooth_color_ep = 'None' nose_ep = 'None' neck_ep = 'None' ears_ep = 'None' skin_ep = 'None' ears = none hair = none hair_prop = none neck = none blemishes = none #tooth color mouth = none facial_hair = none rod = none mouth_prop = none #eye color eyes = none nose = none seed(b) c=randint(0,1000000) if c > 800000: SK1 = (234,217,217) SC1 = (165,141,141) EY1 = (201,178,178) SK2 = (255,255,255) HRG3 = (220,222,234) HRG2 = (183,179,191) HRG4 = (203,200,212) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (226,187,185) MO1 = EY1 SCR1 = EY1 skin_ep = 'Albino' elif c > 500000: SK1 = (219,177,128) SC1 = (166,110,44) EY1 = (210,157,96) SK2 = (235,203,166) HRG3 = (213,200,183) HRG2 = (184,163,135) HRG4 = (209,189,164) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (215,154,104) MO1 = EY1 SCR1 = EY1 skin_ep = 'Light' elif c > 200000: SK1 = (174,139,97) SC1 = (134,88,30) EY1 = (167,124,71) SK2 = (178,138,93) HRG3 = (188,179,165) HRG2 = (166,150,128) HRG4 = (184,171,151) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (191,105,71) MO1 = EY1 SCR1 = EY1 skin_ep = 'Mid' else: SK1 = (113,63,29) SC1 = (86,39,10) EY1 = (114,55,17) SK2 = (146,79,35) HRG3 = (155,135,127) HRG2 = (139,121,111) HRG4 = (156,131,115) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (142,36,2) MO1 = EY1 SCR1 = EY1 skin_ep = 'Dark' seed(c) d=randint(0,1000000) if d > 750000: ears = EARS_1 ears_ep = 'Earring' else: ears = none ears_ep = 'None' seed(d) e=randint(0,1000000) HR0 = (255,227,72) HR2 = (255,255,153) HR3 = (165,108,0) HR4 = (61,35,32) HR5 = (111,0,48) HR6 = (255,0,0) if e > 850000: HR1 = HR0 hair_color_ep ='Blond' elif e > 700000: HR1 = HR2 hair_color_ep ='Butter' elif e > 650000: HR1 = HR3 hair_color_ep ='Ginger' elif e > 500000: HR1 = HR4 hair_color_ep ='Brown' elif e > 350000: HR1 = HR5 hair_color_ep ='Black Rose' elif e > 200000: HR1 = nr hair_color_ep='Black' else: HR1 = HR6 hair_color_ep ='Red' ELF_HR1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] ELF_HR2=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,HR1,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,0,HR1,HR1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,0,0,HR1,HR1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] ELF_HR3=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,BG1,HR1,HR1,HR1,HR1,BG1,BG1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,BG1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,BG1,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,BG1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,HR1,0,HR1,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] ELF_HR4=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,HR1,0,HR1,HR1,HR1,HR1,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,HR1,HR1,0,0,0,0,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0] ] ELF_HR5=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,HR1,HR1,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,HR1,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,HR1,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0] ] seed(e) f=randint(0,1000000) if f > 800000: hair = ELF_HR1 haircut_ep = 'Straight Hair' elif f > 600000: hair = ELF_HR2 haircut_ep = 'Braids' elif f > 400000: hair = ELF_HR3 haircut_ep = 'Left Side Hair' elif f > 200000: hair = ELF_HR4 haircut_ep = 'Long Hair' else: hair = ELF_HR5 haircut_ep = 'Medium Layers' seed(f) g=randint(0,1000000) if g > 960000: hair_prop = CAP_1 hair_prop_ep = 'Cap' elif g > 940000: hair_prop = COWBOY_1 hair_prop_ep = 'Cowboy Hat' elif g > 910000: hair_prop = TOPHAT_1 hair_prop_ep = 'Top Hat' elif e > 870000: hair_prop = KNITTED_1 hair_prop_ep = 'Knitted Cap' elif g > 865000: hair_prop = HEADBAND_1 hair_prop_ep = 'Headband' hair = ELF_HR1 haircut_ep = 'Straight Hair' elif g > 850000: hair_prop = HEADBAND_1 hair_prop_ep = 'Headband' hair = ELF_HR2 haircut_ep = 'Braids' elif g > 835000: hair_prop = HEADBAND_1 hair_prop_ep = 'Headband' hair = ELF_HR4 haircut_ep = 'Long Hair' elif g > 820000: hair_prop = HEADBAND_1 hair_prop_ep = 'Headband' hair = ELF_HR5 haircut_ep = 'Medium Layers' elif g > 790000: hair_prop = FORCAP_1 hair_prop_ep = 'Cap Forward' elif g > 760000: hair_prop = BANDANA_1 hair_prop_ep = 'Bandana' elif g > 750000: hair_prop = Elf_Crown hair_prop_ep = 'Elfic Crown' hair = ELF_HR1 haircut_ep = 'Straight Hair' elif g > 740000: hair_prop = Elf_Crown hair_prop_ep = 'Elfic Crown' hair = ELF_HR2 haircut_ep = 'Braids' elif g > 730000: hair_prop = Elf_Crown hair_prop_ep = 'Elfic Crown' hair = ELF_HR4 haircut_ep = 'Long Hair' elif g > 720000: hair_prop = Elf_Crown hair_prop_ep = 'Elfic Crown' hair = ELF_HR5 haircut_ep = 'Medium Layers' elif g > 700000: hair_prop = FEDORA_1 hair_prop_ep = 'Fedora' elif g > 670000: hair_prop = POLICE_1 hair_prop_ep = 'Police' elif g > 660000: hair_prop = BEANI_1 hair_prop_ep = 'Beanie' else: hair_prop = none hair_prop_ep = 'None' seed(g) h=randint(0,1000000) if h > 900000: neck = GoldChain_1 neck_ep = 'Gold Chain' elif h > 820000: neck = SilverChain_1 neck_ep = 'Silver Chain' elif h > 800000: neck = RING_1 neck_ep = 'Ring Onchain' elif h > 780000: neck = BROCHE_1 neck_ep = 'Brooch' else: neck = none neck_ep = 'None' seed(h) i=randint(0,1000000) if i > 900000: mouth_prop = CIGARETTE mouth_prop_ep = 'Cigarette' elif i > 880000: mouth_prop = MASK_1 mouth_prop_ep = 'Medical Mask' elif i > 820000: mouth_prop = PIPE mouth_prop_ep = 'Pipe' elif i > 780000: mouth_prop = VAPE mouth_prop_ep = 'Vape' else: mouth_prop = none mouth_prop_ep = 'None' # seed(h) # i=randint(0,1000000) # if i > 300000: # EY1 = (255,255,255) # elif i > 50000: # EY1 = (0,0,255) # else: # EY1 = (0,255,0) seed(i) j=randint(0,1000000) if j > 970000: eyes = TD_1 eyes_prop_ep ='3D Glasses' elif j > 930000: eyes = VR_1 eyes_prop_ep ='VR' elif j > 880000: eyes = ClassicShades_1 eyes_prop_ep ='Classic Shades' elif j > 830000: eyes = EyePatch_1 eyes_prop_ep ='Eye Patch' elif j > 780000: eyes = NerdGlasses_1 eyes_prop_ep ='Nerd Glasses' elif j > 730000: eyes = BigShades_1 eyes_prop_ep ='Big Shades' elif j > 700000: eyes = EyeMask_1 eyes_prop_ep ='Eye Mask' elif j > 650000: eyes = HornedRimGlasses_1 eyes_prop_ep ='Horned Rim Glasses' elif j > 600000: eyes = RegularShades_1 eyes_prop_ep ='Regular Shades' else: eyes=none eyes_prop_ep ='None' seed(j) k=randint(0,1000000) if k > 975000: nose = NOSE_1 nose_ep = 'Clown Nose' else: nose = none nose_ep = 'None' seed(k) l=randint(0,1000000) if l > 975000: mouth = SMILE mouth_ep = 'Smile' elif l > 950000: mouth = FROWN mouth_ep = 'Frown' else: mouth = none mouth_ep = 'None' MOLE=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,MO1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] SCARE_1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] ROSY_1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,RC1,0,0,0,0,RC1,RC1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,RC1,0,0,0,0,0,RC1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] seed(l) m=randint(0,1000000) if m > 970000: blemishes = ROSY_1 blemishe_ep = 'Rosy Cheeks' elif m > 900000: blemishes = MOLE blemishe_ep = 'Mole' elif m > 870000: blemishes = SCARE_1 blemishe_ep = 'Scare' else: blemishes = none blemishe_ep = 'None' ELF=[ [FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,FR1,FR1,FR1,FR1,FR1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,FR1,FR1,SC1,SC1,SK1,SK1,SK1,SC1,SC1,SK1,SK1,FR1,FR1,FR1,FR1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,FR1,SK1,FR1,EY1,FR1,SK1,SK1,SK1,EY1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,FR1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,FR1,FR1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,FR1,FR1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,FR1,FR1,FR1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,FR1,FR1,FR1,FR1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR1,SK1,SK1,SK1,FR1,FR2,FR2,FR2,FR2,FR2,FR2] ] pixels = ELF elif b > 470000: race_ep = 'Elves' type_ep = 'Female' hair_color_ep = 'None' haircut_ep = 'None' hair_prop_ep = 'None' eyes_prop_ep = 'None' blemishe_ep = 'None' eyes_color_ep = 'None' facial_hair_ep = 'None' mouth_prop_ep = 'None' mouth_ep = 'None' tooth_color_ep = 'None' nose_ep = 'None' neck_ep = 'None' ears_ep = 'None' skin_ep = 'None' ears = none hair = none hair_prop = none neck = none blemishes = none #tooth color mouth = none facial_hair = none rod = none mouth_prop = none #eye color eyes = none nose = none seed(b) c=randint(0,1000000) if c > 800000: SK1 = (234,217,217) SC1 = (165,141,141) EY1 = (201,178,178) SK2 = SK1 HRG3 = (220,222,234) HRG2 = (183,179,191) HRG4 = (203,200,212) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (226,187,185) LI1 = (113,28,17) MO1 = EY1 SCR1 = EY1 skin_ep = 'Albino' elif c > 500000: SK1 = (219,177,128) SC1 = (166,110,44) EY1 = (210,157,96) SK2 = SK1 HRG3 = (213,200,183) HRG2 = (184,163,135) HRG4 = (209,189,164) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (215,154,104) LI1 = (113,28,17) MO1 = EY1 SCR1 = EY1 skin_ep = 'Light' elif c > 200000: SK1 = (174,139,97) SC1 = (134,88,30) EY1 = (167,124,71) SK2 = SK1 HRG3 = (188,179,165) HRG2 = (166,150,128) HRG4 = (184,171,151) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (191,105,71) LI1 = (95,29,13) MO1 = EY1 SCR1 = EY1 skin_ep = 'Mid' else: SK1 = (113,63,29) SC1 = (86,39,10) EY1 = (114,55,17) SK2 = SK1 HRG3 = (155,135,127) HRG2 = (139,121,111) HRG4 = (156,131,115) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (142,36,2) LI1 = (74,18,8) MO1 = EY1 SCR1 = EY1 skin_ep = 'Dark' seed(c) d=randint(0,1000000) if d > 750000: ears = EARS_3 ears_ep = 'Earring' else: ears = none ears_ep = 'None' seed(d) e=randint(0,1000000) HR0 = (255,227,72) HR2 = (249,255,0) HR3 = (165,108,0) HR4 = (61,35,32) HR5 = (111,0,48) HR6 = (255,0,0) if e > 850000: HR1 = HR0 hair_color_ep ='Blond' elif e > 700000: HR1 = HR2 hair_color_ep ='Butter' elif e > 650000: HR1 = HR3 hair_color_ep ='Ginger' elif e > 500000: HR1 = HR4 hair_color_ep ='Brown' elif e > 350000: HR1 = HR5 hair_color_ep ='Black Rose' elif e > 200000: HR1 = nr hair_color_ep='Black' else: HR1 = HR6 hair_color_ep ='Red' ELFE_HR1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,HR1,HR1,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] ELFE_HR2=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,HR1,HR1,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,HR1,HR1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,HR1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,HR1,0,0] ] ELFE_HR3=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,HR1,0,HR1,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,0,0,0,0,0,0,0], [0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] ELFE_HR4=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,HR1,0,HR1,HR1,HR1,HR1,0,HR1,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,HR1,HR1,0,0,0,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0] ] ELFE_HR5=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0,HR1,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0], [0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,HR1,HR1,0,0,0,0,HR1,HR1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,HR1,0,0,0,0,HR1,0,0,0,0,0,0,0,0,0] ] MOLE_2=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,MO1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] SCARE_2=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] ROSY_2=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,RC1,RC1,0,0,0,RC1,RC1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] seed(e) f=randint(0,1000000) if f > 800000: hair = ELFE_HR1 haircut_ep = 'Straight Hair' elif f > 600000: hair = ELFE_HR2 haircut_ep = 'Braids' elif f > 400000: hair = ELFE_HR3 haircut_ep = 'Left Side Hair' elif f > 200000: hair = ELFE_HR4 haircut_ep = 'Long Hair' else: hair = ELFE_HR5 haircut_ep = 'Medium Layers' seed(f) g=randint(0,1000000) if g > 900000: hair_prop = CAP_3 hair_prop_ep = 'Cap' elif g > 700000: hair_prop = MILICAP_1 hair_prop_ep = 'Punk Hat' elif e > 600000: hair_prop = KNITTED_3 hair_prop_ep = 'Knitted Cap' elif g > 500000: hair_prop = HEADBAND_3 hair_prop_ep = 'Headband' elif g > 400000: hair = none hair_prop = PILOT_1 hair_prop_ep = 'Pilot Helmet' titin = 99 elif g > 300000: hair_prop = BANDANA_3 hair_prop_ep = 'Bandana' elif g > 100000: hair_prop = Elfe_Tiara hair_prop_ep = 'Elfic Tiara' else: hair_prop = none hair_prop_ep = 'None' seed(g) h=randint(0,1000000) if h > 900000: EY1 = (110,152,77) SC1 = (92,133,57) eyes_color_ep = 'Green Eye Shadow' elif h > 800000: EY1 = (93,121,117) SC1 = (80,106,101) eyes_color_ep = 'Blue Eye Shadow' elif h > 700000: EY1 = (176,61,133) SC1 = (164,55,117) eyes_color_ep = 'Purple Eye Shadow' elif h > 600000: EY1 = (214,92,26) SC1 = (194,79,17) eyes_color_ep = 'Orange Eye Shadow' else: eyes_color_ep = 'None' neyo = 99 seed(h) i=randint(0,1000000) if i > 900000: mouth_prop = CIGARETTE mouth_prop_ep = 'Cigarette' elif i > 880000: mouth_prop = MASK_2 mouth_prop_ep = 'Medical Mask' tactac = 99 elif i > 820000: mouth_prop = PIPE mouth_prop_ep = 'Pipe' elif i > 780000: mouth_prop = VAPE mouth_prop_ep = 'Vape' else: mouth_prop = none mouth_prop_ep = 'None' # seed(h) # i=randint(0,1000000) # if i > 300000: # EY1 = (255,255,255) # elif i > 50000: # EY1 = (0,0,255) # else: # EY1 = (0,255,0) seed(i) j=randint(0,1000000) if j > 970000: eyes = TD_3 eyes_prop_ep ='3D Glasses' elif j > 930000: eyes = VR_3 eyes_prop_ep ='VR' elif j > 880000: eyes = ClassicShades_3 eyes_prop_ep ='Classic Shades' elif j > 830000: eyes = EyePatch_3 eyes_prop_ep ='Eye Patch' neye = 99 elif j > 780000: eyes = NerdGlasses_3 eyes_prop_ep ='Nerd Glasses' elif j > 730000: eyes = BigShades_3 eyes_prop_ep ='Big Shades' elif j > 700000: eyes = EyeMask_3 eyes_prop_ep ='Eye Mask' neye = 99 elif j > 650000: eyes = HornedRimGlasses_3 eyes_prop_ep ='Horned Rim Glasses' elif j > 600000: eyes = RegularShades_3 eyes_prop_ep ='Regular Shades' elif j > 590000: eyes = GOGOLES_1 eyes_prop_ep ='Welding Goggles' hair_prop = none hair_prop_ep = 'None' toutou = 99 else: eyes=none eyes_prop_ep ='None' neye = 99 if titin == 99 and toutou != 99: eyes = none eyes_prop_ep ='None' if neyo != 99 and neye !=99: eyes = none eyes_prop_ep ='None' seed(j) k=randint(0,1000000) if k > 975000: nose = NOSE_2 nose_ep = 'Clown Nose' tuctuc = 99 else: nose = none nose_ep = 'None' if tactac == 99 and tuctuc == 99: mouthprop = none mouth_prop_ep = 'None' seed(k) l=randint(0,1000000) if l > 970000: blemishes = ROSY_2 blemishe_ep = 'Rosy Cheeks' elif l > 900000: blemishes = MOLE_2 blemishe_ep = 'Mole' elif l > 870000: blemishes = SCARE_2 blemishe_ep = 'Scare' else: blemishes = none blemishe_ep = 'None' seed(l) m=randint(0,1000000) if m > 930000: LI1 = nr mouth_ep = 'Black Lipstick' elif m > 860000: LI1 = (255,0,0) mouth_ep = 'Hot Lipstick' elif m > 790000: LI1 = (208,82,203) mouth_ep = 'Purple Lipstick' elif m > 720000: LI1 = (214,92,26) mouth_ep = 'Orange Lipstick' else: mouth = none mouth_ep = 'None' seed(m) n=randint(0,1000000) if n > 900000: neck = GoldChain_2 neck_ep = 'Gold Chain' elif n > 820000: neck = SilverChain_2 neck_ep = 'Silver Chain' elif n > 800000: neck = RING_2 neck_ep = 'Ring Onchain' elif n > 780000: neck = BROCHE_2 neck_ep = 'Brooch' else: neck = none neck_ep = 'None' ELFE=[ [FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,FR1,FR1,FR1,FR1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK2,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,FR1,FR1,SC1,SC1,SK1,SK1,SK1,SC1,SC1,SK1,FR1,FR1,FR1,FR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,FR1,SK1,FR1,EY1,FR1,SK1,SK1,SK1,EY1,FR1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,FR1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,FR1,FR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,FR1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,LI1,LI1,LI1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,FR1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,FR1,FR1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR1,SK1,SK1,SK1,FR1,FR2,FR2,FR2,FR2,FR2,FR2,FR2] ] pixels = ELFE elif b > 460000: race_ep = 'Dwarves' type_ep = 'Firebeards' hair_color_ep = 'None' haircut_ep = 'None' hair_prop_ep = 'None' eyes_prop_ep = 'None' blemishe_ep = 'None' eyes_color_ep = 'None' facial_hair_ep = 'None' mouth_prop_ep = 'None' mouth_ep = 'None' tooth_color_ep = 'None' nose_ep = 'None' neck_ep = 'None' ears_ep = 'None' skin_ep = 'None' ears = none hair = none hair_prop = none neck = none blemishes = none #tooth color mouth = none facial_hair = none rod = none mouth_prop = none #eye color eyes = none nose = none seed(b) c=randint(0,1000000) if c > 800000: SK1 = (234,217,217) SC1 = (165,141,141) EY1 = (201,178,178) SK2 = (255,255,255) HRG3 = (220,222,234) HRG2 = (183,179,191) HRG4 = (203,200,212) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (226,187,185) MO1 = EY1 SCR1 = EY1 skin_ep = 'Albino' elif c > 500000: SK1 = (219,177,128) SC1 = (166,110,44) EY1 = (210,157,96) SK2 = (235,203,166) HRG3 = (213,200,183) HRG2 = (184,163,135) HRG4 = (209,189,164) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (215,154,104) MO1 = EY1 SCR1 = EY1 skin_ep = 'Light' elif c > 200000: SK1 = (174,139,97) SC1 = (134,88,30) EY1 = (167,124,71) SK2 = (178,138,93) HRG3 = (188,179,165) HRG2 = (166,150,128) HRG4 = (184,171,151) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (191,105,71) MO1 = EY1 SCR1 = EY1 skin_ep = 'Mid' else: SK1 = (113,63,29) SC1 = (86,39,10) EY1 = (114,55,17) SK2 = (146,79,35) HRG3 = (155,135,127) HRG2 = (139,121,111) HRG4 = (156,131,115) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (142,36,2) MO1 = EY1 SCR1 = EY1 skin_ep = 'Dark' seed(c) d=randint(0,1000000) if d > 750000: ears = EARS_2 ears_ep = 'Earring' else: ears = none ears_ep = 'None' seed(d) e=randint(0,1000000) HR0 = (255,193,0) HR8 = (251,114,7) HR3 = (210,154,0) HR4 = (166,165,165) HR5 = (165,108,0) HR6 = (111,0,48) HR7 = (85,57,23) if e > 860000: HR1 = (50,50,50) #Ok HR2 = (200,200,200) hair_color_ep = 'Dark Grey & Silver' elif e > 720000: HR1 = HR8 HR2 = (111,0,48) #ok hair_color_ep = 'Orange & Black Rose' elif e > 580000: HR1 = HR3 #ok HR2 = (210,210,0) hair_color_ep = 'Fair & Wattle' elif e > 440000: HR1 = (80,50,30) #Ok HR2 = (44,4,9) hair_color_ep = 'Bronze & Chocolate' elif e > 300000: HR1 = HR5 HR2 = HR3 hair_color_ep = 'Ginger & Fair' elif e > 150000: HR1 = (220,130,0) #ok HR2 = (70,40,10) hair_color_ep = 'Mango & Brown' else: HR1 = (210,210,210) #Ok HR2 = (210,210,210) hair_color_ep = 'Grey Goose' seed(e) f=randint(0,1000000) seed(f) g=randint(0,1000000) if g > 960000: hair_prop = CAP_2 hair_prop_ep = 'Cap' elif g > 940000: hair_prop = COWBOY_2 hair_prop_ep = 'Cowboy Hat' elif g > 920000: hair_prop = TOPHAT_2 hair_prop_ep = 'Top Hat' elif g > 890000: hair_prop = Helmet hair_prop_ep = 'Dwarf Helmet' tete = 99 elif g > 870000: hair_prop = FORCAP_2 hair_prop_ep = 'Cap Forward' elif g > 850000: hair_prop = BANDANA_2 hair_prop_ep = 'Bandana' elif g > 830000: hair_prop = FEDORA_2 hair_prop_ep = 'Fedora' elif g > 800000: hair_prop = POLICE_2 hair_prop_ep = 'Police' else: hair_prop = none hair_prop_ep = 'None' seed(g) h=randint(0,1000000) if h > 900000: mouth_prop = CIGARETTE mouth_prop_ep = 'Cigarette' elif h > 840000: mouth_prop = PIPE mouth_prop_ep = 'Pipe' elif h > 800000: mouth_prop = VAPE mouth_prop_ep = 'Vape' else: mouth_prop = none mouth_prop_ep = 'None' # seed(h) # i=randint(0,1000000) # if i > 300000: # EY1 = (255,255,255) # elif i > 50000: # EY1 = (0,0,255) # else: # EY1 = (0,255,0) seed(h) i=randint(0,1000000) if i > 970000: eyes = TD_2 eyes_prop_ep ='3D Glasses' elif i > 930000: eyes = VR_2 eyes_prop_ep ='VR' elif i > 880000: eyes = ClassicShades_2 eyes_prop_ep ='Classic Shades' elif i > 830000: eyes = SmallShades_2 eyes_prop_ep ='Small Shades' elif i > 780000: eyes = EyePatch_2 eyes_prop_ep ='Eye Patch' elif i > 730000: eyes = NerdGlasses_2 eyes_prop_ep ='Nerd Glasses' elif i > 680000: eyes = BigShades_2 eyes_prop_ep ='Big Shades' elif i > 650000: eyes = EyeMask_2 eyes_prop_ep ='Eye Mask' elif i > 600000: eyes = HornedRimGlasses_2 eyes_prop_ep ='Horned Rim Glasses' elif i > 550000: eyes = RegularShades_2 eyes_prop_ep ='Regular Shades' else: eyes=none eyes_prop_ep ='None' if tete == 99: eyes = none eyes_prop_ep ='None' seed(i) j=randint(0,1000000) if j > 975000: nose = NOSE_1 nose_ep = 'Clown Nose' else: nose = none nose_ep = 'None' seed(j) k=randint(0,1000000) if k > 975000: mouth = SMILE mouth_ep = 'Smile' elif k > 950000: mouth = FROWN mouth_ep = 'Frown' else: mouth = none mouth_ep = 'None' MOLE=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,MO1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] SCARE_1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] ROSY_1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,RC1,0,0,0,0,RC1,RC1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,RC1,0,0,0,0,0,RC1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] seed(k) l=randint(0,1000000) if l > 970000: blemishes = ROSY_1 blemishe_ep = 'Rosy Cheeks' elif l > 900000: blemishes = MOLE blemishe_ep = 'Mole' elif l > 870000: blemishes = SCARE_1 blemishe_ep = 'Scare' else: blemishes = none blemishe_ep = 'None' DWARF_1=[ [FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,HR1,HR1,HR1,HR1,HR1,HR1,HR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,HR2,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR2,HR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,HR2,HR1,HR1,HR1,SK1,SK1,SK1,HR1,HR1,HR1,HR2,HR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,HR2,HR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,HR1,HR1,HR2,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,HR2,HR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,HR1,HR2,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR2,HR1,FR1,HR1,SK1,SK1,SK1,SK1,SK1,HR1,SK1,SK1,FR1,HR1,HR1,HR2,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR2,HR1,FR1,SC1,SC1,SK1,SK1,SK1,SC1,SC1,SK1,SK1,SK1,FR1,HR1,HR1,HR2,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR2,HR1,FR1,EY1,FR1,SK1,SK1,SK1,EY1,FR1,SK1,SK1,SK1,FR1,HR1,HR1,HR2,BG1,FR2], [FR2,BG1,BG1,BG1,HR2,HR1,HR1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,FR1,HR1,HR1,HR2,BG1,FR2], [FR2,BG1,BG1,BG1,HR2,HR1,HR1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,HR1,HR1,HR1,BG1,HR2,FR2], [FR2,BG1,BG1,HR2,BG1,HR1,HR1,FR1,SK1,SK1,FR1,FR1,SK1,SK1,SK1,SK1,SK1,FR1,HR1,HR1,HR1,BG1,BG1,FR2], [FR2,BG1,BG1,HR2,BG1,HR1,HR1,FR1,HR1,HR2,HR2,HR2,HR2,HR1,HR1,SK1,SK1,FR1,HR1,HR1,HR1,BG1,BG1,FR2], [FR2,BG1,HR2,BG1,BG1,HR1,FR1,HR1,HR2,HR1,HR1,HR1,HR1,HR2,HR1,HR1,HR1,FR1,HR1,HR1,HR1,HR1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,FR1,HR1,HR2,HR1,FR1,FR1,FR1,HR1,HR2,HR1,HR1,HR1,FR1,HR1,HR1,HR1,HR1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,FR1,HR1,HR2,HR1,HR1,HR1,HR1,HR1,HR2,HR1,HR1,HR1,FR1,HR1,HR1,HR1,HR1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,FR1,HR2,HR1,HR1,HR1,HR1,HR1,HR2,HR1,HR1,HR1,FR1,HR1,HR1,HR1,HR1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,HR1,HR2,FR1,HR1,HR1,HR1,HR1,HR1,HR1,HR2,FR1,FR1,BG1,BG1,HR1,HR1,HR1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,HR2,HR1,BG1,FR1,HR1,HR1,FR1,FR1,FR1,FR1,HR2,FR1,BG1,BG1,BG1,HR1,HR1,FR2], [FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR1,FR1,FR2,FR1,SK1,SK1,SK1,FR1,FR2,FR2,FR2,FR2,FR2,FR2] ] pixels = DWARF_1 elif b > 450000: race_ep = 'Dwarves' type_ep = 'Blacklocks' hair_color_ep = 'None' haircut_ep = 'None' hair_prop_ep = 'None' eyes_prop_ep = 'None' blemishe_ep = 'None' eyes_color_ep = 'None' facial_hair_ep = 'None' mouth_prop_ep = 'None' mouth_ep = 'None' tooth_color_ep = 'None' nose_ep = 'None' neck_ep = 'None' ears_ep = 'None' skin_ep = 'None' ears = none hair = none hair_prop = none neck = none blemishes = none #tooth color mouth = none facial_hair = none rod = none mouth_prop = none #eye color eyes = none nose = none seed(b) c=randint(0,1000000) if c > 800000: SK1 = (234,217,217) SC1 = (165,141,141) EY1 = (201,178,178) SK2 = (255,255,255) HRG3 = (220,222,234) HRG2 = (183,179,191) HRG4 = (203,200,212) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (226,187,185) MO1 = EY1 SCR1 = EY1 skin_ep = 'Albino' elif c > 500000: SK1 = (219,177,128) SC1 = (166,110,44) EY1 = (210,157,96) SK2 = (235,203,166) HRG3 = (213,200,183) HRG2 = (184,163,135) HRG4 = (209,189,164) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (215,154,104) MO1 = EY1 SCR1 = EY1 skin_ep = 'Light' elif c > 200000: SK1 = (174,139,97) SC1 = (134,88,30) EY1 = (167,124,71) SK2 = (178,138,93) HRG3 = (188,179,165) HRG2 = (166,150,128) HRG4 = (184,171,151) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (191,105,71) MO1 = EY1 SCR1 = EY1 skin_ep = 'Mid' else: SK1 = (113,63,29) SC1 = (86,39,10) EY1 = (114,55,17) SK2 = (146,79,35) HRG3 = (155,135,127) HRG2 = (139,121,111) HRG4 = (156,131,115) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (142,36,2) MO1 = EY1 SCR1 = EY1 skin_ep = 'Dark' seed(c) d=randint(0,1000000) if d > 750000: ears = EARS_2 ears_ep = 'Earring' else: ears = none ears_ep = 'None' seed(d) e=randint(0,1000000) HR0 = (255,193,0) HR8 = (251,114,7) HR3 = (210,154,0) HR4 = (166,165,165) HR5 = (165,108,0) HR6 = (111,0,48) HR7 = (85,57,23) if e > 860000: HR1 = (50,50,50) #Ok HR2 = (200,200,200) hair_color_ep = 'Dark Grey & Silver' elif e > 720000: HR1 = HR8 HR2 = (111,0,48) #ok hair_color_ep = 'Orange & Black Rose' elif e > 580000: HR1 = HR3 #ok HR2 = (210,210,0) hair_color_ep = 'Fair & Wattle' elif e > 440000: HR1 = (80,50,30) #Ok HR2 = (44,4,9) hair_color_ep = 'Bronze & Chocolate' elif e > 300000: HR1 = HR5 HR2 = HR3 hair_color_ep = 'Ginger & Fair' elif e > 150000: HR1 = (220,130,0) #ok HR2 = (70,40,10) hair_color_ep = 'Mango & Brown' else: HR1 = (210,210,210) #Ok HR2 = (210,210,210) hair_color_ep = 'Grey Goose' seed(e) f=randint(0,1000000) seed(f) g=randint(0,1000000) if g > 960000: hair_prop = CAP_2 hair_prop_ep = 'Cap' elif g > 940000: hair_prop = COWBOY_2 hair_prop_ep = 'Cowboy Hat' elif g > 920000: hair_prop = TOPHAT_2 hair_prop_ep = 'Top Hat' elif g > 890000: hair_prop = Helmet hair_prop_ep = 'Dwarf Helmet' tete = 99 elif g > 870000: hair_prop = FORCAP_2 hair_prop_ep = 'Cap Forward' elif g > 850000: hair_prop = BANDANA_2 hair_prop_ep = 'Bandana' elif g > 830000: hair_prop = FEDORA_2 hair_prop_ep = 'Fedora' elif g > 800000: hair_prop = POLICE_2 hair_prop_ep = 'Police' else: hair_prop = none hair_prop_ep = 'None' seed(g) h=randint(0,1000000) if h > 900000: mouth_prop = CIGARETTE mouth_prop_ep = 'Cigarette' elif h > 840000: mouth_prop = PIPE mouth_prop_ep = 'Pipe' elif h > 800000: mouth_prop = VAPE mouth_prop_ep = 'Vape' else: mouth_prop = none mouth_prop_ep = 'None' # seed(h) # i=randint(0,1000000) # if i > 300000: # EY1 = (255,255,255) # elif i > 50000: # EY1 = (0,0,255) # else: # EY1 = (0,255,0) seed(h) i=randint(0,1000000) if i > 970000: eyes = TD_2 eyes_prop_ep ='3D Glasses' elif i > 930000: eyes = VR_2 eyes_prop_ep ='VR' elif i > 880000: eyes = ClassicShades_2 eyes_prop_ep ='Classic Shades' elif i > 830000: eyes = SmallShades_2 eyes_prop_ep ='Small Shades' elif i > 780000: eyes = EyePatch_2 eyes_prop_ep ='Eye Patch' elif i > 730000: eyes = NerdGlasses_2 eyes_prop_ep ='Nerd Glasses' elif i > 680000: eyes = BigShades_2 eyes_prop_ep ='Big Shades' elif i > 650000: eyes = EyeMask_2 eyes_prop_ep ='Eye Mask' elif i > 600000: eyes = HornedRimGlasses_2 eyes_prop_ep ='Horned Rim Glasses' elif i > 550000: eyes = RegularShades_2 eyes_prop_ep ='Regular Shades' else: eyes=none eyes_prop_ep ='None' if tete == 99: eyes = none eyes_prop_ep ='None' seed(i) j=randint(0,1000000) if j > 975000: nose = NOSE_1 nose_ep = 'Clown Nose' else: nose = none nose_ep = 'None' seed(j) k=randint(0,1000000) if k > 975000: mouth = SMILE mouth_ep = 'Smile' elif k > 950000: mouth = FROWN mouth_ep = 'Frown' else: mouth = none mouth_ep = 'None' MOLE=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,MO1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] SCARE_1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] ROSY_1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,RC1,0,0,0,0,RC1,RC1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,RC1,0,0,0,0,0,RC1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] seed(k) l=randint(0,1000000) if l > 970000: blemishes = ROSY_1 blemishe_ep = 'Rosy Cheeks' elif l > 900000: blemishes = MOLE blemishe_ep = 'Mole' elif l > 870000: blemishes = SCARE_1 blemishe_ep = 'Scare' else: blemishes = none blemishe_ep = 'None' DWARF_2=[ [FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,HR1,HR1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,HR1,HR1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,HR1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,HR1,HR1,HR1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,HR1,HR1,SK1,SK1,SK1,SK1,SK1,SK1,HR1,HR1,HR1,HR1,HR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,HR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,HR1,HR1,HR1,HR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,HR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,HR1,HR1,HR1,SK1,SK1,SK1,SK1,SK1,SK1,HR1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,HR1,HR1,SC1,SC1,SK1,SK1,SK1,SC1,SC1,SK1,HR1,HR1,FR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,HR1,EY1,FR1,SK1,SK1,SK1,EY1,FR1,SK1,HR1,HR1,FR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,HR1,HR1,SK1,SK1,SK1,SK1,SK1,SK1,HR1,HR1,HR1,FR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,HR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,HR1,HR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,HR1,SK1,SK1,FR1,FR1,SK1,SK1,SK1,SK1,HR1,HR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,HR1,SK1,HR2,HR2,HR2,HR2,HR2,SK1,SK1,HR1,HR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,HR1,HR2,HR2,HR2,HR2,HR2,HR2,HR2,HR2,HR1,HR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,HR1,HR2,SK1,FR1,FR1,FR1,SK1,HR2,HR2,HR1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,HR2,HR2,HR2,SK1,HR2,HR2,HR2,SK1,SK1,HR2,HR2,HR2,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR2,BG1,HR2,HR2,SK1,SK1,HR2,SK1,SK1,SK1,HR2,HR2,FR1,HR2,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR2,BG1,HR2,HR2,FR1,FR1,HR2,FR1,FR1,SK1,HR2,HR2,FR1,HR2,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,HR2,BG1,BG1,HR2,HR2,BG1,BG1,HR2,BG1,FR1,SK1,HR2,HR2,FR1,BG1,HR2,BG1,BG1,BG1,FR2], [FR2,FR2,FR2,FR2,FR2,FR2,FR2,HR2,HR2,FR2,FR2,HR2,FR2,FR1,SK1,HR2,HR2,FR1,FR2,FR2,FR2,FR2,FR2,FR2] ] pixels = DWARF_2 elif b > 440000: race_ep = 'Dwarves' type_ep = 'Broadbeams' hair_color_ep = 'None' haircut_ep = 'None' hair_prop_ep = 'None' eyes_prop_ep = 'None' blemishe_ep = 'None' eyes_color_ep = 'None' facial_hair_ep = 'None' mouth_prop_ep = 'None' mouth_ep = 'None' tooth_color_ep = 'None' nose_ep = 'None' neck_ep = 'None' ears_ep = 'None' skin_ep = 'None' ears = none hair = none hair_prop = none neck = none blemishes = none #tooth color mouth = none facial_hair = none rod = none mouth_prop = none #eye color eyes = none nose = none seed(b) c=randint(0,1000000) if c > 800000: SK1 = (234,217,217) SC1 = (165,141,141) EY1 = (201,178,178) SK2 = (255,255,255) HRG3 = (220,222,234) HRG2 = (183,179,191) HRG4 = (203,200,212) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (226,187,185) MO1 = EY1 SCR1 = EY1 skin_ep = 'Albino' elif c > 500000: SK1 = (219,177,128) SC1 = (166,110,44) EY1 = (210,157,96) SK2 = (235,203,166) HRG3 = (213,200,183) HRG2 = (184,163,135) HRG4 = (209,189,164) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (215,154,104) MO1 = EY1 SCR1 = EY1 skin_ep = 'Light' elif c > 200000: SK1 = (174,139,97) SC1 = (134,88,30) EY1 = (167,124,71) SK2 = (178,138,93) HRG3 = (188,179,165) HRG2 = (166,150,128) HRG4 = (184,171,151) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (191,105,71) MO1 = EY1 SCR1 = EY1 skin_ep = 'Mid' else: SK1 = (113,63,29) SC1 = (86,39,10) EY1 = (114,55,17) SK2 = (146,79,35) HRG3 = (155,135,127) HRG2 = (139,121,111) HRG4 = (156,131,115) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (142,36,2) MO1 = EY1 SCR1 = EY1 skin_ep = 'Dark' seed(c) d=randint(0,1000000) if d > 750000: ears = EARS_2 ears_ep = 'Earring' else: ears = none ears_ep = 'None' seed(d) e=randint(0,1000000) HR0 = (255,193,0) HR8 = (251,114,7) HR3 = (210,154,0) HR4 = (166,165,165) HR5 = (165,108,0) HR6 = (111,0,48) HR7 = (85,57,23) if e > 860000: HR1 = (50,50,50) #Ok HR2 = (200,200,200) hair_color_ep = 'Dark Grey & Silver' elif e > 720000: HR1 = HR8 HR2 = (111,0,48) #ok hair_color_ep = 'Orange & Black Rose' elif e > 580000: HR1 = HR3 #ok HR2 = (210,210,0) hair_color_ep = 'Fair & Wattle' elif e > 440000: HR1 = (80,50,30) #Ok HR2 = (44,4,9) hair_color_ep = 'Bronze & Chocolate' elif e > 300000: HR1 = HR5 HR2 = HR3 hair_color_ep = 'Ginger & Fair' elif e > 150000: HR1 = (220,130,0) #ok HR2 = (70,40,10) hair_color_ep = 'Mango & Brown' else: HR1 = (210,210,210) #Ok HR2 = (210,210,210) hair_color_ep = 'Grey Goose' seed(e) f=randint(0,1000000) seed(f) g=randint(0,1000000) if g > 960000: hair_prop = CAP_2 hair_prop_ep = 'Cap' elif g > 940000: hair_prop = COWBOY_2 hair_prop_ep = 'Cowboy Hat' elif g > 920000: hair_prop = TOPHAT_2 hair_prop_ep = 'Top Hat' elif g > 890000: hair_prop = Helmet hair_prop_ep = 'Dwarf Helmet' tete = 99 elif g > 870000: hair_prop = FORCAP_2 hair_prop_ep = 'Cap Forward' elif g > 850000: hair_prop = BANDANA_2 hair_prop_ep = 'Bandana' elif g > 830000: hair_prop = FEDORA_2 hair_prop_ep = 'Fedora' elif g > 800000: hair_prop = POLICE_2 hair_prop_ep = 'Police' else: hair_prop = none hair_prop_ep = 'None' seed(g) h=randint(0,1000000) if h > 900000: mouth_prop = CIGARETTE mouth_prop_ep = 'Cigarette' elif h > 840000: mouth_prop = PIPE mouth_prop_ep = 'Pipe' elif h > 800000: mouth_prop = VAPE mouth_prop_ep = 'Vape' else: mouth_prop = none mouth_prop_ep = 'None' # seed(h) # i=randint(0,1000000) # if i > 300000: # EY1 = (255,255,255) # elif i > 50000: # EY1 = (0,0,255) # else: # EY1 = (0,255,0) seed(h) i=randint(0,1000000) if i > 970000: eyes = TD_2 eyes_prop_ep ='3D Glasses' elif i > 930000: eyes = VR_2 eyes_prop_ep ='VR' elif i > 880000: eyes = ClassicShades_2 eyes_prop_ep ='Classic Shades' elif i > 830000: eyes = SmallShades_2 eyes_prop_ep ='Small Shades' elif i > 780000: eyes = EyePatch_2 eyes_prop_ep ='Eye Patch' elif i > 730000: eyes = NerdGlasses_2 eyes_prop_ep ='Nerd Glasses' elif i > 680000: eyes = BigShades_2 eyes_prop_ep ='Big Shades' elif i > 650000: eyes = EyeMask_2 eyes_prop_ep ='Eye Mask' elif i > 600000: eyes = HornedRimGlasses_2 eyes_prop_ep ='Horned Rim Glasses' elif i > 550000: eyes = RegularShades_2 eyes_prop_ep ='Regular Shades' else: eyes=none eyes_prop_ep ='None' if tete == 99: eyes = none eyes_prop_ep ='None' seed(i) j=randint(0,1000000) if j > 975000: nose = NOSE_1 nose_ep = 'Clown Nose' else: nose = none nose_ep = 'None' seed(j) k=randint(0,1000000) if k > 975000: mouth = SMILE mouth_ep = 'Smile' elif k > 950000: mouth = FROWN mouth_ep = 'Frown' else: mouth = none mouth_ep = 'None' MOLE=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,MO1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] SCARE_1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] ROSY_1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,RC1,0,0,0,0,RC1,RC1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,RC1,0,0,0,0,0,RC1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] seed(k) l=randint(0,1000000) if l > 970000: blemishes = ROSY_1 blemishe_ep = 'Rosy Cheeks' elif l > 900000: blemishes = MOLE blemishe_ep = 'Mole' elif l > 870000: blemishes = SCARE_1 blemishe_ep = 'Scare' else: blemishes = none blemishe_ep = 'None' DWARF_3=[ [FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,HR1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,HR1,HR1,HR1,HR1,SK1,HR1,HR1,SK1,HR1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,HR1,HR1,SK1,SK1,SK1,SK1,SK1,SK1,HR1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,FR1,SC1,SC1,SK1,SK1,SK1,SC1,SC1,SK1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,FR1,EY1,FR1,SK1,SK1,SK1,EY1,FR1,SK1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,HR1,HR1,HR1,HR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,HR1,HR1,HR1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,HR1,HR1,HR1,HR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,HR1,HR1,HR1,FR1,HR1,SK1,FR1,FR1,SK1,SK1,SK1,HR1,HR1,HR1,HR1,HR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,HR1,HR1,BG1,FR1,HR2,HR2,HR2,HR2,HR2,HR2,HR2,FR1,HR1,FR1,HR1,HR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,HR1,BG1,FR1,HR2,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR2,FR1,FR1,BG1,HR1,HR1,BG1,BG1,FR2], [FR2,BG1,BG1,HR1,HR1,FR1,HR2,HR1,HR1,HR1,FR1,FR1,FR1,HR1,HR1,HR1,HR2,FR1,BG1,HR1,HR1,BG1,BG1,FR2], [FR2,BG1,BG1,HR1,HR1,FR1,HR2,HR1,HR1,HR1,HR1,HR2,HR1,HR1,HR1,HR1,HR2,FR1,BG1,HR1,HR1,BG1,BG1,FR2], [FR2,BG1,BG1,HR1,HR1,FR1,HR2,HR1,HR1,HR1,HR2,HR2,HR2,HR1,HR1,HR1,HR2,FR1,BG1,HR1,HR1,BG1,BG1,FR2], [FR2,BG1,BG1,HR1,HR1,BG1,FR1,HR2,HR1,HR2,HR2,HR2,HR2,HR2,HR1,HR2,FR1,FR1,BG1,HR1,HR1,BG1,BG1,FR2], [FR2,BG1,BG1,HR1,HR1,BG1,BG1,FR1,HR2,FR1,FR1,FR1,FR1,FR1,HR2,FR1,SK1,FR1,BG1,HR1,HR1,BG1,BG1,FR2], [FR2,FR2,FR2,HR1,HR1,FR2,FR2,FR2,FR1,FR2,FR2,FR2,FR2,FR1,FR1,SK1,SK1,FR1,FR2,HR1,HR1,FR2,FR2,FR2] ] pixels = DWARF_3 elif b > 430000: race_ep = 'Dwarves' type_ep = 'Stiffbeards' hair_color_ep = 'None' haircut_ep = 'None' hair_prop_ep = 'None' eyes_prop_ep = 'None' blemishe_ep = 'None' eyes_color_ep = 'None' facial_hair_ep = 'None' mouth_prop_ep = 'None' mouth_ep = 'None' tooth_color_ep = 'None' nose_ep = 'None' neck_ep = 'None' ears_ep = 'None' skin_ep = 'None' ears = none hair = none hair_prop = none neck = none blemishes = none #tooth color mouth = none facial_hair = none rod = none mouth_prop = none #eye color eyes = none nose = none seed(b) c=randint(0,1000000) if c > 800000: SK1 = (234,217,217) SC1 = (165,141,141) EY1 = (201,178,178) SK2 = (255,255,255) HRG3 = (220,222,234) HRG2 = (183,179,191) HRG4 = (203,200,212) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (226,187,185) MO1 = EY1 SCR1 = EY1 skin_ep = 'Albino' elif c > 500000: SK1 = (219,177,128) SC1 = (166,110,44) EY1 = (210,157,96) SK2 = (235,203,166) HRG3 = (213,200,183) HRG2 = (184,163,135) HRG4 = (209,189,164) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (215,154,104) MO1 = EY1 SCR1 = EY1 skin_ep = 'Light' elif c > 200000: SK1 = (174,139,97) SC1 = (134,88,30) EY1 = (167,124,71) SK2 = (178,138,93) HRG3 = (188,179,165) HRG2 = (166,150,128) HRG4 = (184,171,151) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (191,105,71) MO1 = EY1 SCR1 = EY1 skin_ep = 'Mid' else: SK1 = (113,63,29) SC1 = (86,39,10) EY1 = (114,55,17) SK2 = (146,79,35) HRG3 = (155,135,127) HRG2 = (139,121,111) HRG4 = (156,131,115) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (142,36,2) MO1 = EY1 SCR1 = EY1 skin_ep = 'Dark' seed(c) d=randint(0,1000000) if d > 750000: ears = EARS_2 ears_ep = 'Earring' else: ears = none ears_ep = 'None' seed(d) e=randint(0,1000000) HR0 = (255,193,0) HR8 = (251,114,7) HR3 = (210,154,0) HR4 = (166,165,165) HR5 = (165,108,0) HR6 = (111,0,48) HR7 = (85,57,23) if e > 860000: HR1 = (50,50,50) #Ok HR2 = (200,200,200) hair_color_ep = 'Dark Grey' elif e > 720000: HR1 = HR8 HR2 = (111,0,48) #ok hair_color_ep = 'Orange' elif e > 580000: HR1 = HR3 #ok HR2 = (210,210,0) hair_color_ep = 'Fair' elif e > 440000: HR1 = (80,50,30) #Ok HR2 = (44,4,9) hair_color_ep = 'Bronze' elif e > 300000: HR1 = HR5 HR2 = HR3 hair_color_ep = 'Ginger' elif e > 150000: HR1 = (220,130,0) #ok HR2 = (70,40,10) hair_color_ep = 'Mango' else: HR1 = (210,210,210) #Ok HR2 = (210,210,210) hair_color_ep = 'Grey Goose' seed(e) f=randint(0,1000000) seed(f) g=randint(0,1000000) if g > 960000: hair_prop = CAP_2 hair_prop_ep = 'Cap' elif g > 940000: hair_prop = COWBOY_2 hair_prop_ep = 'Cowboy Hat' elif g > 920000: hair_prop = TOPHAT_2 hair_prop_ep = 'Top Hat' elif g > 890000: hair_prop = Helmet hair_prop_ep = 'Dwarf Helmet' tete = 99 elif g > 870000: hair_prop = FORCAP_2 hair_prop_ep = 'Cap Forward' elif g > 850000: hair_prop = BANDANA_2 hair_prop_ep = 'Bandana' elif g > 830000: hair_prop = FEDORA_2 hair_prop_ep = 'Fedora' elif g > 800000: hair_prop = POLICE_2 hair_prop_ep = 'Police' else: hair_prop = none hair_prop_ep = 'None' seed(g) h=randint(0,1000000) if h > 900000: mouth_prop = CIGARETTE mouth_prop_ep = 'Cigarette' elif h > 840000: mouth_prop = PIPE mouth_prop_ep = 'Pipe' elif h > 800000: mouth_prop = VAPE mouth_prop_ep = 'Vape' else: mouth_prop = none mouth_prop_ep = 'None' # seed(h) # i=randint(0,1000000) # if i > 300000: # EY1 = (255,255,255) # elif i > 50000: # EY1 = (0,0,255) # else: # EY1 = (0,255,0) seed(h) i=randint(0,1000000) if i > 970000: eyes = TD_2 eyes_prop_ep ='3D Glasses' elif i > 930000: eyes = VR_2 eyes_prop_ep ='VR' elif i > 880000: eyes = ClassicShades_2 eyes_prop_ep ='Classic Shades' elif i > 830000: eyes = SmallShades_2 eyes_prop_ep ='Small Shades' elif i > 780000: eyes = EyePatch_2 eyes_prop_ep ='Eye Patch' elif i > 730000: eyes = NerdGlasses_2 eyes_prop_ep ='Nerd Glasses' elif i > 680000: eyes = BigShades_2 eyes_prop_ep ='Big Shades' elif i > 650000: eyes = EyeMask_2 eyes_prop_ep ='Eye Mask' elif i > 600000: eyes = HornedRimGlasses_2 eyes_prop_ep ='Horned Rim Glasses' elif i > 550000: eyes = RegularShades_2 eyes_prop_ep ='Regular Shades' else: eyes=none eyes_prop_ep ='None' if tete == 99: eyes = none eyes_prop_ep ='None' seed(i) j=randint(0,1000000) if j > 975000: nose = NOSE_1 nose_ep = 'Clown Nose' else: nose = none nose_ep = 'None' seed(j) k=randint(0,1000000) if k > 975000: mouth = SMILE mouth_ep = 'Smile' elif k > 950000: mouth = FROWN mouth_ep = 'Frown' else: mouth = none mouth_ep = 'None' MOLE=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,MO1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] SCARE_1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] ROSY_1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,RC1,0,0,0,0,RC1,RC1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,RC1,0,0,0,0,0,RC1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] seed(k) l=randint(0,1000000) if l > 970000: blemishes = ROSY_1 blemishe_ep = 'Rosy Cheeks' elif l > 900000: blemishes = MOLE blemishe_ep = 'Mole' elif l > 870000: blemishes = SCARE_1 blemishe_ep = 'Scare' else: blemishes = none blemishe_ep = 'None' DWARF_4=[ [FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,HR1,HR1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,HR1,HR1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,HR1,HR1,HR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,HR1,HR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,HR1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,HR1,HR1,SK1,SK1,SK1,SK1,SK1,HR1,HR1,SK1,HR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,HR1,HR1,SC1,SC1,SK1,SK1,SK1,SC1,SC1,SK1,SK1,HR1,HR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,HR1,HR1,EY1,FR1,SK1,SK1,SK1,EY1,FR1,SK1,SK1,HR1,HR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,HR1,HR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,HR1,HR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,HR1,HR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,HR1,HR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,HR1,HR1,SK1,SK1,FR1,FR1,SK1,SK1,SK1,SK1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,HR1,HR1,SK1,SK1,SK1,SK1,SK1,SK1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,HR1,HR1,HR1,SK1,SK1,SK1,SK1,SK1,HR1,HR1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,HR1,HR1,HR1,SK1,FR1,FR1,FR1,SK1,HR1,HR1,SK1,HR1,HR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,HR1,HR1,SK1,SK1,SK1,HR1,SK1,SK1,SK1,SK1,SK1,HR1,HR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,HR1,HR1,SK1,HR1,HR1,HR1,SK1,SK1,SK1,HR1,HR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,HR1,HR1,HR1,HR1,HR1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,FR2,FR2,FR2,FR2,FR2,FR2,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,SK1,FR1,FR2,FR2,FR2,FR2,FR2,FR2] ] pixels = DWARF_4 elif b > 420000: race_ep = 'Dwarves' type_ep = 'Stonefoots' hair_color_ep = 'None' haircut_ep = 'None' hair_prop_ep = 'None' eyes_prop_ep = 'None' blemishe_ep = 'None' eyes_color_ep = 'None' facial_hair_ep = 'None' mouth_prop_ep = 'None' mouth_ep = 'None' tooth_color_ep = 'None' nose_ep = 'None' neck_ep = 'None' ears_ep = 'None' skin_ep = 'None' ears = none hair = none hair_prop = none neck = none blemishes = none #tooth color mouth = none facial_hair = none rod = none mouth_prop = none #eye color eyes = none nose = none seed(b) c=randint(0,1000000) if c > 800000: SK1 = (234,217,217) SC1 = (165,141,141) EY1 = (201,178,178) SK2 = (255,255,255) HRG3 = (220,222,234) HRG2 = (183,179,191) HRG4 = (203,200,212) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (226,187,185) MO1 = EY1 SCR1 = EY1 skin_ep = 'Albino' elif c > 500000: SK1 = (219,177,128) SC1 = (166,110,44) EY1 = (210,157,96) SK2 = (235,203,166) HRG3 = (213,200,183) HRG2 = (184,163,135) HRG4 = (209,189,164) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (215,154,104) MO1 = EY1 SCR1 = EY1 skin_ep = 'Light' elif c > 200000: SK1 = (174,139,97) SC1 = (134,88,30) EY1 = (167,124,71) SK2 = (178,138,93) HRG3 = (188,179,165) HRG2 = (166,150,128) HRG4 = (184,171,151) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (191,105,71) MO1 = EY1 SCR1 = EY1 skin_ep = 'Mid' else: SK1 = (113,63,29) SC1 = (86,39,10) EY1 = (114,55,17) SK2 = (146,79,35) HRG3 = (155,135,127) HRG2 = (139,121,111) HRG4 = (156,131,115) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (142,36,2) MO1 = EY1 SCR1 = EY1 skin_ep = 'Dark' seed(c) d=randint(0,1000000) if d > 750000: ears = EARS_2 ears_ep = 'Earring' else: ears = none ears_ep = 'None' seed(d) e=randint(0,1000000) HR0 = (255,193,0) HR8 = (251,114,7) HR3 = (210,154,0) HR4 = (166,165,165) HR5 = (165,108,0) HR6 = (111,0,48) HR7 = (85,57,23) if e > 860000: HR1 = (50,50,50) #Ok HR2 = (200,200,200) hair_color_ep = 'Dark Grey & Silver' elif e > 720000: HR1 = HR8 HR2 = (111,0,48) #ok hair_color_ep = 'Orange & Black Rose' elif e > 580000: HR1 = HR3 #ok HR2 = (210,210,0) hair_color_ep = 'Fair & Wattle' elif e > 440000: HR1 = (80,50,30) #Ok HR2 = (44,4,9) hair_color_ep = 'Bronze & Chocolate' elif e > 300000: HR1 = HR5 HR2 = HR3 hair_color_ep = 'Ginger & Fair' elif e > 150000: HR1 = (220,130,0) #ok HR2 = (70,40,10) hair_color_ep = 'Mango & Brown' else: HR1 = (210,210,210) #Ok HR2 = (210,210,210) hair_color_ep = 'Grey Goose' seed(e) f=randint(0,1000000) seed(f) g=randint(0,1000000) if g > 960000: hair_prop = CAP_2 hair_prop_ep = 'Cap' elif g > 940000: hair_prop = COWBOY_2 hair_prop_ep = 'Cowboy Hat' elif g > 920000: hair_prop = TOPHAT_2 hair_prop_ep = 'Top Hat' elif g > 890000: hair_prop = Helmet hair_prop_ep = 'Dwarf Helmet' tete = 99 elif g > 870000: hair_prop = FORCAP_2 hair_prop_ep = 'Cap Forward' elif g > 850000: hair_prop = BANDANA_2 hair_prop_ep = 'Bandana' elif g > 830000: hair_prop = FEDORA_2 hair_prop_ep = 'Fedora' elif g > 800000: hair_prop = POLICE_2 hair_prop_ep = 'Police' else: hair_prop = none hair_prop_ep = 'None' seed(g) h=randint(0,1000000) if h > 900000: mouth_prop = CIGARETTE mouth_prop_ep = 'Cigarette' elif h > 840000: mouth_prop = PIPE mouth_prop_ep = 'Pipe' elif h > 800000: mouth_prop = VAPE mouth_prop_ep = 'Vape' else: mouth_prop = none mouth_prop_ep = 'None' # seed(h) # i=randint(0,1000000) # if i > 300000: # EY1 = (255,255,255) # elif i > 50000: # EY1 = (0,0,255) # else: # EY1 = (0,255,0) seed(h) i=randint(0,1000000) if i > 970000: eyes = TD_2 eyes_prop_ep ='3D Glasses' elif i > 930000: eyes = VR_2 eyes_prop_ep ='VR' elif i > 880000: eyes = ClassicShades_2 eyes_prop_ep ='Classic Shades' elif i > 830000: eyes = SmallShades_2 eyes_prop_ep ='Small Shades' elif i > 780000: eyes = EyePatch_2 eyes_prop_ep ='Eye Patch' elif i > 730000: eyes = NerdGlasses_2 eyes_prop_ep ='Nerd Glasses' elif i > 680000: eyes = BigShades_2 eyes_prop_ep ='Big Shades' elif i > 650000: eyes = EyeMask_2 eyes_prop_ep ='Eye Mask' elif i > 600000: eyes = HornedRimGlasses_2 eyes_prop_ep ='Horned Rim Glasses' elif i > 550000: eyes = RegularShades_2 eyes_prop_ep ='Regular Shades' else: eyes=none eyes_prop_ep ='None' if tete == 99: eyes = none eyes_prop_ep ='None' seed(i) j=randint(0,1000000) if j > 975000: nose = NOSE_1 nose_ep = 'Clown Nose' else: nose = none nose_ep = 'None' seed(j) k=randint(0,1000000) if k > 975000: mouth = SMILE mouth_ep = 'Smile' elif k > 950000: mouth = FROWN mouth_ep = 'Frown' else: mouth = none mouth_ep = 'None' MOLE=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,MO1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] SCARE_1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] ROSY_1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,RC1,0,0,0,0,RC1,RC1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,RC1,0,0,0,0,0,RC1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] seed(k) l=randint(0,1000000) if l > 970000: blemishes = ROSY_1 blemishe_ep = 'Rosy Cheeks' elif l > 900000: blemishes = MOLE blemishe_ep = 'Mole' elif l > 870000: blemishes = SCARE_1 blemishe_ep = 'Scare' else: blemishes = none blemishe_ep = 'None' DWARF_5=[ [FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,FR1,FR1,FR1,FR1,FR1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,HR1,HR1,HR1,SK1,SK1,SK1,HR1,HR1,HR1,SK1,HR1,HR1,HR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,HR1,SC1,SC1,HR1,SK1,HR1,SC1,SC1,HR1,SK1,HR1,FR1,HR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,EY1,FR1,SK1,SK1,SK1,EY1,FR1,SK1,HR1,SK1,FR1,HR1,HR1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,HR1,FR1,FR1,HR1,HR1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,HR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,HR1,FR1,BG1,HR1,HR1,HR1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,HR1,SK1,SK1,FR1,FR1,SK1,SK1,SK1,SK1,HR1,FR1,BG1,HR1,HR1,HR1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,HR1,SK1,SK1,HR2,HR2,SK1,SK1,SK1,HR1,HR1,FR1,BG1,HR1,HR1,HR1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,HR1,HR1,HR2,HR2,HR2,HR2,HR2,HR1,HR1,HR1,FR1,BG1,HR1,HR1,HR1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,HR1,HR2,HR2,FR1,FR1,FR1,HR2,HR2,HR1,HR1,FR1,BG1,HR1,HR1,HR1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,HR2,HR2,HR1,HR2,HR2,HR2,HR1,HR2,HR2,HR1,FR1,BG1,HR1,HR1,HR1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,HR2,HR2,HR1,HR2,HR2,HR2,HR2,HR2,HR1,HR2,HR2,FR1,BG1,HR1,HR1,HR1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,HR2,BG1,HR2,HR2,HR2,HR1,HR2,HR2,HR2,HR1,HR2,FR1,BG1,HR1,HR1,HR1,HR1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,HR2,BG1,HR2,HR2,BG1,BG1,BG1,HR2,HR2,HR1,HR2,FR1,BG1,BG1,HR1,HR1,HR1,FR2], [FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,HR2,FR2,FR2,FR2,FR2,FR1,HR2,SK1,SK1,FR1,FR2,FR2,FR2,FR2,FR2,FR2] ] pixels = DWARF_5 elif b > 410000: race_ep = 'Dwarves' type_ep = 'Ironfists' hair_color_ep = 'None' haircut_ep = 'None' hair_prop_ep = 'None' eyes_prop_ep = 'None' blemishe_ep = 'None' eyes_color_ep = 'None' facial_hair_ep = 'None' mouth_prop_ep = 'None' mouth_ep = 'None' tooth_color_ep = 'None' nose_ep = 'None' neck_ep = 'None' ears_ep = 'None' skin_ep = 'None' ears = none hair = none hair_prop = none neck = none blemishes = none #tooth color mouth = none facial_hair = none rod = none mouth_prop = none #eye color eyes = none nose = none seed(b) c=randint(0,1000000) if c > 800000: SK1 = (234,217,217) SC1 = (165,141,141) EY1 = (201,178,178) SK2 = (255,255,255) HRG3 = (220,222,234) HRG2 = (183,179,191) HRG4 = (203,200,212) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (226,187,185) MO1 = EY1 SCR1 = EY1 skin_ep = 'Albino' elif c > 500000: SK1 = (219,177,128) SC1 = (166,110,44) EY1 = (210,157,96) SK2 = (235,203,166) HRG3 = (213,200,183) HRG2 = (184,163,135) HRG4 = (209,189,164) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (215,154,104) MO1 = EY1 SCR1 = EY1 skin_ep = 'Light' elif c > 200000: SK1 = (174,139,97) SC1 = (134,88,30) EY1 = (167,124,71) SK2 = (178,138,93) HRG3 = (188,179,165) HRG2 = (166,150,128) HRG4 = (184,171,151) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (191,105,71) MO1 = EY1 SCR1 = EY1 skin_ep = 'Mid' else: SK1 = (113,63,29) SC1 = (86,39,10) EY1 = (114,55,17) SK2 = (146,79,35) HRG3 = (155,135,127) HRG2 = (139,121,111) HRG4 = (156,131,115) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (142,36,2) MO1 = EY1 SCR1 = EY1 skin_ep = 'Dark' seed(c) d=randint(0,1000000) if d > 750000: ears = EARS_2 ears_ep = 'Earring' else: ears = none ears_ep = 'None' seed(d) e=randint(0,1000000) HR0 = (255,193,0) HR8 = (251,114,7) HR3 = (210,154,0) HR4 = (166,165,165) HR5 = (165,108,0) HR6 = (111,0,48) HR7 = (85,57,23) if e > 860000: HR1 = (50,50,50) #Ok HR2 = (200,200,200) hair_color_ep = 'Dark Grey & Silver' elif e > 720000: HR1 = HR8 HR2 = (111,0,48) #ok hair_color_ep = 'Orange & Black Rose' elif e > 580000: HR1 = HR3 #ok HR2 = (210,210,0) hair_color_ep = 'Fair & Wattle' elif e > 440000: HR1 = (80,50,30) #Ok HR2 = (44,4,9) hair_color_ep = 'Bronze & Chocolate' elif e > 300000: HR1 = HR5 HR2 = HR3 hair_color_ep = 'Ginger & Fair' elif e > 150000: HR1 = (220,130,0) #ok HR2 = (70,40,10) hair_color_ep = 'Mango & Brown' else: HR1 = (210,210,210) #Ok HR2 = (210,210,210) hair_color_ep = 'Grey Goose' seed(e) f=randint(0,1000000) seed(f) g=randint(0,1000000) if g > 960000: hair_prop = CAP_2 hair_prop_ep = 'Cap' elif g > 940000: hair_prop = COWBOY_2 hair_prop_ep = 'Cowboy Hat' elif g > 920000: hair_prop = TOPHAT_2 hair_prop_ep = 'Top Hat' elif g > 890000: hair_prop = Helmet hair_prop_ep = 'Dwarf Helmet' tete = 99 elif g > 870000: hair_prop = FORCAP_2 hair_prop_ep = 'Cap Forward' elif g > 850000: hair_prop = BANDANA_2 hair_prop_ep = 'Bandana' elif g > 830000: hair_prop = FEDORA_2 hair_prop_ep = 'Fedora' elif g > 800000: hair_prop = POLICE_2 hair_prop_ep = 'Police' else: hair_prop = none hair_prop_ep = 'None' seed(g) h=randint(0,1000000) if h > 900000: mouth_prop = CIGARETTE mouth_prop_ep = 'Cigarette' elif h > 840000: mouth_prop = PIPE mouth_prop_ep = 'Pipe' elif h > 800000: mouth_prop = VAPE mouth_prop_ep = 'Vape' else: mouth_prop = none mouth_prop_ep = 'None' # seed(h) # i=randint(0,1000000) # if i > 300000: # EY1 = (255,255,255) # elif i > 50000: # EY1 = (0,0,255) # else: # EY1 = (0,255,0) seed(h) i=randint(0,1000000) if i > 970000: eyes = TD_2 eyes_prop_ep ='3D Glasses' elif i > 930000: eyes = VR_2 eyes_prop_ep ='VR' elif i > 880000: eyes = ClassicShades_2 eyes_prop_ep ='Classic Shades' elif i > 830000: eyes = SmallShades_2 eyes_prop_ep ='Small Shades' elif i > 780000: eyes = EyePatch_2 eyes_prop_ep ='Eye Patch' elif i > 730000: eyes = NerdGlasses_2 eyes_prop_ep ='Nerd Glasses' elif i > 680000: eyes = BigShades_2 eyes_prop_ep ='Big Shades' elif i > 650000: eyes = EyeMask_2 eyes_prop_ep ='Eye Mask' elif i > 600000: eyes = HornedRimGlasses_2 eyes_prop_ep ='Horned Rim Glasses' elif i > 550000: eyes = RegularShades_2 eyes_prop_ep ='Regular Shades' else: eyes=none eyes_prop_ep ='None' if tete == 99: eyes = none eyes_prop_ep ='None' seed(i) j=randint(0,1000000) if j > 975000: nose = NOSE_1 nose_ep = 'Clown Nose' else: nose = none nose_ep = 'None' seed(j) k=randint(0,1000000) if k > 975000: mouth = SMILE mouth_ep = 'Smile' elif k > 950000: mouth = FROWN mouth_ep = 'Frown' else: mouth = none mouth_ep = 'None' MOLE=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,MO1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] SCARE_1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] ROSY_1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,RC1,0,0,0,0,RC1,RC1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,RC1,0,0,0,0,0,RC1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] seed(k) l=randint(0,1000000) if l > 970000: blemishes = ROSY_1 blemishe_ep = 'Rosy Cheeks' elif l > 900000: blemishes = MOLE blemishe_ep = 'Mole' elif l > 870000: blemishes = SCARE_1 blemishe_ep = 'Scare' else: blemishes = none blemishe_ep = 'None' DWARF_6=[ [FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,HR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,HR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,HR1,FR1,SC1,SC1,SK1,SK1,SK1,SC1,SC1,SK1,SK1,HR2,HR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR2,FR1,EY1,FR1,SK1,SK1,SK1,EY1,FR1,SK1,SK1,HR1,HR2,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR2,HR1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,HR2,HR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR2,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,HR1,HR2,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR2,HR1,FR1,SK1,SK1,FR1,FR1,SK1,SK1,SK1,SK1,SK1,HR2,HR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR2,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,HR2,HR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,HR1,HR2,BG1,FR1,SK1,SK1,HR1,HR1,HR1,SK1,SK1,SK1,SK1,FR1,HR1,HR2,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,HR2,HR1,BG1,FR1,SK1,HR1,FR1,FR1,FR1,HR1,SK1,SK1,SK1,FR1,BG1,HR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,HR1,BG1,BG1,HR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,HR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,HR1,HR2,HR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,HR1,HR2,HR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR2,HR1,HR2,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR2,HR1,HR2,HR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR2,HR1,HR2,HR1,HR1,HR1,HR1,BG1,HR1,HR1,HR1,HR1,HR2,HR1,HR2,BG1,BG1,BG1,FR2], [FR2,FR2,FR2,FR2,FR2,HR1,HR2,HR1,FR2,HR1,HR1,FR2,FR2,FR1,HR1,HR1,SK1,HR1,HR2,HR1,FR2,FR2,FR2,FR2] ] pixels = DWARF_6 elif b > 400000: race_ep = 'Dwarves' type_ep = 'Longbeards' hair_color_ep = 'None' haircut_ep = 'None' hair_prop_ep = 'None' eyes_prop_ep = 'None' blemishe_ep = 'None' eyes_color_ep = 'None' facial_hair_ep = 'None' mouth_prop_ep = 'None' mouth_ep = 'None' tooth_color_ep = 'None' nose_ep = 'None' neck_ep = 'None' ears_ep = 'None' skin_ep = 'None' ears = none hair = none hair_prop = none neck = none blemishes = none #tooth color mouth = none facial_hair = none rod = none mouth_prop = none #eye color eyes = none nose = none seed(b) c=randint(0,1000000) if c > 800000: SK1 = (234,217,217) SC1 = (165,141,141) EY1 = (201,178,178) SK2 = (255,255,255) HRG3 = (220,222,234) HRG2 = (183,179,191) HRG4 = (203,200,212) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (226,187,185) MO1 = EY1 SCR1 = EY1 skin_ep = 'Albino' elif c > 500000: SK1 = (219,177,128) SC1 = (166,110,44) EY1 = (210,157,96) SK2 = (235,203,166) HRG3 = (213,200,183) HRG2 = (184,163,135) HRG4 = (209,189,164) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (215,154,104) MO1 = EY1 SCR1 = EY1 skin_ep = 'Light' elif c > 200000: SK1 = (174,139,97) SC1 = (134,88,30) EY1 = (167,124,71) SK2 = (178,138,93) HRG3 = (188,179,165) HRG2 = (166,150,128) HRG4 = (184,171,151) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (191,105,71) MO1 = EY1 SCR1 = EY1 skin_ep = 'Mid' else: SK1 = (113,63,29) SC1 = (86,39,10) EY1 = (114,55,17) SK2 = (146,79,35) HRG3 = (155,135,127) HRG2 = (139,121,111) HRG4 = (156,131,115) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (142,36,2) MO1 = EY1 SCR1 = EY1 skin_ep = 'Dark' seed(c) d=randint(0,1000000) if d > 750000: ears = EARS_2 ears_ep = 'Earring' else: ears = none ears_ep = 'None' seed(d) e=randint(0,1000000) HR0 = (255,193,0) HR8 = (251,114,7) HR3 = (210,154,0) HR4 = (166,165,165) HR5 = (165,108,0) HR6 = (111,0,48) HR7 = (85,57,23) if e > 860000: HR1 = (50,50,50) #Ok HR2 = (200,200,200) hair_color_ep = 'Dark Grey & Silver' elif e > 720000: HR1 = HR8 HR2 = (111,0,48) #ok hair_color_ep = 'Orange & Black Rose' elif e > 580000: HR1 = HR3 #ok HR2 = (210,210,0) hair_color_ep = 'Fair & Wattle' elif e > 440000: HR1 = (80,50,30) #Ok HR2 = (44,4,9) hair_color_ep = 'Bronze & Chocolate' elif e > 300000: HR1 = HR5 HR2 = HR3 hair_color_ep = 'Ginger & Fair' elif e > 150000: HR1 = (220,130,0) #ok HR2 = (70,40,10) hair_color_ep = 'Mango & Brown' else: HR1 = (210,210,210) #Ok HR2 = (210,210,210) hair_color_ep = 'Grey Goose' seed(e) f=randint(0,1000000) seed(f) g=randint(0,1000000) if g > 960000: hair_prop = CAP_2 hair_prop_ep = 'Cap' elif g > 940000: hair_prop = COWBOY_2 hair_prop_ep = 'Cowboy Hat' elif g > 920000: hair_prop = TOPHAT_2 hair_prop_ep = 'Top Hat' elif g > 890000: hair_prop = Helmet hair_prop_ep = 'Dwarf Helmet' tete = 99 elif g > 870000: hair_prop = FORCAP_2 hair_prop_ep = 'Cap Forward' elif g > 850000: hair_prop = BANDANA_2 hair_prop_ep = 'Bandana' elif g > 830000: hair_prop = FEDORA_2 hair_prop_ep = 'Fedora' elif g > 800000: hair_prop = POLICE_2 hair_prop_ep = 'Police' else: hair_prop = none hair_prop_ep = 'None' seed(g) h=randint(0,1000000) if h > 900000: mouth_prop = CIGARETTE mouth_prop_ep = 'Cigarette' elif h > 840000: mouth_prop = PIPE mouth_prop_ep = 'Pipe' elif h > 800000: mouth_prop = VAPE mouth_prop_ep = 'Vape' else: mouth_prop = none mouth_prop_ep = 'None' # seed(h) # i=randint(0,1000000) # if i > 300000: # EY1 = (255,255,255) # elif i > 50000: # EY1 = (0,0,255) # else: # EY1 = (0,255,0) seed(h) i=randint(0,1000000) if i > 970000: eyes = TD_2 eyes_prop_ep ='3D Glasses' elif i > 930000: eyes = VR_2 eyes_prop_ep ='VR' elif i > 880000: eyes = ClassicShades_2 eyes_prop_ep ='Classic Shades' elif i > 830000: eyes = SmallShades_2 eyes_prop_ep ='Small Shades' elif i > 780000: eyes = EyePatch_2 eyes_prop_ep ='Eye Patch' elif i > 730000: eyes = NerdGlasses_2 eyes_prop_ep ='Nerd Glasses' elif i > 680000: eyes = BigShades_2 eyes_prop_ep ='Big Shades' elif i > 650000: eyes = EyeMask_2 eyes_prop_ep ='Eye Mask' elif i > 600000: eyes = HornedRimGlasses_2 eyes_prop_ep ='Horned Rim Glasses' elif i > 550000: eyes = RegularShades_2 eyes_prop_ep ='Regular Shades' else: eyes=none eyes_prop_ep ='None' if tete == 99: eyes = none eyes_prop_ep ='None' seed(i) j=randint(0,1000000) if j > 975000: nose = NOSE_1 nose_ep = 'Clown Nose' else: nose = none nose_ep = 'None' seed(j) k=randint(0,1000000) if k > 975000: mouth = SMILE mouth_ep = 'Smile' elif k > 950000: mouth = FROWN mouth_ep = 'Frown' else: mouth = none mouth_ep = 'None' MOLE=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,MO1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] SCARE_1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] ROSY_1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,RC1,0,0,0,0,RC1,RC1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,RC1,0,0,0,0,0,RC1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] seed(k) l=randint(0,1000000) if l > 970000: blemishes = ROSY_1 blemishe_ep = 'Rosy Cheeks' elif l > 900000: blemishes = MOLE blemishe_ep = 'Mole' elif l > 870000: blemishes = SCARE_1 blemishe_ep = 'Scare' else: blemishes = none blemishe_ep = 'None' DWARF_7=[ [FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,HR1,HR1,SK1,HR1,HR1,HR1,HR1,SK1,SK1,HR1,HR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,HR1,HR2,SK1,SK1,SK1,HR1,HR1,SK1,SK1,SK1,SK1,HR2,HR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,HR2,HR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,HR1,HR2,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR2,HR1,HR2,SK1,SK1,SK1,SK1,SK1,HR2,SK1,SK1,HR1,HR2,HR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR2,HR1,SC1,SC1,SK1,SK1,SK1,SC1,SC1,SK1,SK1,HR1,HR2,HR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR2,HR1,EY1,FR1,SK1,SK1,SK1,EY1,FR1,SK1,SK1,HR1,HR2,HR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR2,HR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,HR1,HR2,HR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR2,HR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,HR1,HR2,HR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR2,HR1,HR1,SK1,SK1,FR1,FR1,SK1,SK1,SK1,SK1,HR2,HR1,HR1,HR2,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,HR1,HR2,HR1,HR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,HR2,HR1,HR1,HR2,HR1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,HR1,HR2,HR1,HR1,SK1,HR2,HR2,HR2,HR2,HR2,SK1,HR2,HR2,HR1,HR1,HR2,HR1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,HR1,HR2,HR1,HR1,SK1,HR2,FR1,FR1,FR1,HR2,SK1,HR2,HR2,HR1,HR1,HR2,HR1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,HR1,HR2,HR1,HR1,HR2,HR2,HR2,HR2,HR2,HR2,HR2,HR2,SK1,HR1,HR1,HR2,HR1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,HR1,HR2,HR1,HR1,FR1,HR2,SK1,HR2,SK1,HR2,SK1,SK1,SK1,HR1,HR1,HR2,HR1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,HR2,HR1,HR1,HR1,HR2,FR1,FR1,FR1,FR1,FR1,HR2,SK1,SK1,HR1,HR1,HR1,HR2,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,HR2,HR1,BG1,HR2,BG1,BG1,BG1,BG1,BG1,FR1,SK1,HR2,SK1,FR1,BG1,HR1,HR2,BG1,BG1,FR2], [FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR1,SK1,SK1,SK1,FR1,FR2,FR2,FR2,FR2,FR2,FR2] ] pixels = DWARF_7 elif b > 250000: race_ep = 'Gobelins' type_ep = 'None' hair_color_ep = 'None' haircut_ep = 'None' hair_prop_ep = 'None' eyes_prop_ep = 'None' blemishe_ep = 'None' eyes_color_ep = 'None' facial_hair_ep = 'None' mouth_prop_ep = 'None' mouth_ep = 'None' tooth_color_ep = 'None' nose_ep = 'None' neck_ep = 'None' ears_ep = 'None' skin_ep = 'None' ears = none hair = none hair_prop = none neck = none blemishes = none #tooth color mouth = none facial_hair = none rod = none mouth_prop = none #eye color eyes = none nose = none seed(b) c=randint(0,1000000) if c > 800000: SK1 = (112,168,104) #ZOMBO SC1 = (88,117,83) MO1 = SC1 SCR1 = SC1 skin_ep = 'Green' elif c > 700000: SK1 = (145,0,185) #PURPLE SC1 = (120,0,160) MO1 = SC1 SCR1 = SC1 skin_ep = 'Purple' elif c > 400000: SK1 = (185,160,60) #DARK GREEN SC1 = (150,125,25) MO1 = SC1 SCR1 = SC1 skin_ep = 'Camel' else: SK1 = (205,205,57) #JAUNE SC1 = (130,119,23) MO1 = SC1 SCR1 = SC1 skin_ep = 'Wattle' seed(c) d=randint(0,1000000) if d > 750000: ears = EARS_2 ears_ep = 'Earring' else: ears = none ears_ep = 'None' seed(d) e=randint(0,1000000) if e > 960000: hair_prop = CAP_2 hair_prop_ep = 'Cap' elif e > 940000: hair_prop = COWBOY_5 hair_prop_ep = 'Cowboy Hat' elif e > 920000: hair_prop = TOPHAT_2 hair_prop_ep = 'Top Hat' elif e > 870000: hair_prop = KNITTED_5 hair_prop_ep = 'Knitted Cap' elif e > 850000: hair_prop = Gobelin_Crown hair_prop_ep = 'Gobelins Crown' elif e > 830000: hair_prop = FORCAP_2 hair_prop_ep = 'Cap Forward' elif e > 800000: hair_prop = BANDANA_2 hair_prop_ep = 'Bandana' elif e > 780000: hair_prop = FEDORA_5 hair_prop_ep = 'Fedora' elif e > 750000: hair_prop = POLICE_2 hair_prop_ep = 'Police' elif e > 740000: hair_prop = BEANI_2 hair_prop_ep = 'Beanie' else: hair_prop = none hair_prop_ep = 'None' seed(e) f=randint(0,1000000) if f > 900000: neck = GoldChain_1 neck_ep = 'Gold Chain' elif f > 820000: neck = SilverChain_1 neck_ep = 'Silver Chain' elif f > 800000: neck = RING_1 neck_ep = 'Ring Onchain' else: neck = none neck_ep = 'None' seed(f) g=randint(0,1000000) if g > 300000: DE1 = (255,255,255) tooth_color_ep = 'White' elif g > 200000: DE1 = (163,110,16) tooth_color_ep = 'Brown' elif g > 80000: DE1 = (255,203,0) tooth_color_ep = 'Gold' else : DE1 = (200,0,0) tooth_color_ep = 'Blood' seed(g) h=randint(0,1000000) if h > 900000: mouth_prop = CIGARETTE mouth_prop_ep = 'Cigarette' elif h > 880000: mouth_prop = MASK_1 mouth_prop_ep = 'Medical Mask' elif h > 820000: mouth_prop = PIPE mouth_prop_ep = 'Pipe' elif h > 780000: mouth_prop = VAPE mouth_prop_ep = 'Vape' else: mouth_prop = none mouth_prop_ep = 'None' seed(h) i=randint(0,1000000) if i > 400000: EY1 = (255,255,255) eyes_color_ep = 'White' elif i > 300000: EY1 = (214,92,26) eyes_color_ep = "Orange" elif i > 200000: EY1 = (176,61,133) eyes_color_ep = "Purple" elif i > 100000: EY1 = (255,255,0) eyes_color_ep = 'Yellow' else: EY1 = (255,0,0) eyes_color_ep = 'Red' seed(i) j=randint(0,1000000) if j > 970000: eyes = TD_2 eyes_prop_ep ='3D Glasses' elif j > 930000: eyes = VR_2 eyes_prop_ep ='VR' elif j > 880000: eyes = ClassicShades_2 eyes_prop_ep ='Classic Shades' elif j > 830000: eyes = SmallShades_2 eyes_prop_ep ='Small Shades' elif j > 780000: eyes = EyePatch_2 eyes_prop_ep ='Eye Patch' elif j > 730000: eyes = NerdGlasses_2 eyes_prop_ep ='Nerd Glasses' elif j > 680000: eyes = BigShades_2 eyes_prop_ep ='Big Shades' elif j > 650000: eyes = EyeMask_2 eyes_prop_ep ='Eye Mask' elif j > 600000: eyes = HornedRimGlasses_2 eyes_prop_ep ='Horned Rim Glasses' elif j > 550000: eyes = RegularShades_2 eyes_prop_ep ='Regular Shades' else: eyes=none eyes_prop_ep ='None' MOLE=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,MO1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] SCARE_1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,SCR1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] ROSY_1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,RC1,0,0,0,0,RC1,RC1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,RC1,0,0,0,0,0,RC1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] seed(j) k=randint(0,1000000) if k > 970000: blemishes = MOLE blemishe_ep = 'Mole' elif k > 940000: blemishes = SCARE_1 blemishe_ep = 'Scare' else: blemishes = none blemishe_ep = 'None' GOBELIN=[ [FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,FR1,FR1,FR1,FR1,FR1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,FR1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,FR1,SK1,FR1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SC1,SC1,SK1,SK1,SK1,SC1,SC1,SK1,SK1,SK1,FR1,SK1,FR1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,EY1,FR1,SK1,SK1,SK1,EY1,FR1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,FR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,FR1,SK1,FR1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,DE1,SK1,SK1,DE1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,FR1,FR1,FR1,FR1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,FR1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,FR1,FR1,FR1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR1,SK1,SK1,SK1,FR1,FR2,FR2,FR2,FR2,FR2,FR2] ] pixels = GOBELIN elif b > 150000: race_ep = 'Orcs' type_ep = 'None' hair_color_ep = 'None' haircut_ep = 'None' hair_prop_ep = 'None' eyes_prop_ep = 'None' blemishe_ep = 'None' eyes_color_ep = 'None' facial_hair_ep = 'None' mouth_prop_ep = 'None' mouth_ep = 'None' tooth_color_ep = 'None' nose_ep = 'None' neck_ep = 'None' ears_ep = 'None' skin_ep = 'None' ears = none hair = none hair_prop = none neck = none blemishes = none #tooth color mouth = none facial_hair = none rod = none mouth_prop = none #eye color eyes = none nose = none seed(b) c=randint(0,1000000) if c > 850000: SK1 = (112,112,112) #grey SC1 = (64,64,64) MO1 = SC1 SCR1 = SC1 skin_ep = 'Smokey Grey' elif c > 600000: SK1 = (220,220,220) #brown SC1 = (180,180,180) MO1 = SC1 SCR1 = SC1 skin_ep = 'Moon Grey' elif c > 100000: SK1 = (180,145,115) #Sand SC1 = (120,100,60) MO1 = SC1 SCR1 = SC1 skin_ep = 'Sand' else: SK1 = (153,0,0) #red SC1 = (102,0,0) MO1 = SC1 SCR1 = SC1 skin_ep = 'Red' seed(c) d=randint(0,1000000) if d > 750000: ears = EARS_1 ears_ep = 'Earring' else: ears = none ears_ep = 'None' seed(d) e=randint(0,1000000) if e > 960000: hair_prop = CAP_2 hair_prop_ep = 'Cap' elif e > 940000: hair_prop = COWBOY_4 hair_prop_ep = 'Cowboy Hat' elif e > 920000: hair_prop = TOPHAT_2 hair_prop_ep = 'Top Hat' elif e > 870000: hair_prop = KNITTED_6 hair_prop_ep = 'Knitted Cap' elif e > 860000: hair_prop = HEADBAND_2 hair_prop_ep = 'Headband' elif e > 830000: hair_prop = FORCAP_2 hair_prop_ep = 'Cap Forward' elif e > 800000: hair_prop = BANDANA_2 hair_prop_ep = 'Bandana' elif e > 780000: hair_prop = FEDORA_2 hair_prop_ep = 'Fedora' elif e > 750000: hair_prop = POLICE_2 hair_prop_ep = 'Police' elif e > 740000: hair_prop = BEANI_2 hair_prop_ep = 'Beanie' elif e > 700000: hair_prop = ORC_HELMET hair_prop_ep = 'Orc Helmet' tonton = 99 else: hair_prop = none hair_prop_ep = 'None' seed(e) f=randint(0,1000000) if f > 900000: neck = GoldChain_1 neck_ep = 'Gold Chain' elif f > 820000: neck = SilverChain_1 neck_ep = 'Silver Chain' elif f > 800000: neck = RING_1 neck_ep = 'Ring Onchain' else: neck = none neck_ep = 'None' seed(f) g=randint(0,1000000) if g > 300000: DE1 = (255,255,255) tooth_color_ep = 'White' elif g > 200000: DE1 = (163,110,16) tooth_color_ep = 'Brown' elif g > 80000: DE1 = (255,203,0) tooth_color_ep = 'Gold' else : DE1 = (200,0,0) tooth_color_ep = 'Blood' seed(g) h=randint(0,1000000) if h > 900000: mouth_prop = CIGARETTE mouth_prop_ep = 'Cigarette' elif h > 880000: mouth_prop = MASK_1 mouth_prop_ep = 'Medical Mask' elif h > 820000: mouth_prop = PIPE mouth_prop_ep = 'Pipe' elif h > 780000: mouth_prop = VAPE mouth_prop_ep = 'Vape' else: mouth_prop = none mouth_prop_ep = 'None' seed(h) i=randint(0,1000000) if i > 400000: EY1 = (255,255,255) eyes_color_ep = 'White' elif i > 300000: EY1 = (214,92,26) eyes_color_ep = "Orange" elif i > 200000: EY1 = (176,61,133) eyes_color_ep = "Purple" elif i > 100000: EY1 = (255,255,0) eyes_color_ep = 'Yellow' else: EY1 = (255,0,0) eyes_color_ep = 'Red' seed(i) j=randint(0,1000000) if j > 970000: eyes = TD_2 eyes_prop_ep ='3D Glasses' elif j > 930000: eyes = VR_2 eyes_prop_ep ='VR' elif j > 880000: eyes = ClassicShades_2 eyes_prop_ep ='Classic Shades' elif j > 830000: eyes = SmallShades_2 eyes_prop_ep ='Small Shades' elif j > 780000: eyes = EyePatch_2 eyes_prop_ep ='Eye Patch' elif j > 730000: eyes = BigShades_2 eyes_prop_ep ='Big Shades' elif j > 700000: eyes = EyeMask_2 eyes_prop_ep ='Eye Mask' elif j > 650000: eyes = HornedRimGlasses_2 eyes_prop_ep ='Horned Rim Glasses' elif j > 600000: eyes = RegularShades_2 eyes_prop_ep ='Regular Shades' else: eyes=none eyes_prop_ep ='None' tantan = 99 if tonton == 99 and tantan != 99: eyes = none eyes_prop_ep = 'None' MOLE=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,MO1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] ROSY_1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,RC1,0,0,0,0,RC1,RC1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,RC1,0,0,0,0,0,RC1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] seed(j) k=randint(0,1000000) if k > 970000: blemishes = MOLE blemishe_ep = 'Mole' else: blemishes = none blemishe_ep = 'None' ORC=[ [FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,FR1,FR1,FR1,FR1,FR1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,FR1,SK1,SK1,SK1,FR1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,FR1,SK1,SK1,SK1,SK1,SK1,FR1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,FR1,SK1,SK1,FR1,SK1,FR1,SK1,SK1,FR1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,FR1,SK1,SK1,SK1,FR1,SK1,SK1,FR1,BG1,BG1,BG1,FR1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,FR1,FR1,SK1,FR1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SC1,SC1,SK1,SK1,SK1,SC1,SC1,SK1,SK1,FR1,FR1,SK1,SK1,FR1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,EY1,FR1,SK1,SK1,SK1,EY1,FR1,SK1,SK1,SK1,SK1,FR1,FR1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,FR1,SK1,FR1,SK1,SK1,SK1,SK1,FR1,FR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,FR1,SK1,SK1,SK1,SK1,SK1,FR1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,DE1,SK1,SK1,DE1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,FR1,FR1,FR1,FR1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,FR1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,FR1,FR1,FR1,FR1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR1,SK1,SK1,SK1,FR1,FR2,FR2,FR2,FR2,FR2,FR2] ] pixels = ORC elif b > 135000: race_ep = 'Wizards' type_ep = 'White' hair_color_ep = 'None' haircut_ep = 'None' hair_prop_ep = 'None' eyes_prop_ep = 'None' blemishe_ep = 'None' eyes_color_ep = 'None' facial_hair_ep = 'None' mouth_prop_ep = 'None' mouth_ep = 'None' tooth_color_ep = 'None' nose_ep = 'None' neck_ep = 'None' ears_ep = 'None' skin_ep = 'None' ears = none hair = none hair_prop = none neck = none blemishes = none #tooth color mouth = none facial_hair = none rod = none mouth_prop = none #eye color eyes = none nose = none seed(b) c=randint(0,1000000) if c > 750000: SK1 = (234,217,217) SC1 = (165,141,141) EY1 = (201,178,178) SK2 = (255,255,255) HRG3 = (220,222,234) HRG2 = (183,179,191) HRG4 = (203,200,212) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (226,187,185) MO1 = EY1 SCR1 = EY1 skin_ep = 'Albino' elif c > 500000: SK1 = (219,177,128) SC1 = (166,110,44) EY1 = (210,157,96) SK2 = (235,203,166) HRG3 = (213,200,183) HRG2 = (184,163,135) HRG4 = (209,189,164) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (215,154,104) MO1 = EY1 SCR1 = EY1 skin_ep = 'Light' elif c > 250000: SK1 = (174,139,97) SC1 = (134,88,30) EY1 = (167,124,71) SK2 = (178,138,93) HRG3 = (188,179,165) HRG2 = (166,150,128) HRG4 = (184,171,151) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (191,105,71) MO1 = EY1 SCR1 = EY1 skin_ep = 'Mid' else: SK1 = (113,63,29) SC1 = (86,39,10) EY1 = (114,55,17) SK2 = (146,79,35) HRG3 = (155,135,127) HRG2 = (139,121,111) HRG4 = (156,131,115) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (142,36,2) MO1 = EY1 SCR1 = EY1 skin_ep = 'Dark' seed(c) d=randint(0,1000000) if d > 750000: ears = EARS_1 ears_ep = 'Earring' else: ears = none ears_ep = 'None' seed(d) e=randint(0,1000000) if e > 750000: HR1 = (140,140,140) hair_color_ep = 'Granite' elif e > 500000: HR1 = (90,90,90) hair_color_ep = 'Carbon Grey' elif e > 250000: HR1 = (240,240,240) hair_color_ep = 'Seashell' else: HR1 = (190,190,190) hair_color_ep = 'Silver' seed(e) f=randint(0,1000000) if f > 900000: mouth_prop = CIGARETTE mouth_prop_ep = 'Cigarette' elif f > 840000: mouth_prop = PIPE mouth_prop_ep = 'Pipe' elif f > 800000: mouth_prop = VAPE mouth_prop_ep = 'Vape' else: mouth_prop = none mouth_prop_ep = 'None' seed(f) g=randint(0,1000000) if g > 950000: hair_prop = COWBOY_7 hair_prop_ep = 'Cowboy Hat' elif g > 900000: hair_prop = TOPHAT_7 hair_prop_ep = 'Top Hat' elif e > 850000: hair_prop = KNITTED_7 hair_prop_ep = 'Knitted Cap' elif g > 800000: hair_prop = FORCAP_7 hair_prop_ep = 'Cap Forward' elif g > 750000: hair_prop = FEDORA_7 hair_prop_ep = 'Fedora' elif g > 700000: hair_prop = BANDANA_7 hair_prop_ep = 'Bandana' elif g > 650000: hair_prop = POLICE_7 hair_prop_ep = 'Police' elif g > 600000: hair_prop = CAP_7 hair_prop_ep = 'Cap' else: hair_prop = none hair_prop_ep = 'None' MOLE=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,MO1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] ROSY_1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,RC1,0,0,0,0,RC1,RC1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,RC1,0,0,0,0,0,RC1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] seed(g) h=randint(0,1000000) if h > 970000: blemishes = ROSY_1 blemishe_ep = 'Rosy Cheeks' elif h > 900000: blemishes = MOLE blemishe_ep = 'Mole' else: blemishes = none blemishe_ep = 'None' seed(h) i=randint(0,1000000) if i > 970000: eyes = TD_1 eyes_prop_ep ='3D Glasses' elif i > 930000: eyes = VR_1 eyes_prop_ep ='VR' elif i > 880000: eyes = ClassicShades_1 eyes_prop_ep ='Classic Shades' elif i > 830000: eyes = EyePatch_1 eyes_prop_ep ='Eye Patch' elif i > 780000: eyes = NerdGlasses_1 eyes_prop_ep ='Nerd Glasses' elif i > 730000: eyes = BigShades_1 eyes_prop_ep ='Big Shades' elif i > 700000: eyes = EyeMask_1 eyes_prop_ep ='Eye Mask' elif i > 650000: eyes = HornedRimGlasses_1 eyes_prop_ep ='Horned Rim Glasses' elif i > 600000: eyes = RegularShades_1 eyes_prop_ep ='Regular Shades' else: eyes=none eyes_prop_ep ='None' seed(i) j=randint(0,1000000) if j > 975000: nose = NOSE_1 nose_ep = 'Clown Nose' else: nose = none nose_ep = 'None' seed(j) k=randint(0,1000000) if k > 975000: mouth = SMILE mouth_ep = 'Smile' elif k > 950000: mouth = FROWN mouth_ep = 'Frown' else: mouth = none mouth_ep = 'None' WIZ_WHITE=[ [FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,HR1,HR1,BG1,BG1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,HR1,HR1,HR1,SK1,SK1,HR1,HR1,SK1,SK1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,HR1,HR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,HR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,HR1,HR1,HR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,HR1,HR1,HR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,FR1,SC1,SC1,SK1,SK1,SK1,SC1,SC1,SK1,SK1,HR1,HR1,HR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,FR1,EY1,FR1,SK1,SK1,SK1,EY1,FR1,SK1,SK1,HR1,HR1,HR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,HR1,HR1,HR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,HR1,HR1,HR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,HR1,HR1,HR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,FR1,SK1,SK1,FR1,FR1,SK1,SK1,SK1,SK1,SK1,HR1,HR1,HR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,FR1,SK1,HR1,HR1,HR1,HR1,HR1,SK1,SK1,SK1,HR1,HR1,HR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,FR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,FR1,HR1,HR1,HR1,FR1,FR1,FR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,FR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,FR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,HR1,FR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,FR1,FR1,HR1,HR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,HR1,HR1,FR1,HR1,HR1,FR1,FR1,FR1,FR1,SK1,FR1,HR1,HR1,BG1,BG1,BG1,FR2], [FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR1,FR1,FR2,FR1,FR2,FR2,FR2,FR1,FR2,FR2,FR2,FR2,FR2,FR2] ] pixels = WIZ_WHITE elif b > 110000: race_ep = 'Wizards' type_ep = 'Grey' hair_color_ep = 'None' haircut_ep = 'None' hair_prop_ep = 'None' eyes_prop_ep = 'None' blemishe_ep = 'None' eyes_color_ep = 'None' facial_hair_ep = 'None' mouth_prop_ep = 'None' mouth_ep = 'None' tooth_color_ep = 'None' nose_ep = 'None' neck_ep = 'None' ears_ep = 'None' skin_ep = 'None' ears = none hair = none hair_prop = none neck = none blemishes = none #tooth color mouth = none facial_hair = none rod = none mouth_prop = none #eye color eyes = none nose = none seed(b) c=randint(0,1000000) if c > 750000: SK1 = (234,217,217) SC1 = (165,141,141) EY1 = (201,178,178) SK2 = (255,255,255) HRG3 = (220,222,234) HRG2 = (183,179,191) HRG4 = (203,200,212) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (226,187,185) MO1 = EY1 SCR1 = EY1 skin_ep = 'Albino' elif c > 500000: SK1 = (219,177,128) SC1 = (166,110,44) EY1 = (210,157,96) SK2 = (235,203,166) HRG3 = (213,200,183) HRG2 = (184,163,135) HRG4 = (209,189,164) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (215,154,104) MO1 = EY1 SCR1 = EY1 skin_ep = 'Light' elif c > 250000: SK1 = (174,139,97) SC1 = (134,88,30) EY1 = (167,124,71) SK2 = (178,138,93) HRG3 = (188,179,165) HRG2 = (166,150,128) HRG4 = (184,171,151) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (191,105,71) MO1 = EY1 SCR1 = EY1 skin_ep = 'Mid' else: SK1 = (113,63,29) SC1 = (86,39,10) EY1 = (114,55,17) SK2 = (146,79,35) HRG3 = (155,135,127) HRG2 = (139,121,111) HRG4 = (156,131,115) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (142,36,2) MO1 = EY1 SCR1 = EY1 skin_ep = 'Dark' seed(c) d=randint(0,1000000) if d > 750000: ears = EARS_1 ears_ep = 'Earring' else: ears = none ears_ep = 'None' seed(d) e=randint(0,1000000) if e > 750000: CH1 = nr CH2= (130,130,130) HR1 = (160,160,160) BR1 = (190,190,190) hair_color_ep = 'Black & Granite' elif e > 500000: CH2 = (10,10,10) CH1= (50,50,50) HR1 = (160,160,160) BR1 = (190,190,190) hair_color_ep = 'Dark Grey & Black' elif e > 250000: CH1 = (130,130,130) CH2= (230,230,230) HR1 = (160,160,160) BR1 = (190,190,190) hair_color_ep = 'Granite & Seashell' else: CH1 = (50,50,50) CH2= (200,200,200) HR1 = (160,160,160) BR1 = (190,190,190) hair_color_ep = 'Dark Grey & Silver' seed(e) f=randint(0,1000000) if f > 900000: mouth_prop = CIGARETTE mouth_prop_ep = 'Cigarette' elif f > 840000: mouth_prop = PIPE mouth_prop_ep = 'Pipe' elif f > 800000: mouth_prop = VAPE mouth_prop_ep = 'Vape' else: mouth_prop = none mouth_prop_ep = 'None' seed(f) g=randint(0,1000000) MOLE=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,MO1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] ROSY_1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,RC1,0,0,0,0,RC1,RC1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,RC1,0,0,0,0,0,RC1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] seed(g) h=randint(0,1000000) if h > 970000: blemishes = ROSY_1 blemishe_ep = 'Rosy Cheeks' elif h > 900000: blemishes = MOLE blemishe_ep = 'Mole' else: blemishes = none blemishe_ep = 'None' seed(h) i=randint(0,1000000) if i > 970000: eyes = TD_1 eyes_prop_ep ='3D Glasses' elif i > 930000: eyes = VR_1 eyes_prop_ep ='VR' elif i > 880000: eyes = ClassicShades_1 eyes_prop_ep ='Classic Shades' elif i > 830000: eyes = EyePatch_1 eyes_prop_ep ='Eye Patch' elif i > 780000: eyes = NerdGlasses_1 eyes_prop_ep ='Nerd Glasses' elif i > 730000: eyes = BigShades_1 eyes_prop_ep ='Big Shades' elif i > 700000: eyes = EyeMask_1 eyes_prop_ep ='Eye Mask' elif i > 650000: eyes = HornedRimGlasses_1 eyes_prop_ep ='Horned Rim Glasses' elif i > 600000: eyes = RegularShades_1 eyes_prop_ep ='Regular Shades' else: eyes=none eyes_prop_ep ='None' seed(i) j=randint(0,1000000) if j > 975000: nose = NOSE_1 nose_ep = 'Clown Nose' else: nose = none nose_ep = 'None' seed(j) k=randint(0,1000000) if k > 975000: mouth = SMILE mouth_ep = 'Smile' elif k > 950000: mouth = FROWN mouth_ep = 'Frown' else: mouth = none mouth_ep = 'None' WIZ_GREY=[ [FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,CH1,CH1,CH1,CH1,CH1,CH1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,CH1,CH1,CH1,CH1,CH1,BG1,CH1,CH1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,BG1,BG1,CH1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,CH2,CH2,CH2,CH2,CH2,CH2,CH2,CH2,CH2,CH2,CH2,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,BG1,BG1,FR2], [FR2,BG1,BG1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,CH1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,HR1,HR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SC1,SC1,SK1,SK1,SK1,SC1,SC1,SK1,SK1,FR1,HR1,HR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,EY1,FR1,SK1,SK1,SK1,EY1,FR1,SK1,SK1,SK1,FR1,HR1,HR1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,HR1,HR1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,FR1,HR1,HR1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,HR1,HR1,HR1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,FR1,FR1,SK1,SK1,SK1,SK1,SK1,FR1,HR1,HR1,HR1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,BR1,BR1,BR1,BR1,BR1,SK1,SK1,SK1,FR1,HR1,HR1,HR1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,FR1,BR1,BR1,BR1,BR1,BR1,BR1,BR1,BR1,BR1,BR1,FR1,HR1,HR1,HR1,HR1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,FR1,BR1,BR1,BR1,FR1,FR1,FR1,BR1,BR1,BR1,BR1,BR1,FR1,HR1,HR1,HR1,HR1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,FR1,BR1,BR1,BR1,BR1,BR1,BR1,BR1,BR1,BR1,BR1,BR1,FR1,HR1,HR1,HR1,HR1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,BR1,BR1,BR1,BR1,BR1,BR1,BR1,BR1,BR1,BR1,FR1,HR1,HR1,HR1,HR1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,BR1,BR1,BR1,BR1,BR1,BR1,BR1,FR1,FR1,BG1,BG1,HR1,HR1,HR1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,BR1,BR1,FR1,FR1,FR1,FR1,SK1,FR1,BG1,BG1,BG1,HR1,HR1,FR2], [FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR1,FR1,FR2,FR1,SK1,SK1,SK1,FR1,FR2,FR2,FR2,FR2,FR2,FR2] ] pixels = WIZ_GREY elif b > 85000: race_ep = 'Wizards' type_ep = 'Tower' hair_color_ep = 'None' haircut_ep = 'None' hair_prop_ep = 'None' eyes_prop_ep = 'None' blemishe_ep = 'None' eyes_color_ep = 'None' facial_hair_ep = 'None' mouth_prop_ep = 'None' mouth_ep = 'None' tooth_color_ep = 'None' nose_ep = 'None' neck_ep = 'None' ears_ep = 'None' skin_ep = 'None' ears = none hair = none hair_prop = none neck = none blemishes = none #tooth color mouth = none facial_hair = none rod = none mouth_prop = none #eye color eyes = none nose = none seed(b) c=randint(0,1000000) if c > 750000: SK1 = (234,217,217) EY1 = (201,178,178) SK2 = (255,255,255) HRG3 = (220,222,234) HRG2 = (183,179,191) HRG4 = (203,200,212) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (226,187,185) MO1 = EY1 SCR1 = EY1 skin_ep = 'Albino' elif c > 500000: SK1 = (219,177,128) EY1 = (210,157,96) SK2 = (235,203,166) HRG3 = (213,200,183) HRG2 = (184,163,135) HRG4 = (209,189,164) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (215,154,104) MO1 = EY1 SCR1 = EY1 skin_ep = 'Light' elif c > 250000: SK1 = (174,139,97) EY1 = (167,124,71) SK2 = (178,138,93) HRG3 = (188,179,165) HRG2 = (166,150,128) HRG4 = (184,171,151) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (191,105,71) MO1 = EY1 SCR1 = EY1 skin_ep = 'Mid' else: SK1 = (113,63,29) EY1 = (114,55,17) SK2 = (146,79,35) HRG3 = (155,135,127) HRG2 = (139,121,111) HRG4 = (156,131,115) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (142,36,2) MO1 = EY1 SCR1 = EY1 skin_ep = 'Dark' seed(c) d=randint(0,1000000) if d > 750000: ears = EARS_1 ears_ep = 'Earring' else: ears = none ears_ep = 'None' seed(d) e=randint(0,1000000) if e > 750000: SC1 = (80,80,80) BR1 = (80,80,80) HR1 = (160,160,160) hair_color_ep = 'Grey & Carbon Grey' elif e > 500000: SC1 = (30,30,30) BR1 = (30,30,30) HR1 = (110,110,110) hair_color_ep = 'Smokey Grey & Charcoal' elif e > 250000: SC1 = (80,80,80) BR1 = (80,80,80) HR1 = (235,235,235) hair_color_ep = 'Seashell & Carbon Grey' else: SC1 = (155,155,155) BR1 = (155,155,155) HR1 = (235,235,235) hair_color_ep = 'Seashell & Grey' seed(e) f=randint(0,1000000) if f > 900000: mouth_prop = CIGARETTE mouth_prop_ep = 'Cigarette' elif f > 840000: mouth_prop = PIPE mouth_prop_ep = 'Pipe' elif f > 800000: mouth_prop = VAPE mouth_prop_ep = 'Vape' else: mouth_prop = none mouth_prop_ep = 'None' seed(f) g=randint(0,1000000) if g > 950000: hair_prop = COWBOY_7 hair_prop_ep = 'Cowboy Hat' elif g > 900000: hair_prop = TOPHAT_7 hair_prop_ep = 'Top Hat' elif e > 850000: hair_prop = KNITTED_7 hair_prop_ep = 'Knitted Cap' elif g > 800000: hair_prop = FORCAP_7 hair_prop_ep = 'Cap Forward' elif g > 750000: hair_prop = FEDORA_7 hair_prop_ep = 'Fedora' elif g > 700000: hair_prop = BANDANA_7 hair_prop_ep = 'Bandana' elif g > 650000: hair_prop = POLICE_7 hair_prop_ep = 'Police' elif g > 600000: hair_prop = CAP_7 hair_prop_ep = 'Cap' else: hair_prop = none hair_prop_ep = 'None' MOLE=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,MO1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] ROSY_1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,RC1,0,0,0,0,RC1,RC1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,RC1,0,0,0,0,0,RC1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] seed(g) h=randint(0,1000000) if h > 970000: blemishes = ROSY_1 blemishe_ep = 'Rosy Cheeks' elif h > 900000: blemishes = MOLE blemishe_ep = 'Mole' else: blemishes = none blemishe_ep = 'None' seed(h) i=randint(0,1000000) if i > 970000: eyes = TD_1 eyes_prop_ep ='3D Glasses' elif i > 930000: eyes = VR_1 eyes_prop_ep ='VR' elif i > 880000: eyes = ClassicShades_1 eyes_prop_ep ='Classic Shades' elif i > 830000: eyes = EyePatch_1 eyes_prop_ep ='Eye Patch' elif i > 780000: eyes = NerdGlasses_1 eyes_prop_ep ='Nerd Glasses' elif i > 730000: eyes = BigShades_1 eyes_prop_ep ='Big Shades' elif i > 700000: eyes = EyeMask_1 eyes_prop_ep ='Eye Mask' elif i > 650000: eyes = HornedRimGlasses_1 eyes_prop_ep ='Horned Rim Glasses' elif i > 600000: eyes = RegularShades_1 eyes_prop_ep ='Regular Shades' else: eyes=none eyes_prop_ep ='None' seed(i) j=randint(0,1000000) if j > 975000: nose = NOSE_1 nose_ep = 'Clown Nose' else: nose = none nose_ep = 'None' seed(j) k=randint(0,1000000) if k > 975000: mouth = SMILE mouth_ep = 'Smile' elif k > 950000: mouth = FROWN mouth_ep = 'Frown' else: mouth = none mouth_ep = 'None' WIZ_TOWER=[ [FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,HR1,SK1,SK1,HR1,HR1,HR1,SK1,SK1,HR1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,FR1,SK1,SK1,SK1,HR1,SK1,SK1,SK1,SK1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,FR1,SC1,SC1,SC1,SK1,SK1,SC1,SC1,SC1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,FR1,EY1,FR1,SK1,SK1,SK1,EY1,FR1,SK1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,FR1,SK1,SK1,FR1,FR1,SK1,SK1,SK1,SK1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,FR1,SK1,SK1,BR1,BR1,BR1,SK1,SK1,SK1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,FR1,BR1,BR1,BR1,FR1,FR1,FR1,BR1,BR1,BR1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,FR1,BR1,BR1,BR1,BR1,BR1,BR1,BR1,BR1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,BG1,FR1,BR1,BR1,BR1,BR1,BR1,BR1,FR1,SK1,HR1,HR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,BG1,BG1,BG1,FR1,BR1,BR1,BR1,BR1,FR1,SK1,SK1,FR1,HR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,BR1,FR1,FR1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR1,FR2,FR1,SK1,SK1,SK1,FR1,FR2,FR2,FR2,FR2,FR2,FR2] ] pixels = WIZ_TOWER elif b > 60000: race_ep = 'Wizards' type_ep = 'Wood' hair_color_ep = 'None' haircut_ep = 'None' hair_prop_ep = 'None' eyes_prop_ep = 'None' blemishe_ep = 'None' eyes_color_ep = 'None' facial_hair_ep = 'None' mouth_prop_ep = 'None' mouth_ep = 'None' tooth_color_ep = 'None' nose_ep = 'None' neck_ep = 'None' ears_ep = 'None' skin_ep = 'None' ears = none hair = none hair_prop = none neck = none blemishes = none #tooth color mouth = none facial_hair = none rod = none mouth_prop = none #eye color eyes = none nose = none seed(b) c=randint(0,1000000) if c > 750000: SK1 = (234,217,217) SC1 = (165,141,141) EY1 = (201,178,178) SK2 = (255,255,255) HRG3 = (220,222,234) HRG2 = (183,179,191) HRG4 = (203,200,212) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (226,187,185) MO1 = EY1 SCR1 = EY1 skin_ep = 'Albino' elif c > 500000: SK1 = (219,177,128) SC1 = (166,110,44) EY1 = (210,157,96) SK2 = (235,203,166) HRG3 = (213,200,183) HRG2 = (184,163,135) HRG4 = (209,189,164) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (215,154,104) MO1 = EY1 SCR1 = EY1 skin_ep = 'Light' elif c > 250000: SK1 = (174,139,97) SC1 = (134,88,30) EY1 = (167,124,71) SK2 = (178,138,93) HRG3 = (188,179,165) HRG2 = (166,150,128) HRG4 = (184,171,151) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (191,105,71) MO1 = EY1 SCR1 = EY1 skin_ep = 'Mid' else: SK1 = (113,63,29) SC1 = (86,39,10) EY1 = (114,55,17) SK2 = (146,79,35) HRG3 = (155,135,127) HRG2 = (139,121,111) HRG4 = (156,131,115) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (142,36,2) MO1 = EY1 SCR1 = EY1 skin_ep = 'Dark' seed(c) d=randint(0,1000000) if d > 750000: ears = EARS_1 ears_ep = 'Earring' else: ears = none ears_ep = 'None' seed(d) e=randint(0,1000000) if e > 750000: HR1 = (160,110,30) HR2 = (130,60,20) BR2 = (200,230,180) BR1 = BE2 hair_color_ep = 'Taupe & Cookie Brown' elif e > 500000: HR1 = (130,90,10) HR2 = (70,50,10) BR2 = (200,230,180) hair_color_ep = 'Brown & Cookie Brown' BR1 = BE2 elif e > 250000: HR1 = (160,110,30) HR2 = (130,60,20) BR2 = (60,200,180) BR1 = (30,20,5) hair_color_ep = 'Taupe & Graphite' else: HR1 = (130,90,10) HR2 = (70,50,10) BR2 = (60,200,180) BR1 = (30,20,5) hair_color_ep = 'Brown & Graphite' seed(e) f=randint(0,1000000) if f > 900000: mouth_prop = CIGARETTE mouth_prop_ep = 'Cigarette' elif f > 840000: mouth_prop = PIPE mouth_prop_ep = 'Pipe' elif f > 800000: mouth_prop = VAPE mouth_prop_ep = 'Vape' else: mouth_prop = none mouth_prop_ep = 'None' seed(f) g=randint(0,1000000) if g > 975000: mouth = SMILE mouth_ep = 'Smile' elif g > 950000: mouth = FROWN mouth_ep = 'Frown' else: mouth = none mouth_ep = 'None' MOLE=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,MO1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] ROSY_1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,RC1,0,0,0,0,RC1,RC1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,RC1,0,0,0,0,0,RC1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] seed(g) h=randint(0,1000000) if h > 970000: blemishes = ROSY_1 blemishe_ep = 'Rosy Cheeks' elif h > 900000: blemishes = MOLE blemishe_ep = 'Mole' else: blemishes = none blemishe_ep = 'None' seed(h) i=randint(0,1000000) if i > 970000: eyes = TD_1 eyes_prop_ep ='3D Glasses' elif i > 930000: eyes = VR_1 eyes_prop_ep ='VR' elif i > 880000: eyes = ClassicShades_1 eyes_prop_ep ='Classic Shades' elif i > 830000: eyes = EyePatch_1 eyes_prop_ep ='Eye Patch' elif i > 780000: eyes = NerdGlasses_1 eyes_prop_ep ='Nerd Glasses' elif i > 730000: eyes = BigShades_1 eyes_prop_ep ='Big Shades' elif i > 700000: eyes = EyeMask_1 eyes_prop_ep ='Eye Mask' elif i > 650000: eyes = HornedRimGlasses_1 eyes_prop_ep ='Horned Rim Glasses' elif i > 600000: eyes = RegularShades_1 eyes_prop_ep ='Regular Shades' else: eyes=none eyes_prop_ep ='None' seed(i) j=randint(0,1000000) if j > 975000: nose = NOSE_1 nose_ep = 'Clown Nose' else: nose = none nose_ep = 'None' WIZ_WOODEN=[ [FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,HR2,HR2,HR2,HR2,HR2,HR2,HR2,HR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,HR2,HR2,HR2,HR2,HR2,HR2,HR2,HR2,HR2,HR2,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,HR2,HR2,HR2,HR1,HR1,HR1,HR1,HR2,HR2,HR2,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,HR1,HR1,HR2,HR2,HR2,HR2,HR1,HR1,HR1,HR1,HR1,HR1,HR2,HR2,HR2,HR2,HR1,HR1,BG1,BG1,FR2], [FR2,BG1,HR1,HR1,HR1,HR1,HR2,HR2,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR2,HR2,HR1,HR1,HR1,HR1,BG1,FR2], [FR2,BG1,HR1,HR1,HR1,HR1,HR1,HR2,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR2,HR1,HR1,HR1,HR1,HR1,BG1,FR2], [FR2,BG1,HR1,HR1,HR1,HR1,HR1,BR2,HR2,HR1,HR1,HR1,HR1,HR1,HR1,HR2,HR1,HR1,HR1,HR1,HR1,HR1,BG1,FR2], [FR2,BG1,HR1,BG1,BG1,HR1,BR2,HR1,HR1,HR1,SK1,SK1,SK1,SK1,HR1,HR1,HR1,HR1,HR1,BG1,BG1,HR1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,HR1,BR2,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,HR1,HR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BR2,SC1,SC1,SK1,SK1,SK1,SC1,SC1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BR2,EY1,FR1,SK1,SK1,SK1,EY1,FR1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BR2,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,BR1,FR1,FR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BR2,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,BR1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,BR2,SK1,FR1,FR1,SK1,SK1,SK1,BR1,BR1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,BR1,BR2,SK1,SK1,SK1,SK1,BR1,BR1,BR1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,BR2,BR1,BR1,BR1,BR1,BR1,BR1,BR1,BR1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,BR1,BR1,FR1,FR1,FR1,BR1,BR1,BR1,BR1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,BR1,BR1,BR1,BR1,BR1,BR1,BR1,BR1,BR1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,BR1,BR1,BR1,BR1,BR1,BR1,BR1,BR1,BR1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,BR1,BR1,BR1,BR1,BR1,BR1,BR1,FR1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,BR1,BR1,BR1,BR1,BR1,FR1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR1,FR1,FR1,FR1,FR1,SK1,SK1,FR1,FR2,FR2,FR2,FR2,FR2,FR2] ] pixels = WIZ_WOODEN elif b > 35000: race_ep = 'Wizards' type_ep = 'Blue' hair_color_ep = 'None' haircut_ep = 'None' hair_prop_ep = 'None' eyes_prop_ep = 'None' blemishe_ep = 'None' eyes_color_ep = 'None' facial_hair_ep = 'None' mouth_prop_ep = 'None' mouth_ep = 'None' tooth_color_ep = 'None' nose_ep = 'None' neck_ep = 'None' ears_ep = 'None' skin_ep = 'None' ears = none hair = none hair_prop = none neck = none blemishes = none #tooth color mouth = none facial_hair = none rod = none mouth_prop = none #eye color eyes = none nose = none seed(b) c=randint(0,1000000) if c > 750000: HR1 = (30,25,200) HR2 = (255,218,0) SK1 = (234,217,217) SC1 = (190,215,240) BR1 = (190,215,240) EY1 = (201,178,178) SK2 = (255,255,255) HRG3 = (220,222,234) HRG2 = (183,179,191) HRG4 = (203,200,212) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (226,187,185) skin_ep = 'Albino' MO1 = EY1 SCR1 = EY1 hair_color_ep = 'Persian Blue' elif c > 500000: HR1 = (10,50,100) HR2 = (216,214,203) SK1 = (219,177,128) SC1 = (190,215,240) BR1 = (190,215,240) EY1 = (210,157,96) SK2 = (235,203,166) HRG3 = (213,200,183) HRG2 = (184,163,135) HRG4 = (209,189,164) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (215,154,104) MO1 = EY1 SCR1 = EY1 skin_ep = 'Light' hair_color_ep = 'Sapphire' elif c > 250000: HR1 = (60,10,145) HR2 = (255,218,0) SK1 = (174,139,97) SC1 = (190,215,240) BR1 = (190,215,240) EY1 = (167,124,71) SK2 = (178,138,93) HRG3 = (188,179,165) HRG2 = (166,150,128) HRG4 = (184,171,151) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (191,105,71) MO1 = EY1 SCR1 = EY1 skin_ep = 'Mid' hair_color_ep = 'Indigo' else: HR1 = (30,180,220) HR2 = (216,214,203) SK1 = (113,63,29) SC1 = (190,215,240) BR1 = (190,215,240) EY1 = (114,55,17) SK2 = (146,79,35) HRG3 = (155,135,127) HRG2 = (139,121,111) HRG4 = (156,131,115) HRG5 = (87,101,113) HRG1 = (0,0,0) RC1 = (142,36,2) MO1 = EY1 SCR1 = EY1 skin_ep = 'Dark' hair_color_ep = 'Topaz' seed(c) d=randint(0,1000000) if d > 750000: ears = EARS_1 ears_ep = 'Earring' else: ears = none ears_ep = 'None' seed(d) e=randint(0,1000000) #if e > 900000: # neck = GoldChain_1 #elif e > 700000: # neck = SilverChain_1 #elif e > 500000: # neck = RING_1 #else: # neck = none seed(e) f=randint(0,1000000) if f > 900000: mouth_prop = CIGARETTE mouth_prop_ep = 'Cigarette' elif f > 840000: mouth_prop = PIPE mouth_prop_ep = 'Pipe' elif f > 800000: mouth_prop = VAPE mouth_prop_ep = 'Vape' else: mouth_prop = none mouth_prop_ep = 'None' seed(f) g=randint(0,1000000) if g > 975000: mouth = SMILE mouth_ep = 'Smile' elif g > 950000: mouth = FROWN mouth_ep = 'Frown' else: mouth = none mouth_ep = 'None' MOLE=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,MO1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] ROSY_1=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,RC1,0,0,0,0,RC1,RC1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,RC1,0,0,0,0,0,RC1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] seed(g) h=randint(0,1000000) if h > 970000: blemishes = ROSY_1 blemishe_ep = 'Rosy Cheeks' elif h > 900000: blemishes = MOLE blemishe_ep = 'Mole' else: blemishes = none blemishe_ep = 'None' seed(h) i=randint(0,1000000) if i > 970000: eyes = TD_1 eyes_prop_ep ='3D Glasses' elif i > 930000: eyes = VR_1 eyes_prop_ep ='VR' elif i > 880000: eyes = ClassicShades_1 eyes_prop_ep ='Classic Shades' elif i > 830000: eyes = EyePatch_1 eyes_prop_ep ='Eye Patch' elif i > 780000: eyes = NerdGlasses_1 eyes_prop_ep ='Nerd Glasses' elif i > 730000: eyes = BigShades_1 eyes_prop_ep ='Big Shades' elif i > 700000: eyes = EyeMask_1 eyes_prop_ep ='Eye Mask' elif i > 650000: eyes = HornedRimGlasses_1 eyes_prop_ep ='Horned Rim Glasses' elif i > 600000: eyes = RegularShades_1 eyes_prop_ep ='Regular Shades' else: eyes=none eyes_prop_ep ='None' seed(i) j=randint(0,1000000) if j > 975000: nose = NOSE_1 nose_ep = 'Clown Nose' else: nose = none nose_ep = 'None' WIZ_BLUE=[ [FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,HR1,HR1,HR1,HR2,HR2,HR2,HR2,HR2,HR2,HR2,HR1,HR1,HR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,HR1,HR2,SK1,SK1,SK1,SK1,SK1,SK1,SK1,HR2,HR1,HR1,HR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,HR2,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,HR2,HR1,HR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,HR2,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,HR2,HR1,HR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,HR2,SC1,SC1,SC1,SK1,SK1,SC1,SC1,SC1,SK1,HR2,HR1,HR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,HR2,EY1,FR1,SK1,SK1,SK1,EY1,FR1,SK1,SK1,HR2,HR1,HR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,HR2,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,HR2,HR1,HR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,HR2,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,HR2,HR1,HR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,HR2,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,HR2,HR1,HR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,HR2,SK1,SK1,FR1,FR1,SK1,SK1,SK1,SK1,SK1,HR2,HR1,HR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,HR1,HR1,HR2,BR1,BR1,BR1,BR1,BR1,BR1,BR1,BR1,BR1,BR1,BR1,HR2,HR1,HR1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,HR1,HR1,HR2,BR1,BR1,BR1,BR1,BR1,BR1,BR1,BR1,BR1,BR1,BR1,HR2,HR1,HR1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,HR1,HR1,HR2,BR1,BR1,BR1,FR1,FR1,FR1,BR1,BR1,BR1,BR1,BR1,HR2,HR1,HR1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,HR1,HR1,HR2,BR1,BR1,BR1,BR1,BR1,BR1,BR1,BR1,BR1,BR1,BR1,HR2,HR1,HR1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,HR1,HR1,HR2,BR1,BR1,BR1,BR1,BR1,BR1,BR1,BR1,BR1,FR1,FR1,HR2,HR1,HR1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,HR2,BR1,BR1,BR1,BR1,BR1,BR1,BR1,FR1,SK1,HR2,HR1,HR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,HR1,HR1,HR2,FR1,FR1,BR1,BR1,BR1,FR1,FR1,SK1,HR2,HR1,HR1,HR1,BG1,BG1,BG1,FR2], [FR2,FR2,FR2,FR2,FR2,FR2,HR1,HR1,HR2,FR2,FR1,BR1,FR1,FR1,FR2,HR2,HR1,HR1,HR1,HR1,FR2,FR2,FR2,FR2] ] pixels = WIZ_BLUE elif b > 19000: race_ep = 'Unknown' type_ep = 'Male' hair_color_ep = 'None' haircut_ep = 'None' hair_prop_ep = 'None' eyes_prop_ep = 'None' blemishe_ep = 'None' eyes_color_ep = 'None' facial_hair_ep = 'None' mouth_prop_ep = 'None' mouth_ep = 'None' tooth_color_ep = 'None' nose_ep = 'None' neck_ep = 'None' ears_ep = 'None' skin_ep = 'None' ears = none hair = none hair_prop = none neck = none blemishes = none #tooth color mouth = none facial_hair = none rod = none mouth_prop = none #eye color eyes = none nose = none seed(b) c=randint(0,1000000) if c > 750000: SK1 = (250,200,170) HR1 = (130,130,130) skin_ep = 'Peach' elif c > 500000: SK1 = (200,170,140) HR1 = (125,110,90) skin_ep = 'Dust' elif c > 250000: SK1 = (240,210,190) HR1 = (170,150,120) skin_ep = 'Bone' else: SK1 = (195,175,165) HR1 = (100,95,85) skin_ep = 'Silk' seed(c) d=randint(0,1000000) if d > 750000: ears = EARS_4 ears_ep = 'Earring' else: ears = none ears_ep = 'None' seed(d) e=randint(0,1000000) if e > 950000: hair_prop = CAP_5 hair_prop_ep = 'Cap' elif e > 900000: hair_prop = KNITTED_4 hair_prop_ep = 'Knitted Cap' elif e > 850000: hair_prop = HEADBAND_7 hair_prop_ep = 'Headband' elif e > 800000: hair_prop = FORCAP_3 hair_prop_ep = 'Cap Forward' elif e > 750000: hair_prop = COWBOY_3 hair_prop_ep = 'Cowboy Hat' elif e > 700000: hair_prop = TOPHAT_3 hair_prop_ep = 'Top Hat' else: hair_prop = none hair_prop_ep = 'None' seed(e) f=randint(0,1000000) if f > 980000: neck = RING_3 neck_ep = 'Ring Onchain' elif f > 880000: neck = GoldChain_4 neck_ep = 'Gold Chain' tutu = 99 elif f > 800000: neck = SilverChain_3 neck_ep = 'Silver Chain' else: neck = none neck_ep = 'None' seed(f) g=randint(0,1000000) if g > 975000: mouth = SMILE mouth_ep = 'Smile' elif g > 950000: mouth = FROWN mouth_ep = 'Frown' tyty = 99 else: mouth = none mouth_ep = 'None' if tutu == 99 and tyty == 99: neck = none neck_ep = 'None' seed(g) h=randint(0,1000000) if h > 900000: mouth_prop = CIGARETTE mouth_prop_ep = 'Cigarette' elif h > 840000: mouth_prop = PIPE mouth_prop_ep = 'Pipe' elif h > 800000: mouth_prop = VAPE mouth_prop_ep = 'Vape' else: mouth_prop = none mouth_prop_ep = 'None' seed(h) i=randint(0,1000000) if i > 200000: EY1 = (255,255,255) eyes_color_ep = 'White' elif i > 80000: EY1 = (230,180,100) eyes_color_ep = 'Peach' else: EY1 = (78,154,197) eyes_color_ep = 'Blue' seed(i) j=randint(0,1000000) if j > 950000: eyes = ClassicShades_4 eyes_prop_ep ='Classic Shades' elif j > 900000: eyes = EyePatch_4 eyes_prop_ep ='Eye Patch' elif j > 850000: eyes = RegularShades_4 eyes_prop_ep ='Regular Shades' else: eyes=none eyes_prop_ep ='None' GOLLUN=[ [FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,HR1,HR1,HR1,HR1,HR1,HR1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,HR1,SK1,HR1,SK1,HR1,SK1,HR1,HR1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,HR1,SK1,SK1,HR1,SK1,HR1,SK1,HR1,SK1,HR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,HR1,SK1,HR1,SK1,SK1,HR1,SK1,HR1,SK1,HR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,HR1,SK1,HR1,SK1,HR1,SK1,SK1,HR1,SK1,HR1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,HR1,EY1,EY1,SK1,SK1,SK1,EY1,EY1,SK1,HR1,SK1,FR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,HR1,EY1,FR1,SK1,SK1,SK1,EY1,FR1,SK1,HR1,SK1,FR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,HR1,SK1,HR1,SK1,SK1,SK1,SK1,HR1,SK1,HR1,SK1,FR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,HR1,SK1,SK1,SK1,FR1,SK1,SK1,SK1,SK1,FR1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,bl,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,FR1,FR1,FR1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,FR1,FR1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR1,SK1,SK1,SK1,FR1,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2] ] pixels = GOLLUN elif b > 10000: race_ep = 'Wraiths' type_ep = 'None' hair_color_ep = 'None' haircut_ep = 'None' hair_prop_ep = 'None' eyes_prop_ep = 'None' blemishe_ep = 'None' eyes_color_ep = 'None' facial_hair_ep = 'None' mouth_prop_ep = 'None' mouth_ep = 'None' tooth_color_ep = 'None' nose_ep = 'None' neck_ep = 'None' ears_ep = 'None' skin_ep = 'None' ears = none hair = none hair_prop = none neck = none blemishes = none #tooth color mouth = none facial_hair = none rod = none mouth_prop = none #eye color eyes = none nose = none seed(b) c=randint(0,1000000) if c > 500000: SK1 = (50,50,50) HR1 = (100,100,100) SC1 = nr MO1 = nr skin_ep = 'Dark Grey' elif c > 400000: SK1 = (128,128,128) HR1 = (255,193,7) #OR SC1 = nr MO1 = nr skin_ep = 'Granite' elif c > 300000: SK1 = (128,128,128) HR1 = (200,130,40) #BRONZE SC1 = nr MO1 = nr skin_ep = 'Granite' elif c > 250000: SK1 = (142,36,170) #VIOLET HR1 = (40,5,55) SC1 = (74,20,140) MO1 = SC1 skin_ep = 'Eggplant' else: SK1 = (128,128,128) HR1 = (230,230,230) SC1 = (30,30,30) MO1 = SC1 skin_ep = 'Granite' seed(c) d=randint(0,1000000) if d > 750000: ears = EARS_2 ears_ep = 'Earring' else: ears = none ears_ep = 'None' MOLE=[ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,MO1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ] seed(d) e=randint(0,1000000) if e > 930000: blemishes = MOLE blemishe_ep = 'Mole' else: blemishes = none blemishe_ep = 'None' seed(e) f=randint(0,1000000) if f > 900000: neck = GoldChain_1 neck_ep = 'Gold Chain' elif f > 820000: neck = SilverChain_1 neck_ep = 'Silver Chain' elif f > 800000: neck = RING_1 neck_ep = 'Ring Onchain' else: neck = none neck_ep = 'None' seed(f) g=randint(0,1000000) seed(g) h=randint(0,1000000) if h > 900000: mouth_prop = CIGARETTE mouth_prop_ep = 'Cigarette' elif h > 880000: mouth_prop = MASK_1 mouth_prop_ep = 'Medical Mask' elif h > 820000: mouth_prop = PIPE mouth_prop_ep = 'Pipe' elif h > 780000: mouth_prop = VAPE mouth_prop_ep = 'Vape' else: mouth_prop = none mouth_prop_ep = 'None' seed(h) i=randint(0,1000000) if i > 400000: EY1 = (255,255,255) EY2 = nr eyes_color_ep = 'White' elif i > 300000: EY1 = (214,92,26) EY2 = nr eyes_color_ep = "Orange" elif i > 200000: EY1 = (176,61,133) EY2 = nr eyes_color_ep = "Purple" elif i > 100000: EY1 = (255,255,0) EY2 = nr eyes_color_ep = 'Yellow' else: EY1 = (255,0,0) EY2 = nr eyes_color_ep = 'Red' seed(i) j=randint(0,1000000) if j > 970000: eyes = TD_2 eyes_prop_ep ='3D Glasses' elif j > 930000: eyes = VR_2 eyes_prop_ep ='VR' elif j > 880000: eyes = ClassicShades_2 eyes_prop_ep ='Classic Shades' elif j > 830000: eyes = SmallShades_2 eyes_prop_ep ='Small Shades' elif j > 780000: eyes = EyePatch_2 eyes_prop_ep ='Eye Patch' elif j > 730000: eyes = NerdGlasses_2 eyes_prop_ep ='Nerd Glasses' elif j > 700000: eyes = EyeMask_2 eyes_prop_ep ='Eye Mask' elif j > 650000: eyes = RegularShades_2 eyes_prop_ep ='Regular Shades' else: eyes=none eyes_prop_ep ='None' seed(j) k=randint(0,1000000) if k > 975000: nose = NOSE_1 nose_ep = 'Clown Nose' else: nose = none nose_ep = 'None' SPECTRE=[ [FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,FR1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,FR1,HR1,HR1,HR1,FR1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,FR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,HR1,FR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,FR1,HR1,FR1,FR1,FR1,HR1,HR1,FR1,FR1,FR1,HR1,HR1,HR1,FR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,FR1,HR1,FR1,SK1,SK1,SK1,FR1,FR1,SK1,SK1,SK1,FR1,HR1,HR1,FR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,FR1,HR1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,HR1,FR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,FR1,HR1,FR1,SC1,SC1,SK1,SK1,SK1,SC1,SC1,SK1,SK1,FR1,HR1,HR1,FR1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,FR1,HR1,FR1,EY1,EY2,SK1,SK1,SK1,EY1,EY2,SK1,SK1,SK1,FR1,HR1,FR1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,FR1,HR1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,HR1,FR1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,FR1,HR1,FR1,SK1,SK1,SK1,FR1,SK1,SK1,SK1,SK1,SK1,FR1,FR1,HR1,FR1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,FR1,HR1,FR1,SK1,SK1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,HR1,HR1,FR1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,FR1,HR1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,HR1,FR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,FR1,HR1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,HR1,FR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,FR1,HR1,FR1,SK1,SK1,FR1,FR1,FR1,SK1,SK1,SK1,SK1,FR1,HR1,FR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,FR1,HR1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,SK1,FR1,HR1,FR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,FR1,HR1,FR1,SK1,SK1,SK1,SK1,SK1,FR1,SK1,SK1,FR1,HR1,FR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,HR1,FR1,FR1,FR1,FR1,FR1,SK1,SK1,SK1,FR1,HR1,FR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,HR1,HR1,HR1,HR1,FR1,FR1,SK1,FR1,FR1,HR1,FR1,BG1,BG1,BG1,FR2], [FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR1,FR1,FR1,HR1,HR1,HR1,FR1,HR1,HR1,HR1,FR1,FR2,FR2,FR2,FR2] ] pixels = SPECTRE elif b > 7000: race_ep = 'Dark Riders' type_ep = 'None' hair_color_ep = 'None' haircut_ep = 'None' hair_prop_ep = 'None' eyes_prop_ep = 'None' blemishe_ep = 'None' eyes_color_ep = 'None' facial_hair_ep = 'None' mouth_prop_ep = 'None' mouth_ep = 'None' tooth_color_ep = 'None' nose_ep = 'None' neck_ep = 'None' ears_ep = 'None' skin_ep = 'None' ears = none hair = none hair_prop = none neck = none blemishes = none #tooth color mouth = none facial_hair = none rod = none mouth_prop = none #eye color eyes = none nose = none SK1 = (118,113,113) SK2 = (191,191,191) SK3 = (223,223,223) skin_ep = 'None' seed(b) c=randint(0,1000000) if c > 750000: ears = EARS_1 ears_ep = 'Earring' else: ears = none ears_ep = 'None' seed(c) d=randint(0,1000000) if d > 900000: neck = GoldChain_1 neck_ep = 'Gold Chain' elif d > 820000: neck = SilverChain_1 neck_ep = 'Silver Chain' elif d > 800000: neck = RING_1 neck_ep = 'Ring Onchain' else: neck = none neck_ep = 'None' seed(d) e=randint(0,1000000) if e > 900000: mouth_prop = CIGARETTE mouth_prop_ep = 'Cigarette' elif e > 840000: mouth_prop = PIPE mouth_prop_ep = 'Pipe' elif e > 800000: mouth_prop = VAPE mouth_prop_ep = 'Vape' else: mouth_prop = none mouth_prop_ep = 'None' seed(e) f=randint(0,1000000) if f > 400000: EY1 = (255,255,255) eyes_color_ep = 'White' elif f > 300000: EY1 = (214,92,26) eyes_color_ep = "Orange" elif f > 200000: EY1 = (176,61,133) eyes_color_ep = "Purple" elif f > 100000: EY1 = (255,255,0) eyes_color_ep = 'Yellow' else: EY1 = (255,0,0) eyes_color_ep = 'Red' seed(f) g=randint(0,1000000) if g > 970000: eyes = TD_1 eyes_prop_ep ='3D Glasses' elif g > 930000: eyes = VR_1 eyes_prop_ep ='VR' elif g > 880000: eyes = ClassicShades_1 eyes_prop_ep ='Classic Shades' elif g > 830000: eyes = EyePatch_1 eyes_prop_ep ='Eye Patch' elif g > 780000: eyes = NerdGlasses_1 eyes_prop_ep ='Nerd Glasses' elif g > 730000: eyes = BigShades_1 eyes_prop_ep ='Big Shades' elif g > 700000: eyes = EyeMask_1 eyes_prop_ep ='Eye Mask' elif g > 650000: eyes = HornedRimGlasses_1 eyes_prop_ep ='Horned Rim Glasses' elif g > 600000: eyes = RegularShades_1 eyes_prop_ep ='Regular Shades' else: eyes=none eyes_prop_ep ='None' DARK_RIDER=[ [FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR1,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,BG1,FR1,SK1,SK1,SK1,FR1,BG1,FR1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,FR1,BG1,FR1,SK1,SK1,SK1,FR1,BG1,FR1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,FR1,FR1,FR1,SK1,FR1,FR1,SK1,SK1,SK1,FR1,FR1,SK1,FR1,FR1,FR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,FR1,EY1,SK1,SK1,SK1,FR1,EY1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,EY1,FR1,SK1,SK1,SK1,EY1,FR1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,FR1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,FR1,FR1,FR1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,FR1,FR1,FR1,FR1,FR1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,FR1,FR1,FR1,FR1,FR1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,FR1,FR1,FR1,FR1,FR1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,FR1,FR1,FR1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,FR1,FR1,FR1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,FR1,FR1,FR1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,FR1,FR1,FR1,FR1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR1,SK1,SK1,SK1,FR1,FR2,FR2,FR2,FR2,FR2,FR2] ] pixels = DARK_RIDER elif b > 1000: race_ep = 'Daemons' type_ep = 'None' hair_color_ep = 'None' haircut_ep = 'None' hair_prop_ep = 'None' eyes_prop_ep = 'None' blemishe_ep = 'None' eyes_color_ep = 'None' facial_hair_ep = 'None' mouth_prop_ep = 'None' mouth_ep = 'None' tooth_color_ep = 'None' nose_ep = 'None' neck_ep = 'None' ears_ep = 'None' skin_ep = 'None' ears = none hair = none hair_prop = none neck = none blemishes = none #tooth color mouth = none facial_hair = none rod = none mouth_prop = none #eye color eyes = none nose = none SK1 = (90,90,90) FR4 = (166,166,166) FR5 = (225,63,0) FR3 = (240,114,48) FR1 = nr FR2 = bl seed(b) c=randint(0,1000000) seed(c) d=randint(0,1000000) if d > 900000: neck = GoldChain_1 neck_ep = 'Gold Chain' elif d > 820000: neck = SilverChain_1 neck_ep = 'Silver Chain' elif d > 800000: neck = RING_1 neck_ep = 'Ring Onchain' else: neck = none neck_ep = 'None' seed(d) e=randint(0,1000000) if e > 900000: mouth_prop = CIGARETTE mouth_prop_ep = 'Cigarette' elif e > 840000: mouth_prop = PIPE mouth_prop_ep = 'Pipe' elif e > 800000: mouth_prop = VAPE mouth_prop_ep = 'Vape' else: mouth_prop = none mouth_prop_ep = 'None' seed(e) f=randint(0,1000000) if f > 500000: EY1 = bl eyes_color_ep = 'White' else: EY1 = nr eyes_color_ep = 'Black' seed(f) g=randint(0,1000000) if g > 970000: eyes = TD_1 eyes_prop_ep ='3D Glasses' elif g > 930000: eyes = VR_1 eyes_prop_ep ='VR' elif g > 880000: eyes = ClassicShades_1 eyes_prop_ep ='Classic Shades' elif g > 830000: eyes = EyePatch_1 eyes_prop_ep ='Eye Patch' elif g > 780000: eyes = NerdGlasses_1 eyes_prop_ep ='Nerd Glasses' elif g > 730000: eyes = BigShades_1 eyes_prop_ep ='Big Shades' elif g > 700000: eyes = EyeMask_1 eyes_prop_ep ='Eye Mask' elif g > 650000: eyes = RegularShades_1 eyes_prop_ep ='Regular Shades' else: eyes=none eyes_prop_ep ='None' seed(g) h=randint(0,1000000) if h > 750000: SK1 = (60,60,60) FR4 = (166,166,166) FR5 = (225,63,0) FR3 = (240,160,0) FR1 = nr FR2 = bl skin_ep = 'Dark Grey' hair_color_ep = 'Orange' elif h > 500000: SK1 = (30,30,30) FR4 = (166,166,166) FR5 = (225,63,0) FR3 = (240,160,0) FR1 = nr FR2 = bl skin_ep = 'Charcoal' hair_color_ep = 'Orange' elif h > 250000: SK1 = (60,60,60) FR4 = (166,166,166) FR5 = (225,63,0) FR3 = (240,114,48) FR1 = nr FR2 = bl skin_ep = 'Dark Grey' hair_color_ep = 'Burning Orange' else: SK1 = (30,30,30) FR4 = (166,166,166) FR5 = (225,63,0) FR3 = (240,114,48) FR1 = nr FR2 = bl skin_ep = 'Charcoal' hair_color_ep = 'Burning Orange' DEAMON=[ [FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,FR3,FR3,FR3,BG1,BG1,BG1,BG1,BG1,FR3,FR3,FR3,FR3,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,FR3,FR1,FR1,FR1,FR3,BG1,BG1,BG1,FR3,FR1,FR1,FR1,FR1,FR3,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,FR3,FR1,FR1,FR1,FR1,FR1,FR3,FR3,FR3,FR1,FR1,FR1,FR1,FR1,FR1,FR3,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,FR3,FR1,FR1,FR1,FR1,FR1,FR1,FR1,FR1,FR1,FR1,FR1,FR1,FR1,FR1,FR1,FR1,FR3,BG1,BG1,FR2], [FR2,BG1,FR3,FR1,FR1,FR1,FR1,FR1,FR1,FR1,FR1,FR1,FR1,FR1,FR1,FR1,FR1,FR1,FR1,FR1,FR1,FR3,BG1,FR2], [FR2,FR3,FR1,FR1,FR1,FR1,FR1,FR1,FR1,FR3,FR1,FR1,FR1,FR3,FR1,FR1,FR1,FR1,FR1,FR1,FR1,FR1,FR3,FR2], [FR2,FR3,FR1,FR1,FR1,FR1,FR1,FR3,FR3,SK1,FR3,FR1,FR3,SK1,FR3,FR3,FR1,FR1,FR1,FR1,FR1,FR1,FR3,FR2], [FR2,FR3,FR1,FR1,FR1,FR1,FR3,FR1,SK1,SK1,SK1,FR3,SK1,SK1,SK1,SK1,FR3,FR1,FR1,FR1,FR1,FR1,FR3,FR2], [FR2,FR3,FR1,FR1,FR3,FR3,BG1,FR1,FR4,FR4,SK1,SK1,SK1,FR4,FR4,SK1,SK1,FR3,FR3,FR3,FR1,FR1,FR3,FR2], [FR2,FR3,FR1,FR1,FR3,BG1,BG1,FR1,FR5,EY1,SK1,SK1,SK1,FR5,EY1,SK1,SK1,FR1,BG1,FR3,FR1,FR1,FR3,FR2], [FR2,FR3,FR1,FR1,FR3,BG1,BG1,FR1,SK1,SK1,FR3,SK1,FR3,SK1,SK1,SK1,SK1,FR1,BG1,FR3,FR1,FR1,FR3,FR2], [FR2,FR3,FR1,FR1,FR3,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,SK1,FR1,BG1,FR3,FR1,FR1,FR3,FR2], [FR2,BG1,FR3,FR1,FR1,FR3,BG1,FR1,SK1,FR3,FR3,FR3,FR3,FR3,SK1,SK1,SK1,FR1,FR3,FR1,FR1,FR3,BG1,FR2], [FR2,BG1,BG1,FR3,FR1,FR1,FR3,FR1,SK1,FR3,FR3,FR3,FR3,FR3,SK1,SK1,SK1,FR3,FR1,FR1,FR3,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,FR3,FR1,FR3,FR1,SK1,FR3,FR3,FR3,FR3,FR3,SK1,SK1,SK1,FR3,FR1,FR3,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,FR3,BG1,FR1,SK1,SK1,FR3,FR3,FR3,SK1,SK1,SK1,SK1,FR1,FR3,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,FR3,FR3,FR3,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,FR3,SK1,SK1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,SK1,SK1,FR1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,FR1,FR1,FR1,FR1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR1,SK1,SK1,SK1,FR1,FR2,FR2,FR2,FR2,FR2,FR2] ] pixels = DEAMON else: race_ep = 'Dark Lord' type_ep = 'None' hair_color_ep = 'None' haircut_ep = 'None' hair_prop_ep = 'None' eyes_prop_ep = 'None' blemishe_ep = 'None' eyes_color_ep = 'None' facial_hair_ep = 'None' mouth_prop_ep = 'None' mouth_ep = 'None' tooth_color_ep = 'None' nose_ep = 'None' neck_ep = 'None' ears_ep = 'None' skin_ep = 'None' ears = none hair = none hair_prop = none neck = none blemishes = none #tooth color mouth = none facial_hair = none rod = none mouth_prop = none #eye color eyes = none nose = none SK1 = (113,113,113) SK2 = (160,160,160) SK3 = (223,223,223) skin_ep = 'None' seed(b) c=randint(0,1000000) if c > 750000: ears = EARS_0 ears_ep = 'Earring' else: ears = none ears_ep = 'None' seed(c) d=randint(0,1000000) if d > 900000: neck = GoldChain_1 neck_ep = 'Gold Chain' elif d > 820000: neck = SilverChain_1 neck_ep = 'Silver Chain' elif d > 800000: neck = RING_1 neck_ep = 'Ring Onchain' else: neck = none neck_ep = 'None' seed(d) e=randint(0,1000000) if e > 900000: mouth_prop = CIGARETTE mouth_prop_ep = 'Cigarette' elif e > 840000: mouth_prop = PIPE mouth_prop_ep = 'Pipe' elif e > 800000: mouth_prop = VAPE mouth_prop_ep = 'Vape' else: mouth_prop = none mouth_prop_ep = 'None' seed(e) f=randint(0,1000000) if f > 400000: EY1 = (255,255,255) eyes_color_ep = 'White' elif f > 300000: EY1 = (214,92,26) eyes_color_ep = "Orange" elif f > 200000: EY1 = (176,61,133) eyes_color_ep = "Purple" elif f > 100000: EY1 = (255,255,0) eyes_color_ep = 'Yellow' else: EY1 = (255,0,0) eyes_color_ep = 'Red' DARK_LORD=[ [FR2,FR2,FR2,FR2,FR2,FR2,FR1,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR1,FR2,FR2,FR2,FR2,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,FR1,BG1,BG1,BG1,BG1,BG1,FR1,BG1,BG1,BG1,BG1,BG1,FR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,FR1,FR1,BG1,BG1,BG1,BG1,FR1,BG1,BG1,BG1,BG1,FR1,FR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,FR1,FR1,BG1,FR1,BG1,BG1,FR1,BG1,BG1,FR1,BG1,FR1,FR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,FR1,FR1,BG1,FR1,BG1,BG1,FR1,BG1,BG1,FR1,BG1,FR1,FR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,FR1,FR1,BG1,FR1,FR1,BG1,FR1,BG1,FR1,FR1,BG1,FR1,FR1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,FR1,FR1,FR1,FR1,FR1,FR1,FR1,FR1,FR1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,FR1,FR1,FR1,FR1,FR1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,FR1,FR1,FR1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,FR1,EY1,SK1,SK1,FR1,SK1,FR1,EY1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,EY1,FR1,SK1,SK1,FR1,SK1,EY1,FR1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,SK3,FR1,SK1,SK1,SK1,SK1,FR1,SK1,SK1,SK1,SK1,FR1,SK3,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,SK3,FR1,SK2,SK1,SK1,SK1,FR1,SK1,SK1,SK1,SK2,FR1,SK3,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,SK3,SK1,SK2,SK1,SK1,FR1,SK1,SK1,SK2,SK1,SK3,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK3,SK1,SK2,SK1,FR1,SK1,SK2,SK1,SK3,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK3,SK1,SK2,FR1,SK2,SK1,SK3,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK3,SK1,SK2,FR1,SK2,SK1,SK3,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK3,SK1,SK2,FR1,SK2,SK1,SK3,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK3,SK1,SK2,SK1,FR1,SK1,SK2,SK1,SK3,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,SK3,FR1,SK1,SK2,SK1,FR1,SK1,SK2,SK1,SK1,SK3,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,SK2,SK1,SK1,FR1,SK1,SK1,SK2,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,SK2,BG1,FR1,FR1,FR1,FR1,FR1,SK1,SK2,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,BG1,FR1,SK1,SK1,SK1,FR1,BG1,BG1,BG1,BG1,BG1,FR2], [FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR2,FR1,SK1,SK1,SK1,FR1,FR2,FR2,FR2,FR2,FR2,FR2] ] pixels = DARK_LORD newtraitcombo1 = createCombo2() traits2.append(newtraitcombo1) ###################### # we stock all the atty in dataframes with pandas library for each loop df = pd.DataFrame(pixels) df2 = pd.DataFrame(ears) df3 = pd.DataFrame(hair) df31 = pd.DataFrame(hair_prop) df4 = pd.DataFrame(neck) df5 = pd.DataFrame(blemishes) df6 = pd.DataFrame(facial_hair) df7 = pd.DataFrame(mouth) df8 = pd.DataFrame(rod) df9 = pd.DataFrame(mouth_prop) df10 = pd.DataFrame(eyes) df11 =
pd.DataFrame(nose)
pandas.DataFrame