prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
# -*- coding: utf-8 -*- import sqlalchemy as sql import pandas as pd from datetime import timedelta import numpy as np def load_nvx(nvx,tickers,start_date,end_date): ############################################## # # Loads Data for Fundamental Value Ratios: # # nvx # 'nvt': Network Value (Marketcap) to Transaction Volume # 'nvv': Network Value (Marketcap) to Trading Volume # 'nva': Network Value (Marketcap) to Active Addresses # 'metcalfe': Network Value (Marketcap) to (Active Addresses)^2 # # tickers # List of Tickers to get Ratios for. # ['ticker1','ticker2'] # Complete List of possible tickers: # # start_date, end_date # 'YYYY-MM-DD' # Example: '2018-01-01' # # Returns a Pandas Dataframe. # Missing Values = 'NaN' # ############################################## ## Load Data: tickers = ['Date'] + tickers ticker_str = ', '.join("`{}`".format(ticker) for ticker in tickers) engine = sql.create_engine('mysql+pymysql://protos-public:protos-public@google-<EMAIL>-west-<EMAIL>.com:3306/public') data = pd.read_sql("Select " + str(ticker_str) + " From " + str(nvx), con=engine) ## Clean Data: data.set_index('Date', inplace=True) data.index =
pd.to_datetime(data.index)
pandas.to_datetime
# -*- coding: utf-8 -*- import os import sys from queue import Queue from typing import Dict from dateutil import tz import datetime as dt from system.database.fre_database import FREDatabase import numpy as np import pandas as pd import csv from system.market_data.fre_market_data import EODMarketData from dateutil.relativedelta import relativedelta import pandas_market_calendars as mcal sys.path.append('../') database = FREDatabase() eod_market_data = EODMarketData(os.environ.get("EOD_API_KEY"), database) # Stock Info class based on Bollinger Bands Trading Strategy class BollingerBandsStocksInfo: def __init__(self, ticker, h=20, k1=2, notional=10000, price_queue=Queue(int(20 / 5)), ): self.Ticker = ticker self.H = h self.K1 = k1 self.Notional = notional self.price_queue = price_queue self.Std = "null" self.MA = "null" self.position = 0 self.Qty = 0 self.current_price_buy = 0 self.current_price_sell = 1e6 self.Tradelist = [] self.PnLlist = [] self.PnL = 0 class BBDmodelStockSelector: # Initialize A Stock Info Dictionary @staticmethod def bollingerbands_stkinfo_init(stock_list) -> Dict[str, BollingerBandsStocksInfo]: stock_info_dict = {stk: BollingerBandsStocksInfo(stk) for stk in stock_list} return stock_info_dict # @staticmethod # def EDTtoUnixTime(EDTdatetime): # utcTime = EDTdatetime.replace(tzinfo = tz.gettz('EDT')).astimezone(tz=datetime.timezone.utc) # unixTime = utcTime.timestamp() # return str(int(unixTime)) # @staticmethod # def get_sp500_component(number_of_stocks=16): # select_st = "SELECT symbol FROM sp500;" # result_df = database.execute_sql_statement(select_st) # print(result_df.symbol.values) # randomIndex = np.random.randint(0, len(result_df.symbol.values), (number_of_stocks,)).tolist() # print(randomIndex) # with open('system/csv/server_symbols.csv', 'w') as f: # write = csv.writer(f) # write.writerow(result_df.symbol.values[randomIndex]) # return result_df.symbol.values[randomIndex] # @staticmethod # def get_selected_stock_list(): # sp500_symbol_list = BBDmodelStockSelector.get_sp500_component() # selected_stk, stk_df = BBDmodelStockSelector.select_highvol_stock(sp500_symbol_list) # return selected_stk, stk_df @staticmethod def select_highvol_stock(end_date=None, stock_list=None, interval='1m', number_of_stocks=2, lookback_window=14): std_resultdf = pd.DataFrame(index=stock_list) std_resultdf['std'] = 0.0 for stk in stock_list: try: start_date = end_date + dt.timedelta(-lookback_window) print(start_date, end_date) start_time = int(start_date.replace(tzinfo=dt.timezone.utc).timestamp()) end_time = int(end_date.replace(tzinfo=dt.timezone.utc).timestamp()) print('good1') stk_data = pd.DataFrame(eod_market_data.get_intraday_data(stk, start_time, end_time)) std = stk_data.close.pct_change().shift(-1).std() std_resultdf.loc[stk,'std'] = std print('Volatility of return over stock: ' + stk + ' is: ' + str(std)) except: print('Cannot get data of Stock:' + stk) stock_selected = list(std_resultdf['std'].sort_values().index[-number_of_stocks:]) print('selected stock list:', stock_selected) selected_df = std_resultdf.loc[stock_selected] return stock_selected, selected_df class BBDmodelTrainer: stockdf = None @classmethod def build_trading_model(cls, stk_list=None, start_date=None): if not stk_list: print('stk_list_empty') last_bday = dt.datetime.today() nyse = mcal.get_calendar('NYSE') start_bday = last_bday + dt.timedelta(-29) train_end_date = (nyse.schedule(start_date=start_bday, end_date=last_bday).index[0] - dt.timedelta(1)).date() symbols = pd.read_csv('system/csv/server_symbols.csv') tickers = pd.concat([symbols["Ticker1"], symbols["Ticker2"]], ignore_index=True) server_stock = tickers.drop_duplicates(keep='first').tolist() stk_list, _ = BBDmodelStockSelector.select_highvol_stock(train_end_date, server_stock) H_list = [40,50,60,70,80,90] K1_list = [1.5,1.8,2.0,2.2,2.5] cls.stockdf = cls.train_params_DBBD(stk_list, H_list, K1_list, start_bday, period='14') return cls.stockdf @classmethod def train_params_DBBD(cls, stk_list, H_list, K1_list, train_end_date, period='14'): train_start_date = train_end_date - dt.timedelta(days=int(period)) train_start = dt.datetime(train_start_date.year,train_start_date.month,train_start_date.day,9,30) #!TODO: NEED TO CORRECTLY SET THE TRAIN START & END TIME IN ORDER TO DOWNLOAD INTRADAY DATA train_start_time = int(train_start_date.replace(tzinfo=dt.timezone.utc).timestamp()) train_end_time = int(train_end_date.replace(tzinfo=dt.timezone.utc).timestamp()) #TEMPORARY TRAIN TIME mkt_opentime = dt.datetime.strptime('09:30','%H:%M').time() mkt_closetime = dt.datetime.strptime('16:00','%H:%M').time() print(mkt_closetime) stocks = pd.DataFrame(stk_list,columns=['Ticker']) stocks["H"] = 0 stocks["K1"] = 0.0 stocks['Notional'] = 1000000.00 / 10 stocks["Profit_Loss_in_Training"] = 0.0 stocks['Return_in_Training'] = 0.0 stocks["Profit_Loss"] = 0.0 stocks['Return'] = 0.0 for stk in stk_list: print("Training params for: " + stk +' ...') train_data = pd.DataFrame(eod_market_data.get_intraday_data(stk, train_start_time, train_end_time)) ### Convert UTC to EST train_data.datetime = pd.to_datetime(train_data.datetime) - dt.timedelta(hours=5) ### Select during Trading Hour and within selected period # print(train_data) # print(train_data.datetime.dt.date) # print('train end date', train_end_date.date()) # print('train start date', train_start_date.date()) train_data = train_data[(train_data.datetime.dt.time>=mkt_opentime) & (train_data.datetime.dt.time<=mkt_closetime)] train_data = train_data[(train_data.datetime.dt.date>=train_start_date.date()) & (train_data.datetime.dt.date<train_end_date.date())] IR_df = pd.DataFrame(index=H_list,columns=K1_list) CumPnLdf =
pd.DataFrame(index=H_list,columns=K1_list)
pandas.DataFrame
# Copyright 1999-2021 Alibaba Group Holding Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import random from collections import OrderedDict import numpy as np import pandas as pd import pytest try: import pyarrow as pa except ImportError: # pragma: no cover pa = None from ....config import options, option_context from ....dataframe import DataFrame from ....tensor import arange, tensor from ....tensor.random import rand from ....tests.core import require_cudf from ....utils import lazy_import from ... import eval as mars_eval, cut, qcut from ...datasource.dataframe import from_pandas as from_pandas_df from ...datasource.series import from_pandas as from_pandas_series from ...datasource.index import from_pandas as from_pandas_index from .. import to_gpu, to_cpu from ..to_numeric import to_numeric from ..rebalance import DataFrameRebalance cudf = lazy_import('cudf', globals=globals()) @require_cudf def test_to_gpu_execution(setup_gpu): pdf = pd.DataFrame(np.random.rand(20, 30), index=np.arange(20, 0, -1)) df = from_pandas_df(pdf, chunk_size=(13, 21)) cdf = to_gpu(df) res = cdf.execute().fetch() assert isinstance(res, cudf.DataFrame) pd.testing.assert_frame_equal(res.to_pandas(), pdf) pseries = pdf.iloc[:, 0] series = from_pandas_series(pseries) cseries = series.to_gpu() res = cseries.execute().fetch() assert isinstance(res, cudf.Series) pd.testing.assert_series_equal(res.to_pandas(), pseries) @require_cudf def test_to_cpu_execution(setup_gpu): pdf = pd.DataFrame(np.random.rand(20, 30), index=np.arange(20, 0, -1)) df = from_pandas_df(pdf, chunk_size=(13, 21)) cdf = to_gpu(df) df2 = to_cpu(cdf) res = df2.execute().fetch() assert isinstance(res, pd.DataFrame) pd.testing.assert_frame_equal(res, pdf) pseries = pdf.iloc[:, 0] series = from_pandas_series(pseries, chunk_size=(13, 21)) cseries = to_gpu(series) series2 = to_cpu(cseries) res = series2.execute().fetch() assert isinstance(res, pd.Series) pd.testing.assert_series_equal(res, pseries) def test_rechunk_execution(setup): data = pd.DataFrame(np.random.rand(8, 10)) df = from_pandas_df(pd.DataFrame(data), chunk_size=3) df2 = df.rechunk((3, 4)) res = df2.execute().fetch() pd.testing.assert_frame_equal(data, res) data = pd.DataFrame(np.random.rand(10, 10), index=np.random.randint(-100, 100, size=(10,)), columns=[np.random.bytes(10) for _ in range(10)]) df = from_pandas_df(data) df2 = df.rechunk(5) res = df2.execute().fetch() pd.testing.assert_frame_equal(data, res) # test Series rechunk execution. data = pd.Series(np.random.rand(10,)) series = from_pandas_series(data) series2 = series.rechunk(3) res = series2.execute().fetch() pd.testing.assert_series_equal(data, res) series2 = series.rechunk(1) res = series2.execute().fetch() pd.testing.assert_series_equal(data, res) # test index rechunk execution data = pd.Index(np.random.rand(10,)) index = from_pandas_index(data) index2 = index.rechunk(3) res = index2.execute().fetch() pd.testing.assert_index_equal(data, res) index2 = index.rechunk(1) res = index2.execute().fetch() pd.testing.assert_index_equal(data, res) # test rechunk on mixed typed columns data = pd.DataFrame({0: [1, 2], 1: [3, 4], 'a': [5, 6]}) df = from_pandas_df(data) df = df.rechunk((2, 2)).rechunk({1: 3}) res = df.execute().fetch() pd.testing.assert_frame_equal(data, res) def test_series_map_execution(setup): raw = pd.Series(np.arange(10)) s = from_pandas_series(raw, chunk_size=7) with pytest.raises(ValueError): # cannot infer dtype, the inferred is int, # but actually it is float # just due to nan s.map({5: 10}) r = s.map({5: 10}, dtype=float) result = r.execute().fetch() expected = raw.map({5: 10}) pd.testing.assert_series_equal(result, expected) r = s.map({i: 10 + i for i in range(7)}, dtype=float) result = r.execute().fetch() expected = raw.map({i: 10 + i for i in range(7)}) pd.testing.assert_series_equal(result, expected) r = s.map({5: 10}, dtype=float, na_action='ignore') result = r.execute().fetch() expected = raw.map({5: 10}, na_action='ignore') pd.testing.assert_series_equal(result, expected) # dtype can be inferred r = s.map({5: 10.}) result = r.execute().fetch() expected = raw.map({5: 10.}) pd.testing.assert_series_equal(result, expected) r = s.map(lambda x: x + 1, dtype=int) result = r.execute().fetch() expected = raw.map(lambda x: x + 1) pd.testing.assert_series_equal(result, expected) def f(x: int) -> float: return x + 1. # dtype can be inferred for function r = s.map(f) result = r.execute().fetch() expected = raw.map(lambda x: x + 1.) pd.testing.assert_series_equal(result, expected) def f(x: int): return x + 1. # dtype can be inferred for function r = s.map(f) result = r.execute().fetch() expected = raw.map(lambda x: x + 1.) pd.testing.assert_series_equal(result, expected) # test arg is a md.Series raw2 = pd.Series([10], index=[5]) s2 = from_pandas_series(raw2) r = s.map(s2, dtype=float) result = r.execute().fetch() expected = raw.map(raw2) pd.testing.assert_series_equal(result, expected) # test arg is a md.Series, and dtype can be inferred raw2 = pd.Series([10.], index=[5]) s2 = from_pandas_series(raw2) r = s.map(s2) result = r.execute().fetch() expected = raw.map(raw2) pd.testing.assert_series_equal(result, expected) # test str raw = pd.Series(['a', 'b', 'c', 'd']) s = from_pandas_series(raw, chunk_size=2) r = s.map({'c': 'e'}) result = r.execute().fetch() expected = raw.map({'c': 'e'}) pd.testing.assert_series_equal(result, expected) # test map index raw = pd.Index(np.random.rand(7)) idx = from_pandas_index(pd.Index(raw), chunk_size=2) r = idx.map(f) result = r.execute().fetch() expected = raw.map(lambda x: x + 1.) pd.testing.assert_index_equal(result, expected) def test_describe_execution(setup): s_raw = pd.Series(np.random.rand(10)) # test one chunk series = from_pandas_series(s_raw, chunk_size=10) r = series.describe() result = r.execute().fetch() expected = s_raw.describe() pd.testing.assert_series_equal(result, expected) r = series.describe(percentiles=[]) result = r.execute().fetch() expected = s_raw.describe(percentiles=[]) pd.testing.assert_series_equal(result, expected) # test multi chunks series = from_pandas_series(s_raw, chunk_size=3) r = series.describe() result = r.execute().fetch() expected = s_raw.describe() pd.testing.assert_series_equal(result, expected) r = series.describe(percentiles=[]) result = r.execute().fetch() expected = s_raw.describe(percentiles=[]) pd.testing.assert_series_equal(result, expected) rs = np.random.RandomState(5) df_raw = pd.DataFrame(rs.rand(10, 4), columns=list('abcd')) df_raw['e'] = rs.randint(100, size=10) # test one chunk df = from_pandas_df(df_raw, chunk_size=10) r = df.describe() result = r.execute().fetch() expected = df_raw.describe() pd.testing.assert_frame_equal(result, expected) r = series.describe(percentiles=[], include=np.float64) result = r.execute().fetch() expected = s_raw.describe(percentiles=[], include=np.float64) pd.testing.assert_series_equal(result, expected) # test multi chunks df = from_pandas_df(df_raw, chunk_size=3) r = df.describe() result = r.execute().fetch() expected = df_raw.describe() pd.testing.assert_frame_equal(result, expected) r = df.describe(percentiles=[], include=np.float64) result = r.execute().fetch() expected = df_raw.describe(percentiles=[], include=np.float64) pd.testing.assert_frame_equal(result, expected) # test skip percentiles r = df.describe(percentiles=False, include=np.float64) result = r.execute().fetch() expected = df_raw.describe(percentiles=[], include=np.float64) expected.drop(['50%'], axis=0, inplace=True) pd.testing.assert_frame_equal(result, expected) with pytest.raises(ValueError): df.describe(percentiles=[1.1]) with pytest.raises(ValueError): # duplicated values df.describe(percentiles=[0.3, 0.5, 0.3]) # test input dataframe which has unknown shape df = from_pandas_df(df_raw, chunk_size=3) df2 = df[df['a'] < 0.5] r = df2.describe() result = r.execute().fetch() expected = df_raw[df_raw['a'] < 0.5].describe() pd.testing.assert_frame_equal(result, expected) def test_data_frame_apply_execute(setup): cols = [chr(ord('A') + i) for i in range(10)] df_raw = pd.DataFrame(dict((c, [i ** 2 for i in range(20)]) for c in cols)) old_chunk_store_limit = options.chunk_store_limit try: options.chunk_store_limit = 20 df = from_pandas_df(df_raw, chunk_size=5) r = df.apply('ffill') result = r.execute().fetch() expected = df_raw.apply('ffill') pd.testing.assert_frame_equal(result, expected) r = df.apply(['sum', 'max']) result = r.execute().fetch() expected = df_raw.apply(['sum', 'max']) pd.testing.assert_frame_equal(result, expected) r = df.apply(np.sqrt) result = r.execute().fetch() expected = df_raw.apply(np.sqrt) pd.testing.assert_frame_equal(result, expected) r = df.apply(lambda x: pd.Series([1, 2])) result = r.execute().fetch() expected = df_raw.apply(lambda x: pd.Series([1, 2])) pd.testing.assert_frame_equal(result, expected) r = df.apply(np.sum, axis='index') result = r.execute().fetch() expected = df_raw.apply(np.sum, axis='index') pd.testing.assert_series_equal(result, expected) r = df.apply(np.sum, axis='columns') result = r.execute().fetch() expected = df_raw.apply(np.sum, axis='columns') pd.testing.assert_series_equal(result, expected) r = df.apply(lambda x: [1, 2], axis=1) result = r.execute().fetch() expected = df_raw.apply(lambda x: [1, 2], axis=1) pd.testing.assert_series_equal(result, expected) r = df.apply(lambda x: pd.Series([1, 2], index=['foo', 'bar']), axis=1) result = r.execute().fetch() expected = df_raw.apply(lambda x: pd.Series([1, 2], index=['foo', 'bar']), axis=1) pd.testing.assert_frame_equal(result, expected) r = df.apply(lambda x: [1, 2], axis=1, result_type='expand') result = r.execute().fetch() expected = df_raw.apply(lambda x: [1, 2], axis=1, result_type='expand') pd.testing.assert_frame_equal(result, expected) r = df.apply(lambda x: list(range(10)), axis=1, result_type='reduce') result = r.execute().fetch() expected = df_raw.apply(lambda x: list(range(10)), axis=1, result_type='reduce') pd.testing.assert_series_equal(result, expected) r = df.apply(lambda x: list(range(10)), axis=1, result_type='broadcast') result = r.execute().fetch() expected = df_raw.apply(lambda x: list(range(10)), axis=1, result_type='broadcast') pd.testing.assert_frame_equal(result, expected) finally: options.chunk_store_limit = old_chunk_store_limit def test_series_apply_execute(setup): idxes = [chr(ord('A') + i) for i in range(20)] s_raw = pd.Series([i ** 2 for i in range(20)], index=idxes) series = from_pandas_series(s_raw, chunk_size=5) r = series.apply('add', args=(1,)) result = r.execute().fetch() expected = s_raw.apply('add', args=(1,)) pd.testing.assert_series_equal(result, expected) r = series.apply(['sum', 'max']) result = r.execute().fetch() expected = s_raw.apply(['sum', 'max']) pd.testing.assert_series_equal(result, expected) r = series.apply(np.sqrt) result = r.execute().fetch() expected = s_raw.apply(np.sqrt) pd.testing.assert_series_equal(result, expected) r = series.apply('sqrt') result = r.execute().fetch() expected = s_raw.apply('sqrt') pd.testing.assert_series_equal(result, expected) r = series.apply(lambda x: [x, x + 1], convert_dtype=False) result = r.execute().fetch() expected = s_raw.apply(lambda x: [x, x + 1], convert_dtype=False) pd.testing.assert_series_equal(result, expected) s_raw2 = pd.Series([np.array([1, 2, 3]), np.array([4, 5, 6])]) series = from_pandas_series(s_raw2) dtypes = pd.Series([np.dtype(float)] * 3) r = series.apply(pd.Series, output_type='dataframe', dtypes=dtypes) result = r.execute().fetch() expected = s_raw2.apply(pd.Series) pd.testing.assert_frame_equal(result, expected) @pytest.mark.skipif(pa is None, reason='pyarrow not installed') def test_apply_with_arrow_dtype_execution(setup): df1 = pd.DataFrame({'a': [1, 2, 1], 'b': ['a', 'b', 'a']}) df = from_pandas_df(df1) df['b'] = df['b'].astype('Arrow[string]') r = df.apply(lambda row: str(row[0]) + row[1], axis=1) result = r.execute().fetch() expected = df1.apply(lambda row: str(row[0]) + row[1], axis=1) pd.testing.assert_series_equal(result, expected) s1 = df1['b'] s = from_pandas_series(s1) s = s.astype('arrow_string') r = s.apply(lambda x: x + '_suffix') result = r.execute().fetch() expected = s1.apply(lambda x: x + '_suffix') pd.testing.assert_series_equal(result, expected) def test_transform_execute(setup): cols = [chr(ord('A') + i) for i in range(10)] df_raw = pd.DataFrame(dict((c, [i ** 2 for i in range(20)]) for c in cols)) idx_vals = [chr(ord('A') + i) for i in range(20)] s_raw = pd.Series([i ** 2 for i in range(20)], index=idx_vals) def rename_fn(f, new_name): f.__name__ = new_name return f old_chunk_store_limit = options.chunk_store_limit try: options.chunk_store_limit = 20 # DATAFRAME CASES df = from_pandas_df(df_raw, chunk_size=5) # test transform scenarios on data frames r = df.transform(lambda x: list(range(len(x)))) result = r.execute().fetch() expected = df_raw.transform(lambda x: list(range(len(x)))) pd.testing.assert_frame_equal(result, expected) r = df.transform(lambda x: list(range(len(x))), axis=1) result = r.execute().fetch() expected = df_raw.transform(lambda x: list(range(len(x))), axis=1) pd.testing.assert_frame_equal(result, expected) r = df.transform(['cumsum', 'cummax', lambda x: x + 1]) result = r.execute().fetch() expected = df_raw.transform(['cumsum', 'cummax', lambda x: x + 1]) pd.testing.assert_frame_equal(result, expected) fn_dict = OrderedDict([ ('A', 'cumsum'), ('D', ['cumsum', 'cummax']), ('F', lambda x: x + 1), ]) r = df.transform(fn_dict) result = r.execute().fetch() expected = df_raw.transform(fn_dict) pd.testing.assert_frame_equal(result, expected) r = df.transform(lambda x: x.iloc[:-1], _call_agg=True) result = r.execute().fetch() expected = df_raw.agg(lambda x: x.iloc[:-1]) pd.testing.assert_frame_equal(result, expected) r = df.transform(lambda x: x.iloc[:-1], axis=1, _call_agg=True) result = r.execute().fetch() expected = df_raw.agg(lambda x: x.iloc[:-1], axis=1) pd.testing.assert_frame_equal(result, expected) fn_list = [rename_fn(lambda x: x.iloc[1:].reset_index(drop=True), 'f1'), lambda x: x.iloc[:-1].reset_index(drop=True)] r = df.transform(fn_list, _call_agg=True) result = r.execute().fetch() expected = df_raw.agg(fn_list) pd.testing.assert_frame_equal(result, expected) r = df.transform(lambda x: x.sum(), _call_agg=True) result = r.execute().fetch() expected = df_raw.agg(lambda x: x.sum()) pd.testing.assert_series_equal(result, expected) fn_dict = OrderedDict([ ('A', rename_fn(lambda x: x.iloc[1:].reset_index(drop=True), 'f1')), ('D', [rename_fn(lambda x: x.iloc[1:].reset_index(drop=True), 'f1'), lambda x: x.iloc[:-1].reset_index(drop=True)]), ('F', lambda x: x.iloc[:-1].reset_index(drop=True)), ]) r = df.transform(fn_dict, _call_agg=True) result = r.execute().fetch() expected = df_raw.agg(fn_dict) pd.testing.assert_frame_equal(result, expected) # SERIES CASES series = from_pandas_series(s_raw, chunk_size=5) # test transform scenarios on series r = series.transform(lambda x: x + 1) result = r.execute().fetch() expected = s_raw.transform(lambda x: x + 1) pd.testing.assert_series_equal(result, expected) r = series.transform(['cumsum', lambda x: x + 1]) result = r.execute().fetch() expected = s_raw.transform(['cumsum', lambda x: x + 1]) pd.testing.assert_frame_equal(result, expected) # test transform on string dtype df_raw = pd.DataFrame({'col1': ['str'] * 10, 'col2': ['string'] * 10}) df = from_pandas_df(df_raw, chunk_size=3) r = df['col1'].transform(lambda x: x + '_suffix') result = r.execute().fetch() expected = df_raw['col1'].transform(lambda x: x + '_suffix') pd.testing.assert_series_equal(result, expected) r = df.transform(lambda x: x + '_suffix') result = r.execute().fetch() expected = df_raw.transform(lambda x: x + '_suffix') pd.testing.assert_frame_equal(result, expected) r = df['col2'].transform(lambda x: x + '_suffix', dtype=np.dtype('str')) result = r.execute().fetch() expected = df_raw['col2'].transform(lambda x: x + '_suffix') pd.testing.assert_series_equal(result, expected) finally: options.chunk_store_limit = old_chunk_store_limit @pytest.mark.skipif(pa is None, reason='pyarrow not installed') def test_transform_with_arrow_dtype_execution(setup): df1 = pd.DataFrame({'a': [1, 2, 1], 'b': ['a', 'b', 'a']}) df = from_pandas_df(df1) df['b'] = df['b'].astype('Arrow[string]') r = df.transform({'b': lambda x: x + '_suffix'}) result = r.execute().fetch() expected = df1.transform({'b': lambda x: x + '_suffix'}) pd.testing.assert_frame_equal(result, expected) s1 = df1['b'] s = from_pandas_series(s1) s = s.astype('arrow_string') r = s.transform(lambda x: x + '_suffix') result = r.execute().fetch() expected = s1.transform(lambda x: x + '_suffix') pd.testing.assert_series_equal(result, expected) def test_string_method_execution(setup): s = pd.Series(['s1,s2', 'ef,', 'dd', np.nan]) s2 = pd.concat([s, s, s]) series = from_pandas_series(s, chunk_size=2) series2 = from_pandas_series(s2, chunk_size=2) # test getitem r = series.str[:3] result = r.execute().fetch() expected = s.str[:3] pd.testing.assert_series_equal(result, expected) # test split, expand=False r = series.str.split(',', n=2) result = r.execute().fetch() expected = s.str.split(',', n=2) pd.testing.assert_series_equal(result, expected) # test split, expand=True r = series.str.split(',', expand=True, n=1) result = r.execute().fetch() expected = s.str.split(',', expand=True, n=1) pd.testing.assert_frame_equal(result, expected) # test rsplit r = series.str.rsplit(',', expand=True, n=1) result = r.execute().fetch() expected = s.str.rsplit(',', expand=True, n=1) pd.testing.assert_frame_equal(result, expected) # test cat all data r = series2.str.cat(sep='/', na_rep='e') result = r.execute().fetch() expected = s2.str.cat(sep='/', na_rep='e') assert result == expected # test cat list r = series.str.cat(['a', 'b', np.nan, 'c']) result = r.execute().fetch() expected = s.str.cat(['a', 'b', np.nan, 'c']) pd.testing.assert_series_equal(result, expected) # test cat series r = series.str.cat(series.str.capitalize(), join='outer') result = r.execute().fetch() expected = s.str.cat(s.str.capitalize(), join='outer') pd.testing.assert_series_equal(result, expected) # test extractall r = series.str.extractall(r"(?P<letter>[ab])(?P<digit>\d)") result = r.execute().fetch() expected = s.str.extractall(r"(?P<letter>[ab])(?P<digit>\d)") pd.testing.assert_frame_equal(result, expected) # test extract, expand=False r = series.str.extract(r'[ab](\d)', expand=False) result = r.execute().fetch() expected = s.str.extract(r'[ab](\d)', expand=False) pd.testing.assert_series_equal(result, expected) # test extract, expand=True r = series.str.extract(r'[ab](\d)', expand=True) result = r.execute().fetch() expected = s.str.extract(r'[ab](\d)', expand=True) pd.testing.assert_frame_equal(result, expected) def test_datetime_method_execution(setup): # test datetime s = pd.Series([pd.Timestamp('2020-1-1'), pd.Timestamp('2020-2-1'), np.nan]) series = from_pandas_series(s, chunk_size=2) r = series.dt.year result = r.execute().fetch() expected = s.dt.year pd.testing.assert_series_equal(result, expected) r = series.dt.strftime('%m-%d-%Y') result = r.execute().fetch() expected = s.dt.strftime('%m-%d-%Y') pd.testing.assert_series_equal(result, expected) # test timedelta s = pd.Series([pd.Timedelta('1 days'), pd.Timedelta('3 days'), np.nan]) series = from_pandas_series(s, chunk_size=2) r = series.dt.days result = r.execute().fetch() expected = s.dt.days pd.testing.assert_series_equal(result, expected) def test_isin_execution(setup): # one chunk in multiple chunks a = pd.Series([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) b = pd.Series([2, 1, 9, 3]) sa = from_pandas_series(a, chunk_size=10) sb = from_pandas_series(b, chunk_size=2) result = sa.isin(sb).execute().fetch() expected = a.isin(b) pd.testing.assert_series_equal(result, expected) # multiple chunk in one chunks a = pd.Series([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) b = pd.Series([2, 1, 9, 3]) sa = from_pandas_series(a, chunk_size=2) sb = from_pandas_series(b, chunk_size=4) result = sa.isin(sb).execute().fetch() expected = a.isin(b) pd.testing.assert_series_equal(result, expected) # multiple chunk in multiple chunks a = pd.Series([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) b = pd.Series([2, 1, 9, 3]) sa = from_pandas_series(a, chunk_size=2) sb = from_pandas_series(b, chunk_size=2) result = sa.isin(sb).execute().fetch() expected = a.isin(b) pd.testing.assert_series_equal(result, expected) a = pd.Series([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) b = pd.Series([2, 1, 9, 3]) sa = from_pandas_series(a, chunk_size=2) result = sa.isin(sb).execute().fetch() expected = a.isin(b) pd.testing.assert_series_equal(result, expected) a = pd.Series([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) b = np.array([2, 1, 9, 3]) sa = from_pandas_series(a, chunk_size=2) sb = tensor(b, chunk_size=3) result = sa.isin(sb).execute().fetch() expected = a.isin(b) pd.testing.assert_series_equal(result, expected) a = pd.Series([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) b = {2, 1, 9, 3} # set sa = from_pandas_series(a, chunk_size=2) result = sa.isin(sb).execute().fetch() expected = a.isin(b) pd.testing.assert_series_equal(result, expected) rs = np.random.RandomState(0) raw = pd.DataFrame(rs.randint(1000, size=(10, 3))) df = from_pandas_df(raw, chunk_size=(5, 2)) # set b = {2, 1, raw[1][0]} r = df.isin(b) result = r.execute().fetch() expected = raw.isin(b) pd.testing.assert_frame_equal(result, expected) # mars object b = tensor([2, 1, raw[1][0]], chunk_size=2) r = df.isin(b) result = r.execute().fetch() expected = raw.isin([2, 1, raw[1][0]]) pd.testing.assert_frame_equal(result, expected) # dict b = {1: tensor([2, 1, raw[1][0]], chunk_size=2), 2: [3, 10]} r = df.isin(b) result = r.execute().fetch() expected = raw.isin({1: [2, 1, raw[1][0]], 2: [3, 10]}) pd.testing.assert_frame_equal(result, expected) def test_cut_execution(setup): session = setup rs = np.random.RandomState(0) raw = rs.random(15) * 1000 s = pd.Series(raw, index=[f'i{i}' for i in range(15)]) bins = [10, 100, 500] ii = pd.interval_range(10, 500, 3) labels = ['a', 'b'] t = tensor(raw, chunk_size=4) series = from_pandas_series(s, chunk_size=4) iii = from_pandas_index(ii, chunk_size=2) # cut on Series r = cut(series, bins) result = r.execute().fetch() pd.testing.assert_series_equal(result, pd.cut(s, bins)) r, b = cut(series, bins, retbins=True) r_result = r.execute().fetch() b_result = b.execute().fetch() r_expected, b_expected = pd.cut(s, bins, retbins=True) pd.testing.assert_series_equal(r_result, r_expected) np.testing.assert_array_equal(b_result, b_expected) # cut on tensor r = cut(t, bins) # result and expected is array whose dtype is CategoricalDtype result = r.execute().fetch() expected = pd.cut(raw, bins) assert len(result) == len(expected) for r, e in zip(result, expected): np.testing.assert_equal(r, e) # one chunk r = cut(s, tensor(bins, chunk_size=2), right=False, include_lowest=True) result = r.execute().fetch() pd.testing.assert_series_equal(result, pd.cut(s, bins, right=False, include_lowest=True)) # test labels r = cut(t, bins, labels=labels) # result and expected is array whose dtype is CategoricalDtype result = r.execute().fetch() expected = pd.cut(raw, bins, labels=labels) assert len(result) == len(expected) for r, e in zip(result, expected): np.testing.assert_equal(r, e) r = cut(t, bins, labels=False) # result and expected is array whose dtype is CategoricalDtype result = r.execute().fetch() expected = pd.cut(raw, bins, labels=False) np.testing.assert_array_equal(result, expected) # test labels which is tensor labels_t = tensor(['a', 'b'], chunk_size=1) r = cut(raw, bins, labels=labels_t, include_lowest=True) # result and expected is array whose dtype is CategoricalDtype result = r.execute().fetch() expected = pd.cut(raw, bins, labels=labels, include_lowest=True) assert len(result) == len(expected) for r, e in zip(result, expected): np.testing.assert_equal(r, e) # test labels=False r, b = cut(raw, ii, labels=False, retbins=True) # result and expected is array whose dtype is CategoricalDtype r_result, b_result = session.fetch(*session.execute(r, b)) r_expected, b_expected = pd.cut(raw, ii, labels=False, retbins=True) for r, e in zip(r_result, r_expected): np.testing.assert_equal(r, e) pd.testing.assert_index_equal(b_result, b_expected) # test bins which is md.IntervalIndex r, b = cut(series, iii, labels=tensor(labels, chunk_size=1), retbins=True) r_result = r.execute().fetch() b_result = b.execute().fetch() r_expected, b_expected = pd.cut(s, ii, labels=labels, retbins=True) pd.testing.assert_series_equal(r_result, r_expected) pd.testing.assert_index_equal(b_result, b_expected) # test duplicates bins2 = [0, 2, 4, 6, 10, 10] r, b = cut(s, bins2, labels=False, retbins=True, right=False, duplicates='drop') r_result = r.execute().fetch() b_result = b.execute().fetch() r_expected, b_expected = pd.cut(s, bins2, labels=False, retbins=True, right=False, duplicates='drop') pd.testing.assert_series_equal(r_result, r_expected) np.testing.assert_array_equal(b_result, b_expected) # test integer bins r = cut(series, 3) result = r.execute().fetch() pd.testing.assert_series_equal(result, pd.cut(s, 3)) r, b = cut(series, 3, right=False, retbins=True) r_result, b_result = session.fetch(*session.execute(r, b)) r_expected, b_expected = pd.cut(s, 3, right=False, retbins=True) pd.testing.assert_series_equal(r_result, r_expected) np.testing.assert_array_equal(b_result, b_expected) # test min max same s2 = pd.Series([1.1] * 15) r = cut(s2, 3) result = r.execute().fetch() pd.testing.assert_series_equal(result, pd.cut(s2, 3)) # test inf exist s3 = s2.copy() s3[-1] = np.inf with pytest.raises(ValueError): cut(s3, 3).execute() def test_transpose_execution(setup): raw = pd.DataFrame({"a": ['1', '2', '3'], "b": ['5', '-6', '7'], "c": ['1', '2', '3']}) # test 1 chunk df = from_pandas_df(raw) result = df.transpose().execute().fetch() pd.testing.assert_frame_equal(result, raw.transpose()) # test multi chunks df = from_pandas_df(raw, chunk_size=2) result = df.transpose().execute().fetch() pd.testing.assert_frame_equal(result, raw.transpose()) df = from_pandas_df(raw, chunk_size=2) result = df.T.execute().fetch() pd.testing.assert_frame_equal(result, raw.transpose()) # dtypes are varied raw = pd.DataFrame({"a": [1.1, 2.2, 3.3], "b": [5, -6, 7], "c": [1, 2, 3]}) df = from_pandas_df(raw, chunk_size=2) result = df.transpose().execute().fetch() pd.testing.assert_frame_equal(result, raw.transpose()) raw = pd.DataFrame({"a": [1.1, 2.2, 3.3], "b": ['5', '-6', '7']}) df = from_pandas_df(raw, chunk_size=2) result = df.transpose().execute().fetch() pd.testing.assert_frame_equal(result, raw.transpose()) # Transposing from results of other operands raw = pd.DataFrame(np.arange(0, 100).reshape(10, 10)) df = DataFrame(arange(0, 100, chunk_size=5).reshape(10, 10)) result = df.transpose().execute().fetch() pd.testing.assert_frame_equal(result, raw.transpose()) df = DataFrame(rand(100, 100, chunk_size=10)) raw = df.to_pandas() result = df.transpose().execute().fetch() pd.testing.assert_frame_equal(result, raw.transpose()) def test_to_numeric_execition(setup): rs = np.random.RandomState(0) s = pd.Series(rs.randint(5, size=100)) s[rs.randint(100)] = np.nan # test 1 chunk series = from_pandas_series(s) r = to_numeric(series) pd.testing.assert_series_equal(r.execute().fetch(), pd.to_numeric(s)) # test multi chunks series = from_pandas_series(s, chunk_size=20) r = to_numeric(series) pd.testing.assert_series_equal(r.execute().fetch(), pd.to_numeric(s)) # test object dtype s = pd.Series(['1.0', 2, -3, '2.0']) series = from_pandas_series(s) r = to_numeric(series) pd.testing.assert_series_equal(r.execute().fetch(), pd.to_numeric(s)) # test errors and downcast s = pd.Series(['appple', 2, -3, '2.0']) series = from_pandas_series(s) r = to_numeric(series, errors='ignore', downcast='signed') pd.testing.assert_series_equal(r.execute().fetch(), pd.to_numeric(s, errors='ignore', downcast='signed')) # test list data l = ['1.0', 2, -3, '2.0'] r = to_numeric(l) np.testing.assert_array_equal(r.execute().fetch(), pd.to_numeric(l)) def test_q_cut_execution(setup): rs = np.random.RandomState(0) raw = rs.random(15) * 1000 s = pd.Series(raw, index=[f'i{i}' for i in range(15)]) series = from_pandas_series(s) r = qcut(series, 3) result = r.execute().fetch() expected = pd.qcut(s, 3) pd.testing.assert_series_equal(result, expected) r = qcut(s, 3) result = r.execute().fetch() expected = pd.qcut(s, 3) pd.testing.assert_series_equal(result, expected) series = from_pandas_series(s) r = qcut(series, [0.3, 0.5, 0.7]) result = r.execute().fetch() expected = pd.qcut(s, [0.3, 0.5, 0.7]) pd.testing.assert_series_equal(result, expected) r = qcut(range(5), 3) result = r.execute().fetch() expected = pd.qcut(range(5), 3) assert isinstance(result, type(expected)) pd.testing.assert_series_equal(pd.Series(result), pd.Series(expected)) r = qcut(range(5), [0.2, 0.5]) result = r.execute().fetch() expected = pd.qcut(range(5), [0.2, 0.5]) assert isinstance(result, type(expected)) pd.testing.assert_series_equal(pd.Series(result), pd.Series(expected)) r = qcut(range(5), tensor([0.2, 0.5])) result = r.execute().fetch() expected = pd.qcut(range(5), [0.2, 0.5]) assert isinstance(result, type(expected)) pd.testing.assert_series_equal(pd.Series(result), pd.Series(expected)) def test_shift_execution(setup): # test dataframe rs = np.random.RandomState(0) raw = pd.DataFrame(rs.randint(1000, size=(10, 8)), columns=['col' + str(i + 1) for i in range(8)]) df = from_pandas_df(raw, chunk_size=5) for periods in (2, -2, 6, -6): for axis in (0, 1): for fill_value in (None, 0, 1.): r = df.shift(periods=periods, axis=axis, fill_value=fill_value) try: result = r.execute().fetch() expected = raw.shift(periods=periods, axis=axis, fill_value=fill_value) pd.testing.assert_frame_equal(result, expected, check_dtype=False) except AssertionError as e: # pragma: no cover raise AssertionError( f'Failed when periods: {periods}, axis: {axis}, fill_value: {fill_value}' ) from e raw2 = raw.copy() raw2.index = pd.date_range('2020-1-1', periods=10) raw2.columns = pd.date_range('2020-3-1', periods=8) df2 = from_pandas_df(raw2, chunk_size=5) # test freq not None for periods in (2, -2): for axis in (0, 1): for fill_value in (None, 0, 1.): r = df2.shift(periods=periods, freq='D', axis=axis, fill_value=fill_value) try: result = r.execute().fetch() expected = raw2.shift(periods=periods, freq='D', axis=axis, fill_value=fill_value) pd.testing.assert_frame_equal(result, expected) except AssertionError as e: # pragma: no cover raise AssertionError( f'Failed when periods: {periods}, axis: {axis}, fill_value: {fill_value}') from e # test tshift r = df2.tshift(periods=1) result = r.execute().fetch() expected = raw2.tshift(periods=1) pd.testing.assert_frame_equal(result, expected) with pytest.raises(ValueError): _ = df.tshift(periods=1) # test series s = raw.iloc[:, 0] series = from_pandas_series(s, chunk_size=5) for periods in (0, 2, -2, 6, -6): for fill_value in (None, 0, 1.): r = series.shift(periods=periods, fill_value=fill_value) try: result = r.execute().fetch() expected = s.shift(periods=periods, fill_value=fill_value) pd.testing.assert_series_equal(result, expected) except AssertionError as e: # pragma: no cover raise AssertionError( f'Failed when periods: {periods}, fill_value: {fill_value}') from e s2 = raw2.iloc[:, 0] # test freq not None series2 = from_pandas_series(s2, chunk_size=5) for periods in (2, -2): for fill_value in (None, 0, 1.): r = series2.shift(periods=periods, freq='D', fill_value=fill_value) try: result = r.execute().fetch() expected = s2.shift(periods=periods, freq='D', fill_value=fill_value) pd.testing.assert_series_equal(result, expected) except AssertionError as e: # pragma: no cover raise AssertionError( f'Failed when periods: {periods}, fill_value: {fill_value}') from e def test_diff_execution(setup): rs = np.random.RandomState(0) raw = pd.DataFrame(rs.randint(1000, size=(10, 8)), columns=['col' + str(i + 1) for i in range(8)]) raw1 = raw.copy() raw1['col4'] = raw1['col4'] < 400 r = from_pandas_df(raw1, chunk_size=(10, 5)).diff(-1) pd.testing.assert_frame_equal(r.execute().fetch(), raw1.diff(-1)) r = from_pandas_df(raw1, chunk_size=5).diff(-1) pd.testing.assert_frame_equal(r.execute().fetch(), raw1.diff(-1)) r = from_pandas_df(raw, chunk_size=(5, 8)).diff(1, axis=1) pd.testing.assert_frame_equal(r.execute().fetch(), raw.diff(1, axis=1)) r = from_pandas_df(raw, chunk_size=5).diff(1, axis=1) pd.testing.assert_frame_equal(r.execute().fetch(), raw.diff(1, axis=1), check_dtype=False) # test series s = raw.iloc[:, 0] s1 = s.copy() < 400 r = from_pandas_series(s, chunk_size=10).diff(-1) pd.testing.assert_series_equal(r.execute().fetch(), s.diff(-1)) r = from_pandas_series(s, chunk_size=5).diff(-1) pd.testing.assert_series_equal(r.execute().fetch(), s.diff(-1)) r = from_pandas_series(s1, chunk_size=5).diff(1) pd.testing.assert_series_equal(r.execute().fetch(), s1.diff(1)) def test_value_counts_execution(setup): rs = np.random.RandomState(0) s = pd.Series(rs.randint(5, size=100), name='s') s[rs.randint(100)] = np.nan # test 1 chunk series = from_pandas_series(s, chunk_size=100) r = series.value_counts() pd.testing.assert_series_equal(r.execute().fetch(), s.value_counts()) r = series.value_counts(bins=5, normalize=True) pd.testing.assert_series_equal(r.execute().fetch(), s.value_counts(bins=5, normalize=True)) # test multi chunks series = from_pandas_series(s, chunk_size=30) r = series.value_counts(method='tree') pd.testing.assert_series_equal(r.execute().fetch(), s.value_counts()) r = series.value_counts(method='tree', normalize=True) pd.testing.assert_series_equal(r.execute().fetch(), s.value_counts(normalize=True)) # test bins and normalize r = series.value_counts(method='tree', bins=5, normalize=True) pd.testing.assert_series_equal(r.execute().fetch(), s.value_counts(bins=5, normalize=True)) def test_astype(setup): rs = np.random.RandomState(0) raw = pd.DataFrame(rs.randint(1000, size=(20, 8)), columns=['c' + str(i + 1) for i in range(8)]) # single chunk df = from_pandas_df(raw) r = df.astype('int32') result = r.execute().fetch() expected = raw.astype('int32') pd.testing.assert_frame_equal(expected, result) # multiply chunks df = from_pandas_df(raw, chunk_size=6) r = df.astype('int32') result = r.execute().fetch() expected = raw.astype('int32') pd.testing.assert_frame_equal(expected, result) # dict type df = from_pandas_df(raw, chunk_size=5) r = df.astype({'c1': 'int32', 'c2': 'float', 'c8': 'str'}) result = r.execute().fetch() expected = raw.astype({'c1': 'int32', 'c2': 'float', 'c8': 'str'}) pd.testing.assert_frame_equal(expected, result) # test arrow_string dtype df = from_pandas_df(raw, chunk_size=8) r = df.astype({'c1': 'arrow_string'}) result = r.execute().fetch() expected = raw.astype({'c1': 'arrow_string'}) pd.testing.assert_frame_equal(expected, result) # test series s = pd.Series(rs.randint(5, size=20)) series = from_pandas_series(s) r = series.astype('int32') result = r.execute().fetch() expected = s.astype('int32') pd.testing.assert_series_equal(result, expected) series = from_pandas_series(s, chunk_size=6) r = series.astype('arrow_string') result = r.execute().fetch() expected = s.astype('arrow_string') pd.testing.assert_series_equal(result, expected) # test index raw = pd.Index(rs.randint(5, size=20)) mix = from_pandas_index(raw) r = mix.astype('int32') result = r.execute().fetch() expected = raw.astype('int32') pd.testing.assert_index_equal(result, expected) # multiply chunks series = from_pandas_series(s, chunk_size=6) r = series.astype('str') result = r.execute().fetch() expected = s.astype('str') pd.testing.assert_series_equal(result, expected) # test category raw = pd.DataFrame(rs.randint(3, size=(20, 8)), columns=['c' + str(i + 1) for i in range(8)]) df = from_pandas_df(raw) r = df.astype('category') result = r.execute().fetch() expected = raw.astype('category') pd.testing.assert_frame_equal(expected, result) df = from_pandas_df(raw) r = df.astype({'c1': 'category', 'c8': 'int32', 'c4': 'str'}) result = r.execute().fetch() expected = raw.astype({'c1': 'category', 'c8': 'int32', 'c4': 'str'}) pd.testing.assert_frame_equal(expected, result) df = from_pandas_df(raw, chunk_size=5) r = df.astype('category') result = r.execute().fetch() expected = raw.astype('category') pd.testing.assert_frame_equal(expected, result) df = from_pandas_df(raw, chunk_size=3) r = df.astype({'c1': 'category', 'c8': 'int32', 'c4': 'str'}) result = r.execute().fetch() expected = raw.astype({'c1': 'category', 'c8': 'int32', 'c4': 'str'})
pd.testing.assert_frame_equal(expected, result)
pandas.testing.assert_frame_equal
import numpy as np import pandas as pd def mae(y_true_counts, y_pred_counts): return np.mean(np.abs(y_true_counts - y_pred_counts)) def rmse(y_true_counts, y_pred_counts): return np.sqrt(np.mean(np.square(y_true_counts - y_pred_counts))) def underestimate(y_true_counts, y_pred_counts): return 100. * np.sum((y_true_counts - y_pred_counts) * (y_pred_counts < y_true_counts)) / y_true_counts.sum() def overestimate(y_true_counts, y_pred_counts): return 100. * np.sum((y_pred_counts - y_true_counts) * (y_pred_counts > y_true_counts)) / y_true_counts.sum() def difference(y_true_counts, y_pred_counts): return underestimate(y_true_counts, y_pred_counts) + overestimate(y_true_counts, y_pred_counts) def evaluation_results_as_dict(counts_true, counts_pred, split_name, decimals=3): mae_v = mae(counts_true, counts_pred).round(decimals=decimals) rmse_v = rmse(counts_true, counts_pred).round(decimals=decimals) underestimate_v = f'{underestimate(counts_true, counts_pred):.{decimals}f}%' overestimate_v = f'{overestimate(counts_true, counts_pred):.{decimals}f}%' difference_v = f'{difference(counts_true, counts_pred):.{decimals}f}%' results = { split_name:{ 'MAE': mae_v, 'RMSE': rmse_v, 'Underestimate': underestimate_v, 'Overestimate': overestimate_v, 'Difference': difference_v } } return results def evaluation_results_as_df(train_results, val_results, test_results, architecture_name='', sub_experiment_name='', dataset_name=''): rows = ['train', 'val', 'test'] data = {**train_results, **val_results, **test_results} df =
pd.DataFrame.from_dict(data=data, orient='index')
pandas.DataFrame.from_dict
# brightwind is a library that provides wind analysts with easy to use tools for working with meteorological data. # Copyright (C) 2021 <NAME> # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with this program. If not, see <https://www.gnu.org/licenses/>. from brightwind.load.load import _is_file import numpy as np import pandas as pd import requests import json import copy __all__ = ['MeasurementStation'] def _replace_none_date(list_or_dict): if isinstance(list_or_dict, list): renamed = [] for item in list_or_dict: renamed.append(_replace_none_date(item)) return renamed elif isinstance(list_or_dict, dict): for date_str in ['date_from', 'date_to']: if list_or_dict.get(date_str) is None: list_or_dict[date_str] = DATE_INSTEAD_OF_NONE return list_or_dict def _get_title(property_name, schema, property_section=None): """ Get the title for the property name from the WRA Data Model Schema. Optionally, you can send the section of the schema where the property should be found. This avoids finding the wrong property name when the name is not unique. If the property name is not found it will return itself. :param property_name: The property name to find. :type property_name: str :param schema: The WRA Data Model Schema. :type schema: dict :param property_section: The section in the schema where the property can be found. This avoids the case where the property_name is not unique in the schema. :type property_section: str or None :return: The title as stated in the schema. :rtype: str """ # search through definitions first if schema.get('definitions') is not None: if property_name in schema.get('definitions').keys(): return schema.get('definitions').get(property_name).get('title') # search through properties if schema.get('properties') is not None: # is property_name in the main properties if property_name in schema.get('properties').keys() and property_section is None: return schema.get('properties').get(property_name).get('title') # is property_section part of the main properties if property_section in schema.get('properties').keys(): property_type = schema.get('properties').get(property_section).get('type') if property_type is not None and 'array' in property_type: # move down into an array result = _get_title(property_name, schema.get('properties').get(property_section)['items']) if result != property_name: return result elif property_type is not None and 'object' in property_type: # move down into an object result = _get_title(property_name, schema.get('properties').get(property_section)) if result != property_name: return result # don't recognise either property_name or property_section. # loop through each property to find an array or object to move down to for k, v in schema.get('properties').items(): if v.get('type') is not None and 'array' in v['type']: # move down into an array result = _get_title(property_name, v['items'], property_section) if result != property_name: return result elif v.get('type') is not None and 'object' in v['type']: # move down into an object result = _get_title(property_name, v, property_section) if result != property_name: return result # can't find the property_name in the schema, return itself return property_name def _rename_to_title(list_or_dict, schema): """ Rename the names in a list to it's equivalent title in the schema or the keys in a dictionary. If there are prefixes from raising a child property up to a parent level, this will find the normal schema title and add the prefixed title to it. :param list_or_dict: List of names or dictionary with keys to rename. :type list_or_dict: list or dict :param schema: The WRA Data Model Schema. :type schema: dict :return: A renamed list or keys in dictionary. :rtype: list or dict """ prefixed_names = {} # find all possible prefixed names and build a dict to contain it and the separator and title. for key in PREFIX_DICT.keys(): for col in PREFIX_DICT[key]['keys_to_prefix']: prefixed_name = key + PREFIX_DICT[key]['prefix_separator'] + col prefixed_names[prefixed_name] = {'prefix_separator': PREFIX_DICT[key]['prefix_separator'], 'title_prefix': PREFIX_DICT[key]['title_prefix']} if isinstance(list_or_dict, dict): renamed_dict = {} for k, v in list_or_dict.items(): if k in list(prefixed_names.keys()): # break out the property name and the name, get the title and then add title_prefix to it. property_section = k[0:k.find(prefixed_names[k]['prefix_separator'])] property_name = k[k.find(prefixed_names[k]['prefix_separator']) + 1:] if k in ['sensor_config.slope', 'sensor_config.offset', 'sensor_config.sensitivity', 'calibration.slope', 'calibration.offset', 'calibration.sensitivity']: # Special cases don't add a title prefix as there is already one in the schema title renamed_dict[_get_title(property_name, schema, property_section)] = v else: renamed_dict[prefixed_names[k]['title_prefix'] + _get_title(property_name, schema, property_section)] = v else: # if not in the list of prefixed_names then just find the title as normal. renamed_dict[_get_title(k, schema)] = v return renamed_dict elif isinstance(list_or_dict, list): renamed_list = [] for name in list_or_dict: if name in list(prefixed_names.keys()): # break out the property name and the name, get the title and then add title_prefix to it. property_section = name[0:name.find(prefixed_names[name]['prefix_separator'])] property_name = name[name.find(prefixed_names[name]['prefix_separator']) + 1:] if name in ['sensor_config.slope', 'sensor_config.offset', 'sensor_config.sensitivity', 'calibration.slope', 'calibration.offset', 'calibration.sensitivity']: # Special cases don't add a title prefix as there is already one in the schema title renamed_list.append(_get_title(property_name, schema, property_section)) else: renamed_list.append(prefixed_names[name]['title_prefix'] + _get_title(property_name, schema, property_section)) else: # if not in the list of prefixed_names then just find the title as normal. renamed_list.append(_get_title(name, schema)) return renamed_list def _extract_keys_to_unique_list(lists_of_dictionaries): """ Extract the keys for a list of dictionaries and merge them into a unique list. :param lists_of_dictionaries: List of dictionaries to pull unique keys from. :type lists_of_dictionaries: list(dict) :return: Merged list of keys into a unique list. :rtype: list """ merged_list = list(lists_of_dictionaries[0].keys()) for idx, d in enumerate(lists_of_dictionaries): if idx != 0: merged_list = merged_list + list(set(list(d.keys())) - set(merged_list)) return merged_list def _add_prefix(dictionary, property_section): """ Add a prefix to certain keys in the dictionary. :param dictionary: The dictionary containing the keys to rename. :type dictionary: dict :return: The dictionary with the keys prefixed. :rtype: dict """ prefixed_dict = {} for k, v in dictionary.items(): if k in PREFIX_DICT[property_section]['keys_to_prefix']: prefixed_dict[property_section + PREFIX_DICT[property_section]['prefix_separator'] + k] = v else: prefixed_dict[k] = v return prefixed_dict def _merge_two_dicts(x, y): """ Given two dictionaries, merge them into a new dict as a shallow copy. """ z = x.copy() z.update(y) return z def _filter_parent_level(dictionary): """ Pull only the parent level keys and values i.e. do not return any child lists or dictionaries or nulls/Nones. :param dictionary: :return: """ parent = {} for key, value in dictionary.items(): if (type(value) != list) and (type(value) != dict) and (value is not None): parent.update({key: value}) return parent def _flatten_dict(dictionary, property_to_bring_up): """ Bring a child level in a dictionary up to the parent level. This is usually when there is an array of child levels and so the parent level is repeated. :param dictionary: Dictionary with keys to prefix. :type dictionary: dict :param property_to_bring_up: The child property name to raise up to the parent level. :type property_to_bring_up: str :return: A list of merged dictionaries :rtype: list(dict) """ result = [] parent = _filter_parent_level(dictionary) for key, value in dictionary.items(): if (type(value) == list) and (key == property_to_bring_up): for item in value: child = _filter_parent_level(item) child = _add_prefix(child, property_section=property_to_bring_up) result.append(_merge_two_dicts(parent, child)) if (type(value) == dict) and (key == property_to_bring_up): child = _filter_parent_level(value) child = _add_prefix(child, property_section=property_to_bring_up) # return a dictionary and not a list result = _merge_two_dicts(parent, child) # result.append(_merge_two_dicts(parent, child)) if not result: result.append(parent) return result def _raise_child(dictionary, child_to_raise): """ :param dictionary: :param child_to_raise: :return: """ # FUTURE DEV: ACCOUNT FOR 'DATE_OF_CALIBRATION' WHEN RAISING UP MULTIPLE CALIBRATIONS if dictionary is None: return None new_dict = dictionary.copy() for key, value in dictionary.items(): if (key == child_to_raise) and (value is not None): # Found the key to raise. Flattening dictionary. return _flatten_dict(dictionary, child_to_raise) # didn't find the child to raise. search down through each nested dict or list for key, value in dictionary.items(): if (type(value) == dict) and (value is not None): # 'key' is a dict, looping through it's own keys. flattened_dicts = _raise_child(value, child_to_raise) if flattened_dicts: new_dict[key] = flattened_dicts return new_dict elif (type(value) == list) and (value is not None): # 'key' is a list, looping through it's items. temp_list = [] for idx, item in enumerate(value): flattened_dicts = _raise_child(item, child_to_raise) if flattened_dicts: if isinstance(flattened_dicts, list): for flat_dict in flattened_dicts: temp_list.append(flat_dict) else: # it is a dictionary so just append it temp_list.append(flattened_dicts) if temp_list: # Temp_list is not empty. Replacing 'key' with this. new_dict[key] = temp_list return new_dict return None PREFIX_DICT = { 'mast_properties': { 'prefix_separator': '.', 'title_prefix': 'Mast ', 'keys_to_prefix': ['notes', 'update_at'] }, 'vertical_profiler_properties': { 'prefix_separator': '.', 'title_prefix': 'Vert. Prof. Prop. ', 'keys_to_prefix': ['notes', 'update_at'] }, 'lidar_config': { 'prefix_separator': '.', 'title_prefix': 'Lidar Specific Configs ', 'keys_to_prefix': ['date_from', 'date_to', 'notes', 'update_at'] }, 'sensor_config': { 'prefix_separator': '.', 'title_prefix': 'Logger ', 'keys_to_prefix': ['height_m', 'height_reference_id', 'serial_number', 'slope', 'offset', 'sensitivity', 'notes', 'update_at'] }, 'column_name': { 'prefix_separator': '.', 'title_prefix': 'Column Name ', 'keys_to_prefix': ['notes', 'update_at'] }, 'sensor': { 'prefix_separator': '.', 'title_prefix': 'Sensor ', 'keys_to_prefix': ['serial_number', 'notes', 'update_at'] }, 'calibration': { 'prefix_separator': '.', 'title_prefix': 'Calibration ', 'keys_to_prefix': ['slope', 'offset', 'sensitivity', 'report_file_name', 'report_link', 'uncertainty_k_factor', 'date_from', 'date_to', 'notes', 'update_at'] }, 'calibration_uncertainty': { 'prefix_separator': '.', 'title_prefix': 'Calibration Uncertainty ', 'keys_to_prefix': [] }, 'mounting_arrangement': { 'prefix_separator': '.', 'title_prefix': 'Mounting Arrangement ', 'keys_to_prefix': ['notes', 'update_at'] }, 'interference_structures': { 'prefix_separator': '.', 'title_prefix': 'Interference Structure ', 'keys_to_prefix': ['structure_type_id', 'orientation_from_mast_centre_deg', 'orientation_reference_id', 'distance_from_mast_centre_mm', 'date_from', 'date_to', 'notes', 'update_at'] } } DATE_INSTEAD_OF_NONE = '2100-12-31' SENSOR_TYPE_ORDER = ['anemometer', '2d_ultrasonic', '3d_ultrasonic', 'propeller_anemometer', 'gill_propeller', 'wind_vane', 'pyranometer', 'pyrheliometer', 'thermometer', 'hygrometer', 'barometer', 'rain_gauge', 'voltmeter', 'ammeter', 'ice_detection_sensor', 'fog_sensor', 'illuminance_sensor', 'gps', 'compass', 'other'] MEAS_TYPE_ORDER = ['wind_speed', 'wind_direction', 'vertical_wind_speed', 'global_horizontal_irradiance', 'direct_normal_irradiance', 'diffuse_horizontal_irradiance', 'global_tilted_irradiance', 'global_normal_irradiance', 'soiling_loss_index', 'illuminance', 'wind_speed_turbulence', 'air_temperature', 'temperature', 'relative_humidity', 'air_pressure', 'precipitation', 'ice_detection', 'voltage', 'current', 'fog', 'carrier_to_noise_ratio', 'doppler_spectral_broadening', 'gps_coordinates', 'orientation', 'compass_direction', 'true_north_offset', 'elevation', 'altitude', 'azimuth', 'status', 'counter', 'availability', 'quality', 'tilt_x', 'tilt_y', 'tilt_z', 'timestamp', 'other'] class MeasurementStation: """ Create a Measurement Station object by loading in an IEA Wind Resource Assessment Data Model. The IEA Wind: Task 43 Work Package 4 WRA Data Model was first released in January 2021. Versions of the Data Model Schema can be found at https://github.com/IEA-Task-43/digital_wra_data_standard The Schema associated with this data model file will be downloaded from GitHub and used to parse the data model. :param wra_data_model: The filepath to an implementation of the WRA Data Model as a .json file or a json formatted string or a dictionary format of the data model. :type wra_data_model: str or dict :return: A simplified object to represent the data model :rtype: MeasurementStation """ def __init__(self, wra_data_model): self.__data_model = self._load_wra_data_model(wra_data_model) version = self.__data_model.get('version') self.__schema = self._get_schema(version=version) self.__header = _Header(dm=self.__data_model, schema=self.__schema) self.__meas_loc_data_model = self._get_meas_loc_data_model(dm=self.__data_model) self.__meas_loc_properties = self.__get_properties() self.__logger_configs = _LoggerConfigs(meas_loc_dm=self.__meas_loc_data_model, schema=self.__schema, station_type=self.type) self.__measurements = _Measurements(meas_loc_dm=self.__meas_loc_data_model, schema=self.__schema) # self.__mast_section_geometry = _MastSectionGeometry() def __getitem__(self, item): return self.__meas_loc_properties[item] def __iter__(self): return iter(self.__meas_loc_properties) def __repr__(self): return repr(self.__meas_loc_properties) @staticmethod def _load_wra_data_model(wra_data_model): """ Load a IEA Wind Resource Assessment Data Model. The IEA Wind: Task 43 Work Package 4 WRA Data Model was first released in January 2021. Versions of the Data Model Schema can be found at https://github.com/IEA-Task-43/digital_wra_data_standard *** SHOULD INCLUDE CHECKING AGAINST THE JSON SCHEMA (WHICH WOULD MEAN GETTING THE CORRECT VERSION FROM GITHUB) AND MAKE SURE PROPER JSON :param wra_data_model: The filepath to an implementation of the WRA Data Model as a .json file or a json formatted string or a dictionary format of the data model. :return: Python dictionary of the data model. :rtype: dict """ # Assess whether filepath or json str sent. dm = dict() if isinstance(wra_data_model, str) and '.json' == wra_data_model[-5:]: if _is_file(wra_data_model): with open(wra_data_model) as json_file: dm = json.load(json_file) elif isinstance(wra_data_model, str): dm = json.loads(wra_data_model) else: # it is most likely already a dict so return itself dm = wra_data_model return dm @staticmethod def _get_schema(version): """ Get the JSON Schema from GitHub based on the version number in the data model. :param version: The version from the header information from the data model json file. :type version: str :return: The IEA Wind Task 43 WRA Data Model Schema. :rtype: dict """ schema_link = 'https://github.com/IEA-Task-43/digital_wra_data_standard/releases/download/v{}' \ '/iea43_wra_data_model.schema.json' response = requests.get(schema_link.format(version)) if response.status_code == 404: raise ValueError('Schema could not be downloaded from GitHub. Please check the version number in the ' 'data model json file.') schema = json.loads(response.content) return schema @staticmethod def _get_meas_loc_data_model(dm): if len(dm.get('measurement_location')) > 1: raise Exception('More than one measurement location found in the data model. Only processing' 'the first one found. Please remove extra measurement locations.') return dm.get('measurement_location')[0] @property def data_model(self): """ The data model from the measurement_location onwards i.e. excluding the header. :return: """ return self.__meas_loc_data_model @property def schema(self): return self.__schema @property def name(self): return self.__meas_loc_data_model.get('name') @property def lat(self): return self.__meas_loc_data_model.get('latitude_ddeg') @property def long(self): return self.__meas_loc_data_model.get('longitude_ddeg') @property def type(self): return self.__meas_loc_data_model.get('measurement_station_type_id') def __get_properties(self): meas_loc_prop = [] if self.type == 'mast': meas_loc_prop = _flatten_dict(self.__meas_loc_data_model, property_to_bring_up='mast_properties') elif self.type in ['lidar', 'sodar', 'flidar']: meas_loc_prop = _flatten_dict(self.__meas_loc_data_model, property_to_bring_up='vertical_profiler_properties') return meas_loc_prop def get_table(self, horizontal_table_orientation=False): """ Get a table representation of the attributes for the measurement station and it's mast or vertical profiler properties. :param horizontal_table_orientation: horizontal or vertical table orientation. :type horizontal_table_orientation: bool :return: A table showing all the information for the measurement station. If a horizontal table then a pd.DataFrame is returned. If a vertical table then a styled pd.DataFrame is returned which does not have the same properties as a standard DataFrame. :rtype: pd.DataFrame or pd.io.formats.style.Styler """ list_for_df = self.__meas_loc_properties df = pd.DataFrame() if horizontal_table_orientation: list_for_df_with_titles = [] if isinstance(list_for_df, dict): list_for_df_with_titles = [_rename_to_title(list_or_dict=list_for_df, schema=self.__schema)] elif isinstance(list_for_df, list): for row in list_for_df: list_for_df_with_titles.append(_rename_to_title(list_or_dict=row, schema=self.__schema)) df = pd.DataFrame(list_for_df_with_titles, columns=_extract_keys_to_unique_list(list_for_df_with_titles)) df.set_index('Name', inplace=True) elif horizontal_table_orientation is False: if isinstance(list_for_df, dict): # if a dictionary, it only has 1 row of data titles = list(_rename_to_title(list_or_dict=list_for_df, schema=self.__schema).keys()) df = pd.DataFrame({1: list(list_for_df.values())}, index=titles) elif isinstance(list_for_df, list): for idx, row in enumerate(list_for_df): titles = list(_rename_to_title(list_or_dict=row, schema=self.__schema).keys()) df_temp = pd.DataFrame({idx + 1: list(row.values())}, index=titles) df = pd.concat([df, df_temp], axis=1, sort=False) df = df.style.set_properties(**{'text-align': 'left'}) df = df.set_table_styles([dict(selector='th', props=[('text-align', 'left')])]) return df @property def properties(self): return self.__meas_loc_properties @property def header(self): # return the header info return self.__header @property def logger_configs(self): return self.__logger_configs @property def measurements(self): return self.__measurements @property def mast_section_geometry(self): return 'Not yet implemented.' # return self.__mast_section_geometry class _Header: def __init__(self, dm, schema): """ Extract the header info from the data model and return either a dict or table """ self._schema = schema keys = [] values = [] header_dict = {} for key, value in dm.items(): if key != 'measurement_location': keys.append(key) values.append(value) header_dict[key] = value self._header_properties = header_dict self._keys = keys self._values = values def __getitem__(self, item): return self._header_properties[item] def __iter__(self): return iter(self._header_properties) def __repr__(self): return repr(self._header_properties) @property def properties(self): return self._header_properties def get_table(self): # get titles for each property titles = [] for key in self._keys: titles.append(_get_title(key, self._schema)) df = pd.DataFrame({'': self._values}, index=titles) df_styled = df.style.set_properties(**{'text-align': 'left'}) df_styled = df_styled.set_table_styles([dict(selector='th', props=[('text-align', 'left')])]) return df_styled class _LoggerConfigs: def __init__(self, meas_loc_dm, schema, station_type): self._log_cfg_data_model = meas_loc_dm.get('logger_main_config') self._schema = schema self._type = station_type self.__log_cfg_properties = self.__get_properties() def __getitem__(self, item): return self.__log_cfg_properties[item] def __iter__(self): return iter(self.__log_cfg_properties) def __repr__(self): return repr(self.__log_cfg_properties) @property def data_model(self): """ This is the original data model unchanged from this level down. :return: The data model from this level down. :rtype: Dict or List """ return self._log_cfg_data_model def __get_properties(self): log_cfg_props = [] if self._type == 'mast': # if mast, there are no child dictionaries log_cfg_props = self._log_cfg_data_model # logger config data model is already a list elif self._type in ['lidar', 'flidar']: for log_config in self._log_cfg_data_model: log_configs_flat = _flatten_dict(log_config, property_to_bring_up='lidar_config') for log_config_flat in log_configs_flat: log_cfg_props.append(log_config_flat) return log_cfg_props def get_table(self, horizontal_table_orientation=False): """ Get a table representation of the attributes for the logger configurations. If a LiDAR then the lidar specific configurations are also presented. :param horizontal_table_orientation: horizontal or vertical table orientation. :type horizontal_table_orientation: bool :return: A table showing all the information for the measurement station. If a horizontal table then a pd.DataFrame is returned. If a vertical table then a styled pd.DataFrame is returned which does not have the same properties as a standard DataFrame. :rtype: pd.DataFrame or pd.io.formats.style.Styler """ list_for_df = self.__log_cfg_properties df = pd.DataFrame() if horizontal_table_orientation: list_for_df_with_titles = [] for row in list_for_df: list_for_df_with_titles.append(_rename_to_title(list_or_dict=row, schema=self._schema)) df = pd.DataFrame(list_for_df_with_titles, columns=_extract_keys_to_unique_list(list_for_df_with_titles)) df.set_index('Logger Name', inplace=True) elif horizontal_table_orientation is False: for idx, row in enumerate(list_for_df): titles = list(_rename_to_title(list_or_dict=row, schema=self._schema).keys()) df_temp = pd.DataFrame({idx + 1: list(row.values())}, index=titles) df = pd.concat([df, df_temp], axis=1, sort=False) df = df.style.set_properties(**{'text-align': 'left'}) df = df.set_table_styles([dict(selector='th', props=[('text-align', 'left')])]) return df @property def properties(self): return self.__log_cfg_properties class _Measurements: def __init__(self, meas_loc_dm, schema): # for meas_loc in dm['measurement_location']: self._meas_data_model = meas_loc_dm.get('measurement_point') self._schema = schema self.__meas_properties = self.__get_properties() self.__meas_dict = self.__get_properties_as_dict() # Making _Measurements emulate a dictionary. # Not using super(_Measurements, self).__init__(*arg, **kw) as I do not want the user to __setitem__, # __delitem__, clear, update or pop. Therefore, writing out the specific behaviour I want for the dictionary. def __getitem__(self, key): return self.__meas_dict[key] def __iter__(self): return iter(self.__meas_dict) def __repr__(self): return repr(self.__meas_dict) def __len__(self): return len(self.__meas_dict) def __contains__(self, key): return key in self.__meas_dict # Don't allow copy as user needs to use copy.deepcopy to copy the dictionary, might also confuse with the object. # def copy(self): # return self.__meas_dict.copy() def keys(self): return self.__meas_dict.keys() def values(self): return self.__meas_dict.values() def items(self): return self.__meas_dict.items() @property def data_model(self): return self._meas_data_model def __get_parent_properties(self): meas_props = [] for meas_point in self._meas_data_model: meas_props.append(_filter_parent_level(meas_point)) return meas_props @property def properties(self): return self.__meas_properties @property def names(self): """ The names of all the measurements. :return: The list of names. :rtype: list(str) """ return self.__get_names() @property def wspds(self): return self.__get_properties_as_dict(measurement_type_id='wind_speed') @property def wspd_names(self): return self.__get_names(measurement_type_id='wind_speed') @property def wspd_heights(self): return self.get_heights(measurement_type_id='wind_speed') @property def wdirs(self): return self.__get_properties_as_dict(measurement_type_id='wind_direction') @property def wdir_names(self): return self.__get_names(measurement_type_id='wind_direction') @property def wdir_heights(self): return self.get_heights(measurement_type_id='wind_direction') @staticmethod def __meas_point_merge(sensor_cfgs, sensors=None, mount_arrgmts=None): """ Merge the properties from sensor_cfgs, sensors and mounting_arrangements. This will account for when each property was changed over time. :param sensor_cfgs: Sensor cfgs properties :type sensor_cfgs: list :param sensors: Sensor properties :type sensors: list :param mount_arrgmts: Mounting arrangement properties :type mount_arrgmts: list :return: The properties merged together. :rtype: list(dict) """ sensor_cfgs = _replace_none_date(sensor_cfgs) sensors = _replace_none_date(sensors) mount_arrgmts = _replace_none_date(mount_arrgmts) date_from = [sen_config.get('date_from') for sen_config in sensor_cfgs] date_to = [sen_config.get('date_to') for sen_config in sensor_cfgs] if sensors is not None: for sensor in sensors: date_from.append(sensor.get('date_from')) date_to.append(sensor.get('date_to')) if mount_arrgmts is not None: for mount_arrgmt in mount_arrgmts: date_from.append(mount_arrgmt['date_from']) date_to.append(mount_arrgmt['date_to']) date_from.extend(date_to) dates = list(set(date_from)) dates.sort() meas_points_merged = [] for i in range(len(dates) - 1): good_sen_config = {} for sen_config in sensor_cfgs: if (sen_config['date_from'] <= dates[i]) & (sen_config.get('date_to') > dates[i]): good_sen_config = sen_config.copy() if good_sen_config != {}: if sensors is not None: for sensor in sensors: if (sensor['date_from'] <= dates[i]) & (sensor['date_to'] > dates[i]): good_sen_config.update(sensor) if mount_arrgmts is not None: for mount_arrgmt in mount_arrgmts: if (mount_arrgmt['date_from'] <= dates[i]) & (mount_arrgmt['date_to'] > dates[i]): good_sen_config.update(mount_arrgmt) good_sen_config['date_to'] = dates[i + 1] good_sen_config['date_from'] = dates[i] meas_points_merged.append(good_sen_config) # replace 'date_to' if equals to 'DATE_INSTEAD_OF_NONE' for meas_point in meas_points_merged: if meas_point.get('date_to') is not None and meas_point.get('date_to') == DATE_INSTEAD_OF_NONE: meas_point['date_to'] = None return meas_points_merged def __get_properties(self): meas_props = [] for meas_point in self._meas_data_model: # col_names_raised = _raise_child(meas_point, child_to_raise='column_name') # sen_cfgs = _raise_child(col_names_raised, child_to_raise='sensor_config') sen_cfgs = _raise_child(meas_point, child_to_raise='sensor_config') calib_raised = _raise_child(meas_point, child_to_raise='calibration') if calib_raised is None: sensors = _raise_child(meas_point, child_to_raise='sensor') else: sensors = _raise_child(calib_raised, child_to_raise='sensor') mounting_arrangements = _raise_child(meas_point, child_to_raise='mounting_arrangement') if mounting_arrangements is None: meas_point_merged = self.__meas_point_merge(sensor_cfgs=sen_cfgs, sensors=sensors) else: meas_point_merged = self.__meas_point_merge(sensor_cfgs=sen_cfgs, sensors=sensors, mount_arrgmts=mounting_arrangements) for merged_meas_point in meas_point_merged: meas_props.append(merged_meas_point) return meas_props def __get_properties_by_type(self, measurement_type_id): merged_properties = copy.deepcopy(self.__meas_properties) meas_list = [] for meas_point in merged_properties: meas_type = meas_point.get('measurement_type_id') if meas_type is not None and meas_type == measurement_type_id: meas_list.append(meas_point) return meas_list def __get_properties_as_dict(self, measurement_type_id=None): """ Get the flattened properties as a dictionary with name as the key. This is for easy use for accessing a measurement point. e.g. mm1.measurements['Spd1'] :return: Flattened properties as a dictionary :rtype: dict """ meas_dict = {} merged_properties = copy.deepcopy(self.__meas_properties) for meas_point in merged_properties: meas_point_name = meas_point['name'] if meas_point['measurement_type_id'] == measurement_type_id or measurement_type_id is None: if meas_point_name in meas_dict.keys(): meas_dict[meas_point_name].append(meas_point) else: meas_dict[meas_point_name] = [meas_point] return meas_dict def __get_table_for_cols(self, columns_to_show): """ Get table of measurements for specific columns. :param columns_to_show: Columns required to show in table. :type columns_to_show: list(str) :return: Table as a pandas DataFrame :rtype: pd.DataFrame """ temp_df = pd.DataFrame(self.__meas_properties) # select the common columns that are available avail_cols = [col for col in columns_to_show if col in temp_df.columns] if not avail_cols: raise KeyError('No data to show from the list of columns provided') # Drop all rows that have no data for the avail_cols temp_df.dropna(axis=0, subset=avail_cols, how='all', inplace=True) if temp_df.empty: raise KeyError('No data to show from the list of columns provided') # Name needs to be included in the grouping but 'date_from' and 'date_to' should not be # as we filter for them later required_in_avail_cols = {'include': ['name'], 'remove': ['date_from', 'date_to']} for include_col in required_in_avail_cols['include']: if include_col not in avail_cols: avail_cols.insert(0, include_col) for remove_col in required_in_avail_cols['remove']: if remove_col in avail_cols: avail_cols.remove(remove_col) # Remove duplicates resulting from other info been dropped. temp_df.sort_values(['name', 'date_from'], ascending=[True, True], inplace=True) temp_df.fillna('-', inplace=True) # groupby drops nan so need to fill them in # group duplicate data for the columns available grouped_by_avail_cols = temp_df.groupby(avail_cols) # get date_to from the last row in each group to assign to the first row. new_date_to = grouped_by_avail_cols.last()['date_to'] df = grouped_by_avail_cols.first()[['date_from', 'date_to']] df['date_to'] = new_date_to df.reset_index(level=avail_cols, inplace=True) df.sort_values(['name', 'date_from'], ascending=[True, True], inplace=True) # get titles title_cols = _rename_to_title(list_or_dict=list(df.columns), schema=self._schema) df.columns = title_cols df.set_index('Name', inplace=True) df.replace(DATE_INSTEAD_OF_NONE, '-', inplace=True) return df def get_table(self, detailed=False, wind_speeds=False, wind_directions=False, calibrations=False, mounting_arrangements=False, columns_to_show=None): """ Get tables to show information about the measurements made. :param detailed: For a more detailed table that includes how the sensor is programmed into the logger, information about the sensor itself and how it is mounted on the mast if it was. :type detailed: bool :param wind_speeds: Wind speed specific details. :type wind_speeds: bool :param wind_directions: Wind speed specific details. :type wind_directions: bool :param calibrations: Wind speed specific details. :type calibrations: bool :param mounting_arrangements: Wind speed specific details. :type mounting_arrangements: bool :param columns_to_show: Optionally provide a list of column names you want to see in a table. This list should be pulled from the list of keys available in the measurements.properties. 'name', 'date_from' and 'date_to' are always inserted so no need to include them in your list. :type columns_to_show: list(str) or None :return: A table showing information about the measurements made by this measurement station. :rtype: pd.DataFrame **Example usage** :: import brightwind as bw mm1 = bw.MeasurementStation(bw.demo_datasets.demo_wra_data_model) mm1.measurements.get_table() To get a more detailed table:: mm1.measurements.get_table(detailed=True) To get wind speed specific details:: mm1.measurements.get_table(wind_speeds=True) To get wind speed specific details:: mm1.measurements.get_table(wind_directions=True) To get calibration specific details:: mm1.measurements.get_table(calibrations=True) To get mounting specific details:: mm1.measurements.get_table(mounting_arrangements=True) To make your own table:: columns = ['calibration.slope', 'calibration.offset', 'calibration.report_file_name', 'date_of_calibration'] mm1.measurements.get_table(columns_to_show=columns) """ df = pd.DataFrame() if detailed is False and wind_speeds is False and wind_directions is False \ and calibrations is False and mounting_arrangements is False and columns_to_show is None: # default summary table list_for_df = self.__get_parent_properties() list_for_df_with_titles = [] for row in list_for_df: list_for_df_with_titles.append(_rename_to_title(list_or_dict=row, schema=self._schema)) df = pd.DataFrame(list_for_df_with_titles, columns=_extract_keys_to_unique_list(list_for_df_with_titles)) # order rows order_index = dict(zip(MEAS_TYPE_ORDER, range(len(MEAS_TYPE_ORDER)))) df['meas_type_rank'] = df['Measurement Type'].map(order_index) df.sort_values(['meas_type_rank', 'Height [m]'], ascending=[True, False], inplace=True) df.drop('meas_type_rank', 1, inplace=True) df.set_index('Name', inplace=True) df.fillna('-', inplace=True) elif detailed is True: cols_required = ['name', 'oem', 'model', 'sensor_type_id', 'sensor.serial_number', 'height_m', 'boom_orientation_deg', 'date_from', 'date_to', 'connection_channel', 'measurement_units_id', 'sensor_config.slope', 'sensor_config.offset', 'calibration.slope', 'calibration.offset', 'sensor_config.notes', 'sensor.notes'] df = pd.DataFrame(self.__meas_properties) # get what is common from both lists and use this to filter df cols_required = [col for col in cols_required if col in df.columns] df = df[cols_required] # order rows if 'sensor_type_id' in df.columns: order_index = dict(zip(SENSOR_TYPE_ORDER, range(len(SENSOR_TYPE_ORDER)))) df['sensor_rank'] = df['sensor_type_id'].map(order_index) df.sort_values(['sensor_rank', 'height_m'], ascending=[True, False], inplace=True) df.drop('sensor_rank', 1, inplace=True) else: df.sort_values(['name', 'height_m'], ascending=[True, False], inplace=True) # get titles title_cols = _rename_to_title(list_or_dict=list(df.columns), schema=self._schema) df.columns = title_cols # tidy up df.set_index('Name', inplace=True) df.fillna('-', inplace=True) df.replace(DATE_INSTEAD_OF_NONE, '-', inplace=True) elif wind_speeds is True: cols_required = ['name', 'measurement_type_id', 'oem', 'model', 'sensor.serial_number', 'is_heated', 'height_m', 'boom_orientation_deg', 'mounting_type_id', 'date_from', 'date_to', 'connection_channel', 'sensor_config.slope', 'sensor_config.offset', 'calibration.slope', 'calibration.offset', 'sensor_config.notes', 'sensor.notes'] df = pd.DataFrame(self.__meas_properties) # get what is common from both lists and use this to filter df cols_required = [col for col in cols_required if col in df.columns] df = df[cols_required] df = df[df['measurement_type_id'] == 'wind_speed'] df.drop('measurement_type_id', 1, inplace=True) # order rows df.sort_values(['height_m', 'name'], ascending=[False, True], inplace=True) # get titles title_cols = _rename_to_title(list_or_dict=list(df.columns), schema=self._schema) df.columns = title_cols # tidy up df.set_index('Name', inplace=True) df.fillna('-', inplace=True) df.replace(DATE_INSTEAD_OF_NONE, '-', inplace=True) elif wind_directions is True: cols_required = ['name', 'measurement_type_id', 'oem', 'model', 'sensor.serial_number', 'is_heated', 'height_m', 'boom_orientation_deg', 'vane_dead_band_orientation_deg', 'orientation_reference_id', 'date_from', 'date_to', 'connection_channel', 'sensor_config.slope', 'sensor_config.offset', 'sensor_config.notes', 'sensor.notes'] df =
pd.DataFrame(self.__meas_properties)
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 # In[1]: # import warnings # warnings.filterwarnings('ignore') # In[2]: # import libraries import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt from scipy import sparse get_ipython().run_line_magic('matplotlib', 'inline') from sklearn.model_selection import RandomizedSearchCV from scipy.stats import uniform from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import LinearSVC from sklearn.calibration import CalibratedClassifierCV from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier from xgboost import XGBClassifier from catboost import CatBoostClassifier import pickle # # Amazon Employee Access Challenge # In[3]: train = pd.read_csv('data/train.csv') test = pd.read_csv('data/test.csv') # In[4]: train.shape # In[5]: test.shape # In[6]: y_train = train['ACTION'] # In[7]: y_train.shape # In[8]: train_data = train.drop('ACTION', axis=1) train_data.shape # In[9]: test_data = test.drop('id', axis=1) test_data.shape # ## Common Variables # In[10]: # define variables random_state = 42 cv = 5 scoring = 'roc_auc' verbose=2 # ## Common functions # In[11]: def save_submission(predictions, filename): ''' Save predictions into csv file ''' global test submission = pd.DataFrame() submission["Id"] = test["id"] submission["ACTION"] = predictions filepath = "result/sampleSubmission_"+filename submission.to_csv(filepath, index = False) # In[12]: def print_graph(results, param1, param2, xlabel, ylabel, title='Plot showing the ROC_AUC score for various hyper parameter values'): ''' Plot the graph ''' plt.plot(results[param1],results[param2]); plt.grid(); plt.xlabel(xlabel); plt.ylabel(ylabel); plt.title(title); # In[13]: def get_rf_params(): ''' Return dictionary of parameters for random forest ''' params = { 'n_estimators':[10,20,50,100,200,500,700,1000], 'max_depth':[1,2,5,10,12,15,20,25], 'max_features':[1,2,3,4,5], 'min_samples_split':[2,5,7,10,20] } return params # In[14]: def get_xgb_params(): ''' Return dictionary of parameters for xgboost ''' params = { 'n_estimators': [10,20,50,100,200,500,750,1000], 'learning_rate': uniform(0.01, 0.6), 'subsample': uniform(), 'max_depth': [3, 4, 5, 6, 7, 8, 9], 'colsample_bytree': uniform(), 'min_child_weight': [1, 2, 3, 4] } return params # ### We will try following models # # 1. KNN # 2. SVM # 3. Logistic Regression # 4. Random Forest # 5. Xgboost # ## Build Models on the raw data # ## 1.1 KNN with raw features # In[15]: parameters={'n_neighbors':np.arange(1,100, 5)} clf = RandomizedSearchCV(KNeighborsClassifier(n_jobs=-1),parameters,random_state=random_state,cv=cv,verbose=verbose,scoring=scoring,n_jobs=-1) best_model = clf.fit(train_data,y_train) # In[16]: results = pd.DataFrame.from_dict(best_model.cv_results_) results=results.sort_values('param_n_neighbors') results # In[17]: print_graph(results, 'param_n_neighbors', 'mean_test_score', 'Hyperparameter - No. of neighbors', 'Test score') # In[18]: best_c=best_model.best_params_['n_neighbors'] best_c # In[19]: model = KNeighborsClassifier(n_neighbors=best_c,n_jobs=-1) model.fit(train_data,y_train) # In[20]: predictions = model.predict_proba(test_data)[:,1] save_submission(predictions, "knn_raw.csv") # ![knn-raw](images/knn-raw-new.png) # ## 1.2 SVM with raw feature # In[21]: C_val = uniform(loc=0, scale=4) model= LinearSVC(verbose=verbose,random_state=random_state,class_weight='balanced',max_iter=2000) parameters={'C':C_val} clf = RandomizedSearchCV(model,parameters,random_state=random_state,cv=cv,verbose=verbose,scoring=scoring,n_jobs=-1) best_model = clf.fit(train_data,y_train) # In[22]: best_c=best_model.best_params_['C'] best_c # In[23]: results = pd.DataFrame.from_dict(best_model.cv_results_) results=results.sort_values('param_C') results # In[24]: print_graph(results, 'param_C', 'mean_test_score', 'Hyperparameter - C', 'Test score') # In[25]: #https://stackoverflow.com/questions/26478000/converting-linearsvcs-decision-function-to-probabilities-scikit-learn-python model = LinearSVC(C=best_c,verbose=verbose,random_state=random_state,class_weight='balanced',max_iter=2000) model = CalibratedClassifierCV(model) model.fit(train_data,y_train) # In[26]: predictions = model.predict_proba(test_data)[:,1] save_submission(predictions, 'svm_raw.csv') # ![svm-raw](images/svm-raw.png) # ## 1.3 Logistic Regression with Raw Feature # In[27]: C_val = uniform(loc=0, scale=4) lr= LogisticRegression(verbose=verbose,random_state=random_state,class_weight='balanced',solver='lbfgs',max_iter=500,n_jobs=-1) parameters={'C':C_val} clf = RandomizedSearchCV(lr,parameters,random_state=random_state,cv=cv,verbose=verbose,n_iter=100,scoring=scoring,n_jobs=-1) best_model = clf.fit(train_data,y_train) # In[28]: best_c=best_model.best_params_['C'] best_c # In[29]: results = pd.DataFrame.from_dict(best_model.cv_results_) results=results.sort_values('param_C') results # In[30]: print_graph(results, 'param_C', 'mean_test_score', 'Hyperparameter - C', 'Test score') # In[31]: model = LogisticRegression(C=best_c,verbose=verbose,n_jobs=-1,random_state=random_state,class_weight='balanced',solver='lbfgs') model.fit(train_data,y_train) # In[32]: predictions = model.predict_proba(test_data)[:,1] save_submission(predictions, 'lr_raw.csv') # ![lr-raw](images/lr-raw.png) # ## 1.4 Random Forest with Raw Feature # In[33]: rfc = RandomForestClassifier(random_state=random_state,class_weight='balanced',n_jobs=-1) clf = RandomizedSearchCV(rfc,get_rf_params(),random_state=random_state,cv=cv,verbose=verbose,n_iter=100,scoring=scoring,n_jobs=-1) best_model = clf.fit(train_data,y_train) # In[34]: results = pd.DataFrame(best_model.cv_results_) results.sort_values('mean_test_score',ascending=False,inplace=True) param_keys=['param_'+str(each) for each in get_rf_params().keys()] param_keys.append('mean_test_score') results[param_keys].head(10) # In[35]: n_estimators=clf.best_params_['n_estimators'] max_features=clf.best_params_['max_features'] max_depth=clf.best_params_['max_depth'] min_samples_split=clf.best_params_['min_samples_split'] n_estimators,max_features,max_depth,min_samples_split # In[36]: model=RandomForestClassifier(n_estimators=n_estimators,max_depth=max_depth,max_features=max_features, min_samples_split=min_samples_split, random_state=random_state,class_weight='balanced',n_jobs=-1) model.fit(train_data,y_train) # In[37]: features=train_data.columns importance=model.feature_importances_ features=pd.DataFrame({'features':features,'value':importance}) features=features.sort_values('value',ascending=False) sns.barplot('value','features',data=features); plt.title('Feature Importance'); # ## Features Observations: # # 1. MGR_ID is the most important feature followed by RESOURCE and ROLE_DEPTNAME # In[38]: predictions = model.predict_proba(test_data)[:,1] save_submission(predictions, 'rf_raw.csv') # ![rf-raw](images/rf-raw.png) # ## 1.5 Xgboost with Raw Feature # In[39]: xgb = XGBClassifier() clf = RandomizedSearchCV(xgb,get_xgb_params(),random_state=random_state,cv=cv,verbose=verbose,n_iter=100,scoring=scoring,n_jobs=-1) best_model=clf.fit(train_data,y_train) # In[40]: results = pd.DataFrame(best_model.cv_results_) results.sort_values('mean_test_score',ascending=False,inplace=True) param_keys=['param_'+str(each) for each in get_xgb_params().keys()] param_keys.append('mean_test_score') results[param_keys].head(10) # In[41]: colsample_bytree = clf.best_params_['colsample_bytree'] learning_rate=clf.best_params_['learning_rate'] max_depth=clf.best_params_['max_depth'] min_child_weight=clf.best_params_['min_child_weight'] n_estimators=clf.best_params_['n_estimators'] subsample=clf.best_params_['subsample'] colsample_bytree,learning_rate,max_depth,min_child_weight,n_estimators,subsample # In[42]: model = XGBClassifier(colsample_bytree=colsample_bytree,learning_rate=learning_rate,max_depth=max_depth, min_child_weight=min_child_weight,n_estimators=n_estimators,subsample=subsample,n_jobs=-1) model.fit(train_data,y_train) # In[43]: features=train_data.columns importance=model.feature_importances_ features=pd.DataFrame({'features':features,'value':importance}) features=features.sort_values('value',ascending=False) sns.barplot('value','features',data=features); plt.title('Feature Importance'); # In[44]: predictions = model.predict_proba(test_data)[:,1] save_submission(predictions, 'xgb_raw.csv') # ![xgb-raw](images/xgb-raw.png) # ![kaggle-submission-raw](images/kaggle-submission-raw.png) # In[45]: from prettytable import PrettyTable x = PrettyTable(['Model', 'Feature', 'Private Score', 'Public Score']) x.add_row(['KNN','Raw', 0.67224, 0.68148]) x.add_row(['SVM', 'Raw', 0.50286, 0.51390]) x.add_row(['Logistic Regression', 'Raw', 0.53857, 0.53034]) x.add_row(['Random Forest', 'Raw', 0.87269, 0.87567]) x.add_row(['Xgboost', 'Raw', 0.86988, 0.87909]) print(x) # # Observations: # # 1. Xgboost perform best on the raw features # 2. Random forest also perform good on raw features # 3. Tree based models performs better than linear models for raw features # ## Build model on one hot encoded features # ### 2.1 KNN with one hot encoded features # In[46]: train_ohe = sparse.load_npz('data/train_ohe.npz') test_ohe = sparse.load_npz('data/test_ohe.npz') train_ohe.shape, test_ohe.shape, y_train.shape # In[47]: parameters={'n_neighbors':np.arange(1,100, 5)} clf = RandomizedSearchCV(KNeighborsClassifier(n_jobs=-1),parameters,random_state=random_state,cv=cv,verbose=verbose,scoring=scoring,n_jobs=4) best_model = clf.fit(train_ohe,y_train) # In[48]: results = pd.DataFrame.from_dict(best_model.cv_results_) results=results.sort_values('param_n_neighbors') results # In[49]: print_graph(results, 'param_n_neighbors', 'mean_test_score', 'Hyperparameter - No. of neighbors', 'Test score') # In[50]: best_c=best_model.best_params_['n_neighbors'] best_c # In[51]: model = KNeighborsClassifier(n_neighbors=best_c,n_jobs=-1) model.fit(train_ohe,y_train) # In[52]: predictions = model.predict_proba(test_ohe)[:,1] save_submission(predictions, "knn_ohe.csv") # ![knn-ohe](images/knn-ohe.png) # ## 2.2 SVM with one hot encoded features # In[53]: C_val = uniform(loc=0, scale=4) model= LinearSVC(verbose=verbose,random_state=random_state,class_weight='balanced',max_iter=2000) parameters={'C':C_val} clf = RandomizedSearchCV(model,parameters,random_state=random_state,cv=cv,verbose=verbose,scoring=scoring,n_jobs=-1) best_model = clf.fit(train_ohe,y_train) # In[54]: best_c=best_model.best_params_['C'] best_c # In[55]: results = pd.DataFrame.from_dict(best_model.cv_results_) results=results.sort_values('param_C') results # In[56]: print_graph(results, 'param_C', 'mean_test_score', 'Hyperparameter - C', 'Test score') # In[57]: #https://stackoverflow.com/questions/26478000/converting-linearsvcs-decision-function-to-probabilities-scikit-learn-python model = LinearSVC(C=best_c,verbose=verbose,random_state=random_state,class_weight='balanced',max_iter=2000) model = CalibratedClassifierCV(model) model.fit(train_ohe,y_train) # In[58]: predictions = model.predict_proba(test_ohe)[:,1] save_submission(predictions, 'svm_ohe.csv') # ![svm-ohe](images/svm-ohe.png) # ## 2.3 Logistic Regression with one hot encoded features # In[59]: C_val = uniform(loc=0, scale=4) lr= LogisticRegression(verbose=verbose,random_state=random_state,class_weight='balanced',solver='lbfgs',max_iter=500,n_jobs=-1) parameters={'C':C_val} clf = RandomizedSearchCV(lr,parameters,random_state=random_state,cv=cv,verbose=verbose,n_iter=100,scoring=scoring,n_jobs=-1) best_model = clf.fit(train_ohe,y_train) # In[60]: best_c=best_model.best_params_['C'] best_c # In[61]: results = pd.DataFrame.from_dict(best_model.cv_results_) results=results.sort_values('param_C') results # In[62]: print_graph(results, 'param_C', 'mean_test_score', 'Hyperparameter - C', 'Test score') # In[63]: model = LogisticRegression(C=best_c,verbose=verbose,n_jobs=-1,random_state=random_state,class_weight='balanced',solver='lbfgs') model.fit(train_ohe,y_train) # In[64]: predictions = model.predict_proba(test_ohe)[:,1] save_submission(predictions, 'lr_ohe.csv') # ![lr-ohe](images/lr-ohe.png) # ## 2.4 Random Forest with one hot encoded features # In[65]: rfc = RandomForestClassifier(random_state=random_state,class_weight='balanced',n_jobs=-1) clf = RandomizedSearchCV(rfc,get_rf_params(),random_state=random_state,cv=cv,verbose=verbose,n_iter=100,scoring=scoring,n_jobs=-1) best_model = clf.fit(train_ohe,y_train) # In[66]: results = pd.DataFrame(best_model.cv_results_) results.sort_values('mean_test_score',ascending=False,inplace=True) param_keys=['param_'+str(each) for each in get_rf_params().keys()] param_keys.append('mean_test_score') results[param_keys].head(10) # In[67]: n_estimators=clf.best_params_['n_estimators'] max_features=clf.best_params_['max_features'] max_depth=clf.best_params_['max_depth'] min_samples_split=clf.best_params_['min_samples_split'] n_estimators,max_features,max_depth,min_samples_split # In[68]: model=RandomForestClassifier(n_estimators=n_estimators,max_depth=max_depth,max_features=max_features, min_samples_split=min_samples_split, random_state=random_state,class_weight='balanced',n_jobs=-1) model.fit(train_ohe,y_train) # In[69]: # features=train_ohe.columns # importance=model.feature_importances_ # features=pd.DataFrame({'features':features,'value':importance}) # features=features.sort_values('value',ascending=False) # sns.barplot('value','features',data=features); # plt.title('Feature Importance'); # In[70]: predictions = model.predict_proba(test_ohe)[:,1] save_submission(predictions, 'rf_ohe.csv') # ![rf-ohe](images/rf-ohe.png) # ## 2.5 Xgboost with one hot encoded features # In[71]: xgb = XGBClassifier() clf = RandomizedSearchCV(xgb,get_xgb_params(),random_state=random_state,cv=cv,verbose=verbose,n_iter=100,scoring=scoring,n_jobs=-1) best_model=clf.fit(train_ohe,y_train) # In[72]: results = pd.DataFrame(best_model.cv_results_) results.sort_values('mean_test_score',ascending=False,inplace=True) param_keys=['param_'+str(each) for each in get_xgb_params().keys()] param_keys.append('mean_test_score') results[param_keys].head(10) # In[73]: colsample_bytree = clf.best_params_['colsample_bytree'] learning_rate=clf.best_params_['learning_rate'] max_depth=clf.best_params_['max_depth'] min_child_weight=clf.best_params_['min_child_weight'] n_estimators=clf.best_params_['n_estimators'] subsample=clf.best_params_['subsample'] colsample_bytree,learning_rate,max_depth,min_child_weight,n_estimators,subsample # In[74]: model = XGBClassifier(colsample_bytree=colsample_bytree,learning_rate=learning_rate,max_depth=max_depth, min_child_weight=min_child_weight,n_estimators=n_estimators,subsample=subsample,n_jobs=-1) model.fit(train_ohe,y_train) # In[75]: # features=train_ohe.columns # importance=model.feature_importances_ # features=pd.DataFrame({'features':features,'value':importance}) # features=features.sort_values('value',ascending=False) # sns.barplot('value','features',data=features); # plt.title('Feature Importance'); # In[76]: predictions = model.predict_proba(test_ohe)[:,1] save_submission(predictions, 'xgb_ohe.csv') # ![xgb-ohe](images/xgb-ohe.png) # ![kaggle-submission-ohe](images/kaggle-submission-ohe.png) # In[77]: from prettytable import PrettyTable x = PrettyTable(['Model', 'Feature', 'Private Score', 'Public Score']) x.add_row(['KNN','ohe', 0.81657, 0.81723]) x.add_row(['SVM', 'ohe', 0.87249, 0.87955]) x.add_row(['Logistic Regression', 'ohe', 0.87436, 0.88167]) x.add_row(['Random Forest', 'ohe', 0.84541, 0.84997]) x.add_row(['Xgboost', 'ohe', 0.84717, 0.85102]) print(x) # # Observations: # # 1. One hot encoding features performs better than other encoding technique # 2. Linear models (Logistic Regression and SVM) performs better on higher dimension # # 3 Build Model on frequency encoding feature # ## 3.1 KNN with frequency encoding # In[78]: train_df_fc = pd.read_csv('data/train_df_fc.csv') test_df_fc = pd.read_csv('data/test_df_fc.csv') # In[79]: train_df_fc.shape, test_df_fc.shape, y_train.shape # In[80]: parameters={'n_neighbors':np.arange(1,100, 5)} clf = RandomizedSearchCV(KNeighborsClassifier(n_jobs=-1),parameters,random_state=random_state,cv=cv,verbose=verbose,scoring=scoring,n_jobs=-1) best_model = clf.fit(train_df_fc,y_train) # In[81]: results = pd.DataFrame.from_dict(best_model.cv_results_) results=results.sort_values('param_n_neighbors') results # In[82]: print_graph(results, 'param_n_neighbors', 'mean_test_score', 'Hyperparameter - No. of neighbors', 'Test score') # In[83]: best_c=best_model.best_params_['n_neighbors'] best_c # In[84]: model = KNeighborsClassifier(n_neighbors=best_c,n_jobs=-1) model.fit(train_df_fc,y_train) # In[85]: predictions = model.predict_proba(test_df_fc)[:,1] save_submission(predictions, "knn_fc.csv") # ![knn-fc](images/knn-fc.png) # ## 3.2 SVM with frequency encoding # In[86]: C_val = uniform(loc=0, scale=4) model= LinearSVC(verbose=verbose,random_state=random_state,class_weight='balanced',max_iter=2000) parameters={'C':C_val} clf = RandomizedSearchCV(model,parameters,random_state=random_state,cv=cv,verbose=verbose,scoring=scoring,n_jobs=-1) best_model = clf.fit(train_df_fc,y_train) # In[87]: best_c=best_model.best_params_['C'] best_c # In[88]: results = pd.DataFrame.from_dict(best_model.cv_results_) results=results.sort_values('param_C') results # In[89]: print_graph(results, 'param_C', 'mean_test_score', 'Hyperparameter - C', 'Test score') # In[90]: #https://stackoverflow.com/questions/26478000/converting-linearsvcs-decision-function-to-probabilities-scikit-learn-python model = LinearSVC(C=best_c,verbose=verbose,random_state=random_state,class_weight='balanced',max_iter=2000) model = CalibratedClassifierCV(model) model.fit(train_df_fc,y_train) # In[91]: predictions = model.predict_proba(test_df_fc)[:,1] save_submission(predictions, 'svm_fc.csv') # ![svm-fc](images/svm-fc.png) # ## 3.3 Logistic Regression with frequency encoding # In[92]: C_val = uniform(loc=0, scale=4) lr= LogisticRegression(verbose=verbose,random_state=random_state,class_weight='balanced',solver='lbfgs',max_iter=500,n_jobs=-1) parameters={'C':C_val} clf = RandomizedSearchCV(lr,parameters,random_state=random_state,cv=cv,verbose=verbose,n_iter=100,scoring=scoring,n_jobs=-1) best_model = clf.fit(train_df_fc,y_train) # In[93]: best_c=best_model.best_params_['C'] best_c # In[94]: results = pd.DataFrame.from_dict(best_model.cv_results_) results=results.sort_values('param_C') results # In[95]: print_graph(results, 'param_C', 'mean_test_score', 'Hyperparameter - C', 'Test score') # In[96]: model = LogisticRegression(C=best_c,verbose=verbose,n_jobs=-1,random_state=random_state,class_weight='balanced',solver='lbfgs') model.fit(train_df_fc,y_train) # In[97]: predictions = model.predict_proba(test_df_fc)[:,1] save_submission(predictions, 'lr_fc.csv') # ![lr-fc](images/lr-fc.png) # ## 3.4 Random Forest with frequency encoding # In[98]: rfc = RandomForestClassifier(random_state=random_state,class_weight='balanced',n_jobs=-1) clf = RandomizedSearchCV(rfc,get_rf_params(),random_state=random_state,cv=cv,verbose=verbose,n_iter=100,scoring=scoring,n_jobs=-1) best_model = clf.fit(train_df_fc,y_train) # In[99]: results = pd.DataFrame(best_model.cv_results_) results.sort_values('mean_test_score',ascending=False,inplace=True) param_keys=['param_'+str(each) for each in get_rf_params().keys()] param_keys.append('mean_test_score') results[param_keys].head(10) # In[100]: n_estimators=clf.best_params_['n_estimators'] max_features=clf.best_params_['max_features'] max_depth=clf.best_params_['max_depth'] min_samples_split=clf.best_params_['min_samples_split'] n_estimators,max_features,max_depth,min_samples_split # In[101]: model=RandomForestClassifier(n_estimators=n_estimators,max_depth=max_depth,max_features=max_features, min_samples_split=min_samples_split, random_state=random_state,class_weight='balanced',n_jobs=-1) model.fit(train_df_fc,y_train) # In[103]: features=train_df_fc.columns importance=model.feature_importances_ features=pd.DataFrame({'features':features,'value':importance}) features=features.sort_values('value',ascending=False) sns.barplot('value','features',data=features); plt.title('Feature Importance'); # In[106]: predictions = model.predict_proba(test_df_fc)[:,1] save_submission(predictions, 'rf_fc.csv') # ![rf-fc](images/rf-fc.png) # ## 3.5 Xgboost with frequency encoding # In[107]: xgb = XGBClassifier() clf = RandomizedSearchCV(xgb,get_xgb_params(),random_state=random_state,cv=cv,verbose=verbose,n_iter=100,scoring=scoring,n_jobs=-1) best_model=clf.fit(train_df_fc,y_train) # In[108]: results = pd.DataFrame(best_model.cv_results_) results.sort_values('mean_test_score',ascending=False,inplace=True) param_keys=['param_'+str(each) for each in get_xgb_params().keys()] param_keys.append('mean_test_score') results[param_keys].head(10) # In[109]: colsample_bytree = clf.best_params_['colsample_bytree'] learning_rate=clf.best_params_['learning_rate'] max_depth=clf.best_params_['max_depth'] min_child_weight=clf.best_params_['min_child_weight'] n_estimators=clf.best_params_['n_estimators'] subsample=clf.best_params_['subsample'] colsample_bytree,learning_rate,max_depth,min_child_weight,n_estimators,subsample # In[110]: model = XGBClassifier(colsample_bytree=colsample_bytree,learning_rate=learning_rate,max_depth=max_depth, min_child_weight=min_child_weight,n_estimators=n_estimators,subsample=subsample,n_jobs=-1) model.fit(train_df_fc,y_train) # In[111]: features=train_df_fc.columns importance=model.feature_importances_ features=pd.DataFrame({'features':features,'value':importance}) features=features.sort_values('value',ascending=False) sns.barplot('value','features',data=features); plt.title('Feature Importance'); # In[112]: predictions = model.predict_proba(test_df_fc)[:,1] save_submission(predictions, 'xgb_fc.csv') # ![xgb-fc](images/xgb-fc.png) # ![kaggle-submission-fc](images/kaggle-submission-fc.png) # In[113]: from prettytable import PrettyTable x = PrettyTable(['Model', 'Feature', 'Private Score', 'Public Score']) x.add_row(['KNN','fc', 0.79715, 0.79125]) x.add_row(['SVM', 'fc', 0.60085, 0.59550]) x.add_row(['Logistic Regression', 'fc', 0.59896, 0.59778]) x.add_row(['Random Forest', 'fc', 0.87299, 0.87616]) x.add_row(['Xgboost', 'fc', 0.86987, 0.86944]) print(x) # # Observations: # # 1. Tree based models performs better for this feature than linear models # 2. KNN is doing good for every feature # # 4 Build Model using response encoding feature # In[114]: train_df_rc = pd.read_csv('data/train_df_rc.csv') test_df_rc = pd.read_csv('data/test_df_rc.csv') # In[115]: train_df_rc.shape, test_df_rc.shape, y_train.shape # ## 4.1 KNN with response encoding # In[116]: parameters={'n_neighbors':np.arange(1,100, 5)} clf = RandomizedSearchCV(KNeighborsClassifier(n_jobs=-1),parameters,random_state=random_state,cv=cv,verbose=verbose,scoring=scoring,n_jobs=-1) best_model = clf.fit(train_df_rc,y_train) # In[117]: results = pd.DataFrame.from_dict(best_model.cv_results_) results=results.sort_values('param_n_neighbors') results # In[118]: print_graph(results, 'param_n_neighbors', 'mean_test_score', 'Hyperparameter - No. of neighbors', 'Test score') # In[119]: best_c=best_model.best_params_['n_neighbors'] best_c # In[120]: model = KNeighborsClassifier(n_neighbors=best_c,n_jobs=-1) model.fit(train_df_rc,y_train) # In[121]: predictions = model.predict_proba(test_df_rc)[:,1] save_submission(predictions, "knn_rc.csv") # ![knn-rc](images/knn-rc.png) # ## 4.2 SVM with response encoding # In[122]: C_val = uniform(loc=0, scale=4) model= LinearSVC(verbose=verbose,random_state=random_state,class_weight='balanced',max_iter=2000) parameters={'C':C_val} clf = RandomizedSearchCV(model,parameters,random_state=random_state,cv=cv,verbose=verbose,scoring=scoring,n_jobs=-1) best_model = clf.fit(train_df_rc,y_train) # In[123]: best_c=best_model.best_params_['C'] best_c # In[124]: results = pd.DataFrame.from_dict(best_model.cv_results_) results=results.sort_values('param_C') results # In[125]: print_graph(results, 'param_C', 'mean_test_score', 'Hyperparameter - C', 'Test score') # In[126]: #https://stackoverflow.com/questions/26478000/converting-linearsvcs-decision-function-to-probabilities-scikit-learn-python model = LinearSVC(C=best_c,verbose=verbose,random_state=random_state,class_weight='balanced',max_iter=2000) model = CalibratedClassifierCV(model) model.fit(train_df_rc,y_train) # In[127]: predictions = model.predict_proba(test_df_rc)[:,1] save_submission(predictions, 'svm_rc.csv') # ![svm-rc](images/svm-rc.png) # ## 4.3 Logistic Regression with response encoding # In[128]: C_val = uniform(loc=0, scale=4) lr= LogisticRegression(verbose=verbose,random_state=random_state,class_weight='balanced',solver='lbfgs',max_iter=500,n_jobs=-1) parameters={'C':C_val} clf = RandomizedSearchCV(lr,parameters,random_state=random_state,cv=cv,verbose=verbose,n_iter=100,scoring=scoring,n_jobs=-1) best_model = clf.fit(train_df_rc,y_train) # In[129]: best_c=best_model.best_params_['C'] best_c # In[130]: results = pd.DataFrame.from_dict(best_model.cv_results_) results=results.sort_values('param_C') results # In[131]: print_graph(results, 'param_C', 'mean_test_score', 'Hyperparameter - C', 'Test score') # In[132]: model = LogisticRegression(C=best_c,verbose=verbose,n_jobs=-1,random_state=random_state,class_weight='balanced',solver='lbfgs') model.fit(train_df_rc,y_train) # In[133]: predictions = model.predict_proba(test_df_rc)[:,1] save_submission(predictions, 'lr_rc.csv') # ![lr-rc](images/lr-rc.png) # ## 4.4 Random Forest with response encoding # In[134]: rfc = RandomForestClassifier(random_state=random_state,class_weight='balanced',n_jobs=-1) clf = RandomizedSearchCV(rfc,get_rf_params(),random_state=random_state,cv=cv,verbose=verbose,n_iter=100,scoring=scoring,n_jobs=-1) best_model = clf.fit(train_df_rc,y_train) # In[135]: results = pd.DataFrame(best_model.cv_results_) results.sort_values('mean_test_score',ascending=False,inplace=True) param_keys=['param_'+str(each) for each in get_rf_params().keys()] param_keys.append('mean_test_score') results[param_keys].head(10) # In[136]: n_estimators=clf.best_params_['n_estimators'] max_features=clf.best_params_['max_features'] max_depth=clf.best_params_['max_depth'] min_samples_split=clf.best_params_['min_samples_split'] n_estimators,max_features,max_depth,min_samples_split # In[137]: model=RandomForestClassifier(n_estimators=n_estimators,max_depth=max_depth,max_features=max_features, min_samples_split=min_samples_split, random_state=random_state,class_weight='balanced',n_jobs=-1) model.fit(train_df_rc,y_train) # In[138]: features=train_df_rc.columns importance=model.feature_importances_ features=pd.DataFrame({'features':features,'value':importance}) features=features.sort_values('value',ascending=False) sns.barplot('value','features',data=features); plt.title('Feature Importance'); # In[139]: predictions = model.predict_proba(test_df_rc)[:,1] save_submission(predictions, 'rf_rc.csv') # ![rf-rc](images/rf-rc.png) # ## 4.5 Xgboost with response encoding # In[140]: xgb = XGBClassifier() clf = RandomizedSearchCV(xgb,get_xgb_params(),random_state=random_state,cv=cv,verbose=verbose,n_iter=100,scoring=scoring,n_jobs=-1) best_model=clf.fit(train_df_rc,y_train) # In[141]: results = pd.DataFrame(best_model.cv_results_) results.sort_values('mean_test_score',ascending=False,inplace=True) param_keys=['param_'+str(each) for each in get_xgb_params().keys()] param_keys.append('mean_test_score') results[param_keys].head(10) # In[142]: colsample_bytree = clf.best_params_['colsample_bytree'] learning_rate=clf.best_params_['learning_rate'] max_depth=clf.best_params_['max_depth'] min_child_weight=clf.best_params_['min_child_weight'] n_estimators=clf.best_params_['n_estimators'] subsample=clf.best_params_['subsample'] colsample_bytree,learning_rate,max_depth,min_child_weight,n_estimators,subsample # In[143]: model = XGBClassifier(colsample_bytree=colsample_bytree,learning_rate=learning_rate,max_depth=max_depth, min_child_weight=min_child_weight,n_estimators=n_estimators,subsample=subsample,n_jobs=-1) model.fit(train_df_rc,y_train) # In[144]: features=train_df_rc.columns importance=model.feature_importances_ features=pd.DataFrame({'features':features,'value':importance}) features=features.sort_values('value',ascending=False) sns.barplot('value','features',data=features); plt.title('Feature Importance'); # In[145]: predictions = model.predict_proba(test_df_rc)[:,1] save_submission(predictions, 'xgb_rc.csv') # ![xgb-rc](images/xgb-rc.png) # ![kaggle-submission-rc](images/kaggle-submission-rc.png) # In[146]: from prettytable import PrettyTable x = PrettyTable(['Model', 'Feature', 'Private Score', 'Public Score']) x.add_row(['KNN','rc', 0.84352, 0.85351]) x.add_row(['SVM', 'rc', 0.85160, 0.86031]) x.add_row(['Logistic Regression', 'rc', 0.85322, 0.86180]) x.add_row(['Random Forest', 'rc', 0.83136, 0.83892]) x.add_row(['Xgboost', 'rc', 0.84135, 0.84190]) print(x) # # Observations: # # 1. Every model performs good for this feature # 2. Linear models performs better than Tree based models # # 5 Build model on SVD feature # In[147]: train_svd = pd.read_csv('data/train_svd.csv') test_svd = pd.read_csv('data/test_svd.csv') # In[148]: train_svd.shape, test_svd.shape, y_train.shape # ## 5.1 KNN with SVD # In[149]: parameters={'n_neighbors':np.arange(1,100, 5)} clf = RandomizedSearchCV(KNeighborsClassifier(n_jobs=-1),parameters,random_state=random_state,cv=cv,verbose=verbose,scoring=scoring,n_jobs=-1) best_model = clf.fit(train_svd,y_train) # In[150]: results = pd.DataFrame.from_dict(best_model.cv_results_) results=results.sort_values('param_n_neighbors') results # In[151]: print_graph(results, 'param_n_neighbors', 'mean_test_score', 'Hyperparameter - No. of neighbors', 'Test score') # In[152]: best_c=best_model.best_params_['n_neighbors'] best_c # In[153]: model = KNeighborsClassifier(n_neighbors=best_c,n_jobs=-1) model.fit(train_svd,y_train) # In[154]: predictions = model.predict_proba(test_svd)[:,1] save_submission(predictions, "knn_svd.csv") # ![knn-svd](images/knn-svd.png) # ## 5.2 SVM with SVD # In[155]: C_val = uniform(loc=0, scale=4) model= LinearSVC(verbose=verbose,random_state=random_state,class_weight='balanced',max_iter=2000) parameters={'C':C_val} clf = RandomizedSearchCV(model,parameters,random_state=random_state,cv=cv,verbose=verbose,scoring=scoring,n_jobs=-1) best_model = clf.fit(train_svd,y_train) # In[156]: best_c=best_model.best_params_['C'] best_c # In[157]: results = pd.DataFrame.from_dict(best_model.cv_results_) results=results.sort_values('param_C') results # In[158]: print_graph(results, 'param_C', 'mean_test_score', 'Hyperparameter - C', 'Test score') # In[159]: #https://stackoverflow.com/questions/26478000/converting-linearsvcs-decision-function-to-probabilities-scikit-learn-python model = LinearSVC(C=best_c,verbose=verbose,random_state=random_state,class_weight='balanced',max_iter=2000) model = CalibratedClassifierCV(model) model.fit(train_svd,y_train) # In[160]: predictions = model.predict_proba(test_svd)[:,1] save_submission(predictions, 'svm_svd.csv') # ![svm-svd](images/svm-svd.png) # ## 5.3 Logistic Regression with SVD # In[161]: C_val = uniform(loc=0, scale=4) lr= LogisticRegression(verbose=verbose,random_state=random_state,class_weight='balanced',solver='lbfgs',max_iter=500,n_jobs=-1) parameters={'C':C_val} clf = RandomizedSearchCV(lr,parameters,random_state=random_state,cv=cv,verbose=verbose,n_iter=100,scoring=scoring,n_jobs=-1) best_model = clf.fit(train_svd,y_train) # In[162]: best_c=best_model.best_params_['C'] best_c # In[163]: results = pd.DataFrame.from_dict(best_model.cv_results_) results=results.sort_values('param_C') results # In[164]: print_graph(results, 'param_C', 'mean_test_score', 'Hyperparameter - C', 'Test score') # In[165]: model = LogisticRegression(C=best_c,verbose=verbose,n_jobs=-1,random_state=random_state,class_weight='balanced',solver='lbfgs') model.fit(train_svd,y_train) # In[166]: predictions = model.predict_proba(test_svd)[:,1] save_submission(predictions, 'lr_svd.csv') # ![lr-svd](images/lr-svd.png) # ## 5.4 Random Forest with SVD # In[167]: rfc = RandomForestClassifier(random_state=random_state,class_weight='balanced',n_jobs=-1) clf = RandomizedSearchCV(rfc,get_rf_params(),random_state=random_state,cv=cv,verbose=verbose,n_iter=100,scoring=scoring,n_jobs=-1) best_model = clf.fit(train_svd,y_train) # In[168]: results =
pd.DataFrame(best_model.cv_results_)
pandas.DataFrame
import sqlalchemy as sa from sqlalchemy import or_ from flask_sqlalchemy import SQLAlchemy import math from anyway.utilities import init_flask from anyway.models import AccidentMarker, Involved, School from anyway.constants import CONST import pandas as pd import os SUBTYPE_ACCIDENT_WITH_PEDESTRIAN = 1 LOCATION_ACCURACY_PRECISE = True LOCATION_ACCURACY_PRECISE_INT = 1 INJURED_TYPE_PEDESTRIAN = 1 YISHUV_SYMBOL_NOT_EXIST = -1 CONTENT_ENCODING = 'utf-8' HEBREW_ENCODING = 'cp1255' ANYWAY_UI_FORMAT_MAP_ONLY = "https://www.anyway.co.il/?zoom=17&start_date={start_date}&end_date={end_date}&lat={latitude}&lon={longitude}&show_fatal=1&show_severe=1&show_light=1&approx={location_approx}&accurate={location_accurate}&show_markers=1&show_discussions=0&show_urban=3&show_intersection=3&show_lane=3&show_day=7&show_holiday=0&show_time=24&start_time=25&end_time=25&weather=0&road=0&separation=0&surface=0&acctype={acc_type}&controlmeasure=0&district=0&case_type=0&show_rsa=0&age_groups=1,2,3,4&map_only=true" ANYWAY_UI_FORMAT_WITH_FILTERS = "https://www.anyway.co.il/?zoom=17&start_date={start_date}&end_date={end_date}&lat={latitude}&lon={longitude}&show_fatal=1&show_severe=1&show_light=1&approx={location_approx}&accurate={location_accurate}&show_markers=1&show_discussions=0&show_urban=3&show_intersection=3&show_lane=3&show_day=7&show_holiday=0&show_time=24&start_time=25&end_time=25&weather=0&road=0&separation=0&surface=0&acctype={acc_type}&controlmeasure=0&district=0&case_type=0&show_rsa=0&age_groups=1,2,3,4" DATE_INPUT_FORMAT = '%d-%m-%Y' DATE_URL_FORMAT = '%Y-%m-%d' app = init_flask() db = SQLAlchemy(app) def get_bounding_box(latitude, longitude, distance_in_km): latitude = math.radians(latitude) longitude = math.radians(longitude) radius = 6371 # Radius of the parallel at given latitude parallel_radius = radius*math.cos(latitude) lat_min = latitude - distance_in_km/radius lat_max = latitude + distance_in_km/radius lon_min = longitude - distance_in_km/parallel_radius lon_max = longitude + distance_in_km/parallel_radius rad2deg = math.degrees return rad2deg(lat_min), rad2deg(lon_min), rad2deg(lat_max), rad2deg(lon_max) def acc_inv_query(longitude, latitude, distance, start_date, end_date, school): lat_min, lon_min, lat_max, lon_max = get_bounding_box(latitude, longitude, distance) baseX = lon_min; baseY = lat_min; distanceX = lon_max; distanceY = lat_max; pol_str = 'POLYGON(({0} {1},{0} {3},{2} {3},{2} {1},{0} {1}))'.format(baseX, baseY, distanceX, distanceY) query_obj = db.session.query(Involved, AccidentMarker) \ .join(AccidentMarker, AccidentMarker.provider_and_id == Involved.provider_and_id) \ .filter(AccidentMarker.geom.intersects(pol_str)) \ .filter(Involved.injured_type == INJURED_TYPE_PEDESTRIAN) \ .filter(AccidentMarker.provider_and_id == Involved.provider_and_id) \ .filter(or_((AccidentMarker.provider_code == CONST.CBS_ACCIDENT_TYPE_1_CODE), (AccidentMarker.provider_code == CONST.CBS_ACCIDENT_TYPE_3_CODE))) \ .filter(AccidentMarker.created >= start_date) \ .filter(AccidentMarker.created < end_date) \ .filter(AccidentMarker.location_accuracy == LOCATION_ACCURACY_PRECISE_INT) \ .filter(AccidentMarker.yishuv_symbol != YISHUV_SYMBOL_NOT_EXIST) \ .filter(Involved.age_group.in_([1,2,3,4])) #ages 0-19 df = pd.read_sql_query(query_obj.with_labels().statement, query_obj.session.bind) if LOCATION_ACCURACY_PRECISE: location_accurate = 1 location_approx = '' else: location_accurate = 1 location_approx = 1 ui_url_map_only = ANYWAY_UI_FORMAT_MAP_ONLY.format(latitude=school['latitude'], longitude=school['longitude'], start_date=start_date.strftime(DATE_URL_FORMAT), end_date=end_date.strftime(DATE_URL_FORMAT), acc_type=SUBTYPE_ACCIDENT_WITH_PEDESTRIAN, location_accurate=location_accurate, location_approx=location_approx) ui_url_with_filters = ANYWAY_UI_FORMAT_WITH_FILTERS.format(latitude=school['latitude'], longitude=school['longitude'], start_date=start_date.strftime(DATE_URL_FORMAT), end_date=end_date.strftime(DATE_URL_FORMAT), acc_type=SUBTYPE_ACCIDENT_WITH_PEDESTRIAN, location_accurate=location_accurate, location_approx=location_approx) df['anyway_link'] = ui_url_map_only df['anyway_link_with_filters'] = ui_url_with_filters df['school_id'] = school['id'] df['school_name'] = school['school_name'] df['school_yishuv_symbol'] = school['yishuv_symbol'] df['school_yishuv_name'] = school['yishuv_name'] df['school_longitude'] = school['longitude'] df['school_latitude'] = school['latitude'] return df def main(start_date, end_date, distance, output_path): schools_query = sa.select([School]) df_schools =
pd.read_sql_query(schools_query, db.session.bind)
pandas.read_sql_query
from IMLearn.utils import split_train_test from IMLearn.learners.regressors import LinearRegression from typing import NoReturn import numpy as np import pandas as pd import plotly.graph_objects as go import plotly.express as px import plotly.io as pio pio.templates.default = "simple_white" def load_data(filename: str): """ Load house prices dataset and preprocess data. Parameters ---------- filename: str Path to house prices dataset Returns ------- Design matrix and response vector (prices) - either as a single DataFrame or a Tuple[DataFrame, Series] """ # read csv dff =
pd.read_csv(filename)
pandas.read_csv
from datetime import datetime, timedelta from importlib import reload import string import sys import numpy as np import pytest from pandas._libs.tslibs import iNaT from pandas.core.dtypes.dtypes import CategoricalDtype import pandas as pd from pandas import ( Categorical, DataFrame, Index, Series, Timedelta, Timestamp, date_range, ) import pandas._testing as tm class TestSeriesDtypes: def test_dt64_series_astype_object(self): dt64ser = Series(date_range("20130101", periods=3)) result = dt64ser.astype(object) assert isinstance(result.iloc[0], datetime) assert result.dtype == np.object_ def test_td64_series_astype_object(self): tdser = Series(["59 Days", "59 Days", "NaT"], dtype="timedelta64[ns]") result = tdser.astype(object) assert isinstance(result.iloc[0], timedelta) assert result.dtype == np.object_ @pytest.mark.parametrize("dtype", ["float32", "float64", "int64", "int32"]) def test_astype(self, dtype): s = Series(np.random.randn(5), name="foo") as_typed = s.astype(dtype) assert as_typed.dtype == dtype assert as_typed.name == s.name def test_dtype(self, datetime_series): assert datetime_series.dtype == np.dtype("float64") assert datetime_series.dtypes == np.dtype("float64") @pytest.mark.parametrize("value", [np.nan, np.inf]) @pytest.mark.parametrize("dtype", [np.int32, np.int64]) def test_astype_cast_nan_inf_int(self, dtype, value): # gh-14265: check NaN and inf raise error when converting to int msg = "Cannot convert non-finite values \\(NA or inf\\) to integer" s = Series([value]) with pytest.raises(ValueError, match=msg): s.astype(dtype) @pytest.mark.parametrize("dtype", [int, np.int8, np.int64]) def test_astype_cast_object_int_fail(self, dtype): arr = Series(["car", "house", "tree", "1"]) msg = r"invalid literal for int\(\) with base 10: 'car'" with pytest.raises(ValueError, match=msg): arr.astype(dtype) def test_astype_cast_object_int(self): arr = Series(["1", "2", "3", "4"], dtype=object) result = arr.astype(int) tm.assert_series_equal(result, Series(np.arange(1, 5))) def test_astype_datetime(self): s = Series(iNaT, dtype="M8[ns]", index=range(5)) s = s.astype("O") assert s.dtype == np.object_ s = Series([datetime(2001, 1, 2, 0, 0)]) s = s.astype("O") assert s.dtype == np.object_ s = Series([datetime(2001, 1, 2, 0, 0) for i in range(3)]) s[1] = np.nan assert s.dtype == "M8[ns]" s = s.astype("O") assert s.dtype == np.object_ def test_astype_datetime64tz(self): s = Series(date_range("20130101", periods=3, tz="US/Eastern")) # astype result = s.astype(object) expected = Series(s.astype(object), dtype=object) tm.assert_series_equal(result, expected) result = Series(s.values).dt.tz_localize("UTC").dt.tz_convert(s.dt.tz) tm.assert_series_equal(result, s) # astype - object, preserves on construction result = Series(s.astype(object)) expected = s.astype(object) tm.assert_series_equal(result, expected) # astype - datetime64[ns, tz] result = Series(s.values).astype("datetime64[ns, US/Eastern]") tm.assert_series_equal(result, s) result = Series(s.values).astype(s.dtype) tm.assert_series_equal(result, s) result = s.astype("datetime64[ns, CET]") expected = Series(date_range("20130101 06:00:00", periods=3, tz="CET")) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("dtype", [str, np.str_]) @pytest.mark.parametrize( "series", [ Series([string.digits * 10, tm.rands(63), tm.rands(64), tm.rands(1000)]), Series([string.digits * 10, tm.rands(63), tm.rands(64), np.nan, 1.0]), ], ) def test_astype_str_map(self, dtype, series): # see gh-4405 result = series.astype(dtype) expected = series.map(str) tm.assert_series_equal(result, expected) def test_astype_str_cast_dt64(self): # see gh-9757 ts = Series([Timestamp("2010-01-04 00:00:00")]) s = ts.astype(str) expected = Series([str("2010-01-04")]) tm.assert_series_equal(s, expected) ts = Series([Timestamp("2010-01-04 00:00:00", tz="US/Eastern")]) s = ts.astype(str) expected = Series([str("2010-01-04 00:00:00-05:00")]) tm.assert_series_equal(s, expected) def test_astype_str_cast_td64(self): # see gh-9757 td = Series([Timedelta(1, unit="d")]) ser = td.astype(str) expected = Series([str("1 days")]) tm.assert_series_equal(ser, expected) def test_astype_unicode(self): # see gh-7758: A bit of magic is required to set # default encoding to utf-8 digits = string.digits test_series = [ Series([digits * 10, tm.rands(63), tm.rands(64), tm.rands(1000)]), Series(["データーサイエンス、お前はもう死んでいる"]), ] former_encoding = None if sys.getdefaultencoding() == "utf-8": test_series.append(Series(["野菜食べないとやばい".encode("utf-8")])) for s in test_series: res = s.astype("unicode") expec = s.map(str) tm.assert_series_equal(res, expec) # Restore the former encoding if former_encoding is not None and former_encoding != "utf-8": reload(sys) sys.setdefaultencoding(former_encoding) @pytest.mark.parametrize("dtype_class", [dict, Series]) def test_astype_dict_like(self, dtype_class): # see gh-7271 s = Series(range(0, 10, 2), name="abc") dt1 = dtype_class({"abc": str}) result = s.astype(dt1) expected = Series(["0", "2", "4", "6", "8"], name="abc") tm.assert_series_equal(result, expected) dt2 = dtype_class({"abc": "float64"}) result = s.astype(dt2) expected = Series([0.0, 2.0, 4.0, 6.0, 8.0], dtype="float64", name="abc") tm.assert_series_equal(result, expected) dt3 = dtype_class({"abc": str, "def": str}) msg = ( "Only the Series name can be used for the key in Series dtype " r"mappings\." ) with pytest.raises(KeyError, match=msg): s.astype(dt3) dt4 = dtype_class({0: str}) with pytest.raises(KeyError, match=msg): s.astype(dt4) # GH16717 # if dtypes provided is empty, it should error if dtype_class is Series: dt5 = dtype_class({}, dtype=object) else: dt5 = dtype_class({}) with pytest.raises(KeyError, match=msg): s.astype(dt5) def test_astype_categories_raises(self): # deprecated 17636, removed in GH-27141 s = Series(["a", "b", "a"]) with pytest.raises(TypeError, match="got an unexpected"): s.astype("category", categories=["a", "b"], ordered=True) def test_astype_from_categorical(self): items = ["a", "b", "c", "a"] s = Series(items) exp = Series(Categorical(items)) res = s.astype("category") tm.assert_series_equal(res, exp) items = [1, 2, 3, 1] s = Series(items) exp = Series(Categorical(items)) res = s.astype("category") tm.assert_series_equal(res, exp) df = DataFrame({"cats": [1, 2, 3, 4, 5, 6], "vals": [1, 2, 3, 4, 5, 6]}) cats = Categorical([1, 2, 3, 4, 5, 6]) exp_df = DataFrame({"cats": cats, "vals": [1, 2, 3, 4, 5, 6]}) df["cats"] = df["cats"].astype("category") tm.assert_frame_equal(exp_df, df) df = DataFrame( {"cats": ["a", "b", "b", "a", "a", "d"], "vals": [1, 2, 3, 4, 5, 6]} ) cats = Categorical(["a", "b", "b", "a", "a", "d"]) exp_df = DataFrame({"cats": cats, "vals": [1, 2, 3, 4, 5, 6]}) df["cats"] = df["cats"].astype("category") tm.assert_frame_equal(exp_df, df) # with keywords lst = ["a", "b", "c", "a"] s = Series(lst) exp = Series(Categorical(lst, ordered=True)) res = s.astype(CategoricalDtype(None, ordered=True)) tm.assert_series_equal(res, exp) exp = Series(Categorical(lst, categories=list("abcdef"), ordered=True)) res = s.astype(CategoricalDtype(list("abcdef"), ordered=True)) tm.assert_series_equal(res, exp) def test_astype_categorical_to_other(self): value = np.random.RandomState(0).randint(0, 10000, 100) df = DataFrame({"value": value}) labels = [f"{i} - {i + 499}" for i in range(0, 10000, 500)] cat_labels = Categorical(labels, labels) df = df.sort_values(by=["value"], ascending=True) df["value_group"] = pd.cut( df.value, range(0, 10500, 500), right=False, labels=cat_labels ) s = df["value_group"] expected = s tm.assert_series_equal(s.astype("category"), expected) tm.assert_series_equal(s.astype(CategoricalDtype()), expected) msg = r"could not convert string to float|invalid literal for float\(\)" with pytest.raises(ValueError, match=msg): s.astype("float64") cat = Series(Categorical(["a", "b", "b", "a", "a", "c", "c", "c"])) exp =
Series(["a", "b", "b", "a", "a", "c", "c", "c"])
pandas.Series
import numpy as np import pandas as pd import plotly.graph_objects as go import dash from dash.dependencies import Input, Output from dash import dcc from dash import html from dash.dependencies import Input, Output, State import dash_table from dash_table.Format import Format, Scheme # SolCalc from helicalc import helicalc_dir, helicalc_data from helicalc.solcalc import SolCalcIntegrator from helicalc.geometry import read_solenoid_geom_combined from helicalc.cylinders import get_thick_cylinders_padded external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css'] # load nominal PS geom # paramdir = '/home/ckampa/coding/helicalc/dev/params/' paramdir = helicalc_dir + 'dev/params/' paramfile = 'Mu2e_V13' df_PS_nom = read_solenoid_geom_combined(paramdir, paramfile).iloc[:3] # calculate layer thickness # FIXME! # integration params drz = np.array([5e-3, 1e-2]) # editable vs. dependent columns cols_edit = ['Ri', 'x', 'y', 'z', 'rot0', 'rot1', 'rot2', 'N_layers', 'N_turns', 'I_turn'] cols_stat = ['Coil_Num', 'Ro', 'L', 'I_tot', 'N_turns_tot', 'helicity', 'h_cable', 'w_cable', 'h_sc', 'w_sc', 't_gi', 't_ci', 't_il', 'phi0_deg', 'phi1_deg', 'pitch'] # load TS+DS contribution to PS #PSoff_file = '/home/shared_data/Bmaps/SolCalc_complete/Mau13.SolCalc.PS_region.standard.PSoff.pkl' PSoff_file = helicalc_data+'Bmaps/aux/Mau13.SolCalc.PS_region.standard.PSoff.pkl' df_PSoff = pd.read_pickle(PSoff_file) df_PSoff = df_PSoff.astype(float) # m = (df_PSoff.Y == 0.) & (np.isin(df_PSoff.X - 3.904, [0., 0.4, 0.7])) m = (df_PSoff.Y == 0.) & (np.isin(df_PSoff.X, [3.904, 4.304, 4.604])) df_PSoff_lines = df_PSoff[m].copy().reset_index(drop=True, inplace=False) # print(df_PSoff_lines) # formatting/style green = 'rgb(159, 210, 128)' plot_bg = 'rgb(240, 240, 240)' button_style = {'fontSize': 'large', 'backgroundColor': green, } # plot globals marker_size = 10 fsize_plot = 20 fsize_ticks = 14 # instantiate app app = dash.Dash(name='solcalc', external_stylesheets=external_stylesheets) app.layout = html.Div([ html.H1('SolCalc Magnet Builder (Production Solenoid)'), # html.H2('Coils Plot'), dcc.Graph(id='coils-plot'), html.H2('Coil Geometries'), # tables html.H3('Editable Parameters'), dash_table.DataTable(id='editable-table', columns=[{'name':i, 'id': i, 'hideable':True, 'type':'numeric', 'format': Format(scheme=Scheme.fixed, precision=4),} for i in cols_edit], data=df_PS_nom[cols_edit].to_dict('records'), editable=True), html.Br(), html.Button('Recalculate Field', id='calc-button', style=button_style), # field plot html.H2('Field Plot'), html.Label('Plotting Options:'), html.Label('Field Component:'), dcc.Dropdown( id='yaxis-column-field', options=['Bx', 'By', 'Bz'], value='Bz', multi=False, #style=desc_style, ), html.Label('Field value or gradient?'), dcc.RadioItems( id='yaxis-type-field', options=[{'label': i, 'value': i} for i in ['B_i', 'grad_z(B_i)']], value='B_i', labelStyle={'display': 'inline-block'}, #style=desc_style, ), html.Label('Include TS/DS Contribution?'), dcc.RadioItems( id='include-TS-field', options=[{'label': i, 'value': i} for i in ['yes', 'no']], value='yes', labelStyle={'display': 'inline-block'}, #style=desc_style, ), html.Label('Individual coil contributions or combined field?'), dcc.RadioItems( id='indiv-contrib', options=[{'label': i, 'value': i} for i in ['combined', 'individal']], value='combined', labelStyle={'display': 'inline-block'}, #style=desc_style, ), html.Label('Field unit:'), dcc.RadioItems( id='field-unit', options=[{'label': i, 'value': i} for i in ['Gauss', 'Tesla']], value='Gauss', labelStyle={'display': 'inline-block'}, #style=desc_style, ), dcc.Graph(id='field-plot'), # FIXME! # not positive best placement for these html.H3('Static/Dependent Parameters'), dash_table.DataTable(id='static-table', columns=[{'name':i, 'id': i, 'hideable':True, 'type':'numeric', 'format': Format(scheme=Scheme.fixed, precision=4),} for i in cols_stat], data=df_PS_nom[cols_stat].to_dict('records'), editable=False), html.H3('Notes on Dependent Parameters'), # dcc.Markdown(''' # $R_o = R_i + h_{cable}*N_{layers} + 2*t_{gi} + 2*t_{ci}*N_{layers} + 2*{t_il}*(N_{layers}-1)$ # '''), #html.Div(html.P(['Notes on depdendent parameters:', html.Br(), html.Div(html.P([ 'Ro = Ri + h_cable*N_layers + 2*t_gi + 2*t_ci*N_layers + 2*t_il*(N_layers-1)', html.Br(), 'pitch = h_cable + 2*t_ci', html.Br(), 'L = pitch*N_turns + 2*t_gi [note nominal seems to use (N_turns-1)]', html.Br(), 'N_turns_tot = N_turns * N_layers', html.Br(), 'I_tot = I_turn * N_turns_tot',])), # hidden divs for data html.Div(children=df_PS_nom[cols_edit+cols_stat].to_json(), id='geom-data', style={'display': 'none'}), html.Div(id='field-data', style={'display': 'none'}), ]) # update geom div when button is clicked @app.callback( [Output('geom-data', 'children'), Output('static-table', 'data'),], [Input('calc-button', 'n_clicks'),], [State('static-table', 'data'), State('static-table', 'columns'), State('editable-table', 'data'), State('editable-table', 'columns')], ) def update_geom_data(n_clicks, rows_stat, cols_stat, rows_edit, cols_edit): # load data df_edit = pd.DataFrame(rows_edit, columns=[c['name'] for c in cols_edit], dtype=float) print(df_edit) print(df_edit.info()) df_stat = pd.DataFrame(rows_stat, columns=[c['name'] for c in cols_stat], dtype=float) # calculations df_stat.loc[:, 'Ro'] = df_edit.Ri + df_stat.h_cable * df_edit.N_layers + \ 2 * df_stat.t_gi + 2*df_stat.t_ci*df_edit.N_layers +\ 2*df_stat.t_il*(df_edit.N_layers - 1) df_stat.loc[:, 'L'] = df_stat.pitch * df_edit.N_turns + 2 * df_stat.t_gi df_stat.loc[:, 'N_turns_tot'] = df_edit.N_turns * df_edit.N_layers df_stat.loc[:, 'I_tot'] = df_edit.I_turn + df_stat.N_turns_tot # combine results df = pd.concat([df_stat, df_edit], axis=1) return df.to_json(), df_stat.to_dict('records') # update coils plot @app.callback( Output('coils-plot', 'figure'), [Input('geom-data', 'children'),], ) def plot_coils(df): df = pd.read_json(df) # get cylinders PS xs, ys, zs, cs = get_thick_cylinders_padded(df, [1, 2, 3]) # get cylinders nominal PS xs_n, ys_n, zs_n, cs_n = get_thick_cylinders_padded(df_PS_nom, [1, 2, 3]) # FIXME! Add some of the TS coils # return surface plot # layout # camera # y up # camera = dict( # up=dict(x=0, y=1, z=0), # #center=dict(x=-3.904, y=0, z=9.), # eye=dict(x=-2, y=0., z=0.) # ) # z up camera = dict( up=dict(x=0, y=0, z=1), #center=dict(x=-3.904, y=0, z=9.), eye=dict(x=0., y=-2., z=0.) ) layout = go.Layout( title='Coil Layout', height=700, font=dict(family="Courier New", size=fsize_plot,), margin={'l': 60, 'b': 60, 't': 60, 'r': 60}, scene=dict(aspectmode='data', camera=camera, xaxis={'title': 'Z [m]', 'tickfont':{'size': fsize_ticks}}, yaxis={'title': 'X [m]', 'tickfont':{'size': fsize_ticks}}, zaxis={'title': 'Y [m]', 'tickfont':{'size': fsize_ticks}},), plot_bgcolor=plot_bg, # autosize=True, # width=1600, # height=800, ) return {'data': #[go.Surface(x=xs, y=ys, z=zs, surfacecolor=cs, [go.Surface(x=zs_n, y=xs_n, z=ys_n, surfacecolor=cs_n, colorscale=[[0,'rgba(0,0,0,0)'],[1,'rgba(220, 50, 103, 0.8)']], showscale=False, showlegend=True, opacity=1.0, name='PS Coils (nominal)',), go.Surface(x=zs, y=xs, z=ys, surfacecolor=cs, colorscale=[[0,'rgba(0,0,0,0)'],[1,'rgba(138, 207, 103, 0.8)']], showscale=False, showlegend=True, opacity=1.0, name='PS Coils (current)',), ], 'layout': layout, } # recalculate field @app.callback( Output('field-data', 'children'), [Input('geom-data', 'children'),], ) def calculate_field(df): df =
pd.read_json(df)
pandas.read_json
import numpy as np import pandas as pd from sklearn.preprocessing import scale, MinMaxScaler import pickle def gen_norm_dict(l): newd = {} for i in range(len(l)): newd[l[i]] = int(np.ceil((i+1)/10)) + 1 return newd def pool_normalize(df,dmap): newdf =
pd.DataFrame(index=df.index)
pandas.DataFrame
import pandas as pd from .utility_functions import * def load_file(filepath): """ Loads a single data file into a dataframe and appends any necessary identifier columns This strips the sequences of moves out from the data, along with any mousetracking data. A different file loading function will be necessary to use any of those sequential items NOTE: this function will not work if the files are not contained in appropriately named directories Arguments: ---------- :filepath is a complete relative or absolute filepath pointing to a csv file Outputs: ---------- :DF[keep] is a pandas DataFrame containing the relevant fields """ assert filepath[-3:] == 'csv' # throw an error if not a csv # pretty names for data fields col_names = [ 'Index', 'Subject ID', 'Player Color', 'Game Index', 'Move Index', 'Status', 'Black Position', 'White Position', 'Action', 'Response Time', 'Time Stamp', 'Mouse Timestamps', 'Mouse Position' ] # final data fields keep = [ 'Subject ID', 'Condition', 'Game Index', 'Status', 'Black Position', 'White Position', 'Response Time' ] DF = pd.read_csv(filepath, names=col_names) # load the file with pandas # Recompute response times from timestamps reconi = DF['Status'] == 'reconi' reconf = DF['Status'] == 'reconf' trial_starts = DF.loc[reconi, 'Time Stamp'].values trial_ends = DF.loc[reconf, 'Time Stamp'].values DF.loc[reconi, 'Response Time'] = trial_ends - trial_starts DF = DF.loc[DF['Status'].isin(['reconi', 'reconf'])].reset_index(drop=True) # only keep initial and final board states DF['Game Index'] = DF.index // 2 # fix game indexes DF['Condition'] = 'Trained' if 'Trained' in filepath else 'Naive' # get condition from filepath return DF[keep] def load_data(filepaths): """ Loads all data into a single dataframe and does some additional preprocessing TODO: add real/fake identifiers for each position! Arguments: ---------- :filepaths is a list of complete relative or absolute filepaths pointing to csv files Outputs: ---------- :DFi[keep] is a pandas DataFrame with the relevant columns """ # get all data into a single dataframe loaded = [load_file(path) for path in filepaths] # load all files in filepaths into individual dataframes DF =
pd.concat(loaded)
pandas.concat
import pytest import numpy as np import pandas import pandas.util.testing as tm from pandas.tests.frame.common import TestData import matplotlib import modin.pandas as pd from modin.pandas.utils import to_pandas from numpy.testing import assert_array_equal from .utils import ( random_state, RAND_LOW, RAND_HIGH, df_equals, df_is_empty, arg_keys, name_contains, test_data_values, test_data_keys, test_data_with_duplicates_values, test_data_with_duplicates_keys, numeric_dfs, no_numeric_dfs, test_func_keys, test_func_values, query_func_keys, query_func_values, agg_func_keys, agg_func_values, numeric_agg_funcs, quantiles_keys, quantiles_values, indices_keys, indices_values, axis_keys, axis_values, bool_arg_keys, bool_arg_values, int_arg_keys, int_arg_values, ) # TODO remove once modin-project/modin#469 is resolved agg_func_keys.remove("str") agg_func_values.remove(str) pd.DEFAULT_NPARTITIONS = 4 # Force matplotlib to not use any Xwindows backend. matplotlib.use("Agg") class TestDFPartOne: # Test inter df math functions def inter_df_math_helper(self, modin_df, pandas_df, op): # Test dataframe to datframe try: pandas_result = getattr(pandas_df, op)(pandas_df) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(modin_df) else: modin_result = getattr(modin_df, op)(modin_df) df_equals(modin_result, pandas_result) # Test dataframe to int try: pandas_result = getattr(pandas_df, op)(4) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(4) else: modin_result = getattr(modin_df, op)(4) df_equals(modin_result, pandas_result) # Test dataframe to float try: pandas_result = getattr(pandas_df, op)(4.0) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(4.0) else: modin_result = getattr(modin_df, op)(4.0) df_equals(modin_result, pandas_result) # Test transposed dataframes to float try: pandas_result = getattr(pandas_df.T, op)(4.0) except Exception as e: with pytest.raises(type(e)): getattr(modin_df.T, op)(4.0) else: modin_result = getattr(modin_df.T, op)(4.0) df_equals(modin_result, pandas_result) frame_data = { "{}_other".format(modin_df.columns[0]): [0, 2], modin_df.columns[0]: [0, 19], modin_df.columns[1]: [1, 1], } modin_df2 = pd.DataFrame(frame_data) pandas_df2 = pandas.DataFrame(frame_data) # Test dataframe to different dataframe shape try: pandas_result = getattr(pandas_df, op)(pandas_df2) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(modin_df2) else: modin_result = getattr(modin_df, op)(modin_df2) df_equals(modin_result, pandas_result) # Test dataframe to list list_test = random_state.randint(RAND_LOW, RAND_HIGH, size=(modin_df.shape[1])) try: pandas_result = getattr(pandas_df, op)(list_test, axis=1) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(list_test, axis=1) else: modin_result = getattr(modin_df, op)(list_test, axis=1) df_equals(modin_result, pandas_result) # Test dataframe to series series_test_modin = modin_df[modin_df.columns[0]] series_test_pandas = pandas_df[pandas_df.columns[0]] try: pandas_result = getattr(pandas_df, op)(series_test_pandas, axis=0) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(series_test_modin, axis=0) else: modin_result = getattr(modin_df, op)(series_test_modin, axis=0) df_equals(modin_result, pandas_result) # Test dataframe to series with different index series_test_modin = modin_df[modin_df.columns[0]].reset_index(drop=True) series_test_pandas = pandas_df[pandas_df.columns[0]].reset_index(drop=True) try: pandas_result = getattr(pandas_df, op)(series_test_pandas, axis=0) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(series_test_modin, axis=0) else: modin_result = getattr(modin_df, op)(series_test_modin, axis=0) df_equals(modin_result, pandas_result) # Level test new_idx = pandas.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in modin_df.index] ) modin_df_multi_level = modin_df.copy() modin_df_multi_level.index = new_idx # Defaults to pandas with pytest.warns(UserWarning): # Operation against self for sanity check getattr(modin_df_multi_level, op)(modin_df_multi_level, axis=0, level=1) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_add(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "add") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_div(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "div") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_divide(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "divide") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_floordiv(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "floordiv") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_mod(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "mod") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_mul(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "mul") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_multiply(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "multiply") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_pow(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # TODO: Revert to others once we have an efficient way of preprocessing for positive # values try: pandas_df = pandas_df.abs() except Exception: pass else: modin_df = modin_df.abs() self.inter_df_math_helper(modin_df, pandas_df, "pow") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_sub(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "sub") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_subtract(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "subtract") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_truediv(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "truediv") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___div__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__div__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___add__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__add__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___radd__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__radd__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___mul__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__mul__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___rmul__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__rmul__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___pow__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__pow__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___rpow__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__rpow__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___sub__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__sub__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___floordiv__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__floordiv__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___rfloordiv__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__rfloordiv__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___truediv__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__truediv__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___rtruediv__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__rtruediv__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___mod__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__mod__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___rmod__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__rmod__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___rdiv__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__rdiv__") # END test inter df math functions # Test comparison of inter operation functions def comparison_inter_ops_helper(self, modin_df, pandas_df, op): try: pandas_result = getattr(pandas_df, op)(pandas_df) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(modin_df) else: modin_result = getattr(modin_df, op)(modin_df) df_equals(modin_result, pandas_result) try: pandas_result = getattr(pandas_df, op)(4) except TypeError: with pytest.raises(TypeError): getattr(modin_df, op)(4) else: modin_result = getattr(modin_df, op)(4) df_equals(modin_result, pandas_result) try: pandas_result = getattr(pandas_df, op)(4.0) except TypeError: with pytest.raises(TypeError): getattr(modin_df, op)(4.0) else: modin_result = getattr(modin_df, op)(4.0) df_equals(modin_result, pandas_result) try: pandas_result = getattr(pandas_df, op)("a") except TypeError: with pytest.raises(TypeError): repr(getattr(modin_df, op)("a")) else: modin_result = getattr(modin_df, op)("a") df_equals(modin_result, pandas_result) frame_data = { "{}_other".format(modin_df.columns[0]): [0, 2], modin_df.columns[0]: [0, 19], modin_df.columns[1]: [1, 1], } modin_df2 = pd.DataFrame(frame_data) pandas_df2 = pandas.DataFrame(frame_data) try: pandas_result = getattr(pandas_df, op)(pandas_df2) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(modin_df2) else: modin_result = getattr(modin_df, op)(modin_df2) df_equals(modin_result, pandas_result) new_idx = pandas.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in modin_df.index] ) modin_df_multi_level = modin_df.copy() modin_df_multi_level.index = new_idx # Defaults to pandas with pytest.warns(UserWarning): # Operation against self for sanity check getattr(modin_df_multi_level, op)(modin_df_multi_level, axis=0, level=1) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_eq(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.comparison_inter_ops_helper(modin_df, pandas_df, "eq") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_ge(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.comparison_inter_ops_helper(modin_df, pandas_df, "ge") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_gt(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.comparison_inter_ops_helper(modin_df, pandas_df, "gt") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_le(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.comparison_inter_ops_helper(modin_df, pandas_df, "le") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_lt(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.comparison_inter_ops_helper(modin_df, pandas_df, "lt") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_ne(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.comparison_inter_ops_helper(modin_df, pandas_df, "ne") # END test comparison of inter operation functions # Test dataframe right operations def inter_df_math_right_ops_helper(self, modin_df, pandas_df, op): try: pandas_result = getattr(pandas_df, op)(4) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(4) else: modin_result = getattr(modin_df, op)(4) df_equals(modin_result, pandas_result) try: pandas_result = getattr(pandas_df, op)(4.0) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(4.0) else: modin_result = getattr(modin_df, op)(4.0) df_equals(modin_result, pandas_result) new_idx = pandas.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in modin_df.index] ) modin_df_multi_level = modin_df.copy() modin_df_multi_level.index = new_idx # Defaults to pandas with pytest.warns(UserWarning): # Operation against self for sanity check getattr(modin_df_multi_level, op)(modin_df_multi_level, axis=0, level=1) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_radd(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_right_ops_helper(modin_df, pandas_df, "radd") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_rdiv(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_right_ops_helper(modin_df, pandas_df, "rdiv") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_rfloordiv(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_right_ops_helper(modin_df, pandas_df, "rfloordiv") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_rmod(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_right_ops_helper(modin_df, pandas_df, "rmod") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_rmul(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_right_ops_helper(modin_df, pandas_df, "rmul") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_rpow(self, request, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # TODO: Revert to others once we have an efficient way of preprocessing for positive values # We need to check that negative integers are not used efficiently if "100x100" not in request.node.name: self.inter_df_math_right_ops_helper(modin_df, pandas_df, "rpow") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_rsub(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_right_ops_helper(modin_df, pandas_df, "rsub") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_rtruediv(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_right_ops_helper(modin_df, pandas_df, "rtruediv") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___rsub__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_right_ops_helper(modin_df, pandas_df, "__rsub__") # END test dataframe right operations @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_abs(self, request, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.abs() except Exception as e: with pytest.raises(type(e)): modin_df.abs() else: modin_result = modin_df.abs() df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_add_prefix(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) test_prefix = "TEST" new_modin_df = modin_df.add_prefix(test_prefix) new_pandas_df = pandas_df.add_prefix(test_prefix) df_equals(new_modin_df.columns, new_pandas_df.columns) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("testfunc", test_func_values, ids=test_func_keys) def test_applymap(self, request, data, testfunc): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) with pytest.raises(ValueError): x = 2 modin_df.applymap(x) try: pandas_result = pandas_df.applymap(testfunc) except Exception as e: with pytest.raises(type(e)): modin_df.applymap(testfunc) else: modin_result = modin_df.applymap(testfunc) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("testfunc", test_func_values, ids=test_func_keys) def test_applymap_numeric(self, request, data, testfunc): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) if name_contains(request.node.name, numeric_dfs): try: pandas_result = pandas_df.applymap(testfunc) except Exception as e: with pytest.raises(type(e)): modin_df.applymap(testfunc) else: modin_result = modin_df.applymap(testfunc) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_add_suffix(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) test_suffix = "TEST" new_modin_df = modin_df.add_suffix(test_suffix) new_pandas_df = pandas_df.add_suffix(test_suffix) df_equals(new_modin_df.columns, new_pandas_df.columns) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_at(self, request, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # We skip nan datasets because nan != nan if "nan" not in request.node.name: key1 = modin_df.columns[0] # Scaler assert modin_df.at[0, key1] == pandas_df.at[0, key1] # Series df_equals(modin_df.loc[0].at[key1], pandas_df.loc[0].at[key1]) # Write Item modin_df_copy = modin_df.copy() pandas_df_copy = pandas_df.copy() modin_df_copy.at[1, key1] = modin_df.at[0, key1] pandas_df_copy.at[1, key1] = pandas_df.at[0, key1] df_equals(modin_df_copy, pandas_df_copy) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_axes(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) for modin_axis, pd_axis in zip(modin_df.axes, pandas_df.axes): assert np.array_equal(modin_axis, pd_axis) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_copy(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # noqa F841 # pandas_df is unused but there so there won't be confusing list comprehension # stuff in the pytest.mark.parametrize new_modin_df = modin_df.copy() assert new_modin_df is not modin_df assert np.array_equal( new_modin_df._query_compiler._modin_frame._partitions, modin_df._query_compiler._modin_frame._partitions, ) assert new_modin_df is not modin_df df_equals(new_modin_df, modin_df) # Shallow copy tests modin_df = pd.DataFrame(data) modin_df_cp = modin_df.copy(False) modin_df[modin_df.columns[0]] = 0 df_equals(modin_df, modin_df_cp) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_dtypes(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals(modin_df.dtypes, pandas_df.dtypes) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_ftypes(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals(modin_df.ftypes, pandas_df.ftypes) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("key", indices_values, ids=indices_keys) def test_get(self, data, key): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals(modin_df.get(key), pandas_df.get(key)) df_equals( modin_df.get(key, default="default"), pandas_df.get(key, default="default") ) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_get_dtype_counts(self, data): modin_result = pd.DataFrame(data).get_dtype_counts().sort_index() pandas_result = pandas.DataFrame(data).get_dtype_counts().sort_index() df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize( "dummy_na", bool_arg_values, ids=arg_keys("dummy_na", bool_arg_keys) ) @pytest.mark.parametrize( "drop_first", bool_arg_values, ids=arg_keys("drop_first", bool_arg_keys) ) def test_get_dummies(self, request, data, dummy_na, drop_first): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas.get_dummies( pandas_df, dummy_na=dummy_na, drop_first=drop_first ) except Exception as e: with pytest.raises(type(e)): pd.get_dummies(modin_df, dummy_na=dummy_na, drop_first=drop_first) else: modin_result = pd.get_dummies( modin_df, dummy_na=dummy_na, drop_first=drop_first ) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_get_ftype_counts(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals(modin_df.get_ftype_counts(), pandas_df.get_ftype_counts()) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize("func", agg_func_values, ids=agg_func_keys) def test_agg(self, data, axis, func): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.agg(func, axis) except Exception as e: with pytest.raises(type(e)): modin_df.agg(func, axis) else: modin_result = modin_df.agg(func, axis) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize("func", agg_func_values, ids=agg_func_keys) def test_agg_numeric(self, request, data, axis, func): if name_contains(request.node.name, numeric_agg_funcs) and name_contains( request.node.name, numeric_dfs ): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.agg(func, axis) except Exception as e: with pytest.raises(type(e)): modin_df.agg(func, axis) else: modin_result = modin_df.agg(func, axis) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize("func", agg_func_values, ids=agg_func_keys) def test_aggregate(self, request, data, func, axis): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.aggregate(func, axis) except Exception as e: with pytest.raises(type(e)): modin_df.aggregate(func, axis) else: modin_result = modin_df.aggregate(func, axis) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize("func", agg_func_values, ids=agg_func_keys) def test_aggregate_numeric(self, request, data, axis, func): if name_contains(request.node.name, numeric_agg_funcs) and name_contains( request.node.name, numeric_dfs ): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.agg(func, axis) except Exception as e: with pytest.raises(type(e)): modin_df.agg(func, axis) else: modin_result = modin_df.agg(func, axis) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_aggregate_error_checking(self, data): modin_df = pd.DataFrame(data) assert modin_df.aggregate("ndim") == 2 with pytest.warns(UserWarning): modin_df.aggregate( {modin_df.columns[0]: "sum", modin_df.columns[1]: "mean"} ) with pytest.warns(UserWarning): modin_df.aggregate("cumproduct") with pytest.raises(ValueError): modin_df.aggregate("NOT_EXISTS") def test_align(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).align(pd.DataFrame(data)) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) @pytest.mark.parametrize( "bool_only", bool_arg_values, ids=arg_keys("bool_only", bool_arg_keys) ) def test_all(self, data, axis, skipna, bool_only): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.all(axis=axis, skipna=skipna, bool_only=bool_only) except Exception as e: with pytest.raises(type(e)): modin_df.all(axis=axis, skipna=skipna, bool_only=bool_only) else: modin_result = modin_df.all(axis=axis, skipna=skipna, bool_only=bool_only) df_equals(modin_result, pandas_result) # Test when axis is None. This will get repeated but easier than using list in parameterize decorator try: pandas_result = pandas_df.all(axis=None, skipna=skipna, bool_only=bool_only) except Exception as e: with pytest.raises(type(e)): modin_df.all(axis=None, skipna=skipna, bool_only=bool_only) else: modin_result = modin_df.all(axis=None, skipna=skipna, bool_only=bool_only) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.all( axis=axis, skipna=skipna, bool_only=bool_only ) except Exception as e: with pytest.raises(type(e)): modin_df.T.all(axis=axis, skipna=skipna, bool_only=bool_only) else: modin_result = modin_df.T.all(axis=axis, skipna=skipna, bool_only=bool_only) df_equals(modin_result, pandas_result) # Test when axis is None. This will get repeated but easier than using list in parameterize decorator try: pandas_result = pandas_df.T.all( axis=None, skipna=skipna, bool_only=bool_only ) except Exception as e: with pytest.raises(type(e)): modin_df.T.all(axis=None, skipna=skipna, bool_only=bool_only) else: modin_result = modin_df.T.all(axis=None, skipna=skipna, bool_only=bool_only) df_equals(modin_result, pandas_result) # test level modin_df_multi_level = modin_df.copy() pandas_df_multi_level = pandas_df.copy() axis = modin_df._get_axis_number(axis) if axis is not None else 0 levels = 3 axis_names_list = [["a", "b", "c"], None] for axis_names in axis_names_list: if axis == 0: new_idx = pandas.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in range(len(modin_df.index))], names=axis_names, ) modin_df_multi_level.index = new_idx pandas_df_multi_level.index = new_idx else: new_col = pandas.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in range(len(modin_df.columns))], names=axis_names, ) modin_df_multi_level.columns = new_col pandas_df_multi_level.columns = new_col for level in list(range(levels)) + (axis_names if axis_names else []): try: pandas_multi_level_result = pandas_df_multi_level.all( axis=axis, bool_only=bool_only, level=level, skipna=skipna ) except Exception as e: with pytest.raises(type(e)): modin_df_multi_level.all( axis=axis, bool_only=bool_only, level=level, skipna=skipna ) else: modin_multi_level_result = modin_df_multi_level.all( axis=axis, bool_only=bool_only, level=level, skipna=skipna ) df_equals(modin_multi_level_result, pandas_multi_level_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) @pytest.mark.parametrize( "bool_only", bool_arg_values, ids=arg_keys("bool_only", bool_arg_keys) ) def test_any(self, data, axis, skipna, bool_only): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.any(axis=axis, skipna=skipna, bool_only=bool_only) except Exception as e: with pytest.raises(type(e)): modin_df.any(axis=axis, skipna=skipna, bool_only=bool_only) else: modin_result = modin_df.any(axis=axis, skipna=skipna, bool_only=bool_only) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.any(axis=None, skipna=skipna, bool_only=bool_only) except Exception as e: with pytest.raises(type(e)): modin_df.any(axis=None, skipna=skipna, bool_only=bool_only) else: modin_result = modin_df.any(axis=None, skipna=skipna, bool_only=bool_only) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.any( axis=axis, skipna=skipna, bool_only=bool_only ) except Exception as e: with pytest.raises(type(e)): modin_df.T.any(axis=axis, skipna=skipna, bool_only=bool_only) else: modin_result = modin_df.T.any(axis=axis, skipna=skipna, bool_only=bool_only) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.any( axis=None, skipna=skipna, bool_only=bool_only ) except Exception as e: with pytest.raises(type(e)): modin_df.T.any(axis=None, skipna=skipna, bool_only=bool_only) else: modin_result = modin_df.T.any(axis=None, skipna=skipna, bool_only=bool_only) df_equals(modin_result, pandas_result) # test level modin_df_multi_level = modin_df.copy() pandas_df_multi_level = pandas_df.copy() axis = modin_df._get_axis_number(axis) if axis is not None else 0 levels = 3 axis_names_list = [["a", "b", "c"], None] for axis_names in axis_names_list: if axis == 0: new_idx = pandas.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in range(len(modin_df.index))], names=axis_names, ) modin_df_multi_level.index = new_idx pandas_df_multi_level.index = new_idx else: new_col = pandas.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in range(len(modin_df.columns))], names=axis_names, ) modin_df_multi_level.columns = new_col pandas_df_multi_level.columns = new_col for level in list(range(levels)) + (axis_names if axis_names else []): try: pandas_multi_level_result = pandas_df_multi_level.any( axis=axis, bool_only=bool_only, level=level, skipna=skipna ) except Exception as e: with pytest.raises(type(e)): modin_df_multi_level.any( axis=axis, bool_only=bool_only, level=level, skipna=skipna ) else: modin_multi_level_result = modin_df_multi_level.any( axis=axis, bool_only=bool_only, level=level, skipna=skipna ) df_equals(modin_multi_level_result, pandas_multi_level_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_append(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) data_to_append = {"append_a": 2, "append_b": 1000} ignore_idx_values = [True, False] for ignore in ignore_idx_values: try: pandas_result = pandas_df.append(data_to_append, ignore_index=ignore) except Exception as e: with pytest.raises(type(e)): modin_df.append(data_to_append, ignore_index=ignore) else: modin_result = modin_df.append(data_to_append, ignore_index=ignore) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.append(pandas_df.iloc[-1]) except Exception as e: with pytest.raises(type(e)): modin_df.append(modin_df.iloc[-1]) else: modin_result = modin_df.append(modin_df.iloc[-1]) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.append(list(pandas_df.iloc[-1])) except Exception as e: with pytest.raises(type(e)): modin_df.append(list(modin_df.iloc[-1])) else: modin_result = modin_df.append(list(modin_df.iloc[-1])) df_equals(modin_result, pandas_result) verify_integrity_values = [True, False] for verify_integrity in verify_integrity_values: try: pandas_result = pandas_df.append( [pandas_df, pandas_df], verify_integrity=verify_integrity ) except Exception as e: with pytest.raises(type(e)): modin_df.append( [modin_df, modin_df], verify_integrity=verify_integrity ) else: modin_result = modin_df.append( [modin_df, modin_df], verify_integrity=verify_integrity ) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.append( pandas_df, verify_integrity=verify_integrity ) except Exception as e: with pytest.raises(type(e)): modin_df.append(modin_df, verify_integrity=verify_integrity) else: modin_result = modin_df.append( modin_df, verify_integrity=verify_integrity ) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize("func", agg_func_values, ids=agg_func_keys) def test_apply(self, request, data, func, axis): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) with pytest.raises(TypeError): modin_df.apply({"row": func}, axis=1) try: pandas_result = pandas_df.apply(func, axis) except Exception as e: with pytest.raises(type(e)): modin_df.apply(func, axis) else: modin_result = modin_df.apply(func, axis) df_equals(modin_result, pandas_result) def test_apply_metadata(self): def add(a, b, c): return a + b + c data = {"A": [1, 2, 3], "B": [4, 5, 6], "C": [7, 8, 9]} modin_df = pd.DataFrame(data) modin_df["add"] = modin_df.apply( lambda row: add(row["A"], row["B"], row["C"]), axis=1 ) pandas_df = pandas.DataFrame(data) pandas_df["add"] = pandas_df.apply( lambda row: add(row["A"], row["B"], row["C"]), axis=1 ) df_equals(modin_df, pandas_df) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("func", agg_func_values, ids=agg_func_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) def test_apply_numeric(self, request, data, func, axis): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) if name_contains(request.node.name, numeric_dfs): try: pandas_result = pandas_df.apply(func, axis) except Exception as e: with pytest.raises(type(e)): modin_df.apply(func, axis) else: modin_result = modin_df.apply(func, axis) df_equals(modin_result, pandas_result) if "empty_data" not in request.node.name: key = modin_df.columns[0] modin_result = modin_df.apply(lambda df: df.drop(key), axis=1) pandas_result = pandas_df.apply(lambda df: df.drop(key), axis=1) df_equals(modin_result, pandas_result) def test_as_blocks(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).as_blocks() def test_as_matrix(self): test_data = TestData() frame = pd.DataFrame(test_data.frame) mat = frame.as_matrix() frame_columns = frame.columns for i, row in enumerate(mat): for j, value in enumerate(row): col = frame_columns[j] if np.isnan(value): assert np.isnan(frame[col][i]) else: assert value == frame[col][i] # mixed type mat = pd.DataFrame(test_data.mixed_frame).as_matrix(["foo", "A"]) assert mat[0, 0] == "bar" df = pd.DataFrame({"real": [1, 2, 3], "complex": [1j, 2j, 3j]}) mat = df.as_matrix() assert mat[0, 1] == 1j # single block corner case mat = pd.DataFrame(test_data.frame).as_matrix(["A", "B"]) expected = test_data.frame.reindex(columns=["A", "B"]).values tm.assert_almost_equal(mat, expected) def test_to_numpy(self): test_data = TestData() frame = pd.DataFrame(test_data.frame) assert_array_equal(frame.values, test_data.frame.values) def test_partition_to_numpy(self): test_data = TestData() frame = pd.DataFrame(test_data.frame) for ( partition ) in frame._query_compiler._modin_frame._partitions.flatten().tolist(): assert_array_equal(partition.to_pandas().values, partition.to_numpy()) def test_asfreq(self): index = pd.date_range("1/1/2000", periods=4, freq="T") series = pd.Series([0.0, None, 2.0, 3.0], index=index) df = pd.DataFrame({"s": series}) with pytest.warns(UserWarning): # We are only testing that this defaults to pandas, so we will just check for # the warning df.asfreq(freq="30S") def test_asof(self): df = pd.DataFrame( {"a": [10, 20, 30, 40, 50], "b": [None, None, None, None, 500]}, index=pd.DatetimeIndex( [ "2018-02-27 09:01:00", "2018-02-27 09:02:00", "2018-02-27 09:03:00", "2018-02-27 09:04:00", "2018-02-27 09:05:00", ] ), ) with pytest.warns(UserWarning): df.asof(pd.DatetimeIndex(["2018-02-27 09:03:30", "2018-02-27 09:04:30"])) def test_assign(self): data = test_data_values[0] modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) with pytest.warns(UserWarning): modin_result = modin_df.assign(new_column=pd.Series(modin_df.iloc[:, 0])) pandas_result = pandas_df.assign(new_column=pd.Series(pandas_df.iloc[:, 0])) df_equals(modin_result, pandas_result) def test_astype(self): td = TestData() modin_df = pd.DataFrame( td.frame.values, index=td.frame.index, columns=td.frame.columns ) expected_df = pandas.DataFrame( td.frame.values, index=td.frame.index, columns=td.frame.columns ) modin_df_casted = modin_df.astype(np.int32) expected_df_casted = expected_df.astype(np.int32) df_equals(modin_df_casted, expected_df_casted) modin_df_casted = modin_df.astype(np.float64) expected_df_casted = expected_df.astype(np.float64) df_equals(modin_df_casted, expected_df_casted) modin_df_casted = modin_df.astype(str) expected_df_casted = expected_df.astype(str) df_equals(modin_df_casted, expected_df_casted) modin_df_casted = modin_df.astype("category") expected_df_casted = expected_df.astype("category") df_equals(modin_df_casted, expected_df_casted) dtype_dict = {"A": np.int32, "B": np.int64, "C": str} modin_df_casted = modin_df.astype(dtype_dict) expected_df_casted = expected_df.astype(dtype_dict) df_equals(modin_df_casted, expected_df_casted) # Ignore lint because this is testing bad input bad_dtype_dict = {"B": np.int32, "B": np.int64, "B": str} # noqa F601 modin_df_casted = modin_df.astype(bad_dtype_dict) expected_df_casted = expected_df.astype(bad_dtype_dict) df_equals(modin_df_casted, expected_df_casted) with pytest.raises(KeyError): modin_df.astype({"not_exists": np.uint8}) def test_astype_category(self): modin_df = pd.DataFrame( {"col1": ["A", "A", "B", "B", "A"], "col2": [1, 2, 3, 4, 5]} ) pandas_df = pandas.DataFrame( {"col1": ["A", "A", "B", "B", "A"], "col2": [1, 2, 3, 4, 5]} ) modin_result = modin_df.astype({"col1": "category"}) pandas_result = pandas_df.astype({"col1": "category"}) df_equals(modin_result, pandas_result) assert modin_result.dtypes.equals(pandas_result.dtypes) modin_result = modin_df.astype("category") pandas_result = pandas_df.astype("category") df_equals(modin_result, pandas_result) assert modin_result.dtypes.equals(pandas_result.dtypes) def test_at_time(self): i = pd.date_range("2018-04-09", periods=4, freq="12H") ts = pd.DataFrame({"A": [1, 2, 3, 4]}, index=i) with pytest.warns(UserWarning): ts.at_time("12:00") def test_between_time(self): i = pd.date_range("2018-04-09", periods=4, freq="12H") ts = pd.DataFrame({"A": [1, 2, 3, 4]}, index=i) with pytest.warns(UserWarning): ts.between_time("0:15", "0:45") def test_bfill(self): test_data = TestData() test_data.tsframe["A"][:5] = np.nan test_data.tsframe["A"][-5:] = np.nan modin_df = pd.DataFrame(test_data.tsframe) df_equals(modin_df.bfill(), test_data.tsframe.bfill()) def test_blocks(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).blocks @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_bool(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # noqa F841 with pytest.raises(ValueError): modin_df.bool() modin_df.__bool__() single_bool_pandas_df = pandas.DataFrame([True]) single_bool_modin_df = pd.DataFrame([True]) assert single_bool_pandas_df.bool() == single_bool_modin_df.bool() with pytest.raises(ValueError): # __bool__ always raises this error for DataFrames single_bool_modin_df.__bool__() @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_boxplot(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # noqa F841 assert modin_df.boxplot() == to_pandas(modin_df).boxplot() @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) def test_clip(self, request, data, axis): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) if name_contains(request.node.name, numeric_dfs): ind_len = ( len(modin_df.index) if not pandas.DataFrame()._get_axis_number(axis) else len(modin_df.columns) ) # set bounds lower, upper = np.sort(random_state.random_integers(RAND_LOW, RAND_HIGH, 2)) lower_list = random_state.random_integers(RAND_LOW, RAND_HIGH, ind_len) upper_list = random_state.random_integers(RAND_LOW, RAND_HIGH, ind_len) # test only upper scalar bound modin_result = modin_df.clip(None, upper, axis=axis) pandas_result = pandas_df.clip(None, upper, axis=axis) df_equals(modin_result, pandas_result) # test lower and upper scalar bound modin_result = modin_df.clip(lower, upper, axis=axis) pandas_result = pandas_df.clip(lower, upper, axis=axis) df_equals(modin_result, pandas_result) # test lower and upper list bound on each column modin_result = modin_df.clip(lower_list, upper_list, axis=axis) pandas_result = pandas_df.clip(lower_list, upper_list, axis=axis) df_equals(modin_result, pandas_result) # test only upper list bound on each column modin_result = modin_df.clip(np.nan, upper_list, axis=axis) pandas_result = pandas_df.clip(np.nan, upper_list, axis=axis) df_equals(modin_result, pandas_result) with pytest.raises(ValueError): modin_df.clip(lower=[1, 2, 3], axis=None) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) def test_clip_lower(self, request, data, axis): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) if name_contains(request.node.name, numeric_dfs): ind_len = ( len(modin_df.index) if not pandas.DataFrame()._get_axis_number(axis) else len(modin_df.columns) ) # set bounds lower = random_state.random_integers(RAND_LOW, RAND_HIGH, 1)[0] lower_list = random_state.random_integers(RAND_LOW, RAND_HIGH, ind_len) # test lower scalar bound pandas_result = pandas_df.clip_lower(lower, axis=axis) modin_result = modin_df.clip_lower(lower, axis=axis) df_equals(modin_result, pandas_result) # test lower list bound on each column pandas_result = pandas_df.clip_lower(lower_list, axis=axis) modin_result = modin_df.clip_lower(lower_list, axis=axis) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) def test_clip_upper(self, request, data, axis): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) if name_contains(request.node.name, numeric_dfs): ind_len = ( len(modin_df.index) if not pandas.DataFrame()._get_axis_number(axis) else len(modin_df.columns) ) # set bounds upper = random_state.random_integers(RAND_LOW, RAND_HIGH, 1)[0] upper_list = random_state.random_integers(RAND_LOW, RAND_HIGH, ind_len) # test upper scalar bound modin_result = modin_df.clip_upper(upper, axis=axis) pandas_result = pandas_df.clip_upper(upper, axis=axis) df_equals(modin_result, pandas_result) # test upper list bound on each column modin_result = modin_df.clip_upper(upper_list, axis=axis) pandas_result = pandas_df.clip_upper(upper_list, axis=axis) df_equals(modin_result, pandas_result) def test_combine(self): df1 = pd.DataFrame({"A": [0, 0], "B": [4, 4]}) df2 = pd.DataFrame({"A": [1, 1], "B": [3, 3]}) with pytest.warns(UserWarning): df1.combine(df2, lambda s1, s2: s1 if s1.sum() < s2.sum() else s2) def test_combine_first(self): df1 = pd.DataFrame({"A": [None, 0], "B": [None, 4]}) df2 = pd.DataFrame({"A": [1, 1], "B": [3, 3]}) with pytest.warns(UserWarning): df1.combine_first(df2) def test_compound(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).compound() def test_corr(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).corr() def test_corrwith(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).corrwith(pd.DataFrame(data)) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "numeric_only", bool_arg_values, ids=arg_keys("numeric_only", bool_arg_keys) ) def test_count(self, request, data, axis, numeric_only): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_result = modin_df.count(axis=axis, numeric_only=numeric_only) pandas_result = pandas_df.count(axis=axis, numeric_only=numeric_only) df_equals(modin_result, pandas_result) modin_result = modin_df.T.count(axis=axis, numeric_only=numeric_only) pandas_result = pandas_df.T.count(axis=axis, numeric_only=numeric_only) df_equals(modin_result, pandas_result) # test level modin_df_multi_level = modin_df.copy() pandas_df_multi_level = pandas_df.copy() axis = modin_df._get_axis_number(axis) if axis is not None else 0 levels = 3 axis_names_list = [["a", "b", "c"], None] for axis_names in axis_names_list: if axis == 0: new_idx = pandas.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in range(len(modin_df.index))], names=axis_names, ) modin_df_multi_level.index = new_idx pandas_df_multi_level.index = new_idx try: # test error pandas_df_multi_level.count( axis=1, numeric_only=numeric_only, level=0 ) except Exception as e: with pytest.raises(type(e)): modin_df_multi_level.count( axis=1, numeric_only=numeric_only, level=0 ) else: new_col = pandas.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in range(len(modin_df.columns))], names=axis_names, ) modin_df_multi_level.columns = new_col pandas_df_multi_level.columns = new_col try: # test error pandas_df_multi_level.count( axis=0, numeric_only=numeric_only, level=0 ) except Exception as e: with pytest.raises(type(e)): modin_df_multi_level.count( axis=0, numeric_only=numeric_only, level=0 ) for level in list(range(levels)) + (axis_names if axis_names else []): modin_multi_level_result = modin_df_multi_level.count( axis=axis, numeric_only=numeric_only, level=level ) pandas_multi_level_result = pandas_df_multi_level.count( axis=axis, numeric_only=numeric_only, level=level ) df_equals(modin_multi_level_result, pandas_multi_level_result) def test_cov(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).cov() @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) def test_cummax(self, request, data, axis, skipna): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.cummax(axis=axis, skipna=skipna) except Exception as e: with pytest.raises(type(e)): modin_df.cummax(axis=axis, skipna=skipna) else: modin_result = modin_df.cummax(axis=axis, skipna=skipna) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.cummax(axis=axis, skipna=skipna) except Exception as e: with pytest.raises(type(e)): modin_df.T.cummax(axis=axis, skipna=skipna) else: modin_result = modin_df.T.cummax(axis=axis, skipna=skipna) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) def test_cummin(self, request, data, axis, skipna): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.cummin(axis=axis, skipna=skipna) except Exception as e: with pytest.raises(type(e)): modin_df.cummin(axis=axis, skipna=skipna) else: modin_result = modin_df.cummin(axis=axis, skipna=skipna) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.cummin(axis=axis, skipna=skipna) except Exception as e: with pytest.raises(type(e)): modin_df.T.cummin(axis=axis, skipna=skipna) else: modin_result = modin_df.T.cummin(axis=axis, skipna=skipna) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) def test_cumprod(self, request, data, axis, skipna): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.cumprod(axis=axis, skipna=skipna) except Exception as e: with pytest.raises(type(e)): modin_df.cumprod(axis=axis, skipna=skipna) else: modin_result = modin_df.cumprod(axis=axis, skipna=skipna) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.cumprod(axis=axis, skipna=skipna) except Exception as e: with pytest.raises(type(e)): modin_df.T.cumprod(axis=axis, skipna=skipna) else: modin_result = modin_df.T.cumprod(axis=axis, skipna=skipna) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) def test_cumsum(self, request, data, axis, skipna): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # pandas exhibits weird behavior for this case # Remove this case when we can pull the error messages from backend if name_contains(request.node.name, ["datetime_timedelta_data"]) and ( axis == 0 or axis == "rows" ): with pytest.raises(TypeError): modin_df.cumsum(axis=axis, skipna=skipna) else: try: pandas_result = pandas_df.cumsum(axis=axis, skipna=skipna) except Exception as e: with pytest.raises(type(e)): modin_df.cumsum(axis=axis, skipna=skipna) else: modin_result = modin_df.cumsum(axis=axis, skipna=skipna) df_equals(modin_result, pandas_result) if name_contains(request.node.name, ["datetime_timedelta_data"]) and ( axis == 0 or axis == "rows" ): with pytest.raises(TypeError): modin_df.T.cumsum(axis=axis, skipna=skipna) else: try: pandas_result = pandas_df.T.cumsum(axis=axis, skipna=skipna) except Exception as e: with pytest.raises(type(e)): modin_df.T.cumsum(axis=axis, skipna=skipna) else: modin_result = modin_df.T.cumsum(axis=axis, skipna=skipna) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_describe(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals(modin_df.describe(), pandas_df.describe()) percentiles = [0.10, 0.11, 0.44, 0.78, 0.99] df_equals( modin_df.describe(percentiles=percentiles), pandas_df.describe(percentiles=percentiles), ) try: pandas_result = pandas_df.describe(exclude=[np.float64]) except Exception as e: with pytest.raises(type(e)): modin_df.describe(exclude=[np.float64]) else: modin_result = modin_df.describe(exclude=[np.float64]) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.describe(exclude=np.float64) except Exception as e: with pytest.raises(type(e)): modin_df.describe(exclude=np.float64) else: modin_result = modin_df.describe(exclude=np.float64) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.describe( include=[np.timedelta64, np.datetime64, np.object, np.bool] ) except Exception as e: with pytest.raises(type(e)): modin_df.describe( include=[np.timedelta64, np.datetime64, np.object, np.bool] ) else: modin_result = modin_df.describe( include=[np.timedelta64, np.datetime64, np.object, np.bool] ) df_equals(modin_result, pandas_result) modin_result = modin_df.describe(include=str(modin_df.dtypes.values[0])) pandas_result = pandas_df.describe(include=str(pandas_df.dtypes.values[0])) df_equals(modin_result, pandas_result) modin_result = modin_df.describe(include=[np.number]) pandas_result = pandas_df.describe(include=[np.number]) df_equals(modin_result, pandas_result) df_equals(modin_df.describe(include="all"), pandas_df.describe(include="all")) modin_df = pd.DataFrame(data).applymap(str) pandas_df = pandas.DataFrame(data).applymap(str) try: df_equals(modin_df.describe(), pandas_df.describe()) except AssertionError: # We have to do this because we choose the highest count slightly differently # than pandas. Because there is no true guarantee which one will be first, # If they don't match, make sure that the `freq` is the same at least. df_equals( modin_df.describe().loc[["count", "unique", "freq"]], pandas_df.describe().loc[["count", "unique", "freq"]], ) def test_describe_dtypes(self): modin_df = pd.DataFrame( { "col1": list("abc"), "col2": list("abc"), "col3": list("abc"), "col4": [1, 2, 3], } ) pandas_df = pandas.DataFrame( { "col1": list("abc"), "col2": list("abc"), "col3": list("abc"), "col4": [1, 2, 3], } ) modin_result = modin_df.describe() pandas_result = pandas_df.describe() df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "periods", int_arg_values, ids=arg_keys("periods", int_arg_keys) ) def test_diff(self, request, data, axis, periods): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.diff(axis=axis, periods=periods) except Exception as e: with pytest.raises(type(e)): modin_df.diff(axis=axis, periods=periods) else: modin_result = modin_df.diff(axis=axis, periods=periods) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.diff(axis=axis, periods=periods) except Exception as e: with pytest.raises(type(e)): modin_df.T.diff(axis=axis, periods=periods) else: modin_result = modin_df.T.diff(axis=axis, periods=periods) df_equals(modin_result, pandas_result) def test_drop(self): frame_data = {"A": [1, 2, 3, 4], "B": [0, 1, 2, 3]} simple = pandas.DataFrame(frame_data) modin_simple = pd.DataFrame(frame_data) df_equals(modin_simple.drop("A", axis=1), simple[["B"]]) df_equals(modin_simple.drop(["A", "B"], axis="columns"), simple[[]]) df_equals(modin_simple.drop([0, 1, 3], axis=0), simple.loc[[2], :]) df_equals(modin_simple.drop([0, 3], axis="index"), simple.loc[[1, 2], :]) pytest.raises(ValueError, modin_simple.drop, 5) pytest.raises(ValueError, modin_simple.drop, "C", 1) pytest.raises(ValueError, modin_simple.drop, [1, 5]) pytest.raises(ValueError, modin_simple.drop, ["A", "C"], 1) # errors = 'ignore' df_equals(modin_simple.drop(5, errors="ignore"), simple) df_equals(modin_simple.drop([0, 5], errors="ignore"), simple.loc[[1, 2, 3], :]) df_equals(modin_simple.drop("C", axis=1, errors="ignore"), simple) df_equals(modin_simple.drop(["A", "C"], axis=1, errors="ignore"), simple[["B"]]) # non-unique nu_df = pandas.DataFrame( zip(range(3), range(-3, 1), list("abc")), columns=["a", "a", "b"] ) modin_nu_df = pd.DataFrame(nu_df) df_equals(modin_nu_df.drop("a", axis=1), nu_df[["b"]]) df_equals(modin_nu_df.drop("b", axis="columns"), nu_df["a"]) df_equals(modin_nu_df.drop([]), nu_df) nu_df = nu_df.set_index(pandas.Index(["X", "Y", "X"])) nu_df.columns = list("abc") modin_nu_df = pd.DataFrame(nu_df) df_equals(modin_nu_df.drop("X", axis="rows"), nu_df.loc[["Y"], :]) df_equals(modin_nu_df.drop(["X", "Y"], axis=0), nu_df.loc[[], :]) # inplace cache issue frame_data = random_state.randn(10, 3) df = pandas.DataFrame(frame_data, columns=list("abc")) modin_df = pd.DataFrame(frame_data, columns=list("abc")) expected = df[~(df.b > 0)] modin_df.drop(labels=df[df.b > 0].index, inplace=True) df_equals(modin_df, expected) midx = pd.MultiIndex( levels=[["lama", "cow", "falcon"], ["speed", "weight", "length"]], codes=[[0, 0, 0, 1, 1, 1, 2, 2, 2], [0, 1, 2, 0, 1, 2, 0, 1, 2]], ) df = pd.DataFrame( index=midx, columns=["big", "small"], data=[ [45, 30], [200, 100], [1.5, 1], [30, 20], [250, 150], [1.5, 0.8], [320, 250], [1, 0.8], [0.3, 0.2], ], ) with pytest.warns(UserWarning): df.drop(index="length", level=1) def test_drop_api_equivalence(self): # equivalence of the labels/axis and index/columns API's frame_data = [[1, 2, 3], [3, 4, 5], [5, 6, 7]] modin_df = pd.DataFrame( frame_data, index=["a", "b", "c"], columns=["d", "e", "f"] ) modin_df1 = modin_df.drop("a") modin_df2 = modin_df.drop(index="a") df_equals(modin_df1, modin_df2) modin_df1 = modin_df.drop("d", 1) modin_df2 = modin_df.drop(columns="d") df_equals(modin_df1, modin_df2) modin_df1 = modin_df.drop(labels="e", axis=1) modin_df2 = modin_df.drop(columns="e") df_equals(modin_df1, modin_df2) modin_df1 = modin_df.drop(["a"], axis=0) modin_df2 = modin_df.drop(index=["a"]) df_equals(modin_df1, modin_df2) modin_df1 = modin_df.drop(["a"], axis=0).drop(["d"], axis=1) modin_df2 = modin_df.drop(index=["a"], columns=["d"]) df_equals(modin_df1, modin_df2) with pytest.raises(ValueError): modin_df.drop(labels="a", index="b") with pytest.raises(ValueError): modin_df.drop(labels="a", columns="b") with pytest.raises(ValueError): modin_df.drop(axis=1) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_drop_transpose(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_result = modin_df.T.drop(columns=[0, 1, 2]) pandas_result = pandas_df.T.drop(columns=[0, 1, 2]) df_equals(modin_result, pandas_result) modin_result = modin_df.T.drop(index=["col3", "col1"]) pandas_result = pandas_df.T.drop(index=["col3", "col1"]) df_equals(modin_result, pandas_result) modin_result = modin_df.T.drop(columns=[0, 1, 2], index=["col3", "col1"]) pandas_result = pandas_df.T.drop(columns=[0, 1, 2], index=["col3", "col1"]) df_equals(modin_result, pandas_result) def test_droplevel(self): df = ( pd.DataFrame([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]) .set_index([0, 1]) .rename_axis(["a", "b"]) ) df.columns = pd.MultiIndex.from_tuples( [("c", "e"), ("d", "f")], names=["level_1", "level_2"] ) with pytest.warns(UserWarning): df.droplevel("a") with pytest.warns(UserWarning): df.droplevel("level_2", axis=1) @pytest.mark.parametrize( "data", test_data_with_duplicates_values, ids=test_data_with_duplicates_keys ) @pytest.mark.parametrize( "keep", ["last", "first", False], ids=["last", "first", "False"] ) @pytest.mark.parametrize( "subset", [None, ["col1", "col3", "col7"]], ids=["None", "subset"] ) def test_drop_duplicates(self, data, keep, subset): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals( modin_df.drop_duplicates(keep=keep, inplace=False, subset=subset), pandas_df.drop_duplicates(keep=keep, inplace=False, subset=subset), ) modin_results = modin_df.drop_duplicates(keep=keep, inplace=True, subset=subset) pandas_results = pandas_df.drop_duplicates( keep=keep, inplace=True, subset=subset ) df_equals(modin_results, pandas_results) def test_drop_duplicates_with_missing_index_values(self): data = { "columns": ["value", "time", "id"], "index": [ 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 21, 22, 23, 24, 25, 26, 27, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, ], "data": [ ["3", 1279213398000.0, 88.0], ["3", 1279204682000.0, 88.0], ["0", 1245772835000.0, 448.0], ["0", 1270564258000.0, 32.0], ["0", 1267106669000.0, 118.0], ["7", 1300621123000.0, 5.0], ["0", 1251130752000.0, 957.0], ["0", 1311683506000.0, 62.0], ["9", 1283692698000.0, 89.0], ["9", 1270234253000.0, 64.0], ["0", 1285088818000.0, 50.0], ["0", 1218212725000.0, 695.0], ["2", 1383933968000.0, 348.0], ["0", 1368227625000.0, 257.0], ["1", 1454514093000.0, 446.0], ["1", 1428497427000.0, 134.0], ["1", 1459184936000.0, 568.0], ["1", 1502293302000.0, 599.0], ["1", 1491833358000.0, 829.0], ["1", 1485431534000.0, 806.0], ["8", 1351800505000.0, 101.0], ["0", 1357247721000.0, 916.0], ["0", 1335804423000.0, 370.0], ["24", 1327547726000.0, 720.0], ["0", 1332334140000.0, 415.0], ["0", 1309543100000.0, 30.0], ["18", 1309541141000.0, 30.0], ["0", 1298979435000.0, 48.0], ["14", 1276098160000.0, 59.0], ["0", 1233936302000.0, 109.0], ], } pandas_df = pandas.DataFrame( data["data"], index=data["index"], columns=data["columns"] ) modin_df = pd.DataFrame( data["data"], index=data["index"], columns=data["columns"] ) modin_result = modin_df.sort_values(["id", "time"]).drop_duplicates(["id"]) pandas_result = pandas_df.sort_values(["id", "time"]).drop_duplicates(["id"]) df_equals(modin_result, pandas_result) def test_drop_duplicates_after_sort(self): data = [ {"value": 1, "time": 2}, {"value": 1, "time": 1}, {"value": 2, "time": 1}, {"value": 2, "time": 2}, ] modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_result = modin_df.sort_values(["value", "time"]).drop_duplicates( ["value"] ) pandas_result = pandas_df.sort_values(["value", "time"]).drop_duplicates( ["value"] ) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize("how", ["any", "all"], ids=["any", "all"]) def test_dropna(self, data, axis, how): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) with pytest.raises(ValueError): modin_df.dropna(axis=axis, how="invalid") with pytest.raises(TypeError): modin_df.dropna(axis=axis, how=None, thresh=None) with pytest.raises(KeyError): modin_df.dropna(axis=axis, subset=["NotExists"], how=how) modin_result = modin_df.dropna(axis=axis, how=how) pandas_result = pandas_df.dropna(axis=axis, how=how) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_dropna_inplace(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) pandas_result = pandas_df.dropna() modin_df.dropna(inplace=True) df_equals(modin_df, pandas_result) modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) pandas_df.dropna(thresh=2, inplace=True) modin_df.dropna(thresh=2, inplace=True) df_equals(modin_df, pandas_df) modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) pandas_df.dropna(axis=1, how="any", inplace=True) modin_df.dropna(axis=1, how="any", inplace=True) df_equals(modin_df, pandas_df) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_dropna_multiple_axes(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals( modin_df.dropna(how="all", axis=[0, 1]), pandas_df.dropna(how="all", axis=[0, 1]), ) df_equals( modin_df.dropna(how="all", axis=(0, 1)), pandas_df.dropna(how="all", axis=(0, 1)), ) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_dropna_multiple_axes_inplace(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_df_copy = modin_df.copy() pandas_df_copy = pandas_df.copy() modin_df_copy.dropna(how="all", axis=[0, 1], inplace=True) pandas_df_copy.dropna(how="all", axis=[0, 1], inplace=True) df_equals(modin_df_copy, pandas_df_copy) modin_df_copy = modin_df.copy() pandas_df_copy = pandas_df.copy() modin_df_copy.dropna(how="all", axis=(0, 1), inplace=True) pandas_df_copy.dropna(how="all", axis=(0, 1), inplace=True) df_equals(modin_df_copy, pandas_df_copy) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_dropna_subset(self, request, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) if "empty_data" not in request.node.name: column_subset = modin_df.columns[0:2] df_equals( modin_df.dropna(how="all", subset=column_subset), pandas_df.dropna(how="all", subset=column_subset), ) df_equals( modin_df.dropna(how="any", subset=column_subset), pandas_df.dropna(how="any", subset=column_subset), ) row_subset = modin_df.index[0:2] df_equals( modin_df.dropna(how="all", axis=1, subset=row_subset), pandas_df.dropna(how="all", axis=1, subset=row_subset), ) df_equals( modin_df.dropna(how="any", axis=1, subset=row_subset), pandas_df.dropna(how="any", axis=1, subset=row_subset), ) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_dropna_subset_error(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # noqa F841 # pandas_df is unused so there won't be confusing list comprehension # stuff in the pytest.mark.parametrize with pytest.raises(KeyError): modin_df.dropna(subset=list("EF")) if len(modin_df.columns) < 5: with pytest.raises(KeyError): modin_df.dropna(axis=1, subset=[4, 5]) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_dot(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) col_len = len(modin_df.columns) # Test list input arr = np.arange(col_len) modin_result = modin_df.dot(arr) pandas_result = pandas_df.dot(arr) df_equals(modin_result, pandas_result) # Test bad dimensions with pytest.raises(ValueError): modin_result = modin_df.dot(np.arange(col_len + 10)) # Test series input modin_series = pd.Series(np.arange(col_len), index=modin_df.columns) pandas_series = pandas.Series(np.arange(col_len), index=modin_df.columns) modin_result = modin_df.dot(modin_series) pandas_result = pandas_df.dot(pandas_series) df_equals(modin_result, pandas_result) # Test when input series index doesn't line up with columns with pytest.raises(ValueError): modin_result = modin_df.dot(pd.Series(np.arange(col_len))) with pytest.warns(UserWarning): modin_df.dot(modin_df.T) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize( "keep", ["last", "first", False], ids=["last", "first", "False"] ) def test_duplicated(self, data, keep): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) pandas_result = pandas_df.duplicated(keep=keep) modin_result = modin_df.duplicated(keep=keep) df_equals(modin_result, pandas_result) import random subset = random.sample( list(pandas_df.columns), random.randint(1, len(pandas_df.columns)) ) pandas_result = pandas_df.duplicated(keep=keep, subset=subset) modin_result = modin_df.duplicated(keep=keep, subset=subset) df_equals(modin_result, pandas_result) def test_empty_df(self): df = pd.DataFrame(index=["a", "b"]) df_is_empty(df) tm.assert_index_equal(df.index, pd.Index(["a", "b"])) assert len(df.columns) == 0 df = pd.DataFrame(columns=["a", "b"]) df_is_empty(df) assert len(df.index) == 0 tm.assert_index_equal(df.columns, pd.Index(["a", "b"])) df = pd.DataFrame() df_is_empty(df) assert len(df.index) == 0 assert len(df.columns) == 0 df = pd.DataFrame(index=["a", "b"]) df_is_empty(df) tm.assert_index_equal(df.index, pd.Index(["a", "b"])) assert len(df.columns) == 0 df = pd.DataFrame(columns=["a", "b"]) df_is_empty(df) assert len(df.index) == 0 tm.assert_index_equal(df.columns, pd.Index(["a", "b"])) df = pd.DataFrame() df_is_empty(df) assert len(df.index) == 0 assert len(df.columns) == 0 def test_equals(self): frame_data = {"col1": [2.9, 3, 3, 3], "col2": [2, 3, 4, 1]} modin_df1 = pd.DataFrame(frame_data) modin_df2 = pd.DataFrame(frame_data) assert modin_df1.equals(modin_df2) df_equals(modin_df1, modin_df2) df_equals(modin_df1, pd.DataFrame(modin_df1)) frame_data = {"col1": [2.9, 3, 3, 3], "col2": [2, 3, 5, 1]} modin_df3 = pd.DataFrame(frame_data, index=list("abcd")) assert not modin_df1.equals(modin_df3) with pytest.raises(AssertionError): df_equals(modin_df3, modin_df1) with pytest.raises(AssertionError): df_equals(modin_df3, modin_df2) assert modin_df1.equals(modin_df2._query_compiler.to_pandas()) def test_eval_df_use_case(self): frame_data = {"a": random_state.randn(10), "b": random_state.randn(10)} df = pandas.DataFrame(frame_data) modin_df = pd.DataFrame(frame_data) # test eval for series results tmp_pandas = df.eval("arctan2(sin(a), b)", engine="python", parser="pandas") tmp_modin = modin_df.eval( "arctan2(sin(a), b)", engine="python", parser="pandas" ) assert isinstance(tmp_modin, pd.Series) df_equals(tmp_modin, tmp_pandas) # Test not inplace assignments tmp_pandas = df.eval("e = arctan2(sin(a), b)", engine="python", parser="pandas") tmp_modin = modin_df.eval( "e = arctan2(sin(a), b)", engine="python", parser="pandas" ) df_equals(tmp_modin, tmp_pandas) # Test inplace assignments df.eval( "e = arctan2(sin(a), b)", engine="python", parser="pandas", inplace=True ) modin_df.eval( "e = arctan2(sin(a), b)", engine="python", parser="pandas", inplace=True ) # TODO: Use a series equality validator. df_equals(modin_df, df) def test_eval_df_arithmetic_subexpression(self): frame_data = {"a": random_state.randn(10), "b": random_state.randn(10)} df = pandas.DataFrame(frame_data) modin_df = pd.DataFrame(frame_data) df.eval("not_e = sin(a + b)", engine="python", parser="pandas", inplace=True) modin_df.eval( "not_e = sin(a + b)", engine="python", parser="pandas", inplace=True ) # TODO: Use a series equality validator. df_equals(modin_df, df) def test_ewm(self): df = pd.DataFrame({"B": [0, 1, 2, np.nan, 4]}) with pytest.warns(UserWarning): df.ewm(com=0.5).mean() def test_expanding(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).expanding() @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_explode(self, data): modin_df = pd.DataFrame(data) with pytest.warns(UserWarning): modin_df.explode(modin_df.columns[0]) def test_ffill(self): test_data = TestData() test_data.tsframe["A"][:5] = np.nan test_data.tsframe["A"][-5:] = np.nan modin_df = pd.DataFrame(test_data.tsframe) df_equals(modin_df.ffill(), test_data.tsframe.ffill()) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize( "method", ["backfill", "bfill", "pad", "ffill", None], ids=["backfill", "bfill", "pad", "ffill", "None"], ) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize("limit", int_arg_values, ids=int_arg_keys) def test_fillna(self, data, method, axis, limit): # We are not testing when limit is not positive until pandas-27042 gets fixed. # We are not testing when axis is over rows until pandas-17399 gets fixed. if limit > 0 and axis != 1 and axis != "columns": modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.fillna( 0, method=method, axis=axis, limit=limit ) except Exception as e: with pytest.raises(type(e)): modin_df.fillna(0, method=method, axis=axis, limit=limit) else: modin_result = modin_df.fillna(0, method=method, axis=axis, limit=limit) df_equals(modin_result, pandas_result) def test_fillna_sanity(self): test_data = TestData() tf = test_data.tsframe tf.loc[tf.index[:5], "A"] = np.nan tf.loc[tf.index[-5:], "A"] = np.nan zero_filled = test_data.tsframe.fillna(0) modin_df = pd.DataFrame(test_data.tsframe).fillna(0) df_equals(modin_df, zero_filled) padded = test_data.tsframe.fillna(method="pad") modin_df = pd.DataFrame(test_data.tsframe).fillna(method="pad") df_equals(modin_df, padded) # mixed type mf = test_data.mixed_frame mf.loc[mf.index[5:20], "foo"] = np.nan mf.loc[mf.index[-10:], "A"] = np.nan result = test_data.mixed_frame.fillna(value=0) modin_df = pd.DataFrame(test_data.mixed_frame).fillna(value=0) df_equals(modin_df, result) result = test_data.mixed_frame.fillna(method="pad") modin_df = pd.DataFrame(test_data.mixed_frame).fillna(method="pad") df_equals(modin_df, result) pytest.raises(ValueError, test_data.tsframe.fillna) pytest.raises(ValueError, pd.DataFrame(test_data.tsframe).fillna) with pytest.raises(ValueError): pd.DataFrame(test_data.tsframe).fillna(5, method="ffill") # mixed numeric (but no float16) mf = test_data.mixed_float.reindex(columns=["A", "B", "D"]) mf.loc[mf.index[-10:], "A"] = np.nan result = mf.fillna(value=0) modin_df = pd.DataFrame(mf).fillna(value=0) df_equals(modin_df, result) result = mf.fillna(method="pad") modin_df = pd.DataFrame(mf).fillna(method="pad") df_equals(modin_df, result) # TODO: Use this when Arrow issue resolves: # (https://issues.apache.org/jira/browse/ARROW-2122) # empty frame # df = DataFrame(columns=['x']) # for m in ['pad', 'backfill']: # df.x.fillna(method=m, inplace=True) # df.x.fillna(method=m) # with different dtype frame_data = [ ["a", "a", np.nan, "a"], ["b", "b", np.nan, "b"], ["c", "c", np.nan, "c"], ] df = pandas.DataFrame(frame_data) result = df.fillna({2: "foo"}) modin_df = pd.DataFrame(frame_data).fillna({2: "foo"}) df_equals(modin_df, result) modin_df = pd.DataFrame(df) df.fillna({2: "foo"}, inplace=True) modin_df.fillna({2: "foo"}, inplace=True) df_equals(modin_df, result) frame_data = { "Date": [pandas.NaT, pandas.Timestamp("2014-1-1")], "Date2": [pandas.Timestamp("2013-1-1"), pandas.NaT], } df = pandas.DataFrame(frame_data) result = df.fillna(value={"Date": df["Date2"]}) modin_df = pd.DataFrame(frame_data).fillna(value={"Date": df["Date2"]}) df_equals(modin_df, result) # TODO: Use this when Arrow issue resolves: # (https://issues.apache.org/jira/browse/ARROW-2122) # with timezone """ frame_data = {'A': [pandas.Timestamp('2012-11-11 00:00:00+01:00'), pandas.NaT]} df = pandas.DataFrame(frame_data) modin_df = pd.DataFrame(frame_data) df_equals(modin_df.fillna(method='pad'), df.fillna(method='pad')) frame_data = {'A': [pandas.NaT, pandas.Timestamp('2012-11-11 00:00:00+01:00')]} df = pandas.DataFrame(frame_data) modin_df = pd.DataFrame(frame_data).fillna(method='bfill') df_equals(modin_df, df.fillna(method='bfill')) """ def test_fillna_downcast(self): # infer int64 from float64 frame_data = {"a": [1.0, np.nan]} df = pandas.DataFrame(frame_data) result = df.fillna(0, downcast="infer") modin_df = pd.DataFrame(frame_data).fillna(0, downcast="infer") df_equals(modin_df, result) # infer int64 from float64 when fillna value is a dict df = pandas.DataFrame(frame_data) result = df.fillna({"a": 0}, downcast="infer") modin_df = pd.DataFrame(frame_data).fillna({"a": 0}, downcast="infer") df_equals(modin_df, result) def test_ffill2(self): test_data = TestData() test_data.tsframe["A"][:5] = np.nan test_data.tsframe["A"][-5:] = np.nan modin_df = pd.DataFrame(test_data.tsframe) df_equals( modin_df.fillna(method="ffill"), test_data.tsframe.fillna(method="ffill") ) def test_bfill2(self): test_data = TestData() test_data.tsframe["A"][:5] = np.nan test_data.tsframe["A"][-5:] = np.nan modin_df = pd.DataFrame(test_data.tsframe) df_equals( modin_df.fillna(method="bfill"), test_data.tsframe.fillna(method="bfill") ) def test_fillna_inplace(self): frame_data = random_state.randn(10, 4) df = pandas.DataFrame(frame_data) df[1][:4] = np.nan df[3][-4:] = np.nan modin_df = pd.DataFrame(df) df.fillna(value=0, inplace=True) try: df_equals(modin_df, df) except AssertionError: pass else: assert False modin_df.fillna(value=0, inplace=True) df_equals(modin_df, df) modin_df = pd.DataFrame(df).fillna(value={0: 0}, inplace=True) assert modin_df is None df[1][:4] = np.nan df[3][-4:] = np.nan modin_df = pd.DataFrame(df) df.fillna(method="ffill", inplace=True) try: df_equals(modin_df, df) except AssertionError: pass else: assert False modin_df.fillna(method="ffill", inplace=True) df_equals(modin_df, df) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_frame_fillna_limit(self, data): pandas_df = pandas.DataFrame(data) index = pandas_df.index result = pandas_df[:2].reindex(index) modin_df = pd.DataFrame(result) df_equals( modin_df.fillna(method="pad", limit=2), result.fillna(method="pad", limit=2) ) result = pandas_df[-2:].reindex(index) modin_df = pd.DataFrame(result) df_equals( modin_df.fillna(method="backfill", limit=2), result.fillna(method="backfill", limit=2), ) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_frame_pad_backfill_limit(self, data): pandas_df = pandas.DataFrame(data) index = pandas_df.index result = pandas_df[:2].reindex(index) modin_df = pd.DataFrame(result) df_equals( modin_df.fillna(method="pad", limit=2), result.fillna(method="pad", limit=2) ) result = pandas_df[-2:].reindex(index) modin_df = pd.DataFrame(result) df_equals( modin_df.fillna(method="backfill", limit=2), result.fillna(method="backfill", limit=2), ) def test_fillna_dtype_conversion(self): # make sure that fillna on an empty frame works df = pandas.DataFrame(index=range(3), columns=["A", "B"], dtype="float64") modin_df = pd.DataFrame(index=range(3), columns=["A", "B"], dtype="float64") df_equals(modin_df.fillna("nan"), df.fillna("nan")) frame_data = {"A": [1, np.nan], "B": [1.0, 2.0]} df = pandas.DataFrame(frame_data) modin_df = pd.DataFrame(frame_data) for v in ["", 1, np.nan, 1.0]: df_equals(modin_df.fillna(v), df.fillna(v)) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_fillna_skip_certain_blocks(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # don't try to fill boolean, int blocks df_equals(modin_df.fillna(np.nan), pandas_df.fillna(np.nan)) def test_fillna_dict_series(self): frame_data = { "a": [np.nan, 1, 2, np.nan, np.nan], "b": [1, 2, 3, np.nan, np.nan], "c": [np.nan, 1, 2, 3, 4], } df = pandas.DataFrame(frame_data) modin_df = pd.DataFrame(frame_data) df_equals(modin_df.fillna({"a": 0, "b": 5}), df.fillna({"a": 0, "b": 5})) df_equals( modin_df.fillna({"a": 0, "b": 5, "d": 7}), df.fillna({"a": 0, "b": 5, "d": 7}), ) # Series treated same as dict df_equals(modin_df.fillna(modin_df.max()), df.fillna(df.max())) def test_fillna_dataframe(self): frame_data = { "a": [np.nan, 1, 2, np.nan, np.nan], "b": [1, 2, 3, np.nan, np.nan], "c": [np.nan, 1, 2, 3, 4], } df = pandas.DataFrame(frame_data, index=list("VWXYZ")) modin_df = pd.DataFrame(frame_data, index=list("VWXYZ")) # df2 may have different index and columns df2 = pandas.DataFrame( { "a": [np.nan, 10, 20, 30, 40], "b": [50, 60, 70, 80, 90], "foo": ["bar"] * 5, }, index=list("VWXuZ"), ) modin_df2 = pd.DataFrame(df2) # only those columns and indices which are shared get filled df_equals(modin_df.fillna(modin_df2), df.fillna(df2)) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_fillna_columns(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals( modin_df.fillna(method="ffill", axis=1), pandas_df.fillna(method="ffill", axis=1), ) df_equals( modin_df.fillna(method="ffill", axis=1), pandas_df.fillna(method="ffill", axis=1), ) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_fillna_invalid_method(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # noqa F841 with tm.assert_raises_regex(ValueError, "ffil"): modin_df.fillna(method="ffil") def test_fillna_invalid_value(self): test_data = TestData() modin_df = pd.DataFrame(test_data.frame) # list pytest.raises(TypeError, modin_df.fillna, [1, 2]) # tuple pytest.raises(TypeError, modin_df.fillna, (1, 2)) # frame with series pytest.raises(TypeError, modin_df.iloc[:, 0].fillna, modin_df) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_fillna_col_reordering(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals(modin_df.fillna(method="ffill"), pandas_df.fillna(method="ffill")) """ TODO: Use this when Arrow issue resolves: (https://issues.apache.org/jira/browse/ARROW-2122) def test_fillna_datetime_columns(self): frame_data = {'A': [-1, -2, np.nan], 'B': date_range('20130101', periods=3), 'C': ['foo', 'bar', None], 'D': ['foo2', 'bar2', None]} df = pandas.DataFrame(frame_data, index=date_range('20130110', periods=3)) modin_df = pd.DataFrame(frame_data, index=date_range('20130110', periods=3)) df_equals(modin_df.fillna('?'), df.fillna('?')) frame_data = {'A': [-1, -2, np.nan], 'B': [pandas.Timestamp('2013-01-01'), pandas.Timestamp('2013-01-02'), pandas.NaT], 'C': ['foo', 'bar', None], 'D': ['foo2', 'bar2', None]} df = pandas.DataFrame(frame_data, index=date_range('20130110', periods=3)) modin_df = pd.DataFrame(frame_data, index=date_range('20130110', periods=3)) df_equals(modin_df.fillna('?'), df.fillna('?')) """ @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_filter(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) by = {"items": ["col1", "col5"], "regex": "4$|3$", "like": "col"} df_equals( modin_df.filter(items=by["items"]), pandas_df.filter(items=by["items"]) ) df_equals( modin_df.filter(regex=by["regex"], axis=0), pandas_df.filter(regex=by["regex"], axis=0), ) df_equals( modin_df.filter(regex=by["regex"], axis=1), pandas_df.filter(regex=by["regex"], axis=1), ) df_equals(modin_df.filter(like=by["like"]), pandas_df.filter(like=by["like"])) with pytest.raises(TypeError): modin_df.filter(items=by["items"], regex=by["regex"]) with pytest.raises(TypeError): modin_df.filter() def test_first(self): i = pd.date_range("2018-04-09", periods=4, freq="2D") ts = pd.DataFrame({"A": [1, 2, 3, 4]}, index=i) with pytest.warns(UserWarning): ts.first("3D") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_first_valid_index(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) assert modin_df.first_valid_index() == (pandas_df.first_valid_index()) @pytest.mark.skip(reason="Defaulting to Pandas") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_from_dict(self, data): modin_df = pd.DataFrame(data) # noqa F841 pandas_df = pandas.DataFrame(data) # noqa F841 with pytest.raises(NotImplementedError): pd.DataFrame.from_dict(None) @pytest.mark.skip(reason="Defaulting to Pandas") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_from_items(self, data): modin_df = pd.DataFrame(data) # noqa F841 pandas_df = pandas.DataFrame(data) # noqa F841 with pytest.raises(NotImplementedError): pd.DataFrame.from_items(None) @pytest.mark.skip(reason="Defaulting to Pandas") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_from_records(self, data): modin_df = pd.DataFrame(data) # noqa F841 pandas_df = pandas.DataFrame(data) # noqa F841 with pytest.raises(NotImplementedError): pd.DataFrame.from_records(None) def test_get_value(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).get_value(0, "col1") def test_get_values(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).get_values() @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("n", int_arg_values, ids=arg_keys("n", int_arg_keys)) def test_head(self, data, n): # Test normal dataframe head modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals(modin_df.head(n), pandas_df.head(n)) df_equals(modin_df.head(len(modin_df) + 1), pandas_df.head(len(pandas_df) + 1)) # Test head when we call it from a QueryCompilerView modin_result = modin_df.loc[:, ["col1", "col3", "col3"]].head(n) pandas_result = pandas_df.loc[:, ["col1", "col3", "col3"]].head(n) df_equals(modin_result, pandas_result) def test_hist(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).hist(None) @pytest.mark.skip(reason="Defaulting to Pandas") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_iat(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # noqa F841 with pytest.raises(NotImplementedError): modin_df.iat() @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) def test_idxmax(self, data, axis, skipna): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) pandas_result = pandas_df.idxmax(axis=axis, skipna=skipna) modin_result = modin_df.idxmax(axis=axis, skipna=skipna) df_equals(modin_result, pandas_result) pandas_result = pandas_df.T.idxmax(axis=axis, skipna=skipna) modin_result = modin_df.T.idxmax(axis=axis, skipna=skipna) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) def test_idxmin(self, data, axis, skipna): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_result = modin_df.idxmin(axis=axis, skipna=skipna) pandas_result = pandas_df.idxmin(axis=axis, skipna=skipna) df_equals(modin_result, pandas_result) modin_result = modin_df.T.idxmin(axis=axis, skipna=skipna) pandas_result = pandas_df.T.idxmin(axis=axis, skipna=skipna) df_equals(modin_result, pandas_result) def test_infer_objects(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).infer_objects() @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_iloc(self, request, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) if not name_contains(request.node.name, ["empty_data"]): # Scaler np.testing.assert_equal(modin_df.iloc[0, 1], pandas_df.iloc[0, 1]) # Series df_equals(modin_df.iloc[0], pandas_df.iloc[0]) df_equals(modin_df.iloc[1:, 0], pandas_df.iloc[1:, 0]) df_equals(modin_df.iloc[1:2, 0], pandas_df.iloc[1:2, 0]) # DataFrame df_equals(modin_df.iloc[[1, 2]], pandas_df.iloc[[1, 2]]) # See issue #80 # df_equals(modin_df.iloc[[1, 2], [1, 0]], pandas_df.iloc[[1, 2], [1, 0]]) df_equals(modin_df.iloc[1:2, 0:2], pandas_df.iloc[1:2, 0:2]) # Issue #43 modin_df.iloc[0:3, :] # Write Item modin_df.iloc[[1, 2]] = 42 pandas_df.iloc[[1, 2]] = 42 df_equals(modin_df, pandas_df) else: with pytest.raises(IndexError): modin_df.iloc[0, 1] @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_index(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals(modin_df.index, pandas_df.index) modin_df_cp = modin_df.copy() pandas_df_cp = pandas_df.copy() modin_df_cp.index = [str(i) for i in modin_df_cp.index] pandas_df_cp.index = [str(i) for i in pandas_df_cp.index] df_equals(modin_df_cp.index, pandas_df_cp.index) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_indexing_duplicate_axis(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_df.index = pandas_df.index = [i // 3 for i in range(len(modin_df))] assert any(modin_df.index.duplicated()) assert any(pandas_df.index.duplicated()) df_equals(modin_df.iloc[0], pandas_df.iloc[0]) df_equals(modin_df.loc[0], pandas_df.loc[0]) df_equals(modin_df.iloc[0, 0:4], pandas_df.iloc[0, 0:4]) df_equals( modin_df.loc[0, modin_df.columns[0:4]], pandas_df.loc[0, pandas_df.columns[0:4]], ) def test_info(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).info(memory_usage="deep") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("loc", int_arg_values, ids=arg_keys("loc", int_arg_keys)) def test_insert(self, data, loc): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_df = modin_df.copy() pandas_df = pandas_df.copy() column = "New Column" value = modin_df.iloc[:, 0] try: pandas_df.insert(loc, column, value) except Exception as e: with pytest.raises(type(e)): modin_df.insert(loc, column, value) else: modin_df.insert(loc, column, value) df_equals(modin_df, pandas_df) with pytest.raises(ValueError): modin_df.insert(0, "Bad Column", modin_df) modin_df = pd.DataFrame(data) pandas_df =
pandas.DataFrame(data)
pandas.DataFrame
# hackathon T - Hacks 3.0 # flask backend of data-cleaning website import matplotlib.pyplot as plt #import tensorflow as tf #from tensorflow.keras import layers import pandas as pd import numpy as np from flask import * import os from datetime import * from subprocess import Popen, PIPE from math import floor import converter as con from flask_ngrok import run_with_ngrok from meanShift import Mean_Shift from matplotlib import style #import seaborn as sns style.use('ggplot') from sklearn.model_selection import train_test_split from datetime import datetime pd.options.display.max_rows = 10 pd.options.display.float_format = "{:.1f}".format colors = 10*['g', 'r', 'b', 'c', 'k'] from pyparsing import ( Literal, Word, Group, Forward, alphas, alphanums, Regex, ParseException, CaselessKeyword, Suppress, delimitedList, ) import math import operator exprStack = [] def push_first(toks): exprStack.append(toks[0]) def push_unary_minus(toks): for t in toks: if t == "-": exprStack.append("unary -") else: break bnf = None def BNF(): """ expop :: '^' multop :: '*' | '/' addop :: '+' | '-' integer :: ['+' | '-'] '0'..'9'+ atom :: PI | E | real | fn '(' expr ')' | '(' expr ')' factor :: atom [ expop factor ]* term :: factor [ multop factor ]* expr :: term [ addop term ]* """ global bnf if not bnf: # use CaselessKeyword for e and pi, to avoid accidentally matching # functions that start with 'e' or 'pi' (such as 'exp'); Keyword # and CaselessKeyword only match whole words e = CaselessKeyword("E") pi = CaselessKeyword("PI") # fnumber = Combine(Word("+-"+nums, nums) + # Optional("." + Optional(Word(nums))) + # Optional(e + Word("+-"+nums, nums))) # or use provided pyparsing_common.number, but convert back to str: # fnumber = ppc.number().addParseAction(lambda t: str(t[0])) fnumber = Regex(r"[+-]?\d+(?:\.\d*)?(?:[eE][+-]?\d+)?") ident = Word(alphas, alphanums + "_$") plus, minus, mult, div = map(Literal, "+-*/") lpar, rpar = map(Suppress, "()") addop = plus | minus multop = mult | div expop = Literal("^") expr = Forward() expr_list = delimitedList(Group(expr)) # add parse action that replaces the function identifier with a (name, number of args) tuple def insert_fn_argcount_tuple(t): fn = t.pop(0) num_args = len(t[0]) t.insert(0, (fn, num_args)) fn_call = (ident + lpar - Group(expr_list) + rpar).setParseAction( insert_fn_argcount_tuple ) atom = ( addop[...] + ( (fn_call | pi | e | fnumber | ident).setParseAction(push_first) | Group(lpar + expr + rpar) ) ).setParseAction(push_unary_minus) # by defining exponentiation as "atom [ ^ factor ]..." instead of "atom [ ^ atom ]...", we get right-to-left # exponents, instead of left-to-right that is, 2^3^2 = 2^(3^2), not (2^3)^2. factor = Forward() factor <<= atom + (expop + factor).setParseAction(push_first)[...] term = factor + (multop + factor).setParseAction(push_first)[...] expr <<= term + (addop + term).setParseAction(push_first)[...] bnf = expr return bnf # map operator symbols to corresponding arithmetic operations epsilon = 1e-12 opn = { "+": operator.add, "-": operator.sub, "*": operator.mul, "/": operator.truediv, "^": operator.pow, } fn = { "sin": math.sin, "cos": math.cos, "tan": math.tan, "exp": math.exp, "abs": abs, "trunc": int, "round": round, "sgn": lambda a: -1 if a < -epsilon else 1 if a > epsilon else 0, # functionsl with multiple arguments "multiply": lambda a, b: a * b, "hypot": math.hypot, # functions with a variable number of arguments "all": lambda *a: all(a), } def evaluate_stack(s): op, num_args = s.pop(), 0 if isinstance(op, tuple): op, num_args = op if op == "unary -": return -evaluate_stack(s) if op in "+-*/^": # note: operands are pushed onto the stack in reverse order op2 = evaluate_stack(s) op1 = evaluate_stack(s) return opn[op](op1, op2) elif op == "PI": return math.pi # 3.1415926535 elif op == "E": return math.e # 2.718281828 elif op in fn: # note: args are pushed onto the stack in reverse order args = reversed([evaluate_stack(s) for _ in range(num_args)]) return fn[op](*args) elif op[0].isalpha(): raise Exception("invalid identifier '%s'" % op) else: # try to evaluate as int first, then as float if int fails try: return int(op) except ValueError: return float(op) def test(s): val = "NA" exprStack[:] = [] try: results = BNF().parseString(s, parseAll=True) val = evaluate_stack(exprStack[:]) except ParseException as pe: print(s, "failed parse:", str(pe)) except Exception as e: print(s, "failed eval:", str(e), exprStack) return val def feature_pie(filename, feature1, feature2, class_size = 10): df = pd.read_csv(filename) sums = df.groupby(df[feature1])[feature2].sum() plt.axis('equal') plt.pie(sums, labels=sums.index, autopct='%1.1f%%', shadow=True, startangle=140) plt.title("Pie chart on basis of "+feature2) name = filename.split('.') plt.savefig(name[0]+".png") plt.close() def feature_scatter(filename, feature1, feature2): df = pd.read_csv(filename) plt.axis('equal') plt.pie(feature1, feature2, autopct='%1.1f%%', shadow=True, startangle=140) plt.title("Scatter plot between "+feature1+" and "+feature2) name = filename.split('.') plt.savefig(name[0]+".png") plt.close() def new_feature(filename, com, name): df = pd.read_csv(filename) com = com.split(',') formula = "_" temp = "_" for i, c in enumerate(com): if c == "formula": formula = com[i+1] temp = formula vals = [] i = 0 print(name) if name != " ": i = 1 n = len(df) for j in range(n): for k, c in enumerate(com): if k%2 == 0: if c == "formula": break formula = formula.replace(c, str(df.at[j, com[k+1]])) vals.append(test(formula)) formula = temp col = len(df.axes[1]) print(vals) df[name] = vals """ if name != " ": df.insert(col, vals, True) else: df.insert(col, vals, True) """ del df['Unnamed: 0'] os.remove(filename) df.to_csv(filename) def disp(filename): df = pd.read_csv(filename) n_row = str(len(df)) n_col = str(len(df.axes[1])) col = [] for c in df.columns: col.append(c) types = df.dtypes.tolist() f = open(filename, "r+") line0 = f.readline() line1 = f.readline() line2 = f.readline() line3 = f.readline() line4 = f.readline() line5 = f.readline() f.close() return n_row, n_col, col, types, line0, line1, line2, line3, line4, line5 def stat(filename, feature, func): df = pd.read_csv(filename) ans = 0 print(filename,feature,func) print(df) if func == "mean": ans = df[feature].mean() if func == "max": ans = df[feature].max() if func == "min": ans = df[feature].min() if func == "sum": ans = df[feature].sum() return ans def freq(filename, feature, condition): df = pd.read_csv(filename) condition = condition.split(' ') if condition[0] == "=": print(int(condition[1])) counts = df[feature].value_counts().to_dict() if condition[1] == 'N/A': try: return str(counts['N/A']) except: return '0' try: return str(counts[int(condition[1])]) except: return '0' elif condition[0] == ">": count = 0 df = pd.read_csv(filename) n = df.columns.get_loc(feature) for i in range(len(df)): if int(df.at[i, n]) > int(condition[1]): count = count + 1 return str(count) elif condition[0] == "<": count = 0 df = pd.read_csv(filename) n = df.columns.get_loc(feature) for i in range(len(df)): if df.at[i, n] < int(condition[1]): count = count + 1 return count def drop(filename, feature, condition): df = pd.read_csv(filename) condition = condition.split(' ') if condition[0] == "=": df.drop(df[df[feature] == int(condition[1])].index, inplace = True) elif condition[0] == ">": df.drop(df[df[feature] > int(condition[1])].index, inplace = True) elif condition[0] == "<": df.drop(df[df[feature] < int(condition[1])].index, inplace = True) def ms(filename, feature1, feature2): name = filename.split('.') df = pd.read_csv(filename) n = df.columns.get_loc(feature1) mat1 = df.iloc[:, n].values m = df.columns.get_loc(feature2) mat2 = df.iloc[:, m].values combined = np.vstack((mat1, mat2)).T combined = combined.tolist() clf = Mean_Shift() clf.fit(combined) centroids = clf.centroids for classification in clf.classifications: color = colors[classification] for featureset in clf.classifications[classification]: plt.scatter(featureset[0], featureset[1], marker='x', color=color, s=150, linewidths=5) for c in centroids: plt.scatter(centroids[c][0], centroids[c][1], color='k', marker='*', s=150, linewidths=5) plt.savefig("static/ms_"+name[0].split('/')[-1]+".png") plt.close() def dataDivide(df, percent): train_df=df.sample(frac=percent,random_state=200) #random state is a seed value test_df=df.drop(train.index) return train_df, test_df def scale(train_df, test_df, scale = 1): train_df["median_house_value"] /= scale_factor test_df["median_house_value"] /= scale_factor return train_df, test_df def build_model(my_learning_rate): """Create and compile a simple linear regression model.""" # Most simple tf.keras models are sequential. model = tf.keras.models.Sequential() # Add one linear layer to the model to yield a simple linear regressor. model.add(tf.keras.layers.Dense(units=1, input_shape=(1,))) # Compile the model topography into code that TensorFlow can efficiently # execute. Configure training to minimize the model's mean squared error. model.compile(optimizer=tf.keras.optimizers.RMSprop(lr=my_learning_rate), loss="mean_squared_error", metrics=[tf.keras.metrics.RootMeanSquaredError()]) return model def train_model(model, df, feature, label, my_epochs, my_batch_size=None, my_validation_split=0.1): """Feed a dataset into the model in order to train it.""" history = model.fit(x=df[feature], y=df[label], batch_size=my_batch_size, epochs=my_epochs, validation_split=my_validation_split) # Gather the model's trained weight and bias. trained_weight = model.get_weights()[0] trained_bias = model.get_weights()[1] # The list of epochs is stored separately from the # rest of history. epochs = history.epoch # Isolate the root mean squared error for each epoch. hist = pd.DataFrame(history.history) rmse = hist["root_mean_squared_error"] return epochs, rmse, history.history def plot_the_loss_curve(epochs, mae_training, mae_validation, filename): name = filename.split('.') """Plot a curve of loss vs. epoch.""" plt.figure() plt.xlabel("Epoch") plt.ylabel("Root Mean Squared Error") plt.plot(epochs[1:], mae_training[1:], label="Training Loss") plt.plot(epochs[1:], mae_validation[1:], label="Validation Loss") plt.legend() # We're not going to plot the first epoch, since the loss on the first epoch # is often substantially greater than the loss for other epochs. merged_mae_lists = mae_training[1:] + mae_validation[1:] highest_loss = max(merged_mae_lists) lowest_loss = min(merged_mae_lists) delta = highest_loss - lowest_loss print(delta) top_of_y_axis = highest_loss + (delta * 0.05) bottom_of_y_axis = lowest_loss - (delta * 0.05) plt.ylim([bottom_of_y_axis, top_of_y_axis]) plt.save("static/nn_"+name[0]+".png") app = Flask(__name__) #app.secret_key = 'maidoublequotesmelikhrhahu' #run_with_ngrok(app) @app.route('/', methods=['GET', 'POST']) def basic(): if request.method == 'POST': if request.files['file'].filename != '': f = request.files.get('file') varrr = "static/"+f.filename err=f.save(varrr) name = f.filename.split('.') ext = name[-1] name = name[0] if ext == "csv": con.csvtojson("static/"+f.filename, "static/"+name+".json") os.remove("static/"+f.filename) con.jsontocsv("static/"+name+".json", "static/"+f.filename) if ext == "json": con.jsontocsv("static/"+f.filename, "static/"+name+".csv") elif ext == "xml": con.xmltocsv("static/"+f.filename, "static/"+name+".csv") elif ext == "nc": con.netCDFtocsv("static/"+f.filename, "static/"+name+".csv") n_row, n_col, col, types, line0, line1, line2, line3, line4, line5 = disp("static/"+name+".csv") res = make_response(render_template("filedata.html", filename = f.filename, n_row = n_row, n_col = n_col, col = col, types = types, lists = "../static/"+name+".csv?"+str(datetime.now()), convertable=["json", "xml", "nc"])) res.set_cookie("filename", value=f.filename) return res return render_template("upload.html") @app.route('/Info', methods=['GET', 'POST']) def info(): filename = request.cookies.get('filename') name = filename.split('.') n_row, n_col, col, types, line0, line1, line2, line3, line4, line5 = disp("static/"+name[0]+".csv") return render_template("filedata.html", filename = filename, n_row = n_row, n_col = n_col, col = col, types = types, lists = "../static/"+name[0]+".csv?"+str(datetime.now()), convertable=["json", "xml", "nc"]) @app.route('/stat', methods=['GET', 'POST']) def stats(): if request.method == 'GET': filename = request.args.get('filename').split('/')[-1] name = filename.split('.') ext = name[-1] name = name[0] if ext == "json": con.jsontocsv("static/"+filename, "static/"+name+".csv") elif ext == "nc": con.netCDFtocsv("static/"+filename, "static/"+name+".csv") elif ext == "xml": con.xmltocsv("static/"+filename, "static/"+name+".csv") feature = request.args.get('feature') func = request.args.get('func') ans = stat("static/"+name+".csv", feature, func) print(ans,type(ans)) return str(ans) return render_template("upload.html") @app.route('/con', methods = ['GET', 'POST']) def conv(): if request.method == 'GET': filename = request.args.get('filename') name = filename.split('.') ext = name[-1] name = name[0] to = request.args.get('to') if ext == "csv": if to == "json": con.csvtojson("static/"+filename, "static/"+name+"."+to) elif to == "xml": con.csvtoxml("static/"+filename, "static/"+name+"."+to) elif to == "nc": con.csvtonetCDF("static/"+filename, "static/"+name+"."+to) elif ext == "json": if to == "csv": con.jsontocsv("static/"+filename, "static/"+name+"."+to) elif to == "xml": con.jsontoxml("static/"+filename, "static/"+name+"."+to) elif to == "nc": con.jsontonetCDF("static/"+filename, "static/"+name+"."+to) elif ext == "xml": if to == "json": con.xmltojson("static/"+filename, "static/"+name+"."+to) elif to == "csv": con.xmltocsv("static/"+filename, "static/"+name+"."+to) elif to == "nc": con.xmltonetCDF("static/"+filename, "static/"+name+"."+to) elif ext == "nc": if to == "json": con.netCDFtojson("static/"+filename, "static/"+name+"."+to) elif to == "csv": con.netCDFtocsv("static/"+filename, "static/"+name+"."+to) elif to == "xml": con.netCDFtoxml("static/"+filename, "static/"+name+"."+to) return "../static/"+name+"."+to return render_template("upload.html") @app.route('/analyse', methods = ['GET', 'POST']) def analyse(): filename = request.cookies.get('filename') name = filename.split('.') name = name[0] df = pd.read_csv("static/"+name+".csv") col = [] for c in df.columns: col.append(c) if request.method == 'GET': feature1 = request.args.get('feature1') feature2 = request.args.get('feature2') if feature1 == None: return render_template("analysis.html", col = col) feature_pie("static/"+name+".csv", feature1, feature2) return str("../static/"+name+".png") return render_template("analysis.html", col = col) @app.route('/anAdd', methods = ['GET', 'POST']) def anAdd(): filename = request.cookies.get('filename') name = filename.split('.') name = name[0] df = pd.read_csv("static/"+name+".csv") col = [] for c in df.columns: col.append(c) if request.method == 'GET': kname = request.args.get('name') print(kname) com = request.args.get('formula') new_feature("static/"+filename, com, kname) feature1 = request.args.get('feature1') feature_pie("static/"+name+".csv", feature1, kname) return "../static/"+name+".png" @app.route('/clean', methods = ['GET', 'POST']) def clean(): filename = request.cookies.get('filename') name = filename.split('.') name = name[0] df = pd.read_csv("static/"+name+".csv") col = [] for c in df.columns: col.append(c) if request.method == 'POST': feature1 = request.form['feature1'] feature2 = request.form['feature2'] feature_scatter("static/"+name+".csv", feature1, feature2) return render_template("clean.html", col = col, img = "static/"+name+".png") return render_template("clean.html", col = col) @app.route('/clAdd', methods = ['GET', 'POST']) def clAdd(): filename = request.cookies.get('filename') name = filename.split('.') name = name[0] df = pd.read_csv("static/"+name+".csv") col = [] for c in df.columns: col.append(c) if request.method == 'GET': kname = request.form['name'] com = request.form['formula'] new_feature("static/"+name+".csv", com, kname) feature_scatter("static/"+name+".csv", feature1, kname) return "../static/"+name+".png" @app.route('/freq', methods = ['GET', 'POST']) def fre(): filename = request.cookies.get('filename') name = filename.split('.') name = name[0] df = pd.read_csv("static/"+name+".csv") col = [] for c in df.columns: col.append(c) if request.method == 'GET': feature = request.args.get('feature') cond = request.args.get('cond') freqq = freq('static/'+name+".csv", feature, cond) return freqq return render_template("clean.html", col = col) @app.route('/drop', methods = ['GET', 'POST']) def dro(): filename = request.cookies.get('filename') name = filename.split('.') name = name[0] df = pd.read_csv("static/"+name+".csv") col = [] for c in df.columns: col.append(c) if request.method == 'GET': feature = request.args.get('feature') cond = request.args.get('cond') drop(filename, feature, cond) return return render_template("clean.html", col = col) @app.route('/ms', methods = ['GET', 'POST']) def mShift(): filename = request.cookies.get('filename') name = filename.split('.') name = name[0] df =
pd.read_csv("static/"+name+".csv")
pandas.read_csv
import os import sys sys.path.append(os.path.join(os.path.dirname(__file__), "..")) import numpy as np import pandas as pd import streamlit as st from cadCAD_tools.execution import easy_run from cadCAD_tools.preparation import sweep_cartesian_product from baseline_model.params import INITIAL_STATE, TIMESTEPS, SAMPLES, DAYS_PER_TIMESTEP from baseline_model.structure import BLOCKS from baseline_model.types import BaselineMinting, BaselineModelSweepParams, GrowthScenario, SimpleMinting from utils import load_constants C = CONSTANTS = load_constants() @st.cache def run_cadcad_model( fall_after_beginning, growth_fall, stable_after_fall, growth_stable, take_off_after_stable, growth_take_off, steady_after_take_off, growth_steady, ): NPO = C["network_power"]["optimistic"] RESULTS = [] # Run pessimistic, optimistic scenarios SCENARIOS = [ GrowthScenario( label="optimistic", fall_after_beginning=NPO["fall_after_beginning"] + C["days_after_launch"], stable_after_fall=NPO["stable_after_fall"], take_off_after_stable=NPO["take_off_after_stable"], steady_after_take_off=NPO["steady_after_take_off"], growth_fall=NPO["growth_fall"], growth_stable=NPO["growth_stable"], growth_take_off=NPO["growth_take_off"], growth_steady=NPO["growth_steady"], ), GrowthScenario( label="pessimistic", fall_after_beginning=fall_after_beginning + C["days_after_launch"], stable_after_fall=stable_after_fall, take_off_after_stable=take_off_after_stable, steady_after_take_off=steady_after_take_off, growth_fall=growth_fall, growth_stable=growth_stable, growth_take_off=growth_take_off, growth_steady=growth_steady, ), ] RAW_PARAMS = BaselineModelSweepParams( timestep_in_days=[DAYS_PER_TIMESTEP], baseline_activated=[True, False], network_power_scenario=SCENARIOS, simple_mechanism=[SimpleMinting()], baseline_mechanism=[BaselineMinting()], ) PARAMS = sweep_cartesian_product(RAW_PARAMS) RUN_ARGS = (INITIAL_STATE, PARAMS, BLOCKS, TIMESTEPS, SAMPLES) RESULTS.append(easy_run(*RUN_ARGS)) # Run baseline scenario RUN_ARGS = ( {**INITIAL_STATE, "network_power": INITIAL_STATE["baseline"]}, {**RAW_PARAMS, "baseline_activated": [True], "network_power_scenario": [GrowthScenario("baseline")]}, BLOCKS, TIMESTEPS, SAMPLES, ) RESULTS.append(easy_run(*RUN_ARGS)) # Post-process results df = post_process_results(
pd.concat(RESULTS)
pandas.concat
import psycopg2 import psycopg2 import sqlalchemy as salc import numpy as np import warnings import datetime import pandas as pd import json from math import pi from flask import request, send_file, Response # import visualization libraries from bokeh.io import export_png from bokeh.embed import json_item from bokeh.plotting import figure from bokeh.models import Label, LabelSet, ColumnDataSource, Legend from bokeh.palettes import Colorblind from bokeh.layouts import gridplot from bokeh.transform import cumsum warnings.filterwarnings('ignore') def create_routes(server): def quarters(month, year): if 1 <= month <= 3: return '01' + '/' + year elif 4 <= month <= 6: return '04' + '/' + year elif 5 <= month <= 9: return '07' + '/' + year elif 10 <= month <= 12: return '10' + '/' + year def new_contributor_data_collection(repo_id, required_contributions): rank_list = [] for num in range(1, required_contributions + 1): rank_list.append(num) rank_tuple = tuple(rank_list) contributor_query = salc.sql.text(f""" SELECT * FROM ( SELECT ID AS cntrb_id, A.created_at AS created_at, date_part('month', A.created_at::DATE) AS month, date_part('year', A.created_at::DATE) AS year, A.repo_id, repo_name, full_name, login, ACTION, rank() OVER ( PARTITION BY id ORDER BY A.created_at ASC ) FROM ( ( SELECT canonical_id AS ID, created_at AS created_at, repo_id, 'issue_opened' AS ACTION, contributors.cntrb_full_name AS full_name, contributors.cntrb_login AS login FROM augur_data.issues LEFT OUTER JOIN augur_data.contributors ON contributors.cntrb_id = issues.reporter_id LEFT OUTER JOIN ( SELECT DISTINCT ON ( cntrb_canonical ) cntrb_full_name, cntrb_canonical AS canonical_email, data_collection_date, cntrb_id AS canonical_id FROM augur_data.contributors WHERE cntrb_canonical = cntrb_email ORDER BY cntrb_canonical ) canonical_full_names ON canonical_full_names.canonical_email =contributors.cntrb_canonical WHERE repo_id = {repo_id} AND pull_request IS NULL GROUP BY canonical_id, repo_id, issues.created_at, contributors.cntrb_full_name, contributors.cntrb_login ) UNION ALL ( SELECT canonical_id AS ID, TO_TIMESTAMP( cmt_author_date, 'YYYY-MM-DD' ) AS created_at, repo_id, 'commit' AS ACTION, contributors.cntrb_full_name AS full_name, contributors.cntrb_login AS login FROM augur_data.commits LEFT OUTER JOIN augur_data.contributors ON cntrb_email = cmt_author_email LEFT OUTER JOIN ( SELECT DISTINCT ON ( cntrb_canonical ) cntrb_full_name, cntrb_canonical AS canonical_email, data_collection_date, cntrb_id AS canonical_id FROM augur_data.contributors WHERE cntrb_canonical = cntrb_email ORDER BY cntrb_canonical ) canonical_full_names ON canonical_full_names.canonical_email =contributors.cntrb_canonical WHERE repo_id = {repo_id} GROUP BY repo_id, canonical_email, canonical_id, commits.cmt_author_date, contributors.cntrb_full_name, contributors.cntrb_login ) UNION ALL ( SELECT message.cntrb_id AS ID, created_at AS created_at, commits.repo_id, 'commit_comment' AS ACTION, contributors.cntrb_full_name AS full_name, contributors.cntrb_login AS login FROM augur_data.commit_comment_ref, augur_data.commits, augur_data.message LEFT OUTER JOIN augur_data.contributors ON contributors.cntrb_id = message.cntrb_id LEFT OUTER JOIN ( SELECT DISTINCT ON ( cntrb_canonical ) cntrb_full_name, cntrb_canonical AS canonical_email, data_collection_date, cntrb_id AS canonical_id FROM augur_data.contributors WHERE cntrb_canonical = cntrb_email ORDER BY cntrb_canonical ) canonical_full_names ON canonical_full_names.canonical_email =contributors.cntrb_canonical WHERE commits.cmt_id = commit_comment_ref.cmt_id AND commits.repo_id = {repo_id} AND commit_comment_ref.msg_id = message.msg_id GROUP BY ID, commits.repo_id, commit_comment_ref.created_at, contributors.cntrb_full_name, contributors.cntrb_login ) UNION ALL ( SELECT issue_events.cntrb_id AS ID, issue_events.created_at AS created_at, issues.repo_id, 'issue_closed' AS ACTION, contributors.cntrb_full_name AS full_name, contributors.cntrb_login AS login FROM augur_data.issues, augur_data.issue_events LEFT OUTER JOIN augur_data.contributors ON contributors.cntrb_id = issue_events.cntrb_id LEFT OUTER JOIN ( SELECT DISTINCT ON ( cntrb_canonical ) cntrb_full_name, cntrb_canonical AS canonical_email, data_collection_date, cntrb_id AS canonical_id FROM augur_data.contributors WHERE cntrb_canonical = cntrb_email ORDER BY cntrb_canonical ) canonical_full_names ON canonical_full_names.canonical_email =contributors.cntrb_canonical WHERE issues.repo_id = {repo_id} AND issues.issue_id = issue_events.issue_id AND issues.pull_request IS NULL AND issue_events.cntrb_id IS NOT NULL AND ACTION = 'closed' GROUP BY issue_events.cntrb_id, issues.repo_id, issue_events.created_at, contributors.cntrb_full_name, contributors.cntrb_login ) UNION ALL ( SELECT pr_augur_contributor_id AS ID, pr_created_at AS created_at, pull_requests.repo_id, 'open_pull_request' AS ACTION, contributors.cntrb_full_name AS full_name, contributors.cntrb_login AS login FROM augur_data.pull_requests LEFT OUTER JOIN augur_data.contributors ON pull_requests.pr_augur_contributor_id = contributors.cntrb_id LEFT OUTER JOIN ( SELECT DISTINCT ON ( cntrb_canonical ) cntrb_full_name, cntrb_canonical AS canonical_email, data_collection_date, cntrb_id AS canonical_id FROM augur_data.contributors WHERE cntrb_canonical = cntrb_email ORDER BY cntrb_canonical ) canonical_full_names ON canonical_full_names.canonical_email =contributors.cntrb_canonical WHERE pull_requests.repo_id = {repo_id} GROUP BY pull_requests.pr_augur_contributor_id, pull_requests.repo_id, pull_requests.pr_created_at, contributors.cntrb_full_name, contributors.cntrb_login ) UNION ALL ( SELECT message.cntrb_id AS ID, msg_timestamp AS created_at, pull_requests.repo_id as repo_id, 'pull_request_comment' AS ACTION, contributors.cntrb_full_name AS full_name, contributors.cntrb_login AS login FROM augur_data.pull_requests, augur_data.pull_request_message_ref, augur_data.message LEFT OUTER JOIN augur_data.contributors ON contributors.cntrb_id = message.cntrb_id LEFT OUTER JOIN ( SELECT DISTINCT ON ( cntrb_canonical ) cntrb_full_name, cntrb_canonical AS canonical_email, data_collection_date, cntrb_id AS canonical_id FROM augur_data.contributors WHERE cntrb_canonical = cntrb_email ORDER BY cntrb_canonical ) canonical_full_names ON canonical_full_names.canonical_email =contributors.cntrb_canonical WHERE pull_requests.repo_id = {repo_id} AND pull_request_message_ref.pull_request_id = pull_requests.pull_request_id AND pull_request_message_ref.msg_id = message.msg_id GROUP BY message.cntrb_id, pull_requests.repo_id, message.msg_timestamp, contributors.cntrb_full_name, contributors.cntrb_login ) UNION ALL ( SELECT issues.reporter_id AS ID, msg_timestamp AS created_at, issues.repo_id as repo_id, 'issue_comment' AS ACTION, contributors.cntrb_full_name AS full_name, contributors.cntrb_login AS login FROM issues, issue_message_ref, message LEFT OUTER JOIN augur_data.contributors ON contributors.cntrb_id = message.cntrb_id LEFT OUTER JOIN ( SELECT DISTINCT ON ( cntrb_canonical ) cntrb_full_name, cntrb_canonical AS canonical_email, data_collection_date, cntrb_id AS canonical_id FROM augur_data.contributors WHERE cntrb_canonical = cntrb_email ORDER BY cntrb_canonical ) canonical_full_names ON canonical_full_names.canonical_email =contributors.cntrb_canonical WHERE issues.repo_id = {repo_id} AND issue_message_ref.msg_id = message.msg_id AND issues.issue_id = issue_message_ref.issue_id AND issues.pull_request_id = NULL GROUP BY issues.reporter_id, issues.repo_id, message.msg_timestamp, contributors.cntrb_full_name, contributors.cntrb_login ) ) A, repo WHERE ID IS NOT NULL AND A.repo_id = repo.repo_id GROUP BY A.ID, A.repo_id, A.ACTION, A.created_at, repo.repo_name, A.full_name, A.login ORDER BY cntrb_id ) b WHERE RANK IN {rank_tuple} """) df = pd.read_sql(contributor_query, server.augur_app.database) df = df.loc[~df['full_name'].str.contains('bot', na=False)] df = df.loc[~df['login'].str.contains('bot', na=False)] df = df.loc[~df['cntrb_id'].isin(df[df.duplicated(['cntrb_id', 'created_at', 'repo_id', 'rank'])]['cntrb_id'])] # add yearmonths to contributor df[['month', 'year']] = df[['month', 'year']].astype(int).astype(str) df['yearmonth'] = df['month'] + '/' + df['year'] df['yearmonth'] = pd.to_datetime(df['yearmonth']) # add column with every value being one, so when the contributor df is concatenated # with the months df, the filler months won't be counted in the sums df['new_contributors'] = 1 # add quarters to contributor dataframe df['month'] = df['month'].astype(int) df['quarter'] = df.apply(lambda x: quarters(x['month'], x['year']), axis=1, result_type='reduce') df['quarter'] = pd.to_datetime(df['quarter']) return df def months_data_collection(start_date, end_date): # months_query makes a df of years and months, this is used to fill # the months with no data in the visualizations months_query = salc.sql.text(f""" SELECT * FROM ( SELECT date_part( 'year', created_month :: DATE ) AS year, date_part( 'month', created_month :: DATE ) AS MONTH FROM (SELECT * FROM ( SELECT created_month :: DATE FROM generate_series (TIMESTAMP '{start_date}', TIMESTAMP '{end_date}', INTERVAL '1 month' ) created_month ) d ) x ) y """) months_df = pd.read_sql(months_query, server.augur_app.database) # add yearmonths to months_df months_df[['year', 'month']] = months_df[['year', 'month']].astype(float).astype(int).astype(str) months_df['yearmonth'] = months_df['month'] + '/' + months_df['year'] months_df['yearmonth'] = pd.to_datetime(months_df['yearmonth']) # filter months_df with start_date and end_date, the contributor df is filtered in the visualizations months_df = months_df.set_index(months_df['yearmonth']) months_df = months_df.loc[start_date: end_date].reset_index(drop=True) # add quarters to months dataframe months_df['month'] = months_df['month'].astype(int) months_df['quarter'] = months_df.apply(lambda x: quarters(x['month'], x['year']), axis=1) months_df['quarter'] = pd.to_datetime(months_df['quarter']) return months_df def get_repo_id_start_date_and_end_date(): now = datetime.datetime.now() repo_id = int(request.args.get('repo_id')) start_date = str(request.args.get('start_date', "{}-01-01".format(now.year - 1))) end_date = str(request.args.get('end_date', "{}-{}-{}".format(now.year, now.month, now.day))) return repo_id, start_date, end_date def filter_out_repeats_without_required_contributions_in_required_time(repeat_list, repeats_df, required_time, first_list): differences = [] for i in range(0, len(repeat_list)): time_difference = repeat_list[i] - first_list[i] total = time_difference.days * 86400 + time_difference.seconds differences.append(total) repeats_df['differences'] = differences # remove contributions who made enough contributions, but not in a short enough time repeats_df = repeats_df.loc[repeats_df['differences'] <= required_time * 86400] return repeats_df def compute_fly_by_and_returning_contributors_dfs(input_df, required_contributions, required_time, start_date): # create a copy of contributor dataframe driver_df = input_df.copy() # remove first time contributors before begin date, along with their second contribution mask = (driver_df['yearmonth'] < start_date) driver_df = driver_df[~driver_df['cntrb_id'].isin(driver_df.loc[mask]['cntrb_id'])] # determine if contributor is a drive by by finding all the cntrb_id's that do not have a second contribution repeats_df = driver_df.copy() repeats_df = repeats_df.loc[repeats_df['rank'].isin([1, required_contributions])] # removes all the contributors that only have a first contirbution repeats_df = repeats_df[ repeats_df['cntrb_id'].isin(repeats_df.loc[driver_df['rank'] == required_contributions]['cntrb_id'])] repeat_list = repeats_df.loc[driver_df['rank'] == required_contributions]['created_at'].tolist() first_list = repeats_df.loc[driver_df['rank'] == 1]['created_at'].tolist() repeats_df = repeats_df.loc[driver_df['rank'] == 1] repeats_df['type'] = 'repeat' repeats_df = filter_out_repeats_without_required_contributions_in_required_time( repeat_list, repeats_df, required_time, first_list) repeats_df = repeats_df.loc[repeats_df['differences'] <= required_time * 86400] repeat_cntrb_ids = repeats_df['cntrb_id'].to_list() drive_by_df = driver_df.loc[~driver_df['cntrb_id'].isin(repeat_cntrb_ids)] drive_by_df = drive_by_df.loc[driver_df['rank'] == 1] drive_by_df['type'] = 'drive_by' return drive_by_df, repeats_df def add_caption_to_visualizations(caption, required_contributions, required_time, plot_width): caption_plot = figure(width=plot_width, height=200, margin=(0, 0, 0, 0)) caption_plot.add_layout(Label( x=0, y=160, x_units='screen', y_units='screen', text='{}'.format(caption.format(required_contributions, required_time)), text_font='times', text_font_size='15pt', render_mode='css' )) caption_plot.outline_line_color = None return caption_plot def format_new_cntrb_bar_charts(plot, rank, group_by_format_string): plot.xgrid.grid_line_color = None plot.y_range.start = 0 plot.axis.minor_tick_line_color = None plot.outline_line_color = None plot.title.align = "center" plot.title.text_font_size = "18px" plot.yaxis.axis_label = 'Second Time Contributors' if rank == 2 else 'New Contributors' plot.xaxis.axis_label = group_by_format_string plot.xaxis.axis_label_text_font_size = "18px" plot.yaxis.axis_label_text_font_size = "16px" plot.xaxis.major_label_text_font_size = "16px" plot.xaxis.major_label_orientation = 45.0 plot.yaxis.major_label_text_font_size = "16px" return plot def add_charts_and_captions_to_correct_positions(chart_plot, caption_plot, rank, contributor_type, row_1, row_2, row_3, row_4): if rank == 1 and (contributor_type == 'All' or contributor_type == 'repeat'): row_1.append(chart_plot) row_2.append(caption_plot) elif rank == 2 or contributor_type == 'drive_by': row_3.append(chart_plot) row_4.append(caption_plot) def get_new_cntrb_bar_chart_query_params(): group_by = str(request.args.get('group_by', "quarter")) required_contributions = int(request.args.get('required_contributions', 4)) required_time = int(request.args.get('required_time', 365)) return group_by, required_contributions, required_time def remove_rows_before_start_date(df, start_date): mask = (df['yearmonth'] < start_date) result_df = df[~df['cntrb_id'].isin(df.loc[mask]['cntrb_id'])] return result_df def remove_rows_with_null_values(df, not_null_columns=[]): """Remove null data from pandas df Parameters -- df description: the dataframe that will be modified type: Pandas Dataframe -- list_of_columns description: columns that are searched for NULL values type: list default: [] (means all columns will be checked for NULL values) IMPORTANT: if an empty list is passed or nothing is passed it will check all columns for NULL values Return Value -- Modified Pandas Dataframe """ if len(not_null_columns) == 0: not_null_columns = df.columns.to_list() total_rows_removed = 0 for col in not_null_columns: rows_removed = len(df.loc[df[col].isnull() == True]) if rows_removed > 0: print(f"{rows_removed} rows have been removed because of null values in column {col}") total_rows_removed += rows_removed df = df.loc[df[col].isnull() == False] if total_rows_removed > 0: print(f"\nTotal rows removed because of null data: {total_rows_removed}"); else: print("No null data found") return df def get_needed_columns(df, list_of_columns): """Get only a specific list of columns from a Pandas Dataframe Parameters -- df description: the dataframe that will be modified type: Pandas Dataframe -- list_of_columns description: columns that will be kept in dataframe type: list Return Value -- Modified Pandas Dataframe """ return df[list_of_columns] def filter_data(df, needed_columns, not_null_columns=[]): """Filters out the unneeded rows in the df, and removed NULL data from df Parameters -- df description: the dataframe that will be modified type: Pandas Dataframe -- needed_columns description: the columns to keep in the dataframe -- not_null_columns description: columns that will be searched for NULL data, if NULL values are found those rows will be removed default: [] (means all columns in needed_columns list will be checked for NULL values) IMPORTANT: if an empty list is passed or nothing is passed it will check all columns in needed_columns list for NULL values Return Value -- Modified Pandas Dataframe """ if all(x in needed_columns for x in not_null_columns): df = get_needed_columns(df, needed_columns) df = remove_rows_with_null_values(df, not_null_columns) return df else: print("Developer error, not null columns should be a subset of needed columns") return df @server.app.route('/{}/contributor_reports/new_contributors_bar/'.format(server.api_version), methods=["GET"]) def new_contributors_bar(): repo_id, start_date, end_date = get_repo_id_start_date_and_end_date() group_by, required_contributions, required_time = get_new_cntrb_bar_chart_query_params() input_df = new_contributor_data_collection(repo_id=repo_id, required_contributions=required_contributions) months_df = months_data_collection(start_date=start_date, end_date=end_date) # TODO remove full_name from data for all charts since it is not needed in vis generation not_null_columns = ['cntrb_id', 'created_at', 'month', 'year', 'repo_id', 'repo_name', 'login', 'action', 'rank', 'yearmonth', 'new_contributors', 'quarter'] input_df = remove_rows_with_null_values(input_df, not_null_columns) if len(input_df) == 0: return Response(response="There is no data for this repo, in the database you are accessing", mimetype='application/json', status=200) repo_dict = {repo_id: input_df.loc[input_df['repo_id'] == repo_id].iloc[0]['repo_name']} contributor_types = ['All', 'repeat', 'drive_by'] ranks = [1, 2] row_1, row_2, row_3, row_4 = [], [], [], [] all_df = remove_rows_before_start_date(input_df, start_date) drive_by_df, repeats_df = compute_fly_by_and_returning_contributors_dfs(input_df, required_contributions, required_time, start_date) for rank in ranks: for contributor_type in contributor_types: # do not display these visualizations since drive-by's do not have second contributions, and the # second contribution of a repeat contributor is the same thing as the all the second time contributors if (rank == 2 and contributor_type == 'drive_by') or (rank == 2 and contributor_type == 'repeat'): continue if contributor_type == 'repeat': driver_df = repeats_df caption = """This graph shows repeat contributors in the specified time period. Repeat contributors are contributors who have made {} or more contributions in {} days and their first contribution is in the specified time period. New contributors are individuals who make their first contribution in the specified time period.""" elif contributor_type == 'drive_by': driver_df = drive_by_df caption = """This graph shows fly by contributors in the specified time period. Fly by contributors are contributors who make less than the required {} contributions in {} days. New contributors are individuals who make their first contribution in the specified time period. Of course, then, “All fly-by’s are by definition first time contributors”. However, not all first time contributors are fly-by’s.""" elif contributor_type == 'All': if rank == 1: driver_df = all_df # makes df with all first time contributors driver_df = driver_df.loc[driver_df['rank'] == 1] caption = """This graph shows all the first time contributors, whether they contribute once, or contribute multiple times. New contributors are individuals who make their first contribution in the specified time period.""" if rank == 2: driver_df = all_df # creates df with all second time contributors driver_df = driver_df.loc[driver_df['rank'] == 2] caption = """This graph shows the second contribution of all first time contributors in the specified time period.""" # y_axis_label = 'Second Time Contributors' # filter by end_date, this is not done with the begin date filtering because a repeat contributor # will look like drive-by if the second contribution is removed by end_date filtering mask = (driver_df['yearmonth'] < end_date) driver_df = driver_df.loc[mask] # adds all months to driver_df so the lists of dates will include all months and years driver_df = pd.concat([driver_df, months_df]) data = pd.DataFrame() if group_by == 'year': data['dates'] = driver_df[group_by].unique() # new contributor counts for y-axis data['new_contributor_counts'] = driver_df.groupby([group_by]).sum().reset_index()[ 'new_contributors'] # used to format x-axis and title group_by_format_string = "Year" elif group_by == 'quarter' or group_by == 'month': # set variables to group the data by quarter or month if group_by == 'quarter': date_column = 'quarter' group_by_format_string = "Quarter" elif group_by == 'month': date_column = 'yearmonth' group_by_format_string = "Month" # modifies the driver_df[date_column] to be a string with year and month, # then finds all the unique values data['dates'] = np.unique(np.datetime_as_string(driver_df[date_column], unit='M')) # new contributor counts for y-axis data['new_contributor_counts'] = driver_df.groupby([date_column]).sum().reset_index()[ 'new_contributors'] # if the data set is large enough it will dynamically assign the width, if the data set is # too small it will by default set to 870 pixel so the title fits if len(data['new_contributor_counts']) >= 15: plot_width = 46 * len(data['new_contributor_counts']) else: plot_width = 870 # create a dict convert an integer number into a word # used to turn the rank into a word, so it is nicely displayed in the title numbers = ['Zero', 'First', 'Second'] num_conversion_dict = {} for i in range(1, len(numbers)): num_conversion_dict[i] = numbers[i] number = '{}'.format(num_conversion_dict[rank]) # define pot for bar chart p = figure(x_range=data['dates'], plot_height=400, plot_width=plot_width, title="{}: {} {} Time Contributors Per {}".format(repo_dict[repo_id], contributor_type.capitalize(), number, group_by_format_string), y_range=(0, max(data['new_contributor_counts']) * 1.15), margin=(0, 0, 10, 0)) p.vbar(x=data['dates'], top=data['new_contributor_counts'], width=0.8) source = ColumnDataSource( data=dict(dates=data['dates'], new_contributor_counts=data['new_contributor_counts'])) # add contributor_count labels to chart p.add_layout(LabelSet(x='dates', y='new_contributor_counts', text='new_contributor_counts', y_offset=4, text_font_size="13pt", text_color="black", source=source, text_align='center')) plot = format_new_cntrb_bar_charts(p, rank, group_by_format_string) caption_plot = add_caption_to_visualizations(caption, required_contributions, required_time, plot_width) add_charts_and_captions_to_correct_positions(plot, caption_plot, rank, contributor_type, row_1, row_2, row_3, row_4) # puts plots together into a grid grid = gridplot([row_1, row_2, row_3, row_4]) filename = export_png(grid) return send_file(filename) @server.app.route('/{}/contributor_reports/new_contributors_stacked_bar/'.format(server.api_version), methods=["GET"]) def new_contributors_stacked_bar(): repo_id, start_date, end_date = get_repo_id_start_date_and_end_date() group_by, required_contributions, required_time = get_new_cntrb_bar_chart_query_params() input_df = new_contributor_data_collection(repo_id=repo_id, required_contributions=required_contributions) months_df = months_data_collection(start_date=start_date, end_date=end_date) needed_columns = ['cntrb_id', 'created_at', 'month', 'year', 'repo_id', 'repo_name', 'login', 'action', 'rank', 'yearmonth', 'new_contributors', 'quarter'] input_df = filter_data(input_df, needed_columns) if len(input_df) == 0: return Response(response="There is no data for this repo, in the database you are accessing", mimetype='application/json', status=200) repo_dict = {repo_id: input_df.loc[input_df['repo_id'] == repo_id].iloc[0]['repo_name']} contributor_types = ['All', 'repeat', 'drive_by'] ranks = [1, 2] row_1, row_2, row_3, row_4 = [], [], [], [] all_df = remove_rows_before_start_date(input_df, start_date) drive_by_df, repeats_df = compute_fly_by_and_returning_contributors_dfs(input_df, required_contributions, required_time, start_date) for rank in ranks: for contributor_type in contributor_types: # do not display these visualizations since drive-by's do not have second contributions, # and the second contribution of a repeat contributor is the same thing as the all the # second time contributors if (rank == 2 and contributor_type == 'drive_by') or (rank == 2 and contributor_type == 'repeat'): continue if contributor_type == 'repeat': driver_df = repeats_df caption = """This graph shows repeat contributors in the specified time period. Repeat contributors are contributors who have made {} or more contributions in {} days and their first contribution is in the specified time period. New contributors are individuals who make their first contribution in the specified time period.""" elif contributor_type == 'drive_by': driver_df = drive_by_df caption = """This graph shows fly by contributors in the specified time period. Fly by contributors are contributors who make less than the required {} contributions in {} days. New contributors are individuals who make their first contribution in the specified time period. Of course, then, “All fly-by’s are by definition first time contributors”. However, not all first time contributors are fly-by’s.""" elif contributor_type == 'All': if rank == 1: driver_df = all_df # makes df with all first time contributors driver_df = driver_df.loc[driver_df['rank'] == 1] caption = """This graph shows all the first time contributors, whether they contribute once, or contribute multiple times. New contributors are individuals who make their first contribution in the specified time period.""" if rank == 2: driver_df = all_df # creates df with all second time contributor driver_df = driver_df.loc[driver_df['rank'] == 2] caption = """This graph shows the second contribution of all first time contributors in the specified time period.""" # y_axis_label = 'Second Time Contributors' # filter by end_date, this is not done with the begin date filtering because a repeat contributor will # look like drive-by if the second contribution is removed by end_date filtering mask = (driver_df['yearmonth'] < end_date) driver_df = driver_df.loc[mask] # adds all months to driver_df so the lists of dates will include all months and years driver_df = pd.concat([driver_df, months_df]) actions = ['open_pull_request', 'pull_request_comment', 'commit', 'issue_closed', 'issue_opened', 'issue_comment'] data = pd.DataFrame() if group_by == 'year': # x-axis dates data['dates'] = driver_df[group_by].unique() for contribution_type in actions: data[contribution_type] = \ pd.concat([driver_df.loc[driver_df['action'] == contribution_type], months_df]).groupby( group_by).sum().reset_index()['new_contributors'] # new contributor counts for all actions data['new_contributor_counts'] = driver_df.groupby([group_by]).sum().reset_index()[ 'new_contributors'] # used to format x-axis and graph title group_by_format_string = "Year" elif group_by == 'quarter' or group_by == 'month': # set variables to group the data by quarter or month if group_by == 'quarter': date_column = 'quarter' group_by_format_string = "Quarter" elif group_by == 'month': date_column = 'yearmonth' group_by_format_string = "Month" # modifies the driver_df[date_column] to be a string with year and month, # then finds all the unique values data['dates'] = np.unique(np.datetime_as_string(driver_df[date_column], unit='M')) # new_contributor counts for each type of action for contribution_type in actions: data[contribution_type] = \
pd.concat([driver_df.loc[driver_df['action'] == contribution_type], months_df])
pandas.concat
import pandas as pd import numpy as np # Expand a list within a column to a single item in the list per row # (duplicate all other items in the row) def unlistify_pandas_column(df, column): col_idx = check_column_name(df, column) # Helper function to expand and repeat the column col_idx def expand_and_repeat_column(d): row = list(d.values[0]) bef = row[:col_idx] aft = row[col_idx+1:] col = row[col_idx] if col: z = [bef + [c] + aft for c in col] else: return pd.DataFrame([bef + [np.nan] + aft]) if len(col) == 0: z = [bef + [np.nan] + aft] return
pd.DataFrame(z)
pandas.DataFrame
import numpy as np import pandas as pd import multiprocessing as mp import statsmodels.api as sm from ..multiprocessing import mp_pandas_obj def t_val_linreg(close): x = np.ones((close.shape[0], 2)) x[:, 1] = np.arange(close.shape[0]) ols = sm.OLS(close, x).fit() return ols.tvalues[1] def _get_bins_from_trend(molecule, close, min_step, max_step, step): out = pd.DataFrame(index=molecule, columns=['t1', 't_val','bin']) hrzns = list(range(min_step, max_step + 1, step)) for dt0 in molecule: iloc0 = close.index.get_loc(dt0) if iloc0 + max(hrzns) > close.shape[0]: continue df0 =
pd.Series()
pandas.Series
import covasim as cv import covasim.defaults as cvd import covasim.utils as cvu import numba as nb import numpy as np import pandas as pd from collections import defaultdict def generate_people(n_people: int, mixing: pd.DataFrame, reference_ages: pd.Series, households: pd.Series) -> cv.People: ''' From demographic data (cencus) households are generated, in this way we generate people and assign them to a household in the same action. Base for generating the multi-layered network - NOT for the simple random network. Requires: Household mixing matrix (See https://github.com/mobs-lab/mixing-patterns) Householder age distribution (Cencus data) Household size distribution (Cencus data) Number of individuals to generate. Creates a cv.People object. ''' # Number of households to generate total_people = sum(households.index * households.values) household_percent = households / total_people n_households = (n_people * household_percent).round().astype(int) # Adjust one-person households to match the n_households[1] += n_people - sum(n_households * n_households.index) # Select householder, based on householder age distribution household_heads = np.random.choice(reference_ages.index, size=sum(n_households), p=reference_ages.values / sum(reference_ages)) # Create households, based on the formerly created householders and household mixing matrices h_clusters, ages = _make_households(n_households, n_people, household_heads, mixing) # Parse into a cv.People object contacts = cv.Contacts() contacts['H'] = clusters_to_layer(h_clusters) people = cv.People(pars={'pop_size': n_people}, age=ages) people.contacts = contacts return people def add_school_contacts(people: cv.People, mean_contacts: float): ''' Add school contact layer, from mean classroom size and already generated people, to cv.People instance. Actual classroom size is drawn from poisson distribution. Everyone under 18 are assigned to a classroom cluster. ''' classrooms = [] # Create classrooms of children of same age, assign a teacher from the adult (>21) population for age in range(0, 18): children_thisage = cvu.true(people.age == age) classrooms.extend(create_clusters(children_thisage, mean_contacts)) teachers = np.random.choice(cvu.true(people.age > 21), len(classrooms), replace=False) for i in range(len(classrooms)): classrooms[i].append(teachers[i]) # Add to cv.People instance people.contacts['S'] = clusters_to_layer(classrooms) def add_work_contacts(people: cv.People, mean_contacts: float): ''' Add work contact layer, from mean number of coworkers and already generated people, to a cv.People instance. Actual size of workplace cluster drawn from poisson distribution. Everyone in the age interval [18, 65] are assigned to a workplace cluster. ''' work_inds = cvu.true((people.age > 18) & (people.age <= 65)) work_cl = create_clusters(work_inds, mean_contacts) # Add to cv.People instance people.contacts['W'] = clusters_to_layer(work_cl) def add_other_contacts(people: cv.People, layers: pd.DataFrame, legacy=True): """ Add layers according to a layer file Args: people: A cv.People instance to add new layers to layer_members: Dict containing {layer_name:[indexes]} specifying who is able to have interactions within each layer layerfile: Dataframe from `layers.csv` where the index is the layer name """ for layer_name, layer in layers.iterrows(): if layer['cluster_type'] in {'home', 'school', 'work'}: # Ignore these cluster types, as they should be instantiated with # - home: make_people() # - school: add_school_contacts() # - work: add_work_contacts() continue age_min = 0 if pd.isna(layer['age_lb']) else layer['age_lb'] age_max = np.inf if pd.isna(layer['age_ub']) else layer['age_ub'] age_eligible = cvu.true((people.age >= age_min) & (people.age <= age_max)) n_people = int(layer['proportion'] * len(age_eligible)) inds = np.random.choice(age_eligible, n_people, replace=False) if layer['cluster_type'] == 'cluster': # Create a clustered layer based on the mean cluster size assert pd.isna(layer['dynamic']), 'Dynamic clusters not supported yet' clusters = create_clusters(inds, layer['contacts']) people.contacts[layer_name] = clusters_to_layer(clusters) elif layer['cluster_type'] == 'complete': # For a 'complete' layer, treat the layer members as a single cluster assert pd.isna(layer['dynamic']), 'Dynamic complete clusters not supported yet' people.contacts[layer_name] = clusters_to_layer([inds]) elif layer['cluster_type'] == 'random': people.contacts[layer_name] = RandomLayer(inds, layer['contacts'], layer['dispersion'], dynamic=(not
pd.isna(layer['dynamic'])
pandas.isna
import logging import numpy as np import pandas as pd import plotly.graph_objects as go import plotly.express as px class ChartIndicatorException(Exception): pass class PlottingExeception(ChartIndicatorException): pass class TraceCandlesException(ChartIndicatorException): pass class ErrorImplementingIndicator(ChartIndicatorException): pass log = logging.getLogger("candlestick-chart-indicator") class CandlestickChartIndicator(ABC): """ Base class responsible for the implementation of candlestick graphics, and their data. detail: This class implements a "Chain of Responsibility" design pattern. https://en.wikipedia.org/wiki/Chain-of-responsibility_pattern. """ @abc.abstractmethod def inicate(self): pass class MA(CandlestickChartIndicator): """ Class responsible for implementing a simple Moving Average that stops filter out price fluctuations helping to identify trends. """ def indicate(self, data_frame, data=[], **kwargs): try: ma = data_frame['close'].rolling(window=kwargs.get("days", 21)).mean() trace_avg = go.Scatter(x=ma.index, y=MA, name='MA', line=dict(color='#BEBECF'), opacity=0.8) data.append(trace_avg) except (ErrorImplementingIndicator, TypeError) as e: log.warning(f"Error implementing 'ma' indicator: {e}") finally: return data class EMA(CandlestickChartIndicator): """ Class responsible for implementing an exponential moving average EMA = Price today * K + EMA yesterday x (1-k) where K = 2 /(N+1) """ def indicate(self, data_frame, data=[], **kwargs): try: k = (2 / (kwargs.get("days", 21) + 1)) ma = data_frame['close'].rolling(window=kwargs.get("days", 21)).mean() ema_data = pd.DataFrame(index=ma.index) ema_data['PRICE'] = data_frame['close'] ema_data['MA'] = ma ema_data['EMA'] = np.NaN ema_data['EMA'][0] = ema_data['MA'][1] for i in range(1, len(ema_data)): ema_data['EMA'][i] = (ema_data['PRICE'][i] * k) + ((1-k) * ema_data['EMA'][i-1]) trace_ema = go.Scatter( x=ema_data.index, y=ema_data['MA'], name='EMA', line=dict(color='#17BECF'), opacity=0.8) data.append(trace_ema) except (ErrorImplementingIndicator, TypeError) as e: log.warning(f"Error implementing 'ema' indicator: {e}") finally: return data class CrossingMovingAvarege(CandlestickChartIndicator): """ Class responsible for implementing the crossing of moving averages that consists of indicating buying and selling an asset whenever the averages cross. detail: This indicator consists of 2 sets of simple moving averages. an acquaintance as short average or short and another known as long average or long whenever short crosses the long down we make a sale, whenever the long crosses the short up we buy. """ def indicate(self, data_frame, data=[], **kwargs): try: short_rolling = data_frame['close'].rolling(window=kwargs.get("short_rolling", 9)).mean() long_rolling = data_frame['close'].rolling(window=kwargs.get("long_rolling", 21)).mean() trace_short_rolling = go.Scatter( x=short_rolling.index, y=short_rolling, name='SHORT', line=dict(color='#17BECF'), opacity=0.5) trace_long_rolling = go.Scatter( x=long_rolling.index, y=long_rolling, name='LONG', line=dict(color='#17becf'), opacity=0.5) data.append(trace_short_rolling) data.append(trace_long_rolling) except (ErrorImplementingIndicator, TypeError) as e: log.warning(f"Error implementing 'crossing moving avarege' indicator: {e}") finally: return data class MACD(CandlestickChartIndicator): """ Class responsible for implementing a MACD -> Convergence - Divergence of the moving average, which uses 3 exponential moving averages. """ def indicator(self, data_frame, data=[], **kwargs): try: high_average = data_frame['max'].rolling(window=kwargs.get("high", 8)).mean() low_average = data_frame['min'].rolling(window=kwargs.get("low", 8)).mean() hilo_high =
pd.DataFrame(index=data_frame.index)
pandas.DataFrame
import numpy as np import pandas as pd data=pd.read_csv('iris.csv') data=np.array(data) data=np.mat(data[:,0:4]) #数据长度 length=len(data) #通过核函数在输入空间计算核矩阵 k=np.mat(np.zeros((length,length))) for i in range(0,length): for j in range(i,length): k[i,j]=(np.dot(data[i],data[j].T))**2 k[j,i]=k[i,j] name=range(length) test=
pd.DataFrame(columns=name,data=k)
pandas.DataFrame
import pandas as pd from neuralprophet import NeuralProphet, set_random_seed from src.demand_prediction.events_models import save_events_model, load_events_model from src.config import SEED def NeuralProphetEvents(future_events, past_events, events_name, train, test, leaf_name, model_name, start_pred_time, events_dates, use_cache=False): test_name = leaf_name test_df = test.pd_dataframe() train_df = train.pd_dataframe() train_df['ds'] = train_df.index train_df = train_df.rename(columns={'Quantity': 'y'}) name_path_model = leaf_name + "_" + model_name + "_" + start_pred_time model = load_events_model(name_path_model) if model is None or not use_cache: print("Training Event Neural Prophet") set_random_seed(SEED) model = NeuralProphet() model = model.add_country_holidays("US", mode="additive", lower_window=-1, upper_window=1) model.add_events(events_name) history_df = model.create_df_with_events(train_df, past_events) print("Event Neural Prophet Fitting") metrics = model.fit(history_df, freq='D') save_events_model(model, name_path_model) save_events_model(history_df, name_path_model + "_history_df") else: print("Loaded Event Neural Prophet") history_df = load_events_model(name_path_model + "_history_df") if history_df is None: print("Creating History df Neural Prophet") history_df = model.create_df_with_events(train_df, past_events) save_events_model(history_df, name_path_model + "_history_df") print("Start Predicting:") future = model.make_future_dataframe(df=history_df, events_df=future_events, periods=len(test)) forecast = model.predict(future) preds = forecast[['ds', 'yhat1']] predictions =
pd.DataFrame(preds)
pandas.DataFrame
import os from PIL import Image import importlib from datetime import datetime import logging import pandas as pd import core.util as Util class InfoLogger(): """ use logging to record log, only work on GPU 0 by judging global_rank """ def __init__(self, opt): self.opt = opt self.rank = opt['global_rank'] self.phase = opt['phase'] self.setup_logger(None, opt['path']['experiments_root'], opt['phase'], level=logging.INFO, screen=False) self.logger = logging.getLogger(opt['phase']) self.infologger_ftns = {'info', 'warning', 'debug'} def __getattr__(self, name): if self.rank != 0: # info only print on GPU 0. def wrapper(info, *args, **kwargs): pass return wrapper if name in self.infologger_ftns: print_info = getattr(self.logger, name, None) def wrapper(info, *args, **kwargs): print_info(info, *args, **kwargs) return wrapper @staticmethod def setup_logger(logger_name, root, phase, level=logging.INFO, screen=False): """ set up logger """ l = logging.getLogger(logger_name) formatter = logging.Formatter( '%(asctime)s.%(msecs)03d - %(levelname)s: %(message)s', datefmt='%y-%m-%d %H:%M:%S') log_file = os.path.join(root, '{}.log'.format(phase)) fh = logging.FileHandler(log_file, mode='a+') fh.setFormatter(formatter) l.setLevel(level) l.addHandler(fh) if screen: sh = logging.StreamHandler() sh.setFormatter(formatter) l.addHandler(sh) class VisualWriter(): """ use tensorboard to record visuals, support 'add_scalar', 'add_scalars', 'add_image', 'add_images', etc. funtion. Also integrated with save results function. """ def __init__(self, opt, logger): log_dir = opt['path']['tb_logger'] self.result_dir = opt['path']['results'] enabled = opt['train']['tensorboard'] self.rank = opt['global_rank'] self.writer = None self.selected_module = "" if enabled and self.rank==0: log_dir = str(log_dir) # Retrieve vizualization writer. succeeded = False for module in ["tensorboardX", "torch.utils.tensorboard"]: try: self.writer = importlib.import_module(module).SummaryWriter(log_dir) succeeded = True break except ImportError: succeeded = False self.selected_module = module if not succeeded: message = "Warning: visualization (Tensorboard) is configured to use, but currently not installed on " \ "this machine. Please install TensorboardX with 'pip install tensorboardx', upgrade PyTorch to " \ "version >= 1.1 to use 'torch.utils.tensorboard' or turn off the option in the 'config.json' file." logger.warning(message) self.epoch = 0 self.iter = 0 self.phase = '' self.tb_writer_ftns = { 'add_scalar', 'add_scalars', 'add_image', 'add_images', 'add_audio', 'add_text', 'add_histogram', 'add_pr_curve', 'add_embedding' } self.tag_mode_exceptions = {'add_histogram', 'add_embedding'} self.custom_ftns = {'close'} self.timer = datetime.now() def set_iter(self, epoch, iter, phase='train'): self.phase = phase self.epoch = epoch self.iter = iter def save_images(self, results): result_path = os.path.join(self.result_dir, self.phase) os.makedirs(result_path, exist_ok=True) result_path = os.path.join(result_path, str(self.epoch)) os.makedirs(result_path, exist_ok=True) ''' get names and corresponding images from results[OrderedDict] ''' try: names = results['name'] outputs = Util.postprocess(results['result']) for i in range(len(names)): Image.fromarray(outputs[i]).save(os.path.join(result_path, names[i])) except: raise NotImplementedError('You must specify the context of name and result in save_current_results functions of model.') def close(self): self.writer.close() print('Close the Tensorboard SummaryWriter.') def __getattr__(self, name): """ If visualization is configured to use: return add_data() methods of tensorboard with additional information (step, tag) added. Otherwise: return a blank function handle that does nothing """ if name in self.tb_writer_ftns: add_data = getattr(self.writer, name, None) def wrapper(tag, data, *args, **kwargs): if add_data is not None: # add phase(train/valid) tag if name not in self.tag_mode_exceptions: tag = '{}/{}'.format(self.phase, tag) add_data(tag, data, self.iter, *args, **kwargs) return wrapper elif name in self.custom_ftns: customfunc = getattr(self.writer, name, None) def wrapper(*args, **kwargs): if customfunc is not None: customfunc(*args, **kwargs) return wrapper else: # default action for returning methods defined in this class, set_step() for instance. try: attr = object.__getattr__(name) except AttributeError: raise AttributeError("type object '{}' has no attribute '{}'".format(self.selected_module, name)) return attr class LogTracker: """ record training numerical indicators. """ def __init__(self, *keys, phase='train'): self.phase = phase self._data =
pd.DataFrame(index=keys, columns=['total', 'counts', 'average'])
pandas.DataFrame
import warnings import pydot import graphviz # Take a look at the raw data : import pandas as pd from pandas import Series from pandas import DataFrame from pandas import read_csv from sklearn import preprocessing from sklearn.metrics import mean_squared_error import matplotlib # be able to save images on server matplotlib.use('Agg') import matplotlib.pyplot as plt from matplotlib.backends.backend_pdf import PdfPages from math import sqrt import numpy as np import tensorflow as tf import random as rn # The below is necessary in Python 3.2.3 onwards to # have reproducible behavior for certain hash-based operations. # See these references for further details: # https://docs.python.org/3.4/using/cmdline.html#envvar-PYTHONHASHSEED # https://github.com/fchollet/keras/issues/2280#issuecomment-306959926 import os import sys import errno os.environ['PYTHONHASHSEED'] = '0' # The below is necessary for starting Numpy generated random numbers # in a well-defined initial state. np.random.seed(42) # The below is necessary for starting core Python generated random numbers # in a well-defined state. rn.seed(12345) # Force TensorFlow to use single thread. # Multiple threads are a potential source of # non-reproducible results. # For further details, see: https://stackoverflow.com/questions/42022950/which-seeds-have-to-be-set-where-to-realize-100-reproducibility-of-training-res session_conf = tf.ConfigProto( intra_op_parallelism_threads=1, inter_op_parallelism_threads=1) from keras import backend as K # The below tf.set_random_seed() will make random number generation # in the TensorFlow backend have a well-defined initial state. # For further details, see: https://www.tensorflow.org/api_docs/python/tf/set_random_seed import keras from keras.layers import Input, Convolution1D, Dense, MaxPooling1D, Flatten, Conv2D from keras.layers import LSTM from keras.callbacks import Callback from keras.callbacks import ModelCheckpoint from keras.utils import plot_model # be able to save images on server # matplotlib.use('Agg') import time import datetime from keras.models import load_model import multiprocessing os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' # Hide messy TensorFlow warnings warnings.filterwarnings("ignore") # Hide messy Numpy warnings tf.set_random_seed(1234) sess = tf.Session(graph=tf.get_default_graph(), config=session_conf) K.set_session(sess) class EarlyStoppingByLossVal(Callback): def __init__(self, monitor='val_loss', value=0.00001, verbose=0): super(Callback, self).__init__() self.monitor = monitor self.value = value self.verbose = verbose def on_epoch_end(self, epoch, logs={}): current = logs.get(self.monitor) if current is None: warnings.warn("Early stopping requires %s available!" % self.monitor, RuntimeWarning) if current < self.value: if self.verbose > 0: print("Epoch %05d: early stopping THR" % epoch) self.model.stop_training = True class RData: def __init__(self, path, n_weeks=26): self.path = path self.data = {} # load dataset self.data['raw'] = self.load_data() # config self.n_weeks = n_weeks self.n_features = int(len(self.data['raw'][0].columns)) print("number of features: {}".format(self.n_features)) # scale data self.scaler = preprocessing.MinMaxScaler() self.scale() # reframe data self.reframe() # self.state_list_name = self.data.state.unique() self.split_data() # print(self.n_features) # Return specific data def __getitem__(self, index): return self.data[index] # load dataset def load_data(self): raw = read_csv(self.path) raw = raw.fillna(0) # print(raw['0'].head()) # raw = raw.drop(["0"], axis = 1) # print(raw.head()) # transform column names raw.columns = map(str.lower, raw.columns) # raw.rename(columns={'weekend': 'date'}, inplace=True) latitudeList = raw.latitude.unique() longitudeList = raw.longitude.unique() data_list = list() cell_label = list() for la in latitudeList: for lo in longitudeList: data = raw[(raw.latitude == la) & (raw.longitude == lo)] if(len(data) == 260): select = [ #'date', #'year', #'month', #'week', #'week_temp', #'week_prcp', #'latitude', #'longitude', 'mean_ili', #'ili_activity_label', #'ili_activity_group' ] # One Hot Encoding data = pd.get_dummies(data[select]) # print(data.head(1)) data_list.append(data) cell_label.append('lat {} - long {}'.format(la, lo)) #print("The data for latitude {} and longitude {} contains {} rows".format( # la, lo, len(data))) self.data['cell_labels'] = cell_label print("The are {} cell in the data".format(len(data_list))) return data_list # convert series to supervised learning @staticmethod def series_to_supervised(df, n_in=26, n_out=26, dropnan=True): from pandas import concat data = DataFrame(df) n_vars = 1 if type(data) is list else data.shape[1] df = pd.DataFrame(data) input_list, target_list = list(), list() input_names, target_names = list(), list() # input sequence (t-n, ... t-1) for i in range(n_in, 0, -1): input_list.append(df.shift(i)) input_names += [('var%d(t-%d)' % (j + 1, i)) for j in range(n_vars)] # forecast sequence (t, t+1, ... t+n) for i in range(0, n_out): target_list.append(df.shift(-i)) if i == 0: target_names += [('var%d(t)' % (j + 1)) for j in range(n_vars)] else: target_names += [('var%d(t+%d)' % (j + 1, i)) for j in range(n_vars)] # put it all together samples = concat(input_list, axis=1) samples.columns = input_names targets = concat(target_list, axis=1) targets.columns = target_names # drop rows with NaN values if dropnan: targets.fillna(-1, inplace=True) samples.fillna(-1, inplace=True) supervised = [samples, targets] return supervised # convert series to supervised learning @staticmethod def series_to_reframed(data, n_in=26, n_out=26, dropnan=True): n_vars = 1 if type(data) is list else data.shape[1] df =
pd.DataFrame(data)
pandas.DataFrame
############################################################################################# # This script is to read netCDF files, and save the data fields into a single Excel spreadsheet or multiple csv files. # The netCDF files are normally suggested, but sometimes the collaborators have no experience of handling netCDF files. # Here I use the MEIC emission inventory netcdf files as the example. import os import pandas as pd import xarray as xr ############################################################################################# ############################################################################################# # simple example: MEIC emissions at 05x0666 (emissions from all sectors are merged: files already prepared for direct use in GEOS-Chem) os.chdir('/rds/projects/2018/maraisea-glu-01/RDS/RDS_Data/BTH_project/Inventory/MEIC_05x0666/') # open netcdf files MEIC_OC = xr.open_dataset("MEIC_OC.05x0666.nc") MEIC_BC = xr.open_dataset("MEIC_BC.05x0666.nc") print(MEIC_OC,MEIC_BC,sep="\n###################") # convert xarray data array to pandas dataframe def xarray_to_pandas(data): data = data.to_dataframe() data.reset_index(inplace=True) return data # why the for loop doesn't work here? MEIC_OC_df = xarray_to_pandas(MEIC_OC) MEIC_BC_df = xarray_to_pandas(MEIC_BC) # extract values in 2017 and group by month MEIC_OC_2017 = [] MEIC_BC_2017 = [] for i in range(12): MEIC_OC_2017.append(MEIC_OC_df[(pd.DatetimeIndex(MEIC_OC_df['time']).year == 2017) & (pd.DatetimeIndex(MEIC_OC_df['time']).month == i +1)]) MEIC_BC_2017.append(MEIC_BC_df[(pd.DatetimeIndex(MEIC_BC_df['time']).year == 2017) & (pd.DatetimeIndex(MEIC_BC_df['time']).month == i +1)]) # think about a better/safer way to drop rows where all data fields are "NaN" for i in range(len(MEIC_OC_2017)): MEIC_OC_2017[i] = MEIC_OC_2017[i][MEIC_OC_2017[i]['OC_agriculture'] >= 0] MEIC_BC_2017[i] = MEIC_BC_2017[i][MEIC_BC_2017[i]['BC_agriculture'] >= 0] # reset index MEIC_OC_2017 = [x.reset_index(drop=True) for x in MEIC_OC_2017] MEIC_BC_2017 = [x.reset_index(drop=True) for x in MEIC_BC_2017] # save results to a single xlsx file os.chdir('/rds/projects/2018/maraisea-glu-01/Study/Research_Data/BTH/geoschem') yymm=list(range(201701,201713)) writer=pd.ExcelWriter(r"MEIC_OC_2017_05x0666.xlsx") for i,data in enumerate(MEIC_OC_2017): data.to_excel(writer,sheet_name="{0}".format(yymm[i])) writer.save() writer=pd.ExcelWriter(r"MEIC_BC_2017_05x0666.xlsx") for i,data in enumerate(MEIC_BC_2017): data.to_excel(writer,sheet_name="{0}".format(yymm[i])) writer.save() # save results to multiple csv files for i in range(12): MEIC_OC_2017[i].to_csv("MEIC_OC_05x0666"+str(yymm[i])+".csv",index=False,sep=',') MEIC_BC_2017[i].to_csv("MEIC_BC_05x0666"+str(yymm[i])+".csv",index=False,sep=',') ############################################################################################# ############################################################################################# # complicated example: MEIC emissions at 025x025 (emissions from all sectors are seperated: raw files) os.chdir('/rds/projects/2018/maraisea-glu-01/RDS/RDS_Data/BTH_project/Inventory/MEIC_025x025') # first, how to remove all the items defined previously in this job? background = [file for file in globals().keys()] del background # import multiple files import glob import re MEIC_OC_IND = glob.glob("*industry-OC.nc") MEIC_OC_POW = glob.glob("*power-OC.nc") MEIC_OC_TRA = glob.glob("*transportation-OC.nc") MEIC_OC_RES = glob.glob("*residential-OC.nc") MEIC_OC_AGR = glob.glob("*agriculture-OC.nc") # group the items, so you can perform the same functions for all # if I can clean the working space, I think I will be able to group the items which name start with "MEIC_"? # or are there other ways to combine the files with similar names more efficiently? As there will be more data fields and items to be defined. all_MEIC_OC = [MEIC_OC_IND,MEIC_OC_POW,MEIC_OC_TRA,MEIC_OC_RES,MEIC_OC_AGR] # sort all files numerically for file in all_MEIC_OC: file.sort(key=lambda var:[int(x) if x.isdigit() else x for x in re.findall(r'[^0-9]|[0-9]+', var)]) # check the sorted files print('number of files:',len(MEIC_OC_IND),MEIC_OC_IND[0],MEIC_OC_IND[-1],sep=" ") # To read all files together "all_MEIC_OC = [xr.open_dataset(file) for x in all_MEIC_OC for file in x]" # but this is not a good option here, because the emission rate fields are named "z" in the raw files for all the species # and there is no info/attribute within the file to distinguish each species # so for now, I extract emission from each sector seperately MEIC_OC_IND = [xr.open_dataset(file) for file in MEIC_OC_IND] MEIC_OC_POW = [xr.open_dataset(file) for file in MEIC_OC_POW] MEIC_OC_TRA = [xr.open_dataset(file) for file in MEIC_OC_TRA] MEIC_OC_RES = [xr.open_dataset(file) for file in MEIC_OC_RES] MEIC_OC_AGR = [xr.open_dataset(file) for file in MEIC_OC_AGR] # convert xarray data array to pandas dataframe MEIC_OC_IND_df = [xarray_to_pandas(data) for data in MEIC_OC_IND] MEIC_OC_POW_df = [xarray_to_pandas(data) for data in MEIC_OC_POW] MEIC_OC_TRA_df = [xarray_to_pandas(data) for data in MEIC_OC_TRA] MEIC_OC_RES_df = [xarray_to_pandas(data) for data in MEIC_OC_RES] MEIC_OC_AGR_df = [xarray_to_pandas(data) for data in MEIC_OC_AGR] # check one example print(MEIC_OC_IND_df[0].head()) # but why the loop below does not work? # for x in all_MEIC: # x = [xr.open_dataset(file) for file in x] # so the lat and lon are not provided in the raw file, we have to generate those on our own lon = np.arange(70+0.25/2,150,0.25) lat = np.arange(60-0.25/2,10,-.25) print(len(lon)*len(lat)) def expand_grid(lon, lat): xG, yG = np.meshgrid(lon, lat) # create the actual grid xG = xG.flatten() # make the grid 1d yG = yG.flatten() # same return
pd.DataFrame({'lon':xG, 'lat':yG})
pandas.DataFrame
import os from argparse import ArgumentParser from collections import defaultdict import numpy as np import pandas as pd from tqdm import tqdm from load import implicit_load MIN_RATINGS = 20 USER_COLUMN = 'user_id' ITEM_COLUMN = 'item_id' TRAIN_RATINGS_FILENAME = 'train-ratings.csv' TEST_RATINGS_FILENAME = 'test-ratings.csv' TEST_NEG_FILENAME = 'test-negative.csv' def parse_args(): parser = ArgumentParser() parser.add_argument('path', type=str, help='Path to reviews CSV file from MovieLens') parser.add_argument('output', type=str, help='Output directory for train and test CSV files') parser.add_argument('-n', '--negatives', type=int, default=999, help='Number of negative samples for each positive' 'test example') parser.add_argument('-s', '--seed', type=int, default=0, help='Random seed to reproduce same negative samples') return parser.parse_args() def main(): args = parse_args() np.random.seed(args.seed) print("Loading raw data from {}".format(args.path)) df = implicit_load(args.path, sort=False) print("Filtering out users with less than {} ratings".format(MIN_RATINGS)) grouped = df.groupby(USER_COLUMN) df = grouped.filter(lambda x: len(x) >= MIN_RATINGS) print("Mapping original user and item IDs to new sequential IDs") original_users = df[USER_COLUMN].unique() original_items = df[ITEM_COLUMN].unique() user_map = {user: index for index, user in enumerate(original_users)} item_map = {item: index for index, item in enumerate(original_items)} df[USER_COLUMN] = df[USER_COLUMN].apply(lambda user: user_map[user]) df[ITEM_COLUMN] = df[ITEM_COLUMN].apply(lambda item: item_map[item]) assert df[USER_COLUMN].max() == len(original_users) - 1 assert df[ITEM_COLUMN].max() == len(original_items) - 1 print("Creating list of items for each user") # Need to sort before popping to get last item df.sort_values(by='timestamp', inplace=True) all_ratings = set(zip(df[USER_COLUMN], df[ITEM_COLUMN])) user_to_items = defaultdict(list) for row in tqdm(df.itertuples(), desc='Ratings', total=len(df)): user_to_items[getattr(row, USER_COLUMN)].append(getattr(row, ITEM_COLUMN)) # noqa: E501 test_ratings = [] test_negs = [] all_items = set(range(len(original_items))) print("Generating {} negative samples for each user" .format(args.negatives)) for user in tqdm(range(len(original_users)), desc='Users', total=len(original_users)): # noqa: E501 test_item = user_to_items[user].pop() all_ratings.remove((user, test_item)) all_negs = all_items - set(user_to_items[user]) all_negs = sorted(list(all_negs)) # determinism test_ratings.append((user, test_item)) test_negs.append(list(np.random.choice(all_negs, args.negatives))) print("Saving train and test CSV files to {}".format(args.output)) df_train_ratings = pd.DataFrame(list(all_ratings)) df_train_ratings['fake_rating'] = 1 df_train_ratings.to_csv(os.path.join(args.output, TRAIN_RATINGS_FILENAME), index=False, header=False, sep='\t') df_test_ratings = pd.DataFrame(test_ratings) df_test_ratings['fake_rating'] = 1 df_test_ratings.to_csv(os.path.join(args.output, TEST_RATINGS_FILENAME), index=False, header=False, sep='\t') df_test_negs =
pd.DataFrame(test_negs)
pandas.DataFrame
""" Metrics for assessing imputation quality Het/Hom ratio Improving imputation quality in BEAGLE for crop and livestock data - switch-error rate for imputation quality - idem ? Comparison and assessment of family- and population-based genotype imputation methods in large pedigrees - Mean squared correlation (R^2) = Pearson’s squared correlation: [0, 1]. - concordance rate (CR): overestimates the imputation accuracy for rare variants - imputation quality score (IQS): agreement ratio, (-Inf, 1], based on the Kappa statistic A New Statistic to Evaluate Imputation Reliability IQS: The computation of IQS requires the posterior probabilities of AA, AB and BB as output by the imputation program. --> with Beagle 4.1: gprobs, in dic['corr'] files as GT:DS:GP ex. 0|0:0.51:0.55,0.38,0.07 gprobs=[true/false]specifies whether a GP (genotype probability) format field will be included in the output VCF file (default: gprobs=true) MaCH: Using Sequence and Genotype Data to Estimate Haplotypes and Unobserved Genotypes 1 SNP with alleles A and B. Let n_A/A , n_A/B , n_B/B = number of times each possible genotype was sampled after I = n_A/A + n_A/B + n_B/B iterations Most likely genotype = genotype that was sampled most frequently Expected number of counts of allele A: g = (2*n_A/A + n_A/B)/I 1) Genotype Quality Score: GQS = n_IG /I, n_IG = number of iterations where the given genotype was selected as the most likely one This ity can be averaged over all genotypes for a particular marker to ify the average accuracy of imputation for that marker 2) Accuracy: alpha = sum(GQS_i, i=1:N)/N, N number of individuals 3) R²: E(r² with true genotypes) = Var(g)/((4*n_A/A + n_A/B)/I - [(2*n_A/A + n_A/B)/I]²), Estimated r² with true genotypes, Var(g) be the variance of estimated genotype: a better measure of imputation quality for a marker is the estimated r² between true allele counts and estimated allele counts. This ity can be estimated by comparing the variance of the estimated genotype scores with what would be expected if genotype scores were observed without error. https://en.wikipedia.org/wiki/Cohen's_kappa Cohen's kappa coefficient K is a statistic which measures inter-rater agreement for qualitative (categorical) items. Generally thought to be more robust than simple percent agreement calculation, as that coeff takes into account the possibility of agreement occuring by chance. But: difficult to interpret indices of agreement? If no agreement between the raters other than the one that would be expected by chance: K = 0, If K < 0: there is no effective agreement between the raters or the agreement is worse than random. Weighted kappa K exists. κ's tendency to take the observed categories' frequencies as givens, which can make it unreliable for measuring agreement in situations such as the diagnosis of rare diseases. In these situations, κ tends to underestimate the agreement on the rare category. https://scikit-learn.org/stable/modules/generated/sklearn.metrics.cohen_kappa_score.html#sklearn.metrics.cohen_kappa_score Implementation of Cohen's kappa: sklearn.metrics.cohen_kappa_score(y1, y2, labels=None, weights=None, sample_weight=None) y1, y2: arrays of same length (n_samples) http://courses.washington.edu/cmling/lab7.html Using the python interpreter and the nltk metrics package, calculate inter-annotator agreement (both kappa and alpha). Note that AnnotationTask is a type of object, with methods kappa() and alpha(). When you call nltk.metrics.AnnotationTask() it returns an object of that type, which in the example below is stored in the variable task. See: http://www.nltk.org/api/nltk.metrics.html import nltk toy_data = [ ['1', 5723, 'ORG'], ['2', 5723, 'ORG'], ['1', 55829, 'LOC'], ['2', 55829, 'LOC'], ['1', 259742, 'PER'], ['2', 259742, 'LOC'], ['1', 269340, 'PER'], ['2', 269340, 'LOC'] ] task = nltk.metrics.agreement.AnnotationTask(data=toy_data) task.kappa() task.alpha() The nltk metrics package also provides for calculating and printing confusion matrices, a way of displaying which labels were 'mistaken' for which other ones. Unfortunately, this functionality requires a different format for the input. In particular, it wants two lists of labels (in the same order). """ import os, sys import numpy as np import pandas as pd import numba from scipy.stats import pearsonr, zscore from scipy.special import softmax from sklearn import metrics, preprocessing from typing import * rootdir = os.path.dirname(os.path.dirname(os.path.dirname(os.getcwd()))) sys.path.insert(0, rootdir) from genotypooler.poolSNPs import dataframe as vcfdf from genotypooler.poolSNPs.metrics.misc import normalize, min_max_scale from genotypooler.persotools.files import * ArrayLike = NewType('ArrayLike', Union[Sequence, List, Set, Tuple, Iterable, np.ndarray, int, float, str]) #TODO: evaluate phase/switch rate class QualityGT(object): """ Implement different methods for assessing imputation performance: * accuracy and recall per variant per genotype (cross-table) * correlation per variant and/or per sample between imputed and true genotypes * difference per variant and/or per sample between imputed and true genotypes * allele dosage """ def __init__(self, truefile: FilePath, imputedfile: FilePath, ax: object, idx: str = 'id'): self.trueobj = vcfdf.PandasMixedVCF(truefile, format='GT', indextype=idx) self.imputedobj = vcfdf.PandasMixedVCF(imputedfile, format='GT', indextype=idx) self._axis = ax @property def axis(self): return self._axis @axis.setter def set_axis(self, ax): if ax == 0 or ax == 'variants': self._axis = 0 elif ax == 1 or ax == 'samples': self._axis = 1 else: self._axis = None @staticmethod def square(x): return x ** 2 def pearsoncorrelation(self) -> pd.Series: """ Compute Pearson's correlation coefficient between true and imputed genotypes. Correlation between variants (ax=1 i.e. mean genotypes along samples axis), or correlation between samples (ax=0 i.e. mean genotypes along variant axis), or global correlation (ax=None i.e. mean of flattened array) :return: correlation coefficients and p-value for each """ #TODO: replace by Allele Frequency correlation as described in Beagle09? true = self.trueobj.trinary_encoding().values imputed = self.imputedobj.trinary_encoding().values scorer = lambda t: pearsonr(t[0], t[1])[0] # keeps only correlation, not p-value score = list(map(scorer, zip(true, imputed))) # astype(str) casts Series type to discrete classes rsqr = pd.Series(score, index=self.trueobj.variants, name='r_squared').apply(self.square) # squared correlation return rsqr def diff(self) -> pd.DataFrame: """ Compute absolute genotype difference element-wise i.i per variant per sample :return: absolute difference true vs. imputed genotypes """ truedf = self.trueobj.trinary_encoding() imputeddf = self.imputedobj.trinary_encoding() absdiffdf = truedf.sub(imputeddf).abs() return absdiffdf def concordance(self) -> pd.Series: """ Compute concordance between true and imputed genotypes i.e. 1 - the Z-norm of the absolute difference of true vs. imputed genotypes? :return: """ # absdiff = self.diff() # equals 0 when true = imputed, else can be 1 or 2 (very unlikely 2?) absdiff = self.diff() / 2 # restricts values to 0.0, 0.5, 1.0 # absdiffnorm = absdiff.apply(min_max_scale, axis=1, raw=True) # homemade minmax scaler absdiffnorm = absdiff.apply(preprocessing.minmax_scale, axis=1, raw=True) # sklearn minmax scaler discord_score = absdiffnorm.mean(axis=1) # discordance concord_score = 1 - discord_score # concordance = 1 - discordance concord = pd.Series(concord_score, index=self.trueobj.variants, name='concordance') return concord @staticmethod def expectation(a: np.ndarray, freq: np.ndarray): """ sum(Pr(G=x)*x) :param a: :param freq: :return: """ return np.multiply(a, freq).sum() def alleledosage(self) -> Tuple[pd.Series]: # TODO: add by Standardized Allele Frequency Error as described in Beagle09? """ Compute alternate allele dosage. Makes sense only accross a population i.e. mean values along samples axis. Allele dosage = 2 * AAF, for a diploid organism :return: """ truedos = self.trueobj.trinary_encoding().values.mean(axis=1) imputeddos = self.imputedobj.trinary_encoding().values.mean(axis=1) strue = pd.Series(truedos, index=self.trueobj.variants, name='truedos') simputed = pd.Series(imputeddos, index=self.imputedobj.variants, name='imputeddos') return strue, simputed @property def precision(self, avg: str = 'weighted') -> pd.Series: """ Compute precision score for the imputed genotypes. The precision is the ratio tp / (tp + fp) where tp is the number of true positives and fp the number of false positives. The precision is intuitively the ability of the classifier not to label as positive a sample that is negative. The best value is 1 and the worst value is 0. :param avg: 'weighted' needed for multiclass classification :return: """ true = self.trueobj.trinary_encoding().values imputed = self.imputedobj.trinary_encoding().values scorer = lambda t: metrics.precision_score(t[0].astype(str), t[1].astype(str), average=avg) score = list(map(scorer, zip(true, imputed))) # astype(str) casts Series type to discrete classes return pd.Series(score, index=self.trueobj.variants, name='precision_score') @property def accuracy(self) -> pd.Series: """ Compute accuracy score for the imputed genotypes. In multilabel classification, this function computes subset accuracy i.e. the number of exact true matches. The accuracy is the ratio tp / (tp + fp + tn + fn) for each class. Equal to Jaccard index in the case of multilabel classification tasks. Jaccard similarity coefficient is defined as the size of the intersection divided by the size of the union of two label sets. :return: """ true = self.trueobj.trinary_encoding().values imputed = self.imputedobj.trinary_encoding().values scorer = lambda t: metrics.accuracy_score(t[0].astype(str), t[1].astype(str)) score = list(map(scorer, zip(true, imputed))) # astype(str) casts Series type to discrete classes return pd.Series(score, index=self.trueobj.variants, name='accuracy_score') @property def recall(self, avg: str = 'weighted') -> pd.Series: """ Compute recall score for the imputed genotypes. The recall is the ratio tp / (tp + fn) where tp is the number of true positives and fn the number of false negatives. The recall is intuitively the ability of the classifier to find all the positive samples. The best value is 1 and the worst value is 0. :return: """ true = self.trueobj.trinary_encoding().values imputed = self.imputedobj.trinary_encoding().values scorer = lambda t: metrics.recall_score(t[0].astype(str), t[1].astype(str), average=avg) score = list(map(scorer, zip(true, imputed))) # astype(str) casts Series type to discrete classes return pd.Series(score, index=self.trueobj.variants, name='recall_score') @property def f1_score(self, avg: str = 'weighted') -> pd.Series: """ F1-score for the genotypes :return: """ true = self.trueobj.trinary_encoding().values imputed = self.imputedobj.trinary_encoding().values scorer = lambda t: metrics.f1_score(t[0].astype(str), t[1].astype(str), average=avg) score = list(map(scorer, zip(true, imputed))) # astype(str) casts Series type to discrete classes return pd.Series(score, index=self.trueobj.variants, name='f1_score') @numba.vectorize def mylog_numba(x): """ Numba-enhanced computation of logarithm with 1e-05 cutoff """ return np.log(x) if x > 1e-05 else np.log(1e-05) @numba.vectorize def myprodlog_numba(x, y): """ Numba-enhanced computation of element-wise entropy """ return -np.multiply(x, mylog_numba(y)) # Numba-enhanced function do not accept ANY argument being a Pandas object @numba.jit # numba.vectorize yields same perf def entro_plain_numba(nptrue: np.ndarray, nppred: np.ndarray): """ Numba-enhanced computation of cross entropy i.e. sum of entropies for the 3 dimensions (genotypes) """ return myprodlog_numba(nptrue, nppred).sum(axis=-1) @numba.jit # NOT numba.vectorize def logfill(x): """ Adjust values for cross-entropy calculation Ex. rs1836444 -0.0 inf NaN -> rs1836444 0.0 5.0 0.0 """ if x == -0.0 or x == np.nan: return 0.0 elif x == np.inf: return 5.0 else: return x def compute_entro_numba(dftrue: pd.DataFrame, dfpred: pd.DataFrame) -> pd.DataFrame: """ This function acts as wrapper that bridges Numba calculation and Pandas objects """ result = myprodlog_numba(dftrue.values, dfpred.values) return pd.DataFrame(result).applymap(logfill).fillna(0.0) class QualityGL(object): """ Implement cross-entropy method for assessing imputation performance from GL. Numba-enhanced calculations. """ def __init__(self, truefile: FilePath, imputedfile: FilePath, ax: object, fmt: str = 'GP', idx: str = 'id'): self.trueobj = vcfdf.PandasMixedVCF(truefile, format='GL', indextype=idx) self.imputedobj = vcfdf.PandasMixedVCF(imputedfile, format=fmt, indextype=idx) self._axis = ax @property def axis(self): return self._axis @axis.setter def set_axis(self, ax): if ax == 0 or ax == 'variants': self._axis = 0 elif ax == 1 or ax == 'samples': self._axis = 1 else: self._axis = None def intergl_entropy(self, g_true: pd.Series, g_pred: pd.Series) -> np.ndarray: """ Compute entropy from two GL series for a sample as E = -sum(p_true * log(p_imputed), sum over the 3 GL values at every mmarker p_imputed set to 10^-12 if equal to 0.0 Usual logarithm log, NOT log10 for entropy calculation """ g_true = pd.Series(g_true) g_pred = pd.Series(g_pred) # comes as tuples of str # pandas.DataFrame.combine: both data frames must have the SAME column names dftrue = pd.DataFrame.from_records(g_true.values, index=g_true.index, columns=['RR', 'RA', 'AA']).astype(float) dftrue = pd.DataFrame(np.power(10.0, dftrue.values), index=g_true.index, columns=['RR', 'RA', 'AA']) # GL are logged! dfpred = pd.DataFrame.from_records(g_pred.values, index=g_pred.index, columns=['RR', 'RA', 'AA']).astype(float) g_entro = compute_entro_numba(dftrue, dfpred) # using Numba speeds up execution by a factor of 5-6 return g_entro.sum(axis=1).rename( g_true.name).to_numpy() # return type has to be np.ndarray for proper use with combine then @property def cross_entropy(self) -> pd.Series: """ For genotypes likelihoods Entropy for the genotypes, aCROSS two populations. Not confuse with intrapop entropy entropy = alpha * sum(p_true * log(p_imputed) for every GL for every sample) at 1 marker :return: """ true = self.trueobj.genotypes() imputed = self.imputedobj.genotypes() # these come as arrays of tuples entro = true.combine(imputed, self.intergl_entropy) score = entro.mean(axis=1) return
pd.Series(score, index=self.trueobj.variants, name='cross_entropy')
pandas.Series
""" Notes ----- This test and docs/source/usage/iss/iss_cli.sh test the same code paths and should be updated together """ import os import unittest import numpy as np import pandas as pd import pytest from starfish.test.full_pipelines.cli._base_cli_test import CLITest from starfish.types import Features EXPERIMENT_JSON_URL = "https://d2nhj9g34unfro.cloudfront.net/20181005/ISS-TEST/experiment.json" @pytest.mark.slow class TestWithIssData(CLITest, unittest.TestCase): @property def spots_file(self): return "decoded-spots.nc" @property def subdirs(self): return ( "max_projected", "transforms", "registered", "filtered", "results", ) @property def stages(self): return ( [ "starfish", "validate", "experiment", EXPERIMENT_JSON_URL, ], [ "starfish", "filter", "--input", f"@{EXPERIMENT_JSON_URL}[fov_001][primary]", "--output", lambda tempdir, *args, **kwargs: os.path.join( tempdir, "max_projected", "primary_images.json"), "MaxProj", "--dims", "c", "--dims", "z" ], [ "starfish", "learn_transform", "--input", lambda tempdir, *args, **kwargs: os.path.join( tempdir, "max_projected", "primary_images.json"), "--output", lambda tempdir, *args, **kwargs: os.path.join( tempdir, "transforms", "transforms.json"), "Translation", "--reference-stack", f"@{EXPERIMENT_JSON_URL}[fov_001][dots]", "--upsampling", "1000", "--axes", "r" ], [ "starfish", "apply_transform", "--input", f"@{EXPERIMENT_JSON_URL}[fov_001][primary]", "--output", lambda tempdir, *args, **kwargs: os.path.join( tempdir, "registered", "primary_images.json"), "--transformation-list", lambda tempdir, *args, **kwargs: os.path.join( tempdir, "transforms", "transforms.json"), "Warp", ], [ "starfish", "filter", "--input", lambda tempdir, *args, **kwargs: os.path.join( tempdir, "registered", "primary_images.json"), "--output", lambda tempdir, *args, **kwargs: os.path.join( tempdir, "filtered", "primary_images.json"), "WhiteTophat", "--masking-radius", "15", ], [ "starfish", "filter", "--input", f"@{EXPERIMENT_JSON_URL}[fov_001][nuclei]", "--output", lambda tempdir, *args, **kwargs: os.path.join( tempdir, "filtered", "nuclei.json"), "WhiteTophat", "--masking-radius", "15", ], [ "starfish", "filter", "--input", f"@{EXPERIMENT_JSON_URL}[fov_001][dots]", "--output", lambda tempdir, *args, **kwargs: os.path.join( tempdir, "filtered", "dots.json"), "WhiteTophat", "--masking-radius", "15", ], [ "starfish", "detect_spots", "--input", lambda tempdir, *args, **kwargs: os.path.join( tempdir, "filtered", "primary_images.json"), "--output", lambda tempdir, *args, **kwargs: os.path.join( tempdir, "results", "spots.nc"), "--blobs-stack", lambda tempdir, *args, **kwargs: os.path.join( tempdir, "filtered", "dots.json"), "--blobs-axis", "r", "--blobs-axis", "c", "BlobDetector", "--min-sigma", "4", "--max-sigma", "6", "--num-sigma", "20", "--threshold", "0.01", ], [ "starfish", "segment", "--primary-images", lambda tempdir, *args, **kwargs: os.path.join( tempdir, "filtered", "primary_images.json"), "--nuclei", lambda tempdir, *args, **kwargs: os.path.join( tempdir, "filtered", "nuclei.json"), "-o", lambda tempdir, *args, **kwargs: os.path.join( tempdir, "results", "label_image.png"), "Watershed", "--nuclei-threshold", ".16", "--input-threshold", ".22", "--min-distance", "57", ], [ "starfish", "target_assignment", "--label-image", lambda tempdir, *args, **kwargs: os.path.join( tempdir, "results", "label_image.png"), "--intensities", lambda tempdir, *args, **kwargs: os.path.join( tempdir, "results", "spots.nc"), "--output", lambda tempdir, *args, **kwargs: os.path.join( tempdir, "results", "targeted-spots.nc"), "Label", ], [ "starfish", "decode", "-i", lambda tempdir, *args, **kwargs: os.path.join( tempdir, "results", "targeted-spots.nc"), "--codebook", f"@{EXPERIMENT_JSON_URL}", "-o", lambda tempdir, *args, **kwargs: os.path.join( tempdir, "results", "decoded-spots.nc"), "PerRoundMaxChannelDecoder", ], # Validate results/{spots,targeted-spots,decoded-spots}.nc [ "starfish", "validate", "xarray", lambda tempdir, *args, **kwargs: os.path.join( tempdir, "results", "spots.nc") ], [ "starfish", "validate", "xarray", lambda tempdir, *args, **kwargs: os.path.join( tempdir, "results", "targeted-spots.nc") ], [ "starfish", "validate", "xarray", lambda tempdir, *args, **kwargs: os.path.join( tempdir, "results", "decoded-spots.nc") ], ) def verify_results(self, intensities): # TODO make this test stronger genes, counts = np.unique( intensities.coords[Features.TARGET], return_counts=True) gene_counts =
pd.Series(counts, genes)
pandas.Series
# -*- coding: utf-8 -*- """ Created on Wed Mar 7 09:40:49 2018 @author: yuwei """ import pandas as pd import numpy as np import math import random import time import scipy as sp import xgboost as xgb def loadData(): "下载数据" trainSet = pd.read_table('round1_ijcai_18_train_20180301.txt',sep=' ') testSet = pd.read_table('round1_ijcai_18_test_a_20180301.txt',sep=' ') return trainSet,testSet def splitData(trainSet,testSet): "按时间划分验证集" #转化测试集时间戳为标准时间 time_local = testSet.context_timestamp.map(lambda x :time.localtime(x)) time_local = time_local.map(lambda x :time.strftime("%Y-%m-%d %H:%M:%S",x)) testSet['context_timestamp'] = time_local #转化训练集时间戳为标准时间 time_local = trainSet.context_timestamp.map(lambda x :time.localtime(x)) time_local = time_local.map(lambda x :time.strftime("%Y-%m-%d %H:%M:%S",x)) trainSet['context_timestamp'] = time_local del time_local #处理训练集item_category_list属性 trainSet['item_category_list'] = trainSet.item_category_list.map(lambda x :x.split(';')) trainSet['item_category_list_2'] = trainSet.item_category_list.map(lambda x :x[1]) trainSet['item_category_list_3'] = trainSet.item_category_list.map(lambda x :x[2] if len(x) >2 else -1) trainSet['item_category_list_2'] = list(map(lambda x,y : x if (y == -1) else y,trainSet['item_category_list_2'],trainSet['item_category_list_3'])) #处理测试集item_category_list属性 testSet['item_category_list'] = testSet.item_category_list.map(lambda x :x.split(';')) testSet['item_category_list_2'] = testSet.item_category_list.map(lambda x :x[1]) testSet['item_category_list_3'] = testSet.item_category_list.map(lambda x :x[2] if len(x) >2 else -1) testSet['item_category_list_2'] = list(map(lambda x,y : x if (y == -1) else y,testSet['item_category_list_2'],testSet['item_category_list_3'])) del trainSet['item_category_list_3'];del testSet['item_category_list_3']; #处理predict_category_property的排名 trainSet['predict_category'] = trainSet['predict_category_property'].map(lambda x :[y.split(':')[0] for y in x.split(';')]) trainSet['predict_category_property_rank'] = list(map(lambda x,y:y.index(x) if x in y else -1,trainSet['item_category_list_2'],trainSet['predict_category'])) testSet['predict_category'] = testSet['predict_category_property'].map(lambda x :[y.split(':')[0] for y in x.split(';')]) testSet['predict_category_property_rank'] = list(map(lambda x,y:y.index(x) if x in y else -1,testSet['item_category_list_2'],testSet['predict_category'])) #统计item_category_list中和predict_category共同的个数 trainSet['item_category_count'] = list(map(lambda x,y:len(set(x)&set(y)),trainSet.item_category_list,trainSet.predict_category)) testSet['item_category_count'] = list(map(lambda x,y:len(set(x)&set(y)),testSet.item_category_list,testSet.predict_category)) #不同个数 trainSet['item_category_count'] = list(map(lambda x,y:len(set(x)) - len(set(x)&set(y)),trainSet.item_category_list,trainSet.predict_category)) testSet['item_category_count'] = list(map(lambda x,y:len(set(x)) - len(set(x)&set(y)),testSet.item_category_list,testSet.predict_category)) del trainSet['predict_category']; del testSet['predict_category'] "划分数据集" #测试集 23-24号特征提取,25号打标 test = testSet testFeat = trainSet[trainSet['context_timestamp']>'2018-09-23'] #验证集 22-23号特征提取,24号打标 validate = trainSet[trainSet['context_timestamp']>'2018-09-24'] validateFeat = trainSet[(trainSet['context_timestamp']>'2018-09-22') & (trainSet['context_timestamp']<'2018-09-24')] #训练集 21-22号特征提取,23号打标;20-21号特征提取,22号打标;19-20号特征提取,21号打标;18-19号特征提取,20号打标 #标签区间 train1 = trainSet[(trainSet['context_timestamp']>'2018-09-23') & (trainSet['context_timestamp']<'2018-09-24')] train2 = trainSet[(trainSet['context_timestamp']>'2018-09-22') & (trainSet['context_timestamp']<'2018-09-23')] train3 = trainSet[(trainSet['context_timestamp']>'2018-09-21') & (trainSet['context_timestamp']<'2018-09-22')] train4 = trainSet[(trainSet['context_timestamp']>'2018-09-20') & (trainSet['context_timestamp']<'2018-09-21')] #特征区间 trainFeat1 = trainSet[(trainSet['context_timestamp']>'2018-09-21') & (trainSet['context_timestamp']<'2018-09-23')] trainFeat2 = trainSet[(trainSet['context_timestamp']>'2018-09-20') & (trainSet['context_timestamp']<'2018-09-22')] trainFeat3 = trainSet[(trainSet['context_timestamp']>'2018-09-19') & (trainSet['context_timestamp']<'2018-09-21')] trainFeat4 = trainSet[(trainSet['context_timestamp']>'2018-09-18') & (trainSet['context_timestamp']<'2018-09-20')] return test,testFeat,validate,validateFeat,train1,trainFeat1,train2,trainFeat2,train3,trainFeat3,train4,trainFeat4 def modelXgb(train,test): "xgb模型" train_y = train['is_trade'].values # train_x = train.drop(['item_brand_id','item_city_id','user_id','shop_id','context_id','instance_id', 'item_id','item_category_list','item_property_list', 'context_timestamp', # 'predict_category_property','is_trade' # ],axis=1).values # test_x = test.drop(['item_brand_id','item_city_id','user_id','shop_id','context_id','instance_id', 'item_id','item_category_list','item_property_list', 'context_timestamp', # 'predict_category_property','is_trade' # ],axis=1).values # test_x = test.drop(['item_brand_id','item_city_id','user_id','shop_id','context_id','instance_id', 'item_id','item_category_list','item_property_list', 'context_timestamp', # 'predict_category_property' # ],axis=1).values #根据皮卡尔相关系数,drop相关系数低于-0.2的属性 train_x = train.drop(['item_brand_id', 'item_city_id','user_id','shop_id','context_id', 'instance_id', 'item_id','item_category_list', 'item_property_list', 'context_timestamp', 'predict_category_property','is_trade', 'item_price_level','user_rank_down', 'item_category_list_2_not_buy_count', 'item_category_list_2_count', 'user_first' # 'user_count_label', # 'item_city_not_buy_count', # 'item_city_count', # 'user_shop_rank_down', # 'item_city_buy_count', # 'user_item_rank_down', # 'shop_score_description', # 'shop_review_positive_rate', # 'shop_score_delivery', # 'shop_score_service', ],axis=1).values # test_x = test.drop(['item_brand_id', # 'item_city_id','user_id','shop_id','context_id', # 'instance_id', 'item_id','item_category_list', # 'item_property_list', 'context_timestamp', # 'predict_category_property','is_trade', # 'item_price_level','user_rank_down', # 'item_category_list_2_not_buy_count', # 'item_category_list_2_count', # 'user_first', # 'user_count_label', # 'item_city_not_buy_count', # 'item_city_count', # 'user_shop_rank_down', # 'item_city_buy_count', # 'user_item_rank_down', # 'shop_score_description', # 'shop_review_positive_rate', # 'shop_score_delivery', # 'shop_score_service' # ],axis=1).values test_x = test.drop(['item_brand_id', 'item_city_id','user_id','shop_id','context_id', 'instance_id', 'item_id','item_category_list', 'item_property_list', 'context_timestamp', 'predict_category_property', 'item_price_level','user_rank_down', 'item_category_list_2_not_buy_count', 'item_category_list_2_count', 'user_first', # 'user_count_label', # 'item_city_not_buy_count', # 'item_city_count', # 'user_shop_rank_down', # 'item_city_buy_count', # 'user_item_rank_down', # 'shop_score_description', # 'shop_review_positive_rate', # 'shop_score_delivery', # 'shop_score_service' ],axis=1).values dtrain = xgb.DMatrix(train_x, label=train_y) dtest = xgb.DMatrix(test_x) # 模型参数 params = {'booster': 'gbtree', 'objective':'binary:logistic', 'eval_metric':'logloss', 'eta': 0.03, 'max_depth': 5, # 6 'colsample_bytree': 0.8,#0.8 'subsample': 0.8, 'scale_pos_weight': 1, 'min_child_weight': 18 # 2 } # 训练 watchlist = [(dtrain,'train')] bst = xgb.train(params, dtrain, num_boost_round=700,evals=watchlist) # 预测 predict = bst.predict(dtest) # test_xy = test[['instance_id','is_trade']] test_xy = test[['instance_id']] test_xy['predicted_score'] = predict return test_xy def get_item_feat(data,dataFeat): "item的特征提取" result = pd.DataFrame(dataFeat['item_id']) result = result.drop_duplicates(['item_id'],keep='first') "1.统计item出现次数" dataFeat['item_count'] = dataFeat['item_id'] feat = pd.pivot_table(dataFeat,index=['item_id'],values='item_count',aggfunc='count').reset_index() del dataFeat['item_count'] result = pd.merge(result,feat,on=['item_id'],how='left') "2.统计item历史被购买的次数" dataFeat['item_buy_count'] = dataFeat['is_trade'] feat = pd.pivot_table(dataFeat,index=['item_id'],values='item_buy_count',aggfunc='sum').reset_index() del dataFeat['item_buy_count'] result = pd.merge(result,feat,on=['item_id'],how='left') "3.统计item转化率特征" buy_ratio = list(map(lambda x,y : -1 if y == 0 else x/y,result.item_buy_count,result.item_count)) result['item_buy_ratio'] = buy_ratio "4.统计item历史未被够买的次数" result['item_not_buy_count'] = result['item_count'] - result['item_buy_count'] return result def get_user_feat(data,dataFeat): "user的特征提取" result = pd.DataFrame(dataFeat['user_id']) result = result.drop_duplicates(['user_id'],keep='first') "1.统计user出现次数" dataFeat['user_count'] = dataFeat['user_id'] feat = pd.pivot_table(dataFeat,index=['user_id'],values='user_count',aggfunc='count').reset_index() del dataFeat['user_count'] result = pd.merge(result,feat,on=['user_id'],how='left') "2.统计user历史被购买的次数" dataFeat['user_buy_count'] = dataFeat['is_trade'] feat = pd.pivot_table(dataFeat,index=['user_id'],values='user_buy_count',aggfunc='sum').reset_index() del dataFeat['user_buy_count'] result = pd.merge(result,feat,on=['user_id'],how='left') "3.统计user转化率特征" buy_ratio = list(map(lambda x,y : -1 if y == 0 else x/y,result.user_buy_count,result.user_count)) result['user_buy_ratio'] = buy_ratio "4.统计user历史未被够买的次数" result['user_not_buy_count'] = result['user_count'] - result['user_buy_count'] return result def get_context_feat(data,dataFeat): "context的特征提取" result = pd.DataFrame(dataFeat['context_id']) result = result.drop_duplicates(['context_id'],keep='first') "1.统计context出现次数" dataFeat['context_count'] = dataFeat['context_id'] feat = pd.pivot_table(dataFeat,index=['context_id'],values='context_count',aggfunc='count').reset_index() del dataFeat['context_count'] result = pd.merge(result,feat,on=['context_id'],how='left') "2.统计context历史被购买的次数" dataFeat['context_buy_count'] = dataFeat['is_trade'] feat = pd.pivot_table(dataFeat,index=['context_id'],values='context_buy_count',aggfunc='sum').reset_index() del dataFeat['context_buy_count'] result = pd.merge(result,feat,on=['context_id'],how='left') "3.统计context转化率特征" buy_ratio = list(map(lambda x,y : -1 if y == 0 else x/y,result.context_buy_count,result.context_count)) result['context_buy_ratio'] = buy_ratio "4.统计context历史未被够买的次数" result['context_not_buy_count'] = result['context_count'] - result['context_buy_count'] return result def get_shop_feat(data,dataFeat): "shop的特征提取" result = pd.DataFrame(dataFeat['shop_id']) result = result.drop_duplicates(['shop_id'],keep='first') "1.统计shop出现次数" dataFeat['shop_count'] = dataFeat['shop_id'] feat = pd.pivot_table(dataFeat,index=['shop_id'],values='shop_count',aggfunc='count').reset_index() del dataFeat['shop_count'] result = pd.merge(result,feat,on=['shop_id'],how='left') "2.统计shop历史被购买的次数" dataFeat['shop_buy_count'] = dataFeat['is_trade'] feat = pd.pivot_table(dataFeat,index=['shop_id'],values='shop_buy_count',aggfunc='sum').reset_index() del dataFeat['shop_buy_count'] result = pd.merge(result,feat,on=['shop_id'],how='left') "3.统计shop转化率特征" buy_ratio = list(map(lambda x,y : -1 if y == 0 else x/y,result.shop_buy_count,result.shop_count)) result['shop_buy_ratio'] = buy_ratio "4.统计shop历史未被够买的次数" result['shop_not_buy_count'] = result['shop_count'] - result['shop_buy_count'] return result def get_timestamp_feat(data,dataFeat): "context_timestamp的特征提取" result = pd.DataFrame(dataFeat['context_timestamp']) result = result.drop_duplicates(['context_timestamp'],keep='first') "1.统计context_timestamp出现次数" dataFeat['context_timestamp_count'] = dataFeat['context_timestamp'] feat = pd.pivot_table(dataFeat,index=['context_timestamp'],values='context_timestamp_count',aggfunc='count').reset_index() del dataFeat['context_timestamp_count'] result = pd.merge(result,feat,on=['context_timestamp'],how='left') "2.统计context_timestamp历史被购买的次数" dataFeat['context_timestamp_buy_count'] = dataFeat['is_trade'] feat = pd.pivot_table(dataFeat,index=['context_timestamp'],values='context_timestamp_buy_count',aggfunc='sum').reset_index() del dataFeat['context_timestamp_buy_count'] result = pd.merge(result,feat,on=['context_timestamp'],how='left') "3.统计context_timestamp转化率特征" buy_ratio = list(map(lambda x,y : -1 if y == 0 else x/y,result.context_timestamp_buy_count,result.context_timestamp_count)) result['context_timestamp_buy_ratio'] = buy_ratio "4.统计context_timestamp历史未被够买的次数" result['context_timestamp_not_buy_count'] = result['context_timestamp_count'] - result['context_timestamp_buy_count'] return result def get_item_brand_feat(data,dataFeat): "item_brand的特征提取" result = pd.DataFrame(dataFeat['item_brand_id']) result = result.drop_duplicates(['item_brand_id'],keep='first') "1.统计item_brand出现次数" dataFeat['item_brand_count'] = dataFeat['item_brand_id'] feat = pd.pivot_table(dataFeat,index=['item_brand_id'],values='item_brand_count',aggfunc='count').reset_index() del dataFeat['item_brand_count'] result = pd.merge(result,feat,on=['item_brand_id'],how='left') "2.统计item_brand历史被购买的次数" dataFeat['item_brand_buy_count'] = dataFeat['is_trade'] feat = pd.pivot_table(dataFeat,index=['item_brand_id'],values='item_brand_buy_count',aggfunc='sum').reset_index() del dataFeat['item_brand_buy_count'] result = pd.merge(result,feat,on=['item_brand_id'],how='left') "3.统计item_brand转化率特征" buy_ratio = list(map(lambda x,y : -1 if y == 0 else x/y,result.item_brand_buy_count,result.item_brand_count)) result['item_brand_buy_ratio'] = buy_ratio "4.统计item_brand历史未被够买的次数" result['item_brand_not_buy_count'] = result['item_brand_count'] - result['item_brand_buy_count'] return result def get_item_city_feat(data,dataFeat): "item_city的特征提取" result = pd.DataFrame(dataFeat['item_city_id']) result = result.drop_duplicates(['item_city_id'],keep='first') "1.统计item_city出现次数" dataFeat['item_city_count'] = dataFeat['item_city_id'] feat = pd.pivot_table(dataFeat,index=['item_city_id'],values='item_city_count',aggfunc='count').reset_index() del dataFeat['item_city_count'] result = pd.merge(result,feat,on=['item_city_id'],how='left') "2.统计item_city历史被购买的次数" dataFeat['item_city_buy_count'] = dataFeat['is_trade'] feat = pd.pivot_table(dataFeat,index=['item_city_id'],values='item_city_buy_count',aggfunc='sum').reset_index() del dataFeat['item_city_buy_count'] result = pd.merge(result,feat,on=['item_city_id'],how='left') "3.统计item_city转化率特征" buy_ratio = list(map(lambda x,y : -1 if y == 0 else x/y,result.item_city_buy_count,result.item_city_count)) result['item_city_buy_ratio'] = buy_ratio "4.统计item_city历史未被够买的次数" result['item_city_not_buy_count'] = result['item_city_count'] - result['item_city_buy_count'] return result def get_user_gender_feat(data,dataFeat): "user_gender的特征提取" result = pd.DataFrame(dataFeat['user_gender_id']) result = result.drop_duplicates(['user_gender_id'],keep='first') "1.统计user_gender出现次数" dataFeat['user_gender_count'] = dataFeat['user_gender_id'] feat = pd.pivot_table(dataFeat,index=['user_gender_id'],values='user_gender_count',aggfunc='count').reset_index() del dataFeat['user_gender_count'] result = pd.merge(result,feat,on=['user_gender_id'],how='left') "2.统计user_gender历史被购买的次数" dataFeat['user_gender_buy_count'] = dataFeat['is_trade'] feat = pd.pivot_table(dataFeat,index=['user_gender_id'],values='user_gender_buy_count',aggfunc='sum').reset_index() del dataFeat['user_gender_buy_count'] result = pd.merge(result,feat,on=['user_gender_id'],how='left') "3.统计user_gender转化率特征" buy_ratio = list(map(lambda x,y : -1 if y == 0 else x/y,result.user_gender_buy_count,result.user_gender_count)) result['user_gender_buy_ratio'] = buy_ratio "4.统计user_gender历史未被够买的次数" result['user_gender_not_buy_count'] = result['user_gender_count'] - result['user_gender_buy_count'] return result def get_user_occupation_feat(data,dataFeat): "user_occupation的特征提取" result =
pd.DataFrame(dataFeat['user_occupation_id'])
pandas.DataFrame
import time import os import numpy as np import pandas as pd from tqdm import tqdm from datetime import datetime as dt from py4jps.resources import JpsBaseLib # Local KG location (fallback) FALLBACK_KG = "http://localhost:9999/blazegraph/" # Output location OUTPUT_FOLDER = "/var/www/html/gas-grid" # Maximum batch size for results BATCH_SIZE = 50_000 # SPARQL query string QUERY = """PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> PREFIX ns1: <http://www.theworldavatar.com/ontology/ontocape/upper_level/system.owl#> PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> PREFIX gasgrid: <http://www.theworldavatar.com/ontology/ontogasgrid/gas_network_system.owl#> PREFIX loc: <http://www.bigdata.com/rdf/geospatial/literals/v1#> PREFIX geo: <http://www.bigdata.com/rdf/geospatial#> PREFIX comp: <http://www.theworldavatar.com/ontology/ontogasgrid/gas_network_components.owl#> SELECT ?location ?order ?label WHERE { ?pipe rdf:type gasgrid:GridPipeline. ?pipe rdfs:label ?label. ?pipe ns1:hasSubsystem ?segment. ?segment gasgrid:hasEndPart ?end. ?end gasgrid:entersPipeConnection ?connection. ?connection loc:lat-lon ?location. ?connection gasgrid:hasOrder ?order. }""" def initialiseGateway(): """ Initialise the JPS Base Library """ jpsBaseLibGW = JpsBaseLib() jpsBaseLibGW.launchGateway() jpsBaseLibView = jpsBaseLibGW.createModuleView() jpsBaseLibGW.importPackages(jpsBaseLibView, "uk.ac.cam.cares.jps.base.query.*") return jpsBaseLibView.RemoteStoreClient(getKGLocation("ontogasgrid")) def getKGLocation(namespace): """ Determines the correct URL for the KG's SPARQL endpoint. Arguments: namespace - KG namespace. Returns: Full URL for the KG. """ # Check for the KG_LOCATION environment variable, using local fallback kgRoot = os.getenv('KG_LOCATION', FALLBACK_KG) if kgRoot.endswith("/"): return kgRoot + "namespace/" + namespace + "/sparql" else: return kgRoot + "/namespace/" + namespace + "/sparql" def outputPipes(): """ Queries the KG for data on pipes then outputs it to a GeoJSON file. """ kgClient = initialiseGateway() print("Using KG endpoint:", getKGLocation("ontogasgrid")) gotAllResults = False offset = 1 iteration = 1 totalResults = 0 result = [] # Run query in batches while not gotAllResults: print("INFO: Submitting request #" + str(iteration) + " at", dt.now()) print("INFO: Limit is " + str(BATCH_SIZE) + ", offset is " + str(offset)) finalQuery = QUERY + " LIMIT " + str(BATCH_SIZE) + " OFFSET " + str(offset) batchResult = kgClient.executeQuery(finalQuery) batchResult = batchResult.toList() for singleResult in batchResult: result.append(singleResult) # Check if we have all results if len(batchResult) < BATCH_SIZE: gotAllResults = True else: if totalResults == 0: offset += (BATCH_SIZE - 1) else: offset += BATCH_SIZE iteration += 1 totalResults += len(batchResult) num_ret = len(result) ret_array = np.zeros((num_ret,4),dtype='object') header = ['lat','lon','order','name'] for i in tqdm(range(num_ret)): lat,lon = result[i]['location'].split('#') ret_array[i,:] = [lat, lon, float(result[i]['order']), result[i]['label']] result =
pd.DataFrame(ret_array, columns=header)
pandas.DataFrame
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2019-07-04 15:34 # @Author : minp # @contact : <EMAIL> # @Site : # @File : modeldata.py # @Software: PyCharm import datetime import pandas as pd from stockMongoDB.mmdb.base_model import BaseModel # from Calf.exception import MongoIOError, FileError, ExceptionInfo, \ # WarningMessage, SuccessMessage # 这都是一些关于异常处理的自定义方法,可以先不管,代码中报错的可以先注释掉 class ModelData(object): """ 有关公共模型所有的IO(数据库)将通过这个类实现. 通用的IO方法 """ def __init__(self, location=None, dbname=None): self.location = location self.dbname = dbname pass # @classmethod def field(self, table_name, field_name, filter=None): """ Query the value of a field in the database :param filter: :param table_name: the database's table name :param field_name: the table's field name :return: all values in database """ try: return BaseModel(table_name, self.location, self.dbname).distinct(field_name, filter) except Exception as e: raise e # raise MongoIOError('query the field raise a error') # @classmethod def max(self, table_name, field='_id', **kw): """ 找到满足kw条件的field列上的最大值 :param table_name: :param field: :param kw: :return: """ try: if not isinstance(field, str): raise TypeError('field must be an instance of str') cursor = BaseModel(table_name, self.location, self.dbname).query(sql=kw, field={field: True}) if cursor.count(): d = pd.DataFrame(list(cursor)) m = d.loc[:, [field]].max()[field] else: m = None cursor.close() return m except Exception as e: raise e # @classmethod def min(self, table_name, field='_id', **kw): """ 找到满足kw条件的field列上的最小值 :param table_name: :param field: :param kw: :return: """ try: if not isinstance(field, str): raise TypeError('field must be an instance of str') cursor = BaseModel(table_name, self.location, self.dbname).query(sql=kw, field={field: True}) if cursor.count(): d = pd.DataFrame(list(cursor)) m = d.loc[:, [field]].min()[field] else: m = None cursor.close() return m except Exception as e: raise e # @classmethod def insert_data(self, table_name, data): """ 一个简易的数据插入接口 :param table_name: :param data: :return: """ try: if len(data): data['datetime'] = data.index data['insertdate'] = datetime.datetime.today() d = data.to_dict(orient='records') BaseModel(table_name, self.location, self.dbname).insert_batch(d) except Exception as e: raise e # raise MongoIOError('Failed with insert data by MongoDB') def insert_one(self, table_name, data): """ insert one record :param table_name: :param data: a dict :return: """ try: BaseModel(table_name, self.location, self.dbname).insert(data) except Exception as e: raise e # raise MongoIOError('Failed with insert data by MongoDB') def read_one(self, table_name, field=None, **kw): """ 有时候只需要读一条数据,没必要使用read_data, :param table_name: :param field: :param kw: :return: a dict or None """ try: cursor = BaseModel(table_name, self.location, self.dbname).query_one(kw, field) except Exception as e: raise e # ExceptionInfo(e) finally: return cursor # @classmethod def read_data(self, table_name, field=None, **kw): """ 一个简易的数据读取接口 :param table_name: :param field: :param kw: :return: """ try: cursor = BaseModel(table_name, self.location, self.dbname).query(kw, field) data =
pd.DataFrame()
pandas.DataFrame
from datetime import datetime, timedelta import operator from typing import Any, Sequence, Type, Union, cast import warnings import numpy as np from pandas._libs import NaT, NaTType, Timestamp, algos, iNaT, lib from pandas._libs.tslibs.c_timestamp import integer_op_not_supported from pandas._libs.tslibs.period import DIFFERENT_FREQ, IncompatibleFrequency, Period from pandas._libs.tslibs.timedeltas import Timedelta, delta_to_nanoseconds from pandas._libs.tslibs.timestamps import RoundTo, round_nsint64 from pandas._typing import DatetimeLikeScalar from pandas.compat import set_function_name from pandas.compat.numpy import function as nv from pandas.errors import AbstractMethodError, NullFrequencyError, PerformanceWarning from pandas.util._decorators import Appender, Substitution from pandas.util._validators import validate_fillna_kwargs from pandas.core.dtypes.common import ( is_categorical_dtype, is_datetime64_any_dtype, is_datetime64_dtype, is_datetime64tz_dtype, is_datetime_or_timedelta_dtype, is_dtype_equal, is_float_dtype, is_integer_dtype, is_list_like, is_object_dtype, is_period_dtype, is_string_dtype, is_timedelta64_dtype, is_unsigned_integer_dtype, pandas_dtype, ) from pandas.core.dtypes.generic import ABCSeries from pandas.core.dtypes.inference import is_array_like from pandas.core.dtypes.missing import is_valid_nat_for_dtype, isna from pandas.core import missing, nanops, ops from pandas.core.algorithms import checked_add_with_arr, take, unique1d, value_counts from pandas.core.arrays.base import ExtensionArray, ExtensionOpsMixin import pandas.core.common as com from pandas.core.indexers import check_bool_array_indexer from pandas.core.ops.common import unpack_zerodim_and_defer from pandas.core.ops.invalid import invalid_comparison, make_invalid_op from pandas.tseries import frequencies from pandas.tseries.offsets import DateOffset, Tick def _datetimelike_array_cmp(cls, op): """ Wrap comparison operations to convert Timestamp/Timedelta/Period-like to boxed scalars/arrays. """ opname = f"__{op.__name__}__" nat_result = opname == "__ne__" @unpack_zerodim_and_defer(opname) def wrapper(self, other): if isinstance(other, str): try: # GH#18435 strings get a pass from tzawareness compat other = self._scalar_from_string(other) except ValueError: # failed to parse as Timestamp/Timedelta/Period return invalid_comparison(self, other, op) if isinstance(other, self._recognized_scalars) or other is NaT: other = self._scalar_type(other) self._check_compatible_with(other) other_i8 = self._unbox_scalar(other) result = op(self.view("i8"), other_i8) if isna(other): result.fill(nat_result) elif not is_list_like(other): return invalid_comparison(self, other, op) elif len(other) != len(self): raise ValueError("Lengths must match") else: if isinstance(other, list): # TODO: could use pd.Index to do inference? other = np.array(other) if not isinstance(other, (np.ndarray, type(self))): return invalid_comparison(self, other, op) if is_object_dtype(other): # We have to use comp_method_OBJECT_ARRAY instead of numpy # comparison otherwise it would fail to raise when # comparing tz-aware and tz-naive with np.errstate(all="ignore"): result = ops.comp_method_OBJECT_ARRAY( op, self.astype(object), other ) o_mask = isna(other) elif not type(self)._is_recognized_dtype(other.dtype): return invalid_comparison(self, other, op) else: # For PeriodDType this casting is unnecessary other = type(self)._from_sequence(other) self._check_compatible_with(other) result = op(self.view("i8"), other.view("i8")) o_mask = other._isnan if o_mask.any(): result[o_mask] = nat_result if self._hasnans: result[self._isnan] = nat_result return result return set_function_name(wrapper, opname, cls) class AttributesMixin: _data: np.ndarray @classmethod def _simple_new(cls, values, **kwargs): raise AbstractMethodError(cls) @property def _scalar_type(self) -> Type[DatetimeLikeScalar]: """The scalar associated with this datelike * PeriodArray : Period * DatetimeArray : Timestamp * TimedeltaArray : Timedelta """ raise AbstractMethodError(self) def _scalar_from_string( self, value: str ) -> Union[Period, Timestamp, Timedelta, NaTType]: """ Construct a scalar type from a string. Parameters ---------- value : str Returns ------- Period, Timestamp, or Timedelta, or NaT Whatever the type of ``self._scalar_type`` is. Notes ----- This should call ``self._check_compatible_with`` before unboxing the result. """ raise AbstractMethodError(self) def _unbox_scalar(self, value: Union[Period, Timestamp, Timedelta, NaTType]) -> int: """ Unbox the integer value of a scalar `value`. Parameters ---------- value : Union[Period, Timestamp, Timedelta] Returns ------- int Examples -------- >>> self._unbox_scalar(Timedelta('10s')) # DOCTEST: +SKIP 10000000000 """ raise AbstractMethodError(self) def _check_compatible_with( self, other: Union[Period, Timestamp, Timedelta, NaTType], setitem: bool = False ) -> None: """ Verify that `self` and `other` are compatible. * DatetimeArray verifies that the timezones (if any) match * PeriodArray verifies that the freq matches * Timedelta has no verification In each case, NaT is considered compatible. Parameters ---------- other setitem : bool, default False For __setitem__ we may have stricter compatiblity resrictions than for comparisons. Raises ------ Exception """ raise AbstractMethodError(self) class DatelikeOps: """ Common ops for DatetimeIndex/PeriodIndex, but not TimedeltaIndex. """ @Substitution( URL="https://docs.python.org/3/library/datetime.html" "#strftime-and-strptime-behavior" ) def strftime(self, date_format): """ Convert to Index using specified date_format. Return an Index of formatted strings specified by date_format, which supports the same string format as the python standard library. Details of the string format can be found in `python string format doc <%(URL)s>`__. Parameters ---------- date_format : str Date format string (e.g. "%%Y-%%m-%%d"). Returns ------- ndarray NumPy ndarray of formatted strings. See Also -------- to_datetime : Convert the given argument to datetime. DatetimeIndex.normalize : Return DatetimeIndex with times to midnight. DatetimeIndex.round : Round the DatetimeIndex to the specified freq. DatetimeIndex.floor : Floor the DatetimeIndex to the specified freq. Examples -------- >>> rng = pd.date_range(pd.Timestamp("2018-03-10 09:00"), ... periods=3, freq='s') >>> rng.strftime('%%B %%d, %%Y, %%r') Index(['March 10, 2018, 09:00:00 AM', 'March 10, 2018, 09:00:01 AM', 'March 10, 2018, 09:00:02 AM'], dtype='object') """ result = self._format_native_types(date_format=date_format, na_rep=np.nan) return result.astype(object) class TimelikeOps: """ Common ops for TimedeltaIndex/DatetimeIndex, but not PeriodIndex. """ _round_doc = """ Perform {op} operation on the data to the specified `freq`. Parameters ---------- freq : str or Offset The frequency level to {op} the index to. Must be a fixed frequency like 'S' (second) not 'ME' (month end). See :ref:`frequency aliases <timeseries.offset_aliases>` for a list of possible `freq` values. ambiguous : 'infer', bool-ndarray, 'NaT', default 'raise' Only relevant for DatetimeIndex: - 'infer' will attempt to infer fall dst-transition hours based on order - bool-ndarray where True signifies a DST time, False designates a non-DST time (note that this flag is only applicable for ambiguous times) - 'NaT' will return NaT where there are ambiguous times - 'raise' will raise an AmbiguousTimeError if there are ambiguous times. .. versionadded:: 0.24.0 nonexistent : 'shift_forward', 'shift_backward', 'NaT', timedelta, \ default 'raise' A nonexistent time does not exist in a particular timezone where clocks moved forward due to DST. - 'shift_forward' will shift the nonexistent time forward to the closest existing time - 'shift_backward' will shift the nonexistent time backward to the closest existing time - 'NaT' will return NaT where there are nonexistent times - timedelta objects will shift nonexistent times by the timedelta - 'raise' will raise an NonExistentTimeError if there are nonexistent times. .. versionadded:: 0.24.0 Returns ------- DatetimeIndex, TimedeltaIndex, or Series Index of the same type for a DatetimeIndex or TimedeltaIndex, or a Series with the same index for a Series. Raises ------ ValueError if the `freq` cannot be converted. Examples -------- **DatetimeIndex** >>> rng = pd.date_range('1/1/2018 11:59:00', periods=3, freq='min') >>> rng DatetimeIndex(['2018-01-01 11:59:00', '2018-01-01 12:00:00', '2018-01-01 12:01:00'], dtype='datetime64[ns]', freq='T') """ _round_example = """>>> rng.round('H') DatetimeIndex(['2018-01-01 12:00:00', '2018-01-01 12:00:00', '2018-01-01 12:00:00'], dtype='datetime64[ns]', freq=None) **Series** >>> pd.Series(rng).dt.round("H") 0 2018-01-01 12:00:00 1 2018-01-01 12:00:00 2 2018-01-01 12:00:00 dtype: datetime64[ns] """ _floor_example = """>>> rng.floor('H') DatetimeIndex(['2018-01-01 11:00:00', '2018-01-01 12:00:00', '2018-01-01 12:00:00'], dtype='datetime64[ns]', freq=None) **Series** >>> pd.Series(rng).dt.floor("H") 0 2018-01-01 11:00:00 1 2018-01-01 12:00:00 2 2018-01-01 12:00:00 dtype: datetime64[ns] """ _ceil_example = """>>> rng.ceil('H') DatetimeIndex(['2018-01-01 12:00:00', '2018-01-01 12:00:00', '2018-01-01 13:00:00'], dtype='datetime64[ns]', freq=None) **Series** >>> pd.Series(rng).dt.ceil("H") 0 2018-01-01 12:00:00 1 2018-01-01 12:00:00 2 2018-01-01 13:00:00 dtype: datetime64[ns] """ def _round(self, freq, mode, ambiguous, nonexistent): # round the local times if is_datetime64tz_dtype(self): # operate on naive timestamps, then convert back to aware naive = self.tz_localize(None) result = naive._round(freq, mode, ambiguous, nonexistent) aware = result.tz_localize( self.tz, ambiguous=ambiguous, nonexistent=nonexistent ) return aware values = self.view("i8") result = round_nsint64(values, mode, freq) result = self._maybe_mask_results(result, fill_value=NaT) return self._simple_new(result, dtype=self.dtype) @Appender((_round_doc + _round_example).format(op="round")) def round(self, freq, ambiguous="raise", nonexistent="raise"): return self._round(freq, RoundTo.NEAREST_HALF_EVEN, ambiguous, nonexistent) @Appender((_round_doc + _floor_example).format(op="floor")) def floor(self, freq, ambiguous="raise", nonexistent="raise"): return self._round(freq, RoundTo.MINUS_INFTY, ambiguous, nonexistent) @Appender((_round_doc + _ceil_example).format(op="ceil")) def ceil(self, freq, ambiguous="raise", nonexistent="raise"): return self._round(freq, RoundTo.PLUS_INFTY, ambiguous, nonexistent) class DatetimeLikeArrayMixin(ExtensionOpsMixin, AttributesMixin, ExtensionArray): """ Shared Base/Mixin class for DatetimeArray, TimedeltaArray, PeriodArray Assumes that __new__/__init__ defines: _data _freq and that the inheriting class has methods: _generate_range """ @property def ndim(self) -> int: return self._data.ndim @property def shape(self): return self._data.shape def reshape(self, *args, **kwargs): # Note: we drop any freq data = self._data.reshape(*args, **kwargs) return type(self)(data, dtype=self.dtype) def ravel(self, *args, **kwargs): # Note: we drop any freq data = self._data.ravel(*args, **kwargs) return type(self)(data, dtype=self.dtype) @property def _box_func(self): """ box function to get object from internal representation """ raise AbstractMethodError(self) def _box_values(self, values): """ apply box func to passed values """ return lib.map_infer(values, self._box_func) def __iter__(self): return (self._box_func(v) for v in self.asi8) @property def asi8(self) -> np.ndarray: """ Integer representation of the values. Returns ------- ndarray An ndarray with int64 dtype. """ # do not cache or you'll create a memory leak return self._data.view("i8") @property def _ndarray_values(self): return self._data # ---------------------------------------------------------------- # Rendering Methods def _format_native_types(self, na_rep="NaT", date_format=None): """ Helper method for astype when converting to strings. Returns ------- ndarray[str] """ raise AbstractMethodError(self) def _formatter(self, boxed=False): # TODO: Remove Datetime & DatetimeTZ formatters. return "'{}'".format # ---------------------------------------------------------------- # Array-Like / EA-Interface Methods @property def nbytes(self): return self._data.nbytes def __array__(self, dtype=None) -> np.ndarray: # used for Timedelta/DatetimeArray, overwritten by PeriodArray if is_object_dtype(dtype): return np.array(list(self), dtype=object) return self._data @property def size(self) -> int: """The number of elements in this array.""" return np.prod(self.shape) def __len__(self) -> int: return len(self._data) def __getitem__(self, key): """ This getitem defers to the underlying array, which by-definition can only handle list-likes, slices, and integer scalars """ is_int = lib.is_integer(key) if lib.is_scalar(key) and not is_int: raise IndexError( "only integers, slices (`:`), ellipsis (`...`), " "numpy.newaxis (`None`) and integer or boolean " "arrays are valid indices" ) getitem = self._data.__getitem__ if is_int: val = getitem(key) if
lib.is_scalar(val)
pandas._libs.lib.is_scalar
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Copyright 2021 Recurve Analytics, Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import numpy as np import pandas as pd import pytest import os import random import sqlite3 from tempfile import mkdtemp from flexvalue.calculations import FlexValueRun from flexvalue.settings import ACC_COMPONENTS_ELECTRICITY, ACC_COMPONENTS_GAS @pytest.fixture def metered_ids(): return [f"id_{i}" for i in range(5)] @pytest.fixture def deer_ids(): return ["DEER_LS_1", "DEER_LS_2"] @pytest.fixture def metered_load_shape(metered_ids): random.seed(0) output = [] for _id in metered_ids: for hour in range(8760): savings = random.random() * 0.1 output.append( {"identifier": _id, "hour_of_year": hour, "hourly_mwh_savings": savings} ) df = ( pd.DataFrame(output) .pivot(index="hour_of_year", columns="identifier", values="hourly_mwh_savings") .reset_index() .set_index("hour_of_year") ) df.columns.name = None return df @pytest.fixture def user_inputs(metered_ids, deer_ids): return pd.DataFrame( [ { "ID": id_, "load_shape": id_, "start_year": 2021, "start_quarter": 1, "utility": "PGE", "climate_zone": "CZ1", "units": 1, "eul": 5, "ntg": 1.0, "discount_rate": 0.0766, "admin": 100, "measure": 2000, "incentive": 1000, "therms_profile": "winter", "therms_savings": 400, "mwh_savings": 1, } for id_ in metered_ids + deer_ids ] ).set_index("ID") @pytest.fixture def database_year(pytestconfig): database_year = pytestconfig.getoption("database_year") if not database_year: database_year = "1111" db_path = mkdtemp() os.environ["DATABASE_LOCATION"] = db_path con = sqlite3.connect(f"{db_path}/{database_year}.db") random.seed(1) acc_elec_cols = { col: random.random() for col in ACC_COMPONENTS_ELECTRICITY + ["marginal_ghg"] } df_acc_elec = pd.DataFrame( [ { "climate_zone": "CZ1", "utility": "PGE", "hour_of_year": hour, "hour_of_day": hour % 24, "year": year, "month": ( pd.Timestamp("2020-01-01") +
pd.Timedelta(hour, unit="H")
pandas.Timedelta
""" Introduction -------------- This python file contains the source code used to carry the data preparation process Code ------ """ # -*- coding: utf-8 -*- import logging import pandas as pd from pathlib import Path from datetime import datetime import sqlite3 BASE_RAW_DATA_DIR = 'data/raw' """ str: Base raw data directory """ BASE_PROCESSED_DATA_DIR = 'data/processed' """ str: Base processed data directory """ GPU_CSV_FILE = BASE_RAW_DATA_DIR + '/gpu.csv' """ str: gpu.csv file location """ CHECK_CSV_FILE = BASE_RAW_DATA_DIR + '/application-checkpoints.csv' """ str: application-checkpoints.csv filename file location """ TASK_CSV_FILE = BASE_RAW_DATA_DIR + '/task-x-y.csv' """ str: task-x-y.csv file location """ PROCESSED_CSV_FILE = BASE_PROCESSED_DATA_DIR + '/processed.csv' """ str: processed.csv final dataset file location """ TIMESTAMP_FORMAT = '%Y-%m-%dT%H:%M:%S.%fZ' """ str: string used to format timestamp for datetime conversion """ def timestamp_conv(df): """ Converts a timestamp to datetime Parameters ---------- df dataframe to convert to datetime ------- float converted timestamp """ df = df.apply(lambda x: (datetime.strptime(x, TIMESTAMP_FORMAT))) return(df) def clean_gpu(gpu_df): """Clean gpu dataframe by dropping uneeded serial number and fixes timestamp format to datetime Parameters ---------- gpu_df gpu dataframe to clean Returns ------- pandas.core.frame.DataFrame Cleaned GPU dataframe """ # Drop uneeded serial column gpu_df.drop(columns='gpuSerial', inplace=True) gpu_df['timestamp'] = timestamp_conv(gpu_df['timestamp']) return(gpu_df) def merge_check_task(checkpoints_df, tasks_df): """merge (left join) checkpoints with task df through job and task id Parameters ---------- checkpoints_df application checkpoints dataframe to merge tasks_df tasks dataframe to merge Returns ------- pandas.core.frame.DataFrame Cleaned GPU dataframe """ # Use left join on taskId and jobId check_task_df = checkpoints_df.merge(tasks_df, on=['taskId', 'jobId'], how='left') return (check_task_df) def clean_check_task(check_task_df): """Removes uneeded ids and fixes timestamp format to datetime for merged application checkpoints and tasks df Parameters ---------- check_task_df merged application checkpoints and tasks df to clean Returns ------- pandas.core.frame.DataFrame Cleaned GPU dataframe """ # Drop uneeded ids check_task_df.drop(columns= ['jobId', 'taskId'], inplace=True) # Fix date format check_task_df['timestamp'] = timestamp_conv(check_task_df['timestamp']) return(check_task_df) def merge_check_task_gpu(gpu_df, check_task_df): """merge (left join) gpu df with first merged df through host and timestamp Parameters ---------- check_task_df application checkpoints and tasks megred dataframe to merge with gpu df gpu_df gpu dataframe to merge Returns ------- pandas.core.frame.DataFrame Cleaned GPU dataframe """ # Record start and stop times for events and drop old timestamps check_task_df_start = check_task_df[ check_task_df['eventType'] == 'START'] check_task_df_stop = check_task_df[ check_task_df['eventType'] == 'STOP'] check_task_df_start.rename( index=str, columns={"timestamp": "start_time"}, inplace = True) check_task_df_stop.rename( index=str, columns={"timestamp": "stop_time"}, inplace = True) check_task_df_stop.drop('eventType', axis = 1, inplace = True) check_task_df_start.drop('eventType', axis = 1, inplace = True) # Make each field record start and stop combined check_task_df = pd.merge( check_task_df_start, check_task_df_stop, on=['hostname', 'eventName', 'x', 'y', 'level']) # Remove any timestamps that occur out of the gpu dataset check_task_df = check_task_df[ (check_task_df['start_time'] >= gpu_df['timestamp'][0]) & (check_task_df['stop_time'] <= gpu_df['timestamp'][len(gpu_df)-1])] # Use sqllite to only combine with gpu if timestamp is between times # connection to sql conn = sqlite3.connect(':memory:') # move dataframes to sql check_task_df.to_sql('CheckTask', conn, index=False) gpu_df.to_sql('Gpu', conn, index=False) # SQL query query = ''' SELECT * FROM Gpu LEFT JOIN CheckTask ON gpu.hostname = CheckTask.hostname WHERE gpu.timestamp >= CheckTask.start_time AND gpu.timestamp <= CheckTask.stop_time ''' # get new df merged_df = pd.read_sql_query(query, conn) # drop duplicate hostname row (index 8) merged_df = merged_df.loc[:,~merged_df.columns.duplicated()] # group for averages (average stats for every task) functions = { 'powerDrawWatt': 'mean', 'gpuTempC': 'mean', 'gpuUtilPerc': 'mean', 'gpuMemUtilPerc': 'mean', 'start_time': 'first', 'stop_time': 'first', 'gpuUUID' : 'first'} merged_df = merged_df.groupby( ['hostname', 'eventName', 'x', 'y', 'level'], as_index=False, sort=False ).agg(functions) return(merged_df) def main(): """ Runs data processing scripts to turn raw data from (../raw) into cleaned data ready to be analyzed (saved in ../processed). """ logger = logging.getLogger(__name__) logger.info('making final data set from raw data') # Read datasets in gpu_df =
pd.read_csv(GPU_CSV_FILE)
pandas.read_csv
import pandas as pd from pathlib import Path from loguru import logger from random import choices import privacy from simulate_row import simulate_row ROOT_DIRECTORY = Path(__file__).absolute().parent.parent.parent DATA_DIRECTORY = ROOT_DIRECTORY / "data" ground_truth_file = DATA_DIRECTORY / "ground_truth_detroit.csv" output_file = DATA_DIRECTORY / "submission.csv" number_histos = 4 # Create 4 histograms population_queries = 1 # Use one population query for number of incidents sample = 0 # Do not use sampling sample_size = 1 # Sample size is 1 epsilons = [1.0] # Use and epsilon value of 1.0 # Define the combined columns for the 4 histograms combo_dict = {'type': ['engine_area_c', 'exposure_c', 'incident_type_c', 'property_use_c', 'detector_c', 'structure_stat_c'], 'injury': ['cinjury_c', 'cfatal_c', 'finjury_c', 'ffatal_c'], 'call': ['call_month_c', 'call_day_c', 'call_hour_c'], 'result': ['dispatch_n', 'arrival_n', 'clear_n'] } # Define the number dictionary for each numeric column num_dict = {'dispatch_n': [1000, 50, 5000], 'arrival_n': [1000, 50, 5000], 'clear_n': [5000, 50, 10000] } # The main program def main(): # Load the ground truth and check for proper formatting logger.info("begin pre-processing") ground_truth = pd.read_csv(ground_truth_file) valid = privacy.check_input(ground_truth, combo_dict, num_dict) if valid != 1: return # Preprocess the ground truth df, num_decodes, col_decodes = privacy.preprocess(ground_truth, combo_dict, num_dict) privacy.histo_test(df, combo_dict) logger.info("end pre-processing") # main for loop for epsilon in epsilons: # Create dataframe for final results header = list(ground_truth.columns) final_df = pd.DataFrame(columns=header) final_list = [] # sensitivity = (histograms x sample size) + population queries sensitivity = (number_histos * sample_size) + population_queries # Create the incidents - population count num_incidents = len(df) num_incidents_noise = int(privacy.laplaceMechanism(num_incidents, sensitivity, epsilon)) # Create the four histograms logger.info(f"begin histogram creation {epsilon}") type_pop, type_w = privacy.create_private_histo(df, 'type', sample, sample_size, sensitivity, epsilon) injury_pop, injury_w = privacy.create_private_histo(df, 'injury', sample, sample_size, sensitivity, epsilon) call_pop, call_w = privacy.create_private_histo(df, 'call', sample, sample_size, sensitivity, epsilon) result_pop, result_w = privacy.create_private_histo(df, 'result', sample, sample_size, sensitivity, epsilon) # Create the individual incidents for i in range(num_incidents_noise): type_value = choices(type_pop, type_w, k=1) injury_value = choices(injury_pop, injury_w, k=1) call_value = choices(call_pop, call_w, k=1) result_value = choices(result_pop, result_w, k=1) row = simulate_row(i, type_value[0], injury_value[0], call_value[0], result_value[0], num_dict, num_decodes, col_decodes ) final_list.append(row) # Output the dataset logger.info('writing data to output file') final_df =
pd.DataFrame.from_dict(final_list)
pandas.DataFrame.from_dict
#%% import os import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns import datetime import copy from IPython.core.interactiveshell import InteractiveShell InteractiveShell.ast_node_interactivity = "all" #%% raw_path = os.path.join("data", "raw") clean_path = os.path.join("data", "clean") # Loading Electronidex data data_orders = pd.read_csv( os.path.join(raw_path, "orders_translated.csv"), sep=";", decimal="," ) data_items = pd.read_csv(os.path.join(raw_path, "lineitems.csv"), sep=";", decimal=",") data_categories = pd.read_csv(os.path.join(clean_path, "product_categories.csv")) # loading Blackwell data data_blackwell = pd.read_csv( os.path.join(raw_path, "existingproductattributes2017.csv") ) #%% # Cleaning electronindex data # Keeping only the orders with state "Completed" data_orders.query("state == 'Completed'", inplace=True) # removing whitespace from sku for a clean join with categories data_items["sku"] = data_items.sku.str.strip() # Keeping only interesting columns data_orders.drop(columns=["state", "created_date", "total_paid"], inplace=True) data_items.drop(columns=["id", "product_id", "date"], inplace=True) # recoding the categories in Electronindex data to match those of Blackwell new_categories = { "accessories": "Accessories", "smartphone": "Smartphone", "tablet": "Tablet", "display": "Display", "laptop": "Laptop", "other": "Other", "extended warranty": "ExtendedWarranty", "pc": "PC", "smartwatch": "Smartwatch", "service": "Service", "camera": "Camera", "software": "Software", "printer": "Printer", } data_categories.columns = ["sku", "category"] data_categories.replace(dict(category=new_categories), inplace=True) # Lets combine items to completed orders with an inner join to keep only items # from completed orders data_orders_items = data_orders.join( data_items.set_index("id_order"), how="inner", on="id_order" ) # Adding the product categories data_electronidex = data_orders_items.join( data_categories.set_index("sku"), how="left", on="sku" ) # replacing missing categories with "unknown" data_electronidex.category.fillna("Unknown", inplace=True) # Dropping the Extended warranties as the information from these is # in general not that interesting data_electronidex.query("category != 'ExtendedWarranty'", inplace=True) # dropping the now unnecesary id_order column # data_electronidex.drop(columns=["id_order"], inplace=True) #%% # No missing values data_electronidex.isnull().sum() # Checking data quality of product quantity and unit price # There are no suprising values in product quantity data_electronidex.product_quantity.min() data_electronidex.product_quantity.max() data_electronidex.product_quantity.mean() data_electronidex.product_quantity.median() # There are no suprising values in product quantity data_electronidex.unit_price.min() data_electronidex.unit_price.max() data_electronidex.unit_price.mean() data_electronidex.unit_price.median() sns.boxplot(data_electronidex.unit_price) # the maximum price seems weird data_electronidex[data_electronidex.unit_price == data_electronidex.unit_price.max()] # But there is only one observation with this product and the category is unknown. We let this stand data_electronidex[ data_electronidex.sku == max( data_electronidex[ data_electronidex.unit_price == data_electronidex.unit_price.max() ]["sku"] ) ] #%% # calculating total price of items taking into account the amount of items data_electronidex["price"] = ( data_electronidex["product_quantity"] * data_electronidex["unit_price"] ) # creating a separate dataset for electronidex product prices data_electronidex_products_medprice = data_electronidex.groupby( ["sku", "category"], as_index=False )["unit_price"].median() # dropping the now unnecessary sku and unit price columns data_electronidex.drop(columns=["sku", "unit_price"], inplace=True) #%% # Cleaning Blackwell data # keeping only interesting columns data_blackwell = data_blackwell[["ProductType", "Price", "Volume", "ProfitMargin"]] # Adding combined price and profit from all purchases data_blackwell["Price_total"] = data_blackwell["Price"] * data_blackwell["Volume"] data_blackwell["Profit_total"] = ( data_blackwell["Price"] * data_blackwell["Volume"] * data_blackwell["ProfitMargin"] ) data_blackwell["Profit_per_unit"] = ( data_blackwell["Price"] * data_blackwell["ProfitMargin"] ) data_blackwell["Profit_perc_share"] = ( data_blackwell["Profit_total"] * 100 / data_blackwell["Profit_total"].sum() ).round(1) # Dropping the Extended warranties as the information from these # seems false and is also in general not that interesting data_blackwell.query("ProductType != 'ExtendedWarranty'", inplace=True) # Dropping original price and profit margin data_blackwell.drop(columns=["ProfitMargin"], inplace=True) #%% # Aggregating data_electronidex_sales = data_electronidex.groupby(["category"], as_index=False)[ ["product_quantity", "price"] ].sum() data_blackwell_sales = data_blackwell.groupby(["ProductType"], as_index=False)[ "Volume", "Price_total", "Profit_total" ].sum() #%% data_electronidex_sales["product_quantity"] = ( data_electronidex_sales["product_quantity"] .divide(data_electronidex_sales.product_quantity.sum()) .multiply(100) ) data_electronidex_sales["price"] = ( data_electronidex_sales["price"] .divide(data_electronidex_sales.price.sum()) .multiply(100) ) data_blackwell_sales["Volume"] = ( data_blackwell_sales["Volume"] .divide(data_blackwell_sales.Volume.sum()) .multiply(100) ) data_blackwell_sales["Price_total"] = ( data_blackwell_sales["Price_total"] .divide(data_blackwell_sales.Price_total.sum()) .multiply(100) ) data_blackwell_sales["Profit_total"] = ( data_blackwell_sales["Profit_total"] .divide(data_blackwell_sales.Profit_total.sum()) .multiply(100) ) #%% # unifying labels for convenience data_electronidex_sales.columns = ["category", "volume_perc", "price_perc"] data_blackwell_sales.columns = ["category", "price_perc", "volume_perc", "profit_perc"] #%% # combine dataframes for plotting data_electronidex_sales["Company"] = "Electronindex" data_blackwell_sales["Company"] = "Blackwell" data_sales =
pd.concat([data_electronidex_sales, data_blackwell_sales], sort=False)
pandas.concat
import logging import shutil import sys import datetime import os import netCDF4 import numpy import pandas as pd import rasterio import rasterstats import requests import xarray from rasterio.enums import Resampling FFGS_REGIONS = [('Hispaniola', 'hispaniola'), ('Central America', 'centralamerica')] def setenvironment(threddspath, wrksppath): """ Dependencies: os, shutil, datetime, urllib.request, app_settings (options) """ logging.info('\nSetting the Environment for the GFS Workflow') # determine the most day and hour of the day timestamp of the most recent GFS forecast now = datetime.datetime.utcnow() if now.hour > 21: timestamp = now.strftime("%Y%m%d") + '18' elif now.hour > 15: timestamp = now.strftime("%Y%m%d") + '12' elif now.hour > 9: timestamp = now.strftime("%Y%m%d") + '06' elif now.hour > 3: timestamp = now.strftime("%Y%m%d") + '00' else: now = now - datetime.timedelta(days=1) timestamp = now.strftime("%Y%m%d") + '18' logging.info('determined the timestamp to download: ' + timestamp) # perform a redundancy check, if the last timestamp is the same as current, abort the workflow timefile = os.path.join(threddspath, 'gfs_timestamp.txt') if not os.path.exists(timefile): redundant = False with open(timefile, 'w') as tf: tf.write(timestamp) os.chmod(timefile, 0o777) else: with open(timefile, 'r') as file: lasttime = file.readline() if lasttime == timestamp: # use the redundant check to exacpt the function because its already been run redundant = True logging.info('The last recorded timestamp is the timestamp we determined, aborting workflow') return timestamp, redundant elif lasttime == 'clobbered': # if you marked clobber is true, dont check for old folders from partially completed workflows redundant = False else: # check to see if there are remnants of partially completed runs and dont destroy old folders redundant = False chk_hisp = os.path.join(wrksppath, 'hispaniola', 'gfs_GeoTIFFs_resampled') chk_centr = os.path.join(wrksppath, 'centralamerica', 'gfs_GeoTIFFs_resampled') if os.path.exists(chk_hisp) and os.path.exists(chk_centr): logging.info('There are data for this timestep but the workflow wasn\'t finished. Analyzing...') return timestamp, redundant # create the file structure and their permissions for the new data for region in FFGS_REGIONS: logging.info('Creating APP WORKSPACE (GeoTIFF) file structure for ' + region[1]) new_dir = os.path.join(wrksppath, region[1], 'gfs_GeoTIFFs') if os.path.exists(new_dir): shutil.rmtree(new_dir) os.mkdir(new_dir) os.chmod(new_dir, 0o777) new_dir = os.path.join(wrksppath, region[1], 'gfs_GeoTIFFs_resampled') if os.path.exists(new_dir): shutil.rmtree(new_dir) os.mkdir(new_dir) os.chmod(new_dir, 0o777) logging.info('Creating THREDDS file structure for ' + region[1]) new_dir = os.path.join(threddspath, region[1], 'gfs') if os.path.exists(new_dir): shutil.rmtree(new_dir) os.mkdir(new_dir) os.chmod(new_dir, 0o777) new_dir = os.path.join(threddspath, region[1], 'gfs', timestamp) if os.path.exists(new_dir): shutil.rmtree(new_dir) os.mkdir(new_dir) os.chmod(new_dir, 0o777) for filetype in ('gribs', 'netcdfs', 'processed'): new_dir = os.path.join(threddspath, region[1], 'gfs', timestamp, filetype) if os.path.exists(new_dir): shutil.rmtree(new_dir) os.mkdir(new_dir) os.chmod(new_dir, 0o777) logging.info('All done setting up folders, on to do work') return timestamp, redundant def download_gfs(threddspath, timestamp, region, model): logging.info('\nStarting GFS grib Downloads for ' + region) # set filepaths gribsdir = os.path.join(threddspath, region, model, timestamp, 'gribs') # if you already have a folder with data for this timestep, quit this function (you dont need to download it) if not os.path.exists(gribsdir): logging.info('There is no download folder, you must have already processed them. Skipping download stage.') return True elif len(os.listdir(gribsdir)) >= 28: logging.info('There are already 28 forecast steps in here. Dont need to download them') return True # otherwise, remove anything in the folder before starting (in case there was a partial download) else: shutil.rmtree(gribsdir) os.mkdir(gribsdir) os.chmod(gribsdir, 0o777) # # get the parts of the timestamp to put into the url time = datetime.datetime.strptime(timestamp, "%Y%m%d%H").strftime("%H") fc_date = datetime.datetime.strptime(timestamp, "%Y%m%d%H").strftime("%Y%m%d") # This is the List of forecast timesteps for 5 days (6-hr increments). download them all fc_steps = ['006', '012', '018', '024', '030', '036', '042', '048', '054', '060', '066', '072', '078', '084', '090', '096', '102', '108', '114', '120', '126', '132', '138', '144', '150', '156', '162', '168'] # this is where the actual downloads happen. set the url, filepath, then download subregions = { 'hispaniola': 'subregion=&leftlon=-75&rightlon=-68&toplat=20.5&bottomlat=17', 'centralamerica': 'subregion=&leftlon=-94.25&rightlon=-75.5&toplat=19.5&bottomlat=5.5', } for step in fc_steps: url = 'https://nomads.ncep.noaa.gov/cgi-bin/filter_gfs_0p25.pl?file=gfs.t' + time + 'z.pgrb2.0p25.f' + step + \ '&lev_surface=on&var_APCP=on&' + subregions[region] + '&dir=%2Fgfs.' + fc_date + '%2F' + time fc_timestamp = datetime.datetime.strptime(timestamp, "%Y%m%d%H") file_timestep = fc_timestamp + datetime.timedelta(hours=int(step)) filename_timestep = datetime.datetime.strftime(file_timestep, "%Y%m%d%H") filename = filename_timestep + '.grb' logging.info('downloading the file ' + filename) filepath = os.path.join(gribsdir, filename) try: with requests.get(url, stream=True) as r: r.raise_for_status() with open(filepath, 'wb') as f: for chunk in r.iter_content(chunk_size=8192): if chunk: # filter out keep-alive new chunks f.write(chunk) except requests.HTTPError as e: errorcode = e.response.status_code logging.info('\nHTTPError ' + str(errorcode) + ' downloading ' + filename + ' from\n' + url) if errorcode == 404: logging.info('The file was not found on the server, trying an older forecast time') elif errorcode == 500: logging.info('Probably a problem with the URL. Check the log and try the link') return False logging.info('Finished Downloads') return True def gfs_tiffs(threddspath, wrksppath, timestamp, region, model): """ Script to combine 6-hr accumulation grib files into 24-hr accumulation geotiffs. Dependencies: datetime, os, numpy, rasterio """ logging.info('\nStarting to process the ' + model + ' gribs into GeoTIFFs') # declare the environment tiffs = os.path.join(wrksppath, region, model + '_GeoTIFFs') gribs = os.path.join(threddspath, region, model, timestamp, 'gribs') netcdfs = os.path.join(threddspath, region, model, timestamp, 'netcdfs') # if you already have gfs netcdfs in the netcdfs folder, quit the function if not os.path.exists(gribs): logging.info('There is no gribs folder, you must have already run this step. Skipping conversions') return # otherwise, remove anything in the folder before starting (in case there was a partial conversion) else: shutil.rmtree(netcdfs) os.mkdir(netcdfs) os.chmod(netcdfs, 0o777) shutil.rmtree(tiffs) os.mkdir(tiffs) os.chmod(tiffs, 0o777) # create a list of all the files of type grib and convert to a list of their file paths files = os.listdir(gribs) files = [grib for grib in files if grib.endswith('.grb')] files.sort() # Read raster dimensions only once to apply to all rasters path = os.path.join(gribs, files[0]) raster_dim = rasterio.open(path) width = raster_dim.width height = raster_dim.height lon_min = raster_dim.bounds.left lon_max = raster_dim.bounds.right lat_min = raster_dim.bounds.bottom lat_max = raster_dim.bounds.top # Geotransform for each 24-hr raster (east, south, west, north, width, height) geotransform = rasterio.transform.from_bounds(lon_min, lat_min, lon_max, lat_max, width, height) # Add rasters together to form 24-hr raster for i in files: logging.info('working on file ' + i) path = os.path.join(gribs, i) src = rasterio.open(path) file_array = src.read(1) # using the last grib file for the day (path) convert it to a netcdf and set the variable to file_array logging.info('opening grib file ' + path) obj = xarray.open_dataset(path, engine='cfgrib', backend_kwargs={'filter_by_keys': {'typeOfLevel': 'surface'}}) logging.info('converting it to a netcdf') ncname = i.replace('.grb', '.nc') logging.info('saving it to the path ' + path) ncpath = os.path.join(netcdfs, ncname) obj.to_netcdf(ncpath, mode='w') logging.info('converted') logging.info('writing the correct values to the tp array') nc = netCDF4.Dataset(ncpath, 'a') nc['tp'][:] = file_array nc.close() logging.info('created a netcdf') # Specify the GeoTIFF filepath tif_filename = i.replace('grb', 'tif') tif_filepath = os.path.join(tiffs, tif_filename) # Save the 24-hr raster with rasterio.open( tif_filepath, 'w', driver='GTiff', height=file_array.shape[0], width=file_array.shape[1], count=1, dtype=file_array.dtype, nodata=numpy.nan, crs='+proj=latlong', transform=geotransform, ) as dst: dst.write(file_array, 1) logging.info('wrote it to a GeoTIFF\n') # clear the gribs folder now that we're done with this shutil.rmtree(gribs) return def resample(wrksppath, region, model): """ Script to resample rasters from .25 o .0025 degree in order for rasterstats to work Dependencies: datetime, os, numpy, rasterio """ logging.info('\nResampling the rasters for ' + region) # Define app workspace and sub-paths tiffs = os.path.join(wrksppath, region, model + '_GeoTIFFs') resampleds = os.path.join(wrksppath, region, model + '_GeoTIFFs_resampled') # Create directory for the resampled GeoTIFFs if not os.path.exists(tiffs): logging.info('There is no tiffs folder. You must have already resampled them. Skipping resampling') return # List all Resampled GeoTIFFs files = os.listdir(tiffs) files = [tif for tif in files if tif.endswith('.tif')] files.sort() # Read raster dimensions path = os.path.join(tiffs, files[0]) raster_dim = rasterio.open(path) width = raster_dim.width height = raster_dim.height lon_min = raster_dim.bounds.left lon_max = raster_dim.bounds.right lat_min = raster_dim.bounds.bottom lat_max = raster_dim.bounds.top # Geotransform for each resampled raster (east, south, west, north, width, height) geotransform_res = rasterio.transform.from_bounds(lon_min, lat_min, lon_max, lat_max, width * 100, height * 100) # Resample each GeoTIFF for file in files: path = os.path.join(tiffs, file) logging.info(path) with rasterio.open(path) as dataset: data = dataset.read( out_shape=(int(dataset.height * 100), int(dataset.width * 100)), # Reduce 100 to 10 if using the whole globe resampling=Resampling.nearest ) # Convert new resampled array from 3D to 2D data = numpy.squeeze(data, axis=0) # Specify the filepath of the resampled raster resample_filename = file.replace('.tif', '_resampled.tif') resample_filepath = os.path.join(resampleds, resample_filename) # Save the GeoTIFF with rasterio.open( resample_filepath, 'w', driver='GTiff', height=data.shape[0], width=data.shape[1], count=1, dtype=data.dtype, nodata=numpy.nan, crs='+proj=latlong', transform=geotransform_res, ) as dst: dst.write(data, 1) # delete the non-resampled tiffs now that we dont need them shutil.rmtree(tiffs) return def zonal_statistics(wrksppath, timestamp, region, model): """ Script to calculate average precip over FFGS polygon shapefile Dependencies: datetime, os, pandas, rasterstats """ logging.info('\nDoing Zonal Statistics on ' + region) # Define app workspace and sub-paths resampleds = os.path.join(wrksppath, region, model + '_GeoTIFFs_resampled') shp_path = os.path.join(wrksppath, region, 'shapefiles', 'ffgs_' + region + '.shp') stat_file = os.path.join(wrksppath, region, model + 'results.csv') # check that there are resampled tiffs to do zonal statistics on if not os.path.exists(resampleds): logging.info('There are no resampled tiffs to do zonal statistics on. Skipping Zonal Statistics') return # List all Resampled GeoTIFFs files = os.listdir(resampleds) files = [tif for tif in files if tif.endswith('.tif')] files.sort() # do zonal statistics for each resampled tiff file and put it in the stats dataframe stats_df = pd.DataFrame() for i in range(len(files)): logging.info('starting zonal statistics for ' + files[i]) ras_path = os.path.join(resampleds, files[i]) stats = rasterstats.zonal_stats( shp_path, ras_path, stats=['count', 'max', 'mean'], geojson_out=True ) timestep = files[i][:10] # for each stat that you get out, write it to the dataframe logging.info('writing the statistics for this file to the dataframe') for j in range(len(stats)): temp_data = stats[j]['properties'] temp_data.update({'Forecast Timestamp': timestamp}) temp_data.update({'Timestep': timestep}) temp_df = pd.DataFrame([temp_data]) stats_df = stats_df.append(temp_df, ignore_index=True) # write the resulting dataframe to a csv logging.info('\ndone with zonal statistics, rounding values, writing to a csv file') stats_df = stats_df.round({'max': 1, 'mean': 1}) stats_df.to_csv(stat_file, index=False) # delete the resampled tiffs now that we dont need them logging.info('deleting the resampled tiffs directory') shutil.rmtree(resampleds) return def nc_georeference(threddspath, timestamp, region, model): """ Description: Intended to make a THREDDS data server compatible netcdf file out of an incorrectly structured netcdf file. Author: <NAME>, 2019 Dependencies: netCDF4, os, datetime see github/rileyhales/datatools for more details """ logging.info('\nProcessing the netCDF files') # setting the environment file paths netcdfs = os.path.join(threddspath, region, model, timestamp, 'netcdfs') processed = os.path.join(threddspath, region, model, timestamp, 'processed') # if you already have processed netcdfs files, skip this and quit the function if not os.path.exists(netcdfs): logging.info('There are no netcdfs to be converted. Skipping netcdf processing.') return # otherwise, remove anything in the folder before starting (in case there was a partial processing) else: shutil.rmtree(processed) os.mkdir(processed) os.chmod(processed, 0o777) # list the files that need to be converted net_files = os.listdir(netcdfs) files = [file for file in net_files if file.endswith('.nc')] logging.info('There are ' + str(len(files)) + ' compatible files.') # read the first file that we'll copy data from in the next blocks of code logging.info('Preparing the reference file') path = os.path.join(netcdfs, net_files[0]) netcdf_obj = netCDF4.Dataset(path, 'r', clobber=False, diskless=True) # get a dictionary of the dimensions and their size and rename the north/south and east/west ones dimensions = {} for dimension in netcdf_obj.dimensions.keys(): dimensions[dimension] = netcdf_obj.dimensions[dimension].size dimensions['lat'] = dimensions['latitude'] dimensions['lon'] = dimensions['longitude'] dimensions['time'] = 1 del dimensions['latitude'], dimensions['longitude'] # get a list of the variables and remove the one's i'm going to 'manually' correct variables = netcdf_obj.variables del variables['valid_time'], variables['step'], variables['latitude'], variables['longitude'], variables['surface'] variables = variables.keys() # min lat and lon and the interval between values (these are static values netcdf_obj.close() # this is where the files start getting copied for file in files: logging.info('Working on file ' + str(file)) openpath = os.path.join(netcdfs, file) savepath = os.path.join(processed, 'processed_' + file) # open the file to be copied original = netCDF4.Dataset(openpath, 'r', clobber=False, diskless=True) duplicate = netCDF4.Dataset(savepath, 'w', clobber=True, format='NETCDF4', diskless=False) # set the global netcdf attributes - important for georeferencing duplicate.setncatts(original.__dict__) # specify dimensions from what we copied before for dimension in dimensions: duplicate.createDimension(dimension, dimensions[dimension]) # 'Manually' create the dimensions that need to be set carefully duplicate.createVariable(varname='lat', datatype='f4', dimensions='lat') duplicate.createVariable(varname='lon', datatype='f4', dimensions='lon') # create the lat and lon values as a 1D array duplicate['lat'][:] = original['latitude'][:] duplicate['lon'][:] = original['longitude'][:] # set the attributes for lat and lon (except fill value, you just can't copy it) for attr in original['latitude'].__dict__: if attr != "_FillValue": duplicate['lat'].setncattr(attr, original['latitude'].__dict__[attr]) for attr in original['longitude'].__dict__: if attr != "_FillValue": duplicate['lon'].setncattr(attr, original['longitude'].__dict__[attr]) # copy the rest of the variables hour = 6 for variable in variables: # check to use the lat/lon dimension names dimension = original[variable].dimensions if 'latitude' in dimension: dimension = list(dimension) dimension.remove('latitude') dimension.append('lat') dimension = tuple(dimension) if 'longitude' in dimension: dimension = list(dimension) dimension.remove('longitude') dimension.append('lon') dimension = tuple(dimension) if len(dimension) == 2: dimension = ('time', 'lat', 'lon') if variable == 'time': dimension = ('time',) # create the variable duplicate.createVariable(varname=variable, datatype='f4', dimensions=dimension) # copy the arrays of data and set the timestamp/properties date = datetime.datetime.strptime(timestamp, "%Y%m%d%H") date = datetime.datetime.strftime(date, "%Y-%m-%d %H:00:00") if variable == 'time': duplicate[variable][:] = [hour] hour = hour + 6 duplicate[variable].long_name = original[variable].long_name duplicate[variable].units = "hours since " + date duplicate[variable].axis = "T" # also set the begin date of this data duplicate[variable].begin_date = timestamp if variable == 'lat': duplicate[variable][:] = original[variable][:] duplicate[variable].axis = "Y" if variable == 'lon': duplicate[variable][:] = original[variable][:] duplicate[variable].axis = "X" else: duplicate[variable][:] = original[variable][:] duplicate[variable].axis = "lat lon" duplicate[variable].long_name = original[variable].long_name duplicate[variable].begin_date = timestamp duplicate[variable].units = original[variable].units # close the files, delete the one you just did, start again original.close() duplicate.sync() duplicate.close() # delete the netcdfs now that we're done with them triggering future runs to skip this step shutil.rmtree(netcdfs) logging.info('Finished File Conversions') return def new_ncml(threddspath, timestamp, region, model): logging.info('\nWriting a new ncml file for this date') # create a new ncml file by filling in the template with the right dates and writing to a file ncml = os.path.join(threddspath, region, model, 'wms.ncml') date = datetime.datetime.strptime(timestamp, "%Y%m%d%H") date = datetime.datetime.strftime(date, "%Y-%m-%d %H:00:00") with open(ncml, 'w') as file: file.write( '<netcdf xmlns="http://www.unidata.ucar.edu/namespaces/netcdf/ncml-2.2">\n' ' <variable name="time" type="int" shape="time">\n' ' <attribute name="units" value="hours since ' + date + '"/>\n' ' <attribute name="_CoordinateAxisType" value="Time" />\n' ' <values start="6" increment="6" />\n' ' </variable>\n' ' <aggregation dimName="time" type="joinExisting" recheckEvery="1 hour">\n' ' <scan location="' + timestamp + '/processed/"/>\n' ' </aggregation>\n' '</netcdf>' ) logging.info('Wrote New .ncml') return def new_colorscales(wrksppath, region, model): # set the environment logging.info('\nGenerating a new color scale csv for the ' + model + ' results') colorscales = os.path.join(wrksppath, region, model + 'colorscales.csv') results = os.path.join(wrksppath, region, model + 'results.csv') logging.info(results) answers = pd.DataFrame(columns=['cat_id', 'cum_mean', 'mean', 'max']) res_df =
pd.read_csv(results, index_col=False)
pandas.read_csv
# -*- coding: utf-8 -*- """ Created on Wed Aug 4 2021, last edited 27 Oct 2021 Fiber flow emissions calculations module - class version Inputs: Excel file with old PPI market & emissions data ('FiberModelAll_Python_v3-yields.xlsx') Outputs: Dict of keys 'old','new','forest','trade' with emissions calcs (*testing inputs* x = 'FiberModelAll_Python_v2.xlsx' f2pVolOld = pd.read_excel(x, 'OldData', usecols="A:I", skiprows=1, nrows=21, index_col=0) pbpVolOld = pd.read_excel(x, 'OldData', usecols="K:R", skiprows=1, nrows=14, index_col=0) pbpVolOld.columns = [x[:-2] for x in pbpVolOld.columns] consCollOld = pd.read_excel(x, 'OldData', usecols="K:Q", skiprows=34, nrows=3, index_col=0) rLevel = pd.read_excel(x, 'Demand', usecols="F:K", skiprows=16, nrows=5) rLevel = {t: list(rLevel[t][np.isfinite(rLevel[t])].values) for t in fProd} fProd = [t for t in f2pVolOld.iloc[:,:6].columns] fProdM = [t for t in f2pVolOld.iloc[:,:7].columns] rFiber = f2pVolOld.index[:16] vFiber = f2pVolOld.index[16:] rPulp = [p for p in pbpVolOld.index if 'Rec' in p] vPulp = [q for q in pbpVolOld.index if 'Vir' in q] fPulp = [f for f in pbpVolOld.index] import numpy as np f2pYld = pd.read_excel(x, 'Fiber', usecols="I:O", skiprows=1, nrows=21) f2pYld.index = np.concatenate([rFiber.values, vFiber.values], axis=0) pulpYld = pd.read_excel(x, 'Pulp', usecols="D", skiprows=1, nrows=14) pulpYld.index = rPulp + vPulp transPct = pd.read_excel(x, 'EmTables', usecols="L:P", skiprows=32, nrows=11, index_col=0) transKM = pd.read_excel(x, 'EmTables', usecols="L:P", skiprows=46, nrows=11, index_col=0) transUMI = pd.read_excel(x, 'EmTables', usecols="L:P", skiprows=59, nrows=1, index_col=0) rsdlModes = pd.read_excel(x, 'EmTables', usecols="A:G", skiprows=32, nrows=6, index_col=0) rsdlbio = pd.read_excel(x, 'EmTables', usecols="A:H", skiprows=41, nrows=4, index_col=0) rsdlbio = rsdlbio.fillna(0) rsdlfos = pd.read_excel(x, 'EmTables', usecols="A:H", skiprows=48, nrows=4, index_col=0) rsdlfos = rsdlfos.fillna(0) woodint = pd.read_excel(x, 'EmTables', usecols="A:H", skiprows=58, nrows=1, index_col=0) wtotalGHGb0 = pd.read_excel(x, 'EmTables', usecols="A:K", skiprows=62, nrows=6, index_col=0) wtotalGHGb1 = pd.read_excel(x, 'EmTables', usecols="A:K", skiprows=71, nrows=6, index_col=0) wbioGHGb0 = pd.read_excel(x, 'EmTables', usecols="A:K", skiprows=80, nrows=6, index_col=0) wbioGHGb1 = pd.read_excel(x, 'EmTables', usecols="A:K", skiprows=89, nrows=6, index_col=0) wfosGHGb0 = pd.read_excel(x, 'EmTables', usecols="A:K", skiprows=98, nrows=6, index_col=0) wfosGHGb1 = pd.read_excel(x, 'EmTables', usecols="A:K", skiprows=107, nrows=6, index_col=0) exportOld = pd.read_excel(x, 'OldData', usecols="E:G", skiprows=31, nrows=16, index_col=0) exportOld.iloc[:,:-1] = exportOld.iloc[:,:-1] exportNew = exportOld.iloc[:,:-1] * 1.5 exportNew.columns = ['exportNew'] exportNew = exportNew.assign(TransCode=exportOld['TransCode'].values) fiberType = pd.read_excel(x, 'OldData', usecols="A:B", skiprows=31, nrows=20, index_col=0) chinaVals = pd.read_excel(x, 'EmTables', usecols="L:M", skiprows=66, nrows=3, index_col=0) chinaCons = pd.read_excel(x, 'EmTables', usecols="L:M", skiprows=72, nrows=6, index_col=0) fYield = pd.read_excel(x, 'EmTables', usecols="L:N", skiprows=81, nrows=5, index_col=0) ) @author: <NAME> """ import pandas as pd import numpy as np class en_emissions(): # energy & emissions def __init__(cls,xls,fProd,rLevel,f2pYld,pulpYld,f2pVolNew,pbpVolNew,consCollNew,exportNew,demandNew): # xls (str) - name of Excel spreadsheet to pull data from # fProd (list) - list of products in current scenario # rLevel (df) - recycled content level by product # f2pYld (df) - fiber to pulp yield by pulp product; indexed by fiber # pulpYld (df) - pulp to product yield; pulp as index # f2pVolNew (df) - fiber to pulp volume (in short tons); indexed by pulp name # pbpVolNew (df) - pulp by product volume; indexed by pulp name # consCollNew (df) - domestic consumption, collection, and recovery by product # demandNew (df) - new demand by product; indexed by rec level uC = 0.907185 # unit conversion of MM US ton to Mg/metric ton cls.fProd = fProd cls.fProdM = fProd + ['Market'] cls.rLevel = rLevel cls.f2pYld = f2pYld cls.pulpYld = pulpYld cls.f2pVolNew = f2pVolNew * uC cls.pbpVolNew = pbpVolNew * uC cls.consCollNew = consCollNew * uC cls.exportNew = exportNew * uC cls.demandNew = {t: demandNew[t] * uC for t in demandNew.keys()} with pd.ExcelFile(xls) as x: # Old data cls.f2pVolOld = pd.read_excel(x, 'OldData', usecols="A:I", skiprows=1, nrows=21, index_col=0) cls.f2pVolOld.iloc[:,:-1] = cls.f2pVolOld.iloc[:,:-1] * uC * 1000 cls.f2pVolNew = cls.f2pVolNew.assign(TransCode=cls.f2pVolOld['TransCode'].values) cls.pbpVolOld = pd.read_excel(x, 'OldData', usecols="K:R", skiprows=1, nrows=14, index_col=0) cls.pbpVolOld.columns = [x[:-2] for x in cls.pbpVolOld.columns] # has .1 after column names for pandas duplicate cls.pbpVolOld.iloc[:,:-1] = cls.pbpVolOld.iloc[:,:-1] * uC * 1000 cls.pbpVolNew = cls.pbpVolNew.assign(TransCode=cls.pbpVolOld['TransCode'].values) cls.prodLD = pd.read_excel(x, 'OldData', usecols="K:Q", skiprows=19, nrows=5, index_col=0) * uC * 1000 cls.prodDemand = pd.read_excel(x, 'OldData', usecols="A:G", skiprows=26, nrows=1, index_col=0) * uC * 1000 cls.consCollOld = pd.read_excel(x, 'OldData', usecols="K:Q", skiprows=29, nrows=3, index_col=0) * uC * 1000 cls.exportOld = pd.read_excel(x, 'OldData', usecols="E:G", skiprows=31, nrows=16, index_col=0) cls.exportOld.iloc[:,:-1] = cls.exportOld.iloc[:,:-1] * uC * 1000 cls.exportNew = cls.exportNew.assign(TransCode=cls.exportOld['TransCode'].values) cls.fiberType = pd.read_excel(x, 'OldData', usecols="A:B", skiprows=31, nrows=20, index_col=0) cls.rFiber = cls.f2pVolOld.index[:16] cls.vFiber = cls.f2pVolOld.index[16:] cls.rPulp = [p for p in cls.pbpVolOld.index if 'Rec' in p] cls.vPulp = [q for q in cls.pbpVolOld.index if 'Vir' in q] cls.fPulp = [f for f in cls.pbpVolOld.index] # Emissions Info cls.chemicals = pd.read_excel(x, 'nonFiber', usecols="A:B,E:L", skiprows=2, nrows=42, index_col=0) cls.eolEmissions = pd.read_excel(x, 'EmTables', usecols="A:G", skiprows=2, nrows=3, index_col=0) cls.bfEI = pd.read_excel(x, 'EmTables', usecols="J:P", skiprows=2, nrows=3, index_col=0) cls.bfEI.columns = [x[:-2] for x in cls.bfEI.columns] # has .1 after column names for some reason cls.bioPct = pd.read_excel(x, 'EmTables', usecols="J:P", skiprows=8, nrows=2, index_col=0) cls.pwpEI = pd.read_excel(x, 'EmTables', usecols="O:P", skiprows=14, nrows=5, index_col=0) cls.bfCO2 = pd.read_excel(x, 'EmTables', usecols="A:G", skiprows=9, nrows=2, index_col=0) cls.fuelTable = pd.read_excel(x, 'EmTables', usecols="A:M", skiprows=15, nrows=13, index_col=0) cls.fuelTable = cls.fuelTable.fillna(0) cls.rsdlModes = pd.read_excel(x, 'EmTables', usecols="A:G", skiprows=32, nrows=6, index_col=0) cls.rsdlbio =
pd.read_excel(x, 'EmTables', usecols="A:H", skiprows=41, nrows=4, index_col=0)
pandas.read_excel
# -*- coding: utf-8 -*- """ Created on Sun Apr 14 20:18:24 2019 @author: verascity This is a little housekeeping script while I work out the kinks on this classifier; it will eventually go away! """ import pandas as pd df1 =
pd.read_csv('vaccine_df_01312019.csv')
pandas.read_csv
import pandas as pd import numpy as np print(pd.Series([11, 20, 30, 20, 30, 30, 20])) #Cria uma coluna com os dados desta lista print() print(
pd.Series([10, 20, 30, 33], index=["a", "b", "c", "d"])
pandas.Series
# -*- coding: utf-8 -*- """ Created on Mon Jun 15 13:51:54 2020 @author: SE """ # -*- coding: utf-8 -*- """ Created on Mon Mar 30 16:57:13 2020 @author: SE """ import re import pandas as pd from matplotlib import pyplot as plt from datetime import datetime from collections import Counter import numpy as np import random import os #Please specify your dataset directory. os.chdir("your dataset directory") df_PM=pd.read_csv("1_RQ2_LDA_topics_mapped_by_major_minor_detail_27_6_20.csv", low_memory=False) gk = df_PM.groupby('Semi_major') #""" RUBY_MRI=[] JVM=[] Perl=[] Multi=[] Python=[] Gc=[] R=[] NET=[] Node=[] Julia=[] Dart_VM=[] Zend=[] Elm=[] Topic=[] #no of posts after manual categorization n_RUBY_MRI=13189 n_JVM=74557 n_Perl=1127 n_Multi=10856 n_Python=999 n_Gc=42025 n_R=550 n_NET=9976 n_Node=60475 n_Julia=6098 n_Dart_VM=463 n_Zend=242 n_Elm=1574 for i in range(0, 10): Topic.append(i) data=gk.get_group(i) df4=data.reset_index() RUBY_MRI1=[] JVM1=[] Perl1=[] Multi1=[] Python1=[] Gc1=[] R1=[] NET1=[] Node1=[] Julia1=[] Dart_VM1=[] Zend1=[] Elm1=[] for j in range(0, len(df4)): if df4['post_Enviroment'][j]=='Ruby MRI': RUBY_MRI1.append('Ruby MRI') if df4['post_Enviroment'][j]=='JVM': JVM1.append('JVM') if df4['post_Enviroment'][j]=='Perl': Perl1.append('Perl') if df4['post_Enviroment'][j]=='Multi': Multi1.append('Multi') if df4['post_Enviroment'][j]=='Python': Python1.append('Python') if df4['post_Enviroment'][j]=='Gc': Gc1.append('Gc') if df4['post_Enviroment'][j]=='R': R1.append('R') if df4['post_Enviroment'][j]=='.NET': NET1.append('.NET') if df4['post_Enviroment'][j]=='Node.js': Node1.append('Node.js') if df4['post_Enviroment'][j]=='Julia': Julia1.append('Julia') if df4['post_Enviroment'][j]=='Dart VM': Dart_VM1.append('Dart VM') if df4['post_Enviroment'][j]=='Zend Engine': Zend1.append('Zend Engine') if df4['post_Enviroment'][j]=='Elm': Elm1.append('Elm') RUBY_MRI.append((len(RUBY_MRI1)/n_RUBY_MRI)*100) JVM.append((len(JVM1)/n_JVM)*100) Perl.append((len(Perl1)/n_Perl)*100) Multi.append((len(Multi1)/n_Multi)*100) Python.append((len(Python1)/n_Python)*100) Gc.append((len(Gc1)/n_Gc)*100) R.append((len(R1)/n_R)*100) NET.append((len(NET1)/n_NET)*100) Node.append((len(Node1)/n_Node)*100) Julia.append((len(Julia1)/n_Julia)*100) Dart_VM.append((len(Dart_VM1)/n_Dart_VM)*100) Zend.append((len(Zend1)/n_Zend)*100) Elm.append((len(Elm1)/n_Elm)*100) dict={'Topic':Topic,'Ruby MRI':RUBY_MRI, 'JVM':JVM, 'Perl':Perl, 'Multi':Multi, 'Python':Python,'Gc':Gc,'R':R,'.NET':NET, 'Node.js':Node, 'Julia':Julia, 'Dart VM':Dart_VM, 'Zend Engine':Zend, 'Elm':Elm} LDA_data=
pd.DataFrame(dict)
pandas.DataFrame
from sklearn.decomposition import PCA import pandas as pd import numpy as np from matplotlib import pyplot as plt from sklearn.cluster import KMeans from sklearn.metrics import silhouette_score # 订单与商品 prior = pd.read_csv('D://A//data//instacart//order_products__prior.csv') # 商品购买信息 product = pd.read_csv('D://A//data//instacart//products.csv') # 用户与订单信息 order = pd.read_csv('D://A//data//instacart//orders.csv') # 商品与类别 aisles = pd.read_csv('D://A//data//instacart//aisles.csv') # 合并数据 pp = pd.merge(prior, product, on=['product_id', 'product_id']) po =
pd.merge(pp, order, on=['order_id', 'order_id'])
pandas.merge
import json import glob import re import os from io import StringIO from pathlib import Path import numpy as np import click import pandas as pd import requests from lxml import etree as ET from ocrd_models.ocrd_page import parse from ocrd_utils import bbox_from_points from .ned import ned from .ner import ner from .tsv import read_tsv, write_tsv, extract_doc_links from .ocr import get_conf_color @click.command() @click.argument('tsv-file', type=click.Path(exists=True), required=True, nargs=1) @click.argument('url-file', type=click.Path(exists=False), required=True, nargs=1) def extract_document_links(tsv_file, url_file): parts = extract_doc_links(tsv_file) urls = [part['url'] for part in parts] urls = pd.DataFrame(urls, columns=['url']) urls.to_csv(url_file, sep="\t", quoting=3, index=False) @click.command() @click.argument('tsv-file', type=click.Path(exists=True), required=True, nargs=1) @click.argument('annotated-tsv-file', type=click.Path(exists=False), required=True, nargs=1) def annotate_tsv(tsv_file, annotated_tsv_file): parts = extract_doc_links(tsv_file) annotated_parts = [] for part in parts: part_data = StringIO(part['header'] + part['text']) df = pd.read_csv(part_data, sep="\t", comment='#', quoting=3) df['url_id'] = len(annotated_parts) annotated_parts.append(df) df =
pd.concat(annotated_parts)
pandas.concat
# -*- coding: utf-8 -*- from __future__ import print_function from datetime import datetime import itertools import numpy as np import pytest from pandas.compat import u import pandas as pd from pandas import ( DataFrame, Index, MultiIndex, Period, Series, Timedelta, date_range) from pandas.tests.frame.common import TestData import pandas.util.testing as tm from pandas.util.testing import assert_frame_equal, assert_series_equal class TestDataFrameReshape(TestData): def test_pivot(self): data = { 'index': ['A', 'B', 'C', 'C', 'B', 'A'], 'columns': ['One', 'One', 'One', 'Two', 'Two', 'Two'], 'values': [1., 2., 3., 3., 2., 1.] } frame = DataFrame(data) pivoted = frame.pivot( index='index', columns='columns', values='values') expected = DataFrame({ 'One': {'A': 1., 'B': 2., 'C': 3.}, 'Two': {'A': 1., 'B': 2., 'C': 3.} }) expected.index.name, expected.columns.name = 'index', 'columns' tm.assert_frame_equal(pivoted, expected) # name tracking assert pivoted.index.name == 'index' assert pivoted.columns.name == 'columns' # don't specify values pivoted = frame.pivot(index='index', columns='columns') assert pivoted.index.name == 'index' assert pivoted.columns.names == (None, 'columns') def test_pivot_duplicates(self): data = DataFrame({'a': ['bar', 'bar', 'foo', 'foo', 'foo'], 'b': ['one', 'two', 'one', 'one', 'two'], 'c': [1., 2., 3., 3., 4.]}) with pytest.raises(ValueError, match='duplicate entries'): data.pivot('a', 'b', 'c') def test_pivot_empty(self): df = DataFrame({}, columns=['a', 'b', 'c']) result = df.pivot('a', 'b', 'c') expected = DataFrame() tm.assert_frame_equal(result, expected, check_names=False) def test_pivot_integer_bug(self): df = DataFrame(data=[("A", "1", "A1"), ("B", "2", "B2")]) result = df.pivot(index=1, columns=0, values=2) repr(result) tm.assert_index_equal(result.columns, Index(['A', 'B'], name=0)) def test_pivot_index_none(self): # gh-3962 data = { 'index': ['A', 'B', 'C', 'C', 'B', 'A'], 'columns': ['One', 'One', 'One', 'Two', 'Two', 'Two'], 'values': [1., 2., 3., 3., 2., 1.] } frame = DataFrame(data).set_index('index') result = frame.pivot(columns='columns', values='values') expected = DataFrame({ 'One': {'A': 1., 'B': 2., 'C': 3.}, 'Two': {'A': 1., 'B': 2., 'C': 3.} }) expected.index.name, expected.columns.name = 'index', 'columns' assert_frame_equal(result, expected) # omit values result = frame.pivot(columns='columns') expected.columns = pd.MultiIndex.from_tuples([('values', 'One'), ('values', 'Two')], names=[None, 'columns']) expected.index.name = 'index' tm.assert_frame_equal(result, expected, check_names=False) assert result.index.name == 'index' assert result.columns.names == (None, 'columns') expected.columns = expected.columns.droplevel(0) result = frame.pivot(columns='columns', values='values') expected.columns.name = 'columns' tm.assert_frame_equal(result, expected) def test_stack_unstack(self): df = self.frame.copy() df[:] = np.arange(np.prod(df.shape)).reshape(df.shape) stacked = df.stack() stacked_df = DataFrame({'foo': stacked, 'bar': stacked}) unstacked = stacked.unstack() unstacked_df = stacked_df.unstack() assert_frame_equal(unstacked, df) assert_frame_equal(unstacked_df['bar'], df) unstacked_cols = stacked.unstack(0) unstacked_cols_df = stacked_df.unstack(0) assert_frame_equal(unstacked_cols.T, df) assert_frame_equal(unstacked_cols_df['bar'].T, df) def test_stack_mixed_level(self): # GH 18310 levels = [range(3), [3, 'a', 'b'], [1, 2]] # flat columns: df = DataFrame(1, index=levels[0], columns=levels[1]) result = df.stack() expected = Series(1, index=MultiIndex.from_product(levels[:2])) assert_series_equal(result, expected) # MultiIndex columns: df = DataFrame(1, index=levels[0], columns=MultiIndex.from_product(levels[1:])) result = df.stack(1) expected = DataFrame(1, index=MultiIndex.from_product([levels[0], levels[2]]), columns=levels[1]) assert_frame_equal(result, expected) # as above, but used labels in level are actually of homogeneous type result = df[['a', 'b']].stack(1) expected = expected[['a', 'b']] assert_frame_equal(result, expected) def test_unstack_fill(self): # GH #9746: fill_value keyword argument for Series # and DataFrame unstack # From a series data = Series([1, 2, 4, 5], dtype=np.int16) data.index = MultiIndex.from_tuples( [('x', 'a'), ('x', 'b'), ('y', 'b'), ('z', 'a')]) result = data.unstack(fill_value=-1) expected = DataFrame({'a': [1, -1, 5], 'b': [2, 4, -1]}, index=['x', 'y', 'z'], dtype=np.int16) assert_frame_equal(result, expected) # From a series with incorrect data type for fill_value result = data.unstack(fill_value=0.5) expected = DataFrame({'a': [1, 0.5, 5], 'b': [2, 4, 0.5]}, index=['x', 'y', 'z'], dtype=np.float) assert_frame_equal(result, expected) # GH #13971: fill_value when unstacking multiple levels: df = DataFrame({'x': ['a', 'a', 'b'], 'y': ['j', 'k', 'j'], 'z': [0, 1, 2], 'w': [0, 1, 2]}).set_index(['x', 'y', 'z']) unstacked = df.unstack(['x', 'y'], fill_value=0) key = ('<KEY>') expected = unstacked[key] result = pd.Series([0, 0, 2], index=unstacked.index, name=key) assert_series_equal(result, expected) stacked = unstacked.stack(['x', 'y']) stacked.index = stacked.index.reorder_levels(df.index.names) # Workaround for GH #17886 (unnecessarily casts to float): stacked = stacked.astype(np.int64) result = stacked.loc[df.index] assert_frame_equal(result, df) # From a series s = df['w'] result = s.unstack(['x', 'y'], fill_value=0) expected = unstacked['w'] assert_frame_equal(result, expected) def test_unstack_fill_frame(self): # From a dataframe rows = [[1, 2], [3, 4], [5, 6], [7, 8]] df = DataFrame(rows, columns=list('AB'), dtype=np.int32) df.index = MultiIndex.from_tuples( [('x', 'a'), ('x', 'b'), ('y', 'b'), ('z', 'a')]) result = df.unstack(fill_value=-1) rows = [[1, 3, 2, 4], [-1, 5, -1, 6], [7, -1, 8, -1]] expected = DataFrame(rows, index=list('xyz'), dtype=np.int32) expected.columns = MultiIndex.from_tuples( [('A', 'a'), ('A', 'b'), ('B', 'a'), ('B', 'b')]) assert_frame_equal(result, expected) # From a mixed type dataframe df['A'] = df['A'].astype(np.int16) df['B'] = df['B'].astype(np.float64) result = df.unstack(fill_value=-1) expected['A'] = expected['A'].astype(np.int16) expected['B'] = expected['B'].astype(np.float64) assert_frame_equal(result, expected) # From a dataframe with incorrect data type for fill_value result = df.unstack(fill_value=0.5) rows = [[1, 3, 2, 4], [0.5, 5, 0.5, 6], [7, 0.5, 8, 0.5]] expected = DataFrame(rows, index=list('xyz'), dtype=np.float) expected.columns = MultiIndex.from_tuples( [('A', 'a'), ('A', 'b'), ('B', 'a'), ('B', 'b')]) assert_frame_equal(result, expected) def test_unstack_fill_frame_datetime(self): # Test unstacking with date times dv = pd.date_range('2012-01-01', periods=4).values data = Series(dv) data.index = MultiIndex.from_tuples( [('x', 'a'), ('x', 'b'), ('y', 'b'), ('z', 'a')]) result = data.unstack() expected = DataFrame({'a': [dv[0], pd.NaT, dv[3]], 'b': [dv[1], dv[2], pd.NaT]}, index=['x', 'y', 'z']) assert_frame_equal(result, expected) result = data.unstack(fill_value=dv[0]) expected = DataFrame({'a': [dv[0], dv[0], dv[3]], 'b': [dv[1], dv[2], dv[0]]}, index=['x', 'y', 'z']) assert_frame_equal(result, expected) def test_unstack_fill_frame_timedelta(self): # Test unstacking with time deltas td = [Timedelta(days=i) for i in range(4)] data = Series(td) data.index = MultiIndex.from_tuples( [('x', 'a'), ('x', 'b'), ('y', 'b'), ('z', 'a')]) result = data.unstack() expected = DataFrame({'a': [td[0], pd.NaT, td[3]], 'b': [td[1], td[2], pd.NaT]}, index=['x', 'y', 'z']) assert_frame_equal(result, expected) result = data.unstack(fill_value=td[1]) expected = DataFrame({'a': [td[0], td[1], td[3]], 'b': [td[1], td[2], td[1]]}, index=['x', 'y', 'z']) assert_frame_equal(result, expected) def test_unstack_fill_frame_period(self): # Test unstacking with period periods = [Period('2012-01'), Period('2012-02'), Period('2012-03'), Period('2012-04')] data = Series(periods) data.index = MultiIndex.from_tuples( [('x', 'a'), ('x', 'b'), ('y', 'b'), ('z', 'a')]) result = data.unstack() expected = DataFrame({'a': [periods[0], None, periods[3]], 'b': [periods[1], periods[2], None]}, index=['x', 'y', 'z']) assert_frame_equal(result, expected) result = data.unstack(fill_value=periods[1]) expected = DataFrame({'a': [periods[0], periods[1], periods[3]], 'b': [periods[1], periods[2], periods[1]]}, index=['x', 'y', 'z']) assert_frame_equal(result, expected) def test_unstack_fill_frame_categorical(self): # Test unstacking with categorical data = pd.Series(['a', 'b', 'c', 'a'], dtype='category') data.index = pd.MultiIndex.from_tuples( [('x', 'a'), ('x', 'b'), ('y', 'b'), ('z', 'a')], ) # By default missing values will be NaN result = data.unstack() expected = DataFrame({'a': pd.Categorical(list('axa'), categories=list('abc')), 'b': pd.Categorical(list('bcx'), categories=list('abc'))}, index=list('xyz')) assert_frame_equal(result, expected) # Fill with non-category results in a TypeError msg = r"'fill_value' \('d'\) is not in" with pytest.raises(TypeError, match=msg): data.unstack(fill_value='d') # Fill with category value replaces missing values as expected result = data.unstack(fill_value='c') expected = DataFrame({'a': pd.Categorical(list('aca'), categories=list('abc')), 'b': pd.Categorical(list('bcc'), categories=list('abc'))}, index=list('xyz')) assert_frame_equal(result, expected) def test_unstack_preserve_dtypes(self): # Checks fix for #11847 df = pd.DataFrame(dict(state=['IL', 'MI', 'NC'], index=['a', 'b', 'c'], some_categories=pd.Series(['a', 'b', 'c'] ).astype('category'), A=np.random.rand(3), B=1, C='foo', D=pd.Timestamp('20010102'), E=pd.Series([1.0, 50.0, 100.0] ).astype('float32'), F=pd.Series([3.0, 4.0, 5.0]).astype('float64'), G=False, H=pd.Series([1, 200, 923442], dtype='int8'))) def unstack_and_compare(df, column_name): unstacked1 = df.unstack([column_name]) unstacked2 = df.unstack(column_name) assert_frame_equal(unstacked1, unstacked2) df1 = df.set_index(['state', 'index']) unstack_and_compare(df1, 'index') df1 = df.set_index(['state', 'some_categories']) unstack_and_compare(df1, 'some_categories') df1 = df.set_index(['F', 'C']) unstack_and_compare(df1, 'F') df1 = df.set_index(['G', 'B', 'state']) unstack_and_compare(df1, 'B') df1 = df.set_index(['E', 'A']) unstack_and_compare(df1, 'E') df1 = df.set_index(['state', 'index']) s = df1['A'] unstack_and_compare(s, 'index') def test_stack_ints(self): columns = MultiIndex.from_tuples(list(itertools.product(range(3), repeat=3))) df = DataFrame(np.random.randn(30, 27), columns=columns) assert_frame_equal(df.stack(level=[1, 2]), df.stack(level=1).stack(level=1)) assert_frame_equal(df.stack(level=[-2, -1]), df.stack(level=1).stack(level=1)) df_named = df.copy() df_named.columns.set_names(range(3), inplace=True) assert_frame_equal(df_named.stack(level=[1, 2]), df_named.stack(level=1).stack(level=1)) def test_stack_mixed_levels(self): columns = MultiIndex.from_tuples( [('A', 'cat', 'long'), ('B', 'cat', 'long'), ('A', 'dog', 'short'), ('B', 'dog', 'short')], names=['exp', 'animal', 'hair_length'] ) df = DataFrame(np.random.randn(4, 4), columns=columns) animal_hair_stacked = df.stack(level=['animal', 'hair_length']) exp_hair_stacked = df.stack(level=['exp', 'hair_length']) # GH #8584: Need to check that stacking works when a number # is passed that is both a level name and in the range of # the level numbers df2 = df.copy() df2.columns.names = ['exp', 'animal', 1] assert_frame_equal(df2.stack(level=['animal', 1]), animal_hair_stacked, check_names=False) assert_frame_equal(df2.stack(level=['exp', 1]), exp_hair_stacked, check_names=False) # When mixed types are passed and the ints are not level # names, raise msg = ("level should contain all level names or all level numbers, not" " a mixture of the two") with pytest.raises(ValueError, match=msg): df2.stack(level=['animal', 0]) # GH #8584: Having 0 in the level names could raise a # strange error about lexsort depth df3 = df.copy() df3.columns.names = ['exp', 'animal', 0] assert_frame_equal(df3.stack(level=['animal', 0]), animal_hair_stacked, check_names=False) def test_stack_int_level_names(self): columns = MultiIndex.from_tuples( [('A', 'cat', 'long'), ('B', 'cat', 'long'), ('A', 'dog', 'short'), ('B', 'dog', 'short')], names=['exp', 'animal', 'hair_length'] ) df = DataFrame(np.random.randn(4, 4), columns=columns) exp_animal_stacked = df.stack(level=['exp', 'animal']) animal_hair_stacked = df.stack(level=['animal', 'hair_length']) exp_hair_stacked = df.stack(level=['exp', 'hair_length']) df2 = df.copy() df2.columns.names = [0, 1, 2] assert_frame_equal(df2.stack(level=[1, 2]), animal_hair_stacked, check_names=False) assert_frame_equal(df2.stack(level=[0, 1]), exp_animal_stacked, check_names=False) assert_frame_equal(df2.stack(level=[0, 2]), exp_hair_stacked, check_names=False) # Out-of-order int column names df3 = df.copy() df3.columns.names = [2, 0, 1] assert_frame_equal(df3.stack(level=[0, 1]), animal_hair_stacked, check_names=False) assert_frame_equal(df3.stack(level=[2, 0]), exp_animal_stacked, check_names=False) assert_frame_equal(df3.stack(level=[2, 1]), exp_hair_stacked, check_names=False) def test_unstack_bool(self): df = DataFrame([False, False], index=MultiIndex.from_arrays([['a', 'b'], ['c', 'l']]), columns=['col']) rs = df.unstack() xp = DataFrame(np.array([[False, np.nan], [np.nan, False]], dtype=object), index=['a', 'b'], columns=MultiIndex.from_arrays([['col', 'col'], ['c', 'l']])) assert_frame_equal(rs, xp) def test_unstack_level_binding(self): # GH9856 mi = pd.MultiIndex( levels=[[u('foo'), u('bar')], [u('one'), u('two')], [u('a'), u('b')]], codes=[[0, 0, 1, 1], [0, 1, 0, 1], [1, 0, 1, 0]], names=[u('first'), u('second'), u('third')]) s = pd.Series(0, index=mi) result = s.unstack([1, 2]).stack(0) expected_mi = pd.MultiIndex( levels=[['foo', 'bar'], ['one', 'two']], codes=[[0, 0, 1, 1], [0, 1, 0, 1]], names=['first', 'second']) expected = pd.DataFrame(np.array([[np.nan, 0], [0, np.nan], [np.nan, 0], [0, np.nan]], dtype=np.float64), index=expected_mi, columns=pd.Index(['a', 'b'], name='third'))
assert_frame_equal(result, expected)
pandas.util.testing.assert_frame_equal
# -*- coding: utf-8 -*- """Supports Kp index values. Downloads data from ftp.gfz-potsdam.de or SWPC. Parameters ---------- platform 'sw' name 'kp' tag - '' : Standard Kp data - 'forecast' : Grab forecast data from SWPC (next 3 days) - 'recent' : Grab last 30 days of Kp data from SWPC Note ---- Standard Kp files are stored by the first day of each month. When downloading use kp.download(start, stop, freq='MS') to only download days that could possibly have data. 'MS' gives a monthly start frequency. The forecast data is stored by generation date, where each file contains the forecast for the next three days. Forecast data downloads are only supported for the current day. When loading forecast data, the date specified with the load command is the date the forecast was generated. The data loaded will span three days. To always ensure you are loading the most recent data, load the data with tomorrow's date. :: kp = pysat.Instrument('sw', 'kp', tag='recent') kp.download() kp.load(date=kp.tomorrow()) Recent data is also stored by the generation date from the SWPC. Each file contains 30 days of Kp measurements. The load date issued to pysat corresponds to the generation date. The recent and forecast data should not be used with the data padding option available from pysat.Instrument objects. Warnings -------- The 'forecast' Kp data loads three days at a time. The data padding feature and multi_file_day feature available from the pyast.Instrument object is not appropriate for Kp 'forecast' data. This material is based upon work supported by the National Science Foundation under Grant Number 1259508. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. Custom Functions ---------------- filter_geoquiet Filters pysat.Instrument data for given time after Kp drops below gate. """ import functools import numpy as np import os import pandas as pds import pysat import logging logger = logging.getLogger(__name__) platform = 'sw' name = 'kp' tags = {'': '', 'forecast': 'SWPC Forecast data next (3 days)', 'recent': 'SWPC provided Kp for past 30 days'} sat_ids = {'': ['', 'forecast', 'recent']} # generate todays date to support loading forecast data now = pysat.datetime.now() today = pysat.datetime(now.year, now.month, now.day) # set test dates _test_dates = {'': {'': pysat.datetime(2009, 1, 1), 'forecast': today + pds.DateOffset(days=1)}} def load(fnames, tag=None, sat_id=None): """Load Kp index files Parameters ------------ fnames : pandas.Series Series of filenames tag : str or NoneType tag or None (default=None) sat_id : str or NoneType satellite id or None (default=None) Returns --------- data : pandas.DataFrame Object containing satellite data meta : pysat.Meta Object containing metadata such as column names and units Notes ----- Called by pysat. Not intended for direct use by user. """ from pysat.utils.time import parse_date meta = pysat.Meta() if tag == '': # Kp data stored monthly, need to return data daily # the daily date is attached to filename # parse off the last date, load month of data, downselect to desired # day data = pds.DataFrame() # set up fixed width format for these files colspec = [(0, 2), (2, 4), (4, 6), (7, 10), (10, 13), (13, 16), (16, 19), (19, 23), (23, 26), (26, 29), (29, 32), (32, 50)] for filename in fnames: # the daily date is attached to filename # parse off the last date, load month of data, downselect to the # desired day fname = filename[0:-11] date = pysat.datetime.strptime(filename[-10:], '%Y-%m-%d') temp = pds.read_fwf(fname, colspecs=colspec, skipfooter=4, header=None, parse_dates=[[0, 1, 2]], date_parser=parse_date, index_col='0_1_2') idx, = np.where((temp.index >= date) & (temp.index < date +
pds.DateOffset(days=1)
pandas.DateOffset
import pandas as pd import numpy as np from tqdm import tqdm import matplotlib.pyplot as plt import seaborn as sns import shap from sklearn.metrics import mean_squared_error from sklearn.metrics import mean_absolute_error from sklearn.metrics import r2_score # from .utils import Boba_Utils as u class Boba_Model_Diagnostics(): def __init__(self): pass def run_model_diagnostics(self, model, X_train, X_test, y_train, y_test, target): self.get_model_stats(model, X_train, X_test, y_train, y_test, target) self.plot_shap_imp(model,X_train) self.plot_shap_bar(model,X_train) self.residual_plot(model,X_test,y_test,target) self.residual_density_plot(model,X_test,y_test,target) self.identify_outliers(model, X_test, y_test,target) self.residual_mean_plot(model,X_test,y_test,target) self.residual_variance_plot(model,X_test,y_test,target) self.PVA_plot(model,X_test,y_test,target) self.inverse_PVA_plot(model,X_train,y_train,target) self.estimates_by_var(model,X_train,y_train,target,'Age') self.error_by_var(model,X_train,y_train,target,'Age') self.volatility_by_var(model,X_train,y_train,target,'Age') def get_model_stats(self, model, X_train, X_test, y_train, y_test, target): train_pred = model.predict(X_train) test_pred = model.predict(X_test) test_RMSE = np.sqrt(mean_squared_error(y_test, test_pred)), test_R2 = model.score(X_test,y_test), test_MAE = mean_absolute_error(y_test, test_pred), train_RMSE = np.sqrt(mean_squared_error(y_train, train_pred)), train_R2 = model.score(X_train,y_train), train_MAE = mean_absolute_error(y_train, train_pred), df = pd.DataFrame(data = {'RMSE': np.round(train_RMSE,4), 'R^2': np.round(train_R2,4), 'MAE': np.round(train_MAE,4)}, index = ['train']) df2 = pd.DataFrame(data = {'RMSE': np.round(test_RMSE,4), 'R^2': np.round(test_R2,4), 'MAE': np.round(test_MAE,4)}, index = ['test']) print("Model Statistics for {}".format(target)) print('-'*40) print(df) print('-'*40) print(df2) print('-'*40) def plot_shap_imp(self,model,X_train): shap_values = shap.TreeExplainer(model).shap_values(X_train) shap.summary_plot(shap_values, X_train) plt.show() def plot_shap_bar(self,model,X_train): shap_values = shap.TreeExplainer(model).shap_values(X_train) shap.summary_plot(shap_values, X_train, plot_type='bar') plt.show() def feature_imp(self,model,X_train,target): sns.set_style('darkgrid') names = X_train.columns coef_df = pd.DataFrame({"Feature": names, "Importance": model.feature_importances_}, columns=["Feature", "Importance"]) coef_df = coef_df.sort_values('Importance',ascending=False) coef_df fig, ax = plt.subplots() sns.barplot(x="Importance", y="Feature", data=coef_df.head(20), label="Importance", color="b",orient='h') plt.title("XGB Feature Importances for {}".format(target)) plt.show() def residual_plot(self,model, X_test, y_test,target): pred = model.predict(X_test) residuals = pd.Series(pred,index=X_test.index) - pd.Series(y_test[target]) fig, ax = plt.subplots() ax.scatter(pred, residuals) ax.plot([pred.min(), pred.max()], [0, 0], 'k--', lw=4) ax.set_xlabel('Predicted') ax.set_ylabel('Residuals') plt.title("Residual Plot for {}".format(target)) plt.show() def residual_density_plot(self,model, X_test, y_test,target): sns.set_style('darkgrid') pred = model.predict(X_test) residuals = pd.Series(pred,index=X_test.index) - pd.Series(y_test[target]) sns.distplot(residuals) plt.title("Residual Density Plot for {}".format(target)) plt.show() def residual_variance_plot(self, model, X_test, y_test,target): try: pred = model.predict(X_test) residuals = pd.Series(pred,index=X_test.index) - pd.Series(y_test[target]) y_temp = y_test.copy() y_temp['pred'] = pred y_temp['residuals'] = residuals res_var = y_temp.groupby(pd.qcut(y_temp[target], 10))['residuals'].std() res_var.index = [1,2,3,4,5,6,7,8,9,10] res_var = res_var.reset_index() ax = sns.lineplot(x="index", y="residuals", data=res_var) plt.title("Residual Variance plot for {}".format(target)) plt.xlabel("Prediction Decile") plt.ylabel("Residual Variance") plt.show() except: pass def residual_mean_plot(self, model, X_test, y_test,target): sns.set_style('darkgrid') try: pred = model.predict(X_test) residuals = pd.Series(pred,index=X_test.index) - pd.Series(y_test[target]) y_temp = y_test.copy() y_temp['pred'] = pred y_temp['residuals'] = residuals res_var = y_temp.groupby(pd.qcut(y_temp['pred'], 10))['residuals'].mean() res_var.index = [1,2,3,4,5,6,7,8,9,10] res_var = res_var.reset_index() ax = sns.lineplot(x="index", y="residuals", data=res_var) plt.title("Residual Mean plot for {}".format(target)) plt.xlabel("Prediction Decile") plt.ylabel("Residual Mean") plt.show() except: pass def PVA_plot(self,model, X_test, y_test, target): sns.set_style('darkgrid') try: pred = model.predict(X_test) residuals = pd.Series(pred,index=X_test.index) - pd.Series(y_test[target]) y_temp = y_test.copy() y_temp['predicted'] = pred y_temp['residuals'] = residuals pva = y_temp.groupby(pd.qcut(y_temp['predicted'], 10))[target,'predicted'].mean() pva.index = [1,2,3,4,5,6,7,8,9,10] pva = pva.reset_index() pva = pva.rename(columns={target: "actual"}) df = pva.melt('index', var_name='cols', value_name='vals') sns.factorplot(x="index", y="vals", hue='cols', data=df,legend_out=False) plt.title("Predicted v Actual Chart by Deciles for {}".format(target)) plt.xlabel("Prediction Decile") plt.ylabel("{}".format(target)) plt.legend(loc='upper left') plt.show() except: pass def inverse_PVA_plot(self, model,X_test, y_test,target): sns.set_style('darkgrid') try: pred = model.predict(X_test) residuals = pd.Series(pred,index=X_test.index) - pd.Series(y_test[target]) y_temp = y_test.copy() y_temp['predicted'] = pred y_temp['residuals'] = residuals pva = y_temp.groupby(pd.qcut(y_temp[target], 10))[target,'predicted'].mean() pva.index = [1,2,3,4,5,6,7,8,9,10] pva = pva.reset_index() pva = pva.rename(columns={target: "actual"}) df = pva.melt('index', var_name='cols', value_name='vals') sns.factorplot(x="index", y="vals", hue='cols', data=df,legend_out=False) plt.title("Actual v Predicted Chart by Deciles for {}".format(target)) plt.xlabel("Actual Decile") plt.ylabel("{}".format(target)) plt.legend(loc='upper left') plt.show() except: pass def identify_outliers(self, model, X_test, y_test,target): master_df = pd.read_csv('data/processed/'+self.position_group+'/master_df.csv',index_col=0) index_list = list(X_test.index) master_df = master_df.iloc[index_list,:] pred_df = pd.DataFrame(data = {'pred':model.predict(X_test), 'residuals':pd.Series(model.predict(X_test),index=X_test.index) - pd.Series(y_test[target])},index=X_test.index) master_df =
pd.merge(master_df,pred_df,left_index=True,right_index=True)
pandas.merge
""" This network uses the last 26 observations of gwl, tide, and rain to predict the next 18 values of gwl for well MMPS-175 """ import pandas as pd from pandas import DataFrame from pandas import concat from pandas import read_csv from sklearn.metrics import mean_squared_error from sklearn.preprocessing import MinMaxScaler import tensorflow as tf import keras import keras.backend as K from keras.models import Sequential from keras.layers import Dense from keras.layers import LSTM from keras.layers import Dropout from keras.layers import Activation from math import sqrt import matplotlib.pyplot as plt import matplotlib import numpy as np import random as rn import os matplotlib.rcParams.update({'font.size': 8}) # convert time series into supervised learning problem def series_to_supervised(data, n_in=1, n_out=1, dropnan=True): n_vars = 1 if type(data) is list else data.shape[1] df = DataFrame(data) cols, names = list(), list() # input sequence (t-n, ... t-1) for i in range(n_in, 0, -1): cols.append(df.shift(i)) names += [('var%d(t-%d)' % (j+1, i)) for j in range(n_vars)] # forecast sequence (t, t+1, ... t+n) for i in range(0, n_out): cols.append(df.shift(-i)) if i == 0: names += [('var%d(t)' % (j+1)) for j in range(n_vars)] else: names += [('var%d(t+%d)' % (j+1, i)) for j in range(n_vars)] # put it all together agg = concat(cols, axis=1) agg.columns = names # drop rows with NaN values if dropnan: agg.dropna(inplace=True) return agg # def create_weights(train_labels): # obs_mean = np.mean(train_labels, axis=-1) # obs_mean = np.reshape(obs_mean, (n_batch, 1)) # obs_mean = np.repeat(obs_mean, n_ahead, axis=1) # weights = (train_labels + obs_mean) / (2 * obs_mean) # return weights # # # def sq_err(y_true, y_pred): # return K.square(y_pred - y_true) # # def mse(y_true, y_pred): return K.mean(K.square(y_pred - y_true), axis=-1) def rmse(y_true, y_pred): return K.sqrt(K.mean(K.square(y_pred - y_true), axis=-1)) def pw_rmse(y_true, y_pred): # num_rows, num_cols = K.int_shape(y_true)[0], K.int_shape(y_true)[1] # print(num_rows, num_cols) act_mean = K.mean(y_true, axis=-1) # print("act_mean 1 is:", act_mean) act_mean = K.reshape(act_mean, (n_batch, 1)) # print("act_mean is: ", act_mean) mean_repeat = K.repeat_elements(act_mean, n_ahead, axis=1) # print("mean_repeat is:", mean_repeat) weights = (y_true+mean_repeat)/(2*mean_repeat) return K.sqrt(K.mean((K.square(y_pred - y_true)*weights), axis=-1)) # configure network n_lags = 116 n_ahead = 18 n_features = 3 n_train = 52551 n_test = 8359 n_epochs = 500 n_neurons = 10 n_batch = 52551 # load dataset dataset_raw = read_csv("C:/Users/<NAME>/Documents/HRSD GIS/Site Data/MMPS_175_no_blanks.csv", index_col=None, parse_dates=True, infer_datetime_format=True) # dataset_raw = dataset_raw[0:len(dataset_raw)-1] # split datetime column into train and test for plots train_dates = dataset_raw[['Datetime', 'GWL', 'Tide', 'Precip.']].iloc[:n_train] test_dates = dataset_raw[['Datetime', 'GWL', 'Tide', 'Precip.']].iloc[n_train:] test_dates = test_dates.reset_index(drop=True) test_dates['Datetime'] = pd.to_datetime(test_dates['Datetime']) # drop columns we don't want to predict dataset = dataset_raw.drop(dataset_raw.columns[[0]], axis=1) values = dataset.values values = values.astype('float32') gwl = values[:, 0] gwl = gwl.reshape(gwl.shape[0], 1) tide = values[:, 1] tide = tide.reshape(tide.shape[0], 1) rain = values[:, 2] rain = rain.reshape(rain.shape[0], 1) # normalize features with individual scalers gwl_scaler, tide_scaler, rain_scaler = MinMaxScaler(), MinMaxScaler(), MinMaxScaler() gwl_scaled = gwl_scaler.fit_transform(gwl) tide_scaled = tide_scaler.fit_transform(tide) rain_scaled = rain_scaler.fit_transform(rain) scaled = np.concatenate((gwl_scaled, tide_scaled, rain_scaled), axis=1) # frame as supervised learning reframed = series_to_supervised(scaled, n_lags, n_ahead) values = reframed.values # split into train and test sets train, test = values[:n_train, :], values[n_train:, :] # split into input and outputs input_cols, label_cols = [], [] for i in range(values.shape[1]): if i <= n_lags*n_features-1: input_cols.append(i) elif i % 3 != 0: input_cols.append(i) elif i % 3 == 0: label_cols.append(i) train_X, train_y = train[:, input_cols], train[:, label_cols] # [start:stop:increment, (cols to include)] test_X, test_y = test[:, input_cols], test[:, label_cols] # reshape input to be 3D [samples, timesteps, features] train_X = train_X.reshape((train_X.shape[0], 1, train_X.shape[1])) test_X = test_X.reshape((test_X.shape[0], 1, test_X.shape[1])) print(train_X.shape, train_y.shape, test_X.shape, test_y.shape) #create weights for peak weighted rmse loss function # weights = create_weights(train_y) # load model here if needed # model = keras.models.load_model("C:/Users/<NAME>/PycharmProjects/Tensorflow/keras_models/mmps175.h5", # custom_objects={'pw_rmse':pw_rmse}) # set random seeds for model reproducibility as suggested in: # https://keras.io/getting-started/faq/#how-can-i-obtain-reproducible-results-using-keras-during-development os.environ['PYTHONHASHSEED'] = '0' np.random.seed(42) rn.seed(12345) session_conf = tf.ConfigProto(intra_op_parallelism_threads=1, inter_op_parallelism_threads=1) tf.set_random_seed(1234) sess = tf.Session(graph=tf.get_default_graph(), config=session_conf) K.set_session(sess) # define model model = Sequential() model.add(LSTM(units=n_neurons, input_shape=(None, train_X.shape[2]))) # model.add(LSTM(units=n_neurons, return_sequences=True, input_shape=(None, train_X.shape[2]))) # model.add(LSTM(units=n_neurons, return_sequences=True)) # model.add(LSTM(units=n_neurons)) model.add(Dropout(.1)) model.add(Dense(input_dim=n_neurons, activation='linear', units=n_ahead)) # model.add(Activation('linear')) model.compile(loss=pw_rmse, optimizer='adam') tbCallBack = keras.callbacks.TensorBoard(log_dir='C:/tmp/tensorflow/keras/logs', histogram_freq=0, write_graph=True, write_images=False) earlystop = keras.callbacks.EarlyStopping(monitor='loss', min_delta=0.0001, patience=5, verbose=1, mode='auto') history = model.fit(train_X, train_y, batch_size=n_batch, epochs=n_epochs, verbose=2, shuffle=False, callbacks=[earlystop, tbCallBack]) # save model # model.save("C:/Users/<NAME>/PycharmProjects/Tensorflow/keras_models/mmps175.h5") # plot model history # plt.plot(history.history['loss'], label='train') # # plt.plot(history.history['val_loss'], label='validate') # # plt.legend() # # ticks = np.arange(0, n_epochs, 1) # (start,stop,increment) # # plt.xticks(ticks) # plt.xlabel("Epochs") # plt.ylabel("Loss") # plt.tight_layout() # plt.show() # make predictions trainPredict = model.predict(train_X) yhat = model.predict(test_X) inv_trainPredict = gwl_scaler.inverse_transform(trainPredict) inv_yhat = gwl_scaler.inverse_transform(yhat) inv_y = gwl_scaler.inverse_transform(test_y) inv_train_y = gwl_scaler.inverse_transform(train_y) # save test predictions and observed inv_yhat_df = DataFrame(inv_yhat) inv_yhat_df.to_csv("C:/Users/<NAME>/PycharmProjects/Tensorflow/mmps175_results/predicted.csv") inv_y_df = DataFrame(inv_y) inv_y_df.to_csv("C:/Users/<NAME>/PycharmProjects/Tensorflow/mmps175_results/observed.csv") # calculate RMSE for whole test series (each forecast step) RMSE_forecast = [] for i in np.arange(0, n_ahead, 1): rmse = sqrt(mean_squared_error(inv_y[:, i], inv_yhat[:, i])) RMSE_forecast.append(rmse) RMSE_forecast = DataFrame(RMSE_forecast) rmse_avg = sqrt(mean_squared_error(inv_y, inv_yhat)) print('Average Test RMSE: %.3f' % rmse_avg) RMSE_forecast.to_csv("C:/Users/<NAME>/PycharmProjects/Tensorflow/mmps175_results/RMSE.csv") # calculate RMSE for each individual time step RMSE_timestep = [] for i in np.arange(0, inv_yhat.shape[0], 1): rmse = sqrt(mean_squared_error(inv_y[i, :], inv_yhat[i, :])) RMSE_timestep.append(rmse) RMSE_timestep = DataFrame(RMSE_timestep) # plot rmse vs forecast steps plt.plot(RMSE_forecast, 'ko') ticks = np.arange(0, n_ahead, 1) # (start,stop,increment) plt.xticks(ticks) plt.ylabel("RMSE (ft)") plt.xlabel("Forecast Step") plt.tight_layout() plt.show() # plot training predictions plt.plot(inv_train_y[:, 0], label='actual') plt.plot(inv_trainPredict[:, 0], label='predicted') plt.xlabel("Timestep") plt.ylabel("GWL (ft)") plt.title("Training Predictions") # ticks = np.arange(0, n_ahead, 1) # plt.xticks(ticks) plt.legend() plt.tight_layout() plt.show() # plot test predictions for Hermine, Julia, and Matthew dates =
DataFrame(test_dates[["Datetime"]][n_lags:-n_ahead+1])
pandas.DataFrame
"""Module used for backtesting and trading via OANDA v20 REST API.""" __all__ = [ "find_instruments", "get_price_data", "Oanda", "MAJORS", "EXOTICS", "FOREX", "INDICES", "COMMODITIES", "METALS", "BONDS", "ALL_SYMBOLS", "G10_USD", "EM_USD", "ALL_USD", ] import configparser from datetime import datetime from functools import lru_cache from inspect import getmembers, isfunction import json import logging import os import pickle import time from typing import Callable, Dict, List, Optional, Sequence, Tuple, Union from urllib.parse import urlencode import urllib.request as ur import pandas as pd try: from pandas import json_normalize except ImportError: from pandas.io.json import json_normalize from .helpers import swap_sign from .utils import get_factor_data, combine_factors, get_performance, print_progress Factor = Callable[..., Tuple[pd.DataFrame, Optional[Union[int, Sequence[float]]]]] def _get_hostname_headers() -> Tuple[str, Dict[str, str]]: """Return the V20 REST server hostname and the header fields for HTTP requests.""" try: hostname = os.environ["OANDA_HOSTNAME"] token = os.environ["OANDA_TOKEN"] except KeyError: config = configparser.ConfigParser() config_filepath = os.path.join(os.path.dirname(__file__), "config.ini") try: with open(config_filepath, "r") as config_file: config.read_file(config_file) hostname = config.get("oanda", "hostname") token = config.get("oanda", "token") except FileNotFoundError: logger = logging.getLogger(__name__) logger.error( f"OANDA v20 REST API config file is not found. " f"Please answer to generate it:" ) account_type = input("- What is your account type? `Live` or `Practice`?\n") if account_type.lower() in ["live", "l"]: hostname = "https://api-fxtrade.oanda.com" elif account_type.lower() in ["practice", "p"]: hostname = "https://api-fxpractice.oanda.com" else: raise ValueError(f"Type `{account_type}` not available.") token = input("- Provide your personal access token:\n") config["oanda"] = {"hostname": hostname, "token": token} with open(config_filepath, "w") as config_file: config.write(config_file) headers = { "Authorization": f"Bearer {token}", "Content-Type": "application/json", "Connection": "Keep-Alive", "AcceptDatetimeFormat": "RFC3339", } return hostname, headers def find_instruments(symbol: str, universe: List[str]) -> List[str]: """Return the universe of instruments containing the given symbol.""" instruments = [] for instrument in universe: base, quote = instrument.split("_") if symbol in (base, quote): instruments.append(instrument) return instruments def get_price_data( instruments: Sequence[str], symbol: Optional[str] = None, # Run _arrange_price_data save: bool = False, # Serialize price_data for faster retrieval granularity: str = "D", count: int = 500, end: Union[str, float] = datetime.utcnow().timestamp(), **kwargs, # See https://developer.oanda.com/rest-live-v20/instrument-ep/ ) -> pd.DataFrame: """Return historical OHLCV candles.""" freq = { "S5": "5S", # 5 second candlesticks, minute alignment "S10": "10S", # 10 second candlesticks, minute alignment "S15": "15S", # 15 second candlesticks, minute alignment "S30": "30S", # 30 second candlesticks, minute alignment "M1": "T", # 1 minute candlesticks, minute alignment "M2": "2T", # 2 minute candlesticks, hour alignment "M4": "4T", # 4 minute candlesticks, hour alignment "M5": "5T", # 5 minute candlesticks, hour alignment "M10": "10T", # 10 minute candlesticks, hour alignment "M15": "15T", # 15 minute candlesticks, hour alignment "M30": "30T", # 30 minute candlesticks, hour alignment "H1": "H", # 1 hour candlesticks, hour alignment "H2": "2H", # 2 hour candlesticks, day alignment "H3": "3H", # 3 hour candlesticks, day alignment "H4": "4H", # 4 hour candlesticks, day alignment "H6": "6H", # 6 hour candlesticks, day alignment "H8": "8H", # 8 hour candlesticks, day alignment "H12": "12H", # 12 hour candlesticks, day alignment "D": "B", # 1 day candlesticks, day alignment "W": "W-MON", # 1 week candlesticks, aligned to start of week } granularity = granularity.upper() if granularity not in freq: raise ValueError( f"Granularity `{granularity}` not available - " f"choose from {list(freq.keys())}." ) h = str(hash(f"{instruments} {symbol} {granularity} {count} {kwargs}")) try: with open(h + ".pickle", "rb") as f: price_data = pickle.load(f) except FileNotFoundError: count_list = [5000] * (count // 5000) if count % 5000 != 0: count_list.append(count % 5000) objs = [] prefix = "Collecting price data:" start_time = time.time() for i, instrument in enumerate(instruments): print_progress(i, len(instruments), prefix, f"`{instrument}`") if instrument not in ALL_SYMBOLS: raise ValueError(f"Instrument `{instrument}` not available.") to_time = end responses = [] for c in count_list: hostname, headers = _get_hostname_headers() endpoint = f"/v3/instruments/{instrument}/candles" params = { "granularity": granularity, "count": c, "to": to_time, **kwargs, } url = hostname + endpoint + "?" + urlencode(params) req = ur.Request(url, headers=headers) with ur.urlopen(req) as r: df = json_normalize(json.loads(r.read()), "candles").set_index( "time" ) to_time = df.index[0] df.index = pd.to_datetime(df.index, utc=True) df.drop("complete", axis=1, inplace=True) columns = { **{c: "open" for c in df.columns if c.endswith(".o")}, **{c: "high" for c in df.columns if c.endswith(".h")}, **{c: "low" for c in df.columns if c.endswith(".l")}, **{c: "close" for c in df.columns if c.endswith(".c")}, } df.rename(columns=columns, inplace=True) df = df.resample(freq[granularity]).agg( { "open": "first", "high": "max", "low": "min", "close": "last", "volume": "sum", } ) df = df.astype(float) responses.append(df) time.sleep(0.1) objs.append(pd.concat(responses).sort_index()) suffix = f"in {time.time() - start_time:.1f} s" print_progress(len(instruments), len(instruments), prefix, suffix) price_data = pd.concat(objs, axis=1, keys=instruments) price_data = _arrange_price_data(price_data, symbol) price_data = price_data.ffill().dropna() price_data.index.freq = price_data.index.inferred_freq if save: with open(h + ".pickle", "wb") as f: pickle.dump(price_data, f, protocol=pickle.HIGHEST_PROTOCOL) return price_data def _arrange_price_data(price_data: pd.DataFrame, symbol: str) -> pd.DataFrame: """Arrange the instruments to be quoted in the given symbol.""" arranged =
pd.DataFrame()
pandas.DataFrame
# ActivitySim # See full license in LICENSE.txt. import logging import pandas as pd import numpy as np from activitysim.core import simulate from activitysim.core import tracing from activitysim.core import pipeline from activitysim.core import config from activitysim.core import inject from activitysim.core import expressions from .util import estimation from .util.tour_frequency import process_atwork_subtours logger = logging.getLogger(__name__) def add_null_results(trace_label, tours): logger.info("Skipping %s: add_null_results", trace_label) tours['atwork_subtour_frequency'] = np.nan pipeline.replace_table("tours", tours) @inject.step() def atwork_subtour_frequency(tours, persons_merged, chunk_size, trace_hh_id): """ This model predicts the frequency of making at-work subtour tours (alternatives for this model come from a separate csv file which is configured by the user). """ trace_label = 'atwork_subtour_frequency' model_settings_file_name = 'atwork_subtour_frequency.yaml' tours = tours.to_frame() work_tours = tours[tours.tour_type == 'work'] # - if no work_tours if len(work_tours) == 0: add_null_results(trace_label, tours) return model_settings = config.read_model_settings(model_settings_file_name) estimator = estimation.manager.begin_estimation('atwork_subtour_frequency') model_spec = simulate.read_model_spec(file_name=model_settings['SPEC']) coefficients_df = simulate.read_model_coefficients(model_settings) model_spec = simulate.eval_coefficients(model_spec, coefficients_df, estimator) alternatives = simulate.read_model_alts('atwork_subtour_frequency_alternatives.csv', set_index='alt') # merge persons into work_tours persons_merged = persons_merged.to_frame() work_tours =
pd.merge(work_tours, persons_merged, left_on='person_id', right_index=True)
pandas.merge
import numpy as np import pytest from pandas.core.dtypes.common import is_datetime64_dtype, is_timedelta64_dtype from pandas.core.dtypes.dtypes import DatetimeTZDtype import pandas as pd from pandas import CategoricalIndex, Series, Timedelta, Timestamp import pandas._testing as tm from pandas.core.arrays import ( DatetimeArray, IntervalArray, PandasArray, PeriodArray, SparseArray, TimedeltaArray, ) class TestToIterable: # test that we convert an iterable to python types dtypes = [ ("int8", int), ("int16", int), ("int32", int), ("int64", int), ("uint8", int), ("uint16", int), ("uint32", int), ("uint64", int), ("float16", float), ("float32", float), ("float64", float), ("datetime64[ns]", Timestamp), ("datetime64[ns, US/Eastern]", Timestamp), ("timedelta64[ns]", Timedelta), ] @pytest.mark.parametrize("dtype, rdtype", dtypes) @pytest.mark.parametrize( "method", [ lambda x: x.tolist(), lambda x: x.to_list(), lambda x: list(x), lambda x: list(x.__iter__()), ], ids=["tolist", "to_list", "list", "iter"], ) @pytest.mark.filterwarnings("ignore:\\n Passing:FutureWarning") # TODO(GH-24559): Remove the filterwarnings def test_iterable(self, index_or_series, method, dtype, rdtype): # gh-10904 # gh-13258 # coerce iteration to underlying python / pandas types typ = index_or_series s = typ([1], dtype=dtype) result = method(s)[0] assert isinstance(result, rdtype) @pytest.mark.parametrize( "dtype, rdtype, obj", [ ("object", object, "a"), ("object", int, 1), ("category", object, "a"), ("category", int, 1), ], ) @pytest.mark.parametrize( "method", [ lambda x: x.tolist(), lambda x: x.to_list(), lambda x: list(x), lambda x: list(x.__iter__()), ], ids=["tolist", "to_list", "list", "iter"], ) def test_iterable_object_and_category( self, index_or_series, method, dtype, rdtype, obj ): # gh-10904 # gh-13258 # coerce iteration to underlying python / pandas types typ = index_or_series s = typ([obj], dtype=dtype) result = method(s)[0] assert isinstance(result, rdtype) @pytest.mark.parametrize("dtype, rdtype", dtypes) def test_iterable_items(self, dtype, rdtype): # gh-13258 # test if items yields the correct boxed scalars # this only applies to series s = Series([1], dtype=dtype) _, result = list(s.items())[0] assert isinstance(result, rdtype) _, result = list(s.items())[0] assert isinstance(result, rdtype) @pytest.mark.parametrize( "dtype, rdtype", dtypes + [("object", int), ("category", int)] ) @pytest.mark.filterwarnings("ignore:\\n Passing:FutureWarning") # TODO(GH-24559): Remove the filterwarnings def test_iterable_map(self, index_or_series, dtype, rdtype): # gh-13236 # coerce iteration to underlying python / pandas types typ = index_or_series s = typ([1], dtype=dtype) result = s.map(type)[0] if not isinstance(rdtype, tuple): rdtype = tuple([rdtype]) assert result in rdtype @pytest.mark.parametrize( "method", [ lambda x: x.tolist(), lambda x: x.to_list(), lambda x: list(x), lambda x: list(x.__iter__()), ], ids=["tolist", "to_list", "list", "iter"], ) def test_categorial_datetimelike(self, method): i = CategoricalIndex([Timestamp("1999-12-31"), Timestamp("2000-12-31")]) result = method(i)[0] assert isinstance(result, Timestamp) def test_iter_box(self): vals = [Timestamp("2011-01-01"),
Timestamp("2011-01-02")
pandas.Timestamp
#!/usr/bin/env python # -*- coding:utf-8 -*- """ Date: 2022/6/16 15:28 Desc: 东方财富网-数据中心-特色数据-千股千评 http://data.eastmoney.com/stockcomment/ """ from datetime import datetime import pandas as pd import requests from tqdm import tqdm def stock_comment_em() -> pd.DataFrame: """ 东方财富网-数据中心-特色数据-千股千评 http://data.eastmoney.com/stockcomment/ :return: 千股千评数据 :rtype: pandas.DataFrame """ url = "https://datacenter-web.eastmoney.com/api/data/v1/get" params = { "sortColumns": "SECURITY_CODE", "sortTypes": "1", "pageSize": "500", "pageNumber": "1", "reportName": "RPT_DMSK_TS_STOCKNEW", "quoteColumns": "f2~01~SECURITY_CODE~CLOSE_PRICE,f8~01~SECURITY_CODE~TURNOVERRATE,f3~01~SECURITY_CODE~CHANGE_RATE,f9~01~SECURITY_CODE~PE_DYNAMIC", "columns": "ALL", "filter": "", "token": "<KEY>", } r = requests.get(url, params=params) data_json = r.json() total_page = data_json["result"]["pages"] big_df = pd.DataFrame() for page in tqdm(range(1, total_page + 1), leave=False): params.update({"pageNumber": page}) r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["result"]["data"]) big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df.reset_index(inplace=True) big_df["index"] = big_df.index + 1 big_df.columns = [ "序号", "-", "代码", "-", "交易日", "名称", "-", "-", "-", "最新价", "涨跌幅", "-", "换手率", "主力成本", "市盈率", "-", "-", "机构参与度", "-", "-", "-", "-", "-", "-", "-", "-", "综合得分", "上升", "目前排名", "关注指数", "-", ] big_df = big_df[ [ "序号", "代码", "名称", "最新价", "涨跌幅", "换手率", "市盈率", "主力成本", "机构参与度", "综合得分", "上升", "目前排名", "关注指数", "交易日", ] ] big_df["最新价"] = pd.to_numeric(big_df["最新价"], errors="coerce") big_df["涨跌幅"] = pd.to_numeric(big_df["涨跌幅"], errors="coerce") big_df["换手率"] = pd.to_numeric(big_df["换手率"], errors="coerce") big_df["市盈率"] = pd.to_numeric(big_df["市盈率"], errors="coerce") big_df["主力成本"] = pd.to_numeric(big_df["主力成本"], errors="coerce") big_df["机构参与度"] = pd.to_numeric(big_df["机构参与度"], errors="coerce") big_df["综合得分"] = pd.to_numeric(big_df["综合得分"], errors="coerce") big_df["上升"] = pd.to_numeric(big_df["上升"], errors="coerce") big_df["目前排名"] = pd.to_numeric(big_df["目前排名"], errors="coerce") big_df["关注指数"] = pd.to_numeric(big_df["关注指数"], errors="coerce") big_df["交易日"] = pd.to_datetime(big_df["交易日"]).dt.date return big_df def stock_comment_detail_zlkp_jgcyd_em(symbol: str = "600000") -> pd.DataFrame: """ 东方财富网-数据中心-特色数据-千股千评-主力控盘-机构参与度 https://data.eastmoney.com/stockcomment/stock/600000.html :param symbol: 股票代码 :type symbol: str :return: 主力控盘-机构参与度 :rtype: pandas.DataFrame """ url = f"https://datacenter-web.eastmoney.com/api/data/v1/get" params = { "reportName": "RPT_DMSK_TS_STOCKEVALUATE", "filter": f'(SECURITY_CODE="{symbol}")', "columns": "ALL", "source": "WEB", "client": "WEB", "sortColumns": "TRADE_DATE", "sortTypes": "-1", "_": "1655387358195", } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["result"]["data"]) temp_df = temp_df[["TRADE_DATE", "ORG_PARTICIPATE"]] temp_df.columns = ["date", "value"] temp_df["date"] = pd.to_datetime(temp_df["date"]).dt.date temp_df.sort_values(["date"], inplace=True) temp_df.reset_index(inplace=True, drop=True) temp_df["value"] = pd.to_numeric(temp_df["value"]) * 100 return temp_df def stock_comment_detail_zhpj_lspf_em(symbol: str = "600000") -> pd.DataFrame: """ 东方财富网-数据中心-特色数据-千股千评-综合评价-历史评分 https://data.eastmoney.com/stockcomment/stock/600000.html :param symbol: 股票代码 :type symbol: str :return: 综合评价-历史评分 :rtype: pandas.DataFrame """ url = f"https://data.eastmoney.com/stockcomment/api/{symbol}.json" r = requests.get(url) data_json = r.json() temp_df = pd.DataFrame( [ data_json["ApiResults"]["zhpj"]["HistoryScore"]["XData"], data_json["ApiResults"]["zhpj"]["HistoryScore"]["Ydata"]["Score"], data_json["ApiResults"]["zhpj"]["HistoryScore"]["Ydata"]["Price"], ] ).T temp_df.columns = ["日期", "评分", "股价"] temp_df["日期"] = str(datetime.now().year) + "-" + temp_df["日期"] temp_df["日期"] = pd.to_datetime(temp_df["日期"]).dt.date temp_df.sort_values(["日期"], inplace=True) temp_df.reset_index(inplace=True, drop=True) temp_df["评分"] = pd.t
o_numeric(temp_df["评分"])
pandas.to_numeric
# AUTOGENERATED! DO NOT EDIT! File to edit: notebooks/04_Create_Acs_Indicators_Original.ipynb (unless otherwise specified). __all__ = ['racdiv', 'pasi', 'elheat', 'empl', 'fam', 'female', 'femhhs', 'heatgas', 'hh40inc', 'hh60inc', 'hh75inc', 'hhchpov', 'hhm75', 'hhpov', 'hhs', 'hsdipl', 'lesshs', 'male', 'nilf', 'othrcom', 'p2more', 'pubtran', 'age5', 'age24', 'age64', 'age18', 'age65', 'affordm', 'affordr', 'bahigher', 'carpool', 'drvalone', 'hh25inc', 'mhhi', 'nohhint', 'novhcl', 'paa', 'ppac', 'phisp', 'pwhite', 'sclemp', 'tpop', 'trav14', 'trav29', 'trav45', 'trav44', 'unempl', 'unempr', 'walked'] # Cell #File: racdiv.py #Author: <NAME> #Date: 4/16/19 #Section: Bnia #Email: <EMAIL> #Description: # Uses ACS Table B02001 - Race # Universe: Total Population # Uses ACS Table B03002 - HISPANIC OR LATINO ORIGIN BY RACE # Universe: Total Population # Table Creates: racdiv, paa, pwhite, pasi, phisp, p2more, ppac #purpose: #input: Year #output: import pandas as pd import glob def racdiv( year ): def getColName (df, col): return df.columns[df.columns.str.contains(pat = col)][0] def getColByName (df, col): return df[getColName(df, col)] def addKey(df, fi, col): key = getColName(df, col) val = getColByName(df, col) fi[key] = val return fi def nullIfEqual(df, c1, c2): return df.apply(lambda x: x[getColName(df, c1)]+x[getColName(df, c2)] if x[getColName(df, c1)]+x[getColName(df, c2)] != 0 else 0, axis=1) def sumInts(df): return df.sum(numeric_only=True) #~~~~~~~~~~~~~~~ # Step 1) # Fetch Tract Files w/CSA Lables by Name from the 2_cleaned folder. #~~~~~~~~~~~~~~~ fileName = '' for name in glob.glob('AcsDataClean/B02001*5y'+str(year)+'_est.csv'): fileName = name df = pd.read_csv( fileName, index_col=0 ) fileName = '' for name in glob.glob('AcsDataClean/B03002*5y'+str(year)+'_est.csv'): fileName = name df_hisp = pd.read_csv( fileName, index_col=0 ) # Aggregate by CSA # Group By CSA so that they may be opperated on df = df.groupby('CSA') df_hisp = df_hisp.groupby('CSA') # Aggregate Numeric Values by Sum df = df.sum(numeric_only=True) df_hisp = df_hisp.sum(numeric_only=True) # Append the one column from the other ACS Table df['B03002_012E_Total_Hispanic_or_Latino'] = df_hisp['B03002_012E_Total_Hispanic_or_Latino'] df1 = pd.DataFrame() df1['CSA'] = df.index df1.set_index('CSA', drop = True, inplace = True) df1['African-American%'] = df[ 'B02001_003E_Total_Black_or_African_American_alone' ] / df[ 'B02001_001E_Total' ] * 100 df1['White%'] = df[ 'B02001_002E_Total_White_alone' ] / df[ 'B02001_001E_Total' ] * 100 df1['American Indian%'] = df[ 'B02001_004E_Total_American_Indian_and_Alaska_Native_alone' ]/ df[ 'B02001_001E_Total' ] * 100 df1['Asian%'] = df[ 'B02001_005E_Total_Asian_alone' ] / df[ 'B02001_001E_Total' ] * 100 df1['Native Hawaii/Pac Islander%'] = df[ 'B02001_006E_Total_Native_Hawaiian_and_Other_Pacific_Islander_alone'] / df[ 'B02001_001E_Total' ] * 100 df1['Hisp %'] = df['B03002_012E_Total_Hispanic_or_Latino'] / df[ 'B02001_001E_Total' ] * 100 # =1-(POWER(%AA/100,2)+POWER(%White/100,2)+POWER(%AmerInd/100,2)+POWER(%Asian/100,2) + POWER(%NativeAm/100,2))*(POWER(%Hispanci/100,2) + POWER(1-(%Hispanic/100),2)) df1['Diversity_index'] = ( 1- ( ( df1['African-American%'] /100 )**2 +( df1['White%'] /100 )**2 +( df1['American Indian%'] /100 )**2 +( df1['Asian%'] /100 )**2 +( df1['Native Hawaii/Pac Islander%'] /100 )**2 )*( ( df1['Hisp %'] /100 )**2 +(1-( df1['Hisp %'] /100) )**2 ) ) * 100 return df1['Diversity_index'] # Cell #File: pasi.py #Author: <NAME> #Date: 4/16/19 #Section: Bnia #Email: <EMAIL> #Description: # Uses ACS Table B03002 - HISPANIC OR LATINO ORIGIN BY RACE # Universe: Total Population # Table Creates: racdiv, paa, pwhite, pasi, phisp, p2more, ppac #purpose: #input: Year #output: import pandas as pd import glob def pasi( year ): def getColName (df, col): return df.columns[df.columns.str.contains(pat = col)][0] def getColByName (df, col): return df[getColName(df, col)] def addKey(df, fi, col): key = getColName(df, col) val = getColByName(df, col) fi[key] = val return fi def nullIfEqual(df, c1, c2): return df.apply(lambda x: x[getColName(df, c1)]+x[getColName(df, c2)] if x[getColName(df, c1)]+x[getColName(df, c2)] != 0 else 0, axis=1) def sumInts(df): return df.sum(numeric_only=True) #~~~~~~~~~~~~~~~ # Step 1) # Fetch Tract Files w/CSA Lables by Name from the 2_cleaned folder. #~~~~~~~~~~~~~~~ fileName = '' for name in glob.glob('AcsDataClean/B03002*5y'+str(year)+'_est.csv'): fileName = name df = pd.read_csv( fileName, index_col=0 ) # Aggregate by CSA # Group By CSA so that they may be opperated on df = df.groupby('CSA') # Aggregate Numeric Values by Sum df = df.sum(numeric_only=True) # Append the one column from the other ACS Table df['B03002_012E_Total_Hispanic_or_Latino'] df1 = pd.DataFrame() df1['CSA'] = df.index df1.set_index('CSA', drop = True, inplace = True) tot = df[ 'B03002_001E_Total' ] df1['Asian%NH'] = df[ 'B03002_006E_Total_Not_Hispanic_or_Latino_Asian_alone' ]/ tot * 100 return df1['Asian%NH'] # Cell #File: elheat.py #Author: <NAME> #Date: 1/17/19 #Section: Bnia #Email: <EMAIL> #Description: # Uses ACS Table B25040 - HOUSE HEATING FUEL # Universe - Occupied housing units # Table Creates: elheat, heatgas #purpose: Produce Sustainability - Percent of Residences Heated by Electricity Indicator #input: Year #output: import pandas as pd import glob def elheat( year ): def getColName (df, col): return df.columns[df.columns.str.contains(pat = col)][0] def getColByName (df, col): return df[getColName(df, col)] def addKey(df, fi, col): key = getColName(df, col) val = getColByName(df, col) fi[key] = val return fi def nullIfEqual(df, c1, c2): return df.apply(lambda x: x[getColName(df, c1)]+x[getColName(df, c2)] if x[getColName(df, c1)]+x[getColName(df, c2)] != 0 else 0, axis=1) def sumInts(df): return df.sum(numeric_only=True) #~~~~~~~~~~~~~~~ # Step 1) # Fetch Tract Files w/CSA Lables by Name from the 2_cleaned folder. #~~~~~~~~~~~~~~~ fileName = '' for name in glob.glob('AcsDataClean/B25040*5y'+str(year)+'_est.csv'): fileName = name df = pd.read_csv( fileName, index_col=0 ) # Aggregate by CSA # Group By CSA so that they may be opperated on df = df.groupby('CSA') # Aggregate Numeric Values by Sum df = sumInts(df) # Add 'BALTIMORE' which is the SUM of all the CSAs #~~~~~~~~~~~~~~~ # Step 2) # Prepare the columns #~~~~~~~~~~~~~~~ # Final Dataframe fi = pd.DataFrame() columns = ['B25040_004E','B25040_001E'] for col in columns: fi = addKey(df, fi, col) # Numerators numerators = pd.DataFrame() columns = ['B25040_004E'] for col in columns: numerators = addKey(df, numerators, col) # Denominators denominators = pd.DataFrame() columns = ['B25040_001E'] for col in columns: denominators = addKey(df, denominators, col) # construct the denominator, returns 0 iff the other two rows are equal. #~~~~~~~~~~~~~~~ # Step 3) # Run the Calculation + final mods # ( value[1] / nullif(value[2],0) )*100 #~~~~~~~~~~~~~~~ fi['numerator'] = numerators.sum(axis=1) fi['denominator'] = denominators.sum(axis=1) fi = fi[fi['denominator'] != 0] # Delete Rows where the 'denominator' column is 0 fi['final'] = (fi['numerator'] / fi['denominator'] ) * 100 return fi['final'] """ /* <elheat_14> */ -- WITH tbl AS ( select csa, ( value[1] / nullif(value[2],0) )*100::numeric as result from vital_signs.get_acs_vars_csa_and_bc('2014',ARRAY['B25040_004E','B25040_001E']) ) update vital_signs.data set elheat = result from tbl where data2.csa = tbl.csa and update_data_year = '2014' and data_year = '2014'; """ # Cell #File: empl.py #Author: <NAME> #Date: 1/17/19 #Section: Bnia #Email: <EMAIL> #Description: # Uses ACS Table B23001 - SEX BY AGE BY EMPLOYMENT STATUS FOR THE POPULATION 16 YEARS AND OVER # Universe - Population 16 years and over # Table Creates: empl, unempl, unempr, nilf #purpose: Produce Workforce and Economic Development - Percent Population 16-64 Employed Indicator #input: Year #output: import pandas as pd import glob def empl( year ): def getColName (df, col): return df.columns[df.columns.str.contains(pat = col)][0] def getColByName (df, col): return df[getColName(df, col)] def addKey(df, fi, col): key = getColName(df, col) val = getColByName(df, col) fi[key] = val return fi def nullIfEqual(df, c1, c2): return df.apply(lambda x: x[getColName(df, c1)]+x[getColName(df, c2)] if x[getColName(df, c1)]+x[getColName(df, c2)] != 0 else 0, axis=1) def sumInts(df): return df.sum(numeric_only=True) #~~~~~~~~~~~~~~~ # Step 1) # Fetch Tract Files w/CSA Lables by Name from the 2_cleaned folder. #~~~~~~~~~~~~~~~ fileName = '' for name in glob.glob('AcsDataClean/B23001*5y'+str(year)+'_est.csv'): fileName = name df = pd.read_csv( fileName, index_col=0 ) # Aggregate by CSA # Group By CSA so that they may be opperated on df = df.groupby('CSA') # Aggregate Numeric Values by Sum df = sumInts(df) # Add 'BALTIMORE' which is the SUM of all the CSAs #~~~~~~~~~~~~~~~ # Step 2) # Prepare the columns #~~~~~~~~~~~~~~~ # Final Dataframe fi = pd.DataFrame() columns = ['B23001_003E', 'B23001_010E', 'B23001_017E', 'B23001_024E', 'B23001_031E', 'B23001_038E', 'B23001_045E', 'B23001_052E', 'B23001_059E', 'B23001_066E', 'B23001_089E', 'B23001_096E', 'B23001_103E', 'B23001_110E', 'B23001_117E', 'B23001_124E', 'B23001_131E', 'B23001_138E', 'B23001_145E', 'B23001_152E', 'B23001_007E', 'B23001_014E', 'B23001_021E', 'B23001_028E', 'B23001_035E', 'B23001_042E', 'B23001_049E', 'B23001_056E', 'B23001_063E', 'B23001_070E', 'B23001_093E', 'B23001_100E', 'B23001_107E', 'B23001_114E', 'B23001_121E', 'B23001_128E', 'B23001_135E', 'B23001_142E', 'B23001_149E', 'B23001_156E'] for col in columns: fi = addKey(df, fi, col) # Numerators numerators = pd.DataFrame() columns = ['B23001_007E', 'B23001_014E', 'B23001_021E', 'B23001_028E', 'B23001_035E', 'B23001_042E', 'B23001_049E', 'B23001_056E', 'B23001_063E', 'B23001_070E', 'B23001_093E', 'B23001_100E', 'B23001_107E', 'B23001_114E', 'B23001_121E', 'B23001_128E', 'B23001_135E', 'B23001_142E', 'B23001_149E', 'B23001_156E'] for col in columns: numerators = addKey(df, numerators, col) # Denominators denominators = pd.DataFrame() columns = ['B23001_003E', 'B23001_010E', 'B23001_017E', 'B23001_024E', 'B23001_031E', 'B23001_038E', 'B23001_045E', 'B23001_052E', 'B23001_059E', 'B23001_066E', 'B23001_089E', 'B23001_096E', 'B23001_103E', 'B23001_110E', 'B23001_117E', 'B23001_124E', 'B23001_131E', 'B23001_138E', 'B23001_145E', 'B23001_152E'] for col in columns: denominators = addKey(df, denominators, col) # construct the denominator, returns 0 iff the other two rows are equal. #~~~~~~~~~~~~~~~ # Step 3) # Run the Calculation # (value[21]+value[22]+value[23]+value[24]+value[25]+value[26]+value[27]+value[28]+value[29]+value[30]+value[31]+value[32]+value[33]+value[34]+value[35]+value[36]+value[37]+value[38]+value[39]+value[40]) --civil labor force empl 16-64 #/ #nullif( (value[1]+value[2]+value[3]+value[4]+value[5]+value[6]+value[7]+value[8]+value[9]+value[10]+value[11]+value[12]+value[13]+value[14]+value[15]+value[16]+value[17]+value[18]+value[19]+value[20]) -- population 16 to 64 ,0) )*100 #~~~~~~~~~~~~~~~ fi['numerator'] = numerators.sum(axis=1) fi['denominator'] = denominators.sum(axis=1) fi = fi[fi['denominator'] != 0] # Delete Rows where the 'denominator' column is 0 fi['final'] = (fi['numerator'] / fi['denominator'] ) * 100 return fi['final'] """ /* <empl_14> */ -- WITH tbl AS ( select csa, ( ( value[21]+value[22]+value[23]+value[24]+value[25]+value[26]+value[27]+value[28]+value[29]+value[30]+value[31]+value[32]+value[33]+value[34]+value[35]+value[36]+value[37]+value[38]+value[39]+value[40]) --civil labor force empl 16-64 / nullif( (value[1]+value[2]+value[3]+value[4]+value[5]+value[6]+value[7]+value[8]+value[9]+value[10]+value[11]+value[12]+value[13]+value[14]+value[15]+value[16]+value[17]+value[18]+value[19]+value[20]) -- population 16 to 64 ,0) )*100::numeric as result from vital_signs.get_acs_vars_csa_and_bc('2014',ARRAY[ 'B23001_003E','B23001_010E','B23001_017E','B23001_024E','B23001_031E','B23001_038E','B23001_045E','B23001_052E','B23001_059E','B23001_066E','B23001_089E','B23001_096E','B23001_103E','B23001_110E','B23001_117E','B23001_124E','B23001_131E','B23001_138E','B23001_145E','B23001_152E','B23001_007E','B23001_014E','B23001_021E','B23001_028E','B23001_035E','B23001_042E','B23001_049E','B23001_056E','B23001_063E','B23001_070E','B23001_093E','B23001_100E','B23001_107E','B23001_114E','B23001_121E','B23001_128E','B23001_135E','B23001_142E','B23001_149E','B23001_156E']) ) update vital_signs.data set empl = result from tbl where data2.csa = tbl.csa and update_data_year = '2014' and data_year = '2014'; """ # Cell #File: fam.py #Author: <NAME> #Date: 4/16/19 #Section: Bnia #Email: <EMAIL> #Description: # Uses ACS Table B11005 - HOUSEHOLDS BY PRESENCE OF PEOPLE UNDER 18 YEARS BY HOUSEHOLD TYPE # Universe: Households # Table Creates: hhs, fam, femhhs #purpose: #input: Year #output: import pandas as pd import glob def fam( year ): def getColName (df, col): return df.columns[df.columns.str.contains(pat = col)][0] def getColByName (df, col): return df[getColName(df, col)] def addKey(df, fi, col): key = getColName(df, col) val = getColByName(df, col) fi[key] = val return fi def nullIfEqual(df, c1, c2): return df.apply(lambda x: x[getColName(df, c1)]+x[getColName(df, c2)] if x[getColName(df, c1)]+x[getColName(df, c2)] != 0 else 0, axis=1) def sumInts(df): return df.sum(numeric_only=True) #~~~~~~~~~~~~~~~ # Step 1) # Fetch Tract Files w/CSA Lables by Name from the 2_cleaned folder. #~~~~~~~~~~~~~~~ fileName = '' for name in glob.glob('AcsDataClean/B11005*5y'+str(year)+'_est.csv'): fileName = name df = pd.read_csv( fileName, index_col=0 ) # Aggregate by CSA # Group By CSA so that they may be opperated on df = df.groupby('CSA') # Aggregate Numeric Values by Sum df = df.sum(numeric_only=True) df1 = pd.DataFrame() df1['CSA'] = df.index df1.set_index('CSA', drop = True, inplace = True) # DIFFERENCES IN TABLE NAMES EXIST BETWEEN 16 and 17. 17 has no comma. rootStr = 'B11005_007E_Total_Households_with_one_or_more_people_under_18_years_Family_households_Other_family_Female_householder' str16 = rootStr + ',_no_husband_present' str17 = rootStr + '_no_husband_present' # Aggregate by CSA # Group By CSA so that they may be opperated on df = df.groupby('CSA') # Aggregate Numeric Values by Sum df = df.sum(numeric_only=True) # Delete Unassigned--Jail df = df[df.index != 'Unassigned--Jail'] # Move Baltimore to Bottom bc = df.loc[ 'Baltimore City' ] df = df.drop( df.index[1] ) df.loc[ 'Baltimore City' ] = bc df1 = pd.DataFrame() df1['CSA'] = df.index df1.set_index('CSA', drop = True, inplace = True) # Actually produce the data df1['total'] = df[ 'B11005_001E_Total' ] df1['18Under'] = df[ 'B11005_002E_Total_Households_with_one_or_more_people_under_18_years' ] / df1['total'] * 100 return df1['18Under'] # Cell #File: female.py #Author: <NAME> #Date: 4/16/19 #Section: Bnia #Email: <EMAIL> #Description: # Uses ACS Table B01001 - SEX BY AGE # Universe: Total population # Table Creates: tpop, female, male, age5 age18 age24 age64 age65 #purpose: #input: Year #output: import pandas as pd import glob def female( year ): def getColName (df, col): return df.columns[df.columns.str.contains(pat = col)][0] def getColByName (df, col): return df[getColName(df, col)] def addKey(df, fi, col): key = getColName(df, col) val = getColByName(df, col) fi[key] = val return fi def nullIfEqual(df, c1, c2): return df.apply(lambda x: x[getColName(df, c1)]+x[getColName(df, c2)] if x[getColName(df, c1)]+x[getColName(df, c2)] != 0 else 0, axis=1) def sumInts(df): return df.sum(numeric_only=True) #~~~~~~~~~~~~~~~ # Step 1) # Fetch Tract Files w/CSA Lables by Name from the 2_cleaned folder. #~~~~~~~~~~~~~~~ fileName = '' for name in glob.glob('AcsDataClean/B01001*5y'+str(year)+'_est.csv'): fileName = name df = pd.read_csv( fileName, index_col=0 ) # Aggregate by CSA # Group By CSA so that they may be opperated on df = df.groupby('CSA') # Aggregate Numeric Values by Sum df = df.sum(numeric_only=True) # df.columns total = df['B01001_001E_Total'] df1 = pd.DataFrame() df1['CSA'] = df.index df1.set_index('CSA', drop = True, inplace = True) df1['onlyTheLadies'] = df[ 'B01001_026E_Total_Female' ] return df1['onlyTheLadies'] # Cell #File: femhhs.py #Author: <NAME> #Date: 4/16/19 #Section: Bnia #Email: <EMAIL> #Description: # Uses ACS Table B11005 - HOUSEHOLDS BY PRESENCE OF PEOPLE UNDER 18 YEARS BY HOUSEHOLD TYPE # Universe: Households # Table Creates: male, hhs, fam, femhhs #purpose: #input: Year #output: import pandas as pd import glob def femhhs( year ): def getColName (df, col): return df.columns[df.columns.str.contains(pat = col)][0] def getColByName (df, col): return df[getColName(df, col)] def addKey(df, fi, col): key = getColName(df, col) val = getColByName(df, col) fi[key] = val return fi def nullIfEqual(df, c1, c2): return df.apply(lambda x: x[getColName(df, c1)]+x[getColName(df, c2)] if x[getColName(df, c1)]+x[getColName(df, c2)] != 0 else 0, axis=1) def sumInts(df): return df.sum(numeric_only=True) #~~~~~~~~~~~~~~~ # Step 1) # Fetch Tract Files w/CSA Lables by Name from the 2_cleaned folder. #~~~~~~~~~~~~~~~ fileName = '' for name in glob.glob('AcsDataClean/B11005*5y'+str(year)+'_est.csv'): fileName = name df = pd.read_csv( fileName, index_col=0 ) # Aggregate by CSA # Group By CSA so that they may be opperated on df = df.groupby('CSA') # Aggregate Numeric Values by Sum df = df.sum(numeric_only=True) df1 = pd.DataFrame() df1['CSA'] = df.index df1.set_index('CSA', drop = True, inplace = True) # DIFFERENCES IN TABLE NAMES EXIST BETWEEN 16 and 17. 17 has no comma. rootStr = 'B11005_007E_Total_Households_with_one_or_more_people_under_18_years_Family_households_Other_family_Female_householder' str16 = rootStr + ',_no_husband_present' str17 = rootStr + '_no_husband_present' str19 = rootStr + ',_no_spouse_present' femhh = str17 if year == '17' else str19 if year == '19' else str16 # Actually produce the data df1['total'] = df[ 'B11005_001E_Total' ] df1['18Under'] = df[ 'B11005_002E_Total_Households_with_one_or_more_people_under_18_years' ] / df1['total'] * 100 df1['FemaleHH'] = df[ femhh ] / df['B11005_002E_Total_Households_with_one_or_more_people_under_18_years'] * 100 df1['FamHHChildrenUnder18'] = df['B11005_003E_Total_Households_with_one_or_more_people_under_18_years_Family_households'] df1['FamHHChildrenOver18'] = df['B11005_012E_Total_Households_with_no_people_under_18_years_Family_households'] df1['FamHH'] = df1['FamHHChildrenOver18'] + df1['FamHHChildrenUnder18'] return df1['FemaleHH'] # Cell #File: heatgas.py #Author: <NAME> #Date: 1/17/19 #Section: Bnia #Email: <EMAIL> #Description: # Uses ACS Table B25040 - HOUSE HEATING FUEL # Universe - Occupied housing units # Table Creates: elheat, heatgas #purpose: Produce Sustainability - Percent of Residences Heated by Electricity Indicator #input: Year #output: import pandas as pd import glob def heatgas( year ): def getColName (df, col): return df.columns[df.columns.str.contains(pat = col)][0] def getColByName (df, col): return df[getColName(df, col)] def addKey(df, fi, col): key = getColName(df, col) val = getColByName(df, col) fi[key] = val return fi def nullIfEqual(df, c1, c2): return df.apply(lambda x: x[getColName(df, c1)]+x[getColName(df, c2)] if x[getColName(df, c1)]+x[getColName(df, c2)] != 0 else 0, axis=1) def sumInts(df): return df.sum(numeric_only=True) #~~~~~~~~~~~~~~~ # Step 1) # Fetch Tract Files w/CSA Lables by Name from the 2_cleaned folder. #~~~~~~~~~~~~~~~ fileName = '' for name in glob.glob('AcsDataClean/B25040*5y'+str(year)+'_est.csv'): fileName = name df = pd.read_csv( fileName, index_col=0 ) # Aggregate by CSA # Group By CSA so that they may be opperated on df = df.groupby('CSA') # Aggregate Numeric Values by Sum df = sumInts(df) # Add 'BALTIMORE' which is the SUM of all the CSAs #~~~~~~~~~~~~~~~ # Step 2) # Prepare the columns #~~~~~~~~~~~~~~~ # Final Dataframe fi = pd.DataFrame() columns = ['B25040_002E','B25040_001E'] for col in columns: fi = addKey(df, fi, col) # Numerators numerators = pd.DataFrame() columns = ['B25040_002E'] for col in columns: numerators = addKey(df, numerators, col) # Denominators denominators = pd.DataFrame() columns = ['B25040_001E'] for col in columns: denominators = addKey(df, denominators, col) # construct the denominator, returns 0 iff the other two rows are equal. #~~~~~~~~~~~~~~~ # Step 3) # Run the Calculation # ( value[1] / nullif(value[2],0) )*100 #~~~~~~~~~~~~~~~ fi['numerator'] = numerators.sum(axis=1) fi['denominator'] = denominators.sum(axis=1) fi = fi[fi['denominator'] != 0] # Delete Rows where the 'denominator' column is 0 fi['final'] = (fi['numerator'] / fi['denominator'] ) * 100 return fi['final'] """ /* <heatgas_14> */ -- WITH tbl AS ( select csa, ( value[1] / nullif(value[2],0) )*100::numeric as result from vital_signs.get_acs_vars_csa_and_bc('2014',ARRAY['B25040_002E','B25040_001E']) ) update vital_signs.data set heatgas = result from tbl where data2.csa = tbl.csa and update_data_year = '2014' and data_year = '2014'; """ # Cell #File: hh40inc.py #Author: <NAME> #Date: 1/17/19 #Section: Bnia #Email: <EMAIL> #Description: # Uses ACS Table B19001 - HOUSEHOLD INCOME V # HOUSEHOLD INCOME IN THE PAST 12 MONTHS (IN 2017 INFLATION-ADJUSTED DOLLARS) # Table Creates: hh25 hh40 hh60 hh75 hhm75, mhhi #purpose: Produce Household Income 25K-40K Indicator #input: Year #output: import pandas as pd import glob def hh40inc( year ): def getColName (df, col): return df.columns[df.columns.str.contains(pat = col)][0] def getColByName (df, col): return df[getColName(df, col)] def nullIfEqual(df, c1, c2): return df.apply(lambda x: x[getColName(df, c1)]+x[getColName(df, c2)] if x[getColName(df, c1)]+x[getColName(df, c2)] != 0 else 0, axis=1) def sumInts(df): return df.sum(numeric_only=True) #~~~~~~~~~~~~~~~ # Step 1) # Fetch Tract Files w/CSA Lables by Name from the 2_cleaned folder. #~~~~~~~~~~~~~~~ fileName = '' for name in glob.glob('AcsDataClean/B19001*5y'+str(year)+'_est.csv'): fileName = name df = pd.read_csv( fileName, index_col=0 ) # Aggregate by CSA # Group By CSA so that they may be opperated on df = df.groupby('CSA') # Aggregate Numeric Values by Sum df = sumInts(df) # Add 'BALTIMORE' which is the SUM of all the CSAs #~~~~~~~~~~~~~~~ # Step 2) # Prepare the columns #~~~~~~~~~~~~~~~ # val1.__class__.__name__ # # create a new dataframe for giggles fi = pd.DataFrame() # append into that dataframe col 001 key = getColName(df, '001') val = getColByName(df, '001') fi[key] = val # append into that dataframe col 006 key = getColName(df, '006') val = getColByName(df, '006') fi[key] = val # append into that dataframe col 007 key = getColName(df, '007') val = getColByName(df, '007') fi[key] = val # append into that dataframe col 008 key = getColName(df, '008') val = getColByName(df, '008') fi[key] = val # Delete Rows where the 'denominator' column is 0 -> like the Jail fi = fi[fi[fi.columns[0]] != 0] #~~~~~~~~~~~~~~~ # Step 3) # Run the Calculation #~~~~~~~~~~~~~~~ return fi.apply(lambda x: ( ( x[fi.columns[1] ]+ x[fi.columns[2] ]+ x[fi.columns[3] ] ) / x[fi.columns[0]])*100, axis=1) """ /* hh40inc */ -- WITH tbl AS ( select csa, ( (value[1] + value[2] + value[3]) / value[4] )*100 as result from vital_signs.get_acs_vars_csa_and_bc('2013',ARRAY['B19001_006E','B19001_007E','B19001_008E','B19001_001E']) ) UPDATE vital_signs.data set hh40inc = result from tbl where data.csa = tbl.csa and data_year = '2013'; """ # Cell #File: hh60inc.py #Author: <NAME> #Date: 1/17/19 #Section: Bnia #Email: <EMAIL> #Description: # Uses ACS Table B19001 - HOUSEHOLD INCOME V # HOUSEHOLD INCOME IN THE PAST 12 MONTHS (IN 2017 INFLATION-ADJUSTED DOLLARS) # Table Creates: hh25 hh40 hh60 hh75 hhm75, mhhi #purpose: Produce Household 45-60K Indicator #input: Year #output: import pandas as pd import glob def hh60inc( year ): def getColName (df, col): return df.columns[df.columns.str.contains(pat = col)][0] def getColByName (df, col): return df[getColName(df, col)] def nullIfEqual(df, c1, c2): return df.apply(lambda x: x[getColName(df, c1)]+x[getColName(df, c2)] if x[getColName(df, c1)]+x[getColName(df, c2)] != 0 else 0, axis=1) def sumInts(df): return df.sum(numeric_only=True) #~~~~~~~~~~~~~~~ # Step 1) # Fetch Tract Files w/CSA Lables by Name from the 2_cleaned folder. #~~~~~~~~~~~~~~~ fileName = '' for name in glob.glob('AcsDataClean/B19001*5y'+str(year)+'_est.csv'): fileName = name df = pd.read_csv( fileName, index_col=0 ) # Aggregate by CSA # Group By CSA so that they may be opperated on df = df.groupby('CSA') # Aggregate Numeric Values by Sum df = sumInts(df) # Add 'BALTIMORE' which is the SUM of all the CSAs #~~~~~~~~~~~~~~~ # Step 2) # Prepare the columns #~~~~~~~~~~~~~~~ # val1.__class__.__name__ # # create a new dataframe for giggles fi = pd.DataFrame() # append into that dataframe col 001 key = getColName(df, '001') val = getColByName(df, '001') fi[key] = val # append into that dataframe col 009 key = getColName(df, '009') val = getColByName(df, '009') fi[key] = val # append into that dataframe col 010 key = getColName(df, '010') val = getColByName(df, '010') fi[key] = val # append into that dataframe col 011 key = getColName(df, '011') val = getColByName(df, '011') fi[key] = val # Delete Rows where the 'denominator' column is 0 -> like the Jail fi = fi[fi[fi.columns[0]] != 0] #~~~~~~~~~~~~~~~ # Step 3) # Run the Calculation #~~~~~~~~~~~~~~~ return fi.apply(lambda x: ( ( x[fi.columns[1] ]+ x[fi.columns[2] ]+ x[fi.columns[3] ] ) / x[fi.columns[0]])*100, axis=1) """ /* hh60inc */ -- WITH tbl AS ( select csa, ( (value[1] + value[2] + value[3]) / value[4] )*100 as result from vital_signs.get_acs_vars_csa_and_bc('2013',ARRAY['B19001_009E','B19001_010E','B19001_011E','B19001_001E']) ) UPDATE vital_signs.data set hh60inc = result from tbl where data.csa = tbl.csa and data_year = '2013'; """ # Cell #File: hh75inc.py #Author: <NAME> #Date: 1/17/19 #Section: Bnia #Email: <EMAIL> #Description: # Uses ACS Table B19001 - HOUSEHOLD INCOME V # HOUSEHOLD INCOME IN THE PAST 12 MONTHS (IN 2017 INFLATION-ADJUSTED DOLLARS) # Table Creates: hh25 hh40 hh60 hh75 hhm75, mhhi #purpose: Produce Household Income 60-70K Indicator #input: Year #output: import pandas as pd import glob def hh75inc( year ): def getColName (df, col): return df.columns[df.columns.str.contains(pat = col)][0] def getColByName (df, col): return df[getColName(df, col)] def nullIfEqual(df, c1, c2): return df.apply(lambda x: x[getColName(df, c1)]+x[getColName(df, c2)] if x[getColName(df, c1)]+x[getColName(df, c2)] != 0 else 0, axis=1) def sumInts(df): return df.sum(numeric_only=True) #~~~~~~~~~~~~~~~ # Step 1) # Fetch Tract Files w/CSA Lables by Name from the 2_cleaned folder. #~~~~~~~~~~~~~~~ fileName = '' for name in glob.glob('AcsDataClean/B19001*5y'+str(year)+'_est.csv'): fileName = name df = pd.read_csv( fileName, index_col=0 ) # Aggregate by CSA # Group By CSA so that they may be opperated on df = df.groupby('CSA') # Aggregate Numeric Values by Sum df = sumInts(df) # Add 'BALTIMORE' which is the SUM of all the CSAs #~~~~~~~~~~~~~~~ # Step 2) # Prepare the columns #~~~~~~~~~~~~~~~ # val1.__class__.__name__ # # create a new dataframe for giggles fi = pd.DataFrame() # append into that dataframe col 001 key = getColName(df, '001') val = getColByName(df, '001') fi[key] = val # append into that dataframe col 012 key = getColName(df, '012') val = getColByName(df, '012') fi[key] = val # Delete Rows where the 'denominator' column is 0 -> like the Jail fi = fi[fi[fi.columns[0]] != 0] #~~~~~~~~~~~~~~~ # Step 3) # Run the Calculation #~~~~~~~~~~~~~~~ #12/1 return fi.apply(lambda x: ( x[fi.columns[1] ] / x[fi.columns[0]])*100, axis=1) """ /* hh75inc */ -- WITH tbl AS ( select csa, ( value[1] / value[2] )*100 as result from vital_signs.get_acs_vars_csa_and_bc('2013',ARRAY['B19001_012E','B19001_001E']) ) UPDATE vital_signs.data set hh75inc = result from tbl where data.csa = tbl.csa and data_year = '2013'; """ # Cell #File: hhchpov.py #Author: <NAME> #Date: 1/17/19 #Section: Bnia #Email: <EMAIL> #Description: # Uses ACS Table B17001 - POVERTY STATUS IN THE PAST 12 MONTHS BY SEX BY AGE # Universe: Population for whom poverty status is determined more information #purpose: Produce Household Poverty Indicator #input: Year #output: import pandas as pd import glob def hhchpov( year ): def getColName (df, col): return df.columns[df.columns.str.contains(pat = col)][0] def getColByName (df, col): return df[getColName(df, col)] def addKey(df, fi, col): key = getColName(df, col) val = getColByName(df, col) fi[key] = val return fi def nullIfEqual(df, c1, c2): return df.apply(lambda x: x[getColName(df, c1)]+x[getColName(df, c2)] if x[getColName(df, c1)]+x[getColName(df, c2)] != 0 else 0, axis=1) def sumInts(df): return df.sum(numeric_only=True) #~~~~~~~~~~~~~~~ # Step 1) # Fetch Tract Files w/CSA Lables by Name from the 2_cleaned folder. #~~~~~~~~~~~~~~~ fileName = '' for name in glob.glob('AcsDataClean/B17001*5y'+str(year)+'_est.csv'): fileName = name df = pd.read_csv( fileName, index_col=0 ) # Aggregate by CSA # Group By CSA so that they may be opperated on df = df.groupby('CSA') # Aggregate Numeric Values by Sum df = sumInts(df) # Add 'BALTIMORE' which is the SUM of all the CSAs #~~~~~~~~~~~~~~~ # Step 2) # Prepare the columns #~~~~~~~~~~~~~~~ # Final Dataframe fi = pd.DataFrame() columns = ['B17001_004E', 'B17001_005E', 'B17001_006E', 'B17001_007E', 'B17001_008E', 'B17001_009E', 'B17001_018E', 'B17001_019E', 'B17001_020E', 'B17001_021E', 'B17001_022E', 'B17001_023E', 'B17001_033E', 'B17001_034E', 'B17001_035E', 'B17001_036E', 'B17001_037E', 'B17001_038E', 'B17001_047E', 'B17001_048E', 'B17001_049E', 'B17001_050E', 'B17001_051E', 'B17001_052E'] for col in columns: fi = addKey(df, fi, col) # Numerators numerators = pd.DataFrame() columns = ['B17001_004E', 'B17001_005E', 'B17001_006E', 'B17001_007E', 'B17001_008E', 'B17001_009E', 'B17001_018E', 'B17001_019E', 'B17001_020E', 'B17001_021E', 'B17001_022E', 'B17001_023E'] for col in columns: numerators = addKey(df, numerators, col) # Denominators denominators = pd.DataFrame() columns = ['B17001_004E', 'B17001_005E', 'B17001_006E', 'B17001_007E', 'B17001_008E', 'B17001_009E', 'B17001_018E', 'B17001_019E', 'B17001_020E', 'B17001_021E', 'B17001_022E', 'B17001_023E', 'B17001_033E', 'B17001_034E', 'B17001_035E', 'B17001_036E', 'B17001_037E', 'B17001_038E', 'B17001_047E', 'B17001_048E', 'B17001_049E', 'B17001_050E', 'B17001_051E', 'B17001_052E'] for col in columns: denominators = addKey(df, denominators, col) #~~~~~~~~~~~~~~~ # Step 3) # Run the Calculation #~~~~~~~~~~~~~~~ fi['numerator'] = numerators.sum(axis=1) fi['denominator'] = denominators.sum(axis=1) fi = fi[fi['denominator'] != 0] #Delete Rows where the 'denominator' column is 0 fi['final'] = (fi['numerator'] / fi['denominator'] ) * 100 #~~~~~~~~~~~~~~~ # Step 4) # Add Special Baltimore City Data #~~~~~~~~~~~~~~~ url = 'https://api.census.gov/data/20'+str(year)+'/acs/acs5/subject?get=NAME,S1701_C03_002E&for=county%3A510&in=state%3A24&key=<KEY>' table = pd.read_json(url, orient='records') fi['final']['Baltimore City'] = float(table.loc[1, table.columns[1]]) return fi['final'] """ /* <hhchpov_14> */ WITH tbl AS ( select csa, ( (value[1] + value[2] + value[3] + value[4] + value[5] + value[6] + value[7] + value[8] + value[9] + value[10] + value[11] + value[12]) / nullif( (value[1] + value[2] + value[3] + value[4] + value[5] + value[6] + value[7] + value[8] + value[9] + value[10] + value[11] + value[12] + value[13] + value[14] + value[15] + value[16] + value[17] + value[18] + value[19] + value[20] + value[21] + value[22] + value[23] + value[24] ), 0) ) * 100::numeric as result from vital_signs.get_acs_vars_csa_and_bc('2014',ARRAY['B17001_004E','B17001_005E','B17001_006E','B17001_007E','B17001_008E','B17001_009E','B17001_018E','B17001_019E','B17001_020E','B17001_021E','B17001_022E','B17001_023E','B17001_033E','B17001_034E','B17001_035E','B17001_036E','B17001_037E','B17001_038E','B17001_047E','B17001_048E','B17001_049E','B17001_050E','B17001_051E','B17001_052E']) ) update vital_signs.data set hhchpov = result from tbl where data2.csa = tbl.csa and update_data_year = '2014' and data_year = '2014'; """ # Cell #File: hhm75.py #Author: <NAME> #Date: 1/17/19 #Section: Bnia #Email: <EMAIL> #Description: # Uses ACS Table B19001 - HOUSEHOLD INCOME V # HOUSEHOLD INCOME IN THE PAST 12 MONTHS (IN 2017 INFLATION-ADJUSTED DOLLARS) # Table Creates: hh25 hh40 hh60 hh75 hhm75, mhhi #purpose: Produce Household Income Over 75K Indicator #input: Year #output: import pandas as pd import glob def hhm75( year ): def getColName (df, col): return df.columns[df.columns.str.contains(pat = col)][0] def getColByName (df, col): return df[getColName(df, col)] def nullIfEqual(df, c1, c2): return df.apply(lambda x: x[getColName(df, c1)]+x[getColName(df, c2)] if x[getColName(df, c1)]+x[getColName(df, c2)] != 0 else 0, axis=1) def sumInts(df): return df.sum(numeric_only=True) #~~~~~~~~~~~~~~~ # Step 1) # Fetch Tract Files w/CSA Lables by Name from the 2_cleaned folder. #~~~~~~~~~~~~~~~ fileName = '' for name in glob.glob('AcsDataClean/B19001*5y'+str(year)+'_est.csv'): fileName = name df = pd.read_csv( fileName, index_col=0 ) # Aggregate by CSA # Group By CSA so that they may be opperated on df = df.groupby('CSA') # Aggregate Numeric Values by Sum df = sumInts(df) # Add 'BALTIMORE' which is the SUM of all the CSAs #~~~~~~~~~~~~~~~ # Step 2) # Prepare the columns #~~~~~~~~~~~~~~~ # val1.__class__.__name__ # # create a new dataframe for giggles fi = pd.DataFrame() # append into that dataframe col 001 key = getColName(df, '001') val = getColByName(df, '001') fi[key] = val # append into that dataframe col 002 key = getColName(df, '002') val = getColByName(df, '002') fi[key] = val # append into that dataframe col 003 key = getColName(df, '003') val = getColByName(df, '003') fi[key] = val # append into that dataframe col 004 key = getColName(df, '004') val = getColByName(df, '004') fi[key] = val # append into that dataframe col 005 key = getColName(df, '005') val = getColByName(df, '005') fi[key] = val # append into that dataframe col 006 key = getColName(df, '006') val = getColByName(df, '006') fi[key] = val # append into that dataframe col 007 key = getColName(df, '007') val = getColByName(df, '007') fi[key] = val # append into that dataframe col 008 key = getColName(df, '008') val = getColByName(df, '008') fi[key] = val # append into that dataframe col 009 key = getColName(df, '009') val = getColByName(df, '009') fi[key] = val # append into that dataframe col 010 key = getColName(df, '010') val = getColByName(df, '010') fi[key] = val # append into that dataframe col 011 key = getColName(df, '011') val = getColByName(df, '011') fi[key] = val # append into that dataframe col 012 key = getColName(df, '012') val = getColByName(df, '012') fi[key] = val # Delete Rows where the 'denominator' column is 0 -> like the Jail fi = fi[fi[fi.columns[0]] != 0] #~~~~~~~~~~~~~~~ # Step 3) # Run the Calculation #~~~~~~~~~~~~~~~ return fi.apply(lambda x: ( ( x[fi.columns[0]]-( x[fi.columns[1] ]+ x[fi.columns[2] ]+ x[fi.columns[3] ]+ x[fi.columns[4] ]+ x[fi.columns[5] ]+ x[fi.columns[6] ]+ x[fi.columns[7] ]+ x[fi.columns[8] ]+ x[fi.columns[9] ]+ x[fi.columns[10] ]+ x[fi.columns[11] ] ) ) / x[fi.columns[0]])*100, axis=1) # Cell #File: hhpov.py #Author: <NAME> #Date: 1/17/19 #Section: Bnia #Email: <EMAIL> #Description: # Uses ACS Table B17017 - Household Poverty, Uses Table B17017 which includes V # Poverty Status in the Past 12 Months by Household Type by Age of Householder (Universe = households) #purpose: Produce Household Poverty Indicator #input: Year #output: import pandas as pd import glob def hhpov( year ): def getColName (df, col): return df.columns[df.columns.str.contains(pat = col)][0] def getColByName (df, col): return df[getColName(df, col)] def nullIfEqual(df, c1, c2): return df.apply(lambda x: x[getColName(df, c1)]+x[getColName(df, c2)] if x[getColName(df, c1)]+x[getColName(df, c2)] != 0 else 0, axis=1) def sumInts(df): return df.sum(numeric_only=True) #~~~~~~~~~~~~~~~ # Step 1) # Fetch Tract Files w/CSA Lables by Name from the 2_cleaned folder. #~~~~~~~~~~~~~~~ fileName = '' for name in glob.glob('AcsDataClean/B17017*5y'+str(year)+'_est.csv'): fileName = name df = pd.read_csv( fileName, index_col=0 ) # Aggregate by CSA # Group By CSA so that they may be opperated on df = df.groupby('CSA') # Aggregate Numeric Values by Sum df = sumInts(df) # Add 'BALTIMORE' which is the SUM of all the CSAs #~~~~~~~~~~~~~~~ # Step 2) # Prepare the columns #~~~~~~~~~~~~~~~ # create a new dataframe for giggles fi = pd.DataFrame() # append into that dataframe col 003 key = getColName(df, '003') val = getColByName(df, '003') fi[key] = val # append into that dataframe col 032 key = getColName(df, '032') val = getColByName(df, '032') fi[key] = val # construct the denominator, returns 0 iff the other two rows are equal. fi['denominator'] = nullIfEqual( df, '003', '032') # Delete Rows where the 'denominator' column is 0 fi = fi[fi['denominator'] != 0] #~~~~~~~~~~~~~~~ # Step 3) # Run the Calculation #~~~~~~~~~~~~~~~ return fi.apply(lambda x: (x[fi.columns[0]] / x['denominator'])*100, axis=1) # Cell #File: hhs.py #Author: <NAME> #Date: 4/16/19 #Section: Bnia #Email: <EMAIL> #Description: # Uses ACS Table B11005 - HOUSEHOLDS BY PRESENCE OF PEOPLE UNDER 18 YEARS BY HOUSEHOLD TYPE # Universe: Households # Table Creates: hhs, fam, femhhs #purpose: #input: Year #output: import pandas as pd import glob def hhs( year ): def getColName (df, col): return df.columns[df.columns.str.contains(pat = col)][0] def getColByName (df, col): return df[getColName(df, col)] def addKey(df, fi, col): key = getColName(df, col) val = getColByName(df, col) fi[key] = val return fi def nullIfEqual(df, c1, c2): return df.apply(lambda x: x[getColName(df, c1)]+x[getColName(df, c2)] if x[getColName(df, c1)]+x[getColName(df, c2)] != 0 else 0, axis=1) def sumInts(df): return df.sum(numeric_only=True) #~~~~~~~~~~~~~~~ # Step 1) # Fetch Tract Files w/CSA Lables by Name from the 2_cleaned folder. #~~~~~~~~~~~~~~~ fileName = '' for name in glob.glob('AcsDataClean/B11005*5y'+str(year)+'_est.csv'): fileName = name df = pd.read_csv( fileName, index_col=0 ) # Aggregate by CSA # Group By CSA so that they may be opperated on df = df.groupby('CSA') # Aggregate Numeric Values by Sum df = df.sum(numeric_only=True) df1 = pd.DataFrame() df1['CSA'] = df.index df1.set_index('CSA', drop = True, inplace = True) df1['tot'] = df[ 'B11005_001E_Total' ] return df1['tot'] # Cell #File: hsdipl.py #Author: <NAME> #Date: 1/17/19 #Section: Bnia #Email: <EMAIL> #Description: # Uses ACS Table B06009 - PLACE OF BIRTH BY EDUCATIONAL ATTAINMENT IN THE UNITED STATES #purpose: Produce Workforce and Economic Development - Percent Population (25 Years and over) With High School Diploma and Some College or Associates Degree #Table Uses: B06009 - lesshs, hsdipl, bahigher #input: Year #output: import pandas as pd import glob def hsdipl( year ): def getColName (df, col): return df.columns[df.columns.str.contains(pat = col)][0] def getColByName (df, col): return df[getColName(df, col)] def addKey(df, fi, col): key = getColName(df, col) val = getColByName(df, col) fi[key] = val return fi def nullIfEqual(df, c1, c2): return df.apply(lambda x: x[getColName(df, c1)]+x[getColName(df, c2)] if x[getColName(df, c1)]+x[getColName(df, c2)] != 0 else 0, axis=1) def sumInts(df): return df.sum(numeric_only=True) #~~~~~~~~~~~~~~~ # Step 1) # Fetch Tract Files w/CSA Lables by Name from the 2_cleaned folder. #~~~~~~~~~~~~~~~ fileName = '' for name in glob.glob('AcsDataClean/B06009*5y'+str(year)+'_est.csv'): fileName = name df = pd.read_csv( fileName, index_col=0 ) # Aggregate by CSA # Group By CSA so that they may be opperated on df = df.groupby('CSA') # Aggregate Numeric Values by Sum df = sumInts(df) # Add 'BALTIMORE' which is the SUM of all the CSAs #~~~~~~~~~~~~~~~ # Step 2) # Prepare the columns #~~~~~~~~~~~~~~~ # Final Dataframe fi = pd.DataFrame() columns = ['B06009_003E','B06009_004E','B06009_001E'] for col in columns: fi = addKey(df, fi, col) # Numerators numerators = pd.DataFrame() columns = ['B06009_003E','B06009_004E'] for col in columns: numerators = addKey(df, numerators, col) # Denominators denominators = pd.DataFrame() columns = ['B06009_001E'] for col in columns: denominators = addKey(df, denominators, col) # construct the denominator, returns 0 iff the other two rows are equal. #~~~~~~~~~~~~~~~ # Step 3) # Run the Calculation + final mods # ( ( value[1] + value[2] ) / nullif(value[3],0) )*100 #~~~~~~~~~~~~~~~ fi['numerator'] = numerators.sum(axis=1) fi['denominator'] = denominators.sum(axis=1) fi = fi[fi['denominator'] != 0] # Delete Rows where the 'denominator' column is 0 fi['final'] = (fi['numerator'] / fi['denominator'] ) * 100 return fi['final'] """ /* <hsdipl_14> */ -- WITH tbl AS ( select csa, ( ( value[1] + value[2] ) / nullif(value[3],0) )*100::numeric as result from vital_signs.get_acs_vars_csa_and_bc('2014',ARRAY['B06009_003E','B06009_004E','B06009_001E']) ) update vital_signs.data set hsdipl = result from tbl where data2.csa = tbl.csa and update_data_year = '2014' and data_year = '2014'; """ # Cell #File: lesshs.py #Author: <NAME> #Date: 1/17/19 #Section: Bnia #Email: <EMAIL> #Description: # Uses ACS Table B06009 - PLACE OF BIRTH BY EDUCATIONAL ATTAINMENT IN THE UNITED STATES #purpose: Produce Workforce and Economic Development - Percent Population (25 Years and over) With Less Than a High School Diploma or GED Indicator #Table Uses: B06009 - lesshs, hsdipl, bahigher #input: Year #output: import pandas as pd import glob def lesshs( year ): def getColName (df, col): return df.columns[df.columns.str.contains(pat = col)][0] def getColByName (df, col): return df[getColName(df, col)] def addKey(df, fi, col): key = getColName(df, col) val = getColByName(df, col) fi[key] = val return fi def nullIfEqual(df, c1, c2): return df.apply(lambda x: x[getColName(df, c1)]+x[getColName(df, c2)] if x[getColName(df, c1)]+x[getColName(df, c2)] != 0 else 0, axis=1) def sumInts(df): return df.sum(numeric_only=True) #~~~~~~~~~~~~~~~ # Step 1) # Fetch Tract Files w/CSA Lables by Name from the 2_cleaned folder. #~~~~~~~~~~~~~~~ fileName = '' for name in glob.glob('AcsDataClean/B06009*5y'+str(year)+'_est.csv'): fileName = name df = pd.read_csv( fileName, index_col=0 ) # Aggregate by CSA # Group By CSA so that they may be opperated on df = df.groupby('CSA') # Aggregate Numeric Values by Sum df = sumInts(df) # Add 'BALTIMORE' which is the SUM of all the CSAs #~~~~~~~~~~~~~~~ # Step 2) # Prepare the columns #~~~~~~~~~~~~~~~ # Final Dataframe fi = pd.DataFrame() columns = ['B06009_002E','B06009_001E'] for col in columns: fi = addKey(df, fi, col) # Numerators numerators = pd.DataFrame() columns = ['B06009_002E'] for col in columns: numerators = addKey(df, numerators, col) # Denominators denominators = pd.DataFrame() columns = ['B06009_001E'] for col in columns: denominators = addKey(df, denominators, col) # construct the denominator, returns 0 iff the other two rows are equal. #~~~~~~~~~~~~~~~ # Step 3) # Run the Calculation + final mods # ( value[1] / nullif(value[2],0) )*100 #~~~~~~~~~~~~~~~ fi['numerator'] = numerators.sum(axis=1) fi['denominator'] = denominators.sum(axis=1) fi = fi[fi['denominator'] != 0] # Delete Rows where the 'denominator' column is 0 fi['final'] = (fi['numerator'] / fi['denominator'] ) * 100 return fi['final'] """ /* <lesshs_14> */ -- WITH tbl AS ( select csa, ( value[1] / nullif(value[2],0) )*100::numeric as result from vital_signs.get_acs_vars_csa_and_bc('2014',ARRAY['B06009_002E','B06009_001E']) ) update vital_signs.data set lesshs = result from tbl where data2.csa = tbl.csa and update_data_year = '2014' and data_year = '2014'; """ # Cell #File: male.py #Author: <NAME> #Date: 4/16/19 #Section: Bnia #Email: <EMAIL> #Description: # Uses ACS Table B01001 - SEX BY AGE # Universe: Total population # Table Creates: tpop, female, male, age5 age18 age24 age64 age65 #purpose: #input: Year #output: import pandas as pd import glob def male( year ): def getColName (df, col): return df.columns[df.columns.str.contains(pat = col)][0] def getColByName (df, col): return df[getColName(df, col)] def addKey(df, fi, col): key = getColName(df, col) val = getColByName(df, col) fi[key] = val return fi def nullIfEqual(df, c1, c2): return df.apply(lambda x: x[getColName(df, c1)]+x[getColName(df, c2)] if x[getColName(df, c1)]+x[getColName(df, c2)] != 0 else 0, axis=1) def sumInts(df): return df.sum(numeric_only=True) #~~~~~~~~~~~~~~~ # Step 1) # Fetch Tract Files w/CSA Lables by Name from the 2_cleaned folder. #~~~~~~~~~~~~~~~ fileName = '' for name in glob.glob('AcsDataClean/B01001*5y'+str(year)+'_est.csv'): fileName = name df = pd.read_csv( fileName, index_col=0 ) # Aggregate by CSA # Group By CSA so that they may be opperated on df = df.groupby('CSA') # Aggregate Numeric Values by Sum df = df.sum(numeric_only=True) # df.columns total = df['B01001_001E_Total'] df1 = pd.DataFrame() df1['CSA'] = df.index df1.set_index('CSA', drop = True, inplace = True) df1['onlyTheFellas'] = df[ 'B01001_002E_Total_Male' ] return df1['onlyTheFellas'] # Cell #File: nilf.py #Author: <NAME> #Date: 1/17/19 #Section: Bnia #Email: <EMAIL> #Description: # Uses ACS Table B23001 - SEX BY AGE BY EMPLOYMENT STATUS FOR THE POPULATION 16 YEARS AND OVER # Universe - Population 16 years and over # Table Creates: empl, unempl, unempr, nilf #purpose: Produce Workforce and Economic Development - Percent Population 16-64 Not in Labor Force Indicator #input: Year #output: import pandas as pd import glob def nilf( year ): def getColName (df, col): return df.columns[df.columns.str.contains(pat = col)][0] def getColByName (df, col): return df[getColName(df, col)] def addKey(df, fi, col): key = getColName(df, col) val = getColByName(df, col) fi[key] = val return fi def nullIfEqual(df, c1, c2): return df.apply(lambda x: x[getColName(df, c1)]+x[getColName(df, c2)] if x[getColName(df, c1)]+x[getColName(df, c2)] != 0 else 0, axis=1) def sumInts(df): return df.sum(numeric_only=True) #~~~~~~~~~~~~~~~ # Step 1) # Fetch Tract Files w/CSA Lables by Name from the 2_cleaned folder. #~~~~~~~~~~~~~~~ fileName = '' for name in glob.glob('AcsDataClean/B23001*5y'+str(year)+'_est.csv'): fileName = name df = pd.read_csv( fileName, index_col=0 ) # Aggregate by CSA # Group By CSA so that they may be opperated on df = df.groupby('CSA') # Aggregate Numeric Values by Sum df = sumInts(df) # Add 'BALTIMORE' which is the SUM of all the CSAs #~~~~~~~~~~~~~~~ # Step 2) # Prepare the columns #~~~~~~~~~~~~~~~ # Final Dataframe fi = pd.DataFrame() columns = ['B23001_003E', 'B23001_010E', 'B23001_017E', 'B23001_024E', 'B23001_031E', 'B23001_038E', 'B23001_045E', 'B23001_052E', 'B23001_059E', 'B23001_066E', 'B23001_089E', 'B23001_096E', 'B23001_103E', 'B23001_110E', 'B23001_117E', 'B23001_124E', 'B23001_131E', 'B23001_138E', 'B23001_145E', 'B23001_152E', 'B23001_009E', 'B23001_016E', 'B23001_023E', 'B23001_030E', 'B23001_037E', 'B23001_044E', 'B23001_051E', 'B23001_058E', 'B23001_065E', 'B23001_072E', 'B23001_095E', 'B23001_102E', 'B23001_109E', 'B23001_116E', 'B23001_123E', 'B23001_130E', 'B23001_137E', 'B23001_144E', 'B23001_151E', 'B23001_158E'] for col in columns: fi = addKey(df, fi, col) # Numerators numerators = pd.DataFrame() columns = ['B23001_009E', 'B23001_016E', 'B23001_023E', 'B23001_030E', 'B23001_037E', 'B23001_044E', 'B23001_051E', 'B23001_058E', 'B23001_065E', 'B23001_072E', 'B23001_095E', 'B23001_102E', 'B23001_109E', 'B23001_116E', 'B23001_123E', 'B23001_130E', 'B23001_137E', 'B23001_144E', 'B23001_151E', 'B23001_158E'] for col in columns: numerators = addKey(df, numerators, col) # Denominators denominators = pd.DataFrame() columns = ['B23001_003E', 'B23001_010E', 'B23001_017E', 'B23001_024E', 'B23001_031E', 'B23001_038E', 'B23001_045E', 'B23001_052E', 'B23001_059E', 'B23001_066E', 'B23001_089E', 'B23001_096E', 'B23001_103E', 'B23001_110E', 'B23001_117E', 'B23001_124E', 'B23001_131E', 'B23001_138E', 'B23001_145E', 'B23001_152E'] for col in columns: denominators = addKey(df, denominators, col) # construct the denominator, returns 0 iff the other two rows are equal. #~~~~~~~~~~~~~~~ # Step 3) # Run the Calculation # ( ( value[21]+value[22]+value[23]+value[24]+value[25]+value[26]+value[27]+value[28]+value[29]+value[30]+value[31]+value[32]+value[33]+value[34]+value[35]+value[36]+value[37]+value[38]+value[39]+value[40]) --not in labor force 16-64 # / # nullif( (value[1]+value[2]+value[3]+value[4]+value[5]+value[6]+value[7]+value[8]+value[9]+value[10]+value[11]+value[12]+value[13]+value[14]+value[15]+value[16]+value[17]+value[18]+value[19]+value[20]) -- population 16 to 64 ,0) )*100::numeric #~~~~~~~~~~~~~~~ fi['numerator'] = numerators.sum(axis=1) fi['denominator'] = denominators.sum(axis=1) fi = fi[fi['denominator'] != 0] # Delete Rows where the 'denominator' column is 0 fi['final'] = (fi['numerator'] / fi['denominator'] ) * 100 return fi['final'] """ /* <nilf_14> */ -- WITH tbl AS ( select csa, ( (value[21]+value[22]+value[23]+value[24]+value[25]+value[26]+value[27]+value[28]+value[29]+value[30]+value[31]+value[32]+value[33]+value[34]+value[35]+value[36]+value[37]+value[38]+value[39]+value[40]) --not in labor force 16-64 / nullif( (value[1]+value[2]+value[3]+value[4]+value[5]+value[6]+value[7]+value[8]+value[9]+value[10]+value[11]+value[12]+value[13]+value[14]+value[15]+value[16]+value[17]+value[18]+value[19]+value[20]) -- population 16 to 64 ,0) )*100::numeric as result from vital_signs.get_acs_vars_csa_and_bc('2014', ARRAY['B23001_003E','B23001_010E','B23001_017E','B23001_024E','B23001_031E','B23001_038E','B23001_045E','B23001_052E','B23001_059E','B23001_066E','B23001_089E','B23001_096E','B23001_103E','B23001_110E','B23001_117E','B23001_124E','B23001_131E','B23001_138E','B23001_145E','B23001_152E','B23001_009E','B23001_016E','B23001_023E','B23001_030E','B23001_037E','B23001_044E','B23001_051E','B23001_058E','B23001_065E','B23001_072E','B23001_095E','B23001_102E','B23001_109E','B23001_116E','B23001_123E','B23001_130E','B23001_137E','B23001_144E','B23001_151E','B23001_158E']) ) update vital_signs.data set nilf = result from tbl where data2.csa = tbl.csa and update_data_year = '2014' and data_year = '2014'; """ # Cell #File: othrcom.py #Author: <NAME> #Date: 1/24/19 #Section: Bnia #Email: <EMAIL> #Description: # Uses ACS Table B08101 - MEANS OF TRANSPORTATION TO WORK BY AGE # Universe: Workers 16 years and over # Table Creates: othrcom, drvalone, carpool, pubtran, walked #purpose: Produce Sustainability - Percent of Population Using Other Means to Commute to Work (Taxi, Motorcycle, Bicycle, Other) Indicator #input: Year #output: import pandas as pd import glob def othrcom( year ): def getColName (df, col): return df.columns[df.columns.str.contains(pat = col)][0] def getColByName (df, col): return df[getColName(df, col)] def addKey(df, fi, col): key = getColName(df, col) val = getColByName(df, col) fi[key] = val return fi def nullIfEqual(df, c1, c2): return df.apply(lambda x: x[getColName(df, c1)]+x[getColName(df, c2)] if x[getColName(df, c1)]+x[getColName(df, c2)] != 0 else 0, axis=1) def sumInts(df): return df.sum(numeric_only=True) #~~~~~~~~~~~~~~~ # Step 1) # Fetch Tract Files w/CSA Lables by Name from the 2_cleaned folder. #~~~~~~~~~~~~~~~ fileName = '' for name in glob.glob('AcsDataClean/B08101*5y'+str(year)+'_est.csv'): fileName = name df = pd.read_csv( fileName, index_col=0 ) # Aggregate by CSA # Group By CSA so that they may be opperated on df = df.groupby('CSA') # Aggregate Numeric Values by Sum df = sumInts(df) # Add 'BALTIMORE' which is the SUM of all the CSAs #~~~~~~~~~~~~~~~ # Step 2) # Prepare the columns #~~~~~~~~~~~~~~~ # Final Dataframe fi = pd.DataFrame() columns = ['B08101_001E','B08101_049E','B08101_041E'] for col in columns: fi = addKey(df, fi, col) # Numerators numerators = pd.DataFrame() columns = ['B08101_041E'] for col in columns: numerators = addKey(df, numerators, col) # Denominators denominators = pd.DataFrame() columns = ['B08101_001E','B08101_049E'] for col in columns: denominators = addKey(df, denominators, col) # construct the denominator, returns 0 iff the other two rows are equal. #~~~~~~~~~~~~~~~ # Step 3) # Run the Calculation # ( value[3] / nullif((value[1]-value[2]),0) )*100 #~~~~~~~~~~~~~~~ fi['numerator'] = numerators.sum(axis=1) fi['denominator'] = denominators.iloc[: ,0] - denominators.iloc[: ,1] fi = fi[fi['denominator'] != 0] # Delete Rows where the 'denominator' column is 0 fi['final'] = (fi['numerator'] / fi['denominator'] ) * 100 #~~~~~~~~~~~~~~~ # Step 4) # Add Special Baltimore City Data # 100- "6.7", "59.8", "9.2", "18.4", "3.7", = 2.2 # 100- (walked + drvalone + carpool + pubtran + workfromhome(13e)) #~~~~~~~~~~~~~~~ url = 'https://api.census.gov/data/20'+str(year)+'/acs/acs5/subject?get=NAME,S0801_C01_010E,S0801_C01_003E,S0801_C01_004E,S0801_C01_009E,S0801_C01_013E&for=county%3A510&in=state%3A24&key=<KEY>' table = pd.read_json(url, orient='records') walked = float(table.loc[1, table.columns[1]] ) drvalone = float(table.loc[1, table.columns[2]] ) carpool = float(table.loc[1, table.columns[3]] ) pubtran = float(table.loc[1, table.columns[4]] ) workfromhome = float(table.loc[1, table.columns[5]] ) fi['final']['Baltimore City'] = 100 - ( walked + drvalone + carpool + pubtran + workfromhome ) return fi['final'] """ /* <othrcom_14> */ -- WITH tbl AS ( select csa, ( value[3] / nullif((value[1]-value[2]),0) )*100::numeric as result from vital_signs.get_acs_vars_csa_and_bc('2014',ARRAY['B08101_001E','B08101_049E','B08101_041E']) ) update vital_signs.data set othrcom = result from tbl where data2.csa = tbl.csa and update_data_year = '2014' and data_year = '2014'; """ # Cell #File: p2more.py #Author: <NAME> #Date: 4/16/19 #Section: Bnia #Email: <EMAIL> #Description: # Uses ACS Table B03002 - HISPANIC OR LATINO ORIGIN BY RACE # Universe: Total Population # Table Creates: racdiv, paa, pwhite, pasi, phisp, p2more, ppac #purpose: #input: Year #output: import pandas as pd import glob def p2more( year ): def getColName (df, col): return df.columns[df.columns.str.contains(pat = col)][0] def getColByName (df, col): return df[getColName(df, col)] def addKey(df, fi, col): key = getColName(df, col) val = getColByName(df, col) fi[key] = val return fi def nullIfEqual(df, c1, c2): return df.apply(lambda x: x[getColName(df, c1)]+x[getColName(df, c2)] if x[getColName(df, c1)]+x[getColName(df, c2)] != 0 else 0, axis=1) def sumInts(df): return df.sum(numeric_only=True) #~~~~~~~~~~~~~~~ # Step 1) # Fetch Tract Files w/CSA Lables by Name from the 2_cleaned folder. #~~~~~~~~~~~~~~~ fileName = '' for name in glob.glob('AcsDataClean/B03002*5y'+str(year)+'_est.csv'): fileName = name df = pd.read_csv( fileName, index_col=0 ) # Aggregate by CSA # Group By CSA so that they may be opperated on df = df.groupby('CSA') # Aggregate Numeric Values by Sum df = df.sum(numeric_only=True) # Append the one column from the other ACS Table df['B03002_012E_Total_Hispanic_or_Latino'] df1 = pd.DataFrame() df1['CSA'] = df.index df1.set_index('CSA', drop = True, inplace = True) tot = df[ 'B03002_001E_Total' ] df1['TwoOrMore%NH'] = df['B03002_009E_Total_Not_Hispanic_or_Latino_Two_or_more_races'] / tot * 100 return df1['TwoOrMore%NH'] # Cell #File: pubtran.py #Author: <NAME> #Date: 1/17/19 #Section: Bnia #Email: <EMAIL> #Description: # Uses ACS Table B08101 - MEANS OF TRANSPORTATION TO WORK BY AGE # Universe: Workers 16 Years and Over # Table Creates: othrcom, drvalone, carpool, pubtran, walked #purpose: Produce Sustainability - Percent of Population that Uses Public Transportation to Get to Work Indicator #input: Year #output: import pandas as pd import glob def pubtran( year ): def getColName (df, col): return df.columns[df.columns.str.contains(pat = col)][0] def getColByName (df, col): return df[getColName(df, col)] def addKey(df, fi, col): key = getColName(df, col) val = getColByName(df, col) fi[key] = val return fi def nullIfEqual(df, c1, c2): return df.apply(lambda x: x[getColName(df, c1)]+x[getColName(df, c2)] if x[getColName(df, c1)]+x[getColName(df, c2)] != 0 else 0, axis=1) def sumInts(df): return df.sum(numeric_only=True) #~~~~~~~~~~~~~~~ # Step 1) # Fetch Tract Files w/CSA Lables by Name from the 2_cleaned folder. #~~~~~~~~~~~~~~~ fileName = '' for name in glob.glob('AcsDataClean/B08101*5y'+str(year)+'_est.csv'): fileName = name df = pd.read_csv( fileName, index_col=0 ) # Aggregate by CSA # Group By CSA so that they may be opperated on df = df.groupby('CSA') # Aggregate Numeric Values by Sum df = sumInts(df) # Add 'BALTIMORE' which is the SUM of all the CSAs #~~~~~~~~~~~~~~~ # Step 2) # Prepare the columns #~~~~~~~~~~~~~~~ # Final Dataframe fi = pd.DataFrame() columns = ['B08101_001E','B08101_049E','B08101_025E'] for col in columns: fi = addKey(df, fi, col) # Numerators numerators = pd.DataFrame() columns = ['B08101_025E'] for col in columns: numerators = addKey(df, numerators, col) # Denominators denominators = pd.DataFrame() columns = ['B08101_001E','B08101_049E'] for col in columns: denominators = addKey(df, denominators, col) # construct the denominator, returns 0 iff the other two rows are equal. #~~~~~~~~~~~~~~~ # Step 3) # Run the Calculation # ( value[3] / nullif((value[1]-value[2]),0) )*100 #~~~~~~~~~~~~~~~ fi['numerator'] = numerators.sum(axis=1) fi['denominator'] = denominators.iloc[: ,0] - denominators.iloc[: ,1] fi = fi[fi['denominator'] != 0] # Delete Rows where the 'denominator' column is 0 fi['final'] = (fi['numerator'] / fi['denominator'] ) * 100 #~~~~~~~~~~~~~~~ # Step 4) # Add Special Baltimore City Data #~~~~~~~~~~~~~~~ url = 'https://api.census.gov/data/20'+str(year)+'/acs/acs5/subject?get=NAME,S0801_C01_009E&for=county%3A510&in=state%3A24&key=<KEY>' table = pd.read_json(url, orient='records') fi['final']['Baltimore City'] = float(table.loc[1, table.columns[1]]) return fi['final'] """ /* <pubtran_14> */ -- WITH tbl AS ( select csa, ( value[3] / nullif((value[1]-value[2]),0) )*100::numeric as result from vital_signs.get_acs_vars_csa_and_bc('2014',ARRAY['B08101_001E','B08101_049E','B08101_025E']) ) update vital_signs.data set pubtran = result from tbl where data2.csa = tbl.csa and update_data_year = '2014' and data_year = '2014'; """ # Cell #File: age5.py #Author: <NAME> #Date: 4/16/19 #Section: Bnia #Email: <EMAIL> #Description: # Uses ACS Table B01001 - SEX BY AGE # Universe: Total population # Table Creates: tpop, female, male, age5 age18 age24 age64 age65 #purpose: #input: Year #output: import pandas as pd import glob def age5( year ): def getColName (df, col): return df.columns[df.columns.str.contains(pat = col)][0] def getColByName (df, col): return df[getColName(df, col)] def addKey(df, fi, col): key = getColName(df, col) val = getColByName(df, col) fi[key] = val return fi def nullIfEqual(df, c1, c2): return df.apply(lambda x: x[getColName(df, c1)]+x[getColName(df, c2)] if x[getColName(df, c1)]+x[getColName(df, c2)] != 0 else 0, axis=1) def sumInts(df): return df.sum(numeric_only=True) #~~~~~~~~~~~~~~~ # Step 1) # Fetch Tract Files w/CSA Lables by Name from the 2_cleaned folder. #~~~~~~~~~~~~~~~ fileName = '' for name in glob.glob('AcsDataClean/B01001*5y'+str(year)+'_est.csv'): fileName = name df = pd.read_csv( fileName, index_col=0 ) # Aggregate by CSA # Group By CSA so that they may be opperated on df = df.groupby('CSA') # Aggregate Numeric Values by Sum df = df.sum(numeric_only=True) # df.columns total = df['B01001_001E_Total'] df1 = pd.DataFrame() df1['CSA'] = df.index df1.set_index('CSA', drop = True, inplace = True) # Under 5 df1['under_5'] = ( df[ 'B01001_003E_Total_Male_Under_5_years' ] + df[ 'B01001_027E_Total_Female_Under_5_years' ] ) / total * 100 return df1['under_5'] # Cell #File: age24.py #Author: <NAME> #Date: 4/16/19 #Section: Bnia #Email: <EMAIL> #Description: # Uses ACS Table B01001 - SEX BY AGE # Universe: Total population # Table Creates: tpop, female, male, age5 age18 age24 age64 age65 #purpose: #input: Year #output: import pandas as pd import glob def age24( year ): def getColName (df, col): return df.columns[df.columns.str.contains(pat = col)][0] def getColByName (df, col): return df[getColName(df, col)] def addKey(df, fi, col): key = getColName(df, col) val = getColByName(df, col) fi[key] = val return fi def nullIfEqual(df, c1, c2): return df.apply(lambda x: x[getColName(df, c1)]+x[getColName(df, c2)] if x[getColName(df, c1)]+x[getColName(df, c2)] != 0 else 0, axis=1) def sumInts(df): return df.sum(numeric_only=True) #~~~~~~~~~~~~~~~ # Step 1) # Fetch Tract Files w/CSA Lables by Name from the 2_cleaned folder. #~~~~~~~~~~~~~~~ fileName = '' for name in glob.glob('AcsDataClean/B01001*5y'+str(year)+'_est.csv'): fileName = name df = pd.read_csv( fileName, index_col=0 ) # Aggregate by CSA # Group By CSA so that they may be opperated on df = df.groupby('CSA') # Aggregate Numeric Values by Sum df = df.sum(numeric_only=True) # df.columns total = df['B01001_001E_Total'] df1 = pd.DataFrame() df1['CSA'] = df.index df1.set_index('CSA', drop = True, inplace = True) df1['eighteen_to_24'] = ( df[ 'B01001_007E_Total_Male_18_and_19_years' ] + df[ 'B01001_008E_Total_Male_20_years' ] + df[ 'B01001_009E_Total_Male_21_years' ] + df[ 'B01001_010E_Total_Male_22_to_24_years' ] + df[ 'B01001_031E_Total_Female_18_and_19_years' ] + df[ 'B01001_032E_Total_Female_20_years' ] + df[ 'B01001_033E_Total_Female_21_years' ] + df[ 'B01001_034E_Total_Female_22_to_24_years' ] ) / total * 100 return df1['eighteen_to_24'] # Cell #File: age64.py #Author: <NAME> #Date: 4/16/19 #Section: Bnia #Email: <EMAIL> #Description: # Uses ACS Table B01001 - SEX BY AGE # Universe: Total population # Table Creates: tpop, female, male, age5 age18 age24 age64 age65 #purpose: #input: Year #output: import pandas as pd import glob def age64( year ): def getColName (df, col): return df.columns[df.columns.str.contains(pat = col)][0] def getColByName (df, col): return df[getColName(df, col)] def addKey(df, fi, col): key = getColName(df, col) val = getColByName(df, col) fi[key] = val return fi def nullIfEqual(df, c1, c2): return df.apply(lambda x: x[getColName(df, c1)]+x[getColName(df, c2)] if x[getColName(df, c1)]+x[getColName(df, c2)] != 0 else 0, axis=1) def sumInts(df): return df.sum(numeric_only=True) #~~~~~~~~~~~~~~~ # Step 1) # Fetch Tract Files w/CSA Lables by Name from the 2_cleaned folder. #~~~~~~~~~~~~~~~ fileName = '' for name in glob.glob('AcsDataClean/B01001*5y'+str(year)+'_est.csv'): fileName = name df = pd.read_csv( fileName, index_col=0 ) # Aggregate by CSA # Group By CSA so that they may be opperated on df = df.groupby('CSA') # Aggregate Numeric Values by Sum df = df.sum(numeric_only=True) # df.columns total = df['B01001_001E_Total'] df1 = pd.DataFrame() df1['CSA'] = df.index df1.set_index('CSA', drop = True, inplace = True) df1['twentyfive_to_64'] = ( df[ 'B01001_011E_Total_Male_25_to_29_years' ] + df[ 'B01001_012E_Total_Male_30_to_34_years' ] + df[ 'B01001_013E_Total_Male_35_to_39_years' ] + df[ 'B01001_014E_Total_Male_40_to_44_years' ] + df[ 'B01001_015E_Total_Male_45_to_49_years' ] + df[ 'B01001_016E_Total_Male_50_to_54_years' ] + df[ 'B01001_017E_Total_Male_55_to_59_years' ] + df[ 'B01001_018E_Total_Male_60_and_61_years' ] + df[ 'B01001_019E_Total_Male_62_to_64_years' ] + df[ 'B01001_035E_Total_Female_25_to_29_years' ] + df[ 'B01001_036E_Total_Female_30_to_34_years' ] + df[ 'B01001_037E_Total_Female_35_to_39_years' ] + df[ 'B01001_038E_Total_Female_40_to_44_years' ] + df[ 'B01001_039E_Total_Female_45_to_49_years' ] + df[ 'B01001_040E_Total_Female_50_to_54_years' ] + df[ 'B01001_041E_Total_Female_55_to_59_years' ] + df[ 'B01001_042E_Total_Female_60_and_61_years' ] + df[ 'B01001_043E_Total_Female_62_to_64_years' ] ) / total * 100 return df1['twentyfive_to_64'] # Cell #File: age18.py #Author: <NAME> #Date: 4/16/19 #Section: Bnia #Email: <EMAIL> #Description: # Uses ACS Table B01001 - SEX BY AGE # Universe: Total population # Table Creates: tpop, female, male, age5 age18 age24 age64 age65 #purpose: #input: Year #output: import pandas as pd import glob def age18( year ): def getColName (df, col): return df.columns[df.columns.str.contains(pat = col)][0] def getColByName (df, col): return df[getColName(df, col)] def addKey(df, fi, col): key = getColName(df, col) val = getColByName(df, col) fi[key] = val return fi def nullIfEqual(df, c1, c2): return df.apply(lambda x: x[getColName(df, c1)]+x[getColName(df, c2)] if x[getColName(df, c1)]+x[getColName(df, c2)] != 0 else 0, axis=1) def sumInts(df): return df.sum(numeric_only=True) #~~~~~~~~~~~~~~~ # Step 1) # Fetch Tract Files w/CSA Lables by Name from the 2_cleaned folder. #~~~~~~~~~~~~~~~ fileName = '' for name in glob.glob('AcsDataClean/B01001*5y'+str(year)+'_est.csv'): fileName = name df = pd.read_csv( fileName, index_col=0 ) # Aggregate by CSA # Group By CSA so that they may be opperated on df = df.groupby('CSA') # Aggregate Numeric Values by Sum df = df.sum(numeric_only=True) # df.columns total = df['B01001_001E_Total'] df1 = pd.DataFrame() df1['CSA'] = df.index df1.set_index('CSA', drop = True, inplace = True) df1['five_to_17'] = ( df[ 'B01001_004E_Total_Male_5_to_9_years' ] + df[ 'B01001_005E_Total_Male_10_to_14_years' ] + df[ 'B01001_006E_Total_Male_15_to_17_years' ] + df[ 'B01001_028E_Total_Female_5_to_9_years' ] + df[ 'B01001_029E_Total_Female_10_to_14_years' ] + df[ 'B01001_030E_Total_Female_15_to_17_years' ] ) / total * 100 return df1['five_to_17'] # Cell #File: age65.py #Author: <NAME> #Date: 4/16/19 #Section: Bnia #Email: <EMAIL> #Description: # Uses ACS Table B01001 - SEX BY AGE # Universe: Total population # Table Creates: tpop, female, male, age5 age18 age24 age64 age65 #purpose: #input: Year #output: import pandas as pd import glob def age65( year ): def getColName (df, col): return df.columns[df.columns.str.contains(pat = col)][0] def getColByName (df, col): return df[getColName(df, col)] def addKey(df, fi, col): key = getColName(df, col) val = getColByName(df, col) fi[key] = val return fi def nullIfEqual(df, c1, c2): return df.apply(lambda x: x[getColName(df, c1)]+x[getColName(df, c2)] if x[getColName(df, c1)]+x[getColName(df, c2)] != 0 else 0, axis=1) def sumInts(df): return df.sum(numeric_only=True) #~~~~~~~~~~~~~~~ # Step 1) # Fetch Tract Files w/CSA Lables by Name from the 2_cleaned folder. #~~~~~~~~~~~~~~~ fileName = '' for name in glob.glob('AcsDataClean/B01001*5y'+str(year)+'_est.csv'): fileName = name df = pd.read_csv( fileName, index_col=0 ) # Aggregate by CSA # Group By CSA so that they may be opperated on df = df.groupby('CSA') # Aggregate Numeric Values by Sum df = df.sum(numeric_only=True) # df.columns total = df['B01001_001E_Total'] df1 = pd.DataFrame() df1['CSA'] = df.index df1.set_index('CSA', drop = True, inplace = True) df1['sixtyfive_and_up'] = ( df[ 'B01001_020E_Total_Male_65_and_66_years' ] + df[ 'B01001_021E_Total_Male_67_to_69_years' ] + df[ 'B01001_022E_Total_Male_70_to_74_years' ] + df[ 'B01001_023E_Total_Male_75_to_79_years' ] + df[ 'B01001_024E_Total_Male_80_to_84_years' ] + df[ 'B01001_025E_Total_Male_85_years_and_over' ] + df[ 'B01001_044E_Total_Female_65_and_66_years' ] + df[ 'B01001_045E_Total_Female_67_to_69_years' ] + df[ 'B01001_046E_Total_Female_70_to_74_years' ] + df[ 'B01001_047E_Total_Female_75_to_79_years' ] + df[ 'B01001_048E_Total_Female_80_to_84_years' ] + df[ 'B01001_049E_Total_Female_85_years_and_over' ] ) / total * 100 return df1['sixtyfive_and_up'] # Cell #File: affordm.py #Author: <NAME> #Date: 1/25/19 #Section: Bnia #Email: <EMAIL> #Description: # Uses ACS Table B25091 - MORTGAGE STATUS BY SELECTED MONTHLY OWNER COSTS AS A PERCENTAGE OF HOUSEHOLD INCOME IN THE PAST 12 MONTHS # Universe: Owner-occupied housing units # Table Creates: #purpose: Produce Housing and Community Development - Affordability Index - Mortgage Indicator #input: Year #output: import pandas as pd import glob def affordm( year ): def getColName (df, col): return df.columns[df.columns.str.contains(pat = col)][0] def getColByName (df, col): return df[getColName(df, col)] def addKey(df, fi, col): key = getColName(df, col) val = getColByName(df, col) fi[key] = val return fi def nullIfEqual(df, c1, c2): return df.apply(lambda x: x[getColName(df, c1)]+x[getColName(df, c2)] if x[getColName(df, c1)]+x[getColName(df, c2)] != 0 else 0, axis=1) def sumInts(df): return df.sum(numeric_only=True) #~~~~~~~~~~~~~~~ # Step 1) # Fetch Tract Files w/CSA Lables by Name from the 2_cleaned folder. #~~~~~~~~~~~~~~~ fileName = '' for name in glob.glob('AcsDataClean/B25091*5y'+str(year)+'_est.csv'): fileName = name df = pd.read_csv( fileName, index_col=0 ) # Aggregate by CSA # Group By CSA so that they may be opperated on df = df.groupby('CSA') # Aggregate Numeric Values by Sum df = sumInts(df) # Add 'BALTIMORE' which is the SUM of all the CSAs #~~~~~~~~~~~~~~~ # Step 2) # Prepare the columns #~~~~~~~~~~~~~~~ # Final Dataframe fi = pd.DataFrame() columns = ['B25091_008E','B25091_009E','B25091_010E','B25091_011E','B25091_002E'] for col in columns: fi = addKey(df, fi, col) # Numerators numerators = pd.DataFrame() columns = ['B25091_008E','B25091_009E','B25091_010E','B25091_011E'] for col in columns: numerators = addKey(df, numerators, col) # Denominators denominators = pd.DataFrame() columns = ['B25091_002E'] for col in columns: denominators = addKey(df, denominators, col) # construct the denominator, returns 0 iff the other two rows are equal. #~~~~~~~~~~~~~~~ # Step 3) # Run the Calculation # ( (value[1]+value[2]+value[3]+value[4]) / nullif(value[5],0) )*100 #~~~~~~~~~~~~~~~ fi['numerator'] = numerators.sum(axis=1) fi['denominator'] = denominators.sum(axis=1) fi = fi[fi['denominator'] != 0] # Delete Rows where the 'denominator' column is 0 fi['final'] = (fi['numerator'] / fi['denominator'] ) * 100 return fi['final'] """ WITH tbl AS ( select csa, ( (value[1]+value[2]+value[3]+value[4]) / nullif(value[5],0) )*100::numeric as result from vital_signs.get_acs_vars_csa_and_bc('2014',ARRAY['B25091_008E','B25091_009E','B25091_010E','B25091_011E','B25091_002E']) ) update vital_signs.data set affordm = result from tbl where data2.csa = tbl.csa and update_data_year = '2014' and data_year = '2014'; """ # Cell #File: affordr.py #Author: <NAME> #Date: 1/17/19 #Section: Bnia #Email: <EMAIL> #Description: # Uses ACS Table B25070 - GROSS RENT AS A PERCENTAGE OF HOUSEHOLD INCOME IN THE PAST 12 MONTHS # Universe: Renter-occupied housing units #purpose: Produce Housing and Community Development - Affordability Index - Rent Indicator #input: Year #output: import pandas as pd import glob def affordr( year ): def getColName (df, col): return df.columns[df.columns.str.contains(pat = col)][0] def getColByName (df, col): return df[getColName(df, col)] def addKey(df, fi, col): key = getColName(df, col) val = getColByName(df, col) fi[key] = val return fi def nullIfEqual(df, c1, c2): return df.apply(lambda x: x[getColName(df, c1)]+x[getColName(df, c2)] if x[getColName(df, c1)]+x[getColName(df, c2)] != 0 else 0, axis=1) def sumInts(df): return df.sum(numeric_only=True) #~~~~~~~~~~~~~~~ # Step 1) # Fetch Tract Files w/CSA Lables by Name from the 2_cleaned folder. #~~~~~~~~~~~~~~~ fileName = '' for name in glob.glob('AcsDataClean/B25070*5y'+str(year)+'_est.csv'): fileName = name df = pd.read_csv( fileName, index_col=0 ) # Aggregate by CSA # Group By CSA so that they may be opperated on df = df.groupby('CSA') # Aggregate Numeric Values by Sum df = sumInts(df) # Add 'BALTIMORE' which is the SUM of all the CSAs #~~~~~~~~~~~~~~~ # Step 2) # Prepare the columns #~~~~~~~~~~~~~~~ # Final Dataframe fi = pd.DataFrame() columns = ['B25070_007E','B25070_008E','B25070_009E','B25070_010E','B25070_001E'] for col in columns: fi = addKey(df, fi, col) # Numerators numerators = pd.DataFrame() columns = ['B25070_007E','B25070_008E','B25070_009E','B25070_010E'] for col in columns: numerators = addKey(df, numerators, col) # Denominators denominators = pd.DataFrame() columns = ['B25070_001E'] for col in columns: denominators = addKey(df, denominators, col) # construct the denominator, returns 0 iff the other two rows are equal. #~~~~~~~~~~~~~~~ # Step 3) # Run the Calculation # ( (value[1]+value[2]+value[3]+value[4]) / nullif(value[5],0) )*100 #~~~~~~~~~~~~~~~ fi['numerator'] = numerators.sum(axis=1) fi['denominator'] = denominators.sum(axis=1) fi = fi[fi['denominator'] != 0] # Delete Rows where the 'denominator' column is 0 fi['final'] = (fi['numerator'] / fi['denominator'] ) * 100 return fi['final'] """ WITH tbl AS ( select csa, ( (value[1]+value[2]+value[3]+value[4]) / nullif(value[5],0) )*100::numeric as result from vital_signs.get_acs_vars_csa_and_bc('2014',ARRAY['B25070_007E','B25070_008E','B25070_009E','B25070_010E','B25070_001E']) ) update vital_signs.data set affordr = result from tbl where data2.csa = tbl.csa and update_data_year = '2014' and data_year = '2014'; """ # Cell #File: bahigher.py #Author: <NAME> #Date: 1/17/19 #Section: Bnia #Email: <EMAIL> #Description: # Uses ACS Table B06009 - PLACE OF BIRTH BY EDUCATIONAL ATTAINMENT IN THE UNITED STATES #purpose: Produce Workforce and Economic Development - Percent Population (25 Years and over) with a Bachelor's Degree or Above #Table Uses: B06009 - lesshs, hsdipl, bahigher #input: Year #output: import pandas as pd import glob def bahigher( year ): def getColName (df, col): return df.columns[df.columns.str.contains(pat = col)][0] def getColByName (df, col): return df[getColName(df, col)] def addKey(df, fi, col): key = getColName(df, col) val = getColByName(df, col) fi[key] = val return fi def nullIfEqual(df, c1, c2): return df.apply(lambda x: x[getColName(df, c1)]+x[getColName(df, c2)] if x[getColName(df, c1)]+x[getColName(df, c2)] != 0 else 0, axis=1) def sumInts(df): return df.sum(numeric_only=True) #~~~~~~~~~~~~~~~ # Step 1) # Fetch Tract Files w/CSA Lables by Name from the 2_cleaned folder. #~~~~~~~~~~~~~~~ fileName = '' for name in glob.glob('AcsDataClean/B06009*5y'+str(year)+'_est.csv'): fileName = name df = pd.read_csv( fileName, index_col=0 ) # Aggregate by CSA # Group By CSA so that they may be opperated on df = df.groupby('CSA') # Aggregate Numeric Values by Sum df = sumInts(df) # Add 'BALTIMORE' which is the SUM of all the CSAs #~~~~~~~~~~~~~~~ # Step 2) # Prepare the columns #~~~~~~~~~~~~~~~ # Final Dataframe fi = pd.DataFrame() columns = ['B06009_005E','B06009_006E','B06009_001E'] for col in columns: fi = addKey(df, fi, col) # Numerators numerators = pd.DataFrame() columns = ['B06009_005E','B06009_006E'] for col in columns: numerators = addKey(df, numerators, col) # Denominators denominators = pd.DataFrame() columns = ['B06009_001E'] for col in columns: denominators = addKey(df, denominators, col) # construct the denominator, returns 0 iff the other two rows are equal. #~~~~~~~~~~~~~~~ # Step 3) # Run the Calculation + final mods # ( ( value[1] + value[2] ) / nullif(value[3],0) )*100 #~~~~~~~~~~~~~~~ fi['numerator'] = numerators.sum(axis=1) fi['denominator'] = denominators.sum(axis=1) fi = fi[fi['denominator'] != 0] # Delete Rows where the 'denominator' column is 0 fi['final'] = (fi['numerator'] / fi['denominator'] ) * 100 return fi['final'] """ /* <hsdipl_14> */ -- WITH tbl AS ( select csa, ( ( value[1] + value[2] ) / nullif(value[3],0) )*100::numeric as result from vital_signs.get_acs_vars_csa_and_bc('2014',ARRAY['B06009_003E','B06009_004E','B06009_001E']) ) update vital_signs.data set hsdipl = result from tbl where data2.csa = tbl.csa and update_data_year = '2014' and data_year = '2014'; B06009_004E label "Estimate!!Total!!Some college or associate's degree" B06009_003E label "Estimate!!Total!!High school graduate (includes equivalency)" B06009_002E label "Estimate!!Total!!Less than high school graduate" B06009_001E label "Estimate!!Total" B06009_005E label "Estimate!!Total!!Bachelor's degree" B06009_006E label "Estimate!!Total!!Graduate or professional degree" """ # Cell #File: carpool.py #Author: <NAME> #Date: 1/17/19 #Section: Bnia #Email: <EMAIL> #Description: # Uses ACS Table B08101 - MEANS OF TRANSPORTATION TO WORK BY AGE # Universe: Workers 16 Years and Over # Table Creates: othrcom, drvalone, carpool, pubtran, walked #purpose: Produce Sustainability - Percent of Population that Carpool to Work Indicator #input: Year #output: import pandas as pd import glob def carpool( year ): def getColName (df, col): return df.columns[df.columns.str.contains(pat = col)][0] def getColByName (df, col): return df[getColName(df, col)] def addKey(df, fi, col): key = getColName(df, col) val = getColByName(df, col) fi[key] = val return fi def nullIfEqual(df, c1, c2): return df.apply(lambda x: x[getColName(df, c1)]+x[getColName(df, c2)] if x[getColName(df, c1)]+x[getColName(df, c2)] != 0 else 0, axis=1) def sumInts(df): return df.sum(numeric_only=True) #~~~~~~~~~~~~~~~ # Step 1) # Fetch Tract Files w/CSA Lables by Name from the 2_cleaned folder. #~~~~~~~~~~~~~~~ fileName = '' for name in glob.glob('AcsDataClean/B08101*5y'+str(year)+'_est.csv'): fileName = name df = pd.read_csv( fileName, index_col=0 ) # Aggregate by CSA # Group By CSA so that they may be opperated on df = df.groupby('CSA') # Aggregate Numeric Values by Sum df = sumInts(df) # Add 'BALTIMORE' which is the SUM of all the CSAs #~~~~~~~~~~~~~~~ # Step 2) # Prepare the columns #~~~~~~~~~~~~~~~ # Final Dataframe fi = pd.DataFrame() columns = ['B08101_001E','B08101_049E','B08101_017E'] for col in columns: fi = addKey(df, fi, col) # Numerators numerators = pd.DataFrame() columns = ['B08101_017E'] for col in columns: numerators = addKey(df, numerators, col) # Denominators denominators = pd.DataFrame() columns = ['B08101_001E','B08101_049E'] for col in columns: denominators = addKey(df, denominators, col) #~~~~~~~~~~~~~~~ # Step 3) # Run the Calculation + final mods # ( value[3] / (value[1]-value[2]) )*100 #~~~~~~~~~~~~~~~ fi['numerator'] = numerators.sum(axis=1) fi['denominator'] = denominators.iloc[: ,0] - denominators.iloc[: ,1] fi = fi[fi['denominator'] != 0] # Delete Rows where the 'denominator' column is 0 fi['final'] = (fi['numerator'] / fi['denominator'] ) * 100 #~~~~~~~~~~~~~~~ # Step 4) # Add Special Baltimore City Data #~~~~~~~~~~~~~~~ url = 'https://api.census.gov/data/20'+str(year)+'/acs/acs5/subject?get=NAME,S0801_C01_004E&for=county%3A510&in=state%3A24&key=<KEY>' table =
pd.read_json(url, orient='records')
pandas.read_json
"""Get the log of the simulation objects in a pandas dataframe.""" import pandas as pd from openclsim.model import get_subprocesses def get_log_dataframe(simulation_object, id_map=None): """Get the log of the simulation objects in a pandas dataframe. Parameters ---------- simulation_object object from which the log is returned as a dataframe sorted by "Timestamp" id_map by default uuids are not resolved. id_map solves this at request: * a list of top-activities of which also all sub-activities will be resolved, e.g.: [while_activity] * a manual id_map to resolve uuids to labels, e.g. {'uuid1':'name1'} """ if id_map is None: id_map = [] if isinstance(id_map, list): id_map = {act.id: act.name for act in get_subprocesses(id_map)} else: id_map = id_map if id_map else {} df = ( pd.DataFrame(simulation_object.log) .sort_values(by=["Timestamp"]) .sort_values(by=["Timestamp"]) ) return pd.concat( [ ( df.filter(items=["ActivityID"]) .rename(columns={"ActivityID": "Activity"}) .replace(id_map) ), pd.DataFrame(simulation_object.log).filter(["Timestamp", "ActivityState"]), pd.DataFrame(simulation_object.log["ObjectState"]),
pd.DataFrame(simulation_object.log["ActivityLabel"])
pandas.DataFrame
import numpy as np from numpy.random import randn import pytest import pandas.util._test_decorators as td import pandas as pd from pandas import DataFrame, Series, isna, notna import pandas._testing as tm import pandas.tseries.offsets as offsets def _check_moment_func( static_comp, name, raw, has_min_periods=True, has_center=True, has_time_rule=True, fill_value=None, zero_min_periods_equal=True, series=None, frame=None, **kwargs, ): def get_result(obj, window, min_periods=None, center=False): r = obj.rolling(window=window, min_periods=min_periods, center=center) return getattr(r, name)(**kwargs) series_result = get_result(series, window=50) assert isinstance(series_result, Series) tm.assert_almost_equal(series_result.iloc[-1], static_comp(series[-50:])) frame_result = get_result(frame, window=50) assert isinstance(frame_result, DataFrame) tm.assert_series_equal( frame_result.iloc[-1, :], frame.iloc[-50:, :].apply(static_comp, axis=0, raw=raw), check_names=False, ) # check time_rule works if has_time_rule: win = 25 minp = 10 ser = series[::2].resample("B").mean() frm = frame[::2].resample("B").mean() if has_min_periods: series_result = get_result(ser, window=win, min_periods=minp) frame_result = get_result(frm, window=win, min_periods=minp) else: series_result = get_result(ser, window=win, min_periods=0) frame_result = get_result(frm, window=win, min_periods=0) last_date = series_result.index[-1] prev_date = last_date - 24 * offsets.BDay() trunc_series = series[::2].truncate(prev_date, last_date) trunc_frame = frame[::2].truncate(prev_date, last_date) tm.assert_almost_equal(series_result[-1], static_comp(trunc_series)) tm.assert_series_equal( frame_result.xs(last_date), trunc_frame.apply(static_comp, raw=raw), check_names=False, ) # excluding NaNs correctly obj = Series(randn(50)) obj[:10] = np.NaN obj[-10:] = np.NaN if has_min_periods: result = get_result(obj, 50, min_periods=30) tm.assert_almost_equal(result.iloc[-1], static_comp(obj[10:-10])) # min_periods is working correctly result = get_result(obj, 20, min_periods=15) assert isna(result.iloc[23]) assert not isna(result.iloc[24]) assert not isna(result.iloc[-6]) assert isna(result.iloc[-5]) obj2 = Series(randn(20)) result = get_result(obj2, 10, min_periods=5) assert isna(result.iloc[3]) assert notna(result.iloc[4]) if zero_min_periods_equal: # min_periods=0 may be equivalent to min_periods=1 result0 = get_result(obj, 20, min_periods=0) result1 = get_result(obj, 20, min_periods=1) tm.assert_almost_equal(result0, result1) else: result = get_result(obj, 50) tm.assert_almost_equal(result.iloc[-1], static_comp(obj[10:-10])) # window larger than series length (#7297) if has_min_periods: for minp in (0, len(series) - 1, len(series)): result = get_result(series, len(series) + 1, min_periods=minp) expected = get_result(series, len(series), min_periods=minp) nan_mask = isna(result) tm.assert_series_equal(nan_mask, isna(expected)) nan_mask = ~nan_mask tm.assert_almost_equal(result[nan_mask], expected[nan_mask]) else: result = get_result(series, len(series) + 1, min_periods=0) expected = get_result(series, len(series), min_periods=0) nan_mask = isna(result) tm.assert_series_equal(nan_mask, isna(expected)) nan_mask = ~nan_mask tm.assert_almost_equal(result[nan_mask], expected[nan_mask]) # check center=True if has_center: if has_min_periods: result = get_result(obj, 20, min_periods=15, center=True) expected = get_result( pd.concat([obj, Series([np.NaN] * 9)]), 20, min_periods=15 )[9:].reset_index(drop=True) else: result = get_result(obj, 20, min_periods=0, center=True) print(result) expected = get_result( pd.concat([obj, Series([np.NaN] * 9)]), 20, min_periods=0 )[9:].reset_index(drop=True) tm.assert_series_equal(result, expected) # shifter index s = [f"x{x:d}" for x in range(12)] if has_min_periods: minp = 10 series_xp = ( get_result( series.reindex(list(series.index) + s), window=25, min_periods=minp ) .shift(-12) .reindex(series.index) ) frame_xp = ( get_result( frame.reindex(list(frame.index) + s), window=25, min_periods=minp ) .shift(-12) .reindex(frame.index) ) series_rs = get_result(series, window=25, min_periods=minp, center=True) frame_rs = get_result(frame, window=25, min_periods=minp, center=True) else: series_xp = ( get_result( series.reindex(list(series.index) + s), window=25, min_periods=0 ) .shift(-12) .reindex(series.index) ) frame_xp = ( get_result( frame.reindex(list(frame.index) + s), window=25, min_periods=0 ) .shift(-12) .reindex(frame.index) ) series_rs = get_result(series, window=25, min_periods=0, center=True) frame_rs = get_result(frame, window=25, min_periods=0, center=True) if fill_value is not None: series_xp = series_xp.fillna(fill_value) frame_xp = frame_xp.fillna(fill_value)
tm.assert_series_equal(series_xp, series_rs)
pandas._testing.assert_series_equal
import os, sys import time, logging, random import pickle, random from collections import Counter import pandas as pd import numpy as np import xgboost as xgb import matplotlib.pyplot as plt from sklearn.model_selection import RandomizedSearchCV, GridSearchCV, cross_val_predict, StratifiedShuffleSplit, \ cross_val_score from sklearn.linear_model import LogisticRegression from sklearn.naive_bayes import GaussianNB # from sklearn.model_selection import cross_val_score, from sklearn.metrics import accuracy_score, auc, confusion_matrix, classification_report, matthews_corrcoef from sklearn.metrics import roc_auc_score, \ roc_curve # .roc_auc_score(y_true, y_score, average='macro', sample_weight=None, max_fpr=None) # from ProteinGraphML.MLTools.Data import Data # this model system will hopefully make a simple API for dealing with large data # iterating on our platform across domains class Result: data = None predictions = None space = None predLabel = None def __init__(self, dataOut, predictions, space="", modelDIR=None): self.data = dataOut self.predictions = predictions # self.modelName = modelName self.space = space # print("HERE IS THE MODEL") self.resultDIR = modelDIR # we put the functions here which actually convert the data to a binary score self.predLabel = [round(p) for p in self.predictions] # generate label using probability # print ('PRINT ALL VALUES....>>>') # print (self.predictions, len(self.predictions)) # print (self.predLabel, len(self.predLabel)) # print (self.data.labels, len(self.data.labels)) def acc(self): return Output("ACC", accuracy_score(self.data.labels, self.predLabel)) def mcc(self): # Add MCC since data is imbalanced return Output("MCC", matthews_corrcoef(self.data.labels, self.predLabel)) def roc(self): roc = Output("AUCROC", roc_auc_score(self.data.labels, self.predictions)) # roc.fileOutput(self.modelName) return roc def ConfusionMatrix(self): return ConfusionMatrix(self.data.labels, self.predLabel) def rocCurve(self): # fpr, tpr, threshold = metrics.roc_curve(y_test, preds) fpr, tpr, threshold = roc_curve(self.data.labels, self.predictions) rocCurve = RocCurve("rocCurve", fpr, tpr) logging.info("RESULT DIR: {0}".format(self.resultDIR)) # rocCurve.fileOutput(self.resultDIR) return rocCurve def report(self): return Report(self.data.labels, self.predLabel) class Output: # base output... data = None stringType = None def __init__(self, type, modelOutput): self.data = modelOutput self.stringType = type def fileOutput(self, modelName): # now what if its a table? or a graph? rootName = self.stringType base = modelName + "/" + rootName # this is ... # if os.path.isdir("../results"): # if os.path.isdir(base): # if not os.path.isdir("results"): # os.mkdir("results") # if not os.path.isdir(base): # os.mkdir(base) # os.mkdir(path) logging.info("results/" + modelName) f = open(base, "w") f.write(str(self.textOutput()[1])) # this needs to be some kind of representation f.close() def textOutput(self): return (self.stringType, self.data) def printOutput(self, file=None): if file is not None: print(self.data, file=file) # print(self.textOutput(),file=file) else: print(self.data) # print(self.textOutput()) # FEATURE VISUALIZER # class FeatureVisualizer(Output): # this requires the model.... # def __init__(self,labels,predictions): class LabelOutput(Output): def __init__(self, labels, predictions): self.labels = labels self.predictions = predictions self.data = self.setData() def setData(self): pass class ConfusionMatrix(LabelOutput): def setData(self): return confusion_matrix(self.labels, self.predictions) class Report(LabelOutput): def setData(self): return classification_report(self.labels, self.predictions) class RocCurve(Output): fpr = None tpr = None def __init__(self, type, fpr, tpr): # self.data = modelOutput self.stringType = type self.fpr = fpr self.tpr = tpr def fileOutput(self, file=None, fileString=None): rootName = self.stringType # base = modelName+"/"+rootName logging.info("ROOT: {0}".format(rootName)) # root is the type... # print('HERE IS THE BASE',fileString) roc_auc = auc(self.fpr, self.tpr) plt.title('Receiver Operating Characteristic') plt.plot(self.fpr, self.tpr, 'b', label='AUC = %0.2f' % roc_auc) plt.legend(loc='lower right') plt.plot([0, 1], [0, 1], 'r--') plt.xlim([0, 1]) plt.ylim([0, 1]) plt.ylabel('True Positive Rate') plt.xlabel('False Positive Rate') if fileString is not None: pltfile = fileString + '.png' logging.info("INFO: AUC-ROC curve will be saved as {0}".format(pltfile)) plt.savefig(pltfile) # plt ROC curves for n folds def fileOutputForAverage(self, savedData, fileString=None, folds=5): rootName = self.stringType logging.info("ROOT: {0}".format(rootName)) rocValues = [] for n in range(folds): labels, predictions = zip(*list(savedData[n])) # unzip the data # predictions = list(zip(*savedData[n])[1]) #unzip the data fpr, tpr, threshold = roc_curve(labels, predictions) roc_auc = auc(fpr, tpr) rocValues.append(roc_auc) plt.plot(fpr, tpr, color='gainsboro') plt.plot(fpr, tpr, color='darkblue', label='Mean AUC = %0.3f' % np.mean(rocValues)) plt.plot(fpr, tpr, color='darkred', label='Median AUC = %0.3f' % np.median(rocValues)) plt.legend(loc='lower right') plt.plot([0, 1], [0, 1], 'r--') plt.xlim([0, 1]) plt.ylim([0, 1]) plt.title('Receiver Operating Characteristic,' + 'Range: ' + str('%.3f' % np.min(rocValues)) + ' - ' + str( '%.3f' % np.max(rocValues))) plt.ylabel('True Positive Rate') plt.xlabel('False Positive Rate') # logging.info("RESULT DIR: {0}".format(self.resultDIR)) if fileString is not None: pltfile = fileString + '.png' logging.info("INFO: AUC-ROC curve will be saved as {0}".format(pltfile)) plt.savefig(pltfile) def printOutput(self, file=None): if file is not None: # if we've got a file, we wont print it return # fpr, tpr, threshold = metrics.roc_curve(y_test, preds) roc_auc = auc(self.fpr, self.tpr) # method I: plt plt.title('Receiver Operating Characteristic') plt.plot(self.fpr, self.tpr, 'b', label='AUC = %0.2f' % roc_auc) plt.legend(loc='lower right') plt.plot([0, 1], [0, 1], 'r--') plt.xlim([0, 1]) plt.ylim([0, 1]) plt.ylabel('True Positive Rate') plt.xlabel('False Positive Rate') plt.show() class BaseModel: MODEL_PROCEDURE = "" def __init__(self, MODEL_PROCEDURE, RESULT_DIR=None): self.MODEL_PROCEDURE = MODEL_PROCEDURE if RESULT_DIR is None: # control will NEVER come here as RESULT_DIR is mandatory now self.MODEL_RUN_NAME = "{0}-{1}".format(self.MODEL_PROCEDURE, str(int(time.time()))) self.MODEL_DIR = "results/{0}".format(self.MODEL_RUN_NAME) else: self.MODEL_RUN_NAME = "{0}".format(self.MODEL_PROCEDURE) self.MODEL_DIR = RESULT_DIR def getFile(self): self.createDirectoryIfNeed(self.MODEL_DIR) WRITEFILE = self.MODEL_DIR + '/metrics_' + self.MODEL_PROCEDURE + '.txt' # open(WRITEDIR, 'a').close() fileName = WRITEFILE writeSpace = open(fileName, 'w') return writeSpace def createDirectoryIfNeed(self, dir): logging.info("AYYEE: {0}".format(dir)) if not os.path.isdir(dir): os.mkdir(dir) def setClassifier(self, classifier): self.m = classifier def createResultObjects(self, testData, outputTypes, predictions, saveData=True): self.createDirectoryIfNeed("results") if saveData: # we can turn off saving of data... writeSpace = self.getFile() print(self.m, file=writeSpace) print("", file=writeSpace) resultList = [] # resultObject = Result(testData,predictions,self.MODEL_RUN_NAME,modelDIR=self.MODEL_RUN_NAME) resultObject = Result(testData, predictions, modelDIR=self.MODEL_DIR) for resultType in outputTypes: print(resultType, file=writeSpace) logging.info("HERES MODEL NAME: {0}".format(self.MODEL_RUN_NAME)) newResultObject = getattr(resultObject, resultType)() # self.MODEL_RUN_NAME # print(type(newResultObject)) resultList.append(newResultObject) # print(resultObject) print("MODEL DIR",self.MODEL_PROCEDURE) #self.MODEL_RUN_NAME if resultType == # "rocCurve" and self.MODEL_PROCEDURE == "XGBCrossVal": # if it's XGB cross val we will write output # (hack) if resultType == "rocCurve": aucFileName = self.MODEL_DIR + '/auc_' + self.MODEL_PROCEDURE # newResultObject.fileOutput(fileString=self.MODEL_RUN_NAME) newResultObject.fileOutput(fileString=aucFileName) else: newResultObject.printOutput(file=writeSpace) # resultObject.printOutput(file=writeSpace) print("", file=writeSpace) else: for resultType in outputTypes: newResultObject = getattr(resultObject, resultType)(self.MODEL_RUN_NAME) resultList.append(newResultObject) # for each of the items in the result list, write them to the shared space # print ('resultList...........', resultList) if (len(resultList) == 1): return resultList[0] else: return iter(resultList) class SkModel(BaseModel): m = None def train(self, trainData, param=None): # clf = LogisticRegression(random_state=0, solver='lbfgs',multi_class='multinomial')#.fit(X, y) self.m = clf.fit(trainData.features, trainData.labels) def predict(self, testData, outputTypes): # inputData = xgb.DMatrix(testData.features) predictions = self.m.predict(testData.features) return self.createResultObjects(testData, outputTypes, predictions) def cross_val_predict(self, testData, outputTypes): # clf = LogisticRegression(random_state=0, solver='lbfgs',multi_class='multinomial')#.fit(X, y) # self.m = clf.fit(testData.features,testData.labels) predictions = cross_val_predict(self.m, testData.features, y=testData.labels, cv=10) return self.createResultObjects(testData, outputTypes, predictions) class XGBoostModel(BaseModel): m = None param = None def setParam(self, ): self.param = param def train(self, trainData, param): # print (param) # np.random.seed(1234) # random.seed(1234) # dtrain = xgb.DMatrix(trainData.features,label=trainData.labels) # bst = xgb.train(param, dtrain, num_boost_round=47) #use the default values of parameters # self.m = bst # modelName = self.MODEL_DIR + '/' + self.MODEL_PROCEDURE + '.model' # bst.save_model(modelName) ###FOR SKLEARN WRAPPER### bst = xgb.XGBClassifier(**param).fit(trainData.features, trainData.labels) # self.m = bst modelName = self.MODEL_DIR + '/' + self.MODEL_PROCEDURE + '.model' pickle.dump(bst, open(modelName, 'wb')) logging.info('Trained ML Model was saved as {0}'.format(modelName)) def predict(self, testData, outputTypes): inputData = xgb.DMatrix(testData.features) predictions = self.m.predict(inputData) # # print ('predictions.................', predictions) # ypred_bst = np.array(bst.predict(dtest,ntree_limit=bst.best_iteration))` # ypred_bst = ypred_bst > 0.5 # ypred_bst = ypred_bst.astype(int) # if "report" in outputTypes: # small hack for the report feature, we can use this to make sure return self.createResultObjects(testData, outputTypes, predictions) def predict_using_saved_model(self, testData, idDescription, idNameSymbol, modelName, infoFile): # bst = xgb.Booster({'nthread':8}) # bst.load_model(modelName) # inputData = xgb.DMatrix(testData.features) # predictions = bst.predict(inputData) ###FOR SKLEARN WRAPPER### bst = pickle.load(open(modelName, 'rb')) print(bst.get_xgb_params()) inputData = testData.features # for wrapper class01Probs = bst.predict_proba(inputData) # for wrapper predictions = [i[1] for i in class01Probs] # select class1 probability - wrapper proteinInfo = self.fetchProteinInformation(infoFile) self.savePredictedProbability(testData, predictions, idDescription, idNameSymbol, proteinInfo, "TEST") # def cross_val_predict(self,testData,outputTypes): def cross_val_predict(self, testData, idDescription, idNameSymbol, idSource, outputTypes, params={}, cv=5): logging.info("Running XGboost 5-fold cross-validation on the train set") metrics = {"roc": 0., "mcc": 0., "acc": 0.} clf = xgb.XGBClassifier(**params) self.m = clf class01Probs = cross_val_predict(self.m, testData.features, y=testData.labels, cv=cv, method='predict_proba') # calls sklearn's cross_val_predict predictions = [i[1] for i in class01Probs] # select class1 probability roc, rc, acc, mcc, CM, report = self.createResultObjects(testData, outputTypes, predictions) metrics["roc"] = roc.data metrics["mcc"] = mcc.data metrics["acc"] = acc.data # find important features and save them in a text file importance = Counter( clf.fit(testData.features, testData.labels).get_booster().get_score(importance_type='gain')) self.saveImportantFeatures(importance, idDescription, idNameSymbol, idSource=idSource) self.saveImportantFeaturesAsPickle(importance) # save predicted class 1 probability in a text file # proteinInfo = self.fetchProteinInformation(infoFile) self.savePredictedProbability(testData, predictions, idDescription, idNameSymbol, "", "TRAIN") # train the model using all train data and save it self.train(testData, param=params) # return roc,acc,mcc, CM,report,importance logging.info("METRICS: {0}".format(str(metrics))) def average_cross_val(self, allData, idDescription, idNameSymbol, idSource, outputTypes, iterations, testSize=0.2, params={}): # This function divides the data into train and test sets 'n' (number of folds) times. # Model trained on the train data is tested on the test data. Average MCC, Accuracy and ROC # is reported. logging.info("Running ML models to compute average MCC/ROC/ACC") importance = None metrics = {"average-roc": 0., "average-mcc": 0., "average-acc": 0.} # add mcc and accuracy too logging.info("=== RUNNING {0} FOLDS".format(iterations)) # Initialize variable to store predicted probs of test data predictedProb_ROC = [] predictedProbs = {} # will be used for o/p file seedAUC = {} # to store seed value and corresponding classification resutls for r in range(iterations): predictedProb_ROC.append([]) # print (predictedProb) for k in range(0, iterations): logging.info("DOING {0} FOLD".format(k + 1)) clf = xgb.XGBClassifier(**params) self.m = clf randomState = 1000 + k trainData, testData = allData.splitSet(testSize, randomState) # Train the model bst = clf.fit(trainData.features, trainData.labels) # test the model class01Probs = bst.predict_proba(testData.features) predictions = [i[1] for i in class01Probs] # select class1 probability roc, acc, mcc = self.createResultObjects(testData, outputTypes, predictions) # append predicted probability and true class for ROC curve predictedProb_ROC[k] = zip(testData.labels.tolist(), predictions) proteinIds = list(testData.features.index.values) # print ('Selected ids are: ', proteinIds) for p in range(len(proteinIds)): try: predictedProbs[proteinIds[p]].append(predictions[p]) except: predictedProbs[proteinIds[p]] = [predictions[p]] # print (predictedProb) metrics["average-roc"] += roc.data metrics["average-mcc"] += mcc.data metrics["average-acc"] += acc.data seedAUC[randomState] = [roc.data, acc.data, mcc.data] # model.predict ... if importance: importance = importance + Counter(bst.get_booster().get_score(importance_type='gain')) else: importance = Counter(bst.get_booster().get_score(importance_type='gain')) # compute average values for key in importance: importance[key] = importance[key] / iterations for key in metrics: metrics[key] = metrics[key] / iterations avgPredictedProbs = {} for k, v in predictedProbs.items(): avgPredictedProbs[k] = np.mean(v) logging.info("METRICS: {0}".format(str(metrics))) # write this metrics to a file... self.saveImportantFeatures(importance, idDescription, idNameSymbol, idSource=idSource) # save important features self.saveImportantFeaturesAsPickle(importance) self.saveSeedPerformance(seedAUC) # print (avgPredictedProb) self.savePredictedProbability(allData, avgPredictedProbs, idDescription, idNameSymbol, "", "AVERAGE") # save predicted probabilities # plot ROC curves rc = RocCurve("rocCurve", None, None) aucFileName = self.MODEL_DIR + '/auc_' + self.MODEL_PROCEDURE rc.fileOutputForAverage(predictedProb_ROC, fileString=aucFileName, folds=iterations) # FEATURE SEARCH, will create the dataset with different sets of features, and search over them to get resutls def gridSearch(self, allData, idDescription, idNameSymbol, outputTypes, paramGrid, rseed, nthreads): # split test and train data # testSize = 0.20 # trainData, testData = allData.splitSet(testSize, rseed) # print (trainData.features.shape) # print (testData.features.shape) # print (trainData.labels) # print (testData.labels) logging.info("XGBoost parameters search started") clf = xgb.XGBClassifier(random_state=rseed) random_search = GridSearchCV(clf, n_jobs=nthreads, param_grid=paramGrid, scoring='roc_auc', cv=5, verbose=7) # save the output of each iteration of gridsearch to a file tempFileName = self.MODEL_DIR + '/temp.tsv' sys.stdout = open(tempFileName, 'w') random_search.fit(allData.features, allData.labels) # model trained with best parameters bst = random_search.best_estimator_ # self.m = bst sys.stdout.close() self.saveBestEstimator(str(bst)) # predict the test data using the best estimator # metrics = {"roc":0., "mcc":0., "acc":0.} # class01Probs = bst.predict_proba(testData.features) # predictions = [i[1] for i in class01Probs] #select class1 probability # roc,acc,mcc = self.createResultObjects(testData,outputTypes,predictions) # metrics["roc"] = roc.data # metrics["mcc"] = mcc.data # metrics["acc"] = acc.data # find imporant features and save them in a text file # importance = Counter(bst.get_booster().get_score(importance_type='gain')) # self.saveImportantFeatures(importance, idDescription) # self.saveImportantFeaturesAsPickle(importance) # save predicted class 1 probabilty in a text file # self.savePredictedProbability(testData, predictions, idDescription, idNameSymbol, "TRAIN") # train the model using all train data and save it # self.train(allData, param=random_search.best_params_) # save the XGBoost parameters for the best estimator # return roc,acc,mcc, CM,report,importance # logging.info("METRICS: {0}".format(str(metrics))) # save the xgboost parameters selected using GirdSearchCV def saveBestEstimator(self, estimator): xgbParamFile = self.MODEL_DIR + '/XGBParameters.txt' logging.info("XGBoost parameters for the best estimator written to: {0}".format(xgbParamFile)) # save the optimized parameters for XGboost paramVals = estimator.strip().split('(')[1].split(',') with open(xgbParamFile, 'w') as fo: fo.write('{') for vals in paramVals: keyVal = vals.strip(' ').split('=') if ('scale_pos_weight' in keyVal[0] or 'n_jobs' in keyVal[0] or 'nthread' in keyVal[0] or 'None' in keyVal[1]): continue elif (')' in keyVal[1]): # last parameter line = "'" + keyVal[0].strip().strip(' ') + "': " + keyVal[1].strip().strip(' ').strip(')') + '\n' else: line = "'" + keyVal[0].strip().strip(' ') + "': " + keyVal[1].strip().strip(' ').strip(')') + ',\n' fo.write(line) fo.write('}') # save parameters used in each iteration tuneFileName = self.MODEL_DIR + '/tune.tsv' logging.info("Parameter values in each iteration of GridSearchCV written to: {0}".format(tuneFileName)) ft = open(tuneFileName, 'w') headerWritten = 'N' tempFileName = self.MODEL_DIR + '/temp.tsv' with open(tempFileName, 'r') as fin: for line in fin: header = '' rec = '' if ('score' in line): if (headerWritten == 'N'): vals = line.strip().strip('[CV]').split(',') for val in vals: k, v = val.strip(' ').split('=') header = header + k + '\t' rec = rec + v + '\t' ft.write(header + '\n') ft.write(rec + '\n') headerWritten = 'Y' else: vals = line.strip().strip('[CV]').split(',') for val in vals: k, v = val.strip(' ').split('=') rec = rec + v + '\t' ft.write(rec + '\n') ft.close() os.remove(tempFileName) # delete temp file # Save important features as pickle file. It will be used by visualization code def saveImportantFeaturesAsPickle(self, importance): ''' Save important features in a pickle dictionary ''' featureFile = self.MODEL_DIR + '/featImportance_' + self.MODEL_PROCEDURE + '.pkl' logging.info("IMPORTANT FEATURES WRITTEN TO PICKLE FILE {0}".format(featureFile)) with open(featureFile, 'wb') as ff: pickle.dump(importance, ff, pickle.HIGHEST_PROTOCOL) # Save seed number and corresponding AUC, ACC and MCC def saveSeedPerformance(self, seedAUC): ''' Save important features in a pickle dictionary ''' seedFile = self.MODEL_DIR + '/seed_val_auc.tsv' logging.info("SEED VALUES AND THEIR CORRESPONDING AUC/ACC/MCC WRITTEN TO {0}".format(seedFile)) with open(seedFile, 'w') as ff: hdr = 'Seed' + '\t' + 'AUC' + '\t' + 'Accuracy' + '\t' + 'MCC' + '\n' ff.write(hdr) for k, v in seedAUC.items(): rec = str(k) + '\t' + str(v[0]) + '\t' + str(v[1]) + '\t' + str(v[2]) + '\n' ff.write(rec) # Save the important features in a text file. def saveImportantFeatures(self, importance, idDescription, idNameSymbol, idSource=None): """ This function saves the important features in a text file. """ dataForDataframe = {'Feature': [], 'Symbol': [], 'Cell_id': [], 'Drug_name': [], 'Tissue': [], 'Source': [], 'Name': [], 'Gain Value': []} for feature, gain in importance.items(): dataForDataframe['Feature'].append(feature) dataForDataframe['Gain Value'].append(gain) if feature.lower().islower(): # alphanumeric feature # source if idSource is not None and feature in idSource: dataForDataframe['Source'].append(idSource[feature]) else: dataForDataframe['Source'].append('') # Name if feature in idDescription: dataForDataframe['Name'].append(idDescription[feature]) else: dataForDataframe['Name'].append('') logging.debug('INFO: saveImportantFeatures - Unknown feature = {0}'.format(feature)) # Symbol if feature in idNameSymbol: dataForDataframe['Symbol'].append(idNameSymbol[feature]) else: dataForDataframe['Symbol'].append('') else: # numeric feature # Source if idSource is not None: dataForDataframe['Source'].append(idSource[int(feature)]) else: dataForDataframe['Source'].append('') # Name if int(feature) in idDescription: dataForDataframe['Name'].append(idDescription[int(feature)]) else: dataForDataframe['Name'].append('') logging.debug('INFO: saveImportantFeatures - Unknown feature = {0}'.format(feature)) # Symbol if int(feature) in idNameSymbol: dataForDataframe['Symbol'].append(idNameSymbol[int(feature)]) else: dataForDataframe['Symbol'].append('') # for CCLE only if feature in idSource and idSource[feature] == "ccle": cid = feature[:feature.index('_')] tissue = feature[feature.index('_') + 1:] dataForDataframe['Cell_id'].append(cid) dataForDataframe['Tissue'].append(tissue) dataForDataframe['Drug_name'].append('') # for LINCS only. # LINCS features contain pert_id and cell_id, separated by :. The drug_id in “olegdb” is the DrugCentral # ID, which is DrugCentral chemical structure (active ingredient) ID. The pert_id from LINCS features is # used as drug_id to fetch the drug name from the dictionary. elif feature in idSource and idSource[feature] == "lincs": drugid = feature[:feature.index(':')] try: drugname = idSource['drug_' + drugid] except: drugname = '' cid = feature[feature.index(':') + 1:] dataForDataframe['Cell_id'].append(cid) dataForDataframe['Drug_name'].append(drugname) dataForDataframe['Tissue'].append('') else: dataForDataframe['Cell_id'].append('') dataForDataframe['Drug_name'].append('') dataForDataframe['Tissue'].append('') # for k,v in dataForDataframe.items(): # print(k, len(v)) df =
pd.DataFrame(dataForDataframe)
pandas.DataFrame
import copy from datetime import datetime import warnings import numpy as np from numpy.random import randn import pytest import pandas.util._test_decorators as td import pandas as pd from pandas import DataFrame, DatetimeIndex, Index, Series, isna, notna import pandas._testing as tm from pandas.core.window.common import _flex_binary_moment from pandas.tests.window.common import ( Base, check_pairwise_moment, moments_consistency_cov_data, moments_consistency_is_constant, moments_consistency_mock_mean, moments_consistency_series_data, moments_consistency_std_data, moments_consistency_var_data, moments_consistency_var_debiasing_factors, ) import pandas.tseries.offsets as offsets @pytest.mark.filterwarnings("ignore:can't resolve package:ImportWarning") class TestMoments(Base): def setup_method(self, method): self._create_data() def test_centered_axis_validation(self): # ok Series(np.ones(10)).rolling(window=3, center=True, axis=0).mean() # bad axis with pytest.raises(ValueError): Series(np.ones(10)).rolling(window=3, center=True, axis=1).mean() # ok ok DataFrame(np.ones((10, 10))).rolling(window=3, center=True, axis=0).mean() DataFrame(np.ones((10, 10))).rolling(window=3, center=True, axis=1).mean() # bad axis with pytest.raises(ValueError): (DataFrame(np.ones((10, 10))).rolling(window=3, center=True, axis=2).mean()) def test_rolling_sum(self, raw): self._check_moment_func( np.nansum, name="sum", zero_min_periods_equal=False, raw=raw ) def test_rolling_count(self, raw): counter = lambda x: np.isfinite(x).astype(float).sum() self._check_moment_func( counter, name="count", has_min_periods=False, fill_value=0, raw=raw ) def test_rolling_mean(self, raw): self._check_moment_func(np.mean, name="mean", raw=raw) @td.skip_if_no_scipy def test_cmov_mean(self): # GH 8238 vals = np.array( [6.95, 15.21, 4.72, 9.12, 13.81, 13.49, 16.68, 9.48, 10.63, 14.48] ) result = Series(vals).rolling(5, center=True).mean() expected = Series( [ np.nan, np.nan, 9.962, 11.27, 11.564, 12.516, 12.818, 12.952, np.nan, np.nan, ] ) tm.assert_series_equal(expected, result) @td.skip_if_no_scipy def test_cmov_window(self): # GH 8238 vals = np.array( [6.95, 15.21, 4.72, 9.12, 13.81, 13.49, 16.68, 9.48, 10.63, 14.48] ) result = Series(vals).rolling(5, win_type="boxcar", center=True).mean() expected = Series( [ np.nan, np.nan, 9.962, 11.27, 11.564, 12.516, 12.818, 12.952, np.nan, np.nan, ] ) tm.assert_series_equal(expected, result) @td.skip_if_no_scipy def test_cmov_window_corner(self): # GH 8238 # all nan vals = pd.Series([np.nan] * 10) result = vals.rolling(5, center=True, win_type="boxcar").mean() assert np.isnan(result).all() # empty vals = pd.Series([], dtype=object) result = vals.rolling(5, center=True, win_type="boxcar").mean() assert len(result) == 0 # shorter than window vals = pd.Series(np.random.randn(5)) result = vals.rolling(10, win_type="boxcar").mean() assert np.isnan(result).all() assert len(result) == 5 @td.skip_if_no_scipy @pytest.mark.parametrize( "f,xp", [ ( "mean", [ [np.nan, np.nan], [np.nan, np.nan], [9.252, 9.392], [8.644, 9.906], [8.87, 10.208], [6.81, 8.588], [7.792, 8.644], [9.05, 7.824], [np.nan, np.nan], [np.nan, np.nan], ], ), ( "std", [ [np.nan, np.nan], [np.nan, np.nan], [3.789706, 4.068313], [3.429232, 3.237411], [3.589269, 3.220810], [3.405195, 2.380655], [3.281839, 2.369869], [3.676846, 1.801799], [np.nan, np.nan], [np.nan, np.nan], ], ), ( "var", [ [np.nan, np.nan], [np.nan, np.nan], [14.36187, 16.55117], [11.75963, 10.48083], [12.88285, 10.37362], [11.59535, 5.66752], [10.77047, 5.61628], [13.51920, 3.24648], [np.nan, np.nan], [np.nan, np.nan], ], ), ( "sum", [ [np.nan, np.nan], [np.nan, np.nan], [46.26, 46.96], [43.22, 49.53], [44.35, 51.04], [34.05, 42.94], [38.96, 43.22], [45.25, 39.12], [np.nan, np.nan], [np.nan, np.nan], ], ), ], ) def test_cmov_window_frame(self, f, xp): # Gh 8238 df = DataFrame( np.array( [ [12.18, 3.64], [10.18, 9.16], [13.24, 14.61], [4.51, 8.11], [6.15, 11.44], [9.14, 6.21], [11.31, 10.67], [2.94, 6.51], [9.42, 8.39], [12.44, 7.34], ] ) ) xp = DataFrame(np.array(xp)) roll = df.rolling(5, win_type="boxcar", center=True) rs = getattr(roll, f)() tm.assert_frame_equal(xp, rs) @td.skip_if_no_scipy def test_cmov_window_na_min_periods(self): # min_periods vals = Series(np.random.randn(10)) vals[4] = np.nan vals[8] = np.nan xp = vals.rolling(5, min_periods=4, center=True).mean() rs = vals.rolling(5, win_type="boxcar", min_periods=4, center=True).mean() tm.assert_series_equal(xp, rs) @td.skip_if_no_scipy def test_cmov_window_regular(self, win_types): # GH 8238 vals = np.array( [6.95, 15.21, 4.72, 9.12, 13.81, 13.49, 16.68, 9.48, 10.63, 14.48] ) xps = { "hamming": [ np.nan, np.nan, 8.71384, 9.56348, 12.38009, 14.03687, 13.8567, 11.81473, np.nan, np.nan, ], "triang": [ np.nan, np.nan, 9.28667, 10.34667, 12.00556, 13.33889, 13.38, 12.33667, np.nan, np.nan, ], "barthann": [ np.nan, np.nan, 8.4425, 9.1925, 12.5575, 14.3675, 14.0825, 11.5675, np.nan, np.nan, ], "bohman": [ np.nan, np.nan, 7.61599, 9.1764, 12.83559, 14.17267, 14.65923, 11.10401, np.nan, np.nan, ], "blackmanharris": [ np.nan, np.nan, 6.97691, 9.16438, 13.05052, 14.02156, 15.10512, 10.74574, np.nan, np.nan, ], "nuttall": [ np.nan, np.nan, 7.04618, 9.16786, 13.02671, 14.03559, 15.05657, 10.78514, np.nan, np.nan, ], "blackman": [ np.nan, np.nan, 7.73345, 9.17869, 12.79607, 14.20036, 14.57726, 11.16988, np.nan, np.nan, ], "bartlett": [ np.nan, np.nan, 8.4425, 9.1925, 12.5575, 14.3675, 14.0825, 11.5675, np.nan, np.nan, ], } xp = Series(xps[win_types]) rs = Series(vals).rolling(5, win_type=win_types, center=True).mean() tm.assert_series_equal(xp, rs) @td.skip_if_no_scipy def test_cmov_window_regular_linear_range(self, win_types): # GH 8238 vals = np.array(range(10), dtype=np.float) xp = vals.copy() xp[:2] = np.nan xp[-2:] = np.nan xp = Series(xp) rs = Series(vals).rolling(5, win_type=win_types, center=True).mean() tm.assert_series_equal(xp, rs) @td.skip_if_no_scipy def test_cmov_window_regular_missing_data(self, win_types): # GH 8238 vals = np.array( [6.95, 15.21, 4.72, 9.12, 13.81, 13.49, 16.68, np.nan, 10.63, 14.48] ) xps = { "bartlett": [ np.nan, np.nan, 9.70333, 10.5225, 8.4425, 9.1925, 12.5575, 14.3675, 15.61667, 13.655, ], "blackman": [ np.nan, np.nan, 9.04582, 11.41536, 7.73345, 9.17869, 12.79607, 14.20036, 15.8706, 13.655, ], "barthann": [ np.nan, np.nan, 9.70333, 10.5225, 8.4425, 9.1925, 12.5575, 14.3675, 15.61667, 13.655, ], "bohman": [ np.nan, np.nan, 8.9444, 11.56327, 7.61599, 9.1764, 12.83559, 14.17267, 15.90976, 13.655, ], "hamming": [ np.nan, np.nan, 9.59321, 10.29694, 8.71384, 9.56348, 12.38009, 14.20565, 15.24694, 13.69758, ], "nuttall": [ np.nan, np.nan, 8.47693, 12.2821, 7.04618, 9.16786, 13.02671, 14.03673, 16.08759, 13.65553, ], "triang": [ np.nan, np.nan, 9.33167, 9.76125, 9.28667, 10.34667, 12.00556, 13.82125, 14.49429, 13.765, ], "blackmanharris": [ np.nan, np.nan, 8.42526, 12.36824, 6.97691, 9.16438, 13.05052, 14.02175, 16.1098, 13.65509, ], } xp = Series(xps[win_types]) rs = Series(vals).rolling(5, win_type=win_types, min_periods=3).mean() tm.assert_series_equal(xp, rs) @td.skip_if_no_scipy def test_cmov_window_special(self, win_types_special): # GH 8238 kwds = { "kaiser": {"beta": 1.0}, "gaussian": {"std": 1.0}, "general_gaussian": {"power": 2.0, "width": 2.0}, "exponential": {"tau": 10}, } vals = np.array( [6.95, 15.21, 4.72, 9.12, 13.81, 13.49, 16.68, 9.48, 10.63, 14.48] ) xps = { "gaussian": [ np.nan, np.nan, 8.97297, 9.76077, 12.24763, 13.89053, 13.65671, 12.01002, np.nan, np.nan, ], "general_gaussian": [ np.nan, np.nan, 9.85011, 10.71589, 11.73161, 13.08516, 12.95111, 12.74577, np.nan, np.nan, ], "kaiser": [ np.nan, np.nan, 9.86851, 11.02969, 11.65161, 12.75129, 12.90702, 12.83757, np.nan, np.nan, ], "exponential": [ np.nan, np.nan, 9.83364, 11.10472, 11.64551, 12.66138, 12.92379, 12.83770, np.nan, np.nan, ], } xp = Series(xps[win_types_special]) rs = ( Series(vals) .rolling(5, win_type=win_types_special, center=True) .mean(**kwds[win_types_special]) ) tm.assert_series_equal(xp, rs) @td.skip_if_no_scipy def test_cmov_window_special_linear_range(self, win_types_special): # GH 8238 kwds = { "kaiser": {"beta": 1.0}, "gaussian": {"std": 1.0}, "general_gaussian": {"power": 2.0, "width": 2.0}, "slepian": {"width": 0.5}, "exponential": {"tau": 10}, } vals = np.array(range(10), dtype=np.float) xp = vals.copy() xp[:2] = np.nan xp[-2:] = np.nan xp = Series(xp) rs = ( Series(vals) .rolling(5, win_type=win_types_special, center=True) .mean(**kwds[win_types_special]) ) tm.assert_series_equal(xp, rs) def test_rolling_median(self, raw): self._check_moment_func(np.median, name="median", raw=raw) def test_rolling_min(self, raw): self._check_moment_func(np.min, name="min", raw=raw) a = pd.Series([1, 2, 3, 4, 5]) result = a.rolling(window=100, min_periods=1).min() expected = pd.Series(np.ones(len(a))) tm.assert_series_equal(result, expected) with pytest.raises(ValueError): pd.Series([1, 2, 3]).rolling(window=3, min_periods=5).min() def test_rolling_max(self, raw): self._check_moment_func(np.max, name="max", raw=raw) a = pd.Series([1, 2, 3, 4, 5], dtype=np.float64) b = a.rolling(window=100, min_periods=1).max() tm.assert_almost_equal(a, b) with pytest.raises(ValueError): pd.Series([1, 2, 3]).rolling(window=3, min_periods=5).max() @pytest.mark.parametrize("q", [0.0, 0.1, 0.5, 0.9, 1.0]) def test_rolling_quantile(self, q, raw): def scoreatpercentile(a, per): values = np.sort(a, axis=0) idx = int(per / 1.0 * (values.shape[0] - 1)) if idx == values.shape[0] - 1: retval = values[-1] else: qlow = float(idx) / float(values.shape[0] - 1) qhig = float(idx + 1) / float(values.shape[0] - 1) vlow = values[idx] vhig = values[idx + 1] retval = vlow + (vhig - vlow) * (per - qlow) / (qhig - qlow) return retval def quantile_func(x): return scoreatpercentile(x, q) self._check_moment_func(quantile_func, name="quantile", quantile=q, raw=raw) def test_rolling_quantile_np_percentile(self): # #9413: Tests that rolling window's quantile default behavior # is analogous to Numpy's percentile row = 10 col = 5 idx = pd.date_range("20100101", periods=row, freq="B") df = DataFrame(np.random.rand(row * col).reshape((row, -1)), index=idx) df_quantile = df.quantile([0.25, 0.5, 0.75], axis=0) np_percentile = np.percentile(df, [25, 50, 75], axis=0) tm.assert_almost_equal(df_quantile.values, np.array(np_percentile)) @pytest.mark.parametrize("quantile", [0.0, 0.1, 0.45, 0.5, 1]) @pytest.mark.parametrize( "interpolation", ["linear", "lower", "higher", "nearest", "midpoint"] ) @pytest.mark.parametrize( "data", [ [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0], [8.0, 1.0, 3.0, 4.0, 5.0, 2.0, 6.0, 7.0], [0.0, np.nan, 0.2, np.nan, 0.4], [np.nan, np.nan, np.nan, np.nan], [np.nan, 0.1, np.nan, 0.3, 0.4, 0.5], [0.5], [np.nan, 0.7, 0.6], ], ) def test_rolling_quantile_interpolation_options( self, quantile, interpolation, data ): # Tests that rolling window's quantile behavior is analogous to # Series' quantile for each interpolation option s = Series(data) q1 = s.quantile(quantile, interpolation) q2 = s.expanding(min_periods=1).quantile(quantile, interpolation).iloc[-1] if np.isnan(q1): assert np.isnan(q2) else: assert q1 == q2 def test_invalid_quantile_value(self): data = np.arange(5) s = Series(data) msg = "Interpolation 'invalid' is not supported" with pytest.raises(ValueError, match=msg): s.rolling(len(data), min_periods=1).quantile(0.5, interpolation="invalid") def test_rolling_quantile_param(self): ser = Series([0.0, 0.1, 0.5, 0.9, 1.0]) with pytest.raises(ValueError): ser.rolling(3).quantile(-0.1) with pytest.raises(ValueError): ser.rolling(3).quantile(10.0) with pytest.raises(TypeError): ser.rolling(3).quantile("foo") def test_rolling_apply(self, raw): # suppress warnings about empty slices, as we are deliberately testing # with a 0-length Series def f(x): with warnings.catch_warnings(): warnings.filterwarnings( "ignore", message=".*(empty slice|0 for slice).*", category=RuntimeWarning, ) return x[np.isfinite(x)].mean() self._check_moment_func(np.mean, name="apply", func=f, raw=raw) def test_rolling_std(self, raw): self._check_moment_func(lambda x: np.std(x, ddof=1), name="std", raw=raw) self._check_moment_func( lambda x: np.std(x, ddof=0), name="std", ddof=0, raw=raw ) def test_rolling_std_1obs(self): vals = pd.Series([1.0, 2.0, 3.0, 4.0, 5.0]) result = vals.rolling(1, min_periods=1).std() expected = pd.Series([np.nan] * 5) tm.assert_series_equal(result, expected) result = vals.rolling(1, min_periods=1).std(ddof=0) expected = pd.Series([0.0] * 5) tm.assert_series_equal(result, expected) result = pd.Series([np.nan, np.nan, 3, 4, 5]).rolling(3, min_periods=2).std() assert np.isnan(result[2]) def test_rolling_std_neg_sqrt(self): # unit test from Bottleneck # Test move_nanstd for neg sqrt. a = pd.Series( [ 0.0011448196318903589, 0.00028718669878572767, 0.00028718669878572767, 0.00028718669878572767, 0.00028718669878572767, ] ) b = a.rolling(window=3).std() assert np.isfinite(b[2:]).all() b = a.ewm(span=3).std() assert np.isfinite(b[2:]).all() def test_rolling_var(self, raw): self._check_moment_func(lambda x: np.var(x, ddof=1), name="var", raw=raw) self._check_moment_func( lambda x: np.var(x, ddof=0), name="var", ddof=0, raw=raw ) @td.skip_if_no_scipy def test_rolling_skew(self, raw): from scipy.stats import skew self._check_moment_func(lambda x: skew(x, bias=False), name="skew", raw=raw) @td.skip_if_no_scipy def test_rolling_kurt(self, raw): from scipy.stats import kurtosis self._check_moment_func(lambda x: kurtosis(x, bias=False), name="kurt", raw=raw) def _check_moment_func( self, static_comp, name, raw, has_min_periods=True, has_center=True, has_time_rule=True, fill_value=None, zero_min_periods_equal=True, **kwargs, ): # inject raw if name == "apply": kwargs = copy.copy(kwargs) kwargs["raw"] = raw def get_result(obj, window, min_periods=None, center=False): r = obj.rolling(window=window, min_periods=min_periods, center=center) return getattr(r, name)(**kwargs) series_result = get_result(self.series, window=50) assert isinstance(series_result, Series) tm.assert_almost_equal(series_result.iloc[-1], static_comp(self.series[-50:])) frame_result = get_result(self.frame, window=50) assert isinstance(frame_result, DataFrame) tm.assert_series_equal( frame_result.iloc[-1, :], self.frame.iloc[-50:, :].apply(static_comp, axis=0, raw=raw), check_names=False, ) # check time_rule works if has_time_rule: win = 25 minp = 10 series = self.series[::2].resample("B").mean() frame = self.frame[::2].resample("B").mean() if has_min_periods: series_result = get_result(series, window=win, min_periods=minp) frame_result = get_result(frame, window=win, min_periods=minp) else: series_result = get_result(series, window=win, min_periods=0) frame_result = get_result(frame, window=win, min_periods=0) last_date = series_result.index[-1] prev_date = last_date - 24 * offsets.BDay() trunc_series = self.series[::2].truncate(prev_date, last_date) trunc_frame = self.frame[::2].truncate(prev_date, last_date) tm.assert_almost_equal(series_result[-1], static_comp(trunc_series)) tm.assert_series_equal( frame_result.xs(last_date), trunc_frame.apply(static_comp, raw=raw), check_names=False, ) # excluding NaNs correctly obj = Series(randn(50)) obj[:10] = np.NaN obj[-10:] = np.NaN if has_min_periods: result = get_result(obj, 50, min_periods=30) tm.assert_almost_equal(result.iloc[-1], static_comp(obj[10:-10])) # min_periods is working correctly result = get_result(obj, 20, min_periods=15) assert isna(result.iloc[23]) assert not isna(result.iloc[24]) assert not isna(result.iloc[-6]) assert isna(result.iloc[-5]) obj2 = Series(randn(20)) result = get_result(obj2, 10, min_periods=5) assert isna(result.iloc[3]) assert notna(result.iloc[4]) if zero_min_periods_equal: # min_periods=0 may be equivalent to min_periods=1 result0 = get_result(obj, 20, min_periods=0) result1 = get_result(obj, 20, min_periods=1) tm.assert_almost_equal(result0, result1) else: result = get_result(obj, 50) tm.assert_almost_equal(result.iloc[-1], static_comp(obj[10:-10])) # window larger than series length (#7297) if has_min_periods: for minp in (0, len(self.series) - 1, len(self.series)): result = get_result(self.series, len(self.series) + 1, min_periods=minp) expected = get_result(self.series, len(self.series), min_periods=minp) nan_mask = isna(result) tm.assert_series_equal(nan_mask, isna(expected)) nan_mask = ~nan_mask tm.assert_almost_equal(result[nan_mask], expected[nan_mask]) else: result = get_result(self.series, len(self.series) + 1, min_periods=0) expected = get_result(self.series, len(self.series), min_periods=0) nan_mask = isna(result) tm.assert_series_equal(nan_mask, isna(expected)) nan_mask = ~nan_mask tm.assert_almost_equal(result[nan_mask], expected[nan_mask]) # check center=True if has_center: if has_min_periods: result = get_result(obj, 20, min_periods=15, center=True) expected = get_result( pd.concat([obj, Series([np.NaN] * 9)]), 20, min_periods=15 )[9:].reset_index(drop=True) else: result = get_result(obj, 20, min_periods=0, center=True) print(result) expected = get_result( pd.concat([obj, Series([np.NaN] * 9)]), 20, min_periods=0 )[9:].reset_index(drop=True) tm.assert_series_equal(result, expected) # shifter index s = [f"x{x:d}" for x in range(12)] if has_min_periods: minp = 10 series_xp = ( get_result( self.series.reindex(list(self.series.index) + s), window=25, min_periods=minp, ) .shift(-12) .reindex(self.series.index) ) frame_xp = ( get_result( self.frame.reindex(list(self.frame.index) + s), window=25, min_periods=minp, ) .shift(-12) .reindex(self.frame.index) ) series_rs = get_result( self.series, window=25, min_periods=minp, center=True ) frame_rs = get_result( self.frame, window=25, min_periods=minp, center=True ) else: series_xp = ( get_result( self.series.reindex(list(self.series.index) + s), window=25, min_periods=0, ) .shift(-12) .reindex(self.series.index) ) frame_xp = ( get_result( self.frame.reindex(list(self.frame.index) + s), window=25, min_periods=0, ) .shift(-12) .reindex(self.frame.index) ) series_rs = get_result( self.series, window=25, min_periods=0, center=True ) frame_rs = get_result(self.frame, window=25, min_periods=0, center=True) if fill_value is not None: series_xp = series_xp.fillna(fill_value) frame_xp = frame_xp.fillna(fill_value) tm.assert_series_equal(series_xp, series_rs) tm.assert_frame_equal(frame_xp, frame_rs) def _rolling_consistency_cases(): for window in [1, 2, 3, 10, 20]: for min_periods in {0, 1, 2, 3, 4, window}: if min_periods and (min_periods > window): continue for center in [False, True]: yield window, min_periods, center class TestRollingMomentsConsistency(Base): def setup_method(self, method): self._create_data() # binary moments def test_rolling_cov(self): A = self.series B = A + randn(len(A)) result = A.rolling(window=50, min_periods=25).cov(B) tm.assert_almost_equal(result[-1], np.cov(A[-50:], B[-50:])[0, 1]) def test_rolling_corr(self): A = self.series B = A + randn(len(A)) result = A.rolling(window=50, min_periods=25).corr(B) tm.assert_almost_equal(result[-1], np.corrcoef(A[-50:], B[-50:])[0, 1]) # test for correct bias correction a = tm.makeTimeSeries() b = tm.makeTimeSeries() a[:5] = np.nan b[:10] = np.nan result = a.rolling(window=len(a), min_periods=1).corr(b) tm.assert_almost_equal(result[-1], a.corr(b)) @pytest.mark.parametrize("func", ["cov", "corr"]) def test_rolling_pairwise_cov_corr(self, func): check_pairwise_moment(self.frame, "rolling", func, window=10, min_periods=5) @pytest.mark.parametrize("method", ["corr", "cov"]) def test_flex_binary_frame(self, method): series = self.frame[1] res = getattr(series.rolling(window=10), method)(self.frame) res2 = getattr(self.frame.rolling(window=10), method)(series) exp = self.frame.apply(lambda x: getattr(series.rolling(window=10), method)(x)) tm.assert_frame_equal(res, exp) tm.assert_frame_equal(res2, exp) frame2 = self.frame.copy() frame2.values[:] = np.random.randn(*frame2.shape) res3 = getattr(self.frame.rolling(window=10), method)(frame2) exp = DataFrame( { k: getattr(self.frame[k].rolling(window=10), method)(frame2[k]) for k in self.frame } ) tm.assert_frame_equal(res3, exp) @pytest.mark.slow @pytest.mark.parametrize( "window,min_periods,center", list(_rolling_consistency_cases()) ) def test_rolling_apply_consistency( consistency_data, base_functions, no_nan_functions, window, min_periods, center ): x, is_constant, no_nans = consistency_data with warnings.catch_warnings(): warnings.filterwarnings( "ignore", message=".*(empty slice|0 for slice).*", category=RuntimeWarning, ) # test consistency between rolling_xyz() and either (a) # rolling_apply of Series.xyz(), or (b) rolling_apply of # np.nanxyz() functions = base_functions # GH 8269 if no_nans: functions = no_nan_functions + base_functions for (f, require_min_periods, name) in functions: rolling_f = getattr( x.rolling(window=window, center=center, min_periods=min_periods), name, ) if ( require_min_periods and (min_periods is not None) and (min_periods < require_min_periods) ): continue if name == "count": rolling_f_result = rolling_f() rolling_apply_f_result = x.rolling( window=window, min_periods=min_periods, center=center ).apply(func=f, raw=True) else: if name in ["cov", "corr"]: rolling_f_result = rolling_f(pairwise=False) else: rolling_f_result = rolling_f() rolling_apply_f_result = x.rolling( window=window, min_periods=min_periods, center=center ).apply(func=f, raw=True) # GH 9422 if name in ["sum", "prod"]: tm.assert_equal(rolling_f_result, rolling_apply_f_result) @pytest.mark.parametrize("window", range(7)) def test_rolling_corr_with_zero_variance(window): # GH 18430 s = pd.Series(np.zeros(20)) other = pd.Series(np.arange(20)) assert s.rolling(window=window).corr(other=other).isna().all() def test_flex_binary_moment(): # GH3155 # don't blow the stack msg = "arguments to moment function must be of type np.ndarray/Series/DataFrame" with pytest.raises(TypeError, match=msg): _flex_binary_moment(5, 6, None) def test_corr_sanity(): # GH 3155 df = DataFrame( np.array( [ [0.87024726, 0.18505595], [0.64355431, 0.3091617], [0.92372966, 0.50552513], [0.00203756, 0.04520709], [0.84780328, 0.33394331], [0.78369152, 0.63919667], ] ) ) res = df[0].rolling(5, center=True).corr(df[1]) assert all(np.abs(np.nan_to_num(x)) <= 1 for x in res) # and some fuzzing for _ in range(10): df = DataFrame(np.random.rand(30, 2)) res = df[0].rolling(5, center=True).corr(df[1]) try: assert all(np.abs(np.nan_to_num(x)) <= 1 for x in res) except AssertionError: print(res) def test_rolling_cov_diff_length(): # GH 7512 s1 = Series([1, 2, 3], index=[0, 1, 2]) s2 = Series([1, 3], index=[0, 2]) result = s1.rolling(window=3, min_periods=2).cov(s2) expected = Series([None, None, 2.0]) tm.assert_series_equal(result, expected) s2a = Series([1, None, 3], index=[0, 1, 2]) result = s1.rolling(window=3, min_periods=2).cov(s2a) tm.assert_series_equal(result, expected) def test_rolling_corr_diff_length(): # GH 7512 s1 = Series([1, 2, 3], index=[0, 1, 2]) s2 = Series([1, 3], index=[0, 2]) result = s1.rolling(window=3, min_periods=2).corr(s2) expected = Series([None, None, 1.0]) tm.assert_series_equal(result, expected) s2a = Series([1, None, 3], index=[0, 1, 2]) result = s1.rolling(window=3, min_periods=2).corr(s2a) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "f", [ lambda x: x.rolling(window=10, min_periods=5).cov(x, pairwise=False), lambda x: x.rolling(window=10, min_periods=5).corr(x, pairwise=False), lambda x: x.rolling(window=10, min_periods=5).max(), lambda x: x.rolling(window=10, min_periods=5).min(), lambda x: x.rolling(window=10, min_periods=5).sum(), lambda x: x.rolling(window=10, min_periods=5).mean(), lambda x: x.rolling(window=10, min_periods=5).std(), lambda x: x.rolling(window=10, min_periods=5).var(), lambda x: x.rolling(window=10, min_periods=5).skew(), lambda x: x.rolling(window=10, min_periods=5).kurt(), lambda x: x.rolling(window=10, min_periods=5).quantile(quantile=0.5), lambda x: x.rolling(window=10, min_periods=5).median(), lambda x: x.rolling(window=10, min_periods=5).apply(sum, raw=False), lambda x: x.rolling(window=10, min_periods=5).apply(sum, raw=True), lambda x: x.rolling(win_type="boxcar", window=10, min_periods=5).mean(), ], ) @td.skip_if_no_scipy def test_rolling_functions_window_non_shrinkage(f): # GH 7764 s = Series(range(4)) s_expected = Series(np.nan, index=s.index) df = DataFrame([[1, 5], [3, 2], [3, 9], [-1, 0]], columns=["A", "B"]) df_expected = DataFrame(np.nan, index=df.index, columns=df.columns) s_result = f(s)
tm.assert_series_equal(s_result, s_expected)
pandas._testing.assert_series_equal
import pandas as pd import numpy as np from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler def heart_dataset(dir='heart.csv'): df = pd.read_csv(dir) # Filter out values for number of major (calcified) vessels # 4 is a placeholder for NaN in this dataset for some reason. # This dataset is literally riddled with inconsistencies # and this is one of them. df = df[df['ca'] != 4].copy() chest_pain =
pd.get_dummies(df['cp'], prefix='cp')
pandas.get_dummies
# -*- coding: utf-8 -*- """ Created on Wed Jun 12 13:48:34 2019 @author: vrrodovalho This module contains scripts for plotting graphs of Qualitative Proteomics - Donuts for COG categories, with 2 hierachical levels - Donuts for subcellular localizations with just 1 level - Simple Venn diagramms with 2 categories and 1 intersection - Heatmaps that shows frequencies distribution in 2 categories """ import os import sys import pathlib import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt import matplotlib_venn def calculate_cogs(cogs_annotation, cogs_hierarchy, annot_col='COG', hierarchy_col='l2'): ''' Returns the COG hierarchy with the respective COG category frequencies. Parameters ---------- cogs_annotation : DataFrame A dataframe containing a column with COG categories. cogs_hierarchy : DataFrame A dataframe containing a column with COG categories distribuition. annot_col : str, optional The name of the column in which there is the annotation for COG categories. The default is 'COG'. hierarchy_col : str, optional The name of the column in which there is the desired level for COG hierarchy representation. The default is 'l2'. Returns ------- cogs : DataFrame A DataFrame containing COG categories frequencies in a given dataset. ''' annot = cogs_annotation.copy() cogs = cogs_hierarchy.copy() # calculate freqs annot[annot_col].fillna('?', inplace=True) COGs = list(''.join(annot[annot_col].tolist())) COGs_freqs = {i:COGs.count(i) for i in set(COGs)} # complete cogs with freqs and create lists for graphs cogs['freqs'] = cogs[hierarchy_col].map(COGs_freqs) cogs.dropna(subset=['freqs'], inplace=True) # relative freqs cogs['rel'] = round(cogs['freqs'] / cogs['freqs'].sum() * 100,1) return cogs def construct_list_of_colors(cogs_freqs, higher_hierarchy_col='l1'): ''' Produces the external and internal colors for a COG nested donut plot. Parameters ---------- cogs_freqs : DataFrame A DataFrame containing COG categories frequencies and the COG 2-level hierarchy system. higher_hierarchy_col : str The name of the column in cogs_freqs where there is the higer COG category. Example: metabolism, information processing... The default is 'l1'. Returns ------- A tuple of 2 lists of RGB colors. Each RGB color is a tuple of 3 values. These are the colors to be used internally and externally in the nested donut plot. external_colors : list Lists of darker RGB colors that will be used externally. internal_colors : list Lists of gradually lighter RGB colors that will be used internally. ''' palette = [plt.cm.Blues, plt.cm.Oranges, plt.cm.Purples, plt.cm.Greys] external_colors = [palette[0](0.7), palette[1](0.7), palette[2](0.7), palette[3](0.7)] internal_colors = [] subgroups_sizes = cogs_freqs.groupby(higher_hierarchy_col).size().to_dict() group = 0 higher_hierarchy_group = list( cogs_freqs.loc[:,higher_hierarchy_col].unique()) for subgroup in higher_hierarchy_group: size = subgroups_sizes[subgroup] color_group = palette[group] group += 1 decimals = np.arange(0.60, 0.05, -0.05) colors = [color_group(i) for i in decimals[:size]] internal_colors.extend(colors) return external_colors, internal_colors def plot_nested_cog(cogs_annotation, annot_col, cogs_hierarchy_map, hierarchy_levels=['l1','l2'], output_dir='', filename='', save_fig=True, file_format='tif', dpi=600): ''' Plot a nested donut graph, with a 2-level hierarchy system for COG categories. Parameters ---------- cogs_annotation : DataFrame DataFrame containing one column with COG categories annotation. annot_col: str The name of the column in cogs_annotation where the annotation is. cogs_hierarchy_map : DataFrame A DataFrame contaning at least 2 columns with the 2-level hierarchy system. hierarchy_levels : list The list of 2 strings representing the names of the columns in cogs_hierarchy_map that contains hierarchy level data. The default is ['l1','l2']. output_dir : str The path where the file will be saved. filename : str The name of the file that will be saved. save_fig : bool Wether to save or not the image in a file. The default is True. Returns ------- cogs_freqs : DataFrame A DataFrame containing COG categories frequencies in a given dataset. ''' lvl = hierarchy_levels cogs_freqs = calculate_cogs(cogs_annotation=cogs_annotation, annot_col=annot_col, cogs_hierarchy=cogs_hierarchy_map, hierarchy_col=lvl[1]) l1 = cogs_freqs.groupby(lvl[0]).sum()['freqs'].reset_index() l2 = cogs_freqs[[lvl[1],'freqs']].reset_index() l1_names, l1_values = l1[lvl[0]].to_list(), l1['freqs'].to_list() l2_names, l2_values = l2[lvl[1]].to_list(), l2['freqs'].to_list() l1_names_lines = ['\nAND '.join(i.split('AND')) for i in l1_names] # Create colors external_colors, internal_colors = construct_list_of_colors(cogs_freqs, higher_hierarchy_col='l1') # initialize figure fig, ax = plt.subplots() ax.axis('equal') # First Ring (outside) mypie, _ = ax.pie(l1_values, radius=1.3, labels=l1_names_lines, labeldistance=1.1, colors=external_colors ) plt.setp( mypie, width=0.3, edgecolor='white') # Second Ring (Inside) mypie2, _ = ax.pie(l2_values, radius=1.3-0.3, labels=l2_names, labeldistance=0.8, colors=internal_colors) plt.setp( mypie2, width=0.4, edgecolor='white') plt.margins(0,0) if save_fig: output_file = output_dir / filename plt.savefig(output_file,format=file_format, dpi=dpi, bbox_inches="tight") # show it plt.show() return cogs_freqs def plot_donut(df, data_column='', title='', relative=True, absolute=True, palette=sns.color_palette("colorblind", 30), save_fig=True, output_dir='', file_name='', file_format='tiff', dpi=600): ''' Plots a DONUT graph, representing proportions of categories. Parameters ---------- df : DataFrame A dataframe containing a column in which is the data whose frequencies will be plotted. data_column : str The name of the column in df where the data is placed. title : str, optional A title that will be plotted above the gaph. The default is ''. relative : bool, optional Wether to include relative frequencies of the categories (%). The default is True. absolute : bool, optional Wether to include absolute frequencies of the categories. The default is True. palette : Seaborn palette object, optional Seaborn color palette object. The default is sns.color_palette("colorblind", 30). save_fig : bool, optional Wether to save the image to a file. The default is True. output_dir : str, optional Directory where the image will be saved. file_name : str, optional File name to save image. file_format : str, optional File format to save image. The default is 'tiff'. dpi : int, optional Resolution to save image. The default is 600. Returns ------- data : DataFrame DataFrame containing the calculated frequencies. ''' df = df.copy() # renames rename_dict = {"Cytoplasmic Membrane":"Membrane"} df[data_column].replace(rename_dict, inplace=True) # get data, count them and put the results in X and Y lists df[data_column].fillna('?', inplace=True) df = df.reset_index() items = df[data_column].tolist() freqs = {i:items.count(i) for i in set(items)} data = pd.DataFrame.from_dict(freqs, orient='index', columns=['abs']) freqs_rel = {i: round(items.count(i)/len(items)*100,1) \ for i in set(items)} data['rel'] = data.index.to_series().map(freqs_rel) data = data.sort_values(by=['abs'], ascending=False) y = data['abs'] # choose representation in absolute values and/or percentage if relative and absolute: data['formatted'] = data.index.astype(str) + ' ' + \ data['abs'].astype(str) + ' (' + \ data['rel'].astype(str) + '%)' elif relative and not absolute: data['formatted'] = data.index.astype(str) + ' ' + \ ' (' + \ data['rel'].astype(str) + '%)' elif not relative and absolute: data['formatted'] = data.index.astype(str) + ' (' + \ data['abs'].astype(str) + ')' x = data['formatted'] # start plotting fig, ax = plt.subplots() ax.axis('equal') my_circle=plt.Circle( (0,0), 0.6, color='white') plt.pie(y, labels=x, colors=palette, startangle=0,counterclock=False) p = plt.gcf() p.gca().add_artist(my_circle) # draw! plt.draw() plt.title(title) # save figure if save_fig: plt.savefig(output_dir/file_name, format=file_format, dpi=dpi, bbox_inches="tight") return data def plot_venn(df, data_column="", weighted=False, intersection_cat='UF/YEL', title='', palette=sns.color_palette("colorblind", 30), save_fig=True, output_dir='', file_name='', file_format='tiff', dpi=600): ''' This is a function for plotting a simple venn diagramm with 2 categories. Parameters ---------- df : DataFrame A dataframe containing a column in which there is the data to be plotted in a Venn diagramm. data_column : str The name of the column in df where the data is placed. weighted : bool If False, venn circles have the same sizes. If True, the sizes are proportional to the numeric value. intersection_cat : str One of the 3 categories in data_column, that will be considered the intersection category in the venn diagramm. title : str, optional A title that will be plotted above the gaph. The default is ''. palette : Seaborn palette object, optional Seaborn color palette object. The default is sns.color_palette("colorblind", 30). save_fig : bool, optional Wether to save the image to a file. The default is True. output_dir : str, optional Directory where the image will be saved. file_name : str, optional File name to save image. file_format : str, optional File format to save image. The default is 'tiff'. dpi : int, optional Resolution to save image. The default is 600. Returns ------- data : DataFrame A DataFrame containing the values used to plot the venn. ''' df = df.copy() # get data, count them and put the results in X and Y lists df[data_column].fillna('?', inplace=True) df = df.reset_index() items = df[data_column].tolist() freqs = {i:items.count(i) for i in set(items)} data = pd.DataFrame.from_dict(freqs, orient='index', columns=['freq']) data = data.sort_values(by=['freq'], ascending=False) # prepare subsets and set_labels for venn intersection_value = data.loc[ intersection_cat, 'freq'] data = data.drop([intersection_cat]) x = data.index.to_list() y = data['freq'] subsets = (y[0], y[1], intersection_value) set_labels = (x[0], x[1]) # start plotting fig, ax = plt.subplots() if weighted: v = matplotlib_venn.venn2(subsets=subsets, set_labels=set_labels) else: v = matplotlib_venn.venn2_unweighted(subsets=subsets, set_labels=set_labels) # set colors and alphas v.get_patch_by_id('10').set_color(palette[0]) v.get_patch_by_id('10').set_alpha(0.8) v.get_patch_by_id('01').set_color(palette[1]) v.get_patch_by_id('01').set_alpha(0.8) v.get_patch_by_id('11').set_color(palette[2]) v.get_patch_by_id('11').set_edgecolor('none') v.get_patch_by_id('11').set_alpha(0.6) # set font sizes for text in v.set_labels: text.set_fontsize(14) for text in v.subset_labels: text.set_fontsize(16) # set label positions lbl_a = v.get_label_by_id("A") xa, ya = lbl_a.get_position() lbl_a.set_position((xa-0.2, ya+0.05)) lbl_b = v.get_label_by_id("B") xb, yb = lbl_b.get_position() lbl_b.set_position((xb+0.25, yb+0.1)) # draw! plt.draw() plt.title(title) # save figure if save_fig: plt.savefig(output_dir/file_name, format=file_format, dpi=dpi, bbox_inches="tight") return data def helper_frequencies(df, freq_column, split_char=False, forbidden_prefix='map'): ''' This is a helper function that extracts qualitative data from a column of a DataFrame, counts them and return a dictionary of frequencies. If there is more than 1 value in a row, it is possible to split this row and account for each value separately. It is also possible to exclude values based on a prefix. Parameters ---------- df : DataFrame A dataframe containing the data to be analyzed. freq_column : str The column in df which contains the data whose frequencies will be calculated. split_char : str, bool or NoneType, optional A character that will be used to split each row if there are multiple values in each row. If this is set to False, each row will be considered a single value. If this is set to None, each row will be considered to contain multiple data, but no delimiter character. If this is set to a string, this string will be considered the split character that separates the values in each row. The default is False. forbidden_prefix : str, optional Values starting with the string set in this parameter will be excluded from analysis. The default is 'map'. Returns ------- freqs : dict A dictionary of frequencies. ''' values = df[freq_column].tolist() if split_char == False: new_values = values elif split_char == None: string = ''.join(values) new_values = list(string) else: string = split_char.join(values) new_values = string.split(split_char) if forbidden_prefix: filtered_list = [x for x in new_values \ if not x.startswith(forbidden_prefix)] else: filtered_list = new_values freqs = {i:filtered_list.count(i) for i in set(filtered_list)} return freqs def compare_n_frequencies(df, freq_column='COG', category_column='medium', category_map={}, split_char=',', drop_empties=False): ''' This functions compare the frequencies of values in 2 or more categories. Example: the frequencies of COG categories (the values) are compared in 2 conditions (defined as categories), such as 2 culture media. It returns a dataframe with multiple frequencies columns, one column for each category that ws specified. Parameters ---------- df : DataFrame DESCRIPTION. freq_column : str, optional The name of the column where are the values whose frequency will be calculated. The default is 'COG'. category_column : str, optional The name of the column where the categories are specified. Each one of this categories will be represented as a column of frequencies in the final dataframe. The default is 'medium'. category_map : dict, optional A dictionary that maps multiple values for each category, grouping values in categories or changing their name. If each individual value should be accounted as its own category, without change, an empty dictionary should be passed. Otherwise, categories should be organized in the format {'':[]}. The default is {}. split_char : str, bool or NoneType, optional A character that will be used to split each row if there are multiple values in each row. If this is set to False, each row will be considered a single value. If this is set to None, each row will be considered to contain multiple data, but no delimiter character. If this is set to a string, this string will be considered the split character that separates the values in each row. The default is False. drop_empties : bool, optional This allows to choose if empty annotations (nan) will not be considered, being dropped (True) or considered (False) and atributted to unknown function (S/?). The default is False. Returns ------- new_df : TYPE DESCRIPTION. ''' df = df.copy() # choose if empty annotations will not be considered or considered as # unknown function (S/?) if drop_empties: df.dropna(subset=[freq_column], inplace=True) else: if freq_column == "COG": df[freq_column].fillna('S', inplace=True) else: df[freq_column].fillna('?', inplace=True) # if category mapping is supplied, get them. # otherwise, consider each unique value in category column if category_map: categories = list(category_map.keys()) else: categories = list(df[category_column].unique()) category_map = { i:[i] for i in categories } # and a list of all COG categories found all_COGs = [] # generate a dict of frequencies for each category frequencies = {} for cat in categories: sub_df = df.loc[ df[category_column].isin( category_map[cat] ),:] freqs = helper_frequencies(sub_df, freq_column=freq_column, split_char=split_char) all_COGs.extend(list(freqs.keys())) frequencies[cat] = freqs # generate a dataframe with all COG categories found and a column # with the frequencies for each category new_df = pd.DataFrame(list(set(all_COGs)), columns=[freq_column]) for cat in categories: freqs = frequencies[cat] new_df[cat] = new_df[freq_column].map(freqs) # if nan was assigned to a category frequency, replace it by 0 new_df.fillna(0, inplace=True) # add a column with the total sum to the dataframe new_df['Total'] = new_df.loc[:,categories].sum(axis=1) return new_df def plot_heatmap(df, cat1_col='COG', cat1_split_char=False, cat2_col='', cat2_map='', sort_heatmap_by='Total', extra_map={}, replace_names={}, save_fig=True, output_dir='', filename='', file_format='tif', dpi=600, colors="Blues"): ''' Plots a heatmap to show frequencies distribution towards 2 categories: a main category, such as COG category, and a secondary category, such as culture medium. Parameters ---------- df : DataFrame A Dataframe containing at least 2 columns, representing the 2 variables that should be considered in the representation. cat1_col : str The name of the column of the main category. The default is 'COG'. cat1_split_char : str, bool or NoneType, optional A character that will be used to split each row if there are multiple values in each row. If this is set to False, each row will be considered a single value. If this is set to None, each row will be considered to contain multiple data, but no delimiter character. If this is set to a string, this string will be considered the split character that separates the values in each row. The default is False. cat2_col : str The name of the column of the secondary category. The default is 'medium'. cat2_map : dict, optional A dictionary that maps multiple values for each category, grouping values in categories or changing their name. If each individual value should be accounted as its own category, without change, an empty dictionary should be passed. Otherwise, categories should be organized in the format {'':[]}. The default is {}. sort_heatmap_by : str, optional The name of the column in final heatmap that will be used to sort it. The default is 'Total', the column produced with the sum. extra_map : dict, optional A dictionary to replace some texts in heatmap, for a more complete annotation, if needed. The keys should be the the categories in cat1_col. The default is {}. replace_names : dict, optional A dictionary to replace column names in the heatmap for a better representation, id needed. The default is {}. save_fig : bool, optional Wether to save the image to a file. The default is True. output_dir : str, optional Directory where the image will be saved. file_name : str, optional File name to save image. file_format : str, optional File format to save image. The default is 'tiff'. dpi : int, optional Resolution to save image. The default is 600. colors : str, optional Colors for the heatmap. The default is "Blues". Returns ------- df : DataFrame. A dataframe representing the final heatmap ''' # calculate frequencies for main category column = cat1_col freqs = compare_n_frequencies(df, freq_column=column, drop_empties=False, category_column=cat2_col, category_map=cat2_map, split_char=cat1_split_char) # replace columns name in order to show in heatmap df = freqs.copy() if column in replace_names: column = replace_names[column] df.columns = df.columns.to_series().replace(replace_names) df = df.set_index(column) df = df.astype(int) df = df.reset_index() # if we have to complete the text of the main category that will be showed # in the heatmap if extra_map: df[column] = df[column].map(extra_map) # if we need to sort the heatmap, for better presentation of the colors if len(sort_heatmap_by) > 0: df = df.sort_values(by=[sort_heatmap_by],ascending=False) # start plotting # choose sizes for heatmap depending if its a COG heatmap or smaller ones sns.set_style("dark") len_y, len_x = df.shape[0], df.shape[1] if column == 'COG category': sns.set(font_scale=0.8) cog_size=(19,5) len_x = cog_size[1] len_y = cog_size[0] fig2 = plt.figure(figsize=[4, 4], constrained_layout=False) else: sns.set(font_scale=1.3) fig2 = plt.figure(constrained_layout=False) # add subplots gs = fig2.add_gridspec(len_y, len_x) ax1 = fig2.add_subplot(gs[:,:-1]) ax2 = fig2.add_subplot(gs[:,-1:]) df = df.set_index(column) df1 = df.iloc[:,:-1] df2 = df.iloc[:,-1:] # plot main heatmap sns.heatmap(df1, cmap=colors, center=1, annot=True, # annot_kws=squares_font, fmt="d", ax=ax1, cbar = False, robust=True) df = df.reset_index() # y and x labels ax1.set_yticklabels(labels=df[column], va='center', rotation=0, position=(0,0.28)) ax1.set_xticklabels(labels=df.columns[1:-1]) # plot totals heatmap df2.index.name = None sns.heatmap(df2, cmap=colors, center=1, annot=True, #annot_kws=squares_font, fmt="d", ax=ax2, cbar=True, xticklabels=True, yticklabels=False, robust=True) # save figure if save_fig: fig2.savefig(output_dir/filename, format=file_format, dpi=dpi, bbox_inches="tight") return df def hierarchical_grouped_barplots(df, cat1_col='COG', cat1_split_char=False, cat2_col='', cat2_map='', sort_heatmap_by='Total', extra_map={}, replace_names={}, save_fig=True, output_dir='', filename='', file_format='tif', dpi=600, colors="Blues"): # calculate frequencies for main category column = cat1_col freqs = compare_n_frequencies(df, freq_column=column, drop_empties=False, category_column=cat2_col, category_map=cat2_map, split_char=cat1_split_char) # replace columns name in order to show in heatmap df = freqs.copy() if column in replace_names: column = replace_names[column] df.columns = df.columns.to_series().replace(replace_names) df = df.set_index(column) df = df.astype(int) df = df.reset_index() # if we have to complete the text of the main category that will be showed # in the heatmap if extra_map: df[column] = df[column].map(extra_map) # if we need to sort the heatmap, for better presentation of the colors if len(sort_heatmap_by) > 0: df = df.sort_values(by=[sort_heatmap_by],ascending=False) df = pd.melt(df, id_vars=['COG category'], var_name='Condition', value_name='Absolute frequency', value_vars=['UF-only','UF-YEL', 'YEL-only']) # penguins = sns.load_dataset("penguins") # fig = plt.figure(figsize=[4, 4], constrained_layout=False) # Draw a nested barplot by species and sex g = sns.catplot(data=df, kind="bar", x="COG category", y='Absolute frequency', hue="Condition", ci="sd", palette="colorblind", alpha=.9, height=6, aspect=2.0) # g.despine(left=True) # g.legend.set_title("") return df ############################################################################## # DIRECTORY SYSTEM src_dir = os.path.dirname(os.path.realpath(sys.argv[0])) main_dir = os.path.dirname(src_dir) root_dir = os.path.dirname(main_dir) data_dir = pathlib.Path(main_dir) / 'data' input_dir = pathlib.Path(data_dir) / 'input' output_dir = pathlib.Path(data_dir) / 'output' sys.path.insert(0, root_dir) # FILE PATHS proteomics_SEC_and_UC_file = input_dir / 'proteomics_SEC_and_UC_curated.xlsx' proteomics_UC_file = input_dir / 'proteomics_UC.xlsx' proteomics_core_file = input_dir / 'proteome_core.xlsx' proteomics_accessory_file = input_dir / 'proteome_accessory.xlsx' proteomics_single_file = input_dir / 'proteome_single.xlsx' proteomics_not_EVs_file = input_dir / 'proteome_not_EVs.xlsx' proteomics_SEC_only_file = input_dir / 'proteome_SEC_only.xlsx' proteomics_UC_only_file = input_dir / 'proteome_UC_only.xlsx' cogs_file = input_dir / 'COGs.xlsx' # READ FILES proteomics_SEC_and_UC = pd.read_excel(proteomics_SEC_and_UC_file) proteomics_UC = pd.read_excel(proteomics_UC_file) proteomics_core = pd.read_excel(proteomics_core_file) proteomics_accessory = pd.read_excel(proteomics_accessory_file) proteomics_single =
pd.read_excel(proteomics_single_file)
pandas.read_excel
# pylint: disable-msg=E1101,W0612 from datetime import datetime, time, timedelta, date import sys import os import operator from distutils.version import LooseVersion import nose import numpy as np randn = np.random.randn from pandas import (Index, Series, TimeSeries, DataFrame, isnull, date_range, Timestamp, Period, DatetimeIndex, Int64Index, to_datetime, bdate_range, Float64Index) import pandas.core.datetools as datetools import pandas.tseries.offsets as offsets import pandas.tseries.tools as tools import pandas.tseries.frequencies as fmod import pandas as pd from pandas.util.testing import assert_series_equal, assert_almost_equal import pandas.util.testing as tm from pandas.tslib import NaT, iNaT import pandas.lib as lib import pandas.tslib as tslib import pandas.index as _index from pandas.compat import range, long, StringIO, lrange, lmap, zip, product import pandas.core.datetools as dt from numpy.random import rand from numpy.testing import assert_array_equal from pandas.util.testing import assert_frame_equal import pandas.compat as compat import pandas.core.common as com from pandas import concat from pandas import _np_version_under1p7 from numpy.testing.decorators import slow def _skip_if_no_pytz(): try: import pytz except ImportError: raise nose.SkipTest("pytz not installed") def _skip_if_has_locale(): import locale lang, _ = locale.getlocale() if lang is not None: raise nose.SkipTest("Specific locale is set {0}".format(lang)) class TestTimeSeriesDuplicates(tm.TestCase): _multiprocess_can_split_ = True def setUp(self): dates = [datetime(2000, 1, 2), datetime(2000, 1, 2), datetime(2000, 1, 2), datetime(2000, 1, 3), datetime(2000, 1, 3), datetime(2000, 1, 3), datetime(2000, 1, 4), datetime(2000, 1, 4), datetime(2000, 1, 4), datetime(2000, 1, 5)] self.dups = Series(np.random.randn(len(dates)), index=dates) def test_constructor(self): tm.assert_isinstance(self.dups, TimeSeries) tm.assert_isinstance(self.dups.index, DatetimeIndex) def test_is_unique_monotonic(self): self.assertFalse(self.dups.index.is_unique) def test_index_unique(self): uniques = self.dups.index.unique() expected = DatetimeIndex([datetime(2000, 1, 2), datetime(2000, 1, 3), datetime(2000, 1, 4), datetime(2000, 1, 5)]) self.assertEqual(uniques.dtype, 'M8[ns]') # sanity self.assertTrue(uniques.equals(expected)) self.assertEqual(self.dups.index.nunique(), 4) # #2563 self.assertTrue(isinstance(uniques, DatetimeIndex)) dups_local = self.dups.index.tz_localize('US/Eastern') dups_local.name = 'foo' result = dups_local.unique() expected = DatetimeIndex(expected, tz='US/Eastern') self.assertTrue(result.tz is not None) self.assertEqual(result.name, 'foo') self.assertTrue(result.equals(expected)) # NaT arr = [ 1370745748 + t for t in range(20) ] + [iNaT] idx = DatetimeIndex(arr * 3) self.assertTrue(idx.unique().equals(DatetimeIndex(arr))) self.assertEqual(idx.nunique(), 21) arr = [ Timestamp('2013-06-09 02:42:28') + timedelta(seconds=t) for t in range(20) ] + [NaT] idx = DatetimeIndex(arr * 3) self.assertTrue(idx.unique().equals(DatetimeIndex(arr))) self.assertEqual(idx.nunique(), 21) def test_index_dupes_contains(self): d = datetime(2011, 12, 5, 20, 30) ix = DatetimeIndex([d, d]) self.assertTrue(d in ix) def test_duplicate_dates_indexing(self): ts = self.dups uniques = ts.index.unique() for date in uniques: result = ts[date] mask = ts.index == date total = (ts.index == date).sum() expected = ts[mask] if total > 1: assert_series_equal(result, expected) else: assert_almost_equal(result, expected[0]) cp = ts.copy() cp[date] = 0 expected = Series(np.where(mask, 0, ts), index=ts.index) assert_series_equal(cp, expected) self.assertRaises(KeyError, ts.__getitem__, datetime(2000, 1, 6)) # new index ts[datetime(2000,1,6)] = 0 self.assertEqual(ts[datetime(2000,1,6)], 0) def test_range_slice(self): idx = DatetimeIndex(['1/1/2000', '1/2/2000', '1/2/2000', '1/3/2000', '1/4/2000']) ts = Series(np.random.randn(len(idx)), index=idx) result = ts['1/2/2000':] expected = ts[1:] assert_series_equal(result, expected) result = ts['1/2/2000':'1/3/2000'] expected = ts[1:4] assert_series_equal(result, expected) def test_groupby_average_dup_values(self): result = self.dups.groupby(level=0).mean() expected = self.dups.groupby(self.dups.index).mean() assert_series_equal(result, expected) def test_indexing_over_size_cutoff(self): import datetime # #1821 old_cutoff = _index._SIZE_CUTOFF try: _index._SIZE_CUTOFF = 1000 # create large list of non periodic datetime dates = [] sec = datetime.timedelta(seconds=1) half_sec = datetime.timedelta(microseconds=500000) d = datetime.datetime(2011, 12, 5, 20, 30) n = 1100 for i in range(n): dates.append(d) dates.append(d + sec) dates.append(d + sec + half_sec) dates.append(d + sec + sec + half_sec) d += 3 * sec # duplicate some values in the list duplicate_positions = np.random.randint(0, len(dates) - 1, 20) for p in duplicate_positions: dates[p + 1] = dates[p] df = DataFrame(np.random.randn(len(dates), 4), index=dates, columns=list('ABCD')) pos = n * 3 timestamp = df.index[pos] self.assertIn(timestamp, df.index) # it works! df.ix[timestamp] self.assertTrue(len(df.ix[[timestamp]]) > 0) finally: _index._SIZE_CUTOFF = old_cutoff def test_indexing_unordered(self): # GH 2437 rng = date_range(start='2011-01-01', end='2011-01-15') ts = Series(randn(len(rng)), index=rng) ts2 = concat([ts[0:4],ts[-4:],ts[4:-4]]) for t in ts.index: s = str(t) expected = ts[t] result = ts2[t] self.assertTrue(expected == result) # GH 3448 (ranges) def compare(slobj): result = ts2[slobj].copy() result = result.sort_index() expected = ts[slobj] assert_series_equal(result,expected) compare(slice('2011-01-01','2011-01-15')) compare(slice('2010-12-30','2011-01-15')) compare(slice('2011-01-01','2011-01-16')) # partial ranges compare(slice('2011-01-01','2011-01-6')) compare(slice('2011-01-06','2011-01-8')) compare(slice('2011-01-06','2011-01-12')) # single values result = ts2['2011'].sort_index() expected = ts['2011'] assert_series_equal(result,expected) # diff freq rng = date_range(datetime(2005, 1, 1), periods=20, freq='M') ts = Series(np.arange(len(rng)), index=rng) ts = ts.take(np.random.permutation(20)) result = ts['2005'] for t in result.index: self.assertTrue(t.year == 2005) def test_indexing(self): idx = date_range("2001-1-1", periods=20, freq='M') ts = Series(np.random.rand(len(idx)),index=idx) # getting # GH 3070, make sure semantics work on Series/Frame expected = ts['2001'] df = DataFrame(dict(A = ts)) result = df['2001']['A'] assert_series_equal(expected,result) # setting ts['2001'] = 1 expected = ts['2001'] df.loc['2001','A'] = 1 result = df['2001']['A'] assert_series_equal(expected,result) # GH3546 (not including times on the last day) idx = date_range(start='2013-05-31 00:00', end='2013-05-31 23:00', freq='H') ts = Series(lrange(len(idx)), index=idx) expected = ts['2013-05'] assert_series_equal(expected,ts) idx = date_range(start='2013-05-31 00:00', end='2013-05-31 23:59', freq='S') ts = Series(lrange(len(idx)), index=idx) expected = ts['2013-05'] assert_series_equal(expected,ts) idx = [ Timestamp('2013-05-31 00:00'), Timestamp(datetime(2013,5,31,23,59,59,999999))] ts = Series(lrange(len(idx)), index=idx) expected = ts['2013'] assert_series_equal(expected,ts) # GH 3925, indexing with a seconds resolution string / datetime object df = DataFrame(randn(5,5),columns=['open','high','low','close','volume'],index=date_range('2012-01-02 18:01:00',periods=5,tz='US/Central',freq='s')) expected = df.loc[[df.index[2]]] result = df['2012-01-02 18:01:02'] assert_frame_equal(result,expected) # this is a single date, so will raise self.assertRaises(KeyError, df.__getitem__, df.index[2],) def test_recreate_from_data(self): if _np_version_under1p7: freqs = ['M', 'Q', 'A', 'D', 'B', 'T', 'S', 'L', 'U', 'H'] else: freqs = ['M', 'Q', 'A', 'D', 'B', 'T', 'S', 'L', 'U', 'H', 'N', 'C'] for f in freqs: org = DatetimeIndex(start='2001/02/01 09:00', freq=f, periods=1) idx = DatetimeIndex(org, freq=f) self.assertTrue(idx.equals(org)) # unbale to create tz-aware 'A' and 'C' freq if _np_version_under1p7: freqs = ['M', 'Q', 'D', 'B', 'T', 'S', 'L', 'U', 'H'] else: freqs = ['M', 'Q', 'D', 'B', 'T', 'S', 'L', 'U', 'H', 'N'] for f in freqs: org = DatetimeIndex(start='2001/02/01 09:00', freq=f, tz='US/Pacific', periods=1) idx = DatetimeIndex(org, freq=f, tz='US/Pacific') self.assertTrue(idx.equals(org)) def assert_range_equal(left, right): assert(left.equals(right)) assert(left.freq == right.freq) assert(left.tz == right.tz) class TestTimeSeries(tm.TestCase): _multiprocess_can_split_ = True def test_is_(self): dti = DatetimeIndex(start='1/1/2005', end='12/1/2005', freq='M') self.assertTrue(dti.is_(dti)) self.assertTrue(dti.is_(dti.view())) self.assertFalse(dti.is_(dti.copy())) def test_dti_slicing(self): dti = DatetimeIndex(start='1/1/2005', end='12/1/2005', freq='M') dti2 = dti[[1, 3, 5]] v1 = dti2[0] v2 = dti2[1] v3 = dti2[2] self.assertEqual(v1, Timestamp('2/28/2005')) self.assertEqual(v2, Timestamp('4/30/2005')) self.assertEqual(v3, Timestamp('6/30/2005')) # don't carry freq through irregular slicing self.assertIsNone(dti2.freq) def test_pass_datetimeindex_to_index(self): # Bugs in #1396 rng = date_range('1/1/2000', '3/1/2000') idx = Index(rng, dtype=object) expected = Index(rng.to_pydatetime(), dtype=object) self.assert_numpy_array_equal(idx.values, expected.values) def test_contiguous_boolean_preserve_freq(self): rng = date_range('1/1/2000', '3/1/2000', freq='B') mask = np.zeros(len(rng), dtype=bool) mask[10:20] = True masked = rng[mask] expected = rng[10:20] self.assertIsNotNone(expected.freq) assert_range_equal(masked, expected) mask[22] = True masked = rng[mask] self.assertIsNone(masked.freq) def test_getitem_median_slice_bug(self): index = date_range('20090415', '20090519', freq='2B') s = Series(np.random.randn(13), index=index) indexer = [slice(6, 7, None)] result = s[indexer] expected = s[indexer[0]] assert_series_equal(result, expected) def test_series_box_timestamp(self): rng = date_range('20090415', '20090519', freq='B') s = Series(rng) tm.assert_isinstance(s[5], Timestamp) rng = date_range('20090415', '20090519', freq='B') s = Series(rng, index=rng) tm.assert_isinstance(s[5], Timestamp) tm.assert_isinstance(s.iget_value(5), Timestamp) def test_date_range_ambiguous_arguments(self): # #2538 start = datetime(2011, 1, 1, 5, 3, 40) end = datetime(2011, 1, 1, 8, 9, 40) self.assertRaises(ValueError, date_range, start, end, freq='s', periods=10) def test_timestamp_to_datetime(self): _skip_if_no_pytz() rng = date_range('20090415', '20090519', tz='US/Eastern') stamp = rng[0] dtval = stamp.to_pydatetime() self.assertEqual(stamp, dtval) self.assertEqual(stamp.tzinfo, dtval.tzinfo) def test_index_convert_to_datetime_array(self): _skip_if_no_pytz() def _check_rng(rng): converted = rng.to_pydatetime() tm.assert_isinstance(converted, np.ndarray) for x, stamp in zip(converted, rng): tm.assert_isinstance(x, datetime) self.assertEqual(x, stamp.to_pydatetime()) self.assertEqual(x.tzinfo, stamp.tzinfo) rng = date_range('20090415', '20090519') rng_eastern = date_range('20090415', '20090519', tz='US/Eastern') rng_utc = date_range('20090415', '20090519', tz='utc') _check_rng(rng) _check_rng(rng_eastern) _check_rng(rng_utc) def test_ctor_str_intraday(self): rng = DatetimeIndex(['1-1-2000 00:00:01']) self.assertEqual(rng[0].second, 1) def test_series_ctor_plus_datetimeindex(self): rng = date_range('20090415', '20090519', freq='B') data = dict((k, 1) for k in rng) result = Series(data, index=rng) self.assertIs(result.index, rng) def test_series_pad_backfill_limit(self): index = np.arange(10) s = Series(np.random.randn(10), index=index) result = s[:2].reindex(index, method='pad', limit=5) expected = s[:2].reindex(index).fillna(method='pad') expected[-3:] = np.nan assert_series_equal(result, expected) result = s[-2:].reindex(index, method='backfill', limit=5) expected = s[-2:].reindex(index).fillna(method='backfill') expected[:3] = np.nan assert_series_equal(result, expected) def test_series_fillna_limit(self): index = np.arange(10) s = Series(np.random.randn(10), index=index) result = s[:2].reindex(index) result = result.fillna(method='pad', limit=5) expected = s[:2].reindex(index).fillna(method='pad') expected[-3:] = np.nan assert_series_equal(result, expected) result = s[-2:].reindex(index) result = result.fillna(method='bfill', limit=5) expected = s[-2:].reindex(index).fillna(method='backfill') expected[:3] = np.nan assert_series_equal(result, expected) def test_frame_pad_backfill_limit(self): index = np.arange(10) df = DataFrame(np.random.randn(10, 4), index=index) result = df[:2].reindex(index, method='pad', limit=5) expected = df[:2].reindex(index).fillna(method='pad') expected.values[-3:] = np.nan tm.assert_frame_equal(result, expected) result = df[-2:].reindex(index, method='backfill', limit=5) expected = df[-2:].reindex(index).fillna(method='backfill') expected.values[:3] = np.nan tm.assert_frame_equal(result, expected) def test_frame_fillna_limit(self): index = np.arange(10) df = DataFrame(np.random.randn(10, 4), index=index) result = df[:2].reindex(index) result = result.fillna(method='pad', limit=5) expected = df[:2].reindex(index).fillna(method='pad') expected.values[-3:] = np.nan tm.assert_frame_equal(result, expected) result = df[-2:].reindex(index) result = result.fillna(method='backfill', limit=5) expected = df[-2:].reindex(index).fillna(method='backfill') expected.values[:3] = np.nan tm.assert_frame_equal(result, expected) def test_frame_setitem_timestamp(self): # 2155 columns = DatetimeIndex(start='1/1/2012', end='2/1/2012', freq=datetools.bday) index = lrange(10) data = DataFrame(columns=columns, index=index) t = datetime(2012, 11, 1) ts = Timestamp(t) data[ts] = np.nan # works def test_sparse_series_fillna_limit(self): index = np.arange(10) s = Series(np.random.randn(10), index=index) ss = s[:2].reindex(index).to_sparse() result = ss.fillna(method='pad', limit=5) expected = ss.fillna(method='pad', limit=5) expected = expected.to_dense() expected[-3:] = np.nan expected = expected.to_sparse() assert_series_equal(result, expected) ss = s[-2:].reindex(index).to_sparse() result = ss.fillna(method='backfill', limit=5) expected = ss.fillna(method='backfill') expected = expected.to_dense() expected[:3] = np.nan expected = expected.to_sparse() assert_series_equal(result, expected) def test_sparse_series_pad_backfill_limit(self): index = np.arange(10) s = Series(np.random.randn(10), index=index) s = s.to_sparse() result = s[:2].reindex(index, method='pad', limit=5) expected = s[:2].reindex(index).fillna(method='pad') expected = expected.to_dense() expected[-3:] = np.nan expected = expected.to_sparse() assert_series_equal(result, expected) result = s[-2:].reindex(index, method='backfill', limit=5) expected = s[-2:].reindex(index).fillna(method='backfill') expected = expected.to_dense() expected[:3] = np.nan expected = expected.to_sparse() assert_series_equal(result, expected) def test_sparse_frame_pad_backfill_limit(self): index = np.arange(10) df = DataFrame(np.random.randn(10, 4), index=index) sdf = df.to_sparse() result = sdf[:2].reindex(index, method='pad', limit=5) expected = sdf[:2].reindex(index).fillna(method='pad') expected = expected.to_dense() expected.values[-3:] = np.nan expected = expected.to_sparse() tm.assert_frame_equal(result, expected) result = sdf[-2:].reindex(index, method='backfill', limit=5) expected = sdf[-2:].reindex(index).fillna(method='backfill') expected = expected.to_dense() expected.values[:3] = np.nan expected = expected.to_sparse() tm.assert_frame_equal(result, expected) def test_sparse_frame_fillna_limit(self): index = np.arange(10) df = DataFrame(np.random.randn(10, 4), index=index) sdf = df.to_sparse() result = sdf[:2].reindex(index) result = result.fillna(method='pad', limit=5) expected = sdf[:2].reindex(index).fillna(method='pad') expected = expected.to_dense() expected.values[-3:] = np.nan expected = expected.to_sparse() tm.assert_frame_equal(result, expected) result = sdf[-2:].reindex(index) result = result.fillna(method='backfill', limit=5) expected = sdf[-2:].reindex(index).fillna(method='backfill') expected = expected.to_dense() expected.values[:3] = np.nan expected = expected.to_sparse() tm.assert_frame_equal(result, expected) def test_pad_require_monotonicity(self): rng = date_range('1/1/2000', '3/1/2000', freq='B') rng2 = rng[::2][::-1] self.assertRaises(ValueError, rng2.get_indexer, rng, method='pad') def test_frame_ctor_datetime64_column(self): rng = date_range('1/1/2000 00:00:00', '1/1/2000 1:59:50', freq='10s') dates = np.asarray(rng) df = DataFrame({'A': np.random.randn(len(rng)), 'B': dates}) self.assertTrue(np.issubdtype(df['B'].dtype, np.dtype('M8[ns]'))) def test_frame_add_datetime64_column(self): rng = date_range('1/1/2000 00:00:00', '1/1/2000 1:59:50', freq='10s') df = DataFrame(index=np.arange(len(rng))) df['A'] = rng self.assertTrue(np.issubdtype(df['A'].dtype, np.dtype('M8[ns]'))) def test_frame_datetime64_pre1900_repr(self): df = DataFrame({'year': date_range('1/1/1700', periods=50, freq='A-DEC')}) # it works! repr(df) def test_frame_add_datetime64_col_other_units(self): n = 100 units = ['h', 'm', 's', 'ms', 'D', 'M', 'Y'] ns_dtype = np.dtype('M8[ns]') for unit in units: dtype = np.dtype('M8[%s]' % unit) vals = np.arange(n, dtype=np.int64).view(dtype) df = DataFrame({'ints': np.arange(n)}, index=np.arange(n)) df[unit] = vals ex_vals = to_datetime(vals.astype('O')) self.assertEqual(df[unit].dtype, ns_dtype) self.assertTrue((df[unit].values == ex_vals).all()) # Test insertion into existing datetime64 column df = DataFrame({'ints': np.arange(n)}, index=np.arange(n)) df['dates'] = np.arange(n, dtype=np.int64).view(ns_dtype) for unit in units: dtype = np.dtype('M8[%s]' % unit) vals = np.arange(n, dtype=np.int64).view(dtype) tmp = df.copy() tmp['dates'] = vals ex_vals = to_datetime(vals.astype('O')) self.assertTrue((tmp['dates'].values == ex_vals).all()) def test_to_datetime_unit(self): epoch = 1370745748 s = Series([ epoch + t for t in range(20) ]) result = to_datetime(s,unit='s') expected = Series([ Timestamp('2013-06-09 02:42:28') + timedelta(seconds=t) for t in range(20) ]) assert_series_equal(result,expected) s = Series([ epoch + t for t in range(20) ]).astype(float) result = to_datetime(s,unit='s') expected = Series([ Timestamp('2013-06-09 02:42:28') + timedelta(seconds=t) for t in range(20) ]) assert_series_equal(result,expected) s = Series([ epoch + t for t in range(20) ] + [iNaT]) result = to_datetime(s,unit='s') expected = Series([ Timestamp('2013-06-09 02:42:28') + timedelta(seconds=t) for t in range(20) ] + [NaT]) assert_series_equal(result,expected) s = Series([ epoch + t for t in range(20) ] + [iNaT]).astype(float) result = to_datetime(s,unit='s') expected = Series([ Timestamp('2013-06-09 02:42:28') + timedelta(seconds=t) for t in range(20) ] + [NaT]) assert_series_equal(result,expected) s = concat([Series([ epoch + t for t in range(20) ]).astype(float),Series([np.nan])],ignore_index=True) result = to_datetime(s,unit='s') expected = Series([ Timestamp('2013-06-09 02:42:28') + timedelta(seconds=t) for t in range(20) ] + [NaT]) assert_series_equal(result,expected) def test_series_ctor_datetime64(self): rng = date_range('1/1/2000 00:00:00', '1/1/2000 1:59:50', freq='10s') dates = np.asarray(rng) series = Series(dates) self.assertTrue(np.issubdtype(series.dtype, np.dtype('M8[ns]'))) def test_index_cast_datetime64_other_units(self): arr = np.arange(0, 100, 10, dtype=np.int64).view('M8[D]') idx = Index(arr) self.assertTrue((idx.values == tslib.cast_to_nanoseconds(arr)).all()) def test_index_astype_datetime64(self): idx = Index([datetime(2012, 1, 1)], dtype=object) if not _np_version_under1p7: raise nose.SkipTest("test only valid in numpy < 1.7") casted = idx.astype(np.dtype('M8[D]')) expected = DatetimeIndex(idx.values) tm.assert_isinstance(casted, DatetimeIndex) self.assertTrue(casted.equals(expected)) def test_reindex_series_add_nat(self): rng = date_range('1/1/2000 00:00:00', periods=10, freq='10s') series = Series(rng) result = series.reindex(lrange(15)) self.assertTrue(np.issubdtype(result.dtype, np.dtype('M8[ns]'))) mask = result.isnull() self.assertTrue(mask[-5:].all()) self.assertFalse(mask[:-5].any()) def test_reindex_frame_add_nat(self): rng = date_range('1/1/2000 00:00:00', periods=10, freq='10s') df = DataFrame({'A': np.random.randn(len(rng)), 'B': rng}) result = df.reindex(lrange(15)) self.assertTrue(np.issubdtype(result['B'].dtype, np.dtype('M8[ns]'))) mask = com.isnull(result)['B'] self.assertTrue(mask[-5:].all()) self.assertFalse(mask[:-5].any()) def test_series_repr_nat(self): series = Series([0, 1000, 2000, iNaT], dtype='M8[ns]') result = repr(series) expected = ('0 1970-01-01 00:00:00\n' '1 1970-01-01 00:00:00.000001\n' '2 1970-01-01 00:00:00.000002\n' '3 NaT\n' 'dtype: datetime64[ns]') self.assertEqual(result, expected) def test_fillna_nat(self): series = Series([0, 1, 2, iNaT], dtype='M8[ns]') filled = series.fillna(method='pad') filled2 = series.fillna(value=series.values[2]) expected = series.copy() expected.values[3] = expected.values[2] assert_series_equal(filled, expected) assert_series_equal(filled2, expected) df = DataFrame({'A': series}) filled = df.fillna(method='pad') filled2 = df.fillna(value=series.values[2]) expected = DataFrame({'A': expected}) assert_frame_equal(filled, expected) assert_frame_equal(filled2, expected) series = Series([iNaT, 0, 1, 2], dtype='M8[ns]') filled = series.fillna(method='bfill') filled2 = series.fillna(value=series[1]) expected = series.copy() expected[0] = expected[1] assert_series_equal(filled, expected) assert_series_equal(filled2, expected) df = DataFrame({'A': series}) filled = df.fillna(method='bfill') filled2 = df.fillna(value=series[1]) expected = DataFrame({'A': expected}) assert_frame_equal(filled, expected) assert_frame_equal(filled2, expected) def test_string_na_nat_conversion(self): # GH #999, #858 from pandas.compat import parse_date strings = np.array(['1/1/2000', '1/2/2000', np.nan, '1/4/2000, 12:34:56'], dtype=object) expected = np.empty(4, dtype='M8[ns]') for i, val in enumerate(strings): if com.isnull(val): expected[i] = iNaT else: expected[i] = parse_date(val) result = tslib.array_to_datetime(strings) assert_almost_equal(result, expected) result2 = to_datetime(strings) tm.assert_isinstance(result2, DatetimeIndex) assert_almost_equal(result, result2) malformed = np.array(['1/100/2000', np.nan], dtype=object) result = to_datetime(malformed) assert_almost_equal(result, malformed) self.assertRaises(ValueError, to_datetime, malformed, errors='raise') idx = ['a', 'b', 'c', 'd', 'e'] series = Series(['1/1/2000', np.nan, '1/3/2000', np.nan, '1/5/2000'], index=idx, name='foo') dseries = Series([to_datetime('1/1/2000'), np.nan, to_datetime('1/3/2000'), np.nan, to_datetime('1/5/2000')], index=idx, name='foo') result = to_datetime(series) dresult = to_datetime(dseries) expected = Series(np.empty(5, dtype='M8[ns]'), index=idx) for i in range(5): x = series[i] if isnull(x): expected[i] = iNaT else: expected[i] = to_datetime(x) assert_series_equal(result, expected) self.assertEqual(result.name, 'foo') assert_series_equal(dresult, expected) self.assertEqual(dresult.name, 'foo') def test_to_datetime_iso8601(self): result = to_datetime(["2012-01-01 00:00:00"]) exp = Timestamp("2012-01-01 00:00:00") self.assertEqual(result[0], exp) result = to_datetime(['20121001']) # bad iso 8601 exp = Timestamp('2012-10-01') self.assertEqual(result[0], exp) def test_to_datetime_default(self): rs = to_datetime('2001') xp = datetime(2001, 1, 1) self.assertTrue(rs, xp) #### dayfirst is essentially broken #### to_datetime('01-13-2012', dayfirst=True) #### self.assertRaises(ValueError, to_datetime('01-13-2012', dayfirst=True)) def test_to_datetime_on_datetime64_series(self): # #2699 s = Series(date_range('1/1/2000', periods=10)) result = to_datetime(s) self.assertEqual(result[0], s[0]) def test_to_datetime_with_apply(self): # this is only locale tested with US/None locales _skip_if_has_locale() # GH 5195 # with a format and coerce a single item to_datetime fails td = Series(['May 04', 'Jun 02', 'Dec 11'], index=[1,2,3]) expected = pd.to_datetime(td, format='%b %y') result = td.apply(pd.to_datetime, format='%b %y') assert_series_equal(result, expected) td = pd.Series(['May 04', 'Jun 02', ''], index=[1,2,3]) self.assertRaises(ValueError, lambda : pd.to_datetime(td,format='%b %y')) self.assertRaises(ValueError, lambda : td.apply(pd.to_datetime, format='%b %y')) expected = pd.to_datetime(td, format='%b %y', coerce=True) result = td.apply(lambda x: pd.to_datetime(x, format='%b %y', coerce=True)) assert_series_equal(result, expected) def test_nat_vector_field_access(self): idx = DatetimeIndex(['1/1/2000', None, None, '1/4/2000']) fields = ['year', 'quarter', 'month', 'day', 'hour', 'minute', 'second', 'microsecond', 'nanosecond', 'week', 'dayofyear'] for field in fields: result = getattr(idx, field) expected = [getattr(x, field) if x is not NaT else -1 for x in idx] self.assert_numpy_array_equal(result, expected) def test_nat_scalar_field_access(self): fields = ['year', 'quarter', 'month', 'day', 'hour', 'minute', 'second', 'microsecond', 'nanosecond', 'week', 'dayofyear'] for field in fields: result = getattr(NaT, field) self.assertEqual(result, -1) self.assertEqual(NaT.weekday(), -1) def test_to_datetime_types(self): # empty string result = to_datetime('') self.assertIs(result, NaT) result = to_datetime(['', '']) self.assertTrue(isnull(result).all()) # ints result = Timestamp(0) expected = to_datetime(0) self.assertEqual(result, expected) # GH 3888 (strings) expected = to_datetime(['2012'])[0] result = to_datetime('2012') self.assertEqual(result, expected) ### array = ['2012','20120101','20120101 12:01:01'] array = ['20120101','20120101 12:01:01'] expected = list(to_datetime(array)) result = lmap(Timestamp,array) tm.assert_almost_equal(result,expected) ### currently fails ### ### result = Timestamp('2012') ### expected = to_datetime('2012') ### self.assertEqual(result, expected) def test_to_datetime_unprocessable_input(self): # GH 4928 self.assert_numpy_array_equal( to_datetime([1, '1']), np.array([1, '1'], dtype='O') ) self.assertRaises(TypeError, to_datetime, [1, '1'], errors='raise') def test_to_datetime_other_datetime64_units(self): # 5/25/2012 scalar = np.int64(1337904000000000).view('M8[us]') as_obj = scalar.astype('O') index = DatetimeIndex([scalar]) self.assertEqual(index[0], scalar.astype('O')) value = Timestamp(scalar) self.assertEqual(value, as_obj) def test_to_datetime_list_of_integers(self): rng = date_range('1/1/2000', periods=20) rng = DatetimeIndex(rng.values) ints = list(rng.asi8) result = DatetimeIndex(ints) self.assertTrue(rng.equals(result)) def test_to_datetime_dt64s(self): in_bound_dts = [ np.datetime64('2000-01-01'), np.datetime64('2000-01-02'), ] for dt in in_bound_dts: self.assertEqual( pd.to_datetime(dt), Timestamp(dt) ) oob_dts = [ np.datetime64('1000-01-01'), np.datetime64('5000-01-02'), ] for dt in oob_dts: self.assertRaises(ValueError, pd.to_datetime, dt, errors='raise') self.assertRaises(ValueError, tslib.Timestamp, dt) self.assertIs(pd.to_datetime(dt, coerce=True), NaT) def test_to_datetime_array_of_dt64s(self): dts = [ np.datetime64('2000-01-01'), np.datetime64('2000-01-02'), ] # Assuming all datetimes are in bounds, to_datetime() returns # an array that is equal to Timestamp() parsing self.assert_numpy_array_equal( pd.to_datetime(dts, box=False), np.array([Timestamp(x).asm8 for x in dts]) ) # A list of datetimes where the last one is out of bounds dts_with_oob = dts + [np.datetime64('9999-01-01')] self.assertRaises( ValueError, pd.to_datetime, dts_with_oob, coerce=False, errors='raise' ) self.assert_numpy_array_equal( pd.to_datetime(dts_with_oob, box=False, coerce=True), np.array( [ Timestamp(dts_with_oob[0]).asm8, Timestamp(dts_with_oob[1]).asm8, iNaT, ], dtype='M8' ) ) # With coerce=False and errors='ignore', out of bounds datetime64s # are converted to their .item(), which depending on the version of # numpy is either a python datetime.datetime or datetime.date self.assert_numpy_array_equal( pd.to_datetime(dts_with_oob, box=False, coerce=False), np.array( [dt.item() for dt in dts_with_oob], dtype='O' ) ) def test_index_to_datetime(self): idx = Index(['1/1/2000', '1/2/2000', '1/3/2000']) result = idx.to_datetime() expected = DatetimeIndex(datetools.to_datetime(idx.values)) self.assertTrue(result.equals(expected)) today = datetime.today() idx = Index([today], dtype=object) result = idx.to_datetime() expected = DatetimeIndex([today]) self.assertTrue(result.equals(expected)) def test_to_datetime_freq(self): xp = bdate_range('2000-1-1', periods=10, tz='UTC') rs = xp.to_datetime() self.assertEqual(xp.freq, rs.freq) self.assertEqual(xp.tzinfo, rs.tzinfo) def test_range_misspecified(self): # GH #1095 self.assertRaises(ValueError, date_range, '1/1/2000') self.assertRaises(ValueError, date_range, end='1/1/2000') self.assertRaises(ValueError, date_range, periods=10) self.assertRaises(ValueError, date_range, '1/1/2000', freq='H') self.assertRaises(ValueError, date_range, end='1/1/2000', freq='H') self.assertRaises(ValueError, date_range, periods=10, freq='H') def test_reasonable_keyerror(self): # GH #1062 index = DatetimeIndex(['1/3/2000']) try: index.get_loc('1/1/2000') except KeyError as e: self.assertIn('2000', str(e)) def test_reindex_with_datetimes(self): rng = date_range('1/1/2000', periods=20) ts = Series(np.random.randn(20), index=rng) result = ts.reindex(list(ts.index[5:10])) expected = ts[5:10] tm.assert_series_equal(result, expected) result = ts[list(ts.index[5:10])] tm.assert_series_equal(result, expected) def test_promote_datetime_date(self): rng = date_range('1/1/2000', periods=20) ts = Series(np.random.randn(20), index=rng) ts_slice = ts[5:] ts2 = ts_slice.copy() ts2.index = [x.date() for x in ts2.index] result = ts + ts2 result2 = ts2 + ts expected = ts + ts[5:] assert_series_equal(result, expected) assert_series_equal(result2, expected) # test asfreq result = ts2.asfreq('4H', method='ffill') expected = ts[5:].asfreq('4H', method='ffill') assert_series_equal(result, expected) result = rng.get_indexer(ts2.index) expected = rng.get_indexer(ts_slice.index) self.assert_numpy_array_equal(result, expected) def test_asfreq_normalize(self): rng = date_range('1/1/2000 09:30', periods=20) norm = date_range('1/1/2000', periods=20) vals = np.random.randn(20) ts = Series(vals, index=rng) result = ts.asfreq('D', normalize=True) norm = date_range('1/1/2000', periods=20) expected = Series(vals, index=norm) assert_series_equal(result, expected) vals = np.random.randn(20, 3) ts = DataFrame(vals, index=rng) result = ts.asfreq('D', normalize=True) expected = DataFrame(vals, index=norm) assert_frame_equal(result, expected) def test_date_range_gen_error(self): rng = date_range('1/1/2000 00:00', '1/1/2000 00:18', freq='5min') self.assertEqual(len(rng), 4) def test_first_subset(self): ts = _simple_ts('1/1/2000', '1/1/2010', freq='12h') result = ts.first('10d') self.assertEqual(len(result), 20) ts = _simple_ts('1/1/2000', '1/1/2010') result = ts.first('10d') self.assertEqual(len(result), 10) result = ts.first('3M') expected = ts[:'3/31/2000'] assert_series_equal(result, expected) result = ts.first('21D') expected = ts[:21] assert_series_equal(result, expected) result = ts[:0].first('3M') assert_series_equal(result, ts[:0]) def test_last_subset(self): ts = _simple_ts('1/1/2000', '1/1/2010', freq='12h') result = ts.last('10d') self.assertEqual(len(result), 20) ts = _simple_ts('1/1/2000', '1/1/2010') result = ts.last('10d') self.assertEqual(len(result), 10) result = ts.last('21D') expected = ts['12/12/2009':] assert_series_equal(result, expected) result = ts.last('21D') expected = ts[-21:] assert_series_equal(result, expected) result = ts[:0].last('3M') assert_series_equal(result, ts[:0]) def test_add_offset(self): rng = date_range('1/1/2000', '2/1/2000') result = rng + offsets.Hour(2) expected = date_range('1/1/2000 02:00', '2/1/2000 02:00') self.assertTrue(result.equals(expected)) def test_format_pre_1900_dates(self): rng = date_range('1/1/1850', '1/1/1950', freq='A-DEC') rng.format() ts = Series(1, index=rng) repr(ts) def test_repeat(self): rng = date_range('1/1/2000', '1/1/2001') result = rng.repeat(5) self.assertIsNone(result.freq) self.assertEqual(len(result), 5 * len(rng)) def test_at_time(self): rng = date_range('1/1/2000', '1/5/2000', freq='5min') ts = Series(np.random.randn(len(rng)), index=rng) rs = ts.at_time(rng[1]) self.assertTrue((rs.index.hour == rng[1].hour).all()) self.assertTrue((rs.index.minute == rng[1].minute).all()) self.assertTrue((rs.index.second == rng[1].second).all()) result = ts.at_time('9:30') expected = ts.at_time(time(9, 30)) assert_series_equal(result, expected) df = DataFrame(np.random.randn(len(rng), 3), index=rng) result = ts[time(9, 30)] result_df = df.ix[time(9, 30)] expected = ts[(rng.hour == 9) & (rng.minute == 30)] exp_df = df[(rng.hour == 9) & (rng.minute == 30)] # expected.index = date_range('1/1/2000', '1/4/2000') assert_series_equal(result, expected) tm.assert_frame_equal(result_df, exp_df) chunk = df.ix['1/4/2000':] result = chunk.ix[time(9, 30)] expected = result_df[-1:] tm.assert_frame_equal(result, expected) # midnight, everything rng = date_range('1/1/2000', '1/31/2000') ts = Series(np.random.randn(len(rng)), index=rng) result = ts.at_time(time(0, 0)) assert_series_equal(result, ts) # time doesn't exist rng = date_range('1/1/2012', freq='23Min', periods=384) ts = Series(np.random.randn(len(rng)), rng) rs = ts.at_time('16:00') self.assertEqual(len(rs), 0) def test_at_time_frame(self): rng = date_range('1/1/2000', '1/5/2000', freq='5min') ts = DataFrame(np.random.randn(len(rng), 2), index=rng) rs = ts.at_time(rng[1]) self.assertTrue((rs.index.hour == rng[1].hour).all()) self.assertTrue((rs.index.minute == rng[1].minute).all()) self.assertTrue((rs.index.second == rng[1].second).all()) result = ts.at_time('9:30') expected = ts.at_time(time(9, 30)) assert_frame_equal(result, expected) result = ts.ix[time(9, 30)] expected = ts.ix[(rng.hour == 9) & (rng.minute == 30)] assert_frame_equal(result, expected) # midnight, everything rng = date_range('1/1/2000', '1/31/2000') ts = DataFrame(np.random.randn(len(rng), 3), index=rng) result = ts.at_time(time(0, 0)) assert_frame_equal(result, ts) # time doesn't exist rng = date_range('1/1/2012', freq='23Min', periods=384) ts = DataFrame(np.random.randn(len(rng), 2), rng) rs = ts.at_time('16:00') self.assertEqual(len(rs), 0) def test_between_time(self): rng = date_range('1/1/2000', '1/5/2000', freq='5min') ts = Series(np.random.randn(len(rng)), index=rng) stime = time(0, 0) etime = time(1, 0) close_open = product([True, False], [True, False]) for inc_start, inc_end in close_open: filtered = ts.between_time(stime, etime, inc_start, inc_end) exp_len = 13 * 4 + 1 if not inc_start: exp_len -= 5 if not inc_end: exp_len -= 4 self.assertEqual(len(filtered), exp_len) for rs in filtered.index: t = rs.time() if inc_start: self.assertTrue(t >= stime) else: self.assertTrue(t > stime) if inc_end: self.assertTrue(t <= etime) else: self.assertTrue(t < etime) result = ts.between_time('00:00', '01:00') expected = ts.between_time(stime, etime) assert_series_equal(result, expected) # across midnight rng = date_range('1/1/2000', '1/5/2000', freq='5min') ts = Series(np.random.randn(len(rng)), index=rng) stime = time(22, 0) etime = time(9, 0) close_open = product([True, False], [True, False]) for inc_start, inc_end in close_open: filtered = ts.between_time(stime, etime, inc_start, inc_end) exp_len = (12 * 11 + 1) * 4 + 1 if not inc_start: exp_len -= 4 if not inc_end: exp_len -= 4 self.assertEqual(len(filtered), exp_len) for rs in filtered.index: t = rs.time() if inc_start: self.assertTrue((t >= stime) or (t <= etime)) else: self.assertTrue((t > stime) or (t <= etime)) if inc_end: self.assertTrue((t <= etime) or (t >= stime)) else: self.assertTrue((t < etime) or (t >= stime)) def test_between_time_frame(self): rng = date_range('1/1/2000', '1/5/2000', freq='5min') ts = DataFrame(np.random.randn(len(rng), 2), index=rng) stime = time(0, 0) etime = time(1, 0) close_open = product([True, False], [True, False]) for inc_start, inc_end in close_open: filtered = ts.between_time(stime, etime, inc_start, inc_end) exp_len = 13 * 4 + 1 if not inc_start: exp_len -= 5 if not inc_end: exp_len -= 4 self.assertEqual(len(filtered), exp_len) for rs in filtered.index: t = rs.time() if inc_start: self.assertTrue(t >= stime) else: self.assertTrue(t > stime) if inc_end: self.assertTrue(t <= etime) else: self.assertTrue(t < etime) result = ts.between_time('00:00', '01:00') expected = ts.between_time(stime, etime) assert_frame_equal(result, expected) # across midnight rng = date_range('1/1/2000', '1/5/2000', freq='5min') ts = DataFrame(np.random.randn(len(rng), 2), index=rng) stime = time(22, 0) etime = time(9, 0) close_open = product([True, False], [True, False]) for inc_start, inc_end in close_open: filtered = ts.between_time(stime, etime, inc_start, inc_end) exp_len = (12 * 11 + 1) * 4 + 1 if not inc_start: exp_len -= 4 if not inc_end: exp_len -= 4 self.assertEqual(len(filtered), exp_len) for rs in filtered.index: t = rs.time() if inc_start: self.assertTrue((t >= stime) or (t <= etime)) else: self.assertTrue((t > stime) or (t <= etime)) if inc_end: self.assertTrue((t <= etime) or (t >= stime)) else: self.assertTrue((t < etime) or (t >= stime)) def test_dti_constructor_preserve_dti_freq(self): rng = date_range('1/1/2000', '1/2/2000', freq='5min') rng2 = DatetimeIndex(rng) self.assertEqual(rng.freq, rng2.freq) def test_normalize(self): rng = date_range('1/1/2000 9:30', periods=10, freq='D') result = rng.normalize() expected = date_range('1/1/2000', periods=10, freq='D') self.assertTrue(result.equals(expected)) rng_ns = pd.DatetimeIndex(np.array([1380585623454345752, 1380585612343234312]).astype("datetime64[ns]")) rng_ns_normalized = rng_ns.normalize() expected = pd.DatetimeIndex(np.array([1380585600000000000, 1380585600000000000]).astype("datetime64[ns]")) self.assertTrue(rng_ns_normalized.equals(expected)) self.assertTrue(result.is_normalized) self.assertFalse(rng.is_normalized) def test_to_period(self): from pandas.tseries.period import period_range ts = _simple_ts('1/1/2000', '1/1/2001') pts = ts.to_period() exp = ts.copy() exp.index = period_range('1/1/2000', '1/1/2001') assert_series_equal(pts, exp) pts = ts.to_period('M') self.assertTrue(pts.index.equals(exp.index.asfreq('M'))) def create_dt64_based_index(self): data = [Timestamp('2007-01-01 10:11:12.123456Z'), Timestamp('2007-01-01 10:11:13.789123Z')] index = DatetimeIndex(data) return index def test_to_period_millisecond(self): index = self.create_dt64_based_index() period = index.to_period(freq='L') self.assertEqual(2, len(period)) self.assertEqual(period[0], Period('2007-01-01 10:11:12.123Z', 'L')) self.assertEqual(period[1], Period('2007-01-01 10:11:13.789Z', 'L')) def test_to_period_microsecond(self): index = self.create_dt64_based_index() period = index.to_period(freq='U') self.assertEqual(2, len(period)) self.assertEqual(period[0], Period('2007-01-01 10:11:12.123456Z', 'U')) self.assertEqual(period[1], Period('2007-01-01 10:11:13.789123Z', 'U')) def test_to_period_tz(self): _skip_if_no_pytz() from dateutil.tz import tzlocal from pytz import utc as UTC xp = date_range('1/1/2000', '4/1/2000').to_period() ts = date_range('1/1/2000', '4/1/2000', tz='US/Eastern') result = ts.to_period()[0] expected = ts[0].to_period() self.assertEqual(result, expected) self.assertTrue(ts.to_period().equals(xp)) ts = date_range('1/1/2000', '4/1/2000', tz=UTC) result = ts.to_period()[0] expected = ts[0].to_period() self.assertEqual(result, expected) self.assertTrue(ts.to_period().equals(xp)) ts = date_range('1/1/2000', '4/1/2000', tz=tzlocal()) result = ts.to_period()[0] expected = ts[0].to_period() self.assertEqual(result, expected) self.assertTrue(ts.to_period().equals(xp)) def test_frame_to_period(self): K = 5 from pandas.tseries.period import period_range dr = date_range('1/1/2000', '1/1/2001') pr = period_range('1/1/2000', '1/1/2001') df = DataFrame(randn(len(dr), K), index=dr) df['mix'] = 'a' pts = df.to_period() exp = df.copy() exp.index = pr assert_frame_equal(pts, exp) pts = df.to_period('M') self.assertTrue(pts.index.equals(exp.index.asfreq('M'))) df = df.T pts = df.to_period(axis=1) exp = df.copy() exp.columns = pr assert_frame_equal(pts, exp) pts = df.to_period('M', axis=1) self.assertTrue(pts.columns.equals(exp.columns.asfreq('M'))) self.assertRaises(ValueError, df.to_period, axis=2) def test_timestamp_fields(self): # extra fields from DatetimeIndex like quarter and week idx = tm.makeDateIndex(100) fields = ['dayofweek', 'dayofyear', 'week', 'weekofyear', 'quarter', 'is_month_start', 'is_month_end', 'is_quarter_start', 'is_quarter_end', 'is_year_start', 'is_year_end'] for f in fields: expected = getattr(idx, f)[-1] result = getattr(Timestamp(idx[-1]), f) self.assertEqual(result, expected) self.assertEqual(idx.freq, Timestamp(idx[-1], idx.freq).freq) self.assertEqual(idx.freqstr, Timestamp(idx[-1], idx.freq).freqstr) def test_woy_boundary(self): # make sure weeks at year boundaries are correct d = datetime(2013,12,31) result = Timestamp(d).week expected = 1 # ISO standard self.assertEqual(result, expected) d = datetime(2008,12,28) result = Timestamp(d).week expected = 52 # ISO standard self.assertEqual(result, expected) d = datetime(2009,12,31) result = Timestamp(d).week expected = 53 # ISO standard self.assertEqual(result, expected) d = datetime(2010,1,1) result = Timestamp(d).week expected = 53 # ISO standard self.assertEqual(result, expected) d = datetime(2010,1,3) result = Timestamp(d).week expected = 53 # ISO standard self.assertEqual(result, expected) result = np.array([Timestamp(datetime(*args)).week for args in [(2000,1,1),(2000,1,2),(2005,1,1),(2005,1,2)]]) self.assertTrue((result == [52, 52, 53, 53]).all()) def test_timestamp_date_out_of_range(self): self.assertRaises(ValueError, Timestamp, '1676-01-01') self.assertRaises(ValueError, Timestamp, '2263-01-01') # 1475 self.assertRaises(ValueError, DatetimeIndex, ['1400-01-01']) self.assertRaises(ValueError, DatetimeIndex, [datetime(1400, 1, 1)]) def test_timestamp_repr(self): # pre-1900 stamp = Timestamp('1850-01-01', tz='US/Eastern') repr(stamp) iso8601 = '1850-01-01 01:23:45.012345' stamp = Timestamp(iso8601, tz='US/Eastern') result = repr(stamp) self.assertIn(iso8601, result) def test_timestamp_from_ordinal(self): # GH 3042 dt = datetime(2011, 4, 16, 0, 0) ts = Timestamp.fromordinal(dt.toordinal()) self.assertEqual(ts.to_pydatetime(), dt) # with a tzinfo stamp = Timestamp('2011-4-16', tz='US/Eastern') dt_tz = stamp.to_pydatetime() ts = Timestamp.fromordinal(dt_tz.toordinal(),tz='US/Eastern') self.assertEqual(ts.to_pydatetime(), dt_tz) def test_datetimeindex_integers_shift(self): rng = date_range('1/1/2000', periods=20) result = rng + 5 expected = rng.shift(5) self.assertTrue(result.equals(expected)) result = rng - 5 expected = rng.shift(-5) self.assertTrue(result.equals(expected)) def test_astype_object(self): # NumPy 1.6.1 weak ns support rng = date_range('1/1/2000', periods=20) casted = rng.astype('O') exp_values = list(rng) self.assert_numpy_array_equal(casted, exp_values) def test_catch_infinite_loop(self): offset = datetools.DateOffset(minute=5) # blow up, don't loop forever self.assertRaises(Exception, date_range, datetime(2011, 11, 11), datetime(2011, 11, 12), freq=offset) def test_append_concat(self): rng = date_range('5/8/2012 1:45', periods=10, freq='5T') ts = Series(np.random.randn(len(rng)), rng) df = DataFrame(np.random.randn(len(rng), 4), index=rng) result = ts.append(ts) result_df = df.append(df) ex_index = DatetimeIndex(np.tile(rng.values, 2)) self.assertTrue(result.index.equals(ex_index)) self.assertTrue(result_df.index.equals(ex_index)) appended = rng.append(rng) self.assertTrue(appended.equals(ex_index)) appended = rng.append([rng, rng]) ex_index = DatetimeIndex(np.tile(rng.values, 3)) self.assertTrue(appended.equals(ex_index)) # different index names rng1 = rng.copy() rng2 = rng.copy() rng1.name = 'foo' rng2.name = 'bar' self.assertEqual(rng1.append(rng1).name, 'foo') self.assertIsNone(rng1.append(rng2).name) def test_append_concat_tz(self): #GH 2938 _skip_if_no_pytz() rng = date_range('5/8/2012 1:45', periods=10, freq='5T', tz='US/Eastern') rng2 = date_range('5/8/2012 2:35', periods=10, freq='5T', tz='US/Eastern') rng3 = date_range('5/8/2012 1:45', periods=20, freq='5T', tz='US/Eastern') ts = Series(np.random.randn(len(rng)), rng) df = DataFrame(np.random.randn(len(rng), 4), index=rng) ts2 = Series(np.random.randn(len(rng2)), rng2) df2 = DataFrame(np.random.randn(len(rng2), 4), index=rng2) result = ts.append(ts2) result_df = df.append(df2) self.assertTrue(result.index.equals(rng3)) self.assertTrue(result_df.index.equals(rng3)) appended = rng.append(rng2) self.assertTrue(appended.equals(rng3)) def test_set_dataframe_column_ns_dtype(self): x = DataFrame([datetime.now(), datetime.now()]) self.assertEqual(x[0].dtype, np.dtype('M8[ns]')) def test_groupby_count_dateparseerror(self): dr = date_range(start='1/1/2012', freq='5min', periods=10) # BAD Example, datetimes first s = Series(np.arange(10), index=[dr, lrange(10)]) grouped = s.groupby(lambda x: x[1] % 2 == 0) result = grouped.count() s = Series(np.arange(10), index=[lrange(10), dr]) grouped = s.groupby(lambda x: x[0] % 2 == 0) expected = grouped.count() assert_series_equal(result, expected) def test_datetimeindex_repr_short(self): dr = date_range(start='1/1/2012', periods=1) repr(dr) dr = date_range(start='1/1/2012', periods=2) repr(dr) dr = date_range(start='1/1/2012', periods=3) repr(dr) def test_constructor_int64_nocopy(self): # #1624 arr = np.arange(1000, dtype=np.int64) index = DatetimeIndex(arr) arr[50:100] = -1 self.assertTrue((index.asi8[50:100] == -1).all()) arr = np.arange(1000, dtype=np.int64) index = DatetimeIndex(arr, copy=True) arr[50:100] = -1 self.assertTrue((index.asi8[50:100] != -1).all()) def test_series_interpolate_method_values(self): # #1646 ts = _simple_ts('1/1/2000', '1/20/2000') ts[::2] = np.nan result = ts.interpolate(method='values') exp = ts.interpolate() assert_series_equal(result, exp) def test_frame_datetime64_handling_groupby(self): # it works! df = DataFrame([(3, np.datetime64('2012-07-03')), (3, np.datetime64('2012-07-04'))], columns=['a', 'date']) result = df.groupby('a').first() self.assertEqual(result['date'][3], Timestamp('2012-07-03')) def test_series_interpolate_intraday(self): # #1698 index = pd.date_range('1/1/2012', periods=4, freq='12D') ts = pd.Series([0, 12, 24, 36], index) new_index = index.append(index + pd.DateOffset(days=1)).order() exp = ts.reindex(new_index).interpolate(method='time') index = pd.date_range('1/1/2012', periods=4, freq='12H') ts = pd.Series([0, 12, 24, 36], index) new_index = index.append(index + pd.DateOffset(hours=1)).order() result = ts.reindex(new_index).interpolate(method='time') self.assert_numpy_array_equal(result.values, exp.values) def test_frame_dict_constructor_datetime64_1680(self): dr = date_range('1/1/2012', periods=10) s = Series(dr, index=dr) # it works! DataFrame({'a': 'foo', 'b': s}, index=dr) DataFrame({'a': 'foo', 'b': s.values}, index=dr) def test_frame_datetime64_mixed_index_ctor_1681(self): dr = date_range('2011/1/1', '2012/1/1', freq='W-FRI') ts = Series(dr) # it works! d = DataFrame({'A': 'foo', 'B': ts}, index=dr) self.assertTrue(d['B'].isnull().all()) def test_frame_timeseries_to_records(self): index = date_range('1/1/2000', periods=10) df = DataFrame(np.random.randn(10, 3), index=index, columns=['a', 'b', 'c']) result = df.to_records() result['index'].dtype == 'M8[ns]' result = df.to_records(index=False) def test_frame_datetime64_duplicated(self): dates = date_range('2010-07-01', end='2010-08-05') tst = DataFrame({'symbol': 'AAA', 'date': dates}) result = tst.duplicated(['date', 'symbol']) self.assertTrue((-result).all()) tst = DataFrame({'date': dates}) result = tst.duplicated() self.assertTrue((-result).all()) def test_timestamp_compare_with_early_datetime(self): # e.g. datetime.min stamp = Timestamp('2012-01-01') self.assertFalse(stamp == datetime.min) self.assertFalse(stamp == datetime(1600, 1, 1)) self.assertFalse(stamp == datetime(2700, 1, 1)) self.assertNotEqual(stamp, datetime.min) self.assertNotEqual(stamp, datetime(1600, 1, 1)) self.assertNotEqual(stamp, datetime(2700, 1, 1)) self.assertTrue(stamp > datetime(1600, 1, 1)) self.assertTrue(stamp >= datetime(1600, 1, 1)) self.assertTrue(stamp < datetime(2700, 1, 1)) self.assertTrue(stamp <= datetime(2700, 1, 1)) def test_to_html_timestamp(self): rng = date_range('2000-01-01', periods=10) df = DataFrame(np.random.randn(10, 4), index=rng) result = df.to_html() self.assertIn('2000-01-01', result) def test_to_csv_numpy_16_bug(self): frame = DataFrame({'a': date_range('1/1/2000', periods=10)}) buf = StringIO() frame.to_csv(buf) result = buf.getvalue() self.assertIn('2000-01-01', result) def test_series_map_box_timestamps(self): # #2689, #2627 s = Series(date_range('1/1/2000', periods=10)) def f(x): return (x.hour, x.day, x.month) # it works! s.map(f) s.apply(f) DataFrame(s).applymap(f) def test_concat_datetime_datetime64_frame(self): # #2624 rows = [] rows.append([datetime(2010, 1, 1), 1]) rows.append([datetime(2010, 1, 2), 'hi']) df2_obj = DataFrame.from_records(rows, columns=['date', 'test']) ind = date_range(start="2000/1/1", freq="D", periods=10) df1 = DataFrame({'date': ind, 'test':lrange(10)}) # it works! pd.concat([df1, df2_obj]) def test_period_resample(self): # GH3609 s = Series(range(100),index=date_range('20130101', freq='s', periods=100), dtype='float') s[10:30] = np.nan expected = Series([34.5, 79.5], index=[Period('2013-01-01 00:00', 'T'), Period('2013-01-01 00:01', 'T')]) result = s.to_period().resample('T', kind='period') assert_series_equal(result, expected) result2 = s.resample('T', kind='period') assert_series_equal(result2, expected) def test_period_resample_with_local_timezone(self): # GH5430 _skip_if_no_pytz() import pytz local_timezone = pytz.timezone('America/Los_Angeles') start = datetime(year=2013, month=11, day=1, hour=0, minute=0, tzinfo=pytz.utc) # 1 day later end = datetime(year=2013, month=11, day=2, hour=0, minute=0, tzinfo=pytz.utc) index = pd.date_range(start, end, freq='H') series = pd.Series(1, index=index) series = series.tz_convert(local_timezone) result = series.resample('D', kind='period') # Create the expected series expected_index = (pd.period_range(start=start, end=end, freq='D') - 1) # Index is moved back a day with the timezone conversion from UTC to Pacific expected = pd.Series(1, index=expected_index) assert_series_equal(result, expected) def test_pickle(self): #GH4606 from pandas.compat import cPickle import pickle for pick in [pickle, cPickle]: p = pick.loads(pick.dumps(NaT)) self.assertTrue(p is NaT) idx = pd.to_datetime(['2013-01-01', NaT, '2014-01-06']) idx_p = pick.loads(pick.dumps(idx)) self.assertTrue(idx_p[0] == idx[0]) self.assertTrue(idx_p[1] is NaT) self.assertTrue(idx_p[2] == idx[2]) def _simple_ts(start, end, freq='D'): rng = date_range(start, end, freq=freq) return Series(np.random.randn(len(rng)), index=rng) class TestDatetimeIndex(tm.TestCase): _multiprocess_can_split_ = True def test_hash_error(self): index = date_range('20010101', periods=10) with tm.assertRaisesRegexp(TypeError, "unhashable type: %r" % type(index).__name__): hash(index) def test_stringified_slice_with_tz(self): #GH2658 import datetime start=datetime.datetime.now() idx=DatetimeIndex(start=start,freq="1d",periods=10) df=DataFrame(lrange(10),index=idx) df["2013-01-14 23:44:34.437768-05:00":] # no exception here def test_append_join_nondatetimeindex(self): rng = date_range('1/1/2000', periods=10) idx = Index(['a', 'b', 'c', 'd']) result = rng.append(idx) tm.assert_isinstance(result[0], Timestamp) # it works rng.join(idx, how='outer') def test_astype(self): rng = date_range('1/1/2000', periods=10) result = rng.astype('i8') self.assert_numpy_array_equal(result, rng.asi8) def test_to_period_nofreq(self): idx = DatetimeIndex(['2000-01-01', '2000-01-02', '2000-01-04']) self.assertRaises(ValueError, idx.to_period) idx = DatetimeIndex(['2000-01-01', '2000-01-02', '2000-01-03'], freq='infer') idx.to_period() def test_000constructor_resolution(self): # 2252 t1 = Timestamp((1352934390 * 1000000000) + 1000000 + 1000 + 1) idx = DatetimeIndex([t1]) self.assertEqual(idx.nanosecond[0], t1.nanosecond) def test_constructor_coverage(self): rng = date_range('1/1/2000', periods=10.5) exp = date_range('1/1/2000', periods=10) self.assertTrue(rng.equals(exp)) self.assertRaises(ValueError, DatetimeIndex, start='1/1/2000', periods='foo', freq='D') self.assertRaises(ValueError, DatetimeIndex, start='1/1/2000', end='1/10/2000') self.assertRaises(ValueError, DatetimeIndex, '1/1/2000') # generator expression gen = (datetime(2000, 1, 1) + timedelta(i) for i in range(10)) result = DatetimeIndex(gen) expected = DatetimeIndex([datetime(2000, 1, 1) + timedelta(i) for i in range(10)]) self.assertTrue(result.equals(expected)) # NumPy string array strings = np.array(['2000-01-01', '2000-01-02', '2000-01-03']) result = DatetimeIndex(strings) expected = DatetimeIndex(strings.astype('O')) self.assertTrue(result.equals(expected)) from_ints = DatetimeIndex(expected.asi8) self.assertTrue(from_ints.equals(expected)) # non-conforming self.assertRaises(ValueError, DatetimeIndex, ['2000-01-01', '2000-01-02', '2000-01-04'], freq='D') self.assertRaises(ValueError, DatetimeIndex, start='2011-01-01', freq='b') self.assertRaises(ValueError, DatetimeIndex, end='2011-01-01', freq='B') self.assertRaises(ValueError, DatetimeIndex, periods=10, freq='D') def test_constructor_name(self): idx = DatetimeIndex(start='2000-01-01', periods=1, freq='A', name='TEST') self.assertEqual(idx.name, 'TEST') def test_comparisons_coverage(self): rng = date_range('1/1/2000', periods=10) # raise TypeError for now self.assertRaises(TypeError, rng.__lt__, rng[3].value) result = rng == list(rng) exp = rng == rng self.assert_numpy_array_equal(result, exp) def test_map(self): rng = date_range('1/1/2000', periods=10) f = lambda x: x.strftime('%Y%m%d') result = rng.map(f) exp = [f(x) for x in rng] self.assert_numpy_array_equal(result, exp) def test_add_union(self): rng = date_range('1/1/2000', periods=5) rng2 = date_range('1/6/2000', periods=5) result = rng + rng2 expected = rng.union(rng2) self.assertTrue(result.equals(expected)) def test_misc_coverage(self): rng = date_range('1/1/2000', periods=5) result = rng.groupby(rng.day) tm.assert_isinstance(list(result.values())[0][0], Timestamp) idx = DatetimeIndex(['2000-01-03', '2000-01-01', '2000-01-02']) self.assertTrue(idx.equals(list(idx))) non_datetime = Index(list('abc')) self.assertFalse(idx.equals(list(non_datetime))) def test_union_coverage(self): idx = DatetimeIndex(['2000-01-03', '2000-01-01', '2000-01-02']) ordered = DatetimeIndex(idx.order(), freq='infer') result = ordered.union(idx) self.assertTrue(result.equals(ordered)) result = ordered[:0].union(ordered) self.assertTrue(result.equals(ordered)) self.assertEqual(result.freq, ordered.freq) def test_union_bug_1730(self): rng_a = date_range('1/1/2012', periods=4, freq='3H') rng_b = date_range('1/1/2012', periods=4, freq='4H') result = rng_a.union(rng_b) exp = DatetimeIndex(sorted(set(list(rng_a)) | set(list(rng_b)))) self.assertTrue(result.equals(exp)) def test_union_bug_1745(self): left = DatetimeIndex(['2012-05-11 15:19:49.695000']) right = DatetimeIndex(['2012-05-29 13:04:21.322000', '2012-05-11 15:27:24.873000', '2012-05-11 15:31:05.350000']) result = left.union(right) exp = DatetimeIndex(sorted(set(list(left)) | set(list(right)))) self.assertTrue(result.equals(exp)) def test_union_bug_4564(self): from pandas import DateOffset left = date_range("2013-01-01", "2013-02-01") right = left + DateOffset(minutes=15) result = left.union(right) exp = DatetimeIndex(sorted(set(list(left)) | set(list(right)))) self.assertTrue(result.equals(exp)) def test_intersection_bug_1708(self): from pandas import DateOffset index_1 = date_range('1/1/2012', periods=4, freq='12H') index_2 = index_1 + DateOffset(hours=1) result = index_1 & index_2 self.assertEqual(len(result), 0) # def test_add_timedelta64(self): # rng = date_range('1/1/2000', periods=5) # delta = rng.values[3] - rng.values[1] # result = rng + delta # expected = rng + timedelta(2) # self.assertTrue(result.equals(expected)) def test_get_duplicates(self): idx = DatetimeIndex(['2000-01-01', '2000-01-02', '2000-01-02', '2000-01-03', '2000-01-03', '2000-01-04']) result = idx.get_duplicates() ex = DatetimeIndex(['2000-01-02', '2000-01-03']) self.assertTrue(result.equals(ex)) def test_argmin_argmax(self): idx = DatetimeIndex(['2000-01-04', '2000-01-01', '2000-01-02']) self.assertEqual(idx.argmin(), 1) self.assertEqual(idx.argmax(), 0) def test_order(self): idx = DatetimeIndex(['2000-01-04', '2000-01-01', '2000-01-02']) ordered = idx.order() self.assertTrue(ordered.is_monotonic) ordered = idx.order(ascending=False) self.assertTrue(ordered[::-1].is_monotonic) ordered, dexer = idx.order(return_indexer=True) self.assertTrue(ordered.is_monotonic) self.assert_numpy_array_equal(dexer, [1, 2, 0]) ordered, dexer = idx.order(return_indexer=True, ascending=False) self.assertTrue(ordered[::-1].is_monotonic) self.assert_numpy_array_equal(dexer, [0, 2, 1]) def test_insert(self): idx = DatetimeIndex(['2000-01-04', '2000-01-01', '2000-01-02']) result = idx.insert(2, datetime(2000, 1, 5)) exp = DatetimeIndex(['2000-01-04', '2000-01-01', '2000-01-05', '2000-01-02']) self.assertTrue(result.equals(exp)) # insertion of non-datetime should coerce to object index result = idx.insert(1, 'inserted') expected = Index([datetime(2000, 1, 4), 'inserted', datetime(2000, 1, 1), datetime(2000, 1, 2)]) self.assertNotIsInstance(result, DatetimeIndex) tm.assert_index_equal(result, expected) idx = date_range('1/1/2000', periods=3, freq='M') result = idx.insert(3, datetime(2000, 4, 30)) self.assertEqual(result.freqstr, 'M') def test_map_bug_1677(self): index = DatetimeIndex(['2012-04-25 09:30:00.393000']) f = index.asof result = index.map(f) expected = np.array([f(index[0])]) self.assert_numpy_array_equal(result, expected) def test_groupby_function_tuple_1677(self): df = DataFrame(np.random.rand(100), index=date_range("1/1/2000", periods=100)) monthly_group = df.groupby(lambda x: (x.year, x.month)) result = monthly_group.mean() tm.assert_isinstance(result.index[0], tuple) def test_append_numpy_bug_1681(self): # another datetime64 bug dr = date_range('2011/1/1', '2012/1/1', freq='W-FRI') a = DataFrame() c = DataFrame({'A': 'foo', 'B': dr}, index=dr) result = a.append(c) self.assertTrue((result['B'] == dr).all()) def test_isin(self): index = tm.makeDateIndex(4) result = index.isin(index) self.assertTrue(result.all()) result = index.isin(list(index)) self.assertTrue(result.all()) assert_almost_equal(index.isin([index[2], 5]), [False, False, True, False]) def test_union(self): i1 = Int64Index(np.arange(0, 20, 2)) i2 = Int64Index(np.arange(10, 30, 2)) result = i1.union(i2) expected = Int64Index(np.arange(0, 30, 2)) self.assert_numpy_array_equal(result, expected) def test_union_with_DatetimeIndex(self): i1 = Int64Index(np.arange(0, 20, 2)) i2 = DatetimeIndex(start='2012-01-03 00:00:00', periods=10, freq='D') i1.union(i2) # Works i2.union(i1) # Fails with "AttributeError: can't set attribute" def test_time(self): rng = pd.date_range('1/1/2000', freq='12min', periods=10) result = pd.Index(rng).time expected = [t.time() for t in rng] self.assertTrue((result == expected).all()) def test_date(self): rng = pd.date_range('1/1/2000', freq='12H', periods=10) result = pd.Index(rng).date expected = [t.date() for t in rng] self.assertTrue((result == expected).all()) def test_does_not_convert_mixed_integer(self): df = tm.makeCustomDataframe(10, 10, data_gen_f=lambda *args, **kwargs: randn(), r_idx_type='i', c_idx_type='dt') cols = df.columns.join(df.index, how='outer') joined = cols.join(df.columns) self.assertEqual(cols.dtype, np.dtype('O')) self.assertEqual(cols.dtype, joined.dtype) assert_array_equal(cols.values, joined.values) def test_slice_keeps_name(self): # GH4226 st = pd.Timestamp('2013-07-01 00:00:00', tz='America/Los_Angeles') et = pd.Timestamp('2013-07-02 00:00:00', tz='America/Los_Angeles') dr = pd.date_range(st, et, freq='H', name='timebucket') self.assertEqual(dr[1:].name, dr.name) def test_join_self(self): index = date_range('1/1/2000', periods=10) kinds = 'outer', 'inner', 'left', 'right' for kind in kinds: joined = index.join(index, how=kind) self.assertIs(index, joined) def assert_index_parameters(self, index): assert index.freq == '40960N' assert index.inferred_freq == '40960N' def test_ns_index(self): if _np_version_under1p7: raise nose.SkipTest nsamples = 400 ns = int(1e9 / 24414) dtstart = np.datetime64('2012-09-20T00:00:00') dt = dtstart + np.arange(nsamples) * np.timedelta64(ns, 'ns') freq = ns * pd.datetools.Nano() index = pd.DatetimeIndex(dt, freq=freq, name='time') self.assert_index_parameters(index) new_index = pd.DatetimeIndex(start=index[0], end=index[-1], freq=index.freq) self.assert_index_parameters(new_index) def test_join_with_period_index(self): df = tm.makeCustomDataframe(10, 10, data_gen_f=lambda *args: np.random.randint(2), c_idx_type='p', r_idx_type='dt') s = df.iloc[:5, 0] joins = 'left', 'right', 'inner', 'outer' for join in joins: with tm.assertRaisesRegexp(ValueError, 'can only call with other ' 'PeriodIndex-ed objects'): df.columns.join(s.index, how=join) def test_factorize(self): idx1 = DatetimeIndex(['2014-01', '2014-01', '2014-02', '2014-02', '2014-03', '2014-03']) exp_arr = np.array([0, 0, 1, 1, 2, 2]) exp_idx = DatetimeIndex(['2014-01', '2014-02', '2014-03']) arr, idx = idx1.factorize() self.assert_numpy_array_equal(arr, exp_arr) self.assertTrue(idx.equals(exp_idx)) arr, idx = idx1.factorize(sort=True) self.assert_numpy_array_equal(arr, exp_arr) self.assertTrue(idx.equals(exp_idx)) # tz must be preserved idx1 = idx1.tz_localize('Asia/Tokyo') exp_idx = exp_idx.tz_localize('Asia/Tokyo') arr, idx = idx1.factorize() self.assert_numpy_array_equal(arr, exp_arr) self.assertTrue(idx.equals(exp_idx)) idx2 = pd.DatetimeIndex(['2014-03', '2014-03', '2014-02', '2014-01', '2014-03', '2014-01']) exp_arr = np.array([2, 2, 1, 0, 2, 0]) exp_idx = DatetimeIndex(['2014-01', '2014-02', '2014-03']) arr, idx = idx2.factorize(sort=True) self.assert_numpy_array_equal(arr, exp_arr) self.assertTrue(idx.equals(exp_idx)) exp_arr = np.array([0, 0, 1, 2, 0, 2]) exp_idx = DatetimeIndex(['2014-03', '2014-02', '2014-01']) arr, idx = idx2.factorize() self.assert_numpy_array_equal(arr, exp_arr) self.assertTrue(idx.equals(exp_idx)) # freq must be preserved idx3 = date_range('2000-01', periods=4, freq='M', tz='Asia/Tokyo') exp_arr = np.array([0, 1, 2, 3]) arr, idx = idx3.factorize() self.assert_numpy_array_equal(arr, exp_arr) self.assertTrue(idx.equals(idx3)) class TestDatetime64(tm.TestCase): """ Also test support for datetime64[ns] in Series / DataFrame """ def setUp(self): dti = DatetimeIndex(start=datetime(2005, 1, 1), end=datetime(2005, 1, 10), freq='Min') self.series = Series(rand(len(dti)), dti) def test_datetimeindex_accessors(self): dti = DatetimeIndex( freq='D', start=datetime(1998, 1, 1), periods=365) self.assertEqual(dti.year[0], 1998) self.assertEqual(dti.month[0], 1) self.assertEqual(dti.day[0], 1) self.assertEqual(dti.hour[0], 0) self.assertEqual(dti.minute[0], 0) self.assertEqual(dti.second[0], 0) self.assertEqual(dti.microsecond[0], 0) self.assertEqual(dti.dayofweek[0], 3) self.assertEqual(dti.dayofyear[0], 1) self.assertEqual(dti.dayofyear[120], 121) self.assertEqual(dti.weekofyear[0], 1) self.assertEqual(dti.weekofyear[120], 18) self.assertEqual(dti.quarter[0], 1) self.assertEqual(dti.quarter[120], 2) self.assertEqual(dti.is_month_start[0], True) self.assertEqual(dti.is_month_start[1], False) self.assertEqual(dti.is_month_start[31], True) self.assertEqual(dti.is_quarter_start[0], True) self.assertEqual(dti.is_quarter_start[90], True) self.assertEqual(dti.is_year_start[0], True) self.assertEqual(dti.is_year_start[364], False) self.assertEqual(dti.is_month_end[0], False) self.assertEqual(dti.is_month_end[30], True) self.assertEqual(dti.is_month_end[31], False) self.assertEqual(dti.is_month_end[364], True) self.assertEqual(dti.is_quarter_end[0], False) self.assertEqual(dti.is_quarter_end[30], False) self.assertEqual(dti.is_quarter_end[89], True) self.assertEqual(dti.is_quarter_end[364], True) self.assertEqual(dti.is_year_end[0], False) self.assertEqual(dti.is_year_end[364], True) self.assertEqual(len(dti.year), 365) self.assertEqual(len(dti.month), 365) self.assertEqual(len(dti.day), 365) self.assertEqual(len(dti.hour), 365) self.assertEqual(len(dti.minute), 365) self.assertEqual(len(dti.second), 365) self.assertEqual(len(dti.microsecond), 365) self.assertEqual(len(dti.dayofweek), 365) self.assertEqual(len(dti.dayofyear), 365) self.assertEqual(len(dti.weekofyear), 365) self.assertEqual(len(dti.quarter), 365) self.assertEqual(len(dti.is_month_start), 365) self.assertEqual(len(dti.is_month_end), 365) self.assertEqual(len(dti.is_quarter_start), 365) self.assertEqual(len(dti.is_quarter_end), 365) self.assertEqual(len(dti.is_year_start), 365) self.assertEqual(len(dti.is_year_end), 365) dti = DatetimeIndex( freq='BQ-FEB', start=datetime(1998, 1, 1), periods=4) self.assertEqual(sum(dti.is_quarter_start), 0) self.assertEqual(sum(dti.is_quarter_end), 4) self.assertEqual(sum(dti.is_year_start), 0) self.assertEqual(sum(dti.is_year_end), 1) # Ensure is_start/end accessors throw ValueError for CustomBusinessDay, CBD requires np >= 1.7 if not _np_version_under1p7: bday_egypt = offsets.CustomBusinessDay(weekmask='Sun Mon Tue Wed Thu') dti = date_range(datetime(2013, 4, 30), periods=5, freq=bday_egypt) self.assertRaises(ValueError, lambda: dti.is_month_start) dti = DatetimeIndex(['2000-01-01', '2000-01-02', '2000-01-03']) self.assertEqual(dti.is_month_start[0], 1) tests = [ (Timestamp('2013-06-01', offset='M').is_month_start, 1), (Timestamp('2013-06-01', offset='BM').is_month_start, 0), (Timestamp('2013-06-03', offset='M').is_month_start, 0), (Timestamp('2013-06-03', offset='BM').is_month_start, 1), (Timestamp('2013-02-28', offset='Q-FEB').is_month_end, 1), (Timestamp('2013-02-28', offset='Q-FEB').is_quarter_end, 1), (Timestamp('2013-02-28', offset='Q-FEB').is_year_end, 1), (Timestamp('2013-03-01', offset='Q-FEB').is_month_start, 1), (Timestamp('2013-03-01', offset='Q-FEB').is_quarter_start, 1), (Timestamp('2013-03-01', offset='Q-FEB').is_year_start, 1), (Timestamp('2013-03-31', offset='QS-FEB').is_month_end, 1), (Timestamp('2013-03-31', offset='QS-FEB').is_quarter_end, 0), (Timestamp('2013-03-31', offset='QS-FEB').is_year_end, 0), (Timestamp('2013-02-01', offset='QS-FEB').is_month_start, 1), (Timestamp('2013-02-01', offset='QS-FEB').is_quarter_start, 1), (Timestamp('2013-02-01', offset='QS-FEB').is_year_start, 1), (Timestamp('2013-06-30', offset='BQ').is_month_end, 0), (Timestamp('2013-06-30', offset='BQ').is_quarter_end, 0), (Timestamp('2013-06-30', offset='BQ').is_year_end, 0), (
Timestamp('2013-06-28', offset='BQ')
pandas.Timestamp
import pandas import numpy from src.variants.variant import Variant from src.structs import DistanceStruct from src.variants.deep_search.feature_extractor import FeatureExtractor from src.variants.deep_search.indexer import Indexer class DeepSearchVariant(Variant): name = "Deep Search with Annoy" def __init__(self, fasta_file: str, sequence_type: str, image_folder: str): super().__init__(fasta_file, sequence_type) self._image_folder = image_folder self._input_shape = (2000, 2000, 3) def build_matrix(self) -> DistanceStruct: features = FeatureExtractor(self._input_shape) indexer = Indexer(self._image_folder, self._names, features) names = [".".join(name.split("/")[-1].split(".")[:-1]) for name in indexer.image_list] diff = set(self._names).difference(set(names)) if diff: raise IOError(f"Sequences without image created: {diff}") data = indexer.build() df =
pandas.DataFrame()
pandas.DataFrame
from matplotlib.pyplot import title import streamlit as st import pandas as pd import altair as alt import pydeck as pdk import os import glob from wordcloud import WordCloud import streamlit_analytics path = os.path.dirname(__file__) streamlit_analytics.start_tracking() @st.cache def load_gnd_top_daten(typ): gnd_top_df =
pd.DataFrame()
pandas.DataFrame
import re import win32com.client as win32 import datetime import os.path import shutil from ast import literal_eval import unicodedata import pandas as pd import numpy as np import tkinter as tk import variableFile class WorkbookEvents: '''Main class to define the interesting evens of the excel file''' def OnSheetSelectionChange(self, *args): '''Saves value of selected cell The previous value of the cell is restored if value read came from scanner ''' variableFile.previousValue = args[1].Value def OnSheetChange(self, *args): '''Traces changes in excel sheet''' variableFile.addressChanged = args[1].Address variableFile.changedValue.set(str(args[1].Value)) def OnBeforeClose(self, *args): '''Event before the workbook closes and before asking to save changes. NOTE: THere will be a problem if the user does not close it ''' variableFile.excelOpen.set(tk.FALSE) pass class XlReadWrite: '''Class that handles reading, cleaning, processing of the open excel. After the file has been open/created/selected the user can start scanning devices. Every QR read is processed to determine what parameters should be included in the excel. The excel heads correspond to the AI included in the QR codes. If the user modifies or inserts manualy a value, it wont be processed as QR (Except if it has an AI in brackets (AI)) WorkFlow: User options: - Open: Opens any excel the user selects and reads its contents - New: User indicates the date of delivery and the program creates a new file based on the template. - Select: The user can choose between the excel files opened. A dataframe with all the pumps is created every time the excel is updated. This is not the optimal way to do it, but it is necessary to handle all possible changes not related with QR codes. ''' def __init__(self,parentFrame): self.xl = None self.parent = parentFrame self.xlWorkbook = None self.dirPath = os.path.expanduser('~\\Desktop\\REQUEST FORMS') def openXl(self): '''Tries to open excel. Launches excel if not open.''' self.restartObjects() try: self.xl = win32.GetActiveObject('Excel.Application') except: try: self.xl = win32.Dispatch('Excel.Application') except: self.parent.readyVar.set('Excel not available. Please make sure excel is installed') self.parent.readLbl.config(foreground = 'red') def saveExcel(self): '''Save excel file''' self.xlWorkbook.Save() def restartObjects(self): '''Sets all win32 objects references to None This is redundant, but was necessary to check possible problems ''' self.xl = None self.xlWorkbook = None self.xlWorkbookEvents = None def checkDate(self,date): '''Function that checks the date is valid ''' dateRegx = re.compile(r'(?:(?:31(\/|-|\.)(?:0?[13578]|1[02]))\1|(?:(?:29|30)(\/|-|\.)(?:0?[13-9]|1[0-2])\2))(?:(?:1[6-9]|[2-9]\d)?\d{2})$|^(?:29(\/|-|\.)0?2\3(?:(?:(?:1[6-9]|[2-9]\d)?(?:0[48]|[2468][048]|[13579][26])|(?:(?:16|[2468][048]|[3579][26])00))))$|^(?:0?[1-9]|1\d|2[0-8])(\/|-|\.)(?:(?:0?[1-9])|(?:1[0-2]))\4(?:(?:1[6-9]|[2-9]\d)?\d{2})') corrDate = re.search(dateRegx, date) if corrDate: return date else: raise ValueError def openWb(self,filePath): '''Opens an excel file selected by the user That file will be the one to work with ''' self.openXl() try: self.xlWorkbook = self.xl.Workbooks.Open(filePath) self.xlWorkbookEvents = win32.WithEvents(self.xlWorkbook, WorkbookEvents) self.parent.readyVar.set('{}'.format(filePath.split('/')[-1])) # Gets name of file self.parent.readLbl.config(foreground = 'green') self.xl.Visible = True self.readExcel() variableFile.excelOpen.set(tk.TRUE) except: self.parent.readyVar.set('ERROR opening excel. Contact support') def fillXlOpenList(self): '''Creates a list with all opened excel files This list corresponds to the values of combobox on GUI ''' try: self.xl = win32.GetActiveObject('Excel.Application') if self.xl.Workbooks.Count == 0: return [] else: xlList = [] for xl in range(1,self.xl.Workbooks.Count + 1): xlList.append(self.xl.Workbooks(xl).Name) return xlList except: return [] def selectWbActive(self,name): '''Sets the selected workbook as working workbook ''' self.openXl() try: self.xlWorkbook = self.xl.Workbooks(name) self.xlWorkbookEvents = win32.WithEvents(self.xlWorkbook,WorkbookEvents) self.parent.readyVar.set(name) self.parent.readLbl.config(foreground = 'green') self.xl.Visible = True self.readExcel() variableFile.excelOpen.set(tk.TRUE) except: self.parent.readyVar.set('Error with excel file. Please panic') self.parent.readLbl.config(foreground = 'red') def newWb(self,date=None): '''Creates new request file in REQUEST FORM folder If folder does not exists, it is created. The new file is a copy of the template included with the program. The file is named as REQUEST FORM + DATE. The date is introduced by the user through GUI ''' self.openXl() try: corrDate = self.checkDate(date) name = 'REQUEST FORM {}.xlsx'.format(corrDate) if not os.path.isdir(self.dirPath): os.mkdir(os.path.expanduser(self.dirPath)) # NOTE: folder template required to work source = os.path.join(os.path.dirname(__file__),'templates','REQUEST FORM TEMPLATE.xlsx') destiny = os.path.join(self.dirPath,name) if not os.path.isfile(os.path.join(self.dirPath,name)): shutil.copy(source, destiny) self.xlWorkbook = self.xl.Workbooks.Open(destiny) self.xlWorkbookEvents = win32.WithEvents(self.xlWorkbook,WorkbookEvents) self.xl.Visible = True self.parent.readyVar.set(name) self.parent.readLbl.config(foreground = 'green') self.xlWorkbook.Worksheets('Sheet1').Range('$B$1').Value = corrDate self.xlWorkbook.Save() variableFile.excelOpen.set(tk.TRUE) self.readExcel() else: self.parent.fileExists() except ValueError: self.parent.wrognDate() def readExcel(self): '''Reads current excel and creates a file with all pumps included File used to check duplicates and do analytics ''' try: self.values = self.xlWorkbook.Worksheets('Sheet1').UsedRange.Value except: print('No sheet called Sheet1') self.heads = self.values[1] # Request form heads are in row 2 vals = self.values[2:] # Values start at row 3 self.xlHeadsAI = [] # FIXME: if the excel has a column that is not in AI variableFile it will be a problem for head in self.heads: for key in variableFile.AI.keys(): if head in variableFile.AI[key]: self.xlHeadsAI.append(key[1:-1]) # removed first and last item corresponding to () tempDict = self.excelValToDict(vals) self.dfValues = pd.DataFrame(tempDict) if not self.dfValues.empty: self.dfValues = self.dfValues.convert_dtypes() # Converts columns types to the corresponding dtypes for col in self.dfValues.select_dtypes(include = 'string'): self.dfValues[col] = self.dfValues[col].str.normalize('NFKD') # Normalises unicode to include whitespaces (instead of \xa0) def excelValToDict(self,vals): '''Converts tuples from excel into a dictionary Columns correspond to excel head values ''' tempMap = map(list,zip(*vals)) # Transposes excel value tuples tempDict = dict(zip(self.heads,list(tempMap))) return tempDict def processChanges(self,n,m,x): '''Function that process changes on excel Splits last value changed by () to get AI and values Adds dictionary with AI as keys and values as values to existing df ''' readQR = str(variableFile.changedValue.get()) valsAI = [tuple(i.split(')')) for i in readQR.split('(')] tempList = [] try: # If multiple cells selected consider deleting isDelete = all(item is None for tup in literal_eval(readQR) for item in tup) except: isDelete = False # NOTE: headsAI dependent on Excel column names. If not correct, wrong results. if valsAI[0][0] == '' and not isDelete: # Input comes from QR for vals in valsAI: for head in self.xlHeadsAI: if vals[0] == head: tempList.append((self.heads[self.xlHeadsAI.index(head)],vals[1])) break if tempList: # Only append values if list not empty if self.dfValues.empty: self.dfValues = pd.DataFrame(columns = self.heads) #Make sure all columns are present in the df self.dfValues = self.dfValues.append(dict(tempList),ignore_index = True) self.dfValues.replace({np.nan: None}, inplace = True) self.writeExcel() elif isDelete: self.deleteCell(literal_eval(readQR)) self.formatExcel() else: # Update value introduced by user in dfValues modCell = self.multipleCellChange() try: self.dfValues.iloc[modCell[0],modCell[1]] = readQR except (IndexError, AttributeError) as _: # If user modifies cell after last row, read excel again self.readExcel() # If client request files has been loaded, update the table if self.parent.myParent.existsTable(): self.parent.myParent.updateTable(self.returnCountDevices()) def deleteCell(self,read): '''Function that proccesses the deleting of a cell/Range of cells''' modCell = self.multipleCellChange() tempDict = self.excelValToDict(read) tempDf =
pd.DataFrame(tempDict)
pandas.DataFrame
# coding=utf-8 # pylint: disable-msg=E1101,W0612 from datetime import datetime, timedelta import operator from itertools import product, starmap from numpy import nan, inf import numpy as np import pandas as pd from pandas import (Index, Series, DataFrame, isnull, bdate_range, NaT, date_range, timedelta_range, _np_version_under1p8) from pandas.tseries.index import Timestamp from pandas.tseries.tdi import Timedelta import pandas.core.nanops as nanops from pandas.compat import range, zip from pandas import compat from pandas.util.testing import assert_series_equal, assert_almost_equal import pandas.util.testing as tm from .common import TestData class TestSeriesOperators(TestData, tm.TestCase): _multiprocess_can_split_ = True def test_comparisons(self): left = np.random.randn(10) right = np.random.randn(10) left[:3] = np.nan result = nanops.nangt(left, right) with np.errstate(invalid='ignore'): expected = (left > right).astype('O') expected[:3] = np.nan assert_almost_equal(result, expected) s = Series(['a', 'b', 'c']) s2 = Series([False, True, False]) # it works! exp = Series([False, False, False]) tm.assert_series_equal(s == s2, exp) tm.assert_series_equal(s2 == s, exp) def test_op_method(self): def check(series, other, check_reverse=False): simple_ops = ['add', 'sub', 'mul', 'floordiv', 'truediv', 'pow'] if not compat.PY3: simple_ops.append('div') for opname in simple_ops: op = getattr(Series, opname) if op == 'div': alt = operator.truediv else: alt = getattr(operator, opname) result = op(series, other) expected = alt(series, other) tm.assert_almost_equal(result, expected) if check_reverse: rop = getattr(Series, "r" + opname) result = rop(series, other) expected = alt(other, series) tm.assert_almost_equal(result, expected) check(self.ts, self.ts * 2) check(self.ts, self.ts[::2]) check(self.ts, 5, check_reverse=True) check(tm.makeFloatSeries(), tm.makeFloatSeries(), check_reverse=True) def test_neg(self): assert_series_equal(-self.series, -1 * self.series) def test_invert(self): assert_series_equal(-(self.series < 0), ~(self.series < 0)) def test_div(self): with np.errstate(all='ignore'): # no longer do integer div for any ops, but deal with the 0's p = DataFrame({'first': [3, 4, 5, 8], 'second': [0, 0, 0, 3]}) result = p['first'] / p['second'] expected = Series( p['first'].values.astype(float) / p['second'].values, dtype='float64') expected.iloc[0:3] = np.inf assert_series_equal(result, expected) result = p['first'] / 0 expected = Series(np.inf, index=p.index, name='first') assert_series_equal(result, expected) p = p.astype('float64') result = p['first'] / p['second'] expected = Series(p['first'].values / p['second'].values) assert_series_equal(result, expected) p = DataFrame({'first': [3, 4, 5, 8], 'second': [1, 1, 1, 1]}) result = p['first'] / p['second'] assert_series_equal(result, p['first'].astype('float64'), check_names=False) self.assertTrue(result.name is None) self.assertFalse(np.array_equal(result, p['second'] / p['first'])) # inf signing s = Series([np.nan, 1., -1.]) result = s / 0 expected = Series([np.nan, np.inf, -np.inf]) assert_series_equal(result, expected) # float/integer issue # GH 7785 p = DataFrame({'first': (1, 0), 'second': (-0.01, -0.02)}) expected = Series([-0.01, -np.inf]) result = p['second'].div(p['first']) assert_series_equal(result, expected, check_names=False) result = p['second'] / p['first'] assert_series_equal(result, expected) # GH 9144 s = Series([-1, 0, 1]) result = 0 / s expected = Series([0.0, nan, 0.0]) assert_series_equal(result, expected) result = s / 0 expected = Series([-inf, nan, inf]) assert_series_equal(result, expected) result = s // 0 expected = Series([-inf, nan, inf]) assert_series_equal(result, expected) def test_operators(self): def _check_op(series, other, op, pos_only=False, check_dtype=True): left = np.abs(series) if pos_only else series right = np.abs(other) if pos_only else other cython_or_numpy = op(left, right) python = left.combine(right, op) tm.assert_series_equal(cython_or_numpy, python, check_dtype=check_dtype) def check(series, other): simple_ops = ['add', 'sub', 'mul', 'truediv', 'floordiv', 'mod'] for opname in simple_ops: _check_op(series, other, getattr(operator, opname)) _check_op(series, other, operator.pow, pos_only=True) _check_op(series, other, lambda x, y: operator.add(y, x)) _check_op(series, other, lambda x, y: operator.sub(y, x)) _check_op(series, other, lambda x, y: operator.truediv(y, x)) _check_op(series, other, lambda x, y: operator.floordiv(y, x)) _check_op(series, other, lambda x, y: operator.mul(y, x)) _check_op(series, other, lambda x, y: operator.pow(y, x), pos_only=True) _check_op(series, other, lambda x, y: operator.mod(y, x)) check(self.ts, self.ts * 2) check(self.ts, self.ts * 0) check(self.ts, self.ts[::2]) check(self.ts, 5) def check_comparators(series, other, check_dtype=True): _check_op(series, other, operator.gt, check_dtype=check_dtype) _check_op(series, other, operator.ge, check_dtype=check_dtype) _check_op(series, other, operator.eq, check_dtype=check_dtype) _check_op(series, other, operator.lt, check_dtype=check_dtype) _check_op(series, other, operator.le, check_dtype=check_dtype) check_comparators(self.ts, 5) check_comparators(self.ts, self.ts + 1, check_dtype=False) def test_operators_empty_int_corner(self): s1 = Series([], [], dtype=np.int32) s2 = Series({'x': 0.}) tm.assert_series_equal(s1 * s2, Series([np.nan], index=['x'])) def test_operators_timedelta64(self): # invalid ops self.assertRaises(Exception, self.objSeries.__add__, 1) self.assertRaises(Exception, self.objSeries.__add__, np.array(1, dtype=np.int64)) self.assertRaises(Exception, self.objSeries.__sub__, 1) self.assertRaises(Exception, self.objSeries.__sub__, np.array(1, dtype=np.int64)) # seriese ops v1 = date_range('2012-1-1', periods=3, freq='D') v2 = date_range('2012-1-2', periods=3, freq='D') rs = Series(v2) - Series(v1) xp = Series(1e9 * 3600 * 24, rs.index).astype('int64').astype('timedelta64[ns]') assert_series_equal(rs, xp) self.assertEqual(rs.dtype, 'timedelta64[ns]') df = DataFrame(dict(A=v1)) td = Series([timedelta(days=i) for i in range(3)]) self.assertEqual(td.dtype, 'timedelta64[ns]') # series on the rhs result = df['A'] - df['A'].shift() self.assertEqual(result.dtype, 'timedelta64[ns]') result = df['A'] + td self.assertEqual(result.dtype, 'M8[ns]') # scalar Timestamp on rhs maxa = df['A'].max() tm.assertIsInstance(maxa, Timestamp) resultb = df['A'] - df['A'].max() self.assertEqual(resultb.dtype, 'timedelta64[ns]') # timestamp on lhs result = resultb + df['A'] values = [Timestamp('20111230'), Timestamp('20120101'), Timestamp('20120103')] expected = Series(values, name='A') assert_series_equal(result, expected) # datetimes on rhs result = df['A'] - datetime(2001, 1, 1) expected = Series( [timedelta(days=4017 + i) for i in range(3)], name='A') assert_series_equal(result, expected) self.assertEqual(result.dtype, 'm8[ns]') d = datetime(2001, 1, 1, 3, 4) resulta = df['A'] - d self.assertEqual(resulta.dtype, 'm8[ns]') # roundtrip resultb = resulta + d assert_series_equal(df['A'], resultb) # timedeltas on rhs td = timedelta(days=1) resulta = df['A'] + td resultb = resulta - td assert_series_equal(resultb, df['A']) self.assertEqual(resultb.dtype, 'M8[ns]') # roundtrip td = timedelta(minutes=5, seconds=3) resulta = df['A'] + td resultb = resulta - td assert_series_equal(df['A'], resultb) self.assertEqual(resultb.dtype, 'M8[ns]') # inplace value = rs[2] + np.timedelta64(timedelta(minutes=5, seconds=1)) rs[2] += np.timedelta64(timedelta(minutes=5, seconds=1)) self.assertEqual(rs[2], value) def test_operator_series_comparison_zerorank(self): # GH 13006 result = np.float64(0) > pd.Series([1, 2, 3]) expected = 0.0 > pd.Series([1, 2, 3]) self.assert_series_equal(result, expected) result = pd.Series([1, 2, 3]) < np.float64(0) expected = pd.Series([1, 2, 3]) < 0.0 self.assert_series_equal(result, expected) result = np.array([0, 1, 2])[0] > pd.Series([0, 1, 2]) expected = 0.0 > pd.Series([1, 2, 3]) self.assert_series_equal(result, expected) def test_timedeltas_with_DateOffset(self): # GH 4532 # operate with pd.offsets s = Series([Timestamp('20130101 9:01'), Timestamp('20130101 9:02')]) result = s + pd.offsets.Second(5) result2 = pd.offsets.Second(5) + s expected = Series([Timestamp('20130101 9:01:05'), Timestamp( '20130101 9:02:05')]) assert_series_equal(result, expected) assert_series_equal(result2, expected) result = s - pd.offsets.Second(5) result2 = -pd.offsets.Second(5) + s expected = Series([Timestamp('20130101 9:00:55'), Timestamp( '20130101 9:01:55')]) assert_series_equal(result, expected) assert_series_equal(result2, expected) result = s + pd.offsets.Milli(5) result2 = pd.offsets.Milli(5) + s expected = Series([Timestamp('20130101 9:01:00.005'), Timestamp( '20130101 9:02:00.005')]) assert_series_equal(result, expected) assert_series_equal(result2, expected) result = s + pd.offsets.Minute(5) + pd.offsets.Milli(5) expected = Series([Timestamp('20130101 9:06:00.005'), Timestamp( '20130101 9:07:00.005')]) assert_series_equal(result, expected) # operate with np.timedelta64 correctly result = s + np.timedelta64(1, 's') result2 = np.timedelta64(1, 's') + s expected = Series([Timestamp('20130101 9:01:01'), Timestamp( '20130101 9:02:01')]) assert_series_equal(result, expected) assert_series_equal(result2, expected) result = s + np.timedelta64(5, 'ms') result2 = np.timedelta64(5, 'ms') + s expected = Series([Timestamp('20130101 9:01:00.005'), Timestamp( '20130101 9:02:00.005')]) assert_series_equal(result, expected) assert_series_equal(result2, expected) # valid DateOffsets for do in ['Hour', 'Minute', 'Second', 'Day', 'Micro', 'Milli', 'Nano']: op = getattr(pd.offsets, do) s + op(5) op(5) + s def test_timedelta_series_ops(self): # GH11925 s = Series(timedelta_range('1 day', periods=3)) ts = Timestamp('2012-01-01') expected = Series(date_range('2012-01-02', periods=3)) assert_series_equal(ts + s, expected) assert_series_equal(s + ts, expected) expected2 = Series(date_range('2011-12-31', periods=3, freq='-1D')) assert_series_equal(ts - s, expected2) assert_series_equal(ts + (-s), expected2) def test_timedelta64_operations_with_DateOffset(self): # GH 10699 td = Series([timedelta(minutes=5, seconds=3)] * 3) result = td + pd.offsets.Minute(1) expected = Series([timedelta(minutes=6, seconds=3)] * 3) assert_series_equal(result, expected) result = td - pd.offsets.Minute(1) expected = Series([timedelta(minutes=4, seconds=3)] * 3) assert_series_equal(result, expected) result = td + Series([pd.offsets.Minute(1), pd.offsets.Second(3), pd.offsets.Hour(2)]) expected = Series([timedelta(minutes=6, seconds=3), timedelta( minutes=5, seconds=6), timedelta(hours=2, minutes=5, seconds=3)]) assert_series_equal(result, expected) result = td + pd.offsets.Minute(1) + pd.offsets.Second(12) expected = Series([timedelta(minutes=6, seconds=15)] * 3) assert_series_equal(result, expected) # valid DateOffsets for do in ['Hour', 'Minute', 'Second', 'Day', 'Micro', 'Milli', 'Nano']: op = getattr(pd.offsets, do) td + op(5) op(5) + td td - op(5) op(5) - td def test_timedelta64_operations_with_timedeltas(self): # td operate with td td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td2 = timedelta(minutes=5, seconds=4) result = td1 - td2 expected = Series([timedelta(seconds=0)] * 3) - Series([timedelta( seconds=1)] * 3) self.assertEqual(result.dtype, 'm8[ns]') assert_series_equal(result, expected) result2 = td2 - td1 expected = (Series([timedelta(seconds=1)] * 3) - Series([timedelta( seconds=0)] * 3)) assert_series_equal(result2, expected) # roundtrip assert_series_equal(result + td2, td1) # Now again, using pd.to_timedelta, which should build # a Series or a scalar, depending on input. td1 = Series(pd.to_timedelta(['00:05:03'] * 3)) td2 = pd.to_timedelta('00:05:04') result = td1 - td2 expected = Series([timedelta(seconds=0)] * 3) - Series([timedelta( seconds=1)] * 3) self.assertEqual(result.dtype, 'm8[ns]') assert_series_equal(result, expected) result2 = td2 - td1 expected = (Series([timedelta(seconds=1)] * 3) - Series([timedelta( seconds=0)] * 3)) assert_series_equal(result2, expected) # roundtrip assert_series_equal(result + td2, td1) def test_timedelta64_operations_with_integers(self): # GH 4521 # divide/multiply by integers startdate = Series(date_range('2013-01-01', '2013-01-03')) enddate = Series(date_range('2013-03-01', '2013-03-03')) s1 = enddate - startdate s1[2] = np.nan s2 = Series([2, 3, 4]) expected = Series(s1.values.astype(np.int64) / s2, dtype='m8[ns]') expected[2] = np.nan result = s1 / s2 assert_series_equal(result, expected) s2 = Series([20, 30, 40]) expected = Series(s1.values.astype(np.int64) / s2, dtype='m8[ns]') expected[2] = np.nan result = s1 / s2 assert_series_equal(result, expected) result = s1 / 2 expected = Series(s1.values.astype(np.int64) / 2, dtype='m8[ns]') expected[2] = np.nan assert_series_equal(result, expected) s2 = Series([20, 30, 40]) expected = Series(s1.values.astype(np.int64) * s2, dtype='m8[ns]') expected[2] = np.nan result = s1 * s2 assert_series_equal(result, expected) for dtype in ['int32', 'int16', 'uint32', 'uint64', 'uint32', 'uint16', 'uint8']: s2 = Series([20, 30, 40], dtype=dtype) expected = Series( s1.values.astype(np.int64) * s2.astype(np.int64), dtype='m8[ns]') expected[2] = np.nan result = s1 * s2 assert_series_equal(result, expected) result = s1 * 2 expected = Series(s1.values.astype(np.int64) * 2, dtype='m8[ns]') expected[2] = np.nan assert_series_equal(result, expected) result = s1 * -1 expected = Series(s1.values.astype(np.int64) * -1, dtype='m8[ns]') expected[2] = np.nan assert_series_equal(result, expected) # invalid ops assert_series_equal(s1 / s2.astype(float), Series([Timedelta('2 days 22:48:00'), Timedelta( '1 days 23:12:00'), Timedelta('NaT')])) assert_series_equal(s1 / 2.0, Series([Timedelta('29 days 12:00:00'), Timedelta( '29 days 12:00:00'), Timedelta('NaT')])) for op in ['__add__', '__sub__']: sop = getattr(s1, op, None) if sop is not None: self.assertRaises(TypeError, sop, 1) self.assertRaises(TypeError, sop, s2.values) def test_timedelta64_conversions(self): startdate = Series(date_range('2013-01-01', '2013-01-03')) enddate = Series(date_range('2013-03-01', '2013-03-03')) s1 = enddate - startdate s1[2] = np.nan for m in [1, 3, 10]: for unit in ['D', 'h', 'm', 's', 'ms', 'us', 'ns']: # op expected = s1.apply(lambda x: x / np.timedelta64(m, unit)) result = s1 / np.timedelta64(m, unit) assert_series_equal(result, expected) if m == 1 and unit != 'ns': # astype result = s1.astype("timedelta64[{0}]".format(unit)) assert_series_equal(result, expected) # reverse op expected = s1.apply( lambda x: Timedelta(np.timedelta64(m, unit)) / x) result = np.timedelta64(m, unit) / s1 # astype s = Series(date_range('20130101', periods=3)) result = s.astype(object) self.assertIsInstance(result.iloc[0], datetime) self.assertTrue(result.dtype == np.object_) result = s1.astype(object) self.assertIsInstance(result.iloc[0], timedelta) self.assertTrue(result.dtype == np.object_) def test_timedelta64_equal_timedelta_supported_ops(self): ser = Series([Timestamp('20130301'), Timestamp('20130228 23:00:00'), Timestamp('20130228 22:00:00'), Timestamp( '20130228 21:00:00')]) intervals = 'D', 'h', 'm', 's', 'us' # TODO: unused # npy16_mappings = {'D': 24 * 60 * 60 * 1000000, # 'h': 60 * 60 * 1000000, # 'm': 60 * 1000000, # 's': 1000000, # 'us': 1} def timedelta64(*args): return sum(starmap(np.timedelta64, zip(args, intervals))) for op, d, h, m, s, us in product([operator.add, operator.sub], *([range(2)] * 5)): nptd = timedelta64(d, h, m, s, us) pytd = timedelta(days=d, hours=h, minutes=m, seconds=s, microseconds=us) lhs = op(ser, nptd) rhs = op(ser, pytd) try: assert_series_equal(lhs, rhs) except: raise AssertionError( "invalid comparsion [op->{0},d->{1},h->{2},m->{3}," "s->{4},us->{5}]\n{6}\n{7}\n".format(op, d, h, m, s, us, lhs, rhs)) def test_operators_datetimelike(self): def run_ops(ops, get_ser, test_ser): # check that we are getting a TypeError # with 'operate' (from core/ops.py) for the ops that are not # defined for op_str in ops: op = getattr(get_ser, op_str, None) with tm.assertRaisesRegexp(TypeError, 'operate'): op(test_ser) # ## timedelta64 ### td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td1.iloc[2] = np.nan td2 = timedelta(minutes=5, seconds=4) ops = ['__mul__', '__floordiv__', '__pow__', '__rmul__', '__rfloordiv__', '__rpow__'] run_ops(ops, td1, td2) td1 + td2 td2 + td1 td1 - td2 td2 - td1 td1 / td2 td2 / td1 # ## datetime64 ### dt1 = Series([Timestamp('20111230'), Timestamp('20120101'), Timestamp('20120103')]) dt1.iloc[2] = np.nan dt2 = Series([Timestamp('20111231'), Timestamp('20120102'), Timestamp('20120104')]) ops = ['__add__', '__mul__', '__floordiv__', '__truediv__', '__div__', '__pow__', '__radd__', '__rmul__', '__rfloordiv__', '__rtruediv__', '__rdiv__', '__rpow__'] run_ops(ops, dt1, dt2) dt1 - dt2 dt2 - dt1 # ## datetime64 with timetimedelta ### ops = ['__mul__', '__floordiv__', '__truediv__', '__div__', '__pow__', '__rmul__', '__rfloordiv__', '__rtruediv__', '__rdiv__', '__rpow__'] run_ops(ops, dt1, td1) dt1 + td1 td1 + dt1 dt1 - td1 # TODO: Decide if this ought to work. # td1 - dt1 # ## timetimedelta with datetime64 ### ops = ['__sub__', '__mul__', '__floordiv__', '__truediv__', '__div__', '__pow__', '__rmul__', '__rfloordiv__', '__rtruediv__', '__rdiv__', '__rpow__'] run_ops(ops, td1, dt1) td1 + dt1 dt1 + td1 # 8260, 10763 # datetime64 with tz ops = ['__mul__', '__floordiv__', '__truediv__', '__div__', '__pow__', '__rmul__', '__rfloordiv__', '__rtruediv__', '__rdiv__', '__rpow__'] tz = 'US/Eastern' dt1 = Series(date_range('2000-01-01 09:00:00', periods=5, tz=tz), name='foo') dt2 = dt1.copy() dt2.iloc[2] = np.nan td1 = Series(timedelta_range('1 days 1 min', periods=5, freq='H')) td2 = td1.copy() td2.iloc[1] = np.nan run_ops(ops, dt1, td1) result = dt1 + td1[0] exp = (dt1.dt.tz_localize(None) + td1[0]).dt.tz_localize(tz) assert_series_equal(result, exp) result = dt2 + td2[0] exp = (dt2.dt.tz_localize(None) + td2[0]).dt.tz_localize(tz) assert_series_equal(result, exp) # odd numpy behavior with scalar timedeltas if not _np_version_under1p8: result = td1[0] + dt1 exp = (dt1.dt.tz_localize(None) + td1[0]).dt.tz_localize(tz) assert_series_equal(result, exp) result = td2[0] + dt2 exp = (dt2.dt.tz_localize(None) + td2[0]).dt.tz_localize(tz) assert_series_equal(result, exp) result = dt1 - td1[0] exp = (dt1.dt.tz_localize(None) - td1[0]).dt.tz_localize(tz) assert_series_equal(result, exp) self.assertRaises(TypeError, lambda: td1[0] - dt1) result = dt2 - td2[0] exp = (dt2.dt.tz_localize(None) - td2[0]).dt.tz_localize(tz) assert_series_equal(result, exp) self.assertRaises(TypeError, lambda: td2[0] - dt2) result = dt1 + td1 exp = (dt1.dt.tz_localize(None) + td1).dt.tz_localize(tz) assert_series_equal(result, exp) result = dt2 + td2 exp = (dt2.dt.tz_localize(None) + td2).dt.tz_localize(tz) assert_series_equal(result, exp) result = dt1 - td1 exp = (dt1.dt.tz_localize(None) - td1).dt.tz_localize(tz) assert_series_equal(result, exp) result = dt2 - td2 exp = (dt2.dt.tz_localize(None) - td2).dt.tz_localize(tz) assert_series_equal(result, exp) self.assertRaises(TypeError, lambda: td1 - dt1) self.assertRaises(TypeError, lambda: td2 - dt2) def test_sub_single_tz(self): # GH12290 s1 = Series([pd.Timestamp('2016-02-10', tz='America/Sao_Paulo')]) s2 = Series([pd.Timestamp('2016-02-08', tz='America/Sao_Paulo')]) result = s1 - s2 expected = Series([Timedelta('2days')]) assert_series_equal(result, expected) result = s2 - s1 expected = Series([Timedelta('-2days')]) assert_series_equal(result, expected) def test_ops_nat(self): # GH 11349 timedelta_series = Series([NaT, Timedelta('1s')]) datetime_series = Series([NaT, Timestamp('19900315')]) nat_series_dtype_timedelta = Series( [NaT, NaT], dtype='timedelta64[ns]') nat_series_dtype_timestamp = Series([NaT, NaT], dtype='datetime64[ns]') single_nat_dtype_datetime = Series([NaT], dtype='datetime64[ns]') single_nat_dtype_timedelta = Series([NaT], dtype='timedelta64[ns]') # subtraction assert_series_equal(timedelta_series - NaT, nat_series_dtype_timedelta) assert_series_equal(-NaT + timedelta_series, nat_series_dtype_timedelta) assert_series_equal(timedelta_series - single_nat_dtype_timedelta, nat_series_dtype_timedelta) assert_series_equal(-single_nat_dtype_timedelta + timedelta_series, nat_series_dtype_timedelta) assert_series_equal(datetime_series - NaT, nat_series_dtype_timestamp) assert_series_equal(-NaT + datetime_series, nat_series_dtype_timestamp) assert_series_equal(datetime_series - single_nat_dtype_datetime, nat_series_dtype_timedelta) with tm.assertRaises(TypeError): -single_nat_dtype_datetime + datetime_series assert_series_equal(datetime_series - single_nat_dtype_timedelta, nat_series_dtype_timestamp) assert_series_equal(-single_nat_dtype_timedelta + datetime_series, nat_series_dtype_timestamp) # without a Series wrapping the NaT, it is ambiguous # whether it is a datetime64 or timedelta64 # defaults to interpreting it as timedelta64 assert_series_equal(nat_series_dtype_timestamp - NaT, nat_series_dtype_timestamp) assert_series_equal(-NaT + nat_series_dtype_timestamp, nat_series_dtype_timestamp) assert_series_equal(nat_series_dtype_timestamp - single_nat_dtype_datetime, nat_series_dtype_timedelta) with tm.assertRaises(TypeError): -single_nat_dtype_datetime + nat_series_dtype_timestamp assert_series_equal(nat_series_dtype_timestamp - single_nat_dtype_timedelta, nat_series_dtype_timestamp) assert_series_equal(-single_nat_dtype_timedelta + nat_series_dtype_timestamp, nat_series_dtype_timestamp) with tm.assertRaises(TypeError): timedelta_series - single_nat_dtype_datetime # addition assert_series_equal(nat_series_dtype_timestamp + NaT, nat_series_dtype_timestamp) assert_series_equal(NaT + nat_series_dtype_timestamp, nat_series_dtype_timestamp) assert_series_equal(nat_series_dtype_timestamp + single_nat_dtype_timedelta, nat_series_dtype_timestamp) assert_series_equal(single_nat_dtype_timedelta + nat_series_dtype_timestamp, nat_series_dtype_timestamp) assert_series_equal(nat_series_dtype_timedelta + NaT, nat_series_dtype_timedelta) assert_series_equal(NaT + nat_series_dtype_timedelta, nat_series_dtype_timedelta) assert_series_equal(nat_series_dtype_timedelta + single_nat_dtype_timedelta, nat_series_dtype_timedelta) assert_series_equal(single_nat_dtype_timedelta + nat_series_dtype_timedelta, nat_series_dtype_timedelta) assert_series_equal(timedelta_series + NaT, nat_series_dtype_timedelta) assert_series_equal(NaT + timedelta_series, nat_series_dtype_timedelta) assert_series_equal(timedelta_series + single_nat_dtype_timedelta, nat_series_dtype_timedelta) assert_series_equal(single_nat_dtype_timedelta + timedelta_series, nat_series_dtype_timedelta) assert_series_equal(nat_series_dtype_timestamp + NaT, nat_series_dtype_timestamp) assert_series_equal(NaT + nat_series_dtype_timestamp, nat_series_dtype_timestamp) assert_series_equal(nat_series_dtype_timestamp + single_nat_dtype_timedelta, nat_series_dtype_timestamp) assert_series_equal(single_nat_dtype_timedelta + nat_series_dtype_timestamp, nat_series_dtype_timestamp) assert_series_equal(nat_series_dtype_timedelta + NaT, nat_series_dtype_timedelta) assert_series_equal(NaT + nat_series_dtype_timedelta, nat_series_dtype_timedelta) assert_series_equal(nat_series_dtype_timedelta + single_nat_dtype_timedelta, nat_series_dtype_timedelta) assert_series_equal(single_nat_dtype_timedelta + nat_series_dtype_timedelta, nat_series_dtype_timedelta) assert_series_equal(nat_series_dtype_timedelta + single_nat_dtype_datetime, nat_series_dtype_timestamp) assert_series_equal(single_nat_dtype_datetime + nat_series_dtype_timedelta, nat_series_dtype_timestamp) # multiplication assert_series_equal(nat_series_dtype_timedelta * 1.0, nat_series_dtype_timedelta) assert_series_equal(1.0 * nat_series_dtype_timedelta, nat_series_dtype_timedelta) assert_series_equal(timedelta_series * 1, timedelta_series) assert_series_equal(1 * timedelta_series, timedelta_series) assert_series_equal(timedelta_series * 1.5, Series([NaT, Timedelta('1.5s')])) assert_series_equal(1.5 * timedelta_series, Series([NaT, Timedelta('1.5s')])) assert_series_equal(timedelta_series * nan, nat_series_dtype_timedelta) assert_series_equal(nan * timedelta_series, nat_series_dtype_timedelta) with tm.assertRaises(TypeError): datetime_series * 1 with tm.assertRaises(TypeError): nat_series_dtype_timestamp * 1 with tm.assertRaises(TypeError): datetime_series * 1.0 with tm.assertRaises(TypeError): nat_series_dtype_timestamp * 1.0 # division assert_series_equal(timedelta_series / 2, Series([NaT, Timedelta('0.5s')])) assert_series_equal(timedelta_series / 2.0, Series([NaT, Timedelta('0.5s')])) assert_series_equal(timedelta_series / nan, nat_series_dtype_timedelta) with tm.assertRaises(TypeError): nat_series_dtype_timestamp / 1.0 with tm.assertRaises(TypeError): nat_series_dtype_timestamp / 1 def test_ops_datetimelike_align(self): # GH 7500 # datetimelike ops need to align dt = Series(date_range('2012-1-1', periods=3, freq='D')) dt.iloc[2] = np.nan dt2 = dt[::-1] expected = Series([timedelta(0), timedelta(0), pd.NaT]) # name is reset result = dt2 - dt assert_series_equal(result, expected) expected = Series(expected, name=0) result = (dt2.to_frame() - dt.to_frame())[0] assert_series_equal(result, expected) def test_object_comparisons(self): s = Series(['a', 'b', np.nan, 'c', 'a']) result = s == 'a' expected = Series([True, False, False, False, True]) assert_series_equal(result, expected) result = s < 'a' expected = Series([False, False, False, False, False]) assert_series_equal(result, expected) result = s != 'a' expected = -(s == 'a') assert_series_equal(result, expected) def test_comparison_tuples(self): # GH11339 # comparisons vs tuple s = Series([(1, 1), (1, 2)]) result = s == (1, 2) expected = Series([False, True]) assert_series_equal(result, expected) result = s != (1, 2) expected = Series([True, False]) assert_series_equal(result, expected) result = s == (0, 0) expected = Series([False, False]) assert_series_equal(result, expected) result = s != (0, 0) expected = Series([True, True]) assert_series_equal(result, expected) s = Series([(1, 1), (1, 1)]) result = s == (1, 1) expected = Series([True, True]) assert_series_equal(result, expected) result = s != (1, 1) expected = Series([False, False]) assert_series_equal(result, expected) s = Series([frozenset([1]), frozenset([1, 2])]) result = s == frozenset([1]) expected = Series([True, False]) assert_series_equal(result, expected) def test_comparison_operators_with_nas(self): s = Series(bdate_range('1/1/2000', periods=10), dtype=object) s[::2] = np.nan # test that comparisons work ops = ['lt', 'le', 'gt', 'ge', 'eq', 'ne'] for op in ops: val = s[5] f = getattr(operator, op) result = f(s, val) expected = f(s.dropna(), val).reindex(s.index) if op == 'ne': expected = expected.fillna(True).astype(bool) else: expected = expected.fillna(False).astype(bool) assert_series_equal(result, expected) # fffffffuuuuuuuuuuuu # result = f(val, s) # expected = f(val, s.dropna()).reindex(s.index) # assert_series_equal(result, expected) # boolean &, |, ^ should work with object arrays and propagate NAs ops = ['and_', 'or_', 'xor'] mask = s.isnull() for bool_op in ops: f = getattr(operator, bool_op) filled = s.fillna(s[0]) result = f(s < s[9], s > s[3]) expected = f(filled < filled[9], filled > filled[3]) expected[mask] = False assert_series_equal(result, expected) def test_comparison_object_numeric_nas(self): s = Series(np.random.randn(10), dtype=object) shifted = s.shift(2) ops = ['lt', 'le', 'gt', 'ge', 'eq', 'ne'] for op in ops: f = getattr(operator, op) result = f(s, shifted) expected = f(s.astype(float), shifted.astype(float)) assert_series_equal(result, expected) def test_comparison_invalid(self): # GH4968 # invalid date/int comparisons s = Series(range(5)) s2 = Series(date_range('20010101', periods=5)) for (x, y) in [(s, s2), (s2, s)]: self.assertRaises(TypeError, lambda: x == y) self.assertRaises(TypeError, lambda: x != y) self.assertRaises(TypeError, lambda: x >= y) self.assertRaises(TypeError, lambda: x > y) self.assertRaises(TypeError, lambda: x < y) self.assertRaises(TypeError, lambda: x <= y) def test_more_na_comparisons(self): for dtype in [None, object]: left = Series(['a', np.nan, 'c'], dtype=dtype) right = Series(['a', np.nan, 'd'], dtype=dtype) result = left == right expected = Series([True, False, False]) assert_series_equal(result, expected) result = left != right expected = Series([False, True, True]) assert_series_equal(result, expected) result = left == np.nan expected = Series([False, False, False]) assert_series_equal(result, expected) result = left != np.nan expected = Series([True, True, True]) assert_series_equal(result, expected) def test_nat_comparisons(self): data = [([pd.Timestamp('2011-01-01'), pd.NaT, pd.Timestamp('2011-01-03')], [pd.NaT, pd.NaT, pd.Timestamp('2011-01-03')]), ([pd.Timedelta('1 days'), pd.NaT, pd.Timedelta('3 days')], [pd.NaT, pd.NaT, pd.Timedelta('3 days')]), ([pd.Period('2011-01', freq='M'), pd.NaT, pd.Period('2011-03', freq='M')], [pd.NaT, pd.NaT, pd.Period('2011-03', freq='M')])] # add lhs / rhs switched data data = data + [(r, l) for l, r in data] for l, r in data: for dtype in [None, object]: left = Series(l, dtype=dtype) # Series, Index for right in [Series(r, dtype=dtype), Index(r, dtype=dtype)]: expected = Series([False, False, True]) assert_series_equal(left == right, expected) expected = Series([True, True, False]) assert_series_equal(left != right, expected) expected = Series([False, False, False]) assert_series_equal(left < right, expected) expected = Series([False, False, False]) assert_series_equal(left > right, expected) expected = Series([False, False, True]) assert_series_equal(left >= right, expected) expected = Series([False, False, True]) assert_series_equal(left <= right, expected) def test_nat_comparisons_scalar(self): data = [[pd.Timestamp('2011-01-01'), pd.NaT, pd.Timestamp('2011-01-03')], [pd.Timedelta('1 days'), pd.NaT, pd.Timedelta('3 days')], [pd.Period('2011-01', freq='M'), pd.NaT, pd.Period('2011-03', freq='M')]] for l in data: for dtype in [None, object]: left = Series(l, dtype=dtype) expected = Series([False, False, False]) assert_series_equal(left == pd.NaT, expected) assert_series_equal(pd.NaT == left, expected) expected = Series([True, True, True]) assert_series_equal(left != pd.NaT, expected) assert_series_equal(pd.NaT != left, expected) expected = Series([False, False, False]) assert_series_equal(left < pd.NaT, expected) assert_series_equal(pd.NaT > left, expected) assert_series_equal(left <= pd.NaT, expected) assert_series_equal(pd.NaT >= left, expected) assert_series_equal(left > pd.NaT, expected) assert_series_equal(pd.NaT < left, expected) assert_series_equal(left >= pd.NaT, expected) assert_series_equal(pd.NaT <= left, expected) def test_comparison_different_length(self): a = Series(['a', 'b', 'c']) b = Series(['b', 'a']) self.assertRaises(ValueError, a.__lt__, b) a = Series([1, 2]) b = Series([2, 3, 4]) self.assertRaises(ValueError, a.__eq__, b) def test_comparison_label_based(self): # GH 4947 # comparisons should be label based a = Series([True, False, True], list('bca')) b = Series([False, True, False], list('abc')) expected = Series([False, True, False], list('abc')) result = a & b assert_series_equal(result, expected) expected = Series([True, True, False], list('abc')) result = a | b assert_series_equal(result, expected) expected = Series([True, False, False], list('abc')) result = a ^ b assert_series_equal(result, expected) # rhs is bigger a = Series([True, False, True], list('bca')) b = Series([False, True, False, True], list('abcd')) expected = Series([False, True, False, False], list('abcd')) result = a & b assert_series_equal(result, expected) expected = Series([True, True, False, False], list('abcd')) result = a | b assert_series_equal(result, expected) # filling # vs empty result = a & Series([]) expected = Series([False, False, False], list('bca')) assert_series_equal(result, expected) result = a | Series([]) expected = Series([True, False, True], list('bca')) assert_series_equal(result, expected) # vs non-matching result = a & Series([1], ['z']) expected = Series([False, False, False, False], list('abcz')) assert_series_equal(result, expected) result = a | Series([1], ['z']) expected = Series([True, True, False, False], list('abcz')) assert_series_equal(result, expected) # identity # we would like s[s|e] == s to hold for any e, whether empty or not for e in [Series([]), Series([1], ['z']), Series(np.nan, b.index), Series(np.nan, a.index)]: result = a[a | e] assert_series_equal(result, a[a]) for e in [Series(['z'])]: if compat.PY3: with tm.assert_produces_warning(RuntimeWarning): result = a[a | e] else: result = a[a | e] assert_series_equal(result, a[a]) # vs scalars index = list('bca') t = Series([True, False, True]) for v in [True, 1, 2]: result = Series([True, False, True], index=index) | v expected = Series([True, True, True], index=index) assert_series_equal(result, expected) for v in [np.nan, 'foo']: self.assertRaises(TypeError, lambda: t | v) for v in [False, 0]: result = Series([True, False, True], index=index) | v expected = Series([True, False, True], index=index) assert_series_equal(result, expected) for v in [True, 1]: result = Series([True, False, True], index=index) & v expected = Series([True, False, True], index=index) assert_series_equal(result, expected) for v in [False, 0]: result = Series([True, False, True], index=index) & v expected = Series([False, False, False], index=index) assert_series_equal(result, expected) for v in [np.nan]: self.assertRaises(TypeError, lambda: t & v) def test_comparison_flex_basic(self): left = pd.Series(np.random.randn(10)) right = pd.Series(np.random.randn(10)) tm.assert_series_equal(left.eq(right), left == right) tm.assert_series_equal(left.ne(right), left != right) tm.assert_series_equal(left.le(right), left < right) tm.assert_series_equal(left.lt(right), left <= right) tm.assert_series_equal(left.gt(right), left > right) tm.assert_series_equal(left.ge(right), left >= right) # axis for axis in [0, None, 'index']: tm.assert_series_equal(left.eq(right, axis=axis), left == right) tm.assert_series_equal(left.ne(right, axis=axis), left != right) tm.assert_series_equal(left.le(right, axis=axis), left < right) tm.assert_series_equal(left.lt(right, axis=axis), left <= right) tm.assert_series_equal(left.gt(right, axis=axis), left > right) tm.assert_series_equal(left.ge(right, axis=axis), left >= right) # msg = 'No axis named 1 for object type' for op in ['eq', 'ne', 'le', 'le', 'gt', 'ge']: with tm.assertRaisesRegexp(ValueError, msg): getattr(left, op)(right, axis=1) def test_comparison_flex_alignment(self): left = Series([1, 3, 2], index=list('abc')) right = Series([2, 2, 2], index=list('bcd')) exp = pd.Series([False, False, True, False], index=list('abcd')) tm.assert_series_equal(left.eq(right), exp) exp = pd.Series([True, True, False, True], index=list('abcd')) tm.assert_series_equal(left.ne(right), exp) exp = pd.Series([False, False, True, False], index=list('abcd')) tm.assert_series_equal(left.le(right), exp) exp = pd.Series([False, False, False, False], index=list('abcd')) tm.assert_series_equal(left.lt(right), exp) exp = pd.Series([False, True, True, False], index=list('abcd')) tm.assert_series_equal(left.ge(right), exp) exp = pd.Series([False, True, False, False], index=list('abcd')) tm.assert_series_equal(left.gt(right), exp) def test_comparison_flex_alignment_fill(self): left = Series([1, 3, 2], index=list('abc')) right = Series([2, 2, 2], index=list('bcd')) exp = pd.Series([False, False, True, True], index=list('abcd')) tm.assert_series_equal(left.eq(right, fill_value=2), exp) exp = pd.Series([True, True, False, False], index=list('abcd')) tm.assert_series_equal(left.ne(right, fill_value=2), exp) exp = pd.Series([False, False, True, True], index=list('abcd')) tm.assert_series_equal(left.le(right, fill_value=0), exp) exp = pd.Series([False, False, False, True], index=list('abcd')) tm.assert_series_equal(left.lt(right, fill_value=0), exp) exp = pd.Series([True, True, True, False], index=list('abcd')) tm.assert_series_equal(left.ge(right, fill_value=0), exp) exp = pd.Series([True, True, False, False], index=list('abcd')) tm.assert_series_equal(left.gt(right, fill_value=0), exp) def test_operators_bitwise(self): # GH 9016: support bitwise op for integer types index = list('bca') s_tft = Series([True, False, True], index=index) s_fff = Series([False, False, False], index=index) s_tff = Series([True, False, False], index=index) s_empty = Series([]) # TODO: unused # s_0101 = Series([0, 1, 0, 1]) s_0123 = Series(range(4), dtype='int64') s_3333 = Series([3] * 4) s_4444 = Series([4] * 4) res = s_tft & s_empty expected = s_fff assert_series_equal(res, expected) res = s_tft | s_empty expected = s_tft assert_series_equal(res, expected) res = s_0123 & s_3333 expected = Series(range(4), dtype='int64') assert_series_equal(res, expected) res = s_0123 | s_4444 expected = Series(range(4, 8), dtype='int64') assert_series_equal(res, expected) s_a0b1c0 = Series([1], list('b')) res = s_tft & s_a0b1c0 expected = s_tff.reindex(list('abc')) assert_series_equal(res, expected) res = s_tft | s_a0b1c0 expected = s_tft.reindex(list('abc')) assert_series_equal(res, expected) n0 = 0 res = s_tft & n0 expected = s_fff assert_series_equal(res, expected) res = s_0123 & n0 expected = Series([0] * 4) assert_series_equal(res, expected) n1 = 1 res = s_tft & n1 expected = s_tft assert_series_equal(res, expected) res = s_0123 & n1 expected = Series([0, 1, 0, 1]) assert_series_equal(res, expected) s_1111 = Series([1] * 4, dtype='int8') res = s_0123 & s_1111 expected = Series([0, 1, 0, 1], dtype='int64') assert_series_equal(res, expected) res = s_0123.astype(np.int16) | s_1111.astype(np.int32) expected = Series([1, 1, 3, 3], dtype='int32') assert_series_equal(res, expected) self.assertRaises(TypeError, lambda: s_1111 & 'a') self.assertRaises(TypeError, lambda: s_1111 & ['a', 'b', 'c', 'd']) self.assertRaises(TypeError, lambda: s_0123 & np.NaN) self.assertRaises(TypeError, lambda: s_0123 & 3.14) self.assertRaises(TypeError, lambda: s_0123 & [0.1, 4, 3.14, 2]) # s_0123 will be all false now because of reindexing like s_tft if compat.PY3: # unable to sort incompatible object via .union. exp = Series([False] * 7, index=['b', 'c', 'a', 0, 1, 2, 3]) with tm.assert_produces_warning(RuntimeWarning): assert_series_equal(s_tft & s_0123, exp) else: exp = Series([False] * 7, index=[0, 1, 2, 3, 'a', 'b', 'c']) assert_series_equal(s_tft & s_0123, exp) # s_tft will be all false now because of reindexing like s_0123 if compat.PY3: # unable to sort incompatible object via .union. exp = Series([False] * 7, index=[0, 1, 2, 3, 'b', 'c', 'a']) with tm.assert_produces_warning(RuntimeWarning): assert_series_equal(s_0123 & s_tft, exp) else: exp = Series([False] * 7, index=[0, 1, 2, 3, 'a', 'b', 'c']) assert_series_equal(s_0123 & s_tft, exp) assert_series_equal(s_0123 & False, Series([False] * 4)) assert_series_equal(s_0123 ^ False, Series([False, True, True, True])) assert_series_equal(s_0123 & [False], Series([False] * 4)) assert_series_equal(s_0123 & (False), Series([False] * 4)) assert_series_equal(s_0123 & Series([False, np.NaN, False, False]), Series([False] * 4)) s_ftft = Series([False, True, False, True]) assert_series_equal(s_0123 & Series([0.1, 4, -3.14, 2]), s_ftft) s_abNd = Series(['a', 'b', np.NaN, 'd']) res = s_0123 & s_abNd expected = s_ftft assert_series_equal(res, expected) def test_scalar_na_cmp_corners(self): s = Series([2, 3, 4, 5, 6, 7, 8, 9, 10]) def tester(a, b): return a & b self.assertRaises(TypeError, tester, s, datetime(2005, 1, 1)) s = Series([2, 3, 4, 5, 6, 7, 8, 9, datetime(2005, 1, 1)]) s[::2] = np.nan expected = Series(True, index=s.index) expected[::2] = False assert_series_equal(tester(s, list(s)), expected) d = DataFrame({'A': s}) # TODO: Fix this exception - needs to be fixed! (see GH5035) # (previously this was a TypeError because series returned # NotImplemented # this is an alignment issue; these are equivalent # https://github.com/pydata/pandas/issues/5284 self.assertRaises(ValueError, lambda: d.__and__(s, axis='columns')) self.assertRaises(ValueError, tester, s, d) # this is wrong as its not a boolean result # result = d.__and__(s,axis='index') def test_operators_corner(self): series = self.ts empty = Series([], index=Index([])) result = series + empty self.assertTrue(np.isnan(result).all()) result = empty + Series([], index=Index([])) self.assertEqual(len(result), 0) # TODO: this returned NotImplemented earlier, what to do? # deltas = Series([timedelta(1)] * 5, index=np.arange(5)) # sub_deltas = deltas[::2] # deltas5 = deltas * 5 # deltas = deltas + sub_deltas # float + int int_ts = self.ts.astype(int)[:-5] added = self.ts + int_ts expected = Series(self.ts.values[:-5] + int_ts.values, index=self.ts.index[:-5], name='ts') self.assert_series_equal(added[:-5], expected) def test_operators_reverse_object(self): # GH 56 arr = Series(np.random.randn(10), index=np.arange(10), dtype=object) def _check_op(arr, op): result = op(1., arr) expected = op(1., arr.astype(float)) assert_series_equal(result.astype(float), expected) _check_op(arr, operator.add) _check_op(arr, operator.sub) _check_op(arr, operator.mul) _check_op(arr, operator.truediv) _check_op(arr, operator.floordiv) def test_arith_ops_df_compat(self): # GH 1134 s1 = pd.Series([1, 2, 3], index=list('ABC'), name='x') s2 = pd.Series([2, 2, 2], index=list('ABD'), name='x') exp = pd.Series([3.0, 4.0, np.nan, np.nan], index=list('ABCD'), name='x') tm.assert_series_equal(s1 + s2, exp) tm.assert_series_equal(s2 + s1, exp) exp = pd.DataFrame({'x': [3.0, 4.0, np.nan, np.nan]}, index=list('ABCD')) tm.assert_frame_equal(s1.to_frame() + s2.to_frame(), exp) tm.assert_frame_equal(s2.to_frame() + s1.to_frame(), exp) # different length s3 = pd.Series([1, 2, 3], index=list('ABC'), name='x') s4 = pd.Series([2, 2, 2, 2], index=list('ABCD'), name='x') exp = pd.Series([3, 4, 5, np.nan], index=list('ABCD'), name='x') tm.assert_series_equal(s3 + s4, exp) tm.assert_series_equal(s4 + s3, exp) exp = pd.DataFrame({'x': [3, 4, 5, np.nan]}, index=list('ABCD')) tm.assert_frame_equal(s3.to_frame() + s4.to_frame(), exp) tm.assert_frame_equal(s4.to_frame() + s3.to_frame(), exp) def test_comp_ops_df_compat(self): # GH 1134 s1 = pd.Series([1, 2, 3], index=list('ABC'), name='x') s2 = pd.Series([2, 2, 2], index=list('ABD'), name='x') s3 = pd.Series([1, 2, 3], index=list('ABC'), name='x') s4 = pd.Series([2, 2, 2, 2], index=list('ABCD'), name='x') for l, r in [(s1, s2), (s2, s1), (s3, s4), (s4, s3)]: msg = "Can only compare identically-labeled Series objects" with tm.assertRaisesRegexp(ValueError, msg): l == r with tm.assertRaisesRegexp(ValueError, msg): l != r with tm.assertRaisesRegexp(ValueError, msg): l < r msg = "Can only compare identically-labeled DataFrame objects" with tm.assertRaisesRegexp(ValueError, msg): l.to_frame() == r.to_frame() with tm.assertRaisesRegexp(ValueError, msg): l.to_frame() != r.to_frame() with tm.assertRaisesRegexp(ValueError, msg): l.to_frame() < r.to_frame() def test_bool_ops_df_compat(self): # GH 1134 s1 = pd.Series([True, False, True], index=list('ABC'), name='x') s2 = pd.Series([True, True, False], index=list('ABD'), name='x') exp = pd.Series([True, False, False, False], index=list('ABCD'), name='x') tm.assert_series_equal(s1 & s2, exp) tm.assert_series_equal(s2 & s1, exp) # True | np.nan => True exp = pd.Series([True, True, True, False], index=list('ABCD'), name='x') tm.assert_series_equal(s1 | s2, exp) # np.nan | True => np.nan, filled with False exp = pd.Series([True, True, False, False], index=list('ABCD'), name='x') tm.assert_series_equal(s2 | s1, exp) # DataFrame doesn't fill nan with False exp = pd.DataFrame({'x': [True, False, np.nan, np.nan]}, index=list('ABCD')) tm.assert_frame_equal(s1.to_frame() & s2.to_frame(), exp) tm.assert_frame_equal(s2.to_frame() & s1.to_frame(), exp) exp = pd.DataFrame({'x': [True, True, np.nan, np.nan]}, index=list('ABCD')) tm.assert_frame_equal(s1.to_frame() | s2.to_frame(), exp) tm.assert_frame_equal(s2.to_frame() | s1.to_frame(), exp) # different length s3 = pd.Series([True, False, True], index=list('ABC'), name='x') s4 = pd.Series([True, True, True, True], index=list('ABCD'), name='x') exp = pd.Series([True, False, True, False], index=list('ABCD'), name='x') tm.assert_series_equal(s3 & s4, exp) tm.assert_series_equal(s4 & s3, exp) # np.nan | True => np.nan, filled with False exp = pd.Series([True, True, True, False], index=list('ABCD'), name='x') tm.assert_series_equal(s3 | s4, exp) # True | np.nan => True exp = pd.Series([True, True, True, True], index=list('ABCD'), name='x') tm.assert_series_equal(s4 | s3, exp) exp = pd.DataFrame({'x': [True, False, True, np.nan]}, index=list('ABCD')) tm.assert_frame_equal(s3.to_frame() & s4.to_frame(), exp) tm.assert_frame_equal(s4.to_frame() & s3.to_frame(), exp) exp = pd.DataFrame({'x': [True, True, True, np.nan]}, index=list('ABCD')) tm.assert_frame_equal(s3.to_frame() | s4.to_frame(), exp) tm.assert_frame_equal(s4.to_frame() | s3.to_frame(), exp) def test_series_frame_radd_bug(self): # GH 353 vals = Series(tm.rands_array(5, 10)) result = 'foo_' + vals expected = vals.map(lambda x: 'foo_' + x) assert_series_equal(result, expected) frame = DataFrame({'vals': vals}) result = 'foo_' + frame expected = DataFrame({'vals': vals.map(lambda x: 'foo_' + x)}) tm.assert_frame_equal(result, expected) # really raise this time with tm.assertRaises(TypeError): datetime.now() + self.ts with tm.assertRaises(TypeError): self.ts + datetime.now() def test_series_radd_more(self): data = [[1, 2, 3], [1.1, 2.2, 3.3], [pd.Timestamp('2011-01-01'), pd.Timestamp('2011-01-02'), pd.NaT], ['x', 'y', 1]] for d in data: for dtype in [None, object]: s = Series(d, dtype=dtype) with tm.assertRaises(TypeError): 'foo_' + s for dtype in [None, object]: res = 1 + pd.Series([1, 2, 3], dtype=dtype) exp = pd.Series([2, 3, 4], dtype=dtype) tm.assert_series_equal(res, exp) res = pd.Series([1, 2, 3], dtype=dtype) + 1 tm.assert_series_equal(res, exp) res = np.nan + pd.Series([1, 2, 3], dtype=dtype) exp = pd.Series([np.nan, np.nan, np.nan], dtype=dtype) tm.assert_series_equal(res, exp) res = pd.Series([1, 2, 3], dtype=dtype) + np.nan tm.assert_series_equal(res, exp) s = pd.Series([pd.Timedelta('1 days'), pd.Timedelta('2 days'), pd.Timedelta('3 days')], dtype=dtype) exp = pd.Series([pd.Timedelta('4 days'), pd.Timedelta('5 days'), pd.Timedelta('6 days')]) tm.assert_series_equal(pd.Timedelta('3 days') + s, exp) tm.assert_series_equal(s + pd.Timedelta('3 days'), exp) s = pd.Series(['x', np.nan, 'x']) tm.assert_series_equal('a' + s,
pd.Series(['ax', np.nan, 'ax'])
pandas.Series
# -*- coding: utf-8 -*- import numpy as np import pandas as pd from sklearn.preprocessing import StandardScaler from mabwiser.mab import MAB, LearningPolicy, NeighborhoodPolicy from tests.test_base import BaseTest class MABTest(BaseTest): ################################################# # Test context free predict() method ################################################ def test_arm_list_int(self): for lp in MABTest.lps: self.predict(arms=[1, 2, 3], decisions=[1, 1, 1, 2, 2, 2, 3, 3, 3], rewards=[0, 0, 0, 0, 0, 0, 1, 1, 1], learning_policy=lp, seed=123456, num_run=1, is_predict=True) for lp in MABTest.para_lps: self.predict(arms=[1, 2, 3], decisions=[1, 1, 1, 2, 2, 2, 3, 3, 3], rewards=[0, 0, 0, 0, 0, 0, 1, 1, 1], learning_policy=lp, context_history=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0], [0, 2, 2, 3, 5], [1, 3, 1, 1, 1], [0, 0, 0, 0, 0], [0, 1, 4, 3, 5], [0, 1, 2, 4, 5], [1, 2, 1, 1, 3]], contexts=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1]], seed=123456, num_run=1, is_predict=True) def test_arm_list_str(self): for lp in MABTest.lps: self.predict(arms=["A", "B", "C"], decisions=["A", "A", "A", "B", "B", "B", "C", "C", "C"], rewards=[0, 0, 0, 0, 0, 0, 1, 1, 1], learning_policy=lp, seed=123456, num_run=1, is_predict=True) for lp in MABTest.para_lps: self.predict(arms=["A", "B", "C"], decisions=["A", "A", "A", "B", "B", "B", "C", "C", "C"], rewards=[0, 0, 0, 0, 0, 0, 1, 1, 1], learning_policy=lp, context_history=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0], [0, 2, 2, 3, 5], [1, 3, 1, 1, 1], [0, 0, 0, 0, 0], [0, 1, 4, 3, 5], [0, 1, 2, 4, 5], [1, 2, 1, 1, 3]], contexts=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1]], seed=123456, num_run=1, is_predict=True) def test_decision_series(self): for lp in MABTest.lps: self.predict(arms=[1, 2, 3], decisions=pd.Series([1, 1, 1, 2, 2, 2, 3, 3, 3]), rewards=[0, 0, 0, 0, 0, 0, 1, 1, 1], learning_policy=lp, seed=123456, num_run=1, is_predict=True) for lp in MABTest.para_lps: self.predict(arms=[1, 2, 3], decisions=pd.Series([1, 1, 1, 2, 2, 2, 3, 3, 3]), rewards=[0, 0, 0, 0, 0, 0, 1, 1, 1], context_history=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0], [0, 2, 2, 3, 5], [1, 3, 1, 1, 1], [0, 0, 0, 0, 0], [0, 1, 4, 3, 5], [0, 1, 2, 4, 5], [1, 2, 1, 1, 3]], contexts=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1]], learning_policy=lp, seed=123456, num_run=1, is_predict=True) def test_reward_series(self): for lp in MABTest.lps: self.predict(arms=[1, 2, 3], decisions=[1, 1, 1, 2, 2, 2, 3, 3, 3], rewards=pd.Series([0, 0, 0, 0, 0, 0, 1, 1, 1]), learning_policy=lp, seed=123456, num_run=1, is_predict=True) for lp in MABTest.para_lps: self.predict(arms=[1, 2, 3], decisions=[1, 1, 1, 2, 2, 2, 3, 3, 3], rewards=pd.Series([0, 0, 0, 0, 0, 0, 1, 1, 1]), context_history=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0], [0, 2, 2, 3, 5], [1, 3, 1, 1, 1], [0, 0, 0, 0, 0], [0, 1, 4, 3, 5], [0, 1, 2, 4, 5], [1, 2, 1, 1, 3]], contexts=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1]], learning_policy=lp, seed=123456, num_run=1, is_predict=True) def test_decision_reward_series(self): for lp in MABTest.lps: self.predict(arms=[1, 2, 3], decisions=pd.Series([1, 1, 1, 2, 2, 2, 3, 3, 3]), rewards=pd.Series([0, 0, 0, 0, 0, 0, 1, 1, 1]), learning_policy=lp, seed=123456, num_run=1, is_predict=True) for lp in MABTest.para_lps: self.predict(arms=[1, 2, 3], decisions=pd.Series([1, 1, 1, 2, 2, 2, 3, 3, 3]), rewards=pd.Series([0, 0, 0, 0, 0, 0, 1, 1, 1]), context_history=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0], [0, 2, 2, 3, 5], [1, 3, 1, 1, 1], [0, 0, 0, 0, 0], [0, 1, 4, 3, 5], [0, 1, 2, 4, 5], [1, 2, 1, 1, 3]], contexts=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1]], learning_policy=lp, seed=123456, num_run=1, is_predict=True) def test_decision_array(self): for lp in MABTest.lps: self.predict(arms=[1, 2, 3], decisions=np.array([1, 1, 1, 2, 2, 2, 3, 3, 3]), rewards=[0, 0, 0, 0, 0, 0, 1, 1, 1], learning_policy=lp, seed=123456, num_run=1, is_predict=True) for lp in MABTest.para_lps: self.predict(arms=[1, 2, 3], decisions=np.array([1, 1, 1, 2, 2, 2, 3, 3, 3]), rewards=[0, 0, 0, 0, 0, 0, 1, 1, 1], context_history=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0], [0, 2, 2, 3, 5], [1, 3, 1, 1, 1], [0, 0, 0, 0, 0], [0, 1, 4, 3, 5], [0, 1, 2, 4, 5], [1, 2, 1, 1, 3]], contexts=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1]], learning_policy=lp, seed=123456, num_run=1, is_predict=True) def test_reward_array(self): for lp in MABTest.lps: self.predict(arms=[1, 2, 3], decisions=[1, 1, 1, 2, 2, 2, 3, 3, 3], rewards=np.array([0, 0, 0, 0, 0, 0, 1, 1, 1]), learning_policy=lp, seed=123456, num_run=1, is_predict=True) for lp in MABTest.para_lps: self.predict(arms=[1, 2, 3], decisions=[1, 1, 1, 2, 2, 2, 3, 3, 3], rewards=np.array([0, 0, 0, 0, 0, 0, 1, 1, 1]), context_history=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0], [0, 2, 2, 3, 5], [1, 3, 1, 1, 1], [0, 0, 0, 0, 0], [0, 1, 4, 3, 5], [0, 1, 2, 4, 5], [1, 2, 1, 1, 3]], contexts=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1]], learning_policy=lp, seed=123456, num_run=1, is_predict=True) def test_decision_reward_array(self): for lp in MABTest.lps: self.predict(arms=[1, 2, 3], decisions=np.array([1, 1, 1, 2, 2, 2, 3, 3, 3]), rewards=np.array([0, 0, 0, 0, 0, 0, 1, 1, 1]), learning_policy=lp, seed=123456, num_run=1, is_predict=True) for lp in MABTest.para_lps: self.predict(arms=[1, 2, 3], decisions=np.array([1, 1, 1, 2, 2, 2, 3, 3, 3]), rewards=np.array([0, 0, 0, 0, 0, 0, 1, 1, 1]), context_history=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0], [0, 2, 2, 3, 5], [1, 3, 1, 1, 1], [0, 0, 0, 0, 0], [0, 1, 4, 3, 5], [0, 1, 2, 4, 5], [1, 2, 1, 1, 3]], contexts=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1]], learning_policy=lp, seed=123456, num_run=1, is_predict=True) def test_decision_series_reward_array(self): for lp in MABTest.lps: self.predict(arms=[1, 2, 3], decisions=pd.Series([1, 1, 1, 2, 2, 2, 3, 3, 3]), rewards=np.array([0, 0, 0, 0, 0, 0, 1, 1, 1]), learning_policy=lp, seed=123456, num_run=1, is_predict=True) for lp in MABTest.para_lps: self.predict(arms=[1, 2, 3], decisions=pd.Series([1, 1, 1, 2, 2, 2, 3, 3, 3]), rewards=np.array([0, 0, 0, 0, 0, 0, 1, 1, 1]), context_history=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0], [0, 2, 2, 3, 5], [1, 3, 1, 1, 1], [0, 0, 0, 0, 0], [0, 1, 4, 3, 5], [0, 1, 2, 4, 5], [1, 2, 1, 1, 3]], contexts=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1]], learning_policy=lp, seed=123456, num_run=1, is_predict=True) def test_decision_array_reward_series(self): for lp in MABTest.lps: self.predict(arms=[1, 2, 3], decisions=np.array([1, 1, 1, 2, 2, 2, 3, 3, 3]), rewards=pd.Series([0, 0, 0, 0, 0, 0, 1, 1, 1]), learning_policy=lp, seed=123456, num_run=1, is_predict=True) for lp in MABTest.para_lps: self.predict(arms=[1, 2, 3], decisions=np.array([1, 1, 1, 2, 2, 2, 3, 3, 3]), rewards=pd.Series([0, 0, 0, 0, 0, 0, 1, 1, 1]), context_history=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0], [0, 2, 2, 3, 5], [1, 3, 1, 1, 1], [0, 0, 0, 0, 0], [0, 1, 4, 3, 5], [0, 1, 2, 4, 5], [1, 2, 1, 1, 3]], contexts=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1]], learning_policy=lp, seed=123456, num_run=1, is_predict=True) ################################################# # Test context free predict_expectation() method ################################################ def test_exp_arm_list_int(self): for lp in MABTest.lps: self.predict(arms=[1, 2, 3], decisions=[1, 1, 1, 2, 2, 2, 3, 3, 3], rewards=[0, 0, 0, 0, 0, 0, 1, 1, 1], learning_policy=lp, seed=123456, num_run=1, is_predict=False) def test_exp_arm_list_str(self): for lp in MABTest.lps: self.predict(arms=["A", "B", "C"], decisions=["A", "A", "A", "B", "B", "B", "C", "C", "C"], rewards=[0, 0, 0, 0, 0, 0, 1, 1, 1], learning_policy=lp, seed=123456, num_run=1, is_predict=False) def test_exp_decision_series(self): for lp in MABTest.lps: self.predict(arms=[1, 2, 3], decisions=pd.Series([1, 1, 1, 2, 2, 2, 3, 3, 3]), rewards=[0, 0, 0, 0, 0, 0, 1, 1, 1], learning_policy=lp, seed=123456, num_run=1, is_predict=False) def test_exp_reward_series(self): for lp in MABTest.lps: self.predict(arms=[1, 2, 3], decisions=[1, 1, 1, 2, 2, 2, 3, 3, 3], rewards=pd.Series([0, 0, 0, 0, 0, 0, 1, 1, 1]), learning_policy=lp, seed=123456, num_run=1, is_predict=False) def test_exp_decision_reward_series(self): for lp in MABTest.lps: self.predict(arms=[1, 2, 3], decisions=pd.Series([1, 1, 1, 2, 2, 2, 3, 3, 3]), rewards=pd.Series([0, 0, 0, 0, 0, 0, 1, 1, 1]), learning_policy=lp, seed=123456, num_run=1, is_predict=False) def test_exp_decision_array(self): for lp in MABTest.lps: self.predict(arms=[1, 2, 3], decisions=np.array([1, 1, 1, 2, 2, 2, 3, 3, 3]), rewards=[0, 0, 0, 0, 0, 0, 1, 1, 1], learning_policy=lp, seed=123456, num_run=1, is_predict=False) def test_exp_reward_array(self): for lp in MABTest.lps: self.predict(arms=[1, 2, 3], decisions=[1, 1, 1, 2, 2, 2, 3, 3, 3], rewards=np.array([0, 0, 0, 0, 0, 0, 1, 1, 1]), learning_policy=lp, seed=123456, num_run=1, is_predict=False) def test_exp_decision_reward_array(self): for lp in MABTest.lps: self.predict(arms=[1, 2, 3], decisions=np.array([1, 1, 1, 2, 2, 2, 3, 3, 3]), rewards=np.array([0, 0, 0, 0, 0, 0, 1, 1, 1]), learning_policy=lp, seed=123456, num_run=1, is_predict=False) def test_exp_decision_series_reward_array(self): for lp in MABTest.lps: self.predict(arms=[1, 2, 3], decisions=pd.Series([1, 1, 1, 2, 2, 2, 3, 3, 3]), rewards=np.array([0, 0, 0, 0, 0, 0, 1, 1, 1]), learning_policy=lp, seed=123456, num_run=1, is_predict=False) def test_exp_decision_array_reward_series(self): for lp in MABTest.lps: self.predict(arms=[1, 2, 3], decisions=np.array([1, 1, 1, 2, 2, 2, 3, 3, 3]), rewards=
pd.Series([0, 0, 0, 0, 0, 0, 1, 1, 1])
pandas.Series
import streamlit as st import pandas as pd import numpy as np import pydeck as pdk import plotly.graph_objects as go import plotly.express as px crime =
pd.read_csv('data/crime_cleaned.csv')
pandas.read_csv
#!/usr/bin/env python import os,sys import pandas as pd import argparse daismdir = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) sys.path.insert(0,daismdir) import daism.modules.simulation as simulation import daism.modules.training as training import daism.modules.prediction as prediction #-------------------------------------- #-------------------------------------- # main() parser = argparse.ArgumentParser(description='DAISM-XMBD deconvolution.') subparsers = parser.add_subparsers(dest='subcommand', help='Select one of the following sub-commands') # create the parser for the "one-stop DAISM-DNN" command parser_a = subparsers.add_parser('DAISM', help='one-stop DAISM-XMBD',description="one-stop DAISM-XMBD") parser_a.add_argument("-platform", type=str, help="Platform of calibration data, [R]: RNA-seq TPM, [S]: single cell RNA-seq", default="S") parser_a.add_argument("-caliexp", type=str, help="Calibration samples expression file", default=None) parser_a.add_argument("-califra", type=str, help="Calibration samples ground truth file", default=None) parser_a.add_argument("-aug", type=str, help="Purified samples expression (h5ad)", default=None) parser_a.add_argument("-N", type=int, help="Simulation samples number", default=16000) parser_a.add_argument("-testexp", type=str, help="Test samples expression file", default=None) parser_a.add_argument("-net", type=str, help="Network architecture used for training", default="coarse") parser_a.add_argument("-outdir", type=str, help="Output result file directory", default="../output/") # create the parser for the "DAISM simulation" command parser_b = subparsers.add_parser('DAISM_simulation', help='training set simulation using DAISM strategy',description='training set simulation using DAISM strategy.') parser_b.add_argument("-platform", type=str, help="Platform of calibration data, [R]: RNA-seq TPM, [S]: single cell RNA-seq", default="S") parser_b.add_argument("-caliexp", type=str, help="Calibration samples expression file", default=None) parser_b.add_argument("-califra", type=str, help="Calibration samples ground truth file", default=None) parser_b.add_argument("-aug", type=str, help="Purified samples expression (h5ad)", default=None) parser_b.add_argument("-testexp", type=str, help="Test samples expression file", default=None) parser_b.add_argument("-N", type=int, help="Simulation samples number", default=16000) parser_b.add_argument("-outdir", type=str, help="Output result file directory", default="../output/") # create the parser for the "Generic simulation" command parser_c = subparsers.add_parser('Generic_simulation', help='training set simulation using purified cells only',description='training set simulation using purified cells only.') parser_c.add_argument("-platform", type=str, help="Platform of calibration data, [R]: RNA-seq TPM, [S]: single cell RNA-seq", default="S") parser_c.add_argument("-aug", type=str, help="Purified samples expression (h5ad)", default=None) parser_c.add_argument("-testexp", type=str, help="Test samples expression file", default=None) parser_c.add_argument("-N", type=int, help="Simulation samples number", default=16000) parser_c.add_argument("-outdir", type=str, help="Output result file directory", default="../output/") # create the parser for the "training" command parser_d = subparsers.add_parser('training', help='train DNN model',description='train DNN model.') parser_d.add_argument("-trainexp", type=str, help="Simulated samples expression file", default=None) parser_d.add_argument("-trainfra", type=str, help="Simulated samples ground truth file", default=None) parser_d.add_argument("-net", type=str, help="Network architecture used for training", default="coarse") parser_d.add_argument("-outdir", type=str, help="Output result file directory", default="../output/") # create the parser for the "prediction" command parser_e = subparsers.add_parser('prediction', help='predict using a trained model',description='predict using a trained model.') parser_e.add_argument("-testexp", type=str, help="Test samples expression file", default=None) parser_e.add_argument("-model", type=str, help="Deep-learing model file trained by DAISM", default="../output/DAISM_model.pkl") parser_e.add_argument("-celltype", type=str, help="Model celltypes", default="../output/DAISM_model_celltypes.txt") parser_e.add_argument("-feature", type=str, help="Model feature", default="../output/DAISM_model_feature.txt") parser_e.add_argument("-net", type=str, help="Network architecture used for training", default="coarse") parser_e.add_argument("-outdir", type=str, help="Output result file directory", default="../output/") class Options: random_seed = 777 min_f = 0.01 max_f = 0.99 lr = 1e-4 batchsize = 64 num_epoches = 500 ncuda = 0 def main(): # parse some argument lists inputArgs = parser.parse_args() if os.path.exists(inputArgs.outdir)==False: os.mkdir(inputArgs.outdir) #### DAISM modules #### if (inputArgs.subcommand=='DAISM'): # Load calibration data caliexp = pd.read_csv(inputArgs.caliexp, sep="\t", index_col=0) califra = pd.read_csv(inputArgs.califra, sep="\t", index_col=0) # Load test data test_sample = pd.read_csv(inputArgs.testexp, sep="\t", index_col=0) # Preprocess purified data mode = "daism" commongenes,caliexp,C_all = simulation.preprocess_purified(inputArgs.aug,inputArgs.platform,mode,test_sample,caliexp,califra) # Create training dataset mixsam, mixfra, celltypes, feature = simulation.daism_simulation(caliexp,califra,C_all,Options.random_seed,inputArgs.N,inputArgs.platform,Options.min_f,Options.max_f) # Save signature genes and celltype labels if os.path.exists(inputArgs.outdir+"/output/")==False: os.mkdir(inputArgs.outdir+"/output/") pd.DataFrame(feature).to_csv(inputArgs.outdir+'/output/DAISM_feature.txt',sep='\t') pd.DataFrame(celltypes).to_csv(inputArgs.outdir+'/output/DAISM_celltypes.txt',sep='\t') print('Writing training data...') # Save training data mixsam.to_csv(inputArgs.outdir+'/output/DAISM_mixsam.txt',sep='\t') mixfra.to_csv(inputArgs.outdir+'/output/DAISM_mixfra.txt',sep='\t') # Training model model = training.dnn_training(mixsam,mixfra,Options.random_seed,inputArgs.outdir+"/output/",Options.num_epoches,Options.lr,Options.batchsize,Options.ncuda,inputArgs.net) # Save signature genes and celltype labels pd.DataFrame(list(mixfra.index)).to_csv(inputArgs.outdir+'/output/DAISM_model_celltypes.txt',sep='\t') pd.DataFrame(list(mixsam.index)).to_csv(inputArgs.outdir+'/output/DAISM_model_feature.txt',sep='\t') # Prediction result = prediction.dnn_prediction(model, test_sample, list(mixfra.index), list(mixsam.index),Options.ncuda) # Save predicted result result.to_csv(inputArgs.outdir+'/output/DAISM_result.txt',sep='\t') ############################ #### simulation modules #### ############################ #### DAISM simulation modules #### if (inputArgs.subcommand=='DAISM_simulation'): # Load calibration data caliexp = pd.read_csv(inputArgs.caliexp, sep="\t", index_col=0) califra = pd.read_csv(inputArgs.califra, sep="\t", index_col=0) # Load test data test_sample = pd.read_csv(inputArgs.testexp, sep="\t", index_col=0) # Preprocess purified data mode ="daism" commongenes,caliexp,C_all = simulation.preprocess_purified(inputArgs.aug,inputArgs.platform,mode,test_sample,caliexp,califra) # Create training dataset mixsam, mixfra, celltypes, feature = simulation.daism_simulation(caliexp,califra,C_all,Options.random_seed,inputArgs.N,inputArgs.platform,Options.min_f,Options.max_f) # Save signature genes and celltype labels if os.path.exists(inputArgs.outdir+"/output/")==False: os.mkdir(inputArgs.outdir+"/output/") pd.DataFrame(feature).to_csv(inputArgs.outdir+'/output/DAISM_feature.txt',sep='\t') pd.DataFrame(celltypes).to_csv(inputArgs.outdir+'/output/DAISM_celltypes.txt',sep='\t') print('Writing training data...') # Save training data mixsam.to_csv(inputArgs.outdir+'/output/DAISM_mixsam.txt',sep='\t') mixfra.to_csv(inputArgs.outdir+'/output/DAISM_mixfra.txt',sep='\t') #### Generic simulation modules #### if (inputArgs.subcommand=='Generic_simulation'): # Load test data test_sample = pd.read_csv(inputArgs.testexp, sep="\t", index_col=0) # Preprocess purified data mode = "generic" commongenes,caliexp,C_all = simulation.preprocess_purified(inputArgs.aug,inputArgs.platform,mode,test_sample) # Create training dataset mixsam, mixfra, celltypes, feature = simulation.generic_simulation(C_all,Options.random_seed,inputArgs.N,inputArgs.platform,commongenes) # Save signature genes and celltype labels if os.path.exists(inputArgs.outdir+"/output/")==False: os.mkdir(inputArgs.outdir+"/output/") pd.DataFrame(feature).to_csv(inputArgs.outdir+'/output/Generic_feature.txt',sep='\t')
pd.DataFrame(celltypes)
pandas.DataFrame
#============================================================================================ # Name : main.py # Author : <NAME>, <NAME> # Version : 1.0 # Copyright : Copyright (C) Secure Systems Group, Aalto University {https://ssg.aalto.fi/} # License : This code is released under Apache 2.0 license #============================================================================================ from clustering import RecAgglo, SampleClust, AggloClust import numpy as np import pandas as pd from parsing import Parser def main(): parser = Parser() args = parser.args infile = args.infile outfile = args.outfile verbose = args.verbose skip_index = args.skip_index delta_a = args.delta_a delta_fc = args.delta_fc d_max = args.d_max rho_mc = args.rho_mc rho_s = args.rho_s weights = list(map(float, args.weight.strip('[]').split(','))) algorithm = args.algo df =
pd.read_csv(infile, dtype='str')
pandas.read_csv
import numpy as np import pandas as pd import time, gc from GV_Catalogue_Gen import angularDistance def genSigmaCatalogue(CATALOGUE, mag_limit = 6, FOV_limit = 20): ''' Generates the mean of the sigma for each star in the catalogue. Sigma between star A and star B is defined as (1/6) of the angular distance between the two stars. Such values of sigma are calculated for star A to every other star in the catalogue that are its nearest neighbours, i.e., all those stars within a circular FOV defined by FOV_limit. This set of sigma values is defined as sigma_n. The mean of all the elements of sigma_n gives us mu_n. This mean value is paired with the corresponding star A. This process repeats for every star in the catalogue, and the star IDs the corresponding mu_n values are collated in a dataframe. Parameters ---------- CATALOGUE : pd.Dataframe The 'master' star catalogue on which the function works mag_limit : floating-point number, default = 6 The upper magnitude limit of stars that are required in the reference catalogue FOV_limit: floating-point number, default = 20 Defines the circular radius (in degrees) which demarcates which stars from the catalogue are to be considered as nearest neighbours for a given star Returns ------- SIGMA_CATALOGUE : pd.Dataframe The dataframe collated from the star IDs and their corresponding mu_n ''' # Start clock-1 start1 = time.time() # Generate restricted catalogue based on upper magnitude limit temp0 = CATALOGUE[CATALOGUE.Mag <= mag_limit] # Number of rows in the resticted catalogue rows = temp0.shape[0] # Resets the index of <temp0> temp0.index = list(range(rows)) # Prints total number of stars in <temp0> and the (n)X(n-1)- unique combinations per star print('Number of stars - ', rows) print('Number of unique combinations per star= ', (rows-1)*rows) # Initialize the number of iterations to take place no_iter = (rows) # Initialize SIGMA_CATALOGUE SIGMA_CATALOGUE = pd.DataFrame(columns=['Star_ID', 'mu_n']) for i in range(no_iter): # Throws error if an iteration runs beyond number of available rows in <temp0> assert i<(rows), 'IndexError: iterating beyond available number of rows' # Generates <temp1> dataframe which has the (i - th) star of <temp0> # repetated (rows-1) times temp1 = pd.DataFrame(columns = ['Star_ID1','RA_1', 'Dec_1', 'Mag_1']) s1, ra, dec, mag = temp0.iloc[i] temp1.loc[0] = [s1] + [ra] + [dec] + [mag] temp1 =
pd.concat([temp1]*(rows-1), ignore_index=True)
pandas.concat
''' ''' import spacy import numpy as np import pandas as pd from pprint import pprint import scipy.spatial.distance from sqlalchemy.orm import sessionmaker from sqlalchemy import create_engine import json import re import os def normal(token): # Should the token be kept? (=is normal) # Spacy treats 'To' (title case) as *not a stop word*, but # gensim will not compute tf-idf for 'To'. To remove 'To' as a stop word here, I # do an extra test to see if the lower case token is a stop word. return not token.is_stop and not token.is_punct and not nlp.vocab[token.lower_].is_stop def tokenizer(input_string): doc = nlp(input_string) tokens = [token for token in doc if normal(token)] return tokens def lemmatizer(tokens): lemmas = [t.lemma_ for t in tokens] return lemmas def vectorizer(tokens): vectors = [t.vector for t in tokens] return vectors nlp = spacy.load('en_core_web_md', entity = False, parser = False) # Connect to local PostgreSQL user = 'ubuntu' password = '' dbname = 'congress' host = 'localhost' local_port = '5432' es = "postgresql+psycopg2://"+user+":"+password+"@/"+dbname+"?host="+host+"&port="+local_port engine = sqlalchemy.create_engine(es) print(engine) Session = sessionmaker(bind=engine) session = Session() print('Session created') socialTagVectors = pd.read_csv('socialTagVectors.csv') congressRareTags = session.execute("SELECT bill_id, social_tags FROM congress_tagging;")#pd.read_csv('congress_rare_tags.csv', header = 0) congressRareTags = congressRareTags.fetchall() congressbillid = [i[0] for i in congressRareTags] congresstag = [i[1] for i in congressRareTags] congressRareTags =
pd.DataFrame({'bill_id': congressbillid, 'social_tags': congresstag})
pandas.DataFrame
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Sun Jul 19 21:18:30 2020 @author: rahikalantari """ #!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Sat Jul 4 05:29:48 2020 @author: rahikalantari """ import datetime import pandas as pd import numpy as np from datetime import datetime as dt task = 'future' #'historic''future' event = 'death'#'cases''death' if task == 'historic': foldername = 'Historic' else: foldername = 'Future' us_state_code = { 'Alabama': '01', 'Alaska': '02', 'Arizona': '04', 'Arkansas': '05', 'California': '06', 'Colorado': '08', 'Connecticut': '09', 'Delaware': '10', 'Florida': '12', 'Georgia': '13', 'Hawaii': '15', 'Idaho': '16', 'Illinois': '17', 'Indiana': '18', 'Iowa': '19', 'Kansas': '20', 'Kentucky': '21', 'Louisiana': '22', 'Maine': '23', 'Maryland': '24', 'Massachusetts': '25', 'Michigan': '26', 'Minnesota': '27', 'Mississippi': '28', 'Missouri': '29', 'Montana': '30', 'Nebraska': '31', 'Nevada': '32', 'New Hampshire': '33', 'New Jersey': '34', 'New Mexico': '35', 'New York': '36', 'North Carolina': '37', 'North Dakota': '38', 'Ohio': '39', 'Oklahoma': '40', 'Oregon': '41', 'Pennsylvania': '42', 'Rhode Island': '44', 'South Carolina': '45', 'South Dakota': '46', 'Tennessee': '47', 'Texas': '48', 'Utah': '49', 'Vermont': '50', 'Virginia': '51', 'Washington': '53', 'West Virginia': '54', 'Wisconsin': '55', 'Wyoming': '56', 'District of Columbia':'11'} task = 'future' #'historic''future' event = 'death'#'cases''death' if task == 'historic': foldername = 'Historic' else: foldername = 'Future' if event == 'death': death_mean = pd.read_csv('results/'+foldername+'_prediction/death_cum.csv') death_weekly = pd.read_csv('results/'+foldername+'_prediction/death_weekly.csv') daily_cases_weekly = pd.read_csv('results/'+foldername+'_prediction/daily_cases_weekly.csv') death_mean.drop(death_mean.loc[death_mean['Var1']=='StateX'].index, inplace=True) death_mean =death_mean.reset_index(drop=True) death_weekly.drop(death_weekly.loc[death_weekly['Var1']=='StateX'].index, inplace=True) death_weekly =death_weekly.reset_index(drop=True) daily_cases_weekly.drop(daily_cases_weekly.loc[daily_cases_weekly['Var1']=='StateX'].index, inplace=True) daily_cases_weekly =daily_cases_weekly.reset_index(drop=True) death_mean = death_mean.rename(columns=death_mean.loc[0,:]) death_mean=(death_mean.drop(index=0))#.drop('01/22/0020',axis=1) death_weekly = death_weekly.rename(columns=death_weekly.loc[0,:]) death_weekly=(death_weekly.drop(index=0))#.drop('01/22/0020',axis=1) daily_cases_weekly = daily_cases_weekly.rename(columns= daily_cases_weekly.loc[0,:]) daily_cases_weekly = (daily_cases_weekly.drop(index=0))#.drop('01/22/0020',axis=1) #daily_cases_weekly = daily_cases_weekly_col['type'].loc[daily_cases_weekly_col['type'] =='NA' | daily_cases_weekly_col['type']=='0.025' | daily_cases_weekly_col['type']=='0.1'| daily_cases_weekly_col['type']== '0.25'| daily_cases_weekly_col['type']=='0.500'| daily_cases_weekly_col['type']== '0.750'| daily_cases_weekly_col['type']=='0.900'| daily_cases_weekly_col['type']=='0.975'] daily_cases_weekly_col1 = [] #aily_cases_weekly = pd.read_csv('results/'+foldername+'_prediction/daily_cases_weekly.csv') # death_lower = pd.read_csv('results/'+foldername+'_prediction/death_lowerBound_cum.csv') # death_lower = death_lower.rename(columns=death_lower.loc[0,:]) # death_lower = (death_lower.drop(index=0))#.drop('01/22/0020',axis=1) # death_higher = pd.read_csv('results/'+foldername+'_prediction/death_upperBound_cum.csv') # death_higher = death_higher.rename(columns=death_higher.loc[0,:]) # death_higher = (death_higher.drop(index=0))#.drop('01/22/0020',axis=1) realdata_death = realdata = pd.read_csv('data/new_death_cases.csv') for i in range(1,53): death_mean.loc[i,'3/15/20':] = pd.to_numeric(death_mean.loc[i,'3/15/20':],errors='coerce') death_weekly.loc[i,'3/15/20':] = pd.to_numeric(death_weekly.loc[i,'3/15/20':],errors='coerce') daily_cases_weekly.loc[i,'3/15/20':] = pd.to_numeric(daily_cases_weekly.loc[i,'3/15/20':],errors='coerce') death_mean.to_csv ('results/'+foldername+'_prediction/death_cum2.csv', index = False, header=True) death_weekly.to_csv ('results/'+foldername+'_prediction/death_weekly2.csv', index = False, header=True) daily_cases_weekly.to_csv ('results/'+foldername+'_prediction/daily_cases_weekly2.csv', index = False, header=True) realdata_death.loc[51] = realdata_death.sum(axis=0) realdata_death["Province_State"].loc[51] = "US" real_death_col = pd.melt(realdata_death, id_vars=['Province_State'], var_name='date', value_name='real_number_of_deaths') # results_death.to_csv ('results/Future_prediction/furture_death_.csv', index = True, header=True) death_mean = pd.read_csv('results/'+foldername+'_prediction/death_cum2.csv') death_mean_col = pd.melt(death_mean, id_vars=['Province_State','type'], var_name='date', value_name='number_of_deaths') results_death= death_mean_col#pd.merge(real_death_col, death_mean_col, how='outer', on=['Province_State', 'date']) death_weekly = pd.read_csv('results/'+foldername+'_prediction/death_weekly2.csv') death_weekly_col =
pd.melt(death_weekly, id_vars=['Province_State','type'], var_name='date', value_name='number_of_deaths')
pandas.melt
# from ifm import Enum import pandas as pd class TsPd: def __init__(self, doc): self.doc = doc def info(self): """ Returns a pandas.DataFrame with information on existing time series (formerly power functions). """ list_info = self.doc.c.ts.info() df =
pd.DataFrame(list_info, columns=["tsid", "comment", "no_point", "is_cyclic_num", "interpolation_kind"])
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Wed Feb 12 16:15:46 2020 @author: navarrenhn """ import pandas as pd def feed_demand(groups, Lancet_diet): Region_demands = {} for name, group in groups: d = Lancet_diet.copy() d["GROUP"] = name #print(d) ##create animal product demands: d.loc[["beef and lamb"], ["BMI" , "EAT", "Org"]] *= (1 + group.loc[group["Foodtype"] == "Meat", "Total"].min()) d.loc[["pork"], ["BMI" , "EAT", "Org"]] *= (1 + group.loc[group["Foodtype"] == "Meat", "Total"].min()) d.loc[["chicken and other poultry"], ["BMI" , "EAT", "Org"]] *= (1 + group.loc[group["Foodtype"] == "Meat", "Total"].min()) d.loc[["fish"], ["BMI" , "EAT", "Org"]] *= (1 + group.loc[group["Foodtype"] == "Fishandseafood", "Total"].min()) #d = d.drop(["fish"]) #d.loc[["whole milk or derivative equivalents"], ["BMI" , "EAT", "Org"]] *= (1 + group.loc[group["Foodtype"] == "Milk", "Total"].min()) #d.loc[["eggs"], ["BMI" , "EAT", "Org"]] *= (1 + group.loc[group["Foodtype"] == "Milk", "Total"].min()) ##create feed demands: ##need to determine oil production from soymeal production for feed ##feed required for 1 dairy cow per day ##similar feed is assumed for beef cattle being reared on mixed system (pasture/crop-fed) ##all concentrates except corn and soy assumed to be by-products ##soymeal in concentrate equals 0.8 times fresh soybeans in weight (soymeal.org) ##corn equals sum of fresh and corn in concentrate ##corn (maize grain) in concentrate equals 0.86 times fresh yield? Based on dry mass? cow_dict = {"type": ["grass", "corn", "soybean meal"], ##"citrus pulp concentrate", "palm kernel meal concentrate", "rapeseed meal concentrate", "beet pulp concentrate", "wheat concentrate", "rest products"], "gram": [41250, 13750 + (1250*0.86), 750*0.8 ]}##, 500, 500, 500, 250, 250, 1000]} cow_Lancet_diet_per_day = pd.DataFrame(cow_dict) cow_Lancet_diet_per_day = cow_Lancet_diet_per_day.set_index(["type"]) cow_feed_per_g_milk = cow_Lancet_diet_per_day["gram"]/25000 ##beef production from dairy cows and dairy calf rearing calf_per_g_milk = (1.5/(25000*365*6)) ##3 calves per cow divided by two as only males are used(?) ##Type A calf of Nguyen 2010 using 8438 kg of feed per 1000 kg carcass weight (= per 660kg edible meat) ##(significantly more soymeal --> look into, maybe change Lancet_diet) g_calf_per_g_milk = calf_per_g_milk * 214880 cow_feed_per_g_calf = ((cow_Lancet_diet_per_day["gram"]/55000)*8438000)/660000 ##One 680 kg Holstein dairy cow delivers 224.52 kg of meat (excluding offal and bones) ##what to do with offal? g_dairycow_beef_per_g_milk = 224520.0 / 36500000.0 #36500000 g milk in her milk giving time of 4 years g_beef_per_g_milk = g_calf_per_g_milk + g_dairycow_beef_per_g_milk ##feed demand from classic suckler-cow rearing systems is 20863 kg of feed per 1000kg carcass weight (= per 660kg edible meat) (Nguyen 2010) cow_feed_per_g_suckler_beef = ((cow_Lancet_diet_per_day["gram"]/55000)*20863000)/660000 ##required extra beef production besides dairy cows and their calves to reach demand required_extra_beef_production = max(d.loc[["beef and lamb"], ["BMI" , "EAT", "Org"]].values[0][0] - (d.loc[["whole milk or derivative equivalents"], ["BMI" , "EAT", "Org"]].values[0][0] * g_beef_per_g_milk), 0) ##this needs a lamb factor total_feed_cows_for_Lancet_diet_per_day = (d.loc[["whole milk or derivative equivalents"], ["BMI" , "EAT", "Org"]].values[0][0] * g_calf_per_g_milk * cow_feed_per_g_calf) + (d.loc[["whole milk or derivative equivalents"], ["BMI" , "EAT", "Org"]].values[0][0] * cow_feed_per_g_milk) + (required_extra_beef_production * cow_feed_per_g_suckler_beef) ##one dutch cow delivers on average 25 liter milk per day and eats 55kg of feed a day ##assuming 3 calves per dairy cow of which half is male so used for slaughter ##one dutch dairy cow is culled after 6 years on average ##if not, how much feed does a meat cow need? ##how much manure do the cows produce? (for effect on N input ratio) ##soybean meal assumed to equal 0.8 times fresh soybean weight as in cow Lancet_diet ##whole grains assumed here ##one dutch egg-laying chicken lays 0.85232877 egg per day amounting to 19400/311.1 = 62.35937 gram egg per day ##one dutch chicken eats 121.3 gram feed per day (both broiler and egg) ##chicken feed based on Rezaei et al (high protein organic Lancet_diet) and ratios based on 1/3 of feeds used in first and 2/3 of last stages of life, byproducts and supplements (under 3%) placed in "other" ##one dutch broiler chicken lives 6 weeks, averages 2446g and delivers 166+547+243+520 = 1476 gram of meat ##is chicken manure used as fertilizer? How much manure does a chicken produce? chicken_dict = {"type": ["wheat", "soybean meal", "rapeseed", "oats", "peas"], ##"other"], "gram": [45.95, 21.62*0.8, 4.04, 23.15, 9.7]} ##, 16.84]} chicken_Lancet_diet_per_day = pd.DataFrame(chicken_dict) chicken_Lancet_diet_per_day = chicken_Lancet_diet_per_day.set_index(["type"]) chicken_feed_per_g_meat = (chicken_Lancet_diet_per_day["gram"]*42)/1476 chicken_feed_per_g_egg = chicken_Lancet_diet_per_day["gram"]/62.35937 total_feed_meat_chickens_for_Lancet_diet_per_day = chicken_feed_per_g_meat * d.loc[["chicken and other poultry"], ["BMI" , "EAT", "Org"]].values[0][0] total_feed_egg_chickens_for_Lancet_diet_per_day = chicken_feed_per_g_egg * d.loc[["eggs"], ["BMI" , "EAT", "Org"]].values[0][0] ##feed required for 1 lamb per day ##all concentrates except corn and soy assumed to be by-products ##soymeal in concentrate equals 0.8 times fresh soybeans in weight (soymeal.org) ##corn (maize grain) in concentrate equals 0.86 times fresh yield? Based on dry mass? ##one lamb gives 35.24% of its original weight as meat. One slaughtered lamb weighs 40kg so 40* 0.3524 = 14.096 kg meat per lamb ##feed composition assumed to be similar to milk cow (both pasture raised and ruminants).Feed requirement about 1kg a day (Bello et al, 2016) ##manure production lamb_dict = {"type": ["grass", "corn", "soybean meal"], ##"citrus pulp concentrate", "palm kernel meal concentrate", "rapeseed meal concentrate", "beet pulp concentrate", "wheat concentrate", "rest products"], "gram": [687.5, 312.5 + (20.8*0.86), 12.5*0.8]} ##, 8.33, 8.33, 8.33, 4.15, 4.15, 16.66]} lamb_Lancet_diet_per_day = pd.DataFrame(lamb_dict) lamb_Lancet_diet_per_day = lamb_Lancet_diet_per_day.set_index(["type"]) lamb_feed_per_g_meat = (lamb_Lancet_diet_per_day["gram"]*365)/14096 total_feed_lamb_for_Lancet_diet_per_day = lamb_feed_per_g_meat * d.loc[["beef and lamb"], ["BMI" , "EAT", "Org"]].values[0][0] ##need to add beef/lamb ratio ##one slaughtered pig gives on average 57% of its live weight as meat, slaughtered weight is 95.2kg so 95.2*0.57 = 54.264kg meat per fattening pig ##one pig lives 88 days (based on BINternet growth per day) and uses 185,064kg of feed in its life (based on BINternet feed conversion) so eats 2,103kg of feed a day ##feed requirement based on byproducts scenario of Lassaletta et al 2016 ##manure production ##swill and molasses assumed to be by-products ##are brans a by-product? Do they require extra production? Assumed to be about 10% of original crop (Feedipedia) pig_dict = {"type": ["corn", "barley", "brans", "wheat"], ##"swill", "molasses"], "gram": [378.54, 147.21, 525.75, 630.9]} ##, 210.3, 210.3]} pig_Lancet_diet_per_day = pd.DataFrame(pig_dict) pig_Lancet_diet_per_day = pig_Lancet_diet_per_day.set_index(["type"]) pig_feed_per_g_meat = (pig_Lancet_diet_per_day["gram"]*88)/54264 total_feed_pig_for_Lancet_diet_per_day = pig_feed_per_g_meat * d.loc[["pork"], ["BMI" , "EAT", "Org"]].values[0][0] ##create crop demands including demand for feed crops: ##assuming no waste in feedcrops d.loc[["rice wheat corn and other"], ["BMI" , "EAT", "Org"]] *= (1 + group.loc[group["Foodtype"] == "Cereals", "Total"].min()) d.loc[["rice wheat corn and other"], ["BMI" , "EAT", "Org"]] += total_feed_cows_for_Lancet_diet_per_day.loc["corn"] + total_feed_meat_chickens_for_Lancet_diet_per_day.loc["wheat"] + total_feed_meat_chickens_for_Lancet_diet_per_day.loc["oats"] + total_feed_egg_chickens_for_Lancet_diet_per_day.loc["wheat"] + total_feed_egg_chickens_for_Lancet_diet_per_day.loc["oats"] + total_feed_lamb_for_Lancet_diet_per_day.loc["corn"] + total_feed_pig_for_Lancet_diet_per_day.loc["corn"] + total_feed_pig_for_Lancet_diet_per_day.loc["barley"] + total_feed_pig_for_Lancet_diet_per_day.loc["wheat"] d.loc[["potatoes and cassava"], ["BMI" , "EAT", "Org"]] *= (1 + group.loc[group["Foodtype"] == "Rootsandtubers", "Total"].min()) d.loc[["dry beans lentils and peas"], ["BMI" , "EAT", "Org"]] *= (1 + group.loc[group["Foodtype"] == "Oilseedsandpulses", "Total"].min()) d.loc[["dry beans lentils and peas"], ["BMI" , "EAT", "Org"]] += total_feed_meat_chickens_for_Lancet_diet_per_day.loc["peas"] + total_feed_egg_chickens_for_Lancet_diet_per_day.loc["peas"] d.loc[["soy foods"], ["BMI" , "EAT", "Org"]] *= (1 + group.loc[group["Foodtype"] == "Oilseedsandpulses", "Total"].min()) d.loc[["soy foods"], ["BMI" , "EAT", "Org"]] += total_feed_cows_for_Lancet_diet_per_day.loc["soybean meal"] + total_feed_lamb_for_Lancet_diet_per_day.loc["soybean meal"] + total_feed_meat_chickens_for_Lancet_diet_per_day.loc["soybean meal"] + total_feed_egg_chickens_for_Lancet_diet_per_day.loc["soybean meal"] d.loc[["peanuts"], ["BMI" , "EAT", "Org"]] *= (1 + group.loc[group["Foodtype"] == "Oilseedsandpulses", "Total"].min()) d.loc[["tree nuts"], ["BMI" , "EAT", "Org"]] *= (1 + group.loc[group["Foodtype"] == "Oilseedsandpulses", "Total"].min()) #d.loc[["palm oil"], ["BMI" , "EAT", "Org"]] *= (1 + group.loc[group["Foodtype"] == "Oilseedsandpulses", "Total"].min()) d.loc[["unsaturated oils"], ["BMI" , "EAT", "Org"]] *= (1 + group.loc[group["Foodtype"] == "Oilseedsandpulses", "Total"].min()) d.loc[["unsaturated oils"], ["BMI" , "EAT", "Org"]] += total_feed_meat_chickens_for_Lancet_diet_per_day.loc["rapeseed"] + total_feed_egg_chickens_for_Lancet_diet_per_day.loc["rapeseed"] d.loc[["all fruit"], ["BMI" , "EAT", "Org"]] *= (1 + group.loc[group["Foodtype"] == "Fruitsandvegetables", "Total"].min()) #d.loc[["all vegetables"], ["BMI" , "EAT", "Org"]] *= (1 + group.loc[group["Foodtype"] == "Fruitsandvegetables", "Total"].min()) d.loc[["dark green vegetables"], ["BMI" , "EAT", "Org"]] *= (1 + group.loc[group["Foodtype"] == "Fruitsandvegetables", "Total"].min()) d.loc[["red and orange vegetables"], ["BMI" , "EAT", "Org"]] *= (1 + group.loc[group["Foodtype"] == "Fruitsandvegetables", "Total"].min()) Region_demands[name] = d.loc[(Lancet_diet["GROUP"] == name)] return Region_demands def feed_remove(groups, Lancet_diet): Region_demands = {} for name, group in groups: d = Lancet_diet.copy() d["GROUP"] = name #print(d) ##create animal product demands: d.loc[["beef and lamb"], ["Org_nf"]] *= (1 - group.loc[group["Foodtype"] == "Meat", "Total"].min()) d.loc[["pork"], ["Org_nf"]] *= (1 - group.loc[group["Foodtype"] == "Meat", "Total"].min()) d.loc[["chicken and other poultry"], ["Org_nf"]] *= (1 - group.loc[group["Foodtype"] == "Meat", "Total"].min()) d.loc[["fish"], ["Org_nf"]] *= (1 - group.loc[group["Foodtype"] == "Fishandseafood", "Total"].min()) #d = d.drop(["fish"]) #d.loc[["whole milk or derivative equivalents"], ["BMI" , "EAT", "Org"]] *= (1 + group.loc[group["Foodtype"] == "Milk", "Total"].min()) #d.loc[["eggs"], ["BMI" , "EAT", "Org"]] *= (1 + group.loc[group["Foodtype"] == "Milk", "Total"].min()) ##create feed demands: ##need to determine oil production from soymeal production for feed ##feed required for 1 dairy cow per day ##similar feed is assumed for beef cattle being reared on mixed system (pasture/crop-fed) ##all concentrates except corn and soy assumed to be by-products ##soymeal in concentrate equals 0.8 times fresh soybeans in weight (soymeal.org) ##corn equals sum of fresh and corn in concentrate ##corn (maize grain) in concentrate equals 0.86 times fresh yield? Based on dry mass? cow_dict = {"type": ["grass", "corn", "soybean meal"], ##"citrus pulp concentrate", "palm kernel meal concentrate", "rapeseed meal concentrate", "beet pulp concentrate", "wheat concentrate", "rest products"], "gram": [41250, 13750 + (1250/0.86), 750/0.8 ]}##, 500, 500, 500, 250, 250, 1000]} cow_Lancet_diet_per_day = pd.DataFrame(cow_dict) cow_Lancet_diet_per_day = cow_Lancet_diet_per_day.set_index(["type"]) cow_feed_per_g_milk = cow_Lancet_diet_per_day["gram"]/25000 ##beef production from dairy cows and dairy calf rearing calf_per_g_milk = (1.5/(25000*365*6)) ##3 calves per cow divided by two as only males are used(?) ##Type A calf of Nguyen 2010 using 8438 kg of feed per 1000 kg carcass weight (= per 660kg edible meat) ##(significantly more soymeal --> look into, maybe change Lancet_diet) g_calf_per_g_milk = calf_per_g_milk * 214880 cow_feed_per_g_calf = ((cow_Lancet_diet_per_day["gram"]/55000)*8438000)/660000 ##One 680 kg Holstein dairy cow delivers 224.52 kg of meat (excluding offal and bones) ##what to do with offal? g_dairycow_beef_per_g_milk = 224520.0 / 36500000.0 #36500000 g milk in her milk giving time of 4 years g_beef_per_g_milk = g_calf_per_g_milk + g_dairycow_beef_per_g_milk ##feed demand from classic suckler-cow rearing systems is 20863 kg of feed per 1000kg carcass weight (= per 660kg edible meat) (Nguyen 2010) cow_feed_per_g_suckler_beef = ((cow_Lancet_diet_per_day["gram"]/55000)*20863000)/660000 ##required extra beef production besides dairy cows and their calves to reach demand required_extra_beef_production = max(d.loc[["beef and lamb"], ["Org_nf"]].values[0][0] - (d.loc[["whole milk or derivative equivalents"], ["Org_nf"]].values[0][0] * g_beef_per_g_milk), 0) ##this needs a lamb factor total_feed_cows_for_Lancet_diet_per_day = (d.loc[["whole milk or derivative equivalents"], ["Org_nf"]].values[0][0] * g_calf_per_g_milk * cow_feed_per_g_calf) + (d.loc[["whole milk or derivative equivalents"], ["Org_nf"]].values[0][0] * cow_feed_per_g_milk) + (required_extra_beef_production * cow_feed_per_g_suckler_beef) ##one dutch cow delivers on average 25 liter milk per day and eats 55kg of feed a day ##assuming 3 calves per dairy cow of which half is male so used for slaughter ##one dutch dairy cow is culled after 6 years on average ##if not, how much feed does a meat cow need? ##how much manure do the cows produce? (for effect on N input ratio) ##soybean meal assumed to equal 0.8 times fresh soybean weight as in cow Lancet_diet ##whole grains assumed here ##one dutch egg-laying chicken lays 0.85232877 egg per day amounting to 19400/311.1 = 62.35937 gram egg per day ##one dutch chicken eats 121.3 gram feed per day (both broiler and egg) ##chicken feed based on Rezaei et al (high protein organic Lancet_diet) and ratios based on 1/3 of feeds used in first and 2/3 of last stages of life, byproducts and supplements (under 3%) placed in "other" ##one dutch broiler chicken lives 6 weeks, averages 2446g and delivers 166+547+243+520 = 1476 gram of meat ##is chicken manure used as fertilizer? How much manure does a chicken produce? chicken_dict = {"type": ["wheat", "soybean meal", "rapeseed", "oats", "peas"], ##"other"], "gram": [45.95, 21.62/0.8, 4.04, 23.15, 9.7]} ##, 16.84]} chicken_Lancet_diet_per_day =
pd.DataFrame(chicken_dict)
pandas.DataFrame
#! /user/bin/python """ Ensures all objects in the comprehend.rightcall s3 bucket are added, along with their metadata to the local elasticsearch index. Metadata is stored in local dynamodb database. Flow: If ref from s3 object exists in elasticsearch index with all its meta data: Do Nothing If exists without metadata add ref to list csv file of refs for which metadata is needed. If doesn't exist in index, download it and try to get metadata """ import dynamodb_tools import elasticsearch_tools import s3 as s3py import pandas as pd import boto3 import json import logging class Comp2Elas: def __init__(self, region, db_endpoint, bucket, directory, es_endpoint, loglevel='INFO'): self.region = region self.db_endpoint = db_endpoint self.bucket = bucket self.directory = directory self.es_endpoint = es_endpoint self.LOGLEVEL = loglevel self.setup() def setup(self): # Create the following directories if they don't already exist self.csv_dir = self.directory + 'data/csvs/' self.mp3_dir = self.directory + 'data/mp3s' self.dynamodb = boto3.resource('dynamodb', region_name=self.region, endpoint_url=self.db_endpoint) # Find the name of the table(s) that exist at this endpoint self.TABLE_NAME = 'Rightcall' self.table = self.dynamodb.Table(self.TABLE_NAME) self.INDEX_NAME = 'rightcall' self.TYPE_NAME = '_doc' self.s3 = boto3.client('s3') # Get host and port from endpoint string self.es_host = self.es_endpoint.split(':')[1].replace('/', '') self.es_port = int(self.es_endpoint.split(':')[2]) self.es = elasticsearch_tools.Elasticsearch([{'host': self.es_host, 'port': self.es_port}]) # Logging levels = ['DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'] if self.LOGLEVEL not in levels: raise ValueError(f"Invalid log level choice {self.LOGLEVEL}") self.logger = logging.getLogger(self.__class__.__name__) self.logger.setLevel(self.LOGLEVEL) # create console handler and set level to LOGLEVEL ch = logging.StreamHandler() ch.setLevel(self.LOGLEVEL) # create file handler and set level to DEBUG fh = logging.FileHandler('rightcall_local.log') fh.setLevel(logging.DEBUG) # create formatter formatter = logging.Formatter('%(asctime)s : %(levelname)s : %(name)s : %(message)s') # add formatter to ch ch.setFormatter(formatter) fh.setFormatter(formatter) # add ch to logger self.logger.addHandler(ch) self.logger.addHandler(fh) def update_existing_items(self, source=None): if source is None: source = self.bucket else: source = str(source) refs = self.get_all_refs_from_s3_objects(source) # get_meta_data = [] # Forcing the function to update all documents in index with values in objects in bucket for i, call_record in enumerate(refs): s3_item = None ref = call_record['Name'] s3_item = s3py.get_first_matching_item(ref, source) s3_item = elasticsearch_tools.rename(s3_item) try: result = elasticsearch_tools.update_document(self.es, self.INDEX_NAME, s3_item['referenceNumber'], s3_item) self.logger.debug(f"Result: {result}") except Exception as err: self.logger.error(str(err)) return def get_reference_number_from_object_name(self, object_name_string): """ Given s3 object name: 'e23413582523--QUIDP.json' or 'e23413582523P.json': return just 'e23413582523' """ self.logger.debug(f"Received: {object_name_string}") if '--' in object_name_string: reference_number = object_name_string.split('--')[0] elif '.json' in object_name_string: reference_number = object_name_string.split('.')[0] else: reference_number = object_name_string self.logger.debug(f"Ref Num: {reference_number}") if '--' in reference_number or '.json' in reference_number: raise ValueError(f"Invalid characters detected in reference number: {object_name_string}") return reference_number def get_all_refs_from_s3_objects(self, bucket_name): """Given an s3 bucket name, returns a list of the reference numbers contained in the names of all objects in that bucket Input: <string> 'comprehend.rightcall' Output: <list> ['b310f08130r3', 'c210935j22239', ...] """ self.logger.info(f"Getting objects from {bucket_name}") keys = self.s3.list_objects_v2(Bucket=bucket_name) self.logger.debug(f"Received {len(keys['Contents'])} objects from {bucket_name}") list_of_reference_numbers = [] for key in keys['Contents']: ref = self.get_reference_number_from_object_name(key['Key']) list_of_reference_numbers.append({'Name': ref}) return list_of_reference_numbers def add_new_or_incomplete_items(self, source=None): """Ensures elasticsearch index has all the records that exist in comprehend.rightcall bucket and that they are fully populated with as much information as possible. Pulls objects down from comprehend.rightcall bucket. For each object: Checks if it exists in elasticsearch already. Checks if it has all the required fields populated with data. If so - moves on to next item If not - Checks if that missing data can be found in dynamodb if so - grabs it from dynamodb, combines it with s3 obeject data and uploads to elasticsearch index if not - adds the filename (refNumber) to csv file to be returned.""" print(source) if source is None: source = self.bucket else: source = str(source) refs = self.get_all_refs_from_s3_objects(source) get_meta_data = [] # For each reference number: for i, call_record in enumerate(refs): s3_item = None db_item = None self.logger.debug('---------------------------------------') self.logger.debug(f"Working on {i} : {call_record['Name']}") ref = call_record['Name'] if elasticsearch_tools.exists(self.es, self.INDEX_NAME, ref): self.logger.debug(f"{ref} already in {self.INDEX_NAME} index") else: self.logger.debug(f"{ref} not in {self.INDEX_NAME} index") self.logger.debug(f"Checking {source} bucket for {call_record['Name']}") s3_item = s3py.get_first_matching_item(ref, source) self.logger.debug(f"Preparing data") s3_item = elasticsearch_tools.rename(s3_item) if elasticsearch_tools.fully_populated_in_elasticsearch(ref, self.es, self.INDEX_NAME): self.logger.debug(f"{ref} fully populated in {self.INDEX_NAME}") continue else: self.logger.debug(f"{ref} missing metadata") self.logger.debug(f"Checking {self.table} database for missing metadata") db_item = dynamodb_tools.get_db_item(ref, self.table) if not db_item: self.logger.debug(f"Adding {ref} to 'get_meta_data'") get_meta_data.append(ref) continue else: self.logger.debug(f"Data present in {self.table} database: {db_item}") # Upload to elasticsearch if s3_item is None: self.logger.debug(f"Ensuring object is downloaded from {source}") s3_item = s3py.get_first_matching_item(ref, source) # Prepare data for ES self.logger.debug(f"cleaning data") s3_item = elasticsearch_tools.rename(s3_item) self.logger.debug(f"Combining data for {ref} from {self.table} and {source} and adding to {self.INDEX_NAME} index") result = elasticsearch_tools.load_call_record( db_item, s3_item, self.es, self.INDEX_NAME) if result: self.logger.debug(f"{ref} successfully added to {self.INDEX_NAME} index") else: self.logger.error(f"Couldn't upload to elasticsearch: {result}") self.logger.debug(f"Refs without metadata {get_meta_data}") return get_meta_data def parse_csv(path_to_file): file = pd.read_csv(path_to_file, sep=';') json_file = file.to_json(orient='records') data = json.loads(json_file) return data def write_to_csv(ref_list, path): logger = logging.getLogger() logger.debug(ref_list) df =
pd.DataFrame.from_dict({'col': ref_list})
pandas.DataFrame.from_dict
import pandas as pd #import geopandas as gpd import numpy as np import os #from sqlalchemy import create_engine from scipy import stats from sklearn.preprocessing import MinMaxScaler import math #from shapely import wkt from datetime import datetime, timedelta, date import time from sklearn.ensemble import RandomForestRegressor from sklearn import metrics import requests from pyspark.sql import SparkSession from pyspark.sql.functions import substring, length, col, expr from pyspark.sql.types import * import matplotlib.pyplot as plt #import contextily as cx --> gives error? spark = SparkSession \ .builder \ .getOrCreate() def get_minio_herkomst_2020(): bucket = "gvb-gvb" data_key = "*/*/*/Datalab_Reis_Herkomst_Uur_*.csv" data_location = bucket + "/" + data_key schema_herkomst = StructType([StructField("Datum", StringType(), True), StructField("UurgroepOmschrijving (van vertrek)", StringType(), True), StructField("VertrekHalteCode", StringType(), True), StructField("VertrekHalteNaam", StringType(), True), StructField("HerkomstLat", StringType(), True), StructField("HerkomstLon", StringType(), True), StructField("AantalReizen", IntegerType(), True) ]) cols_herkomst = ["Datum","UurgroepOmschrijving (van vertrek)","VertrekHalteCode","VertrekHalteNaam","AantalReizen"] gvb_herkomst_raw_csv = spark.read.format("csv").option("header", "true").load(data_location, header = 'True', schema = schema_herkomst, sep = ";").select(*cols_herkomst) gvb_herkomst_raw_csv = gvb_herkomst_raw_csv.distinct() gvb_herkomst_raw_csv = gvb_herkomst_raw_csv.toPandas() return gvb_herkomst_raw_csv def get_minio_bestemming_2020 (): bucket = "gvb-gvb" data_key = "topics/gvb/*/*/*/Datalab_Reis_Bestemming_Uur_*.csv" data_location = f"s3a://{bucket}/{data_key}" schema_bestemming = StructType( [StructField("Datum", StringType(), True), StructField("UurgroepOmschrijving (van aankomst)", StringType(), True), StructField("AankomstHalteCode", StringType(), True), StructField("AankomstHalteNaam", StringType(), True), StructField("AankomstLat", StringType(), True), StructField("AankomstLon", StringType(), True), StructField("AantalReizen", IntegerType(), True) ]) cols_bestemming = ["Datum","UurgroepOmschrijving (van aankomst)","AankomstHalteCode","AankomstHalteNaam","AantalReizen"] gvb_bestemming_raw_csv = spark.read.format("csv").option("header", "true").load(data_location, header = 'True', schema = schema_bestemming, sep = ";").select(*cols_bestemming) gvb_bestemming_raw_csv = gvb_bestemming_raw_csv.distinct() gvb_bestemming_raw_csv = gvb_bestemming_raw_csv.toPandas() return gvb_bestemming_raw_csv def get_minio_herkomst_2021 (): bucket = "gvb-gvb" data_key = "topics/gvb/2021/*/*/Datalab_Reis_Herkomst_Uur_2021*.csv" data_location = f"s3a://{bucket}/{data_key}" schema_herkomst = StructType([StructField("Datum", StringType(), True), StructField("UurgroepOmschrijving (van vertrek)", StringType(), True), StructField("VertrekHalteCode", StringType(), True), StructField("VertrekHalteNaam", StringType(), True), StructField("HerkomstLat", StringType(), True), StructField("HerkomstLon", StringType(), True), StructField("AantalReizen", IntegerType(), True) ]) cols_herkomst = ["Datum","UurgroepOmschrijving (van vertrek)","VertrekHalteCode","VertrekHalteNaam","AantalReizen"] gvb_herkomst_raw_csv = spark.read.format("csv").option("header", "true").load(data_location, header = 'True', schema = schema_herkomst, sep =";").select(*cols_herkomst) gvb_herkomst_raw_csv = gvb_herkomst_raw_csv.distinct() gvb_herkomst_raw_csv = gvb_herkomst_raw_csv.toPandas() return gvb_herkomst_raw_csv def get_minio_bestemming_2021 (): bucket = "gvb-gvb" data_key = "topics/gvb/2021/*/*/Datalab_Reis_Bestemming_Uur_2021*.csv" data_location = f"s3a://{bucket}/{data_key}" schema_bestemming = StructType( [StructField("Datum", StringType(), True), StructField("UurgroepOmschrijving (van aankomst)", StringType(), True), StructField("AankomstHalteCode", StringType(), True), StructField("AankomstHalteNaam", StringType(), True), StructField("AankomstLat", StringType(), True), StructField("AankomstLon", StringType(), True), StructField("AantalReizen", IntegerType(), True) ]) cols_bestemming = ["Datum","UurgroepOmschrijving (van aankomst)","AankomstHalteCode","AankomstHalteNaam","AantalReizen"] gvb_bestemming_raw_csv = spark.read.format("csv").option("header", "true").load(data_location, header = 'True', schema = schema_bestemming, sep = ";").select(*cols_bestemming) gvb_bestemming_raw_csv = gvb_bestemming_raw_csv.distinct() gvb_bestemming_raw_csv = gvb_bestemming_raw_csv.toPandas() return gvb_bestemming_raw_csv def read_csv_dir(dir): read_csv_beta = pd.read_csv(dir,sep=';') return read_csv_beta def get_knmi_obs(): knmi_obs_schema = StructType([StructField("DD", StringType(), True), StructField("DR", StringType(), True), StructField("FF", StringType(), True), StructField("FH", StringType(), True), StructField("FX", StringType(), True), StructField("IX", StringType(), True), StructField("M", IntegerType(), True), StructField("N", IntegerType(), True), StructField("O", IntegerType(), True), StructField("P", IntegerType(), True), StructField("Q", IntegerType(), True), StructField("R", IntegerType(), True), StructField("RH", IntegerType(), True), StructField("S", IntegerType(), True), StructField("SQ", IntegerType(), True), StructField("T", IntegerType(), True), StructField("T10N", IntegerType(), True), StructField("TD", IntegerType(), True), StructField("U", IntegerType(), True), StructField("VV", IntegerType(), True), StructField("WW", IntegerType(), True), StructField("Y", IntegerType(), True), StructField("date", StringType(), True), StructField("hour", IntegerType(), True), StructField("station_code", IntegerType(), True) ]) knmi_obs = spark.read.format("json").option("header", "true").load("s3a://knmi-knmi/topics/knmi-observations/2021/*/*/*", schema=knmi_obs_schema) return knmi_obs def get_knmi_preds(): knmi_pred_schema = StructType([StructField("cape", IntegerType(), True), StructField("cond", StringType(), True), StructField("gr", StringType(), True), StructField("gr_w", StringType(), True), StructField("gust", StringType(), True), StructField("gustb", StringType(), True), StructField("gustkmh", StringType(), True), StructField("gustkt", StringType(), True), StructField("hw", StringType(), True), StructField("ico", StringType(), True), StructField("icoon", StringType(), True), StructField("loc", StringType(), True), StructField("luchtd", StringType(), True), StructField("luchtdinhg", StringType(), True), StructField("luchtdmmhg", StringType(), True), StructField("lw", StringType(), True), StructField("mw", StringType(), True), StructField("neersl", StringType(), True), StructField("offset", StringType(), True), StructField("rv", StringType(), True), StructField("samenv", IntegerType(), True), StructField("temp", StringType(), True), StructField("tijd", StringType(), True), StructField("tijd_nl", StringType(), True), StructField("tw", StringType(), True), StructField("vis", StringType(), True), StructField("windb", StringType(), True), StructField("windkmh", StringType(), True), StructField("windknp", StringType(), True), StructField("windr", StringType(), True), StructField("windrltr", StringType(), True), StructField("winds", StringType(), True) ]) knmi_pred_cols = ('cape', 'cond', 'gr', 'gr_w', 'gust', 'gustb', 'gustkmh', 'gustkt', 'hw', 'ico', 'icoon', 'loc', 'luchtd', 'luchtdinhg', 'luchtdmmhg', 'lw', 'mw', 'neersl', 'offset', 'rv', 'samenv', 'temp', 'tijd', 'tijd_nl', 'tw', 'vis', 'windb', 'windkmh', 'windknp', 'windr', 'windrltr', 'winds') knmi_pred = spark.read.format("json").option("header", "true").load("s3a://knmi-knmi/topics/knmi/2021/*/*/*.json.gz", schema=knmi_pred_schema).select(*knmi_pred_cols) return knmi_pred def get_prediction_df(): """ Return the prediction dataframe (date- and hours only) """ this_year = date.today().isocalendar()[0] this_week = date.today().isocalendar()[1] firstdayofweek = datetime.strptime(f'{this_year}-W{int(this_week )}-1', "%Y-W%W-%w").date() prediction_date_range = pd.date_range(first_date, periods=8, freq='D') prediction_date_range_hour = pd.date_range(prediction_date_range.min(), prediction_date_range.max(), freq='h').delete(-1) return prediction_date_range_hour def get_vacations(): """ Retrieves vacations in the Netherlands from the Government of the Netherlands (Rijksoverheid) and returns the list of dates that are vacation dates """ vacations_url = 'https://opendata.rijksoverheid.nl/v1/sources/rijksoverheid/infotypes/schoolholidays?output=json' vacations_raw = requests.get(url = vacations_url).json() df_vacations = pd.DataFrame(columns={'vacation', 'region', 'startdate', 'enddate'}) for x in range(0, len(vacations_raw)): # Iterate through all vacation years for y in range(0, len(vacations_raw[0]['content'][0]['vacations'])): # number of vacations in a year dates = pd.DataFrame(vacations_raw[x]['content'][0]['vacations'][y]['regions']) dates['vacation'] = vacations_raw[x]['content'][0]['vacations'][y]['type'].strip() # vacation name dates['school_year'] = vacations_raw[x]['content'][0]['schoolyear'].strip() # school year df_vacations = df_vacations.append(dates) filtered = df_vacations[(df_vacations['region']=='noord') | (df_vacations['region']=='heel Nederland')] vacations_date_only = pd.DataFrame(columns={'date'}) for x in range(0, len(filtered)): df_temporary = pd.DataFrame(data = {'date':pd.date_range(filtered.iloc[x]['startdate'], filtered.iloc[x]['enddate'], freq='D') + pd.Timedelta(days=1)}) vacations_date_only = vacations_date_only.append(df_temporary) vacations_date_only['date'] = vacations_date_only['date'].apply(lambda x: x.date) vacations_date_only['date'] = vacations_date_only['date'].astype('datetime64[ns]') # Since the data from Rijksoverheid starts from school year 2019-2020, add the rest of 2019 vacations manually! kerst_18 = pd.DataFrame(data = {'date': pd.date_range(date(2019, 1, 1), periods = 6, freq='1d')}) voorjaar_19 = pd.DataFrame(data = {'date': pd.date_range(date(2019, 2, 16), periods = 9, freq='1d')}) mei_19 = pd.DataFrame(data = {'date': pd.date_range(date(2019, 4, 27), periods = 9, freq='1d')}) zomer_19 = pd.DataFrame(data = {'date': pd.date_range(date(2019, 7, 13), periods = 7*6 + 2, freq='1d')}) vacations_date_only = vacations_date_only.append([kerst_18, voorjaar_19, mei_19, zomer_19]) return vacations_date_only def get_events(): """ Event data from static file. We can store events in the database in the near future. When possible, we can get it from an API. """ events = pd.read_excel('events_zuidoost.xlsx', sheet_name='Resultaat', header=1) # Clean events.dropna(how='all', inplace=True) events.drop(events.loc[events['Datum']=='Niet bijzonder evenementen zijn hierboven niet meegenomen.'].index, inplace=True) events.drop(events.loc[events['Locatie'].isna()].index, inplace=True) events.drop(events.loc[events['Locatie']=='Overig'].index, inplace=True) events['Datum'] = events['Datum'].astype('datetime64[ns]') # Fix location names events['Locatie'] = events['Locatie'].apply(lambda x: x.strip()) # Remove spaces events['Locatie'] = np.where(events['Locatie'] == 'Ziggo dome', 'Ziggo Dome', events['Locatie']) events['Locatie'] = np.where(events['Locatie'] == 'Ziggo Dome (2x)', 'Ziggo Dome', events['Locatie']) # Get events from 2019 from static file events = events[events['Datum'].dt.year>=2019].copy() events.reset_index(inplace=True) events.drop(columns=['index'], inplace=True) events # Add 2020-present events manually events = events.append({'Datum':datetime(2020, 1, 19)}, ignore_index=True) # Ajax - Sparta events = events.append({'Datum':datetime(2020, 2, 2)}, ignore_index=True) # Ajax - PSV events = events.append({'Datum':datetime(2020, 2, 16)}, ignore_index=True) # Ajax - RKC events = events.append({'Datum':datetime(2020, 1, 3)}, ignore_index=True) # Ajax - AZ # Euro 2021 events = events.append({'Datum':datetime(2021, 6, 13)}, ignore_index=True) # EURO 2020 Nederland- Oekraïne events = events.append({'Datum':datetime(2021, 6, 17)}, ignore_index=True) # EURO 2020 Nederland- Oostenrijk events = events.append({'Datum':datetime(2021, 6, 21)}, ignore_index=True) # EURO 2020 Noord-Macedonië - Nederland events = events.append({'Datum':datetime(2021, 6, 26)}, ignore_index=True) # EURO 2020 Wales - Denemarken return events def merge_csv_json(bestemming_csv, herkomst_csv, bestemming_json, herkomst_json): bestemming = pd.concat([bestemming_csv, bestemming_json]).copy() herkomst = pd.concat([herkomst_csv, herkomst_json]).copy() return [bestemming, herkomst] def merge_bestemming_herkomst(bestemming, herkomst): bestemming.rename(columns={'AantalReizen':'Uitchecks', 'UurgroepOmschrijving (van aankomst)':'UurgroepOmschrijving', 'AankomstHalteCode':'HalteCode', 'AankomstHalteNaam':'HalteNaam'}, inplace=True) herkomst.rename(columns={'AantalReizen':'Inchecks', 'UurgroepOmschrijving (van vertrek)':'UurgroepOmschrijving', 'VertrekHalteCode':'HalteCode', 'VertrekHalteNaam':'HalteNaam'}, inplace=True) merged = pd.merge(left=bestemming, right=herkomst, left_on=['Datum', 'UurgroepOmschrijving', 'HalteNaam'], right_on=['Datum', 'UurgroepOmschrijving', 'HalteNaam'], how='outer') return merged def preprocess_gvb_data_for_modelling(gvb_df, station): df = gvb_df[gvb_df['HalteNaam']==station].copy() # create datetime column df['datetime'] = df['Datum'].astype('datetime64[ns]') df['UurgroepOmschrijving'] = df['UurgroepOmschrijving'].astype(str) df['hour'] = df['UurgroepOmschrijving'].apply(lambda x: int(x[:2])) # add time indications df['week'] = df['datetime'].dt.isocalendar().week df['month'] = df['datetime'].dt.month df['year'] = df['datetime'].dt.year df['weekday'] = df['datetime'].dt.weekday hours = pd.get_dummies(df['hour'], prefix='hour') days = pd.get_dummies(df['weekday'], prefix='weekday') df = pd.concat([df, hours, days], axis=1) # drop duplicates and sort df_ok = df.drop_duplicates() # sort values and reset index df_ok = df_ok.sort_values(by = 'datetime') df_ok = df_ok.reset_index(drop = True) # drop unnecessary columns df_ok.drop(columns=['Datum', 'UurgroepOmschrijving', 'HalteNaam'], inplace=True) # rename columns df_ok.rename(columns={'Inchecks':'check-ins', 'Uitchecks':'check-outs'}, inplace=True) return df_ok def preprocess_knmi_data_hour(df_raw): """ Prepare the raw knmi data for modelling. We rename columns and resample from 60min to 15min data. Also, we will create a proper timestamp. Documentation: https://www.daggegevens.knmi.nl/klimatologie/uurgegevens """ # drop duplicates df_raw = df_raw.drop_duplicates() # rename columns df = df_raw.rename(columns={"DD": "wind_direction", "FH": "wind_speed_h", "FF": "wind_speed", "FX": "wind_gust", "T": "temperature", "T10N": "temperature_min", "TD": "dew_point_temperature", "SQ": "radiation_duration", "Q": "global_radiation", "DR": "precipitation_duration", "RH": "precipitation_h", "P": "pressure", "VV": "sight", "N": "cloud_cover", "U": "relative_humidity", "WW": "weather_code", "IX": "weather_index", "M": "fog", "R": "rain", "S": "snow", "O": "thunder", "Y": "ice" }) # get proper datetime column df["datetime"] = pd.to_datetime(df['date'], format='%Y%m%dT%H:%M:%S.%f') + pd.to_timedelta(df["hour"] - 1, unit = 'hours') df["datetime"] = df["datetime"].dt.tz_convert("Europe/Amsterdam") df = df.sort_values(by = "datetime", ascending = True) df = df.reset_index(drop = True) df['date'] = df['datetime'].dt.date df['date'] = df['date'].astype('datetime64[ns]') df['hour'] -= 1 # drop unwanted columns df = df.drop(['datetime', 'weather_code', 'station_code'], axis = 'columns') df = df.astype({'wind_speed':'float64', 'wind_gust':'float64','temperature':'float64','temperature_min':'float64', 'dew_point_temperature':'float64','radiation_duration':'float64','precipitation_duration':'float64', 'precipitation_h':'float64','pressure':'float64'}) # divide some columns by ten (because using 0.1 degrees C etc. as units) col10 = ["wind_speed", "wind_gust", "temperature", "temperature_min", "dew_point_temperature", "radiation_duration", "precipitation_duration", "precipitation_h", "pressure"] df[col10] = df[col10] / 10 return df def preprocess_metpre_data(df_raw): """ To be filled Documentation: https://www.meteoserver.nl/weersverwachting-API.php """ # rename columns df = df_raw.rename(columns={"windr": "wind_direction", "rv": "relative_humidity", "luchtd": "pressure", "temp": "temperature", "windb": "wind_force", "winds": "wind_speed", "gust": "wind_gust", "vis": "sight_m", "neersl": "precipitation_h", "gr": "global_radiation", "tw": "clouds" }) # drop duplicates df = df.drop_duplicates() # get proper datetime column df["datetime"] = pd.to_datetime(df['tijd'], unit='s', utc = True) df["datetime"] = df["datetime"] + pd.to_timedelta(1, unit = 'hours') ## klopt dan beter, maar waarom? df = df.sort_values(by = "datetime", ascending = True) df = df.reset_index(drop = True) df["datetime"] = df["datetime"].dt.tz_convert("Europe/Amsterdam") # new column: forecast created on df["offset_h"] = df["offset"].astype(float) #df["datetime_predicted"] = df["datetime"] - pd.to_timedelta(df["offset_h"], unit = 'hours') # select only data after starting datetime #df = df[df['datetime'] >= start_ds] # @me: move this to query later # select latest prediction # logisch voor prediction set, niet zozeer voor training set df = df.sort_values(by = ['datetime', 'offset_h']) df = df.drop_duplicates(subset = 'datetime', keep = 'first') # drop unwanted columns df = df.drop(['tijd', 'tijd_nl', 'loc', 'icoon', 'samenv', 'ico', 'cape', 'cond', 'luchtdmmhg', 'luchtdinhg', 'windkmh', 'windknp', 'windrltr', 'wind_force', 'gustb', 'gustkt', 'gustkmh', 'wind_gust', # deze zitten er niet in voor 14 juni 'hw', 'mw', 'lw', 'offset', 'offset_h', 'gr_w'], axis = 'columns', errors = 'ignore') # set datatypes of weather data to float df = df.set_index('datetime') df = df.astype('float64').reset_index() # cloud cover similar to observations (0-9) & sight, but not really the same thing df['cloud_cover'] = df['clouds'] / 12.5 df['sight'] = df['sight_m'] / 333 df.drop(['clouds', 'sight_m'], axis = 'columns') # go from hourly to quarterly values df_hour = df.set_index('datetime').resample('1h').ffill(limit = 11) # later misschien smoothen? lijkt nu niet te helpen voor voorspelling #df_smooth = df_15.apply(lambda x: savgol_filter(x,17,2)) #df_smooth = df_smooth.reset_index() df_hour = df_hour.reset_index() df_hour['date'] = df_hour['datetime'].dt.date df_hour['date'] = df_hour['date'].astype('datetime64[ns]') df_hour['hour'] = df_hour['datetime'].dt.hour return df_hour # df_smooth def preprocess_covid_data(df_raw): # Put data to dataframe df_raw_unpack = df_raw.T['NLD'].dropna() df = pd.DataFrame.from_records(df_raw_unpack) # Add datetime column df['datetime'] = pd.to_datetime(df['date_value']) # Select columns df_sel = df[['datetime', 'stringency']] # extend dataframe to 14 days in future (based on latest value) dates_future = pd.date_range(df['datetime'].iloc[-1], periods = 14, freq='1d') df_future = pd.DataFrame(data = {'datetime': dates_future, 'stringency': df['stringency'].iloc[-1]}) # Add together and set index df_final = df_sel.append(df_future.iloc[1:]) df_final = df_final.set_index('datetime') return df_final def preprocess_holiday_data(holidays): df = pd.DataFrame(holidays, columns=['Date', 'Holiday']) df['Date'] = df['Date'].astype('datetime64[ns]') return df def interpolate_missing_values(data_to_interpolate): df = data_to_interpolate.copy() random_state_value = 1 # Ensure reproducability # Train check-ins interpolator checkins_interpolator_cols = ['hour', 'year', 'weekday', 'month', 'stringency', 'holiday', 'check-outs'] checkins_interpolator_targets = ['check-ins'] X_train = df.dropna()[checkins_interpolator_cols] y_train = df.dropna()[checkins_interpolator_targets] checkins_interpolator = RandomForestRegressor(random_state=random_state_value) checkins_interpolator.fit(X_train, y_train) # Train check-outs interpolator checkouts_interpolator_cols = ['hour', 'year', 'weekday', 'month', 'stringency', 'holiday', 'check-ins'] checkouts_interpolator_targets = ['check-outs'] X_train = df.dropna()[checkouts_interpolator_cols] y_train = df.dropna()[checkouts_interpolator_targets] checkouts_interpolator = RandomForestRegressor(random_state=random_state_value) checkouts_interpolator.fit(X_train, y_train) # Select rows which need interpolation df_to_interpolate = df.drop(df.loc[(df['check-ins'].isna()==True) & (df['check-outs'].isna()==True)].index) # Interpolate check-ins checkins_missing = df_to_interpolate[(df_to_interpolate['check-outs'].isna()==False) & (df_to_interpolate['check-ins'].isna()==True)].copy() checkins_missing['stringency'] = checkins_missing['stringency'].replace(np.nan, 0) checkins_missing['check-ins'] = checkins_interpolator.predict(checkins_missing[['hour', 'year', 'weekday', 'month', 'stringency', 'holiday', 'check-outs']]) # Interpolate check-outs checkouts_missing = df_to_interpolate[(df_to_interpolate['check-ins'].isna()==False) & (df_to_interpolate['check-outs'].isna()==True)].copy() checkouts_missing['stringency'] = checkouts_missing['stringency'].replace(np.nan, 0) checkouts_missing['check-outs'] = checkouts_interpolator.predict(checkouts_missing[['hour', 'year', 'weekday', 'month', 'stringency', 'holiday', 'check-ins']]) # Insert interpolated values into main dataframe for index, row in checkins_missing.iterrows(): df.loc[df.index==index, 'check-ins'] = row['check-ins'] for index, row in checkouts_missing.iterrows(): df.loc[df.index==index, 'check-outs'] = row['check-outs'] return df def get_crowd_last_week(df, row): week_ago = row['datetime'] - timedelta(weeks=1) subset_with_hour = df[(df['datetime']==week_ago) & (df['hour']==row['hour'])] # If crowd from last week is not available at exact date- and hour combination, then get average crowd of last week. subset_week_ago = df[(df['year']==row['year']) & (df['week']==row['week']) & (df['hour']==row['hour'])] checkins_week_ago = 0 checkouts_week_ago = 0 if len(subset_with_hour) > 0: # return crowd from week ago at the same day/time (hour) checkins_week_ago = subset_with_hour['check-ins'].mean() checkouts_week_ago = subset_with_hour['check-outs'].mean() elif len(subset_week_ago) > 0: # return average crowd the hour group a week ago checkins_week_ago = subset_week_ago['check-ins'].mean() checkouts_week_ago = subset_week_ago['check-outs'].mean() return [checkins_week_ago, checkouts_week_ago] def get_train_test_split(df): """ Create train and test split for 1-week ahead models. This means that the last week of the data will be used as a test set and the rest will be the training set. """ most_recent_date = df['datetime'].max() last_week = pd.date_range(df.datetime.max()-pd.Timedelta(7, unit='D')+pd.DateOffset(1), df['datetime'].max()) train = df[df['datetime']<last_week.min()] test = df[(df['datetime']>=last_week.min()) & (df['datetime']<=last_week.max())] return [train, test] def get_train_val_test_split(df): """ Create train, validation, and test split for 1-week ahead models. This means that the last week of the data will be used as a test set, the second-last will be the validation set, and the rest will be the training set. """ most_recent_date = df['datetime'].max() last_week = pd.date_range(df.datetime.max()-pd.Timedelta(7, unit='D')+pd.DateOffset(1), df['datetime'].max()) two_weeks_before = pd.date_range(last_week.min()-pd.Timedelta(7, unit='D'), last_week.min()-pd.DateOffset(1)) train = df[df['datetime']<two_weeks_before.min()] validation = df[(df['datetime']>=two_weeks_before.min()) & (df['datetime']<=two_weeks_before.max())] test = df[(df['datetime']>=last_week.min()) & (df['datetime']<=last_week.max())] return [train, validation, test] def get_future_df(features, gvb_data, covid_stringency, holidays, vacations, weather, events): """ Create empty data frame for predictions of the target variable for the specfied prediction period """ this_year = date.today().isocalendar()[0] this_week = date.today().isocalendar()[1] firstdayofweek = datetime.strptime(f'{this_year}-W{int(this_week )}-1', "%Y-W%W-%w").date() prediction_date_range = pd.date_range(firstdayofweek, periods=8, freq='D') prediction_date_range_hour = pd.date_range(prediction_date_range.min(), prediction_date_range.max(), freq='h').delete(-1) # Create variables df = pd.DataFrame({'datetime':prediction_date_range_hour}) df['hour'] = df.apply(lambda x: x['datetime'].hour, axis=1) df['week'] = df['datetime'].dt.isocalendar().week df['month'] = df['datetime'].dt.month df['year'] = df['datetime'].dt.year df['weekday'] = df['datetime'].dt.weekday df['stringency'] = covid_stringency df['datetime'] = df.apply(lambda x: x['datetime'].date(), axis=1) df['datetime'] = df['datetime'].astype('datetime64[ns]') #adding sin and cosine features df["hour_norm"] = 2 * math.pi * df["hour"] / df["hour"].max() df["cos_hour"] = np.cos(df["hour_norm"]) df["sin_hour"] = np.sin(df["hour_norm"]) df["month_norm"] = 2 * math.pi * df["month"] / df["month"].max() df["cos_month"] = np.cos(df["month_norm"]) df["sin_month"] = np.sin(df["month_norm"]) df["weekday_norm"] = 2 * math.pi * df["weekday"] / df["weekday"].max() df["cos_weekday"] = np.cos(df["weekday_norm"]) df["sin_weekday"] = np.sin(df["weekday_norm"]) #adding dummy variable for peak hour df['peak_period'] = 0 df['peak_period'][df.hour.isin([7,8,17,18])] = 1 # Set holidays, vacations, and events df['holiday'] = np.where((df['datetime'].isin(holidays['Date'].values)), 1, 0) df['vacation'] = np.where((df['datetime'].isin(vacations['date'].values)), 1, 0) # Get events from database in future! df['planned_event'] = np.where((df['datetime'].isin(events['Datum'].values)), 1, 0) # Set forecast for temperature, rain, and wind speed. df = pd.merge(left=df, right=weather.drop(columns=['datetime']), left_on=['datetime', 'hour'], right_on=['date', 'hour'], how='left') df.drop(columns=['date'], inplace=True) # Set recent crowd df[['check-ins_week_ago', 'check-outs_week_ago']] = df.apply(lambda x: get_crowd_last_week(gvb_data, x), axis=1, result_type="expand") if not 'datetime' in features: features.append('datetime') # Add datetime to make storing in database easier return df[features] def train_random_forest_regressor(X_train, y_train, X_val, y_val, hyperparameters=None): if hyperparameters == None: model = RandomForestRegressor(random_state=1).fit(X_train, y_train) else: model = RandomForestRegressor(**hyperparameters, random_state=1).fit(X_train, y_train) y_pred = model.predict(X_val) r_squared = metrics.r2_score(y_val, y_pred) mae = metrics.mean_absolute_error(y_val, y_pred) rmse = np.sqrt(metrics.mean_squared_error(y_val, y_pred)) return [model, r_squared, mae, rmse] def merge_gvb_with_datasources(gvb, weather, covid, holidays, vacations, events): gvb_merged = pd.merge(left=gvb, right=weather, left_on=['datetime', 'hour'], right_on=['date', 'hour'], how='left') gvb_merged.drop(columns=['date'], inplace=True) gvb_merged = pd.merge(gvb_merged, covid['stringency'], left_on='datetime', right_index=True, how='left') gvb_merged['holiday'] = np.where((gvb_merged['datetime'].isin(holidays['Date'].values)), 1, 0) gvb_merged['vacation'] = np.where((gvb_merged['datetime'].isin(vacations['date'].values)), 1, 0) gvb_merged['planned_event'] = np.where((gvb_merged['datetime'].isin(events['Datum'].values)), 1, 0) return gvb_merged def predict(model, X_predict): y_predict = model.predict(X_predict.drop(columns=['datetime'])) predictions = X_predict.copy() predictions['check-ins_predicted'] = y_predict[:,0] predictions['check-outs_predicted'] = y_predict[:,1] return predictions def set_station_type(df, static_gvb): stationtypes = static_gvb[['arrival_stop_code', 'type']] return pd.merge(left=df, right=stationtypes, left_on='HalteCode', right_on='arrival_stop_code', how='inner') def merge_bestemming_herkomst_stop_level(bestemming, herkomst): bestemming.rename(columns={'AantalReizen':'Uitchecks', 'UurgroepOmschrijving (van aankomst)':'UurgroepOmschrijving', 'AankomstHalteCode':'HalteCode', 'AankomstHalteNaam':'HalteNaam'}, inplace=True) herkomst.rename(columns={'AantalReizen':'Inchecks', 'UurgroepOmschrijving (van vertrek)':'UurgroepOmschrijving', 'VertrekHalteCode':'HalteCode', 'VertrekHalteNaam':'HalteNaam'}, inplace=True) merged = pd.merge(left=bestemming, right=herkomst, left_on=['Datum', 'UurgroepOmschrijving', 'HalteCode', 'HalteNaam'], right_on=['Datum', 'UurgroepOmschrijving', 'HalteCode', 'HalteNaam'], how='outer') return merged def get_crowd_last_week_stop_level(df, row): week_ago = row['datetime'] - timedelta(weeks=1) subset_with_hour = df[(df['type_metro']==row['type_metro']) & (df['type_tram/bus']==row['type_tram/bus']) & (df['datetime']==week_ago) & (df['hour']==row['hour'])] # If crowd from last week is not available at exact date- and hour combination, then get average crowd of last week. subset_week_ago = df[(df['type_metro']==row['type_metro']) & (df['type_tram/bus']==row['type_tram/bus']) & (df['year']==row['year']) & (df['week']==row['week']) & (df['hour']==row['hour'])] checkins_week_ago = 0 checkouts_week_ago = 0 if len(subset_with_hour) > 0: # return crowd from week ago at the same day/time (hour) checkins_week_ago = subset_with_hour['check-ins'].mean() checkouts_week_ago = subset_with_hour['check-outs'].mean() elif len(subset_week_ago) > 0: # return average crowd the hour group a week ago checkins_week_ago = subset_week_ago['check-ins'].mean() checkouts_week_ago = subset_week_ago['check-outs'].mean() return [checkins_week_ago, checkouts_week_ago] """ Below are old functions which are not used for the prediction models. """ def preprocess_gvb_data(df): # create datetime column df['date'] = pd.to_datetime(df['Datum']) df['time'] = df['UurgroepOmschrijving (van aankomst)'].astype(str).str[:5] df['datetime'] = df['date'].astype(str) + " " + df['time'] df['datetime'] =
pd.to_datetime(df['datetime'])
pandas.to_datetime
# Copyright (c) 2018-2022, NVIDIA CORPORATION. import numpy as np import pandas as pd import pytest from pandas.api import types as ptypes import cudf from cudf.api import types as types @pytest.mark.parametrize( "obj, expect", ( # Base Python objects. (bool(), False), (int(), False), (float(), False), (complex(), False), (str(), False), ("", False), (r"", False), (object(), False), # Base Python types. (bool, False), (int, False), (float, False), (complex, False), (str, False), (object, False), # NumPy types. (np.bool_, False), (np.int_, False), (np.float64, False), (np.complex128, False), (np.str_, False), (np.unicode_, False), (np.datetime64, False), (np.timedelta64, False), # NumPy scalars. (np.bool_(), False), (np.int_(), False), (np.float64(), False), (np.complex128(), False), (np.str_(), False), (np.unicode_(), False), (np.datetime64(), False), (np.timedelta64(), False), # NumPy dtype objects. (np.dtype("bool"), False), (np.dtype("int"), False), (np.dtype("float"), False), (np.dtype("complex"), False), (np.dtype("str"), False), (np.dtype("unicode"), False), (np.dtype("datetime64"), False), (np.dtype("timedelta64"), False), (np.dtype("object"), False), # NumPy arrays. (np.array([], dtype=np.bool_), False), (np.array([], dtype=np.int_), False), (np.array([], dtype=np.float64), False), (np.array([], dtype=np.complex128), False), (np.array([], dtype=np.str_), False), (np.array([], dtype=np.unicode_), False), (np.array([], dtype=np.datetime64), False), (np.array([], dtype=np.timedelta64), False), (np.array([], dtype=object), False), # Pandas dtypes. (pd.core.dtypes.dtypes.CategoricalDtypeType, True), (pd.CategoricalDtype, True), # Pandas objects. (pd.Series(dtype="bool"), False), (pd.Series(dtype="int"), False), (pd.Series(dtype="float"), False), (pd.Series(dtype="complex"), False), (pd.Series(dtype="str"), False), (pd.Series(dtype="unicode"), False), (pd.Series(dtype="datetime64[s]"), False), (pd.Series(dtype="timedelta64[s]"), False), (pd.Series(dtype="category"), True), (pd.Series(dtype="object"), False), # cuDF dtypes. (cudf.CategoricalDtype, True), (cudf.ListDtype, False), (cudf.StructDtype, False), (cudf.Decimal128Dtype, False), (cudf.Decimal64Dtype, False), (cudf.Decimal32Dtype, False), (cudf.IntervalDtype, False), # cuDF dtype instances. (cudf.CategoricalDtype("a"), True), (cudf.ListDtype(int), False), (cudf.StructDtype({"a": int}), False), (cudf.Decimal128Dtype(5, 2), False), (cudf.Decimal64Dtype(5, 2), False), (cudf.Decimal32Dtype(5, 2), False), (cudf.IntervalDtype(int), False), # cuDF objects (cudf.Series(dtype="bool"), False), (cudf.Series(dtype="int"), False), (cudf.Series(dtype="float"), False), (cudf.Series(dtype="str"), False), (cudf.Series(dtype="datetime64[s]"), False), (cudf.Series(dtype="timedelta64[s]"), False), (cudf.Series(dtype="category"), True), (cudf.Series(dtype=cudf.Decimal128Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal64Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal32Dtype(5, 2)), False), # TODO: Currently creating an empty Series of list type ignores the # provided type and instead makes a float64 Series. (cudf.Series([[1, 2], [3, 4, 5]]), False), # TODO: Currently creating an empty Series of struct type fails because # it uses a numpy utility that doesn't understand StructDtype. (cudf.Series([{"a": 1, "b": 2}, {"c": 3}]), False), (cudf.Series(dtype=cudf.IntervalDtype(int)), False), ), ) def test_is_categorical_dtype(obj, expect): assert types.is_categorical_dtype(obj) == expect @pytest.mark.parametrize( "obj, expect", ( # Base Python objects. (bool(), False), (int(), False), (float(), False), (complex(), False), (str(), False), ("", False), (r"", False), (object(), False), # Base Python types. (bool, True), (int, True), (float, True), (complex, True), (str, False), (object, False), # NumPy types. (np.bool_, True), (np.int_, True), (np.float64, True), (np.complex128, True), (np.str_, False), (np.unicode_, False), (np.datetime64, False), (np.timedelta64, False), # NumPy scalars. (np.bool_(), True), (np.int_(), True), (np.float64(), True), (np.complex128(), True), (np.str_(), False), (np.unicode_(), False), (np.datetime64(), False), (np.timedelta64(), False), # NumPy dtype objects. (np.dtype("bool"), True), (np.dtype("int"), True), (np.dtype("float"), True), (np.dtype("complex"), True), (np.dtype("str"), False), (np.dtype("unicode"), False), (np.dtype("datetime64"), False), (np.dtype("timedelta64"), False), (np.dtype("object"), False), # NumPy arrays. (np.array([], dtype=np.bool_), True), (np.array([], dtype=np.int_), True), (np.array([], dtype=np.float64), True), (np.array([], dtype=np.complex128), True), (np.array([], dtype=np.str_), False), (np.array([], dtype=np.unicode_), False), (np.array([], dtype=np.datetime64), False), (np.array([], dtype=np.timedelta64), False), (np.array([], dtype=object), False), # Pandas dtypes. (pd.core.dtypes.dtypes.CategoricalDtypeType, False), (pd.CategoricalDtype, False), # Pandas objects. (pd.Series(dtype="bool"), True), (pd.Series(dtype="int"), True), (pd.Series(dtype="float"), True), (pd.Series(dtype="complex"), True), (pd.Series(dtype="str"), False), (pd.Series(dtype="unicode"), False), (pd.Series(dtype="datetime64[s]"), False), (pd.Series(dtype="timedelta64[s]"), False), (pd.Series(dtype="category"), False), (pd.Series(dtype="object"), False), # cuDF dtypes. (cudf.CategoricalDtype, False), (cudf.ListDtype, False), (cudf.StructDtype, False), (cudf.Decimal128Dtype, True), (cudf.Decimal64Dtype, True), (cudf.Decimal32Dtype, True), (cudf.IntervalDtype, False), # cuDF dtype instances. (cudf.CategoricalDtype("a"), False), (cudf.ListDtype(int), False), (cudf.StructDtype({"a": int}), False), (cudf.Decimal128Dtype(5, 2), True), (cudf.Decimal64Dtype(5, 2), True), (cudf.Decimal32Dtype(5, 2), True), (cudf.IntervalDtype(int), False), # cuDF objects (cudf.Series(dtype="bool"), True), (cudf.Series(dtype="int"), True), (cudf.Series(dtype="float"), True), (cudf.Series(dtype="str"), False), (cudf.Series(dtype="datetime64[s]"), False), (cudf.Series(dtype="timedelta64[s]"), False), (cudf.Series(dtype="category"), False), (cudf.Series(dtype=cudf.Decimal128Dtype(5, 2)), True), (cudf.Series(dtype=cudf.Decimal64Dtype(5, 2)), True), (cudf.Series(dtype=cudf.Decimal32Dtype(5, 2)), True), (cudf.Series([[1, 2], [3, 4, 5]]), False), (cudf.Series([{"a": 1, "b": 2}, {"c": 3}]), False), (cudf.Series(dtype=cudf.IntervalDtype(int)), False), ), ) def test_is_numeric_dtype(obj, expect): assert types.is_numeric_dtype(obj) == expect @pytest.mark.parametrize( "obj, expect", ( # Base Python objects. (bool(), False), (int(), False), (float(), False), (complex(), False), (str(), False), ("", False), (r"", False), (object(), False), # Base Python types. (bool, False), (int, True), (float, False), (complex, False), (str, False), (object, False), # NumPy types. (np.bool_, False), (np.int_, True), (np.float64, False), (np.complex128, False), (np.str_, False), (np.unicode_, False), (np.datetime64, False), (np.timedelta64, False), # NumPy scalars. (np.bool_(), False), (np.int_(), True), (np.float64(), False), (np.complex128(), False), (np.str_(), False), (np.unicode_(), False), (np.datetime64(), False), (np.timedelta64(), False), # NumPy dtype objects. (np.dtype("bool"), False), (np.dtype("int"), True), (np.dtype("float"), False), (np.dtype("complex"), False), (np.dtype("str"), False), (np.dtype("unicode"), False), (np.dtype("datetime64"), False), (np.dtype("timedelta64"), False), (np.dtype("object"), False), # NumPy arrays. (np.array([], dtype=np.bool_), False), (np.array([], dtype=np.int_), True), (np.array([], dtype=np.float64), False), (np.array([], dtype=np.complex128), False), (np.array([], dtype=np.str_), False), (np.array([], dtype=np.unicode_), False), (np.array([], dtype=np.datetime64), False), (np.array([], dtype=np.timedelta64), False), (np.array([], dtype=object), False), # Pandas dtypes. (pd.core.dtypes.dtypes.CategoricalDtypeType, False), (pd.CategoricalDtype, False), # Pandas objects. (pd.Series(dtype="bool"), False), (pd.Series(dtype="int"), True), (pd.Series(dtype="float"), False), (pd.Series(dtype="complex"), False), (pd.Series(dtype="str"), False), (pd.Series(dtype="unicode"), False), (pd.Series(dtype="datetime64[s]"), False), (pd.Series(dtype="timedelta64[s]"), False), (pd.Series(dtype="category"), False), (pd.Series(dtype="object"), False), # cuDF dtypes. (cudf.CategoricalDtype, False), (cudf.ListDtype, False), (cudf.StructDtype, False), (cudf.Decimal128Dtype, False), (cudf.Decimal64Dtype, False), (cudf.Decimal32Dtype, False), (cudf.IntervalDtype, False), # cuDF dtype instances. (cudf.CategoricalDtype("a"), False), (cudf.ListDtype(int), False), (cudf.StructDtype({"a": int}), False), (cudf.Decimal128Dtype(5, 2), False), (cudf.Decimal64Dtype(5, 2), False), (cudf.Decimal32Dtype(5, 2), False), (cudf.IntervalDtype(int), False), # cuDF objects (cudf.Series(dtype="bool"), False), (cudf.Series(dtype="int"), True), (cudf.Series(dtype="float"), False), (cudf.Series(dtype="str"), False), (cudf.Series(dtype="datetime64[s]"), False), (cudf.Series(dtype="timedelta64[s]"), False), (cudf.Series(dtype="category"), False), (cudf.Series(dtype=cudf.Decimal128Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal64Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal32Dtype(5, 2)), False), (cudf.Series([[1, 2], [3, 4, 5]]), False), (cudf.Series([{"a": 1, "b": 2}, {"c": 3}]), False), (cudf.Series(dtype=cudf.IntervalDtype(int)), False), ), ) def test_is_integer_dtype(obj, expect): assert types.is_integer_dtype(obj) == expect @pytest.mark.parametrize( "obj, expect", ( # Base Python objects. (bool(), False), (int(), True), (float(), False), (complex(), False), (str(), False), ("", False), (r"", False), (object(), False), # Base Python types. (bool, False), (int, False), (float, False), (complex, False), (str, False), (object, False), # NumPy types. (np.bool_, False), (np.int_, False), (np.float64, False), (np.complex128, False), (np.str_, False), (np.unicode_, False), (np.datetime64, False), (np.timedelta64, False), # NumPy scalars. (np.bool_(), False), (np.int_(), True), (np.float64(), False), (np.complex128(), False), (np.str_(), False), (np.unicode_(), False), (np.datetime64(), False), (np.timedelta64(), False), # NumPy dtype objects. (np.dtype("bool"), False), (np.dtype("int"), False), (np.dtype("float"), False), (np.dtype("complex"), False), (np.dtype("str"), False), (np.dtype("unicode"), False), (np.dtype("datetime64"), False), (np.dtype("timedelta64"), False), (np.dtype("object"), False), # NumPy arrays. (np.array([], dtype=np.bool_), False), (np.array([], dtype=np.int_), False), (np.array([], dtype=np.float64), False), (np.array([], dtype=np.complex128), False), (np.array([], dtype=np.str_), False), (np.array([], dtype=np.unicode_), False), (np.array([], dtype=np.datetime64), False), (np.array([], dtype=np.timedelta64), False), (np.array([], dtype=object), False), # Pandas dtypes. (pd.core.dtypes.dtypes.CategoricalDtypeType, False), (pd.CategoricalDtype, False), # Pandas objects. (pd.Series(dtype="bool"), False), (pd.Series(dtype="int"), False), (pd.Series(dtype="float"), False), (pd.Series(dtype="complex"), False), (pd.Series(dtype="str"), False), (pd.Series(dtype="unicode"), False), (pd.Series(dtype="datetime64[s]"), False), (pd.Series(dtype="timedelta64[s]"), False), (pd.Series(dtype="category"), False), (pd.Series(dtype="object"), False), # cuDF dtypes. (cudf.CategoricalDtype, False), (cudf.ListDtype, False), (cudf.StructDtype, False), (cudf.Decimal128Dtype, False), (cudf.Decimal64Dtype, False), (cudf.Decimal32Dtype, False), (cudf.IntervalDtype, False), # cuDF dtype instances. (cudf.CategoricalDtype("a"), False), (cudf.ListDtype(int), False), (cudf.StructDtype({"a": int}), False), (cudf.Decimal128Dtype(5, 2), False), (cudf.Decimal64Dtype(5, 2), False), (cudf.Decimal32Dtype(5, 2), False), (cudf.IntervalDtype(int), False), # cuDF objects (cudf.Series(dtype="bool"), False), (cudf.Series(dtype="int"), False), (cudf.Series(dtype="float"), False), (cudf.Series(dtype="str"), False), (cudf.Series(dtype="datetime64[s]"), False), (cudf.Series(dtype="timedelta64[s]"), False), (cudf.Series(dtype="category"), False), (cudf.Series(dtype=cudf.Decimal128Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal64Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal32Dtype(5, 2)), False), (cudf.Series([[1, 2], [3, 4, 5]]), False), (cudf.Series([{"a": 1, "b": 2}, {"c": 3}]), False), (cudf.Series(dtype=cudf.IntervalDtype(int)), False), ), ) def test_is_integer(obj, expect): assert types.is_integer(obj) == expect # TODO: Temporarily ignoring all cases of "object" until we decide what to do. @pytest.mark.parametrize( "obj, expect", ( # Base Python objects. (bool(), False), (int(), False), (float(), False), (complex(), False), (str(), False), ("", False), (r"", False), (object(), False), # Base Python types. (bool, False), (int, False), (float, False), (complex, False), (str, True), # (object, False), # NumPy types. (np.bool_, False), (np.int_, False), (np.float64, False), (np.complex128, False), (np.str_, True), (np.unicode_, True), (np.datetime64, False), (np.timedelta64, False), # NumPy scalars. (np.bool_(), False), (np.int_(), False), (np.float64(), False), (np.complex128(), False), (np.str_(), True), (np.unicode_(), True), (np.datetime64(), False), (np.timedelta64(), False), # NumPy dtype objects. (np.dtype("bool"), False), (np.dtype("int"), False), (np.dtype("float"), False), (np.dtype("complex"), False), (np.dtype("str"), True), (np.dtype("unicode"), True), (np.dtype("datetime64"), False), (np.dtype("timedelta64"), False), # (np.dtype("object"), False), # NumPy arrays. (np.array([], dtype=np.bool_), False), (np.array([], dtype=np.int_), False), (np.array([], dtype=np.float64), False), (np.array([], dtype=np.complex128), False), (np.array([], dtype=np.str_), True), (np.array([], dtype=np.unicode_), True), (np.array([], dtype=np.datetime64), False), (np.array([], dtype=np.timedelta64), False), # (np.array([], dtype=object), False), # Pandas dtypes. (pd.core.dtypes.dtypes.CategoricalDtypeType, False), (pd.CategoricalDtype, False), # Pandas objects. (pd.Series(dtype="bool"), False), (pd.Series(dtype="int"), False), (pd.Series(dtype="float"), False), (pd.Series(dtype="complex"), False), (pd.Series(dtype="str"), True), (pd.Series(dtype="unicode"), True), (pd.Series(dtype="datetime64[s]"), False), (pd.Series(dtype="timedelta64[s]"), False), (pd.Series(dtype="category"), False), # (pd.Series(dtype="object"), False), # cuDF dtypes. (cudf.CategoricalDtype, False), (cudf.ListDtype, False), (cudf.StructDtype, False), (cudf.Decimal128Dtype, False), (cudf.Decimal64Dtype, False), (cudf.Decimal32Dtype, False), (cudf.IntervalDtype, False), # cuDF dtype instances. (cudf.CategoricalDtype("a"), False), (cudf.ListDtype(int), False), (cudf.StructDtype({"a": int}), False), (cudf.Decimal128Dtype(5, 2), False), (cudf.Decimal64Dtype(5, 2), False), (cudf.Decimal32Dtype(5, 2), False), (cudf.IntervalDtype(int), False), # cuDF objects (cudf.Series(dtype="bool"), False), (cudf.Series(dtype="int"), False), (cudf.Series(dtype="float"), False), (cudf.Series(dtype="str"), True), (cudf.Series(dtype="datetime64[s]"), False), (cudf.Series(dtype="timedelta64[s]"), False), (cudf.Series(dtype="category"), False), (cudf.Series(dtype=cudf.Decimal128Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal64Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal32Dtype(5, 2)), False), (cudf.Series([[1, 2], [3, 4, 5]]), False), (cudf.Series([{"a": 1, "b": 2}, {"c": 3}]), False), (cudf.Series(dtype=cudf.IntervalDtype(int)), False), ), ) def test_is_string_dtype(obj, expect): assert types.is_string_dtype(obj) == expect @pytest.mark.parametrize( "obj, expect", ( # Base Python objects. (bool(), False), (int(), False), (float(), False), (complex(), False), (str(), False), ("", False), (r"", False), (object(), False), # Base Python types. (bool, False), (int, False), (float, False), (complex, False), (str, False), (object, False), # NumPy types. (np.bool_, False), (np.int_, False), (np.float64, False), (np.complex128, False), (np.str_, False), (np.unicode_, False), (np.datetime64, True), (np.timedelta64, False), # NumPy scalars. (np.bool_(), False), (np.int_(), False), (np.float64(), False), (np.complex128(), False), (np.str_(), False), (np.unicode_(), False), (np.datetime64(), True), (np.timedelta64(), False), # NumPy dtype objects. (np.dtype("bool"), False), (np.dtype("int"), False), (np.dtype("float"), False), (np.dtype("complex"), False), (np.dtype("str"), False), (np.dtype("unicode"), False), (np.dtype("datetime64"), True), (np.dtype("timedelta64"), False), (np.dtype("object"), False), # NumPy arrays. (np.array([], dtype=np.bool_), False), (np.array([], dtype=np.int_), False), (np.array([], dtype=np.float64), False), (np.array([], dtype=np.complex128), False), (np.array([], dtype=np.str_), False), (np.array([], dtype=np.unicode_), False), (np.array([], dtype=np.datetime64), True), (np.array([], dtype=np.timedelta64), False), (np.array([], dtype=object), False), # Pandas dtypes. (pd.core.dtypes.dtypes.CategoricalDtypeType, False), (pd.CategoricalDtype, False), # Pandas objects. (pd.Series(dtype="bool"), False), (pd.Series(dtype="int"), False), (pd.Series(dtype="float"), False), (pd.Series(dtype="complex"), False), (pd.Series(dtype="str"), False), (pd.Series(dtype="unicode"), False), (pd.Series(dtype="datetime64[s]"), True), (pd.Series(dtype="timedelta64[s]"), False), (pd.Series(dtype="category"), False), (pd.Series(dtype="object"), False), # cuDF dtypes. (cudf.CategoricalDtype, False), (cudf.ListDtype, False), (cudf.StructDtype, False), (cudf.Decimal128Dtype, False), (cudf.Decimal64Dtype, False), (cudf.Decimal32Dtype, False), (cudf.IntervalDtype, False), # cuDF dtype instances. (cudf.CategoricalDtype("a"), False), (cudf.ListDtype(int), False), (cudf.StructDtype({"a": int}), False), (cudf.Decimal128Dtype(5, 2), False), (cudf.Decimal64Dtype(5, 2), False), (cudf.Decimal32Dtype(5, 2), False), (cudf.IntervalDtype(int), False), # cuDF objects (cudf.Series(dtype="bool"), False), (cudf.Series(dtype="int"), False), (cudf.Series(dtype="float"), False), (cudf.Series(dtype="str"), False), (cudf.Series(dtype="datetime64[s]"), True), (cudf.Series(dtype="timedelta64[s]"), False), (cudf.Series(dtype="category"), False), (cudf.Series(dtype=cudf.Decimal128Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal64Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal32Dtype(5, 2)), False), (cudf.Series([[1, 2], [3, 4, 5]]), False), (cudf.Series([{"a": 1, "b": 2}, {"c": 3}]), False), (cudf.Series(dtype=cudf.IntervalDtype(int)), False), ), ) def test_is_datetime_dtype(obj, expect): assert types.is_datetime_dtype(obj) == expect @pytest.mark.parametrize( "obj, expect", ( # Base Python objects. (bool(), False), (int(), False), (float(), False), (complex(), False), (str(), False), ("", False), (r"", False), (object(), False), # Base Python types. (bool, False), (int, False), (float, False), (complex, False), (str, False), (object, False), # NumPy types. (np.bool_, False), (np.int_, False), (np.float64, False), (np.complex128, False), (np.str_, False), (np.unicode_, False), (np.datetime64, False), (np.timedelta64, False), # NumPy scalars. (np.bool_(), False), (np.int_(), False), (np.float64(), False), (np.complex128(), False), (np.str_(), False), (np.unicode_(), False), (np.datetime64(), False), (np.timedelta64(), False), # NumPy dtype objects. (np.dtype("bool"), False), (np.dtype("int"), False), (np.dtype("float"), False), (np.dtype("complex"), False), (np.dtype("str"), False), (np.dtype("unicode"), False), (np.dtype("datetime64"), False), (np.dtype("timedelta64"), False), (np.dtype("object"), False), # NumPy arrays. (np.array([], dtype=np.bool_), False), (np.array([], dtype=np.int_), False), (np.array([], dtype=np.float64), False), (np.array([], dtype=np.complex128), False), (np.array([], dtype=np.str_), False), (np.array([], dtype=np.unicode_), False), (np.array([], dtype=np.datetime64), False), (np.array([], dtype=np.timedelta64), False), (np.array([], dtype=object), False), # Pandas dtypes. (pd.core.dtypes.dtypes.CategoricalDtypeType, False), (pd.CategoricalDtype, False), # Pandas objects. (pd.Series(dtype="bool"), False), (pd.Series(dtype="int"), False), (pd.Series(dtype="float"), False), (pd.Series(dtype="complex"), False), (pd.Series(dtype="str"), False), (pd.Series(dtype="unicode"), False), (pd.Series(dtype="datetime64[s]"), False), (pd.Series(dtype="timedelta64[s]"), False), (pd.Series(dtype="category"), False), (pd.Series(dtype="object"), False), # cuDF dtypes. (cudf.CategoricalDtype, False), (cudf.ListDtype, True), (cudf.StructDtype, False), (cudf.Decimal128Dtype, False), (cudf.Decimal64Dtype, False), (cudf.Decimal32Dtype, False), (cudf.IntervalDtype, False), # cuDF dtype instances. (cudf.CategoricalDtype("a"), False), (cudf.ListDtype(int), True), (cudf.StructDtype({"a": int}), False), (cudf.Decimal128Dtype(5, 2), False), (cudf.Decimal64Dtype(5, 2), False), (cudf.Decimal32Dtype(5, 2), False), (cudf.IntervalDtype(int), False), # cuDF objects (cudf.Series(dtype="bool"), False), (cudf.Series(dtype="int"), False), (cudf.Series(dtype="float"), False), (cudf.Series(dtype="str"), False), (cudf.Series(dtype="datetime64[s]"), False), (cudf.Series(dtype="timedelta64[s]"), False), (cudf.Series(dtype="category"), False), (cudf.Series(dtype=cudf.Decimal128Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal64Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal32Dtype(5, 2)), False), (cudf.Series([[1, 2], [3, 4, 5]]), True), (cudf.Series([{"a": 1, "b": 2}, {"c": 3}]), False), (cudf.Series(dtype=cudf.IntervalDtype(int)), False), ), ) def test_is_list_dtype(obj, expect): assert types.is_list_dtype(obj) == expect @pytest.mark.parametrize( "obj, expect", ( # Base Python objects. (bool(), False), (int(), False), (float(), False), (complex(), False), (str(), False), ("", False), (r"", False), (object(), False), # Base Python types. (bool, False), (int, False), (float, False), (complex, False), (str, False), (object, False), # NumPy types. (np.bool_, False), (np.int_, False), (np.float64, False), (np.complex128, False), (np.str_, False), (np.unicode_, False), (np.datetime64, False), (np.timedelta64, False), # NumPy scalars. (np.bool_(), False), (np.int_(), False), (np.float64(), False), (np.complex128(), False), (np.str_(), False), (np.unicode_(), False), (np.datetime64(), False), (np.timedelta64(), False), # NumPy dtype objects. (np.dtype("bool"), False), (np.dtype("int"), False), (np.dtype("float"), False), (np.dtype("complex"), False), (np.dtype("str"), False), (np.dtype("unicode"), False), (np.dtype("datetime64"), False), (np.dtype("timedelta64"), False), (np.dtype("object"), False), # NumPy arrays. (np.array([], dtype=np.bool_), False), (np.array([], dtype=np.int_), False), (np.array([], dtype=np.float64), False), (np.array([], dtype=np.complex128), False), (np.array([], dtype=np.str_), False), (np.array([], dtype=np.unicode_), False), (np.array([], dtype=np.datetime64), False), (np.array([], dtype=np.timedelta64), False), (np.array([], dtype=object), False), # Pandas dtypes. (pd.core.dtypes.dtypes.CategoricalDtypeType, False), (pd.CategoricalDtype, False), # Pandas objects. (pd.Series(dtype="bool"), False), (pd.Series(dtype="int"), False), (pd.Series(dtype="float"), False), (pd.Series(dtype="complex"), False), (pd.Series(dtype="str"), False), (pd.Series(dtype="unicode"), False), (pd.Series(dtype="datetime64[s]"), False), (pd.Series(dtype="timedelta64[s]"), False), (pd.Series(dtype="category"), False), (pd.Series(dtype="object"), False), # cuDF dtypes. (cudf.CategoricalDtype, False), (cudf.ListDtype, False), (cudf.StructDtype, True), (cudf.Decimal128Dtype, False), (cudf.Decimal64Dtype, False), (cudf.Decimal32Dtype, False), # (cudf.IntervalDtype, False), # cuDF dtype instances. (cudf.CategoricalDtype("a"), False), (cudf.ListDtype(int), False), (cudf.StructDtype({"a": int}), True), (cudf.Decimal128Dtype(5, 2), False), (cudf.Decimal64Dtype(5, 2), False), (cudf.Decimal32Dtype(5, 2), False), # (cudf.IntervalDtype(int), False), # cuDF objects (cudf.Series(dtype="bool"), False), (cudf.Series(dtype="int"), False), (cudf.Series(dtype="float"), False), (cudf.Series(dtype="str"), False), (cudf.Series(dtype="datetime64[s]"), False), (cudf.Series(dtype="timedelta64[s]"), False), (cudf.Series(dtype="category"), False), (cudf.Series(dtype=cudf.Decimal128Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal64Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal32Dtype(5, 2)), False), (cudf.Series([[1, 2], [3, 4, 5]]), False), (cudf.Series([{"a": 1, "b": 2}, {"c": 3}]), True), # (cudf.Series(dtype=cudf.IntervalDtype(int)), False), ), ) def test_is_struct_dtype(obj, expect): # TODO: All inputs of interval types are currently disabled due to # inconsistent behavior of is_struct_dtype for interval types that will be # fixed as part of the array refactor. assert types.is_struct_dtype(obj) == expect @pytest.mark.parametrize( "obj, expect", ( # Base Python objects. (bool(), False), (int(), False), (float(), False), (complex(), False), (str(), False), ("", False), (r"", False), (object(), False), # Base Python types. (bool, False), (int, False), (float, False), (complex, False), (str, False), (object, False), # NumPy types. (np.bool_, False), (np.int_, False), (np.float64, False), (np.complex128, False), (np.str_, False), (np.unicode_, False), (np.datetime64, False), (np.timedelta64, False), # NumPy scalars. (np.bool_(), False), (np.int_(), False), (np.float64(), False), (np.complex128(), False), (np.str_(), False), (np.unicode_(), False), (np.datetime64(), False), (np.timedelta64(), False), # NumPy dtype objects. (np.dtype("bool"), False), (np.dtype("int"), False), (np.dtype("float"), False), (np.dtype("complex"), False), (np.dtype("str"), False), (np.dtype("unicode"), False), (np.dtype("datetime64"), False), (np.dtype("timedelta64"), False), (np.dtype("object"), False), # NumPy arrays. (np.array([], dtype=np.bool_), False), (np.array([], dtype=np.int_), False), (np.array([], dtype=np.float64), False), (np.array([], dtype=np.complex128), False), (np.array([], dtype=np.str_), False), (np.array([], dtype=np.unicode_), False), (np.array([], dtype=np.datetime64), False), (np.array([], dtype=np.timedelta64), False), (np.array([], dtype=object), False), # Pandas dtypes. (pd.core.dtypes.dtypes.CategoricalDtypeType, False), (pd.CategoricalDtype, False), # Pandas objects. (pd.Series(dtype="bool"), False), (pd.Series(dtype="int"), False), (
pd.Series(dtype="float")
pandas.Series
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Plots import matplotlib.pyplot as plt import seaborn as sns # Preprocessing from sklearn.model_selection import train_test_split from sklearn.decomposition import PCA from sklearn.cluster import MiniBatchKMeans import gc # LightGBM framework import lightgbm as lgb """ From github: A fast, distributed, high performance gradient boosting (GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks. LightGBM is a gradient boosting framework that uses tree based learning algorithms. It is designed to be distributed and efficient with the following advantages: Faster training speed and higher efficiency Lower memory usage Better accuracy Parallel and GPU learning supported Capable of handling large-scale data """ ######## # Load the data ######## #maing train and test train = pd.read_csv('train.csv') test =
pd.read_csv('test.csv')
pandas.read_csv
# 对文件和数据库数据合并载入内存 from pandas import Timedelta, DataFrame, read_csv, to_datetime from numpy import float32, polyfit, string_ from config import Config, str2array, PARAMS_TABLE_NAME, get_table_name, MINI_EPS, PARAMS_LIST from sql_mapper import SQLMapper from multiprocessing import Process def view_data(data, num=20): print(data.dtypes) print(data[:num]) class DataPool: ef_tables = dict() params = None save_start = dict() # is_exist = dict() # 初始化设置和参数 @classmethod def init(cls, by_file=True): Config.init_from_file() SQLMapper.class_init_by_config(Config.mysql_config) cls.params = Config.PARAMS_TEMPLATE.copy(deep=True) if SQLMapper.is_table_exist(PARAMS_TABLE_NAME): cls.params = SQLMapper.select_params() cls.params.set_index(["table_name"], drop=False, inplace=True) # 调入所有 if not by_file: return else: for table_name in Config.device2path.keys(): cls.load_table(table_name) @classmethod def load_table(cls, table_name): if SQLMapper.is_table_exist(table_name): cls.ef_tables[table_name] = SQLMapper.select_16days(table_name) else: cls.ef_tables[table_name] = DataFrame() print("start") cls.save_start[table_name] = len(cls.ef_tables[table_name].index) @classmethod def read_instruction(cls, cmd): cmd_arr = str2array(cmd) new_df = DataFrame.from_dict({ "datetime": [cmd_arr[1]], "temperature": [float32(cmd_arr[2])], "strain": [float32(cmd_arr[3])], }) new_df['height'] = new_df['stress'] = new_df['tsf'] = float32(0.0) new_df['datetime'] = to_datetime(new_df['datetime']) table_name = get_table_name(cmd_arr[0].strip()) cls.load_table(table_name) print("Reading by cmd: " + cmd) cls.ef_tables[table_name] = cls.ef_tables[table_name].append(new_df, ignore_index=True, verify_integrity=True) return [table_name] @classmethod def read_file(cls): for table_name, import_file_name in Config.device2path.items(): print(table_name + ":" + import_file_name + "file is being read.") file_data = read_csv(import_file_name, sep=',', names=['datetime', 'temperature', 'strain'], dtype={'datetime': string_, 'temperature': float32, 'strain': float32}, parse_dates=['datetime'] ) # datetime, temperature, strain, height, stress, file_data['height'] = file_data['stress'] = file_data['tsf'] = float32(0.0) cls.ef_tables[table_name] = cls.ef_tables[table_name].append(file_data, ignore_index=True, verify_integrity=True) # print(cls.ef_tables[table_name].info) # view_data(cls.ef_tables[table_name]) return Config.device2path.keys() @classmethod def multi_process_fit(cls, table_names): for table_name in table_names: if table_name not in cls.params.index: tmp = DataFrame([dict(zip(PARAMS_LIST, [table_name] + [0] * 8))], index=[table_name]) cls.params = cls.params.append(tmp) print(cls.save_start) process = [Process(target=cls.fit_one, args=(i,)) for i in table_names] [p.start() for p in process] [p.join() for p in process] @classmethod def fit_one(cls, table_name): print(table_name + " SOLVING") save_start = cls.save_start[table_name] this_table = cls.ef_tables[table_name] count = 0 if len(this_table.iloc[save_start:]) > 0: for idx in range(save_start, len(this_table.index)): count += 1 print("%s deal %d packet" %(table_name, count)) if cls.get_params(table_name, idx): continue cls.compute(table_name, idx) @classmethod def normal_fit_(cls, table_names): for table_name in table_names: if table_name not in cls.params.index: tmp = DataFrame([dict(zip(PARAMS_LIST, [table_name] + [0] * 8))], index=[table_name]) cls.params = cls.params.append(tmp) for table_name in table_names: cls.fit_one(table_name) @classmethod def fit_params_by_least_square(cls, table_name, start, end): this_table = cls.ef_tables[table_name].iloc[start: end] x = this_table["temperature"].values.flatten() y = this_table["strain"].values.flatten() coefficient = polyfit(x, y, 1) return coefficient[0], coefficient[1] @classmethod def get_params(cls, table_name, idx): this_table = cls.ef_tables[table_name] param_idx = cls.params.index.get_loc(table_name) param_d = cls.params.iloc[param_idx].to_dict() datetime_num = cls.ef_tables[table_name].columns.get_loc("datetime") init_day = this_table.iloc[0, datetime_num].date() now_day = this_table.iloc[idx, datetime_num].date() yesterday = this_table.iloc[idx - 1, datetime_num].date() is_diff_day = (now_day != yesterday) past_days = (now_day - init_day).days if past_days < 2: return True else: if 2 <= past_days < 15 or (past_days == 15 and is_diff_day): # k,b 按当前这包之前的所有 param_d['k'], param_d['b'] = cls.fit_params_by_least_square(table_name, 0, idx) param_d['k_packet_num'] = idx else: # k,b 按上一次计算大小 param_d['k'], param_d['b'] = cls.fit_params_by_least_square(table_name, idx - param_d["k_packet_num"] - 1, idx) if is_diff_day and past_days in [2, 7, 15]: # k0, b0 按当前这包之前的所有包 last_k0 = param_d['k0'] param_d['k0'], param_d['b0'] = cls.fit_params_by_least_square(table_name, 0, idx) param_d['k0_packet_num'] = idx if past_days == 2: param_d['k0_accumulate'] = 0 elif past_days == 7: param_d['k0_accumulate'] = param_d['k0'] - last_k0 elif past_days == 15: param_d['k0_accumulate'] = param_d['k0'] + param_d['k0_accumulate'] - last_k0 for k, v in param_d.items(): cls.params.loc[table_name, k] = v return False @classmethod def compute(cls, table_name, idx): this_row = cls.ef_tables[table_name].iloc[idx].to_dict() last_row = cls.ef_tables[table_name].iloc[idx - 1].to_dict() param_d = cls.params.loc[table_name].to_dict() mutation = (this_row["strain"] - param_d["mutation_accumulate"] - last_row["strain"]) - ( param_d["k0"] * (this_row["temperature"] - last_row["temperature"])) delta_t = abs(this_row["temperature"] - last_row["temperature"]) if delta_t < MINI_EPS: deviation = True else: deviation = abs(mutation / delta_t) - 180 > MINI_EPS if abs(this_row["datetime"] - last_row["datetime"]) <=
Timedelta(hours=3)
pandas.Timedelta
# Copyright 2021 The Kubric Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import logging import pathlib import shutil import tarfile import tempfile import pandas as pd import tensorflow as tf import tensorflow_datasets.public_api as tfds from typing import Optional import weakref from kubric.kubric_typing import PathLike from kubric.core import objects from kubric.core import materials class ClosableResource: _set_of_open_resources = weakref.WeakSet() def __init__(self): super().__init__() self.is_closed = False self._set_of_open_resources.add(self) def close(self): try: self._set_of_open_resources.remove(self) except (ValueError, KeyError): pass # not listed anymore. Ignore. @classmethod def close_all(cls): while True: try: r = cls._set_of_open_resources.pop() except KeyError: break r.close() class AssetSource(ClosableResource): """TODO(klausg): documentation.""" def __init__(self, path: PathLike, scratch_dir: Optional[PathLike] = None): super().__init__() self.remote_dir = tfds.core.as_path(path) name = self.remote_dir.name logging.info("Adding AssetSource '%s' with URI='%s'", name, self.remote_dir) self.local_dir = pathlib.Path(tempfile.mkdtemp(prefix="assets", dir=scratch_dir)) manifest_path = self.remote_dir / "manifest.json" if manifest_path.exists(): self.db = pd.read_json(tf.io.gfile.GFile(manifest_path, "r")) logging.info("Found manifest file. Loaded information about %d assets", self.db.shape[0]) else: assets_list = [p.name[:-7] for p in self.remote_dir.iterdir() if p.name.endswith(".tar.gz")] self.db = pd.DataFrame(assets_list, columns=["id"]) logging.info("No manifest file. Found %d assets.", self.db.shape[0]) def close(self): if self.is_closed: return try: shutil.rmtree(self.local_dir) finally: super().close() def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): self.close() def create(self, asset_id: str, **kwargs) -> objects.FileBasedObject: assert asset_id in self.db["id"].values, kwargs sim_filename, vis_filename, properties = self.fetch(asset_id) for pname in ["mass", "friction", "restitution", "bounds", "render_import_kwargs"]: if pname in properties and pname not in kwargs: kwargs[pname] = properties[pname] return objects.FileBasedObject(asset_id=asset_id, simulation_filename=str(sim_filename), render_filename=str(vis_filename), **kwargs) def fetch(self, object_id): remote_path = self.remote_dir / (object_id + ".tar.gz") local_path = self.local_dir / (object_id + ".tar.gz") if not local_path.exists(): logging.debug("Copying %s to %s", str(remote_path), str(local_path)) tf.io.gfile.copy(remote_path, local_path) with tarfile.open(local_path, "r:gz") as tar: list_of_files = tar.getnames() if object_id in list_of_files and tar.getmember(object_id).isdir(): # tarfile contains directory with name object_id, so we can just extract assert f"{object_id}/data.json" in list_of_files, list_of_files tar.extractall(self.local_dir) else: # tarfile contains files only, so extract into a new directory assert "data.json" in list_of_files, list_of_files tar.extractall(self.local_dir / object_id) logging.debug("Extracted %s", repr([m.name for m in tar.getmembers()])) json_path = self.local_dir / object_id / "data.json" with open(json_path, "r", encoding="utf-8") as f: properties = json.load(f) logging.debug("Loaded properties %s", repr(properties)) # paths vis_path = properties["paths"]["visual_geometry"] if isinstance(vis_path, list): vis_path = vis_path[0] vis_path = self.local_dir / object_id / vis_path urdf_path = properties["paths"]["urdf"] if isinstance(urdf_path, list): urdf_path = urdf_path[0] urdf_path = self.local_dir / object_id / urdf_path return urdf_path, vis_path, properties def get_test_split(self, fraction=0.1): """ Generates a train/test split for the asset source. Args: fraction: the fraction of the asset source to use for the heldout set. Returns: train_objects: list of asset ID strings held_out_objects: list of asset ID strings """ held_out_objects = list(self.db.sample(frac=fraction, replace=False, random_state=42)["id"]) train_objects = [i for i in self.db["id"] if i not in held_out_objects] return train_objects, held_out_objects class TextureSource(ClosableResource): """TODO(klausg): documentation.""" def __init__(self, path: PathLike, scratch_dir: Optional[PathLike] = None): super().__init__() self.remote_dir = tfds.core.as_path(path) name = self.remote_dir.name logging.info("Adding TextureSource '%s' with URI='%s'", name, self.remote_dir) self.local_dir = tfds.core.as_path(tempfile.mkdtemp(prefix="textures", dir=scratch_dir)) manifest_path = self.remote_dir / "manifest.json" if manifest_path.exists(): self.db = pd.read_json(tf.io.gfile.GFile(manifest_path, "r")) logging.info("Found manifest file. Loaded information about %d assets", self.db.shape[0]) else: assets_list = [p.name for p in self.remote_dir.iterdir()] self.db =
pd.DataFrame(assets_list, columns=["id"])
pandas.DataFrame
# ********************************************************************************** # # # # Project: FastClassAI workbecnch # # # # Author: <NAME> # # Contact: <EMAIL> # # # # This notebook is a part of Skin AanaliticAI development kit, created # # for evaluation of public datasets used for skin cancer detection with # # large number of AI models and data preparation pipelines. # # # # License: MIT # # Copyright (C) 2021.01.30 <NAME> # # https://opensource.org/licenses/MIT # # # # ********************************************************************************** # #!/usr/bin/env python # -*- coding: utf-8 -*- import os # allow changing, and navigating files and folders, import sys import re # module to use regular expressions, import glob # lists names in folders that match Unix shell patterns import random # functions that use and generate random numbers import cv2 import numpy as np # support for multi-dimensional arrays and matrices import pandas as pd # library for data manipulation and analysis import seaborn as sns # advance plots, for statistics, import matplotlib as mpl # to get some basif functions, heping with plot mnaking import scipy.cluster.hierarchy as sch import matplotlib.pyplot as plt # for making plots, from src.utils.image_augmentation import * # to create batch_labels files, from src.utils.data_loaders import load_encoded_imgbatch_using_logfile, load_raw_img_batch from PIL import Image, ImageDraw from matplotlib.font_manager import FontProperties from sklearn.metrics import accuracy_score from sklearn.neighbors import KNeighborsClassifier from sklearn.preprocessing import StandardScaler from sklearn.pipeline import Pipeline from sklearn.model_selection import ParameterGrid from sklearn.model_selection import train_test_split from sklearn.decomposition import PCA from sklearn.dummy import DummyClassifier # Function, ............................................................................................ def perfrom_grid_search(*, X, y, train_proportion=0.7, pipe, grid, method_name=np.nan, verbose=False): # check the data, ................................ assert type(X)==np.ndarray, "Incorrect obj type" # Test input df, assert type(y)==np.ndarray, "Incorrect obj type" # Test input df, # Data preparation, ............................... # .. Split data into train/test sets X_tr, X_te, y_tr, y_te = train_test_split( X, y, train_size=train_proportion, test_size=(1-train_proportion), random_state=0 ) # .. test dimensions, if verbose==True: print('Number of combinations:', len(grid)) print("Input Data shapes are:", "train=",X_tr.shape," test=",X_te.shape) else: pass # Grid Search, ............................... # Save accuracy on test set test_scores = [] # Enumerate combinations starting from 1 for i, params_dict in enumerate(grid, 1): if verbose==True: # Print progress if i-1==0: print(f"GridSearch: ", end="") if i>1 and i<len(grid)-1: print(".",end="") if i==len(grid): print(".", end="\n") else: pass # Set parameters pipe.set_params(**params_dict) # Fit a k-NN classifier pipe.fit(X_tr, y_tr) # Save accuracy on test set params_dict['train_accuracy'] = pipe.score(X_tr, y_tr) params_dict['test_accuracy'] = pipe.score(X_te, y_te) params_dict['method'] = method_name # Save result test_scores.append(params_dict) if verbose==True: print('done') else: pass # prepare the results, ................... scores_df = pd.DataFrame(test_scores) return scores_df # Function, ........................................................................................................... def knn_grid_search(*, method_name="knn", path, dataset_name, subset_names_tr, subset_names_te, module_names, class_encoding, grid, param_names_for_Classifier, train_proportion=0.7, random_state_nr=0, store_predictions=True, verbose=False, track_progresss=False ): """ ================= =============================================================================== Property Description ================= =============================================================================== * Function, Custom function that perfomes grid search using decision trees, on features extracted from images with different tf.hub modules. Optionally, it allows using pca, for tranforming extracted features intro selected number of principial components, later on used by SVM algorithm # Inputs, ................................................................................................. . path. : str, path to directory, with data sstored, . dataset_name : str, datassets name, used while creating . logfile_name : str, path to logfile . dataset_name : . subset_names_tr : list, eg: [train", "valid"], these two dastasets will be concastenated in that order Ussed exclu . subset_names_te : list, eg: ["test"], these two dastasets will be concastenated in that order Caution, I assumed that, more then one subset of data is keept in dataset file folder, ¨ eg, that you stored test and train data separately, . module_names : list, with names given to different moduless or methods used for feature extractio from images, . param_names_for_DecisionTreeClassifier : list, with parameters that will be used exlusively, for DecisionTreeClassifier() . grid : ParameterGrid() object, with parameters for DecisionTreeClassifier() and number of principial axes ussed instead of extracted features, eg: grid = ParameterGrid({ 'criterion': ["gini"], 'max_depth': [3,5], 'class_weight': ['balanced'], 'pca':[0, 10, 30]}) # pca will not be used, or the alg, will use either 10 or 30 principial components to train decision tree . store_predictions : bool, if True, predictions for all models, with train, validations and test datasets will be perfomed and stored in model_predictions_dict . class_encoding : dict, key:<orriginal class name>:value<numerical value used by decision tre> eg: dict(zip(list(class_colors.keys()), list(range(len(class_colors))))) . random_state_nr : int, random state nr, used by sample split, and decision tree alg, . train_proportion : propotion of samples in inpur data for training, # Returns, ................................................................................................. . model_acc_and_parameters_list : list, where each entry is a dict, with accuracy and parameters usied to build a given model, and model_ID that can be used to retrieve items from two other objectes returned by this funciotn, . dot_data_dict : dict, key=model_ID, stores decission trees in dot_data file format, created using export_graphviz() for each model, . model_predictions_dict : dict, key=model_ID () content: another dict, with "train, test and valid" keys representing predictions made with eahc of these subsets each of them is also a dict. with, > "idx_in_used_batch": index of each image in original img_batch as created, using, subset_names_tr, and load_encoded_imgbatch_using_logfile() function > "original_labels": array, with original class names for each image in a given dataset > "model_predictions": array, with preducted class names for each image in a given dataset > "acc_restuls_and_params": contains dict, with acc_restuls_and_params to ensure reproducibility, # Notes, ................................................................................................. I DO NOT SAVE MODELS, BECAUSE THESE TAKE A LOT OF MEMORY, THAT IS REALLY RESTRICTED ON MY COMPUTER, MOREVER, KNN MODELS CARRIES ENTIRE INPUT DATASET IN IT ! in case you wish to save models use joblib library or visit: https://machinelearningmastery.com/save-load-machine-learning-models-python-scikit-learn/ """ # dist to store results, dot_data_dict = dict() # decision trees stored in dot format, model_acc_and_parameters_list = list() model_predictions_dict = dict() # ... class_decoding = dict(zip(list(list(class_encoding.values())), list(class_encoding.keys()))) # reverse on class_encoding, # ... model_ID = -1 # id number for each model, its predictions, I started with -1 so the first id will be 0 ! for i, module_name in enumerate(module_names): """ Note: I decided to load the data and tranform them at each iteration, because I was working with relatively small datasets, and it was easier, otherwise i woudl recommend to create a copy of inpout for models, and modify it with pca, instead of relading entire dataset. Note: I am evaluating each model with the same set of X valid and X te, because it was a goal, of that task, and only onbce, becuase it was exploratory data analysis, """ if track_progresss==True: print(f"{i} {module_name} _________________________________________ {pd.to_datetime('now')}") else: pass # Grid search, for params in grid: # PARAMETERS, ................................... model_ID +=1 pca_axes_nr = params["pca"] dt_params_dct = dict(zip(param_names_for_Classifier,[params[x] for x in param_names_for_Classifier])) # ... Xy_names = ["train", "valid", "test"] if track_progresss==True: print('.', end="") else: pass # DATA PREPARATION,.............................. # ................. # load and ecode X,y arrays # find any logfile created while saving img files, os.chdir(path) logfiles = [] for file in glob.glob(f"{''.join([module_name,'_',dataset_name])}*_logfile.csv"): logfiles.append(file) # ... info, if verbose==True: print(f'{"".join(["."]*80)}') print(f'{module_name}, logfie: {logfiles[0]}') print(f" --- dt params: {dt_params_dct}") print(f" --- pca params: {pca_axes_nr}") else: pass # train data, X, batch_labels = load_encoded_imgbatch_using_logfile(logfile_name=logfiles[0], load_datasetnames=subset_names_tr) X = X.astype(np.float) y =
pd.Series(batch_labels.classname)
pandas.Series
import json from typing import Tuple, Union import pandas as pd import numpy as np import re import os from tableone import TableOne from collections import defaultdict from io import StringIO from .gene_patterns import * import plotly.express as px import pypeta from pypeta import Peta from pypeta import filter_description class SampleIdError(RuntimeError): def __init__(self, sample_id: str, message: str): self.sample_id = sample_id self.message = message class NotNumericSeriesError(RuntimeError): def __init__(self, message: str): self.message = message class UnknowSelectionTypeError(RuntimeError): def __init__(self, message: str): self.message = message class NotInColumnError(RuntimeError): def __init__(self, message: str): self.message = message class GenesRelationError(RuntimeError): def __init__(self, message: str): self.message = message class VariantUndefinedError(RuntimeError): def __init__(self, message: str): self.message = message class ListsUnEqualLengthError(RuntimeError): def __init__(self, message: str): self.message = message class DatetimeFormatError(RuntimeError): def __init__(self, message: str): self.message = message class CDx_Data(): """[summary] """ def __init__(self, mut_df: pd.DataFrame = None, cli_df: pd.DataFrame = None, cnv_df: pd.DataFrame = None, sv_df: pd.DataFrame = None, json_str: str = None): """Constructor method with DataFrames Args: mut_df (pd.DataFrame, optional): SNV and InDel info. Defaults to None. cli_df (pd.DataFrame, optional): Clinical info. Defaults to None. cnv_df (pd.DataFrame, optional): CNV info. Defaults to None. sv_df (pd.DataFrame, optional): SV info. Defaults to None. """ self.json_str = json_str self.mut = mut_df self.cnv = cnv_df self.sv = sv_df if not cli_df is None: self.cli = cli_df self.cli = self._infer_datetime_columns() else: self._set_cli() self.crosstab = self.get_crosstab() def __len__(self): return 0 if self.cli is None else len(self.cli) def __getitem__(self, n): return self.select_by_sample_ids([self.cli.sampleId.iloc[n]]) def __sub__(self, cdx): if self.cli is None and cdx.cli is None: return CDx_Data() cli = None if self.cli is None and cdx.cli is None else pd.concat( [self.cli, cdx.cli]).drop_duplicates(keep=False) mut = None if self.mut is None and cdx.mut is None else pd.concat( [self.mut, cdx.mut]).drop_duplicates(keep=False) cnv = None if self.cnv is None and cdx.cnv is None else pd.concat( [self.cnv, cdx.cnv]).drop_duplicates(keep=False) sv = None if self.sv is None and cdx.sv is None else pd.concat( [self.sv, cdx.sv]).drop_duplicates(keep=False) return CDx_Data(cli_df=cli, mut_df=mut, cnv_df=cnv, sv_df=sv) def __add__(self, cdx): if self.cli is None and cdx.cli is None: return CDx_Data() cli = pd.concat([self.cli, cdx.cli]).drop_duplicates() mut = pd.concat([self.mut, cdx.mut]).drop_duplicates() cnv = pd.concat([self.cnv, cdx.cnv]).drop_duplicates() sv = pd.concat([self.sv, cdx.sv]).drop_duplicates() return CDx_Data(cli_df=cli, mut_df=mut, cnv_df=cnv, sv_df=sv) def from_PETA(self, token: str, json_str: str, host='https://peta.bgi.com/api'): """Retrieve CDx data from BGI-PETA database. Args: token (str): Effective token for BGI-PETA database json_str (str): The json format restrictions communicating to the database """ self.json_str = json_str peta = Peta(token=token, host=host) peta.set_data_restriction_from_json_string(json_str) # peta.fetch_clinical_data() does`not process dtype inference correctly, do manully. #self.cli = peta.fetch_clinical_data() self.cli = pd.read_csv( StringIO(peta.fetch_clinical_data().to_csv(None, index=False))) self.mut = peta.fetch_mutation_data() self.cnv = peta.fetch_cnv_data() self.sv = peta.fetch_sv_data() # dedup for the same sampleId in different studyIds, discard the duplicated ones from all tables cli_original = self.cli self.cli = self.cli.drop_duplicates('sampleId') if (len(self.cli) < len(cli_original)): print('Duplicated sampleId exists, drop duplicates and go on') undup_tuple = [(x, y) for x, y in zip(self.cli.sampleId, self.cli.studyId)] self.sv = self.sv[self.sv.apply( lambda x: (x['Tumor_Sample_Barcode'], x['studyId']) in undup_tuple, axis=1)].drop_duplicates() self.cnv = self.cnv[self.cnv.apply( lambda x: (x['Tumor_Sample_Barcode'], x['studyId']) in undup_tuple, axis=1)].drop_duplicates() self.mut = self.mut[self.mut.apply( lambda x: (x['Tumor_Sample_Barcode'], x['studyId']) in undup_tuple, axis=1)].drop_duplicates() # time series self.cli = self._infer_datetime_columns() self.crosstab = self.get_crosstab() return filter_description(json_str) def filter_description(self): """retrun filter description when data load from PETA Returns: str: description """ return filter_description(self.json_str) if self.json_str else None def from_file(self, mut_f: str = None, cli_f: str = None, cnv_f: str = None, sv_f: str = None): """Get CDx data from files. Args: mut_f (str, optional): File as NCBI MAF format contains SNV and InDel. Defaults to None. cli_f (str, optional): File name contains clinical info. Defaults to None. cnv_f (str, optional): File name contains CNV info. Defaults to None. sv_f (str, optional): File name contains SV info. Defaults to None. """ if not mut_f is None: self.mut = pd.read_csv(mut_f, sep='\t') if not cnv_f is None: self.cnv = pd.read_csv(cnv_f, sep='\t') if not sv_f is None: self.sv = pd.read_csv(sv_f, sep='\t') if not cli_f is None: self.cli = pd.read_csv(cli_f, sep='\t') else: self._set_cli() self.cli = self._infer_datetime_columns() self.crosstab = self.get_crosstab() def to_tsvs(self, path: str = './'): """Write CDx_Data properties to 4 seprated files Args: path (str, optional): Path to write files. Defaults to './'. """ if not self.cli is None: self.cli.to_csv(os.path.join(path, 'sample_info.txt'), index=None, sep='\t') if not self.mut is None: self.mut.to_csv(os.path.join(path, 'mut_info.txt'), index=None, sep='\t') if not self.cnv is None: self.cnv.to_csv(os.path.join(path, 'cnv_info.txt'), index=None, sep='\t') if not self.sv is None: self.sv.to_csv(os.path.join(path, 'fusion_info.txt'), index=None, sep='\t') def to_excel(self, filename: str = './output.xlsx'): """Write CDx_Data properties to excel file Args: filename (str, optional): target filename. Defaults to './output.xlsx'. """ if not filename.endswith('xlsx'): filename = filename + '.xlsx' with pd.ExcelWriter(filename) as ew: if not self.cli is None: self.cli.to_excel(ew, sheet_name='clinical', index=None) if not self.mut is None: self.mut.to_excel(ew, sheet_name='mutations', index=None) if not self.cnv is None: self.cnv.to_excel(ew, sheet_name='cnv', index=None) if not self.sv is None: self.sv.to_excel(ew, sheet_name='sv', index=None) def _set_cli(self): """Set the cli attribute, generate a void DataFrame when it is not specified. """ sample_id_series = [] if not self.mut is None: sample_id_series.append( self.mut['Tumor_Sample_Barcode'].drop_duplicates()) if not self.cnv is None: sample_id_series.append( self.cnv['Tumor_Sample_Barcode'].drop_duplicates()) if not self.sv is None: sample_id_series.append( self.sv['Tumor_Sample_Barcode'].drop_duplicates()) if len(sample_id_series) > 0: self.cli = pd.DataFrame({ 'sampleId': pd.concat(sample_id_series) }).drop_duplicates() else: self.cli = None def _infer_datetime_columns(self) -> pd.DataFrame: """To infer the datetime_columns and astype to datetime64 format Returns: pd.DataFrame: CDx.cli dataframe """ cli = self.cli for column in cli.columns: if column.endswith('DATE'): try: cli[column] = pd.to_datetime(cli[column]) except Exception as e: raise DatetimeFormatError( f'{column} column end with "DATE" can not be transformed to datetime format' ) return cli def get_crosstab(self) -> pd.DataFrame: """Generate a Gene vs. Sample_id cross table. Raises: SampleIdError: Sample id from the mut, cnv or sv which not exsits in the cli table. Returns: pd.DataFrame: CDx_Data. """ # 这里cli表中不允许存在相同的样本编号。会造成crosstab的列中存在重复,引入Series的boolen值无法处理的问题 if (self.cli is None) or (len(self.cli) == 0): return pd.DataFrame([]) sub_dfs = [] # cli cli_crosstab = self.cli.copy().set_index('sampleId').T cli_crosstab['track_type'] = 'CLINICAL' sub_dfs.append(cli_crosstab) # mut. represent by cHgvs, joined by '|' for mulitple hit if (not self.mut is None) and (len(self.mut) != 0): mut_undup = self.mut[[ 'Hugo_Symbol', 'Tumor_Sample_Barcode', 'HGVSp_Short' ]].groupby([ 'Hugo_Symbol', 'Tumor_Sample_Barcode' ])['HGVSp_Short'].apply(lambda x: '|'.join(x)).reset_index() mut_crosstab = mut_undup.pivot('Hugo_Symbol', 'Tumor_Sample_Barcode', 'HGVSp_Short') mut_crosstab['track_type'] = 'MUTATIONS' sub_dfs.append(mut_crosstab) # cnv. represent by gain or loss. at first use the virtual column "copy_Num" if (not self.cnv is None) and (len(self.cnv) != 0): cnv_undup = self.cnv[[ 'Hugo_Symbol', 'Tumor_Sample_Barcode', 'status' ]].groupby([ 'Hugo_Symbol', 'Tumor_Sample_Barcode' ])['status'].apply(lambda x: '|'.join(x)).reset_index() cnv_crosstab = cnv_undup.pivot('Hugo_Symbol', 'Tumor_Sample_Barcode', 'status') cnv_crosstab['track_type'] = 'CNV' sub_dfs.append(cnv_crosstab) # sv. represent by gene1 and gene2 combination. explode one record into 2 lines. if (not self.sv is None) and (len(self.sv) != 0): sv_undup = pd.concat([ self.sv, self.sv.rename(columns={ 'gene1': 'gene2', 'gene2': 'gene1' }) ])[['gene1', 'Tumor_Sample_Barcode', 'gene2']].groupby([ 'gene1', 'Tumor_Sample_Barcode' ])['gene2'].apply(lambda x: '|'.join(x)).reset_index() sv_crosstab = sv_undup.pivot('gene1', 'Tumor_Sample_Barcode', 'gene2') sv_crosstab['track_type'] = 'FUSION' sub_dfs.append(sv_crosstab) # pandas does not support reindex with duplicated index, so turn into multiIndex crosstab = pd.concat(sub_dfs) crosstab = crosstab.set_index('track_type', append=True) crosstab = crosstab.swaplevel() return crosstab #如何构建通用的选择接口,通过变异、基因、癌种等进行选择,并支持“或”和“且”的逻辑运算 #该接口至关重要,对变异入选条件的选择会影响到crosstab, #选择后返回一个新的CDX_Data对象 def select(self, conditions: dict = {}, update=True): """A universe interface to select data via different conditions. Args: conditions (dict, optional): Each key represent one column`s name of the CDx_Data attributes. Defaults to {}. update (bool, optional): [description]. Defaults to True. """ return self # 数据选择的辅助函数 def _numeric_selector(self, ser: pd.Series, range: str) -> pd.Series: """Compute a comparition expression on a numeric Series Args: ser (pd.Series): Numeric Series. range (str): comparition expression like 'x>5'. 'x' is mandatory and represent the input. Raises: NotNumericSeriesError: Input Series`s dtype is not a numeric type. Returns: pd.Series: Series with boolean values. """ if ser.dtype == 'object': raise NotNumericSeriesError(f'{ser.name} is not numeric') #return ser.map(lambda x: eval(re.sub(r'x', str(x), range))) return eval(re.sub(r'x', 'ser', range)) def _catagory_selector(self, ser: pd.Series, range: list) -> pd.Series: """Return True if the Series` value in the input range list. Args: ser (pd.Series): Catagory Series. range (list): List of target options. Returns: pd.Series: Series with boolean values """ return ser.isin(range) def _selector(self, df: pd.DataFrame, selections: dict) -> pd.DataFrame: """Filter the input DataFrame via the dict of conditions. Args: df (pd.DataFrame): Input. selections (dict): Dict format of conditions like "{'Cancer_type':['lung','CRC'],'Age':'x>5'}". The keys represent a column in the input DataFrame. The list values represent a catagory target and str values represent a numeric target. Raises: NotInColumnError: Key in the dict is not in the df`s columns. UnknowSelectionTypeError: The type of value in the dict is not str nor list. Returns: pd.DataFrame: Filterd DataFrame """ columns = df.columns for key, value in selections.items(): if key not in columns: raise NotInColumnError(f'{key} is not in the columns') if isinstance(value, str): df = df[self._numeric_selector(df[key], value)] elif isinstance(value, list): df = df[self._catagory_selector(df[key], value)] else: raise UnknowSelectionTypeError( f'{selections} have values not str nor list') return df def _fuzzy_id(self, regex: re.Pattern, text: str) -> str: """transform a sample id into fuzzy mode according the regex pattern Args: regex (re.Pattern): The info retains are in the capture patterns text (str): input sample id Returns: str: fuzzy mode sample id """ matches = regex.findall(text) if matches: text = '_'.join(matches[0]) return text def select_by_sample_ids(self, sample_ids: list, fuzzy: bool = False, regex_str: str = r'(\d+)[A-Z](\d+)', study_ids: list = []): """Select samples via a list of sample IDs. Args: sample_ids (list): sample ids list. fuzzy (bool): fuzzy mode. regex_str (str): The match principle for fuzzy match. The info in the regex capture patterns must be matched for a certifired record. Default for r'(\d+)[A-Z](\d+)'. study_ids: (list): The corresponding study id of each sample ids. Length of sample_ids and study_ids must be the same. Raises: ListsUnEqualLengthError: Length of sample_ids and study_ids are not equal. Returns: CDx: CDx object of selected samples. """ if fuzzy: regex = re.compile(regex_str) # fuzzy the input ids target_ids = [] fuzzy_to_origin = defaultdict(list) transform = lambda x: self._fuzzy_id(regex, x) for sample_id in sample_ids: fuzzy_sample_id = self._fuzzy_id(regex, sample_id) fuzzy_to_origin[fuzzy_sample_id].append(sample_id) target_ids.append(fuzzy_sample_id) else: target_ids = sample_ids transform = lambda x: x # match sample_id_bool = self.cli['sampleId'].map(transform).isin(target_ids) # no match, return immediately if not sample_id_bool.any(): return CDx_Data() # with study ids if len(study_ids): if len(study_ids) != len(sample_ids): raise ListsUnEqualLengthError('Error') sub_cli_df = self.cli[sample_id_bool] study_id_bool = sub_cli_df.apply( lambda x: x['studyId'] == study_ids[target_ids.index( transform(x['sampleId']))], axis=1) sample_id_bool = sample_id_bool & study_id_bool # construct new CDx_Data object # CDx_Data always have a cli cli_df = self.cli[sample_id_bool].copy() # add a column of query ids for fuzzy match # multi hit represent as a string if fuzzy: cli_df['queryId'] = cli_df['sampleId'].map( lambda x: ','.join(fuzzy_to_origin[transform(x)])).copy() if not self.mut is None and len(self.mut) != 0: mut_df = self.mut[self.mut['Tumor_Sample_Barcode'].isin( cli_df['sampleId'])].copy() else: mut_df = None if not self.cnv is None and len(self.cnv) != 0: cnv_df = self.cnv[self.cnv['Tumor_Sample_Barcode'].isin( cli_df['sampleId'])].copy() else: cnv_df = None if not self.sv is None and len(self.sv) != 0: sv_df = self.sv[self.sv['Tumor_Sample_Barcode'].isin( cli_df['sampleId'])].copy() else: sv_df = None return CDx_Data(cli_df=cli_df, mut_df=mut_df, cnv_df=cnv_df, sv_df=sv_df) # def set_mut_eligibility(self, **kwargs): """Set threshold for SNV/InDels to regrard as a positive sample Raises: VariantUndefinedError: mut info not provided by user. Returns: CDx_Data: CDx_Data object """ if self.mut is None or len(self.mut) == 0: mut = None else: mut = self._selector(self.mut, kwargs) return CDx_Data(cli_df=self.cli, mut_df=mut, cnv_df=self.cnv, sv_df=self.sv) def set_cnv_eligibility(self, **kwargs): """Set threshold for CNV to regrard as a positive sample. Raises: VariantUndefinedError: cnv info not provided by user. Returns: CDx_Data: CDx_Data object. """ if self.cnv is None or len(self.cnv) == 0: cnv = None else: cnv = self._selector(self.cnv, kwargs) return CDx_Data(cli_df=self.cli, mut_df=self.mut, cnv_df=cnv, sv_df=self.sv) def set_sv_eligibility(self, **kwargs): """Set threshold for SV to regrard as a positive sample. Raises: VariantUndefinedError: SV info not provided by user. Returns: CDx_Data: CDx_Data object. """ if self.sv is None or len(self.sv) == 0: sv = None else: sv = self._selector(self.sv, kwargs) return CDx_Data(cli_df=self.cli, mut_df=self.mut, cnv_df=self.cnv, sv_df=sv) # 指定一个列名,再指定范围。离散型用数组,数值型 # attrdict={'Cancer_type':['lung','CRC'],'Age':'x>5'} def select_samples_by_clinical_attributes2(self, attr_dict: dict): """Select samples via a set of conditions corresponding to the columns in the cli DataFrame. Args: attr_dict (dict): Dict format of conditions like "{'Cancer_type':['lung','CRC'],'Age':'x>5'}". The keys represent a column in the input DataFrame. The list values represent a catagory target and str values represent a numeric target. Returns: CDx: CDx object of selected samples. """ cli_df = self._selector(self.cli, attr_dict) return self.select_by_sample_ids(cli_df['sampleId']) def select_samples_by_clinical_attributes(self, **kwargs): """Select samples via a set of conditions corresponding to the columns in the cli DataFrame. Args: Keywords arguments with each key represent a column in the input DataFrame. like "Cancer_type=['lung','CRC'], Age='x>5'" The list values represent a catagory target and str values represent a numeric target. Returns: CDx: CDx object of selected samples. """ cli_df = self._selector(self.cli, kwargs) return self.select_by_sample_ids(cli_df['sampleId']) def select_samples_by_date_attributes( self, column_name: str = 'SAMPLE_RECEIVED_DATE', start='', end: str = '', days: int = 0, period: str = '', ): """Select samples using a datetime attribute in the cli dataframe Args: column_name (str, optional): Column used in the cli dataframe. Defaults to 'SAMPLE_RECEIVED_DATE'. from (str, optional): Time start point. Defaults to ''. to (str, optional): Time end point. Defaults to ''. days (int, optional): Days lasts. Defaults to ''. exact (str, optional): Exact range,eg '202005' for May in 2020 or '2021' for the whole year. Defaults to ''. """ date_ser = self.cli.set_index(column_name)['sampleId'] if period: cdx = self.select_by_sample_ids(date_ser[period]) elif start and end: cdx = self.select_by_sample_ids(date_ser[start:end]) elif start and days: cdx = self.select_by_sample_ids(date_ser[start:( pd.to_datetime(start) + pd.to_timedelta(days, 'D')).strftime("%Y-%m-%d")]) elif end and days: cdx = self.select_by_sample_ids(date_ser[(
pd.to_datetime(end)
pandas.to_datetime
from datetime import datetime from decimal import Decimal from io import StringIO import numpy as np import pytest from pandas.errors import PerformanceWarning import pandas as pd from pandas import DataFrame, Index, MultiIndex, Series, Timestamp, date_range, read_csv import pandas._testing as tm from pandas.core.base import SpecificationError import pandas.core.common as com def test_repr(): # GH18203 result = repr(pd.Grouper(key="A", level="B")) expected = "Grouper(key='A', level='B', axis=0, sort=False)" assert result == expected @pytest.mark.parametrize("dtype", ["int64", "int32", "float64", "float32"]) def test_basic(dtype): data = Series(np.arange(9) // 3, index=np.arange(9), dtype=dtype) index = np.arange(9) np.random.shuffle(index) data = data.reindex(index) grouped = data.groupby(lambda x: x // 3) for k, v in grouped: assert len(v) == 3 agged = grouped.aggregate(np.mean) assert agged[1] == 1 tm.assert_series_equal(agged, grouped.agg(np.mean)) # shorthand tm.assert_series_equal(agged, grouped.mean()) tm.assert_series_equal(grouped.agg(np.sum), grouped.sum()) expected = grouped.apply(lambda x: x * x.sum()) transformed = grouped.transform(lambda x: x * x.sum()) assert transformed[7] == 12 tm.assert_series_equal(transformed, expected) value_grouped = data.groupby(data) tm.assert_series_equal( value_grouped.aggregate(np.mean), agged, check_index_type=False ) # complex agg agged = grouped.aggregate([np.mean, np.std]) msg = r"nested renamer is not supported" with pytest.raises(SpecificationError, match=msg): grouped.aggregate({"one": np.mean, "two": np.std}) group_constants = {0: 10, 1: 20, 2: 30} agged = grouped.agg(lambda x: group_constants[x.name] + x.mean()) assert agged[1] == 21 # corner cases msg = "Must produce aggregated value" # exception raised is type Exception with pytest.raises(Exception, match=msg): grouped.aggregate(lambda x: x * 2) def test_groupby_nonobject_dtype(mframe, df_mixed_floats): key = mframe.index.codes[0] grouped = mframe.groupby(key) result = grouped.sum() expected = mframe.groupby(key.astype("O")).sum() tm.assert_frame_equal(result, expected) # GH 3911, mixed frame non-conversion df = df_mixed_floats.copy() df["value"] = range(len(df)) def max_value(group): return group.loc[group["value"].idxmax()] applied = df.groupby("A").apply(max_value) result = applied.dtypes expected = Series( [np.dtype("object")] * 2 + [np.dtype("float64")] * 2 + [np.dtype("int64")], index=["A", "B", "C", "D", "value"], ) tm.assert_series_equal(result, expected) def test_groupby_return_type(): # GH2893, return a reduced type df1 = DataFrame( [ {"val1": 1, "val2": 20}, {"val1": 1, "val2": 19}, {"val1": 2, "val2": 27}, {"val1": 2, "val2": 12}, ] ) def func(dataf): return dataf["val2"] - dataf["val2"].mean() with tm.assert_produces_warning(FutureWarning): result = df1.groupby("val1", squeeze=True).apply(func) assert isinstance(result, Series) df2 = DataFrame( [ {"val1": 1, "val2": 20}, {"val1": 1, "val2": 19}, {"val1": 1, "val2": 27}, {"val1": 1, "val2": 12}, ] ) def func(dataf): return dataf["val2"] - dataf["val2"].mean() with tm.assert_produces_warning(FutureWarning): result = df2.groupby("val1", squeeze=True).apply(func) assert isinstance(result, Series) # GH3596, return a consistent type (regression in 0.11 from 0.10.1) df = DataFrame([[1, 1], [1, 1]], columns=["X", "Y"]) with tm.assert_produces_warning(FutureWarning): result = df.groupby("X", squeeze=False).count() assert isinstance(result, DataFrame) def test_inconsistent_return_type(): # GH5592 # inconsistent return type df = DataFrame( dict( A=["Tiger", "Tiger", "Tiger", "Lamb", "Lamb", "Pony", "Pony"], B=Series(np.arange(7), dtype="int64"), C=date_range("20130101", periods=7), ) ) def f(grp): return grp.iloc[0] expected = df.groupby("A").first()[["B"]] result = df.groupby("A").apply(f)[["B"]] tm.assert_frame_equal(result, expected) def f(grp): if grp.name == "Tiger": return None return grp.iloc[0] result = df.groupby("A").apply(f)[["B"]] e = expected.copy() e.loc["Tiger"] = np.nan tm.assert_frame_equal(result, e) def f(grp): if grp.name == "Pony": return None return grp.iloc[0] result = df.groupby("A").apply(f)[["B"]] e = expected.copy() e.loc["Pony"] = np.nan tm.assert_frame_equal(result, e) # 5592 revisited, with datetimes def f(grp): if grp.name == "Pony": return None return grp.iloc[0] result = df.groupby("A").apply(f)[["C"]] e = df.groupby("A").first()[["C"]] e.loc["Pony"] = pd.NaT tm.assert_frame_equal(result, e) # scalar outputs def f(grp): if grp.name == "Pony": return None return grp.iloc[0].loc["C"] result = df.groupby("A").apply(f) e = df.groupby("A").first()["C"].copy() e.loc["Pony"] = np.nan e.name = None tm.assert_series_equal(result, e) def test_pass_args_kwargs(ts, tsframe): def f(x, q=None, axis=0): return np.percentile(x, q, axis=axis) g = lambda x: np.percentile(x, 80, axis=0) # Series ts_grouped = ts.groupby(lambda x: x.month) agg_result = ts_grouped.agg(np.percentile, 80, axis=0) apply_result = ts_grouped.apply(np.percentile, 80, axis=0) trans_result = ts_grouped.transform(np.percentile, 80, axis=0) agg_expected = ts_grouped.quantile(0.8) trans_expected = ts_grouped.transform(g) tm.assert_series_equal(apply_result, agg_expected) tm.assert_series_equal(agg_result, agg_expected) tm.assert_series_equal(trans_result, trans_expected) agg_result = ts_grouped.agg(f, q=80) apply_result = ts_grouped.apply(f, q=80) trans_result = ts_grouped.transform(f, q=80) tm.assert_series_equal(agg_result, agg_expected) tm.assert_series_equal(apply_result, agg_expected) tm.assert_series_equal(trans_result, trans_expected) # DataFrame df_grouped = tsframe.groupby(lambda x: x.month) agg_result = df_grouped.agg(np.percentile, 80, axis=0) apply_result = df_grouped.apply(DataFrame.quantile, 0.8) expected = df_grouped.quantile(0.8) tm.assert_frame_equal(apply_result, expected, check_names=False) tm.assert_frame_equal(agg_result, expected) agg_result = df_grouped.agg(f, q=80) apply_result = df_grouped.apply(DataFrame.quantile, q=0.8) tm.assert_frame_equal(agg_result, expected) tm.assert_frame_equal(apply_result, expected, check_names=False) def test_len(): df = tm.makeTimeDataFrame() grouped = df.groupby([lambda x: x.year, lambda x: x.month, lambda x: x.day]) assert len(grouped) == len(df) grouped = df.groupby([lambda x: x.year, lambda x: x.month]) expected = len({(x.year, x.month) for x in df.index}) assert len(grouped) == expected # issue 11016 df = pd.DataFrame(dict(a=[np.nan] * 3, b=[1, 2, 3])) assert len(df.groupby(("a"))) == 0 assert len(df.groupby(("b"))) == 3 assert len(df.groupby(["a", "b"])) == 3 def test_basic_regression(): # regression result = Series([1.0 * x for x in list(range(1, 10)) * 10]) data = np.random.random(1100) * 10.0 groupings = Series(data) grouped = result.groupby(groupings) grouped.mean() @pytest.mark.parametrize( "dtype", ["float64", "float32", "int64", "int32", "int16", "int8"] ) def test_with_na_groups(dtype): index = Index(np.arange(10)) values = Series(np.ones(10), index, dtype=dtype) labels = Series( [np.nan, "foo", "bar", "bar", np.nan, np.nan, "bar", "bar", np.nan, "foo"], index=index, ) # this SHOULD be an int grouped = values.groupby(labels) agged = grouped.agg(len) expected = Series([4, 2], index=["bar", "foo"]) tm.assert_series_equal(agged, expected, check_dtype=False) # assert issubclass(agged.dtype.type, np.integer) # explicitly return a float from my function def f(x): return float(len(x)) agged = grouped.agg(f) expected = Series([4, 2], index=["bar", "foo"]) tm.assert_series_equal(agged, expected, check_dtype=False) assert issubclass(agged.dtype.type, np.dtype(dtype).type) def test_indices_concatenation_order(): # GH 2808 def f1(x): y = x[(x.b % 2) == 1] ** 2 if y.empty: multiindex = MultiIndex(levels=[[]] * 2, codes=[[]] * 2, names=["b", "c"]) res = DataFrame(columns=["a"], index=multiindex) return res else: y = y.set_index(["b", "c"]) return y def f2(x): y = x[(x.b % 2) == 1] ** 2 if y.empty: return DataFrame() else: y = y.set_index(["b", "c"]) return y def f3(x): y = x[(x.b % 2) == 1] ** 2 if y.empty: multiindex = MultiIndex( levels=[[]] * 2, codes=[[]] * 2, names=["foo", "bar"] ) res = DataFrame(columns=["a", "b"], index=multiindex) return res else: return y df = DataFrame({"a": [1, 2, 2, 2], "b": range(4), "c": range(5, 9)}) df2 = DataFrame({"a": [3, 2, 2, 2], "b": range(4), "c": range(5, 9)}) # correct result result1 = df.groupby("a").apply(f1) result2 = df2.groupby("a").apply(f1) tm.assert_frame_equal(result1, result2) # should fail (not the same number of levels) msg = "Cannot concat indices that do not have the same number of levels" with pytest.raises(AssertionError, match=msg): df.groupby("a").apply(f2) with pytest.raises(AssertionError, match=msg): df2.groupby("a").apply(f2) # should fail (incorrect shape) with pytest.raises(AssertionError, match=msg): df.groupby("a").apply(f3) with pytest.raises(AssertionError, match=msg): df2.groupby("a").apply(f3) def test_attr_wrapper(ts): grouped = ts.groupby(lambda x: x.weekday()) result = grouped.std() expected = grouped.agg(lambda x: np.std(x, ddof=1)) tm.assert_series_equal(result, expected) # this is pretty cool result = grouped.describe() expected = {name: gp.describe() for name, gp in grouped} expected = DataFrame(expected).T tm.assert_frame_equal(result, expected) # get attribute result = grouped.dtype expected = grouped.agg(lambda x: x.dtype) # make sure raises error msg = "'SeriesGroupBy' object has no attribute 'foo'" with pytest.raises(AttributeError, match=msg): getattr(grouped, "foo") def test_frame_groupby(tsframe): grouped = tsframe.groupby(lambda x: x.weekday()) # aggregate aggregated = grouped.aggregate(np.mean) assert len(aggregated) == 5 assert len(aggregated.columns) == 4 # by string tscopy = tsframe.copy() tscopy["weekday"] = [x.weekday() for x in tscopy.index] stragged = tscopy.groupby("weekday").aggregate(np.mean) tm.assert_frame_equal(stragged, aggregated, check_names=False) # transform grouped = tsframe.head(30).groupby(lambda x: x.weekday()) transformed = grouped.transform(lambda x: x - x.mean()) assert len(transformed) == 30 assert len(transformed.columns) == 4 # transform propagate transformed = grouped.transform(lambda x: x.mean()) for name, group in grouped: mean = group.mean() for idx in group.index: tm.assert_series_equal(transformed.xs(idx), mean, check_names=False) # iterate for weekday, group in grouped: assert group.index[0].weekday() == weekday # groups / group_indices groups = grouped.groups indices = grouped.indices for k, v in groups.items(): samething = tsframe.index.take(indices[k]) assert (samething == v).all() def test_frame_groupby_columns(tsframe): mapping = {"A": 0, "B": 0, "C": 1, "D": 1} grouped = tsframe.groupby(mapping, axis=1) # aggregate aggregated = grouped.aggregate(np.mean) assert len(aggregated) == len(tsframe) assert len(aggregated.columns) == 2 # transform tf = lambda x: x - x.mean() groupedT = tsframe.T.groupby(mapping, axis=0) tm.assert_frame_equal(groupedT.transform(tf).T, grouped.transform(tf)) # iterate for k, v in grouped: assert len(v.columns) == 2 def test_frame_set_name_single(df): grouped = df.groupby("A") result = grouped.mean() assert result.index.name == "A" result = df.groupby("A", as_index=False).mean() assert result.index.name != "A" result = grouped.agg(np.mean) assert result.index.name == "A" result = grouped.agg({"C": np.mean, "D": np.std}) assert result.index.name == "A" result = grouped["C"].mean() assert result.index.name == "A" result = grouped["C"].agg(np.mean) assert result.index.name == "A" result = grouped["C"].agg([np.mean, np.std]) assert result.index.name == "A" msg = r"nested renamer is not supported" with pytest.raises(SpecificationError, match=msg): grouped["C"].agg({"foo": np.mean, "bar": np.std}) def test_multi_func(df): col1 = df["A"] col2 = df["B"] grouped = df.groupby([col1.get, col2.get]) agged = grouped.mean() expected = df.groupby(["A", "B"]).mean() # TODO groupby get drops names tm.assert_frame_equal( agged.loc[:, ["C", "D"]], expected.loc[:, ["C", "D"]], check_names=False ) # some "groups" with no data df = DataFrame( { "v1": np.random.randn(6), "v2": np.random.randn(6), "k1": np.array(["b", "b", "b", "a", "a", "a"]), "k2": np.array(["1", "1", "1", "2", "2", "2"]), }, index=["one", "two", "three", "four", "five", "six"], ) # only verify that it works for now grouped = df.groupby(["k1", "k2"]) grouped.agg(np.sum) def test_multi_key_multiple_functions(df): grouped = df.groupby(["A", "B"])["C"] agged = grouped.agg([np.mean, np.std]) expected = DataFrame({"mean": grouped.agg(np.mean), "std": grouped.agg(np.std)}) tm.assert_frame_equal(agged, expected) def test_frame_multi_key_function_list(): data = DataFrame( { "A": [ "foo", "foo", "foo", "foo", "bar", "bar", "bar", "bar", "foo", "foo", "foo", ], "B": [ "one", "one", "one", "two", "one", "one", "one", "two", "two", "two", "one", ], "C": [ "dull", "dull", "shiny", "dull", "dull", "shiny", "shiny", "dull", "shiny", "shiny", "shiny", ], "D": np.random.randn(11), "E": np.random.randn(11), "F": np.random.randn(11), } ) grouped = data.groupby(["A", "B"]) funcs = [np.mean, np.std] agged = grouped.agg(funcs) expected = pd.concat( [grouped["D"].agg(funcs), grouped["E"].agg(funcs), grouped["F"].agg(funcs)], keys=["D", "E", "F"], axis=1, ) assert isinstance(agged.index, MultiIndex) assert isinstance(expected.index, MultiIndex) tm.assert_frame_equal(agged, expected) @pytest.mark.parametrize("op", [lambda x: x.sum(), lambda x: x.mean()]) def test_groupby_multiple_columns(df, op): data = df grouped = data.groupby(["A", "B"]) result1 = op(grouped) keys = [] values = [] for n1, gp1 in data.groupby("A"): for n2, gp2 in gp1.groupby("B"): keys.append((n1, n2)) values.append(op(gp2.loc[:, ["C", "D"]])) mi = MultiIndex.from_tuples(keys, names=["A", "B"]) expected = pd.concat(values, axis=1).T expected.index = mi # a little bit crude for col in ["C", "D"]: result_col = op(grouped[col]) pivoted = result1[col] exp = expected[col] tm.assert_series_equal(result_col, exp) tm.assert_series_equal(pivoted, exp) # test single series works the same result = data["C"].groupby([data["A"], data["B"]]).mean() expected = data.groupby(["A", "B"]).mean()["C"] tm.assert_series_equal(result, expected) def test_as_index_select_column(): # GH 5764 df = pd.DataFrame([[1, 2], [1, 4], [5, 6]], columns=["A", "B"]) result = df.groupby("A", as_index=False)["B"].get_group(1) expected = pd.Series([2, 4], name="B") tm.assert_series_equal(result, expected) result = df.groupby("A", as_index=False)["B"].apply(lambda x: x.cumsum()) expected = pd.Series( [2, 6, 6], name="B", index=pd.MultiIndex.from_tuples([(0, 0), (0, 1), (1, 2)]) ) tm.assert_series_equal(result, expected) def test_groupby_as_index_select_column_sum_empty_df(): # GH 35246 df = DataFrame(columns=["A", "B", "C"]) left = df.groupby(by="A", as_index=False)["B"].sum() assert type(left) is DataFrame assert left.to_dict() == {"A": {}, "B": {}} def test_groupby_as_index_agg(df): grouped = df.groupby("A", as_index=False) # single-key result = grouped.agg(np.mean) expected = grouped.mean() tm.assert_frame_equal(result, expected) result2 = grouped.agg({"C": np.mean, "D": np.sum}) expected2 = grouped.mean() expected2["D"] = grouped.sum()["D"] tm.assert_frame_equal(result2, expected2) grouped = df.groupby("A", as_index=True) msg = r"nested renamer is not supported" with pytest.raises(SpecificationError, match=msg): grouped["C"].agg({"Q": np.sum}) # multi-key grouped = df.groupby(["A", "B"], as_index=False) result = grouped.agg(np.mean) expected = grouped.mean() tm.assert_frame_equal(result, expected) result2 = grouped.agg({"C": np.mean, "D": np.sum}) expected2 = grouped.mean() expected2["D"] = grouped.sum()["D"] tm.assert_frame_equal(result2, expected2) expected3 = grouped["C"].sum() expected3 = DataFrame(expected3).rename(columns={"C": "Q"}) result3 = grouped["C"].agg({"Q": np.sum}) tm.assert_frame_equal(result3, expected3) # GH7115 & GH8112 & GH8582 df = DataFrame(np.random.randint(0, 100, (50, 3)), columns=["jim", "joe", "jolie"]) ts = Series(np.random.randint(5, 10, 50), name="jim") gr = df.groupby(ts) gr.nth(0) # invokes set_selection_from_grouper internally tm.assert_frame_equal(gr.apply(sum), df.groupby(ts).apply(sum)) for attr in ["mean", "max", "count", "idxmax", "cumsum", "all"]: gr = df.groupby(ts, as_index=False) left = getattr(gr, attr)() gr = df.groupby(ts.values, as_index=True) right = getattr(gr, attr)().reset_index(drop=True) tm.assert_frame_equal(left, right) def test_ops_not_as_index(reduction_func): # GH 10355, 21090 # Using as_index=False should not modify grouped column if reduction_func in ("corrwith",): pytest.skip("Test not applicable") if reduction_func in ("nth", "ngroup",): pytest.skip("Skip until behavior is determined (GH #5755)") df = DataFrame(np.random.randint(0, 5, size=(100, 2)), columns=["a", "b"]) expected = getattr(df.groupby("a"), reduction_func)() if reduction_func == "size": expected = expected.rename("size") expected = expected.reset_index() g = df.groupby("a", as_index=False) result = getattr(g, reduction_func)() tm.assert_frame_equal(result, expected) result = g.agg(reduction_func) tm.assert_frame_equal(result, expected) result = getattr(g["b"], reduction_func)() tm.assert_frame_equal(result, expected) result = g["b"].agg(reduction_func) tm.assert_frame_equal(result, expected) def test_as_index_series_return_frame(df): grouped = df.groupby("A", as_index=False) grouped2 = df.groupby(["A", "B"], as_index=False) result = grouped["C"].agg(np.sum) expected = grouped.agg(np.sum).loc[:, ["A", "C"]] assert isinstance(result, DataFrame) tm.assert_frame_equal(result, expected) result2 = grouped2["C"].agg(np.sum) expected2 = grouped2.agg(np.sum).loc[:, ["A", "B", "C"]] assert isinstance(result2, DataFrame) tm.assert_frame_equal(result2, expected2) result = grouped["C"].sum() expected = grouped.sum().loc[:, ["A", "C"]] assert isinstance(result, DataFrame) tm.assert_frame_equal(result, expected) result2 = grouped2["C"].sum() expected2 = grouped2.sum().loc[:, ["A", "B", "C"]] assert isinstance(result2, DataFrame) tm.assert_frame_equal(result2, expected2) def test_as_index_series_column_slice_raises(df): # GH15072 grouped = df.groupby("A", as_index=False) msg = r"Column\(s\) C already selected" with pytest.raises(IndexError, match=msg): grouped["C"].__getitem__("D") def test_groupby_as_index_cython(df): data = df # single-key grouped = data.groupby("A", as_index=False) result = grouped.mean() expected = data.groupby(["A"]).mean() expected.insert(0, "A", expected.index) expected.index = np.arange(len(expected)) tm.assert_frame_equal(result, expected) # multi-key grouped = data.groupby(["A", "B"], as_index=False) result = grouped.mean() expected = data.groupby(["A", "B"]).mean() arrays = list(zip(*expected.index.values)) expected.insert(0, "A", arrays[0]) expected.insert(1, "B", arrays[1]) expected.index = np.arange(len(expected)) tm.assert_frame_equal(result, expected) def test_groupby_as_index_series_scalar(df): grouped = df.groupby(["A", "B"], as_index=False) # GH #421 result = grouped["C"].agg(len) expected = grouped.agg(len).loc[:, ["A", "B", "C"]] tm.assert_frame_equal(result, expected) def test_groupby_as_index_corner(df, ts): msg = "as_index=False only valid with DataFrame" with pytest.raises(TypeError, match=msg): ts.groupby(lambda x: x.weekday(), as_index=False) msg = "as_index=False only valid for axis=0" with pytest.raises(ValueError, match=msg): df.groupby(lambda x: x.lower(), as_index=False, axis=1) def test_groupby_multiple_key(df): df = tm.makeTimeDataFrame() grouped = df.groupby([lambda x: x.year, lambda x: x.month, lambda x: x.day]) agged = grouped.sum() tm.assert_almost_equal(df.values, agged.values) grouped = df.T.groupby( [lambda x: x.year, lambda x: x.month, lambda x: x.day], axis=1 ) agged = grouped.agg(lambda x: x.sum()) tm.assert_index_equal(agged.index, df.columns) tm.assert_almost_equal(df.T.values, agged.values) agged = grouped.agg(lambda x: x.sum()) tm.assert_almost_equal(df.T.values, agged.values) def test_groupby_multi_corner(df): # test that having an all-NA column doesn't mess you up df = df.copy() df["bad"] = np.nan agged = df.groupby(["A", "B"]).mean() expected = df.groupby(["A", "B"]).mean() expected["bad"] = np.nan tm.assert_frame_equal(agged, expected) def test_omit_nuisance(df): grouped = df.groupby("A") result = grouped.mean() expected = df.loc[:, ["A", "C", "D"]].groupby("A").mean() tm.assert_frame_equal(result, expected) agged = grouped.agg(np.mean) exp = grouped.mean() tm.assert_frame_equal(agged, exp) df = df.loc[:, ["A", "C", "D"]] df["E"] = datetime.now() grouped = df.groupby("A") result = grouped.agg(np.sum) expected = grouped.sum() tm.assert_frame_equal(result, expected) # won't work with axis = 1 grouped = df.groupby({"A": 0, "C": 0, "D": 1, "E": 1}, axis=1) msg = "reduction operation 'sum' not allowed for this dtype" with pytest.raises(TypeError, match=msg): grouped.agg(lambda x: x.sum(0, numeric_only=False)) def test_omit_nuisance_python_multiple(three_group): grouped = three_group.groupby(["A", "B"]) agged = grouped.agg(np.mean) exp = grouped.mean() tm.assert_frame_equal(agged, exp) def test_empty_groups_corner(mframe): # handle empty groups df = DataFrame( { "k1": np.array(["b", "b", "b", "a", "a", "a"]), "k2": np.array(["1", "1", "1", "2", "2", "2"]), "k3": ["foo", "bar"] * 3, "v1": np.random.randn(6), "v2": np.random.randn(6), } ) grouped = df.groupby(["k1", "k2"]) result = grouped.agg(np.mean) expected = grouped.mean() tm.assert_frame_equal(result, expected) grouped = mframe[3:5].groupby(level=0) agged = grouped.apply(lambda x: x.mean()) agged_A = grouped["A"].apply(np.mean) tm.assert_series_equal(agged["A"], agged_A) assert agged.index.name == "first" def test_nonsense_func(): df = DataFrame([0]) msg = r"unsupported operand type\(s\) for \+: 'int' and 'str'" with pytest.raises(TypeError, match=msg): df.groupby(lambda x: x + "foo") def test_wrap_aggregated_output_multindex(mframe): df = mframe.T df["baz", "two"] = "peekaboo" keys = [np.array([0, 0, 1]), np.array([0, 0, 1])] agged = df.groupby(keys).agg(np.mean) assert isinstance(agged.columns, MultiIndex) def aggfun(ser): if ser.name == ("foo", "one"): raise TypeError else: return ser.sum() agged2 = df.groupby(keys).aggregate(aggfun) assert len(agged2.columns) + 1 == len(df.columns) def test_groupby_level_apply(mframe): result = mframe.groupby(level=0).count() assert result.index.name == "first" result = mframe.groupby(level=1).count() assert result.index.name == "second" result = mframe["A"].groupby(level=0).count() assert result.index.name == "first" def test_groupby_level_mapper(mframe): deleveled = mframe.reset_index() mapper0 = {"foo": 0, "bar": 0, "baz": 1, "qux": 1} mapper1 = {"one": 0, "two": 0, "three": 1} result0 = mframe.groupby(mapper0, level=0).sum() result1 = mframe.groupby(mapper1, level=1).sum() mapped_level0 = np.array([mapper0.get(x) for x in deleveled["first"]]) mapped_level1 = np.array([mapper1.get(x) for x in deleveled["second"]]) expected0 = mframe.groupby(mapped_level0).sum() expected1 = mframe.groupby(mapped_level1).sum() expected0.index.name, expected1.index.name = "first", "second" tm.assert_frame_equal(result0, expected0) tm.assert_frame_equal(result1, expected1) def test_groupby_level_nonmulti(): # GH 1313, GH 13901 s = Series([1, 2, 3, 10, 4, 5, 20, 6], Index([1, 2, 3, 1, 4, 5, 2, 6], name="foo")) expected = Series([11, 22, 3, 4, 5, 6], Index(range(1, 7), name="foo")) result = s.groupby(level=0).sum() tm.assert_series_equal(result, expected) result = s.groupby(level=[0]).sum() tm.assert_series_equal(result, expected) result = s.groupby(level=-1).sum() tm.assert_series_equal(result, expected) result = s.groupby(level=[-1]).sum() tm.assert_series_equal(result, expected) msg = "level > 0 or level < -1 only valid with MultiIndex" with pytest.raises(ValueError, match=msg): s.groupby(level=1) with pytest.raises(ValueError, match=msg): s.groupby(level=-2) msg = "No group keys passed!" with pytest.raises(ValueError, match=msg): s.groupby(level=[]) msg = "multiple levels only valid with MultiIndex" with pytest.raises(ValueError, match=msg): s.groupby(level=[0, 0]) with pytest.raises(ValueError, match=msg): s.groupby(level=[0, 1]) msg = "level > 0 or level < -1 only valid with MultiIndex" with pytest.raises(ValueError, match=msg): s.groupby(level=[1]) def test_groupby_complex(): # GH 12902 a = Series(data=np.arange(4) * (1 + 2j), index=[0, 0, 1, 1]) expected = Series((1 + 2j, 5 + 10j)) result = a.groupby(level=0).sum() tm.assert_series_equal(result, expected) result = a.sum(level=0) tm.assert_series_equal(result, expected) def test_groupby_series_indexed_differently(): s1 = Series( [5.0, -9.0, 4.0, 100.0, -5.0, 55.0, 6.7], index=Index(["a", "b", "c", "d", "e", "f", "g"]), ) s2 = Series( [1.0, 1.0, 4.0, 5.0, 5.0, 7.0], index=Index(["a", "b", "d", "f", "g", "h"]) ) grouped = s1.groupby(s2) agged = grouped.mean() exp = s1.groupby(s2.reindex(s1.index).get).mean() tm.assert_series_equal(agged, exp) def test_groupby_with_hier_columns(): tuples = list( zip( *[ ["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"], ["one", "two", "one", "two", "one", "two", "one", "two"], ] ) ) index = MultiIndex.from_tuples(tuples) columns = MultiIndex.from_tuples( [("A", "cat"), ("B", "dog"), ("B", "cat"), ("A", "dog")] ) df = DataFrame(np.random.randn(8, 4), index=index, columns=columns) result = df.groupby(level=0).mean() tm.assert_index_equal(result.columns, columns) result = df.groupby(level=0, axis=1).mean() tm.assert_index_equal(result.index, df.index) result = df.groupby(level=0).agg(np.mean) tm.assert_index_equal(result.columns, columns) result = df.groupby(level=0).apply(lambda x: x.mean()) tm.assert_index_equal(result.columns, columns) result = df.groupby(level=0, axis=1).agg(lambda x: x.mean(1)) tm.assert_index_equal(result.columns, Index(["A", "B"])) tm.assert_index_equal(result.index, df.index) # add a nuisance column sorted_columns, _ = columns.sortlevel(0) df["A", "foo"] = "bar" result = df.groupby(level=0).mean() tm.assert_index_equal(result.columns, df.columns[:-1]) def test_grouping_ndarray(df): grouped = df.groupby(df["A"].values) result = grouped.sum() expected = df.groupby("A").sum() tm.assert_frame_equal( result, expected, check_names=False ) # Note: no names when grouping by value def test_groupby_wrong_multi_labels(): data = """index,foo,bar,baz,spam,data 0,foo1,bar1,baz1,spam2,20 1,foo1,bar2,baz1,spam3,30 2,foo2,bar2,baz1,spam2,40 3,foo1,bar1,baz2,spam1,50 4,foo3,bar1,baz2,spam1,60""" data = read_csv(StringIO(data), index_col=0) grouped = data.groupby(["foo", "bar", "baz", "spam"]) result = grouped.agg(np.mean) expected = grouped.mean() tm.assert_frame_equal(result, expected) def test_groupby_series_with_name(df): result = df.groupby(df["A"]).mean() result2 = df.groupby(df["A"], as_index=False).mean() assert result.index.name == "A" assert "A" in result2 result = df.groupby([df["A"], df["B"]]).mean() result2 = df.groupby([df["A"], df["B"]], as_index=False).mean() assert result.index.names == ("A", "B") assert "A" in result2 assert "B" in result2 def test_seriesgroupby_name_attr(df): # GH 6265 result = df.groupby("A")["C"] assert result.count().name == "C" assert result.mean().name == "C" testFunc = lambda x: np.sum(x) * 2 assert result.agg(testFunc).name == "C" def test_consistency_name(): # GH 12363 df = DataFrame( { "A": ["foo", "bar", "foo", "bar", "foo", "bar", "foo", "foo"], "B": ["one", "one", "two", "two", "two", "two", "one", "two"], "C": np.random.randn(8) + 1.0, "D": np.arange(8), } ) expected = df.groupby(["A"]).B.count() result = df.B.groupby(df.A).count() tm.assert_series_equal(result, expected) def test_groupby_name_propagation(df): # GH 6124 def summarize(df, name=None): return Series({"count": 1, "mean": 2, "omissions": 3}, name=name) def summarize_random_name(df): # Provide a different name for each Series. In this case, groupby # should not attempt to propagate the Series name since they are # inconsistent. return Series({"count": 1, "mean": 2, "omissions": 3}, name=df.iloc[0]["A"]) metrics = df.groupby("A").apply(summarize) assert metrics.columns.name is None metrics = df.groupby("A").apply(summarize, "metrics") assert metrics.columns.name == "metrics" metrics = df.groupby("A").apply(summarize_random_name) assert metrics.columns.name is None def test_groupby_nonstring_columns(): df = DataFrame([np.arange(10) for x in range(10)]) grouped = df.groupby(0) result = grouped.mean() expected = df.groupby(df[0]).mean() tm.assert_frame_equal(result, expected) def test_groupby_mixed_type_columns(): # GH 13432, unorderable types in py3 df = DataFrame([[0, 1, 2]], columns=["A", "B", 0]) expected = DataFrame([[1, 2]], columns=["B", 0], index=Index([0], name="A")) result = df.groupby("A").first() tm.assert_frame_equal(result, expected) result = df.groupby("A").sum() tm.assert_frame_equal(result, expected) # TODO: Ensure warning isn't emitted in the first place @pytest.mark.filterwarnings("ignore:Mean of:RuntimeWarning") def test_cython_grouper_series_bug_noncontig(): arr = np.empty((100, 100)) arr.fill(np.nan) obj = Series(arr[:, 0]) inds = np.tile(range(10), 10) result = obj.groupby(inds).agg(Series.median) assert result.isna().all() def test_series_grouper_noncontig_index(): index = Index(tm.rands_array(10, 100)) values = Series(np.random.randn(50), index=index[::2]) labels = np.random.randint(0, 5, 50) # it works! grouped = values.groupby(labels) # accessing the index elements causes segfault f = lambda x: len(set(map(id, x.index))) grouped.agg(f) def test_convert_objects_leave_decimal_alone(): s = Series(range(5)) labels = np.array(["a", "b", "c", "d", "e"], dtype="O") def convert_fast(x): return Decimal(str(x.mean())) def convert_force_pure(x): # base will be length 0 assert len(x.values.base) > 0 return Decimal(str(x.mean())) grouped = s.groupby(labels) result = grouped.agg(convert_fast) assert result.dtype == np.object_ assert isinstance(result[0], Decimal) result = grouped.agg(convert_force_pure) assert result.dtype == np.object_ assert isinstance(result[0], Decimal) def test_groupby_dtype_inference_empty(): # GH 6733 df = DataFrame({"x": [], "range": np.arange(0, dtype="int64")}) assert df["x"].dtype == np.float64 result = df.groupby("x").first() exp_index = Index([], name="x", dtype=np.float64) expected = DataFrame({"range": Series([], index=exp_index, dtype="int64")})
tm.assert_frame_equal(result, expected, by_blocks=True)
pandas._testing.assert_frame_equal
import os import yaml import json import pandas as pd import matplotlib.pyplot as plt from pylab import rcParams import seaborn as sns import numpy as np from sklearn.linear_model import LinearRegression import glob import time ########################################################################################## # Designed and developed by <NAME> # Date : 27 Dec 2018 # Function: convertYaml2PandasDataframeT20 # This function converts yaml files to Pandas dataframe and saves as CSV # ########################################################################################### def convertYaml2PandasDataframeT20(infile,source,dest): ''' Converts and save T20 yaml files to pandasdataframes Description This function coverts all T20 Yaml files from source directory to pandas ata frames. The data frames are then stored as .csv files The saved file is of the format team1-team2-date.csv For e.g. Kolkata Knight Riders-Sunrisers Hyderabad-2016-05-22.csv etc Usage convertYaml2PandasDataframeT20(yamlFile,sourceDir=".",targetDir=".") Arguments yamlFile The yaml file to be converted to dataframe and saved sourceDir The source directory of the yaml file targetDir The target directory in which the data frame is stored as RData file Value None Note Maintainer: <NAME> <EMAIL> Author(s) <NAME> References http://cricsheet.org/ https://gigadom.in/ See Also convertYaml2PandasDataframeT20 Examples # In the example below ../yamldir c convertYaml2PandasDataframeT20("225171.yaml",".","../data") ''' os.chdir(source) os.path.join(source,infile) # Read Yaml file and convert to json print('Converting file:',infile) with open(infile) as f: a=yaml.load(f) # 1st innings deliveries=a['innings'][0]['1st innings']['deliveries'] #Create empty dataframe for team1 team1=pd.DataFrame() # Loop through all the deliveries of 1st innings and append each row to dataframe for i in range(len(deliveries)): df = pd.DataFrame(deliveries[i]) b= df.T team1=pd.concat([team1,b]) # Rename batsman to striker/non-striker as there is another column batsman who scored runs team1=team1.rename(columns={'batsman':'striker'}) # All extras column names extras=[0,'wides','byes','legbyes','noballs','penalty'] if 'extras' in team1: #Check if extras are there # Get the columns in extras for team1 b=team1.extras.apply(pd.Series).columns # Find the missing extras columns diff= list(set(extras) - set(b)) print('Team1:diff:',diff) # Rename extras dict column as there is another column extras which comes from runs_dict team1=team1.rename(columns={'extras':'extras_dict'}) #Create new columns by splitting dictionary columns - extras and runs team1=pd.concat([team1,team1['extras_dict'].apply(pd.Series)], axis=1) # Add the missing columns for col in diff: print("team1:",col) team1[col]=0 team1=team1.drop(columns=0) else: print('Team1:Extras not present') # Rename runs columns to runs_dict if 'runs' in team1: #Check if runs in team1 team1=team1.rename(columns={'runs':'runs_dict'}) team1=pd.concat([team1,team1['runs_dict'].apply(pd.Series)], axis=1) else: print('Team1:Runs not present') if 'wicket' in team1: #Check if wicket present # Rename wicket as wicket_dict dict column as there is another wicket column team1=team1.rename(columns={'wicket':'wicket_dict'}) team1=pd.concat([team1,team1['wicket_dict'].apply(pd.Series)], axis=1) else: print('Team1: Wicket not present') team1['team']=a['innings'][0]['1st innings']['team'] team1=team1.reset_index(inplace=False) #Rename index to delivery team1=team1.rename(columns={'index':'delivery'}) # 2nd innings - Check if the 2nd inning was played if len(a['innings']) > 1: # Team2 played deliveries=a['innings'][1]['2nd innings']['deliveries'] #Create empty dataframe for team1 team2=pd.DataFrame() # Loop through all the deliveries of 1st innings for i in range(len(deliveries)): df = pd.DataFrame(deliveries[i]) b= df.T team2=pd.concat([team2,b]) # Rename batsman to striker/non-striker as there is another column batsman who scored runs team2=team2.rename(columns={'batsman':'striker'}) # Get the columns in extras for team1 if 'extras' in team2: #Check if extras in team2 b=team2.extras.apply(pd.Series).columns diff= list(set(extras) - set(b)) print('Team2:diff:',diff) # Rename extras dict column as there is another column extras which comes from runs_dict team2=team2.rename(columns={'extras':'extras_dict'}) #Create new columns by splitting dictionary columns - extras and runs team2=pd.concat([team2,team2['extras_dict'].apply(pd.Series)], axis=1) # Add the missing columns for col in diff: print("team2:",col) team2[col]=0 team2=team2.drop(columns=0) else: print('Team2:Extras not present') # Rename runs columns to runs_dict if 'runs' in team2: team2=team2.rename(columns={'runs':'runs_dict'}) team2=pd.concat([team2,team2['runs_dict'].apply(pd.Series)], axis=1) else: print('Team2:Runs not present') if 'wicket' in team2: # Rename wicket as wicket_dict column as there is another column wicket team2=team2.rename(columns={'wicket':'wicket_dict'}) team2=pd.concat([team2,team2['wicket_dict'].apply(pd.Series)], axis=1) else: print('Team2:wicket not present') team2['team']=a['innings'][1]['2nd innings']['team'] team2=team2.reset_index(inplace=False) #Rename index to delivery team2=team2.rename(columns={'index':'delivery'}) else: # Create empty columns for team2 so that the complete DF as all columns team2 = pd.DataFrame() cols=['delivery', 'striker', 'bowler', 'extras_dict', 'non_striker',\ 'runs_dict', 'wicket_dict', 'wides', 'noballs', 'legbyes', 'byes', 'penalty',\ 'kind','player_out','fielders',\ 'batsman', 'extras', 'total', 'team'] team2 = team2.reindex(columns=cols) #Check for missing columns. It is possible that no wickets for lost in the entire innings cols=['delivery', 'striker', 'bowler', 'extras_dict', 'non_striker',\ 'runs_dict', 'wicket_dict', 'wides', 'noballs', 'legbyes', 'byes', 'penalty',\ 'kind','player_out','fielders',\ 'batsman', 'extras', 'total', 'team'] # Team1 - missing columns msngCols=list(set(cols) - set(team1.columns)) print('Team1-missing columns:', msngCols) for col in msngCols: print("Adding:team1:",col) team1[col]=0 # Team2 - missing columns msngCols=list(set(cols) - set(team2.columns)) print('Team2-missing columns:', msngCols) for col in msngCols: print("Adding:team2:",col) team2[col]=0 # Now both team1 and team2 should have the same columns. Concatenate team1=team1[['delivery', 'striker', 'bowler', 'extras_dict', 'non_striker',\ 'runs_dict', 'wicket_dict', 'wides', 'noballs', 'legbyes', 'byes', 'penalty',\ 'kind','player_out','fielders',\ 'batsman', 'extras', 'total', 'team']] team2=team2[['delivery', 'striker', 'bowler', 'extras_dict', 'non_striker',\ 'runs_dict', 'wicket_dict', 'wides', 'noballs', 'legbyes', 'byes', 'penalty',\ 'kind','player_out','fielders',\ 'batsman', 'extras', 'total', 'team']] df=pd.concat([team1,team2]) #Fill NA's with 0s df=df.fillna(0) # Fill in INFO print("Length of info field=",len(a['info'])) #City try: df['city']=a['info']['city'] except: df['city'] =0 #Date df['date']=a['info']['dates'][0] #Gender df['gender']=a['info']['gender'] #Match type df['match_type']=a['info']['match_type'] # Neutral venue try: df['neutral_venue'] = a['info']['neutral_venue'] except KeyError as error: df['neutral_venue'] = 0 #Outcome - Winner try: df['winner']=a['info']['outcome']['winner'] # Get the win type - runs, wickets etc df['winType']=list(a['info']['outcome']['by'].keys())[0] print("Wintype=",list(a['info']['outcome']['by'].keys())[0]) #Get the value of wintype winType=list(a['info']['outcome']['by'].keys())[0] print("Win value=",list(a['info']['outcome']['by'].keys())[0] ) # Get the win margin - runs,wickets etc df['winMargin']=a['info']['outcome']['by'][winType] print("win margin=", a['info']['outcome']['by'][winType]) except: df['winner']=0 df['winType']=0 df['winMargin']=0 # Outcome - Tie try: df['result']=a['info']['outcome']['result'] df['resultHow']=list(a['info']['outcome'].keys())[0] df['resultTeam'] = a['info']['outcome']['eliminator'] print(a['info']['outcome']['result']) print(list(a['info']['outcome'].keys())[0]) print(a['info']['outcome']['eliminator']) except: df['result']=0 df['resultHow']=0 df['resultTeam']=0 try: df['non_boundary'] = a['info']['non_boundary'] except KeyError as error: df['non_boundary'] = 0 try: df['ManOfMatch']=a['info']['player_of_match'][0] except: df['ManOfMatch']=0 # Identify the winner df['overs']=a['info']['overs'] df['team1']=a['info']['teams'][0] df['team2']=a['info']['teams'][1] df['tossWinner']=a['info']['toss']['winner'] df['tossDecision']=a['info']['toss']['decision'] df['venue']=a['info']['venue'] # Rename column 'striker' to batsman # Rename column 'batsman' to runs as it signifies runs scored by batsman df=df.rename(columns={'batsman':'runs'}) df=df.rename(columns={'striker':'batsman'}) if (type(a['info']['dates'][0]) == str): outfile=a['info']['teams'][0]+ '-' + a['info']['teams'][1] + '-' +a['info']['dates'][0] + '.csv' else: outfile=a['info']['teams'][0]+ '-' + a['info']['teams'][1] + '-' +a['info']['dates'][0].strftime('%Y-%m-%d') + '.csv' destFile=os.path.join(dest,outfile) print(destFile) df.to_csv(destFile,index=False) print("Dataframe shape=",df.shape) return df, outfile ########################################################################################## # Designed and developed by <NAME> # Date : 27 Dec 2018 # Function: convertAllYaml2PandasDataframesT20 # This function converts all yaml files to Pandas dataframes and saves as CSV # ########################################################################################### def convertAllYaml2PandasDataframesT20(source,dest): ''' Convert and save all Yaml files to pandas dataframes and save as CSV Description This function coverts all Yaml files from source directory to data frames. The data frames are then stored as .csv. The saved files are of the format team1-team2-date.RData For e.g. England-India-2008-04-06.RData etc Usage convertAllYaml2PandasDataframesT20(sourceDir=".",targetDir=".") Arguments sourceDir The source directory of the yaml files targetDir The target directory in which the data frames are stored as RData files Value None Note Maintainer: <NAME> <EMAIL> Author(s) <NAME> References http://cricsheet.org/ https://gigadom.in/ See Also convertYaml2PandasDataframe Examples # In the example below ../yamldir is the source dir for the yaml files convertAllYaml2PandasDataframesT20("../yamldir","../data") ''' files = os.listdir(source) for index, file in enumerate(files): print("\n\nFile no=",index) if file.endswith(".yaml"): df, filename = convertYaml2PandasDataframeT20(file, source, dest) #print(filename) ########################################################################################## # Designed and developed by <NAME> # Date : 27 Dec 2018 # Function: getRuns # This function gets the runs scored by batsmen # ########################################################################################### def getRuns(df): df1=df[['batsman','runs','extras','total','non_boundary']] # Determine number of deliveries faced and runs scored runs=df1[['batsman','runs']].groupby(['batsman'],sort=False,as_index=False).agg(['count','sum']) # Drop level 0 runs.columns = runs.columns.droplevel(0) runs=runs.reset_index(inplace=False) runs.columns=['batsman','balls','runs'] return(runs) ########################################################################################## # Designed and developed by <NAME> # Date : 27 Dec 2018 # Function: getFours # This function gets the fours scored by batsmen # ########################################################################################### def getFours(df): df1=df[['batsman','runs','extras','total','non_boundary']] # Get number of 4s. Check if it is boundary (non_boundary=0) m=df1.loc[(df1.runs >=4) & (df1.runs <6) & (df1.non_boundary==0)] # Count the number of 4s noFours= m[['batsman','runs']].groupby('batsman',sort=False,as_index=False).count() noFours.columns=['batsman','4s'] return(noFours) ########################################################################################## # Designed and developed by <NAME> # Date : 27 Dec 2018 # Function: getSixes # This function gets the sixes scored by batsmen # ########################################################################################### def getSixes(df): df1=df[['batsman','runs','extras','total','non_boundary']] df2= df1.loc[(df1.runs ==6)] sixes= df2[['batsman','runs']].groupby('batsman',sort=False,as_index=False).count() sixes.columns=['batsman','6s'] return(sixes) ########################################################################################## # Designed and developed by <NAME> # Date : 27 Dec 2018 # Function: getExtras # This function gets the extras for the team # ########################################################################################### def getExtras(df): df3= df[['total','wides', 'noballs', 'legbyes', 'byes', 'penalty', 'extras']] a=df3.sum().astype(int) #Convert series to dataframe extras=a.to_frame().T return(extras) ########################################################################################## # Designed and developed by <NAME> # Date : 27 Dec 2018 # Function: teamBattingScorecardMatch # This function returns the team batting scorecard # ########################################################################################### def teamBattingScorecardMatch (match,theTeam): ''' Team batting scorecard of a team in a match Description This function computes returns the batting scorecard (runs, fours, sixes, balls played) for the team Usage teamBattingScorecardMatch(match,theTeam) Arguments match The match for which the score card is required e.g. theTeam Team for which scorecard required Value scorecard A data frame with the batting scorecard Note Maintainer: <NAME> <EMAIL> Author(s) <NAME> References http://cricsheet.org/ https://gigadom.in/ See Also teamBatsmenPartnershipMatch teamBowlingScorecardMatch teamBatsmenVsBowlersMatch Examples x1,y1=teamBattingScorecardMatch(kkr_sh,"<NAME>") print(x1) print(y1) ''' scorecard=pd.DataFrame() if(match.size != 0): team=match.loc[match['team'] == theTeam] else: return(scorecard,-1) a1= getRuns(team) b1= getFours(team) c1= getSixes(team) # Merge columns d1=pd.merge(a1, b1, how='outer', on='batsman') e=pd.merge(d1,c1,how='outer', on='batsman') e=e.fillna(0) e['4s']=e['4s'].astype(int) e['6s']=e['6s'].astype(int) e['SR']=(e['runs']/e['balls']) *100 scorecard = e[['batsman','runs','balls','4s','6s','SR']] extras=getExtras(match) return(scorecard,extras) ########################################################################################## # Designed and developed by <NAME> # Date : 27 Dec 2018 # Function: getRunsConceded # This function gets the runs conceded by bowler # ########################################################################################### def getRunsConceded(df): # Note the column batsman has the runs scored by batsman df1=df[['bowler','runs','wides', 'noballs']] df2=df1.groupby('bowler').sum() # Only wides and no balls included in runs conceded df2['runs']=(df2['runs']+df2['wides']+df2['noballs']).astype(int) df3 = df2['runs'] return(df3) ########################################################################################## # Designed and developed by <NAME> # Date : 27 Dec 2018 # Function: getOvers # This function gets the overs for bowlers # ########################################################################################### def getOvers(df): df1=df[['bowler','delivery']] df2=(df1.groupby('bowler').count()/6).astype(int) df2.columns=['overs'] return(df2) ########################################################################################## # Designed and developed by <NAME> # Date : 27 Dec 2018 # Function: getMaidens # This function gets the maiden overs for bowlers # ########################################################################################### def getMaidens(df): df1=df[['bowler','delivery','runs','wides', 'noballs']] # Get the over df1['over']=df1.delivery.astype(int) # Runs conceded includes wides and noballs df1['runsConceded']=df1['runs'] + df1['wides'] + df1['noballs'] df2=df1[['bowler','over','runsConceded']] # Compute runs in each over by bowler df3=df2.groupby(['bowler','over']).sum() df4=df3.reset_index(inplace=False) # If maiden set as 1 else as 0 df4.loc[df4.runsConceded !=0,'maiden']=0 df4.loc[df4.runsConceded ==0,'maiden']=1 # Sum te maidens df5=df4[['bowler','maiden']].groupby('bowler').sum() return(df5) ########################################################################################## # Designed and developed by <NAME> # Date : 27 Dec 2018 # Function: getWickets # This function gets the wickets for bowlers # ########################################################################################### def getWickets(df): df1=df[['bowler','kind', 'player_out', 'fielders']] # Check if the team took wickets. Then this column will be a string if isinstance(df1.player_out.iloc[0],str): df2= df1[df1.player_out !='0'] df3 = df2[['bowler','player_out']].groupby('bowler').count() else: # Did not take wickets. Set wickets as 0 df3 = df1[['bowler','player_out']].groupby('bowler').count() df3['player_out']=0 # Set wicktes as 0 return(df3) ########################################################################################## # Designed and developed by <NAME> # Date : 27 Dec 2018 # Function: teamBowlingScorecardMatch # This function gets the bowling scorecard # ########################################################################################### def teamBowlingScorecardMatch (match,theTeam): ''' Compute and return the bowling scorecard of a team in a match Description This function computes and returns the bowling scorecard of a team in a match Usage teamBowlingScorecardMatch(match,theTeam) Arguments match The match between the teams theTeam Team for which bowling performance is required Value l A data frame with the bowling performance in alll matches against all oppositions Note Maintainer: <NAME> <EMAIL> Author(s) <NAME> References http://cricsheet.org/ https://gigadom.in/ See Also teamBowlingWicketMatch teamBowlersVsBatsmenMatch teamBattingScorecardMatch Examples m=teamBowlingScorecardMatch(kkr_sh,"<NAME>") print(m) ''' team=match.loc[match.team== theTeam] # Compute overs bowled a1= getOvers(team).reset_index(inplace=False) # Compute runs conceded b1= getRunsConceded(team).reset_index(inplace=False) # Compute maidens c1= getMaidens(team).reset_index(inplace=False) # Compute wickets d1= getWickets(team).reset_index(inplace=False) e1=pd.merge(a1, b1, how='outer', on='bowler') f1= pd.merge(e1,c1,how='outer', on='bowler') g1= pd.merge(f1,d1,how='outer', on='bowler') g1 = g1.fillna(0) # Compute economy rate g1['econrate'] = g1['runs']/g1['overs'] g1.columns=['bowler','overs','runs','maidens','wicket','econrate'] g1.maidens = g1.maidens.astype(int) g1.wicket = g1.wicket.astype(int) return(g1) ########################################################################################## # Designed and developed by <NAME> # Date : 27 Dec 2018 # Function: teamBatsmenPartnershipMatch # This function gets the batting partnerships # ########################################################################################### def teamBatsmenPartnershipMatch(match,theTeam,opposition,plot=True,savePic=False, dir1=".",picFile="pic1.png"): ''' Team batting partnerships of batsmen in a match Description This function plots the partnerships of batsmen in a match against an opposition or it can return the data frame Usage teamBatsmenPartnershipMatch(match,theTeam,opposition, plot=TRUE) Arguments match The match between the teams theTeam The team for which the the batting partnerships are sought opposition The opposition team plot If plot=TRUE then a plot is created otherwise a data frame is returned savePic If savePic = True then the plot is saved dir1 The directory where the plot is saved picFile The name of the savefile Value df The data frame of the batsmen partnetships Note Maintainer: <NAME> <EMAIL> Author(s) <NAME> References http://cricsheet.org/ https://gigadom.in/ See Also teamBattingScorecardMatch teamBowlingWicketKindMatch teamBatsmenVsBowlersMatch matchWormChart Examples teamBatsmenPartnershipMatch(kkr_sh,"Kolkata Knight Riders","Sunrisers Hyderabad",plot=True) m=teamBatsmenPartnershipMatch(kkr_sh,"Kolkata Knight Riders","Sunrisers Hyderabad",plot=False) print(m) ''' df1=match.loc[match.team== theTeam] df2= df1[['batsman','runs','non_striker']] if plot == True: df3=df2.groupby(['batsman','non_striker']).sum().unstack().fillna(0) rcParams['figure.figsize'] = 10, 6 df3.plot(kind='bar',stacked=True) plt.xlabel('Batsman') plt.ylabel('Runs') plt.title(theTeam + ' -batting partnership- vs ' + opposition) plt.text(4, 30,'Data source-Courtesy:http://cricsheet.org', horizontalalignment='center', verticalalignment='center', ) if(savePic): plt.savefig(os.path.join(dir1,picFile),bbox_inches='tight') else: plt.show() plt.gcf().clear() else: df3=df2.groupby(['batsman','non_striker']).sum().reset_index(inplace=False) return(df3) ########################################################################################## # Designed and developed by <NAME> # Date : 27 Dec 2018 # Function: teamBatsmenPartnershipMatch # This function gives the performances of batsmen vs bowlers # ########################################################################################### def teamBatsmenVsBowlersMatch(match,theTeam,opposition, plot=True, savePic=False, dir1=".",picFile="pic1.png"): ''' Team batsmen against bowlers in a match Description This function plots the performance of batsmen versus bowlers in a match or it can return the data frame Usage teamBatsmenVsBowlersMatch(match,theTeam,opposition, plot=TRUE) Arguments match The match between the teams theTeam The team for which the the batting partnerships are sought opposition The opposition team plot If plot=TRUE then a plot is created otherwise a data frame is return savePic If savePic = True then the plot is saved dir1 The directory where the plot is saved picFile The name of the savefile Value b The data frame of the batsmen vs bowlers performance Note Maintainer: <NAME> <EMAIL> Author(s) <NAME> References http://cricsheet.org/ https://gigadom.in/ See Also teamBowlingWicketKindMatch teamBowlingWicketMatch Examples teamBatsmenVsBowlersMatch(kkr_sh,"Kolkata Knight Riders","Sunrisers Hyderabad",plot=True) ''' df1=match.loc[match.team== theTeam] df2= df1[['batsman','runs','bowler']] if plot == True: df3=df2.groupby(['batsman','bowler']).sum().unstack().fillna(0) df3.plot(kind='bar',stacked=True) rcParams['figure.figsize'] = 10, 6 plt.xlabel('Batsman') plt.ylabel('Runs') plt.title(theTeam + ' -Batsman vs Bowler- in match against ' + opposition) plt.text(4, 30,'Data source-Courtesy:http://cricsheet.org', horizontalalignment='center', verticalalignment='center', ) if(savePic): plt.savefig(os.path.join(dir1,picFile),bbox_inches='tight') else: plt.show() plt.gcf().clear() else: df3=df2.groupby(['batsman','bowler']).sum().reset_index(inplace=False) return(df3) ########################################################################################## # Designed and developed by <NAME> # Date : 27 Dec 2018 # Function: teamBowlingWicketKindMatch # This function gives the wicket kind for bowlers # ########################################################################################### def teamBowlingWicketKindMatch(match,theTeam,opposition, plot=True,savePic=False, dir1=".",picFile="pic1.png"): ''' Compute and plot the wicket kinds by bowlers in match Description This function computes returns kind of wickets (caught, bowled etc) of bowlers in a match between 2 teams Usage teamBowlingWicketKindMatch(match,theTeam,opposition,plot=TRUE) Arguments match The match between the teams theTeam Team for which bowling performance is required opposition The opposition team plot If plot= TRUE the dataframe will be plotted else a data frame will be returned savePic If savePic = True then the plot is saved dir1 The directory where the plot is saved picFile The name of the savefile Value None or data fame A data frame with the bowling performance in alll matches against all oppositions Note Maintainer: <NAME> <EMAIL> Author(s) <NAME> References http://cricsheet.org/ https://gigadom.in/ See Also teamBowlingWicketMatch teamBowlingWicketRunsMatch teamBowlersVsBatsmenMatch Examples teamBowlingWicketKindMatch(kkr_sh,"Kolkata Knight Riders","Sunrisers Hyderabad",plot=True) m=teamBowlingWicketKindMatch(kkr_sh,"Kolkata Knight Riders","Sunrisers Hyderabad",plot=False) print(m) ''' df1=match.loc[match.team== theTeam] df2= df1[['bowler','kind','player_out']] # Find all rows where there was a wicket df3=df2[df2.player_out != '0'] if plot == True: # Find the different types of wickets for each bowler df4=df3.groupby(['bowler','kind']).count().unstack().fillna(0) df4.plot(kind='bar',stacked=True) rcParams['figure.figsize'] = 10, 6 plt.xlabel('Batsman') plt.ylabel('Runs') plt.title(theTeam + ' -Wicketkind vs Runs- given against ' + opposition) plt.text(4, 30,'Data source-Courtesy:http://cricsheet.org', horizontalalignment='center', verticalalignment='center', ) if(savePic): plt.savefig(os.path.join(dir1,picFile)) else: plt.show() plt.gcf().clear() else: # Find the different types of wickets for each bowler df4=df3.groupby(['bowler','kind']).count().reset_index(inplace=False) return(df4) ########################################################################################## # Designed and developed by <NAME> # Date : 27 Dec 2018 # Function: teamBowlingWicketMatch # This function gives the wickets for bowlers # ########################################################################################### def teamBowlingWicketMatch(match,theTeam,opposition, plot=True,savePic=False, dir1=".",picFile="pic1.png"): ''' Compute and plot wickets by bowlers in match Description This function computes returns the wickets taken bowlers in a match between 2 teams Usage teamBowlingWicketMatch(match,theTeam,opposition, plot=TRUE) Arguments match The match between the teams theTeam Team for which bowling performance is required opposition The opposition team plot If plot= TRUE the dataframe will be plotted else a data frame will be returned savePic If savePic = True then the plot is saved dir1 The directory where the plot is saved picFile The name of the savefile Value None or data fame A data frame with the bowling performance in alll matches against all oppositions Note Maintainer: <NAME> <EMAIL> Author(s) <NAME> References http://cricsheet.org/ https://gigadom.in/ See Also teamBowlingWicketMatch teamBowlingWicketRunsMatch teamBowlersVsBatsmenMatch Examples teamBowlingWicketMatch(kkr_sh,"Kolkata Knight Riders","Sunrisers Hyderabad",plot=True) ''' df1=match.loc[match.team== theTeam] df2= df1[['bowler','kind','player_out']] # Find all rows where there was a wicket df3=df2[df2.player_out != '0'] if plot == True: # Find the different types of wickets for each bowler df4=df3.groupby(['bowler','player_out']).count().unstack().fillna(0) df4.plot(kind='bar',stacked=True) rcParams['figure.figsize'] = 10, 6 plt.xlabel('Batsman') plt.ylabel('Runs') plt.title(theTeam + ' -No of Wickets vs Runs conceded- against ' + opposition) plt.text(1, 1,'Data source-Courtesy:http://cricsheet.org', horizontalalignment='center', verticalalignment='center', ) if(savePic): plt.savefig(os.path.join(dir1,picFile),bbox_inches='tight') else: plt.show() plt.gcf().clear() else: # Find the different types of wickets for each bowler df4=df3.groupby(['bowler','player_out']).count().reset_index(inplace=False) return(df4) ########################################################################################## # Designed and developed by <NAME> # Date : 27 Dec 2018 # Function: teamBowlersVsBatsmenMatch # This function gives the bowlers vs batsmen and runs conceded # ########################################################################################### def teamBowlersVsBatsmenMatch (match,theTeam,opposition, plot=True, savePic=False, dir1=".",picFile="pic1.png"): ''' Team bowlers vs batsmen in a match Description This function computes performance of bowlers of a team against an opposition in a match Usage teamBowlersVsBatsmenMatch(match,theTeam,opposition, plot=TRUE) Arguments match The data frame of the match. This can be obtained with the call for e.g a <- getMatchDetails("England","Pakistan","2006-09-05",dir="../temp") theTeam The team against which the performance is required opposition The opposition team plot This parameter specifies if a plot is required, If plot=FALSE then a data frame is returned savePic If savePic = True then the plot is saved dir1 The directory where the plot is saved picFile The name of the savefile Value None or dataframe If plot=TRUE there is no return. If plot=TRUE then the dataframe is returned Note Maintainer: <NAME> <EMAIL> Author(s) <NAME> References http://cricsheet.org/ https://gigadom.in/ See Also teamBattingScorecardMatch teamBowlingWicketKindMatch matchWormChart Examples teamBowlersVsBatsmenMatch(kkr_sh,"Kolkata Knight Riders","Sunrisers Hyderabad",plot=True) ''' df1=match.loc[match.team== theTeam] df2= df1[['batsman','runs','bowler']] if plot == True: df3=df2.groupby(['batsman','bowler']).sum().unstack().fillna(0) df3.plot(kind='bar',stacked=True) rcParams['figure.figsize'] = 10, 6 plt.xlabel('Batsman') plt.ylabel('Runs') plt.title(theTeam + ' -Bowler vs Batsman- against ' + opposition) plt.text(4, 20,'Data source-Courtesy:http://cricsheet.org', horizontalalignment='center', verticalalignment='center', ) if(savePic): plt.savefig(os.path.join(dir1,picFile),bbox_inches='tight') else: plt.show() plt.gcf().clear() else: df3=df2.groupby(['batsman','bowler']).sum().reset_index(inplace=False) return(df3) ########################################################################################## # Designed and developed by <NAME> # Date : 27 Dec 2018 # Function: matchWormChart # This function draws the match worm chart # ########################################################################################### def matchWormChart(match,team1,team2,plot=True, savePic=False, dir1=".",picFile="pic1.png"): ''' Plot the match worm graph Description This function plots the match worm graph between 2 teams in a match Usage matchWormGraph(match,t1,t2) Arguments match The dataframe of the match team1 The 1st team of the match team2 the 2nd team in the match plot If plot=TRUE then a plot is created otherwise a data frame is returned savePic If savePic = True then the plot is saved dir1 The directory where the plot is saved picFile The name of the savefile Value none Note Maintainer: <NAME> <EMAIL> Author(s) <NAME> References http://cricsheet.org/ https://gigadom.in/ See Also teamBatsmenVsBowlersMatch teamBowlingWicketKindMatch Examples ## Not run: #Get the match details a <- getMatchDetails("England","Pakistan","2006-09-05",dir="../temp") # Plot tne match worm plot matchWormChart(kkr_sh,"Kolkata Knight Riders","Sunrisers Hyderabad") ''' df1=match.loc[match.team==team1] df2=match.loc[match.team==team2] df3=df1[['delivery','total']] df3['cumsum']=df3.total.cumsum() df4 = df2[['delivery','total']] df4['cumsum'] = df4.total.cumsum() df31 = df3[['delivery','cumsum']] df41 = df4[['delivery','cumsum']] #plt.plot(df3.delivery.values,df3.cumsum.values) df51= pd.merge(df31,df41,how='outer', on='delivery').dropna() df52=df51.set_index('delivery') df52.columns = [team1,team2] df52.plot() rcParams['figure.figsize'] = 10, 6 plt.xlabel('Delivery') plt.ylabel('Runs') plt.title('Match worm chart ' + team1 + ' vs ' + team2) plt.text(10, 10,'Data source-Courtesy:http://cricsheet.org', horizontalalignment='center', verticalalignment='center', ) if plot == True: if(savePic): plt.savefig(os.path.join(dir1,picFile),bbox_inches='tight') else: plt.show() plt.gcf().clear() ########################################################################################## # Designed and developed by <NAME> # Date : 26 Jan 2019 # Function: getAllMatchesBetweenTeams # This function gets all the matches between 2 IPL teams # ########################################################################################### def getAllMatchesBetweenTeams(team1,team2,dir=".",save=False,odir="."): ''' Get data on all matches between 2 opposing teams Description This function gets all the data on matches between opposing IPL teams This can be saved by the user which can be used in function in which analyses are done for all matches between these teams. Usage getAllMatchesBetweenTeams(team1,team2,dir=".",save=FALSE) Arguments team1 One of the team in consideration e.g (KKR, CSK etc) team2 The other team for which matches are needed e.g( MI, GL) dir The directory which has the RData files of matches between teams save Default=False. This parameter indicates whether the combined data frame needs to be saved or not. It is recommended to save this large dataframe as the creation of this data frame takes a several seconds depending on the number of matches Value matches - The combined data frame Note Maintainer: <NAME> <EMAIL> Author(s) <NAME> References http://cricsheet.org/ https://gigadom.wordpress.com/ See Also plotWinsbyTossDecision teamBowlersVsBatsmenOppnAllMatches ''' # Create the 2 combinations t1 = team1 +'-' + team2 + '*.csv' t2 = team2 + '-' + team1 + '*.csv' path1= os.path.join(dir,t1) path2 = os.path.join(dir,t2) files = glob.glob(path1) + glob.glob(path2) print(len(files)) # Save as CSV only if there are matches between the 2 teams if len(files) !=0: df = pd.DataFrame() for file in files: df1 = pd.read_csv(file) df=pd.concat([df,df1]) if save==True: dest= team1 +'-' + team2 + '-allMatches.csv' output=os.path.join(odir,dest) df.to_csv(output) else: return(df) ########################################################################################## # Designed and developed by <NAME> # Date : 26 Jan 2019 # Function: saveAllMatchesBetween2IPLTeams # This function saves all the matches between allIPL teams # ########################################################################################### def saveAllMatchesBetween2IPLTeams(dir1,odir="."): ''' Saves all matches between 2 IPL teams as dataframe Description This function saves all matches between 2 IPL teams as a single dataframe in the current directory Usage saveAllMatchesBetween2IPLTeams(dir) Arguments dir Directory to store saved matches Value None Note Maintainer: <NAME> <EMAIL> Author(s) <NAME> References http://cricsheet.org/ https://gigadom.in/ See Also teamBowlingScorecardOppnAllMatches teamBatsmenVsBowlersOppnAllMatches ''' teams = ["Chennai Super Kings","Deccan Chargers","Delhi Daredevils", "Kings XI Punjab", 'Kochi Tuskers Kerala',"Kolkata Knight Riders", "Mumbai Indians", "Pune Warriors","Rajasthan Royals", "Royal Challengers Bangalore","Sunrisers Hyderabad","Gujarat Lions", "Rising Pune Supergiants"] for team1 in teams: for team2 in teams: if team1 != team2: print("Team1=",team1,"team2=", team2) getAllMatchesBetweenTeams(team1,team2,dir=dir1,save=True,odir=odir) time.sleep(2) #Sleep before next save return ########################################################################################## # Designed and developed by <NAME> # Date : 26 Jan 2019 # Function: teamBatsmenPartnershiOppnAllMatches # This function gets the partnetships for a team in all matches # ########################################################################################### def teamBatsmenPartnershiOppnAllMatches(matches,theTeam,report="summary",top=5): ''' Team batting partnership against a opposition all IPL matches Description This function computes the performance of batsmen against all bowlers of an oppositions in all matches. This function returns a dataframe Usage teamBatsmenPartnershiOppnAllMatches(matches,theTeam,report="summary") Arguments matches All the matches of the team against the oppositions theTeam The team for which the the batting partnerships are sought report If the report="summary" then the list of top batsmen with the highest partnerships is displayed. If report="detailed" then the detailed break up of partnership is returned as a dataframe top The number of players to be displayed from the top Value partnerships The data frame of the partnerships Note Maintainer: <NAME> <EMAIL> Author(s) <NAME> References http://cricsheet.org/ https://gigadom.wordpress.com/ See Also teamBatsmenVsBowlersOppnAllMatchesPlot teamBatsmenPartnershipOppnAllMatchesChart ''' df1 = matches[matches.team == theTeam] df2 = df1[['batsman','non_striker','runs']] # Compute partnerships df3=df2.groupby(['batsman','non_striker']).sum().reset_index(inplace=False) df3.columns = ['batsman','non_striker','partnershipRuns'] # Compute total partnerships df4 = df3.groupby('batsman').sum().reset_index(inplace=False).sort_values('partnershipRuns',ascending=False) df4.columns = ['batsman','totalPartnershipRuns'] # Select top 5 df5 = df4.head(top) df6= pd.merge(df5,df3,on='batsman') if report == 'summary': return(df5) elif report == 'detailed': return(df6) else: print("Invalid option") return ########################################################################################## # Designed and developed by <NAME> # Date : 26 Jan 2019 # Function: teamBatsmenPartnershipOppnAllMatchesChart # This function plots the partnetships for a team in all matches # ########################################################################################### def teamBatsmenPartnershipOppnAllMatchesChart(matches,main,opposition,plot=True,top=5,partnershipRuns=20,savePic=False, dir1=".",picFile="pic1.png"): ''' Plot of team partnership in all IPL matches against an opposition Description This function plots the batting partnership of a team againt all oppositions in all matches This function also returns a dataframe with the batting partnerships Usage teamBatsmenPartnershipOppnAllMatchesChart(matches,main,opposition, plot=TRUE,top=5,partnershipRuns=20)) Arguments matches All the matches of the team against all oppositions main The main team for which the the batting partnerships are sought opposition The opposition team for which the the batting partnerships are sought plot Whether the partnerships have top be rendered as a plot. If plot=FALSE the data frame is returned top The number of players from the top to be included in chart partnershipRuns The minimum number of partnership runs to include for the chart savePic If savePic = True then the plot is saved dir1 The directory where the plot is saved picFile The name of the savefile Value None or partnerships Note Maintainer: <NAME> <EMAIL> Author(s) <NAME> References http://cricsheet.org/ https://gigadom.wordpress.com/ See Also teamBatsmenPartnershiplOppnAllMatches saveAllMatchesBetween2IPLTeams teamBatsmenVsBowlersAllOppnAllMatchesPlot teamBatsmenVsBowlersOppnAllMatches ''' df1 = matches[matches.team == main] df2 = df1[['batsman','non_striker','runs']] # Compute partnerships df3=df2.groupby(['batsman','non_striker']).sum().reset_index(inplace=False) df3.columns = ['batsman','non_striker','partnershipRuns'] # Compute total partnerships df4 = df3.groupby('batsman').sum().reset_index(inplace=False).sort_values('partnershipRuns',ascending=False) df4.columns = ['batsman','totalPartnershipRuns'] # Select top 5 df5 = df4.head(top) df6= pd.merge(df5,df3,on='batsman') df7 = df6[['batsman','non_striker','partnershipRuns']] # Remove rows where partnershipRuns < partnershipRuns as there are too many df8 = df7[df7['partnershipRuns'] > partnershipRuns] df9=df8.groupby(['batsman','non_striker'])['partnershipRuns'].sum().unstack().fillna(0) # Note: Can also use the below code -************* #df8=df7.pivot(columns='non_striker',index='batsman').fillna(0) if plot == True: df9.plot(kind='bar',stacked=True,legend=False,fontsize=8) plt.legend(loc='center left', bbox_to_anchor=(1.0, 0.5),fontsize=8) plt.title('Partnership runs between ' + main + '-' + opposition) plt.xlabel('Batsman') plt.ylabel('Partnership runs') if(savePic): plt.savefig(os.path.join(dir1,picFile),bbox_inches='tight') else: plt.show() plt.gcf().clear() else: return(df7) ########################################################################################## # Designed and developed by <NAME> # Date : 26 Jan 2019 # Function: teamBatsmenVsBowlersOppnAllMatches # This function plots the performance of batsmen against bowlers # ########################################################################################### def teamBatsmenVsBowlersOppnAllMatches(matches,main,opposition,plot=True,top=5,runsScored=20,savePic=False, dir1=".",picFile="pic1.png"): ''' Description This function computes the performance of batsmen against the bowlers of an oppositions in all matches Usage teamBatsmenVsBowlersOppnAllMatches(matches,main,opposition,plot=TRUE,top=5,runsScored=20) Arguments matches All the matches of the team against one specific opposition main The team for which the the batting partnerships are sought opposition The opposition team plot If plot=True then a plot will be displayed else a data frame will be returned top The number of players to be plotted or returned as a dataframe. The default is 5 runsScored The cutfoff limit for runs scored for runs scored against bowler savePic If savePic = True then the plot is saved dir1 The directory where the plot is saved picFile The name of the savefile Value None or dataframe Note Maintainer: <NAME> <EMAIL> Author(s) <NAME> References http://cricsheet.org/ https://gigadom.wordpress.com/ See Also teamBatsmenVsBowlersOppnAllMatchesPlot teamBatsmenPartnershipOppnAllMatchesChart teamBatsmenVsBowlersOppnAllMatches ''' df1 = matches[matches.team == main] df2 = df1[['batsman','bowler','runs']] # Runs scored by bowler df3=df2.groupby(['batsman','bowler']).sum().reset_index(inplace=False) df3.columns = ['batsman','bowler','runsScored'] # Need to pick the 'top' number of bowlers df4 = df3.groupby('batsman').sum().reset_index(inplace=False).sort_values('runsScored',ascending=False) df4.columns = ['batsman','totalRunsScored'] df5 = df4.head(top) df6= pd.merge(df5,df3,on='batsman') df7 = df6[['batsman','bowler','runsScored']] # Remove rows where runsScored < runsScored as there are too many df8 = df7[df7['runsScored'] >runsScored] df9=df8.groupby(['batsman','bowler'])['runsScored'].sum().unstack().fillna(0) # Note: Can also use the below code -************* #df8=df7.pivot(columns='bowler',index='batsman').fillna(0) if plot == True: ax=df9.plot(kind='bar',stacked=False,legend=False,fontsize=8) plt.legend(loc='center left', bbox_to_anchor=(1.0, 0.5),fontsize=8) plt.title('Runs against bowlers ' + main + '-' + opposition) plt.xlabel('Batsman') plt.ylabel('Runs scored') if(savePic): plt.savefig(os.path.join(dir1,picFile),bbox_inches='tight') else: plt.show() plt.gcf().clear() else: return(df7) ########################################################################################## # Designed and developed by <NAME> # Date : 26 Jan 2019 # Function: teamBattingScorecardOppnAllMatches # This function computes the batting scorecard for all matches # ########################################################################################### def teamBattingScorecardOppnAllMatches(matches,main,opposition): ''' Team batting scorecard of a team in all matches against an opposition Description This function computes returns the batting scorecard (runs, fours, sixes, balls played) for the team in all matches against an opposition Usage teamBattingScorecardOppnAllMatches(matches,main,opposition) Arguments matches the data frame of all matches between a team and an opposition obtained with the call getAllMatchesBetweenteam() main The main team for which scorecard required opposition The opposition team Value scorecard The scorecard of all the matches Note Maintainer: <NAME> <EMAIL> Author(s) <NAME> References http://cricsheet.org/ https://gigadom.wordpress.com/ See Also teamBatsmenPartnershipAllOppnAllMatches teamBowlingWicketKindOppositionAllMatches ''' team=matches.loc[matches.team== main] a1= getRuns(team) b1= getFours(team) c1= getSixes(team) # Merge columns d1=pd.merge(a1, b1, how='outer', on='batsman') e=pd.merge(d1,c1,how='outer', on='batsman') e=e.fillna(0) e['4s']=e['4s'].astype(int) e['6s']=e['6s'].astype(int) e['SR']=(e['runs']/e['balls']) *100 scorecard = e[['batsman','runs','balls','4s','6s','SR']].sort_values('runs',ascending=False) return(scorecard) ########################################################################################## # Designed and developed by <NAME> # Date : 26 Jan 2019 # Function: teamBattingScorecardOppnAllMatches # This function computes the batting scorecard for all matches # ########################################################################################### def teamBowlingScorecardOppnAllMatches(matches,main,opposition): ''' Team bowling scorecard opposition all matches Description This function computes returns the bowling dataframe of best bowlers deliveries, maidens, overs, wickets against an IPL oppositions in all matches Usage teamBowlingScorecardOppnAllMatches(matches,main,opposition) Arguments matches The matches of the team against all oppositions and all matches main Team for which bowling performance is required opposition The opposing IPL team Value l A data frame with the bowling performance in alll matches against all oppositions Note Maintainer: <NAME> <EMAIL> Author(s) <NAME> References http://cricsheet.org/ https://gigadom.wordpress.com/ See Also teamBowlingWicketKindOppositionAllMatches teamBatsmenVsBowlersOppnAllMatches plotWinsbyTossDecision ''' team=matches.loc[matches.team== main] # Compute overs bowled a1= getOvers(team).reset_index(inplace=False) # Compute runs conceded b1= getRunsConceded(team).reset_index(inplace=False) # Compute maidens c1= getMaidens(team).reset_index(inplace=False) # Compute wickets d1= getWickets(team).reset_index(inplace=False) e1=pd.merge(a1, b1, how='outer', on='bowler') f1= pd.merge(e1,c1,how='outer', on='bowler') g1= pd.merge(f1,d1,how='outer', on='bowler') g1 = g1.fillna(0) # Compute economy rate g1['econrate'] = g1['runs']/g1['overs'] g1.columns=['bowler','overs','runs','maidens','wicket','econrate'] g1.maidens = g1.maidens.astype(int) g1.wicket = g1.wicket.astype(int) g2 = g1.sort_values('wicket',ascending=False) return(g2) ########################################################################################## # Designed and developed by <NAME> # Date : 26 Jan 2019 # Function: teamBowlingWicketKindOppositionAllMatches # This function plots the performance of bowlers and the kind of wickets # ########################################################################################### def teamBowlingWicketKindOppositionAllMatches(matches,main,opposition,plot=True,top=5,wickets=2,savePic=False, dir1=".",picFile="pic1.png"): ''' Team bowlers wicket kind against an opposition in all matches Description This function computes performance of bowlers of a team and the wicket kind against an opposition in all matches against the opposition Usage teamBowlersWicketKindOppnAllMatches(matches,main,opposition,plot=TRUE,top=5,wickets=2) Arguments matches The data frame of all matches between a team the opposition. T main The team for which the performance is required opposition The opposing team plot If plot=True then a plot is displayed else a dataframe is returned top The top number of players to be considered wickets The minimum number of wickets as cutoff savePic If savePic = True then the plot is saved dir1 The directory where the plot is saved picFile The name of the savefile Value None or dataframe The return depends on the value of the plot Note Maintainer: <NAME> <EMAIL> Author(s) <NAME> References http://cricsheet.org/ https://gigadom.wordpress.com/ See Also plotWinsByRunOrWickets teamBowlersVsBatsmenOppnAllMatches ''' df1=matches.loc[matches.team== main] df2= df1[['bowler','kind','player_out']] # Find all rows where there was a wicket df2=df2[df2.player_out != '0'] # Number of wickets taken by bowler df3=df2.groupby(['bowler','kind']).count().reset_index(inplace=False) df3.columns = ['bowler','kind','wickets'] # Need to pick the 'top' number of bowlers by wickets df4 = df3.groupby('bowler').sum().reset_index(inplace=False).sort_values('wickets',ascending=False) df4.columns = ['bowler','totalWickets'] df5 = df4.head(top) df6= pd.merge(df5,df3,on='bowler') df7 = df6[['bowler','kind','wickets']] # Remove rows where runsScored < runsScored as there are too many df8 = df7[df7['wickets'] >wickets] df9=df8.groupby(['bowler','kind'])['wickets'].sum().unstack().fillna(0) # Note: Can also use the below code -************* #df9=df8.pivot(columns='bowler',index='batsman').fillna(0) if plot == True: ax=df9.plot(kind='bar',stacked=False,legend=False,fontsize=8) plt.legend(loc='center left', bbox_to_anchor=(1.0, 0.5),fontsize=8) plt.title('Wicker kind by bowlers of ' + main + '-' + opposition) plt.xlabel('Bowler') plt.ylabel('Total wickets') if(savePic): plt.savefig(os.path.join(dir1,picFile),bbox_inches='tight') else: plt.show() plt.gcf().clear() else: return(df7) ########################################################################################## # Designed and developed by <NAME> # Date : 26 Jan 2019 # Function: teamBowlersVsBatsmenOppnAllMatches # This function plots the performance of the bowlers against batsmen # ########################################################################################### def teamBowlersVsBatsmenOppnAllMatches(matches,main,opposition,plot=True,top=5,runsConceded=10, savePic=False, dir1=".",picFile="pic1.png"): ''' Team bowlers vs batsmen against an opposition in all matches Description This function computes performance of bowlers of a team against an opposition in all matches against the opposition Usage teamBowlersVsBatsmenOppnAllMatches(matches,main,opposition,plot=True,top=5,runsConceded=10)) Arguments matches The data frame of all matches between a team the opposition. main The main team against which the performance is required opposition The opposition team against which the performance is require plot If true plot else return dataframe top The number of rows to be returned. 5 by default runsConceded The minimum numer runs to use as cutoff If savePic = True then the plot is saved dir1 The directory where the plot is saved picFile The name of the savefile Value dataframe The dataframe with all performances Note Maintainer: <NAME> <EMAIL> Author(s) <NAME> References http://cricsheet.org/ https://gigadom.wordpress.com/ See Also teamBatsmenPartnershipOppnAllMatches teamBowlersVsBatsmenOppnAllMatchesRept ''' df1=matches.loc[matches.team== main] df2= df1[['bowler','batsman','runs']] # Number of wickets taken by bowler df3=df2.groupby(['bowler','batsman']).sum().reset_index(inplace=False) df3.columns = ['bowler','batsman','runsConceded'] # Need to pick the 'top' number of bowlers by wickets df4 = df3.groupby('bowler').sum().reset_index(inplace=False).sort_values('runsConceded',ascending=False) df4.columns = ['bowler','totalRunsConceded'] df5 = df4.head(top) df6= pd.merge(df5,df3,on='bowler') df7 = df6[['bowler','batsman','runsConceded']] # Remove rows where runsScored < runsScored as there are too many df8 = df7[df7['runsConceded'] >runsConceded] df9=df8.groupby(['bowler','batsman'])['runsConceded'].sum().unstack().fillna(0) # Note: Can also use the below code -************* #df9=df8.pivot(columns='bowler',index='batsman').fillna(0) if plot == True: ax=df9.plot(kind='bar',stacked=False,legend=False,fontsize=8) plt.legend(loc='center left', bbox_to_anchor=(1.0, 0.5),fontsize=8) plt.title('Wicker kind by bowlers of ' + main + '-' + opposition) plt.xlabel('Bowler') plt.ylabel('Total runs') if(savePic): plt.savefig(os.path.join(dir1,picFile),bbox_inches='tight') else: plt.show() plt.gcf().clear() else: return(df7) ########################################################################################## # Designed and developed by <NAME> # Date : 26 Jan 2019 # Function: plotWinLossBetweenTeams # This function plots the number of wins and losses in teams # ########################################################################################### def plotWinLossBetweenTeams(matches,team1,team2,plot=True, savePic=False, dir1=".",picFile="pic1.png"): ''' Plot wins for each team Description This function computes and plots number of wins for each team in all their encounters. The plot includes the number of wins byteam1 each team and the matches with no result Usage plotWinLossBetweenTeams(matches) Arguments matches The dataframe with all matches between 2 IPL teams team1 The 1st team team2 The 2nd team plot If plot=TRUE then a plot is created otherwise a data frame is returned savePic If savePic = True then the plot is saved dir1 The directory where the plot is saved picFile The name of the savefile Value None Note Maintainer: <NAME> <EMAIL> Author(s) <NAME> References http://cricsheet.org/ https://gigadom.wordpress.com/ https://github.com/tvganesh/yorkrData See Also teamBattingScorecardOppnAllMatches teamBatsmenPartnershipOppnAllMatchesChart getAllMatchesBetweenTeams ''' a=matches[['date','winner']].groupby(['date','winner']).count().reset_index(inplace=False) b=a.groupby('winner').count().reset_index(inplace=False) b.columns = ['winner','number'] sns.barplot(x='winner',y='number',data=b) plt.xlabel('Winner') plt.ylabel('Number') plt.title("Wins vs losses " + team1 + "-"+ team2) if(plot==True): if(savePic): plt.savefig(os.path.join(dir1,picFile),bbox_inches='tight') else: plt.show() plt.gcf().clear() return ########################################################################################## # Designed and developed by <NAME> # Date : 26 Jan 2019 # Function: plotWinsByRunOrWickets # This function plots how the win for the team was whether by runs or wickets # ########################################################################################### def plotWinsByRunOrWickets(matches,team1,plot=True, savePic=False, dir1=".",picFile="pic1.png"): ''' Plot whether the wins for the team was by runs or wickets Description This function computes and plots number the number of wins by runs vs number of wins by wickets Usage plotWinsByRunOrWickets(matches,team1) Arguments matches The dataframe with all matches between 2 IPL teams team1 The team for which the plot has to be done plot If plot=TRUE then a plot is created otherwise a data frame is returned savePic If savePic = True then the plot is saved dir1 The directory where the plot is saved picFile The name of the savefile Value None Note Maintainer: <NAME> <EMAIL>esh.<EMAIL> Author(s) <NAME> References http://cricsheet.org/ https://gigadom.wordpress.com/ See Also teamBowlingScorecardOppnAllMatches teamBatsmenPartnershipOppnAllMatchesChart getAllMatchesBetweenTeams ''' # Get the number of matches won df= matches.loc[matches.winner == team1] a=df[['date','winType']].groupby(['date','winType']).count().reset_index(inplace=False) b=a.groupby('winType').count().reset_index(inplace=False) b.columns = ['winType','number'] sns.barplot(x='winType',y='number',data=b) plt.xlabel('Win Type - Runs or wickets') plt.ylabel('Number') plt.title("Win type for team -" + team1 ) if(plot==True): if(savePic): plt.savefig(os.path.join(dir1,picFile),bbox_inches='tight') else: plt.show() plt.show() plt.gcf().clear() return ########################################################################################## # Designed and developed by <NAME> # Date : 26 Jan 2019 # Function: plotWinsbyTossDecision # This function plots the number of wins/losses for team based on its toss decision # ########################################################################################### def plotWinsbyTossDecision(matches,team1,tossDecision='bat', plot=True, savePic=False, dir1=".",picFile="pic1.png"): ''' Plot whether the wins for the team was by runs or wickets Description This function computes and plots number the number of wins by runs vs number of wins by wickets Usage plotWinsbyTossDecision(matches,team1,tossDecision='bat') Arguments matches The dataframe with all matches between 2 IPL teams team1 The team for which the plot has to be done plot If plot=TRUE then a plot is created otherwise a data frame is returned savePic If savePic = True then the plot is saved dir1 The directory where the plot is saved picFile The name of the savefile Value None Note Maintainer: <NAME> <EMAIL> Author(s) <NAME> References http://cricsheet.org/ https://gigadom.wordpress.com/ See Also teamBowlingScorecardOppnAllMatches teamBatsmenPartnershipOppnAllMatchesChart teamBowlingWicketKindOppositionAllMatches ''' df=matches.loc[(matches.tossDecision==tossDecision) & (matches.tossWinner==team1)] a=df[['date','winner']].groupby(['date','winner']).count().reset_index(inplace=False) b=a.groupby('winner').count().reset_index(inplace=False) b.columns = ['winner','number'] sns.barplot(x='winner',y='number',data=b) plt.xlabel('Winner ' + 'when toss decision was to :' + tossDecision) plt.ylabel('Number') plt.title('Wins vs losses for ' + team1 + ' when toss decision was to ' + tossDecision ) if(plot==True): if(savePic): plt.savefig(os.path.join(dir1,picFile),bbox_inches='tight') else: plt.show() plt.gcf().clear() return ########################################################################################## # Designed and developed by <NAME> # Date : 1 Feb 2019 # Function: getAllMatchesAllOpposition # This function gets all the matches between a IPL team and all opposition # ########################################################################################### def getAllMatchesAllOpposition(team1,dir=".",save=False,odir="."): ''' Get data on all matches against all opposition Description This function gets all the matches for a particular IPL team for against all other oppositions. It constructs a huge dataframe of all these matches. This can be saved by the user which can be used in function in which analyses are done for all matches and for all oppositions. Usage getAllMatchesAllOpposition(team,dir=".",save=FALSE) Arguments team The team for which all matches and all opposition has to be obtained e.g. India, Pakistan dir The directory in which the saved .RData files exist save Default=False. This parameter indicates whether the combined data frame needs to be saved or not. It is recommended to save this large dataframe as the creation of this data frame takes a several seconds depending on the number of matches Value match The combined data frame Note Maintainer: <NAME> <EMAIL> Author(s) <NAME> References http://cricsheet.org/ https://gigadom.wordpress.com/ See Also saveAllMatchesAllOppositionIPLT20 teamBatsmenPartnershiAllOppnAllMatches ''' # Create the 2 combinations t1 = '*' + team1 +'*.csv' path= os.path.join(dir,t1) files = glob.glob(path) print(len(files)) # Save as CSV only if there are matches between the 2 teams if len(files) !=0: df = pd.DataFrame() for file in files: df1 = pd.read_csv(file) df=pd.concat([df,df1]) if save==True: dest= team1 + '-allMatchesAllOpposition.csv' output=os.path.join(odir,dest) df.to_csv(output) else: return(df) ########################################################################################## # Designed and developed by <NAME> # Date : 1 Feb 2019 # Function: saveAllMatchesAllOppositionIPLT20 # This function saves all the matches between all IPL team and all opposition # ########################################################################################### def saveAllMatchesAllOppositionIPLT20(dir1,odir="."): ''' Saves matches against all IPL teams as dataframe and CSV for an IPL team Description This function saves all IPL matches agaist all opposition as a single dataframe in the current directory Usage saveAllMatchesAllOppositionIPLT20(dir) Arguments dir Directory to store saved matches Value None Note Maintainer: <NAME> <EMAIL> Author(s) <NAME> References http://cricsheet.org/ https://gigadom.wordpress.com/ See Also convertYaml2PandasDataframeT20 teamBattingScorecardMatch ''' teams = ["Chennai Super Kings","Deccan Chargers","Delhi Daredevils", "Kings XI Punjab", 'Kochi Tuskers Kerala',"Kolkata Knight Riders", "Mumbai Indians", "Pune Warriors","Rajasthan Royals", "Royal Challengers Bangalore","Sunrisers Hyderabad","Gujarat Lions", "Rising Pune Supergiants"] for team in teams: print("Team=",team) getAllMatchesAllOpposition(team,dir=dir1,save=True,odir=odir) time.sleep(2) #Sleep before next save ########################################################################################## # Designed and developed by <NAME> # Date : 1 Feb 2019 # Function: teamBatsmenPartnershiAllOppnAllMatches # This function computes the partnerships of an IPK team against all other IPL teams # ########################################################################################### def teamBatsmenPartnershiAllOppnAllMatches(matches,theTeam,report="summary",top=5): ''' Team batting partnership against a opposition all IPL matches Description This function computes the performance of batsmen against all bowlers of an oppositions in all matches. This function returns a dataframe Usage teamBatsmenPartnershiAllOppnAllMatches(matches,theTeam,report="summary") Arguments matches All the matches of the team against the oppositions theTeam The team for which the the batting partnerships are sought report If the report="summary" then the list of top batsmen with the highest partnerships is displayed. If report="detailed" then the detailed break up of partnership is returned as a dataframe top The number of players to be displayed from the top Value partnerships The data frame of the partnerships Note Maintainer: <NAME> <EMAIL> Author(s) <NAME> References http://cricsheet.org/ https://gigadom.wordpress.com/ See Also teamBatsmenVsBowlersOppnAllMatchesPlot teamBatsmenPartnershipOppnAllMatchesChart ''' df1 = matches[matches.team == theTeam] df2 = df1[['batsman','non_striker','runs']] # Compute partnerships df3=df2.groupby(['batsman','non_striker']).sum().reset_index(inplace=False) df3.columns = ['batsman','non_striker','partnershipRuns'] # Compute total partnerships df4 = df3.groupby('batsman').sum().reset_index(inplace=False).sort_values('partnershipRuns',ascending=False) df4.columns = ['batsman','totalPartnershipRuns'] # Select top 5 df5 = df4.head(top) df6= pd.merge(df5,df3,on='batsman') if report == 'summary': return(df5) elif report == 'detailed': return(df6) else: print("Invalid option") ########################################################################################## # Designed and developed by <NAME> # Date : 1 Feb 2019 # Function: teamBatsmenPartnershipAllOppnAllMatchesChart # This function computes and plots the partnerships of an IPK team against all other IPL teams # ########################################################################################### def teamBatsmenPartnershipAllOppnAllMatchesChart(matches,main,plot=True,top=5,partnershipRuns=20, savePic=False, dir1=".",picFile="pic1.png"): ''' Plots team batting partnership all matches all oppositions Description This function plots the batting partnership of a team againt all oppositions in all matches This function also returns a dataframe with the batting partnerships Usage teamBatsmenPartnershipAllOppnAllMatchesChart(matches,theTeam,main,plot=True,top=5,partnershipRuns=20) Arguments matches All the matches of the team against all oppositions theTeam The team for which the the batting partnerships are sought main The main team for which the the batting partnerships are sought plot Whether the partnerships have top be rendered as a plot. If plot=FALSE the data frame is returned top The number of players from the top to be included in chart partnershipRuns The minimum number of partnership runs to include for the chart savePic If savePic = True then the plot is saved dir1 The directory where the plot is saved picFile The name of the savefile Value None or partnerships Note Maintainer: <NAME> <EMAIL> Author(s) <NAME> References http://cricsheet.org/ https://gigadom.wordpress.com/ ''' df1 = matches[matches.team == main] df2 = df1[['batsman','non_striker','runs']] # Compute partnerships df3=df2.groupby(['batsman','non_striker']).sum().reset_index(inplace=False) df3.columns = ['batsman','non_striker','partnershipRuns'] # Compute total partnerships df4 = df3.groupby('batsman').sum().reset_index(inplace=False).sort_values('partnershipRuns',ascending=False) df4.columns = ['batsman','totalPartnershipRuns'] # Select top 5 df5 = df4.head(top) df6= pd.merge(df5,df3,on='batsman') df7 = df6[['batsman','non_striker','partnershipRuns']] # Remove rows where partnershipRuns < partnershipRuns as there are too many df8 = df7[df7['partnershipRuns'] > partnershipRuns] df9=df8.groupby(['batsman','non_striker'])['partnershipRuns'].sum().unstack(fill_value=0) # Note: Can also use the below code -************* #df8=df7.pivot(columns='non_striker',index='batsman').fillna(0) if plot == True: df9.plot(kind='bar',stacked=True,legend=False,fontsize=8) plt.legend(loc='center left', bbox_to_anchor=(1.0, 0.5),fontsize=8) plt.title('Batting partnerships of' + main + 'against all teams') plt.xlabel('Batsman') plt.ylabel('Partnership runs') if(savePic): plt.savefig(os.path.join(dir1,picFile),bbox_inches='tight') else: plt.show() plt.gcf().clear() else: return(df7) ########################################################################################## # Designed and developed by <NAME> # Date : 1 Feb 2019 # Function: teamBatsmenVsBowlersAllOppnAllMatches # This function computes and plots the performance of batsmen # of an IPL team against all other teams # ########################################################################################### def teamBatsmenVsBowlersAllOppnAllMatches(matches,main,plot=True,top=5,runsScored=20, savePic=False, dir1=".",picFile="pic1.png"): ''' Report of team batsmen vs bowlers in all matches all oppositions Description This function computes the performance of batsmen against all bowlers of all oppositions in all matches Usage teamBatsmenVsBowlersAllOppnAllMatches(matches,main,plot=True,top=5,runsScored=20) Arguments matches All the matches of the team against all oppositions main The team for which the the batting partnerships are sought plot Whether a plot is required or not top The number of top batsmen to be included runsScored The total runs scoed by batsmen savePic If savePic = True then the plot is saved dir1 The directory where the plot is saved picFile The name of the savefile Value The data frame of the batsman and the runs against bowlers Note Maintainer: <NAME> <EMAIL> Author(s) <NAME> References http://cricsheet.org/ https://gigadom.wordpress.com/ ''' df1 = matches[matches.team == main] df2 = df1[['batsman','bowler','runs']] # Runs scored by bowler df3=df2.groupby(['batsman','bowler']).sum().reset_index(inplace=False) df3.columns = ['batsman','bowler','runsScored'] print(df3.shape) # Need to pick the 'top' number of bowlers df4 = df3.groupby('batsman').sum().reset_index(inplace=False).sort_values('runsScored',ascending=False) print(df4.shape) df4.columns = ['batsman','totalRunsScored'] df5 = df4.head(top) df6= pd.merge(df5,df3,on='batsman') df7 = df6[['batsman','bowler','runsScored']] # Remove rows where runsScored < runsScored as there are too many df8 = df7[df7['runsScored'] >runsScored] df9=df8.groupby(['batsman','bowler'])['runsScored'].sum().unstack().fillna(0) # Note: Can also use the below code -************* #df8=df7.pivot(columns='bowler',index='batsman').fillna(0) if plot == True: ax=df9.plot(kind='bar',stacked=False,legend=False,fontsize=8) plt.legend(loc='center left', bbox_to_anchor=(1.0, 0.5),fontsize=8) #ax.legend(fontsize=25) plt.title('Runs by ' + main + ' against all T20 bowlers') plt.xlabel('Batsman') plt.ylabel('Runs scored') if(savePic): plt.savefig(os.path.join(dir1,picFile),bbox_inches='tight') else: plt.show() plt.gcf().clear() else: return(df7) ########################################################################################## # Designed and developed by <NAME> # Date : 1 Feb 2019 # Function: teamBattingScorecardAllOppnAllMatches # This function computes and batting scorecard of an IPL team against all other # IPL teams # ########################################################################################### def teamBattingScorecardAllOppnAllMatches(matches,main): ''' Team batting scorecard against all oppositions in all matches Description This function omputes and returns the batting scorecard of a team in all matches against all oppositions. The data frame has the ball played, 4's,6's and runs scored by batsman Usage teamBattingScorecardAllOppnAllMatches(matches,theTeam) Arguments matches All matches of the team in all matches with all oppositions main The team for which the the batting partnerships are sought Value details The data frame of the scorecard of the team in all matches against all oppositions Note Maintainer: <NAME> <EMAIL> Author(s) <NAME> References http://cricsheet.org/ https://gigadom.wordpress.com/ ''' team=matches.loc[matches.team== main] a1= getRuns(team) b1= getFours(team) c1= getSixes(team) # Merge columns d1=pd.merge(a1, b1, how='outer', on='batsman') e=pd.merge(d1,c1,how='outer', on='batsman') e=e.fillna(0) e['4s']=e['4s'].astype(int) e['6s']=e['6s'].astype(int) e['SR']=(e['runs']/e['balls']) *100 scorecard = e[['batsman','runs','balls','4s','6s','SR']].sort_values('runs',ascending=False) return(scorecard) ########################################################################################## # Designed and developed by <NAME> # Date : 1 Feb 2019 # Function: teamBowlingScorecardAllOppnAllMatches # This function computes and bowling scorecard of an IPL team against all other # IPL teams # ########################################################################################### def teamBowlingScorecardAllOppnAllMatches(matches,main): ''' Team bowling scorecard all opposition all matches Description This function computes returns the bowling dataframe of bowlers deliveries, maidens, overs, wickets against all oppositions in all matches Usage teamBowlingScorecardAllOppnAllMatches(matches,theTeam) Arguments matches The matches of the team against all oppositions and all matches theTeam Team for which bowling performance is required Value l A data frame with the bowling performance in alll matches against all oppositions Note Maintainer: <NAME> <EMAIL> Author(s) <NAME> References http://cricsheet.org/ https://gigadom.wordpress.com/ ''' team=matches.loc[matches.team== main] # Compute overs bowled a1= getOvers(team).reset_index(inplace=False) # Compute runs conceded b1= getRunsConceded(team).reset_index(inplace=False) # Compute maidens c1= getMaidens(team).reset_index(inplace=False) # Compute wickets d1= getWickets(team).reset_index(inplace=False) e1=pd.merge(a1, b1, how='outer', on='bowler') f1= pd.merge(e1,c1,how='outer', on='bowler') g1= pd.merge(f1,d1,how='outer', on='bowler') g1 = g1.fillna(0) # Compute economy rate g1['econrate'] = g1['runs']/g1['overs'] g1.columns=['bowler','overs','runs','maidens','wicket','econrate'] g1.maidens = g1.maidens.astype(int) g1.wicket = g1.wicket.astype(int) g2 = g1.sort_values('wicket',ascending=False) return(g2) ########################################################################################## # Designed and developed by <NAME> # Date : 1 Feb 2019 # Function: teamBowlingWicketKindAllOppnAllMatches # This function computes and plots the wicket kind of an IPL team against all other # IPL teams # ########################################################################################### def teamBowlingWicketKindAllOppnAllMatches(matches,main,plot=True,top=5,wickets=2,savePic=False, dir1=".",picFile="pic1.png"): df1=matches.loc[matches.team== main] df2= df1[['bowler','kind','player_out']] # Find all rows where there was a wicket df2=df2[df2.player_out != '0'] # Number of wickets taken by bowler df3=df2.groupby(['bowler','kind']).count().reset_index(inplace=False) df3.columns = ['bowler','kind','wickets'] # Need to pick the 'top' number of bowlers by wickets df4 = df3.groupby('bowler').sum().reset_index(inplace=False).sort_values('wickets',ascending=False) df4.columns = ['bowler','totalWickets'] df5 = df4.head(top) df6= pd.merge(df5,df3,on='bowler') df7 = df6[['bowler','kind','wickets']] # Remove rows where runsScored < runsScored as there are too many df8 = df7[df7['wickets'] >wickets] df9=df8.groupby(['bowler','kind'])['wickets'].sum().unstack().fillna(0) # Note: Can also use the below code -************* #df9=df8.pivot(columns='bowler',index='batsman').fillna(0) if plot == True: ax=df9.plot(kind='bar',stacked=False,legend=False,fontsize=8) plt.legend(loc='center left', bbox_to_anchor=(1.0, 0.5),fontsize=8) plt.title('Wicker kind by bowlers of ' + main + ' against all T20 teams') plt.xlabel('Bowler') plt.ylabel('Total wickets') if(savePic): plt.savefig(os.path.join(dir1,picFile),bbox_inches='tight') else: plt.show() plt.gcf().clear() else: return(df7) ########################################################################################## # Designed and developed by <NAME> # Date : 1 Feb 2019 # Function: teamBowlersVsBatsmenAllOppnAllMatches # This function computes and plots the performance of bowlers of an IPL team against all other # IPL teams # ########################################################################################### def teamBowlersVsBatsmenAllOppnAllMatches(matches,main,plot=True,top=5,runsConceded=10,savePic=False, dir1=".",picFile="pic1.png"): ''' Compute team bowlers vs batsmen all opposition all matches Description This function computes performance of bowlers of a team against all opposition in all matches Usage teamBowlersVsBatsmenAllOppnAllMatches(matches,,main,plot=True,top=5,runsConceded=10) Arguments matches the data frame of all matches between a team and aall opposition and all obtained with the call getAllMatchesAllOpposition() main The team against which the performance is requires plot Whether a plot should be displayed or a dataframe to be returned top The top number of bowlers in result runsConded The number of runs conceded by bowlers savePic If savePic = True then the plot is saved dir1 The directory where the plot is saved picFile The name of the savefile Value dataframe The dataframe with all performances Note Maintainer: <NAME> <EMAIL> Author(s) <NAME> References http://cricsheet.org/ https://gigadom.wordpress.com/ ''' df1=matches.loc[matches.team== main] df2= df1[['bowler','batsman','runs']] # Number of wickets taken by bowler df3=df2.groupby(['bowler','batsman']).sum().reset_index(inplace=False) df3.columns = ['bowler','batsman','runsConceded'] # Need to pick the 'top' number of bowlers by wickets df4 = df3.groupby('bowler').sum().reset_index(inplace=False).sort_values('runsConceded',ascending=False) df4.columns = ['bowler','totalRunsConceded'] df5 = df4.head(top) df6= pd.merge(df5,df3,on='bowler') df7 = df6[['bowler','batsman','runsConceded']] # Remove rows where runsScored < runsScored as there are too many df8 = df7[df7['runsConceded'] >runsConceded] df9=df8.groupby(['bowler','batsman'])['runsConceded'].sum().unstack().fillna(0) # Note: Can also use the below code -************* #df9=df8.pivot(columns='bowler',index='batsman').fillna(0) if plot == True: ax=df9.plot(kind='bar',stacked=False,legend=False,fontsize=8) plt.legend(loc='center left', bbox_to_anchor=(1.0, 0.5),fontsize=8) plt.title('Performance of' + main + 'Bowlers vs Batsmen ' ) plt.xlabel('Bowler') plt.ylabel('Total runs') if(savePic): plt.savefig(os.path.join(dir1,picFile),bbox_inches='tight') else: plt.show() plt.gcf().clear() else: return(df7) ########################################################################################## # Designed and developed by <NAME> # Date : 1 Feb 2019 # Function: plotWinLossByTeamAllOpposition # This function computes and plots twins and lossed of IPL team against all other # IPL teams # ########################################################################################### def plotWinLossByTeamAllOpposition(matches, team1, plot='summary',savePic=False, dir1=".",picFile="pic1.png"): ''' Plot wins for each team Description This function computes and plots number of wins for each team in all their encounters. The plot includes the number of wins byteam1 each team and the matches with no result Usage plotWinLossByTeamAllOpposition(matches, main, plot='summary') Arguments matches The dataframe with all matches between 2 IPL teams main The 1st team plot Summary or detailed savePic If savePic = True then the plot is saved dir1 The directory where the plot is saved picFile The name of the savefile Value None Note Maintainer: <NAME> <EMAIL> Author(s) <NAME> References http://cricsheet.org/ https://gigadom.wordpress.com/ ''' a=matches[['date','winner']].groupby(['date','winner']).count().reset_index(inplace=False) # Plot the overall performance as wins and losses if plot=="summary": m= a.loc[a.winner==team1]['winner'].count() n= a.loc[a.winner!=team1]['winner'].count() df=pd.DataFrame({'outcome':['win','loss'],'number':[m,n]}) sns.barplot(x='outcome',y='number',data=df) plt.xlabel('Outcome') plt.ylabel('Number') plt.title("Wins vs losses(summary) of " + team1 + ' against all Opposition' ) if(savePic): plt.savefig(os.path.join(dir1,picFile),bbox_inches='tight') else: plt.show() plt.gcf().clear() elif plot=="detailed" : #Plot breakup by team b=a.groupby('winner').count().reset_index(inplace=False) # If 'winner' is '0' then the match is a tie.Set as 'tie' b.loc[b.winner=='0','winner']='Tie' b.columns = ['winner','number'] ax=sns.barplot(x='winner',y='number',data=b) plt.xlabel('Winner') plt.ylabel('Number') plt.title("Wins vs losses(detailed) of " + team1 + ' against all Opposition' ) ax.set_xticklabels(ax.get_xticklabels(),rotation=60,fontsize=6) if(savePic): plt.savefig(os.path.join(dir1,picFile),bbox_inches='tight') else: plt.show() plt.gcf().clear() else: print("Unknown option") ########################################################################################## # Designed and developed by <NAME> # Date : 1 Feb 2019 # Function: plotWinsByRunOrWicketsAllOpposition # This function computes and plots twins and lossed of IPL team against all other # IPL teams # ########################################################################################### def plotWinsByRunOrWicketsAllOpposition(matches,team1,plot=True, savePic=False, dir1=".",picFile="pic1.png"): ''' Plot whether the wins for the team was by runs or wickets Description This function computes and plots number the number of wins by runs vs number of wins by wickets against all Opposition Usage plotWinsByRunOrWicketsAllOpposition(matches,team1) Arguments matches The dataframe with all matches between an IPL team and all IPL teams team1 The team for which the plot has to be done savePic If savePic = True then the plot is saved dir1 The directory where the plot is saved picFile The name of the savefile Value None Note Maintainer: <NAME> <EMAIL> Author(s) <NAME> References http://cricsheet.org/ https://gigadom.wordpress.com/ ''' # Get the number of matches won df= matches.loc[matches.winner == team1] a=df[['date','winType']].groupby(['date','winType']).count().reset_index(inplace=False) b=a.groupby('winType').count().reset_index(inplace=False) b.columns = ['winType','number'] sns.barplot(x='winType',y='number',data=b) plt.xlabel('Win Type - Runs or wickets') plt.ylabel('Number') plt.title("Win type for team -" + team1 + ' against all opposition' ) if(savePic): plt.savefig(os.path.join(dir1,picFile),bbox_inches='tight') else: plt.show() plt.gcf().clear() ########################################################################################## # Designed and developed by <NAME> # Date : 1 Feb 2019 # Function: plotWinsbyTossDecisionAllOpposition # This function computes and plots the win type of IPL team against all # IPL teams # ########################################################################################### def plotWinsbyTossDecisionAllOpposition(matches,team1,tossDecision='bat',plot="summary", savePic=False, dir1=".",picFile="pic1.png"): ''' Plot whether the wins for the team was by runs or wickets Description This function computes and plots number the number of wins by runs vs number of wins by wickets Usage plotWinsbyTossDecisionAllOpposition(matches,team1,tossDecision='bat',plot="summary") Arguments matches The dataframe with all matches between 2 IPL teams team1 The team for which the plot has to be done plot 'summary' or 'detailed' savePic If savePic = True then the plot is saved dir1 The directory where the plot is saved picFile The name of the savefile Value None Note Maintainer: <NAME> <EMAIL> Author(s) <NAME> References http://cricsheet.org/ https://gigadom.wordpress.com/ See Also teamBowlingScorecardOppnAllMatches teamBatsmenPartnershipOppnAllMatchesChart teamBowlingWicketKindOppositionAllMatches ''' df=matches.loc[(matches.tossDecision==tossDecision) & (matches.tossWinner==team1)] a=df[['date','winner']].groupby(['date','winner']).count().reset_index(inplace=False) if plot=="summary": m= a.loc[a.winner==team1]['winner'].count() n= a.loc[a.winner!=team1]['winner'].count() df=pd.DataFrame({'outcome':['win','loss'],'number':[m,n]}) sns.barplot(x='outcome',y='number',data=df) plt.xlabel('Outcome') plt.ylabel('Number') plt.title("Wins vs losses(summary) against all opposition when toss decision was to " + tossDecision + ' for ' + team1 ) if(savePic): plt.savefig(os.path.join(dir1,picFile),bbox_inches='tight') else: plt.show() plt.gcf().clear() elif plot=="detailed" : #Plot breakup by team b=a.groupby('winner').count().reset_index(inplace=False) # If 'winner' is '0' then the match is a tie.Set as 'tie' b.loc[b.winner=='0','winner']='Tie' b.columns = ['winner','number'] ax=sns.barplot(x='winner',y='number',data=b) plt.xlabel(team1 + ' chose to ' + tossDecision) plt.ylabel('Number') plt.title('Wins vs losses(detailed) against all opposition for ' + team1 + ' when toss decision was to ' + tossDecision ) ax.set_xticklabels(ax.get_xticklabels(),rotation=60, fontsize=6) if(savePic): plt.savefig(os.path.join(dir1,picFile),bbox_inches='tight') else: plt.show() plt.show() plt.gcf().clear() return ########################################################################################## # Designed and developed by <NAME> # Date : 24 Feb 2019 # Function: Details # This function computes the batting details of a team # IPL teams # ########################################################################################### def getTeamBattingDetails(team,dir=".",save=False,odir="."): ''' Description This function gets the batting details of a team in all matchs against all oppositions. This gets all the details of the batsmen balls faced,4s,6s,strikerate, runs, venue etc. This function is then used for analyses of batsmen. This function calls teamBattingPerfDetails() Usage getTeamBattingDetails(team,dir=".",save=FALSE) Arguments team The team for which batting details is required dir The source directory of RData files obtained with convertAllYaml2RDataframes() save Whether the data frame needs to be saved as RData or not. It is recommended to set save=TRUE as the data can be used for a lot of analyses of batsmen Value battingDetails The dataframe with the batting details Note Maintainer: <NAME> <EMAIL> Author(s) <NAME> References http://cricsheet.org/ https://gigadom.in/ Examples m=getTeamBattingDetails(team1,dir1,save=True) ''' # Get all matches played by team t1 = '*' + team +'*.csv' path= os.path.join(dir,t1) files = glob.glob(path) # Create an empty dataframe details = pd.DataFrame() # Loop through all matches played by team for file in files: match=pd.read_csv(file) scorecard,extras=teamBattingScorecardMatch(match,team) if scorecard.empty: continue # Filter out only the rows played by team match1 = match.loc[match.team==team] # Check if there were wickets, you will 'bowled', 'caught' etc if len(match1 !=0): if isinstance(match1.kind.iloc[0],str): b=match1.loc[match1.kind != '0'] # Get the details of the wicket wkts= b[['batsman','bowler','fielders','kind','player_out']] #date','team2','winner','result','venue']] df=pd.merge(scorecard,wkts,how='outer',on='batsman') # Fill NA as not outs df =df.fillna('notOut') # Set other info if len(b) != 0: df['date']= b['date'].iloc[0] df['team2']= b['team2'].iloc[0] df['winner']= b['winner'].iloc[0] df['result']= b['result'].iloc[0] df['venue']= b['venue'].iloc[0] details= pd.concat([details,df]) details = details.sort_values(['batsman','date']) if save==True: fileName = "./" + team + "-BattingDetails.csv" output=os.path.join(odir,fileName) details.to_csv(output) return(details) ########################################################################################## # Designed and developed by <NAME> # Date : 24 Feb 2019 # Function: getBatsmanDetails # This function gets the batsman details # IPL teams # ########################################################################################### def getBatsmanDetails(team, name,dir="."): ''' Get batting details of batsman from match Description This function gets the batting details of a batsman given the match data as a RData file Usage getBatsmanDetails(team,name,dir=".") Arguments team The team of the batsman e.g. India name Name of batsman dir The directory where the source file exists Value None Note Maintainer: <NAME> <EMAIL> Author(s) <NAME> References http://cricsheet.org/ https://gigadom.in/ See Also batsmanRunsPredict batsmanMovingAverage bowlerWicketsVenue bowlerMeanRunsConceded Examples ## Not run: name="<NAME>" team='Chennai Super Kings' #df=getBatsmanDetails(team, name,dir=".") ''' path = dir + '/' + team + "-BattingDetails.csv" battingDetails= pd.read_csv(path) batsmanDetails = battingDetails.loc[battingDetails['batsman'].str.contains(name)] return(batsmanDetails) ########################################################################################## # Designed and developed by <NAME> # Date : 24 Feb 2019 # Function: getBatsmanDetails # This function plots runs vs deliveries for the batsman # ########################################################################################### def batsmanRunsVsDeliveries(df,name= "A Late Cut",plot=True, savePic=False, dir1=".",picFile="pic1.png"): ''' Runs versus deliveries faced Description This function plots the runs scored and the deliveries required. A regression smoothing function is used to fit the points Usage batsmanRunsVsDeliveries(df, name= "A Late Cut") Arguments df Data frame name Name of batsman plot If plot=TRUE then a plot is created otherwise a data frame is returned savePic If savePic = True then the plot is saved dir1 The directory where the plot is saved picFile The name of the savefile Value None Note Maintainer: <NAME> <EMAIL> Author(s) <NAME> References http://cricsheet.org/ https://gigadom.wordpress.com/ See Also batsmanFoursSixes batsmanRunsVsDeliveries batsmanRunsVsStrikeRate Examples name="SK Raina" team='Chennai Super Kings' df=getBatsmanDetails(team, name,dir=".") batsmanRunsVsDeliveries(df, name) ''' rcParams['figure.figsize'] = 8, 5 plt.scatter(df.balls,df.runs) sns.lmplot(x='balls',y='runs', data=df) plt.xlabel("Balls faced",fontsize=8) plt.ylabel('Runs',fontsize=8) atitle=name + "- Runs vs balls faced" plt.title(atitle,fontsize=8) if(plot==True): if(savePic): plt.savefig(os.path.join(dir1,picFile),bbox_inches='tight') else: plt.show() plt.gcf().clear() return ########################################################################################## # Designed and developed by <NAME> # Date : 24 Feb 2019 # Function: batsmanFoursSixes # This function gets the batsman fours and sixes for batsman # # ########################################################################################### def batsmanFoursSixes(df,name= "A Leg Glance", plot=True, savePic=False, dir1=".",picFile="pic1.png"): ''' Description This function computes and plots the total runs, fours and sixes of the batsman Usage batsmanFoursSixes(df,name= "A Leg Glance") Arguments df Data frame name Name of batsman If plot=TRUE then a plot is created otherwise a data frame is returned savePic If savePic = True then the plot is saved dir1 The directory where the plot is saved picFile The name of the savefile Value None Note Maintainer: <NAME> <EMAIL> Author(s) <NAME> References http://cricsheet.org/ https://gigadom.wordpress.com/ See Also batsmanDismissals batsmanRunsVsDeliveries batsmanRunsVsStrikeRate batsmanRunsVsStrikeRate batsmanRunsPredict Examples name="SK Raina" team='Chennai Super Kings' df=getBatsmanDetails(team, name,dir=".") batsmanFoursSixes(df,"SK Raina") ''' # Compute runs from fours and sixes rcParams['figure.figsize'] = 8, 5 df['RunsFromFours']=df['4s']*4 df['RunsFromSixes']=df['6s']*6 df1 = df[['balls','runs','RunsFromFours','RunsFromSixes']] # Total runs sns.scatterplot('balls','runs',data=df1) # Fit a linear regression line balls=df1.balls.reshape(-1,1) linreg = LinearRegression().fit(balls, df1.runs) x=np.linspace(0,120,10) #Plot regression line balls vs runs plt.plot(x, linreg.coef_ * x + linreg.intercept_, color='blue',label="Total runs") # Runs from fours sns.scatterplot('balls','RunsFromFours',data=df1) #Plot regression line balls vs Runs from fours linreg = LinearRegression().fit(balls, df1.RunsFromFours) plt.plot(x, linreg.coef_ * x + linreg.intercept_, color='red',label="Runs from fours") # Runs from sixes sns.scatterplot('balls','RunsFromSixes',data=df1) #Plot regression line balls vs Runs from sixes linreg = LinearRegression().fit(balls, df1.RunsFromSixes) plt.plot(x, linreg.coef_ * x + linreg.intercept_, color='green',label="Runs from sixes") plt.xlabel("Balls faced",fontsize=8) plt.ylabel('Runs',fontsize=8) atitle=name + "- Total runs, fours and sixes" plt.title(atitle,fontsize=8) plt.legend(loc="upper left") if(plot==True): if(savePic): plt.savefig(os.path.join(dir1,picFile),bbox_inches='tight') else: plt.show() plt.gcf().clear() return ########################################################################################## # Designed and developed by <NAME> # Date : 24 Feb 2019 # Function: batsmanDismissals # This function plots the batsman dismissals # ########################################################################################### def batsmanDismissals(df,name="A Leg Glance",plot=True, savePic=False, dir1=".",picFile="pic1.png"): ''' Description This function computes and plots the type of dismissals of the the batsman Usage batsmanDismissals(df,name="A Leg Glance") Arguments df Data frame name Name of batsman plot If plot=TRUE then a plot is created otherwise a data frame is returned savePic If savePic = True then the plot is saved dir1 The directory where the plot is saved picFile The name of the savefile Value None Note Maintainer: <NAME> <EMAIL> Author(s) <NAME> References http://cricsheet.org/ https://gigadom.wordpress.com/ See Also batsmanFoursSixes batsmanRunsVsDeliveries batsmanRunsVsStrikeRate Examples name="SK Raina" team='Chennai Super Kings' df=getBatsmanDetails(team, name,dir=".") batsmanDismissals(df,"SK Raina") ''' # Count dismissals rcParams['figure.figsize'] = 8, 5 df1 = df[['batsman','kind']] df2 = df1.groupby('kind').count().reset_index(inplace=False) df2.columns = ['dismissals','count'] plt.pie(df2['count'], labels=df2['dismissals'],autopct='%.1f%%') atitle= name + "-Dismissals" plt.title(atitle,fontsize=8) if(plot==True): if(savePic): plt.savefig(os.path.join(dir1,picFile),bbox_inches='tight') else: plt.show() plt.gcf().clear() return ########################################################################################## # Designed and developed by <NAME> # Date : 24 Feb 2019 # Function: batsmanRunsVsStrikeRate # This function plots the runs vs strike rate # # ########################################################################################### def batsmanRunsVsStrikeRate (df,name= "A Late Cut", plot=True, savePic=False, dir1=".",picFile="pic1.png"): ''' Description This function plots the runs scored by the batsman and the runs scored by the batsman. A loess line is fitted over the points Usage batsmanRunsVsStrikeRate(df, name= "A Late Cut") Arguments df Data frame name Name of batsman plot If plot=TRUE then a plot is created otherwise a data frame is returned savePic If savePic = True then the plot is saved dir1 The directory where the plot is saved picFile The name of the savefile Value None Note Maintainer: <NAME> <EMAIL> Author(s) <NAME> References http://cricsheet.org/ https://gigadom.wordpress.com/ https://github.com/tvganesh/yorkrData See Also batsmanDismissals batsmanRunsVsDeliveries batsmanRunsVsStrikeRate teamBatsmenPartnershipAllOppnAllMatches Examples name="SK Raina" team='Chennai Super Kings' df=getBatsmanDetails(team, name,dir=".") batsmanRunsVsStrikeRate(df,"SK Raina") ''' rcParams['figure.figsize'] = 8, 5 plt.scatter(df.runs,df.SR) sns.lmplot(x='runs',y='SR', data=df,order=2) plt.xlabel("Runs",fontsize=8) plt.ylabel('Strike Rate',fontsize=8) atitle=name + "- Runs vs Strike rate" plt.title(atitle,fontsize=8) if(plot==True): if(savePic): plt.savefig(os.path.join(dir1,picFile),bbox_inches='tight') else: plt.show() plt.gcf().clear() return ########################################################################################## # Designed and developed by <NAME> # Date : 24 Feb 2019 # Function: movingaverage # This computes the moving average # # ########################################################################################### def movingaverage(interval, window_size): window= np.ones(int(window_size))/float(window_size) return np.convolve(interval, window, 'same') ########################################################################################## # Designed and developed by <NAME> # Date : 24 Feb 2019 # Function: batsmanMovingAverage # This function plots the moving average of runs # # ########################################################################################### def batsmanMovingAverage(df, name, plot=True, savePic=False, dir1=".",picFile="pic1.png"): ''' Description This function plots the runs scored by the batsman over the career as a time series. A loess regression line is plotted on the moving average of the batsman the batsman Usage batsmanMovingAverage(df, name= "A Leg Glance") Arguments df Data frame name Name of batsman plot If plot=TRUE then a plot is created otherwise a data frame is returned savePic If savePic = True then the plot is saved dir1 The directory where the plot is saved picFile The name of the savefile Value None Note Maintainer: <NAME> <EMAIL> Author(s) <NAME> References http://cricsheet.org/ https://gigadom.wordpress.com/ See Also batsmanDismissals batsmanRunsVsDeliveries batsmanRunsVsStrikeRate teamBatsmenPartnershipAllOppnAllMatches Examples name="SK Raina" team='Chennai Super Kings' df=getBatsmanDetails(team, name,dir=".") batsmanMovingAverage(df,"SK Raina") ''' rcParams['figure.figsize'] = 8, 5 y_av = movingaverage(df.runs, 10) date= pd.to_datetime(df['date']) plt.plot(date, y_av,"b") plt.xlabel('Date',fontsize=8) plt.ylabel('Runs',fontsize=8) plt.xticks(rotation=90) atitle = name + "-Moving average of runs" plt.title(atitle,fontsize=8) if(plot==True): if(savePic): plt.savefig(os.path.join(dir1,picFile),bbox_inches='tight') else: plt.show() plt.gcf().clear() return ########################################################################################## # Designed and developed by <NAME> # Date : 24 Feb 2019 # Function: batsmanCumulativeAverageRuns # This functionplots the cumulative average runs # # ########################################################################################### def batsmanCumulativeAverageRuns(df,name="A Leg Glance",plot=True, savePic=False, dir1=".",picFile="pic1.png"): ''' Batsman's cumulative average runs Description This function computes and plots the cumulative average runs of a batsman Usage batsmanCumulativeAverageRuns(df,name= "A Leg Glance") Arguments df Data frame name Name of batsman plot If plot=TRUE then a plot is created otherwise a data frame is returned savePic If savePic = True then the plot is saved dir1 The directory where the plot is saved picFile The name of the savefile Value None Note Maintainer: <NAME> <EMAIL> Author(s) <NAME> References http://cricsheet.org/ https://gigadom.wordpress.com/ See Also batsmanCumulativeStrikeRate bowlerCumulativeAvgEconRate bowlerCumulativeAvgWickets batsmanRunsVsStrikeRate batsmanRunsPredict Examples name="SK Raina" team='Chennai Super Kings' df=getBatsmanDetails(team, name,dir=".") batsmanCumulativeAverageRuns(df,"SK Raina") ''' rcParams['figure.figsize'] = 8, 5 cumAvgRuns = df['runs'].cumsum()/pd.Series(np.arange(1, len( df['runs'])+1), df['runs'].index) plt.plot(cumAvgRuns) plt.xlabel('No of matches',fontsize=8) plt.ylabel('Cumulative Average Runs',fontsize=8) plt.xticks(rotation=90) atitle = name + "-Cumulative Average Runs vs matches" plt.title(atitle,fontsize=8) if(plot==True): if(savePic): plt.savefig(os.path.join(dir1,picFile),bbox_inches='tight') else: plt.show() plt.gcf().clear() return ########################################################################################## # Designed and developed by <NAME> # Date : 24 Feb 2019 # Function: batsmanCumulativeStrikeRate # This function plots the cumulative average Strike rate # # ########################################################################################### def batsmanCumulativeStrikeRate(df,name="A Leg Glance",plot=True, savePic=False, dir1=".",picFile="pic1.png"): ''' Description This function computes and plots the cumulative average strike rate of a batsman Usage batsmanCumulativeStrikeRate(df,name= "A Leg Glance") Arguments df Data frame name Name of batsman plot If plot=TRUE then a plot is created otherwise a data frame is returned savePic If savePic = True then the plot is saved dir1 The directory where the plot is saved picFile The name of the savefile Value None Note Maintainer: <NAME> <EMAIL> Author(s) <NAME> References http://cricsheet.org/ https://gigadom.wordpress.com/ https://github.com/tvganesh/yorkrData See Also batsmanCumulativeAverageRuns bowlerCumulativeAvgEconRate bowlerCumulativeAvgWickets batsmanRunsVsStrikeRate batsmanRunsPredict Examples name="<NAME>" team='Chennai Super Kings' df=getBatsmanDetails(team, name,dir=".") #batsmanCumulativeAverageRunsdf(df,name) ''' rcParams['figure.figsize'] = 8, 5 cumAvgRuns = df['SR'].cumsum()/pd.Series(np.arange(1, len( df['SR'])+1), df['SR'].index) plt.plot(cumAvgRuns) plt.xlabel('No of matches',fontsize=8) plt.ylabel('Cumulative Average Strike Rate',fontsize=8) plt.xticks(rotation=70) atitle = name + "-Cumulative Average Strike Rate vs matches" plt.title(atitle,fontsize=8) if(plot==True): if(savePic): plt.savefig(os.path.join(dir1,picFile),bbox_inches='tight') else: plt.show() plt.gcf().clear() return ########################################################################################## # Designed and developed by <NAME> # Date : 24 Feb 2019 # Function: batsmanRunsAgainstOpposition # This function plots the batsman's runs against opposition # # ########################################################################################### def batsmanRunsAgainstOpposition(df,name= "A Leg Glance",plot=True, savePic=False, dir1=".",picFile="pic1.png"): ''' Description This function computes and plots the mean runs scored by the batsman against different oppositions Usage batsmanRunsAgainstOpposition(df, name= "A Leg Glance") Arguments df Data frame name Name of batsman plot If plot=TRUE then a plot is created otherwise a data frame is returned savePic If savePic = True then the plot is saved dir1 The directory where the plot is saved picFile The name of the savefile Value None Note Maintainer: <NAME> <EMAIL> Author(s) <NAME> References http://cricsheet.org/ https://gigadom.wordpress.com/ https://github.com/tvganesh/yorkrData See Also batsmanFoursSixes batsmanRunsVsDeliveries batsmanRunsVsStrikeRate teamBatsmenPartnershipAllOppnAllMatches Examples name="<NAME>" team='Chennai Super Kings' df=getBatsmanDetails(team, name,dir=".") batsmanRunsAgainstOpposition(df,name) ''' rcParams['figure.figsize'] = 8, 5 df1 = df[['batsman', 'runs','team2']] df2=df1.groupby('team2').agg(['sum','mean','count']) df2.columns= ['_'.join(col).strip() for col in df2.columns.values] # Reset index df3=df2.reset_index(inplace=False) ax=sns.barplot(x='team2', y="runs_mean", data=df3) plt.xticks(rotation="vertical",fontsize=8) plt.xlabel('Opposition',fontsize=8) plt.ylabel('Mean Runs',fontsize=8) atitle=name + "-Mean Runs against opposition" plt.title(atitle,fontsize=8) if(plot==True): if(savePic): plt.savefig(os.path.join(dir1,picFile),bbox_inches='tight') else: plt.show() plt.gcf().clear() return ########################################################################################## # Designed and developed by <NAME> # Date : 24 Feb 2019 # Function: batsmanRunsVenue # This function plos the batsman's runs at venues # # ########################################################################################### def batsmanRunsVenue(df,name= "A Leg Glance",plot=True, savePic=False, dir1=".",picFile="pic1.png"): ''' Description This function computes and plots the mean runs scored by the batsman at different venues of the world Usage batsmanRunsVenue(df, name= "A Leg Glance") Arguments df Data frame name Name of batsman plot If plot=TRUE then a plot is created otherwise a data frame is returned savePic If savePic = True then the plot is saved dir1 The directory where the plot is saved picFile Value None Note Maintainer: <NAME> <EMAIL> Author(s) <NAME> References http://cricsheet.org/ https://gigadom.wordpress.com/ https://github.com/tvganesh/yorkrData See Also batsmanFoursSixes batsmanRunsVsDeliveries batsmanRunsVsStrikeRate teamBatsmenPartnershipAllOppnAllMatches batsmanRunsAgainstOpposition Examples name="SK Raina" team='Chennai Super Kings' df=getBatsmanDetails(team, name,dir=".") #batsmanRunsVenue(df,name) ''' rcParams['figure.figsize'] = 8, 5 df1 = df[['batsman', 'runs','venue']] df2=df1.groupby('venue').agg(['sum','mean','count']) df2.columns= ['_'.join(col).strip() for col in df2.columns.values] # Reset index df3=df2.reset_index(inplace=False) ax=sns.barplot(x='venue', y="runs_mean", data=df3) plt.xticks(rotation="vertical",fontsize=8) plt.xlabel('Venue',fontsize=8) plt.ylabel('Mean Runs',fontsize=8) atitle=name + "-Mean Runs at venues" plt.title(atitle,fontsize=8) if(plot==True): if(savePic): plt.savefig(os.path.join(dir1,picFile),bbox_inches='tight') else: plt.show() plt.gcf().clear() return ########################################################################################## # Designed and developed by <NAME> # Date : 24 Feb 2019 # Function: teamBowlingPerDetails # This function gets the bowling performances # # ########################################################################################### def teamBowlingPerDetails(team): # Compute overs bowled a1= getOvers(team).reset_index(inplace=False) # Compute runs conceded b1= getRunsConceded(team).reset_index(inplace=False) # Compute maidens c1= getMaidens(team).reset_index(inplace=False) # Compute wickets d1= getWickets(team).reset_index(inplace=False) e1=pd.merge(a1, b1, how='outer', on='bowler') f1= pd.merge(e1,c1,how='outer', on='bowler') g1= pd.merge(f1,d1,how='outer', on='bowler') g1 = g1.fillna(0) # Compute economy rate g1['econrate'] = g1['runs']/g1['overs'] g1.columns=['bowler','overs','runs','maidens','wicket','econrate'] g1.maidens = g1.maidens.astype(int) g1.wicket = g1.wicket.astype(int) return(g1) ########################################################################################## # Designed and developed by <NAME> # Date : 24 Feb 2019 # Function: getTeamBowlingDetails # This function gets the team bowling details # # ########################################################################################### def getTeamBowlingDetails (team,dir=".",save=False,odir="."): ''' Description This function gets the bowling details of a team in all matchs against all oppositions. This gets all the details of the bowlers for e.g deliveries, maidens, runs, wickets, venue, date, winner ec Usage getTeamBowlingDetails(team,dir=".",save=FALSE) Arguments team The team for which detailed bowling info is required dir The source directory of RData files obtained with convertAllYaml2RDataframes() save Whether the data frame needs to be saved as RData or not. It is recommended to set save=TRUE as the data can be used for a lot of analyses of batsmen Value bowlingDetails The dataframe with the bowling details Note Maintainer: <NAME> <EMAIL> Author(s) <NAME> References http://cricsheet.org/ https://gigadom.wordpress.com/ https://github.com/tvganesh/yorkrData See Also getBatsmanDetails getBowlerWicketDetails batsmanDismissals getTeamBattingDetails Examples dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data" eam1='Delhi Daredevils' m=getTeamBowlingDetails(team1,dir1,save=True) ''' # Get all matches played by team t1 = '*' + team +'*.csv' path= os.path.join(dir,t1) files = glob.glob(path) # Create an empty dataframe details = pd.DataFrame() # Loop through all matches played by team for file in files: match=pd.read_csv(file) if(match.size != 0): team1=match.loc[match.team != team] else: continue if len(team1) !=0: scorecard=teamBowlingPerDetails(team1) scorecard['date']= match['date'].iloc[0] scorecard['team2']= match['team2'].iloc[0] scorecard['winner']= match['winner'].iloc[0] scorecard['result']= match['result'].iloc[0] scorecard['venue']= match['venue'].iloc[0] details=
pd.concat([details,scorecard])
pandas.concat
import numpy as np import numpy.matlib import pandas as pd import pvlib as pv from scipy.interpolate import interp1d DOY_LEAPDAY = 60 def _addHotwater(simData): """ Calculate hot water demand profile in W All load values are modified by a daily profile. The profile values have to be scaled by each agents COC value. Args: simData (pandas data frame): Simulation time and data Returns: pandas data frame: simData complemented by hot water day profile factor """ # all agents are using PHH profile, # since there is no statistic to business hot water demand available HWP = pd.read_hdf("./BoundaryConditions/Thermal/HotWaterProfile/" "HotWaterDayProfile.h5", key='PHH') simData.insert(simData.shape[1], ('HWPfactor', ''), HWP.loc[simData[('time', '')].dt.hour, 'fProportion'].values) return simData def _addSLPdata(simData): """ Add standard load profile for different agents to time data frame. The SLP is calculated for the time frame beginning at startDate and ending at endDate (inclusive). For each day a curve with 15min steps is calculated, based on the SLP data (H0 for PHH, G0/L0 for business) from BDEW. The SLP differes between Summer, Winter, intermediate periods and Weekdays, Weekend, Holydays as well. The PHH SLP is additionally modyfied according to BDEW by a dynamic sampling profile. Args: simData (pandas data frame): Simulation time information (is created by getSimTime method) Returns: pandas data frame: Data frame with sim time and SLP data """ # prepare columns cIdx = [('SLP', 'PHH'), ('SLP', 'BSLa'), ('SLP', 'BSLc')] newData = pd.DataFrame(index=np.arange(simData.shape[0]), columns=cIdx) # load SLP base data PHH = pd.read_hdf("./BoundaryConditions/Electrical/SLP/PHH.h5", key='PHH') G0 = pd.read_hdf("./BoundaryConditions/Electrical/SLP/G0.h5", key='G0') L0 = pd.read_hdf("./BoundaryConditions/Electrical/SLP/L0.h5", key='L0') # add SLP data # Winter mask = simData.winter & (simData.weekDaySLP < 5) nDays = int(mask.sum() / 96) newData.loc[mask, [('SLP', 'PHH'), ('SLP', 'BSLc'), ('SLP', 'BSLa')]] = np.tile( np.array([PHH.Winter.WorkDay.values, G0.Winter.WorkDay.values, L0.Winter.WorkDay.values]), nDays).T mask = simData.winter & (simData.weekDaySLP == 5) nDays = int(mask.sum() / 96) newData.loc[mask, [('SLP', 'PHH'), ('SLP', 'BSLc'), ('SLP', 'BSLa')]] = np.tile( np.array([PHH.Winter.Saturday.values, G0.Winter.Saturday.values, L0.Winter.Saturday.values]), nDays).T mask = simData.winter & (simData.weekDaySLP == 6) nDays = int(mask.sum() / 96) newData.loc[mask, [('SLP', 'PHH'), ('SLP', 'BSLc'), ('SLP', 'BSLa')]] = np.tile( np.array([PHH.Winter.Sunday.values, G0.Winter.Sunday.values, L0.Winter.Sunday.values]), nDays).T # Intermediate mask = simData.intermediate & (simData.weekDaySLP < 5) nDays = int(mask.sum() / 96) newData.loc[mask, [('SLP', 'PHH'), ('SLP', 'BSLc'), ('SLP', 'BSLa')]] = np.tile( np.array([PHH.InterimPeriod.WorkDay.values, G0.InterimPeriod.WorkDay.values, L0.InterimPeriod.WorkDay.values]), nDays).T mask = simData.intermediate & (simData.weekDaySLP == 5) nDays = int(mask.sum() / 96) newData.loc[mask, [('SLP', 'PHH'), ('SLP', 'BSLc'), ('SLP', 'BSLa')]] = np.tile( np.array([PHH.InterimPeriod.Saturday.values, G0.InterimPeriod.Saturday.values, L0.InterimPeriod.Saturday.values]), nDays).T mask = simData.intermediate & (simData.weekDaySLP == 6) nDays = int(mask.sum() / 96) newData.loc[mask, [('SLP', 'PHH'), ('SLP', 'BSLc'), ('SLP', 'BSLa')]] = np.tile( np.array([PHH.InterimPeriod.Sunday.values, G0.InterimPeriod.Sunday.values, L0.InterimPeriod.Sunday.values]), nDays).T # Summer mask = simData.summer & (simData.weekDaySLP < 5) nDays = int(mask.sum() / 96) newData.loc[mask, [('SLP', 'PHH'), ('SLP', 'BSLc'), ('SLP', 'BSLa')]] = np.tile( np.array([PHH.Summer.WorkDay.values, G0.Summer.WorkDay.values, L0.Summer.WorkDay.values]), nDays).T mask = simData.summer & (simData.weekDaySLP == 5) nDays = int(mask.sum() / 96) newData.loc[mask, [('SLP', 'PHH'), ('SLP', 'BSLc'), ('SLP', 'BSLa')]] = np.tile( np.array([PHH.Summer.Saturday.values, G0.Summer.Saturday.values, L0.Summer.Saturday.values]), nDays).T mask = simData.summer & (simData.weekDaySLP == 6) nDays = int(mask.sum() / 96) newData.loc[mask, [('SLP', 'PHH'), ('SLP', 'BSLc'), ('SLP', 'BSLa')]] = np.tile( np.array([PHH.Summer.Sunday.values, G0.Summer.Sunday.values, L0.Summer.Sunday.values]), nDays).T # Dynamic sampling of PHH profile newData[('SLP', 'PHH')] *= (- 3.92*1e-10*simData.doy**4 + 3.2*1e-7*simData.doy**3 - 7.02*1e-5*simData.doy**2 + 2.1*1e-3*simData.doy + 1.24) # merge data frames simData = simData.join(newData.astype(np.float32)) return simData def _cleanSimData(simData): """ Remove unnecessary columns Args: simData (pandas data frame): Simulation data Returns: pandas data frame: Data frame with sim data """ simData.drop(columns=["doy", "weekDaySLP", "summer", "winter", "intermediate"], inplace=True) return simData def _getSimTime(startDate, endDate): """ Prepare a pandas dataframe for simulation course This function will add all time related informations (Summer, Winter, day of year, hour of day, correct week days for SLP) Info to pandas WeekDays: Monday=0, Sunday=6. Args: startDate (string): Start date DD.MM.YYYY (start time is hard coded to 00:00) endDate (string): End date DD.MM.YYYY (end day is not in time range, so end date should be end date + 1 day) Return: pandas data frame: Time course and additional informations for preparing boundary conditions of a simulation run """ startDate = startDate.split(".") startDate = "/".join([startDate[1], startDate[0], startDate[2]]) endDate = endDate.split(".") endDate = "/".join([endDate[1], endDate[0], endDate[2]]) time = pd.date_range(startDate, endDate, freq='0.25H', closed='left') doy = time.dayofyear weekDaySLP = time.dayofweek df = pd.DataFrame({('time', ''): time, 'doy': doy, 'weekDaySLP': weekDaySLP}) # add relevant time periods df['summer'] = (((time.month > 5) & (time.month < 9)) | ((time.month == 5) & (time.day >= 15)) | ((time.month == 9) & (time.day <= 14))) df['winter'] = (((time.month >= 11) | (time.month < 3)) | ((time.month == 3) & (time.day <= 20))) df['intermediate'] = ~(df['summer'] | df['winter']) # correct week days of SLP days # -> add Christmas Eve and New Years Eve to Sat if Week mask = ((time.month == 12) & ((time.day == 24) | (time.day == 31)) & (df.weekDaySLP < 5)) df.loc[mask, 'weekDaySLP'] = 5 # load and check holidays and set them to sunday holidays = pd.read_csv("./BoundaryConditions/Simulation/holydaysSN.csv", parse_dates=[0], dayfirst=True) mask = pd.to_datetime(time.date).isin(holidays.date) df.loc[mask, 'weekDaySLP'] = 6 return df def _getWeather(simData, region): """Calculate temperature and irradiation curve for given simulation time and region Test reference year data of DWD consist out of: - Data for reference year - Data for year with extreme summer - Data for extreme winter By randomly weighting those curves a new weather curve is generated. The random weights are updated per simulated year. Arguments: simData {pandas data frame} -- Simulation data region {string} -- Location of simulation (determines climate / weather) Supported regions: East, West, South, North Returns: pandas data frame -- Simulation data extended by weather course """ RefWeather = pd.read_hdf("./BoundaryConditions/Weather/" + region + ".h5", 'Weather') cols = RefWeather.reference.columns # at first create simulation weather data without interpolation SimWeather = pd.DataFrame(columns=['t [s]'] + cols.to_list()) # ensure ref Weather time steps are hourly if RefWeather.date_time.dt.freq != 'H': # TODO: Catch -> Create hourly stepped ref Data raise ValueError("Weather data time step must be one hour") # Fill sim time in seconds hourly stepped SimWeather['time'] = pd.date_range(simData[('time', '')].iloc[0], simData[('time', '')].iloc[-1], freq='H') SimWeather['doy'] = SimWeather.time.dt.dayofyear SimWeather['t [s]'] = ((SimWeather.time - SimWeather.time[0]) .dt.total_seconds()) # get mask of all non leap year days once -> keep out doy 366 maskDoy = (SimWeather.doy >= 1) & (SimWeather.doy <= 365) # one-time create weight function to get smooth transistions # between years or december extrapolation lenDay = 24 # h -> since ref weather data is hourly stepped wDay = np.vstack(np.arange(lenDay-1, -1., -1.) / lenDay) wDay = wDay**10 wDayInv = 1 - wDay yearEnd = None # Split up Eg data generation into linked doy sequences for year in range(SimWeather.time.dt.year.min(), SimWeather.time.dt.year.max()+1): # for now ignore the possibility of leap year maskY = ((SimWeather.time.dt.year == year) & maskDoy) # get start and end Idx for current year doyStart = SimWeather.doy[(SimWeather.time.dt.year == year).idxmax()] startY = (RefWeather.doy == doyStart).idxmax() endY = startY + maskY.sum()-1 # get weighting factors w = np.random.random(3) w /= w.sum() # sum of all factors must be 1 # Calculate simulation data SimWeather.loc[maskY, cols] = ( RefWeather.reference.loc[startY:endY, cols]*w[0] + RefWeather.winter_extreme.loc[startY:endY, cols]*w[1] + RefWeather.summer_extreme.loc[startY:endY, cols]*w[2] ).values # get smooth transition if there is a year before if yearEnd is not None: mask_new = maskY & (SimWeather.doy == 1) SimWeather.loc[mask_new, cols] = ( wDay * yearEnd + wDayInv * SimWeather.loc[maskY, cols].values[:lenDay]) # leap day treatment if SimWeather.time[maskY].dt.is_leap_year.any(): # update year mask maskY = SimWeather.time.dt.year == year # handle different cases doyEnd = SimWeather.doy[maskY].max() # there is missing data, only if last day of year is considered if doyEnd == 366: # prepare doyStart = SimWeather.doy[maskY].min() # random weights for inter-/extrapolation w = np.random.random(2) w /= w.sum() # two cases: # 1. Start before leap -> interpolate leap # 2. Start after leap -> extrapolate end pf year if doyStart < DOY_LEAPDAY: # move data beginning from leap day mask_new = maskY & ((SimWeather.doy >= DOY_LEAPDAY+1) & (SimWeather.doy <= 366)) mask_old = maskY & ((SimWeather.doy >= DOY_LEAPDAY) & (SimWeather.doy <= 365)) SimWeather.loc[mask_new, cols] = ( SimWeather.loc[mask_old, cols].values) # interpolate leap day data with surrounding days # leap day has March 1st for know -> add Feb 28th mask_new = maskY & (SimWeather.doy == DOY_LEAPDAY) mask_old = maskY & (SimWeather.doy == DOY_LEAPDAY-1) New = (w[0] * SimWeather.loc[mask_new, cols].values + w[1] * SimWeather.loc[mask_old, cols].values) Last = SimWeather.loc[mask_old, cols].values[-1] # first transition SimWeather.loc[mask_new, cols] = (wDay*Last + wDayInv*New) # second transition -> new is now old mask_old = maskY & (SimWeather.doy == DOY_LEAPDAY+1) New = SimWeather.loc[mask_old, cols].values[-1] Last = SimWeather.loc[mask_new, cols].values SimWeather.loc[mask_old, cols] = (wDayInv*Last + wDay*New) else: # just add missing data to last day of year # since information is missing # for time before doyStart, # the last two known days will be extrapolated mask_new = maskY & (SimWeather.doy == 366) mask_old_1 = maskY & (SimWeather.doy == 364) mask_old_2 = maskY & (SimWeather.doy == 365) # scale new temperature in relation to # last temperature of day before Last = SimWeather.loc[mask_old_2, cols].values[-1] New = (w[0] * SimWeather.loc[mask_old_1, cols].values + w[1] * SimWeather.loc[mask_old_2, cols].values) SimWeather.loc[mask_new, cols] = (wDay*Last + wDayInv*New) # set year Flag yearEnd = SimWeather.loc[maskY, cols].values[-1] # go threw simulated weather data and interpolate it for simData simTime = (simData[('time', '')] - simData[('time', '')][0]).dt.total_seconds() for col in cols: fWeather = interp1d(SimWeather['t [s]'], SimWeather[col], 'linear', bounds_error=False, fill_value='extrapolate') simData[('Weather', col)] = fWeather(simTime).astype(np.float32) return simData def _getSolarPosition(simData, latitude, longitude): """ Get position of sun from time and location Args: simData (pandas data frame): Simulation data latitude (float): Latitude in decimal degrees. Positive north of equator, negative to south longitude (float): Longitude in decimal degrees. Positive east of prime meridian, negative to west Returns: pandas data frame: Data frame with sim data """ # TODO: calculation assumes UTC-time if not localized solarPosition = pv.solarposition.get_solarposition( simData[('time', '')], latitude, longitude ) simData[('SolarPosition', 'elevation [degree]')] = (solarPosition .elevation .values .astype(np.float32)) simData[('SolarPosition', 'azimuth [degree]')] = (solarPosition .azimuth .values .astype(np.float32) + 180.) return simData def getSimData_df(startDate, endDate, region): """ Get all boundary condition data needed for a simulation run Args: startDate (string): Start date DD.MM.YYYY (start time is hard coded to 00:00) endDate (string): End date DD.MM.YYYY (end day is not in time range, so end date should be end date + 1 day) region (string): Location of simulation (determines climate / weather) Supported regions: East, West, South, North Returns: pandas data frame: All simulation data needed """ data = _getSimTime(startDate, endDate) data = _addSLPdata(data) data = _addHotwater(data) data = _getWeather(data, region) # Mittelpunkt Deutschland latitude = 51.164305 longitude = 10.4541205 data = _getSolarPosition(data, latitude, longitude) data = _cleanSimData(data) data.columns =
pd.MultiIndex.from_tuples(data.columns)
pandas.MultiIndex.from_tuples
import numpy as np import pandas as pd from sklearn.metrics import accuracy_score import lightgbm as lgb from sklearn.linear_model import LogisticRegression from sklearn.preprocessing import OneHotEncoder from sklearn.linear_model import Lasso,SGDRegressor,PassiveAggressiveRegressor,ElasticNet,LinearRegression import heapq path = '../AwA2/' classname = pd.read_csv(path+'classes.txt',header=None,sep = '\t') dic_class2name = {classname.index[i]:classname.loc[i][1] for i in range(classname.shape[0])} dic_name2class = {classname.loc[i][1]:classname.index[i] for i in range(classname.shape[0])} def make_test_attributetable(): attribut_bmatrix = np.loadtxt(path+'predicate-matrix-binary.txt') #attribut_bmatrix = np.loadtxt(path+'food-label-vector-normed.txt') attribut_bmatrix = pd.DataFrame(attribut_bmatrix) test_classes = pd.read_csv(path+'testclasses.txt',header=None) test_classes_flag = [] for item in test_classes.iloc[:,0].values.tolist(): test_classes_flag.append(dic_name2class[item]) return attribut_bmatrix.iloc[test_classes_flag,:] def make_train_attributetable(): attribut_bmatrix = np.loadtxt(path+'predicate-matrix-binary.txt') #attribut_bmatrix = np.loadtxt(path+'food-label-vector-normed.txt') attribut_bmatrix = pd.DataFrame(attribut_bmatrix) train_classes = pd.read_csv(path+'trainclasses.txt',header=None) train_classes_flag = [] for item in train_classes.iloc[:,0].values.tolist(): train_classes_flag.append(dic_name2class[item]) return attribut_bmatrix.iloc[train_classes_flag,:] def construct_Y(label_onehot): for i in range(label_onehot.shape[0]): for j in range(label_onehot.shape[1]): if label_onehot[i][j] == 0: label_onehot[i][j] = -1 return np.mat(label_onehot) def generate_data(data_mean,data_std,attribute_table,num): class_num = data_mean.shape[0] feature_num = data_mean.shape[1] data_list = [] label_list = [] for i in range(class_num): data = [] for j in range(feature_num): data.append(list(np.random.normal(data_mean[i,j],np.abs(data_std[i,j]),num))) data = np.row_stack(data).T data_list.append(data) label_list+=[test_attributetable.iloc[i,:].values]*num return np.row_stack(data_list),np.row_stack(label_list) def cosinedist(gt, pre, top): dist_list = [] labels = [] for i in range(gt.values.shape[0]): dist = 1 - np.dot(gt.values[i],pre.transpose())/(np.linalg.norm(gt.values[i])*np.linalg.norm(pre)) dist_list.append(dist) result = map(dist_list.index, heapq.nsmallest(top, dist_list)) result = list(result) for loc in result: labels.append(gt.index[loc]) #print("Result:", result) return labels #trainlabel = np.load(path+'Food11_trainlabel.npy') trainlabel = np.load(path+'AWA2_trainlabel.npy') #train_attributelabel = np.load(path+'AWA2_train_Label_attributelabel.npy') testlabel = np.load(path+'AWA2_testlabel.npy') #test_attributelabel = np.load(path+'AWA2_test_Label_attributelabel.npy') enc1 = OneHotEncoder() enc1.fit(np.mat(trainlabel).T) trainlabel_onehot = enc1.transform(np.mat(trainlabel).T).toarray() enc2 = OneHotEncoder() enc2.fit(np.mat(testlabel).T) testlabel_onehot = enc2.transform(np.mat(testlabel).T).toarray() trainfeatures = np.load(path+'resnet101_trainfeatures.npy') print("train feature:", trainfeatures.shape) testfeatures = np.load(path+'resnet101_testfeatures.npy') print("test feature:", testfeatures.shape) train_attributetable = make_train_attributetable() test_attributetable = make_test_attributetable() trainfeatures_tabel =
pd.DataFrame(trainfeatures)
pandas.DataFrame
from django.shortcuts import render from rest_framework import status from rest_framework import viewsets from rest_framework import filters from rest_framework.views import APIView from rest_framework.response import Response from rest_framework.authentication import TokenAuthentication from rest_framework.authtoken.views import ObtainAuthToken from rest_framework.settings import api_settings from django.views.generic.list import ListView from django.views.generic.detail import DetailView from django.shortcuts import get_object_or_404 from .models import UserProfile from profiles_api import serializers from profiles_api import models from profiles_api import permissions from .forms import GuestForm from django.shortcuts import redirect from django.contrib import messages import requests import json import pandas as pd from functools import reduce import base64 import os import os.path from datetime import datetime import time from django.db.models import Q from profiles_project.secrets import YITU_AUTH from django.core.files.storage import default_storage from django.core.files.base import ContentFile from django.core.paginator import Paginator, PageNotAnInteger, EmptyPage from requests.packages.urllib3.exceptions import InsecureRequestWarning requests.packages.urllib3.disable_warnings(InsecureRequestWarning) url_visitors = "https://10.12.201.64:9812/visitors" url_history = "https://10.12.201.64:9812/visitors/history" headers = { "Content-Type": "application/json", "Authorization": YITU_AUTH } # Create your views here. class UserProfileViewSet(viewsets.ModelViewSet): """Handle creating and update profiles""" serializer_class = serializers.UserProfileSerializer queryset = models.UserProfile.objects.all() authentication_classes = (TokenAuthentication,) permission_classes = (permissions.UpdateOwnProfile,) filter_backends = (filters.SearchFilter,) search_fields = ('name', 'nric_number',) class UserLoginApiView(ObtainAuthToken): """Handle user authentication token""" renderer_classes = api_settings.DEFAULT_RENDERER_CLASSES class VisitorList(ListView): template_name = 'userprofile_list.html' model = UserProfile context_object_name = 'visitors' ordering = ['reg_date'] paginate_by = 3 def get_queryset(self): # new query = self.request.GET.get('q', '') object_list = UserProfile.objects.filter( Q(name__icontains=query) | Q(nric_number__icontains=query) ) return object_list # Granting access to a registered guest class VisitorDetail(DetailView): model = UserProfile template_name = 'userprofile.html' context_object_name = 'visitor' def post(self, request, pk=None): if request.method == 'POST': form = UserProfile.objects.get(pk=pk) form_img = form.photo form_nric = form.nric_number form_name = form.name form_mobile_number = form.mobile_number form_company = form.company form_img_url = "/vagrant/media/" + str(form_img) last_access = form.last_access_date.strftime("%Y-%m-%d") now_access = datetime.today().strftime("%Y-%m-%d") if last_access == now_access: messages.success(request, 'Visitor access in on going') return redirect('userprofile', pk=pk) else: form.last_access_date = datetime.today() form.save(update_fields=['last_access_date']) print(form_name) print(last_access) with open(form_img_url, "rb") as file: enc_img = base64.b64encode(file.read()) dec_img = enc_img.decode("utf-8") print(dec_img) payload = { "visitor_list" : [ { "card_numbers" : [ form_nric ], "face_image_content" : dec_img, "meta" : {}, "person_information" : { "company" : form_company, "identity_number" : form_nric, "name" : form_name, "phone" : form_mobile_number, "remark" : "", "visit_end_timestamp" : 0, "visit_start_timestamp" : 0, "visit_time_type" : 1, "visitee_name" : "" }, "tag_id_list" : [ "5e58b6d9e2e6a700014a2b19" ] } ] } jsonpayload = json.dumps(payload) response = requests.request("POST", url_visitors, headers=headers, data=jsonpayload, verify=False) print(response.text) messages.success(request, 'Visitor is allowed to access') return redirect('userprofile', pk=pk) else: form = GuestForm() return render(request, 'userprofile.html', { 'form': form }) def search(request): return render(request, 'search.html', {}) def history(request): # response = requests.request("GET", url_history, headers=headers, verify=False) # # history = json.loads(response.text) # info = history.get("result", {}) # info_for_csv = history.get("result", {}) # # infoarr = json.dumps(info, indent=2) # # # pagination # # page = request.GET.get('page', 1) # # paginator = Paginator(info, 3) # # try: # info = paginator.page(page) # except PageNotAnInteger: # info = paginator.page(1) # except EmptyPage: # info = paginator.page(paginator.num_pages) # # context = {'info': info } # # file = [] # # for item in info_for_csv: # name = item['person_information']['name'] # inf = item['person_information'] # file.append(inf) # # for f in file: # t_start = datetime.fromtimestamp(f['visit_start_timestamp']) # t_end = datetime.fromtimestamp(f['visit_end_timestamp']) # t_check = datetime.fromtimestamp(f['check_out_timestamp']) # f['visit_start_timestamp'] = t_start.strftime("%d-%m-%Y %H:%M:%S") # f['visit_end_timestamp'] = t_end.strftime("%d-%m-%Y %H:%M:%S") # f['check_out_timestamp'] = t_check.strftime("%d-%m-%Y %H:%M:%S") # # # outname = 'history.csv' # outdir = './media/logs' # # fullname = os.path.join(outdir, outname) # # result = pd.DataFrame(file) # # result.to_csv(fullname, index=False) context = {} df1 =
pd.read_table('./media/logs/history.csv', sep=',')
pandas.read_table
import pandas as pd import numpy as np import pytest from conftest import DATA_DIR, assert_series_equal from numpy.testing import assert_allclose from pvlib import temperature @pytest.fixture def sapm_default(): return temperature.TEMPERATURE_MODEL_PARAMETERS['sapm'][ 'open_rack_glass_glass'] def test_sapm_cell(sapm_default): default = temperature.sapm_cell(900, 20, 5, sapm_default['a'], sapm_default['b'], sapm_default['deltaT']) assert_allclose(default, 43.509, 3) def test_sapm_module(sapm_default): default = temperature.sapm_module(900, 20, 5, sapm_default['a'], sapm_default['b']) assert_allclose(default, 40.809, 3) def test_sapm_cell_from_module(sapm_default): default = temperature.sapm_cell_from_module(50, 900, sapm_default['deltaT']) assert_allclose(default, 50 + 900 / 1000 * sapm_default['deltaT']) def test_sapm_ndarray(sapm_default): temps = np.array([0, 10, 5]) irrads = np.array([0, 500, 0]) winds = np.array([10, 5, 0]) cell_temps = temperature.sapm_cell(irrads, temps, winds, sapm_default['a'], sapm_default['b'], sapm_default['deltaT']) module_temps = temperature.sapm_module(irrads, temps, winds, sapm_default['a'], sapm_default['b']) expected_cell = np.array([0., 23.06066166, 5.]) expected_module = np.array([0., 21.56066166, 5.]) assert_allclose(expected_cell, cell_temps, 3) assert_allclose(expected_module, module_temps, 3) def test_sapm_series(sapm_default): times = pd.date_range(start='2015-01-01', end='2015-01-02', freq='12H') temps = pd.Series([0, 10, 5], index=times) irrads = pd.Series([0, 500, 0], index=times) winds =
pd.Series([10, 5, 0], index=times)
pandas.Series
import os import sys import warnings if not sys.warnoptions: warnings.simplefilter("ignore") with warnings.catch_warnings(): warnings.simplefilter("ignore") import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) from sklearn.neural_network import MLPRegressor from sklearn.impute import SimpleImputer from sklearn.metrics import mean_absolute_error from sklearn.metrics import mean_squared_error from sklearn.preprocessing import LabelEncoder from sklearn.pipeline import make_pipeline from sklearn.preprocessing import RobustScaler from sklearn.metrics import mean_squared_log_error from sklearn.model_selection import GridSearchCV, cross_val_score print(os.listdir("data")) train_data = pd.read_csv('data/train.csv') test_data =
pd.read_csv('data/test.csv')
pandas.read_csv
# TODO get a cleaner inclusion maybe more then one # TODO naming rule on the combination of extracrtor and Cleaner import pandas as pd import os import sys import glob from tqdm import tqdm from tqdm.auto import tqdm as tqdma def get_wave_files(base_folder,FileFindDict, FileCountLimit): fn = dict() fa = dict() SNR = FileFindDict['SNR'] machine = FileFindDict['machine'] ID = FileFindDict['ID'] #print(base_folder, machine, SNR, ID) for idx in ID: fn[idx] = sorted(glob.glob(os.path.abspath( "{base}/{SNR}/{machine}/id_{ID}/{n}/*.{ext}".format( base=base_folder+'dataset',SNR=SNR,machine=machine,ID=idx, n='normal',ext='wav' )))) fa[idx] = sorted(glob.glob(os.path.abspath( "{base}/{SNR}/{machine}/id_{ID}/{n}/*.{ext}".format( base=base_folder+'dataset',SNR=SNR,machine=machine,ID=idx, n='abnormal',ext='wav' )))) for idx in fn: if FileCountLimit: if FileCountLimit < len(fn[idx]): fn[idx] = fn[idx][:FileCountLimit] if FileCountLimit < len(fa[idx]): fa[idx] = fa[idx][:FileCountLimit] return fn, fa def BaseDataFrame(nf, af, FileFindDict): get_filename = lambda l: [os.path.basename(pl).replace('.'+'wav','') for pl in l] df = pd.DataFrame(columns=['path','abnormal','ID']) for idx in nf: df_temp_n =
pd.DataFrame()
pandas.DataFrame
# -*- coding: utf-8 -*- """ Consensus non-negative matrix factorization (cNMF) adapted from (Kotliar, et al. 2019) """ import numpy as np import pandas as pd import os, errno import glob import shutil import datetime import uuid import itertools import yaml import subprocess import scipy.sparse as sp import warnings from scipy.spatial.distance import squareform from sklearn.decomposition import non_negative_factorization from sklearn.cluster import KMeans from sklearn.metrics import silhouette_score from sklearn.utils import sparsefuncs from sklearn.preprocessing import normalize from fastcluster import linkage from scipy.cluster.hierarchy import leaves_list import matplotlib.pyplot as plt import scanpy as sc from ._version import get_versions def save_df_to_npz(obj, filename): """ Saves numpy array to `.npz` file """ with warnings.catch_warnings(): warnings.filterwarnings("ignore") np.savez_compressed( filename, data=obj.values, index=obj.index.values, columns=obj.columns.values, ) def save_df_to_text(obj, filename): """ Saves numpy array to tab-delimited text file """ obj.to_csv(filename, sep="\t") def load_df_from_npz(filename): """ Loads numpy array from `.npz` file """ with warnings.catch_warnings(): warnings.filterwarnings("ignore") with np.load(filename, allow_pickle=True) as f: obj = pd.DataFrame(**f) return obj def check_dir_exists(path): """ Checks if directory already exists or not and creates it if it doesn't """ try: os.makedirs(path) except OSError as exception: if exception.errno != errno.EEXIST: raise def worker_filter(iterable, worker_index, total_workers): return ( p for i, p in enumerate(iterable) if (i - worker_index) % total_workers == 0 ) def fast_euclidean(mat): D = mat.dot(mat.T) squared_norms = np.diag(D).copy() D *= -2.0 D += squared_norms.reshape((-1, 1)) D += squared_norms.reshape((1, -1)) D = np.sqrt(D) D[D < 0] = 0 return squareform(D, checks=False) def fast_ols_all_cols(X, Y): pinv = np.linalg.pinv(X) beta = np.dot(pinv, Y) return beta def fast_ols_all_cols_df(X, Y): beta = fast_ols_all_cols(X, Y) beta = pd.DataFrame(beta, index=X.columns, columns=Y.columns) return beta def var_sparse_matrix(X): mean = np.array(X.mean(axis=0)).reshape(-1) Xcopy = X.copy() Xcopy.data **= 2 var = np.array(Xcopy.mean(axis=0)).reshape(-1) - (mean ** 2) return var def get_highvar_genes_sparse( expression, expected_fano_threshold=None, minimal_mean=0.01, numgenes=None ): # Find high variance genes within those cells gene_mean = np.array(expression.mean(axis=0)).astype(float).reshape(-1) E2 = expression.copy() E2.data **= 2 gene2_mean = np.array(E2.mean(axis=0)).reshape(-1) gene_var = pd.Series(gene2_mean - (gene_mean ** 2)) del E2 gene_mean = pd.Series(gene_mean) gene_fano = gene_var / gene_mean # Find parameters for expected fano line top_genes = gene_mean.sort_values(ascending=False)[:20].index A = (np.sqrt(gene_var) / gene_mean)[top_genes].min() w_mean_low, w_mean_high = gene_mean.quantile([0.10, 0.90]) w_fano_low, w_fano_high = gene_fano.quantile([0.10, 0.90]) winsor_box = ( (gene_fano > w_fano_low) & (gene_fano < w_fano_high) & (gene_mean > w_mean_low) & (gene_mean < w_mean_high) ) fano_median = gene_fano[winsor_box].median() B = np.sqrt(fano_median) gene_expected_fano = (A ** 2) * gene_mean + (B ** 2) fano_ratio = gene_fano / gene_expected_fano # Identify high var genes if numgenes is not None: highvargenes = fano_ratio.sort_values(ascending=False).index[:numgenes] high_var_genes_ind = fano_ratio.index.isin(highvargenes) T = None else: if not expected_fano_threshold: T = 1.0 + gene_counts_fano[winsor_box].std() else: T = expected_fano_threshold high_var_genes_ind = (fano_ratio > T) & (gene_counts_mean > minimal_mean) gene_counts_stats = pd.DataFrame( { "mean": gene_mean, "var": gene_var, "fano": gene_fano, "expected_fano": gene_expected_fano, "high_var": high_var_genes_ind, "fano_ratio": fano_ratio, } ) gene_fano_parameters = { "A": A, "B": B, "T": T, "minimal_mean": minimal_mean, } return (gene_counts_stats, gene_fano_parameters) def get_highvar_genes( input_counts, expected_fano_threshold=None, minimal_mean=0.01, numgenes=None ): # Find high variance genes within those cells gene_counts_mean = pd.Series(input_counts.mean(axis=0).astype(float)) gene_counts_var = pd.Series(input_counts.var(ddof=0, axis=0).astype(float)) gene_counts_fano = pd.Series(gene_counts_var / gene_counts_mean) # Find parameters for expected fano line top_genes = gene_counts_mean.sort_values(ascending=False)[:20].index A = (np.sqrt(gene_counts_var) / gene_counts_mean)[top_genes].min() w_mean_low, w_mean_high = gene_counts_mean.quantile([0.10, 0.90]) w_fano_low, w_fano_high = gene_counts_fano.quantile([0.10, 0.90]) winsor_box = ( (gene_counts_fano > w_fano_low) & (gene_counts_fano < w_fano_high) & (gene_counts_mean > w_mean_low) & (gene_counts_mean < w_mean_high) ) fano_median = gene_counts_fano[winsor_box].median() B = np.sqrt(fano_median) gene_expected_fano = (A ** 2) * gene_counts_mean + (B ** 2) fano_ratio = gene_counts_fano / gene_expected_fano # Identify high var genes if numgenes is not None: highvargenes = fano_ratio.sort_values(ascending=False).index[:numgenes] high_var_genes_ind = fano_ratio.index.isin(highvargenes) T = None else: if not expected_fano_threshold: T = 1.0 + gene_counts_fano[winsor_box].std() else: T = expected_fano_threshold high_var_genes_ind = (fano_ratio > T) & (gene_counts_mean > minimal_mean) gene_counts_stats = pd.DataFrame( { "mean": gene_counts_mean, "var": gene_counts_var, "fano": gene_counts_fano, "expected_fano": gene_expected_fano, "high_var": high_var_genes_ind, "fano_ratio": fano_ratio, } ) gene_fano_parameters = { "A": A, "B": B, "T": T, "minimal_mean": minimal_mean, } return (gene_counts_stats, gene_fano_parameters) def compute_tpm(input_counts): """ Default TPM normalization """ tpm = input_counts.copy() tpm.layers["raw_counts"] = tpm.X.copy() sc.pp.normalize_total(tpm, target_sum=1e6) return tpm def subset_adata(adata, subset): """ Subsets anndata object on one or more `.obs` columns """ print("Subsetting AnnData on {}".format(subset), end="") # initialize .obs column for choosing cells adata.obs["adata_subset_combined"] = 0 # create label as union of given subset args for i in range(len(subset)): adata.obs.loc[ adata.obs[subset[i]].isin(["True", True, 1.0, 1]), "adata_subset_combined" ] = 1 adata = adata[adata.obs["adata_subset_combined"] == 1, :].copy() adata.obs.drop(columns="adata_subset_combined", inplace=True) print(" - now {} cells and {} genes".format(adata.n_obs, adata.n_vars)) return adata def cnmf_markers(adata, spectra_score_file, n_genes=30, key="cnmf"): """ Read cNMF spectra into AnnData object Reads in gene spectra score output from cNMF and saves top gene loadings for each usage as dataframe in adata.uns Parameters ---------- adata : AnnData.AnnData AnnData object spectra_score_file : str `<name>.gene_spectra_score.<k>.<dt>.txt` file from cNMF containing gene loadings n_genes : int, optional (default=30) number of top genes to list for each usage (rows of df) key : str, optional (default="cnmf") prefix of `adata.uns` keys to save Returns ------- adata : AnnData.AnnData adata is edited in place to include gene spectra scores (`adata.varm["cnmf_spectra"]`) and list of top genes by spectra score (`adata.uns["cnmf_markers"]`) """ # load Z-scored GEPs which reflect gene enrichment, save to adata.varm spectra = pd.read_csv(spectra_score_file, sep="\t", index_col=0).T spectra = adata.var[[]].merge( spectra, how="left", left_index=True, right_index=True ) adata.varm["{}_spectra".format(key)] = spectra.values # obtain top n_genes for each GEP in sorted order and combine them into df top_genes = [] for gep in spectra.columns: top_genes.append( list(spectra.sort_values(by=gep, ascending=False).index[:n_genes]) ) # save output to adata.uns adata.uns["{}_markers".format(key)] = pd.DataFrame( top_genes, index=spectra.columns.astype(str) ).T def cnmf_load_results(adata, cnmf_dir, name, k, dt, key="cnmf", **kwargs): """ Load results of cNMF Given adata object and corresponding cNMF output (cnmf_dir, name, k, dt to identify), read in relevant results and save to adata object inplace, and output plot of gene loadings for each GEP usage. Parameters ---------- adata : AnnData.AnnData AnnData object cnmf_dir : str relative path to directory containing cNMF outputs name : str name of cNMF replicate k : int value used for consensus factorization dt : int distance threshold value used for consensus clustering key : str, optional (default="cnmf") prefix of adata.uns keys to save n_points : int how many top genes to include in rank_genes() plot **kwargs : optional (default=None) keyword args to pass to cnmf_markers() Returns ------- adata : AnnData.AnnData `adata` is edited in place to include overdispersed genes (`adata.var["cnmf_overdispersed"]`), usages (`adata.obs["usage_#"]`, `adata.obsm["cnmf_usages"]`), gene spectra scores (`adata.varm["cnmf_spectra"]`), and list of top genes by spectra score (`adata.uns["cnmf_markers"]`). """ # read in cell usages usage = pd.read_csv( "{}/{}/{}.usages.k_{}.dt_{}.consensus.txt".format( cnmf_dir, name, name, str(k), str(dt).replace(".", "_") ), sep="\t", index_col=0, ) usage.columns = ["usage_" + str(col) for col in usage.columns] # normalize usages to total for each cell usage_norm = usage.div(usage.sum(axis=1), axis=0) usage_norm.index = usage_norm.index.astype(str) # add usages to .obs for visualization adata.obs = pd.merge( left=adata.obs, right=usage_norm, how="left", left_index=True, right_index=True ) # replace missing values with zeros for all factors adata.obs.loc[:, usage_norm.columns].fillna(value=0, inplace=True) # add usages as array in .obsm for dimension reduction adata.obsm["cnmf_usages"] = adata.obs.loc[:, usage_norm.columns].values # read in overdispersed genes determined by cNMF and add as metadata to adata.var overdispersed = np.genfromtxt( "{}/{}/{}.overdispersed_genes.txt".format(cnmf_dir, name, name), delimiter="\t", dtype=str, ) adata.var["cnmf_overdispersed"] = 0 adata.var.loc[ [x for x in adata.var.index if x in overdispersed], "cnmf_overdispersed" ] = 1 # read top gene loadings for each GEP usage and save to adata.uns['cnmf_markers'] cnmf_markers( adata, "{}/{}/{}.gene_spectra_score.k_{}.dt_{}.txt".format( cnmf_dir, name, name, str(k), str(dt).replace(".", "_") ), key=key, **kwargs ) class cNMF: """ Consensus NMF object Containerizes the cNMF inputs and outputs to allow for easy pipelining """ def __init__(self, output_dir=".", name=None): """ Parameters ---------- output_dir : path, optional (default=".") Output directory for analysis files. name : string, optional (default=None) A name for this analysis. Will be prefixed to all output files. If set to None, will be automatically generated from date (and random string). """ self.output_dir = output_dir if name is None: now = datetime.datetime.now() rand_hash = uuid.uuid4().hex[:6] name = "%s_%s" % (now.strftime("%Y_%m_%d"), rand_hash) self.name = name self.paths = None def _initialize_dirs(self): if self.paths is None: # Check that output directory exists, create it if needed. check_dir_exists(self.output_dir) check_dir_exists(os.path.join(self.output_dir, self.name)) check_dir_exists(os.path.join(self.output_dir, self.name, "cnmf_tmp")) self.paths = { "normalized_counts": os.path.join( self.output_dir, self.name, "cnmf_tmp", self.name + ".norm_counts.h5ad", ), "nmf_replicate_parameters": os.path.join( self.output_dir, self.name, "cnmf_tmp", self.name + ".nmf_params.df.npz", ), "nmf_run_parameters": os.path.join( self.output_dir, self.name, "cnmf_tmp", self.name + ".nmf_idvrun_params.yaml", ), "nmf_genes_list": os.path.join( self.output_dir, self.name, self.name + ".overdispersed_genes.txt" ), "tpm": os.path.join( self.output_dir, self.name, "cnmf_tmp", self.name + ".tpm.h5ad" ), "tpm_stats": os.path.join( self.output_dir, self.name, "cnmf_tmp", self.name + ".tpm_stats.df.npz", ), "iter_spectra": os.path.join( self.output_dir, self.name, "cnmf_tmp", self.name + ".spectra.k_%d.iter_%d.df.npz", ), "iter_usages": os.path.join( self.output_dir, self.name, "cnmf_tmp", self.name + ".usages.k_%d.iter_%d.df.npz", ), "merged_spectra": os.path.join( self.output_dir, self.name, "cnmf_tmp", self.name + ".spectra.k_%d.merged.df.npz", ), "local_density_cache": os.path.join( self.output_dir, self.name, "cnmf_tmp", self.name + ".local_density_cache.k_%d.merged.df.npz", ), "consensus_spectra": os.path.join( self.output_dir, self.name, "cnmf_tmp", self.name + ".spectra.k_%d.dt_%s.consensus.df.npz", ), "consensus_spectra__txt": os.path.join( self.output_dir, self.name, self.name + ".spectra.k_%d.dt_%s.consensus.txt", ), "consensus_usages": os.path.join( self.output_dir, self.name, "cnmf_tmp", self.name + ".usages.k_%d.dt_%s.consensus.df.npz", ), "consensus_usages__txt": os.path.join( self.output_dir, self.name, self.name + ".usages.k_%d.dt_%s.consensus.txt", ), "consensus_stats": os.path.join( self.output_dir, self.name, "cnmf_tmp", self.name + ".stats.k_%d.dt_%s.df.npz", ), "clustering_plot": os.path.join( self.output_dir, self.name, self.name + ".clustering.k_%d.dt_%s.png" ), "gene_spectra_score": os.path.join( self.output_dir, self.name, "cnmf_tmp", self.name + ".gene_spectra_score.k_%d.dt_%s.df.npz", ), "gene_spectra_score__txt": os.path.join( self.output_dir, self.name, self.name + ".gene_spectra_score.k_%d.dt_%s.txt", ), "gene_spectra_tpm": os.path.join( self.output_dir, self.name, "cnmf_tmp", self.name + ".gene_spectra_tpm.k_%d.dt_%s.df.npz", ), "gene_spectra_tpm__txt": os.path.join( self.output_dir, self.name, self.name + ".gene_spectra_tpm.k_%d.dt_%s.txt", ), "k_selection_plot": os.path.join( self.output_dir, self.name, self.name + ".k_selection.png" ), "k_selection_stats": os.path.join( self.output_dir, self.name, self.name + ".k_selection_stats.df.npz" ), } def get_norm_counts( self, counts, tpm, high_variance_genes_filter=None, num_highvar_genes=None ): """ Parameters ---------- counts : anndata.AnnData Scanpy AnnData object (cells x genes) containing raw counts. Filtered such that no genes or cells with 0 counts tpm : anndata.AnnData Scanpy AnnData object (cells x genes) containing tpm normalized data matching counts high_variance_genes_filter : np.array, optional (default=None) A pre-specified list of genes considered to be high-variance. Only these genes will be used during factorization of the counts matrix. Must match the .var index of counts and tpm. If set to None, high-variance genes will be automatically computed, using the parameters below. num_highvar_genes : int, optional (default=None) Instead of providing an array of high-variance genes, identify this many most overdispersed genes for filtering Returns ------- normcounts : anndata.AnnData, shape (cells, num_highvar_genes) A counts matrix containing only the high variance genes and with columns (genes) normalized to unit variance """ if high_variance_genes_filter is None: ## Get list of high-var genes if one wasn't provided if sp.issparse(tpm.X): (gene_counts_stats, gene_fano_params) = get_highvar_genes_sparse( tpm.X, numgenes=num_highvar_genes ) else: (gene_counts_stats, gene_fano_params) = get_highvar_genes( np.array(tpm.X), numgenes=num_highvar_genes ) high_variance_genes_filter = list( tpm.var.index[gene_counts_stats.high_var.values] ) ## Subset out high-variance genes print( "Selecting {} highly variable genes".format(len(high_variance_genes_filter)) ) norm_counts = counts[:, high_variance_genes_filter] norm_counts = norm_counts[tpm.obs_names, :].copy() ## Scale genes to unit variance if sp.issparse(tpm.X): sc.pp.scale(norm_counts, zero_center=False) if np.isnan(norm_counts.X.data).sum() > 0: print("Warning: NaNs in normalized counts matrix") else: norm_counts.X /= norm_counts.X.std(axis=0, ddof=1) if np.isnan(norm_counts.X).sum().sum() > 0: print("Warning: NaNs in normalized counts matrix") ## Save a \n-delimited list of the high-variance genes used for factorization open(self.paths["nmf_genes_list"], "w").write( "\n".join(high_variance_genes_filter) ) ## Check for any cells that have 0 counts of the overdispersed genes zerocells = norm_counts.X.sum(axis=1) == 0 if zerocells.sum() > 0: print( "Warning: %d cells have zero counts of overdispersed genes - ignoring these cells for factorization." % (zerocells.sum()) ) sc.pp.filter_cells(norm_counts, min_counts=1) return norm_counts def save_norm_counts(self, norm_counts): self._initialize_dirs() norm_counts.write(self.paths["normalized_counts"], compression="gzip") def get_nmf_iter_params( self, ks, n_iter=100, random_state_seed=None, beta_loss="kullback-leibler" ): """ Creates a DataFrame with parameters for NMF iterations Parameters ---------- ks : integer, or list-like. Number of topics (components) for factorization. Several values can be specified at the same time, which will be run independently. n_iter : integer, optional (defailt=100) Number of iterations for factorization. If several `k` are specified, this many iterations will be run for each value of `k`. random_state_seed : int or None, optional (default=None) Seed for sklearn random state. """ if type(ks) is int: ks = [ks] # Remove any repeated k values, and order. k_list = sorted(set(list(ks))) n_runs = len(ks) * n_iter np.random.seed(seed=random_state_seed) nmf_seeds = np.random.randint(low=1, high=(2 ** 32) - 1, size=n_runs) replicate_params = [] for i, (k, r) in enumerate(itertools.product(k_list, range(n_iter))): replicate_params.append([k, r, nmf_seeds[i]]) replicate_params = pd.DataFrame( replicate_params, columns=["n_components", "iter", "nmf_seed"] ) _nmf_kwargs = dict( alpha=0.0, l1_ratio=0.0, beta_loss=beta_loss, solver="mu", tol=1e-4, max_iter=400, regularization=None, init="random", ) ## Coordinate descent is faster than multiplicative update but only works for frobenius if beta_loss == "frobenius": _nmf_kwargs["solver"] = "cd" return (replicate_params, _nmf_kwargs) def save_nmf_iter_params(self, replicate_params, run_params): self._initialize_dirs() save_df_to_npz(replicate_params, self.paths["nmf_replicate_parameters"]) with open(self.paths["nmf_run_parameters"], "w") as F: yaml.dump(run_params, F) def _nmf(self, X, nmf_kwargs): """ Parameters ---------- X : pandas.DataFrame, Normalized counts dataFrame to be factorized. nmf_kwargs : dict, Arguments to be passed to `non_negative_factorization` """ (usages, spectra, niter) = non_negative_factorization(X, **nmf_kwargs) return (spectra, usages) def run_nmf( self, worker_i=1, total_workers=1, ): """ Iteratively runs NMF with prespecified parameters Use the `worker_i` and `total_workers` parameters for parallelization. Generic kwargs for NMF are loaded from `self.paths['nmf_run_parameters']`, defaults below:: `non_negative_factorization` default arguments: alpha=0.0 l1_ratio=0.0 beta_loss='kullback-leibler' solver='mu' tol=1e-4, max_iter=200 regularization=None init='random' random_state, n_components are both set by the prespecified self.paths['nmf_replicate_parameters']. Parameters ---------- norm_counts : pandas.DataFrame, Normalized counts dataFrame to be factorized. (Output of `normalize_counts`) run_params : pandas.DataFrame, Parameters for NMF iterations. (Output of `prepare_nmf_iter_params`) """ self._initialize_dirs() run_params = load_df_from_npz(self.paths["nmf_replicate_parameters"]) norm_counts = sc.read(self.paths["normalized_counts"]) _nmf_kwargs = yaml.load( open(self.paths["nmf_run_parameters"]), Loader=yaml.FullLoader ) jobs_for_this_worker = worker_filter( range(len(run_params)), worker_i, total_workers ) for idx in jobs_for_this_worker: p = run_params.iloc[idx, :] print("[Worker %d]. Starting task %d." % (worker_i, idx)) _nmf_kwargs["random_state"] = p["nmf_seed"] _nmf_kwargs["n_components"] = p["n_components"] (spectra, usages) = self._nmf(norm_counts.X, _nmf_kwargs) spectra = pd.DataFrame( spectra, index=np.arange(1, _nmf_kwargs["n_components"] + 1), columns=norm_counts.var.index, ) save_df_to_npz( spectra, self.paths["iter_spectra"] % (p["n_components"], p["iter"]) ) def combine_nmf(self, k, remove_individual_iterations=False): run_params = load_df_from_npz(self.paths["nmf_replicate_parameters"]) print("Combining factorizations for k=%d." % k) self._initialize_dirs() combined_spectra = None n_iter = sum(run_params.n_components == k) run_params_subset = run_params[run_params.n_components == k].sort_values("iter") spectra_labels = [] for i, p in run_params_subset.iterrows(): spectra = load_df_from_npz( self.paths["iter_spectra"] % (p["n_components"], p["iter"]) ) if combined_spectra is None: combined_spectra = np.zeros((n_iter, k, spectra.shape[1])) combined_spectra[p["iter"], :, :] = spectra.values for t in range(k): spectra_labels.append("iter%d_topic%d" % (p["iter"], t + 1)) combined_spectra = combined_spectra.reshape(-1, combined_spectra.shape[-1]) combined_spectra = pd.DataFrame( combined_spectra, columns=spectra.columns, index=spectra_labels ) save_df_to_npz(combined_spectra, self.paths["merged_spectra"] % k) return combined_spectra def consensus( self, k, density_threshold_str="0.5", local_neighborhood_size=0.30, show_clustering=True, skip_density_and_return_after_stats=False, close_clustergram_fig=True, ): merged_spectra = load_df_from_npz(self.paths["merged_spectra"] % k) norm_counts = sc.read(self.paths["normalized_counts"]) if skip_density_and_return_after_stats: density_threshold_str = "2" density_threshold_repl = density_threshold_str.replace(".", "_") density_threshold = float(density_threshold_str) n_neighbors = int(local_neighborhood_size * merged_spectra.shape[0] / k) # Rescale topics such to length of 1. l2_spectra = (merged_spectra.T / np.sqrt((merged_spectra ** 2).sum(axis=1))).T if not skip_density_and_return_after_stats: # Compute the local density matrix (if not previously cached) topics_dist = None if os.path.isfile(self.paths["local_density_cache"] % k): local_density = load_df_from_npz(self.paths["local_density_cache"] % k) else: # first find the full distance matrix topics_dist = squareform(fast_euclidean(l2_spectra.values)) # partition based on the first n neighbors partitioning_order = np.argpartition(topics_dist, n_neighbors + 1)[ :, : n_neighbors + 1 ] # find the mean over those n_neighbors (excluding self, which has a distance of 0) distance_to_nearest_neighbors = topics_dist[ np.arange(topics_dist.shape[0])[:, None], partitioning_order ] local_density = pd.DataFrame( distance_to_nearest_neighbors.sum(1) / (n_neighbors), columns=["local_density"], index=l2_spectra.index, ) save_df_to_npz(local_density, self.paths["local_density_cache"] % k) del partitioning_order del distance_to_nearest_neighbors density_filter = local_density.iloc[:, 0] < density_threshold l2_spectra = l2_spectra.loc[density_filter, :] kmeans_model = KMeans(n_clusters=k, n_init=10, random_state=1) kmeans_model.fit(l2_spectra) kmeans_cluster_labels = pd.Series( kmeans_model.labels_ + 1, index=l2_spectra.index ) # Find median usage for each gene across cluster median_spectra = l2_spectra.groupby(kmeans_cluster_labels).median() # Normalize median spectra to probability distributions. median_spectra = (median_spectra.T / median_spectra.sum(1)).T # Compute the silhouette score stability = silhouette_score( l2_spectra.values, kmeans_cluster_labels, metric="euclidean" ) # Obtain the reconstructed count matrix by re-fitting the usage matrix and computing the dot product: usage.dot(spectra) refit_nmf_kwargs = yaml.load( open(self.paths["nmf_run_parameters"]), Loader=yaml.FullLoader ) refit_nmf_kwargs.update( dict(n_components=k, H=median_spectra.values, update_H=False) ) # ensure dtypes match for factorization if median_spectra.values.dtype != norm_counts.X.dtype: norm_counts.X = norm_counts.X.astype(median_spectra.values.dtype) _, rf_usages = self._nmf(norm_counts.X, nmf_kwargs=refit_nmf_kwargs) rf_usages = pd.DataFrame( rf_usages, index=norm_counts.obs.index, columns=median_spectra.index ) rf_pred_norm_counts = rf_usages.dot(median_spectra) # Compute prediction error as a frobenius norm if sp.issparse(norm_counts.X): prediction_error = ( ((norm_counts.X.todense() - rf_pred_norm_counts) ** 2).sum().sum() ) else: prediction_error = ((norm_counts.X - rf_pred_norm_counts) ** 2).sum().sum() consensus_stats = pd.DataFrame( [k, density_threshold, stability, prediction_error], index=["k", "local_density_threshold", "stability", "prediction_error"], columns=["stats"], ) if skip_density_and_return_after_stats: return consensus_stats save_df_to_npz( median_spectra, self.paths["consensus_spectra"] % (k, density_threshold_repl), ) save_df_to_npz( rf_usages, self.paths["consensus_usages"] % (k, density_threshold_repl) ) save_df_to_npz( consensus_stats, self.paths["consensus_stats"] % (k, density_threshold_repl) ) save_df_to_text( median_spectra, self.paths["consensus_spectra__txt"] % (k, density_threshold_repl), ) save_df_to_text( rf_usages, self.paths["consensus_usages__txt"] % (k, density_threshold_repl) ) # Compute gene-scores for each GEP by regressing usage on Z-scores of TPM tpm = sc.read(self.paths["tpm"]) # ignore cells not present in norm_counts if tpm.n_obs != norm_counts.n_obs: tpm = tpm[norm_counts.obs_names, :].copy() tpm_stats = load_df_from_npz(self.paths["tpm_stats"]) if sp.issparse(tpm.X): norm_tpm = ( np.array(tpm.X.todense()) - tpm_stats["__mean"].values ) / tpm_stats["__std"].values else: norm_tpm = (tpm.X - tpm_stats["__mean"].values) / tpm_stats["__std"].values usage_coef = fast_ols_all_cols(rf_usages.values, norm_tpm) usage_coef = pd.DataFrame( usage_coef, index=rf_usages.columns, columns=tpm.var.index ) save_df_to_npz( usage_coef, self.paths["gene_spectra_score"] % (k, density_threshold_repl) ) save_df_to_text( usage_coef, self.paths["gene_spectra_score__txt"] % (k, density_threshold_repl), ) # Convert spectra to TPM units, and obtain results for all genes by running # last step of NMF with usages fixed and TPM as the input matrix norm_usages = rf_usages.div(rf_usages.sum(axis=1), axis=0) refit_nmf_kwargs.update(dict(H=norm_usages.T.values,)) # ensure dtypes match for factorization if norm_usages.values.dtype != tpm.X.dtype: tpm.X = tpm.X.astype(norm_usages.values.dtype) _, spectra_tpm = self._nmf(tpm.X.T, nmf_kwargs=refit_nmf_kwargs) spectra_tpm = pd.DataFrame( spectra_tpm.T, index=rf_usages.columns, columns=tpm.var.index ) save_df_to_npz( spectra_tpm, self.paths["gene_spectra_tpm"] % (k, density_threshold_repl) ) save_df_to_text( spectra_tpm, self.paths["gene_spectra_tpm__txt"] % (k, density_threshold_repl), ) if show_clustering: if topics_dist is None: topics_dist = squareform(fast_euclidean(l2_spectra.values)) # (l2_spectra was already filtered using the density filter) else: # (but the previously computed topics_dist was not!) topics_dist = topics_dist[density_filter.values, :][ :, density_filter.values ] spectra_order = [] for cl in sorted(set(kmeans_cluster_labels)): cl_filter = kmeans_cluster_labels == cl if cl_filter.sum() > 1: cl_dist = squareform(topics_dist[cl_filter, :][:, cl_filter]) cl_dist[ cl_dist < 0 ] = 0 # Rarely get floating point arithmetic issues cl_link = linkage(cl_dist, "average") cl_leaves_order = leaves_list(cl_link) spectra_order += list(np.where(cl_filter)[0][cl_leaves_order]) else: ## Corner case where a component only has one element spectra_order += list(np.where(cl_filter)[0]) from matplotlib import gridspec import matplotlib.pyplot as plt width_ratios = [0.5, 9, 0.5, 4, 1] height_ratios = [0.5, 9] fig = plt.figure(figsize=(sum(width_ratios), sum(height_ratios))) gs = gridspec.GridSpec( len(height_ratios), len(width_ratios), fig, 0.01, 0.01, 0.98, 0.98, height_ratios=height_ratios, width_ratios=width_ratios, wspace=0, hspace=0, ) dist_ax = fig.add_subplot( gs[1, 1], xscale="linear", yscale="linear", xticks=[], yticks=[], xlabel="", ylabel="", frameon=True, ) D = topics_dist[spectra_order, :][:, spectra_order] dist_im = dist_ax.imshow( D, interpolation="none", cmap="viridis", aspect="auto", rasterized=True ) left_ax = fig.add_subplot( gs[1, 0], xscale="linear", yscale="linear", xticks=[], yticks=[], xlabel="", ylabel="", frameon=True, ) left_ax.imshow( kmeans_cluster_labels.values[spectra_order].reshape(-1, 1), interpolation="none", cmap="Spectral", aspect="auto", rasterized=True, ) top_ax = fig.add_subplot( gs[0, 1], xscale="linear", yscale="linear", xticks=[], yticks=[], xlabel="", ylabel="", frameon=True, ) top_ax.imshow( kmeans_cluster_labels.values[spectra_order].reshape(1, -1), interpolation="none", cmap="Spectral", aspect="auto", rasterized=True, ) hist_gs = gridspec.GridSpecFromSubplotSpec( 3, 1, subplot_spec=gs[1, 3], wspace=0, hspace=0 ) hist_ax = fig.add_subplot( hist_gs[0, 0], xscale="linear", yscale="linear", xlabel="", ylabel="", frameon=True, title="Local density histogram", ) hist_ax.hist(local_density.values, bins=np.linspace(0, 1, 50)) hist_ax.yaxis.tick_right() xlim = hist_ax.get_xlim() ylim = hist_ax.get_ylim() if density_threshold < xlim[1]: hist_ax.axvline(density_threshold, linestyle="--", color="k") hist_ax.text( density_threshold + 0.02, ylim[1] * 0.95, "filtering\nthreshold\n\n", va="top", ) hist_ax.set_xlim(xlim) hist_ax.set_xlabel( "Mean distance to k nearest neighbors\n\n%d/%d (%.0f%%) spectra above threshold\nwere removed prior to clustering" % ( sum(~density_filter), len(density_filter), 100 * (~density_filter).mean(), ) ) fig.savefig( self.paths["clustering_plot"] % (k, density_threshold_repl), dpi=250 ) if close_clustergram_fig: plt.close(fig) def k_selection_plot(self, close_fig=True): """ Borrowed from <NAME>. 2013 Deciphering Mutational Signatures publication in Cell Reports """ run_params = load_df_from_npz(self.paths["nmf_replicate_parameters"]) stats = [] for k in sorted(set(run_params.n_components)): stats.append( self.consensus(k, skip_density_and_return_after_stats=True).stats ) stats = pd.DataFrame(stats) stats.reset_index(drop=True, inplace=True) save_df_to_npz(stats, self.paths["k_selection_stats"]) fig = plt.figure(figsize=(6, 4)) ax1 = fig.add_subplot(111) ax2 = ax1.twinx() ax1.plot(stats.k, stats.stability, "o-", color="b") ax1.set_ylabel("Stability", color="b", fontsize=15) for tl in ax1.get_yticklabels(): tl.set_color("b") # ax1.set_xlabel('K', fontsize=15) ax2.plot(stats.k, stats.prediction_error, "o-", color="r") ax2.set_ylabel("Error", color="r", fontsize=15) for tl in ax2.get_yticklabels(): tl.set_color("r") ax1.set_xlabel("Number of Components", fontsize=15) ax1.grid(True) plt.tight_layout() fig.savefig(self.paths["k_selection_plot"], dpi=250) if close_fig: plt.close(fig) def pick_k(k_selection_stats_path): k_sel_stats = load_df_from_npz(k_selection_stats_path) return int(k_sel_stats.loc[k_sel_stats.stability.idxmax, "k"]) def prepare(args): argdict = vars(args) cnmf_obj = cNMF(output_dir=argdict["output_dir"], name=argdict["name"]) cnmf_obj._initialize_dirs() print("Reading in counts from {} - ".format(argdict["counts"]), end="") if argdict["counts"].endswith(".h5ad"): input_counts = sc.read(argdict["counts"]) else: ## Load txt or compressed dataframe and convert to scanpy object if argdict["counts"].endswith(".npz"): input_counts = load_df_from_npz(argdict["counts"]) else: input_counts = pd.read_csv(argdict["counts"], sep="\t", index_col=0) if argdict["densify"]: input_counts = sc.AnnData( X=input_counts.values, obs=pd.DataFrame(index=input_counts.index), var=pd.DataFrame(index=input_counts.columns), ) else: input_counts = sc.AnnData( X=sp.csr_matrix(input_counts.values), obs=pd.DataFrame(index=input_counts.index), var=pd.DataFrame(index=input_counts.columns), ) print("{} cells and {} genes".format(input_counts.n_obs, input_counts.n_vars)) # use desired layer if not .X if args.layer is not None: print("Using layer '{}' for cNMF".format(args.layer)) input_counts.X = input_counts.layers[args.layer].copy() if sp.issparse(input_counts.X) & argdict["densify"]: input_counts.X = np.array(input_counts.X.todense()) if argdict["tpm"] is None: tpm = compute_tpm(input_counts) elif argdict["tpm"].endswith(".h5ad"): subprocess.call( "cp %s %s" % (argdict["tpm"], cnmf_obj.paths["tpm"]), shell=True ) tpm = sc.read(cnmf_obj.paths["tpm"]) else: if argdict["tpm"].endswith(".npz"): tpm = load_df_from_npz(argdict["tpm"]) else: tpm = pd.read_csv(argdict["tpm"], sep="\t", index_col=0) if argdict["densify"]: tpm = sc.AnnData( X=tpm.values, obs=pd.DataFrame(index=tpm.index), var=pd.DataFrame(index=tpm.columns), ) else: tpm = sc.AnnData( X=sp.csr_matrix(tpm.values), obs=pd.DataFrame(index=tpm.index), var=
pd.DataFrame(index=tpm.columns)
pandas.DataFrame
from typing import Tuple import numpy as np import pandas as pd import pytest from arch.typing import ArrayLike2D, Float64Array @pytest.fixture(scope="module", params=[True, False]) def data(request) -> Tuple[Float64Array, Float64Array]: g = np.random.RandomState([12839028, 3092183, 902813]) e = g.standard_normal((2000, 2)) phi = g.random_sample((3, 2, 2)) phi[:, 0, 0] *= 0.8 / phi[:, 0, 0].sum() phi[:, 1, 1] *= 0.8 / phi[:, 1, 1].sum() phi[:, 0, 1] *= 0.2 / phi[:, 0, 1].sum() phi[:, 1, 0] *= 0.2 / phi[:, 1, 0].sum() y = e.copy() for i in range(3, y.shape[0]): y[i] = e[i] for j in range(3): y[i] += (phi[j] @ y[i - j - 1].T).T y = y[-1000:] if request.param: df =
pd.DataFrame(y, columns=["y", "x"])
pandas.DataFrame
import json import pandas as pd from glob import glob import os import numpy as np def find_file(files_list,file_name): for file in files_list: if file.split(os.sep)[-1] == file_name: return file return None def get_raw_files(): """ findes combines and splits to train dev test """ all_jsons = glob('./**/*.json',recursive=True) for file_name in all_jsons: name = file_name.split(os.sep)[-1] if name == 'perspective_pool_v1.0.json': perspective = file_name elif name == 'evidence_pool_v1.0.json': evidence = file_name elif name == 'dataset_split_v1.0.json': split = file_name elif name == 'perspectrum_with_answers_v1.0.json': merger = file_name perspective = pd.read_json(perspective) perspective.columns= ['pId','perspective','source'] evidence = pd.read_json(evidence) split = pd.read_json(split,typ='series').reset_index() split.columns = ['id','split'] merger =
pd.read_json(merger)
pandas.read_json
# -*- coding: utf-8 -*- """ module for trade class """ import math import datetime as dt import logging import pandas as pd from pyecharts.charts import Bar, Line from pyecharts import options as opts import xalpha.remain as rm from xalpha.cons import convert_date, line_opts, myround, xirr, yesterdayobj from xalpha.exceptions import ParserFailure, TradeBehaviorError from xalpha.record import irecord import xalpha.universal as xu from xalpha.universal import get_rt logger = logging.getLogger(__name__) def xirrcal(cftable, trades, date, startdate=None, guess=0.01): """ calculate the xirr rate :param cftable: cftable (pd.Dateframe) with date and cash column :param trades: list [trade1, ...], every item is an trade object, whose shares would be sold out virtually :param date: string of date or datetime object, the date when virtually all holding positions being sold :param guess: floating number, a guess at the xirr rate solution to be used as a starting point for the numerical solution :returns: the IRR as a single floating number """ date = convert_date(date) partcftb = cftable[cftable["date"] <= date] if len(partcftb) == 0: return 0 if not startdate: cashflow = [(row["date"], row["cash"]) for i, row in partcftb.iterrows()] else: if not isinstance(startdate, dt.datetime): startdate = dt.datetime.strptime( startdate.replace("-", "").replace("/", ""), "%Y%m%d" ) start_cash = 0 for fund in trades: start_cash += fund.briefdailyreport(startdate).get("currentvalue", 0) cashflow = [(startdate, -start_cash)] partcftb = partcftb[partcftb["date"] > startdate] cashflow.extend([(row["date"], row["cash"]) for i, row in partcftb.iterrows()]) rede = 0 for fund in trades: if not isinstance(fund, itrade): partremtb = fund.remtable[fund.remtable["date"] <= date] if len(partremtb) > 0: rem = partremtb.iloc[-1]["rem"] else: rem = [] rede += fund.aim.shuhui( fund.briefdailyreport(date).get("currentshare", 0), date, rem )[1] else: # 场内交易 rede += fund.briefdailyreport(date).get("currentvalue", 0) cashflow.append((date, rede)) return xirr(cashflow, guess) def bottleneck(cftable): """ find the max total input in the history given cftable with cash column :param cftable: pd.DataFrame of cftable """ if len(cftable) == 0: return 0 # cftable = cftable.reset_index(drop=True) # unnecessary as iloc use natural rows instead of default index inputl = [-sum(cftable.iloc[:i].cash) for i in range(1, len(cftable) + 1)] return myround(max(inputl)) def turnoverrate(cftable, end=yesterdayobj()): """ calculate the annualized turnoverrate :param cftable: pd.DataFrame of cftable :param end: str or obj of datetime for the end date of the estimation """ if len(cftable) == 0: return 0 end = convert_date(end) start = cftable.iloc[0].date tradeamount = sum(abs(cftable.loc[:, "cash"])) turnover = tradeamount / bottleneck(cftable) / 2.0 if (end - start).days <= 0: return 0 return turnover * 365 / (end - start).days def vtradevolume(cftable, freq="D", rendered=True): """ aid function on visualization of trade summary :param cftable: cftable (pandas.DataFrame) with at least date and cash columns :param freq: one character string, frequency label, now supporting D for date, W for week and M for month, namely the trade volume is shown based on the time unit :returns: the Bar object """ ### WARN: datazoom and time conflict, sliding till 1970..., need further look into pyeacharts startdate = cftable.iloc[0]["date"] if freq == "D": # datedata = [d.to_pydatetime() for d in cftable["date"]] datedata = pd.date_range(startdate, yesterdayobj(), freq="D") selldata = [ [row["date"].to_pydatetime(), row["cash"]] for _, row in cftable.iterrows() if row["cash"] > 0 ] buydata = [ [row["date"].to_pydatetime(), row["cash"]] for _, row in cftable.iterrows() if row["cash"] < 0 ] elif freq == "W": cfmerge = cftable.groupby([cftable["date"].dt.year, cftable["date"].dt.week])[ "cash" ].sum() # datedata = [ # dt.datetime.strptime(str(a) + "4", "(%Y, %W)%w") # for a, _ in cfmerge.iteritems() # ] datedata = pd.date_range( startdate, yesterdayobj() + pd.Timedelta(days=7), freq="W-THU" ) selldata = [ [dt.datetime.strptime(str(a) + "4", "(%G, %V)%w"), b] for a, b in cfmerge.iteritems() if b > 0 ] buydata = [ [dt.datetime.strptime(str(a) + "4", "(%G, %V)%w"), b] for a, b in cfmerge.iteritems() if b < 0 ] # %V pandas gives iso weeknumber which is different from python original %W or %U, # see https://stackoverflow.com/questions/5882405/get-date-from-iso-week-number-in-python for more details # python3.6+ required for %G and %V # but now seems no equal distance between sell and buy data, no idea why elif freq == "M": cfmerge = cftable.groupby([cftable["date"].dt.year, cftable["date"].dt.month])[ "cash" ].sum() # datedata = [ # dt.datetime.strptime(str(a) + "15", "(%Y, %m)%d") # for a, _ in cfmerge.iteritems() # ] datedata = pd.date_range( startdate, yesterdayobj() +
pd.Timedelta(days=31)
pandas.Timedelta
# FIT DATA TO A CURVE # <NAME> - MIT Licence # inspired by @dimgrr. Based on # https://towardsdatascience.com/basic-curve-fitting-of-scientific-data-with-python-9592244a2509?gi=9c7c4ade0880 # https://github.com/venkatesannaveen/python-science-tutorial/blob/master/curve-fitting/curve-fitting-tutorial.ipynb # https://www.reddit.com/r/CoronavirusUS/comments/fqx8fn/ive_been_working_on_this_extrapolation_for_the/ # to explore : https://github.com/fcpenha/Gompertz-Makehan-Fit/blob/master/script.py # Import required packages import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np from scipy.optimize import curve_fit import matplotlib.dates as mdates import copy, math from lmfit import Model import pandas as pd import streamlit as st import datetime as dt from datetime import datetime, timedelta import matplotlib.animation as animation import imageio import streamlit.components.v1 as components import os import platform import webbrowser from pandas import read_csv, Timestamp, Timedelta, date_range from io import StringIO from numpy import log, exp, sqrt, clip, argmax, put from scipy.special import erfc, erf from matplotlib.pyplot import subplots from matplotlib.ticker import StrMethodFormatter from matplotlib.dates import ConciseDateFormatter, AutoDateLocator from matplotlib.backends.backend_agg import RendererAgg from matplotlib.backends.backend_agg import RendererAgg _lock = RendererAgg.lock from PIL import Image import glob # Functions to calculate values a,b and c ########################## def exponential(x, a, b, c): ''' Standard gompertz function a = height, b= halfway point, c = growth rate https://en.wikipedia.org/wiki/Gompertz_function ''' return a * np.exp(-b * np.exp(-c * x)) def derivate(x, a, b, c): ''' First derivate of the Gompertz function. Might contain an error''' return (np.exp(b * (-1 * np.exp(-c * x)) - c * x) * a * b * c ) + BASEVALUE #return a * b * c * np.exp(-b*np.exp(-c*x))*np.exp(-c*x) def derivate_of_derivate(x,a,b,c): return a*b*c*(b*c*exp(-c*x) - c)*exp(-b*exp(-c*x) - c*x) def gaussian(x, a, b, c): ''' Standard Guassian function. Doesnt give results, Not in use''' return a * np.exp(-np.power(x - b, 2) / (2 * np.power(c, 2))) def gaussian_2(x, a, b, c): ''' Another gaussian fuctnion. in use a = height, b = cen (?), c= width ''' return a * np.exp(-((x - b) ** 2) / c) def growth(x, a, b): """ Growth model. a is the value at t=0. b is the so-called R number. Doesnt work. FIX IT """ return np.power(a * 0.5, (x / (4 * (math.log(0.5) / math.log(b))))) # https://replit.com/@jsalsman/COVID19USlognormals def lognormal_c(x, s, mu, h): # x, sigma, mean, height return h * 0.5 * erfc(- (log(x) - mu) / (s * sqrt(2))) # https://en.wikipedia.org/wiki/Log-normal_distribution#Cumulative_distribution_function def normal_c(x, s, mu, h): # x, sigma, mean, height return h * 0.5 * (1 + erf((x - mu) / (s * sqrt(2)))) # ##################################################################### def find_gaussian_curvefit(x_values, y_values): try: popt_g2, pcov_g2 = curve_fit( f=gaussian_2, xdata=x_values, ydata=y_values, p0=[0, 0, 0], bounds=(-np.inf, np.inf), maxfev=10000, ) except RuntimeError as e: str_e = str(e) st.error(f"gaussian fit :\n{str_e}") return tuple(popt_g2) def use_curvefit(x_values, x_values_extra, y_values, title, daterange,i): """ Use the curve-fit from scipy. IN : x- and y-values. The ___-extra are for "predicting" the curve """ with _lock: st.subheader(f"Curvefit (scipy) - {title}") fig1x = plt.figure() try: a_start, b_start, c_start = 0,0,0 popt, pcov = curve_fit( f=exponential, xdata=x_values, ydata=y_values, #p0=[4600, 11, 0.5], p0 = [a_start, b_start, c_start ], # IC BEDDEN MAART APRIL bounds=(-np.inf, np.inf), maxfev=10000, ) plt.plot( x_values_extra, exponential(x_values_extra, *popt), "r-", label="exponential fit: a=%5.3f, b=%5.3f, c=%5.3f" % tuple(popt), ) except RuntimeError as e: str_e = str(e) st.error(f"Exponential fit :\n{str_e}") try: popt_d, pcov_d = curve_fit( f=derivate, xdata=x_values, ydata=y_values, #p0=[0, 0, 0], p0 = [a_start, b_start, c_start ], # IC BEDDEN MAART APRIL bounds=(-np.inf, np.inf), maxfev=10000, ) plt.plot( x_values_extra, derivate(x_values_extra, *popt_d), "g-", label="derivate fit: a=%5.3f, b=%5.3f, c=%5.3f" % tuple(popt_d), ) except RuntimeError as e: str_e = str(e) st.error(f"Derivate fit :\n{str_e}") # FIXIT # try: # popt_growth, pcov_growth = curve_fit( # f=growth, # xdata=x_values, # ydata=y_values, # p0=[500, 0.0001], # bounds=(-np.inf, np.inf), # maxfev=10000, # ) # plt.plot( # x_values_extra, # growth(x_values_extra, *popt_growth), # "y-", # label="growth: a=%5.3f, b=%5.3f" % tuple(popt_growth), # ) # except: # st.write("Error with growth model fit") try: popt_g, pcov_g = curve_fit( f=gaussian_2, xdata=x_values, ydata=y_values, p0=[a_start, b_start, c_start ], bounds=(-np.inf, np.inf), maxfev=10000, ) plt.plot( x_values_extra, gaussian_2(x_values_extra, *popt_g), "b-", label="gaussian fit: a=%5.3f, b=%5.3f, c=%5.3f" % tuple(popt_g), ) except RuntimeError as e: str_e = str(e) st.error(f"Gaussian fit :\n{str_e}") plt.scatter(x_values, y_values, s=20, color="#00b3b3", label="Data") plt.legend() plt.title(f"{title} / curve_fit (scipy)") plt.ylim(bottom=0) plt.xlabel(f"Days from {from_}") # POGING OM DATUMS OP DE X-AS TE KRIJGEN (TOFIX) # plt.xlim(daterange[0], daterange[-1]) # lay-out of the x axis # plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m-%d')) # interval_ = 5 # plt.gca().xaxis.set_major_locator(mdates.DayLocator(interval=interval_)) # plt.gcf().autofmt_xdate() #plt.show() filename= (f"{OUTPUT_DIR}scipi_{title}_{i}") plt.savefig(filename, dpi=100, bbox_inches="tight") st.pyplot(fig1x) # def make_gif(filelist): # # Create the frames # frames = [] # imgs = glob.glob("*.png") # for i in imgs: #     new_frame = Image.open(i) #     frames.append(new_frame) #   # # Save into a GIF file that loops forever # frames[0].save('png_to_gif.gif', format='GIF', #                append_images=frames[1:], #                save_all=True, #                duration=300, loop=0) def use_lmfit(x_values, y_values, functionlist, title,i, max_y_values): """ Use lmfit. IN : x- and y-values. functionlist (which functions to use) adapted from https://stackoverflow.com/a/49843706/4173718 TODO: Make all graphs in one graph """ a_start, b_start, c_start = 0,0,0 for function in functionlist: #placeholder0.subheader(f"LMFIT - {title} - {function}") # create a Model from the model function if function == "exponential": bmodel = Model(exponential) formula = "a * np.exp(-b * np.exp(-c * x))" elif function == "derivate": bmodel = Model(derivate) formula = "a * b * c * np.exp(b * (-1 * np.exp(-c * x)) - c * x)" elif function == "gaussian": bmodel = Model(gaussian_2) formula = "a * np.exp(-((x - b) ** 2) / c)" else: st.write("Please choose a function") st.stop() # create Parameters, giving initial values #params = bmodel.make_params(a=4711, b=12, c=0.06) params = bmodel.make_params(a=a_start, b=b_start, c=c_start) # IC BEDDEN MAART APRIL # params = bmodel.make_params() params["a"].min = a_start params["b"].min = b_start params["c"].min = c_start # do fit, st.write result result = bmodel.fit(y_values, params, x=x_values) a = round(result.params['a'].value,5) b= round(result.params['b'].value,5) c =round(result.params['c'].value,5) placeholder1.text(result.fit_report()) with _lock: #fig1y = plt.figure() fig1y, ax1 = plt.subplots() ax2 = ax1.twinx() # plot results -- note that `best_fit` is already available ax1.scatter(x_values, y_values, color="#00b3b3", s=2) #ax1.plot(x_values, result.best_fit, "g") res = (f"a: {a} / b: {b} / c: {c}") plt.title(f"{title} / lmfit - {function}\n{formula}\n{res}") t = np.linspace(0.0, TOTAL_DAYS_IN_GRAPH, 10000) # use `result.eval()` to evaluate model given params and x ax1.plot(t, bmodel.eval(result.params, x=t), "r-") ax2.plot (t, derivate_of_derivate(t,a,b,c), color = 'purple') ax2.axhline(linewidth=1, color='purple', alpha=0.5, linestyle="--") #ax1.plot (t, derivate(t,26660.1, 9.01298, 0.032198), color = 'purple') #ax2.plot (t, derivate_of_derivate(t,26660.1, 9.01298, 0.032198), color = 'yellow') #plt.ylim(bottom=0) #ax1.ylim(0, max_y_values*1.1) #ax1.set_ylim(510,1200) #ax2.set_ylim(0,12) ax1.set_xlabel(f"Days from {from_}") ax1.set_ylabel(f"{title} - red") ax2.set_ylabel("delta - purple") #plt.show() filename= (f"{OUTPUT_DIR}lmfit_{title}_{function}_{i}") plt.savefig(filename, dpi=100, bbox_inches="tight") placeholder.pyplot(fig1y) if prepare_for_animation == False: with _lock: fig1z = plt.figure() # plot results -- note that `best_fit` is already available if function == "exponential": plt.plot(t, derivate(t,a,b,c)) function_x = "derivate" formula_x = "a * b * c * np.exp(b * (-1 * np.exp(-c * x)) - c * x)" elif function == "derivate": plt.plot(t, exponential(t, a,b,c)) function_x = "exponential" formula_x = "a * np.exp(-b * np.exp(-c * x))" else: st.error("ERROR") st.stop() plt.title(f"{title} / {function_x}\n{formula_x}\n{res}") t = np.linspace(0.0, TOTAL_DAYS_IN_GRAPH, 10000) # use `result.eval()` to evaluate model given params and x #plt.plot(t, bmodel.eval(result.params, x=t), "r-") plt.ylim(bottom=0) plt.xlabel(f"Days from {from_}") plt.ylabel(title) #plt.show() #filename= (f"{OUTPUT_DIR}lmfit_{title}_{function}_{i}") #plt.savefig(filename, dpi=100, bbox_inches="tight") st.pyplot(fig1z) return filename def fit_the_values_really(x_values, y_values, which_method, title, daterange,i, max_y_values): x_values_extra = np.linspace( start=0, stop=TOTAL_DAYS_IN_GRAPH - 1, num=TOTAL_DAYS_IN_GRAPH ) x_values = x_values[:i] y_values = y_values[:i] if prepare_for_animation == False: use_curvefit(x_values, x_values_extra, y_values, title, daterange,i) return use_lmfit(x_values,y_values, [which_method], title,i, max_y_values) def fit_the_values(to_do_list , total_days, daterange, which_method, prepare_for_animation): """ We are going to fit the values """ # Here we go ! st.header("Fitting data to formulas") infox = ( '<br>Exponential / Standard gompertz function : <i>a * exp(-b * np.exp(-c * x))</i></li>' '<br>First derivate of the Gompertz function : <i>a * b * c * exp(b * (-1 * exp(-c * x)) - c * x)</i></li>' '<br>Gaussian : <i>a * exp(-((x - b) ** 2) / c)</i></li>' '<br>Working on growth model: <i>(a * 0.5 ^ (x / (4 * (math.log(0.5) / math.log(b)))))</i> (b will be the Rt-number)</li>' ) st.markdown(infox, unsafe_allow_html=True) global placeholder0, placeholder, placeholder1 placeholder0 = st.empty() placeholder = st.empty() placeholder1 = st.empty() el = st.empty() for v in to_do_list: title = v[0] y_values = v[1] max_y_values = max(y_values) # some preperations number_of_y_values = len(y_values) global TOTAL_DAYS_IN_GRAPH TOTAL_DAYS_IN_GRAPH = total_days # number of total days x_values = np.linspace(start=0, stop=number_of_y_values - 1, num=number_of_y_values) if prepare_for_animation == True: filenames = [] for i in range(5, len(x_values)): filename = fit_the_values_really(x_values, y_values, which_method, title, daterange, i, max_y_values) filenames.append(filename) # build gif with imageio.get_writer('mygif.gif', mode='I') as writer: for filename_ in filenames: image = imageio.imread(f"{filename_}.png") writer.append_data(image) webbrowser.open('mygif.gif') # Remove files for filename__ in set(filenames): os.remove(f"{filename__}.png") else: for i in range(len(x_values)-1, len(x_values)): filename = fit_the_values_really(x_values, y_values, which_method, title, daterange, i, max_y_values) # FIXIT # aq, bq, cq = find_gaussian_curvefit(x_values, y_values) # st.write(f"Find Gaussian curvefit - a:{aq} b:{bq} c: {cq}") def select_period(df, show_from, show_until): """ _ _ _ """ if show_from is None: show_from = "2020-2-27" if show_until is None: show_until = "2020-4-1" mask = (df[DATEFIELD].dt.date >= show_from) & (df[DATEFIELD].dt.date <= show_until) df = df.loc[mask] df = df.reset_index() return df def normal_c(df): #https://replit.com/@jsalsman/COVID19USlognormals st.subheader("Normal_c") df = df.set_index(DATEFIELD) firstday = df.index[0] + Timedelta('1d') nextday = df.index[-1] + Timedelta('1d') lastday = df.index[-1] + Timedelta(TOTAL_DAYS_IN_GRAPH - len(df), 'd') # extrapolate with _lock: #fig1y = plt.figure() fig1yz, ax = subplots() ax.set_title('NL COVID-19 cumulative log-lognormal extrapolations\n' + 'Source: repl.it/@jsalsman/COVID19USlognormals') x = ((df.index - Timestamp('2020-01-01')) # independent // Timedelta('1d')).values # small day-of-year integers yi = df['Total_reported_cumm'].values # dependent yd = df['Deceased_cumm'].values # dependent exrange = range((Timestamp(nextday) - Timestamp(firstday)) // Timedelta('1d'), (Timestamp(lastday) + Timedelta('1d') - Timestamp(firstday)) // Timedelta('1d')) # day-of-year ints indates = date_range(df.index[0], df.index[-1]) exdates = date_range(nextday, lastday) ax.scatter(indates, yi, color="#00b3b3", label='Infected') ax.scatter(indates, yd, color="#00b3b3", label='Dead') sqrt2 = sqrt(2) im = Model(normal_c) st.write (x) iparams = im.make_params(s=0.3, mu=4.3, h=16.5) st.write (iparams) #iparams['s'].min = 0; iparams['h'].min = 0 iresult = im.fit(log(yi+1), iparams, x=x) st.text('---- Infections:\n' + iresult.fit_report()) ax.plot(indates, exp(iresult.best_fit)-1, 'b', label='Infections fit') ipred = iresult.eval(x=exrange) ax.plot(exdates, exp(ipred)-1, 'b--', label='Forecast: {:,.0f}'.format(exp(ipred[-1])-1)) iupred = iresult.eval_uncertainty(x=exrange, sigma=0.95) # 95% interval iintlow = clip(ipred-iupred, ipred[0], None) put(iintlow, range(argmax(iintlow), len(iintlow)), iintlow[argmax(iintlow)]) ax.fill_between(exdates, exp(iintlow), exp(ipred+iupred), alpha=0.35, color='b') dm = Model(normal_c) dparams = dm.make_params(s=19.8, mu=79.1, h=11.4) # initial guesses dparams['s'].min = 0; iparams['h'].min = 0 dresult = dm.fit(log(yd+1), dparams, x=x) st.text('---- Deaths:\n' + dresult.fit_report()) ax.plot(indates, exp(dresult.best_fit)-1, 'r', label='Deaths fit') dpred = dresult.eval(x=exrange) ax.plot(exdates, exp(dpred)-1, 'r--', label='Forecast: {:,.0f}'.format(exp(dpred[-1])-1)) dupred = dresult.eval_uncertainty(x=exrange, sigma=0.95) # 95% interval dintlow = clip(dpred-dupred, log(max(yd)+1), None) put(dintlow, range(argmax(dintlow), len(dintlow)), dintlow[argmax(dintlow)]) ax.fill_between(exdates, exp(dintlow), exp(dpred+dupred), alpha=0.35, color='r') ax.fill_between(exdates, 0.012 * (exp(iintlow)), 0.012 * (exp(ipred+iupred)), alpha=0.85, color='g', label='Deaths from observed fatality rate') ax.set_xlim(df.index[0], lastday) #ax.set_yscale('log') # semilog #ax.set_ylim(0, 1500000) ax.yaxis.set_major_formatter(StrMethodFormatter('{x:,.0f}')) # comma separators ax.grid() ax.legend(loc="upper left") ax.xaxis.set_major_formatter(ConciseDateFormatter(AutoDateLocator(), show_offset=False)) ax.set_xlabel('95% prediction confidence intervals shaded') #fig.savefig('plot.png', bbox_inches='tight') #print('\nTO VIEW GRAPH: click on plot.png in the file pane to the left.') #fig.show() st.pyplot(fig1yz) st.text('Infections at end of period shown: {:,.0f}. Deaths: {:,.0f}.'.format( exp(ipred[-1])-1, exp(dpred[-1])-1)) def loglognormal(df, what_to_display): #https://replit.com/@jsalsman/COVID19USlognormals st.subheader("Log Normal") df = df.set_index(DATEFIELD) firstday = df.index[0] + Timedelta('1d') nextday = df.index[-1] + Timedelta('1d') lastday = df.index[-1] + Timedelta(TOTAL_DAYS_IN_GRAPH - len(df), 'd') # extrapolate with _lock: #fig1y = plt.figure() fig1yz, ax = subplots() ax.set_title('NL COVID-19 cumulative log-lognormal extrapolations\n' + 'Source: repl.it/@jsalsman/COVID19USlognormals') x = ((df.index - Timestamp('2020-01-01')) # independent //
Timedelta('1d')
pandas.Timedelta
from datetime import datetime from decimal import Decimal from io import StringIO import numpy as np import pytest from pandas.errors import PerformanceWarning import pandas as pd from pandas import DataFrame, Index, MultiIndex, Series, Timestamp, date_range, read_csv import pandas._testing as tm from pandas.core.base import SpecificationError import pandas.core.common as com def test_repr(): # GH18203 result = repr(pd.Grouper(key="A", level="B")) expected = "Grouper(key='A', level='B', axis=0, sort=False)" assert result == expected @pytest.mark.parametrize("dtype", ["int64", "int32", "float64", "float32"]) def test_basic(dtype): data = Series(np.arange(9) // 3, index=np.arange(9), dtype=dtype) index = np.arange(9) np.random.shuffle(index) data = data.reindex(index) grouped = data.groupby(lambda x: x // 3) for k, v in grouped: assert len(v) == 3 agged = grouped.aggregate(np.mean) assert agged[1] == 1 tm.assert_series_equal(agged, grouped.agg(np.mean)) # shorthand tm.assert_series_equal(agged, grouped.mean()) tm.assert_series_equal(grouped.agg(np.sum), grouped.sum()) expected = grouped.apply(lambda x: x * x.sum()) transformed = grouped.transform(lambda x: x * x.sum()) assert transformed[7] == 12 tm.assert_series_equal(transformed, expected) value_grouped = data.groupby(data) tm.assert_series_equal( value_grouped.aggregate(np.mean), agged, check_index_type=False ) # complex agg agged = grouped.aggregate([np.mean, np.std]) msg = r"nested renamer is not supported" with pytest.raises(SpecificationError, match=msg): grouped.aggregate({"one": np.mean, "two": np.std}) group_constants = {0: 10, 1: 20, 2: 30} agged = grouped.agg(lambda x: group_constants[x.name] + x.mean()) assert agged[1] == 21 # corner cases msg = "Must produce aggregated value" # exception raised is type Exception with pytest.raises(Exception, match=msg): grouped.aggregate(lambda x: x * 2) def test_groupby_nonobject_dtype(mframe, df_mixed_floats): key = mframe.index.codes[0] grouped = mframe.groupby(key) result = grouped.sum() expected = mframe.groupby(key.astype("O")).sum() tm.assert_frame_equal(result, expected) # GH 3911, mixed frame non-conversion df = df_mixed_floats.copy() df["value"] = range(len(df)) def max_value(group): return group.loc[group["value"].idxmax()] applied = df.groupby("A").apply(max_value) result = applied.dtypes expected = Series( [np.dtype("object")] * 2 + [np.dtype("float64")] * 2 + [np.dtype("int64")], index=["A", "B", "C", "D", "value"], ) tm.assert_series_equal(result, expected) def test_groupby_return_type(): # GH2893, return a reduced type df1 = DataFrame( [ {"val1": 1, "val2": 20}, {"val1": 1, "val2": 19}, {"val1": 2, "val2": 27}, {"val1": 2, "val2": 12}, ] ) def func(dataf): return dataf["val2"] - dataf["val2"].mean() with tm.assert_produces_warning(FutureWarning): result = df1.groupby("val1", squeeze=True).apply(func) assert isinstance(result, Series) df2 = DataFrame( [ {"val1": 1, "val2": 20}, {"val1": 1, "val2": 19}, {"val1": 1, "val2": 27}, {"val1": 1, "val2": 12}, ] ) def func(dataf): return dataf["val2"] - dataf["val2"].mean() with tm.assert_produces_warning(FutureWarning): result = df2.groupby("val1", squeeze=True).apply(func) assert isinstance(result, Series) # GH3596, return a consistent type (regression in 0.11 from 0.10.1) df = DataFrame([[1, 1], [1, 1]], columns=["X", "Y"]) with tm.assert_produces_warning(FutureWarning): result = df.groupby("X", squeeze=False).count() assert isinstance(result, DataFrame) def test_inconsistent_return_type(): # GH5592 # inconsistent return type df = DataFrame( dict( A=["Tiger", "Tiger", "Tiger", "Lamb", "Lamb", "Pony", "Pony"], B=Series(np.arange(7), dtype="int64"), C=date_range("20130101", periods=7), ) ) def f(grp): return grp.iloc[0] expected = df.groupby("A").first()[["B"]] result = df.groupby("A").apply(f)[["B"]] tm.assert_frame_equal(result, expected) def f(grp): if grp.name == "Tiger": return None return grp.iloc[0] result = df.groupby("A").apply(f)[["B"]] e = expected.copy() e.loc["Tiger"] = np.nan tm.assert_frame_equal(result, e) def f(grp): if grp.name == "Pony": return None return grp.iloc[0] result = df.groupby("A").apply(f)[["B"]] e = expected.copy() e.loc["Pony"] = np.nan tm.assert_frame_equal(result, e) # 5592 revisited, with datetimes def f(grp): if grp.name == "Pony": return None return grp.iloc[0] result = df.groupby("A").apply(f)[["C"]] e = df.groupby("A").first()[["C"]] e.loc["Pony"] = pd.NaT tm.assert_frame_equal(result, e) # scalar outputs def f(grp): if grp.name == "Pony": return None return grp.iloc[0].loc["C"] result = df.groupby("A").apply(f) e = df.groupby("A").first()["C"].copy() e.loc["Pony"] = np.nan e.name = None tm.assert_series_equal(result, e) def test_pass_args_kwargs(ts, tsframe): def f(x, q=None, axis=0): return np.percentile(x, q, axis=axis) g = lambda x: np.percentile(x, 80, axis=0) # Series ts_grouped = ts.groupby(lambda x: x.month) agg_result = ts_grouped.agg(np.percentile, 80, axis=0) apply_result = ts_grouped.apply(np.percentile, 80, axis=0) trans_result = ts_grouped.transform(np.percentile, 80, axis=0) agg_expected = ts_grouped.quantile(0.8) trans_expected = ts_grouped.transform(g) tm.assert_series_equal(apply_result, agg_expected) tm.assert_series_equal(agg_result, agg_expected) tm.assert_series_equal(trans_result, trans_expected) agg_result = ts_grouped.agg(f, q=80) apply_result = ts_grouped.apply(f, q=80) trans_result = ts_grouped.transform(f, q=80) tm.assert_series_equal(agg_result, agg_expected) tm.assert_series_equal(apply_result, agg_expected) tm.assert_series_equal(trans_result, trans_expected) # DataFrame df_grouped = tsframe.groupby(lambda x: x.month) agg_result = df_grouped.agg(np.percentile, 80, axis=0) apply_result = df_grouped.apply(DataFrame.quantile, 0.8) expected = df_grouped.quantile(0.8) tm.assert_frame_equal(apply_result, expected, check_names=False) tm.assert_frame_equal(agg_result, expected) agg_result = df_grouped.agg(f, q=80) apply_result = df_grouped.apply(DataFrame.quantile, q=0.8) tm.assert_frame_equal(agg_result, expected) tm.assert_frame_equal(apply_result, expected, check_names=False) def test_len(): df = tm.makeTimeDataFrame() grouped = df.groupby([lambda x: x.year, lambda x: x.month, lambda x: x.day]) assert len(grouped) == len(df) grouped = df.groupby([lambda x: x.year, lambda x: x.month]) expected = len({(x.year, x.month) for x in df.index}) assert len(grouped) == expected # issue 11016 df = pd.DataFrame(dict(a=[np.nan] * 3, b=[1, 2, 3])) assert len(df.groupby(("a"))) == 0 assert len(df.groupby(("b"))) == 3 assert len(df.groupby(["a", "b"])) == 3 def test_basic_regression(): # regression result = Series([1.0 * x for x in list(range(1, 10)) * 10]) data = np.random.random(1100) * 10.0 groupings = Series(data) grouped = result.groupby(groupings) grouped.mean() @pytest.mark.parametrize( "dtype", ["float64", "float32", "int64", "int32", "int16", "int8"] ) def test_with_na_groups(dtype): index = Index(np.arange(10)) values = Series(np.ones(10), index, dtype=dtype) labels = Series( [np.nan, "foo", "bar", "bar", np.nan, np.nan, "bar", "bar", np.nan, "foo"], index=index, ) # this SHOULD be an int grouped = values.groupby(labels) agged = grouped.agg(len) expected = Series([4, 2], index=["bar", "foo"]) tm.assert_series_equal(agged, expected, check_dtype=False) # assert issubclass(agged.dtype.type, np.integer) # explicitly return a float from my function def f(x): return float(len(x)) agged = grouped.agg(f) expected = Series([4, 2], index=["bar", "foo"]) tm.assert_series_equal(agged, expected, check_dtype=False) assert issubclass(agged.dtype.type, np.dtype(dtype).type) def test_indices_concatenation_order(): # GH 2808 def f1(x): y = x[(x.b % 2) == 1] ** 2 if y.empty: multiindex = MultiIndex(levels=[[]] * 2, codes=[[]] * 2, names=["b", "c"]) res = DataFrame(columns=["a"], index=multiindex) return res else: y = y.set_index(["b", "c"]) return y def f2(x): y = x[(x.b % 2) == 1] ** 2 if y.empty: return DataFrame() else: y = y.set_index(["b", "c"]) return y def f3(x): y = x[(x.b % 2) == 1] ** 2 if y.empty: multiindex = MultiIndex( levels=[[]] * 2, codes=[[]] * 2, names=["foo", "bar"] ) res = DataFrame(columns=["a", "b"], index=multiindex) return res else: return y df = DataFrame({"a": [1, 2, 2, 2], "b": range(4), "c": range(5, 9)}) df2 = DataFrame({"a": [3, 2, 2, 2], "b": range(4), "c": range(5, 9)}) # correct result result1 = df.groupby("a").apply(f1) result2 = df2.groupby("a").apply(f1) tm.assert_frame_equal(result1, result2) # should fail (not the same number of levels) msg = "Cannot concat indices that do not have the same number of levels" with pytest.raises(AssertionError, match=msg): df.groupby("a").apply(f2) with pytest.raises(AssertionError, match=msg): df2.groupby("a").apply(f2) # should fail (incorrect shape) with pytest.raises(AssertionError, match=msg): df.groupby("a").apply(f3) with pytest.raises(AssertionError, match=msg): df2.groupby("a").apply(f3) def test_attr_wrapper(ts): grouped = ts.groupby(lambda x: x.weekday()) result = grouped.std() expected = grouped.agg(lambda x: np.std(x, ddof=1)) tm.assert_series_equal(result, expected) # this is pretty cool result = grouped.describe() expected = {name: gp.describe() for name, gp in grouped} expected = DataFrame(expected).T tm.assert_frame_equal(result, expected) # get attribute result = grouped.dtype expected = grouped.agg(lambda x: x.dtype) # make sure raises error msg = "'SeriesGroupBy' object has no attribute 'foo'" with pytest.raises(AttributeError, match=msg): getattr(grouped, "foo") def test_frame_groupby(tsframe): grouped = tsframe.groupby(lambda x: x.weekday()) # aggregate aggregated = grouped.aggregate(np.mean) assert len(aggregated) == 5 assert len(aggregated.columns) == 4 # by string tscopy = tsframe.copy() tscopy["weekday"] = [x.weekday() for x in tscopy.index] stragged = tscopy.groupby("weekday").aggregate(np.mean) tm.assert_frame_equal(stragged, aggregated, check_names=False) # transform grouped = tsframe.head(30).groupby(lambda x: x.weekday()) transformed = grouped.transform(lambda x: x - x.mean()) assert len(transformed) == 30 assert len(transformed.columns) == 4 # transform propagate transformed = grouped.transform(lambda x: x.mean()) for name, group in grouped: mean = group.mean() for idx in group.index: tm.assert_series_equal(transformed.xs(idx), mean, check_names=False) # iterate for weekday, group in grouped: assert group.index[0].weekday() == weekday # groups / group_indices groups = grouped.groups indices = grouped.indices for k, v in groups.items(): samething = tsframe.index.take(indices[k]) assert (samething == v).all() def test_frame_groupby_columns(tsframe): mapping = {"A": 0, "B": 0, "C": 1, "D": 1} grouped = tsframe.groupby(mapping, axis=1) # aggregate aggregated = grouped.aggregate(np.mean) assert len(aggregated) == len(tsframe) assert len(aggregated.columns) == 2 # transform tf = lambda x: x - x.mean() groupedT = tsframe.T.groupby(mapping, axis=0) tm.assert_frame_equal(groupedT.transform(tf).T, grouped.transform(tf)) # iterate for k, v in grouped: assert len(v.columns) == 2 def test_frame_set_name_single(df): grouped = df.groupby("A") result = grouped.mean() assert result.index.name == "A" result = df.groupby("A", as_index=False).mean() assert result.index.name != "A" result = grouped.agg(np.mean) assert result.index.name == "A" result = grouped.agg({"C": np.mean, "D": np.std}) assert result.index.name == "A" result = grouped["C"].mean() assert result.index.name == "A" result = grouped["C"].agg(np.mean) assert result.index.name == "A" result = grouped["C"].agg([np.mean, np.std]) assert result.index.name == "A" msg = r"nested renamer is not supported" with pytest.raises(SpecificationError, match=msg): grouped["C"].agg({"foo": np.mean, "bar": np.std}) def test_multi_func(df): col1 = df["A"] col2 = df["B"] grouped = df.groupby([col1.get, col2.get]) agged = grouped.mean() expected = df.groupby(["A", "B"]).mean() # TODO groupby get drops names tm.assert_frame_equal( agged.loc[:, ["C", "D"]], expected.loc[:, ["C", "D"]], check_names=False ) # some "groups" with no data df = DataFrame( { "v1": np.random.randn(6), "v2": np.random.randn(6), "k1": np.array(["b", "b", "b", "a", "a", "a"]), "k2": np.array(["1", "1", "1", "2", "2", "2"]), }, index=["one", "two", "three", "four", "five", "six"], ) # only verify that it works for now grouped = df.groupby(["k1", "k2"]) grouped.agg(np.sum) def test_multi_key_multiple_functions(df): grouped = df.groupby(["A", "B"])["C"] agged = grouped.agg([np.mean, np.std]) expected = DataFrame({"mean": grouped.agg(np.mean), "std": grouped.agg(np.std)}) tm.assert_frame_equal(agged, expected) def test_frame_multi_key_function_list(): data = DataFrame( { "A": [ "foo", "foo", "foo", "foo", "bar", "bar", "bar", "bar", "foo", "foo", "foo", ], "B": [ "one", "one", "one", "two", "one", "one", "one", "two", "two", "two", "one", ], "C": [ "dull", "dull", "shiny", "dull", "dull", "shiny", "shiny", "dull", "shiny", "shiny", "shiny", ], "D": np.random.randn(11), "E": np.random.randn(11), "F": np.random.randn(11), } ) grouped = data.groupby(["A", "B"]) funcs = [np.mean, np.std] agged = grouped.agg(funcs) expected = pd.concat( [grouped["D"].agg(funcs), grouped["E"].agg(funcs), grouped["F"].agg(funcs)], keys=["D", "E", "F"], axis=1, ) assert isinstance(agged.index, MultiIndex) assert isinstance(expected.index, MultiIndex) tm.assert_frame_equal(agged, expected) @pytest.mark.parametrize("op", [lambda x: x.sum(), lambda x: x.mean()]) def test_groupby_multiple_columns(df, op): data = df grouped = data.groupby(["A", "B"]) result1 = op(grouped) keys = [] values = [] for n1, gp1 in data.groupby("A"): for n2, gp2 in gp1.groupby("B"): keys.append((n1, n2)) values.append(op(gp2.loc[:, ["C", "D"]])) mi = MultiIndex.from_tuples(keys, names=["A", "B"]) expected = pd.concat(values, axis=1).T expected.index = mi # a little bit crude for col in ["C", "D"]: result_col = op(grouped[col]) pivoted = result1[col] exp = expected[col] tm.assert_series_equal(result_col, exp) tm.assert_series_equal(pivoted, exp) # test single series works the same result = data["C"].groupby([data["A"], data["B"]]).mean() expected = data.groupby(["A", "B"]).mean()["C"] tm.assert_series_equal(result, expected) def test_as_index_select_column(): # GH 5764 df = pd.DataFrame([[1, 2], [1, 4], [5, 6]], columns=["A", "B"]) result = df.groupby("A", as_index=False)["B"].get_group(1) expected = pd.Series([2, 4], name="B") tm.assert_series_equal(result, expected) result = df.groupby("A", as_index=False)["B"].apply(lambda x: x.cumsum()) expected = pd.Series( [2, 6, 6], name="B", index=pd.MultiIndex.from_tuples([(0, 0), (0, 1), (1, 2)]) ) tm.assert_series_equal(result, expected) def test_groupby_as_index_select_column_sum_empty_df(): # GH 35246 df = DataFrame(columns=["A", "B", "C"]) left = df.groupby(by="A", as_index=False)["B"].sum() assert type(left) is DataFrame assert left.to_dict() == {"A": {}, "B": {}} def test_groupby_as_index_agg(df): grouped = df.groupby("A", as_index=False) # single-key result = grouped.agg(np.mean) expected = grouped.mean() tm.assert_frame_equal(result, expected) result2 = grouped.agg({"C": np.mean, "D": np.sum}) expected2 = grouped.mean() expected2["D"] = grouped.sum()["D"] tm.assert_frame_equal(result2, expected2) grouped = df.groupby("A", as_index=True) msg = r"nested renamer is not supported" with pytest.raises(SpecificationError, match=msg): grouped["C"].agg({"Q": np.sum}) # multi-key grouped = df.groupby(["A", "B"], as_index=False) result = grouped.agg(np.mean) expected = grouped.mean() tm.assert_frame_equal(result, expected) result2 = grouped.agg({"C": np.mean, "D": np.sum}) expected2 = grouped.mean() expected2["D"] = grouped.sum()["D"] tm.assert_frame_equal(result2, expected2) expected3 = grouped["C"].sum() expected3 = DataFrame(expected3).rename(columns={"C": "Q"}) result3 = grouped["C"].agg({"Q": np.sum}) tm.assert_frame_equal(result3, expected3) # GH7115 & GH8112 & GH8582 df = DataFrame(np.random.randint(0, 100, (50, 3)), columns=["jim", "joe", "jolie"]) ts = Series(np.random.randint(5, 10, 50), name="jim") gr = df.groupby(ts) gr.nth(0) # invokes set_selection_from_grouper internally tm.assert_frame_equal(gr.apply(sum), df.groupby(ts).apply(sum)) for attr in ["mean", "max", "count", "idxmax", "cumsum", "all"]: gr = df.groupby(ts, as_index=False) left = getattr(gr, attr)() gr = df.groupby(ts.values, as_index=True) right = getattr(gr, attr)().reset_index(drop=True) tm.assert_frame_equal(left, right) def test_ops_not_as_index(reduction_func): # GH 10355, 21090 # Using as_index=False should not modify grouped column if reduction_func in ("corrwith",): pytest.skip("Test not applicable") if reduction_func in ("nth", "ngroup",): pytest.skip("Skip until behavior is determined (GH #5755)") df = DataFrame(np.random.randint(0, 5, size=(100, 2)), columns=["a", "b"]) expected = getattr(df.groupby("a"), reduction_func)() if reduction_func == "size": expected = expected.rename("size") expected = expected.reset_index() g = df.groupby("a", as_index=False) result = getattr(g, reduction_func)() tm.assert_frame_equal(result, expected) result = g.agg(reduction_func) tm.assert_frame_equal(result, expected) result = getattr(g["b"], reduction_func)() tm.assert_frame_equal(result, expected) result = g["b"].agg(reduction_func) tm.assert_frame_equal(result, expected) def test_as_index_series_return_frame(df): grouped = df.groupby("A", as_index=False) grouped2 = df.groupby(["A", "B"], as_index=False) result = grouped["C"].agg(np.sum) expected = grouped.agg(np.sum).loc[:, ["A", "C"]] assert isinstance(result, DataFrame) tm.assert_frame_equal(result, expected) result2 = grouped2["C"].agg(np.sum) expected2 = grouped2.agg(np.sum).loc[:, ["A", "B", "C"]] assert isinstance(result2, DataFrame) tm.assert_frame_equal(result2, expected2) result = grouped["C"].sum() expected = grouped.sum().loc[:, ["A", "C"]] assert isinstance(result, DataFrame) tm.assert_frame_equal(result, expected) result2 = grouped2["C"].sum() expected2 = grouped2.sum().loc[:, ["A", "B", "C"]] assert isinstance(result2, DataFrame) tm.assert_frame_equal(result2, expected2) def test_as_index_series_column_slice_raises(df): # GH15072 grouped = df.groupby("A", as_index=False) msg = r"Column\(s\) C already selected" with pytest.raises(IndexError, match=msg): grouped["C"].__getitem__("D") def test_groupby_as_index_cython(df): data = df # single-key grouped = data.groupby("A", as_index=False) result = grouped.mean() expected = data.groupby(["A"]).mean() expected.insert(0, "A", expected.index) expected.index = np.arange(len(expected)) tm.assert_frame_equal(result, expected) # multi-key grouped = data.groupby(["A", "B"], as_index=False) result = grouped.mean() expected = data.groupby(["A", "B"]).mean() arrays = list(zip(*expected.index.values)) expected.insert(0, "A", arrays[0]) expected.insert(1, "B", arrays[1]) expected.index = np.arange(len(expected)) tm.assert_frame_equal(result, expected) def test_groupby_as_index_series_scalar(df): grouped = df.groupby(["A", "B"], as_index=False) # GH #421 result = grouped["C"].agg(len) expected = grouped.agg(len).loc[:, ["A", "B", "C"]] tm.assert_frame_equal(result, expected) def test_groupby_as_index_corner(df, ts): msg = "as_index=False only valid with DataFrame" with pytest.raises(TypeError, match=msg): ts.groupby(lambda x: x.weekday(), as_index=False) msg = "as_index=False only valid for axis=0" with pytest.raises(ValueError, match=msg): df.groupby(lambda x: x.lower(), as_index=False, axis=1) def test_groupby_multiple_key(df): df = tm.makeTimeDataFrame() grouped = df.groupby([lambda x: x.year, lambda x: x.month, lambda x: x.day]) agged = grouped.sum() tm.assert_almost_equal(df.values, agged.values) grouped = df.T.groupby( [lambda x: x.year, lambda x: x.month, lambda x: x.day], axis=1 ) agged = grouped.agg(lambda x: x.sum()) tm.assert_index_equal(agged.index, df.columns) tm.assert_almost_equal(df.T.values, agged.values) agged = grouped.agg(lambda x: x.sum()) tm.assert_almost_equal(df.T.values, agged.values) def test_groupby_multi_corner(df): # test that having an all-NA column doesn't mess you up df = df.copy() df["bad"] = np.nan agged = df.groupby(["A", "B"]).mean() expected = df.groupby(["A", "B"]).mean() expected["bad"] = np.nan tm.assert_frame_equal(agged, expected) def test_omit_nuisance(df): grouped = df.groupby("A") result = grouped.mean() expected = df.loc[:, ["A", "C", "D"]].groupby("A").mean() tm.assert_frame_equal(result, expected) agged = grouped.agg(np.mean) exp = grouped.mean() tm.assert_frame_equal(agged, exp) df = df.loc[:, ["A", "C", "D"]] df["E"] = datetime.now() grouped = df.groupby("A") result = grouped.agg(np.sum) expected = grouped.sum() tm.assert_frame_equal(result, expected) # won't work with axis = 1 grouped = df.groupby({"A": 0, "C": 0, "D": 1, "E": 1}, axis=1) msg = "reduction operation 'sum' not allowed for this dtype" with pytest.raises(TypeError, match=msg): grouped.agg(lambda x: x.sum(0, numeric_only=False)) def test_omit_nuisance_python_multiple(three_group): grouped = three_group.groupby(["A", "B"]) agged = grouped.agg(np.mean) exp = grouped.mean() tm.assert_frame_equal(agged, exp) def test_empty_groups_corner(mframe): # handle empty groups df = DataFrame( { "k1": np.array(["b", "b", "b", "a", "a", "a"]), "k2": np.array(["1", "1", "1", "2", "2", "2"]), "k3": ["foo", "bar"] * 3, "v1": np.random.randn(6), "v2": np.random.randn(6), } ) grouped = df.groupby(["k1", "k2"]) result = grouped.agg(np.mean) expected = grouped.mean() tm.assert_frame_equal(result, expected) grouped = mframe[3:5].groupby(level=0) agged = grouped.apply(lambda x: x.mean()) agged_A = grouped["A"].apply(np.mean) tm.assert_series_equal(agged["A"], agged_A) assert agged.index.name == "first" def test_nonsense_func(): df = DataFrame([0]) msg = r"unsupported operand type\(s\) for \+: 'int' and 'str'" with pytest.raises(TypeError, match=msg): df.groupby(lambda x: x + "foo") def test_wrap_aggregated_output_multindex(mframe): df = mframe.T df["baz", "two"] = "peekaboo" keys = [np.array([0, 0, 1]), np.array([0, 0, 1])] agged = df.groupby(keys).agg(np.mean) assert isinstance(agged.columns, MultiIndex) def aggfun(ser): if ser.name == ("foo", "one"): raise TypeError else: return ser.sum() agged2 = df.groupby(keys).aggregate(aggfun) assert len(agged2.columns) + 1 == len(df.columns) def test_groupby_level_apply(mframe): result = mframe.groupby(level=0).count() assert result.index.name == "first" result = mframe.groupby(level=1).count() assert result.index.name == "second" result = mframe["A"].groupby(level=0).count() assert result.index.name == "first" def test_groupby_level_mapper(mframe): deleveled = mframe.reset_index() mapper0 = {"foo": 0, "bar": 0, "baz": 1, "qux": 1} mapper1 = {"one": 0, "two": 0, "three": 1} result0 = mframe.groupby(mapper0, level=0).sum() result1 = mframe.groupby(mapper1, level=1).sum() mapped_level0 = np.array([mapper0.get(x) for x in deleveled["first"]]) mapped_level1 = np.array([mapper1.get(x) for x in deleveled["second"]]) expected0 = mframe.groupby(mapped_level0).sum() expected1 = mframe.groupby(mapped_level1).sum() expected0.index.name, expected1.index.name = "first", "second" tm.assert_frame_equal(result0, expected0) tm.assert_frame_equal(result1, expected1) def test_groupby_level_nonmulti(): # GH 1313, GH 13901 s = Series([1, 2, 3, 10, 4, 5, 20, 6], Index([1, 2, 3, 1, 4, 5, 2, 6], name="foo")) expected = Series([11, 22, 3, 4, 5, 6], Index(range(1, 7), name="foo")) result = s.groupby(level=0).sum() tm.assert_series_equal(result, expected) result = s.groupby(level=[0]).sum() tm.assert_series_equal(result, expected) result = s.groupby(level=-1).sum() tm.assert_series_equal(result, expected) result = s.groupby(level=[-1]).sum() tm.assert_series_equal(result, expected) msg = "level > 0 or level < -1 only valid with MultiIndex" with pytest.raises(ValueError, match=msg): s.groupby(level=1) with pytest.raises(ValueError, match=msg): s.groupby(level=-2) msg = "No group keys passed!" with pytest.raises(ValueError, match=msg): s.groupby(level=[]) msg = "multiple levels only valid with MultiIndex" with pytest.raises(ValueError, match=msg): s.groupby(level=[0, 0]) with pytest.raises(ValueError, match=msg): s.groupby(level=[0, 1]) msg = "level > 0 or level < -1 only valid with MultiIndex" with pytest.raises(ValueError, match=msg): s.groupby(level=[1]) def test_groupby_complex(): # GH 12902 a = Series(data=np.arange(4) * (1 + 2j), index=[0, 0, 1, 1]) expected = Series((1 + 2j, 5 + 10j)) result = a.groupby(level=0).sum() tm.assert_series_equal(result, expected) result = a.sum(level=0) tm.assert_series_equal(result, expected) def test_groupby_series_indexed_differently(): s1 = Series( [5.0, -9.0, 4.0, 100.0, -5.0, 55.0, 6.7], index=Index(["a", "b", "c", "d", "e", "f", "g"]), ) s2 = Series( [1.0, 1.0, 4.0, 5.0, 5.0, 7.0], index=Index(["a", "b", "d", "f", "g", "h"]) ) grouped = s1.groupby(s2) agged = grouped.mean() exp = s1.groupby(s2.reindex(s1.index).get).mean() tm.assert_series_equal(agged, exp) def test_groupby_with_hier_columns(): tuples = list( zip( *[ ["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"], ["one", "two", "one", "two", "one", "two", "one", "two"], ] ) ) index = MultiIndex.from_tuples(tuples) columns = MultiIndex.from_tuples( [("A", "cat"), ("B", "dog"), ("B", "cat"), ("A", "dog")] ) df = DataFrame(np.random.randn(8, 4), index=index, columns=columns) result = df.groupby(level=0).mean() tm.assert_index_equal(result.columns, columns) result = df.groupby(level=0, axis=1).mean() tm.assert_index_equal(result.index, df.index) result = df.groupby(level=0).agg(np.mean) tm.assert_index_equal(result.columns, columns) result = df.groupby(level=0).apply(lambda x: x.mean()) tm.assert_index_equal(result.columns, columns) result = df.groupby(level=0, axis=1).agg(lambda x: x.mean(1)) tm.assert_index_equal(result.columns, Index(["A", "B"])) tm.assert_index_equal(result.index, df.index) # add a nuisance column sorted_columns, _ = columns.sortlevel(0) df["A", "foo"] = "bar" result = df.groupby(level=0).mean() tm.assert_index_equal(result.columns, df.columns[:-1]) def test_grouping_ndarray(df): grouped = df.groupby(df["A"].values) result = grouped.sum() expected = df.groupby("A").sum() tm.assert_frame_equal( result, expected, check_names=False ) # Note: no names when grouping by value def test_groupby_wrong_multi_labels(): data = """index,foo,bar,baz,spam,data 0,foo1,bar1,baz1,spam2,20 1,foo1,bar2,baz1,spam3,30 2,foo2,bar2,baz1,spam2,40 3,foo1,bar1,baz2,spam1,50 4,foo3,bar1,baz2,spam1,60""" data = read_csv(StringIO(data), index_col=0) grouped = data.groupby(["foo", "bar", "baz", "spam"]) result = grouped.agg(np.mean) expected = grouped.mean() tm.assert_frame_equal(result, expected) def test_groupby_series_with_name(df): result = df.groupby(df["A"]).mean() result2 = df.groupby(df["A"], as_index=False).mean() assert result.index.name == "A" assert "A" in result2 result = df.groupby([df["A"], df["B"]]).mean() result2 = df.groupby([df["A"], df["B"]], as_index=False).mean() assert result.index.names == ("A", "B") assert "A" in result2 assert "B" in result2 def test_seriesgroupby_name_attr(df): # GH 6265 result = df.groupby("A")["C"] assert result.count().name == "C" assert result.mean().name == "C" testFunc = lambda x: np.sum(x) * 2 assert result.agg(testFunc).name == "C" def test_consistency_name(): # GH 12363 df = DataFrame( { "A": ["foo", "bar", "foo", "bar", "foo", "bar", "foo", "foo"], "B": ["one", "one", "two", "two", "two", "two", "one", "two"], "C": np.random.randn(8) + 1.0, "D": np.arange(8), } ) expected = df.groupby(["A"]).B.count() result = df.B.groupby(df.A).count() tm.assert_series_equal(result, expected) def test_groupby_name_propagation(df): # GH 6124 def summarize(df, name=None): return Series({"count": 1, "mean": 2, "omissions": 3}, name=name) def summarize_random_name(df): # Provide a different name for each Series. In this case, groupby # should not attempt to propagate the Series name since they are # inconsistent. return Series({"count": 1, "mean": 2, "omissions": 3}, name=df.iloc[0]["A"]) metrics = df.groupby("A").apply(summarize) assert metrics.columns.name is None metrics = df.groupby("A").apply(summarize, "metrics") assert metrics.columns.name == "metrics" metrics = df.groupby("A").apply(summarize_random_name) assert metrics.columns.name is None def test_groupby_nonstring_columns(): df = DataFrame([np.arange(10) for x in range(10)]) grouped = df.groupby(0) result = grouped.mean() expected = df.groupby(df[0]).mean() tm.assert_frame_equal(result, expected) def test_groupby_mixed_type_columns(): # GH 13432, unorderable types in py3 df = DataFrame([[0, 1, 2]], columns=["A", "B", 0]) expected = DataFrame([[1, 2]], columns=["B", 0], index=Index([0], name="A")) result = df.groupby("A").first() tm.assert_frame_equal(result, expected) result = df.groupby("A").sum() tm.assert_frame_equal(result, expected) # TODO: Ensure warning isn't emitted in the first place @pytest.mark.filterwarnings("ignore:Mean of:RuntimeWarning") def test_cython_grouper_series_bug_noncontig(): arr = np.empty((100, 100)) arr.fill(np.nan) obj = Series(arr[:, 0]) inds = np.tile(range(10), 10) result = obj.groupby(inds).agg(Series.median) assert result.isna().all() def test_series_grouper_noncontig_index(): index = Index(tm.rands_array(10, 100)) values = Series(np.random.randn(50), index=index[::2]) labels = np.random.randint(0, 5, 50) # it works! grouped = values.groupby(labels) # accessing the index elements causes segfault f = lambda x: len(set(map(id, x.index))) grouped.agg(f) def test_convert_objects_leave_decimal_alone(): s = Series(range(5)) labels = np.array(["a", "b", "c", "d", "e"], dtype="O") def convert_fast(x): return Decimal(str(x.mean())) def convert_force_pure(x): # base will be length 0 assert len(x.values.base) > 0 return Decimal(str(x.mean())) grouped = s.groupby(labels) result = grouped.agg(convert_fast) assert result.dtype == np.object_ assert isinstance(result[0], Decimal) result = grouped.agg(convert_force_pure) assert result.dtype == np.object_ assert isinstance(result[0], Decimal) def test_groupby_dtype_inference_empty(): # GH 6733 df = DataFrame({"x": [], "range": np.arange(0, dtype="int64")}) assert df["x"].dtype == np.float64 result = df.groupby("x").first() exp_index = Index([], name="x", dtype=np.float64) expected = DataFrame({"range": Series([], index=exp_index, dtype="int64")}) tm.assert_frame_equal(result, expected, by_blocks=True) def test_groupby_list_infer_array_like(df): result = df.groupby(list(df["A"])).mean() expected = df.groupby(df["A"]).mean() tm.assert_frame_equal(result, expected, check_names=False) with pytest.raises(KeyError, match=r"^'foo'$"): df.groupby(list(df["A"][:-1])) # pathological case of ambiguity df = DataFrame({"foo": [0, 1], "bar": [3, 4], "val": np.random.randn(2)}) result = df.groupby(["foo", "bar"]).mean() expected = df.groupby([df["foo"], df["bar"]]).mean()[["val"]] def test_groupby_keys_same_size_as_index(): # GH 11185 freq = "s" index = pd.date_range( start=pd.Timestamp("2015-09-29T11:34:44-0700"), periods=2, freq=freq ) df = pd.DataFrame([["A", 10], ["B", 15]], columns=["metric", "values"], index=index) result = df.groupby([pd.Grouper(level=0, freq=freq), "metric"]).mean() expected = df.set_index([df.index, "metric"]) tm.assert_frame_equal(result, expected) def test_groupby_one_row(): # GH 11741 msg = r"^'Z'$" df1 = pd.DataFrame(np.random.randn(1, 4), columns=list("ABCD")) with pytest.raises(KeyError, match=msg): df1.groupby("Z") df2 = pd.DataFrame(np.random.randn(2, 4), columns=list("ABCD")) with pytest.raises(KeyError, match=msg): df2.groupby("Z") def test_groupby_nat_exclude(): # GH 6992 df = pd.DataFrame( { "values": np.random.randn(8), "dt": [ np.nan, pd.Timestamp("2013-01-01"), np.nan, pd.Timestamp("2013-02-01"), np.nan, pd.Timestamp("2013-02-01"), np.nan, pd.Timestamp("2013-01-01"), ], "str": [np.nan, "a", np.nan, "a", np.nan, "a", np.nan, "b"], } ) grouped = df.groupby("dt") expected = [pd.Index([1, 7]), pd.Index([3, 5])] keys = sorted(grouped.groups.keys()) assert len(keys) == 2 for k, e in zip(keys, expected): # grouped.groups keys are np.datetime64 with system tz # not to be affected by tz, only compare values tm.assert_index_equal(grouped.groups[k], e) # confirm obj is not filtered tm.assert_frame_equal(grouped.grouper.groupings[0].obj, df) assert grouped.ngroups == 2 expected = { Timestamp("2013-01-01 00:00:00"): np.array([1, 7], dtype=np.intp), Timestamp("2013-02-01 00:00:00"): np.array([3, 5], dtype=np.intp), } for k in grouped.indices: tm.assert_numpy_array_equal(grouped.indices[k], expected[k]) tm.assert_frame_equal(grouped.get_group(Timestamp("2013-01-01")), df.iloc[[1, 7]]) tm.assert_frame_equal(grouped.get_group(Timestamp("2013-02-01")), df.iloc[[3, 5]]) with pytest.raises(KeyError, match=r"^NaT$"): grouped.get_group(pd.NaT) nan_df = DataFrame( {"nan": [np.nan, np.nan, np.nan], "nat": [pd.NaT, pd.NaT, pd.NaT]} ) assert nan_df["nan"].dtype == "float64" assert nan_df["nat"].dtype == "datetime64[ns]" for key in ["nan", "nat"]: grouped = nan_df.groupby(key) assert grouped.groups == {} assert grouped.ngroups == 0 assert grouped.indices == {} with pytest.raises(KeyError, match=r"^nan$"): grouped.get_group(np.nan) with pytest.raises(KeyError, match=r"^NaT$"): grouped.get_group(pd.NaT) def test_groupby_2d_malformed(): d = DataFrame(index=range(2)) d["group"] = ["g1", "g2"] d["zeros"] = [0, 0] d["ones"] = [1, 1] d["label"] = ["l1", "l2"] tmp = d.groupby(["group"]).mean() res_values = np.array([[0, 1], [0, 1]], dtype=np.int64) tm.assert_index_equal(tmp.columns, Index(["zeros", "ones"])) tm.assert_numpy_array_equal(tmp.values, res_values) def test_int32_overflow(): B = np.concatenate((np.arange(10000), np.arange(10000), np.arange(5000))) A = np.arange(25000) df = DataFrame({"A": A, "B": B, "C": A, "D": B, "E": np.random.randn(25000)}) left = df.groupby(["A", "B", "C", "D"]).sum() right = df.groupby(["D", "C", "B", "A"]).sum() assert len(left) == len(right) def test_groupby_sort_multi(): df = DataFrame( { "a": ["foo", "bar", "baz"], "b": [3, 2, 1], "c": [0, 1, 2], "d": np.random.randn(3), } ) tups = [tuple(row) for row in df[["a", "b", "c"]].values] tups = com.asarray_tuplesafe(tups) result = df.groupby(["a", "b", "c"], sort=True).sum() tm.assert_numpy_array_equal(result.index.values, tups[[1, 2, 0]]) tups = [tuple(row) for row in df[["c", "a", "b"]].values] tups = com.asarray_tuplesafe(tups) result = df.groupby(["c", "a", "b"], sort=True).sum() tm.assert_numpy_array_equal(result.index.values, tups) tups = [tuple(x) for x in df[["b", "c", "a"]].values] tups = com.asarray_tuplesafe(tups) result = df.groupby(["b", "c", "a"], sort=True).sum() tm.assert_numpy_array_equal(result.index.values, tups[[2, 1, 0]]) df = DataFrame( {"a": [0, 1, 2, 0, 1, 2], "b": [0, 0, 0, 1, 1, 1], "d": np.random.randn(6)} ) grouped = df.groupby(["a", "b"])["d"] result = grouped.sum() def _check_groupby(df, result, keys, field, f=lambda x: x.sum()): tups = [tuple(row) for row in df[keys].values] tups = com.asarray_tuplesafe(tups) expected = f(df.groupby(tups)[field]) for k, v in expected.items(): assert result[k] == v _check_groupby(df, result, ["a", "b"], "d") def test_dont_clobber_name_column(): df = DataFrame( {"key": ["a", "a", "a", "b", "b", "b"], "name": ["foo", "bar", "baz"] * 2} ) result = df.groupby("key").apply(lambda x: x) tm.assert_frame_equal(result, df) def test_skip_group_keys(): tsf = tm.makeTimeDataFrame() grouped = tsf.groupby(lambda x: x.month, group_keys=False) result = grouped.apply(lambda x: x.sort_values(by="A")[:3]) pieces = [group.sort_values(by="A")[:3] for key, group in grouped] expected = pd.concat(pieces) tm.assert_frame_equal(result, expected) grouped = tsf["A"].groupby(lambda x: x.month, group_keys=False) result = grouped.apply(lambda x: x.sort_values()[:3]) pieces = [group.sort_values()[:3] for key, group in grouped] expected = pd.concat(pieces) tm.assert_series_equal(result, expected) def test_no_nonsense_name(float_frame): # GH #995 s = float_frame["C"].copy() s.name = None result = s.groupby(float_frame["A"]).agg(np.sum) assert result.name is None def test_multifunc_sum_bug(): # GH #1065 x = DataFrame(np.arange(9).reshape(3, 3)) x["test"] = 0 x["fl"] = [1.3, 1.5, 1.6] grouped = x.groupby("test") result = grouped.agg({"fl": "sum", 2: "size"}) assert result["fl"].dtype == np.float64 def test_handle_dict_return_value(df): def f(group): return {"max": group.max(), "min": group.min()} def g(group): return Series({"max": group.max(), "min": group.min()}) result = df.groupby("A")["C"].apply(f) expected = df.groupby("A")["C"].apply(g) assert isinstance(result, Series) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("grouper", ["A", ["A", "B"]]) def test_set_group_name(df, grouper): def f(group): assert group.name is not None return group def freduce(group): assert group.name is not None return group.sum() def foo(x): return freduce(x) grouped = df.groupby(grouper) # make sure all these work grouped.apply(f) grouped.aggregate(freduce) grouped.aggregate({"C": freduce, "D": freduce}) grouped.transform(f) grouped["C"].apply(f) grouped["C"].aggregate(freduce) grouped["C"].aggregate([freduce, foo]) grouped["C"].transform(f) def test_group_name_available_in_inference_pass(): # gh-15062 df = pd.DataFrame({"a": [0, 0, 1, 1, 2, 2], "b": np.arange(6)}) names = [] def f(group): names.append(group.name) return group.copy() df.groupby("a", sort=False, group_keys=False).apply(f) expected_names = [0, 1, 2] assert names == expected_names def test_no_dummy_key_names(df): # see gh-1291 result = df.groupby(df["A"].values).sum() assert result.index.name is None result = df.groupby([df["A"].values, df["B"].values]).sum() assert result.index.names == (None, None) def test_groupby_sort_multiindex_series(): # series multiindex groupby sort argument was not being passed through # _compress_group_index # GH 9444 index = MultiIndex( levels=[[1, 2], [1, 2]], codes=[[0, 0, 0, 0, 1, 1], [1, 1, 0, 0, 0, 0]], names=["a", "b"], ) mseries = Series([0, 1, 2, 3, 4, 5], index=index) index = MultiIndex( levels=[[1, 2], [1, 2]], codes=[[0, 0, 1], [1, 0, 0]], names=["a", "b"] ) mseries_result = Series([0, 2, 4], index=index) result = mseries.groupby(level=["a", "b"], sort=False).first() tm.assert_series_equal(result, mseries_result) result = mseries.groupby(level=["a", "b"], sort=True).first() tm.assert_series_equal(result, mseries_result.sort_index()) def test_groupby_reindex_inside_function(): periods = 1000 ind = date_range(start="2012/1/1", freq="5min", periods=periods) df = DataFrame({"high": np.arange(periods), "low": np.arange(periods)}, index=ind) def agg_before(hour, func, fix=False): """ Run an aggregate func on the subset of data. """ def _func(data): d = data.loc[data.index.map(lambda x: x.hour < 11)].dropna() if fix: data[data.index[0]] if len(d) == 0: return None return func(d) return _func def afunc(data): d = data.select(lambda x: x.hour < 11).dropna() return np.max(d) grouped = df.groupby(lambda x: datetime(x.year, x.month, x.day)) closure_bad = grouped.agg({"high": agg_before(11, np.max)}) closure_good = grouped.agg({"high": agg_before(11, np.max, True)}) tm.assert_frame_equal(closure_bad, closure_good) def test_groupby_multiindex_missing_pair(): # GH9049 df = DataFrame( { "group1": ["a", "a", "a", "b"], "group2": ["c", "c", "d", "c"], "value": [1, 1, 1, 5], } ) df = df.set_index(["group1", "group2"]) df_grouped = df.groupby(level=["group1", "group2"], sort=True) res = df_grouped.agg("sum") idx = MultiIndex.from_tuples( [("a", "c"), ("a", "d"), ("b", "c")], names=["group1", "group2"] ) exp = DataFrame([[2], [1], [5]], index=idx, columns=["value"]) tm.assert_frame_equal(res, exp) def test_groupby_multiindex_not_lexsorted(): # GH 11640 # define the lexsorted version lexsorted_mi = MultiIndex.from_tuples( [("a", ""), ("b1", "c1"), ("b2", "c2")], names=["b", "c"] ) lexsorted_df = DataFrame([[1, 3, 4]], columns=lexsorted_mi) assert lexsorted_df.columns.is_lexsorted() # define the non-lexsorted version not_lexsorted_df = DataFrame( columns=["a", "b", "c", "d"], data=[[1, "b1", "c1", 3], [1, "b2", "c2", 4]] ) not_lexsorted_df = not_lexsorted_df.pivot_table( index="a", columns=["b", "c"], values="d" ) not_lexsorted_df = not_lexsorted_df.reset_index() assert not not_lexsorted_df.columns.is_lexsorted() # compare the results tm.assert_frame_equal(lexsorted_df, not_lexsorted_df) expected = lexsorted_df.groupby("a").mean() with tm.assert_produces_warning(PerformanceWarning): result = not_lexsorted_df.groupby("a").mean() tm.assert_frame_equal(expected, result) # a transforming function should work regardless of sort # GH 14776 df = DataFrame( {"x": ["a", "a", "b", "a"], "y": [1, 1, 2, 2], "z": [1, 2, 3, 4]} ).set_index(["x", "y"]) assert not df.index.is_lexsorted() for level in [0, 1, [0, 1]]: for sort in [False, True]: result = df.groupby(level=level, sort=sort).apply(DataFrame.drop_duplicates) expected = df tm.assert_frame_equal(expected, result) result = ( df.sort_index() .groupby(level=level, sort=sort) .apply(DataFrame.drop_duplicates) ) expected = df.sort_index() tm.assert_frame_equal(expected, result) def test_index_label_overlaps_location(): # checking we don't have any label/location confusion in the # the wake of GH5375 df = DataFrame(list("ABCDE"), index=[2, 0, 2, 1, 1]) g = df.groupby(list("ababb")) actual = g.filter(lambda x: len(x) > 2) expected = df.iloc[[1, 3, 4]] tm.assert_frame_equal(actual, expected) ser = df[0] g = ser.groupby(list("ababb")) actual = g.filter(lambda x: len(x) > 2) expected = ser.take([1, 3, 4]) tm.assert_series_equal(actual, expected) # ... and again, with a generic Index of floats df.index = df.index.astype(float) g = df.groupby(list("ababb")) actual = g.filter(lambda x: len(x) > 2) expected = df.iloc[[1, 3, 4]] tm.assert_frame_equal(actual, expected) ser = df[0] g = ser.groupby(list("ababb")) actual = g.filter(lambda x: len(x) > 2) expected = ser.take([1, 3, 4]) tm.assert_series_equal(actual, expected) def test_transform_doesnt_clobber_ints(): # GH 7972 n = 6 x = np.arange(n) df = DataFrame({"a": x // 2, "b": 2.0 * x, "c": 3.0 * x}) df2 = DataFrame({"a": x // 2 * 1.0, "b": 2.0 * x, "c": 3.0 * x}) gb = df.groupby("a") result = gb.transform("mean") gb2 = df2.groupby("a") expected = gb2.transform("mean") tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "sort_column", ["ints", "floats", "strings", ["ints", "floats"], ["ints", "strings"]], ) @pytest.mark.parametrize( "group_column", ["int_groups", "string_groups", ["int_groups", "string_groups"]] ) def test_groupby_preserves_sort(sort_column, group_column): # Test to ensure that groupby always preserves sort order of original # object. Issue #8588 and #9651 df = DataFrame( { "int_groups": [3, 1, 0, 1, 0, 3, 3, 3], "string_groups": ["z", "a", "z", "a", "a", "g", "g", "g"], "ints": [8, 7, 4, 5, 2, 9, 1, 1], "floats": [2.3, 5.3, 6.2, -2.4, 2.2, 1.1, 1.1, 5], "strings": ["z", "d", "a", "e", "word", "word2", "42", "47"], } ) # Try sorting on different types and with different group types df = df.sort_values(by=sort_column) g = df.groupby(group_column) def test_sort(x): tm.assert_frame_equal(x, x.sort_values(by=sort_column)) g.apply(test_sort) def test_group_shift_with_null_key(): # This test is designed to replicate the segfault in issue #13813. n_rows = 1200 # Generate a moderately large dataframe with occasional missing # values in column `B`, and then group by [`A`, `B`]. This should # force `-1` in `labels` array of `g.grouper.group_info` exactly # at those places, where the group-by key is partially missing. df = DataFrame( [(i % 12, i % 3 if i % 3 else np.nan, i) for i in range(n_rows)], dtype=float, columns=["A", "B", "Z"], index=None, ) g = df.groupby(["A", "B"]) expected = DataFrame( [(i + 12 if i % 3 and i < n_rows - 12 else np.nan) for i in range(n_rows)], dtype=float, columns=["Z"], index=None, ) result = g.shift(-1) tm.assert_frame_equal(result, expected) def test_group_shift_with_fill_value(): # GH #24128 n_rows = 24 df = DataFrame( [(i % 12, i % 3, i) for i in range(n_rows)], dtype=float, columns=["A", "B", "Z"], index=None, ) g = df.groupby(["A", "B"]) expected = DataFrame( [(i + 12 if i < n_rows - 12 else 0) for i in range(n_rows)], dtype=float, columns=["Z"], index=None, ) result = g.shift(-1, fill_value=0)[["Z"]] tm.assert_frame_equal(result, expected) def test_group_shift_lose_timezone(): # GH 30134 now_dt = pd.Timestamp.utcnow() df = DataFrame({"a": [1, 1], "date": now_dt}) result = df.groupby("a").shift(0).iloc[0] expected = Series({"date": now_dt}, name=result.name) tm.assert_series_equal(result, expected) def test_pivot_table_values_key_error(): # This test is designed to replicate the error in issue #14938 df = pd.DataFrame( { "eventDate": pd.date_range(datetime.today(), periods=20, freq="M").tolist(), "thename": range(0, 20), } ) df["year"] = df.set_index("eventDate").index.year df["month"] = df.set_index("eventDate").index.month with pytest.raises(KeyError, match="'badname'"): df.reset_index().pivot_table( index="year", columns="month", values="badname", aggfunc="count" ) def test_empty_dataframe_groupby(): # GH8093 df = DataFrame(columns=["A", "B", "C"]) result = df.groupby("A").sum() expected = DataFrame(columns=["B", "C"], dtype=np.float64) expected.index.name = "A" tm.assert_frame_equal(result, expected) def test_tuple_as_grouping(): # https://github.com/pandas-dev/pandas/issues/18314 df = pd.DataFrame( { ("a", "b"): [1, 1, 1, 1], "a": [2, 2, 2, 2], "b": [2, 2, 2, 2], "c": [1, 1, 1, 1], } ) with pytest.raises(KeyError, match=r"('a', 'b')"): df[["a", "b", "c"]].groupby(("a", "b")) result = df.groupby(("a", "b"))["c"].sum() expected = pd.Series([4], name="c", index=pd.Index([1], name=("a", "b"))) tm.assert_series_equal(result, expected) def test_tuple_correct_keyerror(): # https://github.com/pandas-dev/pandas/issues/18798 df = pd.DataFrame( 1, index=range(3), columns=pd.MultiIndex.from_product([[1, 2], [3, 4]]) ) with pytest.raises(KeyError, match=r"^\(7, 8\)$"): df.groupby((7, 8)).mean() def test_groupby_agg_ohlc_non_first(): # GH 21716 df = pd.DataFrame( [[1], [1]], columns=["foo"], index=pd.date_range("2018-01-01", periods=2, freq="D"), ) expected = pd.DataFrame( [[1, 1, 1, 1, 1], [1, 1, 1, 1, 1]], columns=pd.MultiIndex.from_tuples( ( ("foo", "sum", "foo"), ("foo", "ohlc", "open"), ("foo", "ohlc", "high"), ("foo", "ohlc", "low"), ("foo", "ohlc", "close"), ) ), index=pd.date_range("2018-01-01", periods=2, freq="D"), ) result = df.groupby(pd.Grouper(freq="D")).agg(["sum", "ohlc"]) tm.assert_frame_equal(result, expected) def test_groupby_multiindex_nat(): # GH 9236 values = [ (pd.NaT, "a"), (datetime(2012, 1, 2), "a"), (datetime(2012, 1, 2), "b"), (datetime(2012, 1, 3), "a"), ] mi = pd.MultiIndex.from_tuples(values, names=["date", None]) ser = pd.Series([3, 2, 2.5, 4], index=mi) result = ser.groupby(level=1).mean() expected = pd.Series([3.0, 2.5], index=["a", "b"]) tm.assert_series_equal(result, expected) def test_groupby_empty_list_raises(): # GH 5289 values = zip(range(10), range(10)) df = DataFrame(values, columns=["apple", "b"]) msg = "Grouper and axis must be same length" with pytest.raises(ValueError, match=msg): df.groupby([[]]) def test_groupby_multiindex_series_keys_len_equal_group_axis(): # GH 25704 index_array = [["x", "x"], ["a", "b"], ["k", "k"]] index_names = ["first", "second", "third"] ri = pd.MultiIndex.from_arrays(index_array, names=index_names) s = pd.Series(data=[1, 2], index=ri) result = s.groupby(["first", "third"]).sum() index_array = [["x"], ["k"]] index_names = ["first", "third"] ei = pd.MultiIndex.from_arrays(index_array, names=index_names) expected = pd.Series([3], index=ei) tm.assert_series_equal(result, expected) def test_groupby_groups_in_BaseGrouper(): # GH 26326 # Test if DataFrame grouped with a pandas.Grouper has correct groups mi = pd.MultiIndex.from_product([["A", "B"], ["C", "D"]], names=["alpha", "beta"]) df = pd.DataFrame({"foo": [1, 2, 1, 2], "bar": [1, 2, 3, 4]}, index=mi) result = df.groupby([pd.Grouper(level="alpha"), "beta"]) expected = df.groupby(["alpha", "beta"]) assert result.groups == expected.groups result = df.groupby(["beta", pd.Grouper(level="alpha")]) expected = df.groupby(["beta", "alpha"]) assert result.groups == expected.groups @pytest.mark.parametrize("group_name", ["x", ["x"]]) def test_groupby_axis_1(group_name): # GH 27614 df = pd.DataFrame( np.arange(12).reshape(3, 4), index=[0, 1, 0], columns=[10, 20, 10, 20] ) df.index.name = "y" df.columns.name = "x" results = df.groupby(group_name, axis=1).sum() expected = df.T.groupby(group_name).sum().T tm.assert_frame_equal(results, expected) # test on MI column iterables = [["bar", "baz", "foo"], ["one", "two"]] mi = pd.MultiIndex.from_product(iterables=iterables, names=["x", "x1"]) df = pd.DataFrame(np.arange(18).reshape(3, 6), index=[0, 1, 0], columns=mi) results = df.groupby(group_name, axis=1).sum() expected = df.T.groupby(group_name).sum().T tm.assert_frame_equal(results, expected) @pytest.mark.parametrize( "op, expected", [ ( "shift", { "time": [ None, None, Timestamp("2019-01-01 12:00:00"), Timestamp("2019-01-01 12:30:00"), None, None, ] }, ), ( "bfill", { "time": [ Timestamp("2019-01-01 12:00:00"), Timestamp("2019-01-01 12:30:00"), Timestamp("2019-01-01 14:00:00"), Timestamp("2019-01-01 14:30:00"), Timestamp("2019-01-01 14:00:00"), Timestamp("2019-01-01 14:30:00"), ] }, ), ( "ffill", { "time": [ Timestamp("2019-01-01 12:00:00"), Timestamp("2019-01-01 12:30:00"), Timestamp("2019-01-01 12:00:00"), Timestamp("2019-01-01 12:30:00"), Timestamp("2019-01-01 14:00:00"), Timestamp("2019-01-01 14:30:00"), ] }, ), ], ) def test_shift_bfill_ffill_tz(tz_naive_fixture, op, expected): # GH19995, GH27992: Check that timezone does not drop in shift, bfill, and ffill tz = tz_naive_fixture data = { "id": ["A", "B", "A", "B", "A", "B"], "time": [ Timestamp("2019-01-01 12:00:00"), Timestamp("2019-01-01 12:30:00"), None, None, Timestamp("2019-01-01 14:00:00"),
Timestamp("2019-01-01 14:30:00")
pandas.Timestamp
import argparse import numpy as np import pandas as pd from pybedtools import BedTool def parse_args(args): """define arguments""" # create argparse variables parser = argparse.ArgumentParser(description="FIMO_filter") parser.add_argument( "fimo_file", type=str, help="Input location of FIMO.tsv file" ) parser.add_argument( "promoter_bedfile", type=str, help="Input location of promoter bedfile" ) parser.add_argument( "motifs_bed", type=str, help="Output location of motifs bed file" ) parser.add_argument( "q_value", type=float, help="q_value threshold for filtering" ) parser.add_argument( "--prevent_shorten_sequence_name", help="Option to prevent shortening of sequence name up to the first colon.", action="store_true", ) return parser.parse_args( args ) # let argparse grab args from sys.argv itself to allow for testing in module import def fimo_qfilter(fimo_file, q_value, prevent_shorten_sequence_name): """this uses a meme-suite version 5 fimo.tsv file, filters by a q-value, and returns a pandas df""" # read in fimo.tsv file fimo =
pd.read_table(fimo_file, sep="\t")
pandas.read_table
import argparse import pickle import pandas as pd teamColumns = ['rebounds', 'disposals', 'kicks', 'handballs', 'clearances', 'hitouts', 'marks', 'inside50s', 'tackles', 'clangers', 'frees', 'contested', 'uncontested', 'contestedMarks', 'marksIn50', 'onePercenters', 'bounces'] def get_team_probability(modelStorage, data_frame, home_team, away_team): home = data_frame[data_frame['team'] == home_team][teamColumns].mean() away = data_frame[data_frame['team'] == away_team][teamColumns].mean() home['relRebounds'] = home['rebounds'] / away['rebounds'] home['relDisposals'] = home['disposals'] / away['disposals'] home['relKicks'] = home['kicks'] / away['kicks'] home['relHandballs'] = home['handballs'] / away['handballs'] home['relClearances'] = home['clearances'] / away['clearances'] home['relHitouts'] = home['hitouts'] / away['hitouts'] home['relMarks'] = home['marks'] / away['marks'] home['relInside50s'] = home['inside50s'] / away['inside50s'] home['relTackles'] = home['tackles'] / away['tackles'] home['relClangers'] = home['clangers'] / away['clangers'] home['relFrees'] = home['frees'] / away['frees'] home['relContested'] = home['contested'] / away['contested'] home['relUncontested'] = home['uncontested'] / away['uncontested'] home['relContestedMarks'] = home['contestedMarks'] / away['contestedMarks'] home['relMarksIn50'] = home['marksIn50'] / away['marksIn50'] home['relOnePercenters'] = home['onePercenters'] / away['onePercenters'] home['relBounces'] = home['bounces'] / away['bounces'] home['home'] = 1 return modelStorage.randomForest.predict_proba([home[modelStorage.columns]])[0][1] parser = argparse.ArgumentParser(description="Predict match result given a model and historical data for teams") parser.add_argument("model") parser.add_argument("stats") parser.add_argument("home") parser.add_argument("away") parser.add_argument('--min_round', type=int) parser.add_argument('--max_round', type=int) args = parser.parse_args() with open(args.model, 'rb') as file: modelStorage = pickle.load(file) randomForest = modelStorage.randomForest #Load stats data =
pd.read_csv(args.stats)
pandas.read_csv
# Copyright (c) 2017 pandas-gbq Authors All rights reserved. # Use of this source code is governed by a BSD-style # license that can be found in the LICENSE file. # -*- coding: utf-8 -*- import datetime import decimal from io import StringIO import textwrap from unittest import mock import db_dtypes import numpy import pandas import pandas.testing import pytest from pandas_gbq import exceptions from pandas_gbq.features import FEATURES from pandas_gbq import load def load_method(bqclient, api_method): if not FEATURES.bigquery_has_from_dataframe_with_csv and api_method == "load_csv": return bqclient.load_table_from_file return bqclient.load_table_from_dataframe def test_encode_chunk_with_unicode(): """Test that a dataframe containing unicode can be encoded as a file. See: https://github.com/pydata/pandas-gbq/issues/106 """ df = pandas.DataFrame( numpy.random.randn(6, 4), index=range(6), columns=list("ABCD") ) df["s"] = "信用卡" csv_buffer = load.encode_chunk(df) csv_bytes = csv_buffer.read() csv_string = csv_bytes.decode("utf-8") assert "信用卡" in csv_string def test_encode_chunk_with_floats(): """Test that floats in a dataframe are encoded with at most 17 significant figures. See: https://github.com/pydata/pandas-gbq/issues/192 and https://github.com/pydata/pandas-gbq/issues/326 """ input_csv = textwrap.dedent( """01/01/17 23:00,0.14285714285714285,4 01/02/17 22:00,1.05148,3 01/03/17 21:00,1.05153,2 01/04/17 20:00,3.141592653589793,1 01/05/17 19:00,2.0988936657440586e+43,0 """ ) input_df = pandas.read_csv( StringIO(input_csv), header=None, float_precision="round_trip" ) csv_buffer = load.encode_chunk(input_df) round_trip = pandas.read_csv(csv_buffer, header=None, float_precision="round_trip") pandas.testing.assert_frame_equal( round_trip, input_df, check_exact=True, ) def test_encode_chunk_with_newlines(): """See: https://github.com/pydata/pandas-gbq/issues/180""" df = pandas.DataFrame({"s": ["abcd", "ef\ngh", "ij\r\nkl"]}) csv_buffer = load.encode_chunk(df) csv_bytes = csv_buffer.read() csv_string = csv_bytes.decode("utf-8") assert "abcd" in csv_string assert '"ef\ngh"' in csv_string assert '"ij\r\nkl"' in csv_string def test_split_dataframe(): df = pandas.DataFrame(numpy.random.randn(6, 4), index=range(6)) chunks = list(load.split_dataframe(df, chunksize=2)) assert len(chunks) == 3 remaining, chunk = chunks[0] assert remaining == 4 assert len(chunk.index) == 2 def test_encode_chunks_with_chunksize_none(): df = pandas.DataFrame(numpy.random.randn(6, 4), index=range(6)) chunks = list(load.split_dataframe(df)) assert len(chunks) == 1 remaining, chunk = chunks[0] assert remaining == 0 assert len(chunk.index) == 6 def test_load_csv_from_dataframe_allows_client_to_generate_schema(mock_bigquery_client): import google.cloud.bigquery df =
pandas.DataFrame({"int_col": [1, 2, 3]})
pandas.DataFrame
"""Metadata data classes.""" import copy import datetime import logging import os import re import sys from functools import lru_cache from pathlib import Path from typing import ( Any, Callable, Dict, Iterable, List, Literal, Optional, Tuple, Type, Union, ) import jinja2 import pandas as pd import pyarrow as pa import pydantic import sqlalchemy as sa from pydantic.types import DirectoryPath from pudl.metadata.codes import CODE_METADATA from pudl.metadata.constants import ( CONSTRAINT_DTYPES, CONTRIBUTORS, FIELD_DTYPES_PANDAS, FIELD_DTYPES_PYARROW, FIELD_DTYPES_SQL, LICENSES, PERIODS, ) from pudl.metadata.fields import ( FIELD_METADATA, FIELD_METADATA_BY_GROUP, FIELD_METADATA_BY_RESOURCE, ) from pudl.metadata.helpers import ( expand_periodic_column_names, format_errors, groupby_aggregate, most_and_more_frequent, split_period, ) from pudl.metadata.resources import FOREIGN_KEYS, RESOURCE_METADATA, eia861 from pudl.metadata.sources import SOURCES logger = logging.getLogger(__name__) # ---- Helpers ---- # def _unique(*args: Iterable) -> list: """Return a list of all unique values, in order of first appearance. Args: args: Iterables of values. Examples: >>> _unique([0, 2], (2, 1)) [0, 2, 1] >>> _unique([{'x': 0, 'y': 1}, {'y': 1, 'x': 0}], [{'z': 2}]) [{'x': 0, 'y': 1}, {'z': 2}] """ values = [] for parent in args: for child in parent: if child not in values: values.append(child) return values def _format_for_sql(x: Any, identifier: bool = False) -> str: # noqa: C901 """Format value for use in raw SQL(ite). Args: x: Value to format. identifier: Whether `x` represents an identifier (e.g. table, column) name. Examples: >>> _format_for_sql('table_name', identifier=True) '"table_name"' >>> _format_for_sql('any string') "'any string'" >>> _format_for_sql("Single's quote") "'Single''s quote'" >>> _format_for_sql(None) 'null' >>> _format_for_sql(1) '1' >>> _format_for_sql(True) 'True' >>> _format_for_sql(False) 'False' >>> _format_for_sql(re.compile("^[^']*$")) "'^[^'']*$'" >>> _format_for_sql(datetime.date(2020, 1, 2)) "'2020-01-02'" >>> _format_for_sql(datetime.datetime(2020, 1, 2, 3, 4, 5, 6)) "'2020-01-02 03:04:05'" """ if identifier: if isinstance(x, str): # Table and column names are escaped with double quotes (") return f'"{x}"' raise ValueError("Identifier must be a string") if x is None: return "null" elif isinstance(x, (int, float)): # NOTE: nan and (-)inf are TEXT in sqlite but numeric in postgresSQL return str(x) elif x is True: return "TRUE" elif x is False: return "FALSE" elif isinstance(x, re.Pattern): x = x.pattern elif isinstance(x, datetime.datetime): # Check datetime.datetime first, since also datetime.date x = x.strftime("%Y-%m-%d %H:%M:%S") elif isinstance(x, datetime.date): x = x.strftime("%Y-%m-%d") if not isinstance(x, str): raise ValueError(f"Cannot format type {type(x)} for SQL") # Single quotes (') are escaped by doubling them ('') x = x.replace("'", "''") return f"'{x}'" JINJA_ENVIRONMENT: jinja2.Environment = jinja2.Environment( loader=jinja2.FileSystemLoader( os.path.join(os.path.dirname(__file__), "templates") ), autoescape=True, ) # ---- Base ---- # class Base(pydantic.BaseModel): """Custom Pydantic base class. It overrides :meth:`fields` and :meth:`schema` to allow properties with those names. To use them in a class, use an underscore prefix and an alias. Examples: >>> class Class(Base): ... fields_: List[str] = pydantic.Field(alias="fields") >>> m = Class(fields=['x']) >>> m Class(fields=['x']) >>> m.fields ['x'] >>> m.fields = ['y'] >>> m.dict() {'fields': ['y']} """ class Config: """Custom Pydantic configuration.""" validate_all: bool = True validate_assignment: bool = True extra: str = "forbid" arbitrary_types_allowed = True def dict(self, *args, by_alias=True, **kwargs) -> dict: # noqa: A003 """Return as a dictionary.""" return super().dict(*args, by_alias=by_alias, **kwargs) def json(self, *args, by_alias=True, **kwargs) -> str: """Return as JSON.""" return super().json(*args, by_alias=by_alias, **kwargs) def __getattribute__(self, name: str) -> Any: """Get attribute.""" if name in ("fields", "schema") and f"{name}_" in self.__dict__: name = f"{name}_" return super().__getattribute__(name) def __setattr__(self, name, value) -> None: """Set attribute.""" if name in ("fields", "schema") and f"{name}_" in self.__dict__: name = f"{name}_" super().__setattr__(name, value) def __repr_args__(self) -> List[Tuple[str, Any]]: """Returns the attributes to show in __str__, __repr__, and __pretty__.""" return [ (a[:-1] if a in ("fields_", "schema_") else a, v) for a, v in self.__dict__.items() ] # ---- Class attribute types ---- # # NOTE: Using regex=r"^\S(.*\S)*$" to fail on whitespace is too slow String = pydantic.constr(min_length=1, strict=True, regex=r"^\S+(\s+\S+)*$") """Non-empty :class:`str` with no trailing or leading whitespace.""" SnakeCase = pydantic.constr( min_length=1, strict=True, regex=r"^[a-z][a-z0-9]*(_[a-z0-9]+)*$" ) """Snake-case variable name :class:`str` (e.g. 'pudl', 'entity_eia860').""" Bool = pydantic.StrictBool """Any :class:`bool` (`True` or `False`).""" Float = pydantic.StrictFloat """Any :class:`float`.""" Int = pydantic.StrictInt """Any :class:`int`.""" PositiveInt = pydantic.conint(ge=0, strict=True) """Positive :class:`int`.""" PositiveFloat = pydantic.confloat(ge=0, strict=True) """Positive :class:`float`.""" Email = pydantic.EmailStr """String representing an email.""" HttpUrl = pydantic.AnyHttpUrl """Http(s) URL.""" class BaseType: """Base class for custom pydantic types.""" @classmethod def __get_validators__(cls) -> Callable: """Yield validator methods.""" yield cls.validate class Date(BaseType): """Any :class:`datetime.date`.""" @classmethod def validate(cls, value: Any) -> datetime.date: """Validate as date.""" if not isinstance(value, datetime.date): raise TypeError("value is not a date") return value class Datetime(BaseType): """Any :class:`datetime.datetime`.""" @classmethod def validate(cls, value: Any) -> datetime.datetime: """Validate as datetime.""" if not isinstance(value, datetime.datetime): raise TypeError("value is not a datetime") return value class Pattern(BaseType): """Regular expression pattern.""" @classmethod def validate(cls, value: Any) -> re.Pattern: """Validate as pattern.""" if not isinstance(value, (str, re.Pattern)): raise TypeError("value is not a string or compiled regular expression") if isinstance(value, str): try: value = re.compile(value) except re.error: raise ValueError("string is not a valid regular expression") return value def StrictList(item_type: Type = Any) -> pydantic.ConstrainedList: # noqa: N802 """Non-empty :class:`list`. Allows :class:`list`, :class:`tuple`, :class:`set`, :class:`frozenset`, :class:`collections.deque`, or generators and casts to a :class:`list`. """ return pydantic.conlist(item_type=item_type, min_items=1) # ---- Class attribute validators ---- # def _check_unique(value: list = None) -> Optional[list]: """Check that input list has unique values.""" if value: for i in range(len(value)): if value[i] in value[:i]: raise ValueError(f"contains duplicate {value[i]}") return value def _validator(*names, fn: Callable) -> Callable: """Construct reusable Pydantic validator. Args: names: Names of attributes to validate. fn: Validation function (see :meth:`pydantic.validator`). Examples: >>> class Class(Base): ... x: list = None ... _check_unique = _validator("x", fn=_check_unique) >>> Class(y=[0, 0]) Traceback (most recent call last): ValidationError: ... """ return pydantic.validator(*names, allow_reuse=True)(fn) # ---- Classes: Field ---- # class FieldConstraints(Base): """Field constraints (`resource.schema.fields[...].constraints`). See https://specs.frictionlessdata.io/table-schema/#constraints. """ required: Bool = False unique: Bool = False min_length: PositiveInt = None max_length: PositiveInt = None minimum: Union[Int, Float, Date, Datetime] = None maximum: Union[Int, Float, Date, Datetime] = None pattern: Pattern = None # TODO: Replace with String (min_length=1) once "" removed from enums enum: StrictList(Union[pydantic.StrictStr, Int, Float, Bool, Date, Datetime]) = None _check_unique = _validator("enum", fn=_check_unique) @pydantic.validator("max_length") def _check_max_length(cls, value, values): # noqa: N805 minimum, maximum = values.get("min_length"), value if minimum is not None and maximum is not None: if type(minimum) is not type(maximum): raise ValueError("must be same type as min_length") if maximum < minimum: raise ValueError("must be greater or equal to min_length") return value @pydantic.validator("maximum") def _check_max(cls, value, values): # noqa: N805 minimum, maximum = values.get("minimum"), value if minimum is not None and maximum is not None: if type(minimum) is not type(maximum): raise ValueError("must be same type as minimum") if maximum < minimum: raise ValueError("must be greater or equal to minimum") return value class FieldHarvest(Base): """Field harvest parameters (`resource.schema.fields[...].harvest`).""" # NOTE: Callables with defaults must use pydantic.Field() to not bind to self aggregate: Callable[[pd.Series], pd.Series] = pydantic.Field( default=lambda x: most_and_more_frequent(x, min_frequency=0.7) ) """Computes a single value from all field values in a group.""" tolerance: PositiveFloat = 0.0 """Fraction of invalid groups above which result is considered invalid.""" class Encoder(Base): """A class that allows us to standardize reported categorical codes. Often the original data we are integrating uses short codes to indicate a categorical value, like ``ST`` in place of "steam turbine" or ``LIG`` in place of "lignite coal". Many of these coded fields contain non-standard codes due to data-entry errors. The codes have also evolved over the years. In order to allow easy comparison of records across all years and tables, we define a standard set of codes, a mapping from non-standard codes to standard codes (where possible), and a set of known but unfixable codes which will be ignored and replaced with NA values. These definitions can be found in :mod:`pudl.metadata.codes` and we refer to these as coding tables. In our metadata structures, each coding table is defined just like any other DB table, with the addition of an associated ``Encoder`` object defining the standard, fixable, and ignored codes. In addition, a :class:`Package` class that has been instantiated using the :meth:`Package.from_resource_ids` method will associate an `Encoder` object with any column that has a foreign key constraint referring to a coding table (This column-level encoder is same as the encoder associated with the referenced table). This `Encoder` can be used to standardize the codes found within the column. :class:`Field` and :class:`Resource` objects have ``encode()`` methods that will use the column-level encoders to recode the original values, either for a single column or for all coded columns within a Resource, given either a corresponding :class:`pandas.Series` or :class:`pandas.DataFrame` containing actual values. If any unrecognized values are encountered, an exception will be raised, alerting us that a new code has been identified, and needs to be classified as fixable or to be ignored. """ df: pd.DataFrame """A table associating short codes with long descriptions and other information. Each coding table contains at least a ``code`` column containing the standard codes and a ``description`` column with a human readable explanation of what the code stands for. Additional metadata pertaining to the codes and their categories may also appear in this dataframe, which will be loaded into the PUDL DB as a static table. The ``code`` column is a natural primary key and must contain no duplicate values. """ ignored_codes: List[Union[Int, str]] = [] """A list of non-standard codes which appear in the data, and will be set to NA. These codes may be the result of data entry errors, and we are unable to map them to the appropriate canonical code. They are discarded from the raw input data. """ code_fixes: Dict[Union[Int, String], Union[Int, String]] = {} """A dictionary mapping non-standard codes to canonical, standardized codes. The intended meanings of some non-standard codes are clear, and therefore they can be mapped to the standardized, canonical codes with confidence. Sometimes these are the result of data entry errors or changes in the stanard codes over time. """ name: String = None """The name of the code. """ @pydantic.validator("df") def _df_is_encoding_table(cls, df): # noqa: N805 """Verify that the coding table provides both codes and descriptions.""" errors = [] if "code" not in df.columns or "description" not in df.columns: errors.append( "Encoding tables must contain both 'code' & 'description' columns." ) if len(df.code) != len(df.code.unique()): dupes = df[df.duplicated("code")].code.to_list() errors.append(f"Duplicate codes {dupes} found in coding table") if errors: raise ValueError(format_errors(*errors, pydantic=True)) return df @pydantic.validator("ignored_codes") def _good_and_ignored_codes_are_disjoint(cls, ignored_codes, values): # noqa: N805 """Check that there's no overlap between good and ignored codes.""" if "df" not in values: return ignored_codes errors = [] overlap = set(values["df"]["code"]).intersection(ignored_codes) if overlap: errors.append(f"Overlap found between good and ignored codes: {overlap}.") if errors: raise ValueError(format_errors(*errors, pydantic=True)) return ignored_codes @pydantic.validator("code_fixes") def _good_and_fixable_codes_are_disjoint(cls, code_fixes, values): # noqa: N805 """Check that there's no overlap between the good and fixable codes.""" if "df" not in values: return code_fixes errors = [] overlap = set(values["df"]["code"]).intersection(code_fixes) if overlap: errors.append(f"Overlap found between good and fixable codes: {overlap}") if errors: raise ValueError(format_errors(*errors, pydantic=True)) return code_fixes @pydantic.validator("code_fixes") def _fixable_and_ignored_codes_are_disjoint(cls, code_fixes, values): # noqa: N805 """Check that there's no overlap between the ignored and fixable codes.""" if "ignored_codes" not in values: return code_fixes errors = [] overlap = set(code_fixes).intersection(values["ignored_codes"]) if overlap: errors.append(f"Overlap found between fixable and ignored codes: {overlap}") if errors: raise ValueError(format_errors(*errors, pydantic=True)) return code_fixes @pydantic.validator("code_fixes") def _check_fixed_codes_are_good_codes(cls, code_fixes, values): # noqa: N805 """Check that every every fixed code is also one of the good codes.""" if "df" not in values: return code_fixes errors = [] bad_codes = set(code_fixes.values()).difference(values["df"]["code"]) if bad_codes: errors.append( f"Some fixed codes aren't in the list of good codes: {bad_codes}" ) if errors: raise ValueError(format_errors(*errors, pydantic=True)) return code_fixes @property def code_map(self) -> Dict[str, Union[str, type(pd.NA)]]: """A mapping of all known codes to their standardized values, or NA.""" code_map = {code: code for code in self.df["code"]} code_map.update(self.code_fixes) code_map.update({code: pd.NA for code in self.ignored_codes}) return code_map def encode( self, col: pd.Series, dtype: Union[type, None] = None, ) -> pd.Series: """Apply the stored code mapping to an input Series.""" # Every value in the Series should appear in the map. If that's not the # case we want to hear about it so we don't wipe out data unknowingly. unknown_codes = set(col.dropna()).difference(self.code_map) if unknown_codes: raise ValueError(f"Found unknown codes while encoding: {unknown_codes=}") col = col.map(self.code_map) if dtype: col = col.astype(dtype) return col @staticmethod def dict_from_id(x: str) -> dict: """Look up the encoder by coding table name in the metadata.""" return copy.deepcopy(RESOURCE_METADATA[x]).get("encoder", None) @classmethod def from_id(cls, x: str) -> "Encoder": """Construct an Encoder based on `Resource.name` of a coding table.""" return cls(**cls.dict_from_id(x)) @classmethod def from_code_id(cls, x: str) -> "Encoder": """Construct an Encoder based on looking up the name of a coding table directly in the codes metadata.""" return cls(**copy.deepcopy(CODE_METADATA[x]), name=x) def to_rst( self, top_dir: DirectoryPath, csv_subdir: DirectoryPath, is_header: Bool ) -> String: """Ouput dataframe to a csv for use in jinja template. Then output to an RST file.""" self.df.to_csv(Path(top_dir) / csv_subdir / f"{self.name}.csv", index=False) template = JINJA_ENVIRONMENT.get_template("codemetadata.rst.jinja") rendered = template.render( Encoder=self, description=RESOURCE_METADATA[self.name]["description"], csv_filepath=(Path("/") / csv_subdir / f"{self.name}.csv"), is_header=is_header, ) return rendered class Field(Base): """Field (`resource.schema.fields[...]`). See https://specs.frictionlessdata.io/table-schema/#field-descriptors. Examples: >>> field = Field(name='x', type='string', constraints={'enum': ['x', 'y']}) >>> field.to_pandas_dtype() CategoricalDtype(categories=['x', 'y'], ordered=False) >>> field.to_sql() Column('x', Enum('x', 'y'), CheckConstraint(...), table=None) >>> field = Field.from_id('utility_id_eia') >>> field.name 'utility_id_eia' """ name: SnakeCase type: Literal[ # noqa: A003 "string", "number", "integer", "boolean", "date", "datetime", "year" ] format: Literal["default"] = "default" # noqa: A003 description: String = None unit: String = None constraints: FieldConstraints = {} harvest: FieldHarvest = {} encoder: Encoder = None @pydantic.validator("constraints") def _check_constraints(cls, value, values): # noqa: N805, C901 if "type" not in values: return value dtype = values["type"] errors = [] for key in ("min_length", "max_length", "pattern"): if getattr(value, key) is not None and dtype != "string": errors.append(f"{key} not supported by {dtype} field") for key in ("minimum", "maximum"): x = getattr(value, key) if x is not None: if dtype in ("string", "boolean"): errors.append(f"{key} not supported by {dtype} field") elif not isinstance(x, CONSTRAINT_DTYPES[dtype]): errors.append(f"{key} not {dtype}") if value.enum: for x in value.enum: if not isinstance(x, CONSTRAINT_DTYPES[dtype]): errors.append(f"enum value {x} not {dtype}") if errors: raise ValueError(format_errors(*errors, pydantic=True)) return value @pydantic.validator("encoder") def _check_encoder(cls, value, values): # noqa: N805 if "type" not in values or value is None: return value errors = [] dtype = values["type"] if dtype not in ["string", "integer"]: errors.append( "Encoding only supported for string and integer fields, found " f"{dtype}" ) if errors: raise ValueError(format_errors(*errors, pydantic=True)) return value @staticmethod def dict_from_id(x: str) -> dict: """Construct dictionary from PUDL identifier (`Field.name`).""" return {"name": x, **copy.deepcopy(FIELD_METADATA[x])} @classmethod def from_id(cls, x: str) -> "Field": """Construct from PUDL identifier (`Field.name`).""" return cls(**cls.dict_from_id(x)) def to_pandas_dtype(self, compact: bool = False) -> Union[str, pd.CategoricalDtype]: """Return Pandas data type. Args: compact: Whether to return a low-memory data type (32-bit integer or float). """ if self.constraints.enum: return pd.CategoricalDtype(self.constraints.enum) if compact: if self.type == "integer": return "Int32" if self.type == "number": return "float32" return FIELD_DTYPES_PANDAS[self.type] def to_sql_dtype(self) -> sa.sql.visitors.VisitableType: """Return SQLAlchemy data type.""" if self.constraints.enum and self.type == "string": return sa.Enum(*self.constraints.enum) return FIELD_DTYPES_SQL[self.type] def to_pyarrow_dtype(self) -> pa.lib.DataType: """Return PyArrow data type.""" if self.constraints.enum and self.type == "string": return pa.dictionary(pa.int32(), pa.string(), ordered=False) return FIELD_DTYPES_PYARROW[self.type] def to_pyarrow(self) -> pa.Field: """Return a PyArrow Field appropriate to the field.""" return pa.field( name=self.name, type=self.to_pyarrow_dtype(), nullable=(not self.constraints.required), metadata={"description": self.description}, ) def to_sql( # noqa: C901 self, dialect: Literal["sqlite"] = "sqlite", check_types: bool = True, check_values: bool = True, ) -> sa.Column: """Return equivalent SQL column.""" if dialect != "sqlite": raise NotImplementedError(f"Dialect {dialect} is not supported") checks = [] name = _format_for_sql(self.name, identifier=True) if check_types: # Required with TYPEOF since TYPEOF(NULL) = 'null' prefix = "" if self.constraints.required else f"{name} IS NULL OR " # Field type if self.type == "string": checks.append(f"{prefix}TYPEOF({name}) = 'text'") elif self.type in ("integer", "year"): checks.append(f"{prefix}TYPEOF({name}) = 'integer'") elif self.type == "number": checks.append(f"{prefix}TYPEOF({name}) = 'real'") elif self.type == "boolean": # Just IN (0, 1) accepts floats equal to 0, 1 (0.0, 1.0) checks.append( f"{prefix}(TYPEOF({name}) = 'integer' AND {name} IN (0, 1))" ) elif self.type == "date": checks.append(f"{name} IS DATE({name})") elif self.type == "datetime": checks.append(f"{name} IS DATETIME({name})") if check_values: # Field constraints if self.constraints.min_length is not None: checks.append(f"LENGTH({name}) >= {self.constraints.min_length}") if self.constraints.max_length is not None: checks.append(f"LENGTH({name}) <= {self.constraints.max_length}") if self.constraints.minimum is not None: minimum = _format_for_sql(self.constraints.minimum) checks.append(f"{name} >= {minimum}") if self.constraints.maximum is not None: maximum = _format_for_sql(self.constraints.maximum) checks.append(f"{name} <= {maximum}") if self.constraints.pattern: pattern = _format_for_sql(self.constraints.pattern) checks.append(f"{name} REGEXP {pattern}") if self.constraints.enum: enum = [_format_for_sql(x) for x in self.constraints.enum] checks.append(f"{name} IN ({', '.join(enum)})") return sa.Column( self.name, self.to_sql_dtype(), *[sa.CheckConstraint(check) for check in checks], nullable=not self.constraints.required, unique=self.constraints.unique, comment=self.description, ) def encode(self, col: pd.Series, dtype: Union[type, None] = None) -> pd.Series: """Recode the Field if it has an associated encoder.""" return self.encoder.encode(col, dtype=dtype) if self.encoder else col # ---- Classes: Resource ---- # class ForeignKeyReference(Base): """Foreign key reference (`resource.schema.foreign_keys[...].reference`). See https://specs.frictionlessdata.io/table-schema/#foreign-keys. """ resource: SnakeCase fields_: StrictList(SnakeCase) = pydantic.Field(alias="fields") _check_unique = _validator("fields_", fn=_check_unique) class ForeignKey(Base): """Foreign key (`resource.schema.foreign_keys[...]`). See https://specs.frictionlessdata.io/table-schema/#foreign-keys. """ fields_: StrictList(SnakeCase) = pydantic.Field(alias="fields") reference: ForeignKeyReference _check_unique = _validator("fields_", fn=_check_unique) @pydantic.validator("reference") def _check_fields_equal_length(cls, value, values): # noqa: N805 if "fields_" in values: if len(value.fields) != len(values["fields_"]): raise ValueError("fields and reference.fields are not equal length") return value def is_simple(self) -> bool: """Indicate whether the FK relationship contains a single column.""" return True if len(self.fields) == 1 else False def to_sql(self) -> sa.ForeignKeyConstraint: """Return equivalent SQL Foreign Key.""" return sa.ForeignKeyConstraint( self.fields, [f"{self.reference.resource}.{field}" for field in self.reference.fields], ) class Schema(Base): """Table schema (`resource.schema`). See https://specs.frictionlessdata.io/table-schema. """ fields_: StrictList(Field) = pydantic.Field(alias="fields") missing_values: List[pydantic.StrictStr] = [""] primary_key: StrictList(SnakeCase) = None foreign_keys: List[ForeignKey] = [] _check_unique = _validator( "missing_values", "primary_key", "foreign_keys", fn=_check_unique ) @pydantic.validator("fields_") def _check_field_names_unique(cls, value): # noqa: N805 _check_unique([f.name for f in value]) return value @pydantic.validator("primary_key") def _check_primary_key_in_fields(cls, value, values): # noqa: N805 if value is not None and "fields_" in values: missing = [] names = [f.name for f in values["fields_"]] for name in value: if name in names: # Flag primary key fields as required field = values["fields_"][names.index(name)] field.constraints.required = True else: missing.append(field.name) if missing: raise ValueError(f"names {missing} missing from fields") return value @pydantic.validator("foreign_keys", each_item=True) def _check_foreign_key_in_fields(cls, value, values): # noqa: N805 if value and "fields_" in values: names = [f.name for f in values["fields_"]] missing = [x for x in value.fields if x not in names] if missing: raise ValueError(f"names {missing} missing from fields") return value class License(Base): """Data license (`package|resource.licenses[...]`). See https://specs.frictionlessdata.io/data-package/#licenses. """ name: String title: String path: HttpUrl @staticmethod def dict_from_id(x: str) -> dict: """Construct dictionary from PUDL identifier.""" return copy.deepcopy(LICENSES[x]) @classmethod def from_id(cls, x: str) -> "License": """Construct from PUDL identifier.""" return cls(**cls.dict_from_id(x)) class Contributor(Base): """Data contributor (`package.contributors[...]`). See https://specs.frictionlessdata.io/data-package/#contributors. """ title: String path: HttpUrl = None email: Email = None role: Literal[ "author", "contributor", "maintainer", "publisher", "wrangler" ] = "contributor" organization: String = None orcid: String = None @staticmethod def dict_from_id(x: str) -> dict: """Construct dictionary from PUDL identifier.""" return copy.deepcopy(CONTRIBUTORS[x]) @classmethod def from_id(cls, x: str) -> "Contributor": """Construct from PUDL identifier.""" return cls(**cls.dict_from_id(x)) def __hash__(self): """Implements simple hash method. Allows use of `set()` on a list of Contributor """ return hash(str(self)) class DataSource(Base): """A data source that has been integrated into PUDL. This metadata is used for: * Generating PUDL documentation. * Annotating long-term archives of the raw input data on Zenodo. * Defining what data partitions can be processed using PUDL. It can also be used to populate the "source" fields of frictionless data packages and data resources (`package|resource.sources[...]`). See https://specs.frictionlessdata.io/data-package/#sources. """ name: SnakeCase title: String = None description: String = None field_namespace: String = None keywords: List[str] = [] path: HttpUrl = None contributors: List[Contributor] = [] # Or should this be compiled from Resources? license_raw: License license_pudl: License # concept_doi: Doi = None # Need to define a Doi type? working_partitions: Dict[SnakeCase, Any] = {} # agency: Agency # needs to be defined email: Email = None def get_resource_ids(self) -> List[str]: """Compile list of resoruce IDs associated with this data source.""" # Temporary check to use eia861.RESOURCE_METADATA directly # eia861 is not currently included in the general RESOURCE_METADATA dict resources = RESOURCE_METADATA if self.name == "eia861": resources = eia861.RESOURCE_METADATA return sorted( [ name for name, value in resources.items() if value.get("etl_group") == self.name ] ) def get_temporal_coverage(self) -> str: """Return a string describing the time span covered by the data source.""" if "years" in self.working_partitions: return f"{min(self.working_partitions['years'])}-{max(self.working_partitions['years'])}" elif "year_month" in self.working_partitions: return f"through {self.working_partitions['year_month']}" else: return "" def to_rst(self) -> None: """Output a representation of the data source in RST for documentation.""" pass @classmethod def from_field_namespace(cls, x: str) -> List["DataSource"]: """Return list of DataSource objects by field namespace.""" return [ cls(**cls.dict_from_id(name)) for name, val in SOURCES.items() if val.get("field_namespace") == x ] @staticmethod def dict_from_id(x: str) -> dict: """Look up the source by source name in the metadata.""" return {"name": x, **copy.deepcopy(SOURCES[x])} @classmethod def from_id(cls, x: str) -> "DataSource": """Construct Source by source name in the metadata.""" return cls(**cls.dict_from_id(x)) class ResourceHarvest(Base): """Resource harvest parameters (`resource.harvest`).""" harvest: Bool = False """Whether to harvest from dataframes based on field names. If `False`, the dataframe with the same name is used and the process is limited to dropping unwanted fields. """ tolerance: PositiveFloat = 0.0 """Fraction of invalid fields above which result is considerd invalid.""" class Resource(Base): """Tabular data resource (`package.resources[...]`). See https://specs.frictionlessdata.io/tabular-data-resource. Examples: A simple example illustrates the conversion to SQLAlchemy objects. >>> fields = [{'name': 'x', 'type': 'year'}, {'name': 'y', 'type': 'string'}] >>> fkeys = [{'fields': ['x', 'y'], 'reference': {'resource': 'b', 'fields': ['x', 'y']}}] >>> schema = {'fields': fields, 'primary_key': ['x'], 'foreign_keys': fkeys} >>> resource = Resource(name='a', schema=schema) >>> table = resource.to_sql() >>> table.columns.x Column('x', Integer(), ForeignKey('b.x'), CheckConstraint(...), table=<a>, primary_key=True, nullable=False) >>> table.columns.y Column('y', Text(), ForeignKey('b.y'), CheckConstraint(...), table=<a>) To illustrate harvesting operations, say we have a resource with two fields - a primary key (`id`) and a data field - which we want to harvest from two different dataframes. >>> from pudl.metadata.helpers import unique, as_dict >>> fields = [ ... {'name': 'id', 'type': 'integer'}, ... {'name': 'x', 'type': 'integer', 'harvest': {'aggregate': unique, 'tolerance': 0.25}} ... ] >>> resource = Resource(**{ ... 'name': 'a', ... 'harvest': {'harvest': True}, ... 'schema': {'fields': fields, 'primary_key': ['id']} ... }) >>> dfs = { ... 'a': pd.DataFrame({'id': [1, 1, 2, 2], 'x': [1, 1, 2, 2]}), ... 'b': pd.DataFrame({'id': [2, 3, 3], 'x': [3, 4, 4]}) ... } Skip aggregation to access all the rows concatenated from the input dataframes. The names of the input dataframes are used as the index. >>> df, _ = resource.harvest_dfs(dfs, aggregate=False) >>> df id x df a 1 1 a 1 1 a 2 2 a 2 2 b 2 3 b 3 4 b 3 4 Field names and data types are enforced. >>> resource.to_pandas_dtypes() == df.dtypes.apply(str).to_dict() True Alternatively, aggregate by primary key (the default when :attr:`harvest`. `harvest=True`) and report aggregation errors. >>> df, report = resource.harvest_dfs(dfs) >>> df x id 1 1 2 <NA> 3 4 >>> report['stats'] {'all': 2, 'invalid': 1, 'tolerance': 0.0, 'actual': 0.5} >>> report['fields']['x']['stats'] {'all': 3, 'invalid': 1, 'tolerance': 0.25, 'actual': 0.33...} >>> report['fields']['x']['errors'] id 2 Not unique. Name: x, dtype: object Customize the error values in the error report. >>> error = lambda x, e: as_dict(x) >>> df, report = resource.harvest_dfs( ... dfs, aggregate_kwargs={'raised': False, 'error': error} ... ) >>> report['fields']['x']['errors'] id 2 {'a': [2, 2], 'b': [3]} Name: x, dtype: object Limit harvesting to the input dataframe of the same name by setting :attr:`harvest`. `harvest=False`. >>> resource.harvest.harvest = False >>> df, _ = resource.harvest_dfs(dfs, aggregate_kwargs={'raised': False}) >>> df id x df a 1 1 a 1 1 a 2 2 a 2 2 Harvesting can also handle conversion to longer time periods. Period harvesting requires primary key fields with a `datetime` data type, except for `year` fields which can be integer. >>> fields = [{'name': 'report_year', 'type': 'year'}] >>> resource = Resource(**{ ... 'name': 'table', 'harvest': {'harvest': True}, ... 'schema': {'fields': fields, 'primary_key': ['report_year']} ... }) >>> df = pd.DataFrame({'report_date': ['2000-02-02', '2000-03-03']}) >>> resource.format_df(df) report_year 0 2000-01-01 1 2000-01-01 >>> df = pd.DataFrame({'report_year': [2000, 2000]}) >>> resource.format_df(df) report_year 0 2000-01-01 1 2000-01-01 """ name: SnakeCase title: String = None description: String = None harvest: ResourceHarvest = {} schema_: Schema = pydantic.Field(alias="schema") contributors: List[Contributor] = [] licenses: List[License] = [] sources: List[DataSource] = [] keywords: List[String] = [] encoder: Encoder = None field_namespace: Literal[ "eia", "epacems", "ferc1", "ferc714", "glue", "pudl" ] = None etl_group: Literal[ "eia860", "eia861", "eia923", "entity_eia", "epacems", "ferc1", "ferc1_disabled", "ferc714", "glue", "static_ferc1", "static_eia", ] = None _check_unique = _validator( "contributors", "keywords", "licenses", "sources", fn=_check_unique ) @pydantic.validator("schema_") def _check_harvest_primary_key(cls, value, values): # noqa: N805 if values["harvest"].harvest: if not value.primary_key: raise ValueError("Harvesting requires a primary key") return value @staticmethod def dict_from_id(x: str) -> dict: # noqa: C901 """Construct dictionary from PUDL identifier (`resource.name`). * `schema.fields` * Field names are expanded (:meth:`Field.from_id`). * Field attributes are replaced with any specific to the `resource.group` and `field.name`. * `sources`: Source ids are expanded (:meth:`Source.from_id`). * `licenses`: License ids are expanded (:meth:`License.from_id`). * `contributors`: Contributor ids are fetched by source ids, then expanded (:meth:`Contributor.from_id`). * `keywords`: Keywords are fetched by source ids. * `schema.foreign_keys`: Foreign keys are fetched by resource name. """ obj = copy.deepcopy(RESOURCE_METADATA[x]) obj["name"] = x schema = obj["schema"] # Expand fields if "fields" in schema: fields = [] for name in schema["fields"]: # Lookup field by name value = Field.dict_from_id(name) # Update with any custom group-level metadata namespace = obj.get("field_namespace") if name in FIELD_METADATA_BY_GROUP.get(namespace, {}): value = {**value, **FIELD_METADATA_BY_GROUP[namespace][name]} # Update with any custom resource-level metadata if name in FIELD_METADATA_BY_RESOURCE.get(x, {}): value = {**value, **FIELD_METADATA_BY_RESOURCE[x][name]} fields.append(value) schema["fields"] = fields # Expand sources sources = obj.get("sources", []) obj["sources"] = [ DataSource.from_id(value) for value in sources if value in SOURCES ] encoder = obj.get("encoder", None) obj["encoder"] = encoder # Expand licenses (assign CC-BY-4.0 by default) licenses = obj.get("licenses", ["cc-by-4.0"]) obj["licenses"] = [License.dict_from_id(value) for value in licenses] # Lookup and insert contributors if "contributors" in schema: raise ValueError("Resource metadata contains explicit contributors") contributors = [] for source in sources: if source in SOURCES: contributors.extend(DataSource.from_id(source).contributors) obj["contributors"] = set(contributors) # Lookup and insert keywords if "keywords" in schema: raise ValueError("Resource metadata contains explicit keywords") keywords = [] for source in sources: if source in SOURCES: keywords.extend(DataSource.from_id(source).keywords) obj["keywords"] = sorted(set(keywords)) # Insert foreign keys if "foreign_keys" in schema: raise ValueError("Resource metadata contains explicit foreign keys") schema["foreign_keys"] = FOREIGN_KEYS.get(x, []) # Delete foreign key rules if "foreign_key_rules" in schema: del schema["foreign_key_rules"] # Add encoders to columns as appropriate, based on FKs. # Foreign key relationships determine the set of codes to use for fk in obj["schema"]["foreign_keys"]: # Only referenced tables with an associated encoder indicate # that the column we're looking at should have an encoder # attached to it. All of these FK relationships must have simple # single-column keys. encoder = Encoder.dict_from_id(fk["reference"]["resource"]) if len(fk["fields"]) != 1 and encoder: raise ValueError( "Encoder for table with a composite primary key: " f"{fk['reference']['resource']}" ) if len(fk["fields"]) == 1 and encoder: # fk["fields"] is a one element list, get the one element: field = fk["fields"][0] for f in obj["schema"]["fields"]: if f["name"] == field: f["encoder"] = encoder break return obj @classmethod def from_id(cls, x: str) -> "Resource": """Construct from PUDL identifier (`resource.name`).""" return cls(**cls.dict_from_id(x)) def get_field(self, name: str) -> Field: """Return field with the given name if it's part of the Resources.""" names = [field.name for field in self.schema.fields] if name not in names: raise KeyError(f"The field {name} is not part of the {self.name} schema.") return self.schema.fields[names.index(name)] def to_sql( self, metadata: sa.MetaData = None, check_types: bool = True, check_values: bool = True, ) -> sa.Table: """Return equivalent SQL Table.""" if metadata is None: metadata = sa.MetaData() columns = [ f.to_sql( check_types=check_types, check_values=check_values, ) for f in self.schema.fields ] constraints = [] if self.schema.primary_key: constraints.append(sa.PrimaryKeyConstraint(*self.schema.primary_key)) for key in self.schema.foreign_keys: constraints.append(key.to_sql()) return sa.Table(self.name, metadata, *columns, *constraints) def to_pyarrow(self) -> pa.Schema: """Construct a PyArrow schema for the resource.""" fields = [field.to_pyarrow() for field in self.schema.fields] metadata = { "description": self.description, "primary_key": ",".join(self.schema.primary_key), } return pa.schema(fields=fields, metadata=metadata) def to_pandas_dtypes( self, **kwargs: Any ) -> Dict[str, Union[str, pd.CategoricalDtype]]: """Return Pandas data type of each field by field name. Args: kwargs: Arguments to :meth:`Field.to_pandas_dtype`. """ return {f.name: f.to_pandas_dtype(**kwargs) for f in self.schema.fields} def match_primary_key(self, names: Iterable[str]) -> Optional[Dict[str, str]]: """Match primary key fields to input field names. An exact match is required unless :attr:`harvest` .`harvest=True`, in which case periodic names may also match a basename with a smaller period. Args: names: Field names. Raises: ValueError: Field names are not unique. ValueError: Multiple field names match primary key field. Returns: The name matching each primary key field (if any) as a :class:`dict`, or `None` if not all primary key fields have a match. Examples: >>> fields = [{'name': 'x_year', 'type': 'year'}] >>> schema = {'fields': fields, 'primary_key': ['x_year']} >>> resource = Resource(name='r', schema=schema) By default, when :attr:`harvest` .`harvest=False`, exact matches are required. >>> resource.harvest.harvest False >>> resource.match_primary_key(['x_month']) is None True >>> resource.match_primary_key(['x_year', 'x_month']) {'x_year': 'x_year'} When :attr:`harvest` .`harvest=True`, in the absence of an exact match, periodic names may also match a basename with a smaller period. >>> resource.harvest.harvest = True >>> resource.match_primary_key(['x_year', 'x_month']) {'x_year': 'x_year'} >>> resource.match_primary_key(['x_month']) {'x_month': 'x_year'} >>> resource.match_primary_key(['x_month', 'x_date']) Traceback (most recent call last): ValueError: ... {'x_month', 'x_date'} match primary key field 'x_year' """ if len(names) != len(set(names)): raise ValueError("Field names are not unique") keys = self.schema.primary_key or [] if self.harvest.harvest: remaining = set(names) matches = {} for key in keys: match = None if key in remaining: # Use exact match if present match = key elif split_period(key)[1]: # Try periodic alternatives periods = expand_periodic_column_names([key]) matching = remaining.intersection(periods) if len(matching) > 1: raise ValueError( f"Multiple field names {matching} " f"match primary key field '{key}'" ) if len(matching) == 1: match = list(matching)[0] if match: matches[match] = key remaining.remove(match) else: matches = {key: key for key in keys if key in names} return matches if len(matches) == len(keys) else None def format_df(self, df: pd.DataFrame = None, **kwargs: Any) -> pd.DataFrame: """Format a dataframe. Args: df: Dataframe to format. kwargs: Arguments to :meth:`Field.to_pandas_dtypes`. Returns: Dataframe with column names and data types matching the resource fields. Periodic primary key fields are snapped to the start of the desired period. If the primary key fields could not be matched to columns in `df` (:meth:`match_primary_key`) or if `df=None`, an empty dataframe is returned. """ dtypes = self.to_pandas_dtypes(**kwargs) if df is None: return pd.DataFrame({n: pd.Series(dtype=d) for n, d in dtypes.items()}) matches = self.match_primary_key(df.columns) if matches is None: # Primary key present but no matches were found return self.format_df() df = df.copy() # Rename periodic key columns (if any) to the requested period df.rename(columns=matches, inplace=True) # Cast integer year fields to datetime for field in self.schema.fields: if ( field.type == "year" and field.name in df and pd.api.types.is_integer_dtype(df[field.name]) ): df[field.name] = pd.to_datetime(df[field.name], format="%Y") df = ( # Reorder columns and insert missing columns df.reindex(columns=dtypes.keys(), copy=False) # Coerce columns to correct data type .astype(dtypes, copy=False) ) # Convert periodic key columns to the requested period for df_key, key in matches.items(): _, period = split_period(key) if period and df_key != key: df[key] = PERIODS[period](df[key]) return df def aggregate_df( self, df: pd.DataFrame, raised: bool = False, error: Callable = None ) -> Tuple[pd.DataFrame, dict]: """Aggregate dataframe by primary key. The dataframe is grouped by primary key fields and aggregated with the aggregate function of each field (:attr:`schema_`. `fields[*].harvest.aggregate`). The report is formatted as follows: * `valid` (bool): Whether resouce is valid. * `stats` (dict): Error statistics for resource fields. * `fields` (dict): * `<field_name>` (str) * `valid` (bool): Whether field is valid. * `stats` (dict): Error statistics for field groups. * `errors` (:class:`pandas.Series`): Error values indexed by primary key. * ... Each `stats` (dict) contains the following: * `all` (int): Number of entities (field or field group). * `invalid` (int): Invalid number of entities. * `tolerance` (float): Fraction of invalid entities below which parent entity is considered valid. * `actual` (float): Actual fraction of invalid entities. Args: df: Dataframe to aggregate. It is assumed to have column names and data types matching the resource fields. raised: Whether aggregation errors are raised or replaced with :obj:`np.nan` and returned in an error report. error: A function with signature `f(x, e) -> Any`, where `x` are the original field values as a :class:`pandas.Series` and `e` is the original error. If provided, the returned value is reported instead of `e`. Raises: ValueError: A primary key is required for aggregating. Returns: The aggregated dataframe indexed by primary key fields, and an aggregation report (descripted above) that includes all aggregation errors and whether the result meets the resource's and fields' tolerance. """ if not self.schema.primary_key: raise ValueError("A primary key is required for aggregating") aggfuncs = { f.name: f.harvest.aggregate for f in self.schema.fields if f.name not in self.schema.primary_key } df, report = groupby_aggregate( df, by=self.schema.primary_key, aggfuncs=aggfuncs, raised=raised, error=error, ) report = self._build_aggregation_report(df, report) return df, report def _build_aggregation_report(self, df: pd.DataFrame, errors: dict) -> dict: """Build report from aggregation errors. Args: df: Harvested dataframe (see :meth:`harvest_dfs`). errors: Aggregation errors (see :func:`groupby_aggregate`). Returns: Aggregation report, as described in :meth:`aggregate_df`. """ nrows, ncols = df.reset_index().shape freports = {} for field in self.schema.fields: if field.name in errors: nerrors = errors[field.name].size else: nerrors = 0 stats = { "all": nrows, "invalid": nerrors, "tolerance": field.harvest.tolerance, "actual": nerrors / nrows if nrows else 0, } freports[field.name] = { "valid": stats["actual"] <= stats["tolerance"], "stats": stats, "errors": errors.get(field.name, None), } nerrors = sum([not f["valid"] for f in freports.values()]) stats = { "all": ncols, "invalid": nerrors, "tolerance": self.harvest.tolerance, "actual": nerrors / ncols, } return { "valid": stats["actual"] <= stats["tolerance"], "stats": stats, "fields": freports, } def harvest_dfs( self, dfs: Dict[str, pd.DataFrame], aggregate: bool = None, aggregate_kwargs: Dict[str, Any] = {}, format_kwargs: Dict[str, Any] = {}, ) -> Tuple[pd.DataFrame, dict]: """Harvest from named dataframes. For standard resources (:attr:`harvest`. `harvest=False`), the columns matching all primary key fields and any data fields are extracted from the input dataframe of the same name. For harvested resources (:attr:`harvest`. `harvest=True`), the columns matching all primary key fields and any data fields are extracted from each compatible input dataframe, and concatenated into a single dataframe. Periodic key fields (e.g. 'report_month') are matched to any column of the same name with an equal or smaller period (e.g. 'report_day') and snapped to the start of the desired period. If `aggregate=False`, rows are indexed by the name of the input dataframe. If `aggregate=True`, rows are indexed by primary key fields. Args: dfs: Dataframes to harvest. aggregate: Whether to aggregate the harvested rows by their primary key. By default, this is `True` if `self.harvest.harvest=True` and `False` otherwise. aggregate_kwargs: Optional arguments to :meth:`aggregate_df`. format_kwargs: Optional arguments to :meth:`format_df`. Returns: A dataframe harvested from the dataframes, with column names and data types matching the resource fields, alongside an aggregation report. """ if aggregate is None: aggregate = self.harvest.harvest if self.harvest.harvest: # Harvest resource from all inputs where all primary key fields are present samples = {} for name, df in dfs.items(): samples[name] = self.format_df(df, **format_kwargs) # Pass input names to aggregate via the index samples[name].index = pd.Index([name] * len(samples[name]), name="df") df = pd.concat(samples.values()) elif self.name in dfs: # Subset resource from input of same name df = self.format_df(dfs[self.name], **format_kwargs) # Pass input names to aggregate via the index df.index =
pd.Index([self.name] * df.shape[0], name="df")
pandas.Index
# pylint: disable=E1101,E1103,W0232 from datetime import datetime, timedelta from pandas.compat import range, lrange, lzip, u, zip import operator import re import nose import warnings import os import numpy as np from numpy.testing import assert_array_equal from pandas import period_range, date_range from pandas.core.index import (Index, Float64Index, Int64Index, MultiIndex, InvalidIndexError, NumericIndex) from pandas.tseries.index import DatetimeIndex from pandas.tseries.tdi import TimedeltaIndex from pandas.tseries.period import PeriodIndex from pandas.core.series import Series from pandas.util.testing import (assert_almost_equal, assertRaisesRegexp, assert_copy) from pandas import compat from pandas.compat import long import pandas.util.testing as tm import pandas.core.config as cf from pandas.tseries.index import _to_m8 import pandas.tseries.offsets as offsets import pandas as pd from pandas.lib import Timestamp class Base(object): """ base class for index sub-class tests """ _holder = None _compat_props = ['shape', 'ndim', 'size', 'itemsize', 'nbytes'] def verify_pickle(self,index): unpickled = self.round_trip_pickle(index) self.assertTrue(index.equals(unpickled)) def test_pickle_compat_construction(self): # this is testing for pickle compat if self._holder is None: return # need an object to create with self.assertRaises(TypeError, self._holder) def test_numeric_compat(self): idx = self.create_index() tm.assertRaisesRegexp(TypeError, "cannot perform __mul__", lambda : idx * 1) tm.assertRaisesRegexp(TypeError, "cannot perform __mul__", lambda : 1 * idx) div_err = "cannot perform __truediv__" if compat.PY3 else "cannot perform __div__" tm.assertRaisesRegexp(TypeError, div_err, lambda : idx / 1) tm.assertRaisesRegexp(TypeError, div_err, lambda : 1 / idx) tm.assertRaisesRegexp(TypeError, "cannot perform __floordiv__", lambda : idx // 1) tm.assertRaisesRegexp(TypeError, "cannot perform __floordiv__", lambda : 1 // idx) def test_boolean_context_compat(self): # boolean context compat idx = self.create_index() def f(): if idx: pass tm.assertRaisesRegexp(ValueError,'The truth value of a',f) def test_ndarray_compat_properties(self): idx = self.create_index() self.assertTrue(idx.T.equals(idx)) self.assertTrue(idx.transpose().equals(idx)) values = idx.values for prop in self._compat_props: self.assertEqual(getattr(idx, prop), getattr(values, prop)) # test for validity idx.nbytes idx.values.nbytes class TestIndex(Base, tm.TestCase): _holder = Index _multiprocess_can_split_ = True def setUp(self): self.indices = dict( unicodeIndex = tm.makeUnicodeIndex(100), strIndex = tm.makeStringIndex(100), dateIndex = tm.makeDateIndex(100), intIndex = tm.makeIntIndex(100), floatIndex = tm.makeFloatIndex(100), boolIndex = Index([True,False]), empty = Index([]), tuples = MultiIndex.from_tuples(lzip(['foo', 'bar', 'baz'], [1, 2, 3])) ) for name, ind in self.indices.items(): setattr(self, name, ind) def create_index(self): return Index(list('abcde')) def test_wrong_number_names(self): def testit(ind): ind.names = ["apple", "banana", "carrot"] for ind in self.indices.values(): assertRaisesRegexp(ValueError, "^Length", testit, ind) def test_set_name_methods(self): new_name = "This is the new name for this index" indices = (self.dateIndex, self.intIndex, self.unicodeIndex, self.empty) for ind in indices: original_name = ind.name new_ind = ind.set_names([new_name]) self.assertEqual(new_ind.name, new_name) self.assertEqual(ind.name, original_name) res = ind.rename(new_name, inplace=True) # should return None self.assertIsNone(res) self.assertEqual(ind.name, new_name) self.assertEqual(ind.names, [new_name]) #with assertRaisesRegexp(TypeError, "list-like"): # # should still fail even if it would be the right length # ind.set_names("a") with assertRaisesRegexp(ValueError, "Level must be None"): ind.set_names("a", level=0) # rename in place just leaves tuples and other containers alone name = ('A', 'B') ind = self.intIndex ind.rename(name, inplace=True) self.assertEqual(ind.name, name) self.assertEqual(ind.names, [name]) def test_hash_error(self): with tm.assertRaisesRegexp(TypeError, "unhashable type: %r" % type(self.strIndex).__name__): hash(self.strIndex) def test_new_axis(self): new_index = self.dateIndex[None, :] self.assertEqual(new_index.ndim, 2) tm.assert_isinstance(new_index, np.ndarray) def test_copy_and_deepcopy(self): from copy import copy, deepcopy for func in (copy, deepcopy): idx_copy = func(self.strIndex) self.assertIsNot(idx_copy, self.strIndex) self.assertTrue(idx_copy.equals(self.strIndex)) new_copy = self.strIndex.copy(deep=True, name="banana") self.assertEqual(new_copy.name, "banana") new_copy2 = self.intIndex.copy(dtype=int) self.assertEqual(new_copy2.dtype.kind, 'i') def test_duplicates(self): idx = Index([0, 0, 0]) self.assertFalse(idx.is_unique) def test_sort(self): self.assertRaises(TypeError, self.strIndex.sort) def test_mutability(self): self.assertRaises(TypeError, self.strIndex.__setitem__, 0, 'foo') def test_constructor(self): # regular instance creation tm.assert_contains_all(self.strIndex, self.strIndex) tm.assert_contains_all(self.dateIndex, self.dateIndex) # casting arr = np.array(self.strIndex) index = Index(arr) tm.assert_contains_all(arr, index) self.assert_numpy_array_equal(self.strIndex, index) # copy arr = np.array(self.strIndex) index = Index(arr, copy=True, name='name') tm.assert_isinstance(index, Index) self.assertEqual(index.name, 'name') assert_array_equal(arr, index) arr[0] = "SOMEBIGLONGSTRING" self.assertNotEqual(index[0], "SOMEBIGLONGSTRING") # what to do here? # arr = np.array(5.) # self.assertRaises(Exception, arr.view, Index) def test_constructor_corner(self): # corner case self.assertRaises(TypeError, Index, 0) def test_constructor_from_series(self): expected = DatetimeIndex([Timestamp('20110101'),Timestamp('20120101'),Timestamp('20130101')]) s = Series([Timestamp('20110101'),Timestamp('20120101'),Timestamp('20130101')]) result = Index(s) self.assertTrue(result.equals(expected)) result = DatetimeIndex(s) self.assertTrue(result.equals(expected)) # GH 6273 # create from a series, passing a freq s = Series(pd.to_datetime(['1-1-1990', '2-1-1990', '3-1-1990', '4-1-1990', '5-1-1990'])) result = DatetimeIndex(s, freq='MS') expected = DatetimeIndex(['1-1-1990', '2-1-1990', '3-1-1990', '4-1-1990', '5-1-1990'],freq='MS') self.assertTrue(result.equals(expected)) df = pd.DataFrame(np.random.rand(5,3)) df['date'] = ['1-1-1990', '2-1-1990', '3-1-1990', '4-1-1990', '5-1-1990'] result = DatetimeIndex(df['date'], freq='MS') # GH 6274 # infer freq of same result = pd.infer_freq(df['date']) self.assertEqual(result,'MS') def test_constructor_ndarray_like(self): # GH 5460#issuecomment-44474502 # it should be possible to convert any object that satisfies the numpy # ndarray interface directly into an Index class ArrayLike(object): def __init__(self, array): self.array = array def __array__(self, dtype=None): return self.array for array in [np.arange(5), np.array(['a', 'b', 'c']), date_range('2000-01-01', periods=3).values]: expected = pd.Index(array) result = pd.Index(ArrayLike(array)) self.assertTrue(result.equals(expected)) def test_index_ctor_infer_periodindex(self): xp = period_range('2012-1-1', freq='M', periods=3) rs = Index(xp) assert_array_equal(rs, xp) tm.assert_isinstance(rs, PeriodIndex) def test_constructor_simple_new(self): idx = Index([1, 2, 3, 4, 5], name='int') result = idx._simple_new(idx, 'int') self.assertTrue(result.equals(idx)) idx = Index([1.1, np.nan, 2.2, 3.0], name='float') result = idx._simple_new(idx, 'float') self.assertTrue(result.equals(idx)) idx = Index(['A', 'B', 'C', np.nan], name='obj') result = idx._simple_new(idx, 'obj') self.assertTrue(result.equals(idx)) def test_copy(self): i = Index([], name='Foo') i_copy = i.copy() self.assertEqual(i_copy.name, 'Foo') def test_view(self): i = Index([], name='Foo') i_view = i.view() self.assertEqual(i_view.name, 'Foo') def test_legacy_pickle_identity(self): # GH 8431 pth = tm.get_data_path() s1 = pd.read_pickle(os.path.join(pth,'s1-0.12.0.pickle')) s2 = pd.read_pickle(os.path.join(pth,'s2-0.12.0.pickle')) self.assertFalse(s1.index.identical(s2.index)) self.assertFalse(s1.index.equals(s2.index)) def test_astype(self): casted = self.intIndex.astype('i8') # it works! casted.get_loc(5) # pass on name self.intIndex.name = 'foobar' casted = self.intIndex.astype('i8') self.assertEqual(casted.name, 'foobar') def test_compat(self): self.strIndex.tolist() def test_equals(self): # same self.assertTrue(Index(['a', 'b', 'c']).equals(Index(['a', 'b', 'c']))) # different length self.assertFalse(Index(['a', 'b', 'c']).equals(Index(['a', 'b']))) # same length, different values self.assertFalse(Index(['a', 'b', 'c']).equals(Index(['a', 'b', 'd']))) # Must also be an Index self.assertFalse(Index(['a', 'b', 'c']).equals(['a', 'b', 'c'])) def test_insert(self): # GH 7256 # validate neg/pos inserts result = Index(['b', 'c', 'd']) #test 0th element self.assertTrue(Index(['a', 'b', 'c', 'd']).equals( result.insert(0, 'a'))) #test Nth element that follows Python list behavior self.assertTrue(Index(['b', 'c', 'e', 'd']).equals( result.insert(-1, 'e'))) #test loc +/- neq (0, -1) self.assertTrue(result.insert(1, 'z').equals( result.insert(-2, 'z'))) #test empty null_index = Index([]) self.assertTrue(Index(['a']).equals( null_index.insert(0, 'a'))) def test_delete(self): idx = Index(['a', 'b', 'c', 'd'], name='idx') expected = Index(['b', 'c', 'd'], name='idx') result = idx.delete(0) self.assertTrue(result.equals(expected)) self.assertEqual(result.name, expected.name) expected = Index(['a', 'b', 'c'], name='idx') result = idx.delete(-1) self.assertTrue(result.equals(expected)) self.assertEqual(result.name, expected.name) with tm.assertRaises((IndexError, ValueError)): # either depeidnig on numpy version result = idx.delete(5) def test_identical(self): # index i1 = Index(['a', 'b', 'c']) i2 = Index(['a', 'b', 'c']) self.assertTrue(i1.identical(i2)) i1 = i1.rename('foo') self.assertTrue(i1.equals(i2)) self.assertFalse(i1.identical(i2)) i2 = i2.rename('foo') self.assertTrue(i1.identical(i2)) i3 = Index([('a', 'a'), ('a', 'b'), ('b', 'a')]) i4 = Index([('a', 'a'), ('a', 'b'), ('b', 'a')], tupleize_cols=False) self.assertFalse(i3.identical(i4)) def test_is_(self): ind = Index(range(10)) self.assertTrue(ind.is_(ind)) self.assertTrue(ind.is_(ind.view().view().view().view())) self.assertFalse(ind.is_(Index(range(10)))) self.assertFalse(ind.is_(ind.copy())) self.assertFalse(ind.is_(ind.copy(deep=False))) self.assertFalse(ind.is_(ind[:])) self.assertFalse(ind.is_(ind.view(np.ndarray).view(Index))) self.assertFalse(ind.is_(np.array(range(10)))) # quasi-implementation dependent self.assertTrue(ind.is_(ind.view())) ind2 = ind.view() ind2.name = 'bob' self.assertTrue(ind.is_(ind2)) self.assertTrue(ind2.is_(ind)) # doesn't matter if Indices are *actually* views of underlying data, self.assertFalse(ind.is_(Index(ind.values))) arr = np.array(range(1, 11)) ind1 = Index(arr, copy=False) ind2 = Index(arr, copy=False) self.assertFalse(ind1.is_(ind2)) def test_asof(self): d = self.dateIndex[0] self.assertIs(self.dateIndex.asof(d), d) self.assertTrue(np.isnan(self.dateIndex.asof(d - timedelta(1)))) d = self.dateIndex[-1] self.assertEqual(self.dateIndex.asof(d + timedelta(1)), d) d = self.dateIndex[0].to_datetime() tm.assert_isinstance(self.dateIndex.asof(d), Timestamp) def test_asof_datetime_partial(self): idx = pd.date_range('2010-01-01', periods=2, freq='m') expected = Timestamp('2010-01-31') result = idx.asof('2010-02') self.assertEqual(result, expected) def test_nanosecond_index_access(self): s = Series([Timestamp('20130101')]).values.view('i8')[0] r = DatetimeIndex([s + 50 + i for i in range(100)]) x = Series(np.random.randn(100), index=r) first_value = x.asof(x.index[0]) # this does not yet work, as parsing strings is done via dateutil #self.assertEqual(first_value, x['2013-01-01 00:00:00.000000050+0000']) self.assertEqual(first_value, x[Timestamp(np.datetime64('2013-01-01 00:00:00.000000050+0000', 'ns'))]) def test_argsort(self): result = self.strIndex.argsort() expected = np.array(self.strIndex).argsort() self.assert_numpy_array_equal(result, expected) def test_comparators(self): index = self.dateIndex element = index[len(index) // 2] element = _to_m8(element) arr = np.array(index) def _check(op): arr_result = op(arr, element) index_result = op(index, element) self.assertIsInstance(index_result, np.ndarray) self.assert_numpy_array_equal(arr_result, index_result) _check(operator.eq) _check(operator.ne) _check(operator.gt) _check(operator.lt) _check(operator.ge) _check(operator.le) def test_booleanindex(self): boolIdx = np.repeat(True, len(self.strIndex)).astype(bool) boolIdx[5:30:2] = False subIndex = self.strIndex[boolIdx] for i, val in enumerate(subIndex): self.assertEqual(subIndex.get_loc(val), i) subIndex = self.strIndex[list(boolIdx)] for i, val in enumerate(subIndex): self.assertEqual(subIndex.get_loc(val), i) def test_fancy(self): sl = self.strIndex[[1, 2, 3]] for i in sl: self.assertEqual(i, sl[sl.get_loc(i)]) def test_empty_fancy(self): empty_farr = np.array([], dtype=np.float_) empty_iarr = np.array([], dtype=np.int_) empty_barr = np.array([], dtype=np.bool_) # pd.DatetimeIndex is excluded, because it overrides getitem and should # be tested separately. for idx in [self.strIndex, self.intIndex, self.floatIndex]: empty_idx = idx.__class__([]) values = idx.values self.assertTrue(idx[[]].identical(empty_idx)) self.assertTrue(idx[empty_iarr].identical(empty_idx)) self.assertTrue(idx[empty_barr].identical(empty_idx)) # np.ndarray only accepts ndarray of int & bool dtypes, so should # Index. self.assertRaises(IndexError, idx.__getitem__, empty_farr) def test_getitem(self): arr = np.array(self.dateIndex) exp = self.dateIndex[5] exp = _to_m8(exp) self.assertEqual(exp, arr[5]) def test_shift(self): shifted = self.dateIndex.shift(0, timedelta(1)) self.assertIs(shifted, self.dateIndex) shifted = self.dateIndex.shift(5, timedelta(1)) self.assert_numpy_array_equal(shifted, self.dateIndex + timedelta(5)) shifted = self.dateIndex.shift(1, 'B') self.assert_numpy_array_equal(shifted, self.dateIndex + offsets.BDay()) shifted.name = 'shifted' self.assertEqual(shifted.name, shifted.shift(1, 'D').name) def test_intersection(self): first = self.strIndex[:20] second = self.strIndex[:10] intersect = first.intersection(second) self.assertTrue(tm.equalContents(intersect, second)) # Corner cases inter = first.intersection(first) self.assertIs(inter, first) # non-iterable input assertRaisesRegexp(TypeError, "iterable", first.intersection, 0.5) idx1 = Index([1, 2, 3, 4, 5], name='idx') # if target has the same name, it is preserved idx2 = Index([3, 4, 5, 6, 7], name='idx') expected2 = Index([3, 4, 5], name='idx') result2 = idx1.intersection(idx2) self.assertTrue(result2.equals(expected2)) self.assertEqual(result2.name, expected2.name) # if target name is different, it will be reset idx3 = Index([3, 4, 5, 6, 7], name='other') expected3 = Index([3, 4, 5], name=None) result3 = idx1.intersection(idx3) self.assertTrue(result3.equals(expected3)) self.assertEqual(result3.name, expected3.name) # non monotonic idx1 = Index([5, 3, 2, 4, 1], name='idx') idx2 = Index([4, 7, 6, 5, 3], name='idx') result2 = idx1.intersection(idx2) self.assertTrue(tm.equalContents(result2, expected2)) self.assertEqual(result2.name, expected2.name) idx3 = Index([4, 7, 6, 5, 3], name='other') result3 = idx1.intersection(idx3) self.assertTrue(tm.equalContents(result3, expected3)) self.assertEqual(result3.name, expected3.name) # non-monotonic non-unique idx1 = Index(['A','B','A','C']) idx2 = Index(['B','D']) expected = Index(['B'], dtype='object') result = idx1.intersection(idx2) self.assertTrue(result.equals(expected)) def test_union(self): first = self.strIndex[5:20] second = self.strIndex[:10] everything = self.strIndex[:20] union = first.union(second) self.assertTrue(tm.equalContents(union, everything)) # Corner cases union = first.union(first) self.assertIs(union, first) union = first.union([]) self.assertIs(union, first) union = Index([]).union(first) self.assertIs(union, first) # non-iterable input assertRaisesRegexp(TypeError, "iterable", first.union, 0.5) # preserve names first.name = 'A' second.name = 'A' union = first.union(second) self.assertEqual(union.name, 'A') second.name = 'B' union = first.union(second) self.assertIsNone(union.name) def test_add(self): # - API change GH 8226 with tm.assert_produces_warning(): self.strIndex + self.strIndex firstCat = self.strIndex.union(self.dateIndex) secondCat = self.strIndex.union(self.strIndex) if self.dateIndex.dtype == np.object_: appended = np.append(self.strIndex, self.dateIndex) else: appended = np.append(self.strIndex, self.dateIndex.astype('O')) self.assertTrue(tm.equalContents(firstCat, appended)) self.assertTrue(tm.equalContents(secondCat, self.strIndex)) tm.assert_contains_all(self.strIndex, firstCat) tm.assert_contains_all(self.strIndex, secondCat) tm.assert_contains_all(self.dateIndex, firstCat) def test_append_multiple(self): index = Index(['a', 'b', 'c', 'd', 'e', 'f']) foos = [index[:2], index[2:4], index[4:]] result = foos[0].append(foos[1:]) self.assertTrue(result.equals(index)) # empty result = index.append([]) self.assertTrue(result.equals(index)) def test_append_empty_preserve_name(self): left = Index([], name='foo') right = Index([1, 2, 3], name='foo') result = left.append(right) self.assertEqual(result.name, 'foo') left = Index([], name='foo') right = Index([1, 2, 3], name='bar') result = left.append(right) self.assertIsNone(result.name) def test_add_string(self): # from bug report index = Index(['a', 'b', 'c']) index2 = index + 'foo' self.assertNotIn('a', index2) self.assertIn('afoo', index2) def test_iadd_string(self): index = pd.Index(['a', 'b', 'c']) # doesn't fail test unless there is a check before `+=` self.assertIn('a', index) index += '_x' self.assertIn('a_x', index) def test_difference(self): first = self.strIndex[5:20] second = self.strIndex[:10] answer = self.strIndex[10:20] first.name = 'name' # different names result = first.difference(second) self.assertTrue(tm.equalContents(result, answer)) self.assertEqual(result.name, None) # same names second.name = 'name' result = first.difference(second) self.assertEqual(result.name, 'name') # with empty result = first.difference([]) self.assertTrue(tm.equalContents(result, first)) self.assertEqual(result.name, first.name) # with everythin result = first.difference(first) self.assertEqual(len(result), 0) self.assertEqual(result.name, first.name) # non-iterable input assertRaisesRegexp(TypeError, "iterable", first.diff, 0.5) def test_symmetric_diff(self): # smoke idx1 = Index([1, 2, 3, 4], name='idx1') idx2 = Index([2, 3, 4, 5]) result = idx1.sym_diff(idx2) expected = Index([1, 5]) self.assertTrue(tm.equalContents(result, expected)) self.assertIsNone(result.name) # __xor__ syntax expected = idx1 ^ idx2 self.assertTrue(tm.equalContents(result, expected)) self.assertIsNone(result.name) # multiIndex idx1 = MultiIndex.from_tuples(self.tuples) idx2 = MultiIndex.from_tuples([('foo', 1), ('bar', 3)]) result = idx1.sym_diff(idx2) expected = MultiIndex.from_tuples([('bar', 2), ('baz', 3), ('bar', 3)]) self.assertTrue(tm.equalContents(result, expected)) # nans: # GH #6444, sorting of nans. Make sure the number of nans is right # and the correct non-nan values are there. punt on sorting. idx1 = Index([1, 2, 3, np.nan]) idx2 = Index([0, 1, np.nan]) result = idx1.sym_diff(idx2) # expected = Index([0.0, np.nan, 2.0, 3.0, np.nan]) nans = pd.isnull(result) self.assertEqual(nans.sum(), 2) self.assertEqual((~nans).sum(), 3) [self.assertIn(x, result) for x in [0.0, 2.0, 3.0]] # other not an Index: idx1 = Index([1, 2, 3, 4], name='idx1') idx2 = np.array([2, 3, 4, 5]) expected = Index([1, 5]) result = idx1.sym_diff(idx2) self.assertTrue(tm.equalContents(result, expected)) self.assertEqual(result.name, 'idx1') result = idx1.sym_diff(idx2, result_name='new_name') self.assertTrue(tm.equalContents(result, expected)) self.assertEqual(result.name, 'new_name') # other isn't iterable with tm.assertRaises(TypeError): Index(idx1,dtype='object') - 1 def test_pickle(self): self.verify_pickle(self.strIndex) self.strIndex.name = 'foo' self.verify_pickle(self.strIndex) self.verify_pickle(self.dateIndex) def test_is_numeric(self): self.assertFalse(self.dateIndex.is_numeric()) self.assertFalse(self.strIndex.is_numeric()) self.assertTrue(self.intIndex.is_numeric()) self.assertTrue(self.floatIndex.is_numeric()) def test_is_object(self): self.assertTrue(self.strIndex.is_object()) self.assertTrue(self.boolIndex.is_object()) self.assertFalse(self.intIndex.is_object()) self.assertFalse(self.dateIndex.is_object()) self.assertFalse(self.floatIndex.is_object()) def test_is_all_dates(self): self.assertTrue(self.dateIndex.is_all_dates) self.assertFalse(self.strIndex.is_all_dates) self.assertFalse(self.intIndex.is_all_dates) def test_summary(self): self._check_method_works(Index.summary) # GH3869 ind = Index(['{other}%s', "~:{range}:0"], name='A') result = ind.summary() # shouldn't be formatted accidentally. self.assertIn('~:{range}:0', result) self.assertIn('{other}%s', result) def test_format(self): self._check_method_works(Index.format) index = Index([datetime.now()]) formatted = index.format() expected = [str(index[0])] self.assertEqual(formatted, expected) # 2845 index = Index([1, 2.0+3.0j, np.nan]) formatted = index.format() expected = [str(index[0]), str(index[1]), u('NaN')] self.assertEqual(formatted, expected) # is this really allowed? index = Index([1, 2.0+3.0j, None]) formatted = index.format() expected = [str(index[0]), str(index[1]), u('NaN')] self.assertEqual(formatted, expected) self.strIndex[:0].format() def test_format_with_name_time_info(self): # bug I fixed 12/20/2011 inc = timedelta(hours=4) dates = Index([dt + inc for dt in self.dateIndex], name='something') formatted = dates.format(name=True) self.assertEqual(formatted[0], 'something') def test_format_datetime_with_time(self): t = Index([datetime(2012, 2, 7), datetime(2012, 2, 7, 23)]) result = t.format() expected = ['2012-02-07 00:00:00', '2012-02-07 23:00:00'] self.assertEqual(len(result), 2) self.assertEqual(result, expected) def test_format_none(self): values = ['a', 'b', 'c', None] idx = Index(values) idx.format() self.assertIsNone(idx[3]) def test_take(self): indexer = [4, 3, 0, 2] result = self.dateIndex.take(indexer) expected = self.dateIndex[indexer] self.assertTrue(result.equals(expected)) def _check_method_works(self, method): method(self.empty) method(self.dateIndex) method(self.unicodeIndex) method(self.strIndex) method(self.intIndex) method(self.tuples) def test_get_indexer(self): idx1 = Index([1, 2, 3, 4, 5]) idx2 = Index([2, 4, 6]) r1 = idx1.get_indexer(idx2) assert_almost_equal(r1, [1, 3, -1]) r1 = idx2.get_indexer(idx1, method='pad') assert_almost_equal(r1, [-1, 0, 0, 1, 1]) rffill1 = idx2.get_indexer(idx1, method='ffill') assert_almost_equal(r1, rffill1) r1 = idx2.get_indexer(idx1, method='backfill') assert_almost_equal(r1, [0, 0, 1, 1, 2]) rbfill1 = idx2.get_indexer(idx1, method='bfill') assert_almost_equal(r1, rbfill1) def test_slice_locs(self): for dtype in [int, float]: idx = Index(np.array([0, 1, 2, 5, 6, 7, 9, 10], dtype=dtype)) n = len(idx) self.assertEqual(idx.slice_locs(start=2), (2, n)) self.assertEqual(idx.slice_locs(start=3), (3, n)) self.assertEqual(idx.slice_locs(3, 8), (3, 6)) self.assertEqual(idx.slice_locs(5, 10), (3, n)) self.assertEqual(idx.slice_locs(5.0, 10.0), (3, n)) self.assertEqual(idx.slice_locs(4.5, 10.5), (3, 8)) self.assertEqual(idx.slice_locs(end=8), (0, 6)) self.assertEqual(idx.slice_locs(end=9), (0, 7)) idx2 = idx[::-1] self.assertEqual(idx2.slice_locs(8, 2), (2, 6)) self.assertEqual(idx2.slice_locs(8.5, 1.5), (2, 6)) self.assertEqual(idx2.slice_locs(7, 3), (2, 5)) self.assertEqual(idx2.slice_locs(10.5, -1), (0, n)) def test_slice_locs_dup(self): idx = Index(['a', 'a', 'b', 'c', 'd', 'd']) self.assertEqual(idx.slice_locs('a', 'd'), (0, 6)) self.assertEqual(idx.slice_locs(end='d'), (0, 6)) self.assertEqual(idx.slice_locs('a', 'c'), (0, 4)) self.assertEqual(idx.slice_locs('b', 'd'), (2, 6)) idx2 = idx[::-1] self.assertEqual(idx2.slice_locs('d', 'a'), (0, 6)) self.assertEqual(idx2.slice_locs(end='a'), (0, 6)) self.assertEqual(idx2.slice_locs('d', 'b'), (0, 4)) self.assertEqual(idx2.slice_locs('c', 'a'), (2, 6)) for dtype in [int, float]: idx = Index(np.array([10, 12, 12, 14], dtype=dtype)) self.assertEqual(idx.slice_locs(12, 12), (1, 3)) self.assertEqual(idx.slice_locs(11, 13), (1, 3)) idx2 = idx[::-1] self.assertEqual(idx2.slice_locs(12, 12), (1, 3)) self.assertEqual(idx2.slice_locs(13, 11), (1, 3)) def test_slice_locs_na(self): idx = Index([np.nan, 1, 2]) self.assertRaises(KeyError, idx.slice_locs, start=1.5) self.assertRaises(KeyError, idx.slice_locs, end=1.5) self.assertEqual(idx.slice_locs(1), (1, 3)) self.assertEqual(idx.slice_locs(np.nan), (0, 3)) idx = Index([np.nan, np.nan, 1, 2]) self.assertRaises(KeyError, idx.slice_locs, np.nan) def test_drop(self): n = len(self.strIndex) dropped = self.strIndex.drop(self.strIndex[lrange(5, 10)]) expected = self.strIndex[lrange(5) + lrange(10, n)] self.assertTrue(dropped.equals(expected)) self.assertRaises(ValueError, self.strIndex.drop, ['foo', 'bar']) dropped = self.strIndex.drop(self.strIndex[0]) expected = self.strIndex[1:] self.assertTrue(dropped.equals(expected)) ser = Index([1, 2, 3]) dropped = ser.drop(1) expected = Index([2, 3]) self.assertTrue(dropped.equals(expected)) def test_tuple_union_bug(self): import pandas import numpy as np aidx1 = np.array([(1, 'A'), (2, 'A'), (1, 'B'), (2, 'B')], dtype=[('num', int), ('let', 'a1')]) aidx2 = np.array([(1, 'A'), (2, 'A'), (1, 'B'), (2, 'B'), (1, 'C'), (2, 'C')], dtype=[('num', int), ('let', 'a1')]) idx1 = pandas.Index(aidx1) idx2 = pandas.Index(aidx2) # intersection broken? int_idx = idx1.intersection(idx2) # needs to be 1d like idx1 and idx2 expected = idx1[:4] # pandas.Index(sorted(set(idx1) & set(idx2))) self.assertEqual(int_idx.ndim, 1) self.assertTrue(int_idx.equals(expected)) # union broken union_idx = idx1.union(idx2) expected = idx2 self.assertEqual(union_idx.ndim, 1) self.assertTrue(union_idx.equals(expected)) def test_is_monotonic_incomparable(self): index = Index([5, datetime.now(), 7]) self.assertFalse(index.is_monotonic) self.assertFalse(index.is_monotonic_decreasing) def test_get_set_value(self): values = np.random.randn(100) date = self.dateIndex[67] assert_almost_equal(self.dateIndex.get_value(values, date), values[67]) self.dateIndex.set_value(values, date, 10) self.assertEqual(values[67], 10) def test_isin(self): values = ['foo', 'bar', 'quux'] idx = Index(['qux', 'baz', 'foo', 'bar']) result = idx.isin(values) expected = np.array([False, False, True, True]) self.assert_numpy_array_equal(result, expected) # empty, return dtype bool idx = Index([]) result = idx.isin(values) self.assertEqual(len(result), 0) self.assertEqual(result.dtype, np.bool_) def test_isin_nan(self): self.assert_numpy_array_equal( Index(['a', np.nan]).isin([np.nan]), [False, True]) self.assert_numpy_array_equal( Index(['a', pd.NaT]).isin([pd.NaT]), [False, True]) self.assert_numpy_array_equal( Index(['a', np.nan]).isin([float('nan')]), [False, False]) self.assert_numpy_array_equal( Index(['a', np.nan]).isin([pd.NaT]), [False, False]) # Float64Index overrides isin, so must be checked separately self.assert_numpy_array_equal( Float64Index([1.0, np.nan]).isin([np.nan]), [False, True]) self.assert_numpy_array_equal( Float64Index([1.0, np.nan]).isin([float('nan')]), [False, True]) self.assert_numpy_array_equal( Float64Index([1.0, np.nan]).isin([pd.NaT]), [False, True]) def test_isin_level_kwarg(self): def check_idx(idx): values = idx.tolist()[-2:] + ['nonexisting'] expected = np.array([False, False, True, True]) self.assert_numpy_array_equal(expected, idx.isin(values, level=0)) self.assert_numpy_array_equal(expected, idx.isin(values, level=-1)) self.assertRaises(IndexError, idx.isin, values, level=1) self.assertRaises(IndexError, idx.isin, values, level=10) self.assertRaises(IndexError, idx.isin, values, level=-2) self.assertRaises(KeyError, idx.isin, values, level=1.0) self.assertRaises(KeyError, idx.isin, values, level='foobar') idx.name = 'foobar' self.assert_numpy_array_equal(expected, idx.isin(values, level='foobar')) self.assertRaises(KeyError, idx.isin, values, level='xyzzy') self.assertRaises(KeyError, idx.isin, values, level=np.nan) check_idx(Index(['qux', 'baz', 'foo', 'bar'])) # Float64Index overrides isin, so must be checked separately check_idx(Float64Index([1.0, 2.0, 3.0, 4.0])) def test_boolean_cmp(self): values = [1, 2, 3, 4] idx = Index(values) res = (idx == values) self.assert_numpy_array_equal(res,np.array([True,True,True,True],dtype=bool)) def test_get_level_values(self): result = self.strIndex.get_level_values(0) self.assertTrue(result.equals(self.strIndex)) def test_slice_keep_name(self): idx = Index(['a', 'b'], name='asdf') self.assertEqual(idx.name, idx[1:].name) def test_join_self(self): # instance attributes of the form self.<name>Index indices = 'unicode', 'str', 'date', 'int', 'float' kinds = 'outer', 'inner', 'left', 'right' for index_kind in indices: res = getattr(self, '{0}Index'.format(index_kind)) for kind in kinds: joined = res.join(res, how=kind) self.assertIs(res, joined) def test_indexing_doesnt_change_class(self): idx = Index([1, 2, 3, 'a', 'b', 'c']) self.assertTrue(idx[1:3].identical( pd.Index([2, 3], dtype=np.object_))) self.assertTrue(idx[[0,1]].identical( pd.Index([1, 2], dtype=np.object_))) def test_outer_join_sort(self): left_idx = Index(np.random.permutation(15)) right_idx = tm.makeDateIndex(10) with tm.assert_produces_warning(RuntimeWarning): joined = left_idx.join(right_idx, how='outer') # right_idx in this case because DatetimeIndex has join precedence over # Int64Index expected = right_idx.astype(object).union(left_idx.astype(object)) tm.assert_index_equal(joined, expected) def test_nan_first_take_datetime(self): idx = Index([pd.NaT, Timestamp('20130101'), Timestamp('20130102')]) res = idx.take([-1, 0, 1]) exp = Index([idx[-1], idx[0], idx[1]]) tm.assert_index_equal(res, exp) def test_reindex_preserves_name_if_target_is_list_or_ndarray(self): # GH6552 idx = pd.Index([0, 1, 2]) dt_idx = pd.date_range('20130101', periods=3) idx.name = None self.assertEqual(idx.reindex([])[0].name, None) self.assertEqual(idx.reindex(np.array([]))[0].name, None) self.assertEqual(idx.reindex(idx.tolist())[0].name, None) self.assertEqual(idx.reindex(idx.tolist()[:-1])[0].name, None) self.assertEqual(idx.reindex(idx.values)[0].name, None) self.assertEqual(idx.reindex(idx.values[:-1])[0].name, None) # Must preserve name even if dtype changes. self.assertEqual(idx.reindex(dt_idx.values)[0].name, None) self.assertEqual(idx.reindex(dt_idx.tolist())[0].name, None) idx.name = 'foobar' self.assertEqual(idx.reindex([])[0].name, 'foobar') self.assertEqual(idx.reindex(np.array([]))[0].name, 'foobar') self.assertEqual(idx.reindex(idx.tolist())[0].name, 'foobar') self.assertEqual(idx.reindex(idx.tolist()[:-1])[0].name, 'foobar') self.assertEqual(idx.reindex(idx.values)[0].name, 'foobar') self.assertEqual(idx.reindex(idx.values[:-1])[0].name, 'foobar') # Must preserve name even if dtype changes. self.assertEqual(idx.reindex(dt_idx.values)[0].name, 'foobar') self.assertEqual(idx.reindex(dt_idx.tolist())[0].name, 'foobar') def test_reindex_preserves_type_if_target_is_empty_list_or_array(self): # GH7774 idx = pd.Index(list('abc')) def get_reindex_type(target): return idx.reindex(target)[0].dtype.type self.assertEqual(get_reindex_type([]), np.object_) self.assertEqual(get_reindex_type(np.array([])), np.object_) self.assertEqual(get_reindex_type(np.array([], dtype=np.int64)), np.object_) def test_reindex_doesnt_preserve_type_if_target_is_empty_index(self): # GH7774 idx = pd.Index(list('abc')) def get_reindex_type(target): return idx.reindex(target)[0].dtype.type self.assertEqual(get_reindex_type(pd.Int64Index([])), np.int64) self.assertEqual(get_reindex_type(pd.Float64Index([])), np.float64) self.assertEqual(get_reindex_type(pd.DatetimeIndex([])), np.datetime64) reindexed = idx.reindex(pd.MultiIndex([pd.Int64Index([]), pd.Float64Index([])], [[], []]))[0] self.assertEqual(reindexed.levels[0].dtype.type, np.int64) self.assertEqual(reindexed.levels[1].dtype.type, np.float64) class Numeric(Base): def test_numeric_compat(self): idx = self._holder(np.arange(5,dtype='int64')) didx = self._holder(np.arange(5,dtype='int64')**2 ) result = idx * 1 tm.assert_index_equal(result, idx) result = 1 * idx tm.assert_index_equal(result, idx) result = idx * idx tm.assert_index_equal(result, didx) result = idx / 1 tm.assert_index_equal(result, idx) result = idx // 1 tm.assert_index_equal(result, idx) result = idx * np.array(5,dtype='int64') tm.assert_index_equal(result, self._holder(np.arange(5,dtype='int64')*5)) result = idx * np.arange(5,dtype='int64') tm.assert_index_equal(result, didx) result = idx * Series(np.arange(5,dtype='int64')) tm.assert_index_equal(result, didx) result = idx * Series(np.arange(5,dtype='float64')+0.1) tm.assert_index_equal(result, Float64Index(np.arange(5,dtype='float64')*(np.arange(5,dtype='float64')+0.1))) # invalid self.assertRaises(TypeError, lambda : idx * date_range('20130101',periods=5)) self.assertRaises(ValueError, lambda : idx * self._holder(np.arange(3))) self.assertRaises(ValueError, lambda : idx * np.array([1,2])) def test_explicit_conversions(self): # GH 8608 # add/sub are overriden explicity for Float/Int Index idx = self._holder(np.arange(5,dtype='int64')) # float conversions arr = np.arange(5,dtype='int64')*3.2 expected = Float64Index(arr) fidx = idx * 3.2 tm.assert_index_equal(fidx,expected) fidx = 3.2 * idx tm.assert_index_equal(fidx,expected) # interops with numpy arrays expected = Float64Index(arr) a = np.zeros(5,dtype='float64') result = fidx - a tm.assert_index_equal(result,expected) expected = Float64Index(-arr) a = np.zeros(5,dtype='float64') result = a - fidx tm.assert_index_equal(result,expected) def test_ufunc_compat(self): idx = self._holder(np.arange(5,dtype='int64')) result = np.sin(idx) expected = Float64Index(np.sin(np.arange(5,dtype='int64'))) tm.assert_index_equal(result, expected) class TestFloat64Index(Numeric, tm.TestCase): _holder = Float64Index _multiprocess_can_split_ = True def setUp(self): self.mixed = Float64Index([1.5, 2, 3, 4, 5]) self.float = Float64Index(np.arange(5) * 2.5) def create_index(self): return Float64Index(np.arange(5,dtype='float64')) def test_hash_error(self): with tm.assertRaisesRegexp(TypeError, "unhashable type: %r" % type(self.float).__name__): hash(self.float) def test_repr_roundtrip(self): for ind in (self.mixed, self.float): tm.assert_index_equal(eval(repr(ind)), ind) def check_is_index(self, i): self.assertIsInstance(i, Index) self.assertNotIsInstance(i, Float64Index) def check_coerce(self, a, b, is_float_index=True): self.assertTrue(a.equals(b)) if is_float_index: self.assertIsInstance(b, Float64Index) else: self.check_is_index(b) def test_constructor(self): # explicit construction index = Float64Index([1,2,3,4,5]) self.assertIsInstance(index, Float64Index) self.assertTrue((index.values == np.array([1,2,3,4,5],dtype='float64')).all()) index = Float64Index(np.array([1,2,3,4,5])) self.assertIsInstance(index, Float64Index) index = Float64Index([1.,2,3,4,5]) self.assertIsInstance(index, Float64Index) index = Float64Index(np.array([1.,2,3,4,5])) self.assertIsInstance(index, Float64Index) self.assertEqual(index.dtype, float) index = Float64Index(np.array([1.,2,3,4,5]),dtype=np.float32) self.assertIsInstance(index, Float64Index) self.assertEqual(index.dtype, np.float64) index = Float64Index(np.array([1,2,3,4,5]),dtype=np.float32) self.assertIsInstance(index, Float64Index) self.assertEqual(index.dtype, np.float64) # nan handling result = Float64Index([np.nan, np.nan]) self.assertTrue(pd.isnull(result.values).all()) result = Float64Index(np.array([np.nan])) self.assertTrue(pd.isnull(result.values).all()) result = Index(np.array([np.nan])) self.assertTrue(pd.isnull(result.values).all()) def test_constructor_invalid(self): # invalid self.assertRaises(TypeError, Float64Index, 0.) self.assertRaises(TypeError, Float64Index, ['a','b',0.]) self.assertRaises(TypeError, Float64Index, [Timestamp('20130101')]) def test_constructor_coerce(self): self.check_coerce(self.mixed,Index([1.5, 2, 3, 4, 5])) self.check_coerce(self.float,Index(np.arange(5) * 2.5)) self.check_coerce(self.float,Index(np.array(np.arange(5) * 2.5, dtype=object))) def test_constructor_explicit(self): # these don't auto convert self.check_coerce(self.float,Index((np.arange(5) * 2.5), dtype=object), is_float_index=False) self.check_coerce(self.mixed,Index([1.5, 2, 3, 4, 5],dtype=object), is_float_index=False) def test_astype(self): result = self.float.astype(object) self.assertTrue(result.equals(self.float)) self.assertTrue(self.float.equals(result)) self.check_is_index(result) i = self.mixed.copy() i.name = 'foo' result = i.astype(object) self.assertTrue(result.equals(i)) self.assertTrue(i.equals(result)) self.check_is_index(result) def test_equals(self): i = Float64Index([1.0,2.0]) self.assertTrue(i.equals(i)) self.assertTrue(i.identical(i)) i2 = Float64Index([1.0,2.0]) self.assertTrue(i.equals(i2)) i = Float64Index([1.0,np.nan]) self.assertTrue(i.equals(i)) self.assertTrue(i.identical(i)) i2 = Float64Index([1.0,np.nan]) self.assertTrue(i.equals(i2)) def test_get_loc_na(self): idx = Float64Index([np.nan, 1, 2]) self.assertEqual(idx.get_loc(1), 1) self.assertEqual(idx.get_loc(np.nan), 0) idx = Float64Index([np.nan, 1, np.nan]) self.assertEqual(idx.get_loc(1), 1) self.assertRaises(KeyError, idx.slice_locs, np.nan) def test_contains_nans(self): i = Float64Index([1.0, 2.0, np.nan]) self.assertTrue(np.nan in i) def test_contains_not_nans(self): i = Float64Index([1.0, 2.0, np.nan]) self.assertTrue(1.0 in i) def test_doesnt_contain_all_the_things(self): i = Float64Index([np.nan]) self.assertFalse(i.isin([0]).item()) self.assertFalse(i.isin([1]).item()) self.assertTrue(i.isin([np.nan]).item()) def test_nan_multiple_containment(self): i = Float64Index([1.0, np.nan]) np.testing.assert_array_equal(i.isin([1.0]), np.array([True, False])) np.testing.assert_array_equal(i.isin([2.0, np.pi]), np.array([False, False])) np.testing.assert_array_equal(i.isin([np.nan]), np.array([False, True])) np.testing.assert_array_equal(i.isin([1.0, np.nan]), np.array([True, True])) i = Float64Index([1.0, 2.0]) np.testing.assert_array_equal(i.isin([np.nan]), np.array([False, False])) def test_astype_from_object(self): index = Index([1.0, np.nan, 0.2], dtype='object') result = index.astype(float) expected = Float64Index([1.0, np.nan, 0.2]) tm.assert_equal(result.dtype, expected.dtype) tm.assert_index_equal(result, expected) class TestInt64Index(Numeric, tm.TestCase): _holder = Int64Index _multiprocess_can_split_ = True def setUp(self): self.index = Int64Index(np.arange(0, 20, 2)) def create_index(self): return Int64Index(np.arange(5,dtype='int64')) def test_too_many_names(self): def testit(): self.index.names = ["roger", "harold"] assertRaisesRegexp(ValueError, "^Length", testit) def test_constructor(self): # pass list, coerce fine index = Int64Index([-5, 0, 1, 2]) expected = np.array([-5, 0, 1, 2], dtype=np.int64) self.assert_numpy_array_equal(index, expected) # from iterable index = Int64Index(iter([-5, 0, 1, 2])) self.assert_numpy_array_equal(index, expected) # scalar raise Exception self.assertRaises(TypeError, Int64Index, 5) # copy arr = self.index.values new_index = Int64Index(arr, copy=True) self.assert_numpy_array_equal(new_index, self.index) val = arr[0] + 3000 # this should not change index arr[0] = val self.assertNotEqual(new_index[0], val) def test_constructor_corner(self): arr = np.array([1, 2, 3, 4], dtype=object) index = Int64Index(arr) self.assertEqual(index.values.dtype, np.int64) self.assertTrue(index.equals(arr)) # preventing casting arr = np.array([1, '2', 3, '4'], dtype=object) with tm.assertRaisesRegexp(TypeError, 'casting'): Int64Index(arr) arr_with_floats = [0, 2, 3, 4, 5, 1.25, 3, -1] with tm.assertRaisesRegexp(TypeError, 'casting'): Int64Index(arr_with_floats) def test_hash_error(self): with tm.assertRaisesRegexp(TypeError, "unhashable type: %r" % type(self.index).__name__): hash(self.index) def test_copy(self): i = Int64Index([], name='Foo') i_copy = i.copy() self.assertEqual(i_copy.name, 'Foo') def test_view(self): i = Int64Index([], name='Foo') i_view = i.view() self.assertEqual(i_view.name, 'Foo') def test_coerce_list(self): # coerce things arr = Index([1, 2, 3, 4]) tm.assert_isinstance(arr, Int64Index) # but not if explicit dtype passed arr = Index([1, 2, 3, 4], dtype=object) tm.assert_isinstance(arr, Index) def test_dtype(self): self.assertEqual(self.index.dtype, np.int64) def test_is_monotonic(self): self.assertTrue(self.index.is_monotonic) self.assertTrue(self.index.is_monotonic_increasing) self.assertFalse(self.index.is_monotonic_decreasing) index = Int64Index([4, 3, 2, 1]) self.assertFalse(index.is_monotonic) self.assertTrue(index.is_monotonic_decreasing) index = Int64Index([1]) self.assertTrue(index.is_monotonic) self.assertTrue(index.is_monotonic_increasing) self.assertTrue(index.is_monotonic_decreasing) def test_is_monotonic_na(self): examples = [Index([np.nan]), Index([np.nan, 1]), Index([1, 2, np.nan]), Index(['a', 'b', np.nan]), pd.to_datetime(['NaT']), pd.to_datetime(['NaT', '2000-01-01']), pd.to_datetime(['2000-01-01', 'NaT', '2000-01-02']), pd.to_timedelta(['1 day', 'NaT']), ] for index in examples: self.assertFalse(index.is_monotonic_increasing) self.assertFalse(index.is_monotonic_decreasing) def test_equals(self): same_values = Index(self.index, dtype=object) self.assertTrue(self.index.equals(same_values)) self.assertTrue(same_values.equals(self.index)) def test_identical(self): i = Index(self.index.copy()) self.assertTrue(i.identical(self.index)) same_values_different_type = Index(i, dtype=object) self.assertFalse(i.identical(same_values_different_type)) i = self.index.copy(dtype=object) i = i.rename('foo') same_values = Index(i, dtype=object) self.assertTrue(same_values.identical(self.index.copy(dtype=object))) self.assertFalse(i.identical(self.index)) self.assertTrue(Index(same_values, name='foo', dtype=object ).identical(i)) self.assertFalse( self.index.copy(dtype=object) .identical(self.index.copy(dtype='int64'))) def test_get_indexer(self): target = Int64Index(np.arange(10)) indexer = self.index.get_indexer(target) expected = np.array([0, -1, 1, -1, 2, -1, 3, -1, 4, -1]) self.assert_numpy_array_equal(indexer, expected) def test_get_indexer_pad(self): target = Int64Index(np.arange(10)) indexer = self.index.get_indexer(target, method='pad') expected = np.array([0, 0, 1, 1, 2, 2, 3, 3, 4, 4]) self.assert_numpy_array_equal(indexer, expected) def test_get_indexer_backfill(self): target = Int64Index(np.arange(10)) indexer = self.index.get_indexer(target, method='backfill') expected = np.array([0, 1, 1, 2, 2, 3, 3, 4, 4, 5]) self.assert_numpy_array_equal(indexer, expected) def test_join_outer(self): other = Int64Index([7, 12, 25, 1, 2, 5]) other_mono = Int64Index([1, 2, 5, 7, 12, 25]) # not monotonic # guarantee of sortedness res, lidx, ridx = self.index.join(other, how='outer', return_indexers=True) noidx_res = self.index.join(other, how='outer') self.assertTrue(res.equals(noidx_res)) eres = Int64Index([0, 1, 2, 4, 5, 6, 7, 8, 10, 12, 14, 16, 18, 25]) elidx = np.array([0, -1, 1, 2, -1, 3, -1, 4, 5, 6, 7, 8, 9, -1], dtype=np.int64) eridx = np.array([-1, 3, 4, -1, 5, -1, 0, -1, -1, 1, -1, -1, -1, 2], dtype=np.int64) tm.assert_isinstance(res, Int64Index) self.assertTrue(res.equals(eres)) self.assert_numpy_array_equal(lidx, elidx) self.assert_numpy_array_equal(ridx, eridx) # monotonic res, lidx, ridx = self.index.join(other_mono, how='outer', return_indexers=True) noidx_res = self.index.join(other_mono, how='outer') self.assertTrue(res.equals(noidx_res)) eridx = np.array([-1, 0, 1, -1, 2, -1, 3, -1, -1, 4, -1, -1, -1, 5], dtype=np.int64) tm.assert_isinstance(res, Int64Index) self.assertTrue(res.equals(eres)) self.assert_numpy_array_equal(lidx, elidx) self.assert_numpy_array_equal(ridx, eridx) def test_join_inner(self): other = Int64Index([7, 12, 25, 1, 2, 5]) other_mono = Int64Index([1, 2, 5, 7, 12, 25]) # not monotonic res, lidx, ridx = self.index.join(other, how='inner', return_indexers=True) # no guarantee of sortedness, so sort for comparison purposes ind = res.argsort() res = res.take(ind) lidx = lidx.take(ind) ridx = ridx.take(ind) eres = Int64Index([2, 12]) elidx = np.array([1, 6]) eridx = np.array([4, 1]) tm.assert_isinstance(res, Int64Index) self.assertTrue(res.equals(eres)) self.assert_numpy_array_equal(lidx, elidx) self.assert_numpy_array_equal(ridx, eridx) # monotonic res, lidx, ridx = self.index.join(other_mono, how='inner', return_indexers=True) res2 = self.index.intersection(other_mono) self.assertTrue(res.equals(res2)) eridx = np.array([1, 4]) tm.assert_isinstance(res, Int64Index) self.assertTrue(res.equals(eres)) self.assert_numpy_array_equal(lidx, elidx) self.assert_numpy_array_equal(ridx, eridx) def test_join_left(self): other = Int64Index([7, 12, 25, 1, 2, 5]) other_mono = Int64Index([1, 2, 5, 7, 12, 25]) # not monotonic res, lidx, ridx = self.index.join(other, how='left', return_indexers=True) eres = self.index eridx = np.array([-1, 4, -1, -1, -1, -1, 1, -1, -1, -1], dtype=np.int64) tm.assert_isinstance(res, Int64Index) self.assertTrue(res.equals(eres)) self.assertIsNone(lidx) self.assert_numpy_array_equal(ridx, eridx) # monotonic res, lidx, ridx = self.index.join(other_mono, how='left', return_indexers=True) eridx = np.array([-1, 1, -1, -1, -1, -1, 4, -1, -1, -1], dtype=np.int64) tm.assert_isinstance(res, Int64Index) self.assertTrue(res.equals(eres)) self.assertIsNone(lidx) self.assert_numpy_array_equal(ridx, eridx) # non-unique """ idx = Index([1,1,2,5]) idx2 = Index([1,2,5,7,9]) res, lidx, ridx = idx2.join(idx, how='left', return_indexers=True) eres = idx2 eridx = np.array([0, 2, 3, -1, -1]) elidx = np.array([0, 1, 2, 3, 4]) self.assertTrue(res.equals(eres)) self.assert_numpy_array_equal(lidx, elidx) self.assert_numpy_array_equal(ridx, eridx) """ def test_join_right(self): other = Int64Index([7, 12, 25, 1, 2, 5]) other_mono = Int64Index([1, 2, 5, 7, 12, 25]) # not monotonic res, lidx, ridx = self.index.join(other, how='right', return_indexers=True) eres = other elidx = np.array([-1, 6, -1, -1, 1, -1], dtype=np.int64) tm.assert_isinstance(other, Int64Index) self.assertTrue(res.equals(eres)) self.assert_numpy_array_equal(lidx, elidx) self.assertIsNone(ridx) # monotonic res, lidx, ridx = self.index.join(other_mono, how='right', return_indexers=True) eres = other_mono elidx = np.array([-1, 1, -1, -1, 6, -1], dtype=np.int64) tm.assert_isinstance(other, Int64Index) self.assertTrue(res.equals(eres)) self.assert_numpy_array_equal(lidx, elidx) self.assertIsNone(ridx) # non-unique """ idx = Index([1,1,2,5]) idx2 = Index([1,2,5,7,9]) res, lidx, ridx = idx.join(idx2, how='right', return_indexers=True) eres = idx2 elidx = np.array([0, 2, 3, -1, -1]) eridx = np.array([0, 1, 2, 3, 4]) self.assertTrue(res.equals(eres)) self.assert_numpy_array_equal(lidx, elidx) self.assert_numpy_array_equal(ridx, eridx) idx = Index([1,1,2,5]) idx2 = Index([1,2,5,9,7]) res = idx.join(idx2, how='right', return_indexers=False) eres = idx2 self.assert(res.equals(eres)) """ def test_join_non_int_index(self): other = Index([3, 6, 7, 8, 10], dtype=object) outer = self.index.join(other, how='outer') outer2 = other.join(self.index, how='outer') expected = Index([0, 2, 3, 4, 6, 7, 8, 10, 12, 14, 16, 18], dtype=object) self.assertTrue(outer.equals(outer2)) self.assertTrue(outer.equals(expected)) inner = self.index.join(other, how='inner') inner2 = other.join(self.index, how='inner') expected = Index([6, 8, 10], dtype=object) self.assertTrue(inner.equals(inner2)) self.assertTrue(inner.equals(expected)) left = self.index.join(other, how='left') self.assertTrue(left.equals(self.index)) left2 = other.join(self.index, how='left') self.assertTrue(left2.equals(other)) right = self.index.join(other, how='right') self.assertTrue(right.equals(other)) right2 = other.join(self.index, how='right') self.assertTrue(right2.equals(self.index)) def test_join_non_unique(self): left = Index([4, 4, 3, 3]) joined, lidx, ridx = left.join(left, return_indexers=True) exp_joined = Index([3, 3, 3, 3, 4, 4, 4, 4]) self.assertTrue(joined.equals(exp_joined)) exp_lidx = np.array([2, 2, 3, 3, 0, 0, 1, 1], dtype=np.int64) self.assert_numpy_array_equal(lidx, exp_lidx) exp_ridx = np.array([2, 3, 2, 3, 0, 1, 0, 1], dtype=np.int64) self.assert_numpy_array_equal(ridx, exp_ridx) def test_join_self(self): kinds = 'outer', 'inner', 'left', 'right' for kind in kinds: joined = self.index.join(self.index, how=kind) self.assertIs(self.index, joined) def test_intersection(self): other = Index([1, 2, 3, 4, 5]) result = self.index.intersection(other) expected = np.sort(np.intersect1d(self.index.values, other.values)) self.assert_numpy_array_equal(result, expected) result = other.intersection(self.index) expected = np.sort(np.asarray(np.intersect1d(self.index.values, other.values))) self.assert_numpy_array_equal(result, expected) def test_intersect_str_dates(self): dt_dates = [datetime(2012, 2, 9), datetime(2012, 2, 22)] i1 = Index(dt_dates, dtype=object) i2 = Index(['aa'], dtype=object) res = i2.intersection(i1) self.assertEqual(len(res), 0) def test_union_noncomparable(self): from datetime import datetime, timedelta # corner case, non-Int64Index now = datetime.now() other = Index([now + timedelta(i) for i in range(4)], dtype=object) result = self.index.union(other) expected = np.concatenate((self.index, other)) self.assert_numpy_array_equal(result, expected) result = other.union(self.index) expected = np.concatenate((other, self.index)) self.assert_numpy_array_equal(result, expected) def test_cant_or_shouldnt_cast(self): # can't data = ['foo', 'bar', 'baz'] self.assertRaises(TypeError, Int64Index, data) # shouldn't data = ['0', '1', '2'] self.assertRaises(TypeError, Int64Index, data) def test_view_Index(self): self.index.view(Index) def test_prevent_casting(self): result = self.index.astype('O') self.assertEqual(result.dtype, np.object_) def test_take_preserve_name(self): index = Int64Index([1, 2, 3, 4], name='foo') taken = index.take([3, 0, 1]) self.assertEqual(index.name, taken.name) def test_int_name_format(self): from pandas import Series, DataFrame index = Index(['a', 'b', 'c'], name=0) s = Series(lrange(3), index) df = DataFrame(lrange(3), index=index) repr(s) repr(df) def test_print_unicode_columns(self): df = pd.DataFrame( {u("\u05d0"): [1, 2, 3], "\u05d1": [4, 5, 6], "c": [7, 8, 9]}) repr(df.columns) # should not raise UnicodeDecodeError def test_repr_summary(self): with cf.option_context('display.max_seq_items', 10): r = repr(pd.Index(np.arange(1000))) self.assertTrue(len(r) < 100) self.assertTrue("..." in r) def test_repr_roundtrip(self): tm.assert_index_equal(eval(repr(self.index)), self.index) def test_unicode_string_with_unicode(self): idx = Index(lrange(1000)) if compat.PY3: str(idx) else: compat.text_type(idx) def test_bytestring_with_unicode(self): idx = Index(lrange(1000)) if compat.PY3: bytes(idx) else: str(idx) def test_slice_keep_name(self): idx = Int64Index([1, 2], name='asdf') self.assertEqual(idx.name, idx[1:].name) class TestDatetimeIndex(Base, tm.TestCase): _holder = DatetimeIndex _multiprocess_can_split_ = True def create_index(self): return date_range('20130101',periods=5) def test_pickle_compat_construction(self): pass def test_numeric_compat(self): super(TestDatetimeIndex, self).test_numeric_compat() if not compat.PY3_2: for f in [lambda : np.timedelta64(1, 'D').astype('m8[ns]') * pd.date_range('2000-01-01', periods=3), lambda : pd.date_range('2000-01-01', periods=3) * np.timedelta64(1, 'D').astype('m8[ns]') ]: self.assertRaises(TypeError, f) def test_roundtrip_pickle_with_tz(self): # GH 8367 # round-trip of timezone index=date_range('20130101',periods=3,tz='US/Eastern',name='foo') unpickled = self.round_trip_pickle(index) self.assertTrue(index.equals(unpickled)) def test_reindex_preserves_tz_if_target_is_empty_list_or_array(self): # GH7774 index = date_range('20130101', periods=3, tz='US/Eastern') self.assertEqual(str(index.reindex([])[0].tz), 'US/Eastern') self.assertEqual(str(index.reindex(np.array([]))[0].tz), 'US/Eastern') class TestPeriodIndex(Base, tm.TestCase): _holder = PeriodIndex _multiprocess_can_split_ = True def create_index(self): return period_range('20130101',periods=5,freq='D') def test_pickle_compat_construction(self): pass class TestTimedeltaIndex(Base, tm.TestCase): _holder = TimedeltaIndex _multiprocess_can_split_ = True def create_index(self): return pd.to_timedelta(range(5),unit='d') + pd.offsets.Hour(1) def test_numeric_compat(self): idx = self._holder(np.arange(5,dtype='int64')) didx = self._holder(np.arange(5,dtype='int64')**2 ) result = idx * 1 tm.assert_index_equal(result, idx) result = 1 * idx tm.assert_index_equal(result, idx) result = idx / 1 tm.assert_index_equal(result, idx) result = idx // 1 tm.assert_index_equal(result, idx) result = idx * np.array(5,dtype='int64') tm.assert_index_equal(result, self._holder(np.arange(5,dtype='int64')*5)) result = idx * np.arange(5,dtype='int64') tm.assert_index_equal(result, didx) result = idx * Series(np.arange(5,dtype='int64')) tm.assert_index_equal(result, didx) result = idx * Series(np.arange(5,dtype='float64')+0.1) tm.assert_index_equal(result, Float64Index(np.arange(5,dtype='float64')*(np.arange(5,dtype='float64')+0.1))) # invalid self.assertRaises(TypeError, lambda : idx * idx) self.assertRaises(ValueError, lambda : idx * self._holder(np.arange(3))) self.assertRaises(ValueError, lambda : idx * np.array([1,2])) def test_pickle_compat_construction(self): pass class TestMultiIndex(Base, tm.TestCase): _holder = MultiIndex _multiprocess_can_split_ = True _compat_props = ['shape', 'ndim', 'size', 'itemsize'] def setUp(self): major_axis = Index(['foo', 'bar', 'baz', 'qux']) minor_axis = Index(['one', 'two']) major_labels = np.array([0, 0, 1, 2, 3, 3]) minor_labels = np.array([0, 1, 0, 1, 0, 1]) self.index_names = ['first', 'second'] self.index = MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels], names=self.index_names, verify_integrity=False) def create_index(self): return self.index def test_boolean_context_compat2(self): # boolean context compat # GH7897 i1 = MultiIndex.from_tuples([('A', 1), ('A', 2)]) i2 = MultiIndex.from_tuples([('A', 1), ('A', 3)]) common = i1.intersection(i2) def f(): if common: pass tm.assertRaisesRegexp(ValueError,'The truth value of a',f) def test_labels_dtypes(self): # GH 8456 i = MultiIndex.from_tuples([('A', 1), ('A', 2)]) self.assertTrue(i.labels[0].dtype == 'int8') self.assertTrue(i.labels[1].dtype == 'int8') i = MultiIndex.from_product([['a'],range(40)]) self.assertTrue(i.labels[1].dtype == 'int8') i = MultiIndex.from_product([['a'],range(400)]) self.assertTrue(i.labels[1].dtype == 'int16') i = MultiIndex.from_product([['a'],range(40000)]) self.assertTrue(i.labels[1].dtype == 'int32') i = pd.MultiIndex.from_product([['a'],range(1000)]) self.assertTrue((i.labels[0]>=0).all()) self.assertTrue((i.labels[1]>=0).all()) def test_hash_error(self): with tm.assertRaisesRegexp(TypeError, "unhashable type: %r" % type(self.index).__name__): hash(self.index) def test_set_names_and_rename(self): # so long as these are synonyms, we don't need to test set_names self.assertEqual(self.index.rename, self.index.set_names) new_names = [name + "SUFFIX" for name in self.index_names] ind = self.index.set_names(new_names) self.assertEqual(self.index.names, self.index_names) self.assertEqual(ind.names, new_names) with assertRaisesRegexp(ValueError, "^Length"): ind.set_names(new_names + new_names) new_names2 = [name + "SUFFIX2" for name in new_names] res = ind.set_names(new_names2, inplace=True) self.assertIsNone(res) self.assertEqual(ind.names, new_names2) # set names for specific level (# GH7792) ind = self.index.set_names(new_names[0], level=0) self.assertEqual(self.index.names, self.index_names) self.assertEqual(ind.names, [new_names[0], self.index_names[1]]) res = ind.set_names(new_names2[0], level=0, inplace=True) self.assertIsNone(res) self.assertEqual(ind.names, [new_names2[0], self.index_names[1]]) # set names for multiple levels ind = self.index.set_names(new_names, level=[0, 1]) self.assertEqual(self.index.names, self.index_names) self.assertEqual(ind.names, new_names) res = ind.set_names(new_names2, level=[0, 1], inplace=True) self.assertIsNone(res) self.assertEqual(ind.names, new_names2) def test_set_levels(self): # side note - you probably wouldn't want to use levels and labels # directly like this - but it is possible. levels, labels = self.index.levels, self.index.labels new_levels = [[lev + 'a' for lev in level] for level in levels] def assert_matching(actual, expected): # avoid specifying internal representation # as much as possible self.assertEqual(len(actual), len(expected)) for act, exp in zip(actual, expected): act = np.asarray(act) exp = np.asarray(exp) assert_almost_equal(act, exp) # level changing [w/o mutation] ind2 = self.index.set_levels(new_levels) assert_matching(ind2.levels, new_levels) assert_matching(self.index.levels, levels) # level changing [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_levels(new_levels, inplace=True) self.assertIsNone(inplace_return) assert_matching(ind2.levels, new_levels) # level changing specific level [w/o mutation] ind2 = self.index.set_levels(new_levels[0], level=0) assert_matching(ind2.levels, [new_levels[0], levels[1]]) assert_matching(self.index.levels, levels) ind2 = self.index.set_levels(new_levels[1], level=1) assert_matching(ind2.levels, [levels[0], new_levels[1]]) assert_matching(self.index.levels, levels) # level changing multiple levels [w/o mutation] ind2 = self.index.set_levels(new_levels, level=[0, 1]) assert_matching(ind2.levels, new_levels) assert_matching(self.index.levels, levels) # level changing specific level [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_levels(new_levels[0], level=0, inplace=True) self.assertIsNone(inplace_return) assert_matching(ind2.levels, [new_levels[0], levels[1]]) assert_matching(self.index.levels, levels) ind2 = self.index.copy() inplace_return = ind2.set_levels(new_levels[1], level=1, inplace=True) self.assertIsNone(inplace_return) assert_matching(ind2.levels, [levels[0], new_levels[1]]) assert_matching(self.index.levels, levels) # level changing multiple levels [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_levels(new_levels, level=[0, 1], inplace=True) self.assertIsNone(inplace_return) assert_matching(ind2.levels, new_levels) assert_matching(self.index.levels, levels) def test_set_labels(self): # side note - you probably wouldn't want to use levels and labels # directly like this - but it is possible. levels, labels = self.index.levels, self.index.labels major_labels, minor_labels = labels major_labels = [(x + 1) % 3 for x in major_labels] minor_labels = [(x + 1) % 1 for x in minor_labels] new_labels = [major_labels, minor_labels] def assert_matching(actual, expected): # avoid specifying internal representation # as much as possible self.assertEqual(len(actual), len(expected)) for act, exp in zip(actual, expected): act = np.asarray(act) exp = np.asarray(exp) assert_almost_equal(act, exp) # label changing [w/o mutation] ind2 = self.index.set_labels(new_labels) assert_matching(ind2.labels, new_labels) assert_matching(self.index.labels, labels) # label changing [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_labels(new_labels, inplace=True) self.assertIsNone(inplace_return) assert_matching(ind2.labels, new_labels) # label changing specific level [w/o mutation] ind2 = self.index.set_labels(new_labels[0], level=0) assert_matching(ind2.labels, [new_labels[0], labels[1]]) assert_matching(self.index.labels, labels) ind2 = self.index.set_labels(new_labels[1], level=1) assert_matching(ind2.labels, [labels[0], new_labels[1]]) assert_matching(self.index.labels, labels) # label changing multiple levels [w/o mutation] ind2 = self.index.set_labels(new_labels, level=[0, 1]) assert_matching(ind2.labels, new_labels) assert_matching(self.index.labels, labels) # label changing specific level [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_labels(new_labels[0], level=0, inplace=True) self.assertIsNone(inplace_return) assert_matching(ind2.labels, [new_labels[0], labels[1]]) assert_matching(self.index.labels, labels) ind2 = self.index.copy() inplace_return = ind2.set_labels(new_labels[1], level=1, inplace=True) self.assertIsNone(inplace_return) assert_matching(ind2.labels, [labels[0], new_labels[1]]) assert_matching(self.index.labels, labels) # label changing multiple levels [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_labels(new_labels, level=[0, 1], inplace=True) self.assertIsNone(inplace_return) assert_matching(ind2.labels, new_labels) assert_matching(self.index.labels, labels) def test_set_levels_labels_names_bad_input(self): levels, labels = self.index.levels, self.index.labels names = self.index.names with tm.assertRaisesRegexp(ValueError, 'Length of levels'): self.index.set_levels([levels[0]]) with tm.assertRaisesRegexp(ValueError, 'Length of labels'): self.index.set_labels([labels[0]]) with tm.assertRaisesRegexp(ValueError, 'Length of names'): self.index.set_names([names[0]]) # shouldn't scalar data error, instead should demand list-like with tm.assertRaisesRegexp(TypeError, 'list of lists-like'): self.index.set_levels(levels[0]) # shouldn't scalar data error, instead should demand list-like with tm.assertRaisesRegexp(TypeError, 'list of lists-like'): self.index.set_labels(labels[0]) # shouldn't scalar data error, instead should demand list-like with tm.assertRaisesRegexp(TypeError, 'list-like'): self.index.set_names(names[0]) # should have equal lengths with tm.assertRaisesRegexp(TypeError, 'list of lists-like'): self.index.set_levels(levels[0], level=[0, 1]) with tm.assertRaisesRegexp(TypeError, 'list-like'): self.index.set_levels(levels, level=0) # should have equal lengths with tm.assertRaisesRegexp(TypeError, 'list of lists-like'): self.index.set_labels(labels[0], level=[0, 1]) with tm.assertRaisesRegexp(TypeError, 'list-like'): self.index.set_labels(labels, level=0) # should have equal lengths with tm.assertRaisesRegexp(ValueError, 'Length of names'): self.index.set_names(names[0], level=[0, 1]) with tm.assertRaisesRegexp(TypeError, 'string'): self.index.set_names(names, level=0) def test_metadata_immutable(self): levels, labels = self.index.levels, self.index.labels # shouldn't be able to set at either the top level or base level mutable_regex = re.compile('does not support mutable operations') with assertRaisesRegexp(TypeError, mutable_regex): levels[0] = levels[0] with assertRaisesRegexp(TypeError, mutable_regex): levels[0][0] = levels[0][0] # ditto for labels with assertRaisesRegexp(TypeError, mutable_regex): labels[0] = labels[0] with assertRaisesRegexp(TypeError, mutable_regex): labels[0][0] = labels[0][0] # and for names names = self.index.names with assertRaisesRegexp(TypeError, mutable_regex): names[0] = names[0] def test_inplace_mutation_resets_values(self): levels = [['a', 'b', 'c'], [4]] levels2 = [[1, 2, 3], ['a']] labels = [[0, 1, 0, 2, 2, 0], [0, 0, 0, 0, 0, 0]] mi1 = MultiIndex(levels=levels, labels=labels) mi2 = MultiIndex(levels=levels2, labels=labels) vals = mi1.values.copy() vals2 = mi2.values.copy() self.assertIsNotNone(mi1._tuples) # make sure level setting works new_vals = mi1.set_levels(levels2).values assert_almost_equal(vals2, new_vals) # non-inplace doesn't kill _tuples [implementation detail] assert_almost_equal(mi1._tuples, vals) # and values is still same too assert_almost_equal(mi1.values, vals) # inplace should kill _tuples mi1.set_levels(levels2, inplace=True) assert_almost_equal(mi1.values, vals2) # make sure label setting works too labels2 = [[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0]] exp_values = np.array([(long(1), 'a')] * 6, dtype=object) new_values = mi2.set_labels(labels2).values # not inplace shouldn't change assert_almost_equal(mi2._tuples, vals2) # should have correct values assert_almost_equal(exp_values, new_values) # and again setting inplace should kill _tuples, etc mi2.set_labels(labels2, inplace=True) assert_almost_equal(mi2.values, new_values) def test_copy_in_constructor(self): levels = np.array(["a", "b", "c"]) labels = np.array([1, 1, 2, 0, 0, 1, 1]) val = labels[0] mi = MultiIndex(levels=[levels, levels], labels=[labels, labels], copy=True) self.assertEqual(mi.labels[0][0], val) labels[0] = 15 self.assertEqual(mi.labels[0][0], val) val = levels[0] levels[0] = "PANDA" self.assertEqual(mi.levels[0][0], val) def test_set_value_keeps_names(self): # motivating example from #3742 lev1 = ['hans', 'hans', 'hans', 'grethe', 'grethe', 'grethe'] lev2 = ['1', '2', '3'] * 2 idx = pd.MultiIndex.from_arrays( [lev1, lev2], names=['Name', 'Number']) df = pd.DataFrame( np.random.randn(6, 4), columns=['one', 'two', 'three', 'four'], index=idx) df = df.sortlevel() self.assertIsNone(df.is_copy) self.assertEqual(df.index.names, ('Name', 'Number')) df = df.set_value(('grethe', '4'), 'one', 99.34) self.assertIsNone(df.is_copy) self.assertEqual(df.index.names, ('Name', 'Number')) def test_names(self): # names are assigned in __init__ names = self.index_names level_names = [level.name for level in self.index.levels] self.assertEqual(names, level_names) # setting bad names on existing index = self.index assertRaisesRegexp(ValueError, "^Length of names", setattr, index, "names", list(index.names) + ["third"]) assertRaisesRegexp(ValueError, "^Length of names", setattr, index, "names", []) # initializing with bad names (should always be equivalent) major_axis, minor_axis = self.index.levels major_labels, minor_labels = self.index.labels assertRaisesRegexp(ValueError, "^Length of names", MultiIndex, levels=[major_axis, minor_axis], labels=[major_labels, minor_labels], names=['first']) assertRaisesRegexp(ValueError, "^Length of names", MultiIndex, levels=[major_axis, minor_axis], labels=[major_labels, minor_labels], names=['first', 'second', 'third']) # names are assigned index.names = ["a", "b"] ind_names = list(index.names) level_names = [level.name for level in index.levels] self.assertEqual(ind_names, level_names) def test_reference_duplicate_name(self): idx = MultiIndex.from_tuples([('a', 'b'), ('c', 'd')], names=['x', 'x']) self.assertTrue(idx._reference_duplicate_name('x')) idx = MultiIndex.from_tuples([('a', 'b'), ('c', 'd')], names=['x', 'y']) self.assertFalse(idx._reference_duplicate_name('x')) def test_astype(self): expected = self.index.copy() actual = self.index.astype('O') assert_copy(actual.levels, expected.levels) assert_copy(actual.labels, expected.labels) self.check_level_names(actual, expected.names) with assertRaisesRegexp(TypeError, "^Setting.*dtype.*object"): self.index.astype(np.dtype(int)) def test_constructor_single_level(self): single_level = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux']], labels=[[0, 1, 2, 3]], names=['first']) tm.assert_isinstance(single_level, Index) self.assertNotIsInstance(single_level, MultiIndex) self.assertEqual(single_level.name, 'first') single_level = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux']], labels=[[0, 1, 2, 3]]) self.assertIsNone(single_level.name) def test_constructor_no_levels(self): assertRaisesRegexp(ValueError, "non-zero number of levels/labels", MultiIndex, levels=[], labels=[]) both_re = re.compile('Must pass both levels and labels') with tm.assertRaisesRegexp(TypeError, both_re): MultiIndex(levels=[]) with tm.assertRaisesRegexp(TypeError, both_re): MultiIndex(labels=[]) def test_constructor_mismatched_label_levels(self): labels = [np.array([1]), np.array([2]), np.array([3])] levels = ["a"] assertRaisesRegexp(ValueError, "Length of levels and labels must be" " the same", MultiIndex, levels=levels, labels=labels) length_error = re.compile('>= length of level') label_error = re.compile(r'Unequal label lengths: \[4, 2\]') # important to check that it's looking at the right thing. with tm.assertRaisesRegexp(ValueError, length_error): MultiIndex(levels=[['a'], ['b']], labels=[[0, 1, 2, 3], [0, 3, 4, 1]]) with tm.assertRaisesRegexp(ValueError, label_error): MultiIndex(levels=[['a'], ['b']], labels=[[0, 0, 0, 0], [0, 0]]) # external API with tm.assertRaisesRegexp(ValueError, length_error): self.index.copy().set_levels([['a'], ['b']]) with tm.assertRaisesRegexp(ValueError, label_error): self.index.copy().set_labels([[0, 0, 0, 0], [0, 0]]) # deprecated properties with warnings.catch_warnings(): warnings.simplefilter('ignore') with tm.assertRaisesRegexp(ValueError, length_error): self.index.copy().levels = [['a'], ['b']] with tm.assertRaisesRegexp(ValueError, label_error): self.index.copy().labels = [[0, 0, 0, 0], [0, 0]] def assert_multiindex_copied(self, copy, original): # levels shoudl be (at least, shallow copied) assert_copy(copy.levels, original.levels) assert_almost_equal(copy.labels, original.labels) # labels doesn't matter which way copied assert_almost_equal(copy.labels, original.labels) self.assertIsNot(copy.labels, original.labels) # names doesn't matter which way copied self.assertEqual(copy.names, original.names) self.assertIsNot(copy.names, original.names) # sort order should be copied self.assertEqual(copy.sortorder, original.sortorder) def test_copy(self): i_copy = self.index.copy() self.assert_multiindex_copied(i_copy, self.index) def test_shallow_copy(self): i_copy = self.index._shallow_copy() self.assert_multiindex_copied(i_copy, self.index) def test_view(self): i_view = self.index.view() self.assert_multiindex_copied(i_view, self.index) def check_level_names(self, index, names): self.assertEqual([level.name for level in index.levels], list(names)) def test_changing_names(self): # names should be applied to levels level_names = [level.name for level in self.index.levels] self.check_level_names(self.index, self.index.names) view = self.index.view() copy = self.index.copy() shallow_copy = self.index._shallow_copy() # changing names should change level names on object new_names = [name + "a" for name in self.index.names] self.index.names = new_names self.check_level_names(self.index, new_names) # but not on copies self.check_level_names(view, level_names) self.check_level_names(copy, level_names) self.check_level_names(shallow_copy, level_names) # and copies shouldn't change original shallow_copy.names = [name + "c" for name in shallow_copy.names] self.check_level_names(self.index, new_names) def test_duplicate_names(self): self.index.names = ['foo', 'foo'] assertRaisesRegexp(KeyError, 'Level foo not found', self.index._get_level_number, 'foo') def test_get_level_number_integer(self): self.index.names = [1, 0] self.assertEqual(self.index._get_level_number(1), 0) self.assertEqual(self.index._get_level_number(0), 1) self.assertRaises(IndexError, self.index._get_level_number, 2) assertRaisesRegexp(KeyError, 'Level fourth not found', self.index._get_level_number, 'fourth') def test_from_arrays(self): arrays = [] for lev, lab in zip(self.index.levels, self.index.labels): arrays.append(np.asarray(lev).take(lab)) result = MultiIndex.from_arrays(arrays) self.assertEqual(list(result), list(self.index)) # infer correctly result = MultiIndex.from_arrays([[pd.NaT, Timestamp('20130101')], ['a', 'b']]) self.assertTrue(result.levels[0].equals(Index([Timestamp('20130101')]))) self.assertTrue(result.levels[1].equals(Index(['a','b']))) def test_from_product(self): first = ['foo', 'bar', 'buz'] second = ['a', 'b', 'c'] names = ['first', 'second'] result = MultiIndex.from_product([first, second], names=names) tuples = [('foo', 'a'), ('foo', 'b'), ('foo', 'c'), ('bar', 'a'), ('bar', 'b'), ('bar', 'c'), ('buz', 'a'), ('buz', 'b'), ('buz', 'c')] expected = MultiIndex.from_tuples(tuples, names=names) assert_array_equal(result, expected) self.assertEqual(result.names, names) def test_from_product_datetimeindex(self): dt_index = date_range('2000-01-01', periods=2) mi = pd.MultiIndex.from_product([[1, 2], dt_index]) etalon = pd.lib.list_to_object_array([(1, pd.Timestamp('2000-01-01')), (1, pd.Timestamp('2000-01-02')), (2, pd.Timestamp('2000-01-01')), (2, pd.Timestamp('2000-01-02'))]) assert_array_equal(mi.values, etalon) def test_values_boxed(self): tuples = [(1, pd.Timestamp('2000-01-01')), (2, pd.NaT), (3, pd.Timestamp('2000-01-03')), (1, pd.Timestamp('2000-01-04')), (2, pd.Timestamp('2000-01-02')), (3, pd.Timestamp('2000-01-03'))] mi = pd.MultiIndex.from_tuples(tuples) assert_array_equal(mi.values, pd.lib.list_to_object_array(tuples)) # Check that code branches for boxed values produce identical results assert_array_equal(mi.values[:4], mi[:4].values) def test_append(self): result = self.index[:3].append(self.index[3:]) self.assertTrue(result.equals(self.index)) foos = [self.index[:1], self.index[1:3], self.index[3:]] result = foos[0].append(foos[1:]) self.assertTrue(result.equals(self.index)) # empty result = self.index.append([]) self.assertTrue(result.equals(self.index)) def test_get_level_values(self): result = self.index.get_level_values(0) expected = ['foo', 'foo', 'bar', 'baz', 'qux', 'qux'] self.assert_numpy_array_equal(result, expected) self.assertEqual(result.name, 'first') result = self.index.get_level_values('first') expected = self.index.get_level_values(0) self.assert_numpy_array_equal(result, expected) def test_get_level_values_na(self): arrays = [['a', 'b', 'b'], [1, np.nan, 2]] index = pd.MultiIndex.from_arrays(arrays) values = index.get_level_values(1) expected = [1, np.nan, 2] assert_array_equal(values.values.astype(float), expected) arrays = [['a', 'b', 'b'], [np.nan, np.nan, 2]] index = pd.MultiIndex.from_arrays(arrays) values = index.get_level_values(1) expected = [np.nan, np.nan, 2] assert_array_equal(values.values.astype(float), expected) arrays = [[np.nan, np.nan, np.nan], ['a', np.nan, 1]] index = pd.MultiIndex.from_arrays(arrays) values = index.get_level_values(0) expected = [np.nan, np.nan, np.nan] assert_array_equal(values.values.astype(float), expected) values = index.get_level_values(1) expected = np.array(['a', np.nan, 1],dtype=object) assert_array_equal(values.values, expected) arrays = [['a', 'b', 'b'], pd.DatetimeIndex([0, 1, pd.NaT])] index = pd.MultiIndex.from_arrays(arrays) values = index.get_level_values(1) expected = pd.DatetimeIndex([0, 1, pd.NaT]) assert_array_equal(values.values, expected.values) arrays = [[], []] index = pd.MultiIndex.from_arrays(arrays) values = index.get_level_values(0) self.assertEqual(values.shape, (0,)) def test_reorder_levels(self): # this blows up assertRaisesRegexp(IndexError, '^Too many levels', self.index.reorder_levels, [2, 1, 0]) def test_nlevels(self): self.assertEqual(self.index.nlevels, 2) def test_iter(self): result = list(self.index) expected = [('foo', 'one'), ('foo', 'two'), ('bar', 'one'), ('baz', 'two'), ('qux', 'one'), ('qux', 'two')] self.assertEqual(result, expected) def test_legacy_pickle(self): if compat.PY3: raise nose.SkipTest("testing for legacy pickles not support on py3") path = tm.get_data_path('multiindex_v1.pickle') obj = pd.read_pickle(path) obj2 = MultiIndex.from_tuples(obj.values) self.assertTrue(obj.equals(obj2)) res = obj.get_indexer(obj) exp = np.arange(len(obj)) assert_almost_equal(res, exp) res = obj.get_indexer(obj2[::-1]) exp = obj.get_indexer(obj[::-1]) exp2 = obj2.get_indexer(obj2[::-1]) assert_almost_equal(res, exp)
assert_almost_equal(exp, exp2)
pandas.util.testing.assert_almost_equal
import numpy as np np.random.seed(2018) import pandas as pd import xgboost as xgb from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.model_selection import train_test_split from scipy.sparse import hstack from sklearn.linear_model import LogisticRegression from sklearn.metrics import mean_squared_error import jieba import re from sklearn.externals import joblib import os from sklearn.model_selection import KFold from sklearn.naive_bayes import MultinomialNB reg_chinese = re.compile(r'[^\u4e00-\u9fa5]+') def read_csv(filename, dir='./input/'): path = os.path.join(dir, filename+'.csv') return
pd.read_csv(path)
pandas.read_csv