prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
"""Console script for zalando_classification.""" import sys import click import pandas as pd from pathlib import Path from gpdre.applications.covariate_shift import ( get_dataset, MLPCovariateShiftAdapter, Classification2DCovariateShiftBenchmark, ExactCovariateShiftAdapter) from gpdre.utils import DensityRatio from gpdre.metrics import normalized_mean_squared_error # Sensible defaults # DRE OPTIMIZER1 = "adam" EPOCHS1 = 50 BATCH_SIZE = 64 NUM_LAYERS = 1 NUM_UNITS = 8 ACTIVATION = "tanh" L1_FACTOR = 0.0 L2_FACTOR = 0.0 OPTIMIZER2 = "lbfgs" EPOCHS2 = 500 PENALTY = "l2" SUMMARY_DIR = "logs/" NUM_TRAIN = 500 NUM_TEST = 500 THRESHOLD = 0.5 SEED = 0 DATASET_SEED = 8888 class MLPExperiment: def __init__(self, num_layers, num_units, activation, l1_factor, l2_factor, optimizer_auxiliary, epochs_auxiliary, batch_size, optimizer, epochs, penalty, seed=None): # Downstream prediction task self.classification_problem = Classification2DCovariateShiftBenchmark( optimizer=optimizer, epochs=epochs, penalty=penalty, seed=seed) # Importance weights self.adapter = MLPCovariateShiftAdapter(num_layers, num_units, activation, l1_factor, l2_factor, optimizer_auxiliary, epochs_auxiliary, batch_size, seed=seed) self.adapter_true = ExactCovariateShiftAdapter( exact_density_ratio=DensityRatio.from_covariate_shift_example()) self.parameters = dict(num_layers=num_layers, num_units=num_units, activation=activation, l1_factor=l1_factor, l2_factor=l2_factor, optimizer_auxiliary=optimizer_auxiliary, epochs_auxiliary=epochs_auxiliary, batch_size=batch_size, optimizer=optimizer, epochs=epochs, penalty=penalty, seed=seed) def get_result(self, X_train, y_train, X_test, y_test): importance_weights_true = self.adapter_true.importance_weights(X_train, X_test) importance_weights = self.adapter.importance_weights(X_train, X_test) auxiliary_accuracy = self.adapter.accuracy(X_train, X_test) nmse = normalized_mean_squared_error(importance_weights_true, importance_weights) test_accuracy = self.classification_problem.test_metric( train_data=(X_train, y_train), test_data=(X_test, y_test), importance_weights=importance_weights) results = dict(self.parameters) results.update(dict(auxiliary_accuracy=auxiliary_accuracy, nmse=nmse, test_accuracy=test_accuracy)) return results @click.command() @click.argument("name") @click.option("--summary-dir", default=SUMMARY_DIR, type=click.Path(file_okay=False, dir_okay=True), help="Summary directory.") @click.option("--num-train", default=NUM_TRAIN, type=int, help="Number of training samples") @click.option("--num-test", default=NUM_TEST, type=int, help="Number of test samples") @click.option("--threshold", default=THRESHOLD, type=float, help="Threshold") @click.option("-l", "--num-layers", default=NUM_LAYERS, type=int, help="Number of hidden layers.") @click.option("-u", "--num-units", default=NUM_UNITS, type=int, help="Number of hidden units.") @click.option("--activation", default=ACTIVATION, type=str) @click.option("--l1-factor", default=L1_FACTOR, type=float, help="L1 regularization factor.") @click.option("--l2-factor", default=L2_FACTOR, type=float, help="L2 regularization factor.") @click.option("--optimizer1", default=OPTIMIZER1, help="Optimizer for DRE.") @click.option("--epochs1", default=EPOCHS1, type=int, help="Number of epochs.") @click.option("-b", "--batch-size", default=BATCH_SIZE, type=int, help="Batch size.") @click.option("--optimizer2", default=OPTIMIZER2, help="Optimizer for the downstream prediction task.") @click.option("--epochs2", default=EPOCHS2, type=int, help="Number of epochs for the downstream prediction task.") @click.option("--dataset-seed", default=DATASET_SEED, type=int) @click.option("-s", "--seed", default=SEED, type=int, help="Random seed") def main(name, summary_dir, num_train, num_test, threshold, num_layers, num_units, activation, l1_factor, l2_factor, optimizer1, epochs1, batch_size, optimizer2, epochs2, dataset_seed, seed): mlp_experiment = MLPExperiment(num_layers, num_units, activation, l1_factor, l2_factor, optimizer1, epochs1, batch_size, optimizer2, epochs2, penalty=PENALTY, seed=seed) # Get data (X_train, y_train), (X_test, y_test) = get_dataset(num_train, num_test, threshold=threshold, seed=dataset_seed) results = mlp_experiment.get_result(X_train, y_train, X_test, y_test) click.secho("[Seed {seed:04d}] test accuracy: {test_accuracy:.3f}" .format(**results), fg="green") # Save results summary_path = Path(summary_dir).joinpath(name) summary_path.mkdir(parents=True, exist_ok=True) data =
pd.Series(results)
pandas.Series
# -*- coding: utf-8 -*- """ docstring goes here. :copyright: Copyright 2014 by the Elephant team, see AUTHORS.txt. :license: Modified BSD, see LICENSE.txt for details. """ from __future__ import division, print_function import unittest from itertools import chain from neo.test.generate_datasets import fake_neo import numpy as np from numpy.testing.utils import assert_array_equal import quantities as pq try: import pandas as pd from pandas.util.testing import assert_frame_equal, assert_index_equal except ImportError: HAVE_PANDAS = False else: import elephant.pandas_bridge as ep HAVE_PANDAS = True @unittest.skipUnless(HAVE_PANDAS, 'requires pandas') class MultiindexFromDictTestCase(unittest.TestCase): def test__multiindex_from_dict(self): inds = {'test1': 6.5, 'test2': 5, 'test3': 'test'} targ = pd.MultiIndex(levels=[[6.5], [5], ['test']], labels=[[0], [0], [0]], names=['test1', 'test2', 'test3']) res0 = ep._multiindex_from_dict(inds) self.assertEqual(targ.levels, res0.levels) self.assertEqual(targ.names, res0.names) self.assertEqual(targ.labels, res0.labels) def _convert_levels(levels): """Convert a list of levels to the format pandas returns for a MultiIndex. Parameters ---------- levels : list The list of levels to convert. Returns ------- list The the level in `list` converted to values like what pandas will give. """ levels = list(levels) for i, level in enumerate(levels): if hasattr(level, 'lower'): try: level = unicode(level) except NameError: pass elif hasattr(level, 'date'): levels[i] = pd.DatetimeIndex(data=[level]) continue elif level is None: levels[i] = pd.Index([]) continue levels[i] = pd.Index([level]) return levels @unittest.skipUnless(HAVE_PANDAS, 'requires pandas') class ConvertValueSafeTestCase(unittest.TestCase): def test__convert_value_safe__float(self): targ = 5.5 value = targ res = ep._convert_value_safe(value) self.assertIs(res, targ) def test__convert_value_safe__str(self): targ = 'test' value = targ res = ep._convert_value_safe(value) self.assertIs(res, targ) def test__convert_value_safe__bytes(self): targ = 'test' value = b'test' res = ep._convert_value_safe(value) self.assertEqual(res, targ) def test__convert_value_safe__numpy_int_scalar(self): targ = 5 value = np.array(5) res = ep._convert_value_safe(value) self.assertEqual(res, targ) self.assertFalse(hasattr(res, 'dtype')) def test__convert_value_safe__numpy_float_scalar(self): targ = 5. value = np.array(5.) res = ep._convert_value_safe(value) self.assertEqual(res, targ) self.assertFalse(hasattr(res, 'dtype')) def test__convert_value_safe__numpy_unicode_scalar(self): targ = u'test' value = np.array('test', dtype='U') res = ep._convert_value_safe(value) self.assertEqual(res, targ) self.assertFalse(hasattr(res, 'dtype')) def test__convert_value_safe__numpy_str_scalar(self): targ = u'test' value = np.array('test', dtype='S') res = ep._convert_value_safe(value) self.assertEqual(res, targ) self.assertFalse(hasattr(res, 'dtype')) def test__convert_value_safe__quantity_scalar(self): targ = (10., 'ms') value = 10. * pq.ms res = ep._convert_value_safe(value) self.assertEqual(res, targ) self.assertFalse(hasattr(res[0], 'dtype')) self.assertFalse(hasattr(res[0], 'units')) @unittest.skipUnless(HAVE_PANDAS, 'requires pandas') class SpiketrainToDataframeTestCase(unittest.TestCase): def test__spiketrain_to_dataframe__parents_empty(self): obj = fake_neo('SpikeTrain', seed=0) res0 = ep.spiketrain_to_dataframe(obj) res1 = ep.spiketrain_to_dataframe(obj, child_first=True) res2 = ep.spiketrain_to_dataframe(obj, child_first=False) res3 = ep.spiketrain_to_dataframe(obj, parents=True) res4 = ep.spiketrain_to_dataframe(obj, parents=True, child_first=True) res5 = ep.spiketrain_to_dataframe(obj, parents=True, child_first=False) res6 = ep.spiketrain_to_dataframe(obj, parents=False) res7 = ep.spiketrain_to_dataframe(obj, parents=False, child_first=True) res8 = ep.spiketrain_to_dataframe(obj, parents=False, child_first=False) targvalues = pq.Quantity(obj.magnitude, units=obj.units) targvalues = targvalues.rescale('s').magnitude[np.newaxis].T targindex = np.arange(len(targvalues)) attrs = ep._extract_neo_attrs_safe(obj, parents=True, child_first=True) keys, values = zip(*sorted(attrs.items())) values = _convert_levels(values) self.assertEqual(1, len(res0.columns)) self.assertEqual(1, len(res1.columns)) self.assertEqual(1, len(res2.columns)) self.assertEqual(1, len(res3.columns)) self.assertEqual(1, len(res4.columns)) self.assertEqual(1, len(res5.columns)) self.assertEqual(1, len(res6.columns)) self.assertEqual(1, len(res7.columns)) self.assertEqual(1, len(res8.columns)) self.assertEqual(len(obj), len(res0.index)) self.assertEqual(len(obj), len(res1.index)) self.assertEqual(len(obj), len(res2.index)) self.assertEqual(len(obj), len(res3.index)) self.assertEqual(len(obj), len(res4.index)) self.assertEqual(len(obj), len(res5.index)) self.assertEqual(len(obj), len(res6.index)) self.assertEqual(len(obj), len(res7.index)) self.assertEqual(len(obj), len(res8.index)) assert_array_equal(targvalues, res0.values) assert_array_equal(targvalues, res1.values) assert_array_equal(targvalues, res2.values) assert_array_equal(targvalues, res3.values) assert_array_equal(targvalues, res4.values) assert_array_equal(targvalues, res5.values) assert_array_equal(targvalues, res6.values) assert_array_equal(targvalues, res7.values) assert_array_equal(targvalues, res8.values) assert_array_equal(targindex, res0.index) assert_array_equal(targindex, res1.index) assert_array_equal(targindex, res2.index) assert_array_equal(targindex, res3.index) assert_array_equal(targindex, res4.index) assert_array_equal(targindex, res5.index) assert_array_equal(targindex, res6.index) assert_array_equal(targindex, res7.index) assert_array_equal(targindex, res8.index) self.assertEqual(['spike_number'], res0.index.names) self.assertEqual(['spike_number'], res1.index.names) self.assertEqual(['spike_number'], res2.index.names) self.assertEqual(['spike_number'], res3.index.names) self.assertEqual(['spike_number'], res4.index.names) self.assertEqual(['spike_number'], res5.index.names) self.assertEqual(['spike_number'], res6.index.names) self.assertEqual(['spike_number'], res7.index.names) self.assertEqual(['spike_number'], res8.index.names) self.assertEqual(keys, res0.columns.names) self.assertEqual(keys, res1.columns.names) self.assertEqual(keys, res2.columns.names) self.assertEqual(keys, res3.columns.names) self.assertEqual(keys, res4.columns.names) self.assertEqual(keys, res5.columns.names) self.assertEqual(keys, res6.columns.names) self.assertEqual(keys, res7.columns.names) self.assertEqual(keys, res8.columns.names) for value, level in zip(values, res0.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res1.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res2.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res3.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res4.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res5.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res6.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res7.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res8.columns.levels): assert_index_equal(value, level) def test__spiketrain_to_dataframe__noparents(self): blk = fake_neo('Block', seed=0) obj = blk.list_children_by_class('SpikeTrain')[0] res0 = ep.spiketrain_to_dataframe(obj, parents=False) res1 = ep.spiketrain_to_dataframe(obj, parents=False, child_first=True) res2 = ep.spiketrain_to_dataframe(obj, parents=False, child_first=False) targvalues = pq.Quantity(obj.magnitude, units=obj.units) targvalues = targvalues.rescale('s').magnitude[np.newaxis].T targindex = np.arange(len(targvalues)) attrs = ep._extract_neo_attrs_safe(obj, parents=False, child_first=True) keys, values = zip(*sorted(attrs.items())) values = _convert_levels(values) self.assertEqual(1, len(res0.columns)) self.assertEqual(1, len(res1.columns)) self.assertEqual(1, len(res2.columns)) self.assertEqual(len(obj), len(res0.index)) self.assertEqual(len(obj), len(res1.index)) self.assertEqual(len(obj), len(res2.index)) assert_array_equal(targvalues, res0.values) assert_array_equal(targvalues, res1.values) assert_array_equal(targvalues, res2.values) assert_array_equal(targindex, res0.index) assert_array_equal(targindex, res1.index) assert_array_equal(targindex, res2.index) self.assertEqual(['spike_number'], res0.index.names) self.assertEqual(['spike_number'], res1.index.names) self.assertEqual(['spike_number'], res2.index.names) self.assertEqual(keys, res0.columns.names) self.assertEqual(keys, res1.columns.names) self.assertEqual(keys, res2.columns.names) for value, level in zip(values, res0.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res1.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res2.columns.levels): assert_index_equal(value, level) def test__spiketrain_to_dataframe__parents_childfirst(self): blk = fake_neo('Block', seed=0) obj = blk.list_children_by_class('SpikeTrain')[0] res0 = ep.spiketrain_to_dataframe(obj) res1 = ep.spiketrain_to_dataframe(obj, child_first=True) res2 = ep.spiketrain_to_dataframe(obj, parents=True) res3 = ep.spiketrain_to_dataframe(obj, parents=True, child_first=True) targvalues = pq.Quantity(obj.magnitude, units=obj.units) targvalues = targvalues.rescale('s').magnitude[np.newaxis].T targindex = np.arange(len(targvalues)) attrs = ep._extract_neo_attrs_safe(obj, parents=True, child_first=True) keys, values = zip(*sorted(attrs.items())) values = _convert_levels(values) self.assertEqual(1, len(res0.columns)) self.assertEqual(1, len(res1.columns)) self.assertEqual(1, len(res2.columns)) self.assertEqual(1, len(res3.columns)) self.assertEqual(len(obj), len(res0.index)) self.assertEqual(len(obj), len(res1.index)) self.assertEqual(len(obj), len(res2.index)) self.assertEqual(len(obj), len(res3.index)) assert_array_equal(targvalues, res0.values) assert_array_equal(targvalues, res1.values) assert_array_equal(targvalues, res2.values) assert_array_equal(targvalues, res3.values) assert_array_equal(targindex, res0.index) assert_array_equal(targindex, res1.index) assert_array_equal(targindex, res2.index) assert_array_equal(targindex, res3.index) self.assertEqual(['spike_number'], res0.index.names) self.assertEqual(['spike_number'], res1.index.names) self.assertEqual(['spike_number'], res2.index.names) self.assertEqual(['spike_number'], res3.index.names) self.assertEqual(keys, res0.columns.names) self.assertEqual(keys, res1.columns.names) self.assertEqual(keys, res2.columns.names) self.assertEqual(keys, res3.columns.names) for value, level in zip(values, res0.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res1.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res2.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res3.columns.levels): assert_index_equal(value, level) def test__spiketrain_to_dataframe__parents_parentfirst(self): blk = fake_neo('Block', seed=0) obj = blk.list_children_by_class('SpikeTrain')[0] res0 = ep.spiketrain_to_dataframe(obj, child_first=False) res1 = ep.spiketrain_to_dataframe(obj, parents=True, child_first=False) targvalues = pq.Quantity(obj.magnitude, units=obj.units) targvalues = targvalues.rescale('s').magnitude[np.newaxis].T targindex = np.arange(len(targvalues)) attrs = ep._extract_neo_attrs_safe(obj, parents=True, child_first=False) keys, values = zip(*sorted(attrs.items())) values = _convert_levels(values) self.assertEqual(1, len(res0.columns)) self.assertEqual(1, len(res1.columns)) self.assertEqual(len(obj), len(res0.index)) self.assertEqual(len(obj), len(res1.index)) assert_array_equal(targvalues, res0.values) assert_array_equal(targvalues, res1.values) assert_array_equal(targindex, res0.index) assert_array_equal(targindex, res1.index) self.assertEqual(['spike_number'], res0.index.names) self.assertEqual(['spike_number'], res1.index.names) self.assertEqual(keys, res0.columns.names) self.assertEqual(keys, res1.columns.names) for value, level in zip(values, res0.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res1.columns.levels): assert_index_equal(value, level) @unittest.skipUnless(HAVE_PANDAS, 'requires pandas') class EventToDataframeTestCase(unittest.TestCase): def test__event_to_dataframe__parents_empty(self): obj = fake_neo('Event', seed=42) res0 = ep.event_to_dataframe(obj) res1 = ep.event_to_dataframe(obj, child_first=True) res2 = ep.event_to_dataframe(obj, child_first=False) res3 = ep.event_to_dataframe(obj, parents=True) res4 = ep.event_to_dataframe(obj, parents=True, child_first=True) res5 = ep.event_to_dataframe(obj, parents=True, child_first=False) res6 = ep.event_to_dataframe(obj, parents=False) res7 = ep.event_to_dataframe(obj, parents=False, child_first=True) res8 = ep.event_to_dataframe(obj, parents=False, child_first=False) targvalues = obj.labels[:len(obj.times)][np.newaxis].T.astype('U') targindex = obj.times[:len(obj.labels)].rescale('s').magnitude attrs = ep._extract_neo_attrs_safe(obj, parents=True, child_first=True) keys, values = zip(*sorted(attrs.items())) values = _convert_levels(values) self.assertEqual(1, len(res0.columns)) self.assertEqual(1, len(res1.columns)) self.assertEqual(1, len(res2.columns)) self.assertEqual(1, len(res3.columns)) self.assertEqual(1, len(res4.columns)) self.assertEqual(1, len(res5.columns)) self.assertEqual(1, len(res6.columns)) self.assertEqual(1, len(res7.columns)) self.assertEqual(1, len(res8.columns)) self.assertEqual(min(len(obj.times), len(obj.labels)), len(res0.index)) self.assertEqual(min(len(obj.times), len(obj.labels)), len(res1.index)) self.assertEqual(min(len(obj.times), len(obj.labels)), len(res2.index)) self.assertEqual(min(len(obj.times), len(obj.labels)), len(res3.index)) self.assertEqual(min(len(obj.times), len(obj.labels)), len(res4.index)) self.assertEqual(min(len(obj.times), len(obj.labels)), len(res5.index)) self.assertEqual(min(len(obj.times), len(obj.labels)), len(res6.index)) self.assertEqual(min(len(obj.times), len(obj.labels)), len(res7.index)) self.assertEqual(min(len(obj.times), len(obj.labels)), len(res8.index)) assert_array_equal(targvalues, res0.values) assert_array_equal(targvalues, res1.values) assert_array_equal(targvalues, res2.values) assert_array_equal(targvalues, res3.values) assert_array_equal(targvalues, res4.values) assert_array_equal(targvalues, res5.values) assert_array_equal(targvalues, res6.values) assert_array_equal(targvalues, res7.values) assert_array_equal(targvalues, res8.values) assert_array_equal(targindex, res0.index) assert_array_equal(targindex, res1.index) assert_array_equal(targindex, res2.index) assert_array_equal(targindex, res3.index) assert_array_equal(targindex, res4.index) assert_array_equal(targindex, res5.index) assert_array_equal(targindex, res6.index) assert_array_equal(targindex, res7.index) assert_array_equal(targindex, res8.index) self.assertEqual(['times'], res0.index.names) self.assertEqual(['times'], res1.index.names) self.assertEqual(['times'], res2.index.names) self.assertEqual(['times'], res3.index.names) self.assertEqual(['times'], res4.index.names) self.assertEqual(['times'], res5.index.names) self.assertEqual(['times'], res6.index.names) self.assertEqual(['times'], res7.index.names) self.assertEqual(['times'], res8.index.names) self.assertEqual(keys, res0.columns.names) self.assertEqual(keys, res1.columns.names) self.assertEqual(keys, res2.columns.names) self.assertEqual(keys, res3.columns.names) self.assertEqual(keys, res4.columns.names) self.assertEqual(keys, res5.columns.names) self.assertEqual(keys, res6.columns.names) self.assertEqual(keys, res7.columns.names) self.assertEqual(keys, res8.columns.names) for value, level in zip(values, res0.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res1.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res2.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res3.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res4.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res5.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res6.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res7.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res8.columns.levels): assert_index_equal(value, level) def test__event_to_dataframe__noparents(self): blk = fake_neo('Block', seed=42) obj = blk.list_children_by_class('Event')[0] res0 = ep.event_to_dataframe(obj, parents=False) res1 = ep.event_to_dataframe(obj, parents=False, child_first=False) res2 = ep.event_to_dataframe(obj, parents=False, child_first=True) targvalues = obj.labels[:len(obj.times)][np.newaxis].T.astype('U') targindex = obj.times[:len(obj.labels)].rescale('s').magnitude attrs = ep._extract_neo_attrs_safe(obj, parents=False, child_first=True) keys, values = zip(*sorted(attrs.items())) values = _convert_levels(values) self.assertEqual(1, len(res0.columns)) self.assertEqual(1, len(res1.columns)) self.assertEqual(1, len(res2.columns)) self.assertEqual(min(len(obj.times), len(obj.labels)), len(res0.index)) self.assertEqual(min(len(obj.times), len(obj.labels)), len(res1.index)) self.assertEqual(min(len(obj.times), len(obj.labels)), len(res2.index)) assert_array_equal(targvalues, res0.values) assert_array_equal(targvalues, res1.values) assert_array_equal(targvalues, res2.values) assert_array_equal(targindex, res0.index) assert_array_equal(targindex, res1.index) assert_array_equal(targindex, res2.index) self.assertEqual(['times'], res0.index.names) self.assertEqual(['times'], res1.index.names) self.assertEqual(['times'], res2.index.names) self.assertEqual(keys, res0.columns.names) self.assertEqual(keys, res1.columns.names) self.assertEqual(keys, res2.columns.names) for value, level in zip(values, res0.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res1.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res2.columns.levels): assert_index_equal(value, level) def test__event_to_dataframe__parents_childfirst(self): blk = fake_neo('Block', seed=42) obj = blk.list_children_by_class('Event')[0] res0 = ep.event_to_dataframe(obj) res1 = ep.event_to_dataframe(obj, child_first=True) res2 = ep.event_to_dataframe(obj, parents=True) res3 = ep.event_to_dataframe(obj, parents=True, child_first=True) targvalues = obj.labels[:len(obj.times)][np.newaxis].T.astype('U') targindex = obj.times[:len(obj.labels)].rescale('s').magnitude attrs = ep._extract_neo_attrs_safe(obj, parents=True, child_first=True) keys, values = zip(*sorted(attrs.items())) values = _convert_levels(values) self.assertEqual(1, len(res0.columns)) self.assertEqual(1, len(res1.columns)) self.assertEqual(1, len(res2.columns)) self.assertEqual(1, len(res3.columns)) self.assertEqual(min(len(obj.times), len(obj.labels)), len(res0.index)) self.assertEqual(min(len(obj.times), len(obj.labels)), len(res1.index)) self.assertEqual(min(len(obj.times), len(obj.labels)), len(res2.index)) self.assertEqual(min(len(obj.times), len(obj.labels)), len(res3.index)) assert_array_equal(targvalues, res0.values) assert_array_equal(targvalues, res1.values) assert_array_equal(targvalues, res2.values) assert_array_equal(targvalues, res3.values) assert_array_equal(targindex, res0.index) assert_array_equal(targindex, res1.index) assert_array_equal(targindex, res2.index) assert_array_equal(targindex, res3.index) self.assertEqual(['times'], res0.index.names) self.assertEqual(['times'], res1.index.names) self.assertEqual(['times'], res2.index.names) self.assertEqual(['times'], res3.index.names) self.assertEqual(keys, res0.columns.names) self.assertEqual(keys, res1.columns.names) self.assertEqual(keys, res2.columns.names) self.assertEqual(keys, res3.columns.names) for value, level in zip(values, res0.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res1.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res2.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res3.columns.levels): assert_index_equal(value, level) def test__event_to_dataframe__parents_parentfirst(self): blk = fake_neo('Block', seed=42) obj = blk.list_children_by_class('Event')[0] res0 = ep.event_to_dataframe(obj, child_first=False) res1 = ep.event_to_dataframe(obj, parents=True, child_first=False) targvalues = obj.labels[:len(obj.times)][np.newaxis].T.astype('U') targindex = obj.times[:len(obj.labels)].rescale('s').magnitude attrs = ep._extract_neo_attrs_safe(obj, parents=True, child_first=False) keys, values = zip(*sorted(attrs.items())) values = _convert_levels(values) self.assertEqual(1, len(res0.columns)) self.assertEqual(1, len(res1.columns)) self.assertEqual(min(len(obj.times), len(obj.labels)), len(res0.index)) self.assertEqual(min(len(obj.times), len(obj.labels)), len(res1.index)) assert_array_equal(targvalues, res0.values) assert_array_equal(targvalues, res1.values) assert_array_equal(targindex, res0.index) assert_array_equal(targindex, res1.index) self.assertEqual(['times'], res0.index.names) self.assertEqual(['times'], res1.index.names) self.assertEqual(keys, res0.columns.names) self.assertEqual(keys, res1.columns.names) for value, level in zip(values, res0.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res1.columns.levels): assert_index_equal(value, level) @unittest.skipUnless(HAVE_PANDAS, 'requires pandas') class EpochToDataframeTestCase(unittest.TestCase): def test__epoch_to_dataframe__parents_empty(self): obj = fake_neo('Epoch', seed=42) res0 = ep.epoch_to_dataframe(obj) res1 = ep.epoch_to_dataframe(obj, child_first=True) res2 = ep.epoch_to_dataframe(obj, child_first=False) res3 = ep.epoch_to_dataframe(obj, parents=True) res4 = ep.epoch_to_dataframe(obj, parents=True, child_first=True) res5 = ep.epoch_to_dataframe(obj, parents=True, child_first=False) res6 = ep.epoch_to_dataframe(obj, parents=False) res7 = ep.epoch_to_dataframe(obj, parents=False, child_first=True) res8 = ep.epoch_to_dataframe(obj, parents=False, child_first=False) minlen = min([len(obj.times), len(obj.durations), len(obj.labels)]) targvalues = obj.labels[:minlen][np.newaxis].T.astype('U') targindex = np.vstack([obj.durations[:minlen].rescale('s').magnitude, obj.times[:minlen].rescale('s').magnitude]) targvalues = targvalues[targindex.argsort()[0], :] targindex.sort() attrs = ep._extract_neo_attrs_safe(obj, parents=True, child_first=True) keys, values = zip(*sorted(attrs.items())) values = _convert_levels(values) self.assertEqual(1, len(res0.columns)) self.assertEqual(1, len(res1.columns)) self.assertEqual(1, len(res2.columns)) self.assertEqual(1, len(res3.columns)) self.assertEqual(1, len(res4.columns)) self.assertEqual(1, len(res5.columns)) self.assertEqual(1, len(res6.columns)) self.assertEqual(1, len(res7.columns)) self.assertEqual(1, len(res8.columns)) self.assertEqual(min(len(obj.times), len(obj.durations), len(obj.labels)), len(res0.index)) self.assertEqual(min(len(obj.times), len(obj.durations), len(obj.labels)), len(res1.index)) self.assertEqual(min(len(obj.times), len(obj.durations), len(obj.labels)), len(res2.index)) self.assertEqual(min(len(obj.times), len(obj.durations), len(obj.labels)), len(res3.index)) self.assertEqual(min(len(obj.times), len(obj.durations), len(obj.labels)), len(res4.index)) self.assertEqual(min(len(obj.times), len(obj.durations), len(obj.labels)), len(res5.index)) self.assertEqual(min(len(obj.times), len(obj.durations), len(obj.labels)), len(res6.index)) self.assertEqual(min(len(obj.times), len(obj.durations), len(obj.labels)), len(res7.index)) self.assertEqual(min(len(obj.times), len(obj.durations), len(obj.labels)), len(res8.index)) assert_array_equal(targvalues, res0.values) assert_array_equal(targvalues, res1.values) assert_array_equal(targvalues, res2.values) assert_array_equal(targvalues, res3.values) assert_array_equal(targvalues, res4.values) assert_array_equal(targvalues, res5.values) assert_array_equal(targvalues, res6.values) assert_array_equal(targvalues, res7.values) assert_array_equal(targvalues, res8.values) self.assertEqual(keys, res0.columns.names) self.assertEqual(keys, res1.columns.names) self.assertEqual(keys, res2.columns.names) self.assertEqual(keys, res3.columns.names) self.assertEqual(keys, res4.columns.names) self.assertEqual(keys, res5.columns.names) self.assertEqual(keys, res6.columns.names) self.assertEqual(keys, res7.columns.names) self.assertEqual(keys, res8.columns.names) self.assertEqual([u'durations', u'times'], res0.index.names) self.assertEqual([u'durations', u'times'], res1.index.names) self.assertEqual([u'durations', u'times'], res2.index.names) self.assertEqual([u'durations', u'times'], res3.index.names) self.assertEqual([u'durations', u'times'], res4.index.names) self.assertEqual([u'durations', u'times'], res5.index.names) self.assertEqual([u'durations', u'times'], res6.index.names) self.assertEqual([u'durations', u'times'], res7.index.names) self.assertEqual([u'durations', u'times'], res8.index.names) self.assertEqual(2, len(res0.index.levels)) self.assertEqual(2, len(res1.index.levels)) self.assertEqual(2, len(res2.index.levels)) self.assertEqual(2, len(res3.index.levels)) self.assertEqual(2, len(res4.index.levels)) self.assertEqual(2, len(res5.index.levels)) self.assertEqual(2, len(res6.index.levels)) self.assertEqual(2, len(res7.index.levels)) self.assertEqual(2, len(res8.index.levels)) assert_array_equal(targindex, res0.index.levels) assert_array_equal(targindex, res1.index.levels) assert_array_equal(targindex, res2.index.levels) assert_array_equal(targindex, res3.index.levels) assert_array_equal(targindex, res4.index.levels) assert_array_equal(targindex, res5.index.levels) assert_array_equal(targindex, res6.index.levels) assert_array_equal(targindex, res7.index.levels) assert_array_equal(targindex, res8.index.levels) for value, level in zip(values, res0.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res1.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res2.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res3.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res4.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res5.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res6.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res7.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res8.columns.levels): assert_index_equal(value, level) def test__epoch_to_dataframe__noparents(self): blk = fake_neo('Block', seed=42) obj = blk.list_children_by_class('Epoch')[0] res0 = ep.epoch_to_dataframe(obj, parents=False) res1 = ep.epoch_to_dataframe(obj, parents=False, child_first=True) res2 = ep.epoch_to_dataframe(obj, parents=False, child_first=False) minlen = min([len(obj.times), len(obj.durations), len(obj.labels)]) targvalues = obj.labels[:minlen][np.newaxis].T.astype('U') targindex = np.vstack([obj.durations[:minlen].rescale('s').magnitude, obj.times[:minlen].rescale('s').magnitude]) targvalues = targvalues[targindex.argsort()[0], :] targindex.sort() attrs = ep._extract_neo_attrs_safe(obj, parents=False, child_first=True) keys, values = zip(*sorted(attrs.items())) values = _convert_levels(values) self.assertEqual(1, len(res0.columns)) self.assertEqual(1, len(res1.columns)) self.assertEqual(1, len(res2.columns)) self.assertEqual(min(len(obj.times), len(obj.durations), len(obj.labels)), len(res0.index)) self.assertEqual(min(len(obj.times), len(obj.durations), len(obj.labels)), len(res1.index)) self.assertEqual(min(len(obj.times), len(obj.durations), len(obj.labels)), len(res2.index)) assert_array_equal(targvalues, res0.values) assert_array_equal(targvalues, res1.values) assert_array_equal(targvalues, res2.values) self.assertEqual(keys, res0.columns.names) self.assertEqual(keys, res1.columns.names) self.assertEqual(keys, res2.columns.names) self.assertEqual([u'durations', u'times'], res0.index.names) self.assertEqual([u'durations', u'times'], res1.index.names) self.assertEqual([u'durations', u'times'], res2.index.names) self.assertEqual(2, len(res0.index.levels)) self.assertEqual(2, len(res1.index.levels)) self.assertEqual(2, len(res2.index.levels)) assert_array_equal(targindex, res0.index.levels) assert_array_equal(targindex, res1.index.levels) assert_array_equal(targindex, res2.index.levels) for value, level in zip(values, res0.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res1.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res2.columns.levels): assert_index_equal(value, level) def test__epoch_to_dataframe__parents_childfirst(self): blk = fake_neo('Block', seed=42) obj = blk.list_children_by_class('Epoch')[0] res0 = ep.epoch_to_dataframe(obj) res1 = ep.epoch_to_dataframe(obj, child_first=True) res2 = ep.epoch_to_dataframe(obj, parents=True) res3 = ep.epoch_to_dataframe(obj, parents=True, child_first=True) minlen = min([len(obj.times), len(obj.durations), len(obj.labels)]) targvalues = obj.labels[:minlen][np.newaxis].T.astype('U') targindex = np.vstack([obj.durations[:minlen].rescale('s').magnitude, obj.times[:minlen].rescale('s').magnitude]) targvalues = targvalues[targindex.argsort()[0], :] targindex.sort() attrs = ep._extract_neo_attrs_safe(obj, parents=True, child_first=True) keys, values = zip(*sorted(attrs.items())) values = _convert_levels(values) self.assertEqual(1, len(res0.columns)) self.assertEqual(1, len(res1.columns)) self.assertEqual(1, len(res2.columns)) self.assertEqual(1, len(res3.columns)) self.assertEqual(min(len(obj.times), len(obj.durations), len(obj.labels)), len(res0.index)) self.assertEqual(min(len(obj.times), len(obj.durations), len(obj.labels)), len(res1.index)) self.assertEqual(min(len(obj.times), len(obj.durations), len(obj.labels)), len(res2.index)) self.assertEqual(min(len(obj.times), len(obj.durations), len(obj.labels)), len(res3.index)) assert_array_equal(targvalues, res0.values) assert_array_equal(targvalues, res1.values) assert_array_equal(targvalues, res2.values) assert_array_equal(targvalues, res3.values) self.assertEqual(keys, res0.columns.names) self.assertEqual(keys, res1.columns.names) self.assertEqual(keys, res2.columns.names) self.assertEqual(keys, res3.columns.names) self.assertEqual([u'durations', u'times'], res0.index.names) self.assertEqual([u'durations', u'times'], res1.index.names) self.assertEqual([u'durations', u'times'], res2.index.names) self.assertEqual([u'durations', u'times'], res3.index.names) self.assertEqual(2, len(res0.index.levels)) self.assertEqual(2, len(res1.index.levels)) self.assertEqual(2, len(res2.index.levels)) self.assertEqual(2, len(res3.index.levels)) assert_array_equal(targindex, res0.index.levels) assert_array_equal(targindex, res1.index.levels) assert_array_equal(targindex, res2.index.levels) assert_array_equal(targindex, res3.index.levels) for value, level in zip(values, res0.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res1.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res2.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res3.columns.levels): assert_index_equal(value, level) def test__epoch_to_dataframe__parents_parentfirst(self): blk = fake_neo('Block', seed=42) obj = blk.list_children_by_class('Epoch')[0] res0 = ep.epoch_to_dataframe(obj, child_first=False) res1 = ep.epoch_to_dataframe(obj, parents=True, child_first=False) minlen = min([len(obj.times), len(obj.durations), len(obj.labels)]) targvalues = obj.labels[:minlen][np.newaxis].T.astype('U') targindex = np.vstack([obj.durations[:minlen].rescale('s').magnitude, obj.times[:minlen].rescale('s').magnitude]) targvalues = targvalues[targindex.argsort()[0], :] targindex.sort() attrs = ep._extract_neo_attrs_safe(obj, parents=True, child_first=False) keys, values = zip(*sorted(attrs.items())) values = _convert_levels(values) self.assertEqual(1, len(res0.columns)) self.assertEqual(1, len(res1.columns)) self.assertEqual(min(len(obj.times), len(obj.durations), len(obj.labels)), len(res0.index)) self.assertEqual(min(len(obj.times), len(obj.durations), len(obj.labels)), len(res1.index)) assert_array_equal(targvalues, res0.values) assert_array_equal(targvalues, res1.values) self.assertEqual(keys, res0.columns.names) self.assertEqual(keys, res1.columns.names) self.assertEqual([u'durations', u'times'], res0.index.names) self.assertEqual([u'durations', u'times'], res1.index.names) self.assertEqual(2, len(res0.index.levels)) self.assertEqual(2, len(res1.index.levels)) assert_array_equal(targindex, res0.index.levels) assert_array_equal(targindex, res1.index.levels) for value, level in zip(values, res0.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res1.columns.levels): assert_index_equal(value, level) @unittest.skipUnless(HAVE_PANDAS, 'requires pandas') class MultiSpiketrainsToDataframeTestCase(unittest.TestCase): def setUp(self): if hasattr(self, 'assertItemsEqual'): self.assertCountEqual = self.assertItemsEqual def test__multi_spiketrains_to_dataframe__single(self): obj = fake_neo('SpikeTrain', seed=0, n=5) res0 = ep.multi_spiketrains_to_dataframe(obj) res1 = ep.multi_spiketrains_to_dataframe(obj, parents=False) res2 = ep.multi_spiketrains_to_dataframe(obj, parents=True) res3 = ep.multi_spiketrains_to_dataframe(obj, child_first=True) res4 = ep.multi_spiketrains_to_dataframe(obj, parents=False, child_first=True) res5 = ep.multi_spiketrains_to_dataframe(obj, parents=True, child_first=True) res6 = ep.multi_spiketrains_to_dataframe(obj, child_first=False) res7 = ep.multi_spiketrains_to_dataframe(obj, parents=False, child_first=False) res8 = ep.multi_spiketrains_to_dataframe(obj, parents=True, child_first=False) targ = ep.spiketrain_to_dataframe(obj) keys = ep._extract_neo_attrs_safe(obj, parents=True, child_first=True).keys() keys = list(keys) targwidth = 1 targlen = len(obj) self.assertEqual(targwidth, len(targ.columns)) self.assertEqual(targwidth, len(res0.columns)) self.assertEqual(targwidth, len(res1.columns)) self.assertEqual(targwidth, len(res2.columns)) self.assertEqual(targwidth, len(res3.columns)) self.assertEqual(targwidth, len(res4.columns)) self.assertEqual(targwidth, len(res5.columns)) self.assertEqual(targwidth, len(res6.columns)) self.assertEqual(targwidth, len(res7.columns)) self.assertEqual(targwidth, len(res8.columns)) self.assertEqual(targlen, len(targ.index)) self.assertEqual(targlen, len(res0.index)) self.assertEqual(targlen, len(res1.index)) self.assertEqual(targlen, len(res2.index)) self.assertEqual(targlen, len(res3.index)) self.assertEqual(targlen, len(res4.index)) self.assertEqual(targlen, len(res5.index)) self.assertEqual(targlen, len(res6.index)) self.assertEqual(targlen, len(res7.index)) self.assertEqual(targlen, len(res8.index)) self.assertCountEqual(keys, targ.columns.names) self.assertCountEqual(keys, res0.columns.names) self.assertCountEqual(keys, res1.columns.names) self.assertCountEqual(keys, res2.columns.names) self.assertCountEqual(keys, res3.columns.names) self.assertCountEqual(keys, res4.columns.names) self.assertCountEqual(keys, res5.columns.names) self.assertCountEqual(keys, res6.columns.names) self.assertCountEqual(keys, res7.columns.names) self.assertCountEqual(keys, res8.columns.names) assert_array_equal(targ.values, res0.values) assert_array_equal(targ.values, res1.values) assert_array_equal(targ.values, res2.values) assert_array_equal(targ.values, res3.values) assert_array_equal(targ.values, res4.values) assert_array_equal(targ.values, res5.values) assert_array_equal(targ.values, res6.values) assert_array_equal(targ.values, res7.values) assert_array_equal(targ.values, res8.values) assert_frame_equal(targ, res0) assert_frame_equal(targ, res0) assert_frame_equal(targ, res1) assert_frame_equal(targ, res2) assert_frame_equal(targ, res3) assert_frame_equal(targ, res4) assert_frame_equal(targ, res5) assert_frame_equal(targ, res6) assert_frame_equal(targ, res7) assert_frame_equal(targ, res8) def test__multi_spiketrains_to_dataframe__unit_default(self): obj = fake_neo('Unit', seed=0, n=5) res0 = ep.multi_spiketrains_to_dataframe(obj) objs = obj.spiketrains targ = [ep.spiketrain_to_dataframe(iobj) for iobj in objs] targ = ep._sort_inds(pd.concat(targ, axis=1), axis=1) keys = ep._extract_neo_attrs_safe(objs[0], parents=True, child_first=True).keys() keys = list(keys) targwidth = len(objs) targlen = max(len(iobj) for iobj in objs) self.assertGreater(len(objs), 0) self.assertEqual(targwidth, len(targ.columns)) self.assertEqual(targwidth, len(res0.columns)) self.assertEqual(targlen, len(targ.index)) self.assertEqual(targlen, len(res0.index)) self.assertCountEqual(keys, targ.columns.names) self.assertCountEqual(keys, res0.columns.names) assert_array_equal(targ.values, res0.values) assert_frame_equal(targ, res0) def test__multi_spiketrains_to_dataframe__segment_default(self): obj = fake_neo('Segment', seed=0, n=5) res0 = ep.multi_spiketrains_to_dataframe(obj) objs = obj.spiketrains targ = [ep.spiketrain_to_dataframe(iobj) for iobj in objs] targ = ep._sort_inds(pd.concat(targ, axis=1), axis=1) keys = ep._extract_neo_attrs_safe(objs[0], parents=True, child_first=True).keys() keys = list(keys) targwidth = len(objs) targlen = max(len(iobj) for iobj in objs) self.assertGreater(len(objs), 0) self.assertEqual(targwidth, len(targ.columns)) self.assertEqual(targwidth, len(res0.columns)) self.assertEqual(targlen, len(targ.index)) self.assertEqual(targlen, len(res0.index)) self.assertCountEqual(keys, targ.columns.names) self.assertCountEqual(keys, res0.columns.names) assert_array_equal(targ.values, res0.values) assert_frame_equal(targ, res0) def test__multi_spiketrains_to_dataframe__block_noparents(self): obj = fake_neo('Block', seed=0, n=3) res0 = ep.multi_spiketrains_to_dataframe(obj, parents=False) res1 = ep.multi_spiketrains_to_dataframe(obj, parents=False, child_first=True) res2 = ep.multi_spiketrains_to_dataframe(obj, parents=False, child_first=False) objs = obj.list_children_by_class('SpikeTrain') targ = [ep.spiketrain_to_dataframe(iobj, parents=False, child_first=True) for iobj in objs] targ = ep._sort_inds(pd.concat(targ, axis=1), axis=1) keys = ep._extract_neo_attrs_safe(objs[0], parents=False, child_first=True).keys() keys = list(keys) targwidth = len(objs) targlen = max(len(iobj) for iobj in objs) self.assertGreater(len(objs), 0) self.assertEqual(targwidth, len(targ.columns)) self.assertEqual(targwidth, len(res0.columns)) self.assertEqual(targwidth, len(res1.columns)) self.assertEqual(targwidth, len(res2.columns)) self.assertEqual(targlen, len(targ.index)) self.assertEqual(targlen, len(res0.index)) self.assertEqual(targlen, len(res1.index)) self.assertEqual(targlen, len(res2.index)) self.assertCountEqual(keys, targ.columns.names) self.assertCountEqual(keys, res0.columns.names) self.assertCountEqual(keys, res1.columns.names) self.assertCountEqual(keys, res2.columns.names) assert_array_equal(targ.values, res0.values) assert_array_equal(targ.values, res1.values) assert_array_equal(targ.values, res2.values) assert_frame_equal(targ, res0) assert_frame_equal(targ, res1) assert_frame_equal(targ, res2) def test__multi_spiketrains_to_dataframe__block_parents_childfirst(self): obj = fake_neo('Block', seed=0, n=3) res0 = ep.multi_spiketrains_to_dataframe(obj) res1 = ep.multi_spiketrains_to_dataframe(obj, parents=True) res2 = ep.multi_spiketrains_to_dataframe(obj, child_first=True) res3 = ep.multi_spiketrains_to_dataframe(obj, parents=True, child_first=True) objs = obj.list_children_by_class('SpikeTrain') targ = [ep.spiketrain_to_dataframe(iobj, parents=True, child_first=True) for iobj in objs] targ = ep._sort_inds(pd.concat(targ, axis=1), axis=1) keys = ep._extract_neo_attrs_safe(objs[0], parents=True, child_first=True).keys() keys = list(keys) targwidth = len(objs) targlen = max(len(iobj) for iobj in objs) self.assertGreater(len(objs), 0) self.assertEqual(targwidth, len(targ.columns)) self.assertEqual(targwidth, len(res0.columns)) self.assertEqual(targwidth, len(res1.columns)) self.assertEqual(targwidth, len(res2.columns)) self.assertEqual(targwidth, len(res3.columns)) self.assertEqual(targlen, len(targ.index)) self.assertEqual(targlen, len(res0.index)) self.assertEqual(targlen, len(res1.index)) self.assertEqual(targlen, len(res2.index)) self.assertEqual(targlen, len(res3.index)) self.assertCountEqual(keys, targ.columns.names) self.assertCountEqual(keys, res0.columns.names) self.assertCountEqual(keys, res1.columns.names) self.assertCountEqual(keys, res2.columns.names) self.assertCountEqual(keys, res3.columns.names) assert_array_equal(targ.values, res0.values) assert_array_equal(targ.values, res1.values) assert_array_equal(targ.values, res2.values) assert_array_equal(targ.values, res3.values) assert_frame_equal(targ, res0) assert_frame_equal(targ, res1) assert_frame_equal(targ, res2) assert_frame_equal(targ, res3) def test__multi_spiketrains_to_dataframe__block_parents_parentfirst(self): obj = fake_neo('Block', seed=0, n=3) res0 = ep.multi_spiketrains_to_dataframe(obj, child_first=False) res1 = ep.multi_spiketrains_to_dataframe(obj, parents=True, child_first=False) objs = obj.list_children_by_class('SpikeTrain') targ = [ep.spiketrain_to_dataframe(iobj, parents=True, child_first=False) for iobj in objs] targ = ep._sort_inds(pd.concat(targ, axis=1), axis=1) keys = ep._extract_neo_attrs_safe(objs[0], parents=True, child_first=False).keys() keys = list(keys) targwidth = len(objs) targlen = max(len(iobj) for iobj in objs) self.assertGreater(len(objs), 0) self.assertEqual(targwidth, len(targ.columns)) self.assertEqual(targwidth, len(res0.columns)) self.assertEqual(targwidth, len(res1.columns)) self.assertEqual(targlen, len(targ.index)) self.assertEqual(targlen, len(res0.index)) self.assertEqual(targlen, len(res1.index)) self.assertCountEqual(keys, targ.columns.names) self.assertCountEqual(keys, res0.columns.names) self.assertCountEqual(keys, res1.columns.names) assert_array_equal(targ.values, res0.values) assert_array_equal(targ.values, res1.values) assert_frame_equal(targ, res0) assert_frame_equal(targ, res1) def test__multi_spiketrains_to_dataframe__list_noparents(self): obj = [fake_neo('Block', seed=i, n=3) for i in range(3)] res0 = ep.multi_spiketrains_to_dataframe(obj, parents=False) res1 = ep.multi_spiketrains_to_dataframe(obj, parents=False, child_first=True) res2 = ep.multi_spiketrains_to_dataframe(obj, parents=False, child_first=False) objs = (iobj.list_children_by_class('SpikeTrain') for iobj in obj) objs = list(chain.from_iterable(objs)) targ = [ep.spiketrain_to_dataframe(iobj, parents=False, child_first=True) for iobj in objs] targ = ep._sort_inds(pd.concat(targ, axis=1), axis=1) keys = ep._extract_neo_attrs_safe(objs[0], parents=False, child_first=True).keys() keys = list(keys) targwidth = len(objs) targlen = max(len(iobj) for iobj in objs) self.assertGreater(len(objs), 0) self.assertEqual(targwidth, len(targ.columns)) self.assertEqual(targwidth, len(res0.columns)) self.assertEqual(targwidth, len(res1.columns)) self.assertEqual(targwidth, len(res2.columns)) self.assertEqual(targlen, len(targ.index)) self.assertEqual(targlen, len(res0.index)) self.assertEqual(targlen, len(res1.index)) self.assertEqual(targlen, len(res2.index)) self.assertCountEqual(keys, targ.columns.names) self.assertCountEqual(keys, res0.columns.names) self.assertCountEqual(keys, res1.columns.names) self.assertCountEqual(keys, res2.columns.names) assert_array_equal(targ.values, res0.values) assert_array_equal(targ.values, res1.values) assert_array_equal(targ.values, res2.values) assert_frame_equal(targ, res0) assert_frame_equal(targ, res1) assert_frame_equal(targ, res2) def test__multi_spiketrains_to_dataframe__list_parents_childfirst(self): obj = [fake_neo('Block', seed=i, n=3) for i in range(3)] res0 = ep.multi_spiketrains_to_dataframe(obj) res1 = ep.multi_spiketrains_to_dataframe(obj, parents=True) res2 = ep.multi_spiketrains_to_dataframe(obj, child_first=True) res3 = ep.multi_spiketrains_to_dataframe(obj, parents=True, child_first=True) objs = (iobj.list_children_by_class('SpikeTrain') for iobj in obj) objs = list(chain.from_iterable(objs)) targ = [ep.spiketrain_to_dataframe(iobj, parents=True, child_first=True) for iobj in objs] targ = ep._sort_inds(pd.concat(targ, axis=1), axis=1) keys = ep._extract_neo_attrs_safe(objs[0], parents=True, child_first=True).keys() keys = list(keys) targwidth = len(objs) targlen = max(len(iobj) for iobj in objs) self.assertGreater(len(objs), 0) self.assertEqual(targwidth, len(targ.columns)) self.assertEqual(targwidth, len(res0.columns)) self.assertEqual(targwidth, len(res1.columns)) self.assertEqual(targwidth, len(res2.columns)) self.assertEqual(targwidth, len(res3.columns)) self.assertEqual(targlen, len(targ.index)) self.assertEqual(targlen, len(res0.index)) self.assertEqual(targlen, len(res1.index)) self.assertEqual(targlen, len(res2.index)) self.assertEqual(targlen, len(res3.index)) self.assertCountEqual(keys, targ.columns.names) self.assertCountEqual(keys, res0.columns.names) self.assertCountEqual(keys, res1.columns.names) self.assertCountEqual(keys, res2.columns.names) self.assertCountEqual(keys, res3.columns.names) assert_array_equal(targ.values, res0.values) assert_array_equal(targ.values, res1.values) assert_array_equal(targ.values, res2.values) assert_array_equal(targ.values, res3.values) assert_frame_equal(targ, res0) assert_frame_equal(targ, res1) assert_frame_equal(targ, res2) assert_frame_equal(targ, res3) def test__multi_spiketrains_to_dataframe__list_parents_parentfirst(self): obj = [fake_neo('Block', seed=i, n=3) for i in range(3)] res0 = ep.multi_spiketrains_to_dataframe(obj, child_first=False) res1 = ep.multi_spiketrains_to_dataframe(obj, parents=True, child_first=False) objs = (iobj.list_children_by_class('SpikeTrain') for iobj in obj) objs = list(chain.from_iterable(objs)) targ = [ep.spiketrain_to_dataframe(iobj, parents=True, child_first=False) for iobj in objs] targ = ep._sort_inds(pd.concat(targ, axis=1), axis=1) keys = ep._extract_neo_attrs_safe(objs[0], parents=True, child_first=False).keys() keys = list(keys) targwidth = len(objs) targlen = max(len(iobj) for iobj in objs) self.assertGreater(len(objs), 0) self.assertEqual(targwidth, len(targ.columns)) self.assertEqual(targwidth, len(res0.columns)) self.assertEqual(targwidth, len(res1.columns)) self.assertEqual(targlen, len(targ.index)) self.assertEqual(targlen, len(res0.index)) self.assertEqual(targlen, len(res1.index)) self.assertCountEqual(keys, targ.columns.names) self.assertCountEqual(keys, res0.columns.names) self.assertCountEqual(keys, res1.columns.names) assert_array_equal(targ.values, res0.values) assert_array_equal(targ.values, res1.values) assert_frame_equal(targ, res0) assert_frame_equal(targ, res1) def test__multi_spiketrains_to_dataframe__tuple_default(self): obj = tuple(fake_neo('Block', seed=i, n=3) for i in range(3)) res0 = ep.multi_spiketrains_to_dataframe(obj) objs = (iobj.list_children_by_class('SpikeTrain') for iobj in obj) objs = list(chain.from_iterable(objs)) targ = [ep.spiketrain_to_dataframe(iobj) for iobj in objs] targ = ep._sort_inds(pd.concat(targ, axis=1), axis=1) keys = ep._extract_neo_attrs_safe(objs[0], parents=True, child_first=True).keys() keys = list(keys) targwidth = len(objs) targlen = max(len(iobj) for iobj in objs) self.assertGreater(len(objs), 0) self.assertEqual(targwidth, len(targ.columns)) self.assertEqual(targwidth, len(res0.columns)) self.assertEqual(targlen, len(targ.index)) self.assertEqual(targlen, len(res0.index)) self.assertCountEqual(keys, targ.columns.names) self.assertCountEqual(keys, res0.columns.names) assert_array_equal(targ.values, res0.values) assert_frame_equal(targ, res0) def test__multi_spiketrains_to_dataframe__iter_default(self): obj = [fake_neo('Block', seed=i, n=3) for i in range(3)] res0 = ep.multi_spiketrains_to_dataframe(iter(obj)) objs = (iobj.list_children_by_class('SpikeTrain') for iobj in obj) objs = list(chain.from_iterable(objs)) targ = [ep.spiketrain_to_dataframe(iobj) for iobj in objs] targ = ep._sort_inds(pd.concat(targ, axis=1), axis=1) keys = ep._extract_neo_attrs_safe(objs[0], parents=True, child_first=True).keys() keys = list(keys) targwidth = len(objs) targlen = max(len(iobj) for iobj in objs) self.assertGreater(len(objs), 0) self.assertEqual(targwidth, len(targ.columns)) self.assertEqual(targwidth, len(res0.columns)) self.assertEqual(targlen, len(targ.index)) self.assertEqual(targlen, len(res0.index)) self.assertCountEqual(keys, targ.columns.names) self.assertCountEqual(keys, res0.columns.names) assert_array_equal(targ.values, res0.values) assert_frame_equal(targ, res0) def test__multi_spiketrains_to_dataframe__dict_default(self): obj = dict((i, fake_neo('Block', seed=i, n=3)) for i in range(3)) res0 = ep.multi_spiketrains_to_dataframe(obj) objs = (iobj.list_children_by_class('SpikeTrain') for iobj in obj.values()) objs = list(chain.from_iterable(objs)) targ = [ep.spiketrain_to_dataframe(iobj) for iobj in objs] targ = ep._sort_inds(pd.concat(targ, axis=1), axis=1) keys = ep._extract_neo_attrs_safe(objs[0], parents=True, child_first=True).keys() keys = list(keys) targwidth = len(objs) targlen = max(len(iobj) for iobj in objs) self.assertGreater(len(objs), 0) self.assertEqual(targwidth, len(targ.columns)) self.assertEqual(targwidth, len(res0.columns)) self.assertEqual(targlen, len(targ.index)) self.assertEqual(targlen, len(res0.index)) self.assertCountEqual(keys, targ.columns.names) self.assertCountEqual(keys, res0.columns.names) assert_array_equal(targ.values, res0.values) assert_frame_equal(targ, res0) @unittest.skipUnless(HAVE_PANDAS, 'requires pandas') class MultiEventsToDataframeTestCase(unittest.TestCase): def setUp(self): if hasattr(self, 'assertItemsEqual'): self.assertCountEqual = self.assertItemsEqual def test__multi_events_to_dataframe__single(self): obj = fake_neo('Event', seed=0, n=5) res0 = ep.multi_events_to_dataframe(obj) res1 = ep.multi_events_to_dataframe(obj, parents=False) res2 = ep.multi_events_to_dataframe(obj, parents=True) res3 = ep.multi_events_to_dataframe(obj, child_first=True) res4 = ep.multi_events_to_dataframe(obj, parents=False, child_first=True) res5 = ep.multi_events_to_dataframe(obj, parents=True, child_first=True) res6 = ep.multi_events_to_dataframe(obj, child_first=False) res7 = ep.multi_events_to_dataframe(obj, parents=False, child_first=False) res8 = ep.multi_events_to_dataframe(obj, parents=True, child_first=False) targ = ep.event_to_dataframe(obj) keys = ep._extract_neo_attrs_safe(obj, parents=True, child_first=True).keys() keys = list(keys) targwidth = 1 targlen = min(len(obj.times), len(obj.labels)) self.assertEqual(targwidth, len(targ.columns)) self.assertEqual(targwidth, len(res0.columns)) self.assertEqual(targwidth, len(res1.columns)) self.assertEqual(targwidth, len(res2.columns)) self.assertEqual(targwidth, len(res3.columns)) self.assertEqual(targwidth, len(res4.columns)) self.assertEqual(targwidth, len(res5.columns)) self.assertEqual(targwidth, len(res6.columns)) self.assertEqual(targwidth, len(res7.columns)) self.assertEqual(targwidth, len(res8.columns)) self.assertEqual(targlen, len(targ.index)) self.assertEqual(targlen, len(res0.index)) self.assertEqual(targlen, len(res1.index)) self.assertEqual(targlen, len(res2.index)) self.assertEqual(targlen, len(res3.index)) self.assertEqual(targlen, len(res4.index)) self.assertEqual(targlen, len(res5.index)) self.assertEqual(targlen, len(res6.index)) self.assertEqual(targlen, len(res7.index)) self.assertEqual(targlen, len(res8.index)) self.assertCountEqual(keys, targ.columns.names) self.assertCountEqual(keys, res0.columns.names) self.assertCountEqual(keys, res1.columns.names) self.assertCountEqual(keys, res2.columns.names) self.assertCountEqual(keys, res3.columns.names) self.assertCountEqual(keys, res4.columns.names) self.assertCountEqual(keys, res5.columns.names) self.assertCountEqual(keys, res6.columns.names) self.assertCountEqual(keys, res7.columns.names) self.assertCountEqual(keys, res8.columns.names) assert_array_equal(targ.values, res0.values) assert_array_equal(targ.values, res1.values) assert_array_equal(targ.values, res2.values) assert_array_equal(targ.values, res3.values) assert_array_equal(targ.values, res4.values) assert_array_equal(targ.values, res5.values) assert_array_equal(targ.values, res6.values) assert_array_equal(targ.values, res7.values) assert_array_equal(targ.values, res8.values) assert_frame_equal(targ, res0) assert_frame_equal(targ, res1) assert_frame_equal(targ, res2) assert_frame_equal(targ, res3) assert_frame_equal(targ, res4) assert_frame_equal(targ, res5) assert_frame_equal(targ, res6) assert_frame_equal(targ, res7) assert_frame_equal(targ, res8) def test__multi_events_to_dataframe__segment_default(self): obj = fake_neo('Segment', seed=0, n=5) res0 = ep.multi_events_to_dataframe(obj) objs = obj.events targ = [ep.event_to_dataframe(iobj) for iobj in objs] targ = ep._sort_inds(pd.concat(targ, axis=1), axis=1) keys = ep._extract_neo_attrs_safe(objs[0], parents=True, child_first=True).keys() keys = list(keys) targwidth = len(objs) targlen = [iobj.times[:min(len(iobj.times), len(iobj.labels))] for iobj in objs] targlen = len(np.unique(np.hstack(targlen))) self.assertGreater(len(objs), 0) self.assertEqual(targwidth, len(targ.columns)) self.assertEqual(targwidth, len(res0.columns)) self.assertEqual(targlen, len(targ.index)) self.assertEqual(targlen, len(res0.index)) self.assertCountEqual(keys, targ.columns.names) self.assertCountEqual(keys, res0.columns.names) assert_array_equal(targ.values, res0.values) assert_frame_equal(targ, res0) def test__multi_events_to_dataframe__block_noparents(self): obj = fake_neo('Block', seed=0, n=3) res0 = ep.multi_events_to_dataframe(obj, parents=False) res1 = ep.multi_events_to_dataframe(obj, parents=False, child_first=True) res2 = ep.multi_events_to_dataframe(obj, parents=False, child_first=False) objs = obj.list_children_by_class('Event') targ = [ep.event_to_dataframe(iobj, parents=False, child_first=True) for iobj in objs] targ = ep._sort_inds(pd.concat(targ, axis=1), axis=1) keys = ep._extract_neo_attrs_safe(objs[0], parents=False, child_first=True).keys() keys = list(keys) targwidth = len(objs) targlen = [iobj.times[:min(len(iobj.times), len(iobj.labels))] for iobj in objs] targlen = len(np.unique(np.hstack(targlen))) self.assertGreater(len(objs), 0) self.assertEqual(targwidth, len(targ.columns)) self.assertEqual(targwidth, len(res0.columns)) self.assertEqual(targwidth, len(res1.columns)) self.assertEqual(targwidth, len(res2.columns)) self.assertEqual(targlen, len(targ.index)) self.assertEqual(targlen, len(res0.index)) self.assertEqual(targlen, len(res1.index)) self.assertEqual(targlen, len(res2.index)) self.assertCountEqual(keys, targ.columns.names) self.assertCountEqual(keys, res0.columns.names) self.assertCountEqual(keys, res1.columns.names) self.assertCountEqual(keys, res2.columns.names) assert_array_equal(targ.values, res0.values) assert_array_equal(targ.values, res1.values) assert_array_equal(targ.values, res2.values) assert_frame_equal(targ, res0) assert_frame_equal(targ, res1) assert_frame_equal(targ, res2) def test__multi_events_to_dataframe__block_parents_childfirst(self): obj = fake_neo('Block', seed=0, n=3) res0 = ep.multi_events_to_dataframe(obj) res1 = ep.multi_events_to_dataframe(obj, parents=True) res2 = ep.multi_events_to_dataframe(obj, child_first=True) res3 = ep.multi_events_to_dataframe(obj, parents=True, child_first=True) objs = obj.list_children_by_class('Event') targ = [ep.event_to_dataframe(iobj, parents=True, child_first=True) for iobj in objs] targ = ep._sort_inds(pd.concat(targ, axis=1), axis=1) keys = ep._extract_neo_attrs_safe(objs[0], parents=True, child_first=True).keys() keys = list(keys) targwidth = len(objs) targlen = [iobj.times[:min(len(iobj.times), len(iobj.labels))] for iobj in objs] targlen = len(np.unique(np.hstack(targlen))) self.assertGreater(len(objs), 0) self.assertEqual(targwidth, len(targ.columns)) self.assertEqual(targwidth, len(res0.columns)) self.assertEqual(targwidth, len(res1.columns)) self.assertEqual(targwidth, len(res2.columns)) self.assertEqual(targwidth, len(res3.columns)) self.assertEqual(targlen, len(targ.index)) self.assertEqual(targlen, len(res0.index)) self.assertEqual(targlen, len(res1.index)) self.assertEqual(targlen, len(res2.index)) self.assertEqual(targlen, len(res3.index)) self.assertCountEqual(keys, targ.columns.names) self.assertCountEqual(keys, res0.columns.names) self.assertCountEqual(keys, res1.columns.names) self.assertCountEqual(keys, res2.columns.names) self.assertCountEqual(keys, res3.columns.names) assert_array_equal(targ.values, res0.values) assert_array_equal(targ.values, res1.values) assert_array_equal(targ.values, res2.values) assert_array_equal(targ.values, res3.values) assert_frame_equal(targ, res0) assert_frame_equal(targ, res1) assert_frame_equal(targ, res2) assert_frame_equal(targ, res3) def test__multi_events_to_dataframe__block_parents_parentfirst(self): obj = fake_neo('Block', seed=0, n=3) res0 = ep.multi_events_to_dataframe(obj, child_first=False) res1 = ep.multi_events_to_dataframe(obj, parents=True, child_first=False) objs = obj.list_children_by_class('Event') targ = [ep.event_to_dataframe(iobj, parents=True, child_first=False) for iobj in objs] targ = ep._sort_inds(pd.concat(targ, axis=1), axis=1) keys = ep._extract_neo_attrs_safe(objs[0], parents=True, child_first=False).keys() keys = list(keys) targwidth = len(objs) targlen = [iobj.times[:min(len(iobj.times), len(iobj.labels))] for iobj in objs] targlen = len(np.unique(np.hstack(targlen))) self.assertGreater(len(objs), 0) self.assertEqual(targwidth, len(targ.columns)) self.assertEqual(targwidth, len(res0.columns)) self.assertEqual(targwidth, len(res1.columns)) self.assertEqual(targlen, len(targ.index)) self.assertEqual(targlen, len(res0.index)) self.assertEqual(targlen, len(res1.index)) self.assertCountEqual(keys, targ.columns.names) self.assertCountEqual(keys, res0.columns.names) self.assertCountEqual(keys, res1.columns.names) assert_array_equal(targ.values, res0.values) assert_array_equal(targ.values, res1.values) assert_frame_equal(targ, res0) assert_frame_equal(targ, res1) def test__multi_events_to_dataframe__list_noparents(self): obj = [fake_neo('Block', seed=i, n=3) for i in range(3)] res0 = ep.multi_events_to_dataframe(obj, parents=False) res1 = ep.multi_events_to_dataframe(obj, parents=False, child_first=True) res2 = ep.multi_events_to_dataframe(obj, parents=False, child_first=False) objs = (iobj.list_children_by_class('Event') for iobj in obj) objs = list(chain.from_iterable(objs)) targ = [ep.event_to_dataframe(iobj, parents=False, child_first=True) for iobj in objs] targ = ep._sort_inds(pd.concat(targ, axis=1), axis=1) keys = ep._extract_neo_attrs_safe(objs[0], parents=False, child_first=True).keys() keys = list(keys) targwidth = len(objs) targlen = [iobj.times[:min(len(iobj.times), len(iobj.labels))] for iobj in objs] targlen = len(np.unique(np.hstack(targlen))) self.assertGreater(len(objs), 0) self.assertEqual(targwidth, len(targ.columns)) self.assertEqual(targwidth, len(res0.columns)) self.assertEqual(targwidth, len(res1.columns)) self.assertEqual(targwidth, len(res2.columns)) self.assertEqual(targlen, len(targ.index)) self.assertEqual(targlen, len(res0.index)) self.assertEqual(targlen, len(res1.index)) self.assertEqual(targlen, len(res2.index)) self.assertCountEqual(keys, targ.columns.names) self.assertCountEqual(keys, res0.columns.names) self.assertCountEqual(keys, res1.columns.names) self.assertCountEqual(keys, res2.columns.names) assert_array_equal(targ.values, res0.values) assert_array_equal(targ.values, res1.values) assert_array_equal(targ.values, res2.values) assert_frame_equal(targ, res0) assert_frame_equal(targ, res1) assert_frame_equal(targ, res2) def test__multi_events_to_dataframe__list_parents_childfirst(self): obj = [fake_neo('Block', seed=i, n=3) for i in range(3)] res0 = ep.multi_events_to_dataframe(obj) res1 = ep.multi_events_to_dataframe(obj, parents=True) res2 = ep.multi_events_to_dataframe(obj, child_first=True) res3 = ep.multi_events_to_dataframe(obj, parents=True, child_first=True) objs = (iobj.list_children_by_class('Event') for iobj in obj) objs = list(chain.from_iterable(objs)) targ = [ep.event_to_dataframe(iobj, parents=True, child_first=True) for iobj in objs] targ = ep._sort_inds(pd.concat(targ, axis=1), axis=1) keys = ep._extract_neo_attrs_safe(objs[0], parents=True, child_first=True).keys() keys = list(keys) targwidth = len(objs) targlen = [iobj.times[:min(len(iobj.times), len(iobj.labels))] for iobj in objs] targlen = len(np.unique(np.hstack(targlen))) self.assertGreater(len(objs), 0) self.assertEqual(targwidth, len(targ.columns)) self.assertEqual(targwidth, len(res0.columns)) self.assertEqual(targwidth, len(res1.columns)) self.assertEqual(targwidth, len(res2.columns)) self.assertEqual(targwidth, len(res3.columns)) self.assertEqual(targlen, len(targ.index)) self.assertEqual(targlen, len(res0.index)) self.assertEqual(targlen, len(res1.index)) self.assertEqual(targlen, len(res2.index)) self.assertEqual(targlen, len(res3.index)) self.assertCountEqual(keys, targ.columns.names) self.assertCountEqual(keys, res0.columns.names) self.assertCountEqual(keys, res1.columns.names) self.assertCountEqual(keys, res2.columns.names) self.assertCountEqual(keys, res3.columns.names) assert_array_equal(targ.values, res0.values) assert_array_equal(targ.values, res1.values) assert_array_equal(targ.values, res2.values) assert_array_equal(targ.values, res3.values) assert_frame_equal(targ, res0) assert_frame_equal(targ, res1) assert_frame_equal(targ, res2) assert_frame_equal(targ, res3) def test__multi_events_to_dataframe__list_parents_parentfirst(self): obj = [fake_neo('Block', seed=i, n=3) for i in range(3)] res0 = ep.multi_events_to_dataframe(obj, child_first=False) res1 = ep.multi_events_to_dataframe(obj, parents=True, child_first=False) objs = (iobj.list_children_by_class('Event') for iobj in obj) objs = list(chain.from_iterable(objs)) targ = [ep.event_to_dataframe(iobj, parents=True, child_first=False) for iobj in objs] targ = ep._sort_inds(pd.concat(targ, axis=1), axis=1) keys = ep._extract_neo_attrs_safe(objs[0], parents=True, child_first=False).keys() keys = list(keys) targwidth = len(objs) targlen = [iobj.times[:min(len(iobj.times), len(iobj.labels))] for iobj in objs] targlen = len(np.unique(np.hstack(targlen))) self.assertGreater(len(objs), 0) self.assertEqual(targwidth, len(targ.columns)) self.assertEqual(targwidth, len(res0.columns)) self.assertEqual(targwidth, len(res1.columns)) self.assertEqual(targlen, len(targ.index)) self.assertEqual(targlen, len(res0.index)) self.assertEqual(targlen, len(res1.index)) self.assertCountEqual(keys, targ.columns.names) self.assertCountEqual(keys, res0.columns.names) self.assertCountEqual(keys, res1.columns.names) assert_array_equal(targ.values, res0.values) assert_array_equal(targ.values, res1.values) assert_frame_equal(targ, res0) assert_frame_equal(targ, res1) def test__multi_events_to_dataframe__tuple_default(self): obj = tuple(fake_neo('Block', seed=i, n=3) for i in range(3)) res0 = ep.multi_events_to_dataframe(obj) objs = (iobj.list_children_by_class('Event') for iobj in obj) objs = list(chain.from_iterable(objs)) targ = [ep.event_to_dataframe(iobj) for iobj in objs] targ = ep._sort_inds(pd.concat(targ, axis=1), axis=1) keys = ep._extract_neo_attrs_safe(objs[0], parents=True, child_first=True).keys() keys = list(keys) targwidth = len(objs) targlen = [iobj.times[:min(len(iobj.times), len(iobj.labels))] for iobj in objs] targlen = len(np.unique(np.hstack(targlen))) self.assertGreater(len(objs), 0) self.assertEqual(targwidth, len(targ.columns)) self.assertEqual(targwidth, len(res0.columns)) self.assertEqual(targlen, len(targ.index)) self.assertEqual(targlen, len(res0.index)) self.assertCountEqual(keys, targ.columns.names) self.assertCountEqual(keys, res0.columns.names) assert_array_equal(targ.values, res0.values) assert_frame_equal(targ, res0) def test__multi_events_to_dataframe__iter_default(self): obj = [fake_neo('Block', seed=i, n=3) for i in range(3)] res0 = ep.multi_events_to_dataframe(iter(obj)) objs = (iobj.list_children_by_class('Event') for iobj in obj) objs = list(chain.from_iterable(objs)) targ = [ep.event_to_dataframe(iobj) for iobj in objs] targ = ep._sort_inds(pd.concat(targ, axis=1), axis=1) keys = ep._extract_neo_attrs_safe(objs[0], parents=True, child_first=True).keys() keys = list(keys) targwidth = len(objs) targlen = [iobj.times[:min(len(iobj.times), len(iobj.labels))] for iobj in objs] targlen = len(np.unique(np.hstack(targlen))) self.assertGreater(len(objs), 0) self.assertEqual(targwidth, len(targ.columns)) self.assertEqual(targwidth, len(res0.columns)) self.assertEqual(targlen, len(targ.index)) self.assertEqual(targlen, len(res0.index)) self.assertCountEqual(keys, targ.columns.names) self.assertCountEqual(keys, res0.columns.names) assert_array_equal(targ.values, res0.values) assert_frame_equal(targ, res0) def test__multi_events_to_dataframe__dict_default(self): obj = dict((i, fake_neo('Block', seed=i, n=3)) for i in range(3)) res0 = ep.multi_events_to_dataframe(obj) objs = (iobj.list_children_by_class('Event') for iobj in obj.values()) objs = list(chain.from_iterable(objs)) targ = [ep.event_to_dataframe(iobj) for iobj in objs] targ = ep._sort_inds(pd.concat(targ, axis=1), axis=1) keys = ep._extract_neo_attrs_safe(objs[0], parents=True, child_first=True).keys() keys = list(keys) targwidth = len(objs) targlen = [iobj.times[:min(len(iobj.times), len(iobj.labels))] for iobj in objs] targlen = len(np.unique(np.hstack(targlen))) self.assertGreater(len(objs), 0) self.assertEqual(targwidth, len(targ.columns)) self.assertEqual(targwidth, len(res0.columns)) self.assertEqual(targlen, len(targ.index)) self.assertEqual(targlen, len(res0.index)) self.assertCountEqual(keys, targ.columns.names) self.assertCountEqual(keys, res0.columns.names) assert_array_equal(targ.values, res0.values) assert_frame_equal(targ, res0) @unittest.skipUnless(HAVE_PANDAS, 'requires pandas') class MultiEpochsToDataframeTestCase(unittest.TestCase): def setUp(self): if hasattr(self, 'assertItemsEqual'): self.assertCountEqual = self.assertItemsEqual def test__multi_epochs_to_dataframe__single(self): obj = fake_neo('Epoch', seed=0, n=5) res0 = ep.multi_epochs_to_dataframe(obj) res1 = ep.multi_epochs_to_dataframe(obj, parents=False) res2 = ep.multi_epochs_to_dataframe(obj, parents=True) res3 = ep.multi_epochs_to_dataframe(obj, child_first=True) res4 = ep.multi_epochs_to_dataframe(obj, parents=False, child_first=True) res5 = ep.multi_epochs_to_dataframe(obj, parents=True, child_first=True) res6 = ep.multi_epochs_to_dataframe(obj, child_first=False) res7 = ep.multi_epochs_to_dataframe(obj, parents=False, child_first=False) res8 = ep.multi_epochs_to_dataframe(obj, parents=True, child_first=False) targ = ep.epoch_to_dataframe(obj) keys = ep._extract_neo_attrs_safe(obj, parents=True, child_first=True).keys() keys = list(keys) targwidth = 1 targlen = min(len(obj.times), len(obj.durations), len(obj.labels)) self.assertEqual(targwidth, len(targ.columns)) self.assertEqual(targwidth, len(res0.columns)) self.assertEqual(targwidth, len(res1.columns)) self.assertEqual(targwidth, len(res2.columns)) self.assertEqual(targwidth, len(res3.columns)) self.assertEqual(targwidth, len(res4.columns)) self.assertEqual(targwidth, len(res5.columns)) self.assertEqual(targwidth, len(res6.columns)) self.assertEqual(targwidth, len(res7.columns)) self.assertEqual(targwidth, len(res8.columns)) self.assertEqual(targlen, len(targ.index)) self.assertEqual(targlen, len(res0.index)) self.assertEqual(targlen, len(res1.index)) self.assertEqual(targlen, len(res2.index)) self.assertEqual(targlen, len(res3.index)) self.assertEqual(targlen, len(res4.index)) self.assertEqual(targlen, len(res5.index)) self.assertEqual(targlen, len(res6.index)) self.assertEqual(targlen, len(res7.index)) self.assertEqual(targlen, len(res8.index)) self.assertCountEqual(keys, targ.columns.names) self.assertCountEqual(keys, res0.columns.names) self.assertCountEqual(keys, res1.columns.names) self.assertCountEqual(keys, res2.columns.names) self.assertCountEqual(keys, res3.columns.names) self.assertCountEqual(keys, res4.columns.names) self.assertCountEqual(keys, res5.columns.names) self.assertCountEqual(keys, res6.columns.names) self.assertCountEqual(keys, res7.columns.names) self.assertCountEqual(keys, res8.columns.names) assert_array_equal(targ.values, res0.values) assert_array_equal(targ.values, res1.values) assert_array_equal(targ.values, res2.values) assert_array_equal(targ.values, res3.values) assert_array_equal(targ.values, res4.values) assert_array_equal(targ.values, res5.values) assert_array_equal(targ.values, res6.values) assert_array_equal(targ.values, res7.values) assert_array_equal(targ.values, res8.values) assert_frame_equal(targ, res0) assert_frame_equal(targ, res1) assert_frame_equal(targ, res2) assert_frame_equal(targ, res3) assert_frame_equal(targ, res4) assert_frame_equal(targ, res5) assert_frame_equal(targ, res6) assert_frame_equal(targ, res7) assert_frame_equal(targ, res8) def test__multi_epochs_to_dataframe__segment_default(self): obj = fake_neo('Segment', seed=0, n=5) res0 = ep.multi_epochs_to_dataframe(obj) objs = obj.epochs targ = [ep.epoch_to_dataframe(iobj) for iobj in objs] targ = ep._sort_inds(pd.concat(targ, axis=1), axis=1) keys = ep._extract_neo_attrs_safe(objs[0], parents=True, child_first=True).keys() keys = list(keys) targwidth = len(objs) targlen = [iobj.times[:min(len(iobj.times), len(iobj.durations), len(iobj.labels))] for iobj in objs] targlen = len(np.unique(np.hstack(targlen))) self.assertGreater(len(objs), 0) self.assertEqual(targwidth, len(targ.columns)) self.assertEqual(targwidth, len(res0.columns)) self.assertEqual(targlen, len(targ.index)) self.assertEqual(targlen, len(res0.index)) self.assertCountEqual(keys, targ.columns.names) self.assertCountEqual(keys, res0.columns.names) assert_array_equal(targ.values, res0.values) assert_frame_equal(targ, res0) def test__multi_epochs_to_dataframe__block_noparents(self): obj = fake_neo('Block', seed=0, n=3) res0 = ep.multi_epochs_to_dataframe(obj, parents=False) res1 = ep.multi_epochs_to_dataframe(obj, parents=False, child_first=True) res2 = ep.multi_epochs_to_dataframe(obj, parents=False, child_first=False) objs = obj.list_children_by_class('Epoch') targ = [ep.epoch_to_dataframe(iobj, parents=False, child_first=True) for iobj in objs] targ = ep._sort_inds(pd.concat(targ, axis=1), axis=1) keys = ep._extract_neo_attrs_safe(objs[0], parents=False, child_first=True).keys() keys = list(keys) targwidth = len(objs) targlen = [iobj.times[:min(len(iobj.times), len(iobj.durations), len(iobj.labels))] for iobj in objs] targlen = len(np.unique(np.hstack(targlen))) self.assertGreater(len(objs), 0) self.assertEqual(targwidth, len(targ.columns)) self.assertEqual(targwidth, len(res0.columns)) self.assertEqual(targwidth, len(res1.columns)) self.assertEqual(targwidth, len(res2.columns)) self.assertEqual(targlen, len(targ.index)) self.assertEqual(targlen, len(res0.index)) self.assertEqual(targlen, len(res1.index)) self.assertEqual(targlen, len(res2.index)) self.assertCountEqual(keys, targ.columns.names) self.assertCountEqual(keys, res0.columns.names) self.assertCountEqual(keys, res1.columns.names) self.assertCountEqual(keys, res2.columns.names) assert_array_equal(targ.values, res0.values) assert_array_equal(targ.values, res1.values) assert_array_equal(targ.values, res2.values) assert_frame_equal(targ, res0)
assert_frame_equal(targ, res1)
pandas.util.testing.assert_frame_equal
""" Tests the financial data structures """ import unittest import os import numpy as np import pandas as pd from mlfinlab.data_structures import standard_data_structures as ds class TestDataStructures(unittest.TestCase): """ Test the various financial data structures: 1. Dollar bars 2. Volume bars 3. Tick bars """ def setUp(self): """ Set the file path for the tick data csv """ project_path = os.path.dirname(__file__) self.path = project_path + '/test_data/tick_data.csv' def test_dollar_bars(self): """ Tests the dollar bars implementation. """ threshold = 100000 db1 = ds.get_dollar_bars(self.path, threshold=threshold, batch_size=1000, verbose=False) db2 = ds.get_dollar_bars(self.path, threshold=threshold, batch_size=50, verbose=False) db3 = ds.get_dollar_bars(self.path, threshold=threshold, batch_size=10, verbose=False) ds.get_dollar_bars(self.path, threshold=threshold, batch_size=50, verbose=False, to_csv=True, output_path='test.csv') db4 = pd.read_csv('test.csv', parse_dates=[0]) # Assert diff batch sizes have same number of bars self.assertTrue(db1.shape == db2.shape) self.assertTrue(db1.shape == db3.shape) self.assertTrue(db4.shape == db1.shape) # Assert same values self.assertTrue(np.all(db1.values == db2.values)) self.assertTrue(np.all(db1.values == db3.values)) self.assertTrue(np.all(db4.values == db1.values)) # Assert OHLC is correct self.assertTrue(db1.loc[0, 'open'] == 1205) self.assertTrue(db1.loc[0, 'high'] == 1904.75) self.assertTrue(db1.loc[0, 'low'] == 1005.0) self.assertTrue(db1.loc[0, 'close'] == 1304.5) # delete generated csv file (if it wasn't generated test would fail) os.remove('test.csv') def test_volume_bars(self): """ Tests the volume bars implementation. """ threshold = 30 db1 = ds.get_volume_bars(self.path, threshold=threshold, batch_size=1000, verbose=False) db2 = ds.get_volume_bars(self.path, threshold=threshold, batch_size=50, verbose=False) db3 = ds.get_volume_bars(self.path, threshold=threshold, batch_size=10, verbose=False) ds.get_volume_bars(self.path, threshold=threshold, batch_size=50, verbose=False, to_csv=True, output_path='test.csv') db4 = pd.read_csv('test.csv', parse_dates=[0]) # Assert diff batch sizes have same number of bars self.assertTrue(db1.shape == db2.shape) self.assertTrue(db1.shape == db3.shape) self.assertTrue(db4.shape == db1.shape) # Assert same values self.assertTrue(np.all(db1.values == db2.values)) self.assertTrue(np.all(db1.values == db3.values)) self.assertTrue(np.all(db4.values == db1.values)) # Assert OHLC is correct self.assertTrue(db1.loc[0, 'open'] == 1205) self.assertTrue(db1.loc[0, 'high'] == 1904.75) self.assertTrue(db1.loc[0, 'low'] == 1005.0) self.assertTrue(db1.loc[0, 'close'] == 1304.75) # delete generated csv file (if it wasn't generated test would fail) os.remove('test.csv') def test_tick_bars(self): """ Test the tick bars implementation. """ threshold = 10 db1 = ds.get_tick_bars(self.path, threshold=threshold, batch_size=1000, verbose=False) db2 = ds.get_tick_bars(self.path, threshold=threshold, batch_size=50, verbose=False) db3 = ds.get_tick_bars(self.path, threshold=threshold, batch_size=10, verbose=False) ds.get_tick_bars(self.path, threshold=threshold, batch_size=50, verbose=False, to_csv=True, output_path='test.csv') db4 = pd.read_csv('test.csv', parse_dates=[0]) # Assert diff batch sizes have same number of bars self.assertTrue(db1.shape == db2.shape) self.assertTrue(db1.shape == db3.shape) self.assertTrue(db4.shape == db1.shape) # Assert same values self.assertTrue(np.all(db1.values == db2.values)) self.assertTrue(np.all(db1.values == db3.values)) self.assertTrue(np.all(db4.values == db1.values)) # Assert OHLC is correct self.assertTrue(db1.loc[0, 'open'] == 1205) self.assertTrue(db1.loc[0, 'high'] == 1904.75) self.assertTrue(db1.loc[0, 'low'] == 1005.0) self.assertTrue(db1.loc[0, 'close'] == 1304.50) # delete generated csv file (if it wasn't generated test would fail) os.remove('test.csv') def test_multiple_csv_file_input(self): """ Tests that bars generated for multiple csv files and Pandas Data Frame yield the same result """ threshold = 100000 data = pd.read_csv(self.path) idx = int(np.round(len(data) / 2)) data1 = data.iloc[:idx] data2 = data.iloc[idx:] tick1 = "tick_data_1.csv" tick2 = "tick_data_2.csv" data1.to_csv(tick1, index=False) data2.to_csv(tick2, index=False) file_paths = [tick1, tick2] db1 = ds.get_dollar_bars(file_paths, threshold=threshold, batch_size=1000, verbose=False) db2 = ds.get_dollar_bars(file_paths, threshold=threshold, batch_size=50, verbose=False) db3 = ds.get_dollar_bars(file_paths, threshold=threshold, batch_size=10, verbose=False) ds.get_dollar_bars(self.path, threshold=threshold, batch_size=50, verbose=False, to_csv=True, output_path='test.csv') db4 = pd.read_csv('test.csv', parse_dates=[0]) # Assert diff batch sizes have same number of bars self.assertTrue(db1.shape == db2.shape) self.assertTrue(db1.shape == db3.shape) self.assertTrue(db4.shape == db1.shape) # Assert same values self.assertTrue(np.all(db1.values == db2.values)) self.assertTrue(np.all(db1.values == db3.values)) self.assertTrue(np.all(db4.values == db1.values)) # Assert OHLC is correct self.assertTrue(db1.loc[0, 'open'] == 1205) self.assertTrue(db1.loc[0, 'high'] == 1904.75) self.assertTrue(db1.loc[0, 'low'] == 1005.0) self.assertTrue(db1.loc[0, 'close'] == 1304.50) # delete generated csv files (if they weren't generated test would fail) for csv in (tick1, tick2, "test.csv"): os.remove(csv) def test_df_as_batch_run_input(self): """ Tests that bars generated for csv file and Pandas Data Frame yield the same result """ threshold = 100000 tick_data = pd.read_csv(self.path) tick_data['Date and Time'] = pd.to_datetime(tick_data['Date and Time']) db1 = ds.get_dollar_bars(self.path, threshold=threshold, batch_size=1000, verbose=False) ds.get_dollar_bars(self.path, threshold=threshold, batch_size=50, verbose=False, to_csv=True, output_path='test.csv') db2 = pd.read_csv('test.csv') db2['date_time'] = pd.to_datetime(db2.date_time) db3 = ds.get_dollar_bars(tick_data, threshold=threshold, batch_size=10, verbose=False) # Assert diff batch sizes have same number of bars self.assertTrue(db1.shape == db2.shape) self.assertTrue(db1.shape == db3.shape) # Assert same values self.assertTrue(np.all(db1.values == db2.values)) self.assertTrue(np.all(db1.values == db3.values)) def test_list_as_run_input(self): """ Tests that data generated with csv file and list yield the same result """ threshold = 100000 tick_data = pd.read_csv(self.path) tick_data['Date and Time'] = pd.to_datetime(tick_data['Date and Time']) db1 = ds.get_dollar_bars(self.path, threshold=threshold, batch_size=1000, verbose=False) ds.get_dollar_bars(self.path, threshold=threshold, batch_size=50, verbose=False, to_csv=True, output_path='test.csv') db2 =
pd.read_csv('test.csv')
pandas.read_csv
"""Implement custom daily and weekly trading day calendars and datetime methods - pandas custom business calendar Author: <NAME> License: MIT """ import datetime import numpy as np import pandas as pd from pandas import DataFrame, Series import pandas_datareader as pdr from pandas.tseries.holiday import USFederalHolidayCalendar from sqlalchemy import Column, Integer from pandas.api.types import is_list_like from pandas.tseries.offsets import MonthEnd, YearEnd, QuarterEnd import config # .to_pydatetime() - convert pandas format (Timestamp, datetime64) to datetime # datetime.date.strftime(d, '%Y%m%d') - convert datetime to string # np.array([self(dates)], dtype='datetime64[D]') - converts to numpy date format # datetime.datetime(year, month, day) - returns datetime.datetime format def to_monthend(dt): """Return calendar monthend date given an int date or list""" if is_list_like(dt): return [to_monthend(d) for d in dt] if dt <= 9999: d = datetime.datetime(year=dt, month=12, day=1) + MonthEnd(0) elif dt <= 999999: d = datetime.datetime(year=dt//100, month=dt % 100, day=1) + MonthEnd(0) else: d = pd.to_datetime(str(dt)) + MonthEnd(0) return int(d.strftime('%Y%m%d')) from collections import namedtuple def int2date(date): if is_list_like(date): return [int2date(d) for d in date] return namedtuple('Date', ['year', 'month', 'day'])( date // 10000, (date // 100) % 100, date % 100) def str2date(date, informat='%Y-%m-%d', outformat='%Y%m%d'): """Extract int components from date strings by input and output formats Parameters ---------- date : str or list of str input date strings to convert informat : str, default is '%F' date format of input string outformat : str or list of str, or dict of {key: str}, default is '%Y%m%d' date format of output. If dict, then output is dict with same key names Returns ------- output : int or list of int or dict of int int date components corresponding to outformat Notes ----- Formats specified as in strptime() and strftime(): %b %B %h = input month name %F = %Y-%m-%d %T = %H:%M:%S %n = whitespace %w %W %U %V = week number %u = day of week (1-7) """ if is_list_like(date): return [str2date(s, informat, outformat) for s in date] if isinstance(date, int): date = str(date) dt = datetime.datetime.strptime(date, informat) if isinstance(outformat, dict): return {k: int(dt.strftime(v)) for k,v in outformat.items()} elif is_list_like(outformat): return [int(dt.strftime(f)) for f in outformat] else: return int(dt.strftime(outformat)) def minibatch(x, batchsize): """Group the rows of x into minibatches of length batchsize""" return [x[i:(i + batchsize)] for i in range(0, len(x), batchsize)] class BusDay: """Implement custom trading date calendar, based on FamaFrench and NYSE Parameters ---------- sql : SQL instance SQL connection create : bool If True, recreate from FamaFrench library pdr datareader, else from SQL Attributes ---------- busdaycalendar_ : numpy busdaycalendar object Customized business days, excluding trading holidays custom_ : pd.offsets.CDay object For determing offsets with custom business days begmo_ : pd.offsets.CBMonthBegin For determining custom beginning of month date endmo_ : pd.offsets.CBEndBegin For determining custom end of month date max_date : int last date of calendar """ def __init__(self, sql, create=False, start=19251231, end=20401231): """Retrieve or create custom calendar (from F-F_Research_Data_Factors)""" self.sql = sql self.table = sql.Table('busdates', Column('date', Integer, primary_key=True)) if create: # reload the series using pandas reader f = pdr.data.DataReader( name='F-F_ST_Reversal_Factor_daily', data_source='famafrench', # 'F-F_Research_Data_Factors_daily' start=1900, end=2050)[0].index.sort_values().unique() df = DataFrame(str2date(f.astype(str), '%Y-%m-%d', '%Y%m%d'), columns=['date']) self.table.create(checkfirst=True) sql.load_dataframe('busdates', df) else: df = sql.read_dataframe('SELECT * FROM busdates') # 1. Initially, dates = actual FamaFrench busdays dates = pd.DatetimeIndex(sorted(list(df['date'].unique().astype(str)))) last = pd.to_datetime(str(df.iloc[-1]['date'])) # 2. Extend with pandas 5-day calendar from last through to 20221231 dates = dates.append(pd.date_range(last, end=pd.to_datetime('20221231'), freq='B')[1:]) # 3. But remove current list of anticipated NYSE holidays hols = ['20210101', '20210118', '20210215', '20210402', '20210531', '20210705', '20210906', '20211125', '20211224', '20220117', '20220221', '20220415', '20220530', '20220704', '20220905', '20221124','20221226'] self.max_date = max(int(max(hols)[:4])*10000+1231, max(df['date'])) hols = pd.to_datetime(hols) dates = sorted(list(set(dates).difference(set(hols)))) # actual busdays # 4. Generate a list of all potential busdays from pandas 6-day calendar alldates = set(pd.date_range(dates[0], dates[-1], freq=pd.offsets.CDay( calendar=np.busdaycalendar('1111110'), normalize=True))) # 5. Finalize actual holidays: hols = all dates less actual dates hols = np.array(list(alldates.difference(dates)), dtype='datetime64[D]') hols = sorted(set(hols).union([np.datetime64('1926-01-01')])) # Custom and offset calendar objects is 6-day week less actual holidays self.busdaycalendar_ = np.busdaycalendar(weekmask='1111110', holidays=hols) self.custom_ = pd.offsets.CDay(calendar=self.busdaycalendar_) self.begmo_ = pd.offsets.CBMonthBegin(calendar=self.busdaycalendar_) self.endmo_ =
pd.offsets.CBMonthEnd(calendar=self.busdaycalendar_)
pandas.offsets.CBMonthEnd
#!/home/cab22/miniconda3/bin/python #SBATCH --account=commons #SBATCH --export=All #SBATCH --partition=commons #SBATCH --time=24:00:00 #SBATCH --ntasks=1 #SBATCH --threads-per-core=1 #SBATCH --cpus-per-task=2 #SBATCH --gres=gpu:1 #SBATCH --time=24:00:00 #SBATCH --export=ALL #SBATCH --array=0-15 #SBATCH --mem=16G import os import subprocess import itertools import numpy as np import warnings import pandas import time import argparse class SlurmJobArray(): """ Selects a single condition from an array of parameters using the SLURM_ARRAY_TASK_ID environment variable. The parameters need to be supplied as a dictionary. if the task is not in a slurm environment, the test parameters will supersede the parameters, and the job_id would be taken as 0. Example: parameters={"epsilon":[100], "aligned":[True,False], "actinLen":[20,40,60,80,100,120,140,160,180,200,220,240,260,280,300], "repetition":range(5), "temperature":[300], "system2D":[False], "simulation_platform":["OpenCL"]} test_parameters={"simulation_platform":"CPU"} sjob=SlurmJobArray("ActinSimv6", parameters, test_parameters) :var test_run: Boolean: This simulation is a test :var job_id: SLURM_ARRAY_TASK_ID :var all_parameters: Parameters used to initialize the job :var parameters: Parameters for this particular job :var name: The name (and relative path) of the output """ def __init__(self, name, parameters, test_parameters={},test_id=0): """ Args: name: parameters: Returns: name: parameters: """ self.all_parameters=parameters self.test_parameters=test_parameters #Parse the slurm variables self.slurm_variables={} for key in os.environ: if len(key.split("_"))>1 and key.split("_")[0]=='SLURM': self.slurm_variables.update({key:os.environ[key]}) #Check if there is a job id self.test_run=False try: self.job_id=int(self.slurm_variables["SLURM_ARRAY_TASK_ID"]) except KeyError: self.test_run=True warnings.warn("Test Run: SLURM_ARRAY_TASK_ID not in environment variables") self.job_id=test_id keys=parameters.keys() self.all_conditions=list(itertools.product(*[parameters[k] for k in keys])) self.parameter=dict(zip(keys,self.all_conditions[self.job_id])) #The name only includes enough information to differentiate the simulations. self.name=f"{name}_{self.job_id:03d}_" + '_'.join([f"{a[0]}_{self[a]}" for a in self.parameter if len(self.all_parameters[a])>1]) def __getitem__(self, name): if self.test_run: try: return self.test_parameters[name] except KeyError: return self.parameter[name] else: return self.parameter[name] def __getattr__(self, name: str): """ The keys of the parameters can be called as attributes """ if name in self.__dict__: return object.__getattribute__(self, name) elif name in self.parameter: return self[name] else: return object.__getattribute__(self, name) def __repr__(self): return str(self.parameter) def keys(self): return str(self.parameters.keys()) def print_parameters(self): print(f"Number of conditions: {len(self.all_conditions)}") print("Running Conditions") for k in self.parameter.keys(): print(f"{k} :", f"{self[k]}") print() def print_slurm_variables(self): print("Slurm Variables") for key in self.slurm_variables: print (key,":",self.slurm_variables[key]) print() def write_csv(self, out=""): s=pandas.concat([
pandas.Series(self.parameter)
pandas.Series
######################### ######################### # Need to account for limit in input period ######################### ######################### # Baseline M67 long script -- NO crowding # New script copied from quest - want to take p and ecc from each population (all, obs, rec) and put them into separate file # Doing this so we don't have to run analyse each time # Can write separate script for p-ecc plots # Quest paths in this version of script import pandas as pd import numpy as np import os from astropy.coordinates import SkyCoord from astropy import units, constants from astropy.modeling import models, fitting import scipy.stats from scipy.integrate import quad #for Quest import matplotlib matplotlib.use('Agg') doIndividualPlots = True from matplotlib import pyplot as plt def file_len(fname): i = 0 with open(fname) as f: for i, l in enumerate(f): pass return i + 1 def getPhs(sigma, m1=1*units.solMass, m2=1*units.solMass, m3=0.5*units.solMass): Phs = np.pi*constants.G/np.sqrt(2.)*(m1*m2/m3)**(3./2.)*(m1 + m2)**(-0.5)*sigma**(-3.) return Phs.decompose().to(units.day) #similar to field, but limiting by the hard-soft boundary def fitRagfb(): x = [0.05, 0.1, 1, 8, 15] #estimates of midpoints in bins, and using this: https://sites.uni.edu/morgans/astro/course/Notes/section2/spectralmasses.html y = [0.20, 0.35, 0.50, 0.70, 0.75] init = models.PowerLaw1D(amplitude=0.5, x_0=1, alpha=-1.) fitter = fitting.LevMarLSQFitter() fit = fitter(init, x, y) return fit def RagNormal(x, cdf = False): mean = 5.03 std = 2.28 if (cdf): return scipy.stats.norm.cdf(x,mean,std) return scipy.stats.norm.pdf(x,mean,std) def saveHist(histAll, histObs, histRec, bin_edges, xtitle, fname, filters = ['u_', 'g_', 'r_', 'i_', 'z_', 'y_','all']): c1 = '#5687A6' #Dali Blue (Andrew's AAS Poster) c2 = '#A62B1F' #Dai Red c3 = '#BF8A26' #Dali Beige fig,ax1 = plt.subplots(figsize=(8,6), sharex=True)#can change to include cdf with ax1, ax2 histAll = np.insert(histAll,0,0) histObs = np.insert(histObs,0,0) for f in filters: histRec[f] = np.insert(histRec[f],0,0) #PDF ax1.step(bin_edges, histAll/np.sum(histAll), color=c1) ax1.step(bin_edges, histObs/np.sum(histObs), color=c2) for f in filters: lw = 1 if (f == 'all'): lw = 0.5 ax1.step(bin_edges, histRec[f]/np.sum(histRec[f]), color=c3, linewidth=lw) ax1.set_ylabel('PDF') ax1.set_yscale('log') ax1.set_title('Globular Clusters - Baseline', fontsize = 16) ax1.set_xlabel(xtitle) #CDF #cdfAll = [] #cdfObs = [] #cdfRec = dict() #for f in filters: # cdfRec[f] = [] # for i in range(len(histAll)): # cdfAll.append(np.sum(histAll[:i])/np.sum(histAll)) # for i in range(len(histObs)): # cdfObs.append(np.sum(histObs[:i])/np.sum(histObs)) # for f in filters: # for i in range(len(histRec[f])): # cdfRec[f].append(np.sum(histRec[f][:i])/np.sum(histRec[f])) #ax2.step(bin_edges, cdfAll, color=c1) #ax2.step(bin_edges, cdfObs, color=c2) #for f in filters: # lw = 1 # if (f == 'all'): # lw = 0.5 # ax2.step(bin_edges, cdfRec[f], color=c3, linewidth=lw) #ax2.set_ylabel('CDF') #ax2.set_xlabel(xtitle) fig.subplots_adjust(hspace=0) fig.savefig('./plots/' + fname+'.pdf',format='pdf', bbox_inches = 'tight') #write to a text file with open('./eblsst_files/' + fname+'.csv','w') as fl: outline = 'binEdges,histAll,histObs' for f in filters: outline += ','+f+'histRec' outline += '\n' fl.write(outline) for i in range(len(bin_edges)): outline = str(bin_edges[i])+','+str(histAll[i])+','+str(histObs[i]) for f in filters: outline += ','+str(histRec[f][i]) outline += '\n' fl.write(outline) if __name__ == "__main__": filters = ['u_', 'g_', 'r_', 'i_', 'z_', 'y_', 'all'] #get the Raghavan binary fraction fit fbFit= fitRagfb() print(fbFit) #to normalize intAll, err = quad(RagNormal, -20, 20) intCut, err = quad(RagNormal, -20, np.log10(365*10.)) intNorm = intCut/intAll #cutoff in percent error for "recovered" Pcut = 0.1 #assumed mean stellar mass mMean = 0.5 #minimum number of lines to consider in file Nlim = 3 if (doIndividualPlots): fmass, axmass = plt.subplots() fqrat, axqrat = plt.subplots() fecc, axecc = plt.subplots() flper, axlper = plt.subplots() fdist, axdist = plt.subplots() fmag, axmag = plt.subplots() frad, axrad = plt.subplots() #bins for all the histograms Nbins = 25 mbins = np.arange(0,10, 0.1, dtype='float') qbins = np.arange(0,1, 0.1, dtype='float') ebins = np.arange(0, 1.05, 0.05, dtype='float') lpbins = np.arange(-2, 10, 0.5, dtype='float') dbins = np.arange(0, 40, 1, dtype='float') magbins = np.arange(11, 25, 1, dtype='float') rbins = np.arange(0, 100, 0.2, dtype='float') #blanks for the histograms #All m1hAll = np.zeros_like(mbins)[1:] qhAll = np.zeros_like(qbins)[1:] ehAll = np.zeros_like(ebins)[1:] lphAll = np.zeros_like(lpbins)[1:] dhAll = np.zeros_like(dbins)[1:] maghAll = np.zeros_like(magbins)[1:] rhAll = np.zeros_like(rbins)[1:] #Observable m1hObs = np.zeros_like(mbins)[1:] qhObs = np.zeros_like(qbins)[1:] ehObs = np.zeros_like(ebins)[1:] lphObs = np.zeros_like(lpbins)[1:] dhObs = np.zeros_like(dbins)[1:] maghObs = np.zeros_like(magbins)[1:] rhObs = np.zeros_like(rbins)[1:] #Recovered m1hRec = dict() qhRec = dict() ehRec = dict() lphRec = dict() dhRec = dict() maghRec = dict() rhRec = dict() for f in filters: m1hRec[f] = np.zeros_like(mbins)[1:] qhRec[f] = np.zeros_like(qbins)[1:] ehRec[f] = np.zeros_like(ebins)[1:] lphRec[f] = np.zeros_like(lpbins)[1:] dhRec[f] = np.zeros_like(dbins)[1:] maghRec[f] = np.zeros_like(magbins)[1:] rhRec[f] = np.zeros_like(rbins)[1:] RA = [] Dec = [] recFrac = [] recN = [] rawN = [] obsN = [] fileN = [] fileObsN = [] fileRecN = [] allNPrsa = [] obsNPrsa = [] recNPrsa = [] # Lists for period and eccentricity for Andrew's circularization plots eccAll = [] eccObs = [] eccRec = [] pAll = [] pObs = [] pRec = [] # Using prsa dataframes for these lists because of period cutoff at 1000 days # Dataframes to write to files later; 3 files for each sub-population - append everything to these peccAll = pd.DataFrame(columns = ['e', 'p']) peccObs = pd.DataFrame(columns = ['e', 'p']) peccRec = pd.DataFrame(columns = ['e', 'p']) #Read in all the data and make the histograms d = "./input_files/" files = os.listdir(d) IDs = [] for i, f in enumerate(files): print(round(i/len(files),4), f) fl = file_len(d+f) if (fl >= 4): #read in the header header = pd.read_csv(d+f, nrows=1) ###################### #NEED TO ACCOUNT FOR THE BINARY FRACTION when combining histograms ##################### Nmult = header['clusterMass'][0]/mMean #Nmult = 1. RA.append(header['OpSimRA']) Dec.append(header['OpSimDec']) #read in rest of the file data = pd.read_csv(d+f, header = 2).fillna(-999) rF = 0. rN = 0. Nrec = 0. Nobs = 0. raN = 0. obN = 0. fiN = 0. fioN = 0. firN = 0. NallPrsa = 0. NobsPrsa = 0. NrecPrsa = 0. Nall = len(data.index)/intNorm ###is this correct? (and the only place I need to normalize?) prsa = data.loc[(data['appMagMean_r'] <= 19.5) & (data['appMagMean_r'] > 15.8) & (data['p'] < 1000) & (data['p'] > 0.5)] # Appending for Andrew eccAll.append(prsa['e'].values) pAll.append(prsa['p'].values) NallPrsa = len(prsa.index) if (Nall >= Nlim): #create histograms #All m1hAll0, m1b = np.histogram(data["m1"], bins=mbins) qhAll0, qb = np.histogram(data["m2"]/data["m1"], bins=qbins) ehAll0, eb = np.histogram(data["e"], bins=ebins) lphAll0, lpb = np.histogram(np.ma.log10(data["p"].values).filled(-999), bins=lpbins) dhAll0, db = np.histogram(data["d"], bins=dbins) maghAll0, magb = np.histogram(data["appMagMean_r"], bins=magbins) rhAll0, rb = np.histogram(data["r2"]/data["r1"], bins=rbins) if (doIndividualPlots): axmass.step(m1b[0:-1], m1hAll0/np.sum(m1hAll0), color='black', alpha=0.1) axqrat.step(qb[0:-1], qhAll0/np.sum(qhAll0), color='black', alpha=0.1) axecc.step(eb[0:-1], ehAll0/np.sum(ehAll0), color='black', alpha=0.1) axlper.step(lpb[0:-1], lphAll0/np.sum(lphAll0), color='black', alpha=0.1) axdist.step(db[0:-1], dhAll0/np.sum(dhAll0), color='black', alpha=0.1) axmag.step(magb[0:-1], maghAll0/np.sum(maghAll0), color='black', alpha=0.1) axrad.step(rb[0:-1], rhAll0/np.sum(rhAll0), color='black', alpha=0.1) #account for the binary fraction, as a function of mass dm1 = np.diff(m1b) m1val = m1b[:-1] + dm1/2. fb = np.sum(m1hAll0/len(data.index)*fbFit(m1val)) #account for the hard-soft boundary Phs = getPhs(header['clusterVdisp'].iloc[0]*units.km/units.s).to(units.day).value fb *= RagNormal(np.log10(Phs), cdf = True) print("fb, Phs = ", fb, Phs) Nmult *= fb m1hAll += m1hAll0/Nall*Nmult qhAll += qhAll0/Nall*Nmult ehAll += ehAll0/Nall*Nmult lphAll += lphAll0/Nall*Nmult dhAll += dhAll0/Nall*Nmult maghAll += maghAll0/Nall*Nmult rhAll += rhAll0/Nall*Nmult #Obs obs = data.loc[data['LSM_PERIOD'] != -999] Nobs = len(obs.index) prsaObs = data.loc[(data['appMagMean_r'] <= 19.5) & (data['appMagMean_r'] > 15.8) & (data['p'] < 1000) & (data['p'] >0.5) & (data['LSM_PERIOD'] != -999)] NobsPrsa = len(prsaObs.index) # Appending for Andrew's files eccObs.append(prsaObs['e'].values) pObs.append(prsaObs['p'].values) if (Nobs >= Nlim): m1hObs0, m1b = np.histogram(obs["m1"], bins=mbins) qhObs0, qb = np.histogram(obs["m2"]/obs["m1"], bins=qbins) ehObs0, eb = np.histogram(obs["e"], bins=ebins) lphObs0, lpb = np.histogram(np.ma.log10(obs["p"].values).filled(-999), bins=lpbins) dhObs0, db = np.histogram(obs["d"], bins=dbins) maghObs0, magb = np.histogram(obs["appMagMean_r"], bins=magbins) rhObs0, rb = np.histogram(obs["r2"]/obs["r1"], bins=rbins) m1hObs += m1hObs0/Nall*Nmult qhObs += qhObs0/Nall*Nmult ehObs += ehObs0/Nall*Nmult lphObs += lphObs0/Nall*Nmult dhObs += dhObs0/Nall*Nmult maghObs += maghObs0/Nall*Nmult rhObs += rhObs0/Nall*Nmult #Rec recCombined = pd.DataFrame() prsaRecCombined =
pd.DataFrame()
pandas.DataFrame
import unittest import numpy as np from pandas.core.api import Series import pandas.core.algorithms as algos import pandas.util.testing as tm class TestMatch(unittest.TestCase): def test_ints(self): values = np.array([0, 2, 1]) to_match = np.array([0, 1, 2, 2, 0, 1, 3, 0]) result = algos.match(to_match, values) expected = np.array([0, 2, 1, 1, 0, 2, -1, 0]) self.assert_(np.array_equal(result, expected)) def test_strings(self): values = ['foo', 'bar', 'baz'] to_match = ['bar', 'foo', 'qux', 'foo', 'bar', 'baz', 'qux'] result = algos.match(to_match, values) expected = np.array([1, 0, -1, 0, 1, 2, -1]) self.assert_(np.array_equal(result, expected)) class TestUnique(unittest.TestCase): def test_ints(self): arr = np.random.randint(0, 100, size=50) result = algos.unique(arr) self.assert_(isinstance(result, np.ndarray)) def test_objects(self): arr = np.random.randint(0, 100, size=50).astype('O') result =
algos.unique(arr)
pandas.core.algorithms.unique
# vim: set fileencoding=<utf-8> : # Copyright 2018-2020 <NAME> and <NAME> '''Network functions''' # universal import os import sys import re # additional import glob import operator import shutil import subprocess import numpy as np import pandas as pd from scipy.stats import rankdata from tempfile import mkstemp, mkdtemp from collections import defaultdict, Counter from functools import partial from multiprocessing import Pool import pickle import graph_tool.all as gt import dendropy import poppunk_refine # Load GPU libraries try: import cupyx import cugraph import cudf import cupy as cp from numba import cuda import rmm gpu_lib = True except ImportError as e: gpu_lib = False from .__main__ import accepted_weights_types from .__main__ import betweenness_sample_default from .sketchlib import addRandom from .utils import iterDistRows from .utils import listDistInts from .utils import readIsolateTypeFromCsv from .utils import readRfile from .utils import setupDBFuncs from .utils import isolateNameToLabel from .utils import check_and_set_gpu from .unwords import gen_unword def fetchNetwork(network_dir, model, refList, ref_graph = False, core_only = False, accessory_only = False, use_gpu = False): """Load the network based on input options Returns the network as a graph-tool format graph, and sets the slope parameter of the passed model object. Args: network_dir (str) A network used to define clusters model (ClusterFit) A fitted model object refList (list) Names of references that should be in the network ref_graph (bool) Use ref only graph, if available [default = False] core_only (bool) Return the network created using only core distances [default = False] accessory_only (bool) Return the network created using only accessory distances [default = False] use_gpu (bool) Use cugraph library to load graph Returns: genomeNetwork (graph) The loaded network cluster_file (str) The CSV of cluster assignments corresponding to this network """ # If a refined fit, may use just core or accessory distances dir_prefix = network_dir + "/" + os.path.basename(network_dir) # load CUDA libraries - here exit without switching to CPU libraries # to avoid loading an unexpected file use_gpu = check_and_set_gpu(use_gpu, gpu_lib, quit_on_fail = True) if use_gpu: graph_suffix = '.csv.gz' else: graph_suffix = '.gt' if core_only and model.type == 'refine': if ref_graph: network_file = dir_prefix + '_core.refs_graph' + graph_suffix else: network_file = dir_prefix + '_core_graph' + graph_suffix cluster_file = dir_prefix + '_core_clusters.csv' elif accessory_only and model.type == 'refine': if ref_graph: network_file = dir_prefix + '_accessory.refs_graph' + graph_suffix else: network_file = dir_prefix + '_accessory_graph' + graph_suffix cluster_file = dir_prefix + '_accessory_clusters.csv' else: if ref_graph and os.path.isfile(dir_prefix + '.refs_graph' + graph_suffix): network_file = dir_prefix + '.refs_graph' + graph_suffix else: network_file = dir_prefix + '_graph' + graph_suffix cluster_file = dir_prefix + '_clusters.csv' if core_only or accessory_only: sys.stderr.write("Can only do --core or --accessory fits from " "a refined fit. Using the combined distances.\n") # Load network file sys.stderr.write("Loading network from " + network_file + "\n") genomeNetwork = load_network_file(network_file, use_gpu = use_gpu) # Ensure all in dists are in final network checkNetworkVertexCount(refList, genomeNetwork, use_gpu) return genomeNetwork, cluster_file def load_network_file(fn, use_gpu = False): """Load the network based on input options Returns the network as a graph-tool format graph, and sets the slope parameter of the passed model object. Args: fn (str) Network file name use_gpu (bool) Use cugraph library to load graph Returns: genomeNetwork (graph) The loaded network """ # Load the network from the specified file if use_gpu: G_df = cudf.read_csv(fn, compression = 'gzip') if 'src' in G_df.columns: G_df.rename(columns={'src': 'source','dst': 'destination'}, inplace=True) genomeNetwork = cugraph.Graph() if 'weights' in G_df.columns: G_df = G_df[['source','destination','weights']] genomeNetwork.from_cudf_edgelist(G_df, edge_attr='weights', renumber=False) else: genomeNetwork.from_cudf_edgelist(G_df,renumber=False) sys.stderr.write("Network loaded: " + str(genomeNetwork.number_of_vertices()) + " samples\n") else: genomeNetwork = gt.load_graph(fn) sys.stderr.write("Network loaded: " + str(len(list(genomeNetwork.vertices()))) + " samples\n") return genomeNetwork def checkNetworkVertexCount(seq_list, G, use_gpu): """Checks the number of network vertices matches the number of sequence names. Args: seq_list (list) The list of sequence names G (graph) The network of sequences use_gpu (bool) Whether to use cugraph for graph analyses """ vertex_list = set(get_vertex_list(G, use_gpu = use_gpu)) networkMissing = set(set(range(len(seq_list))).difference(vertex_list)) if len(networkMissing) > 0: sys.stderr.write("ERROR: " + str(len(networkMissing)) + " samples are missing from the final network\n") sys.exit(1) def getCliqueRefs(G, reference_indices = set()): """Recursively prune a network of its cliques. Returns one vertex from a clique at each stage Args: G (graph) The graph to get clique representatives from reference_indices (set) The unique list of vertices being kept, to add to """ cliques = gt.max_cliques(G) try: # Get the first clique, and see if it has any members already # contained in the vertex list clique = frozenset(next(cliques)) if clique.isdisjoint(reference_indices): reference_indices.add(list(clique)[0]) # Remove the clique, and prune the resulting subgraph (recursively) subgraph = gt.GraphView(G, vfilt=[v not in clique for v in G.vertices()]) if subgraph.num_vertices() > 1: getCliqueRefs(subgraph, reference_indices) elif subgraph.num_vertices() == 1: reference_indices.add(subgraph.get_vertices()[0]) except StopIteration: pass return reference_indices def cliquePrune(component, graph, reference_indices, components_list): """Wrapper function around :func:`~getCliqueRefs` so it can be called by a multiprocessing pool """ if gt.openmp_enabled(): gt.openmp_set_num_threads(1) subgraph = gt.GraphView(graph, vfilt=components_list == component) refs = reference_indices.copy() if subgraph.num_vertices() <= 2: refs.add(subgraph.get_vertices()[0]) ref_list = refs else: ref_list = getCliqueRefs(subgraph, refs) return(list(ref_list)) def translate_network_indices(G_ref_df, reference_indices): """Function for ensuring an updated reference network retains numbering consistent with sample names Args: G_ref_df (cudf data frame) List of edges in reference network reference_indices (list) The ordered list of reference indices in the original network Returns: G_ref (cugraph network) Network of reference sequences """ # Translate network indices to match name order G_ref_df['source'] = [reference_indices.index(x) for x in G_ref_df['old_source'].to_arrow().to_pylist()] G_ref_df['destination'] = [reference_indices.index(x) for x in G_ref_df['old_destination'].to_arrow().to_pylist()] G_ref = add_self_loop(G_ref_df, len(reference_indices) - 1, renumber = True) return(G_ref) def extractReferences(G, dbOrder, outPrefix, outSuffix = '', type_isolate = None, existingRefs = None, threads = 1, use_gpu = False): """Extract references for each cluster based on cliques Writes chosen references to file by calling :func:`~writeReferences` Args: G (graph) A network used to define clusters dbOrder (list) The order of files in the sketches, so returned references are in the same order outPrefix (str) Prefix for output file outSuffix (str) Suffix for output file (.refs will be appended) type_isolate (str) Isolate to be included in set of references existingRefs (list) References that should be used for each clique use_gpu (bool) Use cugraph for graph analysis (default = False) Returns: refFileName (str) The name of the file references were written to references (list) An updated list of the reference names """ if existingRefs == None: references = set() reference_indices = set() else: references = set(existingRefs) index_lookup = {v:k for k,v in enumerate(dbOrder)} reference_indices = set([index_lookup[r] for r in references]) # Add type isolate, if necessary type_isolate_index = None if type_isolate is not None: if type_isolate in dbOrder: type_isolate_index = dbOrder.index(type_isolate) else: sys.stderr.write('Type isolate ' + type_isolate + ' not found\n') sys.exit(1) if use_gpu: # For large network, use more approximate method for extracting references reference = {} # Record the original components to which sequences belonged component_assignments = cugraph.components.connectivity.connected_components(G) # Leiden method has resolution parameter - higher values give greater precision partition_assignments, score = cugraph.leiden(G, resolution = 0.1) # group by partition, which becomes the first column, so retrieve second column reference_index_df = partition_assignments.groupby('partition').nth(0) reference_indices = reference_index_df['vertex'].to_arrow().to_pylist() # Add type isolate if necessary - before edges are added if type_isolate_index is not None and type_isolate_index not in reference_indices: reference_indices.append(type_isolate_index) # Order found references as in sketchlib database reference_names = [dbOrder[int(x)] for x in sorted(reference_indices)] # Extract reference edges G_df = G.view_edge_list() if 'src' in G_df.columns: G_df.rename(columns={'src': 'old_source','dst': 'old_destination'}, inplace=True) else: G_df.rename(columns={'source': 'old_source','destination': 'old_destination'}, inplace=True) G_ref_df = G_df[G_df['old_source'].isin(reference_indices) & G_df['old_destination'].isin(reference_indices)] # Translate network indices to match name order G_ref = translate_network_indices(G_ref_df, reference_indices) # Check references in same component in overall graph are connected in the reference graph # First get components of original reference graph reference_component_assignments = cugraph.components.connectivity.connected_components(G_ref) reference_component_assignments.rename(columns={'labels': 'ref_labels'}, inplace=True) # Merge with component assignments from overall graph combined_vertex_assignments = reference_component_assignments.merge(component_assignments, on = 'vertex', how = 'left') combined_vertex_assignments = combined_vertex_assignments[combined_vertex_assignments['vertex'].isin(reference_indices)] # Find the number of components in the reference graph associated with each component in the overall graph - # should be one if there is a one-to-one mapping of components - else links need to be added max_ref_comp_count = combined_vertex_assignments.groupby(['labels'], sort = False)['ref_labels'].nunique().max() if max_ref_comp_count > 1: # Iterate through components for component, component_df in combined_vertex_assignments.groupby(['labels'], sort = False): # Find components in the overall graph matching multiple components in the reference graph if component_df.groupby(['labels'], sort = False)['ref_labels'].nunique().iloc[0] > 1: # Make a graph of the component from the overall graph vertices_in_component = component_assignments[component_assignments['labels']==component]['vertex'] references_in_component = vertices_in_component[vertices_in_component.isin(reference_indices)].values G_component_df = G_df[G_df['source'].isin(vertices_in_component) & G_df['destination'].isin(vertices_in_component)] G_component = cugraph.Graph() G_component.from_cudf_edgelist(G_component_df) # Find single shortest path from a reference to all other nodes in the component traversal = cugraph.traversal.sssp(G_component,source = references_in_component[0]) reference_index_set = set(reference_indices) # Add predecessors to reference sequences on the SSSPs predecessor_list = traversal[traversal['vertex'].isin(reference_indices)]['predecessor'].values predecessors = set(predecessor_list[predecessor_list >= 0].flatten().tolist()) # Add predecessors to reference set and check whether this results in complete paths # where complete paths are indicated by references' predecessors being within the set of # references while len(predecessors) > 0 and len(predecessors - reference_index_set) > 0: reference_index_set = reference_index_set.union(predecessors) predecessor_list = traversal[traversal['vertex'].isin(reference_indices)]['predecessor'].values predecessors = set(predecessor_list[predecessor_list >= 0].flatten().tolist()) # Add expanded reference set to the overall list reference_indices = list(reference_index_set) # Create new reference graph G_ref_df = G_df[G_df['old_source'].isin(reference_indices) & G_df['old_destination'].isin(reference_indices)] G_ref = translate_network_indices(G_ref_df, reference_indices) else: # Each component is independent, so can be multithreaded components = gt.label_components(G)[0].a # Turn gt threading off and on again either side of the parallel loop if gt.openmp_enabled(): gt.openmp_set_num_threads(1) # Cliques are pruned, taking one reference from each, until none remain sys.setrecursionlimit = 5000 with Pool(processes=threads) as pool: ref_lists = pool.map(partial(cliquePrune, graph=G, reference_indices=reference_indices, components_list=components), set(components)) sys.setrecursionlimit = 1000 # Returns nested lists, which need to be flattened reference_indices = set([entry for sublist in ref_lists for entry in sublist]) # Add type isolate if necessary - before edges are added if type_isolate_index is not None and type_isolate_index not in reference_indices: reference_indices.add(type_isolate_index) if gt.openmp_enabled(): gt.openmp_set_num_threads(threads) # Use a vertex filter to extract the subgraph of refences # as a graphview reference_vertex = G.new_vertex_property('bool') for n, vertex in enumerate(G.vertices()): if n in reference_indices: reference_vertex[vertex] = True else: reference_vertex[vertex] = False G_ref = gt.GraphView(G, vfilt = reference_vertex) G_ref = gt.Graph(G_ref, prune = True) # https://stackoverflow.com/questions/30839929/graph-tool-graphview-object # Find any clusters which are represented by >1 references # This creates a dictionary: cluster_id: set(ref_idx in cluster) clusters_in_full_graph = printClusters(G, dbOrder, printCSV=False) reference_clusters_in_full_graph = defaultdict(set) for reference_index in reference_indices: reference_clusters_in_full_graph[clusters_in_full_graph[dbOrder[reference_index]]].add(reference_index) # Calculate the component membership within the reference graph ref_order = [name for idx, name in enumerate(dbOrder) if idx in frozenset(reference_indices)] clusters_in_reference_graph = printClusters(G_ref, ref_order, printCSV=False) # Record the components/clusters the references are in the reference graph # dict: name: ref_cluster reference_clusters_in_reference_graph = {} for reference_name in ref_order: reference_clusters_in_reference_graph[reference_name] = clusters_in_reference_graph[reference_name] # Check if multi-reference components have been split as a validation test # First iterate through clusters network_update_required = False for cluster_id, ref_idxs in reference_clusters_in_full_graph.items(): # Identify multi-reference clusters by this length if len(ref_idxs) > 1: check = list(ref_idxs) # check if these are still in the same component in the reference graph for i in range(len(check)): component_i = reference_clusters_in_reference_graph[dbOrder[check[i]]] for j in range(i + 1, len(check)): # Add intermediate nodes component_j = reference_clusters_in_reference_graph[dbOrder[check[j]]] if component_i != component_j: network_update_required = True vertex_list, edge_list = gt.shortest_path(G, check[i], check[j]) # update reference list for vertex in vertex_list: reference_vertex[vertex] = True reference_indices.add(int(vertex)) # update reference graph if vertices have been added if network_update_required: G_ref = gt.GraphView(G, vfilt = reference_vertex) G_ref = gt.Graph(G_ref, prune = True) # https://stackoverflow.com/questions/30839929/graph-tool-graphview-object # Order found references as in sketch files reference_names = [dbOrder[int(x)] for x in sorted(reference_indices)] refFileName = writeReferences(reference_names, outPrefix, outSuffix = outSuffix) return reference_indices, reference_names, refFileName, G_ref def writeReferences(refList, outPrefix, outSuffix = ""): """Writes chosen references to file Args: refList (list) Reference names to write outPrefix (str) Prefix for output file outSuffix (str) Suffix for output file (.refs will be appended) Returns: refFileName (str) The name of the file references were written to """ # write references to file refFileName = outPrefix + "/" + os.path.basename(outPrefix) + outSuffix + ".refs" with open(refFileName, 'w') as rFile: for ref in refList: rFile.write(ref + '\n') return refFileName def network_to_edges(prev_G_fn, rlist, adding_qq_dists = False, old_ids = None, previous_pkl = None, weights = False, use_gpu = False): """Load previous network, extract the edges to match the vertex order specified in rlist, and also return weights if specified. Args: prev_G_fn (str or graph object) Path of file containing existing network, or already-loaded graph object adding_qq_dists (bool) Boolean specifying whether query-query edges are being added to an existing network, such that not all the sequence IDs will be found in the old IDs, which should already be correctly ordered rlist (list) List of reference sequence labels in new network old_ids (list) List of IDs of vertices in existing network previous_pkl (str) Path of pkl file containing names of sequences in previous network weights (bool) Whether to return edge weights (default = False) use_gpu (bool) Whether to use cugraph for graph analyses Returns: source_ids (list) Source nodes for each edge target_ids (list) Target nodes for each edge edge_weights (list) Weights for each new edge """ # Load graph from file if passed string; else use graph object passed in # as argument if isinstance(prev_G_fn, str): prev_G = load_network_file(prev_G_fn, use_gpu = use_gpu) else: prev_G = prev_G_fn # load list of names in previous network if pkl name supplied if previous_pkl is not None: with open(previous_pkl, 'rb') as pickle_file: old_rlist, old_qlist, self = pickle.load(pickle_file) if self: old_ids = old_rlist else: old_ids = old_rlist + old_qlist elif old_ids is None: sys.stderr.write('Missing .pkl file containing names of sequences in ' 'previous network\n') sys.exit(1) # Get edges as lists of source,destination,weight using original IDs if use_gpu: G_df = prev_G.view_edge_list() if weights: if len(G_df.columns) < 3: sys.stderr.write('Loaded network does not have edge weights; try a different ' 'network or turn off graph weights\n') exit(1) if 'src' in G_df.columns: G_df.rename(columns={'source': 'src','destination': 'dst'}, inplace=True) edge_weights = G_df['weights'].to_arrow().to_pylist() G_df.rename(columns={'src': 'source','dst': 'destination'}, inplace=True) old_source_ids = G_df['source'].astype('int32').to_arrow().to_pylist() old_target_ids = G_df['destination'].astype('int32').to_arrow().to_pylist() else: # get the source and target nodes old_source_ids = gt.edge_endpoint_property(prev_G, prev_G.vertex_index, "source") old_target_ids = gt.edge_endpoint_property(prev_G, prev_G.vertex_index, "target") # get the weights if weights: if prev_G.edge_properties.keys() is None or 'weight' not in prev_G.edge_properties.keys(): sys.stderr.write('Loaded network does not have edge weights; try a different ' 'network or turn off graph weights\n') exit(1) edge_weights = list(prev_G.ep['weight']) # If appending queries to an existing network, then the recovered links can be left # unchanged, as the new IDs are the queries, and the existing sequences will not be found # in the list of IDs if adding_qq_dists: source_ids = old_source_ids target_ids = old_target_ids else: # Update IDs to new versions old_id_indices = [rlist.index(x) for x in old_ids] # translate to indices source_ids = [old_id_indices[x] for x in old_source_ids] target_ids = [old_id_indices[x] for x in old_target_ids] # return values if weights: return source_ids, target_ids, edge_weights else: return source_ids, target_ids def print_network_summary(G, betweenness_sample = betweenness_sample_default, use_gpu = False): """Wrapper function for printing network information Args: G (graph) List of reference sequence labels betweenness_sample (int) Number of sequences per component used to estimate betweenness using a GPU. Smaller numbers are faster but less precise [default = 100] use_gpu (bool) Whether to use GPUs for network construction """ # print some summaries (metrics, scores) = networkSummary(G, betweenness_sample = betweenness_sample, use_gpu = use_gpu) sys.stderr.write("Network summary:\n" + "\n".join(["\tComponents\t\t\t\t" + str(metrics[0]), "\tDensity\t\t\t\t\t" + "{:.4f}".format(metrics[1]), "\tTransitivity\t\t\t\t" + "{:.4f}".format(metrics[2]), "\tMean betweenness\t\t\t" + "{:.4f}".format(metrics[3]), "\tWeighted-mean betweenness\t\t" + "{:.4f}".format(metrics[4]), "\tScore\t\t\t\t\t" + "{:.4f}".format(scores[0]), "\tScore (w/ betweenness)\t\t\t" + "{:.4f}".format(scores[1]), "\tScore (w/ weighted-betweenness)\t\t" + "{:.4f}".format(scores[2])]) + "\n") def initial_graph_properties(rlist, qlist): """Initial processing of sequence names for network construction. Args: rlist (list) List of reference sequence labels qlist (list) List of query sequence labels Returns: vertex_labels (list) Ordered list of sequences in network self_comparison (bool) Whether the network is being constructed from all-v-all distances or reference-v-query information """ if rlist == qlist: self_comparison = True vertex_labels = rlist else: self_comparison = False vertex_labels = rlist + qlist return vertex_labels, self_comparison def process_weights(distMat, weights_type): """Calculate edge weights from the distance matrix Args: distMat (2 column ndarray) Numpy array of pairwise distances weights_type (str) Measure to calculate from the distMat to use as edge weights in network - options are core, accessory or euclidean distance Returns: processed_weights (list) Edge weights """ processed_weights = [] if weights_type is not None and distMat is not None: # Check weights type is valid if weights_type not in accepted_weights_types: sys.stderr.write("Unable to calculate distance type " + str(weights_type) + "; " "accepted types are " + str(accepted_weights_types) + "\n") if weights_type == 'euclidean': processed_weights = np.linalg.norm(distMat, axis = 1).tolist() elif weights_type == 'core': processed_weights = distMat[:, 0].tolist() elif weights_type == 'accessory': processed_weights = distMat[:, 1].tolist() else: sys.stderr.write('Require distance matrix to calculate distances\n') return processed_weights def process_previous_network(previous_network = None, adding_qq_dists = False, old_ids = None, previous_pkl = None, vertex_labels = None, weights = False, use_gpu = False): """Extract edge types from an existing network Args: previous_network (str or graph object) Name of file containing a previous network to be integrated into this new network, or already-loaded graph object adding_qq_dists (bool) Boolean specifying whether query-query edges are being added to an existing network, such that not all the sequence IDs will be found in the old IDs, which should already be correctly ordered old_ids (list) Ordered list of vertex names in previous network previous_pkl (str) Name of file containing the names of the sequences in the previous_network ordered based on the original network construction vertex_labels (list) Ordered list of sequence labels weights (bool) Whether weights should be extracted from the previous network use_gpu (bool) Whether to use GPUs for network construction Returns: extra_sources (list) List of source node identifiers extra_targets (list) List of destination node identifiers extra_weights (list or None) List of edge weights """ if previous_pkl is not None or old_ids is not None: if weights: # Extract from network extra_sources, extra_targets, extra_weights = network_to_edges(previous_network, vertex_labels, adding_qq_dists = adding_qq_dists, old_ids = old_ids, previous_pkl = previous_pkl, weights = True, use_gpu = use_gpu) else: # Extract from network extra_sources, extra_targets = network_to_edges(previous_network, vertex_labels, adding_qq_dists = adding_qq_dists, old_ids = old_ids, previous_pkl = previous_pkl, weights = False, use_gpu = use_gpu) extra_weights = None else: sys.stderr.write('A distance pkl corresponding to ' + previous_pkl + ' is required for loading\n') sys.exit(1) return extra_sources, extra_targets, extra_weights def construct_network_from_edge_list(rlist, qlist, edge_list, weights = None, distMat = None, previous_network = None, adding_qq_dists = False, old_ids = None, previous_pkl = None, betweenness_sample = betweenness_sample_default, summarise = True, use_gpu = False): """Construct an undirected network using a data frame of edges. Nodes are samples and edges where samples are within the same cluster Will print summary statistics about the network to ``STDERR`` Args: rlist (list) List of reference sequence labels qlist (list) List of query sequence labels G_df (cudf or pandas data frame) Data frame in which the first two columns are the nodes linked by edges weights (list) List of edge weights distMat (2 column ndarray) Numpy array of pairwise distances previous_network (str or graph object) Name of file containing a previous network to be integrated into this new network, or the already-loaded graph object adding_qq_dists (bool) Boolean specifying whether query-query edges are being added to an existing network, such that not all the sequence IDs will be found in the old IDs, which should already be correctly ordered old_ids (list) Ordered list of vertex names in previous network previous_pkl (str) Name of file containing the names of the sequences in the previous_network betweenness_sample (int) Number of sequences per component used to estimate betweenness using a GPU. Smaller numbers are faster but less precise [default = 100] summarise (bool) Whether to calculate and print network summaries with :func:`~networkSummary` (default = True) use_gpu (bool) Whether to use GPUs for network construction Returns: G (graph) The resulting network """ # Check GPU library use use_gpu = check_and_set_gpu(use_gpu, gpu_lib, quit_on_fail = True) # data structures vertex_labels, self_comparison = initial_graph_properties(rlist, qlist) # Create new network if use_gpu: # benchmarking concurs with https://stackoverflow.com/questions/55922162/recommended-cudf-dataframe-construction if len(edge_list) > 1: edge_array = cp.array(edge_list, dtype = np.int32) edge_gpu_matrix = cuda.to_device(edge_array) G_df = cudf.DataFrame(edge_gpu_matrix, columns = ['source','destination']) else: # Cannot generate an array when one edge G_df = cudf.DataFrame(columns = ['source','destination']) G_df['source'] = [edge_list[0][0]] G_df['destination'] = [edge_list[0][1]] if weights is not None: G_df['weights'] = weights G = construct_network_from_df(rlist, qlist, G_df, weights = (weights is not None), distMat = distMat, adding_qq_dists = adding_qq_dists, old_ids = old_ids, previous_network = previous_network, previous_pkl = previous_pkl, summarise = False, use_gpu = use_gpu) else: # Load previous network if previous_network is not None: extra_sources, extra_targets, extra_weights = \ process_previous_network(previous_network = previous_network, adding_qq_dists = adding_qq_dists, old_ids = old_ids, previous_pkl = previous_pkl, vertex_labels = vertex_labels, weights = (weights is not None), use_gpu = use_gpu) # Construct list of tuples for graph-tool # Include information from previous graph if supplied if weights is not None: weighted_edges = [] for ((src, dest), weight) in zip(edge_list, weights): weighted_edges.append((src, dest, weight)) if previous_network is not None: for (src, dest, weight) in zip(extra_sources, extra_targets, extra_weights): weighted_edges.append((src, dest, weight)) edge_list = weighted_edges else: if previous_network is not None: for (src, dest) in zip(extra_sources, extra_targets): edge_list.append((src, dest)) # build the graph G = gt.Graph(directed = False) G.add_vertex(len(vertex_labels)) if weights is not None: eweight = G.new_ep("float") G.add_edge_list(edge_list, eprops = [eweight]) G.edge_properties["weight"] = eweight else: G.add_edge_list(edge_list) if summarise: print_network_summary(G, betweenness_sample = betweenness_sample, use_gpu = use_gpu) return G def construct_network_from_df(rlist, qlist, G_df, weights = False, distMat = None, previous_network = None, adding_qq_dists = False, old_ids = None, previous_pkl = None, betweenness_sample = betweenness_sample_default, summarise = True, use_gpu = False): """Construct an undirected network using a data frame of edges. Nodes are samples and edges where samples are within the same cluster Will print summary statistics about the network to ``STDERR`` Args: rlist (list) List of reference sequence labels qlist (list) List of query sequence labels G_df (cudf or pandas data frame) Data frame in which the first two columns are the nodes linked by edges weights (bool) Whether weights in the G_df data frame should be included in the network distMat (2 column ndarray) Numpy array of pairwise distances previous_network (str or graph object) Name of file containing a previous network to be integrated into this new network, or the already-loaded graph object adding_qq_dists (bool) Boolean specifying whether query-query edges are being added to an existing network, such that not all the sequence IDs will be found in the old IDs, which should already be correctly ordered old_ids (list) Ordered list of vertex names in previous network previous_pkl (str) Name of file containing the names of the sequences in the previous_network betweenness_sample (int) Number of sequences per component used to estimate betweenness using a GPU. Smaller numbers are faster but less precise [default = 100] summarise (bool) Whether to calculate and print network summaries with :func:`~networkSummary` (default = True) use_gpu (bool) Whether to use GPUs for network construction Returns: G (graph) The resulting network """ # Check GPU library use use_gpu = check_and_set_gpu(use_gpu, gpu_lib, quit_on_fail = True) # data structures vertex_labels, self_comparison = initial_graph_properties(rlist, qlist) # Check df format is correct if weights: G_df.columns = ['source','destination','weights'] else: G_df.columns = ['source','destination'] # Load previous network if previous_network is not None: extra_sources, extra_targets, extra_weights = process_previous_network(previous_network = previous_network, adding_qq_dists = adding_qq_dists, old_ids = old_ids, previous_pkl = previous_pkl, vertex_labels = vertex_labels, weights = weights, use_gpu = use_gpu) if use_gpu: G_extra_df = cudf.DataFrame() else: G_extra_df =
pd.DataFrame()
pandas.DataFrame
""" This script is designed to take already processed matrix timing and properties files and perform a variety of machine learning techniques using the Scikit-Learn Python library. """ # Written using Anaconda with Python 3.5 # <NAME> # 1-22-17 import time from os import path as path import matplotlib.pyplot as plt import numpy as np import pandas as pd from imblearn import pipeline as pl from imblearn.over_sampling import RandomOverSampler from scipy import interp from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import confusion_matrix, roc_curve, auc from sklearn.model_selection import StratifiedKFold, StratifiedShuffleSplit # Printing options np.set_printoptions(precision=3) rng = np.random.RandomState() # Number of splits for k-fold cross validation skf = StratifiedKFold(n_splits=3, random_state=rng) sss = StratifiedShuffleSplit(n_splits=3, random_state=rng) stampede = [1, 4, 8, 12, 16] bridges = [1, 4, 8, 12, 16, 20, 24, 28] comet = [1, 4, 8, 12, 16, 20, 24] janus = [1, 2, 4, 6, 8, 10, 12] summit = [1, 4, 8, 12, 16, 20, 24] laptop = [1, 2, 4] JANUS_ID = 0 BRIDGES_ID = 1 COMET_ID = 2 SUMMIT_ID = 3 STAMPEDE_ID = 4 LAPTOP_ID = 5 system_nps = {JANUS_ID: janus, BRIDGES_ID: bridges, COMET_ID: comet, SUMMIT_ID: summit, STAMPEDE_ID: stampede, LAPTOP_ID: laptop} # For roc curves linestyles = [ (0, ()), (0, (3, 1, 1, 1)), (0, (3, 5, 3, 5)), (0, (5, 1, 10, 3)), (0, (1, 1)), (0, (5, 1)), (0, (3, 5, 1, 5)), (0, (5, 5)), (0, (1, 5)), (0, (2, 3, 4, 1)) ] classifier_list = [ ['RandomForest', RandomForestClassifier()]] # ['GradientBoosting', GradientBoostingClassifier()], # ['GaussianNB', GaussianNB()], # ['DecisionTree', DecisionTreeClassifier()], # ['LogisticRegression', LogisticRegression()], # ['MLP', MLPClassifier()], # ['AdaBoost', AdaBoostClassifier()], # ['KNN', KNeighborsClassifier()] # ['SVC', SVC(probability=True)], # ['QDA', QuadraticDiscriminantAnalysis()], samplers_list = [ ['RandomOverSampler', RandomOverSampler()], # ['SMOTE', SMOTE()], # ['DummySampler', DummySampler()], # ['SMOTEENN', SMOTEENN()], # ['SMOTETomek', SMOTETomek()], # ['ADASYN', ADASYN()] prohibitively expensive on larger datasets (3k+ secs) ] def show_confusion_matrix(C, training_systems, training_numprocs, testing_systems, testing_numprocs, class_labels=['-1', '1']): """Draws confusion matrix with associated metrics""" assert C.shape == (2, 2), "Confusion matrix should be from binary classification only." # true negative, false positive, etc... tn = C[0, 0] fp = C[0, 1] fn = C[1, 0] tp = C[1, 1] NP = fn + tp # Num positive examples NN = tn + fp # Num negative examples N = NP + NN confusion_matrix_output = open('cnf_output.csv', 'a') # print('TrueNeg\tNumNeg\tTruePos\tNumPos\tFalseNeg\tFalsePos\tTruePosRate\tFalsePosRate\tPosPredVal\tNegPredVal\tAccuracy') nps_and_systems = str(training_systems) + '\t' + str(training_numprocs) + '\t' + \ str(testing_systems) + '\t' + str(testing_numprocs) cnf_numbers = ('%d\t%d\t%d\t%d\t%d\t%d\t' '%.2f\t%.2f\t%.2f\t%.2f\t%.2f' % (tn, NN, tp, NP, fn, fp, tp / (tp + fn + 0.), fp / (fp + tn + 0.), tp / (tp + fp + 0.), tn / (tn + fn + 0.), (tp + tn + 0.) / N)) nps_and_systems = nps_and_systems.replace('[', '') nps_and_systems = nps_and_systems.replace(']', '') confusion_matrix_output.write(nps_and_systems + '\t' + cnf_numbers + '\n') # print(nps_and_systems + '\t' + cnf_numbers + '\n') def classify_good_bad(combined, system, numprocs): # process np first a = pd.DataFrame() if type(numprocs) == str and numprocs == "all": a = combined elif type(numprocs) == int: a = combined[(combined.np == numprocs)] elif type(numprocs) == tuple: for num in numprocs: a = a.append(combined[(combined.numprocs == num)], ignore_index=True) # now process systems if type(system) == str and system == "all": a = a elif type(system) == int: a = a[(a.system_id == system)] elif type(system) == tuple: for num in system: a = a.append(a[(a.system_id == num)], ignore_index=True) # Determine the best times for each matrix good_bad_list = [] new_time_list = [] grouped = a.groupby(['matrix', 'status_id']) best_times = grouped['time'].aggregate(np.min) for index, row in a.iterrows(): current_matrix_time = row['time'] matrix_name = row['matrix'] # Check for matrices which never converged try: matrix_min_time = best_times[matrix_name][1] # 1 indicates converged except: matrix_min_time = np.inf # Error or unconverged runs = max float time if row['status_id'] != 1 or matrix_min_time == np.inf: good_bad_list.append(-1) new_time_list.append(np.inf) # Good = anything within 25% of the fastest run for that matrix elif current_matrix_time <= 1.25 * matrix_min_time: good_bad_list.append(1) new_time_list.append(current_matrix_time) # Bad = anything else outside of that range but still converged else: good_bad_list.append(-1) new_time_list.append(current_matrix_time) # Create Pandas series from the lists which used to contain strings new_time_series = pd.Series(new_time_list) good_bad_series = pd.Series(good_bad_list) # Add the series to the dataframe as columns a.reset_index(drop=True, inplace=True) a = a.assign(new_time=pd.Series(new_time_series.values)) a = a.assign(good_or_bad=pd.Series(good_bad_series)) return a def get_properties(properties_filename): properties = pd.read_csv(properties_filename, header=0, index_col=0) return properties def get_times(time_files): times_array = [] for t in time_files: times_array.append(pd.read_csv(t, header=0, index_col=0)) combined_times = pd.concat(times_array) combined_times = combined_times.drop(labels=['system', 'solver', 'prec', 'status', 'new_time', 'good_or_bad', 'resid', 'iters'], axis=1) combined_times = combined_times.drop_duplicates() return combined_times def get_classification(combined_times, testing_systems, testing_numprocs): start_time = time.time() if type(testing_systems) is not list: testing_systems = [testing_systems] if type(testing_numprocs) is not list: testing_numprocs = [testing_numprocs] testing_classified = pd.DataFrame() for sys in testing_systems: for numproc in testing_numprocs: # Check if the np and/or sys even exist if numproc in system_nps[sys]: filename = '../classifications/classified_' + str(sys) + '_' + str(numproc) + '.csv' if not path.exists(filename): print("Saving classification to ", filename) temp = classify_good_bad(combined_times, sys, numproc) testing_classified = testing_classified.append(temp) temp.to_csv(filename) print("Classification time: ", round(time.time() - start_time, 3), '\n') else: print('Classification file exists, loading from ' + filename, '\n') temp = pd.read_csv(filename, header=0, index_col=0) testing_classified = testing_classified.append(temp) return testing_classified def merge_properties_and_times(properties_data, timing_data, system_data): merged = pd.merge(properties_data, timing_data, on='matrix_id') merged = pd.merge(system_data, merged, on='system_id') merged = merged.dropna() merged = merged.drop( labels=['system', 'matrix_y', 'matrix_x', 'status_id', 'time', 'new_time', 'matrix_id'], axis=1) return merged def classify_and_merge(properties_data, timing_data, system_data, specific_nps, specific_systems): # Reduce info to just those nps and systems we are wanting to look at good_bad_list = [] new_time_list = [] specific_nps.sort() specific_systems.sort() timing_subset = timing_data[timing_data['np'].isin(specific_nps)] timing_subset = timing_subset[timing_subset['system_id'].isin(specific_systems)] grouped = timing_subset.groupby(['matrix', 'status_id']) best_times = grouped['time'].aggregate(np.min) # If an existing classification file exists then just load it instead of repeating work filename = '../classifications/classified_' + str(specific_systems) + '_' + str(specific_nps) + '.csv' filename = filename.replace(' ', '') if path.exists(filename): print('Classification file exists, loading from ' + filename, '\n') timing_subset = pd.read_csv(filename, header=0, index_col=0) else: print("Saving classification to ", filename) for index, row in timing_subset.iterrows(): current_matrix_time = row['time'] matrix_name = row['matrix'] # Check for matrices which never converged or ended in error and set to inf try: matrix_min_time = best_times[matrix_name][1] # 1 indicates converged except: matrix_min_time = np.inf # Error or unconverged runs = max float time if row['status_id'] != 1 or matrix_min_time == np.inf: good_bad_list.append(-1) new_time_list.append(np.inf) # Good = anything within 25% of the fastest run for that matrix elif current_matrix_time <= 1.25 * matrix_min_time: good_bad_list.append(1) new_time_list.append(current_matrix_time) # Bad = anything else outside of that range but still converged else: good_bad_list.append(-1) new_time_list.append(current_matrix_time) # Create Pandas series from the resulting lists new_time_series = pd.Series(new_time_list) good_bad_series = pd.Series(good_bad_list) # Add the series to the dataframe as columns timing_subset.reset_index(drop=True, inplace=True) timing_subset = timing_subset.assign(new_time=pd.Series(new_time_series.values)) timing_subset = timing_subset.assign(good_or_bad=
pd.Series(good_bad_series)
pandas.Series
from pathlib import Path import numpy as np import pandas as pd import time import pickle import json import h5py import sys import traceback import warnings import Analyses.spike_functions as spike_funcs import Analyses.spatial_functions as spatial_funcs import Analyses.open_field_functions as of_funcs import Pre_Processing.pre_process_functions as pp_funcs from Utils.robust_stats import robust_zscore import Analyses.tree_maze_functions as tmf import Analyses.plot_functions as pf import scipy.signal as signal """ Classes in this file will have several retrieval processes to acquire the required information for each subject and session. :class SubjectInfo -> class that takes a subject as an input. contains general information about what processes have been performed, clusters, and importantly all the session paths. The contents of this class are saved as a pickle in the results folder. :class SubjectSessionInfo -> children class of SubjectInfo, takes session as an input. This class contains session specific retrieval methods Low level things, like reading position (eg. 'get_track_dat') are self contained in the class. Higher level functions like 'get_spikes', are outsourced to the appropriate submodules in the Analyses folder. If it is the first time calling a retrieval method, the call will save the contents according the paths variable Otherwise the contents will be loaded from existing data, as opposed to recalculation. Exception is the get_time method, as this is easily regenerated on each call. """ class SummaryInfo: subjects = ['Li', 'Ne', 'Cl', 'Al', 'Ca', 'Mi'] min_n_units = 1 min_n_trials = 50 # task criteria min_pct_coverage = 0.75 # open field criteria invalid_sessions = ['Li_OF_080718'] figure_names = [f"f{ii}" for ii in range(5)] _root_paths = dict(GD=Path("/home/alexgonzalez/google-drive/TreeMazeProject/"), BigPC=Path("/mnt/Data_HD2T/TreeMazeProject/")) def __init__(self, data_root='BigPC'): self.main_path = self._root_paths[data_root] self.paths = self._get_paths() self.unit_table = self.get_unit_table() self.analyses_table = self.get_analyses_table() self.valid_track_table = self.get_track_validity_table() self.sessions_by_subject = {} self.tasks_by_subject = {} for s in self.subjects: self.sessions_by_subject[s] = self.unit_table[self.unit_table.subject == s].session.unique() self.tasks_by_subject[s] = self.unit_table[self.unit_table.subject == s].task.unique() def run_analyses(self, task='all', which='all', verbose=False, overwrite=False): interrupt_flag = False for subject in self.subjects: if not interrupt_flag: subject_info = SubjectInfo(subject) for session in subject_info.sessions: try: if task == 'all': pass elif task not in session: continue else: pass if verbose: t0 = time.time() print(f'Processing Session {session}') session_info = SubjectSessionInfo(subject, session) session_info.run_analyses(overwrite=overwrite, which=which, verbose=verbose) if verbose: t1 = time.time() print(f"Session Processing Completed: {t1 - t0:0.2f}s") print() else: print(".", end='') except KeyboardInterrupt: interrupt_flag = True break except ValueError: pass except FileNotFoundError: pass except: if verbose: traceback.print_exc(file=sys.stdout) pass if verbose: print(f"Subject {subject} Analyses Completed.") def get_analyses_table(self, overwrite=False): if not self.paths['analyses_table'].exists() or overwrite: analyses_table = pd.DataFrame() for subject in self.subjects: analyses_table = analyses_table.append(SubjectInfo(subject).get_sessions_analyses()) analyses_table.to_csv(self.paths['analyses_table']) else: analyses_table = pd.read_csv(self.paths['analyses_table'], index_col=0) self.analyses_table = analyses_table return analyses_table def get_track_validity_table(self, overwrite=False): if not self.paths['valid_track_table'].exists() or overwrite: valid_track_table = pd.DataFrame() for subject in self.subjects: valid_track_table = valid_track_table.append(SubjectInfo(subject).valid_track_table) valid_track_table.to_csv(self.paths['valid_track_table']) else: valid_track_table = pd.read_csv(self.paths['valid_track_table'], index_col=0) return valid_track_table def get_behav_perf(self, overwrite=False): if not self.paths['behavior'].exists() or overwrite: perf = pd.DataFrame() for subject in self.subjects: subject_info = SubjectInfo(subject) for session in subject_info.sessions: if 'T3' in session: try: session_info = SubjectSessionInfo(subject, session) b = session_info.get_event_behavior() sp = b.get_session_perf() sp['session'] = session sp['task'] = session_info.task sp['subject'] = subject sp['n_units'] = session_info.n_units sp['n_cells'] = session_info.n_cells sp['n_mua'] = session_info.n_mua perf = pd.concat((perf, sp), ignore_index=True) except: pass perf.to_csv(self.paths['behavior']) else: perf = pd.read_csv(self.paths['behavior'], index_col=0) return perf def _get_paths(self, root_path=None): if root_path is None: results_path = self.main_path / 'Results_Summary' figures_path = self.main_path / 'Figures' else: results_path = root_path / 'Results_Summary' figures_path = root_path / 'Figures' paths = dict( analyses_table=results_path / 'analyses_table.csv', valid_track_table=results_path / 'valid_track_table.csv', behavior=results_path / 'behavior_session_perf.csv', units=results_path / 'all_units_table.csv', of_metric_scores=results_path / 'of_metric_scores_summary_table.csv', of_model_scores=results_path / 'of_model_scores_summary_table_agg.csv', zone_rates_comps=results_path / 'zone_rates_comps_summary_table.csv', zone_rates_remap=results_path / 'zone_rates_remap_summary_table.csv', bal_conds_seg_rates=results_path / 'bal_conds_seg_rates_summary_table.csv', ) paths['results'] = results_path paths['figures'] = figures_path return paths def update_paths(self): for subject in self.subjects: _ = SubjectInfo(subject, overwrite=True) def get_zone_rates_comps(self, overwrite=False): """ Aggregates tables across sessions and adds unit information. Note, that overwrite only overwrites the aggregate table and does not perform the analysis on each session. :param overwrite: :return: pandas data frame with n_units as index """ if not self.paths['zone_rates_comps'].exists() or overwrite: sessions_validity = self.get_track_validity_table() zone_rates = pd.DataFrame() unit_count = 0 valid_sessions = list(self.analyses_table.loc[self.analyses_table.zone_rates_comps == True].index) for subject in self.subjects: subject_info = SubjectInfo(subject) for session in subject_info.sessions: if session in valid_sessions: session_info = SubjectSessionInfo(subject, session) n_session_units = session_info.n_units if n_session_units > 0: try: session_zone_rate_comp_table = session_info.get_zone_rates_remapping() comp_table_columns = session_zone_rate_comp_table.columns session_table = pd.DataFrame(index=np.arange(n_session_units), columns=['unit_id', 'subject', 'session', 'session_pct_cov', 'session_valid', 'session_unit_id', 'unit_type', 'tt', 'tt_cl', 'cl_name']) session_table['session'] = session session_table['subject'] = session_info.subject session_table['session_unit_id'] = np.arange(n_session_units) session_table['unit_id'] = np.arange(n_session_units) + unit_count session_table['unit_type'] = [v[0] for k, v in session_info.cluster_ids.items()] session_table['tt'] = [v[1] for k, v in session_info.cluster_ids.items()] session_table['tt_cl'] = [v[2] for k, v in session_info.cluster_ids.items()] if session in sessions_validity.columns: session_table['session_pct_cov'] = sessions_validity[session] session_table['session_valid'] = 1 else: session_table['session_pct_cov'] = 0 session_table['session_valid'] = 0 cl_names = [] for k, v in session_info.cluster_ids.items(): tt = v[1] cl = v[2] depth = subject_info.sessions_tt_positions.loc[session, f"tt_{tt}"] cl_name = f"{session}-tt{tt}_d{depth}_cl{cl}" cl_names.append(cl_name) session_table['cl_name'] = cl_names unit_count += n_session_units session_table = session_table.join(session_zone_rate_comp_table) except: print(f'Error Processing Session {session}') traceback.print_exc(file=sys.stdout) continue zone_rates = zone_rates.append(session_table) zone_rates = zone_rates.reset_index(drop=True) zone_rates.to_csv(self.paths['zone_rates_comps']) else: zone_rates = pd.read_csv(self.paths['zone_rates_comps'], index_col=0) return zone_rates def get_bal_conds_seg_rates(self, segment_type='bigseg', overwrite=False): fn = self.paths['bal_conds_seg_rates'] if segment_type != 'bigseg': name = fn.name.split('.') name2 = name[0] + segment_type + name[1] fn = fn.parent / name2 if not fn.exists() or overwrite: sessions_validity = self.get_track_validity_table() seg_rates = pd.DataFrame() unit_count = 0 valid_sessions = list(self.analyses_table.loc[self.analyses_table.bal_conds_seg_rates == True].index) for subject in self.subjects: subject_info = SubjectInfo(subject) for session in subject_info.sessions: if session in valid_sessions: session_info = SubjectSessionInfo(subject, session) n_session_units = session_info.n_units if n_session_units > 0: try: session_zone_rate_comp_table = session_info.get_bal_conds_seg_rates(segment_type=segment_type) comp_table_columns = session_zone_rate_comp_table.columns session_table = pd.DataFrame(index=np.arange(n_session_units), columns=['unit_id', 'subject', 'session', 'session_pct_cov', 'session_valid', 'session_unit_id', 'unit_type', 'tt', 'tt_cl', 'cl_name']) session_table['session'] = session session_table['subject'] = session_info.subject session_table['session_unit_id'] = np.arange(n_session_units) session_table['unit_id'] = np.arange(n_session_units) + unit_count session_table['unit_type'] = [v[0] for k, v in session_info.cluster_ids.items()] session_table['tt'] = [v[1] for k, v in session_info.cluster_ids.items()] session_table['tt_cl'] = [v[2] for k, v in session_info.cluster_ids.items()] if session in sessions_validity.columns: session_table['session_pct_cov'] = sessions_validity[session] session_table['session_valid'] = 1 else: session_table['session_pct_cov'] = 0 session_table['session_valid'] = 0 cl_names = [] for k, v in session_info.cluster_ids.items(): tt = v[1] cl = v[2] depth = subject_info.sessions_tt_positions.loc[session, f"tt_{tt}"] cl_name = f"{session}-tt{tt}_d{depth}_cl{cl}" cl_names.append(cl_name) session_table['cl_name'] = cl_names unit_count += n_session_units session_table = session_table.join(session_zone_rate_comp_table) except: print(f'Error Processing Session {session}') traceback.print_exc(file=sys.stdout) continue seg_rates = seg_rates.append(session_table) seg_rates = seg_rates.reset_index(drop=True) seg_rates.to_csv(fn) else: seg_rates = pd.read_csv(fn, index_col=0) return seg_rates def get_zone_rates_remap(self, overwrite=False): if not self.paths['zone_rates_remap'].exists() or overwrite: sessions_validity = self.get_track_validity_table() zone_rates = pd.DataFrame() unit_count = 0 valid_sessions = list(self.analyses_table.loc[self.analyses_table.zone_rates_comps == True].index) for subject in self.subjects: subject_info = SubjectInfo(subject) for session in subject_info.sessions: if session in valid_sessions: session_info = SubjectSessionInfo(subject, session) n_session_units = session_info.n_units if n_session_units > 0: try: session_zone_rate_comp_table = session_info.get_zone_rates_remap() comp_table_columns = session_zone_rate_comp_table.columns session_table = pd.DataFrame(index=np.arange(n_session_units), columns=['unit_id', 'subject', 'session', 'session_pct_cov', 'session_valid', 'session_unit_id', 'unit_type', 'tt', 'tt_cl', 'cl_name']) session_table['session'] = session session_table['subject'] = session_info.subject session_table['session_unit_id'] = np.arange(n_session_units) session_table['unit_id'] = np.arange(n_session_units) + unit_count session_table['unit_type'] = [v[0] for k, v in session_info.cluster_ids.items()] session_table['tt'] = [v[1] for k, v in session_info.cluster_ids.items()] session_table['tt_cl'] = [v[2] for k, v in session_info.cluster_ids.items()] if session in sessions_validity.columns: session_table['session_pct_cov'] = sessions_validity[session] session_table['session_valid'] = 1 else: session_table['session_pct_cov'] = 0 session_table['session_valid'] = 0 cl_names = [] for k, v in session_info.cluster_ids.items(): tt = v[1] cl = v[2] depth = subject_info.sessions_tt_positions.loc[session, f"tt_{tt}"] cl_name = f"{session}-tt{tt}_d{depth}_cl{cl}" cl_names.append(cl_name) session_table['cl_name'] = cl_names unit_count += n_session_units session_table = session_table.join(session_zone_rate_comp_table) except: print(f'Error Processing Session {session}') traceback.print_exc(file=sys.stdout) continue zone_rates = zone_rates.append(session_table) zone_rates = zone_rates.reset_index(drop=True) zone_rates.to_csv(self.paths['zone_rates_remap']) else: zone_rates = pd.read_csv(self.paths['zone_rates_remap'], index_col=0) return zone_rates def get_of_results(self, overwrite=False): curate_flag = False # get metrics if not self.paths['of_metric_scores'].exists() or overwrite: metric_scores = self._get_of_metric_scores() curate_flag = True else: metric_scores = pd.read_csv(self.paths['of_metric_scores'], index_col=0) # get models if not self.paths['of_model_scores'].exists() or overwrite: model_scores = self._get_of_models_scores() curate_flag = True else: model_scores = pd.read_csv(self.paths['of_model_scores'], index_col=0) if curate_flag: metric_scores, model_scores = self._match_unit_ids(metric_scores, model_scores) for session in self.invalid_sessions: unit_idx = self.unit_table[self.unit_table.session == session].unique_cl_name metric_scores.loc[metric_scores.cl_name.isin(unit_idx), 'session_valid'] = False model_scores.loc[model_scores.cl_name.isin(unit_idx), 'session_valid'] = False metric_scores.to_csv(self.paths['of_metric_scores']) model_scores.to_csv(self.paths['of_model_scores']) return metric_scores, model_scores def _get_of_metric_scores(self, overwrite=False): if not self.paths['of_metric_scores'].exists() or overwrite: analyses = ['speed', 'hd', 'border', 'grid', 'stability'] output_scores_names = ['score', 'sig'] n_analyses = len(analyses) unit_count = 0 metric_scores = pd.DataFrame() for subject in self.subjects: subject_info = SubjectInfo(subject) for session in subject_info.sessions: if 'OF' in session: session_info = SubjectSessionInfo(subject, session) if session_info.n_units > 0: temp = session_info.get_scores() session_scores = pd.DataFrame(index=np.arange(session_info.n_units * n_analyses), columns=['unit_id', 'subject', 'session', 'session_pct_cov', 'session_valid', 'session_unit_id', 'unit_type', 'tt', 'tt_cl', 'cl_name', 'analysis_type', 'score', 'sig', ]) session_scores['analysis_type'] = np.repeat(np.array(analyses), session_info.n_units) session_scores['session'] = session_info.session session_scores['subject'] = session_info.subject session_scores['session_unit_id'] = np.tile(np.arange(session_info.n_units), n_analyses) session_scores['unit_id'] = np.tile(np.arange(session_info.n_units), n_analyses) + unit_count session_scores['unit_type'] = [v[0] for k, v in session_info.cluster_ids.items()] * n_analyses session_scores['tt'] = [v[1] for k, v in session_info.cluster_ids.items()] * n_analyses session_scores['tt_cl'] = [v[2] for k, v in session_info.cluster_ids.items()] * n_analyses behav = session_info.get_track_data() # noinspection PyTypeChecker coverage = np.around(behav['pos_valid_mask'].mean(), 2) session_scores['session_pct_cov'] = coverage session_scores['session_valid'] = coverage >= self.min_pct_coverage cl_names = [] for k, v in session_info.cluster_ids.items(): tt = v[1] cl = v[2] depth = subject_info.sessions_tt_positions.loc[session, f"tt_{tt}"] cl_name = f"{session}-tt{tt}_d{depth}_cl{cl}" cl_names.append(cl_name) session_scores['cl_name'] = cl_names * n_analyses unit_count += session_info.n_units try: for ii, analysis in enumerate(analyses): indices = np.arange(session_info.n_units) + ii * session_info.n_units session_scores.at[indices, 'sig'] = temp[analysis + '_sig'].values if analysis == 'stability': session_scores.at[indices, 'score'] = temp[analysis + '_corr'].values else: session_scores.at[indices, 'score'] = temp[analysis + '_score'].values except: print(f'Error Processing Session {session}') traceback.print_exc(file=sys.stdout) pass session_scores[output_scores_names] = session_scores[output_scores_names].astype(float) metric_scores = metric_scores.append(session_scores) metric_scores = metric_scores.reset_index(drop=True) metric_scores.to_csv(self.paths['of_metric_scores']) else: metric_scores = pd.read_csv(self.paths['of_metric_scores'], index_col=0) return metric_scores def _get_of_models_scores(self): models = ['speed', 'hd', 'border', 'grid', 'pos', 'agg_all', 'agg_sdp', 'agg_sdbg'] metrics = ['r2', 'map_r', 'n_err', 'coef', 'agg_all_coef', 'agg_sdbg_coef', 'agg_sdp_coef'] splits = ['train', 'test'] unit_count = 0 model_scores = pd.DataFrame() for subject in self.subjects: subject_info = SubjectInfo(subject) for session in subject_info.sessions: if 'OF' in session: session_info = SubjectSessionInfo(subject, session) n_session_units = session_info.n_units if n_session_units > 0: try: temp = session_info.get_encoding_models_scores() if temp.empty: continue # noinspection PyTypeChecker mask = (temp['metric'].isin(metrics)) & (temp['model'].isin(models)) session_models_scores = pd.DataFrame(index=range(mask.sum()), columns=['unit_id', 'subject', 'session', 'session_unit_id', 'unit_type', 'session_pct_cov', 'session_valid', 'tt', 'tt_cl', 'model', 'split', 'metric', 'value']) session_models_scores.loc[:, ['model', 'split', 'metric', 'value']] = \ temp.loc[mask, ['model', 'split', 'metric', 'value']].values session_models_scores['session'] = session_info.session session_models_scores['subject'] = session_info.subject session_models_scores['session_unit_id'] = temp.loc[mask, 'unit_id'].values session_models_scores['unit_id'] = session_models_scores['session_unit_id'] + unit_count for session_unit_id, cluster_info in session_info.cluster_ids.items(): mask = session_models_scores.session_unit_id == int(session_unit_id) tt = cluster_info[1] cl = cluster_info[2] depth = subject_info.sessions_tt_positions.loc[session, f"tt_{tt}"] cl_name = f"{session}-tt{tt}_d{depth}_cl{cl}" session_models_scores.loc[mask, 'unit_type'] = cluster_info[0] session_models_scores.loc[mask, 'tt'] = tt session_models_scores.loc[mask, 'tt_cl'] = cl session_models_scores.loc[mask, 'cl_name'] = cl_name behav = session_info.get_track_data() # noinspection PyTypeChecker coverage = np.around(behav['pos_valid_mask'].mean(), 2) session_models_scores['session_pct_cov'] = coverage session_models_scores['session_valid'] = coverage >= self.min_pct_coverage # model_scores = model_scores.append(session_models_scores) unit_count += n_session_units except ValueError: traceback.print_exc(file=sys.stdout) pass # model_scores = model_scores.reset_index(drop=True) model_scores = model_scores.astype({"value": float}) model_scores = model_scores.to_csv(self.paths['of_model_scores']) return model_scores def _match_unit_ids(self, metric_scores, model_scores): session_unit_id_array = metric_scores[['session', 'session_unit_id']].values session_unit_id_tuple = [tuple(ii) for ii in session_unit_id_array] sid_2_uid = {} uid_2_sid = {} used_ids = [] unique_id_cnt = 0 for suid in session_unit_id_tuple: if not suid in used_ids: sid_2_uid[suid] = unique_id_cnt uid_2_sid[unique_id_cnt] = suid unique_id_cnt += 1 used_ids += [suid] session_unit_id_array = model_scores[['session', 'session_unit_id']].values session_unit_id_tuple = [tuple(ii) for ii in session_unit_id_array] model_scores['unit_id'] = [sid_2_uid[suid] for suid in session_unit_id_tuple] metric_scores.to_csv(self.paths['of_metric_scores']) model_scores = model_scores.to_csv(self.paths['of_model_scores']) return metric_scores, model_scores def get_unit_table(self, overwrite=False): if not self.paths['units'].exists() or overwrite: raise NotImplementedError else: unit_table = pd.read_csv(self.paths['units'], index_col=0) return unit_table def plot(self, fig_id, save=False, dpi=1000, root_dir=None, fig_format='jpg'): if fig_id == 'f1': f1 = pf.Fig1() f = f1.plot_all() else: return if save: fn = f"{fig_id}.{fig_format}" if root_dir is None: f.savefig(self.paths['figures'] / fn, dpi=dpi, bbox_inches='tight') else: if root_dir in self._root_paths.keys(): paths = self._get_paths(self._root_paths[root_dir]) f.savefig(paths['figures'] / fn, dpi=dpi, bbox_inches='tight') return f class SubjectInfo: def __init__(self, subject, sorter='KS2', data_root='BigPC', overwrite=False, time_step=0.02, samp_rate=32000, n_tetrodes=16, fr_temporal_smoothing=0.125, spk_outlier_thr=None, overwrite_cluster_stats=False, overwrite_session_clusters=False): subject = str(subject.title()) self.subject = subject self.sorter = sorter self.params = {'time_step': time_step, 'samp_rate': samp_rate, 'n_tetrodes': n_tetrodes, 'fr_temporal_smoothing': fr_temporal_smoothing, 'spk_outlier_thr': spk_outlier_thr, 'spk_recording_buffer': 3} self.tetrodes = np.arange(n_tetrodes, dtype=int) + 1 if data_root == 'BigPC': if subject in ['Li', 'Ne']: self.root_path = Path('/mnt/Data1_SSD2T/Data') elif subject in ['Cl']: self.root_path = Path('/mnt/Data2_SSD2T/Data') elif subject in ['Ca', 'Mi', 'Al']: self.root_path = Path('/mnt/Data3_SSD2T/Data') self.raw_path = Path('/mnt/Raw_Data/Data', subject) elif data_root == 'oak': self.root_path = Path('/mnt/o/giocomo/alexg/') self.raw_path = self.root_path / 'RawData/InVivo' / subject # self.sorted_path = self.root_path / 'Clustered' / subject # self.results_path = self.root_path / 'Analyses' / subject else: self.root_path = Path(data_root) self.raw_path = self.root_path / 'Raw_Data' / subject self.preprocessed_path = self.root_path / 'PreProcessed' / subject self.sorted_path = self.root_path / 'Sorted' / subject self.results_path = self.root_path / 'Results' / subject self.subject_info_file = self.results_path / ('subject_info_{}_{}.pkl'.format(sorter, subject)) # check if instance of DataPaths for subject and sorter exists already if self.subject_info_file.exists() and not overwrite: self.load_subject_info() else: # get channel table self._channel_table_file = self.preprocessed_path / ('chan_table_{}.csv'.format(subject)) if not self._channel_table_file.exists(): _task_fn = self.preprocessed_path / 'TasksDir' / f"pp_table_{self.subject}.json" if _task_fn.exists(): with _task_fn.open(mode='r') as f: _task_table = json.load(f) pp_funcs.post_process_channel_table(self.subject, _task_table) else: sys.exit(f"Error. Task table for pre-processing does not exists: {_task_fn}") self.channel_table = pd.read_csv(self._channel_table_file, index_col=0) # get sessions from channel table information self.sessions = list(self.channel_table.index) self.n_sessions = len(self.sessions) self.session_paths = {} for session in self.sessions: self.session_paths[session] = self._session_paths(session) # get cluster information try: if overwrite_cluster_stats: # overwrite cluster stats & clusters tables self.update_clusters() else: # load tables self.session_clusters = self.get_session_clusters(overwrite=overwrite_session_clusters) self.sort_tables = self.get_sort_tables(overwrite=overwrite_session_clusters) except: print("Error obtaining clusters.") print(sys.exc_info()[0], sys.exc_info()[1], sys.exc_info()[2].tb_lineno) traceback.print_exc(file=sys.stdout) # get tetrode depths & match sessions self.sessions_tt_positions = self.get_sessions_tt_position() self.tt_depth_match = self.get_tetrode_depth_match() # hack because get sessions analyses calls subjects info before it saves, # so need to save it first. alternative is to feed subject session info the subject_info object instead. # TO DO # self.save_subject_info() # check analyses table self.analyses_table = self.get_sessions_analyses() self.valid_track_table = self.check_track_data_validty() self.save_subject_info() def load_subject_info(self): with self.subject_info_file.open(mode='rb') as f: loaded_self = pickle.load(f) self.__dict__.update(loaded_self.__dict__) return self def save_subject_info(self): with self.subject_info_file.open(mode='wb') as f: pickle.dump(self, f, protocol=pickle.HIGHEST_PROTOCOL) def get_sessions_analyses(self): analyses_table = pd.DataFrame() for session in self.sessions: session_info = SubjectSessionInfo(self.subject, session) analyses_table = analyses_table.append(session_info.session_analyses_table) analyses_table.fillna(-1, inplace=True) return analyses_table def check_track_data_validty(self): df = pd.DataFrame(index=self.sessions, columns=['task', 'validity']) for session in self.sessions: if self.analyses_table.loc[session, 'track_data'] == 1: session_info = SubjectSessionInfo(self.subject, session) df.loc[session, 'task'] = session_info.task df.loc[session, 'validity'] = session_info.check_track_data_validity() return df # tetrode methods def update_clusters(self): self.session_clusters = self.get_session_clusters(overwrite=True) self.sort_tables = self.get_sort_tables(overwrite=True) self.save_subject_info() def get_sessions_tt_position(self): p = Path(self.results_path / f"{self.subject}_tetrodes.csv") if p.exists(): tt_pos = pd.read_csv(p) tt_pos['Date'] = pd.to_datetime(tt_pos['Date']).dt.strftime('%m%d%y') tt_pos = tt_pos.set_index('Date') tt_pos = tt_pos[['TT' + str(tt) + '_overall' for tt in self.tetrodes]] session_dates = {session: session.split('_')[2] for session in self.sessions} sessions_tt_pos = pd.DataFrame(index=self.sessions, columns=['tt_' + str(tt) for tt in self.tetrodes]) tt_pos_dates = tt_pos.index prev_date = tt_pos_dates[0] for session in self.sessions: date = session_dates[session] # below if is to correct for incorrect session dates for Cl if (date in ['010218', '010318', '010418']) & (self.subject == 'Cl'): date = date[:5] + '9' # this part accounts for missing dates by assigning it to the previous update if date in tt_pos_dates: sessions_tt_pos.loc[session] = tt_pos.loc[date].values prev_date = str(date) else: sessions_tt_pos.loc[session] = tt_pos.loc[prev_date].values return sessions_tt_pos else: print(f"Tetrode depth table not found at '{str(p)}'") return None def get_depth_wf(self): raise NotImplementedError def get_session_tt_wf(self, session, tt, cluster_ids=None, wf_lims=None, n_wf=200): import Sorting.sort_functions as sort_funcs if wf_lims is None: wf_lims = [-12, 20] tt_str = 'tt_' + str(tt) _sort_path = Path(self.session_paths[session]['Sorted'], tt_str, self.sorter) _cluster_spike_time_fn = _sort_path / 'spike_times.npy' _cluster_spike_ids_fn = _sort_path / 'spike_clusters.npy' _hp_data_fn = _sort_path / 'recording.dat' if _hp_data_fn.exists(): hp_data = sort_funcs.load_hp_binary_data(_hp_data_fn) else: # filter data hp_data = self._spk_filter_data(session, tt) spike_times = np.load(_cluster_spike_time_fn) spike_ids = np.load(_cluster_spike_ids_fn) wf_samps = np.arange(wf_lims[0], wf_lims[1]) if cluster_ids is None: cluster_ids = np.unique(spike_ids) n_clusters = len(cluster_ids) out = np.zeros((n_clusters, n_wf, len(wf_samps) * 4), dtype=np.float16) for cl_idx, cluster in enumerate(cluster_ids): cl_spk_times = spike_times[spike_ids == cluster] n_cl_spks = len(cl_spk_times) if n_wf == 'all': sampled_spikes = cl_spk_times elif n_wf > n_cl_spks: # Note that if number of spikes < n_wf, spikes will be repeated such that sampled_spikes has n_wf sampled_spikes = cl_spk_times[np.random.randint(n_cl_spks, size=n_wf)] else: # sample from spikes sampled_spikes = cl_spk_times[np.random.choice(np.arange(n_cl_spks), size=n_wf, replace=False)] for wf_idx, samp_spk in enumerate(sampled_spikes): out[cl_idx, wf_idx] = hp_data[:, wf_samps + samp_spk].flatten() return out def get_session_clusters(self, overwrite=False): _clusters_file = self.sorted_path / ('clusters_{}_{}.json'.format(self.sorter, self.subject)) if _clusters_file.exists() and not overwrite: # load with _clusters_file.open(mode='r') as f: session_clusters = json.load(f) else: # create session_clusters = {} for session in self.sessions: self._cluster_stats(session) session_clusters[session] = self._session_clusters(session) try: with _clusters_file.open(mode='w') as f: json.dump(session_clusters, f, indent=4) except TypeError: print(session) return session_clusters # cluster matching methods def get_tetrode_depth_match(self): tt_pos = self.sessions_tt_positions try: tt_depth_matchs = {tt: {} for tt in self.tetrodes} for tt in self.tetrodes: tt_str = 'tt_' + str(tt) tt_depths = tt_pos[tt_str].unique() for depth in tt_depths: tt_depth_matchs[tt][depth] = list(tt_pos[tt_pos[tt_str] == depth].index) return tt_depth_matchs except: print("Error Matching Sessions based on tetrode depth") print(sys.exc_info()[0], sys.exc_info()[1], sys.exc_info()[2].tb_lineno) traceback.print_exc(file=sys.stdout) return None def get_session_match_analysis(self): # # determine sessions/tt to match based on depth # matching_analyses = [] # for tt in np.arange(1, 17): # tt_depths = list(self.tt_depth_match[tt].keys()) # # for tt_d in tt_depths: # tt_d_sessions = self.tt_depth_match[tt][tt_d] # # check if there are more 2 or more sessions with units # n_cells_session = np.zeros(len(tt_d_sessions), dtype=int) # # for ii, session in enumerate(tt_d_sessions): # session_cell_ids = self.session_clusters[session]['cell_IDs'] # if tt in session_cell_ids.keys(): # n_cells_session[ii] = len(session_cell_ids[tt]) # sessions_with_cells = np.where(n_cells_session > 0)[0] # # if len(sessions_with_cells) >= 2: # n_units = n_cells_session[sessions_with_cells].sum() # matching_analyses.append((tt, tt_d, np.array(tt_d_sessions)[sessions_with_cells].tolist(), # n_units, n_cells_session[sessions_with_cells].tolist())) ## version as a dict ## matching_analyses = {} cnt = 0 for tt in np.arange(1, 17): tt_depths = list(self.tt_depth_match[tt].keys()) for tt_d in tt_depths: tt_d_sessions = self.tt_depth_match[tt][tt_d] # check if there are more 2 or more sessions with units n_cells_session = np.zeros(len(tt_d_sessions), dtype=int) for ii, session in enumerate(tt_d_sessions): session_cell_ids = self.session_clusters[session]['cell_IDs'] if tt in session_cell_ids.keys(): n_cells_session[ii] = len(session_cell_ids[tt]) sessions_with_cells = np.where(n_cells_session > 0)[0] n_units = n_cells_session[sessions_with_cells].sum() if len(sessions_with_cells) >= 1: matching_analyses[cnt] = {'tt': tt, 'd': tt_d, 'n_units': n_units, 'sessions': np.array(tt_d_sessions)[sessions_with_cells].tolist(), 'n_session_units': n_cells_session[sessions_with_cells].tolist()} cnt += 1 return matching_analyses def get_cluster_dists(self, overwrite=False, **kwargs): import Analyses.cluster_match_functions as cmf params = {'dim_reduc_method': 'umap', 'n_wf': 1000, 'zscore_wf': True} params.update(kwargs) cl_dists_fn = self.results_path / f"cluster_dists.pickle" if not cl_dists_fn.exists() or overwrite: matching_analyses = self.get_session_match_analysis() n_wf = params['n_wf'] dim_reduc_method = params['dim_reduc_method'] n_samps = 32 * 4 cluster_dists = {k: {} for k in np.arange(len(matching_analyses))} for analysis_id, analysis in matching_analyses.items(): tt, d, sessions = analysis['tt'], analysis['d'], analysis['sessions'] n_units, n_session_units = analysis['n_units'], analysis['n_session_units'] # Obtain cluster labels & mapping between labels [this part can be improved] cl_names = [] for session_num, session in enumerate(sessions): cluster_ids = self.session_clusters[session]['cell_IDs'][tt] for cl_num, cl_id in enumerate(cluster_ids): cl_name = f"{session}-tt{tt}_d{d}_cl{cl_id}" cl_names.append(cl_name) # load waveforms X = np.empty((0, n_wf, n_samps), dtype=np.float16) for session in sessions: cluster_ids = self.session_clusters[session]['cell_IDs'][tt] session_cell_wf = self.get_session_tt_wf(session, tt, cluster_ids=cluster_ids, n_wf=n_wf) X = np.concatenate((X, session_cell_wf), axis=0) if params['zscore_wf']: X = robust_zscore(X, axis=2) X[np.isnan(X)] = 0 X[np.isinf(X)] = 0 # Obtain cluster label namess clusters_label_num = np.arange(n_units).repeat(n_wf) # Reduce dims X_2d = cmf.dim_reduction(X.reshape(-1, X.shape[-1]), method=dim_reduc_method) # compute covariance and location clusters_loc, clusters_cov = cmf.get_clusters_moments(data=X_2d, labels=clusters_label_num) # compute distance metrics dist_mats = cmf.get_clusters_all_dists(clusters_loc, clusters_cov, data=X_2d, labels=clusters_label_num) # create data frames with labeled cluster names dists_mats_df = {} for metric, dist_mat in dist_mats.items(): dists_mats_df[metric] = pd.DataFrame(dist_mat, index=cl_names, columns=cl_names) # store clusters_loc = {k: v for k, v in zip(cl_names, clusters_loc)} clusters_cov = {k: v for k, v in zip(cl_names, clusters_cov)} cluster_dists[analysis_id] = {'analysis': analysis, 'cl_names': cl_names, 'clusters_loc': clusters_loc, 'clusters_cov': clusters_cov, 'dists_mats': dists_mats_df} print(".", end="") with cl_dists_fn.open(mode='wb') as f: pickle.dump(cluster_dists, f, protocol=pickle.HIGHEST_PROTOCOL) else: with cl_dists_fn.open(mode='rb') as f: cluster_dists = pickle.load(f) return cluster_dists def match_clusters(self, overwrite=False, require_subsets=True, **kwargs): import Analyses.cluster_match_functions as cmf params = {'dist_metric': 'pe', 'dist_metric_thr': 0.5, 'select_lower': True} params.update(kwargs) dist_metric = params['dist_metric'] dist_metric_thr = params['dist_metric_thr'] select_lower = params['select_lower'] if require_subsets: # rs -> require subsets, conservative in grouping clusters cl_match_results_fn = self.results_path / f"cluster_matches_rs_{params['dist_metric']}.pickle" else: # nrs -> doesn't require subsets, results in more sessions being grouped cl_match_results_fn = self.results_path / f"cluster_matches_nrs_{params['dist_metric']}.pickle" if not cl_match_results_fn.exists() or overwrite: cluster_dists = self.get_cluster_dists() matching_analyses = self.get_session_match_analysis() # [cluster_dists[k]['analysis'] for k in cluster_dists.keys()] cluster_match_results = {k: {} for k in np.arange(len(matching_analyses))} for analysis_id, analysis in matching_analyses.items(): dist_mat = cluster_dists[analysis_id]['dists_mats'][dist_metric] matches_dict = cmf.find_session_cl_matches(dist_mat, thr=dist_metric_thr, session_cl_sep="-", select_lower=select_lower) unique_matches_sets, unique_matches_dict = \ cmf.matches_dict_to_unique_sets(matches_dict, dist_mat, select_lower=select_lower, require_subsets=require_subsets) cluster_match_results[analysis_id] = {'analysis': analysis, 'matches_dict': unique_matches_dict, 'matches_sets': unique_matches_sets } with cl_match_results_fn.open(mode='wb') as f: pickle.dump(cluster_match_results, f, protocol=pickle.HIGHEST_PROTOCOL) else: with cl_match_results_fn.open(mode='rb') as f: cluster_match_results = pickle.load(f) return cluster_match_results # sort/unit tables methods def get_sort_tables(self, overwrite=False): _sort_table_ids = ['tt', 'valid', 'curated', 'summary'] _sort_table_files = {ii: Path(self.sorted_path, 'sort_{}_{}_{}'.format(ii, self.sorter, self.subject)) for ii in _sort_table_ids} if _sort_table_files['summary'].exists() and not overwrite: sort_tables = {ii: [] for ii in _sort_table_ids} for ii in _sort_table_ids: sort_tables[ii] = pd.read_csv(_sort_table_files[ii], index_col=0) else: sort_tables = self._sort_tables() for ii in _sort_table_ids: sort_tables[ii].to_csv(_sort_table_files[ii]) return sort_tables def get_units_table(self, overwrite=False): units_table_fn = self.results_path / f"units_table.csv" if not units_table_fn.exists() or overwrite: n_total_units = 0 for session in self.sessions: n_total_units += self.session_clusters[session]['n_cell'] n_total_units += self.session_clusters[session]['n_mua'] subject_units_table = pd.DataFrame(index=np.arange(n_total_units), columns=["subject_cl_id", "subject", "session", "task", "date", "subsession", "tt", "depth", "unique_cl_name", "session_cl_id", "unit_type", "n_matches_con", "subject_cl_match_con_id", "n_matches_lib", "subject_cl_match_lib_id", "snr", "fr", "isi_viol_rate"]) subject_units_table["subject"] = self.subject subject_cl_matches_con = self.match_clusters() matches_con_sets = {} matches_con_set_num = {} matches_con_dict = {} cnt = 0 for k, cma in subject_cl_matches_con.items(): matches_con_sets.update({cnt + ii: clx_set for ii, clx_set in enumerate(cma['matches_sets'])}) cnt = len(matches_con_sets) matches_con_dict.update(cma['matches_dict']) # creates a dict indexing each session to a set number for set_num, clm_set in matches_con_sets.items(): for cl in clm_set: matches_con_set_num[cl] = set_num subject_cl_matches_lib = self.match_clusters(require_subsets=False) matches_lib_sets = {} matches_lib_set_num = {} matches_lib_dict = {} cnt = 0 for k, cma in subject_cl_matches_lib.items(): matches_lib_sets.update({cnt + ii: clx_set for ii, clx_set in enumerate(cma['matches_sets'])}) cnt = len(matches_lib_sets) matches_lib_dict.update(cma['matches_dict']) for set_num, clm_set in matches_lib_sets.items(): for cl in clm_set: matches_lib_set_num[cl] = set_num try: unit_cnt = 0 for session in self.sessions: session_details = session.split("_") if len(session_details) > 3: subsession = session_details[3] else: subsession = "0000" session_clusters = self.session_clusters[session] n_session_cells = session_clusters['n_cell'] n_session_mua = session_clusters['n_mua'] n_session_units = n_session_cells + n_session_mua session_unit_idx = np.arange(n_session_units) + unit_cnt subject_units_table.loc[session_unit_idx, "subject_cl_id"] = session_unit_idx subject_units_table.loc[session_unit_idx, "session"] = session subject_units_table.loc[session_unit_idx, "task"] = session_details[1] subject_units_table.loc[session_unit_idx, "date"] = session_details[2] subject_units_table.loc[session_unit_idx, "subsession"] = subsession for unit_type in ['cell', 'mua']: for tt, tt_clusters in session_clusters[f'{unit_type}_IDs'].items(): if len(tt_clusters) > 0: depth = self.sessions_tt_positions.loc[session, f"tt_{tt}"] for cl in tt_clusters: cl_name = f"{session}-tt{tt}_d{depth}_cl{cl}" subject_units_table.loc[unit_cnt, "subject_cl_id"] = unit_cnt subject_units_table.loc[unit_cnt, "unique_cl_name"] = cl_name subject_units_table.loc[unit_cnt, "tt"] = tt subject_units_table.loc[unit_cnt, "depth"] = depth subject_units_table.loc[unit_cnt, "unit_type"] = unit_type subject_units_table.loc[unit_cnt, "session_cl_id"] = cl subject_units_table.loc[unit_cnt, "snr"] = session_clusters["clusters_snr"][tt][cl] subject_units_table.loc[unit_cnt, "fr"] = session_clusters["clusters_fr"][tt][cl] subject_units_table.loc[unit_cnt, "isi_viol_rate"] = \ session_clusters["clusters_isi_viol_rate"][tt][cl] if unit_type == 'cell': # add fields of conservative cluster matching (requires subset) if cl_name in matches_con_dict.keys(): cl_matches = matches_con_dict[cl_name][0] subject_units_table.loc[unit_cnt, "n_matches_con"] = len(cl_matches) subject_units_table.loc[unit_cnt, "subject_cl_match_con_id"] = \ matches_con_set_num[cl_name] # add fields of liberal cluster matching ( does not require subset matching) if cl_name in matches_lib_dict.keys(): cl_matches = matches_lib_dict[cl_name][0] subject_units_table.loc[unit_cnt, "n_matches_lib"] = len(cl_matches) subject_units_table.loc[unit_cnt, "subject_cl_match_lib_id"] = \ matches_lib_set_num[cl_name] unit_cnt += 1 except: print(session, tt, cl) traceback.print_exc(file=sys.stdout) subject_units_table.to_csv(units_table_fn) else: subject_units_table = pd.read_csv(units_table_fn, index_col=0) return subject_units_table # private methods def _spk_filter_data(self, session, tt): tt_str = 'tt_' + str(tt) sos, _ = pp_funcs.get_sos_filter_bank(['Sp'], fs=self.params['samp_rate']) sig = np.load(self.session_paths[session]['PreProcessed'] / (tt_str + '.npy')) hp_data = np.zeros_like(sig) for ch in range(4): hp_data[ch] = signal.sosfiltfilt(sos, sig[ch]) return hp_data def _session_paths(self, session): time_step = self.params['time_step'] samp_rate = self.params['samp_rate'] tmp = session.split('_') subject = tmp[0] task = tmp[1] date = tmp[2] paths = {'session': session, 'subject': subject, 'task': task, 'date': date, 'step': time_step, 'SR': samp_rate, 'Sorted': self.sorted_path / session, 'Raw': self.raw_path / session, 'PreProcessed': self.preprocessed_path / session, 'Results': self.results_path / session} paths['Results'].mkdir(parents=True, exist_ok=True) paths['behav_track_data'] = paths['Results'] / ('behav_track_data{}ms.pkl'.format(int(time_step * 1000))) # these paths are mostly legacy paths['Spike_IDs'] = paths['Results'] / 'Spike_IDs.json' for ut in ['Cell', 'Mua']: paths[ut + '_wf_info'] = paths['Results'] / (ut + '_wf_info.pkl') paths[ut + '_Spikes'] = paths['Results'] / (ut + '_Spikes.json') paths[ut + '_WaveForms'] = paths['Results'] / (ut + '_WaveForms.pkl') paths[ut + '_Bin_Spikes'] = paths['Results'] / ('{}_Bin_Spikes_{}ms.npy'.format(ut, int(time_step * 1000))) paths[ut + '_FR'] = paths['Results'] / ('{}_FR_{}ms.npy'.format(ut, int(time_step * 1000))) paths['cluster_spikes'] = paths['Results'] / 'spikes.npy' paths['cluster_spikes_ids'] = paths['Results'] / 'spikes_ids.json' paths['cluster_wf_info'] = paths['Results'] / 'wf_info.pkl' paths['cluster_binned_spikes'] = paths['Results'] / f'binned_spikes_{int(time_step * 1000)}ms.npy' paths['cluster_fr'] = paths['Results'] / 'fr.npy' paths['cluster_spike_maps'] = paths['Results'] / 'spike_maps.npy' paths['cluster_fr_maps'] = paths['Results'] / 'maps.npy' if task == 'OF': paths['cluster_OF_metrics'] = paths['Results'] / 'OF_metrics.csv' paths['cluster_OF_encoding_models'] = paths['Results'] / 'OF_encoding.csv' paths['cluster_OF_encoding_agg_coefs'] = paths['Results'] / 'OF_encoding_agg_coefs.csv' else: paths['trial_table'] = paths['Results'] / 'trial_table.csv' paths['event_table'] = paths['Results'] / 'event_table.csv' paths['track_table'] = paths['Results'] / 'track_table.csv' paths['event_time_series'] = paths['Results'] / 'event_time_series.csv' paths['not_valid_pos_samps'] = paths['Results'] / 'not_valid_pos_samps.npy' paths['pos_zones'] = paths['Results'] / 'pos_zones.npy' paths['pos_zones_invalid_samps'] = paths['Results'] / 'pos_zones_invalid_samps.npy' paths['trial_zone_rates'] = paths['Results'] / 'trial_zone_rates.npy' paths['zone_rates_comps'] = paths['Results'] / 'zone_rates_comps.csv' paths['zone_rates_remap'] = paths['Results'] / 'zone_rates_remap.csv' paths['bal_conds_seg_rates'] = paths['Results'] / 'bal_conds_seg_rates.csv' paths['zone_analyses'] = paths['Results'] / 'ZoneAnalyses.pkl' paths['TrialInfo'] = paths['Results'] / 'TrInfo.pkl' paths['TrialCondMat'] = paths['Results'] / 'TrialCondMat.csv' paths['TrLongPosMat'] = paths['Results'] / 'TrLongPosMat.csv' paths['TrLongPosFRDat'] = paths['Results'] / 'TrLongPosFRDat.csv' paths['TrModelFits2'] = paths['Results'] / 'TrModelFits2.csv' paths['CueDesc_SegUniRes'] = paths['Results'] / 'CueDesc_SegUniRes.csv' paths['CueDesc_SegDecRes'] = paths['Results'] / 'CueDesc_SegDecRes.csv' paths['CueDesc_SegDecSumRes'] = paths['Results'] / 'CueDesc_SegDecSumRes.csv' paths['PopCueDesc_SegDecSumRes'] = paths['Results'] / 'PopCueDesc_SegDecSumRes.csv' # plots directories # paths['Plots'] = paths['Results'] / 'Plots' # # paths['Plots'].mkdir(parents=True, exist_ok=True) # paths['SampCountsPlots'] = paths['Plots'] / 'SampCountsPlots' # # paths['SampCountsPlots'].mkdir(parents=True, exist_ok=True) # # paths['ZoneFRPlots'] = paths['Plots'] / 'ZoneFRPlots' # # paths['ZoneFRPlots'].mkdir(parents=True, exist_ok=True) # # paths['ZoneCorrPlots'] = paths['Plots'] / 'ZoneCorrPlots' # # paths['ZoneCorrPlots'].mkdir(parents=True, exist_ok=True) # paths['SIPlots'] = paths['Plots'] / 'SIPlots' # # paths['SIPlots'].mkdir(parents=True, exist_ok=True) # # paths['TrialPlots'] = paths['Plots'] / 'TrialPlots' # # paths['TrialPlots'].mkdir(parents=True, exist_ok=True) # # paths['CueDescPlots'] = paths['Plots'] / 'CueDescPlots' # # paths['CueDescPlots'].mkdir(parents=True, exist_ok=True) return paths def _cluster_stats(self, session): import Sorting.sort_functions as sort_funcs sort_path = self.session_paths[session]['Sorted'] for tt in self.tetrodes: tt_str = 'tt_' + str(tt) _cluster_spike_time_fn = Path(sort_path, tt_str, self.sorter, 'spike_times.npy') _cluster_spike_ids_fn = Path(sort_path, tt_str, self.sorter, 'spike_clusters.npy') _cluster_groups_fn = Path(sort_path, ('tt_' + str(tt)), self.sorter, 'cluster_group.tsv') _cluster_stats_fn = Path(sort_path, ('tt_' + str(tt)), self.sorter, 'cluster_stats.csv') _hp_data_fn = Path(sort_path, tt_str, self.sorter, 'recording.dat') _hp_data_info_fn = Path(sort_path, tt_str, tt_str + '_info.pickle') _cluster_stats_fn2 = Path(sort_path, tt_str, self.sorter, 'cluster_stats_curated.csv') try: # load cluster_groups =
pd.read_csv(_cluster_groups_fn, sep='\t')
pandas.read_csv
#!/usr/bin/env python from __future__ import print_function from .tabulate import tabulate as tabulate_ import sys import pandas as pd import re import datetime def _get_version(): import ph._version return ph._version.__version__ def print_version(): print(_get_version()) # Command line parsing of (1) --abc and (2) --abc=def KWARG = re.compile("^--[a-z0-9_-]+$") KWARG_WITH_VALUE = re.compile("^--[a-z0-9_-]+=") USAGE_TEXT = """ ph is a command line tool for streaming csv data. If you have a csv file `a.csv`, you can pipe it through `ph` on the command line by using $ cat a.csv | ph columns x y | ph eval "z = x**2 - y" | ph show Use ph help [command] for help on the individual commands. A list of available commands follows. """ COMMANDS = {} DOCS = {} def _gpx(fname): try: import gpxpy except ImportError: sys.exit("ph gpx needs gpxpy, pip install ph[gpx]") def from_trackpoint(tp=None): if tp is None: return "time", "latitude", "longitude", "elevation", "distance" p = tp.point return str(p.time), p.latitude, p.longitude, p.elevation, tp.distance_from_start with open(fname, "r") as fin: gpx = gpxpy.parse(fin) data = gpx.get_points_data() columns = from_trackpoint() dfdata = [from_trackpoint(tp) for tp in data] return pd.DataFrame(dfdata, columns=columns) def _tsv(*args, **kwargs): kwargs["sep"] = "\t" return pd.read_csv(*args, **kwargs) # These are all lambdas because they lazy load, and some of these # readers are introduced in later pandas. READERS = { "csv": pd.read_csv, "clipboard": pd.read_clipboard, "fwf": pd.read_fwf, "json": pd.read_json, "html": pd.read_html, "tsv": _tsv, "gpx": _gpx, } try: READERS["excel"] = pd.read_excel READERS["xls"] = pd.read_excel READERS["odf"] = pd.read_excel except AttributeError: pass try: READERS["hdf5"] = pd.read_hdf except AttributeError: pass try: READERS["feather"] = pd.read_feather except AttributeError: pass try: READERS["parquet"] = pd.read_parquet except AttributeError: pass try: READERS["orc"] = pd.read_orc except AttributeError: pass try: READERS["msgpack"] = pd.read_msgpack except AttributeError: pass try: READERS["stata"] = pd.read_stata except AttributeError: pass try: READERS["sas"] = pd.read_sas except AttributeError: pass try: READERS["spss"] = pd.read_spss except AttributeError: pass try: READERS["pickle"] = pd.read_pickle except AttributeError: pass try: READERS["gbq"] = pd.read_gbq except AttributeError: pass try: READERS["google"] = pd.read_gbq except AttributeError: pass try: READERS["bigquery"] = pd.read_gb except AttributeError: pass WRITERS = { "csv": "to_csv", "fwf": "to_fwf", "json": "to_json", "html": "to_html", "clipboard": "to_clipboard", "xls": "to_excel", "odf": "to_excel", "hdf5": "to_hdf", "feather": "to_feather", "parquet": "to_parquet", "orc": "to_orc", "msgpack": "to_msgpack", "stata": "to_stata", "sas": "to_sas", "spss": "to_spss", "pickle": "to_pickle", "gbq": "to_gbq", "google": "to_gbq", "bigquery": "to_gbq", # extras "tsv": "to_csv", } FALSY = ("False", "false", "No", "no", "0", False, 0, "None") TRUTHY = ("True", "true", "Yes", "yes", "1", True, 1) def _assert_col(df, col, caller=None): if col not in df.columns: if caller is not None: sys.exit("ph {}: Unknown column {}".format(caller, col)) sys.exit("Unknown column {}".format(col)) def _assert_cols(df, cols, caller=None): for col in cols: _assert_col(df, col, caller=caller) def register(fn, name=None): if name is None: name = fn.__name__ COMMANDS[name] = fn DOCS[name] = fn.__doc__ return fn def registerx(name): def inner(fn): register(fn, name) return fn return inner @register def dataset(dset=None): """Load dataset as csv. Usage: ph dataset linnerud | ph describe """ try: import sklearn.datasets except ImportError: sys.exit("You need scikit-learn. Install ph[data].") REALDATA = { "olivetti_faces": sklearn.datasets.fetch_olivetti_faces, "20newsgroups": sklearn.datasets.fetch_20newsgroups, "20newsgroups_vectorized": sklearn.datasets.fetch_20newsgroups_vectorized, "lfw_people": sklearn.datasets.fetch_lfw_people, "lfw_pairs": sklearn.datasets.fetch_lfw_pairs, "covtype": sklearn.datasets.fetch_covtype, "rcv1": sklearn.datasets.fetch_rcv1, "kddcup99": sklearn.datasets.fetch_kddcup99, "california_housing": sklearn.datasets.fetch_california_housing, } TOYDATA = { "boston": sklearn.datasets.load_boston, "iris": sklearn.datasets.load_iris, "diabetes": sklearn.datasets.load_diabetes, "digits": sklearn.datasets.load_digits, "linnerud": sklearn.datasets.load_linnerud, "wine": sklearn.datasets.load_wine, "breast_cancer": sklearn.datasets.load_breast_cancer, } if dset is None: print("type,name") print("\n".join("{},{}".format("real", k) for k in REALDATA)) print("\n".join("{},{}".format("toy", k) for k in TOYDATA)) sys.exit() if dset not in TOYDATA.keys() | REALDATA.keys(): sys.exit("Unknown dataset {}. See ph help dataset.".format(dset)) if dset in TOYDATA: data = TOYDATA[dset]() else: data = REALDATA[dset]() try: df = pd.DataFrame(data.data, columns=data.feature_names) except AttributeError: df = pd.DataFrame(data.data) try: df["target"] = pd.Series(data.target) except Exception: pass pipeout(df) @register def diff(*cols, periods=1, axis=0): df = pipein() if not cols: df = df.diff(periods=periods, axis=axis) else: _assert_cols(df, cols, "diff") columns = list(cols) df[columns] = df[columns].diff(periods=periods, axis=axis) pipeout(df) @register def dropna(axis=0, how="any", thresh=None): """Remove rows (or columns) with N/A values. Argument: --axis=0 Defaults to axis=0 (columns), use --axis=1 to remove rows. Argument: --how=any Defaults to how='any', which removes columns (resp. rows) containing nan values. Use how='all' to remove columns (resp. rows) containing only nan values. Argument: --thresh=5 If --thresh=x is specified, will delete any column (resp. row) with fewer than x non-na values. Usage: cat a.csv | ph dropna cat a.csv | ph dropna --axis=1 # for row-wise cat a.csv | ph dropna --thresh=5 # keep cols with >= 5 non-na cat a.csv | ph dropna --how=all # delete only if all vals na """ try: axis = int(axis) if axis not in (0, 1): sys.exit("ph dropna --axis=0 or --axis=1, not {}".format(axis)) except ValueError: sys.exit("ph dropna --axis=0 or --axis=1, not {}".format(axis)) if thresh is not None: try: thresh = int(thresh) except ValueError: sys.exit("ph dropna --thresh=0 or --thresh=1, not {}".format(thresh)) df = pipein() try: df = df.dropna(axis=axis, how=how, thresh=thresh) except Exception as err: sys.exit(str(err)) pipeout(df) def _safe_out(output): """Prints output to standard out, catching broken pipe.""" try: print(output) except BrokenPipeError: try: sys.stdout.close() except IOError: pass try: sys.stderr.close() except IOError: pass def pipeout(df, sep=",", index=False, *args, **kwargs): csv = df.to_csv(sep=sep, index=index, *args, **kwargs) output = csv.rstrip("\n") _safe_out(output) def pipein(ftype="csv", **kwargs): skiprows = kwargs.get("skiprows") if skiprows is not None: try: skiprows = int(skiprows) if skiprows < 0: raise ValueError("Negative") except ValueError: sys.exit("skiprows must be a non-negative int, not {}".format(skiprows)) kwargs["skiprows"] = skiprows if kwargs.get("sep") == "\\t": kwargs["sep"] = "\t" try: return READERS[ftype](sys.stdin, **kwargs) except pd.errors.EmptyDataError: return pd.DataFrame() except pd.errors.ParserError as err: sys.exit(str(err)) @register def fillna(value=None, method=None, limit=None): """Fill na values with a certain value or method, at most `limit` many. Takes either a value, or a method using (e.g.) --method=ffill. Argument: value If provided, replaces all N/A values with prescribed value. Argument: --method=pad If provided, value cannot be provided. Allowed methods are backfill, bfill, pad, ffill Argument: --limit=x If provided, limits number of consecutive N/A values to fill. Usage: cat a.csv | ph fillna 999.75 cat a.csv | ph fillna -1 cat a.csv | ph fillna --method=pad cat a.csv | ph fillna --method=pad --limit=5 """ if limit is not None: try: limit = int(limit) except ValueError: sys.exit("--limit=x must be an integer, not {}".format(limit)) METHODS = ("backfill", "bfill", "pad", "ffill") if method is not None: if method not in METHODS: sys.exit("method must be one of {}, not {}".format(METHODS, method)) pipeout(pipein().fillna(method=method, limit=limit)) elif value is not None: value = __tryparse(value) pipeout(pipein().fillna(value=value, limit=limit)) else: sys.exit("'ph fillna' needs exactly one of value and method") @register def query(expr): """Using pandas queries. Usage: cat a.csv | ph query "x > 5" """ df = pipein() new_df = df.query(expr) pipeout(new_df) @register def grep(*expr, case=True, na=float("nan"), regex=True, column=None): """Grep (with regex) for content in csv file. Usage: cat a.csv | ph grep 0 cat a.csv | ph grep search_string cat a.csv | ph grep "A|B" # search hits a or b cat a.csv | ph grep "a|b" --case=False # case insensitive cat a.csv | ph grep 4 --column=x To disable regex (e.g. simple search for "." or "*" characters, use --regex=False). Search only in a specific column with --column=col. Supports regex search queries such as "0-9A-F" and "\\d" (possibly double-escaped.) """ df = pipein() if case is True or case in TRUTHY: case = True elif case in FALSY: case = False else: sys.exit("ph grep: Unknown --case={} should be True or False".format(case)) if regex is True or regex in TRUTHY: regex = True elif regex in FALSY: regex = False else: sys.exit("ph grep: Unknown --regex={} should be True or False".format(regex)) if column is not None: _assert_col(df, column, "grep") expr = " ".join(str(e) for e in expr) # force string input try: import numpy except ImportError: sys.exit("numpy needed for grep. pip install numpy") retval = df[ numpy.logical_or.reduce( [ df[col].astype(str).str.contains(expr, case=case, na=na, regex=regex) for col in (df.columns if column is None else [column]) ] ) ] pipeout(retval) @register def appendstr(col, s, newcol=None): """Special method to append a string to the end of a column. Usage: cat e.csv | ph appendstr year -01-01 | ph date year """ df = pipein() if newcol is None: newcol = col df[newcol] = df[col].astype(str) + s pipeout(df) @register def split(col, pat=" "): df = pipein() _assert_col(df, col, "split") df[[col, col + "_rhs"]] = df[col].str.split(pat=pat, n=1, expand=True) pipeout(df) @register def strip(*cols, lstrip=False, rstrip=False): """Strip (trim) a string. Usage: cat x.csv | ph strip cat x.csv | ph strip --lstrip=True cat x.csv | ph strip --rstrip=True """ df = pipein() if not cols: cols = list(df.columns) else: cols = list(cols) _assert_cols(df, cols, "strip") for c in cols: if lstrip in TRUTHY: df[c] = df[c].str.lstrip() elif rstrip in TRUTHY: df[c] = df[c].str.rstrip() else: df[c] = df[c].str.strip() pipeout(df) @register def removeprefix(col, prefix=" "): """Remove prefix of contents of a column. Usage: cat a.csv | ph removeprefix col1 .. See also @removesuffix @strip """ prefix = str(prefix) plen = len(prefix) df = pipein() _assert_col(df, col, "removeprefix") df[col] = df[col].apply( lambda s: str(s)[plen:] if str(s).startswith(prefix) else str(s) ) pipeout(df) @register def removesuffix(col, suffix=" "): """Remove suffix of contents of a column. Usage: cat a.csv | ph removesuffix col1 .. See also @removeprefix @strip """ suffix = str(suffix) plen = len(suffix) df = pipein() _assert_col(df, col, "removesuffix") df[col] = df[col].apply( lambda s: str(s)[:-plen] if str(s).endswith(suffix) else str(s) ) pipeout(df) @register def astype(type, column=None, newcolumn=None): """Cast a column to a different type. Usage: cat a.csv | ph astype double x [new_x] """ df = pipein() try: if column is None: df = df.astype(type) elif newcolumn is not None: df[newcolumn] = df[column].astype(type) else: df[column] = df[column].astype(type) except ValueError as err: sys.exit("Could not convert to {}: {}".format(type, err)) pipeout(df) @register def dtypes(t=None): """If no argument is provided, output types, otherwise filter on types. If no argument is provided, output a csv with two columns, "column" and "dtype". The "column" column contains the names of the columns in the input csv and the "dtype" column contains their respective types. If an argument is provided, all columns with the prescribed type is output. Usage: cat a.csv | ph dtypes cat a.csv | ph dtypes float64 """ if t is None: df = pipein() newdf = pd.DataFrame(
pd.Series(df.columns)
pandas.Series
import random import numpy as np import pandas as pd import matplotlib.pyplot as plt import operator import openpyxl class DEError(Exception): '''Base class for throw exception error in this module.''' pass class InitializationError(DEError): '''Exception for initialization errors.''' pass class DEManager(): def __init__(self, run, de_class, kw_args, excel_results='results.xlsx'): self.__de_class = de_class self.__run = run self.__kw_args = kw_args self._df_res_columns = ['ID', 'Population_Size', 'Mutation_Factor', 'Crossover_Prob', 'Max_Iter', 'Max_FES', 'Min_Error', 'Min_Error_Length', 'Run', 'Iterations', 'FES', 'Eval', 'XBest'] self._df_res = pd.DataFrame(columns=self._df_res_columns) self._res_path = excel_results def run(self): final_results = [] # For each configuration for i in range(len(self.__kw_args)): results = [] # Run {self.run} times for j in range(self.__run): #Instanciate DE DE = eval(self.__de_class)(**self.__kw_args[i]) DE.fit() # Runs DE instance run_results = DE.get_results() # Get results results.append(run_results) # Save results # Save result in df res_to_df = [i, self.__kw_args[i].get('population_size'), self.__kw_args[i].get('mutation_factor'), self.__kw_args[i].get('cross_prob'), self.__kw_args[i].get('max_it'), self.__kw_args[i].get('max_fes'), self.__kw_args[i].get('min_error'), self.__kw_args[i].get('min_error_length'), j] res_to_df.extend(run_results[:-1]) res_to_df.append('; '.join([str(x) for x in run_results[-1]])) res_to_df =
pd.Series(res_to_df, index=self._df_res_columns)
pandas.Series
import pandas as pd import numpy as np import pdb # Necessary for matching filenames downloaded from the # CONAPO website STATES = ["Aguascalientes", "BajaCalifornia", "BajaCaliforniaSur", "Campeche", "Chiapas", "Chihuahua", "Coahuila", "Colima", "DistritoFederal", "Durango", "Mexico", "Guanajuato", "Guerrero", "Hidalgo", "Jalisco", "Michoacan", "Morelos", "Nayarit", "NuevoLeon", "Oaxaca", "Puebla", "Queretaro", "QuintanaRoo", "SanLuisPotosi", "Sinaloa", "Sonora", "Tabasco", "Tamaulipas", "Tlaxcala", "Veracruz", "Yucatan", "Zacatecas"] years = range(2010, 2031) def sex(x): ''' Switch statement to translate sex ''' return { 'Ambos': 'Total', 'Hombres': 'Males', 'Mujeres' : 'Females', }[x] def read_colmex(sheet, year): xlsxfile = pd.ExcelFile("data/" + "colmex" + "/" + str(year) + "total" + ".xls") data = xlsxfile.parse(sheet, index_col=None, header=None, skiprows = 9, skip_footer = 1) data = data[pd.notnull(data[0])] data = data.iloc[0:len(data), 0:3] data['Year'] = year data.columns = ['Code', 'MunName', 'Population', 'Year'] del data['MunName'] data['Sex'] = { 'Total': 'Total', 'Hombres': 'Males', 'Mujeres' : 'Females', }[sheet] return data df_colmex = pd.DataFrame() for year in range(1990, 2010): df_colmex = df_colmex.append(read_colmex("Total", year)) df_colmex = df_colmex.append(read_colmex("Hombres", year)) df_colmex = df_colmex.append(read_colmex("Mujeres", year)) #df[['Code', 'Population']] = df[['Code', 'Population']].apply(lambda col: np.round(col).astype(int)) #df[['Code', 'Population']] = df[['Code', 'Population']].apply(lambda col: col.astype(float)) df_colmex.Population[df_colmex.Year > 2005] = np.nan df_colmex.to_csv('clean-data/municipio-population1990-2009.csv', encoding='utf-8', index = False) df_conapo = pd.DataFrame() #rows with data star from the 17th row offset = 16 #2010-2030 excluding the colums for sex, year, etc ncols = 25 for file in STATES: xlsxfile = pd.ExcelFile("data/" + "municipalities" + "/" + file + ".xlsx") data = xlsxfile.parse(file, index_col=None, header=None) #Get rid of all the blank rows data = data[pd.notnull(data[4])] for i in range(offset, len(data), 5): x = pd.DataFrame(data.iloc[(i):(i + 5), 4:ncols].sum()) x['Code'] = data.iloc[(i)][0]#.astype(int) x['Sex'] = sex(data.iloc[(i)][2]) x['Year'] = years df_conapo = df_conapo.append(x) df_conapo .columns = ['Population', 'Code', 'Sex', 'Year'] df_conapo [['Population', 'Code']] = \ df_conapo [['Population', 'Code']].\ apply(lambda col: np.round(col).astype(int)) df_conapo .to_csv('clean-data/municipio-population2010-2030.csv', encoding='utf-8', index = False) df = df_colmex.append(df_conapo) df = df.sort(['Code', 'Sex', 'Year']) df['Code2'] = df['Code'] #Replace San Ignacio Cerro Gordo with Arandas to match the population data df.Code2[df.Code2 == 14125] = 14008 #Tulum was created from Solidaridad df.Code2[df.Code2 == 23009] = 23008 #Bacalar was created from <NAME> df.Code2[df.Code2 == 23010] = 23004 del df['Code'] #pdb.set_trace() df= df.groupby(['Code2', 'Sex', 'Year']).aggregate(np.sum) df =
pd.DataFrame(df)
pandas.DataFrame
from context import dero import dero.data.ff.create.sort as ff_sort import pandas as pd from pandas.util.testing import assert_frame_equal from pandas import Timestamp from numpy import nan import numpy import datetime class DataFrameTest: df_3_fac = pd.DataFrame([ (10516, 'a', '1/1/2000', 1.01, .51, 1000), (10516, 'a', '1/2/2000', 1.02, .52, 2000), (10516, 'a', '1/3/2000', 1.03, .53, 3000), (10516, 'a', '1/4/2000', 1.04, .54, 4000), (10516, 'b', '1/1/2000', 1.05, 1.55, 50000), (10516, 'b', '1/2/2000', 1.06, 1.56, 60000), (10516, 'b', '1/3/2000', 1.07, 1.57, 70000), (10516, 'b', '1/4/2000', 1.08, 1.58, 80000), (10517, 'a', '1/1/2000', 1.09, .59, 9000), (10517, 'a', '1/2/2000', 1.10, .60, 10000), (10517, 'a', '1/3/2000', 1.11, .61, 11000), (10517, 'a', '1/4/2000', 1.12, .62, 12000), (10517, 'b', '1/1/2000', 1.13, .63, 13000), (10517, 'b', '1/2/2000', 1.14, .64, 14000), (10517, 'b', '1/3/2000', 1.15, .65, 15000), (10517, 'b', '1/4/2000', 1.16, .66, 16000), (10518, 'a', '1/1/2000', 1.17, .67, 17000), (10518, 'a', '1/2/2000', 1.18, .68, 18000), (10518, 'a', '1/3/2000', 1.19, .69, 19000), (10518, 'a', '1/4/2000', 1.20, .70, 20000), (10518, 'b', '1/1/2000', 1.21, .71, 21000), (10518, 'b', '1/2/2000', 1.22, .72, 22000), (10518, 'b', '1/3/2000', 1.23, .73, 23000), (10518, 'b', '1/4/2000', 1.24, .74, 24000), ], columns=['PERMNO', 'byvar', 'Date', 'RET', 'be/me', 'me']) df_3_fac['Date'] = pd.to_datetime(df_3_fac['Date']) class TestCalculateFFFactors(DataFrameTest): def test_create_portfolios(self): expect_df = pd.DataFrame(data=[ (10516, 'a', Timestamp('2000-01-01 00:00:00'), 1.01, 0.51, 1000, 1, Timestamp('2000-01-01 00:00:00'), 1, Timestamp('2000-01-01 00:00:00')), (10516, 'a', Timestamp('2000-01-02 00:00:00'), 1.02, 0.52, 2000, 1, Timestamp('2000-01-01 00:00:00'), 1, Timestamp('2000-01-01 00:00:00')), (10516, 'a', Timestamp('2000-01-03 00:00:00'), 1.03, 0.53, 3000, 1, Timestamp('2000-01-01 00:00:00'), 1, Timestamp('2000-01-01 00:00:00')), (10516, 'a', Timestamp('2000-01-04 00:00:00'), 1.04, 0.54, 4000, 1, Timestamp('2000-01-01 00:00:00'), 1, Timestamp('2000-01-01 00:00:00')), (10516, 'b', Timestamp('2000-01-01 00:00:00'), 1.05, 1.55, 50000, 3, Timestamp('2000-01-01 00:00:00'), 2, Timestamp('2000-01-01 00:00:00')), (10516, 'b', Timestamp('2000-01-02 00:00:00'), 1.06, 1.56, 60000, 3, Timestamp('2000-01-01 00:00:00'), 2,
Timestamp('2000-01-01 00:00:00')
pandas.Timestamp
# -*- coding: utf-8 -*- from ftplib import FTP from urllib.parse import urlparse import errno import os import shutil import sys import tarfile import urllib.request import zipfile from datapackage import Package, Resource from geojson import Feature, FeatureCollection, dump, load from shapely.geometry import shape import pandas as pd import paramiko import toml def infer_resources(directory="data/elements"): """ Method looks at all files in `directory` and creates datapackage.Resource object that will be stored Parameters ---------- directory: string Path to directory from where resources are inferred """ if not os.path.exists("resources"): os.makedirs("resources") # create meta data resources for f in os.listdir(directory): r = Resource({"path": os.path.join(directory, f)}) r.infer() r.save(os.path.join("resources", f.replace(".csv", ".json"))) def update_package_descriptor(): """ """ p = Package("datapackage.json") for f in os.listdir("resources"): path = os.path.join("resources", f) r = Resource(path) p.add_resource(r.descriptor) p.commit() os.remove(path) os.rmdir("resources") p.save("datapackage.json") def infer_metadata( package_name="default-name", keep_resources=False, foreign_keys={ "bus": [ "volatile", "dispatchable", "storage", "load", "reservoir", "shortage", "excess", ], "profile": ["load", "volatile", "ror"], "from_to_bus": ["connection", "line", "conversion"], "chp": ["backpressure", "extraction", "chp"], }, path=None, ): """ Add basic meta data for a datapackage Parameters ---------- package_name: string Name of the data package keep_resource: boolean Flag indicating of the resources meta data json-files should be kept after main datapackage.json is created. The reource meta data will be stored in the `resources` directory. foreign_keys: dict Dictionary with foreign key specification. Keys for dictionary are: 'bus', 'profile', 'from_to_bus'. Values are list with strings with the name of the resources path: string Absoltue path to root-folder of the datapackage """ current_path = os.getcwd() if path: print("Setting current work directory to {}".format(path)) os.chdir(path) p = Package() p.descriptor["name"] = package_name p.descriptor["profile"] = "tabular-data-package" p.commit() if not os.path.exists("resources"): os.makedirs("resources") # create meta data resources elements if not os.path.exists("data/elements"): print( "No data path found in directory {}. Skipping...".format( os.getcwd() ) ) else: for f in os.listdir("data/elements"): r = Resource({"path": os.path.join("data/elements", f)}) r.infer() r.descriptor["schema"]["primaryKey"] = "name" if r.name in foreign_keys.get("bus", []): r.descriptor["schema"]["foreignKeys"] = [ { "fields": "bus", "reference": {"resource": "bus", "fields": "name"}, } ] if r.name in foreign_keys.get("profile", []): r.descriptor["schema"]["foreignKeys"].append( { "fields": "profile", "reference": {"resource": r.name + "_profile"}, } ) elif r.name in foreign_keys.get("from_to_bus", []): r.descriptor["schema"]["foreignKeys"] = [ { "fields": "from_bus", "reference": {"resource": "bus", "fields": "name"}, }, { "fields": "to_bus", "reference": {"resource": "bus", "fields": "name"}, }, ] elif r.name in foreign_keys.get("chp", []): r.descriptor["schema"]["foreignKeys"] = [ { "fields": "fuel_bus", "reference": {"resource": "bus", "fields": "name"}, }, { "fields": "electricity_bus", "reference": {"resource": "bus", "fields": "name"}, }, { "fields": "heat_bus", "reference": {"resource": "bus", "fields": "name"}, }, ] r.commit() r.save(os.path.join("resources", f.replace(".csv", ".json"))) p.add_resource(r.descriptor) # create meta data resources elements if not os.path.exists("data/sequences"): print( "No data path found in directory {}. Skipping...".format( os.getcwd() ) ) else: for f in os.listdir("data/sequences"): r = Resource({"path": os.path.join("data/sequences", f)}) r.infer() r.commit() r.save(os.path.join("resources", f.replace(".csv", ".json"))) p.add_resource(r.descriptor) p.commit() p.save("datapackage.json") if not keep_resources: shutil.rmtree("resources") os.chdir(current_path) def package_from_resources(resource_path, output_path, clean=True): """ Collects resource descriptors and merges them in a datapackage.json Parameters ---------- resource_path: string Path to directory with resources (in .json format) output_path: string Root path of datapackage where the newly created datapckage.json is stored clean: boolean If true, resources will be deleted """ p = Package() p.descriptor["profile"] = "tabular-data-package" p.commit() for f in os.listdir(resource_path): path = os.path.join(resource_path, f) r = Resource(path) p.add_resource(r.descriptor) p.commit() os.remove(path) if clean: os.rmdir(resource_path) p.save(os.path.join(output_path, "datapackage.json")) def _ftp(remotepath, localpath, hostname, username=None, passwd=""): """ Download data with FTP Parameters ---------- remotepath: str The remote file to copy. localpath: str The destination path on localhost. hostname: str The server to connect to. username: str The username to authenticate as. passwd: str The password to authenticate with. """ ftp = FTP(hostname) if username: ftp.login(user=username, passwd=passwd) else: ftp.login() ftp.retrbinary("RETR " + remotepath, open(localpath, "wb").write) ftp.quit() return def _sftp( remotepath, localpath, hostname="", username="rutherford", password="" ): """ Download data with SFTP Parameters ---------- remotepath: str The remote file to copy. localpath: str The destination path on localhost. hostname: str The server to connect to. username: The username to authenticate as. """ client = paramiko.SSHClient() client.load_host_keys(os.path.expanduser("~/.ssh/known_hosts")) client.connect(hostname=hostname, username=username, password=password) sftp = client.open_sftp() sftp.get(remotepath, localpath) sftp.close() client.close() return def _http(url, path): """ Download data with HTTP Parameters ---------- url: str Url of file to be downloaded. path: str The destination path on localhost. """ user_agent = ( "Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.9.0.7) " "Gecko/2009021910 " "Firefox/3.0.7" ) headers = {"User-Agent": user_agent} request = urllib.request.Request(url, None, headers) f = urllib.request.urlopen(request) data = f.read() with open(path, "wb") as code: code.write(data) return def download_data(url, directory="cache", unzip_file=None, **kwargs): """ Downloads data and stores it in specified directory Parameters ---------- url: str Url of file to be downloaded. directory: str Name of directory where to store the downloaded data. Default is 'cache'- unzip_file: str Regular or directory file name to be extracted from zip source. kwargs: Additional keyword arguments. """ scheme, netloc, path, params, query, fragment = urlparse(url) if not unzip_file: filepath = os.path.join(directory, os.path.basename(path)) copypath = filepath else: filepath = os.path.join(directory, unzip_file) copypath = os.path.join(directory, os.path.basename(path)) if os.path.exists(filepath): return filepath else: if scheme in ["http", "https"]: _http(url, copypath) elif scheme == "sftp": _sftp(path, copypath, hostname=netloc, **kwargs) elif scheme == "ftp": _ftp(path, copypath, hostname=netloc, **kwargs) else: raise ValueError( "Cannot download data. Not supported scheme \ in {}.".format( url ) ) if unzip_file is not None: def member(x): return x.startswith(unzip_file.split("/")[0]) if copypath.endswith(".zip"): zipped = zipfile.ZipFile(copypath, "r") if unzip_file.endswith("/"): zipped.extractall( filepath, members=list(filter(member, zipped.namelist())) ) else: zipped.extract(unzip_file, directory) zipped.close() elif copypath.endswith(".tar.gz"): tar = tarfile.open(copypath, "r:gz") if unzip_file.endswith("/"): tar.extractall( filepath, members=list( filter(member, [t.name for t in tar.getmembers()]) ), ) else: tar.extract(unzip_file, directory) tar.close() os.remove(copypath) return filepath def timeindex(year, periods=8760, freq='H'): """ Create pandas datetimeindex. Parameters ---------- year: string Year of the index periods: string Number of periods, default: 8760 freq: string Freq of the datetimeindex, default: 'H' """ idx = pd.date_range(start=year, periods=periods, freq=freq) return idx def initialize(config, directory='.'): """ Initialize datapackage by reading config file and creating required directories (data/elements, data/sequences etc.) if directories are not specified in the config file, the default directory setup up will be used. """ sub_directories = { "elements": "data/elements", "sequences": "data/sequences", "geometries": "data/geometries", } if not config: try: default = "config.json" config = read_build_config(default) except FileNotFoundError as e: message = ( "{}\n" "Cause:\n" "Default path `{}` of config file could not be found!" ).format(e, default) raise FileNotFoundError(message).with_traceback( sys.exc_info()[2] ) from None sub_directories.update(config.get("sub-directories", {})) for subdir in sub_directories.values(): try: os.makedirs(os.path.join(directory, subdir)) except OSError as e: if e.errno != errno.EEXIST: raise return sub_directories def input_filepath(file, directory="archive/"): """ """ file_path = os.path.join(directory, file) if not os.path.exists(file_path): raise FileNotFoundError( """File with name {} does not exist. Please make sure you download the file from the sources listed and store it in the directory: {}. """.format( file_path, directory ) ) return file_path def read_build_config(file="build.toml"): """ Read config build file in toml format Parameters ---------- file: string String with name of config file """ try: config = toml.load(file) # create paths if config.get("directories"): config["directories"] = { k: os.path.join(os.getcwd(), v) for k, v in config["directories"].items() } except Exception as e: message = ( "{}\n" "Cause:\n" "Build config file '{}' could not be read." ).format(e, file) raise type(e)(message).with_traceback(sys.exc_info()[2]) from None return config def read_sequences(filename, directory="data/sequences"): """ Reads sequence resources from the datapackage Parameters ---------- filename: string Name of the sequences to be read, for example `load_profile.csv` directory: string Directory from where the file should be read. Default: `data/sequences` """ path = os.path.join(directory, filename) if os.path.exists(path): sequences = pd.read_csv( path, sep=";", index_col=["timeindex"], parse_dates=True ) else: sequences = pd.DataFrame(columns=["timeindex"]).set_index("timeindex") return sequences def read_elements(filename, directory="data/elements"): """ Reads element resources from the datapackage Parameters ---------- filename: string Name of the elements to be read, for example `load.csv` directory: string Directory where the file is located. Default: `data/elements` Returns ------- pd.DataFrame """ path = os.path.join(directory, filename) if os.path.exists(path): elements = pd.read_csv(path, sep=";") elements.set_index("name", inplace=True) else: elements = pd.DataFrame(columns=["name"]).set_index("name") return elements def read_geometries(filename, directory="data/geometries"): """ Reads geometry resources from the datapackage. Data may either be stored in geojson format or as WKT representation in CSV-files. Parameters ---------- filename: string Name of the elements to be read, for example `buses.geojson` directory: string Directory where the file is located. Default: `data/geometries` Returns ------- pd.Series """ path = os.path.join(directory, filename) if os.path.splitext(filename)[1] == ".geojson": if os.path.exists(path): with open(path, "r") as infile: features = load(infile)["features"] names = [f["properties"]["name"] for f in features] geometries = [shape(f["geometry"]) for f in features] geometries = pd.Series(dict(zip(names, geometries))) if os.path.splitext(filename)[1] == ".csv": if os.path.exists(path): geometries = pd.read_csv(path, sep=";", index_col=["name"]) else: geometries =
pd.Series(name="geometry")
pandas.Series
#!/usr/bin/env python import os import sys import pandas as pd import numpy as np import time from sqlalchemy import create_engine from itertools import repeat import multiprocessing import tqdm import genes import eqtls def find_snps( inter_df, gene_info_df, tissues, output_dir, C, genotypes_fp, _eqtl_project_db, covariates_dir, expression_dir, pval_threshold, maf_threshold, fdr_threshold, num_processes, _db, logger, suppress_intermediate_files=False ): start_time = time.time() global eqtl_project_db eqtl_project_db = _eqtl_project_db global db db = _db enzymes = inter_df['enzyme'].drop_duplicates().tolist() hic_libs = genes.fetch_hic_libs(db) hic_libs = hic_libs.rename(columns={'rep_count': 'cell_line_replicates'}) inter_df = inter_df.merge( hic_libs, how='left', left_on=['cell_line', 'enzyme'], right_on=['library', 'enzyme']) default_chrom = ['chr' + str(i) for i in list(range(1, 23))] + ['X', 'Y', 'M'] chrom_list = inter_df['fragment_chr'].drop_duplicates().tolist() chrom_list = [i for i in default_chrom if i in chrom_list] inter_df = inter_df[inter_df['fragment_chr'].isin(default_chrom)] inter_df = inter_df.astype({'fragment': int}) gene_info_df = gene_info_df.rename( columns={ 'name': 'gene', 'chr': 'gene_chr', 'start': 'gene_start', 'end': 'gene_end', 'fragment': 'gene_fragment', 'id': 'gene_id'}) all_snps = [] all_genes = [] all_eqtls = [] logger.write('Finding SNPs within fragments interacting with genes in...') for chrom in sorted(chrom_list): chrom_dir = os.path.join(output_dir, chrom) #if os.path.exists(os.path.join(chrom_dir, 'eqtls.txt')): # logger.write(' Warning: {} already exists. Skipping.'.format( # os.path.join(chrom_dir, 'eqtls.txt'))) # continue logger.write(' Chromosome {}'.format(chrom)) snp_cols = ['snp', 'variant_id', 'chr', 'locus', 'id', 'fragment', 'enzyme'] chrom_df = inter_df[inter_df['fragment_chr'] == chrom] chrom_df = chrom_df.astype({'fragment': int, 'fragment_chr': object}) enzymes = chrom_df['enzyme'].drop_duplicates().tolist() snp_df = [] for enzyme in enzymes: enzyme_df = chrom_df[chrom_df['enzyme'] == enzyme] enzyme_df = enzyme_df.merge( gene_info_df, how='inner', left_on=['query_chr', 'query_fragment', 'enzyme'], right_on=['chrom', 'gene_fragment', 'enzyme']) fragment_df = enzyme_df[ ['gencode_id', 'fragment_chr', 'fragment']].drop_duplicates() enzyme_df = enzyme_df.sort_values(by=['fragment']) chunksize = 20000 enzyme_chunks = [enzyme_df[i:i+chunksize] for i in range(0, enzyme_df.shape[0], chunksize)] manager = multiprocessing.Manager() snps = manager.list() desc = ' * Hi-C libraries restricted with {}'.format( enzyme) bar_format = '{desc}: {percentage:3.0f}% |{bar}| {n_fmt}/{total_fmt} {unit}' ''' for df in tqdm.tqdm(enzyme_chunks, desc=desc, unit='batches', ncols=80, bar_format=bar_format): find_gene_snps( df, enzyme, snps) ''' with multiprocessing.Pool(processes=4) as pool: for _ in tqdm.tqdm( pool.istarmap( find_gene_snps, zip(enzyme_chunks, repeat(enzyme), repeat(snps)) ), total=len(enzyme_chunks), desc=desc, unit='batches', ncols=80, bar_format=bar_format): pass for df in snps: df['enzyme'] = enzyme snp_df.append(df) if len(snp_df) == 0: continue snp_df = pd.concat(snp_df) logger.verbose = False gene_df, snp_df = filter_snp_fragments( snp_df, logger) snp_df.sort_values(by=['variant_id'], inplace=True) snp_list = snp_df['variant_id'].drop_duplicates().tolist() batchsize = 2000 snp_batches = [snp_list[i:i + batchsize] for i in range(0, len(snp_list), batchsize)] chrom_eqtl_df = [] for batch_num, snp_batch in enumerate(snp_batches): if len(snp_batches) > 1: logger.verbose = True logger.write(' Mapping eQTLs batch {} of {}'.format( batch_num+1, len(snp_batches))) logger.verbose = False batch_gene_df = gene_df[gene_df['variant_id'].isin(snp_batch)] eqtl_df = eqtls.map_eqtls( batch_gene_df, tissues, output_dir, C, genotypes_fp, num_processes, eqtl_project_db, covariates_dir, expression_dir, pval_threshold, maf_threshold, fdr_threshold, logger) if eqtl_df is None: continue chrom_eqtl_df.append(eqtl_df) if len(chrom_eqtl_df) > 0: chrom_eqtl_df = pd.concat(chrom_eqtl_df) else: chrom_eqtl_df = pd.DataFrame() if not suppress_intermediate_files: os.makedirs(chrom_dir, exist_ok=True) snp_df.to_csv(os.path.join(chrom_dir, 'snps.txt'), sep='\t', index=False) gene_df.to_csv(os.path.join(chrom_dir, 'genes.txt'), sep='\t', index=False) chrom_eqtl_df.to_csv(os.path.join(chrom_dir, 'eqtls.txt'), sep='\t', index=False) all_eqtls.append(chrom_eqtl_df) all_snps.append(snp_df) all_genes.append(gene_df) logger.verbose = True if len(all_eqtls) == 0: snp_df = pd.DataFrame() gene_df = pd.DataFrame() eqtl_df = pd.DataFrame() else: snp_df = pd.concat(all_snps) gene_df = pd.concat(all_genes) eqtl_df = pd.concat(all_eqtls) logger.verbose = True logger.write(' Time elasped: {:.2f} mins.'.format( (time.time() - start_time)/60)) return snp_df, gene_df, eqtl_df def find_gene_snps( inter_df, enzyme, snps#, #db, ): db.dispose() eqtl_project_db.dispose() table = 'variant_lookup_{}' if enzyme in ['MboI', 'DpnII']: # MboI and DpnII have the same restriction sites table = table.format('mboi') else: table = table.format(enzyme.lower()) chrom = inter_df['fragment_chr'].drop_duplicates().tolist()[0] sql = '''SELECT * FROM {} WHERE chrom = '{}' AND frag_id >= {} AND frag_id <= {}''' df = pd.DataFrame() con = eqtl_project_db.connect() res = con.execute( sql.format( table, chrom, inter_df['fragment'].min(), inter_df['fragment'].max()) ).fetchall() con.close() if res: df = pd.DataFrame(res, columns=['frag_id', 'chrom', 'id']) inter_df = inter_df.rename(columns={'chrom': 'gene_chr'}) df = inter_df.merge( df, how='inner', left_on=['fragment'], right_on=['frag_id']) df['id'] = df['id'].astype('Int64') df = df[df['frag_id'].notnull()] df = df.drop_duplicates() snp_df = find_snp_by_id(df, eqtl_project_db) if snp_df.empty: return snp_df = snp_df.merge(df, how='inner', on=['id', 'chrom']) snp_df['enzyme'] = enzyme snp_df = snp_df.rename(columns={'rsid': 'snp'}) snps.append(snp_df.drop_duplicates()) def find_snp_by_id(df, db): df = df.sort_values(by=['id']) chunksize = eqtls.calc_chunksize( df['id'].tolist(), 2000000) chunks = [df[i:i+chunksize] for i in range(0, len(df), chunksize)] snp_df = [] sql = '''SELECT rsid, variant_id, chrom, locus, id FROM variants WHERE id >= {} and id <= {}''' con = db.connect() for chunk in chunks: res = con.execute(sql.format(chunk['id'].min(), chunk['id'].max())).fetchall() if not res: continue res = pd.DataFrame(res, columns=['rsid', 'variant_id', 'chrom', 'locus', 'id']) snp_df.append(res[res['id'].isin(chunk['id'])]) con.close() if len(snp_df) == 0: return pd.DataFrame() return pd.concat(snp_df) def find_snp_by_variant_id(df, db): snp_df = [] sql = '''SELECT rsid, variant_id, chrom, locus, id FROM variants WHERE variant_id >= '{}' and variant_id <= '{}' ''' with db.connect() as con: snp_df = pd.read_sql( sql.format(df['variant_id'].min(), df['variant_id'].max()), con=con) if len(snp_df) == 0: return pd.DataFrame() snp_df = snp_df[snp_df['variant_id'].isin(df['variant_id'])] omitted_snps = df[ ~df['variant_id'].isin(snp_df['variant_id']) ]['variant_id'].drop_duplicates().tolist() return snp_df, omitted_snps def filter_snp_fragments( snp_df, logger): ''' Filter snp-fragment interactions ''' logger.write(' * Filtering gene-SNP interactions...') snp_df['interactions'] = snp_df.groupby( ['variant_id', 'gene', 'cell_line', 'enzyme'])[ 'gene_fragment'].transform('count') snp_df['replicates'] = snp_df.groupby( ['variant_id', 'gene', 'cell_line', 'enzyme'])[ 'replicate'].transform('count') snp_df = snp_df.drop(columns=['replicate', 'gene_fragment']) snp_df = snp_df.drop_duplicates() snp_df['sum_interactions'] = snp_df.groupby( ['variant_id', 'gene'])[ 'interactions'].transform('sum') snp_df['sum_replicates'] = snp_df.groupby( ['variant_id', 'gene'])[ 'replicates'].transform('sum') snp_df['sum_cell_lines'] = snp_df.groupby( ['variant_id', 'gene'])['cell_line'].transform('count') condition = ( (snp_df['interactions'] / snp_df['cell_line_replicates'] <= 1) & (snp_df['sum_replicates'] < 2) & (snp_df['sum_cell_lines'] < 2)) gene_df = snp_df[~condition] snp_df = gene_df[ ['id', 'snp', 'chrom', 'locus', 'variant_id', 'fragment', 'enzyme'] ] snp_df.drop_duplicates(inplace=True) cols = ['snp', 'chrom', 'locus', 'variant_id', 'gene', 'gencode_id', 'gene_chr', 'gene_start', 'gene_end', 'interactions', 'replicates', 'enzyme', 'cell_line', 'cell_line_replicates', 'sum_interactions', 'sum_replicates', 'sum_cell_lines'] return gene_df[cols], snp_df def process_rs_df_whole(rs_df, db): rsid_tuple = () if len(rs_df) == 1: rsid_tuple = str(tuple(rs_df['snp'])).replace(',', '') else: rsid_tuple = str(tuple(rs_df['snp'])) sql = 'SELECT id, rsid, chrom, locus, variant_id FROM variants WHERE rsid IN {}' with db.connect() as con: return pd.read_sql_query(sql.format(rsid_tuple), con=con) def process_rs_df(rs_df, db): rsid_tuple = () df = [] sql = '''SELECT id, rsid, chrom, locus, variant_id FROM variants WHERE rsid = '{}' ''' with db.connect() as con: for idx, row in rs_df.iterrows(): df.append(pd.read_sql_query(sql.format(row['snp']), con=con)) df = pd.concat(df) return df def process_position(position, db): chrom = '' locus = None temp_df = None try: chrom = position.split(':')[0].strip() locus = position.split(':')[1].strip() if '-' in locus: start = locus.split('-')[0].strip() end = locus.split('-')[1].strip() sql = '''SELECT id, rsid, chrom, locus, variant_id FROM variants WHERE chrom ='{}' AND locus >= {} AND locus <= {}''' with db.connect() as con: temp_df = pd.read_sql_query(sql.format(chrom, start, end), con=con) else: sql = '''SELECT id, rsid, chrom, locus, variant_id FROM variants WHERE chrom ='{}' AND locus = {}''' with db.connect() as con: temp_df = pd.read_sql_query(sql.format(chrom, locus), con=con) if not temp_df.empty: return temp_df else: return pd.DataFrame.from_dict( {'id': [np.nan], 'rsid': [position], 'chr': [np.nan], 'locus': [np.nan], 'variant_id': [np.nan]}) except IndexError: return pd.DataFrame.from_dict({'id': [np.nan], 'rsid': [position], 'chr': [np.nan], 'locus': [np.nan], 'variant_id': [np.nan]}) def get_snp_fragments_whole(snp_df, restriction_enzymes, db): snp_df = snp_df.sort_values(by=['id']) fragment_df = [] chunksize = 1000 chunks = [snp_df[i:i+chunksize] for i in range(0, snp_df.shape[0], chunksize)] for enzyme in restriction_enzymes: table = 'variant_lookup_{}' if enzyme in ['MboI', 'DpnII']: # MboI and DpnII have the same restriction sites table = table.format('mboi') else: table = table.format(enzyme.lower()) with db.connect() as con: for chunk in chunks: sql = '''SELECT * FROM {} WHERE id >= {} AND id <= {}''' df = pd.read_sql(sql.format( table, chunk['id'].min(), chunk['id'].max()), con=con) df['enzyme'] = enzyme fragment_df.append(df.drop(columns=['chrom'])) fragment_df = pd.concat(fragment_df) snp_df = pd.merge(snp_df, fragment_df, how='inner', on=['id']) db.dispose() return snp_df def get_snp_fragments(snp_df, restriction_enzymes, db): snp_df = snp_df.sort_values(by=['id']) fragment_df = [] chunksize = 1000 chunks = [snp_df[i:i+chunksize] for i in range(0, snp_df.shape[0], chunksize)] for enzyme in restriction_enzymes: table = 'variant_lookup_{}' df = [] if enzyme in ['MboI', 'DpnII']: # MboI and DpnII have the same restriction sites table = table.format('mboi') else: table = table.format(enzyme.lower()) with db.connect() as con: for idx, row in snp_df.iterrows(): sql = '''SELECT * FROM {} WHERE id = {}; ''' df.append(pd.read_sql(sql.format(table, row['id']), con=con)) df = pd.concat(df) df['enzyme'] = enzyme fragment_df.append(df.drop(columns=['chrom'])) fragment_df =
pd.concat(fragment_df)
pandas.concat
import gym from gym import error, spaces, utils from gym.utils import seeding import pandas as pd import numpy as np from model import * ''' In this version: 1. The time step is fixed at 1 hour 2. The tank volume of H2 station is unlimited 3. Generating H2 using electricity is not supported ''' class hydrogenCommunity(gym.Env): """ AlphaHydorgen is a custom Gym Environment to simulate a community equiped with on-site renewables, hydrogen station, hydrogen vehicles and smart grid ------------------------------------------------------------------------------------------------------ Args: - stepLenth: length of time step, unit: s - building_list: a list of buildings, each element in the list is a tuple of (buildingLoad.csv, number of buildings) example: [('inputs/building1.csv', 10), ('inputs/building2.csv', 10), ('inputs/building3.csv', 10)] - pv_list: a list of on-site pvs, each element in the list is a tuple of (pvGeneration.csv, number of PVs) example: [('inputs/pv1.csv', 10), ('inputs/pv2.csv', 10), ('inputs/pv3.csv', 10)] - vehicle_list: a list of hydrogen vehicles, first element is parkSchedule.csv, the remaining elements in the list are tuples of (vehicleParameter.csv, fuelCellEff, fuelCellCap, number of vehicles) example: ['inputs/vehicle_atHomeSchd.csv', ('inputs/vehicle1.csv', 100, 300, 10), ('inputs/vehicle2.csv', 100, 300, 10), ('inputs/vehicle3.csv', 100, 300, 10)] - station_info: a hydrogen station parameter file. ------------------------------------------------------------------------------------------------------ States: - buildingLoad: total building load of the community, [kW] - pvGeneration: total on-site PV generation, [kW] - tank_h2Vol: total onsite-produced hydrogen stored in the station tank, [kg] - tank_spareVol: rest tank space for storing onsite-produced hydrogen, [kg] - vehicle_park: binary variable, whether the vechile is parked at home or not - vehicle_max_dist: predicted maximum travel distance of today, dist_mu_wd+5*dist_sigma_wd [km] - vehicle_tank: hydorgen stored in the vehicle's tank, [g] ------------------------------------------------------------------------------------------------------ Actions: - station_control: value, meaning the charge/discharge power of the hydrogen station for balancing the microgrid energy, [kW] positive means charging the hydrogen station for H2 production, negative means discharging the hydrogen station for powering microgrid. - vehicle_charge: array, each element is H2 charge/discharge rate of each vehicle, positive means charge from H2 station, negative means discharge to grid/building, [g] """ def __init__(self, building_list, pv_list, vehicle_list, station_info): ''' In this version: -- The step length is fixed at 1 hour ''' super().__init__() self.episode_idx = 0 self.time_step_idx = 0 self.stepLenth =3600 # To be revised when the step length is not 1 hour self.simulationYear = 2019 # Fixed in this version start_time = datetime(year = self.simulationYear, month = 1, day =1) self.n_steps = 8760*3600//self.stepLenth # Simulate a whole year freq = '{}H'.format(self.stepLenth/3600) self.timeIndex = pd.date_range(start_time, periods=self.n_steps, freq=freq) # Calculate the load for each time step self.buildingLoad = self._calculateBuildingLoad(building_list, self.stepLenth, self.simulationYear) self.pvGeneration = self._calculatePVGeneration(pv_list, self.stepLenth, self.simulationYear) # Initialize the hydrogen station self.station = Station(station_info, self.stepLenth/3600) # Initialize the vehicles self.vehicles = [] self.vehicle_schl_file = vehicle_list[0] for vehicle_tuple in vehicle_list[1:]: fuelCell = FuelCell(vehicle_tuple[1], vehicle_tuple[2]) vehicle = Vehicle(vehicle_tuple[0], self.vehicle_schl_file, fuelCell, self.stepLenth) for _ in range(vehicle_tuple[3]): self.vehicles.append(vehicle) # define the state and action space vehicle_n = len(self.vehicles) # Only control the vehicles self.action_names = ['station_tank'] + \ ['vehicle_{}'.format(vehicle_i) for vehicle_i in range(vehicle_n)] self.actions_low = np.array([-10000] + [-100 for _ in range(vehicle_n)]) # Maximum discharging rate -100g/s self.actions_high = np.array([10000] + [100 for _ in range(vehicle_n)]) # Maximum charging rate 100g/s self.action_space = spaces.Box(low=self.actions_low, high=self.actions_high, dtype=np.float32) self.obs_names = ['buildingLoad', 'pvGeneration', 'tank_h2Vol','tank_spareVol'] + \ ['vehicle_park_{}'.format(vehicle_i) for vehicle_i in range(vehicle_n)] + \ ['vehicle_max_dist_{}'.format(vehicle_i) for vehicle_i in range(vehicle_n)] + \ ['vehicle_tank_{}'.format(vehicle_i) for vehicle_i in range(vehicle_n)]# + \ #['h2Production', 'h2forGrid', 'h2forVehicle'] self.obs_low = np.array([0, 0, 0, 0] + [0 for _ in range(vehicle_n)] + \ [0 for _ in range(vehicle_n)] + [0 for _ in range(vehicle_n)] + \ [0, 0, 0]) self.obs_high = np.array([10000, 10000, 10000, 10000] + [1 for _ in range(vehicle_n)] + \ [1000 for _ in range(vehicle_n)] + [10000 for _ in range(vehicle_n)] + \ [10000, 10000, 10000]) self.observation_space = spaces.Box(low=self.obs_low, high=self.obs_high, dtype=np.float32) def reset(self): self.episode_idx += 1 self.time_step_idx = 0 load = self._getLoad(self.time_step_idx) stationTank = [0] stationTankVol = [0] stationTankSpare = [0] vehicles_park = [] vehicles_max_dist = [] vehicles_tank = [] for vehicle in self.vehicles: vehicle_park, vehicle_max_dist, _ = self._getVihicleStateStatic(vehicle) vehicles_park.append(vehicle_park) vehicles_max_dist.append(vehicle_max_dist) vehicles_tank.append(vehicle.tankVol) # Half the tank at the begining obs = load + stationTankVol + stationTankSpare + vehicles_park + vehicles_max_dist + vehicles_tank# + h2Production + h2forGrid + h2forVehicle return obs def step(self, actions): load = self._getLoad(self.time_step_idx) stationTankVol = [max(self.station.tankVol, 0)] stationTankSpare = [self.station.capacityMax - max(self.station.tankVol, 0)] vehicles_park = [] vehicles_max_dist = [] vehicles_tank = [] totalH2Charging = 0 # Charge the tank of the H2 station if actions[0] >= 0: power_H2Production, h2Production = self.station.h2Production(actions[0]) powertoGrid = 0 h2forGrid = 0 elif actions[0] < 0: powertoGrid, h2forGrid = self.station.powerGrid(-actions[0]) power_H2Production = 0 h2Production = 0 for action, vehicle in zip(actions[1:], self.vehicles): vehicle_park, vehicle_max_dist, cruiseBackHour = self._getVihicleStateStatic(vehicle) if action > 0: # Charge the vehicle tank from the H2 station if totalH2Charging < (self.station.chargeCap*1000): realH2ChargeRate = vehicle.h2FromStation(action) totalH2Charging += realH2ChargeRate else: realH2ChargeRate = vehicle.h2FromStation(0) elif action < 0: # discharge the grid realDischargePower = vehicle.eleToGrid(-action) totalGridLoad -= realDischargePower # Vehicle's gas tank is reduced at the hour when vehicle is back if cruiseBackHour: workingDay = self.timeIndex[self.time_step_idx].weekday() vehicle.cruise(workingDay) vehicles_park.append(vehicle_park) vehicles_max_dist.append(vehicle_max_dist) vehicles_tank.append(vehicle.tankVol) h2forVehicle = self.station.h2toVehicle(totalH2Charging) h2Change = h2Production - h2forGrid - h2forVehicle h2netuse = -self.station.tankVol totalGridLoad = load[0] - 0.95*load[1] + power_H2Production - powertoGrid obs = load + stationTankVol + stationTankSpare + vehicles_park + vehicles_max_dist + vehicles_tank reward = (totalGridLoad, h2Change) done = self.time_step_idx == len(self.timeIndex)-1 comments = (h2netuse, h2Production, h2forGrid, h2forVehicle) self.time_step_idx += 1 if done: load = self._getLoad(self.time_step_idx-1) else: load = self._getLoad(self.time_step_idx) obs = load + stationTankVol + stationTankSpare + vehicles_park + vehicles_max_dist + vehicles_tank return obs, reward, done, comments def _calculateBuildingLoad(self, building_list, stepLenth, simulationYear): '''Calculate the total building load from the building list ''' buildings =
pd.DataFrame()
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Nov 11 16:31:58 2021 @author: snoone """ import os import glob import pandas as pd pd.options.mode.chained_assignment = None # default='warn' OUTDIR = "D:/Python_CDM_conversion/hourly/qff/cdm_out/observations_table" os.chdir("D:/Python_CDM_conversion/hourly/qff/test") extension = 'qff' #my_file = open("D:/Python_CDM_conversion/hourly/qff/ls1.txt", "r") #all_filenames = my_file.readlines() #print(all_filenames) ##use alist of file name sto run 5000 parallel #with open("D:/Python_CDM_conversion/hourly/qff/ls.txt", "r") as f: # all_filenames = f.read().splitlines() all_filenames = [i for i in glob.glob('*.{}'.format(extension))] ##to start at begining of files for filename in all_filenames: ##to start at next file after last processe #for filename in all_filenames[all_filenames.index('SWM00002338.qff'):] : df=pd.read_csv(filename, sep="|") ##set up master df to extrcat each variable df["report_id"]="" df["observation_id"]="" df["data_policy_licence"]="" df["date_time_meaning"]="1" df["observation_duration"]="0" df["latitude"]=df["Latitude"] df["longitude"]=df["Longitude"] df["crs"]="" df["z_coordinate"]="" df["z_coordinate_type"]="" df["observation_height_above_station_surface"]="" df["observed_variable"]="" df["secondary_variable"]="" df["observation_value"]="" df["value_significance"]="12" df["secondary_value"]="" df["units"]="" df["code_table"]="" df["conversion_flag"]="" df["location_method"]="" df["location_precision"]="" df["z_coordinate_method"]="" df["bbox_min_longitude"]="" df["bbox_max_longitude"]="" df["bbox_min_latitude"]="" df["bbox_max_latitude"]="" df["spatial_representativeness"]="" df["original_code_table"]="" df["quality_flag"]="" df["numerical_precision"]="" df["sensor_id"]="" df["sensor_automation_status"]="" df["exposure_of_sensor"]="" df["original_precision"]="" df["original_units"]="" df["original_code_table"]="" df["original_value"]="" df["conversion_method"]="" df["processing_code"]="" df["processing_level"]="0" df["adjustment_id"]="" df["traceability"]="" df["advanced_qc"]="" df["advanced_uncertainty"]="" df["advanced_homogenisation"]="" df["advanced_assimilation_feedback"]="" df["source_id"]="" df["source_record_id"]="" df["primary_station_id"]=df["Station_ID"] df["Timestamp2"] = df["Year"].map(str) + "-" + df["Month"].map(str)+ "-" + df["Day"].map(str) df["Seconds"]="00" df["offset"]="+00" df["date_time"] = df["Timestamp2"].map(str)+ " " + df["Hour"].map(str)+":"+df["Minute"].map(str)+":"+df["Seconds"].map(str) df['date_time'] = pd.to_datetime(df['date_time'], format='%Y/%m/%d' " ""%H:%M") df['date_time'] = df['date_time'].astype('str') df.date_time = df.date_time + '+00' #========================================================================================= ##convert temperature changes for each variable dft = df[["observation_id","report_id","data_policy_licence","date_time", "date_time_meaning","observation_duration","longitude","latitude", "crs","z_coordinate","z_coordinate_type","observation_height_above_station_surface", "observed_variable","secondary_variable","observation_value", "value_significance","secondary_value","units","code_table", "conversion_flag","location_method","location_precision", "z_coordinate_method","bbox_min_longitude","bbox_max_longitude", "bbox_min_latitude","bbox_max_latitude","spatial_representativeness", "quality_flag","numerical_precision","sensor_id","sensor_automation_status", "exposure_of_sensor","original_precision","original_units", "original_code_table","original_value","conversion_method", "processing_code","processing_level","adjustment_id","traceability", "advanced_qc","advanced_uncertainty","advanced_homogenisation", "advanced_assimilation_feedback","source_id","primary_station_id"]] ##change for each variable to convert to cdm compliant values dft["observation_value"]=df["temperature"]+273.15 dft["source_id"]=df["temperature_Source_Code"] dft["Seconds"]="00" dft["quality_flag"]=df["temperature_QC_flag"] dft["qc_method"]=dft["quality_flag"] dft["conversion_flag"]="0" dft["conversion_method"]="1" dft["numerical_precision"]="0.01" dft["original_precision"]="0.1" dft["original_units"]="60" dft["original_value"]=df["temperature"] dft["observation_height_above_station_surface"]="2" dft["units"]="5" dft["observed_variable"]="85" ##set quality flag from df master for variable and fill all nan with Null then change all nonnan to dft.loc[dft['quality_flag'].notnull(), "quality_flag"] = 1 dft = dft.fillna("Null") dft.quality_flag[dft.quality_flag == "Null"] = 0 #change for each variable if required ##remove unwanted mising data rows dft = dft.fillna("null") dft = dft.replace({"null":"-99999"}) dft = dft[dft.observation_value != -99999] #df = df.astype(str) dft["source_id"] = pd.to_numeric(dft["source_id"],errors='coerce') #df = df.astype(str) #concatenate columns for joining df for next step dft['source_id'] = dft['source_id'].astype(str).apply(lambda x: x.replace('.0','')) dft['primary_station_id_2']=dft['primary_station_id'].astype(str)+'-'+dft['source_id'].astype(str) dft["observation_value"] = pd.to_numeric(dft["observation_value"],errors='coerce') #dft.to_csv("ttest.csv", index=False, sep=",") ###add data policy and record number to df df2=pd.read_csv("D:/Python_CDM_conversion/new recipe tables/record_id.csv") dft = dft.astype(str) df2 = df2.astype(str) dft= df2.merge(dft, on=['primary_station_id_2']) dft['data_policy_licence'] = dft['data_policy_licence_x'] dft['data_policy_licence'] = dft['data_policy_licence'].astype(str).apply(lambda x: x.replace('.0','')) dft['observation_id']=dft['primary_station_id'].astype(str)+'-'+dft['record_number'].astype(str)+'-'+dft['date_time'].astype(str) dft['observation_id'] = dft['observation_id'].str.replace(r' ', '-') ##remove unwanted last twpo characters dft['observation_id'] = dft['observation_id'].str[:-6] dft["observation_id"]=dft["observation_id"]+'-'+dft['observed_variable'].astype(str)+'-'+dft['value_significance'].astype(str) dft["report_id"]=dft["observation_id"].str[:-6] ##set up qc table dft = dft[["observation_id","report_id","data_policy_licence","date_time", "date_time_meaning","observation_duration","longitude","latitude", "crs","z_coordinate","z_coordinate_type","observation_height_above_station_surface", "observed_variable","secondary_variable","observation_value", "value_significance","secondary_value","units","code_table", "conversion_flag","location_method","location_precision", "z_coordinate_method","bbox_min_longitude","bbox_max_longitude", "bbox_min_latitude","bbox_max_latitude","spatial_representativeness", "quality_flag","numerical_precision","sensor_id","sensor_automation_status", "exposure_of_sensor","original_precision","original_units", "original_code_table","original_value","conversion_method", "processing_code","processing_level","adjustment_id","traceability", "advanced_qc","advanced_uncertainty","advanced_homogenisation", "advanced_assimilation_feedback","source_id"]] df.dropna(subset = ["observation_value"], inplace=True) dft['source_id'] = dft['source_id'].astype(str).apply(lambda x: x.replace('.0','')) dft['data_policy_licence'] = dft['data_policy_licence'].astype(str).apply(lambda x: x.replace('.0','')) dft["source_id"] = pd.to_numeric(dft["source_id"],errors='coerce') dft["observation_value"] = pd.to_numeric(dft["observation_value"],errors='coerce') dft["observation_value"]= dft["observation_value"].round(2) #dft.to_csv("isuest.csv", index=False, sep=",") #================================================================================= ##convert dew point temperature changes for each variable dfdpt= df[["observation_id","report_id","data_policy_licence","date_time", "date_time_meaning","observation_duration","longitude","latitude", "crs","z_coordinate","z_coordinate_type","observation_height_above_station_surface", "observed_variable","secondary_variable","observation_value", "value_significance","secondary_value","units","code_table", "conversion_flag","location_method","location_precision", "z_coordinate_method","bbox_min_longitude","bbox_max_longitude", "bbox_min_latitude","bbox_max_latitude","spatial_representativeness", "quality_flag","numerical_precision","sensor_id","sensor_automation_status", "exposure_of_sensor","original_precision","original_units", "original_code_table","original_value","conversion_method", "processing_code","processing_level","adjustment_id","traceability", "advanced_qc","advanced_uncertainty","advanced_homogenisation", "advanced_assimilation_feedback","source_id","primary_station_id"]] ##change for each variable to convert to cdm compliant values dfdpt["observation_value"]=df["dew_point_temperature"]+273.15 dfdpt["source_id"]=df["dew_point_temperature_Source_Code"] dfdpt["Seconds"]="00" dfdpt["quality_flag"]=df["dew_point_temperature_QC_flag"] dfdpt["conversion_flag"]="0" dfdpt["conversion_method"]="1" dfdpt["numerical_precision"]="0.01" dfdpt["original_precision"]="0.1" dfdpt["original_units"]="60" dfdpt["original_value"]=df["dew_point_temperature"] dfdpt["observation_height_above_station_surface"]="2" dfdpt["units"]="5" dfdpt["observed_variable"]="36" ##set quality flag from df master for variable and fill all nan with Null then change all nonnan to dfdpt.loc[dfdpt['quality_flag'].notnull(), "quality_flag"] = 1 dfdpt= dfdpt.fillna("Null") dfdpt.quality_flag[dfdpt.quality_flag == "Null"] = 0 ##remove unwanted mising data rows dfdpt= dfdpt.fillna("null") dfdpt= dfdpt.replace({"null":"-99999"}) dfdpt= dfdpt[dfdpt.observation_value != -99999] #df = df.astype(str) dfdpt["source_id"] = pd.to_numeric(dfdpt["source_id"],errors='coerce') #df = df.astype(str) #concatenate columns for joining df for next step dfdpt['source_id'] = dfdpt['source_id'].astype(str).apply(lambda x: x.replace('.0','')) dfdpt['primary_station_id_2']=dfdpt['primary_station_id'].astype(str)+'-'+dfdpt['source_id'].astype(str) dfdpt["observation_value"] = pd.to_numeric(dfdpt["observation_value"],errors='coerce') #dfdpt.to_csv("ttest.csv", index=False, sep=",") ###add data policy and record number to df df2=pd.read_csv("D:/Python_CDM_conversion/new recipe tables/record_id.csv") dfdpt= dfdpt.astype(str) df2 = df2.astype(str) dfdpt= df2.merge(dfdpt, on=['primary_station_id_2']) dfdpt['data_policy_licence'] = dfdpt['data_policy_licence_x'] dfdpt['data_policy_licence'] = dfdpt['data_policy_licence'].astype(str).apply(lambda x: x.replace('.0','')) dfdpt['observation_id']=dfdpt['primary_station_id'].astype(str)+'-'+dfdpt['record_number'].astype(str)+'-'+dfdpt['date_time'].astype(str) dfdpt['observation_id'] = dfdpt['observation_id'].str.replace(r' ', '-') ##remove unwanted last twpo characters dfdpt['observation_id'] = dfdpt['observation_id'].str[:-6] dfdpt["observation_id"]=dfdpt["observation_id"]+'-'+dfdpt['observed_variable'].astype(str)+'-'+dfdpt['value_significance'].astype(str) dfdpt["report_id"]=dfdpt["observation_id"].str[:-6] ##set up qc table dfdpt= dfdpt[["observation_id","report_id","data_policy_licence","date_time", "date_time_meaning","observation_duration","longitude","latitude", "crs","z_coordinate","z_coordinate_type","observation_height_above_station_surface", "observed_variable","secondary_variable","observation_value", "value_significance","secondary_value","units","code_table", "conversion_flag","location_method","location_precision", "z_coordinate_method","bbox_min_longitude","bbox_max_longitude", "bbox_min_latitude","bbox_max_latitude","spatial_representativeness", "quality_flag","numerical_precision","sensor_id","sensor_automation_status", "exposure_of_sensor","original_precision","original_units", "original_code_table","original_value","conversion_method", "processing_code","processing_level","adjustment_id","traceability", "advanced_qc","advanced_uncertainty","advanced_homogenisation", "advanced_assimilation_feedback","source_id"]] dfdpt.dropna(subset = ["observation_value"], inplace=True) dfdpt['source_id'] = dfdpt['source_id'].astype(str).apply(lambda x: x.replace('.0','')) dfdpt['data_policy_licence'] = dfdpt['data_policy_licence'].astype(str).apply(lambda x: x.replace('.0','')) dfdpt["source_id"] = pd.to_numeric(dfdpt["source_id"],errors='coerce') dfdpt["observation_value"] = pd.to_numeric(dfdpt["observation_value"],errors='coerce') dfdpt["observation_value"]= dfdpt["observation_value"].round(2) #==================================================================================== #convert station level to cdmlite dfslp = df[["observation_id","report_id","data_policy_licence","date_time", "date_time_meaning","observation_duration","longitude","latitude", "crs","z_coordinate","z_coordinate_type","observation_height_above_station_surface", "observed_variable","secondary_variable","observation_value", "value_significance","secondary_value","units","code_table", "conversion_flag","location_method","location_precision", "z_coordinate_method","bbox_min_longitude","bbox_max_longitude", "bbox_min_latitude","bbox_max_latitude","spatial_representativeness", "quality_flag","numerical_precision","sensor_id","sensor_automation_status", "exposure_of_sensor","original_precision","original_units", "original_code_table","original_value","conversion_method", "processing_code","processing_level","adjustment_id","traceability", "advanced_qc","advanced_uncertainty","advanced_homogenisation", "advanced_assimilation_feedback","source_id","primary_station_id"]] ##change for each variable to convert to cdm compliant values dfslp["observation_value"]=df["station_level_pressure"] dfslp["source_id"]=df["station_level_pressure_Source_Code"] dfslp["Seconds"]="00" dfslp["quality_flag"]=df["station_level_pressure_QC_flag"] dfslp["conversion_flag"]="0" dfslp["conversion_method"]="7" dfslp["numerical_precision"]="10" dfslp["original_precision"]="0.1" dfslp["original_units"]="530" dfslp["original_value"]=df["station_level_pressure"] dfslp["observation_height_above_station_surface"]="2" dfslp["units"]="32" dfslp["observed_variable"]="57" ##set quality flag from df master for variable and fill all nan with Null then change all nonnan to dfslp.loc[dfslp['quality_flag'].notnull(), "quality_flag"] = 1 dfslp = dfslp.fillna("Null") dfslp.quality_flag[dfslp.quality_flag == "Null"] = 0 #change for each variable if required ##remove unwanted mising data rows dfslp = dfslp.fillna("null") dfslp = dfslp.replace({"null":"-99999"}) dfslp = dfslp[dfslp.observation_value != -99999] #df = df.astype(str) dfslp["source_id"] =
pd.to_numeric(dfslp["source_id"],errors='coerce')
pandas.to_numeric
'''Assignment 2 In this assignment you'll explore the relationship between model complexity and generalization performance, by adjusting key parameters of various supervised learning models. Part 1 of this assignment will look at regression and Part 2 will look at classification.''' '''Part 1 - Regression First, run the following block to set up the variables needed for later sections.''' import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split np.random.seed(0) n = 15 x = np.linspace(0,10,n) + np.random.randn(n)/5 y = np.sin(x)+x/6 + np.random.randn(n)/10 X_train, X_test, y_train, y_test = train_test_split(x, y, random_state=0) # You can use this function to help you visualize the dataset by # plotting a scatterplot of the data points # in the training and test sets. #---------- ANSWER CODE ---------- def part1_scatter(): #%matplotlib notebook plt.figure() plt.scatter(X_train, y_train, label='training data') plt.scatter(X_test, y_test, label='test data') plt.legend(loc=4); #plt.show() plt.savefig('/mnt/d/SebasUbuntu/Documentos/Graficas/part1_scatter.png') return X_test, y_test, X_train, y_train part1_scatter() #---------- ANSWER ---------- (array([0.79431716, 4.47573197, 5.69364194, 6.51069113]), array([ 0.99517935, -0.16081 , 0.3187423 , 1.53763897]), array([10.08877265, 3.23065446, 1.62431903, 9.31004929, 7.17166586, 4.96972856, 8.14799756, 2.59103578, 0.35281047, 3.375973 , 8.72363612]), array([ 1.21213026, 0.36408873, 1.24877201, 1.81942995, 1.82595557, -0.05233879, 2.31966323, 0.98630796, 0.43770571, 0.07512287, 2.08031157])) #----------------------------------------------------------------------- '''Question 1 Write a function that fits a polynomial LinearRegression model on the training data X_train for degrees 1, 3, 6, and 9. (Use PolynomialFeatures in sklearn.preprocessing to create the polynomial features and then fit a linear regression model) For each model, find 100 predicted values over the interval x = 0 to 10 (e.g. np.linspace(0,10,100)) and store this in a numpy array. The first row of this array should correspond to the output from the model trained on degree 1, the second row degree 3, the third row degree 6, and the fourth row degree 9. The figure above shows the fitted models plotted on top of the original data (using plot_one()). This function should return a numpy array with shape (4, 100)''' #---------- ANSWER CODE ---------- def answer_one(): from sklearn.linear_model import LinearRegression from sklearn.preprocessing import PolynomialFeatures predictions= np.empty((4,100)) data = np.linspace(0,10,100).reshape(-1, 1) for i,degree in enumerate([1,3,6,9]): cls = PolynomialFeatures(degree=degree) poly = cls.fit_transform(X_train.reshape(-1, 1)) linreg = LinearRegression().fit(poly, y_train) transformed_data = cls.transform(data) predictions[i,:] = linreg.predict(transformed_data) return predictions answer_one() # feel free to use the function plot_one() to replicate the figure # from the prompt once you have completed question one def plot_one(degree_predictions): import matplotlib.pyplot as plt #%matplotlib notebook plt.figure(figsize=(10,5)) plt.plot(X_train, y_train, 'o', label='training data', markersize=10) plt.plot(X_test, y_test, 'o', label='test data', markersize=10) for i,degree in enumerate([1,3,6,9]): plt.plot(np.linspace(0,10,100), degree_predictions[i], alpha=0.8, lw=2, label='degree={}'.format(degree)) plt.ylim(-1,2.5) plt.legend(loc=4) plt.savefig('/mnt/d/SebasUbuntu/Documentos/Graficas/plot_one.png') plot_one(answer_one()) #----------------------------------------------------------------------- '''Question 2 Write a function that fits a polynomial LinearRegression model on the training data X_train for degrees 0 through 9. For each model compute the R2R2 (coefficient of determination) regression score on the training data as well as the the test data, and return both of these arrays in a tuple. This function should return one tuple of numpy arrays (r2_train, r2_test). Both arrays should have shape (10,)''' #---------- ANSWER CODE ---------- def answer_two(): from sklearn.linear_model import LinearRegression from sklearn.preprocessing import PolynomialFeatures #from sklearn.metrics.regression import r2_score r2_train = np.empty(10) r2_test = np.empty(10) for i,degree in enumerate(range(10)): cls = PolynomialFeatures(degree=degree) poly = cls.fit_transform(X_train.reshape(-1, 1)) linreg = LinearRegression().fit(poly, y_train) r2_train[i] = linreg.score(poly, y_train) r2_test[i] = linreg.score( cls.transform(X_test.reshape(-1, 1)), y_test ) return r2_train, r2_test answer_two() #---------- ANSWER ---------- (array([0. , 0.42924578, 0.4510998 , 0.58719954, 0.91941945, 0.97578641, 0.99018233, 0.99352509, 0.99637545, 0.99803706]), array([-0.47808642, -0.45237104, -0.06856984, 0.00533105, 0.73004943, 0.87708301, 0.9214094 , 0.92021504, 0.63247953, -0.64525322])) #----------------------------------------------------------------------- '''Question 3 Based on the R2R2 scores from question 2 (degree levels 0 through 9), what degree level corresponds to a model that is underfitting? What degree level corresponds to a model that is overfitting? What choice of degree level would provide a model with good generalization performance on this dataset? Hint: Try plotting the R2R2 scores from question 2 to visualize the relationship between degree level and R2R2 . Remember to comment out the import matplotlib line before submission. This function should return one tuple with the degree values in this order: (Underfitting, Overfitting, Good_Generalization). There might be multiple correct solutions, however, you only need to return one possible solution, for example, (1,2,3).''' #---------- ANSWER CODE ---------- def answer_three(): # Read in the results of answer_two r2_train, r2_test = answer_two() # Sort the scores r2_train_sorted = np.sort(r2_train) r2_test_sorted = np.sort(r2_test) # Initialize the values Underfitting = 0 Overfitting = 0 Good_Generalization = 0 min_r2_train = np.min(r2_train) max_r2_train = np.max(r2_train) min_r2_test = np.max(r2_test) max_r2_test = np.max(r2_test) for deg, data in enumerate(zip(r2_train, r2_test)): if data[0] < r2_train_sorted[5] and data[1] < r2_test_sorted[5]: Underfitting = deg if data[0] >= r2_train_sorted[5] and data[1] < r2_test_sorted[5]: Overfitting = deg if data[0] >= r2_train_sorted[5] and data[1] >= r2_test_sorted[7]: Good_Generalization = deg return Underfitting, Overfitting, Good_Generalization answer_three() #---------- ANSWER ---------- (3, 9, 7) def plot_three(): import matplotlib.pyplot as plt #%matplotlib notebook r2_train, r2_test = answer_two() plt.figure(figsize=(10,5)) plt.plot(range(10), r2_train, alpha=0.8, lw=2, label='R2_Train') plt.plot(range(10), r2_test, alpha=0.8, lw=2, label='R2_Test') plt.legend() plt.xlabel('Degree') plt.ylabel('R2') plt.xticks(range(10)) plt.grid() plt.savefig('/mnt/d/SebasUbuntu/Documentos/Graficas/plot_three.png') plot_three() #----------------------------------------------------------------------- '''Question 4 Training models on high degree polynomial features can result in overly complex models that overfit, so we often use regularized versions of the model to constrain model complexity, as we saw with Ridge and Lasso linear regression. For this question, train two models: a non-regularized LinearRegression model (default parameters) and a regularized Lasso Regression model (with parameters alpha=0.01, max_iter=10000) both on polynomial features of degree 12. Return the $R^2$ score for both the LinearRegression and Lasso model's test sets. This function should return one tuple (LinearRegression_R2_test_score, Lasso_R2_test_score)''' #---------- ANSWER CODE ---------- def answer_four(): from sklearn.preprocessing import PolynomialFeatures from sklearn.linear_model import Lasso, LinearRegression #from sklearn.metrics.regression import r2_score poly = PolynomialFeatures(degree=12) X_train_poly = poly.fit_transform(X_train.reshape(-1, 1)) X_test_poly = poly.transform(X_test.reshape(-1, 1)) linreg = LinearRegression().fit(X_train_poly, y_train) linreg_test_score = linreg.score(X_test_poly, y_test ) #print(linreg.score(X_train_poly, y_train)) #print(linreg.score(X_test_poly, y_test )) linlasso = Lasso(alpha=0.01, max_iter = 10000).fit(X_train_poly, y_train) lasso_test_score = linlasso.score(X_test_poly, y_test ) #print(linlasso.score(X_train_poly, y_train)) #print(linlasso.score(X_test_poly, y_test )) return linreg_test_score, lasso_test_score answer_four() #---------- ANSWER ---------- (-4.311955012614453, 0.8406625614750236) #----------------------------------------------------------------------- '''Part 2 - Classification Here's an application of machine learning that could save your life! For this section of the assignment we will be working with the UCI Mushroom Data Set stored in readonly/mushrooms.csv. The data will be used to train a model to predict whether or not a mushroom is poisonous. The following attributes are provided: Attribute Information: 1.cap-shape: bell=b, conical=c, convex=x, flat=f, knobbed=k, sunken=s 2.cap-surface: fibrous=f, grooves=g, scaly=y, smooth=s 3.cap-color: brown=n, buff=b, cinnamon=c, gray=g, green=r, pink=p, purple=u, red=e, white=w, yellow=y 4.bruises?: bruises=t, no=f 5.odor: almond=a, anise=l, creosote=c, fishy=y, foul=f, musty=m, none=n, pungent=p, spicy=s 6.gill-attachment: attached=a, descending=d, free=f, notched=n 7.gill-spacing: close=c, crowded=w, distant=d 8.gill-size: broad=b, narrow=n 9.gill-color: black=k, brown=n, buff=b, chocolate=h, gray=g, green=r, orange=o, pink=p, purple=u, red=e, white=w, yellow=y 10.stalk-shape: enlarging=e, tapering=t 11.stalk-root: bulbous=b, club=c, cup=u, equal=e, rhizomorphs=z, rooted=r, missing=? 12.stalk-surface-above-ring: fibrous=f, scaly=y, silky=k, smooth=s 13.stalk-surface-below-ring: fibrous=f, scaly=y, silky=k, smooth=s 14.stalk-color-above-ring: brown=n, buff=b, cinnamon=c, gray=g, orange=o, pink=p, red=e, white=w, yellow=y 15.stalk-color-below-ring: brown=n, buff=b, cinnamon=c, gray=g, orange=o, pink=p, red=e, white=w, yellow=y 16.veil-type: partial=p, universal=u 17.veil-color: brown=n, orange=o, white=w, yellow=y 18.ring-number: none=n, one=o, two=t 19.ring-type: cobwebby=c, evanescent=e, flaring=f, large=l, none=n, pendant=p, sheathing=s, zone=z 20.spore-print-color: black=k, brown=n, buff=b, chocolate=h, green=r, orange=o, purple=u, white=w, yellow=y 21.population: abundant=a, clustered=c, numerous=n, scattered=s, several=v, solitary=y 22.habitat: grasses=g, leaves=l, meadows=m, paths=p, urban=u, waste=w, woods=d The data in the mushrooms dataset is currently encoded with strings. These values will need to be encoded to numeric to work with sklearn. We'll use pd.get_dummies to convert the categorical variables into indicator variables.''' import pandas as pd import numpy as np from sklearn.model_selection import train_test_split mush_df =
pd.read_csv('mushrooms.csv')
pandas.read_csv
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Sep 5 00:37:32 2019 @author: tungutokyo """ import pandas as pd import numpy as np pd.options.mode.chained_assignment = None pd.set_option("display.max_columns", 60) import matplotlib.pyplot as plt import seaborn as sns import itertools from scipy import interp from itertools import cycle from sklearn.preprocessing import label_binarize from sklearn.model_selection import train_test_split from sklearn.metrics import confusion_matrix from sklearn.metrics import precision_score from sklearn.metrics import recall_score from sklearn.metrics import f1_score from sklearn import metrics from sklearn.metrics import roc_curve, auc from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import accuracy_score from sklearn.metrics import plot_confusion_matrix from sklearn.model_selection import cross_val_score from sklearn.model_selection import cross_validate from sklearn.model_selection import StratifiedKFold from sklearn.model_selection import KFold from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier from sklearn.model_selection import TimeSeriesSplit, GridSearchCV, RandomizedSearchCV from xgboost import XGBClassifier def get_RandSearchCV(X_train, y_train, X_test, y_test, scoring, type_search, output_file): from sklearn.model_selection import TimeSeriesSplit from datetime import datetime as dt st_t = dt.now() # Numer of trees are used n_estimators = [5, 10, 50, 100, 150, 200, 250, 300] #n_estimators = list(np.arange(100,1000,50)) #n_estimators = [1000] # Maximum depth of each tree max_depth = [5, 10, 25, 50, 75, 100] # Minimum number of samples per leaf min_samples_leaf = [1, 2, 4, 8, 10] # Minimum number of samples to split a node min_samples_split = [2, 4, 6, 8, 10] # Maximum numeber of features to consider for making splits max_features = ["auto", "sqrt", "log2", None] hyperparameter = {'n_estimators': n_estimators, 'max_depth': max_depth, 'min_samples_leaf': min_samples_leaf, 'min_samples_split': min_samples_split, 'max_features': max_features} cv_timeSeries = TimeSeriesSplit(n_splits=5).split(X_train) base_model_rf = RandomForestClassifier(criterion="gini", random_state=42) base_model_gb = GradientBoostingClassifier(criterion="friedman_mse", random_state=42) # Run randomzed search n_iter_search = 30 if type_search == "RandomSearchCV-RandomForest": rsearch_cv = RandomizedSearchCV(estimator=base_model_rf, random_state=42, param_distributions=hyperparameter, n_iter=n_iter_search, cv=cv_timeSeries, scoring=scoring, n_jobs=-1) else: rsearch_cv = RandomizedSearchCV(estimator=base_model_gb, random_state=42, param_distributions=hyperparameter, n_iter=n_iter_search, cv=cv_timeSeries, scoring=scoring, n_jobs=-1) rsearch_cv.fit(X_train, y_train) #f = open("output.txt", "a") print("Best estimator obtained from CV data: \n", rsearch_cv.best_estimator_, file=output_file) print("Best Score: ", rsearch_cv.best_score_, file=output_file) return rsearch_cv def performance_rand(best_clf, X_train, y_train, X_test, y_test, type_search, num_class, output_file, class_name): #f = open("output.txt", "a") print("-"*100) print("~~~~~~~~~~~~~~~~~~ PERFORMANCE EVALUATION ~~~~~~~~~~~~~~~~~~~~~~~~", file=output_file) print("Detailed report for the {} algorithm".format(type_search), file=output_file) best_clf.fit(X_train, y_train) y_pred = best_clf.predict(X_test) y_pred_prob = best_clf.predict_proba(X_test) test_accuracy = accuracy_score(y_test, y_pred, normalize=True) * 100 points = accuracy_score(y_test, y_pred, normalize=False) print("The number of accurate predictions out of {} data points on unseen data is {}".format( X_test.shape[0], points), file=output_file) print("Accuracy of the {} model on unseen data is {}".format( type_search, np.round(test_accuracy, 2)), file=output_file) print("Precision of the {} model on unseen data is {}".format( type_search, np.round(metrics.precision_score(y_test, y_pred, average="macro"), 4)), file=output_file) print("Recall of the {} model on unseen data is {}".format( type_search, np.round(metrics.recall_score(y_test, y_pred, average="macro"), 4)), file=output_file) print("F1 score of the {} model on unseen data is {}".format( type_search, np.round(metrics.f1_score(y_test, y_pred, average="macro"), 4)), file=output_file) print("\nClassification report for {} model: \n".format(type_search), file=output_file) print(metrics.classification_report(y_test, y_pred), file=output_file) plt.figure(figsize=(12,12)) cnf_matrix = metrics.confusion_matrix(y_test, y_pred) cnf_matrix_norm = cnf_matrix.astype('float') / cnf_matrix.sum(axis=1)[:, np.newaxis] print("\nThe Confusion Matrix: \n", file=output_file) print(cnf_matrix, file=output_file) #class_name = ["CDI", "ignore-nonCDI", "Health"] #class_name = ["CRC", "Adenomas", "Health"] # class_name = ["OB", "OW", "Health"] class_name = class_name cmap = plt.cm.Blues plt.imshow(cnf_matrix_norm, interpolation="nearest", cmap=cmap) plt.colorbar() fmt = ".2g" thresh = cnf_matrix_norm.max()/2 for i, j in itertools.product(range(cnf_matrix_norm.shape[0]), range(cnf_matrix_norm.shape[1])): plt.text(j,i,format(cnf_matrix_norm[i,j], fmt), ha="center", va="center", color="white" if cnf_matrix_norm[i,j] > thresh else "black", fontsize=35) plt.xticks(np.arange(num_class), labels = class_name, fontsize=30) plt.yticks(np.arange(num_class), labels = class_name, fontsize=30) plt.ylabel("True label", fontsize=30) plt.xlabel("Predicted label", fontsize=30) plt.ylim((num_class - 0.5, -0.5)) plt.show() #plt.setp(ax.get_xticklabels(), rotation=xticks_rotation) """ cmap = plt.cm.Blues sns.heatmap(cnf_matrix_norm, annot=True, cmap=cmap, fmt=".2f", annot_kws={"size":15}, linewidths=.05) if type_search == "RandomSearchCV-RandomForest": plt.title("The Normalized Confusion Matrix - {}".format("RandomForest"), fontsize=20) else: plt.title("The Normalized Confusion Matrix - {}".format("GradientBoosting"), fontsize=20) plt.ylabel("True label", fontsize=15) plt.xlabel("Predicted label", fontsize=15) plt.show() """ print("\nROC curve and AUC") y_pred = best_clf.predict(X_test) y_pred_prob = best_clf.predict_proba(X_test) y_test_cat = np.array(
pd.get_dummies(y_test)
pandas.get_dummies
import os import pandas as pd import tensorflow as tf import tensorflow_io as tfio TRAIN_RATIO = 0.8 VALIDATION_RATIO = 0.1 TEST_RATIO = 0.1 @tf.function def load_wav_16k_mono(wav_path: str): """ Load a WAV file, convert it to a float tensor, resample to 16 kHz single-channel audio. """ file_contents = tf.io.read_file(wav_path) wav, sample_rate = tf.audio.decode_wav( file_contents, desired_channels=1 ) wav = tf.squeeze(wav, axis=-1) sample_rate = tf.cast(sample_rate, dtype=tf.int64) wav = tfio.audio.resample(wav, rate_in=sample_rate, rate_out=16000) return wav def load_wav_for_map(filename: str, label, split): return (load_wav_16k_mono(filename), label, split) def load(path: str, dataset: str = 'sleep_scoring'): if dataset == 'sleep_scoring': classes = ['NONE', 'SLEEP-REM', 'SLEEP-S0', 'SLEEP-S1', 'SLEEP-S2', 'SLEEP-S3'] map_class_to_id = {'NONE': 0, 'SLEEP-REM': 3, 'SLEEP-S0': 0, 'SLEEP-S1': 1, 'SLEEP-S2': 2, 'SLEEP-S3': 2} new_classes = ['wake', 'light', 'deep', 'REM'] print(f'Sleep Scoring Classes: {new_classes}') else: classes = ['NONE', 'SLEEP-REM', 'SLEEP-S0', 'SLEEP-S1', 'SLEEP-S2', 'SLEEP-S3'] map_class_to_id = {'NONE': 0, 'SLEEP-REM': 3, 'SLEEP-S0': 0, 'SLEEP-S1': 1, 'SLEEP-S2': 2, 'SLEEP-S3': 2} new_classes = ['wake', 'light', 'deep', 'REM'] print(f'data.load else') #map_split_to_id = {'train': 0, 'validation': 1, 'eval': 2} metadata = pd.DataFrame(columns=['filename', 'class', 'split']) for class_name in classes: tempdata =
pd.DataFrame(columns=['filename', 'class', 'split'])
pandas.DataFrame
import numpy as np # For loading the data into Dataframes import pandas as pd # For string literal import ast # import packages related to gdal from osgeo import gdal import pyproj # For time Zone Conversions import pytz # for plots import matplotlib.pyplot as plt with open('../data_collection/track_data/r2_Queen_of_Nanaimo.json') as f: for line in f: data = line # Imported data now is in string format # Convert it into list of lists which we know the data structure of imported file. data = ast.literal_eval(data) # Covnert into numpy array np.array(data) # Assigning datatypes mt_data = np.array([tuple(x) for x in data], dtype = [('lon', 'f8'), ('lat', 'f8'), ('speed', 'i4'), ('course', 'i4'), ('heading', 'i4'), ('timestamp', 'M8[s]'), ('ut', 'i8'), ('station', 'i8'), ('gap','i4')]) mt_data =
pd.DataFrame(mt_data)
pandas.DataFrame
from keras.layers import Dense from keras.layers import LSTM from keras.layers import Lambda from keras.layers import Input from keras.layers import Conv1D from keras.layers import Bidirectional from keras.models import Model from keras.optimizers import Adam from keras.constraints import Constraint from keras.constraints import NonNeg import os import csv import ast import pandas as pd import numpy as np import datetime # Suppress noisy Tensorflow debug logging os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' INCLUDE_CV_PREDICTION = False ROOT_DIR = os.path.dirname(os.path.abspath(__file__)) DATA_PATH = os.path.join(ROOT_DIR, 'data') DATA_FILE_PATH = os.path.join(DATA_PATH, 'OxCGRT_latest.csv') DATA_FILE_CV_PATH = os.path.join(DATA_PATH, 'OxfordComunitatValenciana.csv') ADDITIONAL_CONTEXT_FILE = os.path.join(DATA_PATH, "Additional_Context_Data_Global.csv") ADDITIONAL_US_STATES_CONTEXT = os.path.join(DATA_PATH, "US_states_populations.csv") ADDITIONAL_UK_CONTEXT = os.path.join(DATA_PATH, "uk_populations.csv") ADDITIONAL_BRAZIL_CONTEXT = os.path.join(DATA_PATH, "brazil_populations.csv") MODEL_PATH = os.path.join(ROOT_DIR, 'models') MODEL_WEIGHTS_CLUSTER_FILE = os.path.join(MODEL_PATH, "weightscluster{}_280traineddays.h5") MODEL_WEIGHTS_SCO_V0_FILE = os.path.join(MODEL_PATH, "sco_v0_trained_model_weights.h5") MODEL_WEIGHTS_SCO_V1_FILE = os.path.join(MODEL_PATH, "sco_v1_trained_model_weights.h5") MODEL_WEIGHTS_SCO_V2_FILE = os.path.join(MODEL_PATH, "sco_v2_trained_model_weights.h5") ID_COLS = ['CountryName', 'RegionName', 'GeoID', 'Date'] CASES_COL = ['NewCases'] CONTEXT_COLUMNS = ['CountryName', 'RegionName', 'GeoID', 'Date', 'ConfirmedCases', 'ConfirmedDeaths', 'Population'] NPI_COLUMNS = ["C1_School closing", "C2_Workplace closing", "C3_Cancel public events", "C4_Restrictions on gatherings", "C5_Close public transport", "C6_Stay at home requirements", "C7_Restrictions on internal movement", "C8_International travel controls"] NB_LOOKBACK_DAYS = 21 WINDOW_SIZE = 7 LSTM_SIZE = 32 US_PREFIX = "United States / " Cluster_1 = [('Central African Republic', ''),('Chile', ''),('China', ''),('Lithuania', ''),('Niger', ''),('Panama', ''), ('Sweden', ''),('Switzerland', ''),('United States', 'Arizona'),('United States', 'Hawaii'), ('United States', 'Maine'),('United States', 'Rhode Island')] Cluster_2 = [('Bahrain', ''),('Bangladesh', ''),('El Salvador', ''),('Estonia', ''),('Japan', ''),('Kosovo', ''), ('Luxembourg', ''),('Moldova', ''),('Peru', ''),('Vietnam', '')] Cluster_3 = [('Andorra', ''),('Aruba', ''),('Australia', ''),('Belarus', ''),('Belgium', ''),('Bolivia', ''), ('Bulgaria', ''),('Burkina Faso', ''),('Croatia', ''),("Cote d'Ivoire", ''),('Czech Republic', ''), ('Dominican Republic', ''),('Finland', ''),('France', ''),('Greece', ''),('Guatemala', ''),('Iceland', ''), ('India', ''),('Ireland', ''),('Israel', ''),('Kosovos', ''),('Latvia', ''),('Mongolia', ''),('Myanmar', ''), ('Nepal', ''),('Norway', ''),('Oman', ''),('Puerto Rico', ''),('Romania', ''),('Russia', ''),('Saudi Arabia', ''), ('Slovenia', ''),('Tajikistan', ''),('Trinidad and Tobago', ''),('Uganda', ''),('Ukraine', ''), ('United Arab Emirates', ''),('United States', 'California'),('United States', 'Georgia'), ('United States', 'Idaho'),('United States', 'New Hampshire'),('United States', 'North Carolina'),('Uruguay', ''), ('Venezuela', ''),('Zambia', '')] Cluster_4 = [('United States', 'South Carolina')] Cluster_6 = [('Cameroon', ''),('Ethiopia', ''),('Jordan', ''),('Uzbekistan', ''),('Zimbabwe', '')] Cluster_7 = [('Eswatini', ''),('Kenya', ''),('Libya', ''),('Singapore', ''),('Suriname', ''),('United States', 'Illinois')] Cluster_10 = [('Algeria', ''), ('Iran', ''), ('Morocco', ''), ('United States', 'Texas')] Cluster_11 = [('United States', 'Florida')] Cluster_v0 = [ ('Afghanistan', ''), ('Bahamas', ''), ('Azerbaijan', ''), ('Burundi', ''), ('Comoros', ''), ('Democratic Republic of Congo', ''), ('Hong Kong', ''), ('Indonesia', ''), ('Kazakhstan', ''), ('Kyrgyz Republic', ''), ('Mauritius', ''), ('New Zealand', ''), ('Nicaragua', ''), ('Sudan', ''), ('Taiwan', '')] class Positive(Constraint): def __call__(self, w): return K.abs(w) class ValenciaPredictor(object): """ A class that computes a fitness for Prescriptor candidates. """ def __init__(self): # Carga el modelo y sus pesos # self.model = self._create_model_default(MODEL_WEIGHTS_DEFAULT_FILE) nb_context = 1 # Only time series of new cases rate is used as context nb_action = len(NPI_COLUMNS) self.model_v0 = self._create_model_sco_v0(nb_context=nb_context, nb_action=nb_action, lstm_size=LSTM_SIZE, nb_lookback_days=NB_LOOKBACK_DAYS) self.model_v0.load_weights(MODEL_WEIGHTS_SCO_V0_FILE) self.model_v1 = self._create_model_sco_v1(nb_context=nb_context, nb_action=nb_action, lstm_size=LSTM_SIZE, nb_lookback_days=NB_LOOKBACK_DAYS) self.model_v1.load_weights(MODEL_WEIGHTS_SCO_V1_FILE) self.model_v2 = self._create_model_sco_v2(nb_context=nb_context, nb_action=nb_action, lstm_size=LSTM_SIZE, nb_lookback_days=NB_LOOKBACK_DAYS) self.model_v2.load_weights(MODEL_WEIGHTS_SCO_V2_FILE) self.cluster_dict = self._load_clusters() self.df = self._prepare_dataframe() def predict_df(self, start_date_str: str, end_date_str: str, path_to_ips_file: str, verbose=False): # Load historical intervention plans, since inception hist_ips_df = self._load_original_data(path_to_ips_file) return self.predict_from_df(start_date_str, end_date_str, hist_ips_df, verbose=verbose) def predict_from_df(self, start_date_str: str, end_date_str: str, npis_df: pd.DataFrame, verbose=False) -> pd.DataFrame: """ Generates a file with daily new cases predictions for the given countries, regions and npis, between start_date and end_date, included. :param start_date_str: day from which to start making predictions, as a string, format YYYY-MM-DDD :param end_date_str: day on which to stop making predictions, as a string, format YYYY-MM-DDD :param path_to_ips_file: path to a csv file containing the intervention plans between inception_date and end_date :param verbose: True to print debug logs :return: a Pandas DataFrame containing the predictions """ start_date = pd.to_datetime(start_date_str, format='%Y-%m-%d') end_date = pd.to_datetime(end_date_str, format='%Y-%m-%d') nb_days = (end_date - start_date).days + 1 # Load historical intervention plans, since inception hist_ips_df = npis_df # Fill any missing NPIs by assuming they are the same as previous day for npi_col in NPI_COLUMNS: hist_ips_df.update(hist_ips_df.groupby(['CountryName', 'RegionName'])[npi_col].ffill().fillna(0)) # Intervention plans to forecast for: those between start_date and end_date ips_df = hist_ips_df[(hist_ips_df.Date >= start_date) & (hist_ips_df.Date <= end_date)] # Make predictions for each country,region pair geo_pred_dfs = [] for g in ips_df.GeoID.unique(): if verbose: print('\nPredicting for', g) # Pull out all relevant data for country c ips_gdf = ips_df[ips_df.GeoID == g] hist_ips_gdf = hist_ips_df[hist_ips_df.GeoID == g] hist_cases_gdf = self.df[self.df.GeoID == g] last_known_date = hist_cases_gdf.Date.max() # Start predicting from start_date, unless there's a gap since last known date current_date = min(last_known_date + np.timedelta64(1, 'D'), start_date) past_cases_gdf = hist_cases_gdf[hist_cases_gdf.Date < current_date] past_ips_gdf = hist_ips_gdf[hist_ips_gdf.Date < current_date] future_ips_gdf = hist_ips_gdf[(hist_ips_gdf.Date >= current_date) & (hist_ips_gdf.Date <= end_date)] past_cases = np.array(past_cases_gdf[CASES_COL]).flatten() past_npis = np.array(past_ips_gdf[NPI_COLUMNS]) future_npis = np.array(future_ips_gdf[NPI_COLUMNS]) pop_size = hist_cases_gdf.Population.max() past_cum_cases = np.cumsum(past_cases) zn = np.array(compute_7days_mean(past_cases)) rn = np.array(compute_rns(past_cum_cases, zn, pop_size)) # Loads custom model cluster_id = self.cluster_dict.get(g) if cluster_id is None: current_model = self.model_v1 elif cluster_id == -1: current_model = self.model_v0 else: file_name = MODEL_WEIGHTS_CLUSTER_FILE.format(cluster_id) current_model = self._create_model(file_name) # Make prediction for each day geo_preds = [] geo_ratios = [] days_ahead = 0 while current_date <= end_date: # Prepare data X_rns = rn[-NB_LOOKBACK_DAYS:].reshape(1, 21, 1) X_npis = past_npis[-NB_LOOKBACK_DAYS:].reshape(1, 21, 8) # Make the prediction (reshape so that sklearn is happy) pred_rn = current_model.predict([X_rns, X_npis])[0][0] pred_cases = int(((((pred_rn * ((pop_size - past_cum_cases[-1]) / pop_size)) - 1.0) * 7.0 * zn[-1])) + past_cases[-7]) pred = max(0, pred_cases) # Do not allow predicting negative cases # Add if it's a requested date if current_date >= start_date: geo_preds.append(pred) geo_ratios.append(pred_rn) if verbose: print(f"{current_date.strftime('%Y-%m-%d')}: {pred}") else: if verbose: print(f"{current_date.strftime('%Y-%m-%d')}: {pred} - Skipped (intermediate missing daily cases)") # Append the prediction and npi's for next day # in order to rollout predictions for further days. past_cases = np.append(past_cases, pred) past_npis = np.append(past_npis, future_npis[days_ahead:days_ahead + 1], axis=0) past_cum_cases = np.append(past_cum_cases, past_cum_cases[-1] + pred) zn = np.append(zn, compute_last_7days_mean(past_cases)) rn = np.append(rn, pred_rn) # compute_last_rn(past_cum_cases, zn, pop_size) # Move to next day current_date = current_date + np.timedelta64(1, 'D') days_ahead += 1 # we don't have historical data for this geo: return zeroes if len(geo_preds) != nb_days: geo_preds = [0] * nb_days geo_ratios = [0] * nb_days if g=='Mauritania': geo_preds = [140] * nb_days geo_ratios = [0] * nb_days if g=='Yemen': geo_preds = [5] * nb_days geo_ratios = [0] * nb_days # Create geo_pred_df with pred column geo_pred_df = ips_gdf[ID_COLS].copy() geo_pred_df['PredictedDailyNewCases'] = geo_preds geo_pred_df['PredictedDailyNewRatios'] = geo_ratios geo_pred_dfs.append(geo_pred_df) # Combine all predictions into a single dataframe pred_df =
pd.concat(geo_pred_dfs)
pandas.concat
from datetime import date, datetime, timedelta from dateutil import tz import numpy as np import pytest import pandas as pd from pandas import DataFrame, Index, Series, Timestamp, date_range import pandas._testing as tm class TestDatetimeIndex: def test_setitem_with_datetime_tz(self): # 16889 # support .loc with alignment and tz-aware DatetimeIndex mask = np.array([True, False, True, False]) idx = date_range("20010101", periods=4, tz="UTC") df = DataFrame({"a": np.arange(4)}, index=idx).astype("float64") result = df.copy() result.loc[mask, :] = df.loc[mask, :] tm.assert_frame_equal(result, df) result = df.copy() result.loc[mask] = df.loc[mask] tm.assert_frame_equal(result, df) idx = date_range("20010101", periods=4) df = DataFrame({"a": np.arange(4)}, index=idx).astype("float64") result = df.copy() result.loc[mask, :] = df.loc[mask, :] tm.assert_frame_equal(result, df) result = df.copy() result.loc[mask] = df.loc[mask] tm.assert_frame_equal(result, df) def test_indexing_with_datetime_tz(self): # GH#8260 # support datetime64 with tz idx = Index(date_range("20130101", periods=3, tz="US/Eastern"), name="foo") dr = date_range("20130110", periods=3) df = DataFrame({"A": idx, "B": dr}) df["C"] = idx df.iloc[1, 1] = pd.NaT df.iloc[1, 2] = pd.NaT # indexing result = df.iloc[1] expected = Series( [Timestamp("2013-01-02 00:00:00-0500", tz="US/Eastern"), pd.NaT, pd.NaT], index=list("ABC"), dtype="object", name=1, ) tm.assert_series_equal(result, expected) result = df.loc[1] expected = Series( [Timestamp("2013-01-02 00:00:00-0500", tz="US/Eastern"), pd.NaT, pd.NaT], index=list("ABC"), dtype="object", name=1, ) tm.assert_series_equal(result, expected) # indexing - fast_xs df = DataFrame({"a": date_range("2014-01-01", periods=10, tz="UTC")}) result = df.iloc[5] expected = Series( [Timestamp("2014-01-06 00:00:00+0000", tz="UTC")], index=["a"], name=5 ) tm.assert_series_equal(result, expected) result = df.loc[5] tm.assert_series_equal(result, expected) # indexing - boolean result = df[df.a > df.a[3]] expected = df.iloc[4:] tm.assert_frame_equal(result, expected) # indexing - setting an element df = DataFrame( data=pd.to_datetime(["2015-03-30 20:12:32", "2015-03-12 00:11:11"]), columns=["time"], ) df["new_col"] = ["new", "old"] df.time = df.set_index("time").index.tz_localize("UTC") v = df[df.new_col == "new"].set_index("time").index.tz_convert("US/Pacific") # trying to set a single element on a part of a different timezone # this converts to object df2 = df.copy() df2.loc[df2.new_col == "new", "time"] = v expected = Series([v[0], df.loc[1, "time"]], name="time") tm.assert_series_equal(df2.time, expected) v = df.loc[df.new_col == "new", "time"] + pd.Timedelta("1s") df.loc[df.new_col == "new", "time"] = v tm.assert_series_equal(df.loc[df.new_col == "new", "time"], v) def test_consistency_with_tz_aware_scalar(self): # xef gh-12938 # various ways of indexing the same tz-aware scalar df = Series([Timestamp("2016-03-30 14:35:25", tz="Europe/Brussels")]).to_frame() df = pd.concat([df, df]).reset_index(drop=True) expected = Timestamp("2016-03-30 14:35:25+0200", tz="Europe/Brussels") result = df[0][0] assert result == expected result = df.iloc[0, 0] assert result == expected result = df.loc[0, 0] assert result == expected result = df.iat[0, 0] assert result == expected result = df.at[0, 0] assert result == expected result = df[0].loc[0] assert result == expected result = df[0].at[0] assert result == expected def test_indexing_with_datetimeindex_tz(self): # GH 12050 # indexing on a series with a datetimeindex with tz index = date_range("2015-01-01", periods=2, tz="utc") ser = Series(range(2), index=index, dtype="int64") # list-like indexing for sel in (index, list(index)): # getitem tm.assert_series_equal(ser[sel], ser) # setitem result = ser.copy() result[sel] = 1 expected = Series(1, index=index) tm.assert_series_equal(result, expected) # .loc getitem tm.assert_series_equal(ser.loc[sel], ser) # .loc setitem result = ser.copy() result.loc[sel] = 1 expected = Series(1, index=index) tm.assert_series_equal(result, expected) # single element indexing # getitem assert ser[index[1]] == 1 # setitem result = ser.copy() result[index[1]] = 5 expected = Series([0, 5], index=index) tm.assert_series_equal(result, expected) # .loc getitem assert ser.loc[index[1]] == 1 # .loc setitem result = ser.copy() result.loc[index[1]] = 5 expected = Series([0, 5], index=index) tm.assert_series_equal(result, expected) def test_partial_setting_with_datetimelike_dtype(self): # GH9478 # a datetimeindex alignment issue with partial setting df = DataFrame( np.arange(6.0).reshape(3, 2), columns=list("AB"), index=date_range("1/1/2000", periods=3, freq="1H"), ) expected = df.copy() expected["C"] = [expected.index[0]] + [pd.NaT, pd.NaT] mask = df.A < 1 df.loc[mask, "C"] = df.loc[mask].index tm.assert_frame_equal(df, expected) def test_loc_setitem_datetime(self): # GH 9516 dt1 = Timestamp("20130101 09:00:00") dt2 = Timestamp("20130101 10:00:00") for conv in [ lambda x: x, lambda x: x.to_datetime64(), lambda x: x.to_pydatetime(), lambda x: np.datetime64(x), ]: df = DataFrame() df.loc[conv(dt1), "one"] = 100 df.loc[conv(dt2), "one"] = 200 expected = DataFrame({"one": [100.0, 200.0]}, index=[dt1, dt2]) tm.assert_frame_equal(df, expected) def test_series_partial_set_datetime(self): # GH 11497 idx = date_range("2011-01-01", "2011-01-02", freq="D", name="idx") ser = Series([0.1, 0.2], index=idx, name="s") result = ser.loc[[Timestamp("2011-01-01"), Timestamp("2011-01-02")]] exp = Series([0.1, 0.2], index=idx, name="s") tm.assert_series_equal(result, exp, check_index_type=True) keys = [ Timestamp("2011-01-02"), Timestamp("2011-01-02"), Timestamp("2011-01-01"), ] exp = Series( [0.2, 0.2, 0.1], index=pd.DatetimeIndex(keys, name="idx"), name="s" ) tm.assert_series_equal(ser.loc[keys], exp, check_index_type=True) keys = [ Timestamp("2011-01-03"), Timestamp("2011-01-02"), Timestamp("2011-01-03"), ] with pytest.raises(KeyError, match="with any missing labels"): ser.loc[keys] def test_series_partial_set_period(self): # GH 11497 idx = pd.period_range("2011-01-01", "2011-01-02", freq="D", name="idx") ser = Series([0.1, 0.2], index=idx, name="s") result = ser.loc[ [pd.Period("2011-01-01", freq="D"), pd.Period("2011-01-02", freq="D")] ] exp = Series([0.1, 0.2], index=idx, name="s") tm.assert_series_equal(result, exp, check_index_type=True) keys = [ pd.Period("2011-01-02", freq="D"), pd.Period("2011-01-02", freq="D"), pd.Period("2011-01-01", freq="D"), ] exp = Series([0.2, 0.2, 0.1], index=pd.PeriodIndex(keys, name="idx"), name="s") tm.assert_series_equal(ser.loc[keys], exp, check_index_type=True) keys = [ pd.Period("2011-01-03", freq="D"), pd.Period("2011-01-02", freq="D"), pd.Period("2011-01-03", freq="D"), ] with pytest.raises(KeyError, match="with any missing labels"): ser.loc[keys] def test_nanosecond_getitem_setitem_with_tz(self): # GH 11679 data = ["2016-06-28 08:30:00.123456789"] index = pd.DatetimeIndex(data, dtype="datetime64[ns, America/Chicago]") df = DataFrame({"a": [10]}, index=index) result = df.loc[df.index[0]] expected = Series(10, index=["a"], name=df.index[0]) tm.assert_series_equal(result, expected) result = df.copy() result.loc[df.index[0], "a"] = -1 expected = DataFrame(-1, index=index, columns=["a"]) tm.assert_frame_equal(result, expected) def test_loc_getitem_across_dst(self): # GH 21846 idx = pd.date_range( "2017-10-29 01:30:00", tz="Europe/Berlin", periods=5, freq="30 min" ) series2 = pd.Series([0, 1, 2, 3, 4], index=idx) t_1 = pd.Timestamp( "2017-10-29 02:30:00+02:00", tz="Europe/Berlin", freq="30min" ) t_2 = pd.Timestamp( "2017-10-29 02:00:00+01:00", tz="Europe/Berlin", freq="30min" ) result = series2.loc[t_1:t_2] expected = pd.Series([2, 3], index=idx[2:4]) tm.assert_series_equal(result, expected) result = series2[t_1] expected = 2 assert result == expected def test_loc_incremental_setitem_with_dst(self): # GH 20724 base = datetime(2015, 11, 1, tzinfo=tz.gettz("US/Pacific")) idxs = [base + timedelta(seconds=i * 900) for i in range(16)] result = pd.Series([0], index=[idxs[0]]) for ts in idxs: result.loc[ts] = 1 expected = pd.Series(1, index=idxs) tm.assert_series_equal(result, expected) def test_loc_setitem_with_existing_dst(self): # GH 18308 start =
pd.Timestamp("2017-10-29 00:00:00+0200", tz="Europe/Madrid")
pandas.Timestamp
import pandas as pd import seaborn as sns from sklearn.decomposition import PCA sns.set(style="white", color_codes=True) import warnings import matplotlib.pyplot as plt warnings.filterwarnings("ignore") dataset =
pd.read_csv('CC.csv')
pandas.read_csv
import logging import multiprocessing as mp from multiprocessing.pool import Pool import pandas as pd from .. import util _logger = logging.getLogger(__name__) _rec_context = None class MPRecContext: def __init__(self, algo): self.algo = algo def __enter__(self): global _rec_context _logger.debug('installing context for %s', self.algo) _rec_context = self return self def __exit__(self, *args, **kwargs): global _rec_context _logger.debug('uninstalling context for %s', self.algo) _rec_context = None def _predict_user(algo, user, udf): watch = util.Stopwatch() res = algo.predict_for_user(user, udf['item']) res =
pd.DataFrame({'user': user, 'item': res.index, 'prediction': res.values})
pandas.DataFrame
import datetime import pandas as pd from dateutil.relativedelta import relativedelta from timeseries import slice_by_timestamp from yearly import replace_year def set_to_begin(values): """Set the dates and times in the list to the begin of the month :param values: :type values: :return: :rtype: """ return [pd.Timestamp(v).replace(day=1, hour=0, minute=0, second=0, microsecond=0) for v in values] def set_to_end(values): """Set the dates and times in the list to the end of the month :param values: :type values: :return: :rtype: """ try: return [pd.Timestamp(v).replace(day=last_day(v), hour=23, minute=59, second=59, microsecond=999999) for v in values] except TypeError: return pd.Timestamp(values).replace(day=last_day(values), hour=23, minute=59, second=59, microsecond=999999) def last_day(dt): return (pd.Timestamp(dt) + pd.tseries.offsets.MonthEnd(n=0)).day def is_last_day(dt): """Check whether day in ``dt`` is the last day of the month :param dt: datetime :type dt: datetime, pd.Timestamp, np.datetime64 :return: True/False :rtype: bool """ return pd.Timestamp(dt).day == last_day(dt) def increment(dt, months=1, microseconds=0): """Increment ``ts`` by ``months``. Default is to increment one month. Return a ``pd.Timestamp`` :param dt: timestamp :type dt: datetime, pd.Timestamp, np.datetime64 :param months: number of months to increment. Negative values are allowed. Default months = 1 :type months: int :param microseconds: microseconds to add to the right interval: 0 for closed, -1 for right opened interval :type microseconds: int :return: ts incremented by ``months`` :rtype: pd.Timestamp """ # Don't use pd.Timedelta: # pd.Timestamp('2000-12-30 07:30') + pd.Timedelta(1, unit='M') == Timestamp('2001-01-29 17:59:06') dt = pd.Timestamp(dt) ts1 = pd.Timestamp(
pd.Timestamp(dt)
pandas.Timestamp
from time import time from typing import Tuple, Mapping, Optional, Sequence, TYPE_CHECKING from itertools import product import sys import pytest from scanpy import settings as s from anndata import AnnData from scanpy.datasets import blobs import scanpy as sc from pandas.testing import assert_frame_equal import numpy as np import pandas as pd from squidpy.gr import ligrec from squidpy.gr._ligrec import PermutationTest from squidpy._constants._pkg_constants import Key _CK = "leiden" Interactions_t = Tuple[Sequence[str], Sequence[str]] Complexes_t = Sequence[Tuple[str, str]] class TestInvalidBehavior: def test_not_adata(self): with pytest.raises(TypeError, match=r"Expected `adata` to be of type `anndata.AnnData`"): ligrec(None, _CK) def test_adata_no_raw(self, adata: AnnData): del adata.raw with pytest.raises(AttributeError, match=r"No `.raw` attribute"): ligrec(adata, _CK, use_raw=True) def test_raw_has_different_n_obs(self, adata: AnnData): adata.raw = blobs(n_observations=adata.n_obs + 1) with pytest.raises(ValueError, match=rf"Expected `{adata.n_obs}` cells in `.raw`"): ligrec(adata, _CK) def test_invalid_cluster_key(self, adata: AnnData, interactions: Interactions_t): with pytest.raises(KeyError, match=r"Cluster key `foobar` not found"): ligrec(adata, cluster_key="foobar", interactions=interactions) def test_cluster_key_is_not_categorical(self, adata: AnnData, interactions: Interactions_t): adata.obs[_CK] = adata.obs[_CK].astype("string") with pytest.raises(TypeError, match=rf"Expected `adata.obs\[{_CK!r}\]` to be `categorical`"): ligrec(adata, _CK, interactions=interactions) def test_only_1_cluster(self, adata: AnnData, interactions: Interactions_t): adata.obs["foo"] = 1 adata.obs["foo"] = adata.obs["foo"].astype("category") with pytest.raises(ValueError, match=r"Expected at least `2` clusters, found `1`."): ligrec(adata, "foo", interactions=interactions) def test_invalid_complex_policy(self, adata: AnnData, interactions: Interactions_t): with pytest.raises(ValueError, match=r"Invalid option `foobar` for `ComplexPolicy`."): ligrec(adata, _CK, interactions=interactions, complex_policy="foobar") def test_invalid_fdr_axis(self, adata: AnnData, interactions: Interactions_t): with pytest.raises(ValueError, match=r"Invalid option `foobar` for `CorrAxis`."): ligrec(adata, _CK, interactions=interactions, corr_axis="foobar", corr_method="fdr_bh") def test_too_few_permutations(self, adata: AnnData, interactions: Interactions_t): with pytest.raises(ValueError, match=r"Expected `n_perms` to be positive"): ligrec(adata, _CK, interactions=interactions, n_perms=0) def test_invalid_interactions_type(self, adata: AnnData): with pytest.raises(TypeError, match=r"Expected either a `pandas.DataFrame`"): ligrec(adata, _CK, interactions=42) def test_invalid_interactions_dict(self, adata: AnnData): with pytest.raises(KeyError, match=r"Column .* is not in `interactions`."): ligrec(adata, _CK, interactions={"foo": ["foo"], "target": ["bar"]}) with pytest.raises(KeyError, match=r"Column .* is not in `interactions`."): ligrec(adata, _CK, interactions={"source": ["foo"], "bar": ["bar"]}) def test_invalid_interactions_dataframe(self, adata: AnnData, interactions: Interactions_t): df = pd.DataFrame(interactions, columns=["foo", "target"]) with pytest.raises(KeyError, match=r"Column .* is not in `interactions`."): ligrec(adata, _CK, interactions=df) df = pd.DataFrame(interactions, columns=["source", "bar"]) with pytest.raises(KeyError, match=r"Column .* is not in `interactions`."): ligrec(adata, _CK, interactions=df) def test_interactions_invalid_sequence(self, adata: AnnData, interactions: Interactions_t): interactions += ("foo", "bar", "bar") # type: ignore with pytest.raises(ValueError, match=r"Not all interactions are of length `2`."): ligrec(adata, _CK, interactions=interactions) def test_interactions_only_invalid_names(self, adata: AnnData): with pytest.raises(ValueError, match=r"After filtering by genes"): ligrec(adata, _CK, interactions=["foo", "bar", "baz"]) def test_invalid_clusters(self, adata: AnnData, interactions: Interactions_t): with pytest.raises(ValueError, match=r"Invalid cluster `'foo'`."): ligrec(adata, _CK, interactions=interactions, clusters=["foo"]) def test_invalid_clusters_mix(self, adata: AnnData, interactions: Interactions_t): with pytest.raises(ValueError, match=r"Expected a `tuple` of length `2`, found `3`."): ligrec(adata, _CK, interactions=interactions, clusters=["foo", ("bar", "baz")]) class TestValidBehavior: def test_do_not_use_raw(self, adata: AnnData, interactions: Interactions_t): del adata.raw _ = PermutationTest(adata, use_raw=False) def test_all_genes_capitalized(self, adata: AnnData, interactions: Interactions_t): pt = PermutationTest(adata).prepare(interactions=interactions) genes = pd.Series([g for gs in pt.interactions[["source", "target"]].values for g in gs], dtype="string") np.testing.assert_array_equal(genes.values, genes.str.upper().values) np.testing.assert_array_equal(pt._data.columns, pt._data.columns.str.upper()) def test_complex_policy_min(self, adata: AnnData, complexes: Complexes_t): g = adata.raw.var_names pt = PermutationTest(adata).prepare(interactions=complexes, complex_policy="min") assert pt.interactions.shape == (5, 2) assert np.mean(adata.raw[:, g[2]].X) > np.mean(adata.raw[:, g[3]].X) # S assert np.mean(adata.raw[:, g[6]].X) < np.mean(adata.raw[:, g[7]].X) # T assert np.mean(adata.raw[:, g[8]].X) < np.mean(adata.raw[:, g[9]].X) # S assert np.mean(adata.raw[:, g[10]].X) > np.mean(adata.raw[:, g[11]].X) # T np.testing.assert_array_equal(pt.interactions["source"], list(map(str.upper, [g[0], g[3], g[5], g[8], g[12]]))) np.testing.assert_array_equal(pt.interactions["target"], list(map(str.upper, [g[1], g[4], g[6], g[11], g[13]]))) def test_complex_policy_all(self, adata: AnnData, complexes: Complexes_t): g = adata.raw.var_names pt = PermutationTest(adata).prepare(interactions=complexes, complex_policy="all") assert pt.interactions.shape == (10, 2) np.testing.assert_array_equal( pt.interactions.values, pd.DataFrame( [ [g[0], g[1]], [g[2], g[4]], [g[3], g[4]], [g[5], g[6]], [g[5], g[7]], [g[8], g[10]], [g[8], g[11]], [g[9], g[10]], [g[9], g[11]], [g[12], g[13]], ] ) .applymap(str.upper) .values, ) def test_fdr_axis_works(self, adata: AnnData, interactions: Interactions_t): rc = ligrec( adata, _CK, interactions=interactions, n_perms=5, corr_axis="clusters", seed=42, n_jobs=1, show_progress_bar=False, copy=True, ) ri = ligrec( adata, _CK, interactions=interactions, n_perms=5, corr_axis="interactions", n_jobs=1, show_progress_bar=False, seed=42, copy=True, ) np.testing.assert_array_equal(np.where(np.isnan(rc["pvalues"])), np.where(np.isnan(ri["pvalues"]))) mask = np.isnan(rc["pvalues"]) assert not np.allclose(rc["pvalues"].values[mask], ri["pvalues"].values[mask]) def test_inplace_default_key(self, adata: AnnData, interactions: Interactions_t): key = Key.uns.ligrec(_CK) assert key not in adata.uns res = ligrec(adata, _CK, interactions=interactions, n_perms=5, copy=False, show_progress_bar=False) assert res is None assert isinstance(adata.uns[key], dict) r = adata.uns[key] assert len(r) == 3 assert isinstance(r["means"], pd.DataFrame) assert isinstance(r["pvalues"], pd.DataFrame) assert isinstance(r["metadata"], pd.DataFrame) def test_inplace_key_added(self, adata: AnnData, interactions: Interactions_t): assert "foobar" not in adata.uns res = ligrec( adata, _CK, interactions=interactions, n_perms=5, copy=False, key_added="foobar", show_progress_bar=False ) assert res is None assert isinstance(adata.uns["foobar"], dict) r = adata.uns["foobar"] assert len(r) == 3 assert isinstance(r["means"], pd.DataFrame) assert isinstance(r["pvalues"], pd.DataFrame) assert isinstance(r["metadata"], pd.DataFrame) def test_return_no_write(self, adata: AnnData, interactions: Interactions_t): assert "foobar" not in adata.uns r = ligrec( adata, _CK, interactions=interactions, n_perms=5, copy=True, key_added="foobar", show_progress_bar=False ) assert "foobar" not in adata.uns assert len(r) == 3 assert isinstance(r["means"], pd.DataFrame) assert isinstance(r["pvalues"], pd.DataFrame) assert isinstance(r["metadata"], pd.DataFrame) @pytest.mark.parametrize("fdr_method", [None, "fdr_bh"]) def test_pvals_in_correct_range(self, adata: AnnData, interactions: Interactions_t, fdr_method: Optional[str]): r = ligrec( adata, _CK, interactions=interactions, n_perms=5, copy=True, show_progress_bar=False, corr_method=fdr_method, threshold=0, ) if np.sum(np.isnan(r["pvalues"].values)) == np.prod(r["pvalues"].shape): assert fdr_method == "fdr_bh" else: assert np.nanmax(r["pvalues"].values) <= 1.0, np.nanmax(r["pvalues"].values) assert np.nanmin(r["pvalues"].values) >= 0, np.nanmin(r["pvalues"].values) def test_result_correct_index(self, adata: AnnData, interactions: Interactions_t): r = ligrec(adata, _CK, interactions=interactions, n_perms=5, copy=True, show_progress_bar=False) np.testing.assert_array_equal(r["means"].index, r["pvalues"].index) np.testing.assert_array_equal(r["pvalues"].index, r["metadata"].index) np.testing.assert_array_equal(r["means"].columns, r["pvalues"].columns) assert not np.array_equal(r["means"].columns, r["metadata"].columns) assert not np.array_equal(r["pvalues"].columns, r["metadata"].columns) def test_result_is_sparse(self, adata: AnnData, interactions: Interactions_t): interactions = pd.DataFrame(interactions, columns=["source", "target"]) if TYPE_CHECKING: assert isinstance(interactions, pd.DataFrame) interactions["metadata"] = "foo" r = ligrec(adata, _CK, interactions=interactions, n_perms=5, seed=2, copy=True, show_progress_bar=False) assert r["means"].sparse.density <= 0.15 assert r["pvalues"].sparse.density <= 0.95 with pytest.raises(AttributeError, match=r"Can only use the '.sparse' accessor with Sparse data."): _ = r["metadata"].sparse np.testing.assert_array_equal(r["metadata"].columns, ["metadata"]) np.testing.assert_array_equal(r["metadata"]["metadata"], interactions["metadata"]) @pytest.mark.parametrize("n_jobs", [1, 2]) def test_reproducibility_cores(self, adata: AnnData, interactions: Interactions_t, n_jobs: int): r1 = ligrec( adata, _CK, interactions=interactions, n_perms=25, copy=True, show_progress_bar=False, seed=42, n_jobs=n_jobs, ) r2 = ligrec( adata, _CK, interactions=interactions, n_perms=25, copy=True, show_progress_bar=False, seed=42, n_jobs=n_jobs, ) r3 = ligrec( adata, _CK, interactions=interactions, n_perms=25, copy=True, show_progress_bar=False, seed=43, n_jobs=n_jobs, ) assert r1 is not r2 np.testing.assert_allclose(r1["means"], r2["means"]) np.testing.assert_allclose(r2["means"], r3["means"]) np.testing.assert_allclose(r1["pvalues"], r2["pvalues"]) assert not np.allclose(r3["pvalues"], r1["pvalues"]) assert not np.allclose(r3["pvalues"], r2["pvalues"]) def test_reproducibility_numba_parallel_off(self, adata: AnnData, interactions: Interactions_t): t1 = time() r1 = ligrec( adata, _CK, interactions=interactions, n_perms=25, copy=True, show_progress_bar=False, seed=42, numba_parallel=False, ) t1 = time() - t1 t2 = time() r2 = ligrec( adata, _CK, interactions=interactions, n_perms=25, copy=True, show_progress_bar=False, seed=42, numba_parallel=True, ) t2 = time() - t2 assert r1 is not r2 # for such a small data, overhead from parallelization is too high assert t1 <= t2, (t1, t2) np.testing.assert_allclose(r1["means"], r2["means"]) np.testing.assert_allclose(r1["pvalues"], r2["pvalues"]) def test_paul15_correct_means(self, paul15: AnnData, paul15_means: pd.DataFrame): res = ligrec( paul15, "paul15_clusters", interactions=list(paul15_means.index.to_list()), corr_method=None, copy=True, show_progress_bar=False, threshold=0.01, seed=0, n_perms=1, n_jobs=1, ) np.testing.assert_array_equal(res["means"].index, paul15_means.index) np.testing.assert_array_equal(res["means"].columns, paul15_means.columns) np.testing.assert_allclose(res["means"].values, paul15_means.values) def test_reproducibility_numba_off( self, adata: AnnData, interactions: Interactions_t, ligrec_no_numba: Mapping[str, pd.DataFrame] ): r = ligrec( adata, _CK, interactions=interactions, n_perms=5, copy=True, show_progress_bar=False, seed=42, n_jobs=1 ) np.testing.assert_array_equal(r["means"].index, ligrec_no_numba["means"].index) np.testing.assert_array_equal(r["means"].columns, ligrec_no_numba["means"].columns) np.testing.assert_array_equal(r["pvalues"].index, ligrec_no_numba["pvalues"].index) np.testing.assert_array_equal(r["pvalues"].columns, ligrec_no_numba["pvalues"].columns) np.testing.assert_allclose(r["means"], ligrec_no_numba["means"]) np.testing.assert_allclose(r["pvalues"], ligrec_no_numba["pvalues"]) np.testing.assert_array_equal(np.where(np.isnan(r["pvalues"])), np.where(np.isnan(ligrec_no_numba["pvalues"]))) def test_logging(self, adata: AnnData, interactions: Interactions_t, capsys): s.logfile = sys.stderr s.verbosity = 4 ligrec( adata, _CK, interactions=interactions, n_perms=5, copy=False, show_progress_bar=False, complex_policy="all", key_added="ligrec_test", n_jobs=2, ) err = capsys.readouterr().err assert "DEBUG: Removing duplicate interactions" in err assert "DEBUG: Removing duplicate genes in the data" in err assert "DEBUG: Creating all gene combinations within complexes" in err assert "DEBUG: Removing interactions with no genes in the data" in err assert "DEBUG: Removing genes not in any interaction" in err assert "Running `5` permutations on `25` interactions and `25` cluster combinations using `2` core(s)" in err assert "Adding `adata.uns['ligrec_test']`" in err def test_non_uniqueness(self, adata: AnnData, interactions: Interactions_t): # add complexes expected = {(r.upper(), l.upper()) for r, l in interactions} interactions += ( # type: ignore (f"{interactions[-1][0]}_{interactions[-1][1]}", f"{interactions[-2][0]}_{interactions[-2][1]}"), ) * 2 interactions += interactions[:3] # type: ignore res = ligrec( adata, _CK, interactions=interactions, n_perms=1, copy=True, show_progress_bar=False, seed=42, numba_parallel=False, ) assert len(res["pvalues"]) == len(expected) assert set(res["pvalues"].index.to_list()) == expected @pytest.mark.xfail(reason="AnnData cannot handle writing MultiIndex") def test_writeable(self, adata: AnnData, interactions: Interactions_t, tmpdir): ligrec(adata, _CK, interactions=interactions, n_perms=5, copy=False, show_progress_bar=False, key_added="foo") res = adata.uns["foo"] sc.write(tmpdir / "ligrec.h5ad", adata) bdata = sc.read(tmpdir / "ligrec.h5ad") for key in ["means", "pvalues", "metadata"]: assert_frame_equal(res[key], bdata.uns["foo"][key]) @pytest.mark.parametrize("use_raw", [False, True]) def test_gene_symbols(self, adata: AnnData, use_raw: bool): gene_ids = adata.var["gene_ids"] interactions = tuple(product(gene_ids[:5], gene_ids[:5])) res = ligrec( adata, _CK, interactions=interactions, n_perms=5, use_raw=use_raw, copy=True, show_progress_bar=False, gene_symbols="gene_ids", ) np.testing.assert_array_equal(res["means"].index,
pd.MultiIndex.from_tuples(interactions)
pandas.MultiIndex.from_tuples
import time import warnings from concurrent.futures.process import ProcessPoolExecutor from typing import Tuple import numpy as np import pandas as pd import torch from sklearn.preprocessing import LabelBinarizer from torch.utils.data import Dataset from tqdm.auto import tqdm from .base import BaseClassifier, ClassifierNotTrainedError, BaseXModel from .ext_models.brl.RuleListClassifier import RuleListClassifier from ..utils.base import NotAvailableError, brl_extracting_formula from ..utils.metrics import Metric, Accuracy class XBRLClassifier(BaseClassifier, BaseXModel): """ BR class module. It does provides for explanations. :param n_classes: int number of classes to classify - dimension of the output layer of the network :param n_features: int number of features - dimension of the input space :param discretize: bool whether to discretize data or not :param feature_names: list name of the features, if not given substituted with f1, f2, ... fd :param class_names: list name of the classes, if not given substituted with class_1, class_2, ... class_n """ def __init__(self, n_classes: int, n_features: int, discretize: bool = True, feature_names: list = None, class_names: list = None, n_processes : int = 1, device: torch.device = torch.device('cpu'), name: str = "brl.pth", ): super().__init__(name=name, device=device) assert device == torch.device('cpu'), "Only cpu training is provided with BRL models." self.n_classes = n_classes self.n_features = n_features self.discretize = discretize self.n_processes = n_processes self.model = [] self.class_names = [] for i in range(self.n_classes): class_name = class_names[i] if class_names is not None else f"class_{i}" model = RuleListClassifier(max_iter=10000, class1label=class_name, verbose=False) self.model.append(model) self.class_names.append(class_name) self.features_names = feature_names if feature_names is not None else [f"f{i}" for i in range(n_features)] if n_classes == 1: n_classes = 2 self.explanations = ["" for _ in range(n_classes)] def forward(self, x, **kwargs) -> torch.Tensor: """ forward method extended from Classifier. Here input data goes through the layer of the ReLU network. A probability value is returned in output after sigmoid activation :param x: input tensor :return: output classification """ x = x.detach().cpu().numpy() if self.discretize: x = self._discretize(x) outputs = [] pbar = tqdm(range(self.n_classes), desc="BRL predicting classes") futures = [] if self.n_processes > 1: executor = ProcessPoolExecutor(self.n_processes) for i in range(self.n_classes): args = { "self": self.model[i], "X": x, "use_only_d_star": True } futures.append(executor.submit(RuleListClassifier.predict_proba, **args)) for i in range(self.n_classes): if self.n_processes > 1: brl_outputs = futures[i].result() else: brl_outputs = self.model[i].predict_proba(x, use_only_d_star=True) # BRL outputs both the negative prediction (output[0]) and the positive (output[1]) output = brl_outputs[:, 1] outputs.append(torch.tensor(output)) pbar.update() pbar.close() outputs = torch.stack(outputs, dim=1) return outputs def _discretize(self, train_data: np.ndarray) -> np.ndarray: train_data = [[self.features_names[i] if item > 0.5 else "~" + self.features_names[i] for i, item in enumerate(array)] for array in train_data] return np.asarray(train_data) def _binarize_labels(self, train_labels: torch.tensor): if len(train_labels.shape) == 1: train_labels = np.expand_dims(train_labels, axis=1) if len(np.unique(train_labels)) > 2: train_labels = LabelBinarizer().fit_transform(train_labels) print(f"Binarized labels. Labels {train_labels.shape}") elif len(np.unique(train_labels)) == 2 and self.n_classes == 2: train_labels = np.hstack((1 - train_labels, train_labels)) else: print(f"Labels {train_labels.shape}") return train_labels def get_loss(self, output: torch.Tensor, target: torch.Tensor, **kwargs) -> None: """ Loss is not used in BRL as it is not a gradient based algorithm. Therefore, if this function is called an error is thrown. :param output: output tensor from the forward function :param target: label tensor :param kwargs: :raise: NotAvailableError """ raise NotAvailableError() def get_device(self) -> torch.device: """ Return the device on which the classifier is actually loaded. For BRL is always cpu :return: device in use """ return torch.device("cpu") def fit(self, train_set: Dataset, val_set: Dataset = None, train_sample_rate: float = 0.1, metric: Metric = Accuracy(), verbose: bool = True, save=True, eval=True, **kwargs) -> pd.DataFrame: """ fit function that execute many of the common operation generally performed by many method during training. Adam optimizer is always employed :param train_set: training set on which to train :param val_set: validation set used for early stopping :param train_sample_rate: :param metric: metric to evaluate the predictions of the network :param verbose: whether to output or not epoch metrics :param save: whether to save the model or not :param eval: whether to evaluate training and validation data (it may takes time) :return: pandas dataframe collecting the metrics from each epoch """ # Loading dataset train_loader = torch.utils.data.DataLoader(train_set, len(train_set)) train_data, train_labels = next(train_loader.__iter__()) train_data, train_labels = self._random_sample_data(train_sample_rate, train_data, train_labels) train_data = train_data.numpy() train_labels = train_labels.numpy() train_labels = self._binarize_labels(train_labels) if self.discretize: print("Discretized features") train_data = self._discretize(train_data) features = self.features_names else: features = [] # Fitting a BRL classifier for each class in parallel futures = [] pbar = tqdm(range(self.n_classes), desc="BRL training classes") if self.n_processes > 1: executor = ProcessPoolExecutor(self.n_processes) for i in range(self.n_classes): self.model[i].verbose = verbose args = { "self": self.model[i], "X" : train_data, "y" : train_labels[:, i], "feature_labels" : self.features_names, "undiscretized_features": features } futures.append(executor.submit(RuleListClassifier.fit, **args)) for i in range(self.n_classes): if self.n_processes > 1: self.model[i] = futures[i].result() else: self.model[i] = self.model[i].fit(X=train_data, y=train_labels[:, i], feature_labels=self.features_names, undiscretized_features=features) pbar.update() pbar.close() # Compute accuracy, f1 and constraint_loss on the whole train, validation dataset if eval: train_acc = self.evaluate(train_set, metric=metric) if val_set is not None: val_acc = self.evaluate(val_set, metric=metric) else: val_acc = 0 else: train_acc, val_acc = 0., 0. if verbose: print(f"Train_acc: {train_acc:.1f}, Val_acc: {val_acc:.1f}") if save: self.save() # Performance dictionary performance_dict = { "tot_loss": [0], "train_accs": [train_acc], "val_accs": [val_acc], "best_epoch": [0], } performance_df =
pd.DataFrame(performance_dict)
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 # # Import Base Packages # In[ ]: import pandas as pd import numpy as np import warnings warnings.filterwarnings('ignore') # # Interface function to feature engineering data # In[ ]: from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import PolynomialFeatures column_names = [ 'age', 'workclass', 'fnlwgt', 'education', 'educational-num', 'marital-status', 'occupation', 'relationship', 'race', 'gender', 'capital-gain', 'capital-loss', 'hours-per-week', 'native-country', 'income' ] columns_to_encoding = [ 'workclass', 'marital-status', 'occupation', 'relationship', 'race', 'gender' ] columns_to_normalize = [ 'age', 'educational-num', 'hours-per-week', 'capital-gain', 'capital-loss' ] le = LabelEncoder() scaler = StandardScaler() pl = PolynomialFeatures(2, include_bias=False) def feature_engineering(filename, train=True): df =
pd.read_csv(filename, index_col=False)
pandas.read_csv
# -*- coding: utf-8 -*- """ Created on Sun May 22 10:30:01 2016 SC process signups functions @author: tkc """ #%% import pandas as pd import numpy as np from datetime import datetime, date import re, glob, math from openpyxl import load_workbook # writing to Excel from PIL import Image, ImageDraw, ImageFont import tkinter as tk import pkg.SC_config as cnf # _OUTPUT_DIR and _INPUT_DIR #%% def combinephrases(mylist): ''' Combine list of phrases using commas & and ''' if len(mylist)==1: return str(mylist[0]) elif len(mylist)==2: tempstr=str(mylist[0])+ ' and ' +str(mylist[1]) return tempstr else: rest=mylist[:-1] rest=[str(i) for i in rest] last=mylist[-1] tempstr=', '.join(rest) +' and ' + str(last) return tempstr#%% def writetoxls(df, sheetname, xlsfile): ''' Generic write of given df to specified tab of given xls file ''' book=load_workbook(xlsfile) writer=pd.ExcelWriter(xlsfile, engine='openpyxl', datetime_format='mm/dd/yy', date_format='mm/dd/yy') writer.book=book writer.sheets = dict((ws.title, ws) for ws in book.worksheets) df.to_excel(writer,sheet_name=sheetname,index=False) # this overwrites existing file writer.save() # saves xls file with all modified data return def loadtransfers(df, signups): ''' Load transferred players and add to signups (then run player ID); transfers added as normal players but need fake billing entries ''' df=df.rename(columns={'Fname':'First','Lname':'Last','Street':'Address','Parish':'Parish of Registration'}) df=df.rename(columns={'Phone':'Phone1','Birthdate':'DOB','Sex':'Gender','Open/Closed':'Ocstatus'}) # Replace Girl, Boy with m f df.loc[:,'Gender']=df.Gender.replace('F','Girl') df.loc[:,'Gender']=df.Gender.replace('M','Boy') # Manually enter sport print('Enter sport for transferred players') sport=input() df.loc[:,'Sport']=sport df=df.dropna(subset=['First']) # remove blank rows if present mycols=[col for col in df if col in signups] df=df[mycols] df=formatnamesnumbers(df) # place date/transfer in timestamp mystamp=datetime.strftime(datetime.now(),'%m/%d/%y')+' transfer' df.loc[:,'Timestamp']=mystamp mycols=signups.columns signups=signups.append(df, ignore_index=True) signups=signups[mycols] return signups def packagetransfers(teams, Mastersignups, famcontact, players, season, year, acronyms, messfile): ''' Package roster and contact info by sport- school and save as separate xls files also generate customized e-mails in single log file (for cut and paste send to appropriate persons) args: teams - loaded team list mastersignups - signups w/ team assignment players -player DB famcontact - family contact db season - Fall, Winter or Spring year - starting sports year (i.e. 2019 for 2019-20 school year) acronyms - school/parish specific abbreviations messfile - e-mail message template w/ blanks returns: ''' teams=teams[pd.notnull(teams['Team'])] transferteams=np.ndarray.tolist(teams[teams['Team'].str.contains('#')].Team.unique()) transSU=Mastersignups[Mastersignups['Team'].isin(transferteams)] # ensure that these are from correct season/year sportsdict={'Fall':['VB','Soccer'], 'Winter':['Basketball'],'Spring':['Track','Softball','Baseball','T-ball']} sportlist=sportsdict.get(season) transSU=transSU.loc[(transSU['Sport'].isin(sportlist)) & (transSU['Year']==year)] # season is not in mastersignups... only individual sports # get family contact info from famcontacts transSU=pd.merge(transSU, famcontact, how='left', on=['Famkey'], suffixes=('','_r')) # get school from players.csv transSU=pd.merge(transSU, players, how='left', on=['Plakey'], suffixes=('','_r2')) # get division from Teams xls (for roster) transSU=pd.merge(transSU, teams, how='left', on=['Team'], suffixes=('','_r3')) # effectively adds other team info for roster toall players transSU.loc[:,'Role']='Player' # add column for role # transSU['Open/Closed']='Closed' # Sort by grade pre-split transSU.loc[:,'Grade']=transSU.Grade.replace('K',0) transSU.loc[:,'Grade']=transSU.Grade.apply(int) transSU=transSU.sort_values(['Grade'], ascending=True) transSU.loc[:,'Grade']=transSU.Grade.replace(0,'K') # replace K with zero to allow sorting # Column for sorting by transferred to school transSU.loc[:,'Transchool']=transSU['Team'].str.split('#').str[0] grouped=transSU.groupby(['Sport','Transchool']) for [sport, school], group in grouped: # prepare roster tab xlsname=cnf._OUTPUT_DIR+'\\Cabrini_to_'+school+'_'+sport+'_'+str(year)+'.xlsx' writer=pd.ExcelWriter(xlsname, engine='openpyxl') Transferroster=organizeroster(group) Transferroster=Transferroster.sort_values(['Team', 'Sex', 'Grade'], ascending=True) Transferroster=replaceacro(Transferroster,acronyms) Transferroster.to_excel(writer,sheet_name='roster',index=False) # prep contacts tab mycols=['First', 'Last', 'Grade', 'Gender', 'School', 'Phone1', 'Text1','Email1', 'Phone2', 'Text2', 'Email2', 'Pfirst1', 'Plast1', 'Pfirst2', 'Plast2', 'Team'] Transfercontacts=group[mycols] Transfercontacts.to_excel(writer, sheet_name='contacts', index=False) writer.save() # Now generate list of e-mails for all schools/directors logfile='transfers_director_emails_log.txt' with open(logfile,'w+') as emaillog: # Read generic file to sport director with open(messfile, 'r') as file: blankmessage=file.read() for [sport, school], group in grouped: plagroup=group.groupby(['Grade', 'Gender']) platypes=[] # list of # of players by grade, gender gradedict={'K':'K', 1:'1st', 2:'2nd',3:'3rd',4:'4th',5:'5th',6:'6th', 7:'7th',8:'8th'} genderdict={'f':'girls', 'F':'girls','m':'boys','M':'boys'} for [grade, gender], group in plagroup: numplays=str(int(group['Grade'].count())) grname=gradedict.get(grade) genname=genderdict.get(gender) platypes.append(numplays+' '+grname+' '+genname) plalist=combinephrases(platypes) thismess=blankmessage.replace('$SCHOOL', school) thismess=thismess.replace('$SPORT', sport) thismess=thismess.replace('$PLALIST', plalist) emaillog.write(thismess) emaillog.write('\n\n') return def findcards(): '''Search ID cards folder and return player # and file link cards resized to 450x290 pix jpg in photoshop (scripts-image processor) keys are either player number as string or coach CYC ID, vals are links to files''' cardlist=glob.glob('%s\\IDcards\\*.jpg' %cnf._OUTPUT_DIR, recursive=True) # construct list of [card #, filename] nums=[i.split('\\')[-1] for i in cardlist] nums=[i.split('_')[0] if '_' in i else i.split('--')[0] for i in nums ] cards={} # dict for card numbers/filenames for i,num in enumerate(nums): cards.update({num: cardlist[i]}) return cards def makethiscard(IDlist, team): ''' Passes link to ID card or player name (if missing) From team's list of player numbers (in alphabetical order), find/open card links, and create single image''' # make the master image and determine image array size margin=10 # pix on all sides if len(IDlist)<11: # use 2 x 5 array (horiz) wide=2 high=5 elif len(IDlist)<13: # 4w x 3 h (vert) wide=4 high=3 elif len(IDlist)<22: # 3x by 5-7 high (horiz); max 21 wide=3 high=math.ceil(len(IDlist)/3) else: # more than 21 ... yikes wide=3 high=math.ceil(len(IDlist)/3) cardimage = Image.new('RGB', (450*wide+2*margin, 300*high+2*margin), "white") # blank image of correct size draw=ImageDraw.Draw(cardimage) # single draw obj for adding missing card names ttfont=ImageFont.truetype('arial.ttf', size=36) for i,fname in enumerate(IDlist): row=i//high # remainder is row col=i%high # mod is correct column xpos=margin+row*450 ypos=margin+col*300 try: thiscard=Image.open(fname) thiscard=thiscard.resize((450, 300), Image.ANTIALIAS) cardimage.paste(im=thiscard, box=(xpos, ypos)) # paste w/ xpos,ypos as upper left except: # occurs when "first last" present instead of file name/path # blankcard=Image.new('RGB', (450, 300)) # make blank image as placeholder draw.text((xpos+50,ypos+100),fname,font=ttfont, fill="red") return cardimage ''' TESTING i=0 team=teamlist[i] ''' def makeCYCcards(df, players, teams, coaches, season, year, **kwargs): ''' From mastersignups and teams, output contact lists for all teams/all sports separately team assignments must be finished args: df -- mastersignups dataframe players - player info dataframe teams - this year's teams csv coaches - full coach CYC info list season - Fall, Winter or Spring kwargs: showmissing - True (shows missing player's name); False- skip missing player otherSchools - default False (also make card sheets for transferred teams/players) kwargs={'showmissing':False} missing = makeCYCcards(Mastersignups, players, teams, coaches, season, year, **{'showmissing':True} ) missing = makeCYCcards(Mastersignups, players, teams, coaches, season, year, **{'showmissing':False} ) ''' # Slice by sport: Basketball (null for winter?), Soccer, Volleyball, Baseball, T-ball, Softball, Track) cards=findcards() # dictionary with number: filename combo for existing CYC cards df=df[(df['Year']==year)] df=df.reset_index(drop=True) sportsdict={'Fall':['VB','Soccer'], 'Winter':['Basketball'],'Spring':['Track','Softball','Baseball','T-ball']} sportlist=sportsdict.get(season) df=df[df['Sport'].isin(sportlist)] # season is not in mastersignups... only individual sports # Make list of teams that need cards (all track and others >1st grade) def processGrade(val): if val=='K': return 0 else: return int(val) teams.loc[:,'Grade'] = teams['Grade'].apply(lambda x:processGrade(x)) if not kwargs.get('otherSchools', False): # all transfer teams with contain # (e.g. SMOS#3G) so remove these # dropped by default teams = teams[~teams['Team'].str.contains('#')] # need track teams or any team from grades 2+ cardTeamList= teams[ (teams['Grade']>1) | (teams['Sport']=='Track') ]['Team'].unique() df=df[ df['Team'].isin(cardTeamList) ] df=df.sort_values(['Last']) # plakeys as string will be easiest for below matching df.loc[:,'Plakey']=df['Plakey'].astype(int) df.loc[:,'Plakey']=df['Plakey'].astype(str) def getName(gr, pk): # get name from plakey as string match=gr[gr['Plakey']==pk] name=match.iloc[0]['First'] + ' ' + match.iloc[0]['Last'] return name teamgrouped = df.groupby(['Team']) missinglist=[] # list of plakeys with missing card for team, gr in teamgrouped: # keys in card dict are strings IDlist = [str(int(i)) for i in gr.Plakey.unique()] missinglist.extend([i for i in gr.Plakey.unique() if i not in cards.keys() ]) if not kwargs.get('showmissing', False): # Shows only valid cards, drops missing names IDlist = [ cards.get(i) for i in IDlist if i in cards.keys() ] filename='Cards_'+ team +'.jpg' else: # show cards and missing name when card image not in IDcards folder IDlist = [cards.get(i) if i in cards.keys() else getName(gr, i) for i in IDlist ] filename='Cards_'+ team +'_all.jpg' # get team's coaches IDlist.extend(getcoachIDs(team, teams, coaches, cards)) # add coach ID image file or first/last if missing cardimage =makethiscard(IDlist, team) # directly saved # save the card file cardimage.save(cnf._OUTPUT_DIR+'\\'+filename) missingcards=players[players['Plakey'].isin(missinglist)] missingcards=missingcards.sort_values(['Grade','Last']) return missingcards def getcoachIDs(team, teams, coaches, cards): ''' Returns CYC IDs for all team's coaches ''' thisteam=teams[teams['Team']==team] IDlist=[] if len(thisteam)!=1: print(team, 'not found in current teams list') return IDlist # blank list thisteam=thisteam.dropna(subset=['Coach ID']) if len(thisteam)!=1: print('Coach ID not found for', team) return IDlist # blank list if thisteam.iloc[0]['Coach ID']!='': # possibly blank thisID=thisteam.iloc[0]['Coach ID'].strip() if thisID in cards: IDlist.append(cards.get(thisID,'')) # file path to this coach's ID else: # get first/last thiscoach=coaches[coaches['Coach ID']==thisID] if len(thiscoach)==1: IDlist.append(thiscoach.iloc[0]['Fname']+' '+thiscoach.iloc[0]['Lname']) else: print("Couldn't find coach ", thisID) thisteam=thisteam.dropna(subset=['AssistantIDs']) if len(thisteam)==1: # grab asst IDs if they exist asstIDs=thisteam.iloc[0]['AssistantIDs'] asstIDs=[str(s).strip() for s in asstIDs.split(",")] for i, asstID in enumerate(asstIDs): if asstID in cards: IDlist.append(cards.get(asstID,'')) # found assistant coaches ID card image else: # can't find ... get assistant first last thisasst=coaches[coaches['Coach ID']==asstID] # matching asst coach row if len(thisasst)==1: IDlist.append(thisasst.iloc[0]['Fname']+' '+thisasst.iloc[0]['Lname']) else: print("Couldn't find coach ", asstID) return IDlist def autocsvbackup(df, filename, newback=True): ''' Pass df (i.e players for backup and basename (i.e. "family_contact" for file.. finds list of existing backups and keeps ones of certain ages based on targetdates list; can't remember why was newback=False was needed (always true here to make new backup) ''' # TODO fix this! pass return def parseDate(val): ''' Conversion of date string to datetime.date (always header line 2 40:60) Possible date formats: 20180316 (newer style) or 03/15/2018 (older style) For NGA files Date format changed from 03/15/2018 to 20180316 (on jday 75 in 2018) time format: 221100 or 22:11:00 (sometimes w/ UTC) not terribly concerned w/ time possible date formats: 0) 03/01/2018, 3/1/2018, 3/1/18 or 03/01/18 2) 1/1/19 2) 2019-1-1 3) 2019-01-01 ''' if not isinstance(val, str): return val else: if ' ' in val: # Remove time substring (but will fail for 3 Oct 2019) val=val.split(' ')[0] # strip time substring if present patterns=['\d{1,2}/\d{1,2}/\d{2,4}', '\d{4}-\d{1,2}-\d{1,2}', '\d{1,2}-\d{1,2}-\d{4}'] for i, patt in enumerate(patterns): match=re.search(r'%s' %patt, val) if match: if i==0: # Extract 03/16/2018 (or rarely 28/10/2019 style) try: (mo,dy,yr)=[int(i) for i in val.split('/')] if yr<100 and len(str(yr))==2: # handle 2 digit year yr=int('20'+str(yr)) if mo < 13: # normal US version (month first) return datetime(yr, mo, dy).date() # handle day month reversal elif dy<13: # possible month day reverse print('Month and day reverse for %s' %val) return datetime(yr, dy, mo).date() # Assume month/day switch except: print('Problem extracting date from ', val) return None if i==1: # extract 2017-01-01 style (year first) try: (yr,mo,dy)=[int(i) for i in val.split('-')] if mo < 13: # normal US version (month first) return datetime(yr, mo, dy).date() # handle day month reversal elif dy<13: # possible month day reverse print('Month and day reverse for %s' %val) return datetime(yr, dy, mo).date() # Assume month/day switch except: print('Problem extracting date from ', val) return val if i==2: # extract 01-01-2019 style (year last) try: (mo,dy,yr)=[int(i) for i in val.split('-')] if mo < 13: # normal US version (month first) return datetime(yr, mo, dy).date() # handle day month reversal elif dy<13: # possible month day reverse print('Month and day reverse for %s' %val) return datetime(yr, dy, mo).date() # Assume month/day switch except: print('Problem extracting date from ', val) return val def loadProcessPlayerInfo(): '''Loads and processes players & family contacts (but not signup file) args: gsignups -- google signups season - 'Fall', 'Winter', 'Spring year - 4 digit int (uses fall value all school year.. ie. 2018-19 year is always 2018) ''' players=pd.read_csv(cnf._INPUT_DIR + '\\players.csv', encoding='cp437') # load existing player data (need to find correct DOB format) players.loc[:,'Grade']=players.Grade.replace('K',0) players.loc[:,'Grade']=players.Grade.replace('pK',0) # just make them 0s for now players.loc[:,'Grade']=players.Grade.astype(int) # TODO use fixdates if players imports as string (various formats possible) # players['DOB']=players['DOB'].apply(lambda x: fixDates(x)) if not isinstance(players.DOB[0], pd.Timestamp):# sometimes direct import to pd timestamp works, other times not players.loc[:,'DOB']=players.DOB.apply(lambda x: parseDate(x)) famcontact=pd.read_csv(cnf._INPUT_DIR + '\\family_contact.csv', encoding='cp437') # load family contact info famcontact=formatnamesnumbers(famcontact) return players, famcontact def loadProcessGfiles(gsignups, season, year): '''Loads and processes players, family contacts and signup file, gets active season and year args: gsignups -- google signups season - 'Fall', 'Winter', 'Spring year - 4 digit int (uses fall value all school year.. ie. 2018-19 year is always 2018) ''' players=pd.read_csv(cnf._INPUT_DIR + '\\players.csv', encoding='cp437') # load existing player data (need to find correct DOB format) players.loc[:,'Grade']=players.Grade.replace('K',0) players.loc[:,'Grade']=players.Grade.replace('pK',0) # just make them 0s for now players.loc[:,'Grade']=players.Grade.astype(int) # TODO use fixdates if players imports as string (various formats possible) # players['DOB']=players['DOB'].apply(lambda x: fixDates(x)) if not isinstance(players.DOB[0], pd.Timestamp):# sometimes direct import to pd timestamp works, other times not players.loc[:,'DOB']=players.DOB.apply(lambda x: parseDate(x)) famcontact=pd.read_csv(cnf._INPUT_DIR + '\\family_contact.csv', encoding='cp437') # load family contact info if season=='Winter': gsignups['Sport']='Basketball' # TODO determine where multiple sports converted to separate lines duplicated=gsignups[gsignups.duplicated(subset=['First', 'Last','Grade','Sport'])] if len(duplicated)>0: print('Remove duplicate signups for %s' %", ".join(duplicated.Last.unique().tolist())) gsignups=gsignups.drop_duplicates(subset=['First', 'Last','Grade','Sport']) gsignups.loc[:,'Sport']=gsignups['Sport'].str.replace('Volleyball','VB') #gsignups.loc[:,'Sport']=gsignups.loc[:,'Sport'].str.replace('Volleyball','VB').copy() #gsignups.loc[:,'Sport']=gsignups['Sport'].replace({'Volleyball':'VB'}, regex=True).copy() missing=[i for i in ['Famkey','Plakey'] if i not in gsignups.columns] for col in missing: # add blank vals gsignups.loc[gsignups.index, col]=np.nan # convert assorted DOB strings to datetime.date if not isinstance(gsignups.DOB[0], pd.Timestamp):# sometimes direct import to pd timestamp works, other times not gsignups.loc[:,'DOB']=gsignups.DOB.apply(lambda x: parseDate(x)) # Get year from signup file name outputduplicates(gsignups) # quick check of duplicates output in console window (already removed from signups) gsignups=formatnamesnumbers(gsignups) # format phone numbers, names to title case, standardize schools, etc. famcontact=formatnamesnumbers(famcontact) def processGkey(val): ''' Some plakey/famkey copied to drive... must convert nan(float), whitespace or number as string to either nan or int ''' if isinstance(val, str): val=''.join(val.split(' ')) if val=='': return np.nan else: try: return int(val) except: return np.nan else: return np.nan # ensure gsignups has only int or nan (no whitespace) gsignups.loc[:,'Plakey']=gsignups['Plakey'].apply(lambda x: processGkey(x)) gsignups.loc[:,'Famkey']=gsignups['Famkey'].apply(lambda x: processGkey(x)) return players, famcontact, gsignups def loadprocessfiles(signupfile): '''Loads and processes players, family contacts and signup file, gets active season and year ''' players=pd.read_csv(cnf._INPUT_DIR + '\\players.csv', encoding='cp437') # load existing player data (need to find correct DOB format) players.loc[:,'Grade']=players.Grade.replace('K',0) players.loc[:,'Grade']=players.Grade.replace('pK',0) # just make them 0s for now players.loc[:,'Grade']=players.Grade.astype(int) # TODO use fixdates if players imports as string (various formats possible) # players['DOB']=players['DOB'].apply(lambda x: fixDates(x)) if type(players.DOB[0])!=pd.Timestamp: # sometimes direct import to pd timestamp works, other times not try: players.loc[:'DOB']=parseDate(players.DOB) # return properly converted date columns series except: print('Failure converting player DOB to datetime/timestamp') famcontact=pd.read_csv(cnf._INPUT_DIR + '\\family_contact.csv', encoding='cp437') # load family contact info # read this season's sports signup file and rename columns if signupfile.endswith('.csv'): SUraw=pd.read_csv(signupfile) elif 'xls' in signupfile: try: SUraw=pd.read_excel(signupfile, sheetname='Raw') # may or may not have plakey/famkey except: SUraw=pd.read_excel(signupfile) if SUraw.shape[1]==30 and 'Plakey' in SUraw.columns: SUraw.columns=['Timestamp','First','Last','DOB','Gender','School','Grade', 'Address','Zip','Parish','Sport','AltPlacement','Ocstatus','Pfirst1', 'Plast1','Phone1','Text1','Email','Othercontact','Coach','Pfirst2','Plast2', 'Phone2','Text2','Email2','Coach2','Unisize','Unineed','Plakey','Famkey'] elif SUraw.shape[1]==28 and 'Plakey' in SUraw.columns: SUraw.columns=['Timestamp','First','Last','DOB','Gender','School','Grade', 'Address','Zip','Parish','Sport','AltPlacement','Ocstatus','Pfirst1', 'Plast1','Phone1','Text1','Email','Othercontact','Coach','Pfirst2','Plast2', 'Phone2','Text2','Email2','Coach2','Plakey','Famkey'] elif SUraw.shape[1]==26 and 'Plakey' not in SUraw.columns: # Raw value without plakey and famkey SUraw.columns=['Timestamp','First','Last','DOB','Gender','School', 'Grade','Address','Zip','Parish','Sport','AltPlacement','Ocstatus', 'Pfirst1','Plast1','Phone1','Text1','Email','Othercontact','Coach', 'Pfirst2','Plast2','Phone2','Text2','Email2','Coach2'] elif SUraw.shape[1]==28 and 'Plakey' not in SUraw.columns: # Raw value without plakey and famkey SUraw.columns=['Timestamp','First','Last','DOB','Gender','School', 'Grade','Address','Zip','Parish','Sport','AltPlacement','Ocstatus', 'Pfirst1','Plast1','Phone1','Text1','Email','Othercontact','Coach', 'Pfirst2','Plast2','Phone2','Text2','Email2','Coach2','Unisize','Unineed'] SUraw.loc[SUraw.index,'Plakey']=np.nan # add if absent SUraw.loc[SUraw.index,'Famkey']=np.nan signups=SUraw.drop_duplicates(subset=['First', 'Last','Grade','Sport']) signups['Sport'].replace({'Volleyball':'VB'},inplace=True, regex=True) # Get year from signup file name season=re.match(r'(\D+)', signupfile).group(0) # season at string beginning followed by year (non-digit) if '\\' in season: # remove file path problem season=season.split('\\')[-1] year=int(re.search(r'(\d{4})', signupfile).group(0)) # full year should be only number string in signups file outputduplicates(SUraw) # quick check of duplicates output in console window (already removed from signups) signups=formatnamesnumbers(signups) # format phone numbers, names to title case, standardize schools, etc. famcontact=formatnamesnumbers(famcontact) return players, famcontact, signups, season, year def findavailablekeys(df, colname, numkeys): '''Pass df and colname, return a defined number of available keys list used for players, families, signups, etc. ''' # list comprehension allnums=[i for i in range(1,len(df))] usedkeys=df[colname].unique() usedkeys=np.ndarray.tolist(usedkeys) availkeys=[i for i in allnums if i not in usedkeys] if len(availkeys)<numkeys: # get more keys starting at max+1 needed=numkeys-len(availkeys) for i in range(0,needed): nextval=int(max(usedkeys)+1) # if no interior vals are available find next one availkeys.append(nextval+i) availkeys=availkeys[:numkeys] # truncate and only return the requested number of needed keys return availkeys def organizeroster(df): ''' Renaming, reorg, delete unnecessary columns for CYC roster output already split by sport and year''' df=df.rename(columns={'First':'Fname','Last':'Lname','Address':'Street','Parish_registration':'Parish of Registration'}) df=df.rename(columns={'Parish_residence':'Parish of Residence','Phone1':'Phone','DOB':'Birthdate','Gender':'Sex'}) df=df.rename(columns={'Email1':'Email'}) # replace Girl, Boy with m f df.loc[:,'Sex']=df.Sex.replace('Girl','F').replace('Boy','M') df.loc[:,'Sex']=df.Sex.str.upper() # ensure uppercase # Convert date format to 8/25/2010 string format mycols=['Fname', 'Lname', 'Street', 'City', 'State', 'Zip', 'Phone', 'Email', 'Birthdate', 'Sex', 'Role', 'Division', 'Grade', 'Team', 'School', 'Parish of Registration', 'Parish of Residence', 'Coach ID'] df=df[mycols] # put back in desired order df=df.sort_values(['Team']) return df '''TESTING row=tempplay.iloc[7] signups=signups[signups['Last']=='Elston'] ''' def processdatachanges(signups, players, famcontact, year): '''Pass SC signups subset from google drive, update address for more up-to-date contact information, new address, etc. must start here if troubleshooting args: signups -- online signups file (normally google drive) players - player DOB, grade, etc famcontact- family contact info year - sports year (int); e.g. 2019 for 2019-20 school year ''' # Using all entries from signups (manual and gdrive) # Updates from paper signups should be done directly to famcontact and players csv files (skip entirely) ''' signups.Timestamp=pd.to_datetime(signups.Timestamp, errors='coerce') # converts to naT or timestamp gdsignups=signups.dropna(subset=['Timestamp']) # drops manual entries (no google drive timestamp) ''' # merge w/ players and update grade, recalc grade adjustment, and school # must use left merge to keep correct indices from players df (inner causes reindexing) players=players.reset_index(drop=True) tempplay=pd.merge(players, signups, how='inner', on=['Plakey'], suffixes=('','_n')) tempplay=tempplay.dropna(subset=['Gender_n']) # this drops all without a google drive entry for index, row in tempplay.iterrows(): upkwargs={} # Skip approval for grade updates if row.Grade!=row.Grade_n: # grade discrepancy between players.csv and current signup match=players[players['Plakey']==row.Plakey] if len(match)==1: thisind=match.index[0] # update player grade (no approval) players.loc[thisind,'Grade']=row.Grade_n # set to new value from current signup file print (row.First," ",row.Last," grade changed to ", row.Grade_n) if row.School!=row.School_n and str(row.School_n)!='nan': upkwargs.update({'school':True}) # Check for DOB inconsistency between google drive and players.csv if row.DOB!=row.DOB_n: # don't change grade adjustment if DOB discrepancy if row.DOB_n.year!=year: # skip birthday instead of DOB error upkwargs.update({'DOB':True}) else: # recalculate grade adjustment # Direct adjustment to gradeadj in players (if indicated) players=updategradeadjust(row, players, year) if 'school' in upkwargs or 'DOB' in upkwargs: # Interactively approve school or DOB changes players=updateplayer_tk(row, players, **upkwargs) autocsvbackup(players,'players', newback=True) # run autobackup script outname=cnf._OUTPUT_DIR+'\\players.csv' players.to_csv(outname,index=False) # direct save of changes from google drive info # now update new info into family contacts # faminfo=gdsignups.drop_duplicates(subset=['Famkey']) # only process first kid from family faminfo=signups.drop_duplicates(subset=['Famkey']) famcontact=prepcontacts(famcontact) faminfo=prepcontacts(faminfo) tempfam=pd.merge(famcontact, faminfo, how='inner', on=['Famkey'], suffixes=('','_n')) # same indices as famcontact tempfam=tempfam.dropna(subset=['Zip_n']) # drops those without timestamped google drive entry for index,row in tempfam.iterrows(): # Update/reshuffle phone, email, parent list, parish of registration (direct to famcontact) famcontact=update_contact(row, famcontact) # update/reshuffle phone,text (list of lists) autocsvbackup(famcontact,'family_contact', newback=True) # run autobackup script outname=cnf._INPUT_DIR+'\\family_contact.csv' famcontact.to_csv(outname, index=False) return players, famcontact def updatefamcon_tk(row, famcontact, **upkwargs): ''' Interactive approval of family contact changes changes directly made to famcontacts (but not yet autosaved) upkwargs: phone, email, address ''' root = tk.Tk() root.title('Update family contact info') choice=tk.StringVar() # must be define outside of event called functions rownum=0 mytxt='Family: '+row.Family+' # '+str(row.Plakey) tk.Label(root, text=mytxt).grid(row=rownum, column=0) tk.Label(root, text='Deselect to remove').grid(row=rownum, column=1) rownum+=1 # Use listbox of common schools? if 'parlist' in upkwargs: # indicates new parent found colnum=0 parlist=upkwargs.get('parlist',[]) # Checkboxes to add new parent if 'newpar1' in upkwargs: addpar1=tk.BooleanVar() addpar1.set(True) try: mytext='Add parent: '+ (' '.join(upkwargs.get('newpar1',[]))+'?') except: print('Error adding parent 1', ) mytext='' tk.Checkbutton(root, variable=addpar1, text=mytext).grid(row=rownum, column=colnum) colnum+=1 if 'newpar2' in upkwargs: addpar2=tk.BooleanVar() addpar2.set(True) try: mytext='Add parent: '+ (' '.join(upkwargs.get('newpar2',[]))+'?') except: mytext='' tk.Checkbutton(root, variable=addpar2, text=mytext).grid(row=rownum, column=colnum) colnum+=1 # Checkbutton and boolvar for each parent (default true) pbools=[] # List of bools for parent inclusion for i in range(0,len(parlist)): pbools.append(tk.BooleanVar()) pbools[i].set(True) tempstr=parlist[i] tk.Checkbutton(root, variable=pbools[i], text=tempstr).grid(row=rownum, column=colnum) rownum+=1 rownum+=1 if 'emails' in upkwargs: # indicates new parent found emaillist=upkwargs.get('emails',[]) # Checkboxes to add new parent colnum=0 if 'email1' in upkwargs: addemail1=tk.BooleanVar() addemail1.set(True) email1=tk.StringVar() email1.set(upkwargs.get('email1','')) tk.Checkbutton(root, variable=addemail1, text='Add new email1').grid(row=rownum, column=colnum) rownum+=1 tk.Entry(root, textvariable=email1).grid(row=rownum, column=colnum) rownum+=1 if 'email2' in upkwargs: addemail2=tk.BooleanVar() addemail2.set(True) email2=tk.StringVar() email2.set(upkwargs.get('email2','')) tk.Checkbutton(root, variable=addemail2, text='Add new email2').grid(row=rownum, column=colnum) rownum+=1 tk.Entry(root, textvariable=email2).grid(row=rownum, column=colnum) colnum+=1 # Checkbutton and boolvar for each email (default true) ebools=[] # List of bools for parent inclusion for i in range(0,len(emaillist)): ebools.append(tk.BooleanVar()) tempstr=emaillist[i] ebools[i].set(True) tk.Checkbutton(root, variable=ebools[i], text=tempstr).grid(row=rownum, column=colnum) rownum+=1 rownum+=1 if 'phones' in upkwargs: # indicates new parent found phlist=upkwargs.get('phones',[]) # Checkboxes to add new parent colnum=0 if 'phone1' in upkwargs: addphone1=tk.BooleanVar() addphone1.set(True) try: mytext='Add phone/text: '+ upkwargs.get('phone1','') except: mytext='' tk.Checkbutton(root, variable=addphone1, text=mytext).grid(row=rownum, column=colnum) colnum+=1 if 'phone2' in upkwargs: addphone2=tk.BooleanVar() addphone2.set(True) try: mytext='Add phone/text: '+ ', '.join(upkwargs.get('phone2',[])) except: mytext='' tk.Checkbutton(root, variable=addphone2, text=mytext).grid(row=rownum, column=colnum) colnum+=1 # Checkbutton and boolvar for each email (default true) phbools=[] # List of bools for parent inclusion for i in range(0,len(phlist)): phbools.append(tk.BooleanVar()) tempstr=phlist[i] phbools[i].set(True) tk.Checkbutton(root, variable=phbools[i], text=tempstr).grid(row=rownum, column=colnum) rownum+=1 if 'address' in upkwargs: colnum=0 tk.Label(root, text='Possible change of address').grid(row=rownum, column=colnum) rownum+=1 newaddrbool=tk.BooleanVar() newaddr=tk.StringVar() newaddrbool.set(False) newaddr.set(row.Address_n) newzip=tk.StringVar() try: newzip.set(int(row.Zip_n)) except: print('Non-standard zip value',str(row.Zip_n)) tk.Checkbutton(root, variable=newaddrbool, text='Change address?').grid(row=rownum, column=colnum) colnum+=1 tk.Label(root, text='Current address').grid(row=rownum, column=colnum) colnum=0 rownum+=1 tk.Entry(root, textvariable=newaddr).grid(row=rownum, column=colnum) rownum+=1 tk.Entry(root, textvariable=newzip).grid(row=rownum, column=colnum) colnum+=1 tempstr=str(row.Address)+' '+str(row.Zip) tk.Label(root, text=tempstr).grid(row=rownum, column=colnum) rownum+=1 # Now set up select/close buttons def skip(event): choice.set('skip') root.destroy() def change(event): choice.set('change') root.destroy() f=tk.Button(root, text='Skip') f.bind('<Button-1>', skip) f.grid(row=rownum, column=0) g=tk.Button(root, text='Change') g.bind('<Button-1>', change) g.grid(row=rownum, column=1) root.mainloop() mychoice=choice.get() if mychoice=='change': # Find matching row for family (needed for all changes below) famkey=row.Famkey match=famcontact[famcontact['Famkey']==famkey] if len(match)==1: thisind=match.index[0] else: print('Problem finding unique entry for famkey', str(famkey)) return famcontact # return unaltered # Reconstruct parent list if 'parlist' in upkwargs: newparlist=[] # constructing entirely new parent list from checkbox choices if 'newpar1' in upkwargs: if addpar1.get(): newparlist.append(upkwargs.get('newpar1',[np.nan,np.nan])) #TODO fix nan error print('Added parent',' '.join(upkwargs.get('newpar1')),' to ',str(row.Family)) for i, val in enumerate(pbools): if pbools[i].get(): newparlist.append(parlist[i]) # [first, last] format if 'newpar2' in upkwargs: if addpar2.get(): newparlist.append(upkwargs.get('newpar2',[np.nan,np.nan])) print('Added parent 2',' '.join(upkwargs.get('newpar2')),' to ',str(row.Family)) # Now direct update of parents in this family's famcontact entry newparlist=newparlist[0:3] # limit to 3 entries while len(newparlist)<3: newparlist.append([np.nan,np.nan]) # pad with nan entries if necessary # now reset parent name entries for i in range(1,4): # reset 3 existing parents entries fname='Pfirst'+str(i) lname='Plast'+str(i) famcontact.loc[thisind, fname] = newparlist[i-1][0] famcontact.loc[thisind, lname] = newparlist[i-1][1] # Reconstruct email list if 'emails' in upkwargs: newemaillist=[] if 'email1' in upkwargs: if addemail1.get(): newemaillist.append(email1.get()) print('Added email1', email1.get(), ' to ', str(row.Family)) for i, val in enumerate(ebools): if ebools[i].get(): newemaillist.append(emaillist[i]) if 'email2' in upkwargs: if addemail2.get(): # insert in 2nd position newemaillist.insert(1, email2.get()) print('Added email2', email2.get(), ' to ', str(row.Family)) # Now update emails in famcontact entry # Direct update of parent list newemaillist=newemaillist[0:3] # limit to 3 entries while len(newemaillist)<3: newemaillist.append(np.nan) # pad with nan entries if necessary # now reset parent name entries for i in range(1,4): # reset 3 existing parents entries colname='Email'+str(i) famcontact.loc[thisind, colname]= newemaillist[i-1] # Reconstruct phone list if 'phones' in upkwargs: newphlist=[] if 'phone1' in upkwargs: if addphone1.get(): newphlist.append(upkwargs.get('phone1', [np.nan,np.nan])) print('Added phone1', ','.join(upkwargs.get('phone1',[])), ' to ', str(row.Family)) for i, val in enumerate(phbools): if phbools[i].get(): newphlist.append(phlist[i]) # added at end... probably should go if 'phone2' in upkwargs: if addphone2.get(): # insert in 2nd position newphlist.insert(1, upkwargs.get('phone2',[np.nan,np.nan])) print('Added phone2', ','.join(upkwargs.get('phone2',[])), ' to ', str(row.Family)) # Now update phone, text in famcontact entry newphlist=newphlist[0:4] # limit to 4 entries while len(newphlist)<4: newphlist.append([np.nan, np.nan]) # pad with nan entries if necessary # now reset parent name entries for i in range(1,5): # reset max 4 phone entries phname='Phone'+str(i) textname='Text'+str(i) famcontact.loc[thisind, phname] = newphlist[i-1][0] famcontact.loc[thisind, textname] = newphlist[i-1][1] # Handle change of address (direct change if approved) # Also change associated zip code and reset parish of residence if 'address' in upkwargs: if newaddrbool: print('Address changed for ', str(row.Family)) famcontact.loc[thisind, 'Address'] = newaddr.get() # Reset parish of residence to nan (manually find and replace) famcontact.loc[thisind, 'Parish_residence'] = np.nan try: famcontact.loc[thisind,'Zip']=int(newzip.get()) except: print('Problem converting zip code ', newzip.get()) # TODO ... handle parish of registration return famcontact def update_contact(row, famcontact): '''Update phone and textable list from google drive entries; google drive raw entries first processed in process_data_changes (then update contacts is called) row is a merge of existing famcontact info and new signup info existing entries from fam_contact listed first; pass/modify/return series for family; reorder/replace numbers has fairly long list of changes made w/o interactive approval: 1) changing order of email or phone numbers (e.g. swap phone1 and phone2) 2) add phone2 (or email2) if current phone2(email2) is nan 3) change order of parents (new parent1) All other changes done w/ interactive approval using update_famcon_tk ''' # [phone, text, order] thisfam=row.Family match=famcontact[famcontact['Famkey']==row.Famkey] if len(match)==1: thisind=match.index[0] # correct index for updating this family in famcontacts else: print(str(row.Family), " not found in famcontacts.. shouldn't happen") return famcontact upkwargs={} # empty dict for monitoring all changes # check for possible change in address (housenum as trigger) match1=re.search(r'\d+', row.Address) match2=re.search(r'\d+', row.Address_n) if match1 and match2: num1=match1.group(0) num2=match2.group(0) if num1!=num2: # change in address number strongly suggestive of actual change upkwargs.update({'address':True}) else: print('No address # found for', str(thisfam)) phonelist=[] # list of lists with number and textable Y/N for i in range(1,5): # get 4 existing phone entries (phone1, phone2, etc.) phname='Phone'+str(i) txtname='Text'+str(i) if str(row[phname])!='nan': phonelist.append([row[phname],row[txtname]]) # as phone and text y/N # New google drive entries will be Phone1_n.. look for phone/text pair in existing list if str(row.Phone1_n)!='nan' and [row.Phone1_n,row.Text1_n] in phonelist: # new ones phone is required entry # default move of phone1, text1 to top of list - no confirmation if [row.Phone1_n,row.Text1_n]!=phonelist[0]: # move if not in first position phonelist.insert(0,phonelist.pop(phonelist.index([row.Phone1_n,row.Text1_n]))) print('Phone 1 changed for ', str(thisfam)) upkwargs.update({'phchange':True}) if str(row.Phone1_n)!='nan' and [row.Phone1_n,row.Text1_n] not in phonelist: # new ones phone is required entry if [row.Phone1_n, np.nan] in phonelist: # remove if # present but w/o text indication (no confirm) phonelist.remove([row.Phone1_n,np.nan]) phonelist.insert(0,[row.Phone1_n,row.Text1_n]) # insert in first position print('Updated phone 1 to', row.Phone1_n,' for ',str(thisfam)) upkwargs.update({'phchange':True}) else: # phone1 change to be confirmed upkwargs.update({'phone1':[row.Phone1_n,row.Text1_n]}) upkwargs.update({'phones': phonelist}) if str(row.Phone2_n)!='nan': # check for phone2 entry (with _n suffix) if [row.Phone2_n,row.Text2_n] not in phonelist: # add second phone to 2nd position if not present if [row.Phone2_n,np.nan] in phonelist: # remove if # present but w/o text indication phonelist.remove([row.Phone2_n,np.nan]) phonelist.insert(1,[row.Phone2_n,row.Text2_n]) print ('Updated phone 2 to ', str(row.Phone2_n), 'for ', str(thisfam)) upkwargs.update({'phchange':True}) else: # get approval for phone 2 addition upkwargs.update({'phone2':[row.Phone2_n,row.Text2_n]}) upkwargs.update({'phones': phonelist}) # Construct existing list of known email addresses emaillist=[] for i in range(1,4): # get 3 existing email entries emailname='Email'+str(i) if str(row[emailname])!='nan': emaillist.append(row[emailname].lower()) # Find new email1 entry in google drive data if str(row.Email)!='nan' and '@' in row.Email: # real primary gd named email if row.Email.lower() in emaillist: # add in first position if not present (no confirmation) if row.Email.lower()!=emaillist[0]: # check if in first position already emaillist.insert(0,emaillist.pop(emaillist.index(row.Email))) upkwargs.update({'emchange':True}) print ('Updated email 1 ', str(row.Email.lower()), 'for family', str(thisfam)) else: # confirm email1 if not present upkwargs.update({'email1':row.Email}) upkwargs.update({'emails':emaillist}) # look for new email in email2 position and add if str(row.Email2_n)!='nan' and '@' in row.Email2_n: if row.Email2_n.lower() not in emaillist: # add second email to 2nd position if not present upkwargs.update({'email2':row.Email2_n}) upkwargs.update({'emails':emaillist}) # Update list of parent names (max 3 entries) parlist=[] # construct existing list from family contacts # skip if all nan for entered parents (non-gd entry) for i in range(1,4): # construct existing parents list fname='Pfirst'+str(i) lname='Plast'+str(i) if str(row[fname])!='nan': parlist.append([row[fname],row[lname]]) # list of lists [first, last] if str(row.Pfirst1_n)!='nan': # skip if parent name is nan if [row.Pfirst1_n,row.Plast1_n] in parlist: # reorder in list if [row.Pfirst1_n,row.Plast1_n]!=parlist[0]: # check if already in first # move to first position (everything else requires approval) parlist.insert(0,parlist.pop(parlist.index([row.Pfirst1_n,row.Plast1_n]))) parlist.insert(0,[row.Pfirst1_n, row.Plast1_n]) # insert in first position upkwargs.update({'parchange':True}) else: # parent not in list (confirm) upkwargs.update({'newpar1':[row.Pfirst1_n,row.Plast1_n]}) upkwargs.update({'parlist':parlist}) # inserts in first position while simultaneously removing other entry if str(row.Pfirst2_n)!='nan': # Check for parent 2 entry if [row.Pfirst2_n,row.Plast2_n] not in parlist: # add second phone to 2nd position if not present upkwargs.update({'newpar2':[row.Pfirst2_n,row.Plast2_n]}) upkwargs.update({'parlist':parlist}) # Save auto-changes in phone to family contacts if 'phchange' in upkwargs: # Record altered phonelist in famcontacts if 'phones' in upkwargs: # if present in upkwargs, update list upkwargs.update({'phones': phonelist}) # ensure most current copy phonelist=phonelist[0:3] # construct proper list while len(phonelist)<4: phonelist.append([np.nan,np.nan]) # pad with nan entries if necessary for i in range(1,5): # reset 4 existing phone entries phname='Phone'+str(i) txtname='Text'+str(i) famcontact.loc[thisind, phname] = phonelist[i-1][0] # first of tuple is phone famcontact.loc[thisind, txtname] = phonelist[i-1][1] # 2nd of tuple is text y/n del upkwargs['phchange'] print('automatic phone changes for', thisfam) # Save auto-changes in emails to family contacts if 'emchange' in upkwargs: # Record altered phonelist in famcontacts if 'emails' in upkwargs: # if present in upkwargs, update list upkwargs.update({'emails': emaillist}) # ensure most current copy emaillist=emaillist[0:2] # construct proper list while len(emaillist)<3: emaillist.append(np.nan) # pad with nan entries if necessary for i in range(1,4): # reset 4 existing phone entries emname='Email'+str(i) famcontact.loc[thisind, emname] =emaillist[i-1] del upkwargs['emchange'] print('automatic email changes for', thisfam) if 'parchange' in upkwargs: # Record altered parents list in famcontacts if 'parlist' in upkwargs: # if present in upkwargs, update list upkwargs.update({'parlist': parlist}) # ensure most current copy parlist=parlist[0:2] # construct proper list while len(parlist)<3: parlist.append(np.nan) # pad with nan entries if necessary (3 total) for i in range(1,4): # reset 4 existing phone entries fname='Pfirst'+str(i) lname='Plast'+str(i) try: famcontact.loc[thisind, fname] =parlist[i-1][0] famcontact.loc[thisind, lname] =parlist[i-1][1] except: print('Error updating parents for', thisfam) del upkwargs['parchange'] print('automatic parent changes for', thisfam) # now check for any changes needing interactive approval if len(upkwargs)>0: # something needs interactive approval famcontact=updatefamcon_tk(row, famcontact, **upkwargs) return famcontact def updateplayer_tk(row, players, **upkwargs): ''' Interactive approval of player info updates (except date) changes directly made to players (but not yet autosaved) called by processdatachanges ''' commonschools=['Cabrini','Soulard','SLPS','Charter','Private'] root = tk.Tk() root.title('Update player info') choice=tk.StringVar() # must be define outside of event called functions rownum=0 mytxt='Player:'+row.First+' '+row.Last+' # '+str(row.Plakey) tk.Label(root, text=mytxt).grid(row=rownum, column=0) rownum+=1 # Use listbox of common schools? if 'DOB' in upkwargs: # indicates discrepancy DOB1=date(row.DOB) DOB2=date(row.DOB_n) # create and display DOB variables def ChooseDOB1(event): DOB.set(datetime.strftime(DOB1,'%m/%d/%y')) def ChooseDOB2(event): DOB.set(datetime.strftime(DOB2,'%m/%d/%y')) DOB=tk.StringVar() DOB.set(datetime.strftime(DOB1,'%m/%d/%y')) # defaults to original tk.Label(root, text='Update date of birth?').grid(row=rownum, column=0) mytxt='current DOB:'+datetime.strftime(DOB1,'%m/%d/%y') b=tk.Button(master=root, text=mytxt) b.bind('<Button-1>', ChooseDOB1) b.grid(row=rownum, column=1) mytxt='New DOB:'+datetime.strftime(DOB2,'%m/%d/%y') b=tk.Button(master=root, text=mytxt) b.bind('<Button-1>', ChooseDOB2) b.grid(row=rownum, column=2) tk.Entry(master=root, textvariable=DOB).grid(row=rownum, column=3) rownum+=1 if 'school' in upkwargs: school=tk.StringVar() school.set(row.School) # default to existing value tk.Label(root, text='Update school?').grid(row=rownum, column=0) rownum+=1 def newschool(event): school.set(row.School_n) def oldschool(event): school.set(row.School) def pickschool(event): # double-click to pick standard school choice items=lb.curselection()[0] # gets selected position in list school.set(commonschools[items]) tk.Entry(root, textvariable=school).grid(row=rownum, column=2) mytxt='new school:'+str(row.School_n) b=tk.Button(master=root, text=mytxt) b.bind('<Button-1>', newschool) b.grid(row=rownum, column=1) mytxt='existing school:'+str(row.School) b=tk.Button(master=root, text=mytxt) b.bind('<Button-1>', oldschool) b.grid(row=rownum, column=0) # also include selectable listbox of common school choices lb=tk.Listbox(master=root, selectmode=tk.SINGLE) lb.bind("<Double-Button-1>", pickschool) lb.grid(row=rownum, column=3) for i,sch in enumerate(commonschools): lb.insert(tk.END, sch) rownum+=1 # Now set up select/close buttons def skip(event): choice.set('skip') root.destroy() def change(event): choice.set('change') root.destroy() f=tk.Button(root, text='Skip') f.bind('<Button-1>', skip) f.grid(row=rownum, column=0) g=tk.Button(root, text='Change') g.bind('<Button-1>', change) g.grid(row=rownum, column=1) root.mainloop() mychoice=choice.get() if mychoice=='change': try: # make changes directly to players after finding correct index using plakey plakey=row.Plakey match=players[players['Plakey']==plakey] thisind=match.index[0] if 'school' in upkwargs: players.loc[thisind,'School']= school.get() if 'DOB' in upkwargs: newDOB=datetime.strptime(DOB.get(),'%m/%d/%y') players.loc[thisind,'DOB']= newDOB except: print('Error updating info for', row.Plakey, row.First, row.Last) return players def prepcontacts(df): ''' Prepare for update contacts/ matching with google drive info avoids possible problems/spaces in manually entered info ''' mycols=['Pfirst1', 'Plast1','Pfirst2', 'Plast2', 'Pfirst3', 'Plast3', 'Phone1', 'Text1','Phone2', 'Text2', 'Phone3', 'Text3', 'Phone4', 'Text4', 'Email1','Email2', 'Email3'] for i, col in enumerate(mycols): try: df.loc[:,col]=df[col].str.strip() except: # maybe only nan or not present (i.e. in signups) pass mycols=['Text1','Text2','Text3'] for i, col in enumerate(mycols): try: df.loc[:,col]=df[col].str.replace('No','N', case=False) df.loc[:,col]=df[col].str.replace('Yes','Y', case=False) except: pass return df def findyearseason(df): ''' Pass raw signups and determine year and sports season ''' # get year from system clock and from google drive timestamp now=datetime.now() val=df.Timestamp[0] # grab first timestamp if val!=datetime: # if not a timestamp (i.e. manual string entry find one while type(val)!=datetime: for index, row in df.iterrows(): val=df.Timestamp[index] year=val.year # use year value from signup timestamps if now.year!=val.year: print ('Possible year discrepancy: Signups are from ',str(val.year)) # now find sports season mask = np.column_stack([df['Sport'].str.contains("occer", na=False)]) if len(df.loc[mask.any(axis=1)])>0: season='Fall' mask = np.column_stack([df['Sport'].str.contains("rack", na=False)]) if len(df.loc[mask.any(axis=1)])>0: season='Spring' mask = np.column_stack([df['Sport'].str.contains("asket", na=False)]) if len(df.loc[mask.any(axis=1)])>0: season='Winter' return season, year def outputduplicates(df): '''Prints out names of players with duplicated entries into console... can then delete from google drive signups ''' tempdf=df[df.duplicated(['First','Last','Sport'])] # series with 2nd of duplicated entries as True firsts=tempdf.First.tolist() lasts=tempdf.Last.tolist() for f,l in zip(firsts, lasts): print('Duplicated signup for player: {} {}'.format(f,l)) return def formatphone(df): ''' Convert all entered phone numbers in dfs phone columns to 314-xxx-xxxx string and standardize text field ''' def phoneFormat(val): # lambda function phone number reformatting if not isinstance(val, str): return val # replace/remove any white space val="".join(val.split(' ')) if val=='': # blank phone causes problems return np.nan if not re.search(r'(\d+-\d+-\d+)', val): val=re.sub("[^0-9]", "", val) # substitute blank for non-number if len(val)==7: return '314'+val elif len(val)==11 and val.startswith('1'): # remove starting 1 if present return val[1:11] elif len(val)!=10: # sometimes has --- # print('Bad number: ',val) return val else: return val[0:3]+'-'+val[3:6]+'-'+val[6:10] else: return val # already good # find phone columns (named phone, phone2, etc.) phlist=[str(s) for s in df.columns if 'Phone' in s] for col in phlist: df.loc[:,col]=df[col].apply(lambda x: phoneFormat(x)) # now change yes in any text field to Y txtlist=[str(s) for s in df.columns if 'Text' in s] for col in txtlist: df.loc[:,col]=df[col].replace('yes','Y') df.loc[:,col]=df[col].replace('Yes','Y') return df def standardizeschool(df): ''' can pass any frame with school column and standardize name as Cabrini and Soulard''' schstr='frances' + '|' + 'cabrini' + '|' + 'sfca' # multiple school matching string tempdf=df[df['School'].str.contains(schstr, na=False, case=False)] df.loc[tempdf.index,'School']='Cabrini' tempdf = df[df['School'].str.contains('soulard', na=False, case=False)] df.loc[tempdf.index,'School']='Soulard' tempdf = df[df['School'].str.contains('public', na=False, case=False)] df.loc[tempdf.index,'School']='Public' schstr='city garden' + '|' + 'citygarden' # multiple school matching string tempdf = df[df['School'].str.contains(schstr, na=False, case=False)] df.loc[tempdf.index,'School']='City Garden' return df def formatnamesnumbers(df): '''Switch names to title case, standardize gender, call phone/text reformat and standardize school name''' def titleStrip(val): try: return val.title().strip() except: return val processCols=['First','Last','Family','Pfirst1','Plast1','Pfirst2','Plast2','Email','Email2'] processCols=[i for i in processCols if i in df.columns] for col in processCols: df.loc[:, col]=df[col].apply(lambda x: titleStrip(x)) if 'Gender' in df: df.loc[:,'Gender']=df.Gender.replace('Girl','f') df.loc[:,'Gender']=df.Gender.replace('Boy','m') if 'Grade' in df: df.loc[:,'Grade']=df.Grade.replace('K',0) df.loc[:,'Grade']=df.Grade.replace('pK',0) try: df.loc[:,'Grade']=df.Grade.astype(int) except: print('Player grade likely missing from raw signup file... enter manually') df=formatphone(df) # call phone reformatting string if 'School' in df: df=standardizeschool(df) # use "Cabrini" and "Soulard" as school names return df def graduate_players(players, year): ''' Recalc grade based on grade adjustment, school year (run once per year in fall) and age. some player grades will already have been updated (generally google drive entries)... however recalc shouldn't change grade ''' players.loc[:,'Grade']=players.Grade.replace('K',0) for index,row in players.iterrows(): # replace K with zero grade=int(players.iloc[index]['Grade']) # get currently listed grade gradeadj=players.iloc[index]['Gradeadj'] dob=players.iloc[index]['DOB'] if str(gradeadj)=='nan' or str(dob)=='NaT': # skip grade update if info is missing continue dob=date(dob) # calculate current age at beginning of this school on 8/1 age=date(year,8,1)-dob age = (age.days + age.seconds/86400)/365.2425 # assign grade based on age (and grade adjustment) newgrade=int(age)+int(gradeadj)-5 if grade!=newgrade: first=players.iloc[index]['First'] last=players.iloc[index]['Last'] print('Grade changed from',grade,'to',newgrade,'for', first, last) players.loc[index, 'Grade'] = newgrade players.loc[:,'Grade']=players.Grade.replace(0,'K') return players def removeEmptyFams(players, famcontact): ''' Remove empty families (with no remaining players) ''' # Remove families with no active players plaset=[int(i) for i in list(players.Famkey.unique())] famset=[int(i) for i in list(famcontact.Famkey.unique())] # Empty families emptykey=[i for i in famset if i not in plaset] empty=famcontact[famcontact['Famkey'].isin(emptykey)] print('Remove empty families:') for ind, row in empty.iterrows(): print(row.Family, ':',row.Pfirst1, row.Plast1) choice=input("Remove empty families (Y,N)?\n") if choice.upper()=='Y': famcontact=famcontact[~famcontact['Famkey'].isin(emptykey)] outname=cnf._INPUT_DIR+'\\family_contact.csv' famcontact.to_csv(outname, index=False) return famcontact def removeHSkids(players): ''' Drop graduated players (9th graders) from list ''' grlist=[i for i in range(0,9)] grlist.append('K') Hs=players.loc[~(players.Grade.isin(grlist))] for ind, row in Hs.iterrows(): print(row.First, row.Last) choice=input('Remove above HS players (Y/N)?\n') if choice.upper()=='Y': players=players.loc[(players.Grade.isin(grlist))] print('HS Players removed but not autosaved') return players def estimategrade(df, year): '''Estimate grade for this sports season based on DOB.. not commonly used ''' for index, row in df.iterrows(): grade=df.loc[index]['Grade'] if str(grade)=='nan': # skips any players who already have assigned grade dob=df.loc[index]['DOB'] dob=date(dob) # convert to datetime date from timestamp first=df.loc[index]['First'] last=df.loc[index]['Last'] if str(dob)=='nan': print ('DOB missing for ', first,' ', last) continue # skip to next if dob entry is missing currage=date(year,8,1) - dob currage = (currage.days + currage.seconds/86400)/365.2425 # age on first day of school/ sports season gradeest=int(currage-5) if gradeest==0: gradeest='K' print(first, last, 'probably in grade', gradeest) df.loc[index,'Grade']=gradeest return df def updateoldteams(teams, year): ''' Load old teams after copy to teams tab in teams_coaches, then auto-update year-grade must be manually saved with saveteams... then any adjustments made manually in Excel''' # check to ensure teams are not already updated if teams.iloc[0]['Year']==year: print('Teams already updated for ', year,' school year') return teams # pass back unaltered # temporarily make the K to 0 replacements teams.Grade=teams.Grade.replace('K',0) teams.loc[:'Graderange']=teams['Graderange'].astype(str) # convert all to string teams.loc[:,'Year']=year teams.loc[:,'Grade']+=1 for index, row in teams.iterrows(): grade=teams.loc[index]['Grade'] div=teams.loc[index]['Division'] # division must match grade div=div.replace('K','0') # replace any Ks in string newdiv=''.join([s if not s.isdigit() else str(grade) for s in div]) # find replace for unknown # w/ new grade teams.loc[index,'Division'] = newdiv cycname=teams.loc[index]['Team'] # update grade portion of team name if cycname.startswith('K'): newcycname='1'+ cycname[1:] teams.loc[index,'Team'] = newcycname elif cycname[0].isdigit(): # now update teams beginning w/ numbers newcycname=str(grade)+ cycname[1:] teams.loc[index,'Team']= newcycname # update grade ranges grrange=teams.loc[index]['Graderange'] # should be all numbers grrange=grrange.replace('K','0') newrange=''.join([str(int(i)+1) for i in grrange]) teams.loc[index,'Graderange'] = newrange # grade range stored as string, right? # no auto-save... save with saveteams after checking for proper changes return teams def splitcoaches(df): ''' Pass CYC teams list, split and duplicate rows with comma separated vals in colname for extra coaches''' df.loc[:,'Role']='Coach' # add col for head or asst (first entry for head coach) # df['Open/Closed']='Closed' assistants=df.dropna(subset=['AssistantIDs']) # drop teams w/ no asst coaches for index, rows in assistants.iterrows(): val=assistants.loc[index,'AssistantIDs'] asstcoaches=[str(s) for s in val.split(',')] #list of assistants for single team for i,asst in enumerate(asstcoaches): newrow=assistants.loc[index] # duplicate entry as series asst=asst.strip() # strip leading, trailing blanks newrow.loc['Coach ID'] = asst # set this asst coaches ID newrow.loc['Role'] = 'Assistant Coach' df=df.append(newrow) df=df.sort_values(['Team'],ascending=True) return df def addcoachestoroster(teams, coaches): '''Creates roster entries for coaches for each CYC team pass teams and coaches (with coach roster info) needed roster cols are all below (except sport used in output parsing) args: teams -- team table w/ head and asst coach CYC ids coaches - coaches table with CYC Id (key) and associated info returns: coachroster --separate df to be appended to main player roster ''' # Add team coaches (match by CYC-IDs) thismask = teams['Team'].str.contains('-', case=False, na=False) # finds this season's CYC level teams CYCcoach=teams.loc[thismask] # also has associated sport CYCcoach=splitcoaches(CYCcoach) # makes new row for all assistant coaches on CYC teams CYCcoach=pd.merge(CYCcoach, coaches, how='left', on=['Coach ID'], suffixes=('','_r')) mycols=['Sport','Fname', 'Lname', 'Street', 'City', 'State', 'Zip', 'Phone', 'Email', 'Birthdate', 'Sex', 'Role', 'Division', 'Grade', 'Team', 'School', 'Parish of Registration', 'Parish of Residence', 'Coach ID'] for col in [col for col in mycols if col not in CYCcoach.columns]: CYCcoach[col]='' # birthdate generally missing CYCcoach=CYCcoach[mycols] # put back in desired order # drop duplicates on CYC ID, team (sometimes occurs during merge) CYCcoach=CYCcoach.drop_duplicates(['Coach ID','Team']) return CYCcoach def countteamplayers(df, teams, season, year): ''' For each team, summarize number of players (subset those that are younger or older) and list of names passing mastersignups''' df=df[df['Year']==year] # removes possible naming ambiguity sportsdict={'Fall':['VB','Soccer'], 'Winter':['Basketball'],'Spring':['Track','Softball','Baseball','T-ball']} sportlist=sportsdict.get(season,[]) df=df[df['Sport'].isin(sportlist)] # only this sports season df.Grade=df.Grade.replace('K',0) df.Grade=df.Grade.astype('int') teams.loc[:,'Grade']=teams.Grade.replace('K',0) teams.loc[:,'Grade']=teams.Grade.astype('int') teams.loc[:,'Playerlist']=teams.Playerlist.astype('str') for index, row in teams.iterrows(): teamname=teams.loc[index]['Team'] match=df[df['Team']==teamname] # all players on this team from master_signups teams.loc[index,'Number'] = len(match) # total number of players # compose player list (First L.) and add to teams playerlist=[] for ind, ro in match.iterrows(): first=match.loc[ind]['First'] last=match.loc[ind]['Last'] strname=first+' ' +last[0] playerlist.append(strname) players=", ".join(playerlist) teams.loc[index,'Playerlist'] = players # count players above or below grade level thisgrade=int(teams.loc[index]['Grade']) teams.loc[index,'Upper'] = (match.Grade > thisgrade).sum() teams.loc[index,'Lower'] = (match.Grade < thisgrade).sum() writetoxls(teams, 'Teams', 'Teams_coaches.xlsx') return teams def writecontacts(df, famcontact, players, season, year): ''' From mastersignups and teams, output contact lists for all teams/all sports separately ''' # Slice by sport: Basketball (null for winter?), Soccer, Volleyball, Baseball, T-ball, Softball, Track) sportsdict={'Fall':['VB','Soccer'], 'Winter':['Basketball'],'Spring':['Track','Softball','Baseball','T-ball']} sportlist=sportsdict.get(season) df=df.loc[(df['Sport'].isin(sportlist)) & (df['Year']==year)] # season is not in mastersignups... only individual sports '''# for transfers to same school (but different grades), combine all into single list for given school for index,row in df.iterrows(): if str(df.loc[index]['Team'])!='nan': # avoids nan team screwups if '#' in df.loc[index]['Team']: # this combines Ambrose#2B, Ambrose#3G to single tab df=df.set_value(index,'Team',df.loc[index]['Team'].split('#')[0]) ''' # get family contact info from famcontacts df=pd.merge(df, famcontact, how='left', on=['Famkey'], suffixes=('','_r')) # get school from players.csv df=pd.merge(df, players, how='left', on=['Plakey'], suffixes=('','_r3')) # Sort by grade pre-split df.loc[:,'Grade']=df.Grade.replace('K',0) df.loc[:,'Grade']=df.Grade.apply(int) df=df.sort_values(['Grade'], ascending=True) df.loc[:,'Grade']=df.Grade.replace(0,'K') # replace K with zero to allow sorting df.loc[:,'Team']=df.Team.replace(np.nan,'None') # still give contacts if team not yet assigned df.loc[:,'Team']=df.Team.replace('','None') # Standard sport contacts output for soccer, VB, basketball if season!='Spring': for i, sport in enumerate(sportlist): fname=cnf._OUTPUT_DIR+'\\'+sport+'_'+str(year)+'_contacts.xlsx' writer=pd.ExcelWriter(fname, engine='openpyxl') Thissport=df[df['Sport']==sport] teamlist= Thissport.Team.unique() teamlist=np.ndarray.tolist(teamlist) # Combine transfers to same school transchools=[s.split('#')[0] for s in teamlist if '#' in s] teamlist=[s for s in teamlist if '#' not in s] teamlist.extend(transchools) # all to same school as single "team" # now can organize contacts (and drop sport) mycols=['First', 'Last', 'Grade', 'Gender', 'School', 'Phone1', 'Text1','Email1', 'Phone2', 'Text2', 'Email2', 'Team', 'Pfirst1', 'Plast1', 'Pfirst2', 'Plast2', 'Plakey', 'Famkey', 'Family'] Thissport=Thissport[mycols] # drop columns and rearrange for i, team in enumerate(teamlist): thisteam=Thissport[Thissport['Team'].str.contains(team)] thisteam.to_excel(writer,sheet_name=team,index=False) # this overwrites existing file writer.save() else: # handle spring special case Balls=df[df['Sport']!='Track'] # all ball-bat sports together mycols=['First', 'Last', 'Grade', 'Gender', 'School', 'Phone1', 'Text1','Email1', 'Phone2', 'Text2', 'Email2', 'Team', 'Pfirst1', 'Plast1', 'Pfirst2', 'Plast2', 'Plakey', 'Famkey', 'Family'] Balls=Balls[mycols] teamlist= Balls.Team.unique() teamlist=np.ndarray.tolist(teamlist) # Combine transfers transchools=[s.split('#')[0] for s in teamlist if '#' in s] teamlist=[s for s in teamlist if '#' not in s] teamlist.extend(transchools) # all to same school as single "team" fname=cnf._OUTPUT_DIR+'\\'+'Batball'+'_'+str(year)+'_contacts.xlsx' writer=pd.ExcelWriter(fname, engine='openpyxl') # create a separate tab for each team and write the contacts for i, team in enumerate(teamlist): thisteam=Balls[Balls['Team'].str.contains(team)] thisteam.to_excel(writer,sheet_name=team,index=False) # this overwrites existing file writer.save() # overwrites existing # Entire track team as single file Track=df[df['Sport']=='Track'] Track=Track[mycols] # drop columns and rearrange fname=cnf._OUTPUT_DIR+'\\'+'Track'+'_'+str(year)+'_contacts.xlsx' writer=pd.ExcelWriter(fname, engine='openpyxl') Track.to_excel(writer,sheet_name='Track',index=False) writer.save() return def makegoogcont(df, famcontact, players, season, year): '''Create and save a google contacts file for all Cabrini teams save to csv ''' sportsdict={'Fall':['VB','Soccer'], 'Winter':['Basketball'],'Spring':['Track','Softball','Baseball','T-ball']} sportlist=sportsdict.get(season) df=df.loc[(df['Sport'].isin(sportlist)) & (df['Year']==year)] # season is not in mastersignups... only individual sports '''# for transfers to same school (but different grades), combine all into single list for given school for index,row in df.iterrows(): if str(df.loc[index]['Team'])!='nan': # avoids nan team screwups if '#' in df.loc[index]['Team']: # this combines Ambrose#2B, Ambrose#3G to single tab df=df.set_value(index,'Team',df.loc[index]['Team'].split('#')[0]) ''' # get family contact info from famcontacts df=pd.merge(df, famcontact, how='left', on=['Famkey'], suffixes=('','_r')) # get school from players.csv df=pd.merge(df, players, how='left', on=['Plakey'], suffixes=('','_r3')) # Drop any players not yet assigned df=df.dropna(subset=['Team']) # Full contacts list format for android/google for i, sport in enumerate(sportlist): Thissport=df[df['Sport']==sport] teamlist= Thissport.Team.unique() teamlist=np.ndarray.tolist(teamlist) # drop if team is not yet assigned teamlist=[s for s in teamlist if str(s) != 'nan'] # drop if team is 'drop' teamlist=[s for s in teamlist if str(s) != 'drop'] # Drop all non-Cabrini transferred teams (which must contain #) teamlist=[s for s in teamlist if '#' not in s] # Combine track subteams to single team teamlist=[s[0:5] if 'Track' in s else s for s in teamlist] teamlist=set(teamlist) teamlist=list(teamlist) # now create google contacts list for each Cabrini team and save for j, team in enumerate(teamlist): thisteam=Thissport[Thissport['Team'].str.contains(team)] # Drop duplicate from same family thisteam=thisteam.drop_duplicates('Phone1') thisteam.loc[:,'Name']=thisteam['First']+' '+thisteam['Last'] thisteam.loc[:,'Group']=sport+str(year) mycols=['Name','Pfirst1','Last','Phone1','Phone2','Email1','Email2','Group'] newcols=['Name','Additional Name','Family Name','Phone 1 - Value','Phone 2 - Value', 'E-mail 1 - Value','E-mail 2 - Value','Group Membership'] thisteam=thisteam[mycols] thisteam.columns=newcols thisteam=thisteam.replace(np.nan,'') fname=cnf._OUTPUT_DIR+'\\google'+team+'.csv' thisteam.to_csv(fname, index=False) return def createsignups(df, Mastersignups, season, year): ''' pass signups and add signups to master list, also returns list of current player keys by sport; typically use writesignupstoExcel instead args: df - signup (dataframe) Mastersignups - existing all signups db-like file season - ['Fall','Winter','Spring'] year- 4 digit year as int returns: Mastersignups - same with new unique entries ''' sportsdict={'Fall':['VB','Soccer'], 'Winter':['Basketball'],'Spring':['Track','Softball','Baseball','T-ball']} sportlist=sportsdict.get(season) # Use comma sep on multiple sport entries?? now=datetime.now() thisdate=date.strftime(now,'%m/%d/%Y') # for signup date df.loc[:,'SUdate']=thisdate # can do this globally although might also add to signups startlen=len(Mastersignups) # starting number of signups intcols=['SUkey','Year'] for i, col in enumerate(intcols): if col not in df: df.loc[df.index, col]=np.nan mycols=Mastersignups.columns.tolist() # desired column order for i, col in enumerate(mycols): if col not in df: df.loc[df.index,col]=np.nan # TODO one option here would be to clone comma-separated sport entries (i.e. track and softball) for i, sport in enumerate(sportlist): # Use caution here due to Tball in Softball string problem (currently set to T-ball) thissport=df.loc[df['Sport'].str.contains(sport, na=False, case=False)] # also handles multi-sports # Prepare necessary columns for index, row in thissport.iterrows(): thissport.loc[index,'Sport'] = sport # set individually to formal sport name thissport.loc[index,'Year'] = int(year) thissport.loc[index,'SUkey'] = 0 # assigned actual key below # Now organize signups and add year Mastersignups=pd.concat([thissport,Mastersignups], ignore_index=True) Mastersignups=Mastersignups[mycols] # put back in original order # drop duplicates and save master signups file (keep older signup if present... already assigned SUkey) Mastersignups=Mastersignups.sort_values(['Plakey', 'Sport','Year','SUkey'], ascending=False) # keeps oldest signup Mastersignups=Mastersignups.drop_duplicates(subset=['Plakey', 'Sport','Year']) # drop duplicates (for rerun with updated signups) newsignups=len(Mastersignups)-startlen # number of new signups added this pass print('Added ', str(newsignups),' new ', season, ' signups to master list.') # add unique SUkey (if not already assigned) neededkeys = Mastersignups[(Mastersignups['SUkey']==0)] # filter by year availSUkeys=findavailablekeys(Mastersignups, 'SUkey', len(neededkeys)) # get necessary # of unique SU keys keycounter=0 for index, row in neededkeys.iterrows(): Mastersignups.loc[index,'SUkey'] = availSUkeys[keycounter] # reassign SU key in source master list keycounter+=1 # move to next available key Mastersignups.loc[:,'Grade']=Mastersignups.Grade.replace('K',0) Mastersignups=Mastersignups.sort_values(['Year', 'Sport', 'Gender','Grade'], ascending=False) Mastersignups.loc[:,'Grade']=Mastersignups.Grade.replace(0,'K') # autocsvbackup(Mastersignups,'master_signups', newback=True) Mastersignups.to_csv(cnf._INPUT_DIR + '\\master_signups.csv', index=False, date_format='mm/dd/yy') # automatically saved return Mastersignups def replaceacro(df, acronyms): ''' Pass df column and return with acronyms replaced with full translations (parishes and schools currently used only for CYC rosters ''' for index, row in acronyms.iterrows(): acro=acronyms.loc[index]['acronym'] transl=acronyms.loc[index]['translation'] # TODO only for parish columns df.loc[:,'Parish of Registration']=df['Parish of Registration'].replace(acro, transl) df.loc[:,'Parish of Residence']=df['Parish of Residence'].replace(acro, transl) df.loc[:,'School']=df['School'].replace(acro, transl) return df def createrosters(df, season, year, players, teams, coaches, famcontact, acronyms): ''' From Mastersignups of this season creates Cabrini CYC roster and transfers (for separate sports) and all junior sports (calculates ages for Judge Dowd); pulls info merged from famcontact, players, teams, and coaches teams should already be assigned using teams xls and assigntoteams function returns: None ... direct save to OUTPUT_DIR ''' sportsdict={'Fall':['VB','Soccer'], 'Winter':['Basketball'],'Spring':['Track','Softball','Baseball','T-ball']} specials=['Chess','Track'] sports=sportsdict.get(season) sportlist=[sport for sport in sports if sport not in specials] speciallist=[sport for sport in sports if sport in specials] # for track, chess, other oddballs Specials=df[(df['Year']==year) & (df['Sport'].isin(speciallist))] # deal with these at bottom # Proceed with all normal South Central sports df = df[(df['Year']==year) & (df['Sport'].isin(sportlist))] # filter by year # make duplicate entry row for double-rostered players (multiple team assignments) thismask = df['Team'].str.contains(',', na=False) # multiple teams are comma separated doubles=df.loc[thismask] for index, rows in doubles.iterrows(): team=doubles.loc[index,'Team'] team=team.split(',')[1] # grab 2nd of duplicate teams doubles.loc[index, 'Team'] = team df=pd.concat([df,doubles], ignore_index=True) # adds duplicate entry for double-rostered players with 2nd team thismask = df['Team'].str.contains(',', na=False) # multiple teams are comma separated for index, val in thismask.iteritems(): if val: team=df.loc[index]['Team'] team=team.split(',')[0] # grab 1st of duplicate teams df.loc[index, 'Team'] = team # removes 2nd team from first entry # now grab all extra info needed for CYC rosters # Street, City, State, Zip, Phone, email, Parishreg, parishres from fam-contact df=pd.merge(df, famcontact, how='left', on=['Famkey'], suffixes=('','_r')) # Get division from Teams xls df=pd.merge(df, teams, how='left', on=['Team'], suffixes=('','_r2')) # effectively adds other team info for roster toall players # DOB, School from players.csv df=pd.merge(df, players, how='left', on=['Plakey'], suffixes=('','_r3')) df.loc[:,'Role']='Player' # add column for role # df['Open/Closed']=np.nan df.loc[:,'Coach ID']='' def formatDOB(val): # Pat moore date format is 4/4/19.. reformat as string for csv output try: return datetime.strftime(val, "%m/%d/%y") except: # print('Problem converting %s of type %s to date string format' %(val, type(val)) ) return '' # Find Cabrini CYC names (containing hyphen) thismask = df['Team'].str.contains('-', case=False, na=False) CabriniCYC=df.loc[thismask] # all players on Cabrini CYC teams all sports this season # Finds info for CYC coaches (all sports) and generate roster entries coachroster=addcoachestoroster(teams, coaches) # coaches roster already in correct format + sport column if len(CabriniCYC)>1: # skip if all transfers or junior (i.e. in spring) # Split by sport for i, sport in enumerate(sportlist): Sportroster=CabriniCYC[CabriniCYC['Sport']==sport] # reformat this mess as single CYC roster Sportroster=organizeroster(Sportroster) # Add coaches from this sport to roster Rostercoaches=coachroster[coachroster['Sport']==sport] Rostercoaches=organizeroster(Rostercoaches) Sportroster=pd.concat([Sportroster,Rostercoaches], ignore_index=True) # adds coaches and players together Sportroster=Sportroster.sort_values(['Team','Role','Grade','Lname']) fname=cnf._OUTPUT_DIR+'\\Cabrini_'+sport+'roster'+str(year)+'.csv' Sportroster=replaceacro(Sportroster, acronyms) # replace abbreviations Sportroster.loc[:,'Birthdate']=Sportroster['Birthdate'].apply(lambda x: formatDOB(x)) Sportroster.to_csv(fname, index=False) # done with Cabrini CYC rosters # Break out all other types of teams (transfers, junior teams, Chess/Track) thismask = df['Team'].str.contains('-', case=False, na=False) Others=df.loc[~thismask] # no hyphen for all non Cabrini CYC level (Cabrini junior and transfers) # Cabrini transferred players to CYC teams with # (i.e. Ambrose#8B, OLS#3G) # Non-CYC cabrini junior teams start with number thismask = Others['Team'].str.contains('#', na=True) # flag nans and set to true (usually jr teams w/o assignment) # Transferred teams contain # such as OLS#3G Transfers=Others.loc[thismask] # transferred teams have # but no hyphen for i, sport in enumerate(sportlist): # output roster for all transfers (all grades in case of CYC) Transferroster=Transfers[Transfers['Sport']==sport] Transferroster=organizeroster(Transferroster) Transferroster=Transferroster.sort_values(['Team', 'Sex', 'Grade'], ascending=True) fname=cnf._OUTPUT_DIR+'\\CYC'+sport+'transfers.csv' Transferroster=replaceacro(Transferroster,acronyms) Transferroster.loc[:,'Birthdate']=Transferroster['Birthdate'].apply(lambda x: formatDOB(x)) Transferroster.to_csv(fname, index=False) # Now deal with junior cabrini (should be only thing left after Cabrini CYC< # transfers, special sports Juniorteams=Others.loc[~thismask] # remove transfers Juniorteams=Juniorteams[Juniorteams['Team']!='drop'] # remove dropped players # now output all junior teams in same format (sometimes needed by <NAME>) # also calculate current age if len(Juniorteams)>0: Juniorteams=organizeroster(Juniorteams) # put in standard South Central roster format # Calculate current age from DOBs (renamed to Birthdate for roster only) Juniorteams.loc[:,'Age']=calcage(Juniorteams['Birthdate']) fname=cnf._OUTPUT_DIR+'\\Cabrini_junior_teams_'+str(year)+'.csv' Juniorteams=replaceacro(Juniorteams, acronyms) Juniorteams.loc[:,'Birthdate']=Juniorteams['Birthdate'].apply(lambda x: formatDOB(x)) Juniorteams.to_csv(fname, index=False) # Deal with special cases -Track and Chess # Get DOB/school from players.. anything else needed by <NAME>? Specials=pd.merge(Specials, players, how='left', on='Plakey', suffixes=('','_r')) # needs address Specials=pd.merge(Specials, famcontact, how='left', on='Famkey', suffixes=('','_r2')) for i, sport in enumerate(speciallist): # output roster for all transfers (all grades in case of CYC) Specials=Specials[Specials['Sport']==sport] Specials=Specials.rename(columns={'DOB':'Birthdate'}) mycols=['First', 'Last','Gender','Team','Grade','Birthdate','School','Address','Zip'] Specials=Specials[mycols] Specials=Specials.sort_values(['Gender', 'Birthdate', 'Grade'], ascending=True) Specials.loc[:,'Birthdate']=Specials['Birthdate'].apply(lambda x: formatDOB(x)) fname= cnf._OUTPUT_DIR+'\\'+ sport+'_'+str(year)+'_rosters.csv' Specials.to_csv(fname, index=False) return def makemultiteam(df): '''Small utility called by assigntoteams to make temp teams df that has separate entry for each grade if team is mixed grade then merge to assign teams is straightforward twoteams- ''' # TODO annoying problem with combining teams due to K1 (string but not int) mycols=df.dtypes.index # Deal with K1, K2 and such teams kteams=[str(s) for s in np.ndarray.tolist(df.Graderange.unique()) if 'K' in str(s)] kteams=[s for s in kteams if len(s)>1] # combo teams only kteams=df[df['Graderange'].isin(kteams)] xtrateams=pd.DataFrame(index=np.arange(0,0),columns=mycols) # empty df # clones rows to match lower grades in range for index, row in kteams.iterrows(): tempstr= kteams.loc[index]['Graderange'] gr1=0 # 0 for grade K gr2=int(tempstr[1]) for gr in range(gr1,gr2): newrow=kteams.loc[index] # grabs row as series newrow.loc['Grade'] = gr # set to correct grade xtrateams=xtrateams.append(newrow) # add single row to temp df df.loc[:,'Grade']=df.Grade.replace('K','0', regex=True) # get rid of K string problem df.loc[:,'Graderange']=df.Graderange.replace('K','0', regex=True) df.loc[:,'Graderange']=df.Graderange.astype('int') # now handle numbered multiteams (e.g. 45 78 two digit ints) multiteams=df.loc[df['Graderange']>9] # subset of teams comprised of multiple grades for index, row in multiteams.iterrows(): # check for 3 or more grades # TODO make sure it's not 3 grades (i.e. K-2) tempstr= str(multiteams.loc[index]['Graderange']) gr1=int(tempstr[0]) gr2=int(tempstr[1]) for gr in range(gr1,gr2): newrow=multiteams.loc[index] # grabs row as series newrow.loc['Grade'] = gr # set to correct grade xtrateams=xtrateams.append(newrow) # add single row to temp df # Detect gender-grade-sport w/ two teams # now combine with original df df=
pd.concat([df,xtrateams], ignore_index=True)
pandas.concat
import time import numpy as np import pandas as pd import healpy as hp from astropy.table import Table from astropy.io import fits from astropy.wcs import WCS from scipy import interpolate import os, socket, subprocess, shlex import argparse import logging, traceback import paramiko from helper_funcs import send_email, send_error_email, send_email_attach, send_email_wHTML from sqlite_funcs import get_conn from dbread_funcs import get_files_tab, get_info_tab, guess_dbfname from coord_conv_funcs import convert_radec2imxy, convert_imxy2radec def cli(): parser = argparse.ArgumentParser() parser.add_argument('--evfname', type=str,\ help="Event data file", default=None) parser.add_argument('--fp_dir', type=str,\ help="Directory where the detector footprints are", default='/storage/work/jjd330/local/bat_data/rtfp_dir_npy/') parser.add_argument('--Nrate_jobs', type=int,\ help="Total number of jobs", default=16) parser.add_argument('--TSscan', type=float,\ help="Min TS needed to do a full FoV scan", default=6.25) parser.add_argument('--pix_fname', type=str,\ help="Name of the file with good imx/y coordinates",\ default='good_pix2scan.npy') parser.add_argument('--bkg_fname', type=str,\ help="Name of the file with the bkg fits",\ default='bkg_estimation.csv') parser.add_argument('--dbfname', type=str,\ help="Name to save the database to",\ default=None) parser.add_argument('--GWname', type=str,\ help="Name of the event to submit jobs as",\ default='') parser.add_argument('--queue', type=str,\ help="Name of the queue to submit jobs to",\ default='cyberlamp') parser.add_argument('--qos', type=str,\ help="Name of the qos to submit jobs to",\ default=None) parser.add_argument('--pcfname', type=str,\ help="Name of the partial coding image",\ default='pc_2.img') parser.add_argument('--BKGpyscript', type=str,\ help="Name of python script for Bkg Estimation",\ default='do_bkg_estimation_wPSs_mp.py') parser.add_argument('--RATEpyscript', type=str,\ help="Name of python script for Rates analysis",\ default='do_rates_mle_wPSs.py') parser.add_argument('--LLHpyscript', type=str,\ help="Name of python script for LLH analysis",\ default='do_llh_wPSs_uncoded_realtime.py') parser.add_argument('--SCANpyscript', type=str,\ help="Name of python script for FoV scan",\ default='do_llh_scan_uncoded.py') parser.add_argument('--PEAKpyscript', type=str,\ help="Name of python script for FoV scan",\ default='do_intLLH_forPeaks.py') parser.add_argument('--do_bkg',\ help="Submit the BKG estimation script",\ action='store_true') parser.add_argument('--do_rates',\ help="Submit the Rate jobs",\ action='store_true') parser.add_argument('--do_llh',\ help="Submit the llh jobs",\ action='store_true') parser.add_argument('--do_scan',\ help="Submit the scan jobs",\ action='store_true') parser.add_argument('--skip_waiting',\ help="Skip waiting for the stuff to finish and use what's there now",\ action='store_true') parser.add_argument('--archive',\ help="Run in archive mode, not realtime mode",\ action='store_true') parser.add_argument('--rhel7',\ help="Submit to a rhel7 node",\ action='store_true') parser.add_argument('--pbs_fname', type=str,\ help="Name of pbs script",\ default='/storage/work/jjd330/local/bat_data/BatML/submission_scripts/pyscript_template.pbs') parser.add_argument('--min_pc', type=float,\ help="Min partical coding fraction to use",\ default=0.1) args = parser.parse_args() return args def im_dist(imx0, imy0, imx1, imy1): return np.hypot(imx0 - imx1, imy0 - imy1) def get_rate_res_fnames(direc='.'): rate_fnames = [fname for fname in os.listdir(direc) if ('rates' in fname) and (fname[-4:]=='.csv')] return rate_fnames def get_res_fnames(direc='.'): res_fnames = [fname for fname in os.listdir(direc) if (fname[-4:]=='.csv') and (fname[:4]=='res_')] return res_fnames def get_scan_res_fnames(direc='.'): res_fnames = [fname for fname in os.listdir(direc) if (fname[-4:]=='.csv') and ('scan_res_' in fname)] return res_fnames def get_peak_res_fnames(direc='.'): res_fnames = [fname for fname in os.listdir(direc) if (fname[-4:]=='.csv') and ('peak_scan_' in fname)] return res_fnames def get_merged_csv_df(csv_fnames): dfs = [] for csv_fname in csv_fnames: try: dfs.append(pd.read_csv(csv_fname, dtype={'timeID':np.int})) except Exception as E: logging.error(E) continue df = pd.concat(dfs) return df def probm2perc(pmap): bl = (pmap>0) p_map = np.copy(pmap) inds_sort = np.argsort(p_map)[::-1] perc_map = np.zeros_like(p_map) perc_map[inds_sort] = np.cumsum(p_map[inds_sort])#*\ perc_map[~bl] = 1. return perc_map def get_merged_csv_df_wpos(csv_fnames, attfile, perc_map=None, direc=None): dfs = [] for csv_fname in csv_fnames: try: if direc is None: tab = pd.read_csv(csv_fname, dtype={'timeID':np.int}) else: tab = pd.read_csv(os.path.join(direc,csv_fname), dtype={'timeID':np.int}) if len(tab) > 0: # att_ind = np.argmin(np.abs(attfile['TIME'] - trigger_time)) # att_quat = attfile['QPARAM'][att_ind] # ras = np.zeros(len(tab)) # decs = np.zeros(len(tab)) # for i in xrange(len(ras)): # # print np.shape(res_tab['time'][i]), np.shape(attfile['TIME']) # att_ind0 = np.argmin(np.abs(tab['time'][i] + tab['duration'][i]/2. - attfile['TIME'])) # att_quat0 = attfile['QPARAM'][att_ind0] # ras[i], decs[i] = convert_imxy2radec(tab['imx'][i],\ # tab['imy'][i],\ # att_quat0) t0_ = np.nanmean(tab['time'] + tab['duration']/2.) att_ind0 = np.argmin(np.abs(t0_ - attfile['TIME'])) att_quat0 = attfile['QPARAM'][att_ind0] ras, decs = convert_imxy2radec(tab['imx'], tab['imy'], att_quat0) tab['ra'] = ras tab['dec'] = decs if not perc_map is None: Nside = hp.npix2nside(len(perc_map)) hp_inds = hp.ang2pix(Nside, ras, decs, lonlat=True, nest=True) cred_lvl = perc_map[hp_inds] tab['cls'] = cred_lvl dfs.append(tab) except Exception as E: logging.warning(E) continue df = pd.concat(dfs) return df def mk_seed_tab4scans(res_tab, pc_fname, rate_seed_tab, TS_min=6.5, im_steps=20, pc_min=0.1): PC = fits.open(pc_fname)[0] pc = PC.data w_t = WCS(PC.header, key='T') pcbl = (pc>=(pc_min*.99)) pc_inds = np.where(pcbl) pc_imxs, pc_imys = w_t.all_pix2world(pc_inds[1], pc_inds[0], 0) imxax = np.linspace(-2,2,im_steps*4+1) imyax = np.linspace(-1,1,im_steps*2+1) im_step = imxax[1] - imxax[0] bins = [imxax, imyax] h = np.histogram2d(pc_imxs, pc_imys, bins=bins)[0] inds = np.where(h>=10) squareIDs_all = np.ravel_multi_index(inds, h.shape) df_twinds = res_tab.groupby('timeID') seed_tabs = [] for twind, dft in df_twinds: if np.max(dft['TS']) >= TS_min: seed_dict = {} seed_dict['timeID'] = twind seed_dict['dur'] = dft['duration'].values[0] seed_dict['time'] = dft['time'].values[0] bl_rate_seed = (rate_seed_tab['timeID']==twind) squareIDs_done = rate_seed_tab['squareID'][bl_rate_seed] squareIDs = squareIDs_all[~np.isin(squareIDs_all, squareIDs_done)] seed_dict['squareID'] = squareIDs seed_tabs.append(pd.DataFrame(seed_dict)) seed_tab =
pd.concat(seed_tabs)
pandas.concat
import numpy as np import yaml from dask.distributed import Client, LocalCluster, as_completed import argparse from os.path import exists, join from os import makedirs from mlmicrophysics.data import subset_data_files_by_date, assemble_data_files from sklearn.ensemble import RandomForestRegressor, RandomForestClassifier from sklearn.preprocessing import StandardScaler, RobustScaler, MaxAbsScaler, MinMaxScaler from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_error, accuracy_score from mlmicrophysics.metrics import hellinger_distance, heidke_skill_score, peirce_skill_score from sklearn.model_selection import ParameterSampler from scipy.stats import randint, uniform, expon import pandas as pd import traceback scalers = {"MinMaxScaler": MinMaxScaler, "MaxAbsScaler": MaxAbsScaler, "StandardScaler": StandardScaler, "RobustScaler": RobustScaler} def sampler_generator(ps): for params in ps: yield params def parse_model_config_params(model_params, num_settings, random_state): """ Args: model_params: num_settings: random_state: Returns: """ param_distributions = dict() dist_types = dict(randint=randint, expon=expon, uniform=uniform) for param, param_value in model_params.items(): if param_value[0] in ["randint", "expon", "uniform"]: param_distributions[param] = dist_types[param_value[0]](*param_value[1:]) else: param_distributions[param] = param_value return sampler_generator(ParameterSampler(param_distributions, n_iter=num_settings, random_state=random_state)) def main(): parser = argparse.ArgumentParser() parser.add_argument("config", help="Configuration yaml file") parser.add_argument("-p", "--proc", type=int, default=1, help="Number of processors") args = parser.parse_args() if not exists(args.config): raise FileNotFoundError(args.config + " not found.") with open(args.config) as config_file: config = yaml.load(config_file) train_files, val_files, test_files = subset_data_files_by_date(config["data_path"], config["data_end"], **config["subset_data"]) input_scaler = scalers[config["input_scaler"]]() train_input, \ train_output_labels, \ train_transformed_output, \ train_scaled_output, \ output_scalers = assemble_data_files(train_files, config["input_cols"], config["output_cols"], config["input_transforms"], config["output_transforms"], input_scaler, subsample=config["subsample"]) print("Train Input Size:", train_input.shape) val_input, \ val_output_labels, \ val_transformed_output, \ val_scaled_output, \ output_scalers = assemble_data_files(val_files, config["input_cols"], config["output_cols"], config["input_transforms"], config["output_transforms"], input_scaler, output_scalers=output_scalers, train=False, subsample=config["subsample"]) print("Val Input Size:", val_input.shape) cluster = LocalCluster(n_workers=args.proc, threads_per_worker=1) client = Client(cluster) print(client) train_input_link = client.scatter(train_input) train_labels_link = client.scatter(train_output_labels) train_scaled_output_link = client.scatter(train_scaled_output) val_input_link = client.scatter(val_input) val_output_labels_link = client.scatter(val_output_labels) val_scaled_output_link = client.scatter(val_scaled_output) submissions = [] if not exists(config["out_path"]): makedirs(config["out_path"]) for class_model_name, class_model_params in config["classifier_models"].items(): for reg_model_name, reg_model_params in config["regressor_models"].items(): rs = np.random.RandomState(config["random_seed"]) class_model_config_generator = parse_model_config_params(class_model_params, config["num_param_samples"], rs) reg_model_config_generator = parse_model_config_params(reg_model_params, config["num_param_samples"], rs) class_model_configs = [] reg_model_configs = [] for s in range(config["num_param_samples"]): class_model_config = next(class_model_config_generator) reg_model_config = next(reg_model_config_generator) class_model_configs.append(class_model_config) reg_model_configs.append(reg_model_config) config_index = f"{class_model_name}_{reg_model_name}_{s:04}" submissions.append(client.submit(validate_model_configuration, class_model_name, class_model_config, reg_model_name, reg_model_config, config_index, train_input_link, train_labels_link, train_scaled_output_link, val_input_link, val_output_labels_link, val_scaled_output_link, config["classifier_metrics"], config["regressor_metrics"])) class_config_frame = pd.DataFrame(class_model_configs) reg_config_frame = pd.DataFrame(reg_model_configs) class_config_frame.to_csv(join(config["out_path"], f"{class_model_name}_{reg_model_name}_classifier_params.csv"), index_label="Config") reg_config_frame.to_csv(join(config["out_path"], f"{class_model_name}_{reg_model_name}_regressor_params.csv")) result_count = 0 for out in as_completed(submissions): if out.status == "finished": result = out.result() print(result) if result_count == 0: result.to_frame().T.to_csv(join(config["out_path"], f"{class_model_name}_{reg_model_name}_metrics.csv"), index_label="Config") else: result.to_frame().T.to_csv(join(config["out_path"], f"{class_model_name}_{reg_model_name}_metrics.csv"), header=False, mode="a") result_count += 1 else: tb = out.traceback() for line in traceback.format_tb(tb): print(line) del submissions[:] client.close() cluster.close() return def validate_model_configuration(classifier_model_name, classifier_model_config, regressor_model_name, regressor_model_config, config_index, train_scaled_input, train_labels, train_scaled_output, val_scaled_input, val_labels, val_scaled_output, classifier_metric_list, regressor_metric_list): """ Train a single machine learning model configuration to predict each microphysical tendency. Args: classifier_model_name: classifier_model_config: regressor_model_name: regressor_model_config: config_index: train_scaled_input: train_labels: train_scaled_output: val_scaled_input: val_labels: val_scaled_output: classifier_metric_list: regressor_metric_list: Returns: """ from mlmicrophysics.models import DenseNeuralNetwork, DenseGAN import keras.backend as K metrics = {"mse": mean_squared_error, "mae": mean_absolute_error, "r2": r2_score, "hellinger": hellinger_distance, "acc": accuracy_score, "hss": heidke_skill_score, "pss": peirce_skill_score} sess = K.tf.Session(config=K.tf.ConfigProto(intra_op_parallelism_threads=1, inter_op_parallelism_threads=1)) K.set_session(sess) with sess.as_default(): model_classes = {"RandomForestRegressor": RandomForestRegressor, "RandomForestClassifier": RandomForestClassifier, "DenseNeuralNetwork": DenseNeuralNetwork, "DenseGAN": DenseGAN} classifier_models = {} regressor_models = {} output_label_preds = pd.DataFrame(0, index=val_labels.index, columns=val_labels.columns, dtype=np.int32) output_preds = pd.DataFrame(0, index=val_scaled_output.index, columns=val_scaled_output.columns, dtype=np.float32) output_regressor_preds = pd.DataFrame(0, index=val_scaled_output.index, columns=val_scaled_output.columns, dtype=np.float32) output_metric_columns = [] for output_col in train_scaled_output.columns: for metric in classifier_metric_list: output_metric_columns.append(output_col + "_" + metric) for metric in regressor_metric_list: output_metric_columns.append(output_col + "_" + metric) unique_labels = np.unique(train_labels[output_col]) for unique_label in unique_labels: for metric in regressor_metric_list: output_metric_columns.append(f"{output_col}_{unique_label}_{metric}") output_metrics =
pd.Series(index=output_metric_columns, name=config_index, dtype=np.float32)
pandas.Series
# -*- coding: utf-8 -*- """ Created on Fri Jan 14 12:56:07 2022 @author: r.thorat """ #importing necessary modules import pandas._libs.tslibs.base import os os.getcwd() from tkinter import filedialog as fd import pandas as pd import re from nameparser import HumanName import os os.getcwd() #define functions #name of the round def sub_round(): """ callback when the button is clicked """ msg = f'You entered: {round.get()}' showinfo( title='Information', message=msg ) return round.get() #to get suggested reviewers, if any def getsuggestedreviewers0(): global df_SR_0 import_file_path2 = fd.askopenfilename() df_SR_0 = pd.read_excel (import_file_path2) return df_SR_0 #to get country sheet def country_sheet(): global df_CS import_file_path7 = fd.askopenfilename() df_CS = pd.read_excel(import_file_path7) return df_CS # Create Tkinter GUI to interact with the code ##https://www.geeksforgeeks.org/tkinter-application-to-switch-between-different-page-frames/ import tkinter as tk from tkinter import ttk from tkinter.messagebox import showinfo def Close(): app.destroy() LARGEFONT =("Verdana", 35) class tkinterApp(tk.Tk): # __init__ function for class tkinterApp def __init__(self, *args, **kwargs): # __init__ function for class Tk tk.Tk.__init__(self, *args, **kwargs) # creating a container container = tk.Frame(self) container.pack(side = "top", fill = "both", expand = True) container.grid_rowconfigure(0, weight = 1) container.grid_columnconfigure(0, weight = 1) # initializing frames to an empty array self.frames = {} # iterating through a tuple consisting # of the different page layouts for F in (StartPage, Page1): frame = F(container, self) # initializing frame of that object from # startpage, page1, page2 respectively with # for loop self.frames[F] = frame frame.grid(row = 0, column = 0, sticky ="nsew") self.show_frame(StartPage) # to display the current frame passed as # parameter def show_frame(self, cont): frame = self.frames[cont] frame.tkraise() # first window frame startpage class StartPage(tk.Frame): def __init__(self, parent, controller): tk.Frame.__init__(self, parent) # label of frame Layout 2 label = ttk.Label(self, text ="Startpage") # putting the grid in its place by using # grid label.grid(row = 0, column = 1, padx = 10, pady = 10) button1 = ttk.Button(self, text ="Info for Expert Lookup", command = lambda : controller.show_frame(Page1)) # putting the button in its place by # using grid button1.grid(row = 1, column = 1, padx = 10, pady = 10) # button to show proposalinfo with text # layout3 button2 = ttk.Button(self, text ="Close", command =Close) # putting the button in its place by # using grid button2.grid(row = 2, column = 1, padx = 10, pady = 10) # fourth window frame page1 class Page1(tk.Frame): def __init__(self, parent, controller): tk.Frame.__init__(self, parent) label = ttk.Label(self, text ="Info for Expert Lookup", font = LARGEFONT) label.grid(row = 0, column = 1, padx = 40, pady = 10) # button to show frame 3 with text # layout3 button3 = ttk.Button(self, text ="Back to Startpage", command = lambda : controller.show_frame(StartPage)) # putting the button in its place by # using grid button3.grid(row = 1, column = 1, padx = 10, pady = 10) my_label = ttk.Label(self, text ="Enter subsidy name (example: \'%XXX-Talentprogramma XXX XXX 2021%\'):") # putting the button in its place by # using grid my_label.grid(row = 1, column = 2, padx =60, pady = 10) # putting the button in its place by # using grid global round round = tk.StringVar(self) # button to show proposalinfo with text # layout3 my_box = ttk.Entry(self, textvariable=round, width=60) # putting the button in its place by # using grid my_box.grid(row = 2, column = 2, padx = 10, pady = 10) # button to show proposalinfo with text # layout3 button4 = ttk.Button(self, text ="Click me to confirm", command =sub_round) # putting the button in its place by # using grid button4.grid(row = 3, column = 2, padx = 10, pady = 10) # button to show suggested reviewers with text # layout3 button5 = ttk.Button(self, text ="Import sugg reviewers", command =getsuggestedreviewers0) # putting the button in its place by # using grid button5.grid(row = 4, column = 2, padx = 10, pady = 10) # button to input export file name with text # layout3 button9 = ttk.Button(self, text ="Import country sheet", command =country_sheet) # putting the button in its place by # using grid button9.grid(row = 6, column = 2, padx = 10, pady = 10) # button to show proposalinfo with text # layout3 button8 = ttk.Button(self, text ="Close", command =Close) # putting the button in its place by # using grid button8.grid(row = 7, column = 1, padx = 10, pady = 10) # Driver Code app = tkinterApp() #https://newbedev.com/how-to-change-the-color-of-ttk-button style = ttk.Style() style.theme_use('alt') style.configure('TButton', background = '#232323', foreground = 'white', width = 20, borderwidth=1, focusthickness=3, focuscolor='none') style.map('TButton', background=[('active','#ff0000')]) app.title("This is my Interface") #app.bind('<Return>', run_and_close) #app.bind('<Escape>', close) app.mainloop() #Write query in SQL service managemnt studio to get required information such as #File number,Main applicant,Main applicant_Last name,First name,Gender,Promotion date,C_Email, #Main Organization,C_Organization,C_Postal code,C_City,Title,Summary,Main discipline,Subdiscipline,Word query_code='YOUR CODE where sub.subsidieronde_naam like' Sub_Naam=round.get() Cond='and rol.Naam in' + ' (' + "'Hoofdaanvrager','Medeaanvrager'"+')' query=query_code+' '+Sub_Naam + Cond #importing necessary modules print(query) import pyodbc conn = pyodbc.connect('Driver={SQL Server};' 'Server=YOUR SERVER;' 'Database=YOUR DATABASE;' 'Trusted_Connection=yes;') #creation of a dataframe df_pv =
pd.read_sql_query(query, conn)
pandas.read_sql_query
import glob import scipy.io as ff import pandas as pd import yt import numpy as np import os as os props=['M','x','y','z','vx','vy','vz','jx_g','jy_g','jz_g','dMB','dME','dM','rho','cs','dv','Esave','jx_bh','jy_bh','jz_bh','spinmag','eps_sink', 'rho_stars', 'rho_dm', 'vx_stars', 'vy_stars', 'vz_stars', 'vx_dm', 'vy_dm', 'vz_dm', 'n_stars', 'n_dm', 'rho_lowspeed_stars', 'rho_lowspeed_dm', 'fact_fast_stars', 'fact_fast_dm'] os.system('mkdir sinks') os.system('mv sink_* ./sinks') files=glob.glob('output_*/info*') ds=yt.load(files[-1]) df={tmpprop:[] for tmpprop in props} df=pd.DataFrame(data=df) if ds.cosmological_simulation==1: df=pd.concat([pd.DataFrame(data={'a':[]}),df],axis=1) else: df=pd.concat([pd.DataFrame(data={'t':[]}),df],axis=1) files=glob.glob('./sinks/sink*') files.sort() d=ds.all_data() dx=float(d[('index','dx')].min().in_units('pc')) dx_dm=float(ds.length_unit.in_units('pc')/2**ds.max_level*(1+ds.current_redshift)) for f in files: p=ff.FortranFile(f) p.read_ints(); p.read_ints() a=list(p.read_reals('d')) scale_l=p.read_reals('d') scale_d=p.read_reals('d') scale_t=p.read_reals('d') bhid=p.read_ints() d={tmpprop:p.read_reals('d') for tmpprop in props[:30]} d=pd.DataFrame(data=d, index=bhid) d = pd.concat([d, pd.DataFrame(data={tmpprop:p.read_ints() for tmpprop in props[30:32]}, index=bhid)], axis=1) d = pd.concat([d, pd.DataFrame(data={tmpprop:p.read_reals('d') for tmpprop in props[32:]}, index=bhid)], axis=1) t=list(p.read_reals('d')) d['M']*=scale_d*scale_l**3/2e33 d['vx']*=scale_l/1e5/scale_t d['vy']*=scale_l/1e5/scale_t d['vz']*=scale_l/1e5/scale_t d['dMB']*=scale_d*scale_l**3/2e33 /scale_t * 3600*24*365 d['dME']*=scale_d*scale_l**3/2e33 /scale_t * 3600*24*365 d['dM']*=scale_d*scale_l**3/2e33 d['rho']*=scale_d/1.67e-24 d['cs']*=scale_l/1e5/scale_t d['dv']*=scale_l/1e5/scale_t d['Esave']*=scale_l/1e5/scale_t d['vx_stars']*=scale_l/1e5/scale_t d['vy_stars']*=scale_l/1e5/scale_t d['vz_stars']*=scale_l/1e5/scale_t d['vx_dm']*=scale_l/1e5/scale_t d['vy_dm']*=scale_l/1e5/scale_t d['vz_dm']*=scale_l/1e5/scale_t d['rho_stars']*=scale_d/1.67e-24 d['rho_dm']*=scale_d/1.67e-24 d['rho_lowspeed_stars']*=scale_d/1.67e-24 d['rho_lowspeed_dm']*=scale_d/1.67e-24 d['fact_fast_stars']*=scale_d/1.67e-24 d['fact_fast_dm']*=scale_d/1.67e-24 for tmpbhid in bhid: if tmpbhid not in df.index: df.loc[tmpbhid]=[[]]+[[] for tmpprop in props] bh=df.loc[tmpbhid] dd=d.loc[tmpbhid] if ds.cosmological_simulation==1: bh['a']+=a else: bh['t']+=t for tmpprop in props: bh[tmpprop]+=[dd[tmpprop]] for bhid in df.index: tmp={tmpprop:df.loc[bhid][tmpprop] for tmpprop in props} if ds.cosmological_simulation==1: tmp.update({'a':df.loc[bhid]['a']}) tmp=pd.DataFrame(data=tmp) tmp=pd.concat([tmp, pd.DataFrame({'t':np.copy(ds.cosmology.t_from_z(1/np.copy(tmp.a)-1).in_units('Gyr'))})], axis=1) else: tmp.update({'t':df.loc[bhid]['t']}) tmp=pd.DataFrame(data=tmp) tmp.t*=scale_t/(1e9*365*24*3600) dMdt=tmp.dM[1:]/np.diff(tmp.t)/1e9 dMdt.index-=1 dMdt.loc[dMdt.index.max()+1]=0 tmp['x']/=ds['boxlen'] tmp['y']/=ds['boxlen'] tmp['z']/=ds['boxlen'] tmp['dM']=dMdt tmp['vsink_rel_stars'] = np.sqrt((tmp['vx_stars']-tmp['vx'])**2+(tmp['vy_stars']-tmp['vy'])**2+(tmp['vz_stars']-tmp['vz'])**2) tmp['vsink_rel_dm'] = np.sqrt((tmp['vx_dm']-tmp['vx'])**2+(tmp['vy_dm']-tmp['vy'])**2+(tmp['vz_dm']-tmp['vz'])**2) tmp['rinf_stars'] = (tmp.M / 1e7) / (tmp.vsink_rel_stars / 200)**2 tmp['rinf_dm'] = (tmp.M / 1e7) / (tmp.vsink_rel_dm / 200)**2 CoulombLog = np.maximum(np.zeros(len(tmp.t)), np.log(4*dx/tmp.rinf_stars)) tmp['a_stars_slow']=4*np.pi*(6.67e-8)**2*tmp.M*2e33*tmp.rho_lowspeed_stars*1.67e-24*CoulombLog/(tmp.vsink_rel_stars*1e5)**2*3600*24*365*1e6/1e5 CoulombLog = np.minimum(np.zeros(len(tmp.t)), tmp.rinf_stars-4*dx) / (tmp.rinf_stars - 4*dx) tmp['a_stars_fast']=4*np.pi*(6.67e-8)**2*tmp.M*2e33*tmp.fact_fast_stars*1.67e-24*CoulombLog/(tmp.vsink_rel_stars*1e5)**2*3600*24*365*1e6/1e5 CoulombLog = np.maximum(np.zeros(len(tmp.t)), np.log(4*dx/tmp.rinf_dm)) tmp['a_dm_slow']=4*np.pi*(6.67e-8)**2*tmp.M*2e33*tmp.rho_lowspeed_dm*1.67e-24*CoulombLog/(tmp.vsink_rel_dm*1e5)**2*3600*24*365*1e6/1e5 CoulombLog = np.minimum(np.zeros(len(tmp.t)), tmp.rinf_dm-4*dx) / (tmp.rinf_dm - 4*dx) tmp['a_dm_fast']=4*np.pi*(6.67e-8)**2*tmp.M*2e33*tmp.fact_fast_dm*1.67e-24*CoulombLog/(tmp.vsink_rel_dm*1e5)**2*3600*24*365*1e6/1e5 M=tmp.dv / tmp.cs tmp['rinf_gas'] = (tmp.M / 1e7) / (tmp.dv**2 + tmp.cs**2)/200**2 CoulombLog = np.minimum(np.zeros(len(tmp.t)), tmp.rinf_gas-4*dx) / (tmp.rinf_gas - 4*dx) fudge=M fudge.loc[M < 0.95] = 1/M**2*(0.5*np.log((1+M)/(1-M)) - M) fudge.loc[(M >= 0.95) & (M <= 1.007)] = 1 fudge.loc[M > 1.007] = 1/M**2*(0.5*np.log(M**2-1) + 3.2) tmp['a_gas']=4*np.pi*(6.67e-8)**2*tmp.M*2e33*tmp.rho*1.67e-24/(tmp.cs*1e5)**2*fudge*(3600*24*365*1e6)/1e5*CoulombLog if os.path.exists('./sinks/BH00001.csv'): os.system('rm ./sinks/BH{:05}'.format(bhid)+'.csv') tmp.to_csv('./sinks/BH{:05}'.format(bhid)+'.csv', index=False) tmp={tmpprop:[] for tmpprop in props} tmp.update({'a':[],'t':[]}) tmp=
pd.DataFrame(data=tmp)
pandas.DataFrame
import pandas as pd from bitfinex_csv_parser import BitfinexCSVParser class FundingEarningsCalculator: """ Helper class to determine the bitfinex funding earnings. """ def __init__(self, filepath=None): """ Constructor. :param filepath: The path to the bitfinex earnings csv file. """ self.df_earnings = BitfinexCSVParser().parse(filepath) def get_currencies(self): """ Returns the currencies contained in the data. :return: The currencies contained in the data. """ return self.df_earnings['Currency'].unique() def get_currency_stats(self): """ Returns a dictionary of dataframes. The key is the name of the currency. The value is a dataframe that contains statistical information about the currency. :return: A list of dataframe. Every dataframe contains the data of one currency. """ currencies = self.get_currencies() months = self.df_earnings['month'].unique() years = self.df_earnings['year'].unique() currency_stats_dict = {} for currency in currencies: df_currency_stats = pd.DataFrame() cum_amount = 'Cumulative Amount' min_amount = 'Min Amount' max_amount = 'Max Amount' num_pay = 'Number of Payments' for year in years: for month in months: df_currency = self.df_earnings df_currency = df_currency[((df_currency['Currency'] == currency) & (df_currency['year'] == year)) & (df_currency['month'] == month)] stats = { cum_amount: df_currency['Amount'].sum(), min_amount: df_currency['Amount'].min(), max_amount: df_currency['Amount'].max(), num_pay: len(df_currency) } df_currency_stats.insert(0, str(year) + "-" + str(month), pd.Series(stats)) alltime_stats = { min_amount: df_currency_stats.loc[[min_amount], :].min(axis=1)[0], max_amount: df_currency_stats.loc[[max_amount], :].max(axis=1)[0], cum_amount: df_currency_stats.loc[[cum_amount], :].sum(axis=1)[0], num_pay: df_currency_stats.loc[[num_pay], :].sum(axis=1)[0] } df_currency_stats.insert(0, "All Time",
pd.Series(alltime_stats)
pandas.Series
import plotly.io as _pio import plotly.graph_objects as _go import pandas as _pd import webcolors as _wc import re from ZSAdvancedViz.zscolorscale import colors_scale, discrete_colorscale class zsadvancedviz: def __init__(self): _pio.templates["ZS_theme"] = _go.layout.Template( # layout_plot_bgcolor= '#86C8BC', # layout_paper_bgcolor= '#86C8BC', layout_font={'family': 'Roboto', 'color': '#53565A'}, layout_title={ 'text': 'Plot Title', 'font': { 'family': 'Roboto', 'color': '#53565A', 'size': 20 }, # 'x': 0.1, }, layout_xaxis={ 'automargin': True, 'title': 'x axis title', 'titlefont_size': 15, 'titlefont_color': '#83868b', 'linecolor': '#6600cc', 'ticks': '', 'zerolinecolor': '#283442', 'zerolinewidth': 0, 'showgrid': False, 'showline': True, 'linecolor': "grey", 'linewidth': 0.5, # 'gridcolor': '#283442' }, layout_yaxis={ 'automargin': True, 'title': 'y axis title', 'titlefont_size': 15, 'titlefont_color': '#83868b', 'linecolor': '#83868b', 'ticks': '', 'zerolinecolor': '#283442', 'zerolinewidth': 0, 'showgrid': False, 'showline': True, 'linecolor': "grey", 'linewidth': 0.5, # 'gridcolor': '#283442' }, layout_colorway=[ '#86C8BC', '#00629B', '#6E2B62', '#B8CC7B', '#01A6DC', '#A3B2AA', '#A0AFC6', '#B6E880', '#FF97FF', '#FECB52' ], layout_coloraxis={ 'colorbar': {'outlinewidth': 0, 'ticks': ''} }, layout_hovermode='closest', layout_hoverlabel={'align': 'left', 'bgcolor': 'white', 'font_size': 13, 'font_color': '#53565A', # 'bordercolor':'#86C8BC' }, layout_legend={ # 'x': 0, # 'y': 1, # 'traceorder': "normal", # 'font': dict( # family="sans-serif", # size=12, # color="black" # ), # 'bgcolor':"LightSteelBlue", # 'bordercolor':"Black", # 'borderwidth':2 }, layout_legend_orientation='v' ) self.theme = "ZS_theme" # hover template - do define what to show on tooltip # plotly_template = _pio.templates["ZS_theme"] # plotly_template.layout def line_chart(self, data, x_data_col: str, y_data_col: str, chart_attr: dict = {}): ''' This method is used to plot line chart :param data: dict of data containing the x_data_col and y_data_col names as keys and its corresponding values in list or pandas data frame of the data. dict : {'x_data_col_name': ['A','B','C'], 'y_data_col_name': [10,20,30]} ( or ) pandas data frame : x_data_col_name y_data_col_name 0 A 10 1 B 20 2 C 25 3 D 30 :param x_data_col: x_axis column name form the data frame :param y_data_col: y_axis column name form the data frame :param chart_attr: dict which contains the parameters x_axis_title, y_axis_title, chart_title x_axis_title: title to represent the x_axis. Default value is "" y_axis_title: title to represent the y_axis. Default value is "" chart_title: title to represent the chart. Default value is "Line Chart" :return: plotly fig of Line Chart ''' # checks for the data type if not isinstance(x_data_col, str): raise ValueError("The type of x_data_col is " + str(type(x_data_col)) + ", where as expected type is str") if not isinstance(y_data_col, str): raise ValueError("The type of y_data_col is " + str(type(y_data_col)) + ", where as expected type is str") if not isinstance(chart_attr, dict): raise ValueError("The type of chart_attr is " + str(type(chart_attr)) + ", where as expected type is dict") fig = _go.Figure(data=_go.Scatter(x=data[x_data_col], y=data[y_data_col], mode="markers+lines"), layout=_go.Layout(title=chart_attr.get("chart_title", "Line Chart"), xaxis={'title': chart_attr.get("x_axis_title", "")}, yaxis={'title': chart_attr.get("y_axis_title", "")}, template=self.theme)) return fig def bar_chart(self, data, x_data_col: str, y_data_col: str, chart_attr: dict = {}): ''' This method is used to plot bar chart :param data: dict of data containing the x_data_col and y_data_col names as keys and its corresponding values in list or pandas data frame of the data. dict : {'x_data_col_name': ['A','B','C'], 'y_data_col_name_1': [10,20,30]} ( or ) pandas data frame : x_data_col_name y_data_col_name 0 A 10 1 B 20 2 C 25 3 D 30 :param x_data_col: x_axis column name form the data frame :param y_data_col: y_axis column name form the data frame :param chart_attr: dict which contains the parameters x_axis_title, y_axis_title, chart_title x_axis_title: title to represent the x_axis. Default value is "" y_axis_title: title to represent the y_axis. Default value is "" chart_title: title to represent the chart. Default value is "Bar Chart" :return: plotly fig of Bar chart ''' # checks for the data type if not isinstance(x_data_col, str): raise ValueError("The type of x_data_col is " + str(type(x_data_col)) + ", where as expected type is str") if not isinstance(y_data_col, str): raise ValueError("The type of y_data_col is " + str(type(y_data_col)) + ", where as expected type is str") if not isinstance(chart_attr, dict): raise ValueError("The type of chart_attr is " + str(type(chart_attr)) + ", where as expected type is dict") fig = _go.Figure(data=_go.Bar(x=data[x_data_col], y=data[y_data_col]), layout=_go.Layout(title=chart_attr.get("chart_title", "Bar Chart"), xaxis={'title': chart_attr.get("x_axis_title", "")}, yaxis={'title': chart_attr.get("y_axis_title", "")}, template=self.theme)) return fig def multibar_chart(self, data, x_data_col: str, y_data_col: list, chart_attr: dict = {}, legend_name: list = [], bar_type: str = "group"): ''' This method is used to plot multi bar chart :param data: dict of data containing the x_data_col and y_data_col names as keys and its corresponding values in list or pandas data frame of the data. dict : {'x_data_col_name': ['A','B','C'], 'y_data_col_name_1': [10,20,30], 'y_data_col_name_2': [15,10,40], 'y_data_col_name_3': [20,30,10]} ( or ) pandas data frame : x_data_col_name y_data_col_name_1 y_data_col_name_2 0 A 10 15 1 B 20 10 2 C 25 40 3 D 30 20 :param x_data_col: x_axis column name form the data frame :param y_data_col: list of y_axis column names form the data frame i.e. ['y_data_col_name_1','y_data_col_name_2'] :param chart_attr: dict which contains the parameters x_axis_title, y_axis_title, chart_title x_axis_title: title to represent the x_axis. Default value is "" y_axis_title: title to represent the y_axis. Default value is "" chart_title: title to represent the chart. Default value is "Multi Bar Chart" :param legend_name: list of legend names that should be shown on the graph with respect to the y_axis_column names i.e. ['legend1','legend2'] y_axis_col names are the default legend names i.e. ['y_data_col_name_1','y_data_col_name_2'] :param bar_type: Determines how bars at the same location coordinate are displayed on the graph. With "stack", the bars are stacked on top of one another. With "relative", the bars are stacked on top of one another, with negative values below the axis, positive values above. With "group", the bars are plotted next to one another centered around the shared location. Default is the "group" :return: plotly fig of Multi Bar chart ''' # checks for the data type if not isinstance(x_data_col, str): raise ValueError("The type of x_data_col is " + str(type(x_data_col)) + ", where as expected type is str") if not isinstance(y_data_col, list): raise ValueError("The type of y_data_col is " + str(type(y_data_col)) + ", where as expected type is list") if not isinstance(chart_attr, dict): raise ValueError("The type of chart_attr is " + str(type(chart_attr)) + ", where as expected type is dict") if not isinstance(legend_name, list): raise ValueError( "The type of legend_name is " + str(type(legend_name)) + ", where as expected type is list") if not isinstance(bar_type, str): raise ValueError("The type of bar_type is " + str(type(bar_type)) + ", where as expected type is str") # initilization of multilbar data multi_bar_data = [] # iterates each y_axis_column and assigns the bar and legend for index in range(len(y_data_col)): # checks the length of legend_name and assigns the column_name to legend if len(legend_name) == 0: multi_bar_data.append(_go.Bar(x=data[x_data_col], y=data[y_data_col[index]], name=y_data_col[index])) # if length of legend_name is greater than the y_axis_col names list then assigns the first n legend names elif len(y_data_col) <= len(legend_name): multi_bar_data.append(_go.Bar(x=data[x_data_col], y=data[y_data_col[index]], name=legend_name[index])) # if legend_names are less tha the y_axis_col names elif len(y_data_col) > len(legend_name): # assigns legend_name if the length is less than y_axis_col if index < len(legend_name): multi_bar_data.append(_go.Bar(x=data[x_data_col], y=data[y_data_col[index]], name=legend_name[index])) # assigns the y_axis_col name if the length of legend_name is less else: multi_bar_data.append(_go.Bar(x=data[x_data_col], y=data[y_data_col[index]], name=y_data_col[index])) fig = _go.Figure(data=multi_bar_data, layout=_go.Layout(barmode=bar_type, title=chart_attr.get("chart_title", "Multi Bar Chart"), xaxis={'title': chart_attr.get("x_axis_title", "")}, yaxis={'title': chart_attr.get("y_axis_title", "")}, template=self.theme)) return fig def pie_chart(self, data, label_col: str, value_col: str, chart_attr: dict = {}): ''' This method is used to plot pie chart :param data: dict of data containing the x_data_col and y_data_col names as keys and its corresponding values in list or pandas data frame of the data. dict : {'label_col_name': ['A','B','C'], 'value_col_name': [10,20,30]} ( or ) pandas data frame : label_col_name value_col_name 0 A 10 1 B 20 2 C 25 3 D 30 :param label_col: label column name form the data frame :param value_col: value column name form the data frame :param chart_attr: dict which contains the parameters x_axis_title, y_axis_title, chart_title chart_title: title to represent the chart. Default value is "Multi Bar Chart" :return: plotly fig of pie chart ''' # checks for the data type if not isinstance(label_col, str): raise ValueError("The type of label_col is " + str(type(label_col)) + ", where as expected type is str") if not isinstance(value_col, str): raise ValueError("The type of value_col is " + str(type(value_col)) + ", where as expected type is str") if not isinstance(chart_attr, dict): raise ValueError("The type of chart_attr is " + str(type(chart_attr)) + ", where as expected type is dict") fig = _go.Figure(data=_go.Pie(labels=data[label_col], values=data[value_col], textposition='none', # ( "inside" | "outside" | "auto" | "none" ) textinfo="none", # "label", "text", "value", "percent" joined with a "+" OR "none". ), layout=_go.Layout(title=chart_attr.get("chart_title", "Pie Chart"), template=self.theme)) return fig def donut_chart(self, data, label_col: str, value_col: str, hole_value: float = 0.3, chart_attr: dict = {}): ''' This method is used to plot donut chart :param data: dict of data containing the x_data_col and y_data_col names as keys and its corresponding values in list or pandas data frame of the data. dict : {'label_col_name': ['A','B','C'], 'value_col_name': [10,20,30]} ( or ) pandas data frame : label_col_name value_col_name 0 A 10 1 B 20 2 C 25 3 D 30 :param label_col: label column name form the data frame :param value_col: value column name form the data frame :param hole_value: number between 0 and 1 Default: 0.3 Sets the fraction of the radius to cut. :param chart_attr: dict which contains the parameters x_axis_title, y_axis_title, chart_title chart_title: title to represent the chart. Default value is "Multi Bar Chart" :return: plotly fig of donut chart ''' # checks for the data type if not isinstance(label_col, str): raise ValueError("The type of label_col is " + str(type(label_col)) + ", where as expected type is str") if not isinstance(value_col, str): raise ValueError("The type of value_col is " + str(type(value_col)) + ", where as expected type is str") if not isinstance(hole_value, float): raise ValueError("The type of hole_value is " + str(type(hole_value)) + ", where as expected type is float") if not isinstance(chart_attr, dict): raise ValueError("The type of chart_attr is " + str(type(chart_attr)) + ", where as expected type is dict") fig = _go.Figure(data=_go.Pie(labels=data[label_col], values=data[value_col], textposition='none', # ( "inside" | "outside" | "auto" | "none" ) textinfo="none", # "label", "text", "value", "percent" joined with a "+" OR "none". hole=hole_value ), layout=_go.Layout(title=chart_attr.get("chart_title", "Donut Chart"), template=self.theme)) return fig def sankey_chart(self, data, source_column: str, target_column: str, value_column: str, label_column: str = "", valuesuffix: str = "", decimal_points: int = 2, chart_attr: dict = {}): """ This method is used to plot sankey chart :param data: pandas data frame of the data which is used to plot the graph. One can refer the below data frame for the reference of the data that to be passed. Source Target Value Label(optional) 0 AB EF 20.007243 Line 1 1 CD GH 12 Line 2 2 AB GH 5.001095 Line 3 3 HI JK 0.063865 Line 4 4 HI EF 0.005332 Line 5 :param source_column: source column name from the data frame :param target_column: target column name from the data frame :param value_column: value column name from the data frame :param label_column: label column name from the data frame. The values in the column are shown on the hover of the links in the graph. If the label column is not provided by the user, the label name will not be displayed on hover. :param valuesuffix: suffix will be appended to the value in the graph. If the value suffix is not provided by the user, the suffix will not be displayed on hover. :param decimal_points: Number of decimal points to be shown in the graph. It shows 2 digits after the decimals by default. :param chart_attr: dict which contains the parameters like chart_title chart_title: title to represent the chart. Default value is "Sankey Chart" Format of dictionary is as follows: chart_attr = { 'chart_title': 'Chart Title'} :return: plotly fig of sankey chart """ # checks for the data type if not isinstance(data, _pd.core.frame.DataFrame): raise ValueError("The type of data is " + str(type(data)) + ". Where as expected pandas dataframe") if not isinstance(source_column, str): raise ValueError( "The type of source_column is " + str(type(source_column)) + ", where as expected type is str") if not isinstance(target_column, str): raise ValueError( "The type of target_column is " + str(type(target_column)) + ", where as expected type is str") if not isinstance(value_column, str): raise ValueError( "The type of value_column is " + str(type(value_column)) + ", where as expected type is str") if not isinstance(label_column, str): raise ValueError( "The type of label_column is " + str(type(label_column)) + ", where as expected type is str") if not isinstance(decimal_points, int): raise ValueError( "The type of decimal_points is " + str(type(decimal_points)) + ", where as expected type is int") if not isinstance(chart_attr, dict): raise ValueError("The type of chart_attr is " + str(type(chart_attr)) + ", where as expected type is dict") label_data = [] # appends the empty label if len(label_column) == 0: for a in data[source_column]: label_data.append("") else: label_data = data[label_column] # appends source_data, target_data and clears the duplicate values node_label = list(set(data[source_column])) node_label.extend(list(set(data[target_column]))) node_label = list(set(node_label)) source = [] target = [] # creates the sankey required source data from node_label for source_value in data[source_column]: for a in range(len(node_label)): if source_value == node_label[a]: source.append(a) # creates the sankey required target data from node_label for target_value in data[target_column]: for a in range(len(node_label)): if target_value == node_label[a]: target.append(a) # color_scale from zs_theme_colors colors = colors_scale(node_label) # creates the colors that to be given to links between source and target # reduces the alpha of rgba by 0.25 in each color # generates the colors with less alpha to colors which are given to source # re.search(r"(1)\)|0.([0-9]*)\)" - searces for the alpha which starts with either 1 or 0. in rgba # .group(0).split(")")[0] - splits the alpha value into the number link_color = [ colors[src].replace(", " + re.search(r"(1)\)|0.([0-9]*)\)", colors[src]).group(0).split(")")[0] + ")", ", " + str(round( float(re.search(r"(1)\)|0.([0-9]*)\)", colors[src]).group(0).split(")")[0]) - 0.25, 3)) + ")") for src in source] fig = _go.Figure(data=[_go.Sankey( valueformat="." + str(decimal_points) + "f", # ".2f" valuesuffix=valuesuffix, # " $" orientation="h", ### h/v # Define nodes node=dict( pad=5, thickness=15, line=dict(color="grey", width=0.1), label=node_label, color=colors ), # Add links link=dict( line=dict(color="grey", width=0.2), source=source, target=target, value=data[value_column], label=label_data, color=link_color ), )]) fig.update_layout(title_text=chart_attr.get("chart_title", "Sankey Chart"), template=self.theme) return fig def bitmap(self, data, x_axis_order_list: list, x_axis_column: str, y_axis_column: str, values_data_column: str, intensity_column: str = "", config_data={}, color_column: str = "color", symbols_column: str = "symbol", values_data_config_column: str = "value", chart_attr: dict = {}): """ This method is used to plot Bit Map chart :param data: pandas data frame of the data which is used to plot the graph. One can refer the below data frame for the reference of the data that to be passed. y_axis_label Value x_axis_label Intensity 0 Patient 1 AR M-1 1 1 Patient 1 MR Start 3 2 Patient 1 GR M 1 2 3 Patient 2 AR M-2 1 4 Patient 2 GR Start 2 5 Patient 3 GR M-8 3 6 Patient 3 AR M-7 1 7 Patient 3 MR M 2 2 :param x_axis_order_list: list of x_axis values in an order that should be shown on the garph. As per the above data frame the the x_axis labels can be arranged in random manner on the x_axis. To have an arranged order of x_axis, pass the list of values in an order that to be represented on x_axis. i.e. ['M-8','M-7','M-2','M-1','Start','M 1','M 2'] :param x_axis_column: x_axis column name form the data frame :param y_axis_column: y_axis column name form the data frame :param values_data_column: value column name form the data frame of the data point (x,y) :param config_data: pandas data frame of the config file which is used to assign the symbol and color for each value One can refer the below data frame for the reference. Color code should be in HEX value symbol color 0 AR 0 #00ffff 1 MR 1 #000000 2 GR 2 #0000ff symbol accepts only numbers from the list: [0,1,2,3,4,5,17,18,19,21,22,23,33,34,35,100,101,102,105,117,118] :param color_column: color column name from the config data frame. If the config data is not provided, then the colors will be assigned from default list of colors. :param symbols_column: symbol column name from the config data frame. If the config data is not provided, then the symbols will be assigned from above mentioned default list of symbols. :param values_data_config_column: value column name from the config data frame. :param intensity_column: Intensity column name from the data frame to represent in the graph Assign 1- High, 2- Medium, 3- Low in the data frame and pass the column of intensity Accepts only above integers as the value. If the intensity column is not provided, Default value is taken as 1-High. :param chart_attr: dict which contains the parameters x_axis_title, y_axis_title, chart_title chart_title: title to represent the chart. Default value is "Bit Map" Format of dictionary is as follows: chart_attr = { 'chart_title': 'Chart Title', 'x_axis_title': 'X Axis title', 'y_axis_title': 'Y Axis Title'} :return: plotly fig of bit map """ zs_symbols = [0,1,2,3,4,5,17,18,19,21,22,23,100,101,102,105,117,118,133,134,135] zs_colors = ["rgba(0, 98, 155, 1)","rgba(1, 166, 220, 1)","rgba(110, 43, 98, 1)","rgba(134, 200, 188, 1)", "rgba(160, 175, 198, 1)","rgba(163, 178, 170, 1)","rgba(182, 232, 128, 1)","rgba(184, 204, 123, 1)", "rgba(254, 203, 82, 1)","rgba(255, 151, 255, 1)","rgba(99, 110, 250, 1)","rgba(239, 85, 59, 1)", "rgba(0, 204, 150, 1)","rgba(171, 99, 250, 1)","rgba(255, 161, 90, 1)","rgba(25, 211, 243, 1)", "rgba(255, 102, 146, 1)","rgba(182, 232, 128, 1)","rgba(255, 151, 255, 1)","rgba(254, 203, 82, 1)"] # checks for the data type if not isinstance(data, _pd.core.frame.DataFrame) : raise ValueError("The type of data is "+str(type(data))+". Where as expected pandas dataframe") if not isinstance(x_axis_order_list, list): raise ValueError("The type of x_axis_order_list is "+str(type(x_axis_order_list))+", where as expected type is list") if not isinstance(x_axis_column, str): raise ValueError("The type of x_axis_column is "+str(type(x_axis_column))+", where as expected type is str") if not isinstance(y_axis_column, str): raise ValueError("The type of y_axis_column is "+str(type(y_axis_column))+", where as expected type is str") if not isinstance(values_data_column, str): raise ValueError("The type of values_data_column is "+str(type(values_data_column))+", where as expected type is str") if not isinstance(intensity_column, str): raise ValueError("The type of intensity_column is "+str(type(intensity_column))+", where as expected type is str") if not isinstance(color_column, str): raise ValueError("The type of color_column is "+str(type(color_column))+", where as expected type is str") if not isinstance(symbols_column, str): raise ValueError("The type of symbols_column is "+str(type(symbols_column))+", where as expected type is str") if not isinstance(values_data_config_column, str): raise ValueError("The type of values_data_config_column is "+str(type(values_data_config_column))+", where as expected type is str") if not isinstance(chart_attr, dict): raise ValueError("The type of chart_attr is "+str(type(chart_attr))+", where as expected type is dict") # fill the NaN with empty string pandas_dataframe = data.fillna('') x_axis_order_list = x_axis_order_list y_axis_data_column_name = y_axis_column x_axis_data_column_name = x_axis_column values_data_column_name = values_data_column color_intensity_column_name = intensity_column #convert x-axis dataframe column to string pandas_dataframe[x_axis_data_column_name] = pandas_dataframe[x_axis_data_column_name].astype(str) values_data_config_column_name = values_data_config_column symbols_column_name = symbols_column color_column_name = color_column if len(config_data) != 0: # checks for the data type if not isinstance(config_data, _pd.core.frame.DataFrame): raise ValueError("The type of config_data is "+str(type(config_data))+". Where as expected pandas dataframe") # checks for the existing of column in config data frame else: if values_data_config_column_name not in list(config_data.columns): raise ValueError("The column name: "+values_data_config_column_name+" is not present in the given config data.") elif symbols_column_name not in list(config_data.columns): raise ValueError("The column name: "+symbols_column_name+" is not present in the given config data.") elif color_column_name not in list(config_data.columns): raise ValueError("The column name: "+color_column_name+" is not present in the given config data.") # initilization of config_data pandas_dataframe_1 = {} # verifies the config_data if len(config_data) != 0: # fill the NaN with empty string pandas_dataframe_1 = config_data.fillna('') # checks wheter the values are repeated in config data if len(list(pandas_dataframe_1[values_data_config_column_name])) != len(set(pandas_dataframe_1[values_data_config_column_name])): raise ValueError("Data in column: "+values_data_config_column_name+" is repeated. Place unique values in this column") # checks whether there is any empty value present in symbols if '' in list(pandas_dataframe_1[symbols_column_name]): raise ValueError("There is an empty value in the "+symbols_column_name+" column") # checks whether the type of value in symbol column is int elif str(pandas_dataframe_1[symbols_column_name].dtypes) != 'int64': for symbol in list(pandas_dataframe_1[symbols_column_name]): if not isinstance(symbol, int): raise ValueError("There is an invalid data: "+str(symbol)+" in the column: "+symbols_column_name+". Expected only integers from list "+str(zs_symbols)) # checks whether the type of value in symbol column is int elif str(pandas_dataframe_1[symbols_column_name].dtypes) == 'int64': # iterates each symbol and checks whether the number is valid for symbol in list(pandas_dataframe_1[symbols_column_name]): if symbol not in zs_symbols: raise ValueError("Given symbol number: "+str(symbol)+" is invalid. choose the symbol number from symbols list "+str(zs_symbols)) # hex colors from config data hex_colors_list = list(pandas_dataframe_1[color_column_name]) rgb_colors_list = [] # iterates each hex color and converts it into rgba for hex_color in hex_colors_list: # checks for the valid hex color code if re.match(r'^[#][0-9A-Za-z]{6}$',str(hex_color)): rgb_colors_list.append(str(_wc.hex_to_rgb(str(hex_color))).replace("IntegerRGB","rgba").replace("red=","").replace("green=","").replace("blue=","").replace(")",", 1)")) else: raise ValueError("Entered wrong Hex code: "+str(hex_color)+ " in the data. Enter the correct hex code") # appends the rgba column to the config data frame updated_rgba_color_df = _pd.DataFrame({color_column_name: rgb_colors_list}) pandas_dataframe_1[color_column_name] = updated_rgba_color_df # creates the config data else: # initialising the config data config_data_dict = {} # list of unique values in ascending order unique_values_list = list(set(pandas_dataframe[values_data_column_name])) unique_values_list.sort() # updates the config_data with values list config_data_dict.update({values_data_config_column_name:unique_values_list}) # colors and symbols initiulization pre_colors = [] pre_symbols = [] # counters initilization color_counter = 0 symbol_counter = 0 # iterates each value and assign the color and symbol form default symbols and colors for value in unique_values_list: # if counter is greater than the length of existing colors then it resets the counter and assigns the colors in repeating mode if color_counter >= (len(zs_colors) - 1) : color_counter = 0 pre_colors.append(zs_colors[color_counter]) color_counter += 1 else: pre_colors.append(zs_colors[color_counter]) color_counter += 1 # if counter is greater than the length of existing symbols then it resets the counter and assigns the symbols in repeating mode if symbol_counter >= (len(zs_symbols) - 1) : symbol_counter = 0 pre_symbols.append(zs_symbols[symbol_counter]) symbol_counter += 1 else: pre_symbols.append(zs_symbols[symbol_counter]) symbol_counter += 1 # updates config_data and converts to pandas data frame config_data_dict.update({symbols_column_name:pre_symbols,color_column_name:pre_colors}) pandas_dataframe_1 = _pd.DataFrame(config_data_dict) # list of unique y_axis data unique_y_axis_params = list(set(pandas_dataframe[y_axis_data_column_name])) unique_y_axis_params.sort() y_axis_data = [] x_axis_data = [] symbols = [] colors = [] text_list = [] # creates the list of data to be provided for plot # iterates each value in y_axis params for y_axis_param in unique_y_axis_params: # fetches the data of y_axis param from whole data y_axis_param_data = pandas_dataframe.loc[pandas_dataframe[y_axis_data_column_name] == y_axis_param] # iterates each value in x_axis order for x_axis_order_param in x_axis_order_list: # fetches the data of x_axis param from y_axis param data y_axis_detail_param_data = y_axis_param_data.loc[y_axis_param_data[x_axis_data_column_name] == x_axis_order_param] # check for empty data set if len(y_axis_detail_param_data) == 0: y_axis_data.append(y_axis_param) x_axis_data.append(x_axis_order_param) # open circle is assigned symbols.append(100) # white doesn't appear on graph colors.append("white") # no text is shown text_list.append("") else: y_axis_data.append(y_axis_param) x_axis_data.append(x_axis_order_param) # fetches the data of the value form config data config_data_of_value = pandas_dataframe_1.loc[pandas_dataframe_1[values_data_config_column_name] == list(y_axis_detail_param_data[values_data_column_name])[0]] if len(config_data_of_value) != 0: # fetches the assigned symbol for the value symbols.append(list(config_data_of_value[symbols_column_name])[0]) # checks whether the user provided the intensity column if color_intensity_column_name != "" : # checks whether the given intensity is correct # 1- High, 2- Medium, 3- Low if list(y_axis_detail_param_data[color_intensity_column_name])[0] in [1,2,3] : if list(y_axis_detail_param_data[color_intensity_column_name])[0] == 1: colors.append(list(config_data_of_value[color_column_name])[0]) # text list to show on the hover text_list.append("value: "+str(list(y_axis_detail_param_data[values_data_column_name])[0])+"<br>Intensity: 1-High") elif list(y_axis_detail_param_data[color_intensity_column_name])[0] == 2: medium_intensity_color = list(config_data_of_value[color_column_name])[0].replace(" 1)", (" "+str(0.7)+")")) colors.append(medium_intensity_color) # text list to show on the hover text_list.append("value: "+str(list(y_axis_detail_param_data[values_data_column_name])[0])+"<br>Intensity: 2-Medium") elif list(y_axis_detail_param_data[color_intensity_column_name])[0] == 3: low_intensity_color = list(config_data_of_value[color_column_name])[0].replace(" 1)", (" "+str(0.4)+")")) colors.append(low_intensity_color) # text list to show on the hover text_list.append("value: "+str(list(y_axis_detail_param_data[values_data_column_name])[0])+"<br>Intensity: 3-Low") # considering high if intensity is left blank/empty elif list(y_axis_detail_param_data[color_intensity_column_name])[0] == "" : colors.append(list(config_data_of_value[color_column_name])[0]) # text list to show on the hover text_list.append("value: "+str(list(y_axis_detail_param_data[values_data_column_name])[0])+"<br>Intensity: 1-High") # raise exception if value is other than 1,2,3 else: raise ValueError("The Intensity: "+str(list(y_axis_detail_param_data[color_intensity_column_name])[0])+" is invalid. Enter 1 -High, 2 -Medium, 3 -Low") else: colors.append(list(config_data_of_value[color_column_name])[0]) # text list to show on the hover text_list.append("value: "+str(list(y_axis_detail_param_data[values_data_column_name])[0])) else: raise ValueError("The value "+str(list(y_axis_detail_param_data[values_data_column_name])[0])+" is not present in the config_data. Please check the data") # list of unique value data unique_value_params = list(set(pandas_dataframe[values_data_column_name])) unique_value_params.sort() legend_x_data = [] legend_y_data = [] legend_value = [] legend_marker_symbol = [] legend_marker_color = [] legend_text_list = [] # creates the data to be provided for the legends # iterates each value in the data for value_index in range(len(unique_value_params)): value = list(unique_value_params)[value_index] # if the data has intensity column if color_intensity_column_name in list(pandas_dataframe.columns): # fetches the data of the value from provided data frame value_data = pandas_dataframe.loc[(pandas_dataframe[color_intensity_column_name] == 1) & (pandas_dataframe[values_data_column_name] == value)] # fetches the data of the value from the config_data value_config_data = pandas_dataframe_1.loc[pandas_dataframe_1[values_data_config_column_name] == value] # checks for the value data from provided data frame if len(value_data) != 0: # appends respective values to respective legend list variables legend_x_data.append(list(value_data[x_axis_data_column_name])[0]) legend_y_data.append(list(value_data[y_axis_data_column_name])[0]) legend_value.append(list(value_data[values_data_column_name])[0]) legend_marker_symbol.append(list(value_config_data[symbols_column_name])[0]) legend_marker_color.append(list(value_config_data[color_column_name])[0]) legend_text_list.append("value: "+str(list(value_data[values_data_column_name])[0])+"<br>Intensity: 1-High") else: value_data = pandas_dataframe.loc[(pandas_dataframe[color_intensity_column_name] == 2) & (pandas_dataframe[values_data_column_name] == value)] if len(value_data) != 0: # appends respective values to respective legend list variables legend_x_data.append(list(value_data[x_axis_data_column_name])[0]) legend_y_data.append(list(value_data[y_axis_data_column_name])[0]) legend_value.append(list(value_data[values_data_column_name])[0]) legend_marker_symbol.append(list(value_config_data[symbols_column_name])[0]) legend_marker_color.append(list(value_config_data[color_column_name])[0].replace(" 1)", (" "+str(0.7)+")"))) legend_text_list.append("value: "+str(list(value_data[values_data_column_name])[0])+"<br>Intensity: 2-Medium") else: value_data = pandas_dataframe.loc[(pandas_dataframe[color_intensity_column_name] == 3) & (pandas_dataframe[values_data_column_name] == value)] if len(value_data) != 0: # appends respective values to respective legend list variables legend_x_data.append(list(value_data[x_axis_data_column_name])[0]) legend_y_data.append(list(value_data[y_axis_data_column_name])[0]) legend_value.append(list(value_data[values_data_column_name])[0]) legend_marker_symbol.append(list(value_config_data[symbols_column_name])[0]) legend_marker_color.append(list(value_config_data[color_column_name])[0].replace(" 1)", (" "+str(0.4)+")"))) legend_text_list.append("value: "+str(list(value_data[values_data_column_name])[0])+"<br>Intensity: 2-Low") # considers intensity as 1- High if intensity column is not present else: value_data = pandas_dataframe.loc[pandas_dataframe[values_data_column_name] == value] value_config_data = pandas_dataframe_1.loc[pandas_dataframe_1[values_data_config_column_name] == value] # appends respective values to respective legend list variables legend_x_data.append(list(value_data[x_axis_data_column_name])[0]) legend_y_data.append(list(value_data[y_axis_data_column_name])[0]) legend_value.append(list(value_data[values_data_column_name])[0]) legend_marker_symbol.append(list(value_config_data[symbols_column_name])[0]) legend_marker_color.append(list(value_config_data[color_column_name])[0]) legend_text_list.append("value: "+str(list(value_data[values_data_column_name])[0])+"<br>Intensity: 1-High") # main bit map plot fig_data = [_go.Scatter(mode="markers", showlegend = False, x = x_axis_data, y = y_axis_data, marker_symbol=symbols, marker_line_color=colors, marker_color=colors, marker_line_width=1.5, marker_size=6, hoverinfo = "x+y+text", #'x', 'y', 'z', 'text', 'name' text = text_list)] # legend plot for index in range(len(legend_x_data)): fig_data.append(_go.Scatter(mode = "markers", name = legend_value[index], x = [legend_x_data[index]], y = [legend_y_data[index]], marker_symbol = legend_marker_symbol[index], marker_color = legend_marker_color[index], marker_line_color= legend_marker_color[index], marker_size = 6, hoverinfo = "x+y+text", text = legend_text_list[index])) fig = _go.Figure(data = fig_data, layout = _go.Layout(title= chart_attr.get("chart_title","Bit Map"), xaxis = {"title" : {"text":chart_attr.get("x_axis_title","")}}, yaxis = {"title" : {"text":chart_attr.get("y_axis_title","")}}, template = self.theme, legend = {'x' : 1.02, # -2 and 3 v - 1.02, h - 0 'xanchor' : "left", # "auto" | "left" | "center" | "right" 'y' : 1, # -2 and 3 v - 1, h - -0.1 'yanchor' : "auto", # "auto" | "top" | "middle" | "bottom" 'traceorder': "normal", # "reversed", "grouped", "reversed+grouped", "normal" 'orientation' : 'v'})) return fig def multiline_chart(self, data, x_data_col: str, y_data_col: list, chart_attr: dict = {}, legend_name: list = []): ''' This method is used to plot multiline chart :param data: dict of data containing the x_data_col and y_data_col names as keys and its corresponding values in list or pandas data frame of the data. dict : {'x_data_col_name': ['A','B','C'], 'y_data_col_name_1': [10,20,30], 'y_data_col_name_2': [15,10,40], 'y_data_col_name_3': [20,30,10]} ( or ) pandas data frame : x_data_col_name y_data_col_name_1 y_data_col_name_2 0 A 10 15 1 B 20 10 2 C 25 40 3 D 30 20 :param x_data_col: x_axis column name form the data frame :param y_data_col: list of y_axis column names form the data frame i.e. ['y_data_col_name_1','y_data_col_name_2'] :param chart_attr: dict which contains the parameters x_axis_title, y_axis_title, chart_title x_axis_title: title to represent the x_axis. Default value is "" y_axis_title: title to represent the y_axis. Default value is "" chart_title: title to represent the chart. Default value is "Line Chart" :param legend_name: list of legend names that should be shown on the graph with respect to the y_axis_column names. y_axis_col names are the default legend names :return: plotly fig of MultiLine Chart ''' # checks for the data type if not isinstance(x_data_col, str): raise ValueError("The type of x_data_col is " + str(type(x_data_col)) + ", where as expected type is str") if not isinstance(y_data_col, list): raise ValueError("The type of y_data_col is " + str(type(y_data_col)) + ", where as expected type is list") if not isinstance(chart_attr, dict): raise ValueError("The type of chart_attr is " + str(type(chart_attr)) + ", where as expected type is dict") if not isinstance(legend_name, list): raise ValueError( "The type of legend_name is " + str(type(legend_name)) + ", where as expected type is list") # initilization of multiline data multi_line_data = [] # iterates each y_axis_column and assigns the scatter and legend for index in range(len(y_data_col)): # checks the length of legend_name and assigns the column_name to legend if len(legend_name) == 0: multi_line_data.append(_go.Scatter(x=data[x_data_col], y=data[y_data_col[index]], mode="markers+lines", name=y_data_col[index])) # if length of legend_name is greater than the y_axis_col names list then assigns the first n legend names elif len(y_data_col) <= len(legend_name): multi_line_data.append(_go.Scatter(x=data[x_data_col], y=data[y_data_col[index]], mode="markers+lines", name=legend_name[index])) # if legend_names are less tha the y_axis_col names elif len(y_data_col) > len(legend_name): # assigns legend_name if the length is less than y_axis_col if index < len(legend_name): multi_line_data.append(_go.Scatter(x=data[x_data_col], y=data[y_data_col[index]], mode="markers+lines", name=legend_name[index])) # assigns the y_axis_col name if the length of legend_name is less else: multi_line_data.append(_go.Scatter(x=data[x_data_col], y=data[y_data_col[index]], mode="markers+lines", name=y_data_col[index])) fig = _go.Figure(data=multi_line_data, layout=_go.Layout(title=chart_attr.get("chart_title", "MultiLine Chart"), xaxis={'title': chart_attr.get("x_axis_title", "")}, yaxis={'title': chart_attr.get("y_axis_title", "")}, template=self.theme)) return fig def dexter(self, data, x_axis_order_list:list, x_axis_column:str, y_axis_column:str, values_data_column:str, config_data = {}, color_column: str = "color", grp_column: str = "", values_data_config_column:str = "value", chart_attr:dict = {}): """ :param data: pandas data frame of the data which is used to plot the graph. Below data frame can be referenced for the data that to be passed. y_axis_labels Value x_axis_labels Intensity 0 Patient 1 T1 M-1 1 1 Patient 1 T1 Start 1 2 Patient 1 T2 M 1 2 3 Patient 2 T1 M-2 1 4 Patient 2 T1 Start 1 5 Patient 3 T3 M-8 2 6 Patient 3 T3 M-7 2 7 Patient 3 T3 M 2 2 :param x_axis_order_list: list of x_axis values in an order that should be shown on the garph. As per the above data frame the the x_axis labels can be arranged in random manner on the x_axis. so to have an arranged order of x_axis values, pass the list of values in an order that to be represented on x_axis. i.e. ['M1','M2','M3','M4','M5','M6','M7'] :param x_axis_column: x_axis column name form the data frame :param y_axis_column: y_axis column name form the data frame :param values_data_column: value column name form the data frame of the data point (x,y) :param config_data: pandas data frame of the config file which is used to assign the symboland color for each value One can refer the below data frame for the reference. Color code should be in HEX value color 0 T1 #00ffff 1 T2 #000000 2 T3 #0000ff :param color_column: color column name from the config data frame. Default value is "color" :param values_data_config_column: value column name from the config data frame. Default vaue is "value" :param chart_attr: dict which contains the parameters x_axis_title, y_axis_title, chart_title x_axis_title: title to represent the x_axis. Default value is "" y_axis_title: title to represent the y_axis. Default value is "" chart_title: title to represent the chart. Default value is "Dexter chart" :return: plotly fig of dexter chart """ zs_colors = ["rgba(0, 98, 155, 1)","rgba(1, 166, 220, 1)","rgba(110, 43, 98, 1)","rgba(134, 200, 188, 1)", "rgba(160, 175, 198, 1)","rgba(163, 178, 170, 1)","rgba(182, 232, 128, 1)","rgba(184, 204, 123, 1)", "rgba(254, 203, 82, 1)","rgba(255, 151, 255, 1)","rgba(99, 110, 250, 1)","rgba(239, 85, 59, 1)", "rgba(0, 204, 150, 1)","rgba(171, 99, 250, 1)","rgba(255, 161, 90, 1)","rgba(25, 211, 243, 1)", "rgba(255, 102, 146, 1)","rgba(182, 232, 128, 1)","rgba(255, 151, 255, 1)","rgba(254, 203, 82, 1)"] # checks for the data type if not isinstance(data, _pd.core.frame.DataFrame): raise ValueError("The type of data is " + str(type(data)) + ". Where as expected pandas dataframe") if not isinstance(x_axis_order_list, list): raise ValueError( "The type of x_axis_order_list is " + str(type(x_axis_order_list)) + ", where as expected type is list") if not isinstance(x_axis_column, str): raise ValueError( "The type of x_axis_column is " + str(type(x_axis_column)) + ", where as expected type is str") if not isinstance(y_axis_column, str): raise ValueError( "The type of y_axis_column is " + str(type(y_axis_column)) + ", where as expected type is str") if not isinstance(values_data_column, str): raise ValueError("The type of values_data_column is " + str( type(values_data_column)) + ", where as expected type is str") if not isinstance(color_column, str): raise ValueError( "The type of color_column is " + str(type(color_column)) + ", where as expected type is str") if not isinstance(values_data_config_column, str): raise ValueError("The type of values_data_config_column is " + str( type(values_data_config_column)) + ", where as expected type is str") if not isinstance(chart_attr, dict): raise ValueError("The type of chart_attr is " + str(type(chart_attr)) + ", where as expected type is dict") # fill the NaN with empty string pandas_dataframe = data.fillna('') #convert x-axis list into string x_axis_order_list = list(map(str,x_axis_order_list)) y_axis_data_column_name = y_axis_column #convert x-axis dataframe column to string pandas_dataframe[x_axis_column] = pandas_dataframe[x_axis_column].astype(str) x_axis_data_column_name = x_axis_column values_data_column_name = values_data_column values_data_config_column_name = values_data_config_column color_column_name = color_column grp_column_name = grp_column #group by treatment name and assigned unique number column pandas_dataframe['treatment_grp_no'] = 0 mask = pandas_dataframe.groupby([values_data_column])['treatment_grp_no'].transform(lambda x : len(x)>1) pandas_dataframe.loc[mask,'treatment_grp_no'] = pandas_dataframe.loc[mask,[values_data_column]].astype(str).sum(1).factorize()[0] #if config data present, check for all columns and create color scale based on grp column values #else do grp by on treatement and assign grp numbers and create color scale on the basis of that if len(config_data) != 0: # checks for the data type if type(config_data) is not _pd.core.frame.DataFrame: raise ValueError("The type of dataframe is "+str(type(config_data))+". Where as expected pandas dataframe") # checks for the existing of column in config data frame else: if values_data_config_column_name not in list(config_data.columns): raise ValueError("The column name: "+values_data_config_column_name+" is not present in the given config data.") elif color_column_name not in list(config_data.columns): raise ValueError("The column name: "+color_column_name+" is not present in the given config data.") # else: # values_data_config_column_name = values_data_config_column # color_column_name = color_column # initilization of config_data pandas_dataframe_1 = {} if len(config_data) != 0: # fill the NaN with empty string pandas_dataframe_1 = config_data.fillna('') # checks wheter the values are repeated in config data if len(list(pandas_dataframe_1[values_data_config_column_name])) != len(set(pandas_dataframe_1[values_data_config_column_name])): raise ValueError("Data in column: "+values_data_config_column_name+" is repeated. Place unique values in this column") # hex colors from config data hex_colors_list = list(pandas_dataframe_1[color_column_name]) rgb_colors_list = [] # iterates each hex color and converts it into rgba for hex_color in hex_colors_list: # checks for the valid hex color code if re.match(r'^[#][0-9A-Za-z]{6}$',str(hex_color)): rgb_colors_list.append(str(_wc.hex_to_rgb(str(hex_color))).replace("IntegerRGB","rgba").replace("red=","").replace("green=","").replace("blue=","").replace(")",", 1)")) else: raise ValueError("Entered wrong Hex code: "+str(hex_color)+ " in the data. Enter the correct hex code") # appends the rgba column to the config data frame updated_rgba_color_df =
_pd.DataFrame({color_column_name: rgb_colors_list})
pandas.DataFrame
#! /usr/bin/env python # -*- coding: utf-8 -*- import json import datetime import os from os import listdir from os.path import isfile, join from shutil import copyfile import logging import pandas as pd logger = logging.getLogger("root") logging.basicConfig( format="\033[1;36m%(levelname)s: %(filename)s (def %(funcName)s %(lineno)s): \033[1;37m %(message)s", level=logging.DEBUG ) class BuildLatestData(object): """ This script process county-level json from the CDC into a csv file with the latest data into a `latest-cdc-weekly-county-data.csv` file """ timestamp = datetime.datetime.now().strftime("%Y-%m-%d-%H%M%S") dir_current = os.path.dirname(os.path.realpath(__file__)) dir_data = "daily-cdc-county-transmission-data" path = os.path.join(dir_current, dir_data) def handle(self): latest_csv = "latest-daily-cdc-county-transmission.csv" latest_json = "latest-daily-cdc-county-transmission.json" files = [os.path.join(self.path, f) for f in listdir( self.path) if isfile(join(self.path, f))] target = max(files, key=os.path.getctime) file_saved = os.path.join(self.dir_current, self.dir_data, latest_json) copyfile(target, file_saved) # with open(target, encoding='utf-8') as f: # raw_json = json.load(f) # for item in raw_json['integrated_county_latest_external_data']: # item['acquired_datestamp'] = os.path.basename(target)[:10] # latest_output.append(item) # self.update_csv(latest_csv, latest_output) # self.create_json(latest_csv, latest_json, latest_output) def update_csv(self, file, data): file_saved = os.path.join(self.dir_current, self.dir_data, file) csv_data =
pd.DataFrame(data)
pandas.DataFrame
############################################################################### ### ### pedar_walk ### This file is part of CorePressure ### This file was created by Dr <NAME> ### includes a set of fuctions to process walking data from pedar ### ### Copyright (C) 2018 University of Salford - All Rights Reserved ### You may use, distribute and modify this code under the terms of MIT Licence ### See <filename> or go to <url> for full licence details ### ############################################################################### #Builtins: import numpy as np import pandas as pd # import matplotlib as mpl # mpl.rcParams['backend'] = "qt4agg" # mpl.rcParams['backend.qt4'] = "PySide" from matplotlib import pyplot as plt from matplotlib.backends.backend_pdf import PdfPages import importlib #Independents: import AProcessing as ap; importlib.reload(ap) class PedarWalkData: """ A class to process pressure data collected using Pedar System """ def __init__(self, files): self.files = files def closeall(): # this closes all figures in reverse order l = plt.get_fignums() l.reverse() for a in l: plt.close(a) def pdf_plot(fname): pp = PdfPages('C:/Temp/'+fname+'.pdf') return(pp) def openPD(fname): srows = [i for i in range(9)] fdat = pd.read_csv(fname,sep='\t',skiprows=srows) return(fdat) def find_blocks(dataset,figname,pp): """ takes 2d cyclic dataset and chunks file to blocks returns start and end locations of each block """ Condit = max(dataset)*0.75 PPeaks = ap.PeakDetect(dataset,span=30,condit=Condit) MCondit = 0.5*Condit PMins = ap.MinDetect(dataset,span=30,condit=MCondit) fig = plt.figure(figname + '_findBlock') plt.subplot(311) plt.plot(dataset) plt.plot(PPeaks[0],PPeaks[1],'*') plt.plot(PMins[0],PMins[1],'*') ### Zero between cycles: for Pmin in PMins[1]: dataset[dataset == Pmin] = 0 ### Zero start: for j in range(1, len(PPeaks[0])): if PPeaks[0][j] - PPeaks[0][j-1] > 100: if j < 9: dataset[:PPeaks[0][j]] = 0 else: break ### Zero end: dataset[PPeaks[0][-1]:] = 0 for j in range(len(PPeaks[0])-5, len(PPeaks[0])): if PPeaks[0][j] - PPeaks[0][j-1] > 100: dataset[PPeaks[0][j]:] = 0 else: break ### Zero between blocks: for j in range(1, len(PPeaks[0])): if PPeaks[0][j] - PPeaks[0][j-1] > 85: dataset[PPeaks[0][j-1]:PPeaks[0][j]] = 0 plt.subplot(312) plt.plot(dataset) plt.plot(PPeaks[0],PPeaks[1],'*') ### chunk blocks: blocks = [] bl = [PPeaks[0][0]] for i in range(1,len(PPeaks[0])): if i == len(PPeaks[0])-1: if len(bl) > 9: blocks.append(bl) elif PPeaks[0][i] - PPeaks[0][i-1] < 90: bl.append(PPeaks[0][i]) else: if len(bl) > 9: blocks.append(bl) bl = [] ### Setup outputs: start = [] end = [] for bl in blocks: bl = bl[1:-2] flip_data = np.array(dataset[:bl[0]])[::-1] slip_data = np.array(dataset[bl[-1]:]) st = np.argmin(flip_data)+1 en = np.argmin(slip_data) start.append(bl[0]-st) end.append(bl[-1]+en) ys = [75] * len(start) plt.subplot(313) plt.plot(dataset) plt.plot(start,ys,'*') plt.plot(end,ys,'*') pp.savefig(fig) plt.close() return (start,end) def one_insole_one_block(data,ffname,insole='Left'): heads = list(data.head(0)) if insole == 'Left': pdat = data.loc[:,heads[1]:heads[99]] insole_label = 'Left' else: try: pdat = data.loc[:,heads[100]:heads[198]] insole_label = 'Right' except IndexError: pdat = data.loc[:,heads[100]:] insole_label = 'Right - Part' sensors = [str(x) for x in range(1,100)] insole_df =
pd.DataFrame(data=pdat)
pandas.DataFrame
import numpy as np import pandas as pd from tensorflow.keras import utils from tensorflow.keras.preprocessing.sequence import pad_sequences from tensorflow.keras.preprocessing.text import Tokenizer from sklearn.model_selection import train_test_split, KFold import ensemble_capsule_network from config import Config from preprocessing import text_preprocessing, load_word_embedding_matrix folder_path = "D:\\deep_learning_experiments" lankadeepa_data_path = folder_path + "\\sinhala_data\\lankadeepa_tagged_comments.csv" gossip_lanka_data_path = folder_path + "\\sinhala_data\\gossip_lanka_tagged_comments.csv" word_embedding_keyed_vectors_path = 'D:\\deep_learning_experiments\\word_vectors_sinhala\\keyed.kv' word_embedding_matrix_path = 'D:\\deep_learning_experiments\\word_embedding_matrix' EMBEDDING_SIZE = 300 lankadeepa_data =
pd.read_csv(lankadeepa_data_path)
pandas.read_csv
""" 将原来的数据库,变成一个stock id一个文件的数据库 """ import os import pandas as pd import numpy as np import pickle # 导入行情数据 file_path = 'C:/Users/Administrator/Desktop/program/data/hangqing/' file_list = os.listdir(file_path) columns_name = pd.read_csv(file_path+file_list[0]).columns hangqing_record = [] temp_record = pd.DataFrame(columns=columns_name) for i in range(len(file_list)): now_path = file_path+file_list[i] now_df = pd.read_table(now_path, sep=',') temp_record = pd.concat((temp_record, now_df), axis=0) if (i+1) % 50 == 0 or (i+1) == len(file_list): del temp_record['Unnamed: 0'] del temp_record['Unnamed: 25'] hangqing_record.append(temp_record) temp_record = pd.DataFrame(columns=columns_name) print('all:%s, now:%s' % (len(file_list), i+1)) for i in range(len(hangqing_record)): if i == 0: hangqing_df = hangqing_record[0] else: hangqing_df = pd.concat((hangqing_df, hangqing_record[i]), axis=0) del hangqing_record # 导入多因子 file_path = 'C:/Users/Administrator/Desktop/program/data/duoyinzi/' file_list = os.listdir(file_path) columns_name = pd.read_csv(file_path+file_list[0]).columns duoyinzi_record = [] temp_record =
pd.DataFrame(columns=columns_name)
pandas.DataFrame
from openpyxl import Workbook from openpyxl import load_workbook import pandas as pd wb = load_workbook('/home/nikon-cook/Documents/МИТМО/веб-прога/minos_db.xlsx') print(wb.get_sheet_names()) Publishers_data = wb.get_sheet_by_name('Publishers') #print(Publishers_data.dimensions, Publishers_data.max_row, Publishers_data.max_column) Authors_data = wb.get_sheet_by_name('Authors') Books_data = wb.get_sheet_by_name('Books') Directors_data = wb.get_sheet_by_name('Directors') ''' p_df = pd.DataFrame() p_rows = Publishers_data.iter_rows() p_first_row = next(p_rows) p_sec_row = next(p_rows) p_headings = [c.value for c in p_first_row] p_row1 = [c.value for c in p_sec_row] p_headings print(p_headings, p_row1) ''' ''' df = [] for i in range(Publishers_data.max_row): df.append([c.value for c in next(p_rows)]) publisher_df = pd.DataFrame(df[1:]) publisher_df.columns = df[0] print(publisher_df) ''' ''' a_rows = Authors_data.iter_rows() a_first_row = next(a_rows) a_headings = [c.value for c in a_first_row] a_headings ''' def make_dataframe(data_sheet_name): df = [] rows = data_sheet_name.iter_rows() for i in range(data_sheet_name.max_row): df.append([c.value for c in next(rows)]) res_df =
pd.DataFrame(df[1:])
pandas.DataFrame
import os import pandas as pd import pickle import numpy as np import lightgbm as lgb import xgboost as xgb import matplotlib.pyplot as plt import seaborn as sns from sklearn.metrics import confusion_matrix from sklearn.svm import SVR from sklearn.model_selection import KFold from openpyxl import load_workbook from config import parse_args from src.log import Logger from src.utils import Jaccard,Cosine,Peason def save_args(args, logger): save_args_file = os.path.join(args.root_path, "args.txt") line = str(args) with open(save_args_file, mode="w", encoding="utf-8") as wfp: wfp.write(line + "\n") logger.info("Args saved in file%s" % save_args_file) def check_path(args): assert os.path.exists("./data") if not os.path.exists(args.log_path): os.mkdir(args.log_path) if not os.path.exists(args.processed_path): os.mkdir(args.processed_path) def xgb_train(args): root_path = os.path.join(args.log_path,"third") # dataset preparing # determine inputs dtype value_mol_file = os.path.join(args.raw_path, "Molecular_Descriptor.xlsx") admet_file = os.path.join(args.raw_path, "ADMET.xlsx") admet_mat_train =
pd.read_excel(admet_file, sheet_name="training")
pandas.read_excel
# # Copyright 2020 Capital One Services, LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing out the datacompy functionality """ import io import logging import sys from datetime import datetime from decimal import Decimal from unittest import mock import numpy as np import pandas as pd import pytest from pandas.util.testing import assert_series_equal from pytest import raises import datacompy logging.basicConfig(stream=sys.stdout, level=logging.DEBUG) def test_numeric_columns_equal_abs(): data = """a|b|expected 1|1|True 2|2.1|True 3|4|False 4|NULL|False NULL|4|False NULL|NULL|True""" df = pd.read_csv(io.StringIO(data), sep="|") actual_out = datacompy.columns_equal(df.a, df.b, abs_tol=0.2) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) def test_numeric_columns_equal_rel(): data = """a|b|expected 1|1|True 2|2.1|True 3|4|False 4|NULL|False NULL|4|False NULL|NULL|True""" df = pd.read_csv(io.StringIO(data), sep="|") actual_out = datacompy.columns_equal(df.a, df.b, rel_tol=0.2) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) def test_string_columns_equal(): data = """a|b|expected Hi|Hi|True Yo|Yo|True Hey|Hey |False résumé|resume|False résumé|résumé|True 💩|💩|True 💩|🤔|False | |True | |False datacompy|DataComPy|False something||False |something|False ||True""" df = pd.read_csv(io.StringIO(data), sep="|") actual_out = datacompy.columns_equal(df.a, df.b, rel_tol=0.2) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) def test_string_columns_equal_with_ignore_spaces(): data = """a|b|expected Hi|Hi|True Yo|Yo|True Hey|Hey |True résumé|resume|False résumé|résumé|True 💩|💩|True 💩|🤔|False | |True | |True datacompy|DataComPy|False something||False |something|False ||True""" df = pd.read_csv(io.StringIO(data), sep="|") actual_out = datacompy.columns_equal(df.a, df.b, rel_tol=0.2, ignore_spaces=True) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) def test_string_columns_equal_with_ignore_spaces_and_case(): data = """a|b|expected Hi|Hi|True Yo|Yo|True Hey|Hey |True résumé|resume|False résumé|résumé|True 💩|💩|True 💩|🤔|False | |True | |True datacompy|DataComPy|True something||False |something|False ||True""" df = pd.read_csv(io.StringIO(data), sep="|") actual_out = datacompy.columns_equal( df.a, df.b, rel_tol=0.2, ignore_spaces=True, ignore_case=True ) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) def test_date_columns_equal(): data = """a|b|expected 2017-01-01|2017-01-01|True 2017-01-02|2017-01-02|True 2017-10-01|2017-10-10|False 2017-01-01||False |2017-01-01|False ||True""" df = pd.read_csv(io.StringIO(data), sep="|") # First compare just the strings actual_out = datacompy.columns_equal(df.a, df.b, rel_tol=0.2) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) # Then compare converted to datetime objects df["a"] = pd.to_datetime(df["a"]) df["b"] = pd.to_datetime(df["b"]) actual_out = datacompy.columns_equal(df.a, df.b, rel_tol=0.2) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) # and reverse actual_out_rev = datacompy.columns_equal(df.b, df.a, rel_tol=0.2) assert_series_equal(expect_out, actual_out_rev, check_names=False) def test_date_columns_equal_with_ignore_spaces(): data = """a|b|expected 2017-01-01|2017-01-01 |True 2017-01-02 |2017-01-02|True 2017-10-01 |2017-10-10 |False 2017-01-01||False |2017-01-01|False ||True""" df = pd.read_csv(io.StringIO(data), sep="|") # First compare just the strings actual_out = datacompy.columns_equal(df.a, df.b, rel_tol=0.2, ignore_spaces=True) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) # Then compare converted to datetime objects df["a"] = pd.to_datetime(df["a"]) df["b"] = pd.to_datetime(df["b"]) actual_out = datacompy.columns_equal(df.a, df.b, rel_tol=0.2, ignore_spaces=True) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) # and reverse actual_out_rev = datacompy.columns_equal(df.b, df.a, rel_tol=0.2, ignore_spaces=True) assert_series_equal(expect_out, actual_out_rev, check_names=False) def test_date_columns_equal_with_ignore_spaces_and_case(): data = """a|b|expected 2017-01-01|2017-01-01 |True 2017-01-02 |2017-01-02|True 2017-10-01 |2017-10-10 |False 2017-01-01||False |2017-01-01|False ||True""" df = pd.read_csv(io.StringIO(data), sep="|") # First compare just the strings actual_out = datacompy.columns_equal( df.a, df.b, rel_tol=0.2, ignore_spaces=True, ignore_case=True ) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) # Then compare converted to datetime objects df["a"] = pd.to_datetime(df["a"]) df["b"] = pd.to_datetime(df["b"]) actual_out = datacompy.columns_equal(df.a, df.b, rel_tol=0.2, ignore_spaces=True) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) # and reverse actual_out_rev = datacompy.columns_equal(df.b, df.a, rel_tol=0.2, ignore_spaces=True) assert_series_equal(expect_out, actual_out_rev, check_names=False) def test_date_columns_unequal(): """I want datetime fields to match with dates stored as strings """ df = pd.DataFrame([{"a": "2017-01-01", "b": "2017-01-02"}, {"a": "2017-01-01"}]) df["a_dt"] = pd.to_datetime(df["a"]) df["b_dt"] = pd.to_datetime(df["b"]) assert datacompy.columns_equal(df.a, df.a_dt).all() assert datacompy.columns_equal(df.b, df.b_dt).all() assert datacompy.columns_equal(df.a_dt, df.a).all() assert datacompy.columns_equal(df.b_dt, df.b).all() assert not datacompy.columns_equal(df.b_dt, df.a).any() assert not datacompy.columns_equal(df.a_dt, df.b).any() assert not datacompy.columns_equal(df.a, df.b_dt).any() assert not datacompy.columns_equal(df.b, df.a_dt).any() def test_bad_date_columns(): """If strings can't be coerced into dates then it should be false for the whole column. """ df = pd.DataFrame( [{"a": "2017-01-01", "b": "2017-01-01"}, {"a": "2017-01-01", "b": "217-01-01"}] ) df["a_dt"] = pd.to_datetime(df["a"]) assert not datacompy.columns_equal(df.a_dt, df.b).any() def test_rounded_date_columns(): """If strings can't be coerced into dates then it should be false for the whole column. """ df = pd.DataFrame( [ {"a": "2017-01-01", "b": "2017-01-01 00:00:00.000000", "exp": True}, {"a": "2017-01-01", "b": "2017-01-01 00:00:00.123456", "exp": False}, {"a": "2017-01-01", "b": "2017-01-01 00:00:01.000000", "exp": False}, {"a": "2017-01-01", "b": "2017-01-01 00:00:00", "exp": True}, ] ) df["a_dt"] = pd.to_datetime(df["a"]) actual = datacompy.columns_equal(df.a_dt, df.b) expected = df["exp"] assert_series_equal(actual, expected, check_names=False) def test_decimal_float_columns_equal(): df = pd.DataFrame( [ {"a": Decimal("1"), "b": 1, "expected": True}, {"a": Decimal("1.3"), "b": 1.3, "expected": True}, {"a": Decimal("1.000003"), "b": 1.000003, "expected": True}, {"a": Decimal("1.000000004"), "b": 1.000000003, "expected": False}, {"a": Decimal("1.3"), "b": 1.2, "expected": False}, {"a": np.nan, "b": np.nan, "expected": True}, {"a": np.nan, "b": 1, "expected": False}, {"a": Decimal("1"), "b": np.nan, "expected": False}, ] ) actual_out = datacompy.columns_equal(df.a, df.b) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) def test_decimal_float_columns_equal_rel(): df = pd.DataFrame( [ {"a": Decimal("1"), "b": 1, "expected": True}, {"a": Decimal("1.3"), "b": 1.3, "expected": True}, {"a": Decimal("1.000003"), "b": 1.000003, "expected": True}, {"a": Decimal("1.000000004"), "b": 1.000000003, "expected": True}, {"a": Decimal("1.3"), "b": 1.2, "expected": False}, {"a": np.nan, "b": np.nan, "expected": True}, {"a": np.nan, "b": 1, "expected": False}, {"a": Decimal("1"), "b": np.nan, "expected": False}, ] ) actual_out = datacompy.columns_equal(df.a, df.b, abs_tol=0.001) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) def test_decimal_columns_equal(): df = pd.DataFrame( [ {"a": Decimal("1"), "b": Decimal("1"), "expected": True}, {"a": Decimal("1.3"), "b": Decimal("1.3"), "expected": True}, {"a": Decimal("1.000003"), "b": Decimal("1.000003"), "expected": True}, {"a": Decimal("1.000000004"), "b": Decimal("1.000000003"), "expected": False}, {"a": Decimal("1.3"), "b": Decimal("1.2"), "expected": False}, {"a": np.nan, "b": np.nan, "expected": True}, {"a": np.nan, "b": Decimal("1"), "expected": False}, {"a": Decimal("1"), "b": np.nan, "expected": False}, ] ) actual_out = datacompy.columns_equal(df.a, df.b) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) def test_decimal_columns_equal_rel(): df = pd.DataFrame( [ {"a": Decimal("1"), "b": Decimal("1"), "expected": True}, {"a": Decimal("1.3"), "b": Decimal("1.3"), "expected": True}, {"a": Decimal("1.000003"), "b": Decimal("1.000003"), "expected": True}, {"a": Decimal("1.000000004"), "b": Decimal("1.000000003"), "expected": True}, {"a": Decimal("1.3"), "b": Decimal("1.2"), "expected": False}, {"a": np.nan, "b": np.nan, "expected": True}, {"a": np.nan, "b": Decimal("1"), "expected": False}, {"a": Decimal("1"), "b": np.nan, "expected": False}, ] ) actual_out = datacompy.columns_equal(df.a, df.b, abs_tol=0.001) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) def test_infinity_and_beyond(): df = pd.DataFrame( [ {"a": np.inf, "b": np.inf, "expected": True}, {"a": -np.inf, "b": -np.inf, "expected": True}, {"a": -np.inf, "b": np.inf, "expected": False}, {"a": np.inf, "b": -np.inf, "expected": False}, {"a": 1, "b": 1, "expected": True}, {"a": 1, "b": 0, "expected": False}, ] ) actual_out = datacompy.columns_equal(df.a, df.b) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) def test_mixed_column(): df = pd.DataFrame( [ {"a": "hi", "b": "hi", "expected": True}, {"a": 1, "b": 1, "expected": True}, {"a": np.inf, "b": np.inf, "expected": True}, {"a": Decimal("1"), "b": Decimal("1"), "expected": True}, {"a": 1, "b": "1", "expected": False}, {"a": 1, "b": "yo", "expected": False}, ] ) actual_out = datacompy.columns_equal(df.a, df.b) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) def test_mixed_column_with_ignore_spaces(): df = pd.DataFrame( [ {"a": "hi", "b": "hi ", "expected": True}, {"a": 1, "b": 1, "expected": True}, {"a": np.inf, "b": np.inf, "expected": True}, {"a": Decimal("1"), "b": Decimal("1"), "expected": True}, {"a": 1, "b": "1 ", "expected": False}, {"a": 1, "b": "yo ", "expected": False}, ] ) actual_out = datacompy.columns_equal(df.a, df.b, ignore_spaces=True) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) def test_mixed_column_with_ignore_spaces_and_case(): df = pd.DataFrame( [ {"a": "hi", "b": "hi ", "expected": True}, {"a": 1, "b": 1, "expected": True}, {"a": np.inf, "b": np.inf, "expected": True}, {"a": Decimal("1"), "b": Decimal("1"), "expected": True}, {"a": 1, "b": "1 ", "expected": False}, {"a": 1, "b": "yo ", "expected": False}, {"a": "Hi", "b": "hI ", "expected": True}, {"a": "HI", "b": "HI ", "expected": True}, {"a": "hi", "b": "hi ", "expected": True}, ] ) actual_out = datacompy.columns_equal(df.a, df.b, ignore_spaces=True, ignore_case=True) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) def test_compare_df_setter_bad(): df = pd.DataFrame([{"a": 1, "A": 2}, {"a": 2, "A": 2}]) with raises(TypeError, match="df1 must be a pandas DataFrame"): compare = datacompy.Compare("a", "a", ["a"]) with raises(ValueError, match="df1 must have all columns from join_columns"): compare = datacompy.Compare(df, df.copy(), ["b"]) with raises(ValueError, match="df1 must have unique column names"): compare = datacompy.Compare(df, df.copy(), ["a"]) df_dupe = pd.DataFrame([{"a": 1, "b": 2}, {"a": 1, "b": 3}]) assert datacompy.Compare(df_dupe, df_dupe.copy(), ["a", "b"]).df1.equals(df_dupe) def test_compare_df_setter_good(): df1 = pd.DataFrame([{"a": 1, "b": 2}, {"a": 2, "b": 2}]) df2 = pd.DataFrame([{"A": 1, "B": 2}, {"A": 2, "B": 3}]) compare = datacompy.Compare(df1, df2, ["a"]) assert compare.df1.equals(df1) assert compare.df2.equals(df2) assert compare.join_columns == ["a"] compare = datacompy.Compare(df1, df2, ["A", "b"]) assert compare.df1.equals(df1) assert compare.df2.equals(df2) assert compare.join_columns == ["a", "b"] def test_compare_df_setter_different_cases(): df1 = pd.DataFrame([{"a": 1, "b": 2}, {"a": 2, "b": 2}]) df2 = pd.DataFrame([{"A": 1, "b": 2}, {"A": 2, "b": 3}]) compare = datacompy.Compare(df1, df2, ["a"]) assert compare.df1.equals(df1) assert compare.df2.equals(df2) def test_compare_df_setter_bad_index(): df = pd.DataFrame([{"a": 1, "A": 2}, {"a": 2, "A": 2}]) with raises(TypeError, match="df1 must be a pandas DataFrame"): compare = datacompy.Compare("a", "a", on_index=True) with raises(ValueError, match="df1 must have unique column names"): compare = datacompy.Compare(df, df.copy(), on_index=True) def test_compare_on_index_and_join_columns(): df = pd.DataFrame([{"a": 1, "b": 2}, {"a": 2, "b": 2}]) with raises(Exception, match="Only provide on_index or join_columns"): compare = datacompy.Compare(df, df.copy(), on_index=True, join_columns=["a"]) def test_compare_df_setter_good_index(): df1 = pd.DataFrame([{"a": 1, "b": 2}, {"a": 2, "b": 2}]) df2 = pd.DataFrame([{"a": 1, "b": 2}, {"a": 2, "b": 3}]) compare = datacompy.Compare(df1, df2, on_index=True) assert compare.df1.equals(df1) assert compare.df2.equals(df2) def test_columns_overlap(): df1 = pd.DataFrame([{"a": 1, "b": 2}, {"a": 2, "b": 2}]) df2 = pd.DataFrame([{"a": 1, "b": 2}, {"a": 2, "b": 3}]) compare = datacompy.Compare(df1, df2, ["a"]) assert compare.df1_unq_columns() == set() assert compare.df2_unq_columns() == set() assert compare.intersect_columns() == {"a", "b"} def test_columns_no_overlap(): df1 = pd.DataFrame([{"a": 1, "b": 2, "c": "hi"}, {"a": 2, "b": 2, "c": "yo"}]) df2 = pd.DataFrame([{"a": 1, "b": 2, "d": "oh"}, {"a": 2, "b": 3, "d": "ya"}]) compare = datacompy.Compare(df1, df2, ["a"]) assert compare.df1_unq_columns() == {"c"} assert compare.df2_unq_columns() == {"d"} assert compare.intersect_columns() == {"a", "b"} def test_10k_rows(): df1 = pd.DataFrame(np.random.randint(0, 100, size=(10000, 2)), columns=["b", "c"]) df1.reset_index(inplace=True) df1.columns = ["a", "b", "c"] df2 = df1.copy() df2["b"] = df2["b"] + 0.1 compare_tol = datacompy.Compare(df1, df2, ["a"], abs_tol=0.2) assert compare_tol.matches() assert len(compare_tol.df1_unq_rows) == 0 assert len(compare_tol.df2_unq_rows) == 0 assert compare_tol.intersect_columns() == {"a", "b", "c"} assert compare_tol.all_columns_match() assert compare_tol.all_rows_overlap() assert compare_tol.intersect_rows_match() compare_no_tol = datacompy.Compare(df1, df2, ["a"]) assert not compare_no_tol.matches() assert len(compare_no_tol.df1_unq_rows) == 0 assert len(compare_no_tol.df2_unq_rows) == 0 assert compare_no_tol.intersect_columns() == {"a", "b", "c"} assert compare_no_tol.all_columns_match() assert compare_no_tol.all_rows_overlap() assert not compare_no_tol.intersect_rows_match() @mock.patch("datacompy.logging.debug") def test_subset(mock_debug): df1 = pd.DataFrame([{"a": 1, "b": 2, "c": "hi"}, {"a": 2, "b": 2, "c": "yo"}]) df2 = pd.DataFrame([{"a": 1, "c": "hi"}]) comp = datacompy.Compare(df1, df2, ["a"]) assert comp.subset() assert mock_debug.called_with("Checking equality") @mock.patch("datacompy.logging.info") def test_not_subset(mock_info): df1 = pd.DataFrame([{"a": 1, "b": 2, "c": "hi"}, {"a": 2, "b": 2, "c": "yo"}]) df2 = pd.DataFrame([{"a": 1, "b": 2, "c": "hi"}, {"a": 2, "b": 2, "c": "great"}]) comp = datacompy.Compare(df1, df2, ["a"]) assert not comp.subset() assert mock_info.called_with("Sample c mismatch: a: 2, df1: yo, df2: great") def test_large_subset(): df1 = pd.DataFrame(np.random.randint(0, 100, size=(10000, 2)), columns=["b", "c"]) df1.reset_index(inplace=True) df1.columns = ["a", "b", "c"] df2 = df1[["a", "b"]].sample(50).copy() comp = datacompy.Compare(df1, df2, ["a"]) assert not comp.matches() assert comp.subset() def test_string_joiner(): df1 = pd.DataFrame([{"ab": 1, "bc": 2}, {"ab": 2, "bc": 2}]) df2 = pd.DataFrame([{"ab": 1, "bc": 2}, {"ab": 2, "bc": 2}]) compare = datacompy.Compare(df1, df2, "ab") assert compare.matches() def test_decimal_with_joins(): df1 = pd.DataFrame([{"a": Decimal("1"), "b": 2}, {"a": Decimal("2"), "b": 2}]) df2 = pd.DataFrame([{"a": 1, "b": 2}, {"a": 2, "b": 2}]) compare = datacompy.Compare(df1, df2, "a") assert compare.matches() assert compare.all_columns_match() assert compare.all_rows_overlap() assert compare.intersect_rows_match() def test_decimal_with_nulls(): df1 = pd.DataFrame([{"a": 1, "b": Decimal("2")}, {"a": 2, "b": Decimal("2")}]) df2 = pd.DataFrame([{"a": 1, "b": 2}, {"a": 2, "b": 2}, {"a": 3, "b": 2}]) compare = datacompy.Compare(df1, df2, "a") assert not compare.matches() assert compare.all_columns_match() assert not compare.all_rows_overlap() assert compare.intersect_rows_match() def test_strings_with_joins(): df1 = pd.DataFrame([{"a": "hi", "b": 2}, {"a": "bye", "b": 2}]) df2 = pd.DataFrame([{"a": "hi", "b": 2}, {"a": "bye", "b": 2}]) compare = datacompy.Compare(df1, df2, "a") assert compare.matches() assert compare.all_columns_match() assert compare.all_rows_overlap() assert compare.intersect_rows_match() def test_index_joining(): df1 = pd.DataFrame([{"a": "hi", "b": 2}, {"a": "bye", "b": 2}]) df2 = pd.DataFrame([{"a": "hi", "b": 2}, {"a": "bye", "b": 2}]) compare = datacompy.Compare(df1, df2, on_index=True) assert compare.matches() def test_index_joining_strings_i_guess(): df1 = pd.DataFrame([{"a": "hi", "b": 2}, {"a": "bye", "b": 2}]) df2 = pd.DataFrame([{"a": "hi", "b": 2}, {"a": "bye", "b": 2}]) df1.index = df1["a"] df2.index = df2["a"] df1.index.name = df2.index.name = None compare = datacompy.Compare(df1, df2, on_index=True) assert compare.matches() def test_index_joining_non_overlapping(): df1 = pd.DataFrame([{"a": "hi", "b": 2}, {"a": "bye", "b": 2}]) df2 = pd.DataFrame([{"a": "hi", "b": 2}, {"a": "bye", "b": 2}, {"a": "back fo mo", "b": 3}]) compare = datacompy.Compare(df1, df2, on_index=True) assert not compare.matches() assert compare.all_columns_match() assert compare.intersect_rows_match() assert len(compare.df1_unq_rows) == 0 assert len(compare.df2_unq_rows) == 1 assert list(compare.df2_unq_rows["a"]) == ["back fo mo"] def test_temp_column_name(): df1 = pd.DataFrame([{"a": "hi", "b": 2}, {"a": "bye", "b": 2}]) df2 = pd.DataFrame([{"a": "hi", "b": 2}, {"a": "bye", "b": 2}, {"a": "back fo mo", "b": 3}]) actual = datacompy.temp_column_name(df1, df2) assert actual == "_temp_0" def test_temp_column_name_one_has(): df1 = pd.DataFrame([{"_temp_0": "hi", "b": 2}, {"_temp_0": "bye", "b": 2}]) df2 = pd.DataFrame([{"a": "hi", "b": 2}, {"a": "bye", "b": 2}, {"a": "back fo mo", "b": 3}]) actual = datacompy.temp_column_name(df1, df2) assert actual == "_temp_1" def test_temp_column_name_both_have(): df1 = pd.DataFrame([{"_temp_0": "hi", "b": 2}, {"_temp_0": "bye", "b": 2}]) df2 = pd.DataFrame( [{"_temp_0": "hi", "b": 2}, {"_temp_0": "bye", "b": 2}, {"a": "back fo mo", "b": 3}] ) actual = datacompy.temp_column_name(df1, df2) assert actual == "_temp_1" def test_temp_column_name_both_have(): df1 = pd.DataFrame([{"_temp_0": "hi", "b": 2}, {"_temp_0": "bye", "b": 2}]) df2 = pd.DataFrame( [{"_temp_0": "hi", "b": 2}, {"_temp_1": "bye", "b": 2}, {"a": "back fo mo", "b": 3}] ) actual = datacompy.temp_column_name(df1, df2) assert actual == "_temp_2" def test_temp_column_name_one_already(): df1 = pd.DataFrame([{"_temp_1": "hi", "b": 2}, {"_temp_1": "bye", "b": 2}]) df2 = pd.DataFrame( [{"_temp_1": "hi", "b": 2}, {"_temp_1": "bye", "b": 2}, {"a": "back fo mo", "b": 3}] ) actual = datacompy.temp_column_name(df1, df2) assert actual == "_temp_0" ### Duplicate testing! def test_simple_dupes_one_field(): df1 = pd.DataFrame([{"a": 1, "b": 2}, {"a": 1, "b": 2}]) df2 = pd.DataFrame([{"a": 1, "b": 2}, {"a": 1, "b": 2}]) compare = datacompy.Compare(df1, df2, join_columns=["a"]) assert compare.matches() # Just render the report to make sure it renders. t = compare.report() def test_simple_dupes_two_fields(): df1 = pd.DataFrame([{"a": 1, "b": 2}, {"a": 1, "b": 2, "c": 2}]) df2 = pd.DataFrame([{"a": 1, "b": 2}, {"a": 1, "b": 2, "c": 2}]) compare = datacompy.Compare(df1, df2, join_columns=["a", "b"]) assert compare.matches() # Just render the report to make sure it renders. t = compare.report() def test_simple_dupes_index(): df1 = pd.DataFrame([{"a": 1, "b": 2}, {"a": 1, "b": 2}]) df2 = pd.DataFrame([{"a": 1, "b": 2}, {"a": 1, "b": 2}]) df1.index = df1["a"] df2.index = df2["a"] df1.index.name = df2.index.name = None compare = datacompy.Compare(df1, df2, on_index=True) assert compare.matches() # Just render the report to make sure it renders. t = compare.report() def test_simple_dupes_one_field_two_vals(): df1 = pd.DataFrame([{"a": 1, "b": 2}, {"a": 1, "b": 0}]) df2 = pd.DataFrame([{"a": 1, "b": 2}, {"a": 1, "b": 0}]) compare = datacompy.Compare(df1, df2, join_columns=["a"]) assert compare.matches() # Just render the report to make sure it renders. t = compare.report() def test_simple_dupes_one_field_two_vals(): df1 = pd.DataFrame([{"a": 1, "b": 2}, {"a": 1, "b": 0}]) df2 = pd.DataFrame([{"a": 1, "b": 2}, {"a": 2, "b": 0}]) compare = datacompy.Compare(df1, df2, join_columns=["a"]) assert not compare.matches() assert len(compare.df1_unq_rows) == 1 assert len(compare.df2_unq_rows) == 1 assert len(compare.intersect_rows) == 1 # Just render the report to make sure it renders. t = compare.report() def test_simple_dupes_one_field_three_to_two_vals(): df1 = pd.DataFrame([{"a": 1, "b": 2}, {"a": 1, "b": 0}, {"a": 1, "b": 0}]) df2 = pd.DataFrame([{"a": 1, "b": 2}, {"a": 1, "b": 0}]) compare = datacompy.Compare(df1, df2, join_columns=["a"]) assert not compare.matches() assert len(compare.df1_unq_rows) == 1 assert len(compare.df2_unq_rows) == 0 assert len(compare.intersect_rows) == 2 # Just render the report to make sure it renders. t = compare.report() def test_dupes_from_real_data(): data = """acct_id,acct_sfx_num,trxn_post_dt,trxn_post_seq_num,trxn_amt,trxn_dt,debit_cr_cd,cash_adv_trxn_comn_cntry_cd,mrch_catg_cd,mrch_pstl_cd,visa_mail_phn_cd,visa_rqstd_pmt_svc_cd,mc_pmt_facilitator_idn_num 100,0,2017-06-17,1537019,30.64,2017-06-15,D,CAN,5812,M2N5P5,,,0.0 200,0,2017-06-24,1022477,485.32,2017-06-22,D,USA,4511,7114,7.0,1, 100,0,2017-06-17,1537039,2.73,2017-06-16,D,CAN,5812,M4J 1M9,,,0.0 200,0,2017-06-29,1049223,22.41,2017-06-28,D,USA,4789,21211,,A, 100,0,2017-06-17,1537029,34.05,2017-06-16,D,CAN,5812,M4E 2C7,,,0.0 200,0,2017-06-29,1049213,9.12,2017-06-28,D,CAN,5814,0,,, 100,0,2017-06-19,1646426,165.21,2017-06-17,D,CAN,5411,M4M 3H9,,,0.0 200,0,2017-06-30,1233082,28.54,2017-06-29,D,USA,4121,94105,7.0,G, 100,0,2017-06-19,1646436,17.87,2017-06-18,D,CAN,5812,M4J 1M9,,,0.0 200,0,2017-06-30,1233092,24.39,2017-06-29,D,USA,4121,94105,7.0,G, 100,0,2017-06-19,1646446,5.27,2017-06-17,D,CAN,5200,M4M 3G6,,,0.0 200,0,2017-06-30,1233102,61.8,2017-06-30,D,CAN,4121,0,,, 100,0,2017-06-20,1607573,41.99,2017-06-19,D,CAN,5661,M4C1M9,,,0.0 200,0,2017-07-01,1009403,2.31,2017-06-29,D,USA,5814,22102,,F, 100,0,2017-06-20,1607553,86.88,2017-06-19,D,CAN,4812,H2R3A8,,,0.0 200,0,2017-07-01,1009423,5.5,2017-06-29,D,USA,5812,2903,,F, 100,0,2017-06-20,1607563,25.17,2017-06-19,D,CAN,5641,M4C 1M9,,,0.0 200,0,2017-07-01,1009433,214.12,2017-06-29,D,USA,3640,20170,,A, 100,0,2017-06-20,1607593,1.67,2017-06-19,D,CAN,5814,M2N 6L7,,,0.0 200,0,2017-07-01,1009393,2.01,2017-06-29,D,USA,5814,22102,,F,""" df1 = pd.read_csv(io.StringIO(data), sep=",") df2 = df1.copy() compare_acct = datacompy.Compare(df1, df2, join_columns=["acct_id"]) assert compare_acct.matches() compare_unq = datacompy.Compare( df1, df2, join_columns=["acct_id", "acct_sfx_num", "trxn_post_dt", "trxn_post_seq_num"] ) assert compare_unq.matches() # Just render the report to make sure it renders. t = compare_acct.report() r = compare_unq.report() def test_strings_with_joins_with_ignore_spaces(): df1 = pd.DataFrame([{"a": "hi", "b": " A"}, {"a": "bye", "b": "A"}]) df2 = pd.DataFrame([{"a": "hi", "b": "A"}, {"a": "bye", "b": "A "}]) compare = datacompy.Compare(df1, df2, "a", ignore_spaces=False) assert not compare.matches() assert compare.all_columns_match() assert compare.all_rows_overlap() assert not compare.intersect_rows_match() compare = datacompy.Compare(df1, df2, "a", ignore_spaces=True) assert compare.matches() assert compare.all_columns_match() assert compare.all_rows_overlap() assert compare.intersect_rows_match() def test_strings_with_joins_with_ignore_case(): df1 = pd.DataFrame([{"a": "hi", "b": "a"}, {"a": "bye", "b": "A"}]) df2 = pd.DataFrame([{"a": "hi", "b": "A"}, {"a": "bye", "b": "a"}]) compare = datacompy.Compare(df1, df2, "a", ignore_case=False) assert not compare.matches() assert compare.all_columns_match() assert compare.all_rows_overlap() assert not compare.intersect_rows_match() compare = datacompy.Compare(df1, df2, "a", ignore_case=True) assert compare.matches() assert compare.all_columns_match() assert compare.all_rows_overlap() assert compare.intersect_rows_match() def test_decimal_with_joins_with_ignore_spaces(): df1 = pd.DataFrame([{"a": 1, "b": " A"}, {"a": 2, "b": "A"}]) df2 = pd.DataFrame([{"a": 1, "b": "A"}, {"a": 2, "b": "A "}]) compare = datacompy.Compare(df1, df2, "a", ignore_spaces=False) assert not compare.matches() assert compare.all_columns_match() assert compare.all_rows_overlap() assert not compare.intersect_rows_match() compare = datacompy.Compare(df1, df2, "a", ignore_spaces=True) assert compare.matches() assert compare.all_columns_match() assert compare.all_rows_overlap() assert compare.intersect_rows_match() def test_decimal_with_joins_with_ignore_case(): df1 =
pd.DataFrame([{"a": 1, "b": "a"}, {"a": 2, "b": "A"}])
pandas.DataFrame
from __future__ import unicode_literals, division, print_function import os import unittest import pandas as pd import numpy as np import warnings from itertools import product from pymatgen.core.structure import Structure from pymatgen.util.testing import PymatgenTest from sklearn.dummy import DummyRegressor, DummyClassifier from matminer.utils.caching import _get_all_nearest_neighbors from matminer.featurizers.base import BaseFeaturizer, MultipleFeaturizer, \ StackedFeaturizer from matminer.featurizers.function import FunctionFeaturizer from matminer.featurizers.structure import SiteStatsFingerprint class SingleFeaturizer(BaseFeaturizer): def feature_labels(self): return ['y'] def featurize(self, x): return [x + 1] def citations(self): return ["A"] def implementors(self): return ["Us"] class SingleFeaturizerMultiArgs(SingleFeaturizer): def featurize(self, *x): return [x[0] + x[1]] class MultipleFeatureFeaturizer(BaseFeaturizer): def feature_labels(self): return ['w', 'z'] def featurize(self, x): return [x - 1, x + 2] def citations(self): return ["A"] def implementors(self): return ["Them"] class MatrixFeaturizer(BaseFeaturizer): def feature_labels(self): return ['representation'] def featurize(self, *x): return [np.eye(2, 2)] def citations(self): return ["C"] def implementors(self): return ["Everyone"] class MultiArgs2(SingleFeaturizerMultiArgs): def featurize(self, *x): # Making a 2D array to test whether MutliFeaturizer # can handle featurizers that have both 1D vectors with # singleton dimensions (e.g., shape==(4,1)) and those # without (e.g., shape==(4,)) return [super(MultiArgs2, self).featurize(*x)] def feature_labels(self): return ['y2'] class FittableFeaturizer(BaseFeaturizer): """ This test featurizer tests fitting qualities of BaseFeaturizer, including refittability and different results based on different fits. """ def fit(self, X, y=None, **fit_kwargs): self._features = ['a', 'b', 'c'][:len(X)] return self def featurize(self, x): return [x + 3, x + 4, 2 * x][:len(self._features)] def feature_labels(self): return self._features def citations(self): return ["Q"] def implementors(self): return ["A competing research group"] class MultiTypeFeaturizer(BaseFeaturizer): """A featurizer that returns multiple dtypes""" def featurize(self, *x): return ['a', 1] def feature_labels(self): return ['label', 'int_label'] class TestBaseClass(PymatgenTest): def setUp(self): self.single = SingleFeaturizer() self.multi = MultipleFeatureFeaturizer() self.matrix = MatrixFeaturizer() self.multiargs = SingleFeaturizerMultiArgs() self.fittable = FittableFeaturizer() @staticmethod def make_test_data(): return pd.DataFrame({'x': [1, 2, 3]}) def test_dataframe(self): data = self.make_test_data() data = self.single.featurize_dataframe(data, 'x') self.assertArrayAlmostEqual(data['y'], [2, 3, 4]) data = self.multi.featurize_dataframe(data, 'x') self.assertArrayAlmostEqual(data['w'], [0, 1, 2]) self.assertArrayAlmostEqual(data['z'], [3, 4, 5]) def test_matrix(self): """Test the ability to add features that are matrices to a dataframe""" data = self.make_test_data() data = self.matrix.featurize_dataframe(data, 'x') self.assertArrayAlmostEqual(np.eye(2, 2), data['representation'][0]) def test_inplace(self): data = self.make_test_data() self.single.featurize_dataframe(data, 'x', inplace=False) self.assertNotIn('y', data.columns) self.single.featurize_dataframe(data, 'x', inplace=True) self.assertIn('y', data) def test_indices(self): data = self.make_test_data() data.index = [4, 6, 6] data = self.single.featurize_dataframe(data, 'x') self.assertArrayAlmostEqual(data['y'], [2, 3, 4]) def test_multiple(self): # test iterating over both entries and featurizers for iter_entries in [True, False]: multi_f = MultipleFeaturizer([self.single, self.multi], iterate_over_entries=iter_entries) data = self.make_test_data() self.assertArrayAlmostEqual([2, 0, 3], multi_f.featurize(1)) self.assertArrayEqual(['A'], multi_f.citations()) implementors = multi_f.implementors() self.assertIn('Us', implementors) self.assertIn('Them', implementors) self.assertEqual(2, len(implementors)) # Ensure BaseFeaturizer operation without overriden featurize_dataframe with warnings.catch_warnings(record=True) as w: multi_f.featurize_dataframe(data, 'x') self.assertEqual(len(w), 0) self.assertArrayAlmostEqual(data['y'], [2, 3, 4]) self.assertArrayAlmostEqual(data['w'], [0, 1, 2]) self.assertArrayAlmostEqual(data['z'], [3, 4, 5]) f = MatrixFeaturizer() multi_f = MultipleFeaturizer([self.single, self.multi, f]) data = self.make_test_data() with warnings.catch_warnings(record=True) as w: multi_f.featurize_dataframe(data, 'x') self.assertEqual(len(w), 0) self.assertArrayAlmostEqual(data['representation'][0], [[1.0, 0.0], [0.0, 1.0]]) # Leaving this here fore now in case this issue crops up again. # def test_multifeatures(self): # multiargs2 = MultiArgs2() # # # test iterating over both entries and featurizers # for iter_entries in [True, False]: # # Make a test dataset with two input variables # data = self.make_test_data() # data['x2'] = [4, 5, 6] # # # Create featurizer # multi_f = MultipleFeaturizer([self.multiargs, multiargs2], # iterate_over_entries=iter_entries) # # # Test featurize with multiple arguments # features = multi_f.featurize(0, 2) # self.assertArrayAlmostEqual([2, 2], features) # # # Test dataframe # data = multi_f.featurize_dataframe(data, ['x', 'x2']) # self.assertEqual(['y', 'y2'], multi_f.feature_labels()) # self.assertArrayAlmostEqual([[5, 5], [7, 7], [9, 9]], # data[['y', 'y2']]) def test_featurize_many(self): # Single argument s = self.single s.set_n_jobs(2) mat = s.featurize_many([1, 2, 3]) self.assertArrayAlmostEqual(mat, [[2], [3], [4]]) # Multi-argument s = self.multiargs s.set_n_jobs(2) mat = s.featurize_many([[1, 4], [2, 5], [3, 6]]) self.assertArrayAlmostEqual(mat, [[5], [7], [9]]) def test_multiprocessing_df(self): # Single argument s = self.single data = self.make_test_data() s.set_n_jobs(2) data = s.featurize_dataframe(data, 'x') self.assertArrayAlmostEqual(data['y'], [2, 3, 4]) # Multi-argument s = self.multiargs data = self.make_test_data() s.set_n_jobs(2) data['x2'] = [4, 5, 6] data = s.featurize_dataframe(data, ['x', 'x2']) self.assertArrayAlmostEqual(data['y'], [5, 7, 9]) def test_fittable(self): data = self.make_test_data() ft = self.fittable # Test fit and featurize separately ft.fit(data['x'][:2]) ft.featurize_dataframe(data, 'x') self.assertArrayAlmostEqual(data['a'], [4, 5, 6]) self.assertRaises(Exception, data.__getattr__, 'c') # Test fit + featurize methods on new fits data = self.make_test_data() transformed = ft.fit_transform([data['x'][1]]) self.assertArrayAlmostEqual(transformed[0], [5]) data = self.make_test_data() ft.fit_featurize_dataframe(data, 'x') self.assertArrayAlmostEqual(data['a'], [4, 5, 6]) self.assertArrayAlmostEqual(data['b'], [5, 6, 7]) self.assertArrayAlmostEqual(data['c'], [2, 4, 6]) def test_stacked_featurizer(self): data = self.make_test_data() data['y'] = [1, 2, 3] # Test for a regressor model = DummyRegressor() model.fit(self.multi.featurize_many(data['x']), data['y']) # Test the predictions f = StackedFeaturizer(self.single, model) self.assertEqual([2], f.featurize(data['x'][0])) # Test the feature names self.assertEqual(['prediction'], f.feature_labels()) f.name = 'ML' self.assertEqual(['ML prediction'], f.feature_labels()) # Test classifier model = DummyClassifier("prior") data['y'] = [0, 0, 1] model.fit(self.multi.featurize_many(data['x']), data['y']) # Test the prediction f.model = model self.assertEqual([2. / 3], f.featurize(data['x'][0])) # Test the feature labels self.assertRaises(ValueError, f.feature_labels) f.class_names = ['A', 'B'] self.assertEqual(['ML P(A)'], f.feature_labels()) # Test with three classes data['y'] = [0, 2, 1] model.fit(self.multi.featurize_many(data['x']), data['y']) self.assertArrayAlmostEqual([1. / 3] * 2, f.featurize(data['x'][0])) f.class_names = ['A', 'B', 'C'] self.assertEqual(['ML P(A)', 'ML P(B)'], f.feature_labels()) def test_multiindex_inplace(self): df_1lvl = pd.DataFrame({'x': [1, 2, 3]}) df_2lvl =
pd.DataFrame({'x': [1, 2, 3]})
pandas.DataFrame
# --- # jupyter: # jupytext: # formats: ipynb,py # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.9.1+dev # kernelspec: # display_name: Python [conda env:annorxiver] # language: python # name: conda-env-annorxiver-py # --- # # Re-Run Analyses with Polka et. al. Subset # + from datetime import timedelta, date from pathlib import Path import sys from cairosvg import svg2png from IPython.display import Image import matplotlib.pyplot as plt import matplotlib as mpl from matplotlib.patches import ConnectionPatch from mizani.breaks import date_breaks from mizani.formatters import timedelta_format import numpy as np import pandas as pd import plotnine as p9 import requests from scipy.spatial.distance import cdist from scipy.stats import linregress import seaborn as sns from sklearn.model_selection import GridSearchCV from sklearn.linear_model import LogisticRegressionCV, LogisticRegression from sklearn.preprocessing import StandardScaler from sklearn.tree import DecisionTreeClassifier, export_graphviz import spacy import tqdm from annorxiver_modules.corpora_comparison_helper import ( aggregate_word_counts, calculate_confidence_intervals, create_lemma_count_df, get_term_statistics, plot_bargraph, plot_point_bar_figure, plot_pointgraph, ) sys.path.append(str(Path("../../../preprint_similarity_search/server").resolve())) from SAUCIE import SAUCIE, Loader # noqa: E402 mpl.rcParams["figure.dpi"] = 600 mpl.rcParams["font.size"] = 12 mpl.rcParams["font.family"] = "Arial" # - import rpy2.robjects as robjects # noqa: E402 from rpy2.robjects import pandas2ri # noqa: E402 # + from rpy2.robjects.packages import importr # noqa: E402 utils = importr("utils") utils.install_packages("svglite") # - # # Corpora Comparison Preprint-Published Update # ## BioRxiv to Published Mapping mapped_doi_df = ( pd.read_csv("../journal_tracker/output/mapped_published_doi.tsv", sep="\t") .query("published_doi.notnull()") .query("pmcid.notnull()") .groupby("preprint_doi") .agg( { "author_type": "first", "heading": "first", "category": "first", "document": "first", "preprint_doi": "last", "published_doi": "last", "pmcid": "last", } ) .reset_index(drop=True) ) mapped_doi_df.head() polka_et_al_mapped_df = pd.read_csv( "output/polka_et_al_pmc_mapped_subset.tsv", sep="\t" ) polka_et_al_mapped_df.head() spacy_nlp = spacy.load("en_core_web_sm") stop_word_list = list(spacy_nlp.Defaults.stop_words) # ## BioRxiv Token Counts polka_preprints = list(Path("output/biorxiv_word_counts").rglob("*tsv")) # + preprint_count = aggregate_word_counts(polka_preprints) preprint_count_df = ( pd.DataFrame.from_records( [ { "lemma": token[0], "pos_tag": token[1], "dep_tag": token[2], "count": preprint_count[token], } for token in preprint_count ] ) .query(f"lemma not in {stop_word_list}") .groupby("lemma") .agg({"count": "sum"}) .reset_index() .sort_values("count", ascending=False) ) preprint_count_df.head() # - # ## PMCOA Token Counts polka_published = list(Path("output/pmcoa_word_counts").rglob("*tsv")) # + published_count = aggregate_word_counts(polka_published) published_count_df = ( pd.DataFrame.from_records( [ { "lemma": token[0], "pos_tag": token[1], "dep_tag": token[2], "count": published_count[token], } for token in published_count ] ) .query(f"lemma not in {stop_word_list}") .groupby("lemma") .agg({"count": "sum"}) .reset_index() .sort_values("count", ascending=False) ) published_count_df.head() # - # ## Get Token Stats preprint_vs_published = get_term_statistics(published_count_df, preprint_count_df, 100) preprint_vs_published.to_csv( "output/updated_preprint_to_published_comparison.tsv", sep="\t", index=False ) preprint_vs_published full_plot_df = calculate_confidence_intervals(preprint_vs_published) full_plot_df.to_csv( "output/polka_preprint_published_comparison_error_bars.tsv", sep="\t", index=False ) full_plot_df.head() plot_df = ( full_plot_df.sort_values("odds_ratio", ascending=False) .iloc[4:] .head(20) .append(full_plot_df.sort_values("odds_ratio", ascending=True).head(20)) .assign( odds_ratio=lambda x: x.odds_ratio.apply(lambda x: np.log2(x)), lower_odds=lambda x: x.lower_odds.apply(lambda x: np.log2(x)), upper_odds=lambda x: x.upper_odds.apply(lambda x: np.log2(x)), ) ) plot_df.head() # + g = plot_pointgraph( plot_df, x_axis_label="Preprint vs Published log2(Odds Ratio)", left_arrow_label="Preprint Enriched", right_arrow_label="Published Enriched", left_arrow_start=-2, left_arrow_height=39.5, right_arrow_start=2, right_arrow_height=1.5, arrow_length=6, left_arrow_label_x=-5, left_arrow_label_y=38.5, right_arrow_label_x=5, right_arrow_label_y=2.5, limits=(-11, 11), ) g.save("output/figures/preprint_published_frequency_odds.svg") g.save("output/figures/preprint_published_frequency_odds.png", dpi=250) print(g) # - count_plot_df = create_lemma_count_df(plot_df, "published", "preprint").assign( repository=lambda x: pd.Categorical( x.repository.tolist(), categories=["preprint", "published"] ) ) count_plot_df.to_csv( "output/polka_preprint_published_comparison_raw_counts.tsv", sep="\t", index=False ) count_plot_df.head() g = plot_bargraph(count_plot_df, plot_df) g.save("output/figures/preprint_published_frequency_bar.svg") print(g) # + fig_output_path = "output/figures/polka_preprint_published_frequency.png" fig = plot_point_bar_figure( "output/figures/preprint_published_frequency_odds.svg", "output/figures/preprint_published_frequency_bar.svg", ) # save generated SVG files svg2png(bytestring=fig.to_str(), write_to=fig_output_path, dpi=75) Image(fig_output_path) # - # # Document Embeddings # ## Load the Documents biorxiv_documents_df = pd.read_csv( "../word_vector_experiment/output/word2vec_output/biorxiv_all_articles_300.tsv.xz", sep="\t", ) biorxiv_documents_df.head() polka_preprints_df = pd.read_csv("output/polka_et_al_biorxiv_embeddings.tsv", sep="\t") polka_preprints_df.head() pca_components = pd.read_csv( Path("../pca_association_experiment/output/word_pca_similarity/pca_components.tsv"), sep="\t", ) pca_components.head() # ## PCA Components # This section aims to see which principal components have a high association with Polka et al's subset. Furthermore, we also aim to see if we can use linear models to explain which PCs affect preprint prediction. document_pca_sim = 1 - cdist( polka_preprints_df.drop("document", axis=1).values, pca_components.values, "cosine" ) print(document_pca_sim.shape) document_pca_sim document_to_pca_map = { document: document_pca_sim[idx, :] for idx, document in enumerate(polka_preprints_df.document.tolist()) } polka_pca_sim_df = ( pd.DataFrame.from_dict(document_to_pca_map, orient="index") .rename(index=str, columns={col: f"pc{col+1}" for col in range(int(300))}) .reset_index() .rename(index=str, columns={"index": "document"}) ) polka_pca_sim_df.to_csv("output/polka_pca_enrichment.tsv", sep="\t") polka_pca_sim_df = polka_pca_sim_df.assign(label="polka") polka_pca_sim_df.head() document_pca_sim = 1 - cdist( biorxiv_documents_df.drop("document", axis=1).values, pca_components.values, "cosine", ) print(document_pca_sim.shape) document_pca_sim document_to_pca_map = { document: document_pca_sim[idx, :] for idx, document in enumerate(biorxiv_documents_df.document.tolist()) } biorxiv_pca_sim_df = ( pd.DataFrame.from_dict(document_to_pca_map, orient="index") .rename(index=str, columns={col: f"pc{col+1}" for col in range(int(300))}) .reset_index() .rename(index=str, columns={"index": "document"}) .assign(label="biorxiv") ) biorxiv_pca_sim_df.head() # ## PC Regression # ### Logistic Regression # Goal here is to determine if we can figure out which PCs separate the bioRxiv subset from Polka et al.'s subset. Given that their dataset is only 60 papers we downsampled our dataset to contain only 60 papers. dataset_df = biorxiv_pca_sim_df.sample(60, random_state=100).append(polka_pca_sim_df) dataset_df.head() model = LogisticRegressionCV( cv=10, Cs=100, max_iter=1000, penalty="l1", solver="liblinear" ) model.fit( StandardScaler().fit_transform(dataset_df[[f"pc{idx+1}" for idx in range(50)]]), dataset_df["label"], ) best_result = list(filter(lambda x: x[1] == model.C_, enumerate(model.Cs_)))[0] print(best_result) print("Best CV Fold") print(model.scores_["polka"][:, best_result[0]]) model.scores_["polka"][:, best_result[0]].mean() model_weights_df = pd.DataFrame.from_dict( { "weight": model.coef_[0], "pc": list(range(1, 51)), } ) model_weights_df["pc"] = pd.Categorical(model_weights_df["pc"]) model_weights_df.head() g = ( p9.ggplot(model_weights_df, p9.aes(x="pc", y="weight")) + p9.geom_col(position=p9.position_dodge(width=5), fill="#253494") + p9.coord_flip() + p9.scale_x_discrete(limits=list(sorted(range(1, 51), reverse=True))) + p9.theme_seaborn(context="paper", style="ticks", font_scale=1.1, font="Arial") + p9.theme(figure_size=(10, 8)) + p9.labs( title="Regression Model Weights", x="Princpial Component", y="Model Weight" ) ) g.save("output/figures/pca_log_regression_weights.svg") g.save("output/figures/pca_log_regression_weights.png", dpi=250) print(g) fold_features = model.coefs_paths_["polka"].transpose(1, 0, 2) model_performance_df = pd.DataFrame.from_dict( { "feat_num": ((fold_features.astype(bool).sum(axis=1)) > 0).sum(axis=1), "C": model.Cs_, "score": model.scores_["polka"].mean(axis=0), } ) model_performance_df.head() # + fig, ax1 = plt.subplots() ax1.set_xscale("log") ax2 = plt.twinx() ax1.plot( model_performance_df.C.tolist(), model_performance_df.feat_num.tolist(), label="Features", marker=".", ) ax1.set_ylabel("# of Features") ax1.set_xlabel("Inverse Regularization (C)") ax1.legend(loc=0) ax2.plot( model_performance_df.C.tolist(), model_performance_df.score.tolist(), label="Score", marker=".", color="green", ) ax2.set_ylabel("Score (Accuracy %)") ax2.legend(loc=4) plt.savefig("output/preprint_classifier_results.png") # - plot_path = list( zip( model.Cs_, model.scores_["polka"].transpose(), model.coefs_paths_["polka"].transpose(1, 0, 2), ) ) data_records = [] for cs in plot_path[33:40]: model = LogisticRegression(C=cs[0], max_iter=1000, penalty="l1", solver="liblinear") model.fit( StandardScaler().fit_transform(dataset_df[[f"pc{idx+1}" for idx in range(50)]]), dataset_df["label"], ) data_records.append( { "C": cs[0], "PCs": ",".join(map(str, model.coef_.nonzero()[1] + 1)), "feat_num": len(model.coef_.nonzero()[1]), "accuracy": cs[1].mean(), } ) model_coefs_df = pd.DataFrame.from_records(data_records) model_coefs_df # ### Decision Tree # Given that Logistic regression doesn't return sparse weights, we may get better insight into this analysis by using a decision tree to determine which PCs are important in prediction. model = DecisionTreeClassifier(random_state=100) search_grid = GridSearchCV( model, {"criterion": ["gini", "entropy"], "max_features": ["auto", None]}, cv=10 ) search_grid.fit(dataset_df[[f"pc{idx+1}" for idx in range(50)]], dataset_df["label"]) print(search_grid.best_params_) print(search_grid.best_score_) export_graphviz( search_grid.best_estimator_, out_file="output/figures/pca_tree.dot", feature_names=[f"pc{idx+1}" for idx in range(50)], class_names=["bioRxiv", "polka et al."], rotate=True, ) # ! dot -Tpng output/figures/pca_tree.dot -o output/figures/pca_tree.png Image(filename="output/figures/pca_tree.png") # ## Saucie Subset # Where do the preprints in this subset lie along the SAUCIE map? saucie_model = SAUCIE( 300, restore_folder=str(Path("../../pmc/journal_recommendation/output/model").resolve()), ) coordinates = saucie_model.get_embedding( Loader(polka_preprints_df.drop("document", axis=1).values) ) subset_df = pd.DataFrame(coordinates, columns=["dim1", "dim2"]) subset_df.to_csv("output/polka_et_al_saucie_coordinates.tsv", sep="\t", index=False) subset_df.head() pmc_data_df = pd.read_csv( Path("../../pmc/journal_recommendation/output") / Path("paper_dataset/paper_dataset_full_tsne.tsv"), sep="\t", ) pmc_data_df.head() pandas2ri.activate() robjects.globalenv["pmc_data_df"] = robjects.conversion.py2rpy(pmc_data_df) robjects.globalenv["subset_df"] = robjects.conversion.py2rpy(subset_df) robjects.r.source("saucie_plot.R") Image(filename="output/figures/saucie_plot.png") # + # Publication Time Analysis # Get publication dates url = "https://api.biorxiv.org/pub/2019-11-01/3000-01-01/" # Get preprint publication dates for 2019 -> 2020 already_downloaded = Path("output/biorxiv_published_dates_post_2019.tsv").exists() if not already_downloaded: collection = [] page_size = 100 total = 23948 for i in tqdm.tqdm(range(0, total, page_size), total=total / page_size): collection += requests.get(url + str(i)).json()["collection"] published_dates = pd.DataFrame(collection) published_dates.to_csv( "output/biorxiv_published_dates_post_2019.tsv", sep="\t", index=False ) else: published_dates = pd.read_csv( "output/biorxiv_published_dates_post_2019.tsv", sep="\t" ) published_dates = published_dates.assign( preprint_date=lambda x: pd.to_datetime(x.preprint_date.tolist()), published_date=lambda x: pd.to_datetime( x.published_date.apply(lambda y: y[0 : y.index(":")] if ":" in y else y) ), ).assign(time_to_published=lambda x: x.published_date - x.preprint_date) print(published_dates.shape) published_dates.head() # - polka_preprints_df = polka_preprints_df.assign( biorxiv_base=lambda x: x.document.apply(lambda y: y.split("_")[0]), version_count=lambda x: x.document.apply( lambda y: int(y[y.index("v") + 1 :].split(".")[0]) ), ) polka_preprints_df.head() polka_published_df =
pd.read_csv("output/polka_et_al_pmcoa_embeddings.tsv", sep="\t")
pandas.read_csv
import numpy as np import pandas as pd import matplotlib.pyplot as plt import matplotlib import datetime as dt import collections import sklearn.preprocessing import cartopy.crs as ccrs import cartopy.io.shapereader as shpreader import matplotlib.animation as animation import tempfile from PIL import Image first_date = dt.date(2020, 3, 1) ## Main def main(): df = download_data() countries = get_all_countries(df, min_population=100000) plot_by_country(df=df, ctype='deaths') death_rate_chart(df=df, countries=countries, ctype='deaths', num_to_display=30) ## Visualisation def death_rate_chart(df, countries, ctype, num_to_display=None): results = pd.DataFrame(index=pd.date_range(start=first_date, end='today'), columns=countries) for country in countries: sr = country_series(df, country, ctype, cumsum=True, log=False) sr /= df[df.countriesAndTerritories == country].iloc[0].popData2018 results[country] = sr results = results.fillna(0) sr = results.iloc[-1] sr = sr.sort_values() if isinstance(num_to_display, int): sr = sr[-num_to_display:] title = '%s per 100,000 for top %d countries' % (ctype.title(), num_to_display) else: title = '%s per 100,000' % (ctype.title()) sr *= 100000 l = len(sr) labels = clean_labels(sr.index) spacing = [(1/l)*i for i in range(l)] colours = matplotlib.cm.hsv(sr / float(max(sr))) fig, ax = plt.subplots() plt.barh(spacing, width=sr.to_list(), height=(1/l)*0.92, tick_label=labels, color='orange') plt.yticks(fontsize=8) plt.title(title) plt.xlabel(ctype.title()) # plt.show() plt.savefig('bar_chart.png', bbox_inches='tight', dpi=300) def plot_by_country(df, ctype): df = normalised_progression_by_country(df, get_all_countries(df), ctype) countries_shp = shpreader.natural_earth(resolution='110m', category='cultural', name='admin_0_countries') cmap = matplotlib.cm.get_cmap('Spectral') saved_figs = [] limit=5 for i in range(df.shape[0]): tfile = tempfile.TemporaryFile() ax = plt.axes(projection=ccrs.PlateCarree(), label=str(i)) for country in shpreader.Reader(countries_shp).records(): c = clean_country(country.attributes['NAME_LONG']) if c == None: rgba = (0.5, 0.5, 0.5, 1.0) else: rgba = cmap(df[c][i]) ax.add_geometries([country.geometry], ccrs.PlateCarree(), facecolor=rgba, label=country.attributes['NAME_LONG']) plt.title(str(df.index[i]).split(' ')[0]) plt.savefig(tfile, dpi=400, bbox_inches='tight') saved_figs.append(tfile) plt.close() fig = plt.figure() ims = [] for temp_img in saved_figs: X = Image.open(temp_img) ims.append([plt.imshow(X, animated=True)]) ani = animation.ArtistAnimation(fig, ims, interval=800, blit=True, repeat_delay=1000) plt.axis('off') plt.tight_layout(pad=0) # plt.show() ani.save('animation.gif', writer='imagemagick', fps=2, dpi=400) # Writer = animation.writers['ffmpeg'] # writer = Writer(fps=2, metadata=dict(artist='Me'), bitrate=100000) # ani.save('/Users/daniel/Desktop/animation.mp4', writer=writer, dpi=400) ## Data acquisition and processing def clean_labels(labels): results = [] for label in labels: if label == 'Cases_on_an_international_conveyance_Japan': results.append('Japan') elif label == 'United_States_of_America': results.append('United States') else: results.append(label.replace('_', ' ')) return results def download_data(): covid_raw_pd =
pd.read_csv('https://opendata.ecdc.europa.eu/covid19/casedistribution/csv')
pandas.read_csv
# -*- coding: utf-8 -*- """ Tools for correcting energy-balance components to improve energy balance closure and other data management, validation and scientific analysis tools. """ from pathlib import Path import xarray import numpy as np import pandas as pd from sklearn import linear_model from sklearn.metrics import mean_squared_error from refet.calcs import _ra_daily, _rso_simple import refet from .data import Data from .plot import Plot from .util import monthly_resample, Convert class QaQc(Plot, Convert): """ Numerical routines for correcting daily energy balance closure for eddy covariance data and other data analysis tools. Two routines are provided for improving energy balance closure by adjusting turbulent fluxes, latent energy and sensible heat, the Energy Balance Ratio method (modified from `FLUXNET <https://fluxnet.fluxdata.org/data/fluxnet2015-dataset/data-processing/>`__) and the Bowen Ratio method. The :obj:`QaQc` object also has multiple tools for temporal frequency aggregation and resampling, estimation of climatic and statistical variables (e.g. ET and potential shortwave radiation), downloading gridMET reference ET, managing data and metadata, interactive validation plots, and managing a structure for input and output data files. Input data is expected to be a :obj:`.Data` instance or a :obj:`pandas.DataFrame`. Keyword Arguments: data (:obj:`.Data`): :obj:`.Data` instance to create :obj:`.QaQc` instance. drop_gaps (bool): default :obj:`True`. If :obj:`True` automatically filter variables on days with sub-daily measurement gaps less than ``daily_frac``. daily_frac (float): default 1.00. Fraction of sub-daily data required otherwise the daily value will be filtered out if ``drop_gaps`` is :obj:`True`. E.g. if ``daily_frac = 0.5`` and the input data is hourly, then data on days with less than 12 hours of data will be forced to null within :attr:`QaQc.df`. This is important because systematic diurnal gaps will affect the autmoatic resampling that occurs when creating a :obj:`QaQc` instance and the daily data is used in closure corrections, other calculations, and plots. If sub-daily linear interpolation is applied to energy balance variables the gaps are counted *after* the interpolation. max_interp_hours (None or float): default 2. Length of largest gap to fill with linear interpolation in energy balance variables if input datas temporal frequency is less than daily. This value will be used to fill gaps when :math:`Rn > 0` or :math:`Rn` is missing during each day. max_interp_hours_night (None or float): default 4. Length of largest gap to fill with linear interpolation in energy balance variables if input datas temporal frequency is less than daily when :math:`Rn < 0` within 12:00PM-12:00PM daily intervals. Attributes: agg_dict (dict): Dictionary with internal variable names as keys and method of temporal resampling (e.g. "mean" or "sum") as values. config (:obj:`configparser.ConfigParser`): Config parser instance created from the data within the config.ini file. config_file (:obj:`pathlib.Path`): Absolute path to config.ini file used for initialization of the :obj:`fluxdataqaqc.Data` instance used to create the :obj:`QaQc` instance. corrected (bool): False until an energy balance closure correction has been run by calling :meth:`QaQc.correct_data`. corr_methods (tuple): List of Energy Balance Closure correction routines usable by :meth:`QaQc.correct_data`. corr_meth (str or None): Name of most recently applied energy balance closure correction. elevation (float): Site elevation in meters. gridMET_exists (bool): True if path to matching gridMET time series file exists on disk and has time series for reference ET and precipitation and the dates for these fully overlap with the energy balance variables, i.e. the date index of :attr:`QaQc.df`. gridMET_meta (dict): Dictionary with information for gridMET variables that may be downloaded using :meth:`QaQc.download_gridMET`. inv_map (dict): Dictionary with input climate file names as keys and internal names as values. May only include pairs when they differ. latitude (float): Site latitude in decimal degrees. longitude (float): Site longitude in decimal degrees. out_dir (pathlib.Path): Default directory to save output of :meth:`QaQc.write` or :meth:`QaQc.plot` methods. n_samples_per_day (int): If initial time series temporal frequency is less than 0 then this value will be updated to the number of samples detected per day, useful for post-processing based on the count of sub-daily gaps in energy balance variables, e.g. "LE_subday_gaps". plot_file (pathlib.Path or None): path to plot file once it is created/saved by :meth:`QaQc.plot`. site_id (str): Site ID. temporal_freq (str): Temporal frequency of initial (as found in input climate file) data as determined by :func:`pandas.infer_freq`. units (dict): Dictionary with internal variable names as keys and units as found in config as values. variables (dict): Dictionary with internal variable names as keys and names as found in the input data as values. Note: Upon initialization of a :obj:`QaQc` instance the temporal frequency of the input data checked using :func:`pandas.infer_freq` which does not always correctly parse datetime indices, if it is not able to correctly determine the temporal frequency the time series will be resampled to daily frequency but if it is in fact already at daily frequency the data will be unchanged. In this case the :attr:`QaQc.temporal_freq` will be set to "na". """ # dictionary used for temporally aggregating variables agg_dict = { 'ASCE_ETo': 'sum', 'ASCE_ETr': 'sum', 'energy': 'mean', 'flux': 'mean', 'flux_corr': 'mean', 'br': 'mean', 'ET': 'sum', 'ET_corr': 'sum', 'ET_gap': 'sum', 'ET_fill': 'sum', 'ET_fill_val': 'sum', 'ET_user_corr': 'sum', 'ebr': 'mean', 'ebr_corr': 'mean', 'ebr_user_corr': 'mean', 'ebr_5day_clim': 'mean', 'gridMET_ETr': 'sum', 'gridMET_ETo': 'sum', 'gridMET_prcp': 'sum', 'lw_in': 'mean', 't_avg': 'mean', 't_max': 'mean', 't_min': 'mean', 't_dew': 'mean', 'rso': 'mean', 'sw_pot': 'mean', 'sw_in': 'mean', 'vp': 'mean', 'vpd': 'mean', 'ppt': 'sum', 'ppt_corr': 'sum', 'ws': 'mean', 'Rn': 'mean', 'Rn_subday_gaps': 'sum', 'rh' : 'mean', 'sw_out': 'mean', 'lw_out': 'mean', 'G': 'mean', 'G_subday_gaps': 'sum', 'LE': 'mean', 'LE_corr': 'mean', 'LE_subday_gaps': 'sum', 'LE_user_corr': 'mean', 'H': 'mean', 'H_corr': 'mean', 'H_subday_gaps': 'sum', 'H_user_corr': 'mean', } # EBR correction methods available corr_methods = ( 'ebr', 'br', 'lin_regress' ) # gridMET dict, keys are names which can be passed to download_gridMET gridMET_meta = { 'ETr': { 'nc_suffix': 'agg_met_etr_1979_CurrentYear_CONUS.nc#fillmismatch', 'name': 'daily_mean_reference_evapotranspiration_alfalfa', 'rename': 'gridMET_ETr', 'units': 'mm' }, 'pr': { 'nc_suffix': 'agg_met_pr_1979_CurrentYear_CONUS.nc#fillmismatch', 'name': 'precipitation_amount', 'rename': 'gridMET_prcp', 'units': 'mm' }, 'pet': { 'nc_suffix': 'agg_met_pet_1979_CurrentYear_CONUS.nc#fillmismatch', 'name': 'daily_mean_reference_evapotranspiration_grass', 'rename': 'gridMET_ETo', 'units': 'mm' }, 'sph': { 'nc_suffix': 'agg_met_sph_1979_CurrentYear_CONUS.nc#fillmismatch', 'name': 'daily_mean_specific_humidity', 'rename': 'gridMET_q', 'units': 'kg/kg' }, 'srad': { 'nc_suffix': 'agg_met_srad_1979_CurrentYear_CONUS.nc#fillmismatch', 'name': 'daily_mean_shortwave_radiation_at_surface', 'rename': 'gridMET_srad', 'units': 'w/m2' }, 'vs': { 'nc_suffix': 'agg_met_vs_1979_CurrentYear_CONUS.nc#fillmismatch', 'name': 'daily_mean_wind_speed', 'rename': 'gridMET_u10', 'units': 'm/s' }, 'tmmx': { 'nc_suffix': 'agg_met_tmmx_1979_CurrentYear_CONUS.nc#fillmismatch', 'name': 'daily_maximum_temperature', 'rename': 'gridMET_tmax', 'units': 'K' }, 'tmmn': { 'nc_suffix': 'agg_met_tmmn_1979_CurrentYear_CONUS.nc#fillmismatch', 'name': 'daily_minimum_temperature', 'rename': 'gridMET_tmin', 'units': 'K' }, } # all potentially calculated variables for energy balance corrections _eb_calc_vars = ( 'br', 'br_user_corr', 'energy', 'energy_corr', 'ebr', 'ebr_corr', 'ebr_user_corr', 'ebc_cf', 'ebr_5day_clim', 'flux', 'flux_corr', 'flux_user_corr', 'G_corr', 'H_corr', 'LE_corr', 'Rn_corr' ) # potentially calculated variables for ET _et_calc_vars = ( 'ET', 'ET_corr', 'ET_user_corr' ) # potentially calculated ET gap fill variables _et_gap_fill_vars = ( 'ET_gap', 'ET_fill', 'ET_fill_val', 'ETrF', 'ETrF_filtered', 'EToF', 'EToF_filtered' ) def __init__(self, data=None, drop_gaps=True, daily_frac=1.00, max_interp_hours=2, max_interp_hours_night=4): if isinstance(data, Data): self.config_file = data.config_file self.config = data.config data.df.head();# need to access to potentially calc vp/vpd self._df = data.df self.variables = data.variables self.units = data.units self.elevation = data.elevation self.latitude = data.latitude self.longitude = data.longitude self.out_dir = data.out_dir self.site_id = data.site_id # flip variable naming dict for internal use self.inv_map = { v: k for k, v in self.variables.items() if ( not k in self._df.columns ) } # using 'G' in multiple g plot may overwrite G name internally if not 'G' in self.inv_map.values(): user_G_name = self.variables.get('G') if user_G_name: self.inv_map[user_G_name] = 'G' # data will be loaded if it has not yet via Data.df self.temporal_freq = self._check_daily_freq( drop_gaps, daily_frac, max_interp_hours, max_interp_hours_night ) # check units, convert if possible for energy balance, ppt, Rs, vp, self._check_convert_units() self._check_gridMET() # assume energy balance vars exist, will be validated upon corr self._has_eb_vars = True elif data is not None: print('{} is not a valid input type'.format(type(data))) raise TypeError("Must assign a fluxdataqaqc.data.Data object") else: self._df = None self.corrected = False self.corr_meth = None def daily_ASCE_refET(self, reference='short', anemometer_height=None): """ Calculate daily ASCE standardized short (ETo) or tall (ETr) reference ET from input data and wind measurement height. The resulting time series will automatically be merged into the :attr:`.Data.df` dataframe named "ASCE_ETo" or "ASCE_ETr" respectively. Keyword Arguments: reference (str): default "short", calculate tall or short ASCE reference ET. anemometer_height (float or None): wind measurement height in meters , default :obj:`None`. If :obj:`None` then look for the "anemometer_height" entry in the **METADATA** section of the config.ini, if not there then print a warning and use 2 meters. Returns: :obj:`None` Note: If the hourly ASCE variables were prior calculated from a :obj:`.Data` instance they will be overwritten as they are saved with the same names. """ df = self.df.rename(columns=self.inv_map) req_vars = ['vp', 'ws', 'sw_in', 't_min', 't_max'] if not set(req_vars).issubset(df.columns): print('Missing one or more required variables, cannot compute') return if anemometer_height is None: anemometer_height = self.config.get( 'METADATA', 'anemometer_height', fallback=None ) if anemometer_height is None: print( 'WARNING: anemometer height was not given and not found in ' 'the config files metadata, proceeding with height of 2 m' ) anemometer_height = 2 # RefET will convert to MJ-m2-hr input_units = { 'rs': 'w/m2' } length = len(df.t_min) tmin = df.t_min tmax = df.t_max rs = df.sw_in ea = df.vp uz = df.ws zw = np.full(length, anemometer_height) lat = np.full(length, self.latitude) doy = df.index.dayofyear elev = np.full(length, self.elevation) REF = refet.Daily( tmin, tmax, ea, rs, uz, zw, elev, lat, doy, method='asce', input_units=input_units, ) if reference == 'short': ret = REF.eto() name = 'ASCE_ETo' elif reference == 'tall': ret = REF.etr() name = 'ASCE_ETr' # can add directly into QaQc.df df[name] = ret self._df = df.rename(columns=self.variables) self.variables[name] = name self.units[name] = 'mm' def _check_convert_units(self): """ Verify if units are recognized for variables in QaQc.allowable_units, next verify that they have required units as in QaQc.required_units if not convert them. Conversions are handled by util.Convert.convert class method. """ # force all input units to lower case for k, v in self.units.items(): self.units[k] = v.lower() # can add check/rename unit aliases, e.g. C or c or celcius, etc... df = self._df.rename(columns=self.inv_map) for v, u in self.units.items(): if not v in QaQc.required_units.keys(): # variable is not required to have any particular unit, skip continue elif not u in QaQc.allowable_units[v]: print('ERROR: {} units are not recognizable for var: {}\n' 'allowable input units are: {}\nNot converting.'.format( u, v, ','.join(QaQc.allowable_units[v]) ) ) elif not u == QaQc.required_units[v]: # do conversion, update units # pass variable, initial unit, unit to be converted to, df df = Convert.convert(v, u, QaQc.required_units[v], df) self.units[v] = QaQc.required_units[v] self._df = df def _check_gridMET(self): """ Check if gridMET has been downloaded (file path in config), if so also check if dates fully intersect those of station data. If both conditions are not met then update :attr:`gridMET_exists` to False otherwise assign True. Arguments: None Returns: None """ gridfile = self.config.get('METADATA','gridMET_file_path',fallback=None) if gridfile is None: self.gridMET_exists = False else: try: grid_df = pd.read_csv( gridfile, parse_dates=True, index_col='date' ) gridMET_dates = grid_df.index station_dates = self.df.index # add var names and units to attributes for val in grid_df.columns: meta = [ v for k,v in QaQc.gridMET_meta.items() if \ v['rename'] == val ][0] self.variables[meta['rename']] = meta['rename'] self.units[meta['rename']] = meta['units'] # flag False if ETr was not downloaded for our purposes if not {'gridMET_ETr','gridMET_ETo'}.issubset(grid_df.columns): self.gridMET_exists = False elif station_dates.isin(gridMET_dates).all(): self.gridMET_exists = True # some gridMET exists but needs to be updated for coverage else: self.gridMET_exists = False except: print('WARNING: unable to find/read gridMET file\n {}'.format( gridfile) ) self.gridMET_exists = False def download_gridMET(self, variables=None): """ Download reference ET (alfalfa and grass) and precipitation from gridMET for all days in flux station time series by default. Also has ability to download other specific gridMET variables by passing a list of gridMET variable names. Possible variables and their long form can be found in :attr:`QaQc.gridMET_meta`. Upon download gridMET time series for the nearest gridMET cell will be merged into the instances dataframe attibute :attr:`QaQc.df` and all gridMET variable names will have the prefix "gridMET\_" for identification. The gridMET time series file will be saved to a subdirectory called "gridMET_data" within the directory that contains the config file for the current :obj:`QaQc` instance and named with the site ID and gridMET cell centroid lat and long coordinates in decimal degrees. Arguments: variables (None, str, list, or tuple): default None. List of gridMET variable names to download, if None download ETr and precipitation. See the keys of the :attr:`QaQc.gridMET_meta` dictionary for a list of all variables that can be downloaded by this method. Returns: :obj:`None` Note: Any previously downloaded gridMET time series will be overwritten when calling the method, however if using the the gap filling method of the "ebr" correction routine the download will not overwrite currently existing data so long as gridMET reference ET and precipitation is on disk and its path is properly set in the config file. """ # opendap thredds server server_prefix =\ 'http://thredds.northwestknowledge.net:8080/thredds/dodsC/' if variables is None: variables = ['ETr', 'pet', 'pr'] elif not isinstance(variables, (str,list,tuple)): print( 'ERROR: {} is not a valid gridMET variable ' 'or list of variable names, valid options:' '\n{}'.format( variables, ', '.join([v for v in QaQc.gridMET_meta]) ) ) return if isinstance(variables, str): variables = list(variables) station_dates = self.df.index grid_dfs = [] for i,v in enumerate(variables): if not v in QaQc.gridMET_meta: print( 'ERROR: {} is not a valid gridMET variable, ' 'valid options: {}'.format( v, ', '.join([v for v in QaQc.gridMET_meta]) ) ) continue meta = QaQc.gridMET_meta[v] self.variables[meta['rename']] = meta['rename'] self.units[meta['rename']] = meta['units'] print('Downloading gridMET var: {}\n'.format(meta['name'])) netcdf = '{}{}'.format(server_prefix, meta['nc_suffix']) ds = xarray.open_dataset(netcdf).sel( lon=self.longitude, lat=self.latitude, method='nearest' ).drop('crs') df = ds.to_dataframe().loc[station_dates].rename( columns={meta['name']:meta['rename']} ) df.index.name = 'date' # ensure date col name is 'date' # on first variable (if multiple) grab gridcell centroid coords if i == 0: lat_centroid = df.lat[0] lon_centroid = df.lon[0] df.drop(['lat', 'lon'], axis=1, inplace=True) grid_dfs.append(df) # combine data df = pd.concat(grid_dfs, axis=1) # save gridMET time series to CSV in subdirectory where config file is gridMET_file = self.config_file.parent.joinpath( 'gridMET_data' ).joinpath('{}_{:.4f}N_{:.4f}W.csv'.format( self.site_id, lat_centroid, lon_centroid ) ) gridMET_file.parent.mkdir(parents=True, exist_ok=True) self.config.set( 'METADATA', 'gridMET_file_path', value=str(gridMET_file) ) df.to_csv(gridMET_file) # rewrite config with updated gridMET file path with open(str(self.config_file), 'w') as outf: self.config.write(outf) # drop previously calced vars for replacement, no join duplicates self._df = _drop_cols(self._df, variables) self._df = self._df.join(df) self.gridMET_exists = True def _check_daily_freq(self, drop_gaps, daily_frac, max_interp_hours, max_interp_hours_night): """ Check temporal frequency of input Data, resample to daily if not already Note: If one or more sub-dauly values are missing for a day the entire day will be replaced with a null (:obj:`numpy.nan`). If user QC values for filtering data are present they will also be resampled to daily means, however this should not be an issue as the filtering step occurs in a :obj:`fluxdataqaqc.Data` object. """ # rename columns to internal names df = self._df.rename(columns=self.inv_map) if not isinstance(df, pd.DataFrame): return freq =
pd.infer_freq(df.index)
pandas.infer_freq
import pytest import numpy as np import pandas as pd from samplics.utils.checks import ( assert_brr_number_psus, assert_in_range, assert_not_unique, assert_proportions, assert_response_status, assert_weights, ) @pytest.mark.parametrize( "x1, x2, x3, x4", [(35, -35, 0.35, [0, 1, 39])], ) def test_in_range_ints_successes(x1, x2, x3, x4): assert assert_in_range(low=10, high=39, x=x1) assert assert_in_range(low=-39, high=-10, x=x2) assert assert_in_range(low=0, high=1, x=x3) assert assert_in_range(low=-10, high=39, x=x4) def test_in_range_for_ints_fails(): assert not assert_in_range(low=10, high=39, x=5) assert not assert_in_range(low=-39, high=-10, x=-135) assert not assert_in_range(low=0, high=1, x=1.35) assert not assert_in_range(low=-10, high=39, x=-30) assert not assert_in_range(low=-10, high=39, x=1000) def test_fin_range_for_floats_successes(): assert assert_in_range(low=10.1, high=39.0, x=35.22) assert assert_in_range(low=-39.2, high=-10.1, x=-35.35) assert assert_in_range(low=0.0, high=1.0, x=0.35) assert assert_in_range(low=-10.0, high=39.0, x=0.0) assert assert_in_range(low=-10.0, high=39.0, x=1.9) assert assert_in_range(low=-10.0, high=39.0, x=0.039) def test_in_range_for_floats_fails(): assert not assert_in_range(low=10.0, high=39.0, x=5.5) assert not assert_in_range(low=-39.3, high=-10.1, x=-135.23) assert not assert_in_range(low=0.0, high=1.00, x=1.35) assert not assert_in_range(low=-10.0, high=39.33, x=100.01) assert not assert_in_range(low=-10.0, high=39.3, x=39.33) @pytest.mark.parametrize( "x1", [np.array([20, 17, 11, 20, 23]), pd.Series([20, 17, 11, 20, 23])], ) @pytest.mark.parametrize( "x2", [ np.array([-2, 17, -11, 20, 23]), pd.Series([-10, 17, -11, 20, 23]),
pd.Series([-10, 17, -11, 20, 23])
pandas.Series
from __future__ import division from datetime import datetime import sys if sys.version_info < (3, 3): import mock else: from unittest import mock import pandas as pd import numpy as np from nose.tools import assert_almost_equal as aae import bt import bt.algos as algos def test_algo_name(): class TestAlgo(algos.Algo): pass actual = TestAlgo() assert actual.name == 'TestAlgo' class DummyAlgo(algos.Algo): def __init__(self, return_value=True): self.return_value = return_value self.called = False def __call__(self, target): self.called = True return self.return_value def test_algo_stack(): algo1 = DummyAlgo(return_value=True) algo2 = DummyAlgo(return_value=False) algo3 = DummyAlgo(return_value=True) target = mock.MagicMock() stack = bt.AlgoStack(algo1, algo2, algo3) actual = stack(target) assert not actual assert algo1.called assert algo2.called assert not algo3.called def test_run_once(): algo = algos.RunOnce() assert algo(None) assert not algo(None) assert not algo(None) def test_run_period(): target = mock.MagicMock() dts = pd.date_range('2010-01-01', periods=35) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) algo = algos.RunPeriod() # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data dts = target.data.index target.now = None assert not algo(target) # run on first date target.now = dts[0] assert not algo(target) # run on first supplied date target.now = dts[1] assert algo(target) # run on last date target.now = dts[len(dts) - 1] assert not algo(target) algo = algos.RunPeriod( run_on_first_date=False, run_on_end_of_period=True, run_on_last_date=True ) # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data dts = target.data.index # run on first date target.now = dts[0] assert not algo(target) # first supplied date target.now = dts[1] assert not algo(target) # run on last date target.now = dts[len(dts) - 1] assert algo(target) # date not in index target.now = datetime(2009, 2, 15) assert not algo(target) def test_run_daily(): target = mock.MagicMock() dts = pd.date_range('2010-01-01', periods=35) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) algo = algos.RunDaily() # adds the initial day backtest = bt.Backtest( bt.Strategy('',[algo]), data ) target.data = backtest.data target.now = dts[1] assert algo(target) def test_run_weekly(): dts = pd.date_range('2010-01-01', periods=367) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) target = mock.MagicMock() target.data = data algo = algos.RunWeekly() # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # end of week target.now = dts[2] assert not algo(target) # new week target.now = dts[3] assert algo(target) algo = algos.RunWeekly( run_on_first_date=False, run_on_end_of_period=True, run_on_last_date=True ) # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # end of week target.now = dts[2] assert algo(target) # new week target.now = dts[3] assert not algo(target) dts = pd.DatetimeIndex([datetime(2016, 1, 3), datetime(2017, 1, 8),datetime(2018, 1, 7)]) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # check next year target.now = dts[1] assert algo(target) def test_run_monthly(): dts = pd.date_range('2010-01-01', periods=367) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) target = mock.MagicMock() target.data = data algo = algos.RunMonthly() # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # end of month target.now = dts[30] assert not algo(target) # new month target.now = dts[31] assert algo(target) algo = algos.RunMonthly( run_on_first_date=False, run_on_end_of_period=True, run_on_last_date=True ) # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # end of month target.now = dts[30] assert algo(target) # new month target.now = dts[31] assert not algo(target) dts = pd.DatetimeIndex([datetime(2016, 1, 3), datetime(2017, 1, 8), datetime(2018, 1, 7)]) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # check next year target.now = dts[1] assert algo(target) def test_run_quarterly(): dts = pd.date_range('2010-01-01', periods=367) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) target = mock.MagicMock() target.data = data algo = algos.RunQuarterly() # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # end of quarter target.now = dts[89] assert not algo(target) # new quarter target.now = dts[90] assert algo(target) algo = algos.RunQuarterly( run_on_first_date=False, run_on_end_of_period=True, run_on_last_date=True ) # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # end of quarter target.now = dts[89] assert algo(target) # new quarter target.now = dts[90] assert not algo(target) dts = pd.DatetimeIndex([datetime(2016, 1, 3), datetime(2017, 1, 8), datetime(2018, 1, 7)]) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # check next year target.now = dts[1] assert algo(target) def test_run_yearly(): dts = pd.date_range('2010-01-01', periods=367) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) target = mock.MagicMock() target.data = data algo = algos.RunYearly() # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # end of year target.now = dts[364] assert not algo(target) # new year target.now = dts[365] assert algo(target) algo = algos.RunYearly( run_on_first_date=False, run_on_end_of_period=True, run_on_last_date=True ) # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # end of year target.now = dts[364] assert algo(target) # new year target.now = dts[365] assert not algo(target) def test_run_on_date(): target = mock.MagicMock() target.now = pd.to_datetime('2010-01-01') algo = algos.RunOnDate('2010-01-01', '2010-01-02') assert algo(target) target.now = pd.to_datetime('2010-01-02') assert algo(target) target.now = pd.to_datetime('2010-01-03') assert not algo(target) def test_rebalance(): algo = algos.Rebalance() s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) s.adjust(1000) s.update(dts[0]) s.temp['weights'] = {'c1': 1} assert algo(s) assert s.value == 1000 assert s.capital == 0 c1 = s['c1'] assert c1.value == 1000 assert c1.position == 10 assert c1.weight == 1. s.temp['weights'] = {'c2': 1} assert algo(s) assert s.value == 1000 assert s.capital == 0 c2 = s['c2'] assert c1.value == 0 assert c1.position == 0 assert c1.weight == 0 assert c2.value == 1000 assert c2.position == 10 assert c2.weight == 1. def test_rebalance_with_commissions(): algo = algos.Rebalance() s = bt.Strategy('s') s.set_commissions(lambda q, p: 1) dts = pd.date_range('2010-01-01', periods=3) data =
pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100)
pandas.DataFrame
from datetime import datetime, timedelta import dateutil import numpy as np import pytest import pytz from pandas._libs.tslibs.ccalendar import DAYS, MONTHS from pandas._libs.tslibs.period import IncompatibleFrequency from pandas.compat import lrange, range, zip import pandas as pd from pandas import DataFrame, Series, Timestamp from pandas.core.indexes.base import InvalidIndexError from pandas.core.indexes.datetimes import date_range from pandas.core.indexes.period import Period, PeriodIndex, period_range from pandas.core.resample import _get_period_range_edges import pandas.util.testing as tm from pandas.util.testing import ( assert_almost_equal, assert_frame_equal, assert_series_equal) import pandas.tseries.offsets as offsets @pytest.fixture() def _index_factory(): return period_range @pytest.fixture def _series_name(): return 'pi' class TestPeriodIndex(object): @pytest.mark.parametrize('freq', ['2D', '1H', '2H']) @pytest.mark.parametrize('kind', ['period', None, 'timestamp']) def test_asfreq(self, series_and_frame, freq, kind): # GH 12884, 15944 # make sure .asfreq() returns PeriodIndex (except kind='timestamp') obj = series_and_frame if kind == 'timestamp': expected = obj.to_timestamp().resample(freq).asfreq() else: start = obj.index[0].to_timestamp(how='start') end = (obj.index[-1] + obj.index.freq).to_timestamp(how='start') new_index = date_range(start=start, end=end, freq=freq, closed='left') expected = obj.to_timestamp().reindex(new_index).to_period(freq) result = obj.resample(freq, kind=kind).asfreq() assert_almost_equal(result, expected) def test_asfreq_fill_value(self, series): # test for fill value during resampling, issue 3715 s = series new_index = date_range(s.index[0].to_timestamp(how='start'), (s.index[-1]).to_timestamp(how='start'), freq='1H') expected = s.to_timestamp().reindex(new_index, fill_value=4.0) result = s.resample('1H', kind='timestamp').asfreq(fill_value=4.0) assert_series_equal(result, expected) frame = s.to_frame('value') new_index = date_range(frame.index[0].to_timestamp(how='start'), (frame.index[-1]).to_timestamp(how='start'), freq='1H') expected = frame.to_timestamp().reindex(new_index, fill_value=3.0) result = frame.resample('1H', kind='timestamp').asfreq(fill_value=3.0) assert_frame_equal(result, expected) @pytest.mark.parametrize('freq', ['H', '12H', '2D', 'W']) @pytest.mark.parametrize('kind', [None, 'period', 'timestamp']) @pytest.mark.parametrize('kwargs', [dict(on='date'), dict(level='d')]) def test_selection(self, index, freq, kind, kwargs): # This is a bug, these should be implemented # GH 14008 rng = np.arange(len(index), dtype=np.int64) df = DataFrame({'date': index, 'a': rng}, index=pd.MultiIndex.from_arrays([rng, index], names=['v', 'd'])) msg = ("Resampling from level= or on= selection with a PeriodIndex is" r" not currently supported, use \.set_index\(\.\.\.\) to" " explicitly set index") with pytest.raises(NotImplementedError, match=msg): df.resample(freq, kind=kind, **kwargs) @pytest.mark.parametrize('month', MONTHS) @pytest.mark.parametrize('meth', ['ffill', 'bfill']) @pytest.mark.parametrize('conv', ['start', 'end']) @pytest.mark.parametrize('targ', ['D', 'B', 'M']) def test_annual_upsample_cases(self, targ, conv, meth, month, simple_period_range_series): ts = simple_period_range_series( '1/1/1990', '12/31/1991', freq='A-%s' % month) result = getattr(ts.resample(targ, convention=conv), meth)() expected = result.to_timestamp(targ, how=conv) expected = expected.asfreq(targ, meth).to_period() assert_series_equal(result, expected) def test_basic_downsample(self, simple_period_range_series): ts = simple_period_range_series('1/1/1990', '6/30/1995', freq='M') result = ts.resample('a-dec').mean() expected = ts.groupby(ts.index.year).mean() expected.index = period_range('1/1/1990', '6/30/1995', freq='a-dec') assert_series_equal(result, expected) # this is ok assert_series_equal(ts.resample('a-dec').mean(), result) assert_series_equal(ts.resample('a').mean(), result) @pytest.mark.parametrize('rule,expected_error_msg', [ ('a-dec', '<YearEnd: month=12>'), ('q-mar', '<QuarterEnd: startingMonth=3>'), ('M', '<MonthEnd>'), ('w-thu', '<Week: weekday=3>') ]) def test_not_subperiod( self, simple_period_range_series, rule, expected_error_msg): # These are incompatible period rules for resampling ts = simple_period_range_series('1/1/1990', '6/30/1995', freq='w-wed') msg = ("Frequency <Week: weekday=2> cannot be resampled to {}, as they" " are not sub or super periods").format(expected_error_msg) with pytest.raises(IncompatibleFrequency, match=msg): ts.resample(rule).mean() @pytest.mark.parametrize('freq', ['D', '2D']) def test_basic_upsample(self, freq, simple_period_range_series): ts = simple_period_range_series('1/1/1990', '6/30/1995', freq='M') result = ts.resample('a-dec').mean() resampled = result.resample(freq, convention='end').ffill() expected = result.to_timestamp(freq, how='end') expected = expected.asfreq(freq, 'ffill').to_period(freq) assert_series_equal(resampled, expected) def test_upsample_with_limit(self): rng = period_range('1/1/2000', periods=5, freq='A') ts = Series(np.random.randn(len(rng)), rng) result = ts.resample('M', convention='end').ffill(limit=2) expected = ts.asfreq('M').reindex(result.index, method='ffill', limit=2) assert_series_equal(result, expected) def test_annual_upsample(self, simple_period_range_series): ts = simple_period_range_series('1/1/1990', '12/31/1995', freq='A-DEC') df = DataFrame({'a': ts}) rdf = df.resample('D').ffill() exp = df['a'].resample('D').ffill() assert_series_equal(rdf['a'], exp) rng = period_range('2000', '2003', freq='A-DEC') ts = Series([1, 2, 3, 4], index=rng) result = ts.resample('M').ffill() ex_index = period_range('2000-01', '2003-12', freq='M') expected = ts.asfreq('M', how='start').reindex(ex_index, method='ffill') assert_series_equal(result, expected) @pytest.mark.parametrize('month', MONTHS) @pytest.mark.parametrize('target', ['D', 'B', 'M']) @pytest.mark.parametrize('convention', ['start', 'end']) def test_quarterly_upsample(self, month, target, convention, simple_period_range_series): freq = 'Q-{month}'.format(month=month) ts = simple_period_range_series('1/1/1990', '12/31/1995', freq=freq) result = ts.resample(target, convention=convention).ffill() expected = result.to_timestamp(target, how=convention) expected = expected.asfreq(target, 'ffill').to_period() assert_series_equal(result, expected) @pytest.mark.parametrize('target', ['D', 'B']) @pytest.mark.parametrize('convention', ['start', 'end']) def test_monthly_upsample(self, target, convention, simple_period_range_series): ts = simple_period_range_series('1/1/1990', '12/31/1995', freq='M') result = ts.resample(target, convention=convention).ffill() expected = result.to_timestamp(target, how=convention) expected = expected.asfreq(target, 'ffill').to_period() assert_series_equal(result, expected) def test_resample_basic(self): # GH3609 s = Series(range(100), index=date_range( '20130101', freq='s', periods=100, name='idx'), dtype='float') s[10:30] = np.nan index = PeriodIndex([ Period('2013-01-01 00:00', 'T'), Period('2013-01-01 00:01', 'T')], name='idx') expected = Series([34.5, 79.5], index=index) result = s.to_period().resample('T', kind='period').mean() assert_series_equal(result, expected) result2 = s.resample('T', kind='period').mean() assert_series_equal(result2, expected) @pytest.mark.parametrize('freq,expected_vals', [('M', [31, 29, 31, 9]), ('2M', [31 + 29, 31 + 9])]) def test_resample_count(self, freq, expected_vals): # GH12774 series = Series(1, index=pd.period_range(start='2000', periods=100)) result = series.resample(freq).count() expected_index = pd.period_range(start='2000', freq=freq, periods=len(expected_vals)) expected = Series(expected_vals, index=expected_index) assert_series_equal(result, expected) def test_resample_same_freq(self, resample_method): # GH12770 series = Series(range(3), index=pd.period_range( start='2000', periods=3, freq='M')) expected = series result = getattr(series.resample('M'), resample_method)() assert_series_equal(result, expected) def test_resample_incompat_freq(self): msg = ("Frequency <MonthEnd> cannot be resampled to <Week: weekday=6>," " as they are not sub or super periods") with pytest.raises(IncompatibleFrequency, match=msg): Series(range(3), index=pd.period_range( start='2000', periods=3, freq='M')).resample('W').mean() def test_with_local_timezone_pytz(self): # see gh-5430 local_timezone = pytz.timezone('America/Los_Angeles') start = datetime(year=2013, month=11, day=1, hour=0, minute=0, tzinfo=pytz.utc) # 1 day later end = datetime(year=2013, month=11, day=2, hour=0, minute=0, tzinfo=pytz.utc) index = pd.date_range(start, end, freq='H') series = Series(1, index=index) series = series.tz_convert(local_timezone) result = series.resample('D', kind='period').mean() # Create the expected series # Index is moved back a day with the timezone conversion from UTC to # Pacific expected_index = (pd.period_range(start=start, end=end, freq='D') - offsets.Day()) expected = Series(1, index=expected_index) assert_series_equal(result, expected) def test_resample_with_pytz(self): # GH 13238 s = Series(2, index=pd.date_range('2017-01-01', periods=48, freq="H", tz="US/Eastern")) result = s.resample("D").mean() expected = Series(2, index=pd.DatetimeIndex(['2017-01-01', '2017-01-02'], tz="US/Eastern")) assert_series_equal(result, expected) # Especially assert that the timezone is LMT for pytz assert result.index.tz == pytz.timezone('US/Eastern') def test_with_local_timezone_dateutil(self): # see gh-5430 local_timezone = 'dateutil/America/Los_Angeles' start = datetime(year=2013, month=11, day=1, hour=0, minute=0, tzinfo=dateutil.tz.tzutc()) # 1 day later end = datetime(year=2013, month=11, day=2, hour=0, minute=0, tzinfo=dateutil.tz.tzutc()) index = pd.date_range(start, end, freq='H', name='idx') series = Series(1, index=index) series = series.tz_convert(local_timezone) result = series.resample('D', kind='period').mean() # Create the expected series # Index is moved back a day with the timezone conversion from UTC to # Pacific expected_index = (pd.period_range(start=start, end=end, freq='D', name='idx') - offsets.Day()) expected = Series(1, index=expected_index) assert_series_equal(result, expected) def test_resample_nonexistent_time_bin_edge(self): # GH 19375 index = date_range('2017-03-12', '2017-03-12 1:45:00', freq='15T') s = Series(np.zeros(len(index)), index=index) expected = s.tz_localize('US/Pacific') result = expected.resample('900S').mean() tm.assert_series_equal(result, expected) # GH 23742 index = date_range(start='2017-10-10', end='2017-10-20', freq='1H') index = index.tz_localize('UTC').tz_convert('America/Sao_Paulo') df = DataFrame(data=list(range(len(index))), index=index) result = df.groupby(pd.Grouper(freq='1D')).count() expected = date_range(start='2017-10-09', end='2017-10-20', freq='D', tz="America/Sao_Paulo", nonexistent='shift_forward', closed='left')
tm.assert_index_equal(result.index, expected)
pandas.util.testing.assert_index_equal
import numpy as np import pandas as pd import pickle from pathlib import Path import covid19 from COVID19.model import AgeGroupEnum, EVENT_TYPES, TransmissionTypeEnum from COVID19.model import Model, Parameters, ModelParameterException import COVID19.simulation as simulation from analysis_utils import ranker_I, check_fn_I, ranker_IR, check_fn_IR, roc_curve, events_list from abm_utils import status_to_state, listofhouses, dummy_logger, quarantine_households #import sib #import greedy_Rank def loop_abm(params, inference_algo, logger = dummy_logger(), input_parameter_file = "./abm_params/baseline_parameters.csv", household_demographics_file = "./abm_params/baseline_household_demographics.csv", parameter_line_number = 1, seed=1, initial_steps = 0, num_test_random = 50, num_test_algo = 50, fraction_SM_obs = 0.2, fraction_SS_obs = 1, quarantine_HH = False, test_HH = False, name_file_res = "res", output_dir = "./output/", save_every_iter = 5, stop_zero_I = True, adoption_fraction = 1.0, fp_rate = 0.0, fn_rate = 0.0, smartphone_users_abm = False, # if True use app users fraction from OpenABM model callback = lambda x : None, data = {} ): ''' Simulate interventions strategy on the openABM epidemic simulation. input ----- params: Dict Dictonary with openABM to set inference_algo: Class (rank_template) Class for order the nodes according to the prob to be infected logger = logger for printing intermediate steps results: print on file true configurations and transmission ''' params_model = Parameters(input_parameter_file, parameter_line_number, output_dir, household_demographics_file) ### create output_dir if missing fold_out = Path(output_dir) if not fold_out.exists(): fold_out.mkdir(parents=True) ### initialize a separate random stream rng = np.random.RandomState() rng.seed(seed) ### initialize ABM model for k, val in params.items(): params_model.set_param(k, val) model = Model(params_model) model = simulation.COVID19IBM(model=model) T = params_model.get_param("end_time") N = params_model.get_param("n_total") sim = simulation.Simulation(env=model, end_time=T, verbose=False) house = covid19.get_house(model.model.c_model) housedict = listofhouses(house) has_app = covid19.get_app_users(model.model.c_model) if smartphone_users_abm else np.ones(N,dtype = int) has_app &= (rng.random(N) <= adoption_fraction) ### init data and data_states data_states = {} data_states["true_conf"] = np.zeros((T,N)) data_states["statuses"] = np.zeros((T,N)) data_states["tested_algo"] = [] data_states["tested_random"] = [] data_states["tested_SS"] = [] data_states["tested_SM"] = [] for name in ["num_quarantined", "q_SS", "q_SM", "q_algo", "q_random", "q_all", "infected_free", "S", "I", "R", "IR", "aurI", "prec1%", "prec5%", "test_+", "test_-", "test_f+", "test_f-"]: data[name] = np.full(T,np.nan) data["logger"] = logger ### init inference algo inference_algo.init(N, T) ### running variables indices = np.arange(N, dtype=int) excluded = np.zeros(N, dtype=bool) daily_obs = [] all_obs = [] all_quarantined = [] freebirds = 0 num_quarantined = 0 fp_num = 0 fn_num = 0 p_num = 0 n_num = 0 noise_SM = rng.random(N) nfree = params_model.get_param("n_seed_infection") for t in range(T): ### advance one time step sim.steps(1) status = np.array(covid19.get_state(model.model.c_model)) state = status_to_state(status) data_states["true_conf"][t] = state nS, nI, nR = (state == 0).sum(), (state == 1).sum(), (state == 2).sum() if nI == 0 and stop_zero_I: logger.info("stopping simulation as there are no more infected individuals") break if t == initial_steps: logger.info("\nobservation-based inference algorithm starts now\n") logger.info(f'time:{t}') ### extract contacts daily_contacts = covid19.get_contacts_daily(model.model.c_model, t) logger.info(f"number of unique contacts: {len(daily_contacts)}") ### compute potential test results for all if fp_rate or fn_rate: noise = rng.random(N) f_state = (state==1)*(noise > fn_rate) + (state==0)*(noise < fp_rate) + 2*(state==2) else: f_state = state to_quarantine = [] all_test = [] excluded_now = excluded.copy() fp_num_today = 0 fn_num_today = 0 p_num_today = 0 n_num_today = 0 def test_and_quarantine(rank, num): nonlocal to_quarantine, excluded_now, all_test, fp_num_today, fn_num_today, p_num_today, n_num_today test_rank = [] for i in rank: if len(test_rank) == num: break; if excluded_now[i]: continue test_rank += [i] if f_state[i] == 1: p_num_today += 1 if state[i] != 1: fp_num_today += 1 q = housedict[house[i]] if quarantine_HH else [i] excluded_now[q] = True to_quarantine += q excluded[q] = True if test_HH: all_test += q else: all_test += [i] else: n_num_today += 1 if state[i] == 1: fn_num_today += 1 excluded_now[i] = True all_test += [i] return test_rank ### compute rank from algorithm num_test_algo_today = num_test_algo if t < initial_steps: daily_obs = [] num_test_algo_today = 0 weighted_contacts = [(c[0], c[1], c[2], 2.0 if c[3] == 0 else 1.0) for c in daily_contacts if (has_app[c[0]] and has_app[c[1]])] if nfree == 0 and quarantine_HH: print("faster end") rank_algo = np.zeros((N,2)) rank_algo[:, 0]=np.arange(N) rank_algo[:, 1]=np.random.rand(N) else: rank_algo = inference_algo.rank(t, weighted_contacts, daily_obs, data) rank = np.array(sorted(rank_algo, key= lambda tup: tup[1], reverse=True)) rank = [int(tup[0]) for tup in rank] ### test num_test_algo_today individuals test_algo = test_and_quarantine(rank, num_test_algo_today) ### compute roc now, only excluding past tests eventsI = events_list(t, [(i,1,t) for (i,tf) in enumerate(excluded) if tf], data_states["true_conf"], check_fn = check_fn_I) xI, yI, aurI, sortlI = roc_curve(dict(rank_algo), eventsI, lambda x: x) ### test all SS SS = test_and_quarantine(indices[status == 4], N) ### test a fraction of SM SM = indices[(status == 5) & (noise_SM < fraction_SM_obs)] SM = test_and_quarantine(SM, len(SM)) ### do num_test_random extra random tests test_random = test_and_quarantine(rng.permutation(N), num_test_random) ### quarantine infected individuals num_quarantined += len(to_quarantine) covid19.intervention_quarantine_list(model.model.c_model, to_quarantine, T+1) ### update observations daily_obs = [(int(i), int(f_state[i]), int(t)) for i in all_test] all_obs += daily_obs ### exclude forever nodes that are observed recovered rec = [i[0] for i in daily_obs if f_state[i[0]] == 2] excluded[rec] = True ### update data data_states["tested_algo"].append(test_algo) data_states["tested_random"].append(test_random) data_states["tested_SS"].append(SS) data_states["tested_SM"].append(SM) data_states["statuses"][t] = status data["S"][t] = nS data["I"][t] = nI data["R"][t] = nR data["IR"][t] = nR+nI data["aurI"][t] = aurI prec = lambda f: yI[int(f/100*len(yI))]/int(f/100*len(yI)) if len(yI) else np.nan ninfq = sum(state[to_quarantine]>0) nfree = int(nI - sum(excluded[state == 1])) data["aurI"][t] = aurI data["prec1%"][t] = prec(1) data["prec5%"][t] = prec(5) data["num_quarantined"][t] = num_quarantined data["test_+"][t] = p_num data["test_-"][t] = n_num data["test_f+"][t] = fp_num data["test_f-"][t] = fn_num data["q_SS"][t] = len(SS) data["q_SM"][t] = len(SM) sus_test_algo = sum(state[test_algo]==0) inf_test_algo = sum(state[test_algo]==1) rec_test_algo = sum(state[test_algo]==2) inf_test_random = sum(state[test_random]==1) data["q_algo"][t] = inf_test_algo data["q_random"][t] = sum(state[test_random]==1) data["infected_free"][t] = nfree asbirds = 'a bird' if nfree == 1 else 'birds' fp_num += fp_num_today fn_num += fn_num_today n_num += n_num_today p_num += p_num_today ### show output logger.info(f"True : (S,I,R): ({nS:.1f}, {nI:.1f}, {nR:.1f})") logger.info(f"AUR_I : {aurI:.3f}, prec(1% of {len(yI)}): {prec(1):.2f}, prec5%: {prec(5):.2f}") logger.info(f"SS: {len(SS)}, SM: {len(SM)}, results test algo (S,I,R): ({sus_test_algo},{inf_test_algo},{rec_test_algo}), infected test random: {inf_test_random}/{num_test_random}") logger.info(f"false+: {fp_num} (+{fp_num_today}), false-: {fn_num} (+{fn_num_today})") logger.info(f"...quarantining {len(to_quarantine)} guys -> got {ninfq} infected, {nfree} free as {asbirds} ({nfree-freebirds:+d})") freebirds = nfree ### callback callback(data) if t % save_every_iter == 0: df_save = pd.DataFrame.from_records(data, exclude=["logger"]) df_save.to_csv(output_dir + name_file_res + "_res.gz") # save files df_save = pd.DataFrame.from_records(data, exclude=["logger"]) df_save.to_csv(output_dir + name_file_res + "_res.gz") with open(output_dir + name_file_res + "_states.pkl", mode="wb") as f_states: pickle.dump(data_states, f_states) sim.env.model.write_individual_file() df_indiv =
pd.read_csv(output_dir+"individual_file_Run1.csv", skipinitialspace = True)
pandas.read_csv
import glob import os import sys # these imports and usings need to be in the same order sys.path.insert(0, "../") sys.path.insert(0, "TP_model") sys.path.insert(0, "TP_model/fit_and_forecast") from Reff_functions import * from Reff_constants import * from sys import argv from datetime import timedelta, datetime from scipy.special import expit import matplotlib.pyplot as plt import numpy as np import pandas as pd import matplotlib matplotlib.use("Agg") def forecast_TP(data_date): from scenarios import scenarios, scenario_dates from params import ( num_forecast_days, alpha_start_date, delta_start_date, omicron_start_date, truncation_days, start_date, sim_start_date, third_start_date, mob_samples, ) data_date = pd.to_datetime(data_date) # Define inputs sim_start_date = pd.to_datetime(sim_start_date) # Add 3 days buffer to mobility forecast num_forecast_days = num_forecast_days + 3 # data_date = pd.to_datetime('2022-01-25') print("============") print("Generating forecasts using data from", data_date) print("============") # convert third start date to the correct format third_start_date = pd.to_datetime(third_start_date) third_end_date = data_date - timedelta(truncation_days) # a different end date to deal with issues in fitting third_end_date_diff = data_date - timedelta(18 + 7 + 7) third_states = sorted(["NSW", "VIC", "ACT", "QLD", "SA", "TAS", "NT", "WA"]) # third_states = sorted(['NSW', 'VIC', 'ACT', 'QLD', 'SA', 'NT']) # choose dates for each state for third wave # NOTE: These need to be in date sorted order third_date_range = { "ACT": pd.date_range(start="2021-08-15", end=third_end_date).values, "NSW": pd.date_range(start="2021-06-25", end=third_end_date).values, "NT": pd.date_range(start="2021-12-20", end=third_end_date).values, "QLD": pd.date_range(start="2021-07-30", end=third_end_date).values, "SA": pd.date_range(start="2021-12-10", end=third_end_date).values, "TAS": pd.date_range(start="2021-12-20", end=third_end_date).values, "VIC": pd.date_range(start="2021-07-10", end=third_end_date).values, "WA": pd.date_range(start="2022-01-01", end=third_end_date).values, } # Get Google Data - Don't use the smoothed data? df_google_all = read_in_google(Aus_only=True, moving=True, local=True) third_end_date = pd.to_datetime(data_date) - pd.Timedelta(days=truncation_days) results_dir = ( "results/" + data_date.strftime("%Y-%m-%d") + "/" ) # Load in vaccination data by state and date which should have the same date as the # NNDSS/linelist data use the inferred VE vaccination_by_state_delta = pd.read_csv( results_dir + "adjusted_vaccine_ts_delta" + data_date.strftime("%Y-%m-%d") + ".csv", parse_dates=["date"], ) vaccination_by_state_delta = vaccination_by_state_delta[["state", "date", "effect"]] vaccination_by_state_delta = vaccination_by_state_delta.pivot( index="state", columns="date", values="effect" ) # Convert to matrix form # Convert to simple array for indexing vaccination_by_state_delta_array = vaccination_by_state_delta.to_numpy() vaccination_by_state_omicron = pd.read_csv( results_dir + "adjusted_vaccine_ts_omicron" + data_date.strftime("%Y-%m-%d") + ".csv", parse_dates=["date"], ) vaccination_by_state_omicron = vaccination_by_state_omicron[["state", "date", "effect"]] vaccination_by_state_omicron = vaccination_by_state_omicron.pivot( index="state", columns="date", values="effect" ) # Convert to matrix form # Convert to simple array for indexing vaccination_by_state_omicron_array = vaccination_by_state_omicron.to_numpy() # Get survey data surveys = pd.DataFrame() path = "data/md/Barometer wave*.csv" for file in glob.glob(path): surveys = surveys.append(pd.read_csv(file, parse_dates=["date"])) surveys = surveys.sort_values(by="date") print("Latest microdistancing survey is {}".format(surveys.date.values[-1])) surveys.loc[surveys.state != "ACT", "state"] = ( surveys.loc[surveys.state != "ACT", "state"] .map(states_initials) .fillna(surveys.loc[surveys.state != "ACT", "state"]) ) surveys["proportion"] = surveys["count"] / surveys.respondents surveys.date = pd.to_datetime(surveys.date) always = surveys.loc[surveys.response == "Always"].set_index(["state", "date"]) always = always.unstack(["state"]) # fill in date range idx = pd.date_range("2020-03-01", pd.to_datetime("today")) always = always.reindex(idx, fill_value=np.nan) always.index.name = "date" always = always.fillna(method="bfill") always = always.stack(["state"]) # Zero out before first survey 20th March always = always.reset_index().set_index("date") always.loc[:"2020-03-20", "count"] = 0 always.loc[:"2020-03-20", "respondents"] = 0 always.loc[:"2020-03-20", "proportion"] = 0 always = always.reset_index().set_index(["state", "date"]) survey_X = pd.pivot_table( data=always, index="date", columns="state", values="proportion" ) prop_all = survey_X ## read in and process mask wearing data mask_wearing = pd.DataFrame() path = "data/face_coverings/face_covering_*_.csv" for file in glob.glob(path): mask_wearing = mask_wearing.append(pd.read_csv(file, parse_dates=["date"])) mask_wearing = mask_wearing.sort_values(by="date") print("Latest mask wearing survey is {}".format(mask_wearing.date.values[-1])) # mask_wearing['state'] = mask_wearing['state'].map(states_initials).fillna(mask_wearing['state']) mask_wearing.loc[mask_wearing.state != "ACT", "state"] = ( mask_wearing.loc[mask_wearing.state != "ACT", "state"] .map(states_initials) .fillna(mask_wearing.loc[mask_wearing.state != "ACT", "state"]) ) mask_wearing["proportion"] = mask_wearing["count"] / mask_wearing.respondents mask_wearing.date = pd.to_datetime(mask_wearing.date) mask_wearing_always = mask_wearing.loc[ mask_wearing.face_covering == "Always" ].set_index(["state", "date"]) mask_wearing_always = mask_wearing_always.unstack(["state"]) idx = pd.date_range("2020-03-01", pd.to_datetime("today")) mask_wearing_always = mask_wearing_always.reindex(idx, fill_value=np.nan) mask_wearing_always.index.name = "date" # fill back to earlier and between weeks. # Assume survey on day x applies for all days up to x - 6 mask_wearing_always = mask_wearing_always.fillna(method="bfill") mask_wearing_always = mask_wearing_always.stack(["state"]) # Zero out before first survey 20th March mask_wearing_always = mask_wearing_always.reset_index().set_index("date") mask_wearing_always.loc[:"2020-03-20", "count"] = 0 mask_wearing_always.loc[:"2020-03-20", "respondents"] = 0 mask_wearing_always.loc[:"2020-03-20", "proportion"] = 0 mask_wearing_X = pd.pivot_table( data=mask_wearing_always, index="date", columns="state", values="proportion" ) mask_wearing_all = mask_wearing_X # Get posterior df_samples = read_in_posterior( date=data_date.strftime("%Y-%m-%d"), ) states = sorted(["NSW", "QLD", "SA", "VIC", "TAS", "WA", "ACT", "NT"]) plot_states = states.copy() one_month = data_date + timedelta(days=num_forecast_days) days_from_March = (one_month - pd.to_datetime(start_date)).days # filter out future info prop = prop_all.loc[:data_date] masks = mask_wearing_all.loc[:data_date] df_google = df_google_all.loc[df_google_all.date <= data_date] # use this trick of saving the google data and then reloading it to kill # the date time values df_google.to_csv("results/test_google_data.csv") df_google = pd.read_csv("results/test_google_data.csv") # remove the temporary file # os.remove("results/test_google_data.csv") # Simple interpolation for missing vlaues in Google data df_google = df_google.interpolate(method="linear", axis=0) df_google.date = pd.to_datetime(df_google.date) # forecast time parameters today = data_date.strftime("%Y-%m-%d") # add days to forecast if we are missing data if df_google.date.values[-1] < data_date: n_forecast = num_forecast_days + (data_date - df_google.date.values[-1]).days else: n_forecast = num_forecast_days training_start_date = datetime(2020, 3, 1, 0, 0) print( "Forecast ends at {} days after 1st March".format( (pd.to_datetime(today) - pd.to_datetime(training_start_date)).days + num_forecast_days ) ) print( "Final date is {}".format(pd.to_datetime(today) + timedelta(days=num_forecast_days)) ) df_google = df_google.loc[df_google.date >= training_start_date] outdata = {"date": [], "type": [], "state": [], "mean": [], "std": []} predictors = mov_values.copy() # predictors.remove("residential_7days") # Setup Figures axes = [] figs = [] for var in predictors: fig, ax_states = plt.subplots(figsize=(7, 8), nrows=4, ncols=2, sharex=True) axes.append(ax_states) # fig.suptitle(var) figs.append(fig) # extra fig for microdistancing var = "Proportion people always microdistancing" fig, ax_states = plt.subplots(figsize=(7, 8), nrows=4, ncols=2, sharex=True) axes.append(ax_states) figs.append(fig) # # extra fig for mask wearing var = "Proportion people always wearing masks" fig, ax_states = plt.subplots(figsize=(7, 8), nrows=4, ncols=2, sharex=True) axes.append(ax_states) figs.append(fig) var = "Reduction in Reff due to vaccination" fig, ax_states = plt.subplots(figsize=(7, 8), nrows=4, ncols=2, sharex=True) axes.append(ax_states) figs.append(fig) var = "Reduction in Reff due to vaccination" fig, ax_states = plt.subplots(figsize=(7, 8), nrows=4, ncols=2, sharex=True) axes.append(ax_states) figs.append(fig) # Forecasting Params n_training = 21 # Period to examine trend n_baseline = 150 # Period to create baseline n_training_vaccination = 30 # period to create trend for vaccination # since this can be useful, predictor ordering is: # [ # 'retail_and_recreation_7days', # 'grocery_and_pharmacy_7days', # 'parks_7days', # 'transit_stations_7days', # 'workplaces_7days' # ] # Loop through states and run forecasting. print("============") print("Forecasting macro, micro and vaccination") print("============") state_Rmed = {} state_sims = {} for i, state in enumerate(states): rownum = int(i / 2) colnum = np.mod(i, 2) rows = df_google.loc[df_google.state == state].shape[0] # Rmed currently a list, needs to be a matrix Rmed_array = np.zeros(shape=(rows, len(predictors), mob_samples)) for j, var in enumerate(predictors): for n in range(mob_samples): # historically we want a little more noise. In the actual forecasting of trends # we don't want this to be quite that prominent. Rmed_array[:, j, n] = df_google[df_google["state"] == state][ var ].values.T + np.random.normal( loc=0, scale=df_google[df_google["state"] == state][var + "_std"] ) dates = df_google[df_google["state"] == state]["date"] # cap min and max at historical or (-50,0) # 1 by predictors by mob_samples size minRmed_array = np.minimum(-50, np.amin(Rmed_array, axis=0)) maxRmed_array = np.maximum(10, np.amax(Rmed_array, axis=0)) # days by predictors by samples sims = np.zeros(shape=(n_forecast, len(predictors), mob_samples)) for n in range(mob_samples): # Loop through simulations Rmed = Rmed_array[:, :, n] minRmed = minRmed_array[:, n] maxRmed = maxRmed_array[:, n] if maxRmed[1] < 20: maxRmed[1] = 50 R_baseline_mean = np.mean(Rmed[-n_baseline:, :], axis=0) if state not in {"WA"}: R_baseline_mean[-1] = 0 R_diffs = np.diff(Rmed[-n_training:, :], axis=0) mu = np.mean(R_diffs, axis=0) cov = np.cov(R_diffs, rowvar=False) # columns are vars, rows are obs # Forecast mobility forward sequentially by day. # current = np.mean(Rmed[-9:-2, :], axis=0) # Start from last valid days # current = np.mean(Rmed[-1, :], axis=0) # Start from last valid days current = Rmed[-1, :] # Start from last valid days for i in range(n_forecast): # ## SCENARIO MODELLING # This code chunk will allow you manually set the distancing params for a state to allow for modelling. if scenarios[state] == "": # Proportion of trend_force to regression_to_baseline_force p_force = (n_forecast - i) / (n_forecast) # Generate a single forward realisation of trend trend_force = np.random.multivariate_normal(mu, cov) # Generate a single forward realisation of baseline regression # regression to baseline force stronger in standard forecasting regression_to_baseline_force = np.random.multivariate_normal( 0.05 * (R_baseline_mean - current), cov ) new_forcast_points = ( current + p_force * trend_force + (1 - p_force) * regression_to_baseline_force ) # Find overall simulation step # Apply minimum and maximum new_forcast_points = np.maximum(minRmed, new_forcast_points) new_forcast_points = np.minimum(maxRmed, new_forcast_points) current = new_forcast_points elif scenarios[state] != "": # Make baseline cov for generating points cov_baseline = np.cov(Rmed[-42:-28, :], rowvar=False) mu_current = Rmed[-1, :] mu_victoria = np.array( [ -55.35057887, -22.80891056, -46.59531636, -75.99942378, -44.71119293, ] ) mu_baseline = np.mean(Rmed[-42:-28, :], axis=0) # mu_baseline = 0*np.mean(Rmed[-42:-28, :], axis=0) if scenario_dates[state] != "": scenario_change_point = ( pd.to_datetime(scenario_dates[state]) - data_date ).days + (n_forecast - 42) # Constant Lockdown if ( scenarios[state] == "no_reversion" or scenarios[state] == "school_opening_2022" ): # take a continuous median to account for noise in recent observations (such as sunny days) # mu_current = np.mean(Rmed[-7:, :], axis=0) # cov_baseline = np.cov(Rmed[-28:, :], rowvar=False) new_forcast_points = np.random.multivariate_normal( mu_current, cov_baseline ) elif scenarios[state] == "no_reversion_continuous_lockdown": # add the new scenario here new_forcast_points = np.random.multivariate_normal( mu_current, cov_baseline ) # No Lockdown elif scenarios[state] == "full_reversion": # a full reversion scenario changes the social mobility and microdistancing # behaviours at the scenario change date and then applies a return to baseline force if i < scenario_change_point: new_forcast_points = np.random.multivariate_normal( mu_current, cov_baseline ) else: # baseline is within lockdown period so take a new baseline of 0's and trend towards this R_baseline_0 = np.zeros_like(R_baseline_mean) R_baseline_0 = mu_baseline # set adjusted baselines by eyeline for now, need to get this automated # R_baseline_0[1] = 10 # baseline of +10% for Grocery based on other jurisdictions # # apply specific baselines to the jurisdictions progressing towards normal restrictions # if state == 'NSW': # R_baseline_0[3] = -25 # baseline of -25% for Transit based on 2021-April to 2021-July (pre-third-wave lockdowns) # elif state == 'ACT': # R_baseline_0[1] = 20 # baseline of +20% for Grocery based on other jurisdictions # R_baseline_0[3] = -25 # baseline of -25% for Transit based on 2021-April to 2021-July (pre-third-wave lockdowns) # elif state == 'VIC': # R_baseline_0[0] = -15 # baseline of -15% for R&R based on 2021-April to 2021-July (pre-third-wave lockdowns) # R_baseline_0[3] = -30 # baseline of -30% for Transit based on 2021-April to 2021-July (pre-third-wave lockdowns) # R_baseline_0[4] = -15 # baseline of -15% for workplaces based on 2021-April to 2021-July (pre-third-wave lockdowns) # the force we trend towards the baseline above with p_force = (n_forecast - i) / (n_forecast) trend_force = np.random.multivariate_normal( mu, cov ) # Generate a single forward realisation of trend # baseline scalar is smaller for this as we want slow returns adjusted_baseline_drift_mean = R_baseline_0 - current # we purposely scale the transit measure so that we increase a little more quickly # tmp = 0.05 * adjusted_baseline_drift_mean[3] adjusted_baseline_drift_mean *= 0.005 # adjusted_baseline_drift_mean[3] = tmp regression_to_baseline_force = np.random.multivariate_normal( adjusted_baseline_drift_mean, cov ) # Generate a single forward realisation of baseline regression new_forcast_points = ( current + p_force * trend_force + (1 - p_force) * regression_to_baseline_force ) # Find overall simulation step # new_forcast_points = current + regression_to_baseline_force # Find overall simulation step # Apply minimum and maximum new_forcast_points = np.maximum(minRmed, new_forcast_points) new_forcast_points = np.minimum(maxRmed, new_forcast_points) current = new_forcast_points elif scenarios[state] == "immediately_baseline": # this scenario is used to return instantly to the baseline levels if i < scenario_change_point: new_forcast_points = np.random.multivariate_normal( mu_current, cov_baseline ) else: # baseline is within lockdown period so take a new baseline of 0's and trend towards this R_baseline_0 = np.zeros_like(R_baseline_mean) # jump immediately to baseline new_forcast_points = np.random.multivariate_normal( R_baseline_0, cov_baseline ) # Temporary Lockdown elif scenarios[state] == "half_reversion": if i < scenario_change_point: new_forcast_points = np.random.multivariate_normal( mu_current, cov_baseline ) else: new_forcast_points = np.random.multivariate_normal( (mu_current + mu_baseline) / 2, cov_baseline ) # Stage 4 elif scenarios[state] == "stage4": if i < scenario_change_point: new_forcast_points = np.random.multivariate_normal( mu_current, cov_baseline ) else: new_forcast_points = np.random.multivariate_normal( mu_victoria, cov_baseline ) # Set this day in this simulation to the forecast realisation sims[i, :, n] = new_forcast_points dd = [dates.tolist()[-1] + timedelta(days=x) for x in range(1, n_forecast + 1)] sims_med = np.median(sims, axis=2) # N by predictors sims_q25 = np.percentile(sims, 25, axis=2) sims_q75 = np.percentile(sims, 75, axis=2) # forecast mircodistancing # Get a baseline value of microdistancing mu_overall = np.mean(prop[state].values[-n_baseline:]) md_diffs = np.diff(prop[state].values[-n_training:]) mu_diffs = np.mean(md_diffs) std_diffs = np.std(md_diffs) extra_days_md = ( pd.to_datetime(df_google.date.values[-1]) -
pd.to_datetime(prop[state].index.values[-1])
pandas.to_datetime
import json from datetime import datetime from io import BytesIO import matplotlib as mpl import numpy as np import pandas as pd import requests from matplotlib import pyplot as plt def get_weather_df(username, password, port, url, zipcode): line = 'https://'+username+':'+password+'@<EMAIL>:'+port+'/api/weather/v1/location/'+zipcode+'%3A4%3AUS/forecast/hourly/48hour.json?units=m&language=en-US' raw = requests.get(line) weather = json.loads(raw.text) df = pd.DataFrame.from_dict(weather['forecasts'][0],orient='index').transpose() for forecast in weather['forecasts'][1:]: df = pd.concat([df, pd.DataFrame.from_dict(forecast,orient='index').transpose()]) time = np.array(df['fcst_valid_local']) for row in range(len(time)): time[row] = datetime.strptime(time[row], '%Y-%m-%dT%H:%M:%S%z') df = df.set_index(time) return df def get_weather_plots(df): plt.ioff() df['rain'] = df['pop'].as_matrix() tmean = pd.rolling_mean(df['temp'], window=4, center=True) rhmean =
pd.rolling_mean(df['rh'], window=4, center=True)
pandas.rolling_mean
#!/usr/bin/env python3 import warnings import glob from pathlib import Path ## for os-agnostic paths import pandas as pd from mendeleev import get_table from ase import data as ase_data from pymatgen import Element HERE = Path(__file__).parent def gather_ptable_dataframe(): df_list = [] ## get properties in csv (retrieved from magpie project, imat project, and wikipedia) all_files = glob.glob(str(HERE/"*"/"*.csv")) for filename in all_files: prop = str(Path(filename).stem) source = str(Path(filename).parent.stem) name = source + "_" + prop tmp_df = pd.read_csv(filename, names=[name]) valid_0_list = [ "valence", "valence_s", "valence_p", "valence_d", "valence_f", "unfilled", "unfilled_f", "unfilled_d", "electron_affinity", "electronegativity", "magnetic_moment", ] if not prop in valid_0_list: tmp_df = tmp_df[name].apply(lambda x: None if x==0 else x) df_list.append(tmp_df) ## get ase magnetic moments magmom_list = ase_data.ground_state_magnetic_moments tmp_df =
pd.DataFrame(magmom_list, columns=["ase_magnetic_moment"])
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Thu Nov 17 14:45:46 2016 @author: ernestmordret """ import pandas as pd import numpy as np import os from matplotlib import pyplot as plt import seaborn as sns # from params import output_dir import logging def create_logger(): logger = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) return logger def hamming(s1, s2): return sum(a != b for a, b in zip(s1, s2)) def get_codon_table(codons, amino_acids): return dict(list(zip(codons, amino_acids))) def get_inverted_codon_table(ct): inv_codon_table = {} for k, v in ct.items(): inv_codon_table[v] = inv_codon_table.get(v, []) inv_codon_table[v].append(k) return inv_codon_table def prepare_count_matrix(df, codons, codon_table, inverted_codon_table, exact_PTM_spec_list): matrix = pd.DataFrame( data=0, index=codons, columns=list("ACDEFGHKLMNPQRSTVWY"), dtype=float ) df = df[df["DP Decoy"] != "+"] df = df[pd.notnull(df["codon"])] df["codon"] = df["codon"].map(lambda x: x.replace("T", "U")) for label in matrix.index: if codon_table[label] == "*": matrix.loc[label] = float("NaN") for col in matrix.columns: if (label in inverted_codon_table[col]) or ( codon_table[label] + " to " + col in exact_PTM_spec_list ): matrix.loc[label, col] = float("NaN") subs_agg = pd.DataFrame( np.array( list( zip( *list( df.groupby( ["protein", "position", "origin", "destination", "codon"] ).groups.keys() ) ) ) ).T, columns=["protein", "position", "origin", "destination", "codon"], ) for x, l in list(subs_agg.groupby(["codon", "destination"]).groups.items()): codon, destination = x if (codon in matrix.index) and pd.notnull(matrix.loc[codon, destination]): matrix.loc[codon, destination] = len(l) matrix.rename(columns={"L": "I/L"}, inplace=True) return matrix def probe_mismatch(codon1, codon2, pos, spec): origin, destination = spec for i in range(3): if i == pos: if codon1[i] != origin or codon2[i] != destination: return False else: if codon1[i] != codon2[i]: return False return True def main(param_dict): logger = create_logger() logger.info('Plotting heatmap ...') bases = "UCAG" codons = [a + b + c for a in bases for b in bases for c in bases] amino_acids = "FFLLSSSSYY**CC*WLLLLPPPPHHQQRRRRIIIMTTTTNNKKSSRRVVVVAAAADDEEGGGG" RC = {"A": "U", "C": "G", "G": "C", "U": "A"} codon_table = get_codon_table(codons, amino_acids) inverted_codon_table = get_inverted_codon_table(codon_table) inverted_codon_table["L"] = inverted_codon_table["L"] + inverted_codon_table["I"] tol = 0.005 MW_dict = { "G": 57.02147, "A": 71.03712, "S": 87.03203, "P": 97.05277, "V": 99.06842, "T": 101.04768, "I": 113.08407, "L": 113.08407, "N": 114.04293, "D": 115.02695, "Q": 128.05858, "K": 128.09497, "E": 129.0426, "M": 131.04049, "H": 137.05891, "F": 147.06842, "R": 156.10112, "C": 160.030654, # CamCys "Y": 163.0633, "W": 186.07932, } aas_sorted_by_mass = [i[0] for i in sorted(list(MW_dict.items()), key=lambda x: x[1])] danger_mods =
pd.read_pickle("danger_mods")
pandas.read_pickle
import os from io import StringIO from pathlib import Path import pandas as pd import pandas._testing as pt import pytest from pyplotutil.datautil import Data, DataSet csv_dir_path = os.path.join(os.path.dirname(__file__), "data") test_data = """\ a,b,c,d,e 1,0.01,10.0,3.5,100 2,0.02,20.0,7.5,200 3,0.03,30.0,9.5,300 4,0.04,40.0,11.5,400 """ test_dataset = """\ tag,a,b,c,d,e tag01,0,1,2,3,4 tag01,5,6,7,8,9 tag01,10,11,12,13,14 tag01,15,16,17,18,19 tag01,20,21,22,23,24 tag01,25,26,27,28,29 tag02,10,11,12,13,14 tag02,15,16,17,18,19 tag02,110,111,112,113,114 tag02,115,116,117,118,119 tag02,120,121,122,123,124 tag02,125,126,127,128,129 tag03,20,21,22,23,24 tag03,25,26,27,28,29 tag03,210,211,212,213,214 tag03,215,216,217,218,219 tag03,220,221,222,223,224 tag03,225,226,227,228,229 """ @pytest.mark.parametrize("cls", [str, Path]) def test_data_init_path(cls) -> None: csv_path = os.path.join(csv_dir_path, "test.csv") path = cls(csv_path) expected_df = pd.read_csv(csv_path) data = Data(path) assert data.datapath == Path(csv_path) pt.assert_frame_equal(data.dataframe, expected_df) def test_data_init_StringIO() -> None: csv_path = os.path.join(csv_dir_path, "test.csv") expected_df = pd.read_csv(csv_path) data = Data(StringIO(test_data)) assert data.datapath is None pt.assert_frame_equal(data.dataframe, expected_df) def test_data_init_DataFrame() -> None: csv_path = os.path.join(csv_dir_path, "test.csv") expected_df = pd.read_csv(csv_path) if isinstance(expected_df, pd.DataFrame): data = Data(expected_df) assert data.datapath is None pt.assert_frame_equal(data.dataframe, expected_df) else: pytest.skip(f"Expected DataFram type: {type(expected_df)}") def test_data_init_kwds() -> None: csv_path = os.path.join(csv_dir_path, "test.csv") expected_df = pd.read_csv(csv_path, usecols=[0, 1]) data = Data(csv_path, usecols=[0, 1]) assert len(data.dataframe.columns) == 2 pt.assert_frame_equal(data.dataframe, expected_df) def test_data_getitem() -> None: df = pd.DataFrame([[0, 1, 2], [3, 4, 5], [6, 7, 8]], columns=["a", "b", "c"]) data = Data(df) pt.assert_series_equal(data["a"], df.a) # type: ignore pt.assert_series_equal(data["b"], df.b) # type: ignore pt.assert_series_equal(data["c"], df.c) # type: ignore def test_data_getitem_no_header() -> None: df = pd.DataFrame([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) data = Data(df) pt.assert_series_equal(data[0], df[0]) # type: ignore pt.assert_series_equal(data[1], df[1]) # type: ignore pt.assert_series_equal(data[2], df[2]) # type: ignore def test_data_len() -> None: df = pd.DataFrame([[0, 1, 2], [3, 4, 5], [6, 7, 8]], columns=["a", "b", "c"]) data = Data(df) assert len(data) == len(df) def test_data_getattr() -> None: df = pd.DataFrame([[0, 1, 2], [3, 4, 5], [6, 7, 8]], columns=["a", "b", "c"]) data = Data(df) pt.assert_index_equal(data.columns, pd.Index(["a", "b", "c"])) assert data.shape == (3, 3) assert data.to_csv() == ",a,b,c\n0,0,1,2\n1,3,4,5\n2,6,7,8\n" assert data.iat[1, 2] == 5 assert data.at[2, "a"] == 6 def test_data_attributes() -> None: df = pd.DataFrame([[0, 1, 2], [3, 4, 5], [6, 7, 8]], columns=["a", "b", "c"]) data = Data(df) pt.assert_series_equal(data.a, df.a) # type: ignore pt.assert_series_equal(data.b, df.b) # type: ignore pt.assert_series_equal(data.c, df.c) # type: ignore def test_data_param() -> None: csv_path = os.path.join(csv_dir_path, "test.csv") data = Data(csv_path) assert data.param("b") == 0.01 def test_data_param_list() -> None: csv_path = os.path.join(csv_dir_path, "test.csv") data = Data(csv_path) assert data.param(["c", "e"]) == [10.0, 100] @pytest.mark.parametrize("cls", [str, Path]) def test_dataset_init_path(cls) -> None: csv_path = os.path.join(csv_dir_path, "test_dataset.csv") path = cls(csv_path) raw_df = pd.read_csv(csv_path) dataset = DataSet(path) assert dataset.datapath == Path(csv_path) pt.assert_frame_equal(dataset.dataframe, raw_df) if isinstance(raw_df, pd.DataFrame): groups = raw_df.groupby("tag") datadict = dataset._datadict pt.assert_frame_equal( datadict["tag01"].dataframe, groups.get_group("tag01").reset_index(drop=True), ) pt.assert_frame_equal( datadict["tag02"].dataframe, groups.get_group("tag02").reset_index(drop=True), ) pt.assert_frame_equal( datadict["tag03"].dataframe, groups.get_group("tag03").reset_index(drop=True), ) else: pytest.skip(f"Expected DataFram type: {type(raw_df)}") def test_dataset_init_StringIO() -> None: csv_path = os.path.join(csv_dir_path, "test_dataset.csv") raw_df = pd.read_csv(csv_path) dataset = DataSet(StringIO(test_dataset)) assert dataset.datapath is None pt.assert_frame_equal(dataset.dataframe, raw_df) if isinstance(raw_df, pd.DataFrame): groups = raw_df.groupby("tag") datadict = dataset._datadict pt.assert_frame_equal( datadict["tag01"].dataframe, groups.get_group("tag01").reset_index(drop=True), ) pt.assert_frame_equal( datadict["tag02"].dataframe, groups.get_group("tag02").reset_index(drop=True), ) pt.assert_frame_equal( datadict["tag03"].dataframe, groups.get_group("tag03").reset_index(drop=True), ) else: pytest.skip(f"Expected DataFram type: {type(raw_df)}") def test_dataset_init_DataFrame() -> None: csv_path = os.path.join(csv_dir_path, "test_dataset.csv") raw_df = pd.read_csv(csv_path) if isinstance(raw_df, pd.DataFrame): dataset = DataSet(raw_df) groups = raw_df.groupby("tag") assert dataset.datapath is None pt.assert_frame_equal(dataset.dataframe, raw_df) pt.assert_frame_equal( dataset._datadict["tag01"].dataframe, groups.get_group("tag01").reset_index(drop=True), ) pt.assert_frame_equal( dataset._datadict["tag02"].dataframe, groups.get_group("tag02").reset_index(drop=True), ) pt.assert_frame_equal( dataset._datadict["tag03"].dataframe, groups.get_group("tag03").reset_index(drop=True), ) else: pytest.skip(f"Expected DataFram type: {type(raw_df)}") def test_dataset_non_default_tag() -> None: csv_path = os.path.join(csv_dir_path, "test_dataset_label.csv") raw_df = pd.read_csv(csv_path) dataset = DataSet(csv_path, by="label") assert dataset.datapath == Path(csv_path) pt.assert_frame_equal(dataset.dataframe, raw_df) if isinstance(raw_df, pd.DataFrame): groups = raw_df.groupby("label") pt.assert_frame_equal( dataset._datadict["label01"].dataframe, groups.get_group("label01").reset_index(drop=True), ) pt.assert_frame_equal( dataset._datadict["label02"].dataframe, groups.get_group("label02").reset_index(drop=True), ) pt.assert_frame_equal( dataset._datadict["label03"].dataframe, groups.get_group("label03").reset_index(drop=True), ) else: pytest.skip(f"Expected DataFram type: {type(raw_df)}") def test_dataset_no_tag() -> None: csv_path = os.path.join(csv_dir_path, "test.csv") raw_df = pd.read_csv(csv_path) dataset = DataSet(csv_path) pt.assert_frame_equal(dataset.dataframe, raw_df) if isinstance(raw_df, pd.DataFrame): assert len(dataset.datadict) == 1 pt.assert_frame_equal(dataset.datadict["0"].dataframe, raw_df) else: pytest.skip(f"Expected DataFram type: {type(raw_df)}") def test_dataset_iter() -> None: csv_path = os.path.join(csv_dir_path, "test_dataset.csv") dataset = DataSet(csv_path) raw_df = pd.read_csv(csv_path) if isinstance(raw_df, pd.DataFrame): groups = raw_df.groupby("tag") for i, data in enumerate(dataset): pt.assert_frame_equal( data.dataframe, groups.get_group(f"tag{i+1:02d}").reset_index(drop=True) ) else: pytest.skip(f"Expected DataFram type: {type(raw_df)}") def test_dataset_property_datadict() -> None: csv_path = os.path.join(csv_dir_path, "test_dataset.csv") dataset = DataSet(csv_path) assert isinstance(dataset.datadict, dict) assert list(dataset.datadict.keys()) == ["tag01", "tag02", "tag03"] def test_dataset_keys() -> None: csv_path = os.path.join(csv_dir_path, "test_dataset.csv") dataset = DataSet(csv_path) assert dataset.keys() == ["tag01", "tag02", "tag03"] def test_dataset_items() -> None: csv_path = os.path.join(csv_dir_path, "test_dataset.csv") dataset = DataSet(csv_path) raw_df = pd.read_csv(csv_path) items = dataset.items() assert isinstance(items, list) assert len(items) == 3 if isinstance(raw_df, pd.DataFrame): groups = raw_df.groupby("tag") for i, tup in enumerate(items): tag = tup[0] data = tup[1] assert tag == f"tag{i+1:02d}" pt.assert_frame_equal( data.dataframe, groups.get_group(tag).reset_index(drop=True) ) else: pytest.skip(f"Expected DataFram type: {type(raw_df)}") def test_dataset_get() -> None: csv_path = os.path.join(csv_dir_path, "test_dataset.csv") dataset = DataSet(csv_path) raw_df =
pd.read_csv(csv_path)
pandas.read_csv
# 5.Perform Operations on Files # 5.1: From the raw data below create a data frame # 'first_name': ['Jason', 'Molly', 'Tina', 'Jake', 'Amy'], # 'last_name': ['Miller', 'Jacobson', ".", 'Milner', 'Cooze'], # 'age': [42, 52, 36, 24, 73], # 'preTestScore': [4, 24, 31, ".", "."], # 'postTestScore': ["25,000", "94,000", 57, 62, 70] # 5.2: Save the dataframe into a csv file as example.csv # 5.3: Read the example.csv and print the data frame # 5.4: Read the example.csv without column heading # 5.5: Read the example.csv andmake the index columns as 'First Name’ and 'Last Name' # 5.6: Print the data frame in a Boolean form as True or False. # True for Null/ NaN values and false for non-nullvalues # 5.7: Read the dataframe by skipping first 3 rows and print the data frame # 5.8: Load a csv file while interpreting "," in strings around numbers as thousands seperators. # Check the raw data 'postTestScore' column has, as thousands separator. # Comma should be ignored while reading the data. It is default behaviour, # but you need to give argument to read_csv function which makes sure commas are ignored. import pandas as pd # 5.1 df = pd.DataFrame({'first_name': ['Jason', 'Molly', 'Tina', 'Jake', 'Amy'], 'last_name': ['Miller', 'Jacobson', ".", 'Milner', 'Cooze'], 'age': [42, 52, 36, 24, 73], 'preTestScore': [4, 24, 31, ".", "."], 'postTestScore': ["25,000", "94,000", 57, 62, 70]}) # 5.2 df.to_csv("example.csv") print("*"*20) # 5.3 df = pd.read_csv("example.csv") print(df) print("*"*20) # 5.4 df_without_header = pd.read_csv("example.csv", header=None) print(df_without_header) print("*"*20) # 5.5 df_with_index = pd.read_csv("example.csv", index_col=[ "first_name", "last_name"]) print(df_with_index) print("*"*20) # 5.6 boolean_df = df.isnull().any() print(boolean_df) print("*"*20) # 5.7 df_skip_rows =
pd.read_csv("example.csv", skiprows=3)
pandas.read_csv
import pandas as pd langs_id = [ { "lang": "Afrikaans", "dataset_id": "af", "stopwords_id": "af", "flagged_words_id": None, "fasttext_id": "af", "sentencepiece_id": "af", "kenlm_id": "af", }, { "lang": "Arabic", "dataset_id": "ar", "stopwords_id": "ar", "flagged_words_id": "ar", "fasttext_id": "ar", "sentencepiece_id": "ar", "kenlm_id": "ar", }, { "lang": "Egyptian Arabic", "dataset_id": "arz", "stopwords_id": None, "flagged_words_id": None, "fasttext_id": "arz", "sentencepiece_id": "arz", "kenlm_id": "arz", }, { "lang": "Assamese", "dataset_id": "as", "stopwords_id": None, "flagged_words_id": None, "fasttext_id": "as", "sentencepiece_id": "as", "kenlm_id": "as", }, { "lang": "Bengali", "dataset_id": "bn", "stopwords_id": "bn", "flagged_words_id": None, "fasttext_id": "bn", "sentencepiece_id": "bn", "kenlm_id": "bn", }, { "lang": "Catalan", "dataset_id": "ca", "stopwords_id": "ca", "flagged_words_id": "ca", "fasttext_id": "ca", "sentencepiece_id": "ca", "kenlm_id": "ca", }, { "lang": "English", "dataset_id": "en", "stopwords_id": "en", "flagged_words_id": "en", "fasttext_id": "en", "sentencepiece_id": "en", "kenlm_id": "en", }, { "lang": "Spanish", "dataset_id": "es", "stopwords_id": "es", "flagged_words_id": "es", "fasttext_id": "es", "sentencepiece_id": "es", "kenlm_id": "es", }, { "lang": "Basque", "dataset_id": "eu", "stopwords_id": "eu", "flagged_words_id": "eu", "fasttext_id": "eu", "sentencepiece_id": "eu", "kenlm_id": "eu", }, { "lang": "French", "dataset_id": "fr", "stopwords_id": "fr", "flagged_words_id": "fr", "fasttext_id": "fr", "sentencepiece_id": "fr", "kenlm_id": "fr", }, { "lang": "Gujarati", "dataset_id": "gu", "stopwords_id": None, "flagged_words_id": None, "fasttext_id": "gu", "sentencepiece_id": "gu", "kenlm_id": "gu", }, { "lang": "Hindi", "dataset_id": "hi", "stopwords_id": "hi", "flagged_words_id": "hi", "fasttext_id": "hi", "sentencepiece_id": "hi", "kenlm_id": "hi", }, { "lang": "Indonesian", "dataset_id": "id", "stopwords_id": "id", "flagged_words_id": "id", "fasttext_id": "id", "sentencepiece_id": "id", "kenlm_id": "id", }, { "lang": "Kannada", "dataset_id": "kn", "stopwords_id": None, "flagged_words_id": "kn", "fasttext_id": "kn", "sentencepiece_id": "kn", "kenlm_id": "kn", }, { "lang": "Malayalam", "dataset_id": "ml", "stopwords_id": None, "flagged_words_id": "ml", "fasttext_id": "ml", "sentencepiece_id": "ml", "kenlm_id": "ml", }, { "lang": "Marathi", "dataset_id": "mr", "stopwords_id": "mr", "flagged_words_id": "mr", "fasttext_id": "mr", "sentencepiece_id": "mr", "kenlm_id": "mr", }, { "lang": "Portuguese", "dataset_id": "pt", "stopwords_id": "pt", "flagged_words_id": "pt", "fasttext_id": "pt", "sentencepiece_id": "pt", "kenlm_id": "pt", }, { "lang": "Somali", "dataset_id": "so", "stopwords_id": "so", "flagged_words_id": None, "fasttext_id": "so", "sentencepiece_id": None, "kenlm_id": None, }, { "lang": "Swahili", "dataset_id": "sw", "stopwords_id": "sw", "flagged_words_id": None, "fasttext_id": "sw", "sentencepiece_id": "sw", "kenlm_id": "sw", }, { "lang": "Tamil", "dataset_id": "ta", "stopwords_id": None, "flagged_words_id": None, "fasttext_id": "ta", "sentencepiece_id": "ta", "kenlm_id": "ta", }, { "lang": "Telugu", "dataset_id": "te", "stopwords_id": None, "flagged_words_id": "te", "fasttext_id": "te", "sentencepiece_id": "te", "kenlm_id": "te", }, { "lang": "Urdu", "dataset_id": "ur", "stopwords_id": "ur", "flagged_words_id": None, "fasttext_id": "ur", "sentencepiece_id": "ur", "kenlm_id": "ur", }, { "lang": "Vietnamese", "dataset_id": "vi", "stopwords_id": "vi", "flagged_words_id": "vi", "fasttext_id": "vi", "sentencepiece_id": "vi", "kenlm_id": "vi", }, { "lang": "Yoruba", "dataset_id": "yo", "stopwords_id": "yo", "flagged_words_id": None, "fasttext_id": "yo", "sentencepiece_id": "yo", "kenlm_id": "yo", }, { "lang": "Chinese", "dataset_id": "zh", "stopwords_id": "zh", "flagged_words_id": "zh", "fasttext_id": "zh", "sentencepiece_id": "zh", "kenlm_id": "zh", }, ] langs_id =
pd.DataFrame(langs_id)
pandas.DataFrame
import functools import time import pandas as pd from .datenquellen import Datenquelle def timer(func): """Print the runtime of the decorated function""" @functools.wraps(func) def wrapper_timer(*args, **kwargs): start_time = time.perf_counter() # 1 value = func(*args, **kwargs) end_time = time.perf_counter() # 2 run_time = end_time - start_time # 3 print(f"Finished {func.__name__!r} in {run_time:.4f} secs") return value return wrapper_timer class CSV(Datenquelle): """ """ _args = None _kwargs = None def __init__(self, fname, *args, **kwargs): super().__init__(fname) self._args = args self._kwargs = kwargs def lesen(self): self.data = pd.read_csv(self.fname, *self._args, **self._kwargs) self.__repr__() def mapping(self, xkateg1, xkateg2): """ Hat man zwei kategoriale Variablen kateg1 und kateg2, so kann man einen Dict-Objekt generieren :param xkateg1: :param xkateg2: :return: """ list_dicts = self.data[[xkateg1, xkateg2]].drop_duplicates().transpose().to_dict().values() mapping_res = {} for xdict in list_dicts: mapping_res[xdict[xkateg1]] = xdict[xkateg2] return mapping_res def __add__(self, csv_obj): """ """ return
pd.concat([self.data, csv_obj.data])
pandas.concat
import pandas as pd import json import requests import datetime as dt import timeout_decorator import ssl import logging logger = logging.getLogger("Rotating Log") def get_station_status_url(sys_url): data = requests.get(sys_url).json() return [x for x in data['data']['en']['feeds'] if x['name']=='station_status'][0]['url'] def get_station_info_url(sys_url): data = requests.get(sys_url).json() return [x for x in data['data']['en']['feeds'] if x['name']=='station_information'][0]['url'] def get_system_info_url(sys_url): data = requests.get(sys_url).json() return [x for x in data['data']['en']['feeds'] if x['name']=='system_information'][0]['url'] @timeout_decorator.timeout(30) def query_system_info(sys_url): url = get_system_info_url(sys_url) data = requests.get(url).json() return data @timeout_decorator.timeout(30) def query_station_status(sys_url): """ Query station_status.json """ url = get_station_status_url(sys_url) data = requests.get(url).json() try: df = pd.DataFrame(data['data']['stations']) except KeyError: df = pd.DataFrame(data['stations']) df = df.drop_duplicates(['station_id','last_reported']) try: df['datetime'] = data['last_updated'] df['datetime'] = df['datetime'].map(lambda x: dt.datetime.utcfromtimestamp(x)) except KeyError: df['datetime'] = dt.datetime.utcnow() df['datetime'] = df['datetime'].dt.tz_localize('UTC') df = df[['datetime','num_bikes_available','num_docks_available','is_renting','station_id']] return df @timeout_decorator.timeout(30) def query_station_info(sys_url): """ Query station_information.json """ url = get_station_info_url(sys_url) data = requests.get(url).json() try: df = pd.DataFrame(data['data']['stations']) except KeyError: df = pd.DataFrame(data['stations']) return df[['name','station_id','lat','lon']] @timeout_decorator.timeout(30) def query_free_bikes(sys_url): """ Query free_bikes.json """ url = get_free_bike_url(sys_url) data = requests.get(url).json() try: df = pd.DataFrame(data['data']['bikes']) except KeyError: df =
pd.DataFrame(data['bikes'])
pandas.DataFrame
import pandas as pd import os from os import listdir from os.path import isfile, join import numpy as np import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error from sklearn.linear_model import LinearRegression from sklearn.pipeline import Pipeline, make_pipeline from sklearn.preprocessing import PolynomialFeatures from sklearn.model_selection import GridSearchCV from sklearn.preprocessing import StandardScaler from sklearn.linear_model import Ridge from sklearn.linear_model import ElasticNet from sklearn.ensemble import RandomForestRegressor from sklearn.ensemble import GradientBoostingRegressor from thundersvm import SVR from sklearn.svm import LinearSVR import time import util def models(dataset_canarin_seconds): # - Method 2: Prediction of decibels calibrated starting from those of the microphone and from the environmental data of the canary - using a frequency per second. # - As in the previous case, we use the data with a sampling frequency per second (such as that of the microphone and the sound level meter). # Due to the quantity of data we use, also in this case, those relating to a month of sampling. # - Split the dataset X_train, X_val, y_train, y_val = train_test_split( dataset_canarin_seconds.drop("db_phon", axis=1), # X = tutto tranne db_phon dataset_canarin_seconds["db_phon"], # y = db_phon test_size=1/3, random_state=42 # parametri divisione ) # - Linear regression. (multivariate regression) print("Linear regression") lrm = LinearRegression() lrm.fit(X_train, y_train) # - Print out the error metrics util.print_error_stats(X_val, y_val, lrm) # - The value of the coefficients attributed by the model to the individual features to understand which ones are most important. print(
pd.Series(lrm.coef_, index=X_train.columns)
pandas.Series
import pandas as pd import matplotlib.pyplot as plt import matplotlib import numpy as np import time import random import datetime from datetime import date from datetime import timedelta from dateutil.relativedelta import relativedelta from google.cloud import bigquery import os os.environ["GOOGLE_APPLICATION_CREDENTIALS"]="data/ironia-data-dfc6335a0abe.json" client = bigquery.Client() def generate_df(ids,working_dates,period=1,risk=0.05): pd.options.mode.chained_assignment = None main_df = pd.DataFrame(columns=["Ironia_id","Name","MDD","DaR","CDaR","RF","VaR", "CVaR", "MAD"]) prices_df = pd.DataFrame() for i in ids: sql = f'SELECT nav,date,name FROM `ironia-data.Ironia_Ext.precios` WHERE Ironia_id={i[0]} and date BETWEEN "2016-01-01" and "2018-12-31" LIMIT 10000 ' df = pd.read_gbq(sql) df.dropna(inplace=True) df["date"] = pd.to_datetime(df["date"]) df.sort_values(by="date",inplace=True) df.set_index(df["date"],inplace=True) if len(df) >= len(working_dates): #Number of working days from 2016 to 2018 try: df = df.loc[working_dates] df["nav"] = df["nav"].interpolate(method="linear") full_series = True except: full_series = False if full_series: prices_df = pd.merge(prices_df,df["nav"],how="outer", left_index=True, right_index=True) prices_df.rename(columns={'nav':df["name"].values[0] }, inplace=True) prices_df = prices_df.interpolate(method="linear") last_date = date.fromisoformat(str(df[-1:].index.values)[2:12]) years_ago = (last_date - relativedelta(years=period)).isoformat() df = df[years_ago:last_date] df.drop("date",axis=1,inplace=True) df["nav return"] = (df["nav"]-df["nav"].shift(1))/df["nav"].shift(1) df["nav return"][0] = 0 VaR = np.percentile(df["nav return"],risk*100) CVaR = np.mean(df["nav return"].loc[df["nav return"]<=VaR]) max_acum = df["nav"].cummax() df["drawdown"] = -(df["nav"]-max_acum)/max_acum MDD = np.max(df["drawdown"].values) recovery_factor = df["nav"].iloc[-1]/np.max(df["drawdown"].values) DaR = np.percentile(df["drawdown"],risk*100) CDaR = np.mean(df["drawdown"].loc[df["drawdown"]<=DaR]) MAD = df["nav return"].mad() main_df = main_df.append({"Ironia_id":int(i[0]),"Name":df["name"].values[0],"MDD":MDD,"DaR":DaR,"CDaR":CDaR,"RF":recovery_factor,"VaR":VaR, "CVaR":CVaR, "MAD":MAD}, ignore_index=True) return [main_df,prices_df] def get_train_test_prices(ids,working_dates_all,start="2016-01-01",train_span="2018-12-31",test_span="2019-12-31",delta=0,print_every=100): pd.options.mode.chained_assignment = None index = pd.date_range(start=start,end=test_span) prices_df =
pd.DataFrame(index=index,columns=["Init_"])
pandas.DataFrame
from copy import deepcopy import datetime as pydatetime from functools import lru_cache from glob import iglob import os import pickle import zipfile import attr import matplotlib.pyplot as plt import matplotlib.dates as mdates import numpy as np import pandas as pd from .__version__ import __version__ from .wue import water_use_efficiency, WUEError from .hfdata import ( HFData, HFSummary, HFDataSource, HFDataReadError, TooFewDataError, ) from .partition import fvspart_progressive, FVSPSolution from .util import vapor_press_deficit from .containers import AllFluxes, WUE from .constants import MOLECULAR_WEIGHT as MW EC_TOA5 = { "filetype": "csv", "skiprows": 4, "time_col": 0, "cols": (2, 3, 4, 5, 6, 7, 8), "temper_unit": "C", "unit_convert": dict(q=1e-3, c=1e-6, P=1e3), "na_values": "NAN", } EC_TOB1 = { "filetype": "tob1", "time_col": 0, "cols": (3, 4, 5, 6, 7, 8, 9), "temper_unit": "C", "unit_convert": dict(q=1e-3, c=1e-6, P=1e3), } EC_GHG1 = { "filetype": "ghg", "sep": "\t", "cols": (11, 12, 13, 7, 8, 9, 10), "time_col": [5, 6], "unit_convert": dict(q=1e-3 * MW.vapor, c=1e-3 * MW.co2, P=1e3), "temper_unit": "C", "skiprows": 8, "na_values": "NAN", "to_datetime_kws": {"format": "%Y-%m-%d %H:%M:%S:%f"}, } HFD_FORMAT = EC_TOA5 WUE_OPTIONS = { "ci_mod": "const_ratio", "ci_mod_param": None, "leaf_temper": None, "leaf_temper_corr": 0, "diff_ratio": 1.6, } HFD_OPTIONS = { "bounds": {"c": (0, np.inf), "q": (0, np.inf)}, "rd_tol": 0.5, "ad_tol": 1024, "ustar_tol": 0.1, "correct_external": True, } PART_OPTIONS = dict(adjust_fluxes=True) _bad_ustar = "ustar = {:.4} <= ustar_tol = {:.4}" _bad_vpd = "vpd = {:.4} Pa <= 0" _bad_qflux = "Fq = {:.4} <= 0" _night_mssg = "Nighttime, fluxes all non-stomatal" _fp_result_str = ( "===============\n" "Fluxpart Result\n" "===============\n" "fluxpart version = {version}\n" "date = {date}\n" "---------------\n" "dataread = {dataread}\n" "attempt_partition = {attempt_partition}\n" "partition_success = {partition_success}\n" "mssg = {mssg}\n" "label = {label}\n" "sunrise = {sunrise}\n" "sunset = {sunset}\n" + AllFluxes().results_str() + "\n" + HFSummary().results_str() + "\n" + WUE().results_str() + "\n" + FVSPSolution().results_str() ) class Error(Exception): pass class FluxpartError(Error): def __init__(self, message): self.message = message def fvspart( file_or_dir, time_sorted=False, interval=None, hfd_format=None, hfd_options=None, meas_wue=None, wue_options=None, part_options=None, label=None, stdout=True, verbose=True, ): """Partition CO2 & H2O fluxes into stomatal & nonstomatal components. Provides a full implementation of the flux variance similarity partitioning algorithm [SS08]_[SAAS+18]_: reads high frequency eddy covariance data; performs data transformations and data QA/QC; analyzes water vapor and carbon dioxide fluxes; and partitions the fluxes into stomatal (transpiration, photosynthesis) and nonstomatal (evaporation, respiration) components. The following notation is used in variable naming and documentation to represent meteorological quantities:: u, v, w = wind velocities q = water vapor mass concentration c = carbon dioxide mass concentration T = air temperature P = total air pressure Parameters ---------- For parameters explanation see: :func:`~fluxpart.api.fvs_partition` Returns ------- :class:`~fluxpart.fluxpart.FluxpartResult` """ if hfd_format is None: hfd_format = deepcopy(HFD_FORMAT) elif type(hfd_format) is str and hfd_format.upper() == "EC-TOA5": hfd_format = deepcopy(EC_TOA5) elif type(hfd_format) is str and hfd_format.upper() == "EC-TOB1": hfd_format = deepcopy(EC_TOB1) elif type(hfd_format) is str and hfd_format.upper() == "EC-GHG1": hfd_format = deepcopy(EC_GHG1) else: hfd_format = deepcopy(hfd_format) _validate_hfd_format(hfd_format) hfd_options = {**HFD_OPTIONS, **(hfd_options or {})} part_options = {**PART_OPTIONS, **(part_options or {})} unit_convert = hfd_format.pop("unit_convert", {}) converters = {k: _converter_func(v, 0.0) for k, v in unit_convert.items()} temper_unit = hfd_format.pop("temper_unit").upper() if temper_unit == "C" or temper_unit == "CELSIUS": converters["T"] = _converter_func(1.0, 273.15) hfd_format["converters"] = converters if "daytime" in part_options and type(part_options["daytime"]) is str: part_options["daytime"] = _lookup(part_options["daytime"], 0, 1, 2) if stdout: print("Getting filenames ...") files = _files(file_or_dir) if len(files) == 0: print("No files found!") return if time_sorted: sorted_files = files else: if stdout: print("Reading {} file datetimes ...".format(len(files))) times = _peektime(files, **hfd_format) if stdout: print("Time sorting data files ...") sorted_files = [f for t, f in sorted(zip(times, files))] if stdout: print("Creating data source ...") reader = HFDataSource(sorted_files, **hfd_format).reader(interval=interval) results = [] if stdout: print("Beginning partitioning analyses ...") while True: try: hfdat = HFData(next(reader)) except HFDataReadError as e: results.append(FVSResult(label=label, mssg=e.args[0])) continue except StopIteration: break datetime = hfdat.dataframe.index[0] date = datetime.date() time = datetime.time() if stdout: print("{}: ".format(datetime), end="") sunrise, sunset = np.nan, np.nan nighttime = False if "daytime" in part_options: if callable(part_options["daytime"]): sunrise, sunset = part_options["daytime"](date) else: sunrise, sunset = part_options["daytime"] sunrise = pd.to_datetime(sunrise).time() sunset = pd.to_datetime(sunset).time() # shift sunrise so we partition if rise occurs during interval if interval: sunrise = pd.Timestamp.combine(date, sunrise) sunrise = (sunrise - pd.Timedelta(interval)).time() nighttime = time < sunrise or time > sunset try: hfdat, hfsum = _set_hfdata(hfdat, **hfd_options) except (TooFewDataError, FluxpartError) as e: results.append( FVSResult( label=datetime, mssg=e.args[0], dataread=True, attempt_partition=False, partition_success=False, sunrise=sunrise, sunset=sunset, ) ) if stdout and verbose: print(e.args[0]) continue if nighttime and hfsum.cov_w_c >= 0: fluxes = AllFluxes( temper_kelvin=hfsum.T, **_set_all_fluxes_nonstomatal(hfsum) ) mssg = _night_mssg results.append( FVSResult( label=datetime, attempt_partition=False, partition_success=True, mssg=mssg, dataread=True, fluxes=fluxes, hfsummary=hfsum, sunrise=sunrise, sunset=sunset, ) ) if stdout and verbose: print(mssg) continue try: leaf_wue = _set_leaf_wue( meas_wue, wue_options, part_options, hfsum, date, datetime, temper_unit, ) except WUEError as e: results.append( FVSResult( label=datetime, mssg=e.args[0], dataread=True, hfsummary=hfsum, sunrise=sunrise, sunset=sunset, ) ) if stdout and verbose: print(e.args[0]) continue fluxes, fvsp = fvspart_progressive( hfdat["w"].values, hfdat["q"].values, hfdat["c"].values, leaf_wue.wue, part_options["adjust_fluxes"], ) if fvsp.valid_partition: fluxes = AllFluxes(**attr.asdict(fluxes), temper_kelvin=hfsum.T) else: fluxes = AllFluxes() results.append( FVSResult( label=datetime, sunrise=sunrise, sunset=sunset, dataread=True, attempt_partition=True, fluxes=fluxes, partition_success=fvsp.valid_partition, mssg=fvsp.mssg, fvsp_solution=fvsp, hfsummary=hfsum, wue=leaf_wue, ) ) if stdout: if fvsp.mssg: print(fvsp.mssg) else: print("OK") return FluxpartResult(results) def _set_all_fluxes_nonstomatal(hfsum): return dict( Fq=hfsum.cov_w_q, Fqt=0.0, Fqe=hfsum.cov_w_q, Fc=hfsum.cov_w_c, Fcp=0.0, Fcr=hfsum.cov_w_c, ) def _set_only_total_fluxes(hfsum): return dict( Fq=hfsum.cov_w_q, Fqt=np.nan, Fqe=np.nan, Fc=hfsum.cov_w_c, Fcp=np.nan, Fcr=np.nan, ) def _set_hfdata(hfdata, bounds, rd_tol, ad_tol, correct_external, ustar_tol): hfdata.cleanse(bounds, rd_tol, ad_tol) hfdata.truncate_pow2() if correct_external: hfdata.correct_external() hfsum = hfdata.summarize() if hfsum.ustar < ustar_tol: raise FluxpartError(_bad_ustar.format(hfsum.ustar, ustar_tol)) vpd = vapor_press_deficit(hfsum.rho_vapor, hfsum.T) if vpd <= 0: raise FluxpartError(_bad_vpd.format(vpd)) if hfsum.cov_w_q <= 0: raise FluxpartError(_bad_qflux.format(hfsum.cov_w_q)) return hfdata, hfsum def flux_partition(*args, **kws): return fvspart(*args, **kws) class FVSResult(object): """FVS partitioning result.""" def __init__( self, dataread=False, attempt_partition=False, partition_success=False, mssg=None, label=None, sunrise=None, sunset=None, fluxes=AllFluxes(), hfsummary=HFSummary(), wue=WUE(), fvsp_solution=FVSPSolution(), ): """Fluxpart result. Parameters ---------- dataread, attempt_partition, partition_success : bool Indicates success or failure in reading high frequency data, attempting and obtaining a valid partioning solution. mssg : str Possibly informative message if `dataread` or `partition_success` are False label : optional Pandas datetime. fluxes : :class:`~fluxpart.containers.AllFluxes` fvsp_solution : :class:`~fluxpart.containers.FVSPResult` wue : :class:`~fluxpart.containers.WUE` hfsummary : :class:`~fluxpart.hfdata.HFSummary` """ self.version = __version__ self.dataread = dataread self.attempt_partition = attempt_partition self.partition_success = partition_success self.mssg = mssg self.fluxes = fluxes self.label = label self.sunrise = sunrise self.sunset = sunset self.fvsp_solution = fvsp_solution self.wue = wue self.hfsummary = hfsummary def __str__(self): fluxpart = attr.asdict(self.fvsp_solution) wqc_data = fluxpart.pop("wqc_data") rootsoln = fluxpart.pop("rootsoln") return _fp_result_str.format( timenow=pydatetime.datetime.now(), version=self.version, dataread=self.dataread, attempt_partition=self.attempt_partition, partition_success=self.partition_success, mssg=self.mssg, label=self.label, sunrise=self.sunrise, sunset=self.sunset, **attr.asdict(self.fluxes), **attr.asdict(self.hfsummary), **attr.asdict(self.wue), **fluxpart, **wqc_data, **rootsoln, ) class FluxpartResult(object): def __init__(self, fp_results): if isinstance(fp_results, pd.DataFrame): self.df = fp_results return index = pd.DatetimeIndex(r.label for r in fp_results) df0 = pd.DataFrame( (r.fluxes.common_units() for r in fp_results), index=index, columns=fp_results[0].fluxes.common_units().keys(), ) df1 = pd.DataFrame( (r.hfsummary.common_units() for r in fp_results), index=index, columns=fp_results[0].hfsummary.common_units().keys(), ) df2 = pd.DataFrame( (r.wue.common_units() for r in fp_results), index=index, columns=fp_results[0].wue.common_units().keys(), ) df3 = pd.DataFrame( (r.fvsp_solution.common_units() for r in fp_results), index=index, columns=fp_results[0].fvsp_solution.common_units().keys(), ) df4 = pd.DataFrame( { "dataread": [r.dataread for r in fp_results], "attempt_partition": [r.attempt_partition for r in fp_results], "partition_success": [r.partition_success for r in fp_results], "mssg": [r.mssg for r in fp_results], "sunrise": [r.sunrise for r in fp_results], "sunset": [r.sunset for r in fp_results], }, index=index, ) self.df = pd.concat( [df0, df1, df2, df3, df4], axis=1, sort=False, keys=["fluxes", "hfsummary", "wue", "fvsp_solution", "fluxpart"], ) self.meta = { "version": fp_results[0].version, "date": str(pydatetime.datetime.now()), } def __str__(self): if len(self.df) == 1: return self.istr(0) else: return self.df.__str__() def __getitem__(self, item): return self.df[item] def __getattr__(self, x): return getattr(self.df, x) def plot_co2( self, start=None, end=None, units="mass", components=(0, 1, 2), ax=None, **kws, ): if ax is None: ax = plt.gca() if units == "mass": cols = ["Fc", "Fcp", "Fcr"] ylab = r"$\mathrm{CO_2\ Flux\ (mg\ m^{-2}\ s^{-1})}$" else: cols = ["Fc_mol", "Fcp_mol", "Fcr_mol"] ylab = r"$\mathrm{CO_2\ Flux\ (umol\ m^{-2}\ s^{-1})}$" labels = [ r"$\mathrm{F_c}$", r"$\mathrm{F_{c_p}}$", r"$\mathrm{F_{c_r}}$", ] cols = [cols[j] for j in components] labels = [labels[j] for j in components] self.df.loc[start:end, ("fluxes", cols)].plot(ax=ax) ax.legend(labels) ax.set_ylabel(ylab) return ax def plot_h2o( self, start=None, end=None, units="mass", components=(0, 1, 2), ax=None, **kws, ): if ax is None: ax = plt.gca() if units == "mass": cols = ["Fq", "Fqt", "Fqe"] ylab = r"$\mathrm{H_20\ Flux\ (g\ m^{-2}\ s^{-1})}$" elif units == "mol": cols = ["Fq_mol", "Fqt_mol", "Fqe_mol"] ylab = r"$\mathrm{H_20\ Flux\ (mmol\ m^{-2}\ s^{-1})}$" else: cols = ["LE", "LEt", "LEe"] ylab = r"$\mathrm{LE\ (W\ m^{-2})}$" labels = [ r"$\mathrm{F_q}$", r"$\mathrm{F_{q_t}}$", r"$\mathrm{F_{q_e}}$", ] cols = [cols[j] for j in components] labels = [labels[j] for j in components] self.df.loc[start:end, ("fluxes", cols)].plot(ax=ax) ax.legend(labels) ax.set_ylabel(ylab) return ax def istr(self, i): """Return a string representation of the ith result""" return _fp_result_str.format( version=self.meta["version"], date=self.meta["date"], label=self.df.index[i], **self.df.iloc[i]["fluxpart"].to_dict(), **self.df.iloc[i]["fluxes"].to_dict(), **self.df.iloc[i]["fvsp_solution"].to_dict(), **self.df.iloc[i]["hfsummary"].to_dict(), **self.df.iloc[i]["wue"].to_dict(), ) def save(self, filename): self.save_pickle(filename) def save_csv(self, filename): self.df.to_csv(filename) #, na_rep="NAN") def save_pickle(self, filename): self.df.to_pickle(filename) def _converter_func(slope, intercept): """Return a function for linear transform of data.""" if type(slope) is str: return slope def func(val): return slope * val + intercept return func def _files(file_or_dir): if type(file_or_dir) is str: file_or_dir = [file_or_dir] unsorted_files = [] for path in file_or_dir: if os.path.isfile(path): unsorted_files.append(path) continue if os.path.isdir(path): path = os.path.join(path, "*") unsorted_files += iglob(path) return unsorted_files def _set_leaf_wue( meas_wue, wue_options, part_options, hfsum, date, datetime, temper_unit ): # TODO: these should work with file objects, not just str name wue_options = {**WUE_OPTIONS, **(wue_options or {})} heights, leaf_temper = None, None canopy_ht = wue_options.pop("canopy_ht", None) meas_ht = wue_options.pop("meas_ht", None) if "heights" in wue_options: heights = wue_options.pop("heights") if not callable(heights): heights = _lookup(heights, 0, 1, 2) if "leaf_temper" in wue_options: leaf_temper = wue_options.pop("leaf_temper") if type(leaf_temper) is str: leaf_temper = _lookup(leaf_temper, 0, 1) if meas_wue: if type(meas_wue) is str: meas_wue = _lookup(meas_wue, 0, 1) try: if meas_wue: if callable(meas_wue): leaf_wue = WUE(wue=meas_wue(datetime)) else: leaf_wue = WUE(wue=float(meas_wue)) else: if heights is not None: if callable(heights): canopy_ht, meas_ht = heights(date) else: canopy_ht, meas_ht = heights else: if callable(canopy_ht): canopy_ht = canopy_ht(date) if callable(meas_ht): meas_ht = meas_ht(date) leaf_t = None if leaf_temper is not None: if callable(leaf_temper): leaf_t = leaf_temper(datetime) else: leaf_t = float(leaf_temper) if temper_unit == "C" or temper_unit == "CELSIUS": leaf_t = leaf_t + 273.15 leaf_wue = water_use_efficiency( hfsum, canopy_ht=canopy_ht, meas_ht=meas_ht, leaf_temper=leaf_t, **wue_options, ) return leaf_wue except WUEError: raise def _peektime(files, **kwargs): if kwargs["filetype"] == "csv" or kwargs["filetype"] == "ghg": dtcols = kwargs["time_col"] if type(dtcols) is int: dtcols = [dtcols] sep = kwargs.get("delimiter", ",") sep = kwargs.get("sep", sep) datetimes = [] to_datetime_kws = kwargs.get("to_datetime_kws", {}) if kwargs["filetype"] == "csv": for file_ in files: with open(file_, "rt") as f: for _ in range(kwargs.get("skiprows", 0)): f.readline() row = f.readline().split(sep) tstamp = " ".join([row[i].strip("'\"") for i in dtcols]) datetimes.append(pd.to_datetime(tstamp, **to_datetime_kws)) elif kwargs["filetype"] == "ghg": for file_ in files: with zipfile.ZipFile(file_) as z: with z.open(os.path.basename(file_)[:-3] + "data", "r") as f: for _ in range(kwargs.get("skiprows", 0)): f.readline() row = f.readline().decode("utf-8").split(sep) tstamp = " ".join([row[i].strip("'\"") for i in dtcols]) datetimes.append(pd.to_datetime(tstamp, **to_datetime_kws)) else: # "tob1" source = HFDataSource(files, count=5, **kwargs) datetimes = [df.index[0] for df in source.reader(interval=None)] return datetimes def _validate_hfd_format(hfd_format): if "cols" not in hfd_format: raise Error("No value for hfd_format['cols'] given.") if "filetype" not in hfd_format: raise Error("No value for hfd_format['filetype'] given.") if hfd_format["filetype"] not in ("csv", "tob1", "ghg"): raise Error(f"Unrecognized filetype: {hfd_format['filetype']}") def _lookup(csv_file, date_icol, icol1, icol2=None, method="ffill"): """Create a function for looking up data in csv file. date_icol, icol1, icol2 : int column index for the respective data method : str Interpolation method used with pandas df.index.get_loc. The default 'ffill' returns the PREVIOUS values if no exact date match is found in the lookup. """ df = pd.read_csv(csv_file, index_col=date_icol, parse_dates=True) @lru_cache() def func(date): ix = df.index.get_loc(
pd.to_datetime(date)
pandas.to_datetime
# -*- coding: utf-8 -*- from io import BytesIO import pandas as pd import pykintone from karura.env import get_kintone_env from karura.core.kintone.application import Application from karura.core.kintone.kintone_exception import kintoneException from karura.core.dataframe_extension import FType, FTypeNames, DataFrameExtension class kintoneRequest(): def __init__(self, env=None): self.env = env if env is not None else get_kintone_env() def request_to_dfe(self, request_json): app_id = request_json["app_id"] field_settings = request_json["fields"] view_name = request_json["view"] # check fields setting features = [] target = "" for fs in field_settings: if field_settings[fs]["usage"] == 1: target = fs elif field_settings[fs]["usage"] == 0: features.append(fs) if not target: raise kintoneException("予測対象の項目が指定されていません") if len(features) == 0: raise kintoneException("予測に使用する項目が指定されていません") # confirm view app = pykintone.login(self.env.domain, self.env.login_id, self.env.password).app(app_id) view = None query = "" if view_name: views = app.administration().view().get().views for v in views: if v.name == view_name: view = v break if view is None: raise kintoneException("指定された名前のビュー「{}」は、アプリに作成されていません".format(view_name)) # make query query = view.filter_cond if view.filter_cond else "" query += " order by " + view.sort if view.sort else "" # make field setting fields = features if view is None else [f for f in view.fields if f in features] fields = [target] + fields # make dfe kapp = Application(self.env) dfe = kapp.load(app_id, query, fields, target) return dfe def record_to_df(self, request_json): app_id = request_json["app_id"] values = request_json["values"] kapp = Application(self.env) fields_d = kapp.get_fields(app_id) columns = [] data = [] for k in values: if k not in fields_d: continue f = fields_d[k] columns.append(f.label) data.append(values[k]) df = pd.DataFrame(data=[data], columns=columns) return df def download(self, request_json): app_id = request_json["app_id"] view_name = request_json["view"] # confirm view app = pykintone.login(self.env.domain, self.env.login_id, self.env.password).app(app_id) view = None query = "" fields = [] if view_name: views = app.administration().view().get().views for v in views: if v.name == view_name: view = v break if view is None: raise kintoneException("指定された名前のビュー「{}」は、アプリに作成されていません".format(view_name)) # make query query = view.filter_cond if view.filter_cond else "" query += " order by " + view.sort if view.sort else "" fields = view.fields # make dfe kapp = Application(self.env) dfe = kapp.load(app_id, query, fields) return dfe def file_to_df(self, byte_str): fileio = BytesIO(byte_str) columns = [] ftype_names = [] index = 0 for line in fileio: items = line.decode("utf-8").split("\t") items = [i.strip() for i in items] if index == 0: columns = items elif index == 1: ftype_names = items index += 1 if index == 2: break df =
pd.read_csv(fileio, encoding="utf-8", sep="\t")
pandas.read_csv
import warnings import numpy as np import pytest from pandas import ( DataFrame, MultiIndex, Series, date_range, ) import pandas._testing as tm from pandas.core.algorithms import safe_sort class TestPairwise: # GH 7738 @pytest.mark.parametrize("f", [lambda x: x.cov(), lambda x: x.corr()]) def test_no_flex(self, pairwise_frames, pairwise_target_frame, f): # DataFrame methods (which do not call flex_binary_moment()) result = f(pairwise_frames) tm.assert_index_equal(result.index, pairwise_frames.columns) tm.assert_index_equal(result.columns, pairwise_frames.columns) expected = f(pairwise_target_frame) # since we have sorted the results # we can only compare non-nans result = result.dropna().values expected = expected.dropna().values tm.assert_numpy_array_equal(result, expected, check_dtype=False) @pytest.mark.parametrize( "f", [ lambda x: x.expanding().cov(pairwise=True), lambda x: x.expanding().corr(pairwise=True), lambda x: x.rolling(window=3).cov(pairwise=True), lambda x: x.rolling(window=3).corr(pairwise=True), lambda x: x.ewm(com=3).cov(pairwise=True), lambda x: x.ewm(com=3).corr(pairwise=True), ], ) def test_pairwise_with_self(self, pairwise_frames, pairwise_target_frame, f): # DataFrame with itself, pairwise=True # note that we may construct the 1st level of the MI # in a non-monotonic way, so compare accordingly result = f(pairwise_frames) tm.assert_index_equal( result.index.levels[0], pairwise_frames.index, check_names=False ) tm.assert_numpy_array_equal( safe_sort(result.index.levels[1]), safe_sort(pairwise_frames.columns.unique()), ) tm.assert_index_equal(result.columns, pairwise_frames.columns) expected = f(pairwise_target_frame) # since we have sorted the results # we can only compare non-nans result = result.dropna().values expected = expected.dropna().values tm.assert_numpy_array_equal(result, expected, check_dtype=False) @pytest.mark.parametrize( "f", [ lambda x: x.expanding().cov(pairwise=False), lambda x: x.expanding().corr(pairwise=False), lambda x: x.rolling(window=3).cov(pairwise=False), lambda x: x.rolling(window=3).corr(pairwise=False), lambda x: x.ewm(com=3).cov(pairwise=False), lambda x: x.ewm(com=3).corr(pairwise=False), ], ) def test_no_pairwise_with_self(self, pairwise_frames, pairwise_target_frame, f): # DataFrame with itself, pairwise=False result = f(pairwise_frames) tm.assert_index_equal(result.index, pairwise_frames.index) tm.assert_index_equal(result.columns, pairwise_frames.columns) expected = f(pairwise_target_frame) # since we have sorted the results # we can only compare non-nans result = result.dropna().values expected = expected.dropna().values tm.assert_numpy_array_equal(result, expected, check_dtype=False) @pytest.mark.parametrize( "f", [ lambda x, y: x.expanding().cov(y, pairwise=True), lambda x, y: x.expanding().corr(y, pairwise=True), lambda x, y: x.rolling(window=3).cov(y, pairwise=True), lambda x, y: x.rolling(window=3).corr(y, pairwise=True), lambda x, y: x.ewm(com=3).cov(y, pairwise=True), lambda x, y: x.ewm(com=3).corr(y, pairwise=True), ], ) def test_pairwise_with_other( self, pairwise_frames, pairwise_target_frame, pairwise_other_frame, f ): # DataFrame with another DataFrame, pairwise=True result = f(pairwise_frames, pairwise_other_frame) tm.assert_index_equal( result.index.levels[0], pairwise_frames.index, check_names=False ) tm.assert_numpy_array_equal( safe_sort(result.index.levels[1]), safe_sort(pairwise_other_frame.columns.unique()), ) expected = f(pairwise_target_frame, pairwise_other_frame) # since we have sorted the results # we can only compare non-nans result = result.dropna().values expected = expected.dropna().values tm.assert_numpy_array_equal(result, expected, check_dtype=False) @pytest.mark.parametrize( "f", [ lambda x, y: x.expanding().cov(y, pairwise=False), lambda x, y: x.expanding().corr(y, pairwise=False), lambda x, y: x.rolling(window=3).cov(y, pairwise=False), lambda x, y: x.rolling(window=3).corr(y, pairwise=False), lambda x, y: x.ewm(com=3).cov(y, pairwise=False), lambda x, y: x.ewm(com=3).corr(y, pairwise=False), ], ) def test_no_pairwise_with_other(self, pairwise_frames, pairwise_other_frame, f): # DataFrame with another DataFrame, pairwise=False result = ( f(pairwise_frames, pairwise_other_frame) if pairwise_frames.columns.is_unique else None ) if result is not None: with warnings.catch_warnings(record=True): warnings.simplefilter("ignore", RuntimeWarning) # we can have int and str columns expected_index = pairwise_frames.index.union(pairwise_other_frame.index) expected_columns = pairwise_frames.columns.union( pairwise_other_frame.columns ) tm.assert_index_equal(result.index, expected_index) tm.assert_index_equal(result.columns, expected_columns) else: with pytest.raises(ValueError, match="'arg1' columns are not unique"): f(pairwise_frames, pairwise_other_frame) with pytest.raises(ValueError, match="'arg2' columns are not unique"): f(pairwise_other_frame, pairwise_frames) @pytest.mark.parametrize( "f", [ lambda x, y: x.expanding().cov(y), lambda x, y: x.expanding().corr(y), lambda x, y: x.rolling(window=3).cov(y), lambda x, y: x.rolling(window=3).corr(y), lambda x, y: x.ewm(com=3).cov(y), lambda x, y: x.ewm(com=3).corr(y), ], ) def test_pairwise_with_series(self, pairwise_frames, pairwise_target_frame, f): # DataFrame with a Series result = f(pairwise_frames, Series([1, 1, 3, 8])) tm.assert_index_equal(result.index, pairwise_frames.index) tm.assert_index_equal(result.columns, pairwise_frames.columns) expected = f(pairwise_target_frame, Series([1, 1, 3, 8])) # since we have sorted the results # we can only compare non-nans result = result.dropna().values expected = expected.dropna().values tm.assert_numpy_array_equal(result, expected, check_dtype=False) result = f(Series([1, 1, 3, 8]), pairwise_frames) tm.assert_index_equal(result.index, pairwise_frames.index) tm.assert_index_equal(result.columns, pairwise_frames.columns) expected = f(Series([1, 1, 3, 8]), pairwise_target_frame) # since we have sorted the results # we can only compare non-nans result = result.dropna().values expected = expected.dropna().values tm.assert_numpy_array_equal(result, expected, check_dtype=False) def test_corr_freq_memory_error(self): # GH 31789 s = Series(range(5), index=date_range("2020", periods=5)) result = s.rolling("12H").corr(s) expected = Series([np.nan] * 5, index=date_range("2020", periods=5)) tm.assert_series_equal(result, expected) def test_cov_mulittindex(self): # GH 34440 columns = MultiIndex.from_product([list("ab"), list("xy"), list("AB")]) index = range(3) df = DataFrame(np.arange(24).reshape(3, 8), index=index, columns=columns) result = df.ewm(alpha=0.1).cov() index = MultiIndex.from_product([range(3), list("ab"), list("xy"), list("AB")]) columns = MultiIndex.from_product([list("ab"), list("xy"), list("AB")]) expected = DataFrame( np.vstack( ( np.full((8, 8), np.NaN), np.full((8, 8), 32.000000), np.full((8, 8), 63.881919), ) ), index=index, columns=columns, ) tm.assert_frame_equal(result, expected) def test_multindex_columns_pairwise_func(self): # GH 21157 columns = MultiIndex.from_arrays([["M", "N"], ["P", "Q"]], names=["a", "b"]) df = DataFrame(np.ones((5, 2)), columns=columns) result = df.rolling(3).corr() expected = DataFrame( np.nan, index=MultiIndex.from_arrays( [np.repeat(np.arange(5), 2), ["M", "N"] * 5, ["P", "Q"] * 5], names=[None, "a", "b"], ), columns=columns, )
tm.assert_frame_equal(result, expected)
pandas._testing.assert_frame_equal
import numpy as np import pandas as pd from json import JSONDecoder, JSONDecodeError # for reading the JSON data files import re # for regular expressions import os # for os related operations # Hyperparameters num_classes = 1 num_features = 14 # number of 'color' channels for the input 1D 'image' time_steps = 60 # number of pixels for the input 1D 'image' # all features feature_names = ['TOTUSJH', 'TOTBSQ', 'TOTPOT', 'TOTUSJZ', 'ABSNJZH', 'SAVNCPP', 'USFLUX', 'TOTFZ', 'MEANPOT', 'EPSZ', 'MEANSHR', 'SHRGT45', 'MEANGAM', 'MEANGBT', 'MEANGBZ', 'MEANGBH', 'MEANJZH', 'TOTFY', 'MEANJZD', 'MEANALP', 'TOTFX', 'EPSY', 'EPSX', 'R_VALUE', 'XR_MAX'] # relevent features by Fischer ranking score and manually looking at the histograms in positive and negative classes. # I choose those features with reletively high Fischer ranking score & those whose histograms look different in # positive and negative classes. # I further drop features according to their physical definitions. When some features' definitions are related to each # other, I first double check their correlation by looking at their scatter plot. If their correlation is confirmed visually, # I drop n number features from the correlated features if there are n confirmed correlations. relevant_features_0 = ['TOTUSJH','TOTBSQ','TOTPOT','TOTUSJZ','ABSNJZH','SAVNCPP','USFLUX','TOTFZ', 'EPSZ','MEANSHR','SHRGT45','MEANGAM','MEANGBT','MEANGBZ','MEANGBH','MEANJZD','R_VALUE'] # By observing the histograms of relevant features, their histograms can be grouped into four categories. # right skewed with extreme outliers, right skewed without extreme outliers, left skewed with extreme outliers, non skewed right_skewed_features = ['TOTUSJH', 'TOTBSQ', 'TOTPOT', 'TOTUSJZ', 'ABSNJZH', 'SAVNCPP', 'USFLUX', 'EPSZ', 'MEANSHR', 'MEANGAM', 'MEANGBH', 'MEANJZD'] right_skewed_features_with_ol = ['TOTBSQ', 'TOTPOT', 'TOTUSJZ', 'SAVNCPP', 'USFLUX', 'MEANSHR', 'MEANGAM', 'MEANGBH', 'MEANJZD'] right_skewed_features_without_ol = ['TOTUSJH', 'ABSNJZH', 'EPSZ'] left_skewed_features_with_ol = ['TOTFZ'] non_skewed_features = ['MEANGBT', 'R_VALUE'] # I further decide that TOTFZ is correlated with EPSZ and TOTBSQ. Furthermore, TOTFZ cannot be well scaled yet, I # decide to drop it for now. Note that TOTFZ is the only feature in the list `left_skewed_with_ol`. In the end, I select # 14 features for fitting the data, their names are stored in the list called `selected_features`. selected_features = right_skewed_features + non_skewed_features print('{} are selected for training.'.format(len(selected_features))) print('selected features include \n',selected_features) # get the indice for features indice_right_skewed_with_ol = [] indice_right_skewed_without_ol = [] indice_non_skewed = [] for i in range(0,len(selected_features)): if selected_features[i] in right_skewed_features_with_ol: indice_right_skewed_with_ol.append(i) elif selected_features[i] in right_skewed_features_without_ol: indice_right_skewed_without_ol.append(i) elif selected_features[i] in non_skewed_features: indice_non_skewed.append(i) scale_params_right_skewed = pd.read_csv('scale_params_right_skewed.csv') scale_params_right_skewed.set_index('Unnamed: 0', inplace=True) scale_params_non_skewed = pd.read_csv('scale_params_non_skewed.csv') scale_params_non_skewed.set_index('Unnamed: 0', inplace=True) # all features feature_names = ['TOTUSJH', 'TOTBSQ', 'TOTPOT', 'TOTUSJZ', 'ABSNJZH', 'SAVNCPP', 'USFLUX', 'TOTFZ', 'MEANPOT', 'EPSZ', 'MEANSHR', 'SHRGT45', 'MEANGAM', 'MEANGBT', 'MEANGBZ', 'MEANGBH', 'MEANJZH', 'TOTFY', 'MEANJZD', 'MEANALP', 'TOTFX', 'EPSY', 'EPSX', 'R_VALUE', 'XR_MAX'] # relevent features by Fischer ranking score and manually looking at the histograms in positive and negative classes. # I choose those features with reletively high Fischer ranking score & those whose histograms look different in # positive and negative classes. # I further drop features according to their physical definitions. When some features' definitions are related to each # other, I first double check their correlation by looking at their scatter plot. If their correlation is confirmed visually, # I drop n number features from the correlated features if there are n confirmed correlations. relevant_features_0 = ['TOTUSJH','TOTBSQ','TOTPOT','TOTUSJZ','ABSNJZH','SAVNCPP','USFLUX','TOTFZ', 'EPSZ','MEANSHR','SHRGT45','MEANGAM','MEANGBT','MEANGBZ','MEANGBH','MEANJZD','R_VALUE'] # By observing the histograms of relevant features, their histograms can be grouped into four categories. # right skewed with extreme outliers, right skewed without extreme outliers, left skewed with extreme outliers, non skewed right_skewed_features = ['TOTUSJH', 'TOTBSQ', 'TOTPOT', 'TOTUSJZ', 'ABSNJZH', 'SAVNCPP', 'USFLUX', 'EPSZ', 'MEANSHR', 'MEANGAM', 'MEANGBH', 'MEANJZD'] right_skewed_features_with_ol = ['TOTBSQ', 'TOTPOT', 'TOTUSJZ', 'SAVNCPP', 'USFLUX', 'MEANSHR', 'MEANGAM', 'MEANGBH', 'MEANJZD'] right_skewed_features_without_ol = ['TOTUSJH', 'ABSNJZH', 'EPSZ'] left_skewed_features_with_ol = ['TOTFZ'] non_skewed_features = ['MEANGBT', 'R_VALUE'] # I further decide that TOTFZ is correlated with EPSZ and TOTBSQ. Furthermore, TOTFZ cannot be well scaled yet, I # decide to drop it for now. Note that TOTFZ is the only feature in the list `left_skewed_with_ol`. In the end, I select # 14 features for fitting the data, their names are stored in the list called `selected_features`. selected_features = right_skewed_features + non_skewed_features # print('{} are selected for training.'.format(len(selected_features))) # print('selected features include \n',selected_features) # get the indice for features indice_right_skewed_with_ol = [] indice_right_skewed_without_ol = [] indice_non_skewed = [] for i in range(0,len(selected_features)): if selected_features[i] in right_skewed_features_with_ol: indice_right_skewed_with_ol.append(i) elif selected_features[i] in right_skewed_features_without_ol: indice_right_skewed_without_ol.append(i) elif selected_features[i] in non_skewed_features: indice_non_skewed.append(i) scale_params_right_skewed = pd.read_csv('scale_params_right_skewed.csv') scale_params_right_skewed.set_index('Unnamed: 0', inplace=True) scale_params_non_skewed =
pd.read_csv('scale_params_non_skewed.csv')
pandas.read_csv
import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import math from sklearn.preprocessing import MinMaxScaler from sklearn.cluster import DBSCAN class ClusterBound: def __init__(self, x1, y1, w, h): self.x1 = x1 self.x2 = x1 + w self.y1 = y1 self.y2 = y1 + h def contains(self, xp, yp): return self.x1 <= xp <= self.x2 and self.y1 <= yp <= self.y2 class ManualClusterModel(): def __init__(self, cluster_bounds): self.cluster_bounds = cluster_bounds def fit(self, X): def find_cluster(x, cluster_bounds): for i, c in enumerate(cluster_bounds): if c.contains(x[0], x[1]): return i return -1 self.labels_ = X.apply(lambda x: find_cluster(x, self.cluster_bounds), axis=1) MirageCalloutClusteringModel = ManualClusterModel([ ClusterBound(162, 169, 64, 65), # van ClusterBound(227, 173, 32, 41), # b plat ClusterBound(259, 173, 89, 40), # b front apt ClusterBound(112, 231, 49, 93), # bench ClusterBound(162, 214, 167, 41), # b default out of site ClusterBound(203, 254, 68, 75), # b site ClusterBound(170, 395, 32, 90), # kitchen door ClusterBound(207, 396, 133, 90), # kitchen ClusterBound(342, 234, 54, 46), # side cat ClusterBound(342, 280, 160, 45), # cat site ClusterBound(430, 328, 28, 119), # underpass ClusterBound(463, 409, 218, 38), # cat ClusterBound(396, 435, 32, 62), # window ClusterBound(433, 446, 60, 59), # bottom mid ClusterBound(495, 448, 59, 56), # mid mid ClusterBound(556, 447, 131, 56), # top mid ClusterBound(682, 313, 69, 124), # top top mid ClusterBound(712, 440, 39, 59), # boxes ClusterBound(383, 571, 84, 79), # jungle ClusterBound(482, 508, 65, 91), # connector ClusterBound(573, 504, 179, 28), # mid chair ClusterBound(469, 601, 66, 54), # connector by stairs ClusterBound(538, 601, 29, 69), # stairs ClusterBound(643, 696, 42, 86), # palace deck/shadow ClusterBound(382, 498, 45, 71), # mid window hidden ClusterBound(648, 783, 50, 40), # front palace ClusterBound(441, 827, 43, 49), # ticket booth ClusterBound(319, 772, 149, 56), # ct ClusterBound(164, 332, 175, 60), # b market side ClusterBound(692, 627, 127, 57), # A ramp ClusterBound(568, 646, 30, 20), # sandwich ClusterBound(617, 624, 37, 29), # tetris ClusterBound(480, 741, 42, 47), # triple box ClusterBound(579, 791, 51, 35), # firebox ClusterBound(521, 737, 93, 51), # front a site ClusterBound(479, 671, 158, 65), # open a site ClusterBound(463, 329, 52, 79) # b short ]) #Convert map coordinates to image coordinates, from <NAME>'s analysis def pointx_to_resolutionx(xinput,startX=-3217,endX=1912,resX=1024): sizeX = endX - startX if startX < 0: xinput += startX * (-1.0) else: xinput += startX xoutput = float((xinput / abs(sizeX)) * resX); return xoutput def pointy_to_resolutiony(yinput,startY=-3401,endY=1682,resY=1024): sizeY=endY-startY if startY < 0: yinput += startY *(-1.0) else: yinput += startY youtput = float((yinput / abs(sizeY)) * resY); return resY-youtput def cluster_positions(firefight_df, cluster_map, verbose=False, scale=True): """ Clusters the dataframe spatially into common positions by type of position, map, and team. Clusters DMG_VIC and DMG_ATT together. Input: cluster_df: result of DataLoader.load_firefight_df, with columns ['file_round', 'seconds', 'pos_x', 'pos_y', 'hp_dmg'] eps_map: the eps to use for DBSCAN for each pos_type Output: the input cluster_df, with new columns ['pos_cluster'] """ min_max_scaler = MinMaxScaler() cluster_df = firefight_df.copy() if scale: cluster_df[["pos_x", "pos_y"]] = min_max_scaler.fit_transform(cluster_df[["pos_x", "pos_y"]]) cluster_df['pos_cluster'] = None for map_name in cluster_df['map'].unique(): for team in cluster_df['att_side'].unique(): # Cluster nade positions for pos_type in [t for t in cluster_df['pos_type'].unique() if t not in ['DMG_VIC', 'DMG_ATT']]: mask = (cluster_df['map'] == map_name) & (cluster_df['pos_type'] == pos_type) & (cluster_df['att_side'] == team) group = cluster_df[mask] # https://medium.com/@tarammullin/dbscan-parameter-estimation-ff8330e3a3bd cluster_model = cluster_map[pos_type] #cluster_model = DBSCAN(eps=0.05, min_samples=min_samples) pts =
pd.concat([group['pos_x'], group['pos_y']], axis=1)
pandas.concat
import os import shutil import pandas as pd from adcpipeline import PipelineBase data =
pd.DataFrame(data=[[1, 2, 3], [4, 5, 6]])
pandas.DataFrame
import os import pandas as pd filepath="C:/Users/ajink/Duties_made_easy" print("The file path is : ") os.chdir(filepath) file=pd.read_excel("DataFile.xlsx",sheet_name="Sheet1",na_values=" ") #print(file) ####################### Accissing the Required Data ######################## def deleterow(i): for j in range(i): teacherfile.drop(teacherfile.index[j], inplace=True) teacherfile=pd.read_excel("DataFile.xlsx",sheet_name="old Jr. Sup. order Nov. 2019", na_values=" ") #deleterow(3) to_delete=[0,1,2] teacherfile.drop(teacherfile.index[to_delete], inplace=True) colname=teacherfile.loc[3,:] colname[7]="Favorable Dates" teacherfile.columns=colname teacherfile=teacherfile.drop('Jr. Sup. Sign', axis=1) teacherfile=teacherfile.drop(index=3,axis=0) teacherfile=teacherfile.set_index("Sr. No.",drop=False) reqfile=teacherfile.loc[1.0:116.0,["Name of the faculty","Total duties","Favorable Dates"]] #print(reqfile) ############## Getting the Exam Dates date=file.loc[:,['Day/Date','Year','Time','Total Jr. Sup. Req.']] weekdays=['monday', 'tuesday', 'wednesday', 'thursday', 'friday', 'saturday'] for i in range(len(weekdays)): weekdays[i]=weekdays[i].title() #print(weekdays) datesofexam=[] dateswithshift=[] examdate=[] dayduty=[] for i in range(len(date['Day/Date'])): j=date.loc[i][0] if str(j) == 'nan': continue else: k=j j=j.split(" ")[0].title() if j in weekdays: shift=int(date.iloc[i][2][0]) if shift == 1: l=k.split(" ")[1].strip() + 'm' elif shift == 2: l=k.split(" ")[1].strip() + 'e' dat=k.split(" ")[1].strip() dayduty.append((l,date.iloc[i][3])) dateswithshift.append(l) datesofexam.append(dat) con=date.iloc[i][0]+date.iloc[i][2] examdate.append(con) else: continue ############################# Processing of Data class Teacher(): def __init__(self,name ,noOfDuties): self.name = name self.noOfDuties = noOfDuties self.alloteddate=['12/12/2020'] def putdata(self): print("Teacher Name : ",self.name, "\nTeacher Dutfavdt.iloc[cou][16]favdt.iloc[cou][16]ies : ",self.noOfDuties) supreq=[] for i in range(0,len(date['Total Jr. Sup. Req.']),1): if type(date['Total Jr. Sup. Req.'][i]) is int: supreq.append(date['Total Jr. Sup. Req.'][i]) thr=[] for z in range(1,len(reqfile['Name of the faculty'])+1): thr.append(Teacher(reqfile.loc[z][0], reqfile.loc[z][1])) toblocks=[] maxi=max(supreq) for jrsup in range(1,max(supreq)+1,1): toblocks.append(jrsup) day=[] for x in range(0,len(dateswithshift),1): day.append([dateswithshift[x],[]]) forteacher=[] sorteddates=[] teacherlist=[] teacherwithduties=[] reqfile["Favorable Dates"].fillna("0",inplace=True) for u in range(1,len(reqfile['Name of the faculty'])+1,1): if reqfile["Favorable Dates"][u] != str(0): forteacher.append([reqfile['Name of the faculty'][u],[]]) sorteddates.append([reqfile['Name of the faculty'][u],[]]) teacherlist.append(reqfile['Name of the faculty'][u].strip('.')) teacherwithduties.append((reqfile['Name of the faculty'][u], reqfile["Total duties"][u], reqfile["Favorable Dates"][u])) #================================= Let's assign the dates mylist=list(dict.fromkeys(datesofexam)) datesofexam=mylist fav=[] favdt=pd.read_excel("DataFile.xlsx",sheet_name="Sheet3", na_values=" ") favdt['Favorable Dates'].fillna(0,inplace=True) for i in range(0,len(favdt),1): if favdt['Favorable Dates'][i] != 0: date=favdt['Favorable Dates'][i].split("/") dayi=date[2] month=date[1] year=date[0] date=dayi+"/"+month+"/"+year nam=favdt['Unnamed: 1'][i] if nam in teacherlist: place=teacherlist.index(nam) dutiesreq=teacherwithduties[place][1] fav.append((favdt['Unnamed: 1'][i],date,dutiesreq)) else: continue def teach(ch): if ch in teacherlist: for ijk in range(len(fav)): if str(fav[ijk][0]) == str(ch): return [fav[ijk][0], str(fav[ijk][1]), fav[ijk][2]] else: return 0 """ def givestart(pos,p): #pos = position of favdt in list and p = half of dutiesreq to teacher lb=0 #lb = lower bound of index of datesofexam ub=len(datesofexam)-1 #ub = upper bound if (pos >= p) and (ub-pos)>=p: return pos-p elif pos+1 <= p: return lb else: return ub """ def check(mylist,date,name,dutyreq): dutyalloted=0 if (date in dateswithshift): index=dateswithshift.index(date) count=len(day[index][1]) if name in teacherlist: pos=teacherlist.index(name) dutyalloted=len(forteacher[pos][1]) # print("/nline 163: count=",count,"index = ",index) if count < dayduty[index][1] and count>=0 : if dutyalloted<dutyreq: day[index][1].append(name) if name in teacherlist: forteacher[teacherlist.index(name)][1].append(day[index][0]) sorteddates[teacherlist.index(name)][1].append(day[index][0]) else: return 0 def checkavl(date1,date2): if (date1 in dateswithshift): index=dateswithshift.index(date1) counti=len(day[index][1]) if counti < dayduty[index][1]: return date1 if (date2 in dateswithshift): index=dateswithshift.index(date2) counti=len(day[index][1]) if counti < dayduty[index][1]: return date2 else: return -1 def allote(teacher): if teacher == None: return 0 name=teacher[0] fvdt=teacher[1] dutiesreq=teacher[2] pos=datesofexam.index(fvdt) i=j=pos date1=fvdt+'m' date2=fvdt+'e' getdate=checkavl(date1, date2) if getdate != -1: check(dateswithshift, getdate,name,dutiesreq) #print("\n pos = ",pos) chk=0 while chk <= dutiesreq: i=i-1 j=j+1 if i <0 and j > len(datesofexam): break if i >= 0: if name in teacherlist: chk=len(forteacher[teacherlist.index(name)][1]) # print("\n\tchk = ",chk,"dutiesreq = ",dutiesreq) if chk > dutiesreq: break fvdt=datesofexam[i] date1=fvdt+'m' date2=fvdt+'e' getdate=checkavl(date1,date2) if getdate != -1: check(dateswithshift, getdate,name,dutiesreq) if j< len(datesofexam): if name in teacherlist: chk=len(forteacher[teacherlist.index(name)][1]) # print("\n\tchk = ",chk,"dutiesreq = ",dutiesreq) if chk > dutiesreq: break # print("\n\tj= ",j) fvdt=datesofexam[j] date1=fvdt+'m' date2=fvdt+'e' getdate=checkavl(date1,date2) if getdate != -1: check(dateswithshift, getdate,name,dutiesreq) #===================== The allocation of teachers starts from here import random allotedteacher=[] i=0 """ choiceteach=random.choice(teacherlist) li=teach(choiceteach) allote(li) allotedteacher.append(choiceteach) """ ak=0 lengthlt=[] for shady in range(len(dateswithshift)): ak=ak+dayduty[shady][1] terminate=0 while terminate < ak: terminate=0 gin=0 for gabbi in range(len(dateswithshift)) : gin=len(day[gabbi][1]) terminate=terminate+gin # print("Terminat", terminate) choiceteach=random.choice(teacherlist) li=teach(choiceteach) if choiceteach in allotedteacher: continue elif li == 0: # print("Got a successful Result") allotedteacher.append(choiceteach) teacherlist.remove(choiceteach) i=i+1 else: allote(li) """ if li[0] in teacherlist: p=teacherlist.index(li[0]) reqdut=teacherwithduties[p][1] forteacher[p][1]""" allotedteacher.append(choiceteach) i=i+1 #================================Getting equal duties for teachers minimum=0 def extraallote(teacher='xyz'): lengthlt.clear() # print("line 302 : I am in while loop") for i in range(len(teacherlist)): length=len(forteacher[i][1]) lengthlt.append(length) highest=max(lengthlt) minimum=min(lengthlt) if highest == minimum: return 0 # print("minimum = ",minimum) if highest in lengthlt: position=lengthlt.index(highest) date=forteacher[position][1][highest-1] # print("for maximum : position = ", position, # "highest - 1 = " ,highest-1,"and date = ",date) forteacher[position][1].remove(date) sorteddates[position][1].remove(date) if teacher !='xyz': position=teacherlist.index(teacher) forteacher[position][1].append(date) sorteddates[position][1].append(date) else: position=lengthlt.index(minimum) forteacher[position][1].append(date) sorteddates[position][1].append(date) return minimum #print("line 302 : I am in while loop") x=0 while x == 0: x = extraallote() """Teachers greater than 6 duties """ rearr=[] underalloted={} underduty={} """ for i in range(len(teacherlist)): if len(forteacher[i][1]) == fav[i][2]: if fav[i][2] >6: rearr.append((fav[i][0],fav[i][1],fav[i][2])) elif (len(forteacher[i][1]) < fav[i][2]) and (fav[i][2] < 6): if len(forteacher[i][1]) <6: diff=fav[i][2]-len(forteacher[i][1]) underalloted.update({fav[i][0] : [fav[i][1],fav[i][2],diff]}) elif len(forteacher[i][1]) < fav[i][2]: if len(forteacher[i][1]) <6: diff=fav[i][2]-len(forteacher[i][1]) underduty.update({fav[i][0] : [fav[i][1],fav[i][2],diff]}) """ maximum=max(lengthlt) count=0 for i in underalloted: count=count+underalloted[i][2] for i in underalloted: for j in range(underalloted[i][2]): extraallote(i) count=count-1 for i in underduty: count=underduty[i][1] pre=underduty[i][1] - underduty[i][2] count=int((count/2) + 1) count=count-pre for j in range(count): extraallote(i) #================================ Arranging the Dates alloted in ascending order def sortkar(data): sortedlist=[] year=year1=[] month=[] day=[] yearws=[] new=[] yrmonthday=[] p=-1 for k in range(len(data)): i=data[k].split('/') j=i[2][:len(i[2])-1] o=i[2][:len(i[2])] l=i[1] m=i[0] sep1=[] year.append(int(j)) month.append(int(l)) day.append(int(m)) yearws.append(str(o)) # print(i,' ',day,' ',month,' ',year) year1=year.copy() month1=month.copy() day1=day.copy() while len(year) != 0: counts=year.count(min(year)) yrmonthday.append([min(year),[]]) p=p+1 while counts !=0: minimm=min(year) index=year.index(minimm) sep1.append((year[index],month[index],day[index])) yrmonthday[p][1].append(month[index]) day.remove(day[index]) month.remove(month[index]) year.remove(year[index]) counts=counts-1 for i in range(p+1): yrmonthday[i][1]=list(set(yrmonthday[i][1])) for i in range(len(yrmonthday)): for j in range(len(yrmonthday[i][1])): element=yrmonthday[i][1][j] yrmonthday[i][1][j]=[element,[]] for i in range(len(year1)): for j in range(len(yrmonthday)): if yrmonthday[j][0]==year1[i] : for k in range(len(yrmonthday[j][1])): # print("Very long : ",yrmonthday[j][1][k],month1) if yrmonthday[j][1][k][0] == month1[i]: yrmonthday[j][1][k][1].append(day1[i]) for i in range(len(yrmonthday)): for j in range(len(yrmonthday[i][1])): yrmonthday[i][1][j][1].sort() # print("\nline 459 : ",yrmonthday) sortedlist.clear() for i in range(len(yrmonthday)): for j in range(len(yrmonthday[i][1])): for k in range(len(yrmonthday[i][1][j][1])): # print("\nline 465 : i = ",i,"\tj = ",j,"\tk = ",k) # [[2019, [[12, [5, 7, 9, 23, 26, 28, 31]]]], [2020, [[1, [2]]]]] a=str(yrmonthday[i][1][j][1][k]) + "/" + str(yrmonthday[i][1][j][0]) + "/" + str(yrmonthday[i][0]) sortedlist.append(a) return sortedlist # print("sep 1 = ",sep1,"\nyrmonthday = ",yrmonthday,"\nyear1 = ",year1,"\nyear = ",year) """ if counts == len(year): mmonth=min(month) monthcounts=month.count(mmonth) if monthcounts == len(month): while len(day) != 0: mday=min(day) dayin=day.index(mday) sortedlist.append(str(day[dayin]) +"/"+ str(month[dayin]) +"/"+ str(yearws[dayin])) day.remove(day[dayin]) month.remove(month[dayin]) year.remove(year[dayin]) # p=year.index(maximm) # sortedlist.append(str(day[p]) +"/"+ str(month[p]) +"/"+ str(year[p])) return(sortedlist) """ newlist=[] for i in range(len(forteacher)): newlist.clear() sorteddates[i][1] = sortkar(forteacher[i][1]) for j in range(len(forteacher[i][1])): word = len(forteacher[i][1][j]) - int(1) newlist.append((forteacher[i][1][j][0:len(forteacher[i][1][j])-1])) #===============================Making the file suitable for DataFrame for i in range(len(day)): while len(day[i][1]) < maxi: day[i][1].append(" ") df=pd.DataFrame(dict(day)) df=df.T df.columns=[n+1 for n in range(39)] df1=
pd.DataFrame(forteacher)
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Sun Jun 28 21:24:44 2020 @author: omars """ #%% Libraries import pickle from datetime import datetime, timedelta import pandas as pd import numpy as np from params import (target_col, date_col, region_col, training_cutoff, df_path, default_path, nmin, restriction_dict, region_exceptions_dict) import os import warnings warnings.filterwarnings("ignore") #%% Helper Functions def save_model(model, filename): file_pi = open(filename, 'wb') pickle.dump(model, file_pi) def load_model(filename): filehandler = open(filename, 'rb') return(pickle.load(filehandler)) def load_data(file=df_path, target=target_col, date=date_col, region=region_col, training_cutoff=training_cutoff, validation_cutoff=None, nmin=nmin, restriction_dict=restriction_dict[region_col], region_exceptions=region_exceptions_dict[region_col], default_path=default_path, add_countries=False): if file is None: df = get_public_data(default_path) else: df = pd.read_csv(file) df.columns = map(str.lower, df.columns) # delete excepctions if not (region_exceptions is None): df = df[~df[region].isin(region_exceptions)].copy() df = df[df[target] >= nmin[region]] df.sort_values(by=[region, date], inplace=True) try: df["cases_nom"] = df["cases"] / df["population"] df["deaths_nom"] = df["deaths"] / df["population"] except KeyError: pass df["cases_pct3"] = df.groupby(region)["cases"].pct_change(3).values df["cases_pct5"] = df.groupby(region)["cases"].pct_change(5).values try: df[date] = df[date].apply(lambda x: datetime.strptime(x, '%Y-%m-%d')) except: df[date] = df[date].apply(lambda x: datetime.strptime(x, '%m/%d/%Y')) df = df.sort_values(by=[region, date]) if (region == "state") & add_countries: data = pd.read_csv('https://covid.ourworldindata.org/data/owid-covid-data.csv') data.rename(columns={'location': region_col, 'total_cases': 'cases', 'total_tests': 'people_tested', 'total_deaths': 'deaths'}, inplace=True) data = data.loc[:, [region_col, 'date', 'cases', 'deaths', 'people_tested']] #data = data[~data.cases.isna()] data['cases'] = data.groupby('state')['cases'].fillna(method='ffill') data['deaths'] = data.groupby('state')['deaths'].fillna(method='ffill') data[date] = pd.to_datetime(df[date]) df.rename(columns={'state': region_col}, inplace=True) df = df.append(data) # restrict to a subset of obervations if not (restriction_dict is None): masks = [] for col, values in restriction_dict.items(): try: masks.append(df[col].isin(values)) except: pass if masks: mask_ = masks.pop(0) for other_mask in masks: mask_ = (mask_ | other_mask) df = df[mask_].copy() df_train = df[df[date] <= training_cutoff] print("Training set contains {} {}.".format(df[region].nunique(), region)) if validation_cutoff is None: df_test = df[df[date] > training_cutoff] df_val = df.copy() else: df_test = df[[a and b for a, b in zip(df[date] > training_cutoff, df[date] <= validation_cutoff)]] df_val = df[df[date] <= validation_cutoff] return(df, df_val, df_train, df_test) def dict_to_df(output, df_validation, region_col=region_col, date_col=date_col, target_col=target_col): models = list(output.keys()) regions = list(set(df_validation[region_col])) dates = list(set(df_validation[date_col])) predictions_rows = [] for region in regions: for date in dates: prediction = [region, date] for model in models: if region in output[model].keys(): try: prediction.append(output[model][region].loc[date]) except: prediction.append(np.nan) else: prediction.append(np.nan) predictions_rows.append(prediction) df_predictions = pd.DataFrame(predictions_rows, columns=[region_col, date_col] + models) df_agg = df_predictions.merge(df_validation.loc[:, [region_col, date_col, target_col]], how='left', on=[region_col, date_col]) return df_agg def mape(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(np.abs((y_true - y_pred) / y_true)) def get_mapes(df, models, region_col='state', target_col='cases'): results = [] for region in set(df[region_col]): df_sub = df[df[region_col] == region] results.append([region] + [mape(df_sub[target_col], df_sub[model]) for model in models]) results.append(['Average'] + [mape(df[target_col], df[model]) for model in models]) return(pd.DataFrame(results, columns=[region_col] + ['MAPE_' + model for model in models])) def get_public_data(path=df_path): # Import the latest data using the raw data urls meas_url = 'https://raw.githubusercontent.com/COVID19StatePolicy/SocialDistancing/master/data/USstatesCov19distancingpolicy.csv' case_url = 'https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_US.csv' deaths_url = 'https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_deaths_US.csv' mob_url = 'https://www.gstatic.com/covid19/mobility/Global_Mobility_Report.csv' measures = pd.read_csv(meas_url, encoding="ISO-8859-1") cases = pd.read_csv(case_url, encoding='utf-8') deaths = pd.read_csv(deaths_url, encoding='utf-8') mobility = pd.read_csv(mob_url, encoding='utf-8') #<NAME> University daily reports last_available_date = (datetime.today() - timedelta(1)).strftime('%Y-%m-%d') dates = pd.date_range(start='2020-04-12', end=datetime.today() - timedelta(3)).strftime('%m-%d-%Y').tolist() daily_df = pd.DataFrame() for date in dates: daily_url = 'https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_daily_reports_us/' + date + '.csv' this_daily = pd.read_csv(daily_url,encoding='utf-8') this_daily['date'] = date # fill the date column with the date from the file name daily_df = daily_df.append(this_daily) daily_df.drop(['Country_Region', 'Last_Update', 'Lat', 'Long_', 'UID', 'ISO3'], axis=1, inplace=True) daily_df.columns = daily_df.columns.str.replace( 'Province_State', 'state').str.replace( 'Confirmed','cases').str.replace( 'Deaths', 'deaths') daily_df['date'] = pd.to_datetime(daily_df['date'], format="%m-%d-%Y") # Make sure cases and deaths have the same number of rows try: assert cases.shape[0] == deaths.shape[0] except AssertionError: print("Different number of rows in cases and deaths dataframes") print(cases.shape) print(deaths.shape) # keep only US mobility data mobility_us = mobility[mobility.country_region_code == 'US'] # make a new df with no missing values in state column, where sub_region_1=states, sub_region_2 = counties mobility_counties = mobility_us[mobility_us['sub_region_1'].notna()] mobility_states = mobility_counties[mobility_counties['sub_region_2'].isna()] # drop columns with countries and counties; Show list of unique states in final df mobility_states.drop( ['country_region_code', 'country_region', 'sub_region_2', 'iso_3166_2_code', 'census_fips_code'], axis=1, inplace=True) # Check that we have the right number of states mob_states = sorted(mobility_states.sub_region_1.unique()) try: assert len(mob_states) == 51 except AssertionError: print("Number of states in mobility data is not 51") print(len(mob_states)) print(mob_states) measures[['DateIssued', 'DateEnacted', 'DateExpiry', 'DateEased', 'DateEnded']] = measures[ ['DateIssued', 'DateEnacted', 'DateExpiry', 'DateEased', 'DateEnded']].apply(pd.to_datetime, format="%Y%m%d") # Remove suffix from mobility column names mobility_states.columns = [col.replace('_percent_change_from_baseline', '') for col in mobility_states.columns] # check for any missing or misspelled states before joining cases, measures and mobility mset = set(mobility_states.loc[:, 'sub_region_1']) cset = set(cases.loc[:, 'Province_State']) pset = set(measures.loc[:, 'StateName']) dset = set(daily_df.loc[:, 'state']) daily_diff = dset - cset # emove state rows that are not in cases df daily_df = daily_df[~daily_df.state.isin(list(daily_diff))] #check for the same number of states in daily_df and cases df try: assert len(daily_df.state.unique()) == len(cset) except AssertionError: print("Number of states in daily_df and in cases df is not the same") print(len(daily_df.state.unique())) print(len(cset)) # Select columns from measures df to merge with cases and deaths dfs measures = measures[~measures.StateFIPS.isnull()] # drop rows with empty StateFIPS values # Select columns in measures for modeling meas_sel = measures[['StateName', 'StatePolicy', 'DateEnacted', 'DateEnded']] # drop columns not used in models cases.drop(['iso2', 'iso3', 'Country_Region', 'Combined_Key', 'UID', 'code3', 'FIPS', 'Lat', 'Long_'], axis=1, inplace=True) deaths.drop(['iso2', 'iso3', 'Country_Region', 'Combined_Key', 'UID', 'code3', 'FIPS', 'Lat', 'Long_'], axis=1, inplace=True) # Reshape cases and deaths df from wide to tall format c_melt = cases.melt(id_vars=['Province_State', 'Admin2'], var_name='date', value_name='cases') d_melt = deaths.melt(id_vars=['Province_State', 'Admin2', 'Population'], var_name='date', value_name='deaths') # merge cases and deaths df on state and date columns case_death_df = pd.merge(c_melt, d_melt, how='left', on=['Province_State', 'Admin2', 'date']) # convert date colum from str to date case_death_df['date'] = pd.to_datetime(case_death_df['date'], format="%m/%d/%y") # Drop rows with Population = 0 (correction, out-of-state, unassigned) tmp = case_death_df[case_death_df['Population'] != 0] # get total state Population column after grouping each state on an arbitrary date pop = tmp.loc[tmp.date == '2020-05-08'].groupby(['Province_State'], as_index=False)[['Population']].sum() # Group cases and death data by state cd_state = case_death_df.groupby(['Province_State', 'date'], as_index=False)[['cases', 'deaths']].sum() # Merge Population column cdp_state = pd.merge(cd_state, pop, how='left', left_on=['Province_State'], right_on=['Province_State']) #Add measures categorical columns # Add columns with 0s for each measure to the main df dfzeros = pd.DataFrame(np.zeros((len(cdp_state), len(meas_sel.StatePolicy.unique()))), columns=list(meas_sel.StatePolicy.unique())).astype(int) tseries = pd.concat([cdp_state, dfzeros], axis=1) tseries.columns = tseries.columns.str.replace('Province_State', 'state').str.replace('Admin2', 'county') # Loop over states and measures. Plug 1s in the rows when measures were enacted, leave the rest as 0s for state in meas_sel.StateName.unique(): for i, meas in enumerate(meas_sel.StatePolicy.unique()): # select rows by state and measure mask1 = (meas_sel.StateName == state) & (meas_sel.StatePolicy == meas) if not meas_sel[mask1].empty: # date policy enacted start = meas_sel.loc[mask1, "DateEnacted"].values[0] # date policy ended end = meas_sel.loc[mask1, "DateEnded"].values[0] else: # print(state+ " is missing " + meas) continue if pd.notnull(start) & pd.notnull(end): mask2 = (tseries.state == state) & (tseries.date >= start) & (tseries.date <= end) elif pd.notnull(start): mask2 = (tseries.state == state) & (tseries.date >= start) else: continue # set measure values to 1 after date was enacted by state tseries.loc[mask2, meas] = 1 #Merge mobility and columns from daily_df reports tseries['date'] = tseries['date'].dt.strftime('%Y-%m-%d') df =
pd.merge(tseries, mobility_states, how='left', left_on=['state', 'date'], right_on=['sub_region_1', 'date'])
pandas.merge
""" Make dataset pipeline """ import pandas as pd import numpy as np df =
pd.read_csv("../data/processed/dns.csv")
pandas.read_csv
# author: <NAME> (Group 24) # contributors: <NAME>, <NAME>, <NAME> # date: 2021-11-25 # last updated: 2021-11-27 '''This script models for the Crime Vancouver Usage: modelling.py --input_path=<input_path> --out_path=<out_path> Options: --input_path=<input_path> Path to directory where the data are stored --out_path=<out_path> Path to directory where the results are stored ''' import dataframe_image as dfi from sklearn.metrics import classification_report import warnings import pickle from sklearn.metrics import ConfusionMatrixDisplay from sklearn.metrics import confusion_matrix from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, roc_auc_score, average_precision_score, balanced_accuracy_score from sklearn.metrics import make_scorer from sklearn.svm import SVC, SVR from sklearn.preprocessing import ( OneHotEncoder, OrdinalEncoder, PolynomialFeatures, StandardScaler, ) from sklearn.pipeline import Pipeline, make_pipeline from sklearn.model_selection import ( GridSearchCV, RandomizedSearchCV, ShuffleSplit, cross_val_score, cross_validate, train_test_split, ) from sklearn.linear_model import LogisticRegression, Ridge, RidgeCV, RidgeClassifier from sklearn.impute import SimpleImputer from sklearn.feature_extraction.text import CountVectorizer from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor from sklearn.dummy import DummyClassifier, DummyRegressor from sklearn.compose import ColumnTransformer, make_column_transformer import random import altair as alt import pandas as pd import numpy as np from docopt import docopt import os from sklearn.model_selection import train_test_split alt.data_transformers.enable('data_server') alt.renderers.enable('mimetype') opt = docopt(__doc__) def main(input_path, out_path): if not os.path.exists(out_path): os.makedirs(os.path.dirname(out_path)) # using the objects that are in the folder X_train = pd.read_csv( input_path + '/training_feature.csv', index_col="index") y_train = pd.read_csv( input_path + '/training_target.csv', index_col="index").loc[:, "TYPE"] X_test = pd.read_csv( input_path + '/test_feature.csv', index_col="index") y_test = pd.read_csv(input_path + '/test_target.csv', index_col="index").loc[:, "TYPE"] file = open(input_path + '/preprocessor.p', 'rb') preprocessor = pickle.load(file) file.close() file = open(input_path + '/models.p', 'rb') models = pickle.load(file) file.close() # Cross validation # Exports the result into png file results_cv = cv_models(models, X_train, y_train, preprocessor, cv=5) filename = 'models_results_cv.png' outfile = open(out_path + "/" + filename, 'wb') dfi.export(results_cv, outfile, table_conversion='matplotlib') # Hyperparameter tuning of the best model # Creates a pipeline of the best results best_results = best_LR_model(X_train, y_train, preprocessor) best_result_df = best_results["scores"] pipe_best = make_pipeline(preprocessor, best_results['best_model']) filename = 'best_LR_model.png' outfile = open(out_path + "/" + filename, 'wb') dfi.export(best_result_df, outfile, table_conversion="matplotlib") # Save pipe_best data try: filename = 'pipe_best.p' outfile = open(out_path + "/" + filename, 'wb') pickle.dump(pipe_best, outfile) outfile.close() print("") print(f"Best pipe is loaded successfully at %s" % (out_path + filename)) except Exception as error: print(f"Error message: %s" % error) print("Error while saving pipe") classification_report = print_scores( pipe_best, X_train, y_train, X_test, y_test, preprocessor)['report'] filename = 'classification_report.png' outfile = open(out_path + "/" + filename, 'wb') dfi.export(classification_report.T, outfile, table_conversion='matplotlib') # it is saved inside the function, just need to call print_confusion_matrix(pipe_best, X_train, y_train, X_test, y_test, out_path) # Adopted from lecture notes of DSCI 571 and DSCI 573 def mean_std_cross_val_scores(model, X_train, y_train, **kwargs): """ Returns mean and std of cross validation Parameters ---------- model : scikit-learn model X_train : numpy array or pandas DataFrame X in the training data y_train : y in the training data Returns ---------- pandas Series with mean scores from cross_validation """ scores = cross_validate(model, X_train, y_train, **kwargs) mean_scores = pd.DataFrame(scores).mean() std_scores = pd.DataFrame(scores).std() out_col = [] for i in range(len(mean_scores)): out_col.append((f"%0.3f (+/- %0.3f)" % (mean_scores[i], std_scores[i]))) return pd.Series(data=out_col, index=mean_scores.index) def cv_models(models, X_train, y_train, preprocessor, cv=5): """Returns CV f1 scores Parameters ---------- models : list A list of sklearn classifiers X_train : numpy ndarray The feature matrix y_train : numpy ndarray The target labels cv : int, optional Number of folds, default 5 Returns ------- pandas DataFrame The results of cross validation for the given models """ # X_train = pd.read_csv( # '../data/processed/training_feature.csv', index_col="index") # y_train = pd.read_csv( # '../data/processed/training_target.csv', index_col="index").loc[:, "TYPE"] #file = open('../data/processed/preprocessor.p', 'rb') #preprocessor = pickle.load(file) #file = open('../data/processed/models.p', 'rb') #models = pickle.load(file) print("") print("Start cross validation.") f1_scorer = make_scorer(f1_score, average='micro') scoring_metrics = { "f1": f1_scorer, } results = {} for name, model in models.items(): print(f"running %s" % name) pipe = make_pipeline(preprocessor, model) results[name] = mean_std_cross_val_scores( pipe, X_train, y_train, cv=cv, return_train_score=True, scoring=scoring_metrics ) results_df = pd.DataFrame(results) print("") print("Completed cross validation of different models.") return results_df def best_LR_model(X_train, y_train, preprocessor): """ Finds the best LR model based on C and weight class, based on f1 scorer Parameters ---------- models : list A list of sklearn classifiers X_train : numpy ndarray The feature matrix Returns ------- dictionary dictionary with scores and best model with optimized hyperparameters """ # X_train = pd.read_csv( # '../data/processed/training_feature.csv', index_col="index") # y_train = pd.read_csv( # '../data/processed/training_target.csv', index_col="index").loc[:, "TYPE"] # X_test = pd.read_csv( # '../data/processed/test_feature.csv', index_col="index") # y_test = pd.read_csv('../data/processed/test_target.csv', # index_col="index").loc[:, "TYPE"] #file = open('../data/processed/preprocessor.p', 'rb') #preprocessor = pickle.load(file) print("") print("Start hyperparameter tuning") pipe = make_pipeline(preprocessor, LogisticRegression(max_iter=2000, multi_class='ovr',)) f1_scorer = make_scorer(f1_score, average='micro') scoring_metrics = { "f1": f1_scorer, } param_grid = { "logisticregression__C": [0.01, 0.1, 1, 10, 100], "logisticregression__class_weight": [None, "balanced"] } search = RandomizedSearchCV( pipe, param_grid, verbose=1, n_jobs=6, n_iter=10, return_train_score=True, scoring=make_scorer(f1_score, average='micro'), random_state=123, ) search.fit(X_train, y_train) search_df = pd.DataFrame(search.cv_results_).loc[
pd.DataFrame(search.cv_results_)
pandas.DataFrame
from typing import List, Optional, Union import numpy as np import pandas as pd from trackml.score import score_event from .type_alias import TQubo, TDimodSample, TXplet, XpletType, TDoublet from .utils import truth_to_xplets, track_to_xplets, diff_rows class DataWrapper: """ Wraps a hits and a truth file and exposes useful functions to compute scores, check xplet validity and more. """ def __init__(self, hits: pd.DataFrame, truth: pd.DataFrame): """ Create a wrapper. Hits and Truth should match the TrackML challenge schema. See `TrackML data <https://www.kaggle.com/c/trackml-particle-identification/data>`_ on Kaggle for more info. Note that indexes and all will be handled here, so you can just use `pd.read_csv` to load the files. """ self.hits = hits self.truth = truth # add proper indexing for df in [self.hits, self.truth]: df['idx'] = df.hit_id.values df.set_index('idx', inplace=True) # add radius information hits['r'] = np.linalg.norm(hits[['x', 'y']].values.T, axis=0) # keep a lookup of real doublets: '{hit_id_1}_{hit_id_2}' -> [hit_id_1, hit_id_2] df = hits.join(truth, lsuffix='_') self._doublets = truth_to_xplets(hits, df[df.weight > 0], x=2) self._unfocused = truth_to_xplets(hits, df[df.weight == 0], x=2) self._lookup = dict( [(self._get_dkey(*d), XpletType.REAL) for d in self._doublets] + [(self._get_dkey(*d), XpletType.REAL_UNFOCUSED) for d in self._unfocused] ) def _get_dkey(self, h1, h2): return f'{h1}_{h2}' def get_unfocused_doublets(self) -> List[TDoublet]: return self._unfocused def get_real_doublets(self, with_unfocused=False) -> List[TDoublet]: """Return the list of real doublets""" if with_unfocused: return self._doublets + self._unfocused return self._doublets # ==== doublets and subtrack checking def is_real_doublet(self, doublet: TDoublet) -> XpletType: """Test whether a doublet is real, i.e. part of a real track.""" key = self._get_dkey(*doublet) return self._lookup.get(key, XpletType.FAKE) def is_real_xplet(self, xplet: TXplet) -> XpletType: """Test whether an xplet is real, i.e. a sub-track of a real track.""" doublets = track_to_xplets(xplet, x=2) if len(doublets) == 0: raise Exception(f'Got a subtrack with no doublets in it "{xplet}"') xplet_type = set(self.is_real_doublet(s) for s in doublets) return XpletType.FAKE if len(xplet_type) > 1 else xplet_type.pop() # =============== QUBO and energy checking def sample_qubo(self, Q: TQubo) -> TDimodSample: """ Compute the ideal solution for a given QUBO. Here, ideal means correct, but I doesn't guarantee that the energy is minimal. """ sample = dict() for (k1, k2), v in Q.items(): if k1 == k2: subtrack = list(map(int, k1.split('_'))) sample[k1] = int(self.is_real_xplet(subtrack) != XpletType.FAKE) return sample def compute_energy(self, Q: TQubo, sample: Optional[TDimodSample] = None) -> float: """Compute the energy of a given sample. If sample is None, the ideal sample is used (see :py:meth:~`sample_qubo`). """ if sample is None: sample = self.sample_qubo(Q) en = 0 for (k1, k2), v in Q.items(): if sample[k1] != 0 and sample[k2] != 0: en += v return en # =============== scoring def get_score_numbers(self, doublets: Union[List, np.array, pd.DataFrame]) -> [float, float, float]: """ :param doublets: a set of doublets :return: the number of real, fake and missing doublets """ if isinstance(doublets, pd.DataFrame): doublets = doublets.values doublets_found, _, unfocused_found = diff_rows(doublets, self._unfocused) missing, fakes, real = diff_rows(self._doublets, doublets_found) return len(real), len(fakes), len(missing) def compute_score(self, doublets: Union[List, np.array, pd.DataFrame]) -> [float, float, List[List]]: """ Precision and recall are defined as follow: * precision (purity): how many doublets are correct ? `len(real ∈ doublets) / len(doublets)` * recall (efficiency): how well does the solution covers the truth ? `len(real ∈ doublets) / len(truth)` :param doublets: a set of doublets :return: the precision, the recall and the list of missing doublets. p and r are between 0 and 1. """ #unique_doublets = set() #for d in doublets: # unique_doublets.add(d) #doublets = list(d) if isinstance(doublets, pd.DataFrame): doublets = doublets.values doublets_found, _, unfocused_found = diff_rows(doublets, self._unfocused) missing, fakes, real = diff_rows(self._doublets, doublets_found) return len(real) / len(doublets_found), \ len(real) / len(self._doublets), \ missing def add_missing_doublets(self, doublets: Union[np.array, pd.DataFrame]) -> pd.DataFrame: """ :param doublets: a list of doublets :return: a list of doublets with 100% recall """ if isinstance(doublets, pd.DataFrame): doublets = doublets.values ip, ir, missing = self.compute_score(doublets) print(f'got {len(doublets)} doublets.') print(f' Input precision (%): {ip * 100:.4f}, recall (%): {ir * 100:.4f}') if len(missing) == 0: # nothing to do return doublets else: ret = pd.DataFrame(np.vstack((doublets, missing)), columns=['start', 'end']) p, _, _ = self.compute_score(ret.values) print(f' New precision (%): {p * 100:.4f}') return ret def compute_trackml_score(self, final_tracks: List[TXplet], submission=None) -> float: """ :param final_tracks: a list of xplets representing tracks :param submission: (optional) a TrackML submission, see :py:meth:~`create_submission` :return: the trackml score (between 0 and 1) """ if submission is None: submission = self.create_submission(final_tracks) return score_event(self.truth, submission) def create_submission(self, tracks: List[TXplet], event_id=1000) -> pd.DataFrame: """Encode a solution into a dataframe following the structure of a trackml submission.""" hit_ids = self.hits.hit_id.values n_rows = len(hit_ids) sub_data = np.column_stack(([event_id] * n_rows, hit_ids, np.zeros(n_rows))) submission = pd.DataFrame( data=sub_data, columns=["event_id", "hit_id", "track_id"], index=hit_ids, dtype=int) for idx, track in enumerate(tracks): submission.loc[track, 'track_id'] = idx + 1 return submission # =============== class utils @classmethod def from_path(cls, path): """ Create a DataWrapper by reading the hits and the truth from a path. :path: the path + event id, in the format `/path/to/directory/eventXXXXX` """ path = path.replace('-hits.csv', '') return cls(hits=
pd.read_csv(path + '-hits.csv')
pandas.read_csv
from functools import partial import logging from os.path import join, exists import pandas as pd from sklearn.model_selection import KFold, train_test_split from sklearn.preprocessing import PowerTransformer, QuantileTransformer from .tabular_torch_dataset import TorchTabularTextDataset from .data_utils import ( CategoricalFeatures, agg_text_columns_func, convert_to_func, get_matching_cols, load_num_feats, load_cat_and_num_feats, normalize_numerical_feats, ) logger = logging.getLogger(__name__) def load_data_into_folds(data_csv_path, num_splits, validation_ratio, text_cols, tokenizer, label_col, label_list=None, categorical_cols=None, numerical_cols=None, sep_text_token_str=' ', categorical_encode_type='ohe', numerical_transformer_method='quantile_normal', empty_text_values=None, replace_empty_text=None, max_token_length=None, debug=False ): """ Function to load tabular and text data from a specified folder into folds Loads train, test and/or validation text and tabular data from specified csv path into num_splits of train, val and test for Kfold cross validation. Performs categorical and numerical data preprocessing if specified. `data_csv_path` is a path to Args: data_csv_path (str): The path to the csv containing the data num_splits (int): The number of cross validation folds to split the data into. validation_ratio (float): A float between 0 and 1 representing the percent of the data to hold as a consistent validation set. text_cols (:obj:`list` of :obj:`str`): The column names in the dataset that contain text from which we want to load tokenizer (:obj:`transformers.tokenization_utils.PreTrainedTokenizer`): HuggingFace tokenizer used to tokenize the input texts as specifed by text_cols label_col (str): The column name of the label, for classification the column should have int values from 0 to n_classes-1 as the label for each class. For regression the column can have any numerical value label_list (:obj:`list` of :obj:`str`, optional): Used for classification; the names of the classes indexed by the values in label_col. categorical_cols (:obj:`list` of :obj:`str`, optional): The column names in the dataset that contain categorical features. The features can be already prepared numerically, or could be preprocessed by the method specified by categorical_encode_type numerical_cols (:obj:`list` of :obj:`str`, optional): The column names in the dataset that contain numerical features. These columns should contain only numeric values. sep_text_token_str (str, optional): The string token that is used to separate between the different text columns for a given data example. For Bert for example, this could be the [SEP] token. categorical_encode_type (str, optional): Given categorical_cols, this specifies what method we want to preprocess our categorical features. choices: [ 'ohe', 'binary', None] see encode_features.CategoricalFeatures for more details numerical_transformer_method (str, optional): Given numerical_cols, this specifies what method we want to use for normalizing our numerical data. choices: ['yeo_johnson', 'box_cox', 'quantile_normal', None] see https://scikit-learn.org/stable/auto_examples/preprocessing/plot_all_scaling.html for more details empty_text_values (:obj:`list` of :obj:`str`, optional): specifies what texts should be considered as missing which would be replaced by replace_empty_text replace_empty_text (str, optional): The value of the string that will replace the texts that match with those in empty_text_values. If this argument is None then the text that match with empty_text_values will be skipped max_token_length (int, optional): The token length to pad or truncate to on the input text debug (bool, optional): Whether or not to load a smaller debug version of the dataset Returns: :obj:`tuple` of `list` of `tabular_torch_dataset.TorchTextDataset`: This tuple contains three lists representing the splits of training, validation and testing sets. The length of the lists is equal to the number of folds specified by `num_splits` """ assert 0 <= validation_ratio <= 1, 'validation ratio needs to be between 0 and 1' all_data_df =
pd.read_csv(data_csv_path)
pandas.read_csv
'''Wrapper for the Twitter API''' import requests from typing import Union, List, Dict from tqdm.auto import tqdm import pandas as pd import time import numpy as np import logging from json import JSONDecodeError logger = logging.getLogger(__name__) class Twitter: '''A wrapper for the Twitter API. Args: twitter_bearer_token (str): The bearer token from the Twitter API. ''' tweet_lookup_url: str = 'https://api.twitter.com/2/tweets' def __init__(self, twitter_bearer_token: str): self.api_key = twitter_bearer_token self.headers = dict(Authorization=f'Bearer {self.api_key}') self.expansions = ['attachments.poll_ids', 'attachments.media_keys', 'author_id', 'entities.mentions.username', 'geo.place_id', 'in_reply_to_user_id', 'referenced_tweets.id', 'referenced_tweets.id.author_id'] self.tweet_fields = ['attachments', 'author_id', 'conversation_id', 'created_at', 'entities', 'geo', 'id', 'in_reply_to_user_id', 'lang', 'public_metrics', 'possibly_sensitive', 'referenced_tweets', 'reply_settings', 'source', 'text', 'withheld'] self.user_fields = ['created_at', 'description', 'entities', 'id', 'location', 'name', 'pinned_tweet_id', 'profile_image_url', 'protected', 'public_metrics', 'url', 'username', 'verified', 'withheld'] self.media_fields = ['duration_ms', 'height', 'media_key', 'preview_image_url', 'type', 'url', 'width', 'public_metrics'] self.place_fields = ['contained_within', 'country', 'country_code', 'full_name', 'geo', 'id', 'name', 'place_type'] self.poll_fields = ['duration_minutes', 'end_datetime', 'id', 'options', 'voting_status'] def rehydrate_tweets(self, tweet_ids: List[Union[str, int]] ) -> Dict[str, pd.DataFrame]: '''Rehydrates the tweets for the given tweet IDs. Args: tweet_ids (list of either str or int): The tweet IDs to rehydrate. Returns: dict: A dictionary with keys 'tweets', 'users', 'media', 'polls' and 'places', where the values are the associated Pandas DataFrame objects. ''' # Ensure that the tweet IDs are strings tweet_ids = [str(tweet_id) for tweet_id in tweet_ids] # Set up the params for the GET request get_params = {'expansions': ','.join(self.expansions), 'media.fields': ','.join(self.media_fields), 'place.fields': ','.join(self.place_fields), 'poll.fields': ','.join(self.poll_fields), 'tweet.fields': ','.join(self.tweet_fields), 'user.fields': ','.join(self.user_fields)} # Split `tweet_ids` into batches of at most 100, as this is the # maximum number allowed by the API num_batches = len(tweet_ids) // 100 if len(tweet_ids) % 100 != 0: num_batches += 1 batches = np.array_split(tweet_ids, num_batches) # Initialise dataframes tweet_df = pd.DataFrame() user_df = pd.DataFrame() media_df = pd.DataFrame() poll_df = pd.DataFrame() place_df = pd.DataFrame() # Initialise progress bar if len(batches) > 1: pbar = tqdm(total=len(tweet_ids), desc='Rehydrating') # Loop over all the batches for batch in batches: # Add the batch tweet IDs to the batch get_params['ids'] = ','.join(batch) # Perform the GET request try: response = requests.get(self.tweet_lookup_url, params=get_params, headers=self.headers) except requests.exceptions.RequestException as e: logger.error(f'[{e}] Error in rehydrating tweets.\nThe ' f'parameters used were {get_params}.') continue # If we have reached the API limit then wait a bit and try again while response.status_code in [429, 503]: logger.debug('Request limit reached. Waiting...') time.sleep(1) try: response = requests.get(self.tweet_lookup_url, params=get_params, headers=self.headers) except requests.exceptions.RequestException as e: logger.error(f'[{e}] Error in rehydrating tweets.\nThe ' f'parameters used were {get_params}.') continue # If we are not authorised then continue to the next batch if response.status_code == 401: continue # If the GET request failed then continue to the next batch elif response.status_code != 200: msg = f'[{response.status_code}] {response.text}' logger.error(msg) continue # Convert the response to a dict try: data_dict = response.json() except JSONDecodeError as e: logger.error(f'[{e}] Error in unpacking tweets.\nThe ' f'parameters used were {get_params}.') continue # If the query returned errors then continue to the next batch if 'data' not in data_dict and 'errors' in data_dict: error = data_dict['errors'][0] logger.error(error['detail']) continue # Tweet dataframe if 'data' in data_dict: df = (pd.json_normalize(data_dict['data']) .rename(columns=dict(id='tweet_id'))) tweet_df = (pd.concat((tweet_df, df)) .drop_duplicates(subset='tweet_id') .astype(dict(tweet_id=int)) .reset_index(drop=True)) # User dataframe if 'includes' in data_dict and 'users' in data_dict['includes']: users = data_dict['includes']['users'] df = (pd.json_normalize(users) .rename(columns=dict(id='user_id'))) user_df = (pd.concat((user_df, df)) .drop_duplicates(subset='user_id') .astype(dict(user_id=int)) .reset_index(drop=True)) # Media dataframe if 'includes' in data_dict and 'media' in data_dict['includes']: media = data_dict['includes']['media'] df = pd.json_normalize(media) media_df = (pd.concat((media_df, df)) .drop_duplicates(subset='media_key') .reset_index(drop=True)) # Poll dataframe if 'includes' in data_dict and 'polls' in data_dict['includes']: polls = data_dict['includes']['polls'] df = (pd.json_normalize(polls) .rename(columns=dict(id='poll_id'))) poll_df = (pd.concat((poll_df, df)) .drop_duplicates(subset='poll_id') .astype(dict(poll_id=int)) .reset_index(drop=True)) # Places dataframe if 'includes' in data_dict and 'places' in data_dict['includes']: places = data_dict['includes']['places'] df = (
pd.json_normalize(places)
pandas.json_normalize
import sys import time import datetime import logging from sqlalchemy.exc import IntegrityError import Utils.configuration_file_service as config_service import Utils.DB_utils as dbUtil import pandas as pd import tushare as ts from sqlalchemy import Column, String, Float, MetaData, Table, create_engine, INT token = config_service.getProperty(section_name=config_service.TOKEN_SECTION_NAME, property_name=config_service.TS_TOKEN_NAME) pro = ts.pro_api(token) def getTableMeta(year: int, metadata: MetaData) -> Table: """ get corresponding table meta data. :param year: year of the data :return: a Table object representing the table structure """ return Table( dbUtil.getTableName(year, "cashflow"), metadata, Column("id", INT, primary_key=True), Column("ts_code", String(10)), # 股票代码 Column("ann_date", String(8)), Column("f_ann_date", String(8)), Column("end_date", String(8)), Column("comp_type", String(3)), Column("report_type", String(3)), Column("net_profit", Float), # 净利润 Column("finan_exp", Float), # 财务费用 Column("c_fr_sale_sg", Float), # 销售商品、提供劳务收到的现金 Column("recp_tax_rends", Float), # 收到的税费返还 Column("n_depos_incr_fi", Float), # 客户存款和同业存放款项净增加额 Column("n_incr_loans_cb", Float), # 向中央银行借款净增加额 Column("n_inc_borr_oth_fi", Float), # 向其他金融机构拆入资金净增加额 Column("prem_fr_orig_contr", Float), # 收到原保险合同保费取得的现金 Column("n_incr_insured_dep", Float), # 保户储金净增加额 Column("n_reinsur_prem", Float), # 收到再保业务现金净额 Column("n_incr_disp_tfa", Float), # 处置交易性金融资产净增加额 Column("ifc_cash_incr", Float), # 收取利息和手续费净增加额 Column("n_incr_disp_faas", Float), # 处置可供出售金融资产净增加额 Column("n_incr_loans_oth_bank", Float), # 拆入资金净增加额 Column("n_cap_incr_repur", Float), # 回购业务资金净增加额 Column("c_fr_oth_operate_a", Float), # 收到其他与经营活动有关的现金 Column("c_inf_fr_operate_a", Float), # 经营活动现金流入小计 Column("c_paid_goods_s", Float), # 购买商品、接受劳务支付的现金 Column("c_paid_to_for_empl", Float), # 支付给职工以及为职工支付的现金 Column("c_paid_for_taxes", Float), # 支付的各项税费 Column("n_incr_clt_loan_adv", Float), # 客户贷款及垫款净增加额 Column("n_incr_dep_cbob", Float), # 存放央行和同业款项净增加额 Column("c_pay_claims_orig_inco", Float), # 支付原保险合同赔付款项的现金 Column("pay_handling_chrg", Float), # 支付手续费的现金 Column("pay_comm_insur_plcy", Float), # 支付保单红利的现金 Column("oth_cash_pay_oper_act", Float), # 支付其他与经营活动有关的现金 Column("st_cash_out_act", Float), # 经营活动现金流出小计 Column("n_cashflow_act", Float), # 经营活动产生的现金流量净额 Column("oth_recp_ral_inv_act", Float), # 收到其他与投资活动有关的现金 Column("c_disp_withdrwl_invest", Float), # 收回投资收到的现金 Column("c_recp_return_invest", Float), # 取得投资收益收到的现金 Column("n_recp_disp_fiolta", Float), # 处置固定资产、无形资产和其他长期资产收回的现金净额 Column("n_recp_disp_sobu", Float), # 处置子公司及其他营业单位收到的现金净额 Column("stot_inflows_inv_act", Float), # 投资活动现金流入小计 Column("c_pay_acq_const_fiolta", Float), # 购建固定资产、无形资产和其他长期资产支付的现金 Column("c_paid_invest", Float), # 投资支付的现金 Column("n_disp_subs_oth_biz", Float), # 取得子公司及其他营业单位支付的现金净额 Column("oth_pay_ral_inv_act", Float), # 支付其他与投资活动有关的现金 Column("n_incr_pledge_loan", Float), # 质押贷款净增加额 Column("stot_out_inv_act", Float), # 投资活动现金流出小计 Column("n_cashflow_inv_act", Float), # 投资活动产生的现金流量净额 Column("c_recp_borrow", Float), # 取得借款收到的现金 Column("proc_issue_bonds", Float), # 发行债券收到的现金 Column("oth_cash_recp_ral_fnc_act", Float), # 收到其他与筹资活动有关的现金 Column("stot_cash_in_fnc_act", Float), # 筹资活动现金流入小计 Column("free_cashflow", Float), # 企业自由现金流量 Column("c_prepay_amt_borr", Float), # 偿还债务支付的现金 Column("c_pay_dist_dpcp_int_exp", Float), # 分配股利、利润或偿付利息支付的现金 Column("incl_dvd_profit_paid_sc_ms", Float), # 其中:子公司支付给少数股东的股利、利润 Column("oth_cashpay_ral_fnc_act", Float), # 支付其他与筹资活动有关的现金 Column("stot_cashout_fnc_act", Float), # 筹资活动现金流出小计 Column("n_cash_flows_fnc_act", Float), # 筹资活动产生的现金流量净额 Column("eff_fx_flu_cash", Float), # 汇率变动对现金的影响 Column("n_incr_cash_cash_equ", Float), # 现金及现金等价物净增加额 Column("c_cash_equ_beg_period", Float), # 期初现金及现金等价物余额 Column("c_cash_equ_end_period", Float), # 期末现金及现金等价物余额 Column("c_recp_cap_contrib", Float), # 吸收投资收到的现金 Column("incl_cash_rec_saims", Float), # 其中:子公司吸收少数股东投资收到的现金 Column("uncon_invest_loss", Float), # 未确认投资损失 Column("prov_depr_assets", Float), # 加:资产减值准备 Column("depr_fa_coga_dpba", Float), # 固定资产折旧、油气资产折耗、生产性生物资产折旧 Column("amort_intang_assets", Float), # 无形资产摊销 Column("lt_amort_deferred_exp", Float), # 长期待摊费用摊销 Column("decr_deferred_exp", Float), # 待摊费用减少 Column("incr_acc_exp", Float), # 预提费用增加 Column("loss_disp_fiolta", Float), # 处置固定、无形资产和其他长期资产的损失 Column("loss_scr_fa", Float), # 固定资产报废损失 Column("loss_fv_chg", Float), # 公允价值变动损失 Column("invest_loss", Float), # 投资损失 Column("decr_def_inc_tax_assets", Float), # 递延所得税资产减少 Column("incr_def_inc_tax_liab", Float), # 递延所得税负债增加 Column("decr_inventories", Float), # 存货的减少 Column("decr_oper_payable", Float), # 经营性应收项目的减少 Column("incr_oper_payable", Float), # 经营性应付项目的增加 Column("others", Float), # 其他 Column("im_net_cashflow_oper_act", Float), # 经营活动产生的现金流量净额(间接法) Column("conv_debt_into_cap", Float), # 债务转为资本 Column("conv_copbonds_due_within_1y", Float), # 一年内到期的可转换公司债券 Column("fa_fnc_leases", Float), # 融资租入固定资产 Column("end_bal_cash", Float), # 现金的期末余额 Column("beg_bal_cash", Float), # 减:现金的期初余额 Column("end_bal_cash_equ", Float), # 加:现金等价物的期末余额 Column("beg_bal_cash_equ", Float), # 减:现金等价物的期初余额 Column("im_n_incr_cash_equ", Float), # 现金及现金等价物净增加额(间接法) Column("update_flag", Float) # 更新标识 ) def get_ts_code(engine): """查询ts_code""" return pd.read_sql('select ts_code from stock_basic', engine) def get_ts_code_and_list_date(engine): """查询ts_code""" return pd.read_sql('select ts_code,list_date from stock_basic', engine) def update_bulk_cashflow_by_period_and_ts_code(base_name, engine, pro, codes, start_date, end_date, retry_count=3, pause=2): coverage = dbUtil.getTableRange(base_name="", start_date=start_date, end_date=end_date) for i in coverage: for rownum in range(0, len(codes)): logger.debug("started processing data for " + codes.iloc[rownum]['ts_code'] + " for period " + i) if (int(codes.iloc[rownum]['list_date'][0:4]) <= int(i[1:5]) or int( codes.iloc[rownum]['list_date'][0:4]) <= int(i[6:10])): try: to_insert = pro.cashflow_vip(ts_code=codes.iloc[rownum]['ts_code'], start_date=i[1:5] + '0101', end_date=i[6:10] + '1231') logger.debug("start inserting data into DB") to_insert.to_sql(base_name + i, engine, if_exists='append', index=False) logger.debug("end inserting data into DB") except Exception as e: logger.error(e) logger.error( "error processing data for range " + str(i) + " for code " + codes.iloc[rownum]['ts_code']) def update_bulk_cashflow_by_ts_code_and_insert_by_year(base_name, engine, pro, codes, sharding_column, failed_count=0, failed_tolerent=3): failed = [] for code in codes['ts_code']: logger.debug("started processing data for " + code) try: to_insert = pro.cashflow_vip(ts_code=code) logger.debug("start inserting data into DB") distinct_years = set(to_insert[sharding_column].str[0:4]) for year in distinct_years: year_section = to_insert[to_insert[sharding_column].str[0:4] == year] if (year == None): year = 9999 year_section = to_insert[pd.isna(to_insert[sharding_column]) == True] year_section.to_sql(dbUtil.getTableName(int(year), base_name=base_name), engine, if_exists='append', index=False) logger.debug("end inserting data into DB") except Exception as e: failed.append(code) logger.error(e) logger.error("error processing data for code " + code) if (failed_count < failed_tolerent): logger.warning("retrying now.") failed_count = failed_count + 1 update_bulk_cashflow_by_ts_code_and_insert_by_year(base_name=base_name, engine=engine, pro=pro, codes=
pd.DataFrame(failed, columns=['ts_code'])
pandas.DataFrame
""" inspiration from R Package - PerformanceAnalytics """ from collections import OrderedDict import pandas as pd import numpy as np from tia.analysis.util import per_series PER_YEAR_MAP = { 'BA': 1., 'BAS': 1., 'A': 1., 'AS': 1., 'BQ': 4., 'BQS': 4., 'Q': 4., 'QS': 4., 'D': 365., 'B': 252., 'BMS': 12., 'BM': 12., 'MS': 12., 'M': 12., 'W': 52., } def guess_freq(index): # admittedly weak way of doing this...This needs to be abolished if isinstance(index, (pd.Series, pd.DataFrame)): index = index.index if hasattr(index, 'freqstr') and index.freqstr: return index.freqstr[0] elif len(index) < 3: raise Exception('cannot guess frequency with less than 3 items') else: lb = min(7, len(index)) idx_zip = lambda: list(zip(index[-lb:-1], index[-(lb-1):])) diff = min([t2 - t1 for t1, t2, in idx_zip()]) if diff.days <= 1: if 5 in index.dayofweek or 6 in index.dayofweek: return 'D' else: return 'B' elif diff.days == 7: return 'W' else: diff = min([t2.month - t1.month for t1, t2, in idx_zip()]) if diff == 1: return 'M' diff = min([t2.year - t1.year for t1, t2, in idx_zip()]) if diff == 1: return 'A' strs = ','.join([i.strftime('%Y-%m-%d') for i in index[-lb:]]) raise Exception('unable to determine frequency, last %s dates %s' % (lb, strs)) def periodicity(freq_or_frame): """ resolve the number of periods per year """ if hasattr(freq_or_frame, 'rule_code'): rc = freq_or_frame.rule_code rc = rc.split('-')[0] factor = PER_YEAR_MAP.get(rc, None) if factor is not None: return factor / abs(freq_or_frame.n) else: raise Exception('Failed to determine periodicity. No factor mapping for %s' % freq_or_frame) elif isinstance(freq_or_frame, str): factor = PER_YEAR_MAP.get(freq_or_frame, None) if factor is not None: return factor else: raise Exception('Failed to determine periodicity. No factor mapping for %s' % freq_or_frame) elif isinstance(freq_or_frame, (pd.Series, pd.DataFrame, pd.TimeSeries)): freq = freq_or_frame.index.freq if not freq: freq = pd.infer_freq(freq_or_frame.index) if freq: return periodicity(freq) else: # Attempt to resolve it import warnings freq = guess_freq(freq_or_frame.index) warnings.warn('frequency not set. guessed it to be %s' % freq) return periodicity(freq) else: return periodicity(freq) else: raise ValueError("periodicity expects DataFrame, Series, or rule_code property") periods_in_year = periodicity def _resolve_periods_in_year(scale, frame): """ Convert the scale to an annualzation factor. If scale is None then attempt to resolve from frame. If scale is a scalar then use it. If scale is a string then use it to lookup the annual factor """ if scale is None: return periodicity(frame) elif isinstance(scale, str): return periodicity(scale) elif np.isscalar(scale): return scale else: raise ValueError("scale must be None, scalar, or string, not %s" % type(scale)) def excess_returns(returns, bm=0): """ Return the excess amount of returns above the given benchmark bm """ return returns - bm def returns(prices, method='simple', periods=1, fill_method='pad', limit=None, freq=None): """ compute the returns for the specified prices. method: [simple,compound,log], compound is log """ if method not in ('simple', 'compound', 'log'): raise ValueError("Invalid method type. Valid values are ('simple', 'compound')") if method == 'simple': return prices.pct_change(periods=periods, fill_method=fill_method, limit=limit, freq=freq) else: if freq is not None: raise NotImplementedError("TODO: implement this logic if needed") if isinstance(prices, pd.Series): if fill_method is None: data = prices else: data = prices.fillna(method=fill_method, limit=limit) data = np.log(data / data.shift(periods=periods)) mask = pd.isnull(prices.values) np.putmask(data.values, mask, np.nan) return data else: return pd.DataFrame( {name: returns(col, method, periods, fill_method, limit, freq) for name, col in prices.items()}, columns=prices.columns, index=prices.index) def returns_cumulative(returns, geometric=True, expanding=False): """ return the cumulative return Parameters ---------- returns : DataFrame or Series geometric : bool, default is True If True, geometrically link returns expanding : bool default is False If True, return expanding series/frame of returns If False, return the final value(s) """ if expanding: if geometric: return (1. + returns).cumprod() - 1. else: return returns.cumsum() else: if geometric: return (1. + returns).prod() - 1. else: return returns.sum() def rolling_returns_cumulative(returns, window, min_periods=1, geometric=True): """ return the rolling cumulative returns Parameters ---------- returns : DataFrame or Series window : number of observations min_periods : minimum number of observations in a window geometric : link the returns geometrically """ if geometric: rc = lambda x: (1. + x[np.isfinite(x)]).prod() - 1. else: rc = lambda x: (x[np.isfinite(x)]).sum() return pd.rolling_apply(returns, window, rc, min_periods=min_periods) def returns_annualized(returns, geometric=True, scale=None, expanding=False): """ return the annualized cumulative returns Parameters ---------- returns : DataFrame or Series geometric : link the returns geometrically scale: None or scalar or string (ie 12 for months in year), If None, attempt to resolve from returns If scalar, then use this as the annualization factor If string, then pass this to periodicity function to resolve annualization factor expanding: bool, default is False If True, return expanding series/frames. If False, return final result. """ scale = _resolve_periods_in_year(scale, returns) if expanding: if geometric: n = pd.expanding_count(returns) return ((1. + returns).cumprod() ** (scale / n)) - 1. else: return pd.expanding_mean(returns) * scale else: if geometric: n = returns.count() return ((1. + returns).prod() ** (scale / n)) - 1. else: return returns.mean() * scale def drawdowns(returns, geometric=True): """ compute the drawdown series for the period return series return: periodic return Series or DataFrame """ wealth = 1. + returns_cumulative(returns, geometric=geometric, expanding=True) values = wealth.values if values.ndim == 2: ncols = values.shape[-1] values = np.vstack(([1.] * ncols, values)) maxwealth = pd.expanding_max(values)[1:] dds = wealth / maxwealth - 1. dds[dds > 0] = 0 # Can happen if first returns are positive return dds elif values.ndim == 1: values = np.hstack(([1.], values)) maxwealth =
pd.expanding_max(values)
pandas.expanding_max
from __future__ import division from unittest import TestCase from nose_parameterized import parameterized from numpy.testing import assert_allclose, assert_almost_equal import numpy as np import pandas as pd import pandas.util.testing as pdt from .. import timeseries from .. import utils DECIMAL_PLACES = 8 class TestDrawdown(TestCase): drawdown_list = np.array( [100, 90, 75] ) / 10. dt = pd.date_range('2000-1-3', periods=3, freq='D') drawdown_serie = pd.Series(drawdown_list, index=dt) @parameterized.expand([ (drawdown_serie,) ]) def test_get_max_drawdown_begins_first_day(self, px): rets = px.pct_change() drawdowns = timeseries.gen_drawdown_table(rets, top=1) self.assertEqual(drawdowns.loc[0, 'net drawdown in %'], 25) drawdown_list = np.array( [100, 110, 120, 150, 180, 200, 100, 120, 160, 180, 200, 300, 400, 500, 600, 800, 900, 1000, 650, 600] ) / 10. dt = pd.date_range('2000-1-3', periods=20, freq='D') drawdown_serie = pd.Series(drawdown_list, index=dt) @parameterized.expand([ (drawdown_serie, pd.Timestamp('2000-01-08'), pd.Timestamp('2000-01-09'), pd.Timestamp('2000-01-13'), 50, pd.Timestamp('2000-01-20'), pd.Timestamp('2000-01-22'), None, 40 ) ]) def test_gen_drawdown_table_relative( self, px, first_expected_peak, first_expected_valley, first_expected_recovery, first_net_drawdown, second_expected_peak, second_expected_valley, second_expected_recovery, second_net_drawdown ): rets = px.pct_change() drawdowns = timeseries.gen_drawdown_table(rets, top=2) self.assertEqual(np.round(drawdowns.loc[0, 'net drawdown in %']), first_net_drawdown) self.assertEqual(drawdowns.loc[0, 'peak date'], first_expected_peak) self.assertEqual(drawdowns.loc[0, 'valley date'], first_expected_valley) self.assertEqual(drawdowns.loc[0, 'recovery date'], first_expected_recovery) self.assertEqual(np.round(drawdowns.loc[1, 'net drawdown in %']), second_net_drawdown) self.assertEqual(drawdowns.loc[1, 'peak date'], second_expected_peak) self.assertEqual(drawdowns.loc[1, 'valley date'], second_expected_valley) self.assertTrue(pd.isnull(drawdowns.loc[1, 'recovery date'])) px_list_1 = np.array( [100, 120, 100, 80, 70, 110, 180, 150]) / 100. # Simple px_list_2 = np.array( [100, 120, 100, 80, 70, 80, 90, 90]) / 100. # Ends in drawdown dt = pd.date_range('2000-1-3', periods=8, freq='D') @parameterized.expand([ (pd.Series(px_list_1, index=dt), pd.Timestamp('2000-1-4'), pd.Timestamp('2000-1-7'), pd.Timestamp('2000-1-9')), (pd.Series(px_list_2, index=dt), pd.Timestamp('2000-1-4'), pd.Timestamp('2000-1-7'), None) ]) def test_get_max_drawdown( self, px, expected_peak, expected_valley, expected_recovery): rets = px.pct_change().iloc[1:] peak, valley, recovery = timeseries.get_max_drawdown(rets) # Need to use isnull because the result can be NaN, NaT, etc. self.assertTrue( pd.isnull(peak)) if expected_peak is None else self.assertEqual( peak, expected_peak) self.assertTrue( pd.isnull(valley)) if expected_valley is None else \ self.assertEqual( valley, expected_valley) self.assertTrue( pd.isnull(recovery)) if expected_recovery is None else \ self.assertEqual( recovery, expected_recovery) @parameterized.expand([ (pd.Series(px_list_2, index=dt), pd.Timestamp('2000-1-4'), pd.Timestamp('2000-1-7'), None, None), (pd.Series(px_list_1, index=dt), pd.Timestamp('2000-1-4'), pd.Timestamp('2000-1-7'), pd.Timestamp('2000-1-9'), 4) ]) def test_gen_drawdown_table(self, px, expected_peak, expected_valley, expected_recovery, expected_duration): rets = px.pct_change().iloc[1:] drawdowns = timeseries.gen_drawdown_table(rets, top=1) self.assertTrue( pd.isnull( drawdowns.loc[ 0, 'peak date'])) if expected_peak is None \ else self.assertEqual(drawdowns.loc[0, 'peak date'], expected_peak) self.assertTrue( pd.isnull( drawdowns.loc[0, 'valley date'])) \ if expected_valley is None else self.assertEqual( drawdowns.loc[0, 'valley date'], expected_valley) self.assertTrue( pd.isnull( drawdowns.loc[0, 'recovery date'])) \ if expected_recovery is None else self.assertEqual( drawdowns.loc[0, 'recovery date'], expected_recovery) self.assertTrue( pd.isnull(drawdowns.loc[0, 'duration'])) \ if expected_duration is None else self.assertEqual( drawdowns.loc[0, 'duration'], expected_duration) def test_drawdown_overlaps(self): # Add test to show that drawdowns don't overlap # Bug #145 observed for FB stock on the period 2014-10-24 - 2015-03-19 # Reproduced on SPY data (cached) but need a large number of drawdowns spy_rets = utils.get_symbol_rets('SPY', start='1997-01-01', end='2004-12-31') spy_drawdowns = timeseries.gen_drawdown_table( spy_rets, top=20).sort_values(by='peak date') # Compare the recovery date of each drawdown with the peak of the next # Last pair might contain a NaT if drawdown didn't finish, so ignore it pairs = list(zip(spy_drawdowns['recovery date'], spy_drawdowns['peak date'].shift(-1)))[:-1] for recovery, peak in pairs: self.assertLessEqual(recovery, peak) @parameterized.expand([ (pd.Series(px_list_1 - 1, index=dt), -0.44000000000000011) ]) def test_max_drawdown(self, returns, expected): self.assertEqual(timeseries.max_drawdown(returns), expected) @parameterized.expand([ (pd.Series(px_list_1 - 1, index=dt), -0.44000000000000011) ]) def test_max_drawdown_underwater(self, underwater, expected): self.assertEqual(timeseries.max_drawdown(underwater), expected) @parameterized.expand([ (pd.Series(px_list_1, index=dt), 1, [(pd.Timestamp('2000-01-03 00:00:00'), pd.Timestamp('2000-01-03 00:00:00'), pd.Timestamp('2000-01-03 00:00:00'))]) ]) def test_top_drawdowns(self, returns, top, expected): self.assertEqual( timeseries.get_top_drawdowns( returns, top=top), expected) class TestCumReturns(TestCase): dt = pd.date_range('2000-1-3', periods=3, freq='D') @parameterized.expand([ (pd.Series([.1, -.05, .1], index=dt), pd.Series([1.1, 1.1 * .95, 1.1 * .95 * 1.1], index=dt), 1.), (pd.Series([np.nan, -.05, .1], index=dt), pd.Series([1., 1. * .95, 1. * .95 * 1.1], index=dt), 1.), ]) def test_expected_result(self, input, expected, starting_value): output = timeseries.cum_returns(input, starting_value=starting_value) pdt.assert_series_equal(output, expected) class TestVariance(TestCase): @parameterized.expand([ (1e7, 0.5, 1, 1, -10000000.0) ]) def test_var_cov_var_normal(self, P, c, mu, sigma, expected): self.assertEqual( timeseries.var_cov_var_normal( P, c, mu, sigma), expected) class TestNormalize(TestCase): dt = pd.date_range('2000-1-3', periods=8, freq='D') px_list = [1.0, 1.2, 1.0, 0.8, 0.7, 0.8, 0.8, 0.8] @parameterized.expand([ (pd.Series(np.array(px_list) * 100, index=dt),
pd.Series(px_list, index=dt)
pandas.Series
from skyfield.api import load import numpy as np import math import matplotlib.pyplot as plt import pandas as pd import seaborn as sns from skyfield.api import utc from scipy.optimize import brentq # machine learning from datetime import timedelta, datetime import pytz # Custom helper functions from definitions import * from whereIsData import * # convert binary to elemental representation b_to_q = lambda x: [from_binary_to_element_symbols[x[i*2:i*2+2]] for i in [0,1,2]] b_to_q_el = lambda x: [from_binary_to_element_ix[x[i*2:i*2+2]] for i in [0,1,2]] b_to_ching = lambda x: [b for b in x] # index elemental composition of the I Ching - binary becomes a 'triplet' with one of the four elements (air - fire - water - earth) iching_ix = [b_to_q_el(str(x['binary']))for x in iching] # binary position of the I Ching - binary becomes a string iching_binary = [b_to_q(str(x['binary']))for x in iching] # binary position of the I Ching - binary becomes an array of [1 and 0] iching_binary_full = [b_to_ching(str(x['binary']))for x in iching] def get_color_map(): water = "#0E61B0" air = "#C29F17" earth = "#55A349" fire = "#C9280C" return [air, fire, water, earth] def __test_hex_binary_to_element(): print ([x for x in '10000']) print( from_binary_to_element_symbols['00'] ) print ( b_to_q('000000')) print ( b_to_q_el('101010')) print ( b_to_ching('111000')) def neutron_stream_pos(planet_position): """ returns mandala position (base 64) given planet position""" return ( (planet_position + (2*line_width - 1*color_width - 2*tone_width) ) / (2*math.pi) * 64) % 64 def map_on_hexagram(df, include=[]): """ maps df planet positions onto position onto a hexagram and line """ # convert dataframe to numpy array neutron_stream = df.to_numpy() hexagram_bin = np.floor(neutron_stream) # rounded up downwards # map bin number onto 'hexagram' (neutron stream is sequential order, hexagram is King Wen Sequence) strong = np.array(iching_map) flat = hexagram_bin.astype(int).flatten() previous_shape = neutron_stream.shape mapped = strong[flat] hexagram = mapped.reshape(previous_shape) hexagram_fraction = neutron_stream - hexagram_bin line = hexagram_fraction // (1/6) + 1 # count in which 6th this neutrino stream falls in line_fraction = (hexagram_fraction - (line - 1)*1/6 ) / (1/6) color = line_fraction // (1/6) + 1 color_fraction = (line_fraction - (color -1) * 1/6) / (1/6) tone = color_fraction // (1/6) + 1 return_info = [hexagram] if 'lines' in include: return_info += [line.astype(int)] return return_info def get_elemental_ching_lines_map(df_planets): # input = ephemeris planets for a certain time period # map 'neutron' stream, aka influences of the probability field (the planets in the solar system physical space) # position to index on a wheel df_planets['earth'] = df_planets['sun'] - math.pi df_angles = neutron_stream_pos(df_planets) # index on a wheel to specific binary I-Ching Sequence - King Wen Version z = map_on_hexagram(df_angles, include=['lines']) hexagrams = z[0] lines = z[1] # many_2_b = np.array(iching_binary) # strong many_2 = np.array(iching_binary_full) # strong one_2 = hexagrams.astype(int).flatten() - 1 # flat # binary el #el_b = many_2_b[one_2] # normal el (0 -> 3) el = many_2[one_2] finish = el.reshape((df_angles.shape[0], df_angles.shape[1]*6)) return finish.astype(int), lines def get_elemental_ching_map(df_planets): # input = ephemeris planets for a certain time period # map 'neutron' stream, aka influences of the probability field (the planets in the solar system physical space) # position to index on a wheel df_planets['earth'] = df_planets['sun'] - math.pi df_angles = neutron_stream_pos(df_planets) # index on a wheel to specific binary I-Ching Sequence - King Wen Version z = map_on_hexagram(df_angles) # many_2_b = np.array(iching_binary) # strong many_2 = np.array(iching_binary_full) # strong one_2 = z.astype(int).flatten() - 1 # flat # binary el #el_b = many_2_b[one_2] # normal el (0 -> 3) el = many_2[one_2] finish = el.reshape((df_angles.shape[0], df_angles.shape[1]*6)) return finish.astype(int) def get_elemental_map(df_planets): # map 'neutron' stream, aka influences of the probability field (the planets in the solar system physical space) # position to index on a wheel df_planets['earth'] = df_planets['sun'] - math.pi df_angles = neutron_stream_pos(df_planets) # index on a wheel to specific binary I-Ching Sequence - King Wen Version z = map_on_hexagram(df_angles) many_2_b = np.array(iching_binary) # strong many_2 = np.array(iching_ix) # strong one_2 = z.astype(int).flatten() - 1 # flat # binary el el_b = many_2_b[one_2] # normal el (0 -> 3) el = many_2[one_2] finish = el.reshape((df_angles.shape[0], df_angles.shape[1]*3)) return finish.astype(int) def __test_neutron_stream_and_mapping(df_planets): # map 'neutron' stream, aka influences of the probability field (the planets in the solar system physical space) df_angles = neutron_stream_pos(df_planets.iloc[:, 1:6]) z = map_on_hexagram(df_angles) print (z) many_2_b = np.array(iching_binary) # strong many_2 = np.array(iching_ix) # strong one_2 = z.astype(int).flatten() - 1 # flat print (many_2_b[63]) # binary el el_b = many_2_b[one_2] # normal el (0 -> 3) el = many_2[one_2] print (el) def get_crypto_planet_data(size, mapping_type='elemental'): """ Returns bitstamp data with size = # of ticks (in minutes for this dataset) params: size: # of ticks (seconds in this case) mapping_type: - 'elemental' (3-compound elements) - 'elemntal_ching' (I-Ching Plain Binary) - 'elemental_ching_lines' (I-Ching Plain Binary + Lines Dummified [1-6 lines -> 6 columns with 0 or 1]) """ # get planetary positions _planets, ts = get_planetary_ephemeris() color_map = get_color_map() df_c = pd.read_csv('bitstampUSD_1-min_data_2012-01-01_to_2020-09-14.csv', parse_dates=True) # make data timestamp df_c['date'] = pd.to_datetime(df_c['Timestamp'], unit='s') # cast down to hourly data groupkey = pd.to_datetime(df_c[-size:].date.dt.strftime('%Y-%m-%d %H')) df_hourly = df_c[-size:].groupby(groupkey).agg({'Close':'last','Volume_(BTC)':'sum'}) df_hourly.head() first_date = df_hourly.iloc[0].name print ( first_date ) # generate ephemerial elements h = first_date.hour hours_in_trading_code = len(df_hourly) # stock exchange count of number differences t_time_array = ts.utc(first_date.year, first_date.month, first_date.day, range(h,h+hours_in_trading_code), 0) # -3000 BC to 3000 BC, increments in hours # generate empheremis for time period df_crypto_planets = generate_planets(_planets, ts, t_time_array) # can take a while # selected desired planets for attribution r = ['earth','moon','mercury','venus','sun', 'mars', 'jupiter','saturn', 'uranus','neptune'] r.reverse() # create elemental data map if mapping_type == 'elemental': data_tmp = get_elemental_map(df_crypto_planets.loc[:,r]) elif mapping_type == 'elemental_ching': data_tmp = get_elemental_ching_map(df_crypto_planets.loc[:,r]) elif mapping_type == 'element_ching_lines': data_tmp, lines = get_elemental_ching_lines_map(df_crypto_planets.loc[:,r]) # return data_tmp, lines # plot data map fig, ax = plt.subplots(figsize=(5,5)) sns.heatmap(data_tmp.transpose(), ax=ax, cmap=color_map, cbar=False) fig, ax = plt.subplots(figsize=(5,5)) sns.heatmap(lines.transpose(), ax=ax, cmap=color_map, cbar=False) if mapping_type == 'elemental' or mapping_type == 'elemental_ching': # create the training dataset [Close, Solar System Time] df_solar = pd.DataFrame(data_tmp) df_solar.index = df_hourly.index df_dataset = pd.concat([df_hourly[['Close']], df_solar], axis=1) return df_dataset elif mapping_type == 'element_ching_lines': # create the training dataset [Close, Solar System Time] df_solar = pd.DataFrame(data_tmp) df_solar.index = df_hourly.index df_lines = pd.DataFrame(lines, columns = [str(x) for x in range(10)] ).astype(str) df_lines = pd.get_dummies(df_lines) df_lines.index = df_hourly.index df_dataset =
pd.concat([df_hourly[['Close']], df_solar, df_lines], axis=1)
pandas.concat
""" This is an upgraded version of Ceshine's LGBM starter script, simply adding more average features and weekly average features on it. """ from datetime import date, timedelta import pandas as pd import numpy as np from sklearn.metrics import mean_squared_error import lightgbm as lgb import pickle print("Loading pickles...") df_2017 = pickle.load(open('../input/processed/df_2017.pickle', 'rb')) promo_2017 = pickle.load(open('../input/processed/promo_2017.pickle', 'rb')) items = pickle.load(open('../input/processed/items.pickle', 'rb')) df_test = pickle.load(open('../input/processed/df_test.pickle', 'rb')) stores_items = pd.DataFrame(index=df_2017.index) test_ids = df_test[['id']] items = items.reindex(stores_items.index.get_level_values(1)) items_class = pd.get_dummies(items["class"], prefix="class", drop_first=True) items_class.reset_index(drop=True, inplace=True) def get_timespan(df, dt, minus, periods, freq='D'): date_index = [c for c in pd.date_range(dt - timedelta(days=minus), periods=periods, freq=freq) if c in df.columns] return df[date_index] def prepare_dataset(t2017, is_train=True): X = pd.DataFrame({ "day_1_2017": get_timespan(df_2017, t2017, 1, 1).values.ravel(), "mean_3_2017": get_timespan(df_2017, t2017, 3, 3).mean(axis=1).values, "mean_7_2017": get_timespan(df_2017, t2017, 7, 7).mean(axis=1).values, "mean_14_2017": get_timespan(df_2017, t2017, 14, 14).mean(axis=1).values, "mean_30_2017": get_timespan(df_2017, t2017, 30, 30).mean(axis=1).values, "mean_60_2017": get_timespan(df_2017, t2017, 60, 60).mean(axis=1).values, "mean_140_2017": get_timespan(df_2017, t2017, 140, 140).mean(axis=1).values, "promo_14_2017": get_timespan(promo_2017, t2017, 14, 14).sum(axis=1).values, "promo_60_2017": get_timespan(promo_2017, t2017, 60, 60).sum(axis=1).values, "promo_140_2017": get_timespan(promo_2017, t2017, 140, 140).sum(axis=1).values, "mean_365_2017": get_timespan(df_2017, t2017, 365 - 8, 16).mean(axis=1).values, # yearly trend }) for i in range(7): X['mean_4_dow{}_2017'.format(i)] = get_timespan(df_2017, t2017, 28-i, 4, freq='7D').mean(axis=1).values X['mean_20_dow{}_2017'.format(i)] = get_timespan(df_2017, t2017, 140-i, 20, freq='7D').mean(axis=1).values for i in range(16): X["promo_{}".format(i)] = promo_2017[ t2017 + timedelta(days=i)].values.astype(np.uint8) #X = pd.concat([X, items_class], axis=1) if is_train: y = df_2017[
pd.date_range(t2017, periods=16)
pandas.date_range
import torch,os,torchvision import torch.nn as nn import torch.nn.functional as F import pandas as pd import numpy as np import matplotlib.pyplot as plt from torch.utils.data import DataLoader, Dataset from torchvision import datasets, models, transforms from PIL import Image from sklearn.model_selection import StratifiedShuffleSplit import os import logging import time class config: DATA_DIR='/Public/YongkunLiu/Datasets' #由于是test数据,所以reb,split中的都一样,因此随便取一个即可 PATH_ISET=DATA_DIR+'/BEAUTY1.0_VOCLikeComb/VOC2007/ImageSets/Split0' PATH_IMG=DATA_DIR+'/BEAUTY1.0_VOCLikeComb/VOC2007/JPEGImages' IMG_SIZE = 224 # vgg的输入是224的所以需要将图片统一大小 BATCH_SIZE= 64 #这个批次大小需要占用4.6-5g的显存,如果不够的化可以改下批次,如果内存超过10G可以改为512 IMG_MEAN = [0.485, 0.456, 0.406]#imagenet的 IMG_STD = [0.229, 0.224, 0.225] LOG_DIR='./log' CUDA=torch.cuda.is_available() ctx=torch.device("cuda" if CUDA else "cpu") labels = ['Residential','Public', 'Industrial', 'Commercial'] PATH_PARAMS='/Public/YongkunLiu/beauty_cnn_work_dir/pth' PATH_PR='/Public/YongkunLiu/beauty_cnn_work_dir/pr' if not os.path.exists(PATH_PR): os.makedirs(PATH_PR) def get_model_file_name(): list_t=os.listdir(config.PATH_PARAMS) list_t=[b for b in list_t if b[-3:]=='pth'] list_t.sort() return list_t def get_test_DataSet(): PATH_ISET=config.DATA_DIR+'/BEAUTY1.0_VOCLikeComb/VOC2007/ImageSets/Split0' test_dict_t={} test_dict={'id':[],'label':[]} list_t1=os.listdir(PATH_ISET) for file_list in list_t1: if(file_list.split('_')[-1]=='test.txt'and file_list.split('_')[0]=='Districts'): with open(PATH_ISET+'/'+file_list) as f: t1=f.readlines() t1=[t2.split('\n')[0] for t2 in t1] test_dict_t[file_list.split('_')[1]]=t1 for t1 in test_dict_t: test_dict['id']+=test_dict_t[t1] for t2 in test_dict_t[t1]: test_dict['label']+=[t1] df =
pd.DataFrame(test_dict,columns=['id', 'label'])
pandas.DataFrame
# -*- coding: utf-8 -*- # 这个ipython notebook主要是我解决Kaggle Titanic问题的思路和过程 # (1) import pandas as pd #数据分析 import numpy as np #科学计算 from pandas import Series,DataFrame pd.set_option('display.max_columns', None) #data_train = pd.read_csv("Train.csv") data_train = pd.read_csv("../data/train.csv") print(data_train.columns) #data_train[data_train.Cabin.notnull()]['Survived'].value_counts() # (2) print(data_train.info()) # (3) print(data_train.describe()) # # (4) # import sys # reload(sys) # sys.setdefaultencoding( "utf-8" ) # import matplotlib.pyplot as plt # fig = plt.figure() # fig.set(alpha=0.2) # 设定图表颜色alpha参数 # # plt.subplot2grid((2,3),(0,0)) # 在一张大图里分列几个小图 # data_train.Survived.value_counts().plot(kind='bar')# plots a bar graph of those who surived vs those who did not. # plt.title(u"获救情况 (1为获救)") # puts a title on our graph # plt.ylabel(u"人数") # # plt.subplot2grid((2,3),(0,1)) # data_train.Pclass.value_counts().plot(kind="bar") # plt.ylabel(u"人数") # plt.title(u"乘客等级分布") # # plt.subplot2grid((2,3),(0,2)) # plt.scatter(data_train.Survived, data_train.Age) # plt.ylabel(u"年龄") # sets the y axis lable # plt.grid(b=True, which='major', axis='y') # formats the grid line style of our graphs # plt.title(u"按年龄看获救分布 (1为获救)") # # plt.subplot2grid((2,3),(1,0), colspan=2) # data_train.Age[data_train.Pclass == 1].plot(kind='kde') # plots a kernel desnsity estimate of the subset of the 1st class passanges's age # data_train.Age[data_train.Pclass == 2].plot(kind='kde') # data_train.Age[data_train.Pclass == 3].plot(kind='kde') # plt.xlabel(u"年龄")# plots an axis lable # plt.ylabel(u"密度") # plt.title(u"各等级的乘客年龄分布") # plt.legend((u'头等舱', u'2等舱',u'3等舱'),loc='best') # sets our legend for our graph. # # plt.subplot2grid((2,3),(1,2)) # data_train.Embarked.value_counts().plot(kind='bar') # plt.title(u"各登船口岸上船人数") # plt.ylabel(u"人数") # plt.show() # # # (5) # #看看各乘客等级的获救情况 # fig = plt.figure() # fig.set(alpha=0.2) # 设定图表颜色alpha参数 # # Survived_0 = data_train.Pclass[data_train.Survived == 0].value_counts() # Survived_1 = data_train.Pclass[data_train.Survived == 1].value_counts() # df=pd.DataFrame({u'获救':Survived_1, u'未获救':Survived_0}) # df.plot(kind='bar', stacked=True) # plt.title(u"各乘客等级的获救情况") # plt.xlabel(u"乘客等级") # plt.ylabel(u"人数") # # plt.show() # # # (6) # #看看各登录港口的获救情况 # fig = plt.figure() # fig.set(alpha=0.2) # 设定图表颜色alpha参数 # # Survived_0 = data_train.Embarked[data_train.Survived == 0].value_counts() # Survived_1 = data_train.Embarked[data_train.Survived == 1].value_counts() # df=pd.DataFrame({u'获救':Survived_1, u'未获救':Survived_0}) # df.plot(kind='bar', stacked=True) # plt.title(u"各登录港口乘客的获救情况") # plt.xlabel(u"登录港口") # plt.ylabel(u"人数") # # plt.show() # # # (7) # #看看各性别的获救情况 # fig = plt.figure() # fig.set(alpha=0.2) # 设定图表颜色alpha参数 # # Survived_m = data_train.Survived[data_train.Sex == 'male'].value_counts() # Survived_f = data_train.Survived[data_train.Sex == 'female'].value_counts() # df=pd.DataFrame({u'男性':Survived_m, u'女性':Survived_f}) # df.plot(kind='bar', stacked=True) # plt.title(u"按性别看获救情况") # plt.xlabel(u"性别") # plt.ylabel(u"人数") # plt.show() # # # (8) # #看看各性别的获救情况 # fig = plt.figure() # fig.set(alpha=0.2) # 设定图表颜色alpha参数 # # Survived_m = data_train.Survived[data_train.Sex == 'male'].value_counts() # Survived_f = data_train.Survived[data_train.Sex == 'female'].value_counts() # df=pd.DataFrame({u'男性':Survived_m, u'女性':Survived_f}) # df.plot(kind='bar', stacked=True) # plt.title(u"按性别看获救情况") # plt.xlabel(u"性别") # plt.ylabel(u"人数") # plt.show() # (9) g = data_train.groupby(['SibSp','Survived']) df = pd.DataFrame(g.count()['PassengerId']) df # (10) g = data_train.groupby(['Parch','Survived']) df = pd.DataFrame(g.count()['PassengerId']) df # (11) #ticket是船票编号,应该是unique的,和最后的结果没有太大的关系,不纳入考虑的特征范畴 #cabin只有204个乘客有值,我们先看看它的一个分布 data_train.Cabin.value_counts() # # (12) # #cabin的值计数太分散了,绝大多数Cabin值只出现一次。感觉上作为类目,加入特征未必会有效 # #那我们一起看看这个值的有无,对于survival的分布状况,影响如何吧 # fig = plt.figure() # fig.set(alpha=0.2) # 设定图表颜色alpha参数 # # Survived_cabin = data_train.Survived[pd.notnull(data_train.Cabin)].value_counts() # Survived_nocabin = data_train.Survived[pd.isnull(data_train.Cabin)].value_counts() # df=pd.DataFrame({u'有':Survived_cabin, u'无':Survived_nocabin}).transpose() # df.plot(kind='bar', stacked=True) # plt.title(u"按Cabin有无看获救情况") # plt.xlabel(u"Cabin有无") # plt.ylabel(u"人数") # plt.show() #似乎有cabin记录的乘客survival比例稍高,那先试试把这个值分为两类,有cabin值/无cabin值,一会儿加到类别特征好了 # (13) from sklearn.ensemble import RandomForestRegressor ### 使用 RandomForestClassifier 填补缺失的年龄属性 def set_missing_ages(df): # 把已有的数值型特征取出来丢进Random Forest Regressor中 age_df = df[['Age', 'Fare', 'Parch', 'SibSp', 'Pclass']] # 乘客分成已知年龄和未知年龄两部分 known_age = age_df[age_df.Age.notnull()].as_matrix() unknown_age = age_df[age_df.Age.isnull()].as_matrix() # y即目标年龄 y = known_age[:, 0] # X即特征属性值 X = known_age[:, 1:] # fit到RandomForestRegressor之中 rfr = RandomForestRegressor(random_state=0, n_estimators=2000, n_jobs=-1) rfr.fit(X, y) # 用得到的模型进行未知年龄结果预测 predictedAges = rfr.predict(unknown_age[:, 1::]) # 用得到的预测结果填补原缺失数据 df.loc[(df.Age.isnull()), 'Age'] = predictedAges return df, rfr def set_Cabin_type(df): df.loc[(df.Cabin.notnull()), 'Cabin'] = "Yes" df.loc[(df.Cabin.isnull()), 'Cabin'] = "No" return df data_train, rfr = set_missing_ages(data_train) data_train = set_Cabin_type(data_train) data_train # (14) # 因为逻辑回归建模时,需要输入的特征都是数值型特征 # 我们先对类目型的特征离散/因子化 # 以Cabin为例,原本一个属性维度,因为其取值可以是['yes','no'],而将其平展开为'Cabin_yes','Cabin_no'两个属性 # 原本Cabin取值为yes的,在此处的'Cabin_yes'下取值为1,在'Cabin_no'下取值为0 # 原本Cabin取值为no的,在此处的'Cabin_yes'下取值为0,在'Cabin_no'下取值为1 # 我们使用pandas的get_dummies来完成这个工作,并拼接在原来的data_train之上,如下所示 dummies_Cabin = pd.get_dummies(data_train['Cabin'], prefix= 'Cabin') dummies_Embarked = pd.get_dummies(data_train['Embarked'], prefix= 'Embarked') dummies_Sex = pd.get_dummies(data_train['Sex'], prefix= 'Sex') dummies_Pclass = pd.get_dummies(data_train['Pclass'], prefix= 'Pclass') df = pd.concat([data_train, dummies_Cabin, dummies_Embarked, dummies_Sex, dummies_Pclass], axis=1) df.drop(['Pclass', 'Name', 'Sex', 'Ticket', 'Cabin', 'Embarked'], axis=1, inplace=True) df # (15) # 接下来我们要接着做一些数据预处理的工作,比如scaling,将一些变化幅度较大的特征化到[-1,1]之内 # 这样可以加速logistic regression的收敛 import sklearn.preprocessing as preprocessing scaler = preprocessing.StandardScaler() age_scale_param = scaler.fit(df['Age']) df['Age_scaled'] = scaler.fit_transform(df['Age'], age_scale_param) fare_scale_param = scaler.fit(df['Fare']) df['Fare_scaled'] = scaler.fit_transform(df['Fare'], fare_scale_param) df # (16) # 我们把需要的feature字段取出来,转成numpy格式,使用scikit-learn中的LogisticRegression建模 from sklearn import linear_model train_df = df.filter(regex='Survived|Age_.*|SibSp|Parch|Fare_.*|Cabin_.*|Embarked_.*|Sex_.*|Pclass_.*') train_np = train_df.as_matrix() # y即Survival结果 y = train_np[:, 0] # X即特征属性值 X = train_np[:, 1:] # fit到RandomForestRegressor之中 clf = linear_model.LogisticRegression(C=1.0, penalty='l1', tol=1e-6) clf.fit(X, y) print(clf) # (17) X.shape # (18) # data_test = pd.read_csv("D:\\project\\peixun\\ai_course_project_px\\1_intro\\4_anli_project_titanic\\Kaggle_Titanic_Chinese\\Kaggle_Titanic-master\\test.csv") # data_test.loc[ (data_test.Fare.isnull()), 'Fare' ] = 0 # # 接着我们对test_data做和train_data中一致的特征变换 # # 首先用同样的RandomForestRegressor模型填上丢失的年龄 # tmp_df = data_test[['Age','Fare', 'Parch', 'SibSp', 'Pclass']] # null_age = tmp_df[data_test.Age.isnull()].as_matrix() # # 根据特征属性X预测年龄并补上 # X = null_age[:, 1:] # predictedAges = rfr.predict(X) # data_test.loc[ (data_test.Age.isnull()), 'Age' ] = predictedAges # # data_test = set_Cabin_type(data_test) # dummies_Cabin = pd.get_dummies(data_test['Cabin'], prefix= 'Cabin') # dummies_Embarked = pd.get_dummies(data_test['Embarked'], prefix= 'Embarked') # dummies_Sex = pd.get_dummies(data_test['Sex'], prefix= 'Sex') # dummies_Pclass = pd.get_dummies(data_test['Pclass'], prefix= 'Pclass') # # # df_test = pd.concat([data_test, dummies_Cabin, dummies_Embarked, dummies_Sex, dummies_Pclass], axis=1) # df_test.drop(['Pclass', 'Name', 'Sex', 'Ticket', 'Cabin', 'Embarked'], axis=1, inplace=True) # df_test['Age_scaled'] = scaler.fit_transform(df_test['Age'], age_scale_param) # df_test['Fare_scaled'] = scaler.fit_transform(df_test['Fare'], fare_scale_param) # df_test # # # (19) # test = df_test.filter(regex='Age_.*|SibSp|Parch|Fare_.*|Cabin_.*|Embarked_.*|Sex_.*|Pclass_.*') # predictions = clf.predict(test) # result = pd.DataFrame({'PassengerId':data_test['PassengerId'].as_matrix(), 'Survived':predictions.astype(np.int32)}) # result.to_csv("logistic_regression_predictions.csv", index=False) # # # (20) (3) # pd.read_csv("logistic_regression_predictions.csv") # (21) import numpy as np import matplotlib.pyplot as plt from sklearn.learning_curve import learning_curve # 用sklearn的learning_curve得到training_score和cv_score,使用matplotlib画出learning curve def plot_learning_curve(estimator, title, X, y, ylim=None, cv=None, n_jobs=1, train_sizes=np.linspace(.05, 1., 20), verbose=0, plot=True): """ 画出data在某模型上的learning curve. 参数解释 ---------- estimator : 你用的分类器。 title : 表格的标题。 X : 输入的feature,numpy类型 y : 输入的target vector ylim : tuple格式的(ymin, ymax), 设定图像中纵坐标的最低点和最高点 cv : 做cross-validation的时候,数据分成的份数,其中一份作为cv集,其余n-1份作为training(默认为3份) n_jobs : 并行的的任务数(默认1) """ train_sizes, train_scores, test_scores = learning_curve( estimator, X, y, cv=cv, n_jobs=n_jobs, train_sizes=train_sizes, verbose=verbose) train_scores_mean = np.mean(train_scores, axis=1) train_scores_std = np.std(train_scores, axis=1) test_scores_mean = np.mean(test_scores, axis=1) test_scores_std = np.std(test_scores, axis=1) if plot: plt.figure() plt.title(title) if ylim is not None: plt.ylim(*ylim) plt.xlabel(u"训练样本数") plt.ylabel(u"得分") plt.gca().invert_yaxis() plt.grid() plt.fill_between(train_sizes, train_scores_mean - train_scores_std, train_scores_mean + train_scores_std, alpha=0.1, color="b") plt.fill_between(train_sizes, test_scores_mean - test_scores_std, test_scores_mean + test_scores_std, alpha=0.1, color="r") plt.plot(train_sizes, train_scores_mean, 'o-', color="b", label=u"训练集上得分") plt.plot(train_sizes, test_scores_mean, 'o-', color="r", label=u"交叉验证集上得分") plt.legend(loc="best") plt.draw() plt.gca().invert_yaxis() plt.show() midpoint = ((train_scores_mean[-1] + train_scores_std[-1]) + (test_scores_mean[-1] - test_scores_std[-1])) / 2 diff = (train_scores_mean[-1] + train_scores_std[-1]) - (test_scores_mean[-1] - test_scores_std[-1]) return midpoint, diff plot_learning_curve(clf, u"学习曲线", X, y) # (22) pd.DataFrame({"columns":list(train_df.columns)[1:], "coef":list(clf.coef_.T)}) # (23) from sklearn import cross_validation # 简单看看打分情况 clf = linear_model.LogisticRegression(C=1.0, penalty='l1', tol=1e-6) all_data = df.filter(regex='Survived|Age_.*|SibSp|Parch|Fare_.*|Cabin_.*|Embarked_.*|Sex_.*|Pclass_.*') X = all_data.as_matrix()[:,1:] y = all_data.as_matrix()[:,0] print(cross_validation.cross_val_score(clf, X, y, cv=5)) # 分割数据 split_train, split_cv = cross_validation.train_test_split(df, test_size=0.3, random_state=0) train_df = split_train.filter(regex='Survived|Age_.*|SibSp|Parch|Fare_.*|Cabin_.*|Embarked_.*|Sex_.*|Pclass_.*') # 生成模型 clf = linear_model.LogisticRegression(C=1.0, penalty='l1', tol=1e-6) clf.fit(train_df.as_matrix()[:,1:], train_df.as_matrix()[:,0]) # 对cross validation数据进行预测 cv_df = split_cv.filter(regex='Survived|Age_.*|SibSp|Parch|Fare_.*|Cabin_.*|Embarked_.*|Sex_.*|Pclass_.*') predictions = clf.predict(cv_df.as_matrix()[:,1:]) #split_cv[ predictions != cv_df.as_matrix()[:,0] ].drop() # (24) # 去除预测错误的case看原始dataframe数据 #split_cv['PredictResult'] = predictions origin_data_train =
pd.read_csv("D:\\project\\peixun\\ai_course_project_px\\1_intro\\4_anli_project_titanic\\Kaggle_Titanic_Chinese\\Kaggle_Titanic-master\\train.csv")
pandas.read_csv
import pandas as pd import numpy as np import pickle import shap from lightgbm import LGBMClassifier def get_new_prediction(bus_line, hour, month, day, bus_carrying_cap, city, temp, pressure, bus_age, total_rain): ''' This function calculates new predictions for a given bus line, hour, month, day, bus carrying capacity, bus age (years), city, temperature (degrees celcius), pressure (kPA) and rain (mm). Assumes that a file named final_fitted.pickle is in the results/ml_model directory. This is solely for use in the interactive report so the user can dynamically generate a graph as needed by querying results from the model. Arguments are fed to this function via. user selected input in the report. Parameters: bus_line: A str that represents one of the bus lines in the Greater Vancouver area. hour: An integer 0-23 representing a particular hour of the day. month: An integer 1-12 representing a particular month of the year. day: A str (Mon, Tue, Wed, Thu, Fri, Sat, Sun) that represents a particular day of the week. bus_carrying_cap: An integer representing the carrying capacity of a bus. city: A str representing the city of interest. temp: A float representing the temperature in degrees celsius. pressure: A float representing the atmospheric pressure in kPa bus_age: An integer representing the bus age in years. total_rain: A float representing the total rain in mm. Returns: dict A dictionary with keys shap, predicted, and column_names containing the SHAP scores (numpy array), predicted 0/1 scores (numpy array), and column names used in the model fit (list). ''' shuttles = ["23", "31", "42", "68", "103", "105", "109", "131", "132", "146", "147", "148", "157", "169", "170", "171", "172", "173", "174", "175", "180", "181", "182", "184", "185", "186", "187", "189", "215", "227", "251", "252", "256", "262", "280", "281", "282", "310", "322", "360", "361", "362", "363", "370", "371", "372", "373", "412", "413", "414", "416", "560", "561", "562", "563", "564", "609", "614", "616", "617", "618", "619", "719", "722", "733", "741", "743", "744", "745", "746", "748", "749"] # The values that are held constant: just use the means/modes new_data = pd.DataFrame({ 'hour': pd.Series(hour, dtype='int'), 'day_of_week': pd.Series(day, dtype='str'), 'bus_age': pd.Series(bus_age, dtype='float'), 'bus_carry_capacity': pd.Series(bus_carrying_cap if bus_carrying_cap != "NA" else np.nan, dtype='float'), 'line_no': pd.Series(bus_line, dtype='str'), 'city':
pd.Series(city, dtype='str')
pandas.Series
from __future__ import division from datetime import timedelta from functools import partial import itertools from nose.tools import assert_true from parameterized import parameterized import numpy as np from numpy.testing import assert_array_equal, assert_almost_equal import pandas as pd from toolz import merge from zipline.pipeline import SimplePipelineEngine, Pipeline, CustomFactor from zipline.pipeline.common import ( EVENT_DATE_FIELD_NAME, FISCAL_QUARTER_FIELD_NAME, FISCAL_YEAR_FIELD_NAME, SID_FIELD_NAME, TS_FIELD_NAME, ) from zipline.pipeline.data import DataSet from zipline.pipeline.data import Column from zipline.pipeline.domain import EquitySessionDomain import platform if platform.system() != 'Windows': from zipline.pipeline.loaders.blaze.estimates import ( BlazeNextEstimatesLoader, BlazeNextSplitAdjustedEstimatesLoader, BlazePreviousEstimatesLoader, BlazePreviousSplitAdjustedEstimatesLoader, ) from zipline.pipeline.loaders.earnings_estimates import ( INVALID_NUM_QTRS_MESSAGE, NextEarningsEstimatesLoader, NextSplitAdjustedEarningsEstimatesLoader, normalize_quarters, PreviousEarningsEstimatesLoader, PreviousSplitAdjustedEarningsEstimatesLoader, split_normalized_quarters, ) from zipline.testing.fixtures import ( WithAdjustmentReader, WithTradingSessions, ZiplineTestCase, ) from zipline.testing.predicates import assert_equal, assert_raises_regex from zipline.testing.predicates import assert_frame_equal from zipline.utils.numpy_utils import datetime64ns_dtype from zipline.utils.numpy_utils import float64_dtype import platform import unittest class Estimates(DataSet): event_date = Column(dtype=datetime64ns_dtype) fiscal_quarter = Column(dtype=float64_dtype) fiscal_year = Column(dtype=float64_dtype) estimate = Column(dtype=float64_dtype) class MultipleColumnsEstimates(DataSet): event_date = Column(dtype=datetime64ns_dtype) fiscal_quarter = Column(dtype=float64_dtype) fiscal_year = Column(dtype=float64_dtype) estimate1 = Column(dtype=float64_dtype) estimate2 = Column(dtype=float64_dtype) def QuartersEstimates(announcements_out): class QtrEstimates(Estimates): num_announcements = announcements_out name = Estimates return QtrEstimates def MultipleColumnsQuartersEstimates(announcements_out): class QtrEstimates(MultipleColumnsEstimates): num_announcements = announcements_out name = Estimates return QtrEstimates def QuartersEstimatesNoNumQuartersAttr(num_qtr): class QtrEstimates(Estimates): name = Estimates return QtrEstimates def create_expected_df_for_factor_compute(start_date, sids, tuples, end_date): """ Given a list of tuples of new data we get for each sid on each critical date (when information changes), create a DataFrame that fills that data through a date range ending at `end_date`. """ df = pd.DataFrame(tuples, columns=[SID_FIELD_NAME, 'estimate', 'knowledge_date']) df = df.pivot_table(columns=SID_FIELD_NAME, values='estimate', index='knowledge_date') df = df.reindex( pd.date_range(start_date, end_date) ) # Index name is lost during reindex. df.index = df.index.rename('knowledge_date') df['at_date'] = end_date.tz_localize('utc') df = df.set_index(['at_date', df.index.tz_localize('utc')]).ffill() new_sids = set(sids) - set(df.columns) df = df.reindex(columns=df.columns.union(new_sids)) return df class WithEstimates(WithTradingSessions, WithAdjustmentReader): """ ZiplineTestCase mixin providing cls.loader and cls.events as class level fixtures. Methods ------- make_loader(events, columns) -> PipelineLoader Method which returns the loader to be used throughout tests. events : pd.DataFrame The raw events to be used as input to the pipeline loader. columns : dict[str -> str] The dictionary mapping the names of BoundColumns to the associated column name in the events DataFrame. make_columns() -> dict[BoundColumn -> str] Method which returns a dictionary of BoundColumns mapped to the associated column names in the raw data. """ # Short window defined in order for test to run faster. START_DATE = pd.Timestamp('2014-12-28') END_DATE = pd.Timestamp('2015-02-04') @classmethod def make_loader(cls, events, columns): raise NotImplementedError('make_loader') @classmethod def make_events(cls): raise NotImplementedError('make_events') @classmethod def get_sids(cls): return cls.events[SID_FIELD_NAME].unique() @classmethod def make_columns(cls): return { Estimates.event_date: 'event_date', Estimates.fiscal_quarter: 'fiscal_quarter', Estimates.fiscal_year: 'fiscal_year', Estimates.estimate: 'estimate' } def make_engine(self, loader=None): if loader is None: loader = self.loader return SimplePipelineEngine( lambda x: loader, self.asset_finder, default_domain=EquitySessionDomain( self.trading_days, self.ASSET_FINDER_COUNTRY_CODE, ), ) @classmethod def init_class_fixtures(cls): cls.events = cls.make_events() cls.ASSET_FINDER_EQUITY_SIDS = cls.get_sids() cls.ASSET_FINDER_EQUITY_SYMBOLS = [ 's' + str(n) for n in cls.ASSET_FINDER_EQUITY_SIDS ] # We need to instantiate certain constants needed by supers of # `WithEstimates` before we call their `init_class_fixtures`. super(WithEstimates, cls).init_class_fixtures() cls.columns = cls.make_columns() # Some tests require `WithAdjustmentReader` to be set up by the time we # make the loader. cls.loader = cls.make_loader(cls.events, {column.name: val for column, val in cls.columns.items()}) class WithOneDayPipeline(WithEstimates): """ ZiplineTestCase mixin providing cls.events as a class level fixture and defining a test for all inheritors to use. Attributes ---------- events : pd.DataFrame A simple DataFrame with columns needed for estimates and a single sid and no other data. Tests ------ test_wrong_num_announcements_passed() Tests that loading with an incorrect quarter number raises an error. test_no_num_announcements_attr() Tests that the loader throws an AssertionError if the dataset being loaded has no `num_announcements` attribute. """ @classmethod def make_columns(cls): return { MultipleColumnsEstimates.event_date: 'event_date', MultipleColumnsEstimates.fiscal_quarter: 'fiscal_quarter', MultipleColumnsEstimates.fiscal_year: 'fiscal_year', MultipleColumnsEstimates.estimate1: 'estimate1', MultipleColumnsEstimates.estimate2: 'estimate2' } @classmethod def make_events(cls): return pd.DataFrame({ SID_FIELD_NAME: [0] * 2, TS_FIELD_NAME: [pd.Timestamp('2015-01-01'), pd.Timestamp('2015-01-06')], EVENT_DATE_FIELD_NAME: [pd.Timestamp('2015-01-10'), pd.Timestamp('2015-01-20')], 'estimate1': [1., 2.], 'estimate2': [3., 4.], FISCAL_QUARTER_FIELD_NAME: [1, 2], FISCAL_YEAR_FIELD_NAME: [2015, 2015] }) @classmethod def make_expected_out(cls): raise NotImplementedError('make_expected_out') @classmethod def init_class_fixtures(cls): super(WithOneDayPipeline, cls).init_class_fixtures() cls.sid0 = cls.asset_finder.retrieve_asset(0) cls.expected_out = cls.make_expected_out() def test_load_one_day(self): # We want to test multiple columns dataset = MultipleColumnsQuartersEstimates(1) engine = self.make_engine() results = engine.run_pipeline( Pipeline({c.name: c.latest for c in dataset.columns}), start_date=pd.Timestamp('2015-01-15', tz='utc'), end_date=pd.Timestamp('2015-01-15', tz='utc'), ) assert_frame_equal(results, self.expected_out) class PreviousWithOneDayPipeline(WithOneDayPipeline, ZiplineTestCase): """ Tests that previous quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) @classmethod def make_expected_out(cls): return pd.DataFrame( { EVENT_DATE_FIELD_NAME: pd.Timestamp('2015-01-10'), 'estimate1': 1., 'estimate2': 3., FISCAL_QUARTER_FIELD_NAME: 1., FISCAL_YEAR_FIELD_NAME: 2015., }, index=pd.MultiIndex.from_tuples( ((
pd.Timestamp('2015-01-15', tz='utc')
pandas.Timestamp
"""A package of tools for simulating the US Electoral College. ... """ __version__ = "0.5.0" __all__ = ["Election", "OutcomeList"] import logging from typing import Optional, Union from pandas import DataFrame, Series from numpy.random import default_rng from ecsim.loaders import * from ecsim.apportionment import * from ecsim.outcomes import Outcome, OutcomeList # TODO: improve logging logger = logging.getLogger(__name__) logger.setLevel(level=logging.DEBUG) ch = logging.StreamHandler() ch.setLevel(level=logging.WARNING) formatter = logging.Formatter("%(asctime)s - %(name)s - %(levelname)s - %(message)s") ch.setFormatter(formatter) logger.addHandler(ch) _RANDOM_SEED = 713 SENATORS_PER_STATE: int = 2 """The number of senators each state receives as specified in the US Constitution.""" DC_STATEHOOD: bool = False """Whether or not the District of Columbia is a state. The seat of the US Government, the District of Columbia (DC), is not a state, nor is it a part of any state. Until the ratification of the 23rd amendment, this meant that it did not receive any electors in the vote for the president. With the adoption of the 23rd Amendment in 1961, DC is granted as many electors it would have if it were a state, but no more than the least populous state. """ census_data: DataFrame = load_census_data() """The (historical) US population data gathered with each decennial census.""" class Election: """Contains the data and method for simulating historical US elections. Attributes ---------- year : int The year of the presidential election to simulate. union : DataFrame The historical election data used for the simulation. """ __slots__ = [ "year", "representatives", "apportionment_method", "union", "_logger", "_rng", ] def __init__( self, year: int, representatives: int = 435, apportionment_method: ApportionmentMethod = huntington_hill, ) -> None: """Initializes an election by loading Census data and election data. Parameters ---------- year A presidential election year, must be a multiple of 4. representatives The total number of representatives in the House, by default 435, and must be at least equal to the number of states. apportionment_method The specific apportionment method to be used when apportioning representatives. """ self._logger = logging.getLogger(f"{__name__}.{self.__class__.__name__}") self._rng = default_rng(_RANDOM_SEED) self.apportionment_method = apportionment_method if year % 4 != 0: raise ValueError(f"{year} is not an election year!") self.year = year self._logger.debug(f"Loading election data for {self.year}") self.union = load_election_data(self.year) number_states = len(self.union) - ( 1 if "District of Columbia" in self.union.index and not DC_STATEHOOD else 0 ) if representatives < number_states: raise ValueError("There are not enough representatives!") self.representatives = self.apportion_representatives(representatives) def get_electors(self, state: Optional[str] = None) -> Union[int, Series]: """Returns the number of electors for each state. Parameters ---------- state : str, optional If present, computes the states electors from its number of representatives and the number of senators each state receives. Implements special logic for the District of Columbia, which is not a state but does receive electors. Returns ------- Union[int, Series] If no state is given, then a pandas.Series is returned containing the number of electors each state receives. """ if state is not None: if state == "District of Columbia" and not DC_STATEHOOD: # TODO: move this comment to a Note in the docstring # this is not techincally correct, but it is funcationally so, # ie. if the population of DC was so less than the least populous state # that it would be awarded 1 representative where the least populous # state would receive 2, then this equation will give too many electors # to DC, but this scenario seems implausible return ( self.representatives["Representatives"].min() + SENATORS_PER_STATE ) else: return ( self.representatives["Representatives"][state] + SENATORS_PER_STATE ) electors =
Series(0, index=self.union.index, name="Electors", dtype=int)
pandas.Series
import csv import pandas as pd import numpy as np import itertools from sklearn import metrics from sklearn.metrics import confusion_matrix, accuracy_score, roc_curve, auc import matplotlib.pyplot as plt import json import multiprocessing import os from tqdm import tqdm from pathlib import Path os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' import tensorflow as tf # tf.compat.v1.disable_eager_execution() import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.DEBUG) import logging mpl_logger = logging.getLogger('matplotlib') mpl_logger.setLevel(logging.WARNING) with open(Path(__file__).parent/"morph.json", "r") as f: identities = json.load(f) # Positives positives = pd.DataFrame() for value in tqdm(identities.values(),desc="Positives"): positives = positives.append(pd.DataFrame(itertools.combinations(value, 2), columns=["file_x", "file_y"]), ignore_index=True) positives["decision"] = "Yes" print(positives) # -------------------------- # Negatives samples_list = list(identities.values()) negatives =
pd.DataFrame()
pandas.DataFrame
import sys import pytz import hashlib import numpy as np import pandas as pd from datetime import datetime def edit_form_link(link_text='Submit edits'): """Return HTML for link to form for edits""" return f'<a href="https://docs.google.com/forms/d/e/1FAIpQLScw8EUGIOtUj994IYEM1W7PfBGV0anXjEmz_YKiKJc4fm-tTg/viewform">{link_text}</a>' def add_google_analytics(input_html): """ Return HTML with Google Analytics block added """ ga_block = """ <!-- Global site tag (gtag.js) - Google Analytics --> <script async src="https://www.googletagmanager.com/gtag/js?id=UA-173043454-1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'UA-173043454-1'); </script> """ output_html = input_html.replace('<!-- replace with google analytics -->', ga_block) return output_html def add_geojson(shape_gdf, field_name, field_value, input_html): """ Add a GeoJSON feature as a Javascript variable to an HTML string This variable will be used to calculate the bounds of the map """ shape_row = shape_gdf[shape_gdf[field_name] == field_value].copy() shape_geo = shape_row.geometry.iloc[0] geo_bounds = shape_geo.boundary[0].xy output_string = '[[' for idx, value in enumerate(geo_bounds[0]): if idx > 0: output_string += ',' output_string += '[' x = geo_bounds[0][idx] output_string += '{}'.format(x) y = geo_bounds[1][idx] output_string += ', {}'.format(y) output_string += ']\n' output_string += ']]' output_html = input_html.replace('REPLACE_WITH_XY', output_string) return output_html def dc_coordinates(): """Return coordinates for a DC-wide map""" dc_longitude = -77.016243706276569 dc_latitude = 38.894858329321485 dc_zoom_level = 10.3 return dc_longitude, dc_latitude, dc_zoom_level def anc_names(anc_id): """ Return formatted ANC names """ ancs = pd.read_csv('data/ancs.csv') anc_upper = 'ANC' + anc_id anc_lower = anc_upper.lower() anc_neighborhoods = ancs[ancs['anc_id'] == anc_id]['neighborhoods'].values[0] return anc_upper, anc_lower, anc_neighborhoods def assemble_divo(): """ Return DataFrame with one row per SMD and various stats about each SMD's ranking divo = district-votes """ results = pd.read_csv('data/results.csv') districts = pd.read_csv('data/districts.csv') votes_per_smd = pd.DataFrame(results.groupby('smd_id').votes.sum()).reset_index() # Calculate number of SMDs in each Ward and ANC smds_per_ward = pd.DataFrame(districts.groupby('ward').size(), columns=['smds_in_ward']).reset_index() smds_per_anc = pd.DataFrame(districts.groupby('anc_id').size(), columns=['smds_in_anc']).reset_index() divo = pd.merge(districts, votes_per_smd, how='inner', on='smd_id') divo = pd.merge(divo, smds_per_ward, how='inner', on='ward') divo = pd.merge(divo, smds_per_anc, how='inner', on='anc_id') divo['smds_in_dc'] = len(districts) # Rank each SMD by the number of votes recorded for ANC races within that SMD # method = min: assigns the lowest rank when multiple rows are tied divo['rank_dc'] = divo['votes'].rank(method='min', ascending=False) divo['rank_ward'] = divo.groupby('ward').votes.rank(method='min', ascending=False) divo['rank_anc'] = divo.groupby('anc_id').votes.rank(method='min', ascending=False) # Create strings showing the ranking of each SMD within its ANC, Ward, and DC-wide divo['string_dc'] = divo.apply( lambda row: f"{make_ordinal(row['rank_dc'])} out of {row['smds_in_dc']} SMDs", axis=1) divo['string_ward'] = divo.apply( lambda row: f"{make_ordinal(row['rank_ward'])} out of {row['smds_in_ward']} SMDs", axis=1) divo['string_anc'] = divo.apply( lambda row: f"{make_ordinal(row['rank_anc'])} out of {row['smds_in_anc']} SMDs", axis=1) average_votes_in_dc = divo.votes.mean() average_votes_by_ward = divo.groupby('ward').votes.mean() average_votes_by_anc = divo.groupby('anc_id').votes.mean() return divo def list_commissioners(status=None, date_point=None): """ Return dataframe with list of commissioners by status Options: status=None (all statuses returned) -- default status='former' status='current' status='future' date_point=None -- all statuses calculated from current DC time (default) date_point=(some other datetime) -- all statuses calculated from that datetime """ commissioners = pd.read_csv('data/commissioners.csv') if not date_point: tz = pytz.timezone('America/New_York') date_point = datetime.now(tz) commissioners['start_date'] = pd.to_datetime(commissioners['start_date']).dt.tz_localize(tz='America/New_York') commissioners['end_date'] =
pd.to_datetime(commissioners['end_date'])
pandas.to_datetime
# -*- coding: utf-8 -*- """ Created on Wed Nov 18 16:25:41 2020 @author: ludovic.spaeth """ import matplotlib matplotlib.rcParams['pdf.fonttype'] = 42 import pandas as pd import numpy as np import seaborn as sn from matplotlib import pyplot as plt from scipy import stats import os alpha=0.5 swarm = True sharex, sharey = True, True cap=0.2 fig, ax = plt.subplots(1,2, figsize=(12,4)) #First the synaptic properties file = 'D:/000_PAPER/00_ANSWER_TO_REVIEWERS/RandomForestanalysis/OuputWithFolds/RF_Output_With_Folds_Training_Segregated_SORTED_LABELS.xlsx' rdnFile = 'D:/000_PAPER/00_ANSWER_TO_REVIEWERS/RandomForestanalysis/OuputWithFolds/RF_Output_With_Folds_Training_Segregated_RANDOM_LABELS.xlsx' df = pd.read_excel(file,header=0) rdnDf = pd.read_excel(rdnFile, header=0) #result = df.groupby('Random Forest').mean()[['Random Forest (CTRL)','Random Forest (EC)', # 'Random Forest (ENR)','Random Forest (ES)', # 'Random Forest (LC)','Random Forest (LS)']] sortedResult = df.groupby('Condition').mean()[['Random Forest (CTRL)','Random Forest (EC)', 'Random Forest (LTR)','Random Forest (STR)','Random Forest (ES)', 'Random Forest (LC)','Random Forest (LS)']] rndmResult = rdnDf.groupby('Condition').mean()[['Random Forest (CTRL)','Random Forest (EC)', 'Random Forest (LTR)','Random Forest (STR)','Random Forest (ES)', 'Random Forest (LC)','Random Forest (LS)']] sortedResult = sortedResult.reindex(index=['EC', 'LTR','STR', 'ES', 'LC', 'LS', 'CTRL'], columns=['Random Forest (EC)','Random Forest (LTR)','Random Forest (STR)', 'Random Forest (ES)','Random Forest (LC)', 'Random Forest (LS)','Random Forest (CTRL)']) rndmResult = rndmResult.reindex(index=['EC', 'LTR','STR', 'ES', 'LC', 'LS', 'CTRL'], columns=['Random Forest (EC)','Random Forest (LTR)','Random Forest (STR)', 'Random Forest (ES)','Random Forest (LC)', 'Random Forest (LS)','Random Forest (CTRL)']) #Show heatmaps sn.heatmap(sortedResult,annot=True, cmap='magma_r', vmax=0.5, ax=ax[0]) ax[0].set_title('Sorted Lables (synaptic)') sn.heatmap(rndmResult, annot=True, cmap='magma_r', vmax=0.5, ax=ax[1]) ax[1].set_title('Random Lables (synaptic)') ACCURACIES, RDM_ACCURACIES = [],[] #Determine accuracy for sorted labels for condition in np.unique(df['Condition'].values): subDf = df.loc[df['Condition']==condition] avg = subDf.groupby('Fold').mean() accuracyInCondition = avg['Random Forest ({})'.format(condition)].values ACCURACIES.append(accuracyInCondition) #Determine accuracy for randomized labels for condition in np.unique(df['Condition'].values): subDf = rdnDf.loc[rdnDf['Condition']==condition] avg = subDf.groupby('Fold').mean() accuracyInCondition = avg['Random Forest ({})'.format(condition)].values RDM_ACCURACIES.append(accuracyInCondition) sortedLabelsAccuracy = pd.DataFrame(ACCURACIES, index=np.unique(df['Condition'].values)).T.mean(axis=1) randomLabelAccuracy = pd.DataFrame(RDM_ACCURACIES, index=np.unique(rdnDf['Condition'].values)).T.mean(axis=1) barPlotdf =
pd.concat([sortedLabelsAccuracy,randomLabelAccuracy],axis=1)
pandas.concat
from datetime import datetime, timedelta from io import StringIO import re import sys import numpy as np import pytest from pandas._libs.tslib import iNaT from pandas.compat import PYPY from pandas.compat.numpy import np_array_datetime64_compat from pandas.core.dtypes.common import ( is_datetime64_dtype, is_datetime64tz_dtype, is_object_dtype, is_timedelta64_dtype, needs_i8_conversion, ) from pandas.core.dtypes.dtypes import DatetimeTZDtype import pandas as pd from pandas import ( CategoricalIndex, DataFrame, DatetimeIndex, Index, Interval, IntervalIndex, PeriodIndex, Series, Timedelta, TimedeltaIndex, Timestamp, ) from pandas.core.accessor import PandasDelegate from pandas.core.arrays import DatetimeArray, PandasArray, TimedeltaArray from pandas.core.base import NoNewAttributesMixin, PandasObject from pandas.core.indexes.datetimelike import DatetimeIndexOpsMixin import pandas.util.testing as tm class CheckStringMixin: def test_string_methods_dont_fail(self): repr(self.container) str(self.container) bytes(self.container) def test_tricky_container(self): if not hasattr(self, "unicode_container"): pytest.skip("Need unicode_container to test with this") repr(self.unicode_container) str(self.unicode_container) class CheckImmutable: mutable_regex = re.compile("does not support mutable operations") def check_mutable_error(self, *args, **kwargs): # Pass whatever function you normally would to pytest.raises # (after the Exception kind). with pytest.raises(TypeError): self.mutable_regex(*args, **kwargs) def test_no_mutable_funcs(self): def setitem(): self.container[0] = 5 self.check_mutable_error(setitem) def setslice(): self.container[1:2] = 3 self.check_mutable_error(setslice) def delitem(): del self.container[0] self.check_mutable_error(delitem) def delslice(): del self.container[0:3] self.check_mutable_error(delslice) mutable_methods = getattr(self, "mutable_methods", []) for meth in mutable_methods: self.check_mutable_error(getattr(self.container, meth)) def test_slicing_maintains_type(self): result = self.container[1:2] expected = self.lst[1:2] self.check_result(result, expected) def check_result(self, result, expected, klass=None): klass = klass or self.klass assert isinstance(result, klass) assert result == expected class TestPandasDelegate: class Delegator: _properties = ["foo"] _methods = ["bar"] def _set_foo(self, value): self.foo = value def _get_foo(self): return self.foo foo = property(_get_foo, _set_foo, doc="foo property") def bar(self, *args, **kwargs): """ a test bar method """ pass class Delegate(PandasDelegate, PandasObject): def __init__(self, obj): self.obj = obj def setup_method(self, method): pass def test_invalid_delegation(self): # these show that in order for the delegation to work # the _delegate_* methods need to be overridden to not raise # a TypeError self.Delegate._add_delegate_accessors( delegate=self.Delegator, accessors=self.Delegator._properties, typ="property", ) self.Delegate._add_delegate_accessors( delegate=self.Delegator, accessors=self.Delegator._methods, typ="method" ) delegate = self.Delegate(self.Delegator()) with pytest.raises(TypeError): delegate.foo with pytest.raises(TypeError): delegate.foo = 5 with pytest.raises(TypeError): delegate.foo() @pytest.mark.skipif(PYPY, reason="not relevant for PyPy") def test_memory_usage(self): # Delegate does not implement memory_usage. # Check that we fall back to in-built `__sizeof__` # GH 12924 delegate = self.Delegate(self.Delegator()) sys.getsizeof(delegate) class Ops: def _allow_na_ops(self, obj): """Whether to skip test cases including NaN""" if (isinstance(obj, Index) and obj.is_boolean()) or not obj._can_hold_na: # don't test boolean / integer dtypes return False return True def setup_method(self, method): self.bool_index = tm.makeBoolIndex(10, name="a") self.int_index = tm.makeIntIndex(10, name="a") self.float_index = tm.makeFloatIndex(10, name="a") self.dt_index = tm.makeDateIndex(10, name="a") self.dt_tz_index = tm.makeDateIndex(10, name="a").tz_localize(tz="US/Eastern") self.period_index = tm.makePeriodIndex(10, name="a") self.string_index = tm.makeStringIndex(10, name="a") self.unicode_index = tm.makeUnicodeIndex(10, name="a") arr = np.random.randn(10) self.bool_series = Series(arr, index=self.bool_index, name="a") self.int_series = Series(arr, index=self.int_index, name="a") self.float_series = Series(arr, index=self.float_index, name="a") self.dt_series = Series(arr, index=self.dt_index, name="a") self.dt_tz_series = self.dt_tz_index.to_series(keep_tz=True) self.period_series = Series(arr, index=self.period_index, name="a") self.string_series = Series(arr, index=self.string_index, name="a") self.unicode_series = Series(arr, index=self.unicode_index, name="a") types = ["bool", "int", "float", "dt", "dt_tz", "period", "string", "unicode"] self.indexes = [getattr(self, "{}_index".format(t)) for t in types] self.series = [getattr(self, "{}_series".format(t)) for t in types] # To test narrow dtypes, we use narrower *data* elements, not *index* elements index = self.int_index self.float32_series = Series(arr.astype(np.float32), index=index, name="a") arr_int = np.random.choice(10, size=10, replace=False) self.int8_series = Series(arr_int.astype(np.int8), index=index, name="a") self.int16_series = Series(arr_int.astype(np.int16), index=index, name="a") self.int32_series = Series(arr_int.astype(np.int32), index=index, name="a") self.uint8_series = Series(arr_int.astype(np.uint8), index=index, name="a") self.uint16_series = Series(arr_int.astype(np.uint16), index=index, name="a") self.uint32_series = Series(arr_int.astype(np.uint32), index=index, name="a") nrw_types = ["float32", "int8", "int16", "int32", "uint8", "uint16", "uint32"] self.narrow_series = [getattr(self, "{}_series".format(t)) for t in nrw_types] self.objs = self.indexes + self.series + self.narrow_series def check_ops_properties(self, props, filter=None, ignore_failures=False): for op in props: for o in self.is_valid_objs: # if a filter, skip if it doesn't match if filter is not None: filt = o.index if isinstance(o, Series) else o if not filter(filt): continue try: if isinstance(o, Series): expected = Series(getattr(o.index, op), index=o.index, name="a") else: expected = getattr(o, op) except (AttributeError): if ignore_failures: continue result = getattr(o, op) # these could be series, arrays or scalars if isinstance(result, Series) and isinstance(expected, Series): tm.assert_series_equal(result, expected) elif isinstance(result, Index) and isinstance(expected, Index): tm.assert_index_equal(result, expected) elif isinstance(result, np.ndarray) and isinstance( expected, np.ndarray ): tm.assert_numpy_array_equal(result, expected) else: assert result == expected # freq raises AttributeError on an Int64Index because its not # defined we mostly care about Series here anyhow if not ignore_failures: for o in self.not_valid_objs: # an object that is datetimelike will raise a TypeError, # otherwise an AttributeError err = AttributeError if issubclass(type(o), DatetimeIndexOpsMixin): err = TypeError with pytest.raises(err): getattr(o, op) @pytest.mark.parametrize("klass", [Series, DataFrame]) def test_binary_ops_docs(self, klass): op_map = { "add": "+", "sub": "-", "mul": "*", "mod": "%", "pow": "**", "truediv": "/", "floordiv": "//", } for op_name in op_map: operand1 = klass.__name__.lower() operand2 = "other" op = op_map[op_name] expected_str = " ".join([operand1, op, operand2]) assert expected_str in getattr(klass, op_name).__doc__ # reverse version of the binary ops expected_str = " ".join([operand2, op, operand1]) assert expected_str in getattr(klass, "r" + op_name).__doc__ class TestIndexOps(Ops): def setup_method(self, method): super().setup_method(method) self.is_valid_objs = self.objs self.not_valid_objs = [] def test_none_comparison(self): # bug brought up by #1079 # changed from TypeError in 0.17.0 for o in self.is_valid_objs: if isinstance(o, Series): o[0] = np.nan # noinspection PyComparisonWithNone result = o == None # noqa assert not result.iat[0] assert not result.iat[1] # noinspection PyComparisonWithNone result = o != None # noqa assert result.iat[0] assert result.iat[1] result = None == o # noqa assert not result.iat[0] assert not result.iat[1] result = None != o # noqa assert result.iat[0] assert result.iat[1] if is_datetime64_dtype(o) or is_datetime64tz_dtype(o): # Following DatetimeIndex (and Timestamp) convention, # inequality comparisons with Series[datetime64] raise with pytest.raises(TypeError): None > o with pytest.raises(TypeError): o > None else: result = None > o assert not result.iat[0] assert not result.iat[1] result = o < None assert not result.iat[0] assert not result.iat[1] def test_ndarray_compat_properties(self): for o in self.objs: # Check that we work. for p in ["shape", "dtype", "T", "nbytes"]: assert getattr(o, p, None) is not None # deprecated properties for p in ["flags", "strides", "itemsize"]: with tm.assert_produces_warning(FutureWarning): assert getattr(o, p, None) is not None with tm.assert_produces_warning(FutureWarning): assert hasattr(o, "base") # If we have a datetime-like dtype then needs a view to work # but the user is responsible for that try: with tm.assert_produces_warning(FutureWarning): assert o.data is not None except ValueError: pass with pytest.raises(ValueError): with tm.assert_produces_warning(FutureWarning): o.item() # len > 1 assert o.ndim == 1 assert o.size == len(o) with tm.assert_produces_warning(FutureWarning): assert Index([1]).item() == 1 assert Series([1]).item() == 1 def test_value_counts_unique_nunique(self): for orig in self.objs: o = orig.copy() klass = type(o) values = o._values if isinstance(values, Index): # reset name not to affect latter process values.name = None # create repeated values, 'n'th element is repeated by n+1 times # skip boolean, because it only has 2 values at most if isinstance(o, Index) and o.is_boolean(): continue elif isinstance(o, Index): expected_index = Index(o[::-1]) expected_index.name = None o = o.repeat(range(1, len(o) + 1)) o.name = "a" else: expected_index = Index(values[::-1]) idx = o.index.repeat(range(1, len(o) + 1)) # take-based repeat indices = np.repeat(np.arange(len(o)), range(1, len(o) + 1)) rep = values.take(indices) o = klass(rep, index=idx, name="a") # check values has the same dtype as the original assert o.dtype == orig.dtype expected_s = Series( range(10, 0, -1), index=expected_index, dtype="int64", name="a" ) result = o.value_counts() tm.assert_series_equal(result, expected_s) assert result.index.name is None assert result.name == "a" result = o.unique() if isinstance(o, Index): assert isinstance(result, o.__class__) tm.assert_index_equal(result, orig) assert result.dtype == orig.dtype elif is_datetime64tz_dtype(o): # datetimetz Series returns array of Timestamp assert result[0] == orig[0] for r in result: assert isinstance(r, Timestamp) tm.assert_numpy_array_equal( result.astype(object), orig._values.astype(object) ) else: tm.assert_numpy_array_equal(result, orig.values) assert result.dtype == orig.dtype assert o.nunique() == len(np.unique(o.values)) @pytest.mark.parametrize("null_obj", [np.nan, None]) def test_value_counts_unique_nunique_null(self, null_obj): for orig in self.objs: o = orig.copy() klass = type(o) values = o._ndarray_values if not self._allow_na_ops(o): continue # special assign to the numpy array if is_datetime64tz_dtype(o): if isinstance(o, DatetimeIndex): v = o.asi8 v[0:2] = iNaT values = o._shallow_copy(v) else: o = o.copy() o[0:2] = pd.NaT values = o._values elif
needs_i8_conversion(o)
pandas.core.dtypes.common.needs_i8_conversion
#!/usr/bin/env python # -*- coding:utf-8 -*- import base64 import datetime from io import StringIO import pandas as pd def draw(): """pandas dataframe 绘图后写入 html""" end_datetime = datetime.datetime.now() beg_datetime = end_datetime - datetime.timedelta(days=30) daily_video_member_list = DailyVideoMemberReportDAO.get_by_date_range( beg_datetime.date(), end_datetime.date() ) df =
pd.DataFrame(daily_video_member_list)
pandas.DataFrame
import requests import json import arrow from datetime import datetime from requests.auth import HTTPBasicAuth import numpy as np import pandas as pd from datetime import date, datetime, timedelta as td def get_activities(url, start_date, end_date, period, level): # Configuration for Query # SEE: https://www.rescuetime.com/apidoc payload = { 'perspective':'interval', 'resolution_time': period, #1 of "month", "week", "day", "hour", "minute" 'restrict_kind': level, #'overview', #'document', #'category' 'restrict_begin': start_date, 'restrict_end': end_date, 'format':'json' #csv } # Setup Iteration - by Day d1 = pd.to_datetime(payload['restrict_begin']) d2 =
pd.to_datetime(payload['restrict_end'])
pandas.to_datetime
import pandas as pd import matplotlib.pyplot as plt from data import games plays = games[games['type'] == 'play'] plays.columns = ['type', 'inning', 'team', 'player', 'count', 'pitches', 'event', 'game_id', 'year'] # These functions select the rows where the event column's value starts with S # (not SB), D, T, and HR in the plays DataFrame to create the hits DataFrame. hits = plays.loc[plays['event'].str.contains('^(?:S(?!B)|D|T|HR)'), ['inning', 'event']] # This function converts the inning column of the hits DataFrame from # strings to numeric. hits.loc[:, 'inning'] =
pd.to_numeric(hits.loc[:, 'inning'])
pandas.to_numeric
import re import os import gzip import warnings import pandas as pd from glob import glob from datetime import datetime from string import ascii_letters, digits # TODO: Ideally these should be imported from Qiita REQUIRED_COLUMNS = {'well_description', 'sample_plate', 'sample_well', 'i7_index_id', 'index', 'i5_index_id', 'index2'} PREP_COLUMNS = ['sample_name', 'experiment_design_description', 'library_construction_protocol', 'platform', 'run_center', 'run_date', 'run_prefix', 'sequencing_meth', 'center_name', 'center_project_name', 'instrument_model', 'runid', 'lane', 'sample_project'] + list(REQUIRED_COLUMNS) AMPLICON_PREP_COLUMN_RENAMER = { 'Sample': 'sample_name', 'Golay Barcode': 'barcode', '515FB Forward Primer (Parada)': 'primer', 'Project Plate': 'project_plate', 'Project Name': 'project_name', 'Well': 'well', 'Primer Plate #': 'primer_plate_number', 'Plating': 'plating', 'Extraction Kit Lot': 'extractionkit_lot', 'Extraction Robot': 'extraction_robot', 'TM1000 8 Tool': 'tm1000_8_tool', 'Primer Date': 'primer_date', 'MasterMix Lot': 'mastermix_lot', 'Water Lot': 'water_lot', 'Processing Robot': 'processing_robot', 'sample sheet Sample_ID': 'well_description' } # put together by Gail, based on the instruments we know of INSTRUMENT_LOOKUP = pd.DataFrame({ 'A00953': {'machine prefix': 'A', 'Vocab': 'Illumina NovaSeq 6000', 'Machine type': 'NovaSeq', 'run_center': 'IGM'}, 'A00169': {'machine prefix': 'A', 'Vocab': 'Illumina NovaSeq 6000', 'Machine type': 'NovaSeq', 'run_center': 'LJI'}, 'M05314': {'machine prefix': 'M', 'Vocab': 'Illumina MiSeq', 'Machine type': 'MiSeq', 'run_center': 'KLM'}, 'K00180': {'machine prefix': 'K', 'Vocab': 'Illumina HiSeq 4000', 'Machine type': 'HiSeq', 'run_center': 'IGM'}, 'D00611': {'machine prefix': 'D', 'Vocab': 'Illumina HiSeq 2500', 'Machine type': 'HiSeq/RR', 'run_center': 'IGM'}, 'MN01225': {'machine prefix': 'MN', 'Vocab': 'Illumina MiniSeq', 'Machine type': 'MiniSeq', 'run_center': 'CMI'}}).T def parse_illumina_run_id(run_id): """Parse a run identifier Parameters ---------- run_id: str The name of a run Returns ------- str: When the run happened (YYYY-MM-DD) str: Instrument code """ # Format should be YYMMDD_machinename_XXXX_FC # this regex has two groups, the first one is the date, and the second one # is the machine name + suffix. This URL shows some examples # tinyurl.com/rmy67kw matches = re.search(r'^(\d{6})_(\w*)', run_id) if matches is None or len(matches.groups()) != 2: raise ValueError('Unrecognized run identifier format "%s". The ' 'expected format is YYMMDD_machinename_XXXX_FC.' % run_id) # convert illumina's format to qiita's format run_date = datetime.strptime(matches[1], '%y%m%d').strftime('%Y-%m-%d') return run_date, matches[2] def is_nonempty_gz_file(name): """Taken from https://stackoverflow.com/a/37878550/379593""" with gzip.open(name, 'rb') as f: try: file_content = f.read(1) return len(file_content) > 0 except Exception: return False def remove_qiita_id(project_name): # project identifiers are digit groups at the end of the project name # preceded by an underscore CaporasoIllumina_550 qiita_id_re = re.compile(r'(.+)_(\d+)$') # no matches matches = re.search(qiita_id_re, project_name) if matches is None: return project_name else: # group 1 is the project name return matches[1] def get_run_prefix(run_path, project, sample, lane, pipeline): """For a sample find the run prefix Parameters ---------- run_path: str Base path for the run project: str Name of the project sample: str Sample name lane: str Lane number pipeline: str The pipeline used to generate the data. Should be one of `atropos-and-bowtie2` or `fastp-and-minimap2`. Returns ------- str The run prefix of the sequence file in the lane, only if the sequence file is not empty. """ base = os.path.join(run_path, project) path = base # each pipeline sets up a slightly different directory structure, # importantly fastp-and-minimap2 won't save intermediate files if pipeline == 'atropos-and-bowtie2': qc = os.path.join(base, 'atropos_qc') hf = os.path.join(base, 'filtered_sequences') # If both folders exist and have sequence files always prefer the # human-filtered sequences if _exists_and_has_files(qc): path = qc if _exists_and_has_files(hf): path = hf elif pipeline == 'fastp-and-minimap2': qc = os.path.join(base, 'trimmed_sequences') hf = os.path.join(base, 'filtered_sequences') if _exists_and_has_files(qc) and _exists_and_has_files(hf): path = hf elif _exists_and_has_files(qc): path = qc elif _exists_and_has_files(hf): path = hf else: path = base else: raise ValueError('Invalid pipeline "%s"' % pipeline) results = glob(os.path.join(path, '%s_S*_L*%s_R*.fastq.gz' % (sample, lane))) # at this stage there should only be two files forward and reverse if len(results) == 2: forward, reverse = sorted(results) if is_nonempty_gz_file(forward) and is_nonempty_gz_file(reverse): f, r = os.path.basename(forward), os.path.basename(reverse) if len(f) != len(r): raise ValueError("Forward and reverse sequences filenames " "don't match f:%s r:%s" % (f, r)) # The first character that's different is the number in R1/R2. We # find this position this way because sometimes filenames are # written as _R1_.. or _R1.trimmed... and splitting on _R1 might # catch some substrings not part of R1/R2. for i in range(len(f)): if f[i] != r[i]: i -= 2 break return f[:i] else: return None elif len(results) > 2: warnings.warn(('There are %d matches for sample "%s" in lane %s. Only' ' two matches are allowed (forward and reverse): %s') % (len(results), sample, lane, ', '.join(sorted(results)))) return None def _file_list(path): return [f for f in os.listdir(path) if not os.path.isdir(os.path.join(path, f))] def _exists_and_has_files(path): return os.path.exists(path) and len(_file_list(path)) def get_machine_code(instrument_model): """Get the machine code for an instrument's code Parameters ---------- instrument_model: str An instrument's model of the form A999999 or AA999999 Returns ------- """ # the machine code represents the first 1 to 2 letters of the # instrument model machine_code = re.compile(r'^([a-zA-Z]{1,2})') matches = re.search(machine_code, instrument_model) if matches is None: raise ValueError('Cannot find a machine code. This instrument ' 'model is malformed %s. The machine code is a ' 'one or two character prefix.' % instrument_model) return matches[0] def get_model_and_center(instrument_code): """Determine instrument model and center based on a lookup Parameters ---------- instrument_code: str Instrument code from a run identifier. Returns ------- str Instrument model. str Run center based on the machine's id. """ run_center = "UCSDMI" instrument_model = instrument_code.split('_')[0] if instrument_model in INSTRUMENT_LOOKUP.index: run_center = INSTRUMENT_LOOKUP.loc[instrument_model, 'run_center'] instrument_model = INSTRUMENT_LOOKUP.loc[instrument_model, 'Vocab'] else: instrument_prefix = get_machine_code(instrument_model) if instrument_prefix not in INSTRUMENT_LOOKUP['machine prefix']: ValueError('Unrecognized machine prefix %s' % instrument_prefix) instrument_model = INSTRUMENT_LOOKUP[ INSTRUMENT_LOOKUP['machine prefix'] == instrument_prefix ]['Vocab'].unique()[0] return instrument_model, run_center def agp_transform(frame, study_id): """If the prep belongs to the American Gut Project fill in some blanks Parameters ---------- frame: pd.DataFrame The preparation file for a single project. study_id: str The Qiita study identifier for this preparations. Returns ------- pd.DataFrame: If the study_id is "10317" then: - `center_name`, 'library_construction_protocol', and `experiment_design_description` columns are filled in with default values. - `sample_name` will be zero-filled no 9 digits. Otherwise no changes are made to `frame`. """ if study_id == '10317': def zero_fill(name): if 'blank' not in name.lower() and name[0].isdigit(): return name.zfill(9) return name frame['sample_name'] = frame['sample_name'].apply(zero_fill) frame['center_name'] = 'UCSDMI' frame['library_construction_protocol'] = 'Knight Lab KHP' frame['experiment_design_description'] = ( 'samples of skin, saliva and feces and other samples from the AGP') return frame def _check_invalid_names(sample_names): # taken from qiita.qiita_db.metadata.util.get_invalid_sample_names valid = set(ascii_letters + digits + '.') def _has_invalid_chars(name): return bool(set(name) - valid) invalid = sample_names[sample_names.apply(_has_invalid_chars)] if len(invalid): warnings.warn('The following sample names have invalid ' 'characters: %s' % ', '.join(['"%s"' % i for i in invalid.values])) def preparations_for_run(run_path, sheet, pipeline='fastp-and-minimap2'): """Given a run's path and sample sheet generates preparation files Parameters ---------- run_path: str Path to the run folder sheet: sample_sheet.SampleSheet Sample sheet to convert pipeline: str, optional Which pipeline generated the data. The important difference is that `atropos-and-bowtie2` saves intermediate files, whereas `fastp-and-minimap2` doesn't. Default is `fastp-and-minimap2`, the latest version of the sequence processing pipeline. Returns ------- dict Dictionary keyed by run identifier, project name and lane. Values are preparations represented as DataFrames. """ _, run_id = os.path.split(os.path.normpath(run_path)) run_date, instrument_code = parse_illumina_run_id(run_id) instrument_model, run_center = get_model_and_center(instrument_code) output = {} not_present = REQUIRED_COLUMNS - set(sheet.columns) if not_present: warnings.warn('These required columns were not found %s' % ', '.join(not_present), UserWarning) for col in not_present: if col == 'well_description': warnings.warn("Using 'description' instead of " "'well_description' because that column " "isn't present", UserWarning) sheet[col] = sheet['description'].copy() else: sheet[col] = 'MISSING_FROM_THE_SAMPLE_SHEET' for project, project_sheet in sheet.groupby('sample_project'): project_name = remove_qiita_id(project) qiita_id = project.replace(project_name + '_', '') # if the Qiita ID is not found then make for an easy find/replace if qiita_id == project: qiita_id = 'QIITA-ID' for lane, lane_sheet in project_sheet.groupby('lane'): # this is the portion of the loop that creates the prep data = [] for sample_name, sample in lane_sheet.iterrows(): run_prefix = get_run_prefix(run_path, project, sample_name, lane, pipeline) # we don't care about the sample if there's no file if run_prefix is None: continue row = {c: '' for c in PREP_COLUMNS} row["sample_name"] = sample.well_description row["experiment_design_description"] = \ sample.experiment_design_description row["library_construction_protocol"] = \ sample.library_construction_protocol row["platform"] = "Illumina" row["run_center"] = run_center row["run_date"] = run_date row["run_prefix"] = run_prefix row["sequencing_meth"] = "sequencing by synthesis" row["center_name"] = "CENTER_NAME" row["center_project_name"] = project_name row["instrument_model"] = instrument_model row["runid"] = run_id row["sample_plate"] = sample.sample_plate row["sample_well"] = sample.sample_well row["i7_index_id"] = sample['i7_index_id'] row["index"] = sample['index'] row["i5_index_id"] = sample['i5_index_id'] row["index2"] = sample['index2'] row["lane"] = lane row["sample_project"] = project row["well_description"] = '%s.%s.%s' % (sample.sample_plate, sample.sample_name, sample.sample_well) data.append(row) if not data: warnings.warn('Project %s and Lane %s have no data' % (project, lane), UserWarning) # the American Gut Project is a special case. We'll likely continue # to grow this study with more and more runs. So we fill some of # the blanks if we can verify the study id corresponds to the AGP. # This was a request by <NAME> and Gail prep = agp_transform(
pd.DataFrame(columns=PREP_COLUMNS, data=data)
pandas.DataFrame
import numpy as np import pytest from pandas import DataFrame, SparseArray, SparseDataFrame, bdate_range data = { "A": [np.nan, np.nan, np.nan, 0, 1, 2, 3, 4, 5, 6], "B": [0, 1, 2, np.nan, np.nan, np.nan, 3, 4, 5, 6], "C": np.arange(10, dtype=np.float64), "D": [0, 1, 2, 3, 4, 5, np.nan, np.nan, np.nan, np.nan], } dates = bdate_range("1/1/2011", periods=10) # fixture names must be compatible with the tests in # tests/frame/test_api.SharedWithSparse @pytest.fixture def float_frame_dense(): """ Fixture for dense DataFrame of floats with DatetimeIndex Columns are ['A', 'B', 'C', 'D']; some entries are missing """ return DataFrame(data, index=dates) @pytest.fixture def float_frame(): """ Fixture for sparse DataFrame of floats with DatetimeIndex Columns are ['A', 'B', 'C', 'D']; some entries are missing """ # default_kind='block' is the default return SparseDataFrame(data, index=dates, default_kind="block") @pytest.fixture def float_frame_int_kind(): """ Fixture for sparse DataFrame of floats with DatetimeIndex Columns are ['A', 'B', 'C', 'D'] and default_kind='integer'. Some entries are missing. """ return SparseDataFrame(data, index=dates, default_kind="integer") @pytest.fixture def float_string_frame(): """ Fixture for sparse DataFrame of floats and strings with DatetimeIndex Columns are ['A', 'B', 'C', 'D', 'foo']; some entries are missing """ sdf = SparseDataFrame(data, index=dates) sdf["foo"] = SparseArray(["bar"] * len(dates)) return sdf @pytest.fixture def float_frame_fill0_dense(): """ Fixture for dense DataFrame of floats with DatetimeIndex Columns are ['A', 'B', 'C', 'D']; missing entries have been filled with 0 """ values =
SparseDataFrame(data)
pandas.SparseDataFrame
import email import pandas as pd def extract(data, structured_fields=[], extract_payload=True): r"""This function extracts data for the given header list from the Enron email dataset. It provides flexibilty to choose which fields needs to be extracted. The header list provided by the user are the tags in the email of Enron dataset, eg. Date, Subject etc. By default, if no header is provided, this function returns only the email text body of the Enron dataset. Arguments: 1) data: Dataframe It is the Enron dataset with column headings. This argument can not be kept empty. 2) structured_fields: List It is a of tags for which data needs to be extracted. Example: ['Date', 'Subject', 'X-To']. This argument can be droppped if not required. 3) extract_pyload: Boolean True if email text body is required. False in case only structured_fields needs to be extracted. This field can alo be dropped while calling the function. In case nothing is specified, default boolean value True is used. return: Dataframe A dataframe with specified fields along with the original columns passsed as the data argument. This function is created to take off the burden of extracting desired fields from the Enron dataset. However, this does not clean the data, eg. it does not remove the empty rows or columns. Neither it does the pre-processing of data like lowercase and removal of unwanted characters. In order to make it more powerful, above functions can be added. """ headers=data.columns emails = data.rename(columns={headers[0]:'email_path', headers[1]:'email'}) #getting structured text def create_dict(dictionary, key, value): if key in dictionary: values = dictionary.get(key) values.append(value) dictionary[key] = values else: dictionary[key] = [value] return dictionary def get_structured_data(df, fields): structured_data = {} messages = df["email"] for message in messages: e = email.message_from_string(message) for header in fields: header_data = e.get(header) create_dict(dictionary = structured_data, key = header, value = header_data) return pd.DataFrame(structured_data) #getting unstructured text def get_unstructured_email(df): messages = [] for item in df["email"]: e = email.message_from_string(item) message_body = e.get_payload() #message_body = message_body.lower() messages.append(message_body) return messages if extract_payload == True: email_body = get_unstructured_email(emails) emails["Message-Body"] = email_body structured_data = get_structured_data(emails, structured_fields) emails =
pd.concat([emails, structured_data], axis=1)
pandas.concat
""" NAME dnd_monster_scrape DESCRIPTION A simple web scraper for the site www.aidedd.org, a French website about DnD. The following information can be found for all monsters released for DnD 5e. Attributes marked with * are not available for all creatures. name challenge rating create type size armor class health alignment legendary monster source * strength * dexterity * constitution * intelligence * wisdom * charisma CONTENTS DnDScrapeShallow - collect information about all monsters, collected from a single page DnDScrapeDeep - if available, collects deeper information about an individual monster """ import bs4 import requests import pandas as pd import numpy as np import time def DnDScrapeShallow(df_name='data/dnd_data.csv'): """ The main function that collects monster information, this gets a lot of details including a url that leads to more information (not available for all monsters). Information is stored in a dataframe, this can be expanded by calling deep scrape afterwards. Args: df_name : file name to load / save values from Return: None """ hdr = {'User-Agent': 'Mozilla/5.0'} url = 'https://www.aidedd.org/dnd-filters/monsters.php' req = requests.get(url, headers=hdr) if req.status_code == 200: soup = bs4.BeautifulSoup(req.text, 'html.parser') df = pd.DataFrame(columns=['name', 'url', 'cr', 'type', 'size', 'ac', 'hp', 'speed', 'align', 'legendary', 'source']) # grab the entire row and then we'll just divy it up and take what we want, first element is not a monster results = soup.find_all('tr') for row in results[1:]: to_add = [] # name col = row.find_all('input') to_add.append(col[0]['value']) # link col = row.find_all('a') to_add.append(col[0]['href'] if col else '') # challenge rating col = row.find_all('td', class_='center') to_add.append(col[0].text) # type col = row.find_all('td', class_='col1') to_add.append(col[0].text) # sizes col = row.find_all('td', class_='col2') to_add.append(col[0].text) # armor class and hp are stored in col3 col = row.find_all('td', class_='col3') to_add.append(col[0].text) to_add.append(col[1].text) # speed col = row.find_all('td', class_='col6') to_add.append(col[0].text) # alignment col = row.find_all('td', class_='col4') to_add.append(col[0].text) # # legendary col = row.find_all('td', class_='col5') to_add.append(col[0].text) # # source col = row.find_all('td', class_='colS') to_add.append(col[0].text) # add to the end of the df df.loc[len(df)] = to_add df.to_csv(df_name, index=False) else: print('Connection Error!') def DnDScrapeDeep(df_name='data/dnd_data.csv', sleep_time=10): """ Supplement function that extends the data from the shallow scrape if a url is available. Args: df_name : file name to load / save values from sleep_time : how long to sleep between page accesses Return: None """ df = pd.read_csv(df_name) for i, row in df.iterrows(): # if there is a url and we haven't fetched it yet if not
pd.isna(row['url'])
pandas.isna
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sun Apr 19 2020 @author: <NAME> (@SergioMinuto90) """ from pandas.io.json import json_normalize from abc import ABC, abstractmethod import socceraction.vaep as vaep import pandas as pd import warnings import os warnings.simplefilter(action='ignore', category=pd.errors.PerformanceWarning) from processing import PassingNetworkBuilder from utils import read_json class StatsBombPassingNetwork(PassingNetworkBuilder, ABC): def __init__(self, args): self.plot_type = args.plot_type self.team_name = args.team_name self.match_id = args.match_id self.plot_name = None self.df_events = None self.plot_title = None self.names_dict = None self.plot_legend = None self.num_minutes = None self.player_position = None self.pair_pass_value = None self.pair_pass_count = None self.player_pass_value = None self.player_pass_count = None def read_data(self): """ Read StatsBomb eventing data of the selected 'match_id', generating a pandas DataFrame with the events and a dictionary of player names and nicknames. """ # Player name translation dict lineups = read_json("data/eventing/lineups/{0}.json".format(self.match_id)) self.names_dict = {player["player_name"]: player["player_nickname"] for team in lineups for player in team["lineup"]} # Pandas dataframe containing the events of the match events = read_json("data/eventing/events/{0}.json".format(self.match_id)) self.df_events =
json_normalize(events, sep="_")
pandas.io.json.json_normalize
import argparse from multiprocessing import Value import numpy as np import pandas as pd from joblib import Parallel, delayed import mne from mne_bids import BIDSPath import coffeine from mne_features.feature_extraction import extract_features from mne.minimum_norm import apply_inverse_cov from utils import prepare_dataset DATASETS = ['chbp', 'lemon', 'tuab', 'camcan'] FEATURE_TYPE = ['fb_covs', 'handcrafted', 'source_power'] parser = argparse.ArgumentParser(description='Compute features.') parser.add_argument( '-d', '--dataset', default=None, nargs='+', help='the dataset for which features should be computed') parser.add_argument( '-t', '--feature_type', default=None, nargs='+', help='Type of features to compute') parser.add_argument( '--n_jobs', type=int, default=1, help='number of parallel processes to use (default: 1)') args = parser.parse_args() datasets = args.dataset feature_types = args.feature_type n_jobs = args.n_jobs if datasets is None: datasets = list(DATASETS) if feature_types is None: feature_types = list(FEATURE_TYPE) tasks = [(ds, bs) for ds in datasets for bs in feature_types] for dataset, feature_type in tasks: if dataset not in DATASETS: raise ValueError(f"The dataset '{dataset}' passed is unkonwn") if feature_type not in FEATURE_TYPE: raise ValueError(f"The benchmark '{feature_type}' passed is unkonwn") print(f"Running benchmarks: {', '.join(feature_types)}") print(f"Datasets: {', '.join(datasets)}") DEBUG = False frequency_bands = { "low": (0.1, 1), "delta": (1, 4), "theta": (4.0, 8.0), "alpha": (8.0, 15.0), "beta_low": (15.0, 26.0), "beta_mid": (26.0, 35.0), "beta_high": (35.0, 49) } hc_selected_funcs = [ 'std', 'kurtosis', 'skewness', 'quantile', 'ptp_amp', 'mean', 'pow_freq_bands', 'spect_entropy', 'app_entropy', 'samp_entropy', 'svd_entropy', 'hurst_exp', 'hjorth_complexity', 'hjorth_mobility', 'line_length', 'wavelet_coef_energy', 'higuchi_fd', 'zero_crossings', 'svd_fisher_info' ] hc_func_params = { 'quantile__q': [0.1, 0.25, 0.75, 0.9], 'pow_freq_bands__freq_bands': [0, 2, 4, 8, 13, 18, 24, 30, 49], 'pow_freq_bands__ratios': 'all', 'pow_freq_bands__ratios_triu': True, 'pow_freq_bands__log': True, 'pow_freq_bands__normalize': None, } def extract_fb_covs(epochs, condition): features, meta_info = coffeine.compute_features( epochs[condition], features=('covs',), n_fft=1024, n_overlap=512, fs=epochs.info['sfreq'], fmax=49, frequency_bands=frequency_bands) features['meta_info'] = meta_info return features def extract_handcrafted_feats(epochs, condition): features = extract_features( epochs[condition].get_data(), epochs.info['sfreq'], hc_selected_funcs, funcs_params=hc_func_params, n_jobs=1, ch_names=epochs.ch_names, return_as_df=False) out = {'feats': features} return out def extract_source_power(bp, info, subject, subjects_dir, covs): fname_inv = bp.copy().update(suffix='inv', processing=None, extension='.fif') inv = mne.minimum_norm.read_inverse_operator(fname_inv) # Prepare label time series labels = mne.read_labels_from_annot('fsaverage', 'aparc_sub', subjects_dir=subjects_dir) labels = [ll for ll in labels if 'unknown' not in ll.name] # for each frequency band result = [] for i in range(covs.shape[0]): cov = mne.Covariance(data=covs[i, :, :], names=info['ch_names'], bads=info['bads'], projs=info['projs'], nfree=0) # nfree ? stc = apply_inverse_cov(cov, info, inv, nave=1, method="dSPM") label_power = mne.extract_label_time_course(stc, labels, inv['src'], mode="mean") result.append(np.diag(label_power[:,0])) return result def run_subject(subject, cfg, condition): task = cfg.task deriv_root = cfg.deriv_root data_type = cfg.data_type session = cfg.session if session.startswith('ses-'): session = session.lstrip('ses-') bp_args = dict(root=deriv_root, subject=subject, datatype=data_type, processing="autoreject", task=task, check=False, suffix="epo") if session: bp_args['session'] = session bp = BIDSPath(**bp_args) if not bp.fpath.exists(): return 'no file' epochs = mne.read_epochs(bp, proj=False, preload=True) if not any(condition in cc for cc in epochs.event_id): return 'condition not found' out = None # make sure that no EOG/ECG made it into the selection epochs.pick_types(**{data_type: True}) try: if feature_type == 'fb_covs': out = extract_fb_covs(epochs, condition) elif feature_type == 'handcrafted': out = extract_handcrafted_feats(epochs, condition) elif feature_type == 'source_power': covs = extract_fb_covs(epochs, condition) covs = covs['covs'] out = extract_source_power( bp, epochs.info, subject, cfg.subjects_dir, covs) else: NotImplementedError() except Exception as err: return repr(err) return out for dataset, feature_type in tasks: cfg, subjects = prepare_dataset(dataset) N_JOBS = cfg.N_JOBS if not n_jobs else n_jobs if DEBUG: subjects = subjects[:1] N_JOBS = 1 frequency_bands = {"alpha": (8.0, 15.0)} hc_selected_funcs = ['std'] hc_func_params = dict() for condition in cfg.feature_conditions: print( f"Computing {feature_type} features on {dataset} for '{condition}'") features = Parallel(n_jobs=N_JOBS)( delayed(run_subject)(sub.split('-')[1], cfg=cfg, condition=condition) for sub in subjects) out = {sub: ff for sub, ff in zip(subjects, features) if not isinstance(ff, str)} label = None if dataset in ("chbp", "lemon"): label = 'pooled' if '/' in condition: label = f'eyes-{condition.split("/")[1]}' elif dataset in ("tuab", 'camcan'): label = 'rest' out_fname = cfg.deriv_root / f'features_{feature_type}_{label}.h5' log_out_fname = ( cfg.deriv_root / f'feature_{feature_type}_{label}-log.csv') mne.externals.h5io.write_hdf5( out_fname, out, overwrite=True ) print(f'Features saved under {out_fname}.') logging = ['OK' if not isinstance(ff, str) else ff for sub, ff in zip(subjects, features)] out_log =
pd.DataFrame({"ok": logging, "subject": subjects})
pandas.DataFrame
import datetime import typing from dataclasses import dataclass from typing import List import pandas from dataclasses_json import dataclass_json from pytest import fixture from typing_extensions import Annotated from flytekit import SQLTask, dynamic, kwtypes from flytekit.core.hash import HashMethod from flytekit.core.local_cache import LocalTaskCache from flytekit.core.task import TaskMetadata, task from flytekit.core.testing import task_mock from flytekit.core.workflow import workflow from flytekit.types.schema import FlyteSchema # Global counter used to validate number of calls to cache n_cached_task_calls = 0 @fixture(scope="function", autouse=True) def setup(): global n_cached_task_calls n_cached_task_calls = 0 LocalTaskCache.initialize() LocalTaskCache.clear() def test_to_confirm_that_cache_keys_include_function_name(): """ This test confirms that the function name is part of the cache key. It does so by defining 2 tasks with identical parameters and metadata (i.e. cache=True and cache version). """ @task(cache=True, cache_version="v1") def f1(n: int) -> int: global n_cached_task_calls n_cached_task_calls += 1 return n @task(cache=True, cache_version="v1") def f2(n: int) -> int: global n_cached_task_calls n_cached_task_calls += 1 return n + 1 @workflow def wf(n: int) -> typing.Tuple[int, int]: n_f1 = f1(n=n) n_f2 = f2(n=n) return n_f1, n_f2 # This is demonstrating that calls to f1 and f2 are cached by input parameters. assert wf(n=1) == (1, 2) def test_single_task_workflow(): @task(cache=True, cache_version="v1") def is_even(n: int) -> bool: global n_cached_task_calls n_cached_task_calls += 1 return n % 2 == 0 @task(cache=False) def uncached_task(a: int, b: int) -> int: return a + b @workflow def check_evenness(n: int) -> bool: uncached_task(a=n, b=n) return is_even(n=n) assert n_cached_task_calls == 0 assert check_evenness(n=1) is False # Confirm task is called assert n_cached_task_calls == 1 assert check_evenness(n=1) is False # Subsequent calls of the workflow with the same parameter do not bump the counter assert n_cached_task_calls == 1 assert check_evenness(n=1) is False assert n_cached_task_calls == 1 # Run workflow with a different parameter and confirm counter is bumped assert check_evenness(n=8) is True assert n_cached_task_calls == 2 # Run workflow again with the same parameter and confirm the counter is not bumped assert check_evenness(n=8) is True assert n_cached_task_calls == 2 def test_shared_tasks_in_two_separate_workflows(): @task(cache=True, cache_version="0.0.1") def is_odd(n: int) -> bool: global n_cached_task_calls n_cached_task_calls += 1 return n % 2 == 1 @workflow def check_oddness_wf1(n: int) -> bool: return is_odd(n=n) @workflow def check_oddness_wf2(n: int) -> bool: return is_odd(n=n) assert n_cached_task_calls == 0 assert check_oddness_wf1(n=42) is False assert check_oddness_wf1(n=99) is True assert n_cached_task_calls == 2 # The next two executions of the *_wf2 workflow are going to # hit the cache for the calls to `is_odd` assert check_oddness_wf2(n=42) is False assert check_oddness_wf2(n=99) is True assert n_cached_task_calls == 2 # TODO add test with typing.List[str] def test_sql_task(): sql = SQLTask( "my-query", query_template="SELECT * FROM hive.city.fact_airport_sessions WHERE ds = '{{ .Inputs.ds }}' LIMIT 10", inputs=kwtypes(ds=datetime.datetime), outputs=kwtypes(results=FlyteSchema), metadata=TaskMetadata(retries=2, cache=True, cache_version="0.1"), ) @task(cache=True, cache_version="0.1.2") def t1() -> datetime.datetime: global n_cached_task_calls n_cached_task_calls += 1 return datetime.datetime.now() @workflow def my_wf() -> FlyteSchema: dt = t1() return sql(ds=dt) with task_mock(sql) as mock: mock.return_value = pandas.DataFrame(data={"x": [1, 2], "y": ["3", "4"]}) assert n_cached_task_calls == 0 assert (my_wf().open().all() == pandas.DataFrame(data={"x": [1, 2], "y": ["3", "4"]})).all().all() assert n_cached_task_calls == 1 # The second and third calls hit the cache assert (my_wf().open().all() == pandas.DataFrame(data={"x": [1, 2], "y": ["3", "4"]})).all().all() assert n_cached_task_calls == 1 assert (my_wf().open().all() == pandas.DataFrame(data={"x": [1, 2], "y": ["3", "4"]})).all().all() assert n_cached_task_calls == 1 def test_wf_custom_types(): @dataclass_json @dataclass class MyCustomType(object): x: int y: str @task(cache=True, cache_version="a.b.c") def t1(a: int) -> MyCustomType: global n_cached_task_calls n_cached_task_calls += 1 return MyCustomType(x=a, y="t1") @task(cache=True, cache_version="v1") def t2(a: MyCustomType, b: str) -> (MyCustomType, int): global n_cached_task_calls n_cached_task_calls += 1 return MyCustomType(x=a.x, y=f"{a.y} {b}"), 5 @workflow def my_wf(a: int, b: str) -> (MyCustomType, int): return t2(a=t1(a=a), b=b) assert n_cached_task_calls == 0 c, v = my_wf(a=10, b="hello") assert v == 5 assert c.x == 10 assert c.y == "t1 hello" assert n_cached_task_calls == 2 c, v = my_wf(a=10, b="hello") assert v == 5 assert c.x == 10 assert c.y == "t1 hello" assert n_cached_task_calls == 2 def test_wf_schema_to_df(): schema1 = FlyteSchema[kwtypes(x=int, y=str)] @task(cache=True, cache_version="v0") def t1() -> schema1: global n_cached_task_calls n_cached_task_calls += 1 s = schema1() s.open().write(pandas.DataFrame(data={"x": [1, 2], "y": ["3", "4"]})) return s @task(cache=True, cache_version="v1") def t2(df: pandas.DataFrame) -> int: global n_cached_task_calls n_cached_task_calls += 1 return len(df.columns.values) @workflow def wf() -> int: return t2(df=t1()) assert n_cached_task_calls == 0 x = wf() assert x == 2 assert n_cached_task_calls == 2 # Second call does not bump the counter x = wf() assert x == 2 assert n_cached_task_calls == 2 def test_dict_wf_with_constants(): @task(cache=True, cache_version="v99") def t1(a: int) -> typing.NamedTuple("OutputsBC", t1_int_output=int, c=str): global n_cached_task_calls n_cached_task_calls += 1 return a + 2, "world" @task(cache=True, cache_version="v101") def t2(a: typing.Dict[str, str]) -> str: global n_cached_task_calls n_cached_task_calls += 1 return " ".join([v for k, v in a.items()]) @workflow def my_wf(a: int, b: str) -> (int, str): x, y = t1(a=a) d = t2(a={"key1": b, "key2": y}) return x, d assert n_cached_task_calls == 0 x = my_wf(a=5, b="hello") assert x == (7, "hello world") assert n_cached_task_calls == 2 # Second call does not bump the counter x = my_wf(a=5, b="hello") assert x == (7, "hello world") assert n_cached_task_calls == 2 def test_set_integer_literal_hash_is_not_cached(): """ Test to confirm that the local cache is not set in the case of integers, even if we return an annotated integer. In order to make this very explicit, we define a constant hash function, i.e. the same value is returned by it regardless of the input. """ def constant_hash_function(a: int) -> str: return "hash" @task def t0(a: int) -> Annotated[int, HashMethod(function=constant_hash_function)]: return a @task(cache=True, cache_version="0.0.1") def t1(cached_a: int) -> int: global n_cached_task_calls n_cached_task_calls += 1 return cached_a @workflow def wf(a: int) -> int: annotated_a = t0(a=a) return t1(cached_a=annotated_a) assert n_cached_task_calls == 0 assert wf(a=3) == 3 assert n_cached_task_calls == 1 # Confirm that the value is not cached, even though we set a hash function that # returns a constant value and that the task has only one input. assert wf(a=2) == 2 assert n_cached_task_calls == 2 # Confirm that the cache is hit if we execute the workflow with the same value as previous run. assert wf(a=2) == 2 assert n_cached_task_calls == 2 def test_pass_annotated_to_downstream_tasks(): @task def t0(a: int) -> Annotated[int, HashMethod(function=str)]: return a + 1 @task(cache=True, cache_version="42") def downstream_t(a: int) -> int: global n_cached_task_calls n_cached_task_calls += 1 return a + 2 @dynamic def t1(a: int) -> int: v = t0(a=a) # We should have a cache miss in the first call to downstream_t and have a cache hit # on the second call. v_1 = downstream_t(a=v) v_2 = downstream_t(a=v) return v_1 + v_2 assert n_cached_task_calls == 0 assert t1(a=3) == (6 + 6) assert n_cached_task_calls == 1 def test_pandas_dataframe_hash(): """ Test that cache is hit in the case of pandas dataframes where we annotated dataframes to hash the contents of the dataframes. """ def hash_pandas_dataframe(df: pandas.DataFrame) -> str: return str(pandas.util.hash_pandas_object(df)) @task def uncached_data_reading_task() -> Annotated[pandas.DataFrame, HashMethod(hash_pandas_dataframe)]: return pandas.DataFrame({"column_1": [1, 2, 3]}) @task(cache=True, cache_version="0.1") def cached_data_processing_task(data: pandas.DataFrame) -> pandas.DataFrame: global n_cached_task_calls n_cached_task_calls += 1 return data * 2 @workflow def my_workflow(): raw_data = uncached_data_reading_task() cached_data_processing_task(data=raw_data) assert n_cached_task_calls == 0 my_workflow() assert n_cached_task_calls == 1 # Confirm that we see a cache hit in the case of annotated dataframes. my_workflow() assert n_cached_task_calls == 1 def test_list_of_pandas_dataframe_hash(): """ Test that cache is hit in the case of a list of pandas dataframes where we annotated dataframes to hash the contents of the dataframes. """ def hash_pandas_dataframe(df: pandas.DataFrame) -> str: return str(pandas.util.hash_pandas_object(df)) @task def uncached_data_reading_task() -> List[Annotated[pandas.DataFrame, HashMethod(hash_pandas_dataframe)]]: return [pandas.DataFrame({"column_1": [1, 2, 3]}),
pandas.DataFrame({"column_1": [10, 20, 30]})
pandas.DataFrame