prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
from nltk.corpus import stopwords import re import pandas as pd import numpy as np def get_features(text, index): stop_words = set(stopwords.words('russian')) txt = text.fillna('').str.lower() features = {'punct': [], 'string_len': [], 'count_nums':[], 'number_words':[], 'stop_words':[], 'not_stop_words':[], 'larger_than_three':[], 'exclamation': []} for tx in txt: tx_p = remove_punct(tx) features['punct'].append(get_punct(tx)) features['string_len'].append(len(tx)) features['count_nums'].append(get_num(tx)) features['number_words'].append(len(tx_p.split())) features['stop_words'].append(get_stop_words(tx_p, stop_words)) features['not_stop_words'].append(not_stop_words(tx_p, stop_words)) features['larger_than_three'].append(words_larger_three(tx_p)) features['exclamation'].append(exclam(tx)) return
pd.DataFrame(features, index=index, dtype=float)
pandas.DataFrame
import pandas as pd def to_date(object): try: date = pd.to_datetime(object).date() if pd.isnull(date): date = None except: date = None return date def series_to_list(object): return object.where(
pd.notnull(object)
pandas.notnull
from flask import Flask from flask_restful import reqparse,Api,Resource import pandas as pd import re #from json import dumps #nltk.download('stopwords') from nltk.stem.porter import PorterStemmer from nltk.corpus import stopwords from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score,precision_score,recall_score,f1_score from sklearn.feature_extraction.text import CountVectorizer parser=reqparse.RequestParser() parser.add_argument('query') class PredictSentiment(Resource): def get(self): dataset1 =
pd.read_csv('/home/shrinidhikr/Downloads/fwdlocalhackdsay/train.csv' , encoding='cp437')
pandas.read_csv
import argparse import os import pandas as pd import seaborn as sns import matplotlib.pyplot as plt def get_args(): """ Get arguments from command line with argparse. """ parser = argparse.ArgumentParser( prog='RMA-class-join.py', description="""Summarize read assignments obtained from MEGAN RMA files.""") parser.add_argument("-c", "--counts", required=True, nargs='+', help="The complete set of read count files.") parser.add_argument("-s", "--summaries", required=True, nargs='+', help="The complete set of absolute summary count files.") parser.add_argument("-r", "--rcfile", required=True, help="The read count summary for the fasta file(s).") parser.add_argument("-o", "--outname", required=True, help="Name of output file.") parser.add_argument("-p", "--outdir", required=True, help="Output directory path to write output files.") return parser.parse_args() def make_df(f): """ Read in dataframe using read and count as column headers, return dataframe. """ df = pd.read_csv(f, sep = '\t', names = ['read', 'annotation'], header = None) return df def summarize_read_counts(df): count_dist = sorted(df['read'].value_counts().values) avg_annotation_per_read = round(sum(count_dist)/len(count_dist), 1) total_unique_reads = len(count_dist) return count_dist, avg_annotation_per_read, total_unique_reads def make_annotations_dict(counts): annotations_dict = {} samplereads_dict = {"Combined_Functional":{}, "Combined_Taxonomic":{}} functional_dbs = ['EC', 'EGGNOG', 'INTERPRO2GO', 'SEED'] taxonomic_dbs = ['GTDB', 'NCBI', 'NCBIbac'] for f in counts: database = f.split('/')[-1].split('.')[1] if database not in annotations_dict: annotations_dict[database] = {} df = make_df(f) count_dist, avg_annotation_per_read, total_unique_reads = summarize_read_counts(df) sample = f.split('/')[-1].split('.')[0] if sample not in samplereads_dict["Combined_Functional"]: samplereads_dict["Combined_Functional"][sample] = set() if sample not in samplereads_dict["Combined_Taxonomic"]: samplereads_dict["Combined_Taxonomic"][sample] = set() if database in functional_dbs: samplereads_dict["Combined_Functional"][sample].update(df['read'].unique()) elif database in taxonomic_dbs: samplereads_dict["Combined_Taxonomic"][sample].update(df['read'].unique()) annotations_dict[database][sample] = {'count_dist':count_dist, 'avg_annotation_per_read':avg_annotation_per_read, 'total_unique_reads':total_unique_reads} for db, dict in samplereads_dict.items(): annotations_dict[db] = {} for sample, readset in dict.items(): annotations_dict[db][sample] = {'total_unique_reads':len(readset), 'count_dist':0, 'avg_annotation_per_read':0, 'classes':0} return annotations_dict def add_summary_info(annotations_dict, samples, summaries): for f in summaries: database = f.split('/')[-1].split('.')[1] df =
pd.read_csv(f, sep='\t')
pandas.read_csv
# Dec 21 to mod for optional outputting original counts ## #--------------------------------------------------------------------- # SERVER only input all files (.bam and .fa) output MeH matrix in .csv # Oct 19, 2021 ML after imputation test # github #--------------------------------------------------------------------- import random import math import pysam import csv import sys import pandas as pd import numpy as np import datetime import time as t from collections import Counter, defaultdict, OrderedDict #--------------------------------------- # Functions definition #--------------------------------------- def open_log(fname): open_log.logfile = open(fname, 'w', 1) def logm(message): log_message = "[%s] %s\n" % (datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'), message) print(log_message), open_log.logfile.write(log_message) def close_log(): open_log.logfile.close() # Check whether a window has enough reads for complete/impute def enough_reads(window,w,complete): temp=np.isnan(window).sum(axis=1)==0 if complete: # For heterogeneity estimation return temp.sum()>=3 else: # for imputation tempw1=np.isnan(window).sum(axis=1)==1 #return temp.sum()>=2**(w-2) and tempw1.sum()>0 return temp.sum()>=2 and tempw1.sum()>0 def impute(window,w): full_ind=np.where(np.isnan(window).sum(axis=1)==0)[0] part_ind=np.where(np.isnan(window).sum(axis=1)==1)[0] for i in range(len(part_ind)): sam = [] # which column is nan pos=np.where(np.isnan(window[part_ind[i],:]))[0] if np.unique(window[np.where(np.invert(np.isnan(window[:,pos])))[0],pos]).shape[0]==1: window[part_ind[i],pos]=window[np.where(np.invert(np.isnan(window[:,pos])))[0],pos][0] else: #print("win_part i pos =",window[part_ind[i],pos]) for j in range(len(full_ind)): if (window[part_ind[i],:]==window[full_ind[j],:]).sum()==w-1: sam.append(j) if len(sam)>0: s1=random.sample(sam, 1) s=window[full_ind[s1],pos] else: s=random.sample(window[np.where(np.invert(np.isnan(window[:,pos])))[0],pos].tolist(), k=1)[0] window[part_ind[i],pos]=np.float64(s) #print("win_part i =",window[part_ind[i],pos]) #print("s = ",np.float64(s)) return window def outwindow(pat,patori,pos,chrom,w,M,UM,Mo,UMo,mC=4,strand='f',optional=False): # get complete reads tempori=np.isnan(patori).sum(axis=1)==0 patori=patori[np.where(tempori)[0],:] countori=np.zeros((2**w,1)) temp=np.isnan(pat).sum(axis=1)==0 pat=pat[np.where(temp)[0],:] count=np.zeros((2**w,1)) # m=np.shape(pat)[0] pat=np.array(pat) if w==2: pat = Counter([str(i[0])+str(i[1]) for i in pat.astype(int).tolist()]) count=np.array([float(pat[i]) for i in ['00','10','01','11']]) if optional: patori = Counter([str(i[0])+str(i[1]) for i in patori.astype(int).tolist()]) countori=np.array([float(patori[i]) for i in ['00','10','01','11']]) if w==3: pat = Counter([str(i[0])+str(i[1])+str(i[2]) for i in pat.astype(int).tolist()]) count=np.array([float(pat[i]) for i in ['000','100','010','110','001','101','011','111']]) if optional: patori = Counter([str(i[0])+str(i[1])+str(i[2]) for i in patori.astype(int).tolist()]) countori=np.array([float(patori[i]) for i in ['000','100','010','110','001','101','011','111']]) if w==4: pat = Counter([str(i[0])+str(i[1])+str(i[2])+str(i[3]) for i in pat.astype(int).tolist()]) count=np.array([float(pat[i]) for i in ['0000','1000','0100','1100','0010','1010','0110','1110','0001',\ '1001','0101','1101','0011','1011','0111','1111']]) if optional: patori = Counter([str(i[0])+str(i[1])+str(i[2])+str(i[3]) for i in patori.astype(int).tolist()]) countori=np.array([float(patori[i]) for i in ['0000','1000','0100','1100','0010','1010','0110','1110','0001',\ '1001','0101','1101','0011','1011','0111','1111']]) if w==5: pat = Counter([str(i[0])+str(i[1])+str(i[2])+str(i[3])+str(i[4]) for i in pat.astype(int).tolist()]) count=np.array([float(pat[i]) for i in ['00000','10000','01000','11000','00100','10100','01100','11100','00010',\ '10010','01010','11010','00110','10110','01110','11110','00001','10001','01001','11001','00101',\ '10101','01101','11101','00011','10011','01011','11011','00111','10111','01111','11111']]) if optional: patori = Counter([str(i[0])+str(i[1])+str(i[2])+str(i[3])+str(i[4]) for i in patori.astype(int).tolist()]) countori = np.array([float(patori[i]) for i in ['00000','10000','01000','11000','00100','10100','01100','11100','00010',\ '10010','01010','11010','00110','10110','01110','11110','00001','10001','01001','11001','00101',\ '10101','01101','11101','00011','10011','01011','11011','00111','10111','01111','11111']]) if w==6: pat = Counter([str(i[0])+str(i[1])+str(i[2])+str(i[3])+str(i[4])+str(i[5]) for i in pat.astype(int).tolist()]) count=np.array([float(pat[i]) for i in ['000000','100000','010000','110000','001000','101000','011000','111000','000100',\ '100100','010100','110100','001100','101100','011100','111100','000010','100010','010010','110010','001010',\ '101010','011010','111010','000110', '100110','010110','110110','001110','101110','011110','111110',\ '000001','100001','010001','110001','001001','101001','011001','111001','000101',\ '100101','010101','110101','001101','101101','011101','111101','000011','100011','010011','110011','001011',\ '101011','011011','111011','000111', '100111','010111','110111','001111','101111','011111','111111']]) if optional: patori = Counter([str(i[0])+str(i[1])+str(i[2])+str(i[3])+str(i[4])+str(i[5]) for i in patori.astype(int).tolist()]) countori = np.array([float(patori[i]) for i in ['000000','100000','010000','110000','001000','101000','011000','111000','000100',\ '100100','010100','110100','001100','101100','011100','111100','000010','100010','010010','110010','001010',\ '101010','011010','111010','000110', '100110','010110','110110','001110','101110','011110','111110',\ '000001','100001','010001','110001','001001','101001','011001','111001','000101',\ '100101','010101','110101','001101','101101','011101','111101','000011','100011','010011','110011','001011',\ '101011','011011','111011','000111', '100111','010111','110111','001111','101111','011111','111111']]) count=count.reshape(2**w) count=np.concatenate((count[[0]],count)) countori=countori.reshape(2**w) countori=np.concatenate((countori[[0]],countori)) if w==3 and not optional: opt=pd.DataFrame({'chrom':chrom,'pos':pos,'p01':count[1],'p02':count[2],'p03':count[3],'p04':count[4],\ 'p05':count[5],'p06':count[6],'p07':count[7],'p08':count[8],'M':M,'UM':UM,'strand':strand}, index=[0]) if w==3 and optional: opt=pd.DataFrame({'chrom':chrom,'pos':pos,'p01':count[1],'p02':count[2],'p03':count[3],'p04':count[4],\ 'p05':count[5],'p06':count[6],'p07':count[7],'p08':count[8],'p01o':countori[1],'p02o':countori[2],'p03o':countori[3],'p04o':countori[4],\ 'p05o':countori[5],'p06o':countori[6],'p07o':countori[7],'p08o':countori[8],'M':M,'UM':UM,'Mo':Mo,'UMo':UMo,'strand':strand}, index=[0]) if w==4 and not optional: opt=pd.DataFrame({'chrom':chrom,'pos':pos,'p01':count[1],'p02':count[2],'p03':count[3],'p04':count[4],\ 'p05':count[5],'p06':count[6],'p07':count[7],'p08':count[8],'p09':count[9],'p10':count[10],\ 'p11':count[11],'p12':count[12],'p13':count[13],'p14':count[14],'p15':count[15],\ 'p16':count[16],'M':M,'UM':UM,'strand':strand}, index=[0]) if w==4 and optional: opt=pd.DataFrame({'chrom':chrom,'pos':pos,'p01':count[1],'p02':count[2],'p03':count[3],'p04':count[4],\ 'p05':count[5],'p06':count[6],'p07':count[7],'p08':count[8],'p09':count[9],'p10':count[10],\ 'p11':count[11],'p12':count[12],'p13':count[13],'p14':count[14],'p15':count[15],\ 'p16':count[16],'p01o':countori[1],'p02o':countori[2],'p03o':countori[3],'p04o':countori[4],\ 'p05o':countori[5],'p06o':countori[6],'p07o':countori[7],'p08o':countori[8],'p09o':countori[9],'p10o':countori[10],\ 'p11o':countori[11],'p12o':countori[12],'p13o':countori[13],'p14o':countori[14],'p15o':countori[15],\ 'p16o':countori[16],'M':M,'UM':UM,'Mo':Mo,'UMo':UMo,'strand':strand}, index=[0]) if w==5 and not optional: opt=pd.DataFrame({'chrom':chrom,'pos':pos,'p01':count[1],'p02':count[2],'p03':count[3],'p04':count[4],\ 'p05':count[5],'p06':count[6],'p07':count[7],'p08':count[8],'p09':count[9],'p10':count[10],\ 'p11':count[11],'p12':count[12],'p13':count[13],'p14':count[14],'p15':count[15],\ 'p16':count[16],'p17':count[17],'p18':count[18],'p19':count[19],'p20':count[20],\ 'p21':count[21],'p22':count[22],'p23':count[23],'p24':count[24],'p25':count[25],\ 'p26':count[26],'p27':count[27],'p28':count[28],'p29':count[29],'p30':count[30],\ 'p31':count[31],'p32':count[32],'M':M,'UM':UM,'strand':strand}, index=[0]) if w==5 and optional: opt=pd.DataFrame({'chrom':chrom,'pos':pos,'p01':count[1],'p02':count[2],'p03':count[3],'p04':count[4],\ 'p05':count[5],'p06':count[6],'p07':count[7],'p08':count[8],'p09':count[9],'p10':count[10],\ 'p11':count[11],'p12':count[12],'p13':count[13],'p14':count[14],'p15':count[15],\ 'p16':count[16],'p17':count[17],'p18':count[18],'p19':count[19],'p20':count[20],\ 'p21':count[21],'p22':count[22],'p23':count[23],'p24':count[24],'p25':count[25],\ 'p26':count[26],'p27':count[27],'p28':count[28],'p29':count[29],'p30':count[30],\ 'p31':count[31],'p32':count[32],'p01o':countori[1],'p02o':countori[2],'p03o':countori[3],'p04o':countori[4],\ 'p05o':countori[5],'p06o':countori[6],'p07o':countori[7],'p08o':countori[8],'p09o':countori[9],'p10o':countori[10],\ 'p11o':countori[11],'p12o':countori[12],'p13o':countori[13],'p14o':countori[14],'p15o':countori[15],\ 'p16o':countori[16],'p17o':countori[17],'p18o':countori[18],'p19o':countori[19],'p20o':countori[20],\ 'p21o':countori[21],'p22o':countori[22],'p23o':countori[23],'p24o':countori[24],'p25o':countori[25],\ 'p26o':countori[26],'p27o':countori[27],'p28o':countori[28],'p29o':countori[29],'p30o':countori[30],\ 'p31o':countori[31],'p32o':countori[32],'M':M,'UM':UM,'Mo':Mo,'UMo':UMo,'strand':strand}, index=[0]) if w==6 and not optional: opt=pd.DataFrame({'chrom':chrom,'pos':pos,'p01':count[1],'p02':count[2],'p03':count[3],'p04':count[4],\ 'p05':count[5],'p06':count[6],'p07':count[7],'p08':count[8],'p09':count[9],'p10':count[10],\ 'p11':count[11],'p12':count[12],'p13':count[13],'p14':count[14],'p15':count[15],\ 'p16':count[16],'p17':count[17],'p18':count[18],'p19':count[19],'p20':count[20],\ 'p21':count[21],'p22':count[22],'p23':count[23],'p24':count[24],'p25':count[25],\ 'p26':count[26],'p27':count[27],'p28':count[28],'p29':count[29],'p30':count[30],\ 'p31':count[31],'p32':count[32],'p33':count[33],'p34':count[34],'p35':count[35],\ 'p36':count[36],'p37':count[37],'p38':count[38],'p39':count[39],'p40':count[40],\ 'p41':count[41],'p42':count[42],'p43':count[43],'p44':count[44],'p45':count[45],\ 'p46':count[46],'p47':count[47],'p48':count[48],'p49':count[49],'p50':count[50],\ 'p51':count[51],'p52':count[52],'p53':count[53],'p54':count[54],'p55':count[55],\ 'p56':count[56],'p57':count[57],'p58':count[58],'p59':count[59],'p60':count[60],\ 'p61':count[61],'p62':count[62],'p63':count[63],'p64':count[64],'M':M,'UM':UM,\ 'strand':strand}, index=[0]) if w==6 and optional: opt=pd.DataFrame({'chrom':chrom,'pos':pos,'p01':count[1],'p02':count[2],'p03':count[3],'p04':count[4],\ 'p05':count[5],'p06':count[6],'p07':count[7],'p08':count[8],'p09':count[9],'p10':count[10],\ 'p11':count[11],'p12':count[12],'p13':count[13],'p14':count[14],'p15':count[15],\ 'p16':count[16],'p17':count[17],'p18':count[18],'p19':count[19],'p20':count[20],\ 'p21':count[21],'p22':count[22],'p23':count[23],'p24':count[24],'p25':count[25],\ 'p26':count[26],'p27':count[27],'p28':count[28],'p29':count[29],'p30':count[30],\ 'p31':count[31],'p32':count[32],'p33':count[33],'p34':count[34],'p35':count[35],\ 'p36':count[36],'p37':count[37],'p38':count[38],'p39':count[39],'p40':count[40],\ 'p41':count[41],'p42':count[42],'p43':count[43],'p44':count[44],'p45':count[45],\ 'p46':count[46],'p47':count[47],'p48':count[48],'p49':count[49],'p50':count[50],\ 'p51':count[51],'p52':count[52],'p53':count[53],'p54':count[54],'p55':count[55],\ 'p56':count[56],'p57':count[57],'p58':count[58],'p59':count[59],'p60':count[60],\ 'p61':count[61],'p62':count[62],'p63':count[63],'p64':count[64],'p01o':countori[1],'p02o':countori[2],\ 'p03o':countori[3],'p04o':countori[4],\ 'p05o':countori[5],'p06o':countori[6],'p07o':countori[7],'p08o':countori[8],'p09o':countori[9],'p10o':countori[10],\ 'p11o':countori[11],'p12o':countori[12],'p13o':countori[13],'p14o':countori[14],'p15o':countori[15],\ 'p16o':countori[16],'p17o':countori[17],'p18o':countori[18],'p19o':countori[19],'p20o':countori[20],\ 'p21o':countori[21],'p22o':countori[22],'p23o':countori[23],'p24o':countori[24],'p25o':countori[25],\ 'p26o':countori[26],'p27o':countori[27],'p28o':countori[28],'p29o':countori[29],'p30o':countori[30],\ 'p31o':countori[31],'p32o':countori[32],'p33o':countori[33],'p34o':countori[34],\ 'p35o':countori[35],'p36o':countori[36],'p37o':countori[37],'p38o':countori[38],'p39o':countori[39],'p40o':countori[40],\ 'p41o':countori[41],'p42o':countori[42],'p43o':countori[43],'p44o':countori[44],'p45o':countori[45],\ 'p46o':countori[46],'p47o':countori[47],'p48o':countori[48],'p49o':countori[49],'p50o':countori[50],\ 'p51o':countori[51],'p52o':countori[52],'p53o':countori[53],'p54o':countori[54],'p55o':countori[55],\ 'p56o':countori[56],'p57o':countori[57],'p58o':countori[58],'p59o':countori[59],'p60o':countori[60],\ 'p61o':countori[61],'p62o':countori[62],'p63o':countori[63],'p64o':countori[64],'M':M,'UM':UM,'Mo':Mo,'UMo':UMo,\ 'strand':strand}, index=[0]) return opt def impute(window,w): full_ind=np.where(np.isnan(window).sum(axis=1)==0)[0] part_ind=np.where(np.isnan(window).sum(axis=1)==1)[0] for i in range(len(part_ind)): sam = [] # which column is nan pos=np.where(np.isnan(window[part_ind[i],:]))[0] if np.unique(window[np.where(np.invert(np.isnan(window[:,pos])))[0],pos]).shape[0]==1: window[part_ind[i],pos]=window[np.where(np.invert(np.isnan(window[:,pos])))[0],pos][0] else: #print("win_part i pos =",window[part_ind[i],pos]) for j in range(len(full_ind)): if (window[part_ind[i],:]==window[full_ind[j],:]).sum()==w-1: sam.append(j) if len(sam)>0: s1=random.sample(sam, 1) s=window[full_ind[s1],pos] else: s=random.sample(window[np.where(np.invert(np.isnan(window[:,pos])))[0],pos].tolist(), k=1)[0] window[part_ind[i],pos]=np.float64(s) #print("win_part i =",window[part_ind[i],pos]) #print("s = ",np.float64(s)) return window def CGgenome_scr(bamfile,chrom,w,fa,mC=4,silence=False,optional=False,folder='MeHdata'): filename, file_extension = os.path.splitext(bamfile) coverage = cov_context = 0 # load bamfile samfile = pysam.AlignmentFile("%s/%s.bam" % (folder,filename), "rb") # load reference genome fastafile = pysam.FastaFile('%s/%s.fa' % (folder,fa)) # initialise data frame for genome screening (load C from bam file) aggreR = aggreC = pd.DataFrame(columns=['Qname']) # if user wants to output compositions of methylation patterns at every eligible window, initialise data frame if w==3 and not optional: ResultPW=pd.DataFrame(columns=['chrom','pos','p01','p02','p03','p04',\ 'p05','p06','p07','p08','M','UM','strand']) if w==4 and not optional: ResultPW=pd.DataFrame(columns=['chrom','pos','p01','p02','p03','p04',\ 'p05','p06','p07','p08','p09','p10','p11','p12','p13','p14','p15','p16','M','UM','strand']) if w==5 and not optional: ResultPW=pd.DataFrame(columns=['chrom','pos','p01','p02','p03','p04',\ 'p05','p06','p07','p08','p09','p10','p11','p12','p13','p14','p15','p16','p17','p18',\ 'p19','p20','p21','p22','p23','p24','p25','p26','p27','p28','p29','p30','p31','p32',\ 'M','UM','Mo','UMo','strand']) if w==6 and not optional: ResultPW=pd.DataFrame(columns=['chrom','pos','p01','p02','p03','p04',\ 'p05','p06','p07','p08','p09','p10','p11','p12','p13','p14','p15','p16','p17','p18',\ 'p19','p20','p21','p22','p23','p24','p25','p26','p27','p28','p29','p30','p31','p32',\ 'p33','p34','p35','p36','p37','p38','p39','p40','p41','p42','p43','p44','p45','p46',\ 'p47','p48','p49','p50','p51','p52','p53','p54','p55','p56','p57','p58','p59','p60',\ 'p61','p62','p63','p64','M','UM','strand']) if w==7 and not optional: ResultPW = pd.DataFrame(columns=\ ['chrom','pos','M','UM','p01','p02','p03','p04','p05','p06','p07','p08','p09','p10','p11','p12','p13','p14','p15','p16'\ ,'p17','p18','p19','p20','p21','p22','p23','p24','p25','p26','p27','p28',\ 'p29','p30','p31','p32','p33','p34','p35','p36','p37','p38','p39','p40','p41','p42','p43','p44','p45','p46'\ ,'p47','p48','p49','p50','p51','p52','p53','p54','p55','p56','p57','p58','p59','p60','p61','p62','p63','p64'\ ,'p65','p66','p67','p68','p69','p70','p71','p72','p73','p74','p75','p76','p77','p78','p79','p80','p81','p82','p83','p84','p85','p86'\ ,'p87','p88','p89','p90','p91','p92','p93','p94','p95','p96','p97','p98','p99','p100','p101','p102','p103','p104'\ ,'p105','p106','p107','p108','p109','p120','p121','p122','p123','p124','p125','p126','p127','p128','strand']) if w==3 and optional: ResultPW=pd.DataFrame(columns=['chrom','pos','p01','p02','p03','p04',\ 'p05','p06','p07','p08','p01o','p02o','p03o','p04o',\ 'p05o','p06o','p07o','p08o','M','UM','Mo','UMo','strand']) if w==4 and optional: ResultPW=pd.DataFrame(columns=['chrom','pos','p01','p02','p03','p04',\ 'p05','p06','p07','p08','p09','p10','p11','p12','p13','p14','p15','p16','p01o','p02o','p03o','p04o',\ 'p05o','p06o','p07o','p08o','p09o','p10o','p11o','p12o','p13o','p14o','p15o','p16o','M','UM','Mo','UMo','strand']) if w==5 and optional: ResultPW=pd.DataFrame(columns=['chrom','pos','p01','p02','p03','p04',\ 'p05','p06','p07','p08','p09','p10','p11','p12','p13','p14','p15','p16','p17','p18',\ 'p19','p20','p21','p22','p23','p24','p25','p26','p27','p28','p29','p30','p31','p32','p01o','p02o','p03o','p04o',\ 'p05o','p06o','p07o','p08o','p09o','p10o','p11o','p12o','p13o','p14o','p15o','p16o','p17o','p18o',\ 'p19o','p20o','p21o','p22o','p23o','p24o','p25o','p26o','p27o','p28o','p29o','p30o','p31o','p32o',\ 'M','UM','Mo','UMo','strand']) if w==6 and optional: ResultPW=pd.DataFrame(columns=['chrom','pos','p01','p02','p03','p04',\ 'p05','p06','p07','p08','p09','p10','p11','p12','p13','p14','p15','p16','p17','p18',\ 'p19','p20','p21','p22','p23','p24','p25','p26','p27','p28','p29','p30','p31','p32',\ 'p33','p34','p35','p36','p37','p38','p39','p40','p41','p42','p43','p44','p45','p46',\ 'p47','p48','p49','p50','p51','p52','p53','p54','p55','p56','p57','p58','p59','p60',\ 'p61','p62','p63','p64','p01o','p02o','p03o','p04o',\ 'p05o','p06o','p07o','p08o','p09o','p10o','p11o','p12o','p13o','p14o','p15o','p16o','p17o','p18o',\ 'p19o','p20o','p21o','p22o','p23o','p24o','p25o','p26o','p27o','p28o','p29o','p30o','p31o','p32o',\ 'p33o','p34o','p35o','p36o','p37o','p38o','p39o','p40o','p41o','p42o','p43o','p44o','p45o','p46o',\ 'p47o','p48o','p49o','p50o','p51o','p52o','p53o','p54o','p55o','p56o','p57o','p58o','p59o','p60o',\ 'p61o','p62o','p63o','p64o','M','UM','Mo','UMo','strand']) neverr = never = True chrom_list = [] # all samples' bam files for i in samfile.get_index_statistics(): chrom_list.append(i.contig) if chrom in chrom_list: # screen bamfile by column for pileupcolumn in samfile.pileup(chrom): coverage += 1 if not silence: if (pileupcolumn.pos % 2000000 == 1): print("CG %s s %s w %s %s pos %s Result %s" % (datetime.datetime.now(),filename,w,chrom,pileupcolumn.pos,ResultPW.shape[0])) # Forward strand, check if 'CG' in reference genome if (fastafile.fetch(chrom,pileupcolumn.pos,pileupcolumn.pos+2)=='CG'): cov_context += 1 temp = pd.DataFrame(columns=['Qname',pileupcolumn.pos+1]) pileupcolumn.set_min_base_quality(0) # append reads in the column for pileupread in pileupcolumn.pileups: if not pileupread.is_del and not pileupread.is_refskip and not pileupread.alignment.is_reverse: # C d = {'Qname': [pileupread.alignment.query_name], pileupcolumn.pos+1: [pileupread.alignment.query_sequence[pileupread.query_position]]} df2 = pd.DataFrame(data=d) temp=temp.append(df2, ignore_index=True) # merge with other columns if (not temp.empty): aggreC = pd.merge(aggreC,temp,how='outer',on=['Qname']) aggreC = aggreC.drop_duplicates() # Reverse strand, check if 'CG' in reference genome if pileupcolumn.pos>1: if (fastafile.fetch(chrom,pileupcolumn.pos-1,pileupcolumn.pos+1)=='CG'): cov_context += 1 tempr = pd.DataFrame(columns=['Qname',pileupcolumn.pos+1]) pileupcolumn.set_min_base_quality(0) for pileupread in pileupcolumn.pileups: if not pileupread.is_del and not pileupread.is_refskip and pileupread.alignment.is_reverse: # C dr = {'Qname': [pileupread.alignment.query_name], pileupcolumn.pos+1: [pileupread.alignment.query_sequence[pileupread.query_position]]} dfr2 = pd.DataFrame(data=dr) tempr=tempr.append(dfr2, ignore_index=True) if (not tempr.empty): aggreR =
pd.merge(aggreR,tempr,how='outer',on=['Qname'])
pandas.merge
import nose import unittest from numpy import nan from pandas.core.daterange import DateRange from pandas.core.index import Index, MultiIndex from pandas.core.common import rands, groupby from pandas.core.frame import DataFrame from pandas.core.series import Series from pandas.util.testing import (assert_panel_equal, assert_frame_equal, assert_series_equal, assert_almost_equal) from pandas.core.panel import WidePanel from collections import defaultdict import pandas.core.datetools as dt import numpy as np import pandas.util.testing as tm # unittest.TestCase def commonSetUp(self): self.dateRange = DateRange('1/1/2005', periods=250, offset=dt.bday) self.stringIndex = Index([
rands(8)
pandas.core.common.rands
import pandas as pd d_full =
pd.read_csv('../data/data.csv', sep='\t')
pandas.read_csv
import evalml import pandas as pd import pytest from bentoml.evalml import EvalMLModel from tests._internal.helpers import assert_have_file_extension test_df = pd.DataFrame([[42, "b"]]) @pytest.fixture(scope="session") def binary_pipeline() -> "evalml.pipelines.BinaryClassificationPipeline": X =
pd.DataFrame([[0, "a"], [0, "a"], [0, "a"], [42, "b"], [42, "b"], [42, "b"]])
pandas.DataFrame
# -------------------------------- # Name: featurelinelib.py # Purpose: This file serves as a function library for the Feature line Toolboxes. Import as fll. # Current Owner: <NAME> # Last Modified: 8/31/2019 # Copyright: <NAME> # ArcGIS Version: ArcGIS Pro/10.4 # Python Version: 3.5/2.7 # -------------------------------- # Copyright 2019 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # -------------------------------- # Import Modules import arcpy import os import itertools import math try: import pandas as pd except: arcpy.AddWarning("Some tools require the Pandas installed in the ArcGIS Python Install." " Might require installing pre-requisite libraries and software.") # Function Definitions def func_report(function=None, reportBool=False): """This decorator function is designed to be used as a wrapper with other functions to enable basic try and except reporting (if function fails it will report the name of the function that failed and its arguments. If a report boolean is true the function will report inputs and outputs of a function.-David Wasserman""" def func_report_decorator(function): def func_wrapper(*args, **kwargs): try: func_result = function(*args, **kwargs) if reportBool: print("Function:{0}".format(str(function.__name__))) print(" Input(s):{0}".format(str(args))) print(" Output(s):{0}".format(str(func_result))) return func_result except Exception as e: print( "{0} - function failed -|- Function arguments were:{1}.".format(str(function.__name__), str(args))) print(e.args[0]) return func_wrapper if not function: # User passed in a bool argument def waiting_for_function(function): return func_report_decorator(function) return waiting_for_function else: return func_report_decorator(function) def arc_tool_report(function=None, arcToolMessageBool=False, arcProgressorBool=False): """This decorator function is designed to be used as a wrapper with other GIS functions to enable basic try and except reporting (if function fails it will report the name of the function that failed and its arguments. If a report boolean is true the function will report inputs and outputs of a function.-<NAME>""" def arc_tool_report_decorator(function): def func_wrapper(*args, **kwargs): try: func_result = function(*args, **kwargs) if arcToolMessageBool: arcpy.AddMessage("Function:{0}".format(str(function.__name__))) arcpy.AddMessage(" Input(s):{0}".format(str(args))) arcpy.AddMessage(" Output(s):{0}".format(str(func_result))) if arcProgressorBool: arcpy.SetProgressorLabel("Function:{0}".format(str(function.__name__))) arcpy.SetProgressorLabel(" Input(s):{0}".format(str(args))) arcpy.SetProgressorLabel(" Output(s):{0}".format(str(func_result))) return func_result except Exception as e: arcpy.AddMessage( "{0} - function failed -|- Function arguments were:{1}.".format(str(function.__name__), str(args))) print( "{0} - function failed -|- Function arguments were:{1}.".format(str(function.__name__), str(args))) print(e.args[0]) return func_wrapper if not function: # User passed in a bool argument def waiting_for_function(function): return arc_tool_report_decorator(function) return waiting_for_function else: return arc_tool_report_decorator(function) @arc_tool_report def arc_print(string, progressor_Bool=False): """ This function is used to simplify using arcpy reporting for tool creation,if progressor bool is true it will create a tool label.""" casted_string = str(string) if progressor_Bool: arcpy.SetProgressorLabel(casted_string) arcpy.AddMessage(casted_string) print(casted_string) else: arcpy.AddMessage(casted_string) print(casted_string) @arc_tool_report def field_exist(featureclass, fieldname): """ArcFunction Check if a field in a feature class field exists and return true it does, false if not.- <NAME>""" fieldList = arcpy.ListFields(featureclass, fieldname) fieldCount = len(fieldList) if (fieldCount >= 1) and fieldname.strip(): # If there is one or more of this field return true return True else: return False @arc_tool_report def add_new_field(in_table, field_name, field_type, field_precision="#", field_scale="#", field_length="#", field_alias="#", field_is_nullable="#", field_is_required="#", field_domain="#"): """ArcFunction Add a new field if it currently does not exist. Add field alone is slower than checking first.- <NAME>""" if field_exist(in_table, field_name): print(field_name + " Exists") arcpy.AddMessage(field_name + " Exists") else: print("Adding " + field_name) arcpy.AddMessage("Adding " + field_name) arcpy.AddField_management(in_table, field_name, field_type, field_precision, field_scale, field_length, field_alias, field_is_nullable, field_is_required, field_domain) @arc_tool_report def validate_df_names(dataframe, output_feature_class_workspace): """Returns pandas dataframe with all col names renamed to be valid arcgis table names.""" new_name_list = [] old_names = dataframe.columns.names for name in old_names: new_name = arcpy.ValidateFieldName(name, output_feature_class_workspace) new_name_list.append(new_name) rename_dict = {i: j for i, j in zip(old_names, new_name_list)} dataframe.rename(index=str, columns=rename_dict) return dataframe @arc_tool_report def arcgis_table_to_dataframe(in_fc, input_fields, query="", skip_nulls=False, null_values=None): """Function will convert an arcgis table into a pandas dataframe with an object ID index, and the selected input fields. Uses TableToNumPyArray to get initial data.""" OIDFieldName = arcpy.Describe(in_fc).OIDFieldName if input_fields: final_fields = [OIDFieldName] + input_fields else: final_fields = [field.name for field in arcpy.ListFields(in_fc)] np_array = arcpy.da.TableToNumPyArray(in_fc, final_fields, query, skip_nulls, null_values) object_id_index = np_array[OIDFieldName] fc_dataframe =
pd.DataFrame(np_array, index=object_id_index, columns=input_fields)
pandas.DataFrame
import numpy as np import pandas as pd import matplotlib import matplotlib.pyplot as plt from matplotlib.patches import PathPatch def plot_fclayer_models_test_set_results_lut(): general_without_fu_model_file_name = "test_set_results_FCLayer_LUT_general_without_fully_unfolded_configs" general_with_fu_model_file_name = "test_set_results_FCLayer_LUT_general_with_fully_unfolded_configs" general_augmentation_model_file_name = "test_set_results_FCLayer_LUT_general_augmentation" specialized_model_file_name = "test_set_results_FCLayer_LUT_specialized" specialized_augmentation_model_file_name = "test_set_results_FCLayer_LUT_specialized_augmentation" general_without_fu_model_folder_path = "../test_set_results/FCLayer/%s.csv" % general_without_fu_model_file_name general_with_fu_model_folder_path = "../test_set_results/FCLayer/%s.csv" % general_with_fu_model_file_name general_augmentation_model_folder_path = "../test_set_results/FCLayer/%s.csv" % general_augmentation_model_file_name specialized_model_folder_path = "../test_set_results/FCLayer/%s.csv" % specialized_model_file_name specialized_augmentation_model_folder_path = "../test_set_results/FCLayer/%s.csv" % specialized_augmentation_model_file_name df_general_without_fu_model = pd.read_csv(general_without_fu_model_folder_path) df_general_with_fu_model = pd.read_csv(general_with_fu_model_folder_path) df_general_augmentation_model = pd.read_csv(general_augmentation_model_folder_path) df_specialized_model = pd.read_csv(specialized_model_folder_path) df_specialized_augmentation_model = pd.read_csv(specialized_augmentation_model_folder_path) #import pdb; pdb.set_trace() df_plot = pd.DataFrame() df_plot['HLS GM (FD)'] = df_general_with_fu_model['hls_rel_error'] df_plot['FINN GM (FD)'] = df_general_with_fu_model['finn_rel_error'] df_plot['SVR GM (FD)'] = df_general_with_fu_model['svr_rel_error'] df_plot['HLS GM (PD)'] = df_general_without_fu_model['hls_rel_error'] df_plot['FINN GM (PD)'] = df_general_without_fu_model['finn_rel_error'] df_plot['SVR GM (PD)'] = df_general_without_fu_model['svr_rel_error'] #recheck if they are the same - hls and finn #df_plot['HLS (general model + aug)'] = df_general_augmentation_model['hls_rel_error'] #df_plot['FINN (general model + aug)'] = df_general_augmentation_model['finn_rel_error'] df_plot['SVR GM (PD + AUG)'] = df_general_augmentation_model['svr_rel_error'] df_plot['HLS SM'] = df_specialized_model['hls_rel_error'] df_plot['FINN SM'] = df_specialized_model['finn_rel_error'] df_plot['SVR SM'] = df_specialized_model['svr_rel_error'] #recheck if they are the same - hls and finn #df_plot['HLS (specialized model + aug)'] = df_specialized_augmentation_model['hls_rel_error'] #df_plot['FINN (specialized model + aug)'] = df_specialized_augmentation_model['finn_rel_error'] df_plot['SVR SM (PD + AUG)'] = df_specialized_augmentation_model['svr_rel_error'] fig = plt.figure(figsize=(20, 11)) boxplot = df_plot.boxplot(showmeans=True, showfliers=True, return_type='dict', color=dict(boxes='black', whiskers='black', medians='r', caps='black'), patch_artist=True) colors = ['lightskyblue', 'lightgreen', 'lightyellow', 'lightskyblue', 'lightgreen', 'lightyellow', 'lightyellow', 'lightskyblue', 'lightgreen', 'lightyellow', 'lightyellow'] #import pdb; pdb.set_trace() for patch, color in zip(boxplot['means'], colors): patch.set_markeredgecolor('red') patch.set_markerfacecolor('red') for patch, color in zip(boxplot['boxes'], colors): patch.set_facecolor(color) plt.xticks(rotation = 45) plt.title('FCLayer - LUT estimation model - Test Set Results') plt.ylabel('Relative error [%]') fig.savefig('../test_set_results/FCLayer/test_set_results_plot_luts_with_fu_with_outliers.png', bbox_inches='tight') def add_newest_finn_estimation_to_the_csv_file(filename): #finn estimate computed with the clasifier df_updated_finn_estimate = pd.read_csv("../test_set_results/updated_fclayer_database_finn_estimate.csv") filepath = "../test_set_results/FCLayer/%s.csv" % filename #the other csv file that needs to be updated df_initial = pd.read_csv(filepath) df_initial['bram_new_finn_estimate'] = -1 #remove rows of df_updated_finn_estimate not found in df_initial #copy to df_initial finn_new_estimate if (filename == 'test_set_results_FCLayer_Total_BRAM_18K_specialized_min_fu'): parameters = ['mh', 'mw', 'pe', 'simd', 'wdt', 'idt'] else: parameters = ['mh', 'mw', 'pe', 'simd', 'wdt', 'idt', 'act', 'mem_mode'] for index1, row1 in df_initial[parameters].iterrows(): if (filename == 'test_set_results_FCLayer_Total_BRAM_18K_specialized_min_fu'): df_temp = df_updated_finn_estimate.loc[(df_updated_finn_estimate.mh == row1['mh']) & (df_updated_finn_estimate.mw == row1['mw']) & (df_updated_finn_estimate.pe == row1['pe']) & (df_updated_finn_estimate.simd == row1['simd']) & (df_updated_finn_estimate.idt == row1['idt']) & (df_updated_finn_estimate.wdt == row1['wdt'])] else: df_temp = df_updated_finn_estimate.loc[(df_updated_finn_estimate.mh == row1['mh']) & (df_updated_finn_estimate.mw == row1['mw']) & (df_updated_finn_estimate.pe == row1['pe']) & (df_updated_finn_estimate.simd == row1['simd']) & (df_updated_finn_estimate.idt == row1['idt']) & (df_updated_finn_estimate.wdt == row1['wdt']) & (df_updated_finn_estimate.act == row1['act']) & (df_updated_finn_estimate.mem_mode == row1['mem_mode'])] if not df_temp.empty: df_initial.at[index1, 'bram_new_finn_estimate'] = int(df_temp.iloc[0]['BRAM_new']) df_initial["Total_BRAM_18K_synth_denom"] = df_initial["Total_BRAM_18K synth"].apply(lambda x: 1 if x == 0 else x) df_initial["finn_rel_error_new"] = df_initial.apply(lambda x: (abs(x['bram_new_finn_estimate'] - x["Total_BRAM_18K synth"])/x["Total_BRAM_18K_synth_denom"])*100, axis=1) filepath_to_save = "../test_set_results/FCLayer/%s_updated.csv" % filename df_initial.to_csv(filepath_to_save, index = False, header=True) #import pdb; pdb.set_trace() def plot_fclayer_models_test_set_results_bram(): general_with_fu_model_file_name = "test_set_results_FCLayer_Total_BRAM_18K_general_plus_fu_updated" general_without_fu_model_file_name = "test_set_results_FCLayer_Total_BRAM_18K_general_min_fu_updated" specialized_without_fu_model_file_name = "test_set_results_FCLayer_Total_BRAM_18K_specialized_min_fu_updated" general_with_fu_model_folder_path = "../test_set_results/FCLayer/%s.csv" % general_with_fu_model_file_name general_without_fu_model_folder_path = "../test_set_results/FCLayer/%s.csv" % general_without_fu_model_file_name specialized_without_fu_model_folder_path = "../test_set_results/FCLayer/%s.csv" % specialized_without_fu_model_file_name df_general_with_fu_model = pd.read_csv(general_with_fu_model_folder_path) df_general_without_fu_model = pd.read_csv(general_without_fu_model_folder_path) df_specialized_without_fu_model = pd.read_csv(specialized_without_fu_model_folder_path) df_plot = pd.DataFrame() df_plot['HLS GM (FD)'] = df_general_with_fu_model['hls_rel_error'] #df_plot['FINN GM (FD)'] = df_general_with_fu_model['finn_rel_error'] #df_plot['FINN NEW GM (FD)'] = df_general_with_fu_model['finn_rel_error_new'] df_plot['SVR GM (FD)'] = df_general_with_fu_model['svr_rel_error'] df_plot['HLS GM (PD)'] = df_general_without_fu_model['hls_rel_error'] #df_plot['FINN GM (PD)'] = df_general_without_fu_model['finn_rel_error'] #df_plot['FINN NEW GM (PD)'] = df_general_without_fu_model['finn_rel_error_new'] df_plot['SVR GM (PD)'] = df_general_without_fu_model['svr_rel_error'] #df_plot['HLS SM (PD)'] = df_specialized_without_fu_model['hls_rel_error'] #df_plot['FINN SM (PD)'] = df_specialized_without_fu_model['finn_rel_error'] #df_plot['FINN NEW SM (PD)'] = df_specialized_without_fu_model['finn_rel_error_new'] #df_plot['SVR SM (PD)'] = df_specialized_without_fu_model['svr_rel_error'] fig = plt.figure(figsize=(20, 11)) boxplot = df_plot.boxplot(showmeans=True, showfliers=False, return_type='dict', color=dict(boxes='black', whiskers='black', medians='r', caps='black'), patch_artist=True) colors = ['lightskyblue', 'lightyellow', 'lightskyblue', 'lightyellow'] #colors = ['lightskyblue', 'lightyellow', 'lightskyblue', 'lightyellow', 'lightskyblue', 'lightyellow'] #import pdb; pdb.set_trace() for patch, color in zip(boxplot['means'], colors): patch.set_markeredgecolor('red') patch.set_markerfacecolor('red') for patch, color in zip(boxplot['boxes'], colors): patch.set_facecolor(color) plt.xticks(rotation = 45) plt.title('FCLayer - BRAM estimation model - Test Set Results') plt.ylabel('Relative error [%] ') fig.savefig('../test_set_results/FCLayer/test_set_results_plot_bram_without_pd.png', bbox_inches='tight') def plot_thresholding_models_test_set_results_lut(): general_model_file_name = "test_set_results_Thresholding_LUT_general" general_augmentation_model_file_name = "test_set_results_Thresholding_LUT_general_augmentation" general_min_fu_model_file_name = "test_set_results_Thresholding_LUT_general_min_fu" general_min_fu_augmentation_model_file_name = "test_set_results_Thresholding_LUT_general_min_fu_augmentation" specialized_model_file_name = "test_set_results_Thresholding_LUT_specialized" specialized_min_fu_model_file_name = "test_set_results_Thresholding_LUT_specialized_min_fu" general_model_folder_path = "../test_set_results/Thresholding/%s.csv" % general_model_file_name general_augmentation_model_folder_path = "../test_set_results/Thresholding/%s.csv" % general_augmentation_model_file_name general_min_fu_model_folder_path = "../test_set_results/Thresholding/%s.csv" % general_min_fu_model_file_name general_min_fu_augmentation_model_folder_path = "../test_set_results/Thresholding/%s.csv" % general_min_fu_augmentation_model_file_name specialized_model_folder_path = "../test_set_results/Thresholding/%s.csv" % specialized_model_file_name specialized_min_fu_model_folder_path = "../test_set_results/Thresholding/%s.csv" % specialized_min_fu_model_file_name df_general_model = pd.read_csv(general_model_folder_path) df_general_augmentation_model = pd.read_csv(general_augmentation_model_folder_path) df_general_min_fu_model = pd.read_csv(general_min_fu_model_folder_path) df_general_min_fu_augmentation_model = pd.read_csv(general_min_fu_augmentation_model_folder_path) df_specialized_model = pd.read_csv(specialized_model_folder_path) df_specialized_min_fu_model = pd.read_csv(specialized_min_fu_model_folder_path) df_plot = pd.DataFrame() df_plot['HLS GM (FD)'] = df_general_model['hls_rel_error'] df_plot['FINN GM (FD)'] = df_general_model['finn_rel_error'] df_plot['SVR GM (FD)'] = df_general_model['svr_rel_error'] #df_plot['HLS GM (FD + AUG)'] = df_general_augmentation_model['hls_rel_error'] #df_plot['FINN GM (FD + AUG)'] = df_general_augmentation_model['finn_rel_error'] #df_plot['SVR GM (FD + AUG)'] = df_general_augmentation_model['svr_rel_error'] df_plot['HLS GM (PD)'] = df_general_min_fu_model['hls_rel_error'] df_plot['FINN GM (PD)'] = df_general_min_fu_model['finn_rel_error'] df_plot['SVR GM (PD)'] = df_general_min_fu_model['svr_rel_error'] #df_plot['HLS GM (PD)'] = df_general_min_fu_model['hls_rel_error'] #df_plot['FINN GM (PD)'] = df_general_min_fu_model['finn_rel_error'] #df_plot['SVR GM (PD + AUG)'] = df_general_min_fu_augmentation_model['svr_rel_error'] #df_plot['HLS SM (FD)'] = df_specialized_model['hls_rel_error'] #df_plot['FINN SM (FD)'] = df_specialized_model['finn_rel_error'] #df_plot['SVR SM (FD)'] = df_specialized_model['svr_rel_error'] df_plot['HLS SM (PD)'] = df_specialized_min_fu_model['hls_rel_error'] df_plot['FINN SM (PD)'] = df_specialized_min_fu_model['finn_rel_error'] df_plot['SVR SM (PD)'] = df_specialized_min_fu_model['svr_rel_error'] fig = plt.figure(figsize=(20, 11)) boxplot = df_plot.boxplot(showmeans=True, showfliers=False, return_type='dict', color=dict(boxes='black', whiskers='black', medians='r', caps='black'), patch_artist=True) #colors = ['lightskyblue', 'lightgreen', 'lightyellow', 'lightyellow', 'lightskyblue', 'lightgreen', 'lightyellow', 'lightyellow', 'lightskyblue', 'lightgreen', 'lightyellow', 'lightskyblue', 'lightgreen', 'lightyellow'] colors = ['lightskyblue', 'lightgreen', 'lightyellow', 'lightskyblue', 'lightgreen', 'lightyellow', 'lightskyblue', 'lightgreen', 'lightyellow'] for patch, color in zip(boxplot['means'], colors): patch.set_markeredgecolor('red') patch.set_markerfacecolor('red') for patch, color in zip(boxplot['boxes'], colors): patch.set_facecolor(color) plt.xticks(rotation = 45) plt.title('Thresholding Layer - LUT estimation model - Test Set Results') plt.ylabel('Relative error [%] ') fig.savefig('../test_set_results/Thresholding/test_set_results_LUT_plot_without_outliers_plus_fu.png', bbox_inches='tight') def plot_thresholding_models_test_set_results_bram(): general_model_file_name = "test_set_results_Thresholding_Total_BRAM_18K_general" general_min_fu_model_file_name = "test_set_results_Thresholding_Total_BRAM_18K_general_min_fu" general_model_folder_path = "../test_set_results/Thresholding/%s.csv" % general_model_file_name general_min_fu_model_folder_path = "../test_set_results/Thresholding/%s.csv" % general_min_fu_model_file_name df_general_model = pd.read_csv(general_model_folder_path) df_general_min_fu_model = pd.read_csv(general_min_fu_model_folder_path) df_plot = pd.DataFrame() df_plot['HLS GM (FD)'] = df_general_model['hls_rel_error'] df_plot['FINN GM (FD)'] = df_general_model['finn_rel_error'] df_plot['SVR GM (FD)'] = df_general_model['svr_rel_error'] df_plot['HLS GM (PD)'] = df_general_min_fu_model['hls_rel_error'] df_plot['FINN GM (PD)'] = df_general_min_fu_model['finn_rel_error'] df_plot['SVR GM (PD)'] = df_general_min_fu_model['svr_rel_error'] fig = plt.figure(figsize=(20, 11)) boxplot = df_plot.boxplot(showmeans=True, showfliers=True, return_type='dict', color=dict(boxes='black', whiskers='black', medians='r', caps='black'), patch_artist=True) colors = ['lightskyblue', 'lightgreen', 'lightyellow', 'lightskyblue', 'lightgreen', 'lightyellow'] for patch, color in zip(boxplot['means'], colors): patch.set_markeredgecolor('red') patch.set_markerfacecolor('red') for patch, color in zip(boxplot['boxes'], colors): patch.set_facecolor(color) plt.xticks(rotation = 45) plt.title('Thresholding Layer - BRAM estimation model - Test Set Results') plt.ylabel('Relative error [%] ') fig.savefig('../test_set_results/Thresholding/test_set_results_BRAM_plot_with_outliers.png', bbox_inches='tight') def plot_SWU_models_test_set_results_lut(): general_model_file_name = "test_set_results_Sliding_Window_Unit_LUT_general" specialized_dw_0_model_file_name = "test_set_results_Sliding_Window_Unit_LUT_specialized_dw_0" specialized_dw_1_model_file_name = "test_set_results_Sliding_Window_Unit_LUT_specialized_dw_1" general_model_folder_path = "../test_set_results/Sliding_Window_Unit/%s.csv" % general_model_file_name specialized_dw_0_model_folder_path = "../test_set_results/Sliding_Window_Unit/%s.csv" % specialized_dw_0_model_file_name specialized_dw_1_model_folder_path = "../test_set_results/Sliding_Window_Unit/%s.csv" % specialized_dw_1_model_file_name df_general_model =
pd.read_csv(general_model_folder_path)
pandas.read_csv
# -*- coding: utf-8 -*- """ SnowPy - A Python library to upload and doownload data from database systems =============================================================================== - SnowPy data tools (datatools) 'SnowPy' was intially realsed as data tools (etl) for the mltoolkit project (https://mltoolkit.github.io/MLToolKit). Author ------ - <NAME> License ------- - Apache License, Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0) Created Date ---------- - Sat Sep 28 2019 """ from timeit import default_timer as timer import gc import socket import getpass import traceback import sys import os import shutil import csv import urllib import subprocess import uuid import pandas as pd import numpy as np try: import snowflake.connector from snowflake.sqlalchemy import URL except: print("Error loading 'snowflake' library. Snowflake suppport disabled") try: import sqlalchemy except: print("Error loading 'sqlalchemy' library. database suppport disabled") def print_data_resource_execute_format(): # Generate given use case (e.g. For SQL sever) in future version data_connector = { 'type' : 'mssql', #{'snowflake', 'mysql', 'csv', 'json', 'pickle', 'hdf'} 'connect_parameters' : { 'file_path':None, 'account' : None, 'server': None, 'database' : None, 'schema' : None, 'auth' : None # Only for sources with access permission # auth = {'type':'user', 'user':'user', 'password':'password', 'role': 'reader'} }, 'computing_parameters' : { 'warehouse' : None, # For data warehouse services like Snowflake 'driver' : '' # For SQL server connections } } data_object = { 'identifiers' :{ 'file_name' : None, 'table' : None, # Sor SQL 'key' : None, # for HDF. Can also used to adress sheets in Excel 'dataset_label' : None }, 'structure_parameters' : { 'columns' : None, 'index' : False, 'header': 'infer', 'partition_columns': None, # For parquet Ref: https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_parquet.html 'orient' : None, # For JSON {'records', 'index', 'split} # Ref: https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_json.html }, 'format_parameters': { 'dtypes' : None, 'date_columns' : None, 'separator' : ',', 'line_break' : '\r\n', 'quoting' : 'ALL', 'encoding' : None, 'mode' : 'a', # for HDF {‘r’, ‘a’, 'w'} 'compression' : 'infer', # 'infer' for Pickle # 'zlib'for HDF # Pickle, https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_pickle.html#pandas.DataFrame.to_pickle 'file_format' : 'fixed', # for HDF {'fixed', 'table'}. Currently support only 'fixed' } } execute_params = { 'chunksize' : None, 'on_error' : 'ignore', 'return_time' : False, # time to execute 'return_rowcount' : False, # rows affected 'backend' : 'pandas' , # to use pandas read/write methods 'temp_file_path': '', # intermediate file for processing large dataset 'read_params' : { 'start' : None, 'stop' : None }, 'write_params': { 'if_exists' : 'fail', 'insertion_method' : None, # If pandas {'multi'} 'checksum' : False, # for HDF 'complevel' : 0, # for HDF 'protocol' : -1 # Pickle https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_pickle.html#pandas.DataFrame.to_pickle } } print('data_connector =', data_connector) print('data_object =', data_object) print('execute_params =', execute_params) def print_execute_time(execute_time, task_name=''): #convert ot use as decorator in future version try: execute_time = float(execute_time or 0) except: execute_time = 0.0 print('{} time is {:.3f} s'.format(task_name, execute_time)) def print_records_count(records_count, task_name=''): #convert ot use as decorator in future version try: records_count = int(records_count or 0) except: records_count = 0 print('{} {:,d} records'.format(task_name, records_count)) ############################################################################### def set_field_value(value, default=None): """ Parameters ---------- value : str, int, float, object default :str, int, float, object, defualt None Returns ------- value :str, int, float, object """ try: return value except: return default def get_field_value(fields_dict, key1=None, key2=None, default=None): """ Parameters ---------- fields_dict : dict key1 :str key2 : str default :str, int, float, object, defualt None Returns ------- value :str, int, float, object """ try: if key1!=None and key2!=None: value = set_field_value(fields_dict[key1][key2], default=default) elif key1!=None and key2==None: value = set_field_value(fields_dict[key1], default=default) else: raise Exception('Key error !') return value except: return default def read_data(query=None, data_connector=None, data_object =None, execute_params=None): """ Parameters ---------- query : str data_connector : dict run mltk.print_data_resource_execute_format() to get the format data_object : dict run mltk.print_data_resource_execute_format() to get the format execute_params : dict run mltk.print_data_resource_execute_format() to get the format Returns ------- DataFrame : pandas.DataFrame """ # Data Source Paramaters ### source_type = get_field_value(data_connector, 'type', default=None) server = get_field_value(data_connector, 'connect_parameters','server', default=None) database = get_field_value(data_connector, 'connect_parameters','server', default=None) auth = get_field_value(data_connector, 'connect_parameters','server', default=None) schema = get_field_value(data_connector, 'connect_parameters','server', default=None) warehouse = get_field_value(data_connector, 'computing_parameters','server', default=None) driver = get_field_value(data_connector, 'computing_parameters','driver', default='SQL Server') # file_path = get_field_value(data_connector, 'connect_parameters','file_path', default='tempfile.tmp') # Data Object Parameters ### file_name = get_field_value(data_object, 'identifiers','file_name', default='tempfile.tmp') table = get_field_value(data_object, 'identifiers','table', default=None) key = get_field_value(data_object, 'identifiers','key', default='frame1') dataset_label = get_field_value(data_object, 'identifiers','dataset_label', default=None) # columns = get_field_value(data_object, 'structure_parameters','columns', default=None) index = get_field_value(data_object, 'structure_parameters','index', default=False) header = get_field_value(data_object, 'structure_parameters','header', default='infer') partition_columns = get_field_value(data_object, 'structure_parameters','partition_columns', default=None) orient = get_field_value(data_object, 'structure_parameters','orient', default= 'records') # dtypes = get_field_value(data_object,'format_parameters','dtypes', default=None) date_columns = get_field_value(data_object,'format_parameters','date_columns', default=None) separator = get_field_value(data_object,'format_parameters','separator', default=',') line_break = get_field_value(data_object, 'format_parameters','line_break', default='\r\n') quoting = get_field_value(data_object,'format_parameters','quoting', default='ALL') encoding = get_field_value(data_object,'format_parameters','encoding', default='utf-8') mode = get_field_value(data_object,'format_parameters','mode', default='a') compression = get_field_value(data_object, 'format_parameters','compression', default='infer') file_format = get_field_value(data_object, 'format_parameters','file_format', default='fixed') # Execute Parameters ### chunksize = get_field_value(execute_params, 'chunksize', default=None) on_error = get_field_value(execute_params, 'on_error', default='ignore') return_time = get_field_value(execute_params, 'return_time', default=False) return_rowcount = get_field_value(execute_params, 'return_rowcount', default=False) backend = get_field_value(execute_params, 'backend', default='pandas') temp_file_path = get_field_value(execute_params, 'temp_file_path', default='') params = get_field_value(execute_params, 'params', default=None) # Read Parameters start = get_field_value(execute_params, 'read_params', 'start', default=None) stop = get_field_value(execute_params, 'read_params', 'stop', default=None) # Write Parameters if_exists = get_field_value(execute_params, 'write_params', 'if_exists', default='fail') insertion_method = get_field_value(execute_params, 'write_params','insertion_method', default='multi') complevel = get_field_value(execute_params, 'write_params', 'complevel', default=0) checksum = get_field_value(execute_params, 'write_params', 'checksum', default=False) protocol = get_field_value(execute_params, 'write_params', 'protocol', default=0) partition_columns = get_field_value(execute_params, 'write_params', 'partition_columns', default=None) if source_type == 'mssql': read_data_mssql( query=query, server=server, database=database, auth=auth, driver=driver, on_error=on_error, return_time=return_time, params=params ) elif source_type == 'csv': print(source_type, file_path) DataFrame = read_data_csv( file=file_path, separator=separator, quoting=quoting , compression=compression, encoding=encoding, on_error=on_error, return_time=return_time ) elif source_type == 'pickle': DataFrame = read_data_pickle( file=file_path, compression=compression ) elif source_type == 'hdf': DataFrame = read_data_hdf( file=file_path, key=key, mode=mode, start=start, stop=stop, header=header, columns=columns, on_error=on_error ) elif source_type == 'snowflake': DataFrame = read_data_snowflake( query=query, server=server, database=database, auth=auth, schema=schema, warehouse=warehouse, date_columns=date_columns, chunksize=chunksize, backend=backend, on_error=on_error, return_time=return_time ) elif source_type == 'parquet': DataFrame = read_data_parquet( file=file_path, engine=engine, columns=columns, on_error=on_error ) else: print('source_type {} not supported'.format(source_type)) DataFrame = pd.DataFrame() return DataFrame def write_data(DataFrame=None, data_connector=None, data_object =None, execute_params=None): """ Parameters ---------- DataFrame : pandas.DataFrame data_resource : dict run mltk.print_data_resource_execute_format() to get the format execute_params : dict run mltk.print_data_resource_execute_format() to get the format Returns ------- None """ # Data Source Paramaters ### source_type = get_field_value(data_connector, 'type', default=None) server = get_field_value(data_connector, 'connect_parameters','server', default=None) database = get_field_value(data_connector, 'connect_parameters','server', default=None) auth = get_field_value(data_connector, 'connect_parameters','server', default=None) schema = get_field_value(data_connector, 'connect_parameters','server', default=None) warehouse = get_field_value(data_connector, 'computing_parameters','server', default=None) driver = get_field_value(data_connector, 'computing_parameters','driver', default='SQL Server') # file_path = get_field_value(data_connector, 'connect_parameters','file_path', default='tempfile.tmp') # Data Object Parameters ### file_name = get_field_value(data_object, 'identifiers','file_name', default='tempfile.tmp') table = get_field_value(data_object, 'identifiers','table', default=None) key = get_field_value(data_object, 'identifiers','key', default='frame1') dataset_label = get_field_value(data_object, 'identifiers','dataset_label', default=None) # columns = get_field_value(data_object, 'structure_parameters','columns', default=None) index = get_field_value(data_object, 'structure_parameters','index', default=False) header = get_field_value(data_object, 'structure_parameters','header', default=True) partition_columns = get_field_value(data_object, 'structure_parameters','partition_columns', default=None) orient = get_field_value(data_object, 'structure_parameters','orient', default= 'records') # dtypes = get_field_value(data_object,'format_parameters','dtypes', default=None) date_columns = get_field_value(data_object,'format_parameters','date_columns', default=None) separator = get_field_value(data_object,'format_parameters','separator', default=',') line_break = get_field_value(data_object, 'format_parameters','line_break', default='\r\n') quoting = get_field_value(data_object,'format_parameters','quoting', default='ALL') encoding = get_field_value(data_object,'format_parameters','encoding', default='utf-8') mode = get_field_value(data_object,'format_parameters','mode', default='a') compression = get_field_value(data_object, 'format_parameters','compression', default='infer') file_format = get_field_value(data_object, 'format_parameters','file_format', default='fixed') # Execute Parameters ### chunksize = get_field_value(execute_params, 'chunksize', default=None) on_error = get_field_value(execute_params, 'on_error', default='ignore') return_time = get_field_value(execute_params, 'return_time', default=False) return_rowcount = get_field_value(execute_params, 'return_rowcount', default=False) backend = get_field_value(execute_params, 'backend', default='pandas') temp_file_path = get_field_value(execute_params, 'temp_file_path', default='') params = get_field_value(execute_params, 'params', default=None) # Read Parameters start = get_field_value(execute_params, 'read_params', 'start', default=None) stop = get_field_value(execute_params, 'read_params', 'stop', default=None) # Write Parameters if_exists = get_field_value(execute_params, 'write_params', 'if_exists', default='fail') insertion_method = get_field_value(execute_params, 'write_params','insertion_method', default='multi') complevel = get_field_value(execute_params, 'write_params', 'complevel', default=0) checksum = get_field_value(execute_params, 'write_params', 'checksum', default=False) protocol = get_field_value(execute_params, 'write_params', 'protocol', default=0) partition_columns = get_field_value(execute_params, 'write_params', 'partition_columns', default=None) if source_type == 'mssql': write_data_mssql( DataFrame, server=server, database=database, schema=schema, table=table, index=index, dtypes=dtypes, if_exists=if_exists, auth=auth, insertion_method=insertion_method, chunksize=chunksize, driver=driver, on_error=on_error, return_time=return_time, params=params ) elif source_type == 'csv': write_data_csv( DataFrame=DataFrame, file=file_path, separator=separator, index=index, header=header, columns=columns, quoting=quoting, encoding=encoding, compression=compression, chunksize=chunksize, on_error=on_error, return_time=return_time ) elif source_type == 'pickle': write_data_pickle( DataFrame=DataFrame, file=file_path, compression=compression, protocol=protocol ) elif source_type == 'hdf': write_data_hdf( DataFrame=DataFrame, file=file_path, key=key, mode=mode, file_format=file_format, columns=columns, compression=compression, complevel=complevel, checksum=checksum, if_exists=if_exists, on_error=on_error ) elif source_type == 'snowflake': write_data_snowflake( DataFrame=DataFrame, server=server, database=database, auth=auth, schema=schema, table=table, columns=columns, warehouse=warehouse, index=index, if_exists=if_exists, chunksize=chunksize, dtypes=dtypes, insertion_method=insertion_method, temp_file_path=temp_file_path, dataset_label=dataset_label, backend=backend, on_error=on_error, return_time=return_time ) elif source_type == 'parquet': write_data_parquet( DataFrame=DataFrame, file=file_path, engine=engine, compression=compression, index=index, partition_columns=partition_columns, if_exists=if_exists, on_error=on_error ) else: print('source_type {} not supported'.format(source_type)) return None def read_data_parquet(file, engine='auto', columns=None, on_error='strict'): """ Reference: https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_hdf.html Parameters ---------- file : str engine : {‘auto’, ‘pyarrow’, ‘fastparquet’}, default 'auto' columns : list, default None on_error : {'strict', errors, }, default 'strict' Ref: https://docs.python.org/3/library/functions.html#open Returns ------- DataFrame : pandas.DataFrame """ try: start_time = timer() DataFrame = pd.read_parquet(path=file, engine=engine, columns=columns) execute_time = timer() - start_time rowcount = len(DataFrame.index) except: execute_time = 0 rowcount = 0 print(traceback.format_exc()) DataFrame = pd.DataFrame() print_execute_time(execute_time, task_name='read') print_records_count(records_count=rowcount, task_name='read') return DataFrame def write_data_parquet(DataFrame, file, engine='auto', compression='snappy', index=None, partition_columns=None, if_exists=None, on_error='strict'): """ https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_hdf.html#pandas.DataFrame.to_hdf compression=compression, complevel=complevel, Parameters ---------- DataFrame : pandas.DataFrame file : str engine : {‘auto’, ‘pyarrow’, ‘fastparquet’}, default 'auto' compression : {‘snappy’, ‘gzip’, ‘brotli’, None}, default ‘snappy’ index : boot, default None partition_columns : list, default None if_exists : str, default None on_error : {'strict', errors'}, default 'strict' Ref: https://docs.python.org/3/library/functions.html#open Returns ------- None """ if compression == 'infer' or compression==None: compression = 'snappy' try: start_time = timer() DataFrame.to_parquet(fname=file, engine=engine, compression=compression, index=index, partition_cols=partition_columns) execute_time = timer() - start_time rowcount = len(DataFrame.index) except: execute_time = 0 rowcount = 0 print(traceback.format_exc()) print_execute_time(execute_time, task_name='write') print_records_count(records_count=rowcount, task_name='write') def read_data_hdf(file, key='frame', mode='a', start=None, stop=None, columns=None, on_error='strict'): """ Reference: https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_hdf.html Parameters ---------- file : str key : object, default 'frame' mode : {'r', 'r+', 'a'} default 'a' start : int, default None stop : int, default None columns : list, default None on_error : {'strict', errors, }, default 'strict' Ref: https://docs.python.org/3/library/functions.html#open Returns ------- DataFrame : pandas.DataFrame """ try: start_time = timer() DataFrame = pd.read_hdf(path_or_buf=file, key=key, mode=mode, start=start, stop=stop, columns=columns, errors=on_error) execute_time = timer() - start_time rowcount = len(DataFrame.index) except: execute_time = 0 rowcount = 0 print(traceback.format_exc()) DataFrame = pd.DataFrame() print_execute_time(execute_time, task_name='read') print_records_count(records_count=rowcount, task_name='read') return DataFrame def write_data_hdf(DataFrame, file, key='frame', mode='a', file_format='fixed', columns=None, compression='zlib', complevel=0, checksum=False, if_exists=None, on_error='strict'): """ https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_hdf.html#pandas.DataFrame.to_hdf compression=compression, complevel=complevel, Parameters ---------- DataFrame : pandas.DataFrame file : str key : object, default 'frame' mode : {'w', 'r+', 'a'} default 'w' format {'fixed', 'table'}, default 'fixed' if_exists : str, default None columns : list, default None compression : {'zlib', 'lzo', 'bzip2', 'blosc'}, default 'zlib' complevel : int , default 0 checksum : bool, default False on_error : {'strict', errors'}, default 'strict' Ref: https://docs.python.org/3/library/functions.html#open Returns ------- None """ if if_exists == 'append': append = True else: append = False if compression == 'infer' or compression==None: compression = 'zlib' try: start_time = timer() DataFrame.to_hdf(path_or_buf=file, key=key, mode=mode, format=file_format, if_exists=if_exists, data_columns=columns, checksum=checksum, complevel=complevel, complib=compression, on_error=on_error) execute_time = timer() - start_time rowcount = len(DataFrame.index) except: execute_time = 0 rowcount = 0 print(traceback.format_exc()) print_execute_time(execute_time, task_name='write') print_records_count(records_count=rowcount, task_name='write') def read_data_pickle(file, compression='infer'): """ https://docs.python.org/3/library/pickle.html "Warning The pickle module is not secure against erroneous or maliciously constructed data. Never unpickle data received from an untrusted or unauthenticated source." Parameters ---------- file : str compression : {'infer', 'gzip', 'bz2', 'zip', 'xz', None}, default 'infer' Returns ------- DataFrame : pandas.DataFrame """ try: start_time = timer() DataFrame = pd.read_pickle(path=file, compression=compression) execute_time = timer() - start_time rowcount = len(DataFrame.index) except: execute_time = 0 rowcount = 0 print(traceback.format_exc()) DataFrame =
pd.DataFrame()
pandas.DataFrame
#!/usr/bin/python import pandas as pd import collections import os import numpy as np import argparse import dendropy import copy import os import re from Bio import SeqIO parser = argparse.ArgumentParser(description='test') parser.add_argument('-o', '--output-dir', type=str) parser.add_argument('-a', '--accessory-dir', type=str) parser.add_argument('-p', '--prefix', type=str) args = parser.parse_args() query_dir = args.output_dir accessory_dir = args.accessory_dir prefix = args.prefix tree = dendropy.Tree.get(path=f'{accessory_dir}/wol.nwk', schema='newick') backbone_leaves = [a.taxon.label for a in tree.leaf_nodes()] dis_mat =
pd.DataFrame(index=None, columns=backbone_leaves)
pandas.DataFrame
import numpy as np import pytest import pandas as pd from pandas import ( Categorical, DataFrame, Index, Series, ) import pandas._testing as tm dt_data = [ pd.Timestamp("2011-01-01"), pd.Timestamp("2011-01-02"), pd.Timestamp("2011-01-03"), ] tz_data = [ pd.Timestamp("2011-01-01", tz="US/Eastern"), pd.Timestamp("2011-01-02", tz="US/Eastern"), pd.Timestamp("2011-01-03", tz="US/Eastern"), ] td_data = [ pd.Timedelta("1 days"), pd.Timedelta("2 days"), pd.Timedelta("3 days"), ] period_data = [ pd.Period("2011-01", freq="M"), pd.Period("2011-02", freq="M"), pd.Period("2011-03", freq="M"), ] data_dict = { "bool": [True, False, True], "int64": [1, 2, 3], "float64": [1.1, np.nan, 3.3], "category": Categorical(["X", "Y", "Z"]), "object": ["a", "b", "c"], "datetime64[ns]": dt_data, "datetime64[ns, US/Eastern]": tz_data, "timedelta64[ns]": td_data, "period[M]": period_data, } class TestConcatAppendCommon: """ Test common dtype coercion rules between concat and append. """ @pytest.fixture(params=sorted(data_dict.keys())) def item(self, request): key = request.param return key, data_dict[key] item2 = item def _check_expected_dtype(self, obj, label): """ Check whether obj has expected dtype depending on label considering not-supported dtypes """ if isinstance(obj, Index): assert obj.dtype == label elif isinstance(obj, Series): if label.startswith("period"): assert obj.dtype == "Period[M]" else: assert obj.dtype == label else: raise ValueError def test_dtypes(self, item): # to confirm test case covers intended dtypes typ, vals = item self._check_expected_dtype(Index(vals), typ) self._check_expected_dtype(Series(vals), typ) def test_concatlike_same_dtypes(self, item): # GH 13660 typ1, vals1 = item vals2 = vals1 vals3 = vals1 if typ1 == "category": exp_data = Categorical(list(vals1) + list(vals2)) exp_data3 = Categorical(list(vals1) + list(vals2) + list(vals3)) else: exp_data = vals1 + vals2 exp_data3 = vals1 + vals2 + vals3 # ----- Index ----- # # index.append res = Index(vals1).append(Index(vals2)) exp = Index(exp_data) tm.assert_index_equal(res, exp) # 3 elements res = Index(vals1).append([Index(vals2), Index(vals3)]) exp = Index(exp_data3) tm.assert_index_equal(res, exp) # index.append name mismatch i1 = Index(vals1, name="x") i2 = Index(vals2, name="y") res = i1.append(i2) exp = Index(exp_data) tm.assert_index_equal(res, exp) # index.append name match i1 = Index(vals1, name="x") i2 = Index(vals2, name="x") res = i1.append(i2) exp = Index(exp_data, name="x") tm.assert_index_equal(res, exp) # cannot append non-index with pytest.raises(TypeError, match="all inputs must be Index"): Index(vals1).append(vals2) with pytest.raises(TypeError, match="all inputs must be Index"): Index(vals1).append([Index(vals2), vals3]) # ----- Series ----- # # series.append res = Series(vals1)._append(Series(vals2), ignore_index=True) exp = Series(exp_data) tm.assert_series_equal(res, exp, check_index_type=True) # concat res = pd.concat([Series(vals1), Series(vals2)], ignore_index=True) tm.assert_series_equal(res, exp, check_index_type=True) # 3 elements res = Series(vals1)._append([Series(vals2), Series(vals3)], ignore_index=True) exp = Series(exp_data3) tm.assert_series_equal(res, exp) res = pd.concat( [Series(vals1), Series(vals2), Series(vals3)], ignore_index=True, ) tm.assert_series_equal(res, exp) # name mismatch s1 = Series(vals1, name="x") s2 = Series(vals2, name="y") res = s1._append(s2, ignore_index=True) exp = Series(exp_data) tm.assert_series_equal(res, exp, check_index_type=True) res = pd.concat([s1, s2], ignore_index=True) tm.assert_series_equal(res, exp, check_index_type=True) # name match s1 = Series(vals1, name="x") s2 = Series(vals2, name="x") res = s1._append(s2, ignore_index=True) exp = Series(exp_data, name="x") tm.assert_series_equal(res, exp, check_index_type=True) res = pd.concat([s1, s2], ignore_index=True) tm.assert_series_equal(res, exp, check_index_type=True) # cannot append non-index msg = ( r"cannot concatenate object of type '.+'; " "only Series and DataFrame objs are valid" ) with pytest.raises(TypeError, match=msg): Series(vals1)._append(vals2) with pytest.raises(TypeError, match=msg): Series(vals1)._append([Series(vals2), vals3]) with pytest.raises(TypeError, match=msg): pd.concat([Series(vals1), vals2]) with pytest.raises(TypeError, match=msg): pd.concat([Series(vals1), Series(vals2), vals3]) def test_concatlike_dtypes_coercion(self, item, item2, request): # GH 13660 typ1, vals1 = item typ2, vals2 = item2 vals3 = vals2 # basically infer exp_index_dtype = None exp_series_dtype = None if typ1 == typ2: # same dtype is tested in test_concatlike_same_dtypes return elif typ1 == "category" or typ2 == "category": # The `vals1 + vals2` below fails bc one of these is a Categorical # instead of a list; we have separate dedicated tests for categorical return warn = None # specify expected dtype if typ1 == "bool" and typ2 in ("int64", "float64"): # series coerces to numeric based on numpy rule # index doesn't because bool is object dtype exp_series_dtype = typ2 mark = pytest.mark.xfail(reason="GH#39187 casting to object") request.node.add_marker(mark) warn = FutureWarning elif typ2 == "bool" and typ1 in ("int64", "float64"): exp_series_dtype = typ1 mark = pytest.mark.xfail(reason="GH#39187 casting to object") request.node.add_marker(mark) warn = FutureWarning elif ( typ1 == "datetime64[ns, US/Eastern]" or typ2 == "datetime64[ns, US/Eastern]" or typ1 == "timedelta64[ns]" or typ2 == "timedelta64[ns]" ): exp_index_dtype = object exp_series_dtype = object exp_data = vals1 + vals2 exp_data3 = vals1 + vals2 + vals3 # ----- Index ----- # # index.append with tm.assert_produces_warning(warn, match="concatenating bool-dtype"): # GH#39817 res = Index(vals1).append(Index(vals2)) exp = Index(exp_data, dtype=exp_index_dtype) tm.assert_index_equal(res, exp) # 3 elements res = Index(vals1).append([Index(vals2), Index(vals3)]) exp = Index(exp_data3, dtype=exp_index_dtype) tm.assert_index_equal(res, exp) # ----- Series ----- # # series._append with tm.assert_produces_warning(warn, match="concatenating bool-dtype"): # GH#39817 res = Series(vals1)._append(Series(vals2), ignore_index=True) exp = Series(exp_data, dtype=exp_series_dtype) tm.assert_series_equal(res, exp, check_index_type=True) # concat with tm.assert_produces_warning(warn, match="concatenating bool-dtype"): # GH#39817 res = pd.concat([Series(vals1), Series(vals2)], ignore_index=True) tm.assert_series_equal(res, exp, check_index_type=True) # 3 elements with tm.assert_produces_warning(warn, match="concatenating bool-dtype"): # GH#39817 res = Series(vals1)._append( [Series(vals2), Series(vals3)], ignore_index=True ) exp = Series(exp_data3, dtype=exp_series_dtype) tm.assert_series_equal(res, exp) with tm.assert_produces_warning(warn, match="concatenating bool-dtype"): # GH#39817 res = pd.concat( [Series(vals1), Series(vals2), Series(vals3)], ignore_index=True, ) tm.assert_series_equal(res, exp) def test_concatlike_common_coerce_to_pandas_object(self): # GH 13626 # result must be Timestamp/Timedelta, not datetime.datetime/timedelta dti = pd.DatetimeIndex(["2011-01-01", "2011-01-02"]) tdi = pd.TimedeltaIndex(["1 days", "2 days"]) exp = Index( [ pd.Timestamp("2011-01-01"), pd.Timestamp("2011-01-02"), pd.Timedelta("1 days"), pd.Timedelta("2 days"), ] ) res = dti.append(tdi) tm.assert_index_equal(res, exp) assert isinstance(res[0], pd.Timestamp) assert isinstance(res[-1], pd.Timedelta) dts = Series(dti) tds = Series(tdi) res = dts._append(tds) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) assert isinstance(res.iloc[0], pd.Timestamp) assert isinstance(res.iloc[-1], pd.Timedelta) res = pd.concat([dts, tds]) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) assert isinstance(res.iloc[0], pd.Timestamp) assert isinstance(res.iloc[-1], pd.Timedelta) def test_concatlike_datetimetz(self, tz_aware_fixture): tz = tz_aware_fixture # GH 7795 dti1 = pd.DatetimeIndex(["2011-01-01", "2011-01-02"], tz=tz) dti2 = pd.DatetimeIndex(["2012-01-01", "2012-01-02"], tz=tz) exp = pd.DatetimeIndex( ["2011-01-01", "2011-01-02", "2012-01-01", "2012-01-02"], tz=tz ) res = dti1.append(dti2) tm.assert_index_equal(res, exp) dts1 = Series(dti1) dts2 = Series(dti2) res = dts1._append(dts2) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) res = pd.concat([dts1, dts2]) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) @pytest.mark.parametrize("tz", ["UTC", "US/Eastern", "Asia/Tokyo", "EST5EDT"]) def test_concatlike_datetimetz_short(self, tz): # GH#7795 ix1 = pd.date_range(start="2014-07-15", end="2014-07-17", freq="D", tz=tz) ix2 = pd.DatetimeIndex(["2014-07-11", "2014-07-21"], tz=tz) df1 = DataFrame(0, index=ix1, columns=["A", "B"]) df2 = DataFrame(0, index=ix2, columns=["A", "B"]) exp_idx = pd.DatetimeIndex( ["2014-07-15", "2014-07-16", "2014-07-17", "2014-07-11", "2014-07-21"], tz=tz, ) exp = DataFrame(0, index=exp_idx, columns=["A", "B"]) tm.assert_frame_equal(df1._append(df2), exp) tm.assert_frame_equal(pd.concat([df1, df2]), exp) def test_concatlike_datetimetz_to_object(self, tz_aware_fixture): tz = tz_aware_fixture # GH 13660 # different tz coerces to object dti1 = pd.DatetimeIndex(["2011-01-01", "2011-01-02"], tz=tz) dti2 = pd.DatetimeIndex(["2012-01-01", "2012-01-02"]) exp = Index( [ pd.Timestamp("2011-01-01", tz=tz), pd.Timestamp("2011-01-02", tz=tz), pd.Timestamp("2012-01-01"), pd.Timestamp("2012-01-02"), ], dtype=object, ) res = dti1.append(dti2) tm.assert_index_equal(res, exp) dts1 = Series(dti1) dts2 = Series(dti2) res = dts1._append(dts2) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) res = pd.concat([dts1, dts2]) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) # different tz dti3 = pd.DatetimeIndex(["2012-01-01", "2012-01-02"], tz="US/Pacific") exp = Index( [ pd.Timestamp("2011-01-01", tz=tz), pd.Timestamp("2011-01-02", tz=tz), pd.Timestamp("2012-01-01", tz="US/Pacific"), pd.Timestamp("2012-01-02", tz="US/Pacific"), ], dtype=object, ) res = dti1.append(dti3) tm.assert_index_equal(res, exp) dts1 = Series(dti1) dts3 = Series(dti3) res = dts1._append(dts3) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) res = pd.concat([dts1, dts3]) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) def test_concatlike_common_period(self): # GH 13660 pi1 = pd.PeriodIndex(["2011-01", "2011-02"], freq="M") pi2 = pd.PeriodIndex(["2012-01", "2012-02"], freq="M") exp = pd.PeriodIndex(["2011-01", "2011-02", "2012-01", "2012-02"], freq="M") res = pi1.append(pi2) tm.assert_index_equal(res, exp) ps1 = Series(pi1) ps2 = Series(pi2) res = ps1._append(ps2) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) res = pd.concat([ps1, ps2]) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) def test_concatlike_common_period_diff_freq_to_object(self): # GH 13221 pi1 = pd.PeriodIndex(["2011-01", "2011-02"], freq="M") pi2 = pd.PeriodIndex(["2012-01-01", "2012-02-01"], freq="D") exp = Index( [ pd.Period("2011-01", freq="M"), pd.Period("2011-02", freq="M"), pd.Period("2012-01-01", freq="D"), pd.Period("2012-02-01", freq="D"), ], dtype=object, ) res = pi1.append(pi2) tm.assert_index_equal(res, exp) ps1 = Series(pi1) ps2 = Series(pi2) res = ps1._append(ps2) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) res = pd.concat([ps1, ps2]) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) def test_concatlike_common_period_mixed_dt_to_object(self): # GH 13221 # different datetimelike pi1 = pd.PeriodIndex(["2011-01", "2011-02"], freq="M") tdi = pd.TimedeltaIndex(["1 days", "2 days"]) exp = Index( [ pd.Period("2011-01", freq="M"), pd.Period("2011-02", freq="M"), pd.Timedelta("1 days"), pd.Timedelta("2 days"), ], dtype=object, ) res = pi1.append(tdi) tm.assert_index_equal(res, exp) ps1 = Series(pi1) tds = Series(tdi) res = ps1._append(tds) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) res = pd.concat([ps1, tds]) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) # inverse exp = Index( [ pd.Timedelta("1 days"), pd.Timedelta("2 days"), pd.Period("2011-01", freq="M"), pd.Period("2011-02", freq="M"), ], dtype=object, ) res = tdi.append(pi1) tm.assert_index_equal(res, exp) ps1 = Series(pi1) tds = Series(tdi) res = tds._append(ps1) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) res = pd.concat([tds, ps1]) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) def test_concat_categorical(self): # GH 13524 # same categories -> category s1 = Series([1, 2, np.nan], dtype="category") s2 = Series([2, 1, 2], dtype="category") exp = Series([1, 2, np.nan, 2, 1, 2], dtype="category") tm.assert_series_equal(pd.concat([s1, s2], ignore_index=True), exp) tm.assert_series_equal(s1._append(s2, ignore_index=True), exp) # partially different categories => not-category s1 = Series([3, 2], dtype="category") s2 = Series([2, 1], dtype="category") exp = Series([3, 2, 2, 1]) tm.assert_series_equal(pd.concat([s1, s2], ignore_index=True), exp) tm.assert_series_equal(s1._append(s2, ignore_index=True), exp) # completely different categories (same dtype) => not-category s1 = Series([10, 11, np.nan], dtype="category") s2 = Series([np.nan, 1, 3, 2], dtype="category") exp = Series([10, 11, np.nan, np.nan, 1, 3, 2], dtype=np.float64) tm.assert_series_equal(pd.concat([s1, s2], ignore_index=True), exp) tm.assert_series_equal(s1._append(s2, ignore_index=True), exp) def test_union_categorical_same_categories_different_order(self): # https://github.com/pandas-dev/pandas/issues/19096 a = Series(Categorical(["a", "b", "c"], categories=["a", "b", "c"])) b = Series(Categorical(["a", "b", "c"], categories=["b", "a", "c"])) result = pd.concat([a, b], ignore_index=True) expected = Series( Categorical(["a", "b", "c", "a", "b", "c"], categories=["a", "b", "c"]) ) tm.assert_series_equal(result, expected) def test_concat_categorical_coercion(self): # GH 13524 # category + not-category => not-category s1 = Series([1, 2, np.nan], dtype="category") s2 = Series([2, 1, 2]) exp = Series([1, 2, np.nan, 2, 1, 2], dtype=np.float64) tm.assert_series_equal(pd.concat([s1, s2], ignore_index=True), exp) tm.assert_series_equal(s1._append(s2, ignore_index=True), exp) # result shouldn't be affected by 1st elem dtype exp = Series([2, 1, 2, 1, 2, np.nan], dtype=np.float64) tm.assert_series_equal(pd.concat([s2, s1], ignore_index=True), exp) tm.assert_series_equal(s2._append(s1, ignore_index=True), exp) # all values are not in category => not-category s1 = Series([3, 2], dtype="category") s2 = Series([2, 1]) exp = Series([3, 2, 2, 1]) tm.assert_series_equal(pd.concat([s1, s2], ignore_index=True), exp) tm.assert_series_equal(s1._append(s2, ignore_index=True), exp) exp = Series([2, 1, 3, 2]) tm.assert_series_equal(pd.concat([s2, s1], ignore_index=True), exp) tm.assert_series_equal(s2._append(s1, ignore_index=True), exp) # completely different categories => not-category s1 = Series([10, 11, np.nan], dtype="category") s2 = Series([1, 3, 2]) exp = Series([10, 11, np.nan, 1, 3, 2], dtype=np.float64) tm.assert_series_equal(pd.concat([s1, s2], ignore_index=True), exp) tm.assert_series_equal(s1._append(s2, ignore_index=True), exp) exp = Series([1, 3, 2, 10, 11, np.nan], dtype=np.float64) tm.assert_series_equal(pd.concat([s2, s1], ignore_index=True), exp) tm.assert_series_equal(s2._append(s1, ignore_index=True), exp) # different dtype => not-category s1 = Series([10, 11, np.nan], dtype="category") s2 = Series(["a", "b", "c"]) exp = Series([10, 11, np.nan, "a", "b", "c"]) tm.assert_series_equal(pd.concat([s1, s2], ignore_index=True), exp) tm.assert_series_equal(s1._append(s2, ignore_index=True), exp) exp = Series(["a", "b", "c", 10, 11, np.nan]) tm.assert_series_equal(pd.concat([s2, s1], ignore_index=True), exp) tm.assert_series_equal(s2._append(s1, ignore_index=True), exp) # if normal series only contains NaN-likes => not-category s1 = Series([10, 11], dtype="category") s2 = Series([np.nan, np.nan, np.nan]) exp = Series([10, 11, np.nan, np.nan, np.nan]) tm.assert_series_equal(pd.concat([s1, s2], ignore_index=True), exp) tm.assert_series_equal(s1._append(s2, ignore_index=True), exp) exp = Series([np.nan, np.nan, np.nan, 10, 11]) tm.assert_series_equal(pd.concat([s2, s1], ignore_index=True), exp) tm.assert_series_equal(s2._append(s1, ignore_index=True), exp) def test_concat_categorical_3elem_coercion(self): # GH 13524 # mixed dtypes => not-category s1 = Series([1, 2, np.nan], dtype="category") s2 = Series([2, 1, 2], dtype="category") s3 = Series([1, 2, 1, 2, np.nan]) exp = Series([1, 2, np.nan, 2, 1, 2, 1, 2, 1, 2, np.nan], dtype="float") tm.assert_series_equal(pd.concat([s1, s2, s3], ignore_index=True), exp) tm.assert_series_equal(s1._append([s2, s3], ignore_index=True), exp) exp = Series([1, 2, 1, 2, np.nan, 1, 2, np.nan, 2, 1, 2], dtype="float") tm.assert_series_equal(pd.concat([s3, s1, s2], ignore_index=True), exp) tm.assert_series_equal(s3._append([s1, s2], ignore_index=True), exp) # values are all in either category => not-category s1 = Series([4, 5, 6], dtype="category") s2 = Series([1, 2, 3], dtype="category") s3 = Series([1, 3, 4]) exp = Series([4, 5, 6, 1, 2, 3, 1, 3, 4]) tm.assert_series_equal(pd.concat([s1, s2, s3], ignore_index=True), exp) tm.assert_series_equal(s1._append([s2, s3], ignore_index=True), exp) exp = Series([1, 3, 4, 4, 5, 6, 1, 2, 3]) tm.assert_series_equal(pd.concat([s3, s1, s2], ignore_index=True), exp) tm.assert_series_equal(s3._append([s1, s2], ignore_index=True), exp) # values are all in either category => not-category s1 = Series([4, 5, 6], dtype="category") s2 = Series([1, 2, 3], dtype="category") s3 = Series([10, 11, 12]) exp = Series([4, 5, 6, 1, 2, 3, 10, 11, 12]) tm.assert_series_equal(pd.concat([s1, s2, s3], ignore_index=True), exp) tm.assert_series_equal(s1._append([s2, s3], ignore_index=True), exp) exp = Series([10, 11, 12, 4, 5, 6, 1, 2, 3]) tm.assert_series_equal(pd.concat([s3, s1, s2], ignore_index=True), exp) tm.assert_series_equal(s3._append([s1, s2], ignore_index=True), exp) def test_concat_categorical_multi_coercion(self): # GH 13524 s1 =
Series([1, 3], dtype="category")
pandas.Series
#!/usr/bin/env python import pandas as pd import yfinance as yf pd.set_option('display.max_rows', None) pd.set_option('display.max_columns', None) pd.set_option('display.width', None) pd.set_option('display.max_colwidth', None) df = None ticker = yf.Ticker('AACQ') expiration_dates = ticker.options print(expiration_dates) df1 = ticker.option_chain('2021-05-20').puts df2 = ticker.option_chain('2021-06-17').puts print(df2) df = pd.DataFrame() df = pd.concat([df, df1], axis=0) df =
pd.concat([df, df2], axis=0)
pandas.concat
from data_get import * from baseline_functions import * from calendar_date import * import global_vars global_vars.init() if global_vars.GRAPHFLAG > 0: from graph_functions import * from error_graphs import * import mysql.connector import pandas as pd import datetime import time # main() # This function goes through each SAID in the SAID_TABLE sql table, retrieves its data and runs baselinining methods on them def main(): # Connect to table that connects SAIDs cnx = mysql.connector.connect(user=global_vars.DATABASE_USERNAME, password=global_vars.DATABASE_PASSWORD, host=global_vars.DATABASE_IP_RO, database=global_vars.DATABASE_NAME) cursor = cnx.cursor() # return if global_vars.INTERVALFLAG == 0: query = "SELECT * FROM SAID_TABLE_DR_15 LIMIT %i OFFSET %i" %(global_vars.SAID_LIMIT, global_vars.SAID_OFFSET) interval = 15 dbnm = 'MIN15' elif global_vars.INTERVALFLAG == 1: query = "SELECT * FROM SAID_TABLE_DR_60 LIMIT %i OFFSET %i" %(global_vars.SAID_LIMIT, global_vars.SAID_OFFSET) interval = 60 dbnm = 'MIN60' elif global_vars.INTERVALFLAG == 2: query = "SELECT * FROM SAID_TABLE_NONDR_15 LIMIT %i OFFSET %i" %(global_vars.SAID_LIMIT, global_vars.SAID_OFFSET) elif global_vars.INTERVALFLAG == 3: query = "SELECT * FROM SAID_TABLE_NONDR_60 LIMIT %i OFFSET %i" %(global_vars.SAID_LIMIT, global_vars.SAID_OFFSET) cursor.execute(query) said_counter = 0 tic = time.time() said_packet = [] said_pack_count = 0 PACK_SIZE = 25 storage_df_columns = global_vars.storage_df_columns pack_bank = [] # Go through each SAID for row in cursor: SAID = str(row[0]).zfill(10) said_packet.append(SAID) said_pack_count += 1 if said_pack_count%PACK_SIZE != 0: continue pack_bank.append(said_packet) said_packet = [] if len(pack_bank)*PACK_SIZE > 1000: # print(pack_bank) break else: continue said_pack_count = 0 for said_packet in pack_bank: said_pack_count += PACK_SIZE tic_packet = time.time() print("packet",said_packet) packet_string = '('+str(said_packet)[1:-1]+')' try: cnx = mysql.connector.connect(user=global_vars.DATABASE_USERNAME, password=global_vars.DATABASE_PASSWORD, host=global_vars.DATABASE_IP_RO, database=global_vars.DATABASE_NAME) tic_query = time.time() query = "SELECT * FROM %s WHERE SA in %s" %(dbnm, packet_string) all_interval_df = pd.read_sql_query(query,cnx) all_interval_df['DATE'] = pd.to_datetime(all_interval_df['DATE']) toc_query = time.time() print("All interval df shape:", all_interval_df.shape, "- time:", toc_query-tic_query) except: print("Interval_df error") said_packet = [] continue # storage_df = pd.DataFrame(columns=storage_df_columns) nonres_storage_df = pd.DataFrame(columns=storage_df_columns) pdp_storage_df = pd.DataFrame(columns=storage_df_columns) cbp_storage_df = pd.DataFrame(columns=storage_df_columns) bip_storage_df = pd.DataFrame(columns=storage_df_columns) amp_storage_df = pd.DataFrame(columns=storage_df_columns) res_storage_df = pd.DataFrame(columns=storage_df_columns) smartrate_storage_df = pd.DataFrame(columns=storage_df_columns) smartac_storage_df = pd.DataFrame(columns=storage_df_columns) for SAID in said_packet: tic_said = time.time() try: (program, NAICS, weather) = getInfo(SAID) except Exception as e: print("getInfo error") continue print(SAID, program) try: # Find DR days of SAID DRDays = getDR(SAID, program) except: print("DRDays error") continue try: # Find temperature for SAID temp_df = getTemp(weather) except: print("temp_df error") continue # storage_list is used to have all relevant information for a single SAID in a single Date # storage_list = [SAID, program, NAICS, date, max_temp...] storage_list = [int(SAID), program, NAICS] # will contain all storage lists for 1 said, so approx 731 rows said_all_data = [] interval_df = all_interval_df.loc[all_interval_df['SA'] == SAID] print(interval_df.shape) # date is initialized to last day and will backtrack through every day date = (interval_df['DATE'].max()).date() while date.year > 2015: # row_data = runFrequentBaseline(interval_df, DRDays, temp_df, interval, date, storage_list) try: row_data = runBaseline2(interval_df, DRDays, temp_df, interval, date, storage_list) except Exception as e: print("row_data error") continue if row_data != 'NA': said_all_data.append(row_data) date = date - datetime.timedelta(days=1) said_df = pd.DataFrame(said_all_data, columns=storage_df_columns) print("said_df shape:", said_df.shape) # frames = [storage_df, said_df] # storage_df = pd.concat(frames) if program == 'PDP': frames = [pdp_storage_df, said_df] pdp_storage_df = pd.concat(frames) frames = [nonres_storage_df, said_df] nonres_storage_df = pd.concat(frames) print("Nonres Shape", nonres_storage_df.shape) elif program == 'AMP': frames = [amp_storage_df, said_df] amp_storage_df =
pd.concat(frames)
pandas.concat
import os from pathlib import Path import numpy as np from flask import Flask, request, jsonify, render_template from joblib import load import pandas as pd def create_df(dicti): transformed = {} for feature in dicti: if feature == 'MarketSegment': if dicti[feature] == 'Online TA': transformed['MarketSegment_Online TA']=1 else: transformed['MarketSegment_Online TA']=0 elif feature == 'CustomerType': if dicti[feature] == 'Transient': transformed['CustomerType_Transient']=1 transformed['CustomerType_Transient-Party']=0 elif dicti[feature] == 'Transient-Party': transformed['CustomerType_Transient']=0 transformed['CustomerType_Transient-Party']=1 else: transformed['CustomerType_Transient']=0 transformed['CustomerType_Transient-Party']=0 elif feature == 'DepositType': if dicti[feature] == 'Non Refund': transformed['DepositType_Non Refund']=1 transformed['DepositType_No Deposit']=0 elif dicti[feature] == 'No Deposit': transformed['DepositType_Non Refund']=0 transformed['DepositType_No Deposit']=1 else: transformed['DepositType_Non Refund']=0 transformed['DepositType_No Deposit']=0 else: transformed[feature]=dicti[feature] rearrange_cols = ['LeadTime', 'TotalOfSpecialRequests', 'StaysInWeekNights', 'ADR', 'ArrivalDateWeekNumber', 'Agent', 'ReservedRoomType', 'DepositType_No Deposit', 'BookingChanges', 'AssignedRoomType', 'Country', 'PreviousCancellations', 'Company', 'DistributionChannel', 'DepositType_Non Refund', 'MarketSegment_Online TA', 'ArrivalDateDayOfMonth', 'ArrivalDateMonth', 'CustomerType_Transient', 'CustomerType_Transient-Party', 'RequiredCarParkingSpaces', 'DaysInWaitingList', 'StaysInWeekendNights', 'PreviousBookingsNotCanceled', 'Adults'] new_obv_df =
pd.DataFrame(transformed,index=[0])
pandas.DataFrame
import sys, os import unittest import pandas as pd import numpy import sys from sklearn import datasets from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler, Imputer, LabelEncoder, LabelBinarizer, MinMaxScaler, MaxAbsScaler, RobustScaler,\ Binarizer, PolynomialFeatures, OneHotEncoder, KBinsDiscretizer from sklearn_pandas import CategoricalImputer from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer from sklearn.tree import DecisionTreeRegressor, DecisionTreeClassifier from sklearn.svm import SVC, SVR, LinearSVC, LinearSVR, OneClassSVM from sklearn.neural_network import MLPClassifier, MLPRegressor from sklearn.decomposition import PCA from sklearn.cluster import KMeans from sklearn.naive_bayes import GaussianNB from sklearn_pandas import DataFrameMapper from sklearn.neighbors import KNeighborsClassifier, KNeighborsRegressor from sklearn.ensemble import GradientBoostingClassifier, GradientBoostingRegressor, RandomForestClassifier,\ RandomForestRegressor, IsolationForest from sklearn.linear_model import LinearRegression, LogisticRegression, RidgeClassifier, SGDClassifier from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.gaussian_process import GaussianProcessClassifier from nyoka.preprocessing import Lag from nyoka import skl_to_pmml from nyoka import PMML44 as pml class TestMethods(unittest.TestCase): def test_sklearn_01(self): iris = datasets.load_iris() irisd = pd.DataFrame(iris.data,columns=iris.feature_names) irisd['Species'] = iris.target features = irisd.columns.drop('Species') target = 'Species' f_name = "svc_pmml.pmml" model = SVC() pipeline_obj = Pipeline([ ('svm',model) ]) pipeline_obj.fit(irisd[features],irisd[target]) skl_to_pmml(pipeline_obj,features,target,f_name) pmml_obj = pml.parse(f_name,True) ## 1 svms = pmml_obj.SupportVectorMachineModel[0].SupportVectorMachine for mod_val, recon_val in zip(model.intercept_, svms): self.assertEqual("{:.16f}".format(mod_val), "{:.16f}".format(recon_val.Coefficients.absoluteValue)) ## 2 svm = pmml_obj.SupportVectorMachineModel[0] self.assertEqual(svm.RadialBasisKernelType.gamma,model._gamma) def test_sklearn_02(self): iris = datasets.load_iris() irisd = pd.DataFrame(iris.data,columns=iris.feature_names) irisd['Species'] = iris.target features = irisd.columns.drop('Species') target = 'Species' f_name = "knn_pmml.pmml" pipeline_obj = Pipeline([ ('scaling',StandardScaler()), ('knn',KNeighborsClassifier(n_neighbors = 5)) ]) pipeline_obj.fit(irisd[features],irisd[target]) skl_to_pmml(pipeline_obj,features,target,f_name) pmml_obj = pml.parse(f_name,True) ##1 self.assertIsNotNone(pmml_obj.NearestNeighborModel[0].ComparisonMeasure.euclidean) ##2 self.assertEqual(pmml_obj.NearestNeighborModel[0].ComparisonMeasure.kind, "distance") ##3 self.assertEqual(pipeline_obj.steps[-1][-1].n_neighbors, pmml_obj.NearestNeighborModel[0].numberOfNeighbors) def test_sklearn_03(self): iris = datasets.load_iris() irisd = pd.DataFrame(iris.data, columns=iris.feature_names) irisd['Species'] = iris.target features = irisd.columns.drop('Species') target = 'Species' f_name = "rf_pmml.pmml" model = RandomForestClassifier(n_estimators = 100) pipeline_obj = Pipeline([ ("mapping", DataFrameMapper([ (['sepal length (cm)', 'sepal width (cm)'], StandardScaler()) , (['petal length (cm)', 'petal width (cm)'], Imputer()) ])), ("rfc", model) ]) pipeline_obj.fit(irisd[features], irisd[target]) skl_to_pmml(pipeline_obj, features, target, f_name) pmml_obj = pml.parse(f_name,True) ## 1 self.assertEqual(model.n_estimators,pmml_obj.MiningModel[0].Segmentation.Segment.__len__()) ##2 self.assertEqual(pmml_obj.MiningModel[0].Segmentation.multipleModelMethod, "majorityVote") def test_sklearn_04(self): titanic = pd.read_csv("nyoka/tests/titanic_train.csv") features = titanic.columns target = 'Survived' f_name = "gb_pmml.pmml" pipeline_obj = Pipeline([ ("imp", Imputer(strategy="median")), ("gbc", GradientBoostingClassifier(n_estimators = 10)) ]) pipeline_obj.fit(titanic[features],titanic[target]) skl_to_pmml(pipeline_obj, features, target, f_name) pmml_obj = pml.parse(f_name,True) ##1 self.assertEqual(pmml_obj.MiningModel[0].Segmentation.multipleModelMethod, "modelChain") ##2 self.assertEqual(pmml_obj.MiningModel[0].Segmentation.Segment.__len__(), 2) ##3 self.assertEqual(pmml_obj.MiningModel[0].Segmentation.Segment[1].RegressionModel.normalizationMethod, "logit") def test_sklearn_05(self): df = pd.read_csv('nyoka/tests/auto-mpg.csv') X = df.drop(['mpg'],axis=1) y = df['mpg'] features = [name for name in df.columns if name not in ('mpg')] target = 'mpg' pipeline_obj = Pipeline([ ('mapper', DataFrameMapper([ ('car name', TfidfVectorizer()) ])), ('model',DecisionTreeRegressor()) ]) pipeline_obj.fit(X,y) skl_to_pmml(pipeline_obj,features,target,"dtr_pmml.pmml") self.assertEqual(os.path.isfile("dtr_pmml.pmml"),True) def test_sklearn_06(self): df = pd.read_csv('nyoka/tests/auto-mpg.csv') X = df.drop(['mpg','car name'],axis=1) y = df['mpg'] features = X.columns target = 'mpg' f_name = "linearregression_pmml.pmml" model = LinearRegression() pipeline_obj = Pipeline([ ('model',model) ]) pipeline_obj.fit(X,y) skl_to_pmml(pipeline_obj,features,target,f_name) pmml_obj = pml.parse(f_name, True) ## 1 reg_tab = pmml_obj.RegressionModel[0].RegressionTable[0] self.assertEqual(reg_tab.intercept,model.intercept_) ## 2 for model_val, pmml_val in zip(model.coef_, reg_tab.NumericPredictor): self.assertEqual("{:.16f}".format(model_val),"{:.16f}".format(pmml_val.coefficient)) def test_sklearn_07(self): iris = datasets.load_iris() irisd = pd.DataFrame(iris.data, columns=iris.feature_names) irisd['Species'] = iris.target features = irisd.columns.drop('Species') target = 'Species' f_name = "logisticregression_pmml.pmml" model = LogisticRegression() pipeline_obj = Pipeline([ ("mapping", DataFrameMapper([ (['sepal length (cm)', 'sepal width (cm)'], StandardScaler()) , (['petal length (cm)', 'petal width (cm)'], Imputer()) ])), ("lr", model) ]) pipeline_obj.fit(irisd[features], irisd[target]) skl_to_pmml(pipeline_obj, features, target, f_name) pmml_obj = pml.parse(f_name,True) ## 1 segmentation = pmml_obj.MiningModel[0].Segmentation self.assertEqual(segmentation.Segment.__len__(), model.classes_.__len__()+1) ## 2 self.assertEqual(segmentation.multipleModelMethod, "modelChain") ##3 self.assertEqual(segmentation.Segment[-1].RegressionModel.normalizationMethod, "simplemax") ##4 for i in range(model.classes_.__len__()): self.assertEqual(segmentation.Segment[i].RegressionModel.normalizationMethod, "logit") self.assertEqual("{:.16f}".format(model.intercept_[i]),\ "{:.16f}".format(segmentation.Segment[i].RegressionModel.RegressionTable[0].intercept)) def test_sklearn_08(self): iris = datasets.load_iris() irisd = pd.DataFrame(iris.data, columns=iris.feature_names) irisd['Species'] = [i%2 for i in range(iris.data.shape[0])] features = irisd.columns.drop('Species') target = 'Species' pipeline_obj = Pipeline([ ('pca',PCA(2)), ('mod',LogisticRegression()) ]) pipeline_obj.fit(irisd[features], irisd[target]) skl_to_pmml(pipeline_obj, features, target, "logisticregression_pca_pmml.pmml") self.assertEqual(os.path.isfile("logisticregression_pca_pmml.pmml"),True) def test_sklearn_09(self): iris = datasets.load_iris() irisd = pd.DataFrame(iris.data, columns=iris.feature_names) irisd['Species'] = iris.target features = irisd.columns.drop('Species') target = 'Species' pipeline_obj = Pipeline([ ("SGD", SGDClassifier()) ]) pipeline_obj.fit(irisd[features], irisd[target]) skl_to_pmml(pipeline_obj, features, target, "sgdclassifier_pmml.pmml") self.assertEqual(os.path.isfile("sgdclassifier_pmml.pmml"),True) def test_sklearn_10(self): iris = datasets.load_iris() irisd = pd.DataFrame(iris.data, columns=iris.feature_names) irisd['Species'] = iris.target features = irisd.columns.drop('Species') target = 'Species' pipeline_obj = Pipeline([ ("lsvc", LinearSVC()) ]) pipeline_obj.fit(irisd[features], irisd[target]) skl_to_pmml(pipeline_obj, features, target, "linearsvc_pmml.pmml") self.assertEqual(os.path.isfile("linearsvc_pmml.pmml"),True) def test_sklearn_11(self): df = pd.read_csv('nyoka/tests/auto-mpg.csv') X = df.drop(['mpg','car name'],axis=1) y = df['mpg'] features = X.columns target = 'mpg' pipeline_obj = Pipeline([ ('model',LinearSVR()) ]) pipeline_obj.fit(X,y) skl_to_pmml(pipeline_obj,features,target,"linearsvr_pmml.pmml") self.assertEqual(os.path.isfile("linearsvr_pmml.pmml"),True) def test_sklearn_12(self): df = pd.read_csv('nyoka/tests/auto-mpg.csv') X = df.drop(['mpg','car name'],axis=1) y = df['mpg'] features = X.columns target = 'mpg' pipeline_obj = Pipeline([ ('model',GradientBoostingRegressor()) ]) pipeline_obj.fit(X,y) skl_to_pmml(pipeline_obj,features,target,"gbr.pmml") self.assertEqual(os.path.isfile("gbr.pmml"),True) def test_sklearn_13(self): iris = datasets.load_iris() irisd = pd.DataFrame(iris.data, columns=iris.feature_names) irisd['Species'] = iris.target features = irisd.columns.drop('Species') target = 'Species' pipeline_obj = Pipeline([ ("SGD", DecisionTreeClassifier()) ]) pipeline_obj.fit(irisd[features], irisd[target]) skl_to_pmml(pipeline_obj, features, target, "dtr_clf.pmml") self.assertEqual(os.path.isfile("dtr_clf.pmml"),True) def test_sklearn_14(self): df = pd.read_csv('nyoka/tests/auto-mpg.csv') X = df.drop(['mpg','car name'],axis=1) y = df['mpg'] features = X.columns target = 'mpg' pipeline_obj = Pipeline([ ('model',RandomForestRegressor()) ]) pipeline_obj.fit(X,y) skl_to_pmml(pipeline_obj,features,target,"rfr.pmml") self.assertEqual(os.path.isfile("rfr.pmml"),True) def test_sklearn_15(self): df = pd.read_csv('nyoka/tests/auto-mpg.csv') X = df.drop(['mpg','car name'],axis=1) y = df['mpg'] features = X.columns target = 'mpg' pipeline_obj = Pipeline([ ('model',KNeighborsRegressor()) ]) pipeline_obj.fit(X,y) skl_to_pmml(pipeline_obj,features,target,"knnr.pmml") self.assertEqual(os.path.isfile("knnr.pmml"),True) def test_sklearn_16(self): df = pd.read_csv('nyoka/tests/auto-mpg.csv') X = df.drop(['mpg','car name'],axis=1) y = df['mpg'] features = X.columns target = 'mpg' pipeline_obj = Pipeline([ ('model',SVR()) ]) pipeline_obj.fit(X,y) skl_to_pmml(pipeline_obj,features,target,"svr.pmml") self.assertEqual(os.path.isfile("svr.pmml"),True) def test_sklearn_17(self): irisdata = datasets.load_iris() iris = pd.DataFrame(irisdata.data,columns=irisdata.feature_names) iris['Species'] = irisdata.target feature_names = iris.columns.drop('Species') X = iris[iris.columns.drop(['Species'])] pipeline_obj = Pipeline([ ('standard_scaler',StandardScaler()), ('Imputer',Imputer()), ('model',OneClassSVM()) ]) pipeline_obj.fit(X) skl_to_pmml(pipeline_obj, feature_names, pmml_f_name="one_class_svm.pmml") self.assertEqual(os.path.isfile("one_class_svm.pmml"),True) def test_sklearn_18(self): iris = datasets.load_iris() irisd = pd.DataFrame(iris.data, columns=iris.feature_names) irisd['Species'] = iris.target features = irisd.columns.drop('Species') target = 'Species' pipeline_obj = Pipeline([ ("model", GaussianNB()) ]) pipeline_obj.fit(irisd[features], irisd[target]) skl_to_pmml(pipeline_obj, features, target, "gnb.pmml") self.assertEqual(os.path.isfile("gnb.pmml"),True) def test_sklearn_19(self): iris = datasets.load_iris() irisd = pd.DataFrame(iris.data, columns=iris.feature_names) irisd['Species'] = iris.target features = irisd.columns.drop('Species') target = 'Species' pipeline_obj = Pipeline([ ("model", SGDClassifier()) ]) pipeline_obj.fit(irisd[features], irisd[target]) skl_to_pmml(pipeline_obj, features, target, "sgdc.pmml") self.assertEqual(os.path.isfile("sgdc.pmml"),True) def test_sklearn_20(self): iris = datasets.load_iris() irisd = pd.DataFrame(iris.data, columns=iris.feature_names) irisd['Species'] = iris.target features = irisd.columns.drop('Species') target = 'Species' pipeline_obj = Pipeline([ ("model", RidgeClassifier()) ]) pipeline_obj.fit(irisd[features], irisd[target]) skl_to_pmml(pipeline_obj, features, target, "ridge.pmml") self.assertEqual(os.path.isfile("ridge.pmml"),True) def test_sklearn_21(self): iris = datasets.load_iris() irisd = pd.DataFrame(iris.data, columns=iris.feature_names) irisd['Species'] = iris.target features = irisd.columns.drop('Species') target = 'Species' pipeline_obj = Pipeline([ ("model", LinearDiscriminantAnalysis()) ]) pipeline_obj.fit(irisd[features], irisd[target]) skl_to_pmml(pipeline_obj, features, target, "lda.pmml") self.assertEqual(os.path.isfile("lda.pmml"),True) def test_sklearn_22(self): iris = datasets.load_iris() irisd = pd.DataFrame(iris.data, columns=iris.feature_names) irisd['Species'] = iris.target features = irisd.columns.drop('Species') target = 'Species' model = LogisticRegression() pipeline_obj = Pipeline([ ("scaler",Binarizer(threshold=2)), ("model", model) ]) pipeline_obj.fit(irisd[features], irisd[target]) skl_to_pmml(pipeline_obj, features, target, "binarizer.pmml") self.assertEqual(os.path.isfile("binarizer.pmml"),True) def test_sklearn_23(self): iris = datasets.load_iris() irisd = pd.DataFrame(iris.data, columns=iris.feature_names) irisd['Species'] = iris.target features = irisd.columns.drop('Species') target = 'Species' model = LogisticRegression() pipeline_obj = Pipeline([ ("scaler",MinMaxScaler()), ("model", model) ]) pipeline_obj.fit(irisd[features], irisd[target]) skl_to_pmml(pipeline_obj, features, target, "minmax.pmml") self.assertEqual(os.path.isfile("minmax.pmml"),True) def test_sklearn_24(self): iris = datasets.load_iris() irisd = pd.DataFrame(iris.data, columns=iris.feature_names) irisd['Species'] = iris.target features = irisd.columns.drop('Species') target = 'Species' model = LogisticRegression() pipeline_obj = Pipeline([ ("scaler",RobustScaler()), ("model", model) ]) pipeline_obj.fit(irisd[features], irisd[target]) skl_to_pmml(pipeline_obj, features, target, "robust.pmml") self.assertEqual(os.path.isfile("robust.pmml"),True) def test_sklearn_25(self): iris = datasets.load_iris() irisd = pd.DataFrame(iris.data, columns=iris.feature_names) irisd['Species'] = iris.target features = irisd.columns.drop('Species') target = 'Species' model = LogisticRegression() pipeline_obj = Pipeline([ ("scaler",MaxAbsScaler()), ("model", model) ]) pipeline_obj.fit(irisd[features], irisd[target]) skl_to_pmml(pipeline_obj, features, target, "maxabs.pmml") self.assertEqual(os.path.isfile("maxabs.pmml"),True) def test_sklearn_25_(self): iris = datasets.load_iris() irisd = pd.DataFrame(iris.data, columns=iris.feature_names) irisd['Species'] = iris.target irisd['new'] = [i%3 for i in range(iris.data.shape[0])] irisd.to_csv("test_new.csv",index=False) features = irisd.columns.drop('Species') target = 'Species' model = LogisticRegression() pipeline_obj = Pipeline([ ("mapper", DataFrameMapper([ (["new"], LabelBinarizer()), (iris.feature_names, None) ])), ('scale', StandardScaler()), ("model", model) ]) pipeline_obj.fit(irisd[features], irisd[target]) skl_to_pmml(pipeline_obj, features, target, "labelbinarizer.pmml") self.assertEqual(os.path.isfile("labelbinarizer.pmml"),True) def test_sklearn_26(self): iris = datasets.load_iris() irisd = pd.DataFrame(iris.data, columns=iris.feature_names) irisd['Species'] = iris.target irisd['new'] = [i%3 for i in range(iris.data.shape[0])] features = irisd.columns.drop('Species') target = 'Species' model = LinearRegression() pipeline_obj = Pipeline([ ("mapper", DataFrameMapper([ (["new"], OneHotEncoder(categories='auto')) ])), ("model", model) ]) pipeline_obj.fit(irisd[features], irisd[target]) skl_to_pmml(pipeline_obj, features, target, "onehot.pmml") self.assertEqual(os.path.isfile("onehot.pmml"),True) def test_sklearn_27(self): df = pd.read_csv('nyoka/tests/auto-mpg.csv') X = df.drop(['origin'],axis=1) y = df['origin'] features = [name for name in df.columns if name not in ('origin')] target = 'origin' pipeline_obj = Pipeline([ ('mapper', DataFrameMapper([ ('car name', CountVectorizer()) ])), ('model',LogisticRegression()) ]) pipeline_obj.fit(X,y) skl_to_pmml(pipeline_obj,features,target,"countvec.pmml") self.assertEqual(os.path.isfile("countvec.pmml"),True) def test_sklearn_28(self): iris = datasets.load_iris() irisd = pd.DataFrame(iris.data, columns=iris.feature_names) irisd['Species'] = iris.target irisd['new'] = [i%3 for i in range(iris.data.shape[0])] features = irisd.columns.drop('Species') target = 'Species' model = LogisticRegression() pipeline_obj = Pipeline([ ("mapper", DataFrameMapper([ (["new"], PolynomialFeatures()) ])), ("model", model) ]) pipeline_obj.fit(irisd[features], irisd[target]) skl_to_pmml(pipeline_obj, features, target, "polyfeat.pmml") self.assertEqual(os.path.isfile("polyfeat.pmml"),True) def test_sklearn_29(self): iris = datasets.load_iris() irisd = pd.DataFrame(iris.data, columns=iris.feature_names) irisd['Species'] = iris.target target = 'Species' features = irisd.columns.drop('Species') model = MLPClassifier() pipe = Pipeline([ ('lag', Lag(aggregation="stddev", value=3)), ('model',model) ]) pipe.fit(irisd[features], irisd[target]) file_name = 'mlp_model_numlti_class_classification.pmml' skl_to_pmml(pipe, iris.feature_names, target,file_name) self.assertEqual(os.path.isfile(file_name),True) def test_sklearn_30(self): iris = datasets.load_iris() model = KMeans() pipe = Pipeline([ ('model',model) ]) pipe.fit(iris.data) file_name = 'kmeans_model.pmml' skl_to_pmml(pipe, iris.feature_names, 'target',file_name) self.assertEqual(os.path.isfile(file_name),True) def test_sklearn_31(self): iris = datasets.load_iris() irisd = pd.DataFrame(iris.data, columns=iris.feature_names) irisd['Species'] = iris.target target = 'Species' features = irisd.columns.drop('Species') model = GradientBoostingClassifier() pipe = Pipeline([ ('scaler', MaxAbsScaler()), ('model',model) ]) pipe.fit(irisd[features], irisd[target]) file_name = 'gbc_model_numlti_class_classification.pmml' skl_to_pmml(pipe, iris.feature_names, target,file_name) self.assertEqual(os.path.isfile(file_name),True) def test_sklearn_32(self): from sklearn.neural_network import MLPClassifier iris = datasets.load_iris() irisd = pd.DataFrame(iris.data, columns=iris.feature_names) irisd['target'] = [i%2 for i in range(iris.data.shape[0])] target = 'target' features = irisd.columns.drop('target') model = MLPClassifier() pipe = Pipeline([ ('lag', Lag(aggregation="sum", value=3)), ('model',model) ]) pipe.fit(irisd[features], irisd[target]) file_name = 'mlp_model_binary_class_classification.pmml' skl_to_pmml(pipe, iris.feature_names, target,file_name) self.assertEqual(os.path.isfile(file_name),True) def test_sklearn_33(self): irisdata = datasets.load_iris() iris = pd.DataFrame(irisdata.data,columns=irisdata.feature_names) iris['Species'] = irisdata.target feature_names = iris.columns.drop('Species') X = iris[iris.columns.drop(['Species'])] pipeline_obj = Pipeline([ ('standard_scaler',StandardScaler()), ('Imputer',Imputer()), ('model',IsolationForest()) ]) pipeline_obj.fit(X) skl_to_pmml(pipeline_obj, feature_names, pmml_f_name="iforest.pmml") self.assertEqual(os.path.isfile("iforest.pmml"),True) def test_sklearn_34(self): iris = datasets.load_iris() irisd = pd.DataFrame(iris.data,columns=iris.feature_names) irisd['new'] = [i%2 for i in range(irisd.shape[0])] irisd['Species'] = iris.target features = irisd.columns.drop('Species') target = 'Species' model = LogisticRegression() pipeline_obj = Pipeline([ ('mapper', DataFrameMapper([ ('new', LabelBinarizer()) ])), ('model',model) ]) pipeline_obj.fit(irisd[features],irisd[target]) skl_to_pmml(pipeline_obj,features,target,"lb_two.pmml") self.assertEqual(os.path.isfile("lb_two.pmml"),True) def test_sklearn_37(self): iris = datasets.load_iris() irisd = pd.DataFrame(iris.data,columns=iris.feature_names) irisd['Species'] = iris.target target = 'Species' features = irisd.columns.drop('Species') model = LogisticRegression() pipeline_obj = Pipeline([ ('new', StandardScaler()), ('imputer', Imputer()), ('model',model) ]) pipeline_obj.fit(irisd[features],irisd[target]) skl_to_pmml(pipeline_obj,features,target,"imputer.pmml") self.assertEqual(os.path.isfile("imputer.pmml"),True) def test_sklearn_38(self): iris = datasets.load_iris() irisd = pd.DataFrame(iris.data,columns=iris.feature_names) irisd['Species'] = iris.target target = 'Species' features = irisd.columns.drop('Species') model = LogisticRegression() pipeline_obj = Pipeline([ ('mapper', DataFrameMapper([ (['sepal length (cm)'], KBinsDiscretizer()), ])), ('model',model) ]) pipeline_obj.fit(irisd[features],irisd[target]) with self.assertRaises(TypeError): skl_to_pmml(pipeline_obj,features,target,"kbins.pmml") def test_sklearn_39(self): iris = datasets.load_iris() irisd = pd.DataFrame(iris.data,columns=iris.feature_names) irisd['Species'] = iris.target target = 'Species' features = irisd.columns.drop('Species') model = GaussianProcessClassifier() pipeline_obj = Pipeline([ ('model',model) ]) pipeline_obj.fit(irisd[features],irisd[target]) with self.assertRaises(NotImplementedError): skl_to_pmml(pipeline_obj,numpy.array(features),target,"gpc.pmml") def test_sklearn_40(self): iris = datasets.load_iris() irisd = pd.DataFrame(iris.data,columns=iris.feature_names) irisd['Species'] = iris.target target = 'Species' features = irisd.columns.drop('Species') model = GaussianProcessClassifier() model.fit(irisd[features],irisd[target]) with self.assertRaises(TypeError): skl_to_pmml(model,features,target,"no_pipeline.pmml") def test_sklearn_41(self): iris = datasets.load_iris() irisd = pd.DataFrame(iris.data,columns=iris.feature_names) irisd['Species'] = iris.target features = irisd.columns.drop('Species') target = 'Species' f_name = "svc_linear.pmml" model = SVC(kernel='linear') pipeline_obj = Pipeline([ ('svm',model) ]) pipeline_obj.fit(irisd[features],irisd[target]) skl_to_pmml(pipeline_obj,features,target,f_name) self.assertEqual(os.path.isfile(f_name),True) def test_sklearn_42(self): iris = datasets.load_iris() irisd = pd.DataFrame(iris.data,columns=iris.feature_names) irisd['Species'] = iris.target features = irisd.columns.drop('Species') target = 'Species' f_name = "svc_poly.pmml" model = SVC(kernel='poly') pipeline_obj = Pipeline([ ('svm',model) ]) pipeline_obj.fit(irisd[features],irisd[target]) skl_to_pmml(pipeline_obj,features,target,f_name) self.assertEqual(os.path.isfile(f_name),True) def test_sklearn_44(self): iris = datasets.load_iris() irisd = pd.DataFrame(iris.data,columns=iris.feature_names) irisd['Species'] = [i%2 for i in range(irisd.shape[0])] features = irisd.columns.drop('Species') target = 'Species' f_name = "svc_bin.pmml" model = SVC() pipeline_obj = Pipeline([ ('svm',model) ]) pipeline_obj.fit(irisd[features],irisd[target]) skl_to_pmml(pipeline_obj,features,target,f_name) self.assertEqual(os.path.isfile(f_name),True) def test_sklearn_45(self): df = pd.read_csv('nyoka/tests/auto-mpg.csv') X = df.drop(['mpg'],axis=1) y = df['mpg'] features = [name for name in df.columns if name not in ('mpg')] target = 'mpg' pipeline_obj = Pipeline([ ('mapper', DataFrameMapper([ ('car name', TfidfVectorizer()) ])), ('model',MLPRegressor()) ]) pipeline_obj.fit(X,y) skl_to_pmml(pipeline_obj,features,target,"mlpr_pmml.pmml") self.assertEqual(os.path.isfile("mlpr_pmml.pmml"),True) def test_sklearn_46(self): iris = datasets.load_iris() irisd =
pd.DataFrame(iris.data, columns=iris.feature_names)
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Oct 15 16:41:37 2018 @author: krzysztof This module contains utilities useful when performing data analysis and drug sensitivity prediction with Genomics of Drug Sensitivity in Cancer (GDSC) database. Main utilities are Drug classes and Experiment class. All classes beginning with a word "Drug" represent the compound coming from GDSC. There is a separate class for every corresponding experiment setup and genomic feature space. All Drug classes contain methods for extraction and storage of proper input data. Available data types include: gene expression, binary copy number and coding variants, and cell line tissue type. The set of considered genes is represented as "targets" attribute of Drug classes. The Experiment class is dedicated for storage and analysis of results coming from machine learning experiments. Actual machine learning is done outside of a class. The Experiment class have methods for storage, analysis and visualisation of results. Classes: Drug: Basic class representing a compound from GDSC. DrugWithDrugBank: Inherits from Drug, accounts for target genes from DrugBank database. DrugGenomeWide: Inherits from Drug, designed for using genome-wide gene exression as input data. DrugDirectReactome: Inherits from DrugWithDrugBank, uses only input data related to target genes resulting from direct compound-pathway matching from Reactome. DrugWithGenesInSamePathways: Inherits from DrugWithDrugBank, uses only input data related to genes that belong in the same pathways as target genes. Experiment: Designed to store and analyze results coming from machine learning experiments. """ # Imports import pandas as pd import numpy as np import time import pickle import matplotlib.pyplot as plt import seaborn as sns from scipy.stats import pearsonr import collections # Sklearn imports from scipy.stats import pearsonr from sklearn.linear_model import ElasticNet from sklearn import model_selection from sklearn import metrics from sklearn import preprocessing from sklearn.dummy import DummyRegressor from sklearn.pipeline import Pipeline from sklearn import feature_selection from sklearn.svm import SVR from sklearn.ensemble import RandomForestRegressor from sklearn.base import clone # General imports import multiprocessing import numpy as np import pandas as pd import time import sys import dill import warnings import matplotlib.pyplot as plt import seaborn as sns from scipy.stats import pearsonr import collections # Sklearn imports from sklearn.preprocessing import StandardScaler from sklearn.ensemble import RandomForestRegressor from sklearn import model_selection from sklearn.pipeline import Pipeline from sklearn import metrics from sklearn.dummy import DummyRegressor from sklearn.linear_model import Lasso, ElasticNet from stability_selection import StabilitySelection ################################################################################################################# # Drug class ################################################################################################################# class Drug(object): """Class representing compound from GDSC database. This is the most basic, parent class. Different experimental settings will use more specific, children classes. Main function of the class is to create and store input data corresponding to a given drug. Five types of data are considered: gene expression, copy number variants, coding variants, gene expression signatures, and tumor tissue type. Class instances are initialized with four basic drug properties: ID, name, gene targets and target pathway. Data attributes are stored as pandas DataFrames and are filled using data files from GDSC via corresponding methods. Attributes: gdsc_id (int): ID from GDSC website. name (string): Drug name. targets (list of strings): Drug's target gene names (HGNC). target_pathway (string): Drug's target pathway as provided in GDSC annotations. ensembl targets (list of strings): Drug's target genes ensembl IDs. Can have different length than "targets" because some gene names may not be matched during mapping. Ensembl IDs are needed for gene expression data. map_from_hgnc_to_ensembl (dictionary): Dictionary mapping from gene names to ensembl IDs. Created after calling the "load_mappings" method. map_from_ensembl_to_hgnc (dictionary): Dictionary mapping from ensembl IDs to gene names. Created after calling the "load_mappings" method. total_no_samples_screened (int): Number of cell lines screened for that drug. Created after calling the "extract_drug_response_data" method. response_data (DataFrame): DataFrame with screened cell lines for that drug and corresponding AUC or IC50 values. Created after calling the "extract_drug_response_data" method. screened_cell_lines (list of ints): list containing COSMIC IDs representing cell lines screened for that drug. Created after calling the "extract_screened_cell_lines" method. gene_expression_data (DataFrame): DataFrame with gene expression data, considering only target genes. Created after calling the "extract_gene_expression" method mutation_data (DataFrame): DataFrame with binary calls for coding variants, considering only target genes. Created after calling the "extract_mutation_data" method. cnv_data (DataFrame): DataFrame with binary calls for copu number variants, considering only target genes. Created after calling the "extract_cnv_data" method. tissue_data (DataFrame): DataFrame with dummy encoded tumor tissue types in screened cell lines. Dummy encoding results in 13 binary features. Created after calling the "extract_tissue_data" method. full_data (DataFrame): DataFrame with combined data coming from given set of genetic data classes. Methods: Instance methods: __init__: Initialize a Drug instance. __repr__: Return string representation of an instance, as a command which can be used to create this instance. __str__: Return string representation of an instance. extract_drug_response_data: Generate a DataFrame with drug-response data. extract_screened_cell_lines: Generate a list of COSMIC IDs representing cell lines screened for that drug. extract_gene_expression: Generate a DataFrame with gene expression data for drug's screened cell lines extract_mutation_data: Generate a DataFrame with binary calls for coding variants. extract_cnv_data: Generate a DataFrame with binary calls for copy number variants. extract_cnv_data_faster: Generate a DataFrame with binary calls for copy number variants. extract_tissue_data: Generate a DataFrame with dummy encoded tissue types. extract_merck_signatures_data: Generate a DataFrame with gene expression signatures provided by Merck. concatenate_data: Generate a DataFrame containing all desired genetic data classes. Available data classes are: gene expression, coding variants, cnv variants and tissue type. create_full_data: Combines above data extraction methods in order to create desired input data for the drug with one method call. Returns the full data and saves it in corresponding instance's field. return_full_data: Combines above data extraction methods in order to create desired input data for the drug with one method call. Returns the full data but does not save it. Class methods: load_mappings: Load appropriate dictionaries mapping between ensembl and HGNC. Static methods: create_drugs: Create a dictionary of Drug class objects, each referenced by it's ID (keys are drug GDSC ID's) load_data: Load all needed data files as DataFrames with one function call. """ # Class variables map_from_hgnc_to_ensembl = None map_from_ensembl_to_hgnc = None # Instance methods def __init__(self, gdsc_id, name, targets, target_pathway): """Intiliaze the class instance with four basic attributes. "Targets" are gene names and get mapped into Ensembl IDs using class mapping variable.""" self.gdsc_id = gdsc_id self.name = name self.targets = targets self.target_pathway = target_pathway self.ensembl_targets = [] for x in self.targets: try: self.ensembl_targets.append(self.map_from_hgnc_to_ensembl[x]) except KeyError: pass def extract_drug_response_data(self, sensitivity_profiles_df, metric="AUC"): """Generate a DataFrame containing reponses for every cell line screened for that drug. Arguments: sensitivity_profiles_df (DataFrame): DataFrame of drug response data from GDSC. metric (string): Which statistic to use as a response metric (default "AUC"). Returns: None """ df = sensitivity_profiles_df[sensitivity_profiles_df.DRUG_ID == self.gdsc_id][ ["COSMIC_ID", metric]] df.columns = ["cell_line_id", metric] # Insert column with samples ID self.total_no_samples_screened = df.shape[0] # Record how many screened cell lines for drug self.response_data = df # Put DataFrame into corresponding field def extract_screened_cell_lines(self, sensitivity_profiles_df): """Generate set of cell lines screened for that drug. Arguments: sensitivity_profiles_df (DataFrame): DataFrame of drug response data from GDSC. Returns: None """ self.screened_cell_lines = list( sensitivity_profiles_df[sensitivity_profiles_df.DRUG_ID == self.gdsc_id]["COSMIC_ID"]) def extract_gene_expression(self, gene_expression_df): """Generate DataFrame of gene expression data for cell lines screened for this drug, only considering drug's target genes. Arguments: gene_expression_df (DataFrame): Original GDSC gene expression DataFrame. sensitivity_profiles_df (DataFrame): DataFrame of drug response data from GDSC. Returns: None """ cell_lines_str = [] # Gene expressesion DF column names are strings for x in self.screened_cell_lines: cell_lines_str.append(str(x)) cl_to_extract = [] for x in cell_lines_str: if x in list(gene_expression_df.columns): cl_to_extract.append(x) # Extract only cell lines contained in gene expression data gene_expr = gene_expression_df[ gene_expression_df.ensembl_gene.isin(self.ensembl_targets)][["ensembl_gene"] + cl_to_extract] gene_expr_t = gene_expr.transpose() columns = list(gene_expr_t.loc["ensembl_gene"]) gene_expr_t.columns = columns gene_expr_t = gene_expr_t.drop(["ensembl_gene"]) rows = list(gene_expr_t.index) gene_expr_t.insert(0, "cell_line_id", rows) # Insert columns with cell line IDs gene_expr_t.reset_index(drop=True, inplace=True) gene_expr_t["cell_line_id"] = pd.to_numeric(gene_expr_t["cell_line_id"]) self.gene_expression_data = gene_expr_t # Put DataFrame into corresponding field def extract_mutation_data(self, mutation_df): """Generate a DataFrame with binary mutation calls for screened cell lines and target genes. Arguments: mutation_df: DataFrame with original mutation calls from GDSC. Returns: None """ targets = [x + "_mut" for x in self.targets] df = mutation_df.copy()[ mutation_df.cosmic_sample_id.isin(self.screened_cell_lines)] df = df[df.genetic_feature.isin(targets)][["cosmic_sample_id", "genetic_feature", "is_mutated"]] cosmic_ids = [] genetic_features = {} for feature in df.genetic_feature.unique(): genetic_features[feature] = [] for cl_id in df.cosmic_sample_id.unique(): cosmic_ids.append(cl_id) df_cl = df[df.cosmic_sample_id == cl_id] for feature in genetic_features: mutation_status = df_cl[ df_cl.genetic_feature == feature]["is_mutated"].iloc[0] genetic_features[feature].append(mutation_status) df1 = pd.DataFrame() df1.insert(0, "cell_line_id", cosmic_ids) # Insert column with samples IDs for feature in genetic_features: df1[feature] = genetic_features[feature] self.mutation_data = df1 # Put DataFrame into corresponding field def extract_cnv_data(self, cnv_binary_df): """Generate data containing binary CNV calls for cell lines screened for the drug. Arguments: cnv_binary_df: DataFrame from GDSC download tool with CNV data. Returns: None """ df = cnv_binary_df[cnv_binary_df.cosmic_sample_id.isin(self.screened_cell_lines)] features_to_extract = [] # Map drug's targets to CNV features (segments) for row in cnv_binary_df.drop_duplicates(subset="genetic_feature").itertuples(): feature_name = getattr(row, "genetic_feature") genes_in_segment = getattr(row, "genes_in_segment").split(",") for target in self.targets: if target in genes_in_segment: features_to_extract.append(feature_name) # If target is in any segment, add it to the list features_to_extract = list(set(features_to_extract)) df = df[df.genetic_feature.isin(features_to_extract)] cosmic_ids = [] feature_dict = {} # Separate lists for every column in final DataFrame for feature in df.genetic_feature.unique(): feature_dict[feature] = [] for cl_id in df.cosmic_sample_id.unique(): cosmic_ids.append(cl_id) for feature in feature_dict: status = df[ (df.cosmic_sample_id == cl_id) & (df.genetic_feature == feature)]["is_mutated"].iloc[0] feature_dict[feature].append(status) new_df = pd.DataFrame() for feature in feature_dict: new_df[feature] = feature_dict[feature] new_df.insert(0, "cell_line_id", cosmic_ids) self.cnv_data = new_df def extract_cnv_data_faster(self, cnv_binary_df, map_cl_id_and_feature_to_status): """Generate data containing binary CNV calls for cell lines screened for the drug. Faster implementation than original "extract_cnv_data" by using mapping between genes and genomic segments. Arguments: cnv_binary_df: DataFrame from GDSC download tool with CNV data. Returns: None """ df = cnv_binary_df[cnv_binary_df.cosmic_sample_id.isin(self.screened_cell_lines)] features_to_extract = [] # Map drug's targets to CNV features (segments) for row in cnv_binary_df.drop_duplicates(subset="genetic_feature").itertuples(): feature_name = getattr(row, "genetic_feature") genes_in_segment = getattr(row, "genes_in_segment").split(",") for target in self.targets: if target in genes_in_segment: features_to_extract.append(feature_name) # If target is in any segment, add it to the list features_to_extract = list(set(features_to_extract)) df = df[df.genetic_feature.isin(features_to_extract)] cosmic_ids = [] feature_dict = {} # Separate lists for every column in final DataFrame for feature in features_to_extract: feature_dict[feature] = [] for cl_id in df.cosmic_sample_id.unique(): cosmic_ids.append(cl_id) for feature in feature_dict: status = map_cl_id_and_feature_to_status[(cl_id, feature)] feature_dict[feature].append(status) new_df = pd.DataFrame() for feature in feature_dict: new_df[feature] = feature_dict[feature] new_df.insert(0, "cell_line_id", cosmic_ids) self.cnv_data = new_df def extract_tissue_data(self, cell_line_list): """Generate (dummy encoded) data with cell line tissue type. Arguments: cell_line_list (DataFrame): Cell line list from GDSC. Returns: None """ df = cell_line_list[ cell_line_list["COSMIC_ID"].isin(self.screened_cell_lines)][["COSMIC_ID", "Tissue"]] df.rename(columns={"COSMIC_ID": "cell_line_id"}, inplace=True) self.tissue_data = pd.get_dummies(df, columns = ["Tissue"]) def extract_merck_signatures_data(self, signatures_df): """Generate data with gene expression signature scores for GDSC cell lines, provided by Merck. Arguments: signatures_df (DataFrame): DataFrame with gene signatures for cell lines. Returns: None """ # Compute list of screened cell lines as strings with prefix "X" in order to match # signatures DataFrame columns cell_lines_str = ["X" + str(cl) for cl in self.screened_cell_lines] # Compute list of cell lines that are contained in signatures data cls_to_extract = [cl for cl in cell_lines_str if cl in list(signatures_df.columns)] # Extract desired subset of signatures data signatures_of_interest = signatures_df[cls_to_extract] # Transpose the DataFrame signatures_t = signatures_of_interest.transpose() # Create a list of cell line IDs whose format matches rest of the data cl_ids = pd.Series(signatures_t.index).apply(lambda x: int(x[1:])) # Insert proper cell line IDs as a new column signatures_t.insert(0, "cell_line_id", list(cl_ids)) # Drop the index and put computed DataFrame in an instance field self.merck_signatures = signatures_t.reset_index(drop=True) def concatenate_data(self, data_combination): """Generate data containing chosen combination of genetic data classes. Arguments: data_combination: List of strings containing data classes to be included. Available options are: "mutation", "expression", "CNV", "tissue", "merck signatures". Returns: None """ # Create a list of DataFrames to include objects = [self.response_data] if "mutation" in data_combination and self.mutation_data.shape[0] > 0: objects.append(self.mutation_data) if "expression" in data_combination and self.gene_expression_data.shape[0] > 0: objects.append(self.gene_expression_data) if "CNV" in data_combination and self.cnv_data.shape[0] > 0: objects.append(self.cnv_data) if "tissue" in data_combination and self.tissue_data.shape[0] > 0: objects.append(self.tissue_data) if "merck signatures" in data_combination and self.merck_signatures.shape[0] > 0: objects.append(self.merck_signatures) # Find intersection in cell lines for all desirable DataFrames cl_intersection = set(list(self.response_data["cell_line_id"])) for obj in objects: cl_intersection = cl_intersection.intersection(set(list(obj["cell_line_id"]))) objects_common = [] for obj in objects: objects_common.append(obj[obj["cell_line_id"].isin(cl_intersection)]) # Check if all DataFrames have the same number of samples no_samples = objects_common[0].shape[0] for obj in objects_common: assert obj.shape[0] == no_samples obj.sort_values("cell_line_id", inplace=True) obj.reset_index(drop=True, inplace=True) cl_ids = objects_common[0]["cell_line_id"] df_concatenated = pd.concat(objects_common, axis=1, ignore_index=False) metric = self.response_data.columns[-1] # Extract the name of metric which was used for sensitivity sensitivities = df_concatenated[metric] df_concatenated = df_concatenated.drop(["cell_line_id", metric], axis=1) df_concatenated.insert(0, "cell_line_id", cl_ids) df_concatenated.insert(df_concatenated.shape[1], metric, sensitivities) self.full_data = df_concatenated def create_full_data(self, sensitivity_profiles_df, gene_expression_df=None, cnv_binary_df=None, map_cl_id_and_feature_to_status=None, cell_line_list=None, mutation_df=None, merck_signatures_df=None, data_combination=None, metric="AUC"): """Combine extraction methods in one to generate a DataFrame with desired data. When calling a function, original DataFrames parsed should match strings in data_combination argument. If any of the "_df" arguments is None (default value), the corresponding data is not included in the output DataFrame. Arguments: sensitivity_profiles_df (DataFrame): DataFrame of drug response data from GDSC. gene_expression_df (DataFrame): Original GDSC gene expression DataFrame. cnv_binary_df (DataFrame): DataFrame from GDSC download tool with CNV data. cell_line_list (DataFrame): Cell line list from GDSC. mutation_df (DataFrame): DataFrame with original mutation calls from GDSC. data_combination (list): list of strings containing data classes to be included. Available options are: "mutation", "expression", "CNV, "tissue", "merck signatures". metric (string): Which statistic to use as a response metric (default "AUC"). Returns: DataFrame containing desired data for the drug """ # Call separate methods for distinct data types self.extract_screened_cell_lines(sensitivity_profiles_df) self.extract_drug_response_data(sensitivity_profiles_df, metric) if type(gene_expression_df) == type(pd.DataFrame()): self.extract_gene_expression(gene_expression_df) if type(cnv_binary_df) == type(pd.DataFrame()): self.extract_cnv_data_faster(cnv_binary_df, map_cl_id_and_feature_to_status) if type(cell_line_list) == type(pd.DataFrame()): self.extract_tissue_data(cell_line_list) if type(mutation_df) == type(pd.DataFrame()): self.extract_mutation_data(mutation_df) if type(merck_signatures_df) == type(pd.DataFrame()): self.extract_merck_signatures_data(merck_signatures_df) self.concatenate_data(data_combination) return self.full_data def return_full_data(self, sensitivity_profiles_df, gene_expression_df=None, cnv_binary_df=None, map_cl_id_and_feature_to_status=None, cell_line_list=None, mutation_df=None, merck_signatures_df=None, data_combination=None, metric="AUC"): """Compute full data with desired data classes and return it, but after that delete data from instance's data fields in order to save memory. When calling a function, original DataFrames parsed should match strings in data_combination argument. If any of the "_df" arguments is None (default value), the corresponding data is not included in the output DataFrame. Arguments: sensitivity_profiles_df (DataFrame): DataFrame of drug response data from GDSC. gene_expression_df (DataFrame): Original GDSC gene expression DataFrame. cnv_binary_df (DataFrame): DataFrame from GDSC download tool with CNV data. cell_line_list (DataFrame): Cell line list from GDSC. mutation_df (DataFrame): DataFrame with original mutation calls from GDSC. data_combination (list): list of strings containing data classes to be included. Available options are: "mutation", "expression", "CNV, "tissue", "merck signatures". metric (string): Which statistic to use as a response metric (default "AUC"). Returns: DataFrame containing desired data for the drug """ full_df = self.create_full_data(sensitivity_profiles_df, gene_expression_df, cnv_binary_df, map_cl_id_and_feature_to_status, cell_line_list, mutation_df, merck_signatures_df, data_combination, metric) if type(gene_expression_df) == type(pd.DataFrame()): self.gene_expression_data = None if type(cnv_binary_df) == type(pd.DataFrame()): self.cnv_data = None if type(cell_line_list) == type(pd.DataFrame()): self.tissue_data = None if type(mutation_df) == type(pd.DataFrame()): self.mutation_data = None if type(merck_signatures_df) == type(pd.DataFrame()): self.merck_signatures = None self.full_data = None return full_df def __repr__(self): """Return string representation of an object, which can be used to create it.""" return 'Drug({}, "{}", {}, "{}")'.format(self.gdsc_id, self.name, self.targets, self.target_pathway) def __str__(self): """Return string representation of an object""" return "{} -- {}".format(self.name, self.gdsc_id) # Class methods @classmethod def load_mappings(cls, filepath_hgnc_to_ensembl, filepath_ensembl_to_hgnc): """Load dictonaries with gene mappings between HGNC and Ensembl (from pickle files) and assign it to corresponding class variables. Ensembl IDs are needed for gene expression data. This method should be called on a Drug class before any other actions with the class. Arguments: filepath_hgnc_to_ensembl: file with accurate mapping filepath_ensembl_to_hgnc: file with accurate mapping Returns: None """ cls.map_from_hgnc_to_ensembl = pickle.load(open(filepath_hgnc_to_ensembl, "rb")) cls.map_from_ensembl_to_hgnc = pickle.load(open(filepath_ensembl_to_hgnc, "rb")) # Static methods @staticmethod def create_drugs(drug_annotations_df): """Create a dictionary of Drug class objects, each referenced by it's ID (keys are drug GDSC ID's). Arguments: drug_annotations_df (DataFrame): DataFrame of drug annotations from GDSC website Returns: Dictionary of Drug objects as values and their ID's as keys """ drugs = {} for row in drug_annotations_df.itertuples(index=True, name="Pandas"): gdsc_id = getattr(row, "DRUG_ID") name = getattr(row, "DRUG_NAME") targets = getattr(row, "TARGET").split(", ") target_pathway = getattr(row, "TARGET_PATHWAY") drugs[gdsc_id] = Drug(gdsc_id, name, targets, target_pathway) return drugs @staticmethod def load_data(drug_annotations, cell_line_list, gene_expr, cnv1, cnv2, coding_variants, drug_response): """Load all needed files by calling one function and return data as tuple of DataFrames. All argumenst are filepaths to corrresponding files.""" # Drug annotations drug_annotations_df = pd.read_excel(drug_annotations) # Cell line annotations col_names = ["Name", "COSMIC_ID", "TCGA classification", "Tissue", "Tissue_subtype", "Count"] cell_lines_list_df = pd.read_csv(cell_line_list, usecols=[1, 2, 3, 4, 5, 6], header=0, names=col_names) # Gene expression gene_expression_df = pd.read_table(gene_expr) # CNV d1 = pd.read_csv(cnv1) d2 = pd.read_table(cnv2) d2.columns = ["genes_in_segment"] def f(s): return s.strip(",") cnv_binary_df = d1.copy() cnv_binary_df["genes_in_segment"] = d2["genes_in_segment"].apply(f) # Coding variants coding_variants_df = pd.read_csv(coding_variants) # Drug-response drug_response_df = pd.read_excel(drug_response) return (drug_annotations_df, cell_lines_list_df, gene_expression_df, cnv_binary_df, coding_variants_df, drug_response_df) ################################################################################################################# # DrugWithDrugBank class ################################################################################################################## class DrugWithDrugBank(Drug): """Class representing drug from GDSC database. Contrary to the parent class Drug, this class also incorporates data related to targets derived from DrugBank, not only those from GDSC. Main function of the class is to create and store input data corresponding to a given drug. Four types of data are considered: gene expression, copy number variants, coding variants and tumor tissue type. Class instances are initialized with four basic drug properties: ID, name, gene targets and target pathway. Data attributes are stored as pandas DataFrames and are filled using data files from GDSC via corresponding methods. In general, all utilities are the same as in parent Drug class, with an exception of "create_drugs" method, which is overloaded in order to account for target genes data coming from DrugBank. Attributes: gdsc_id (int): ID from GDSC website. name (string): Drug name. targets (list of strings): Drug's target gene names (HGNC). target_pathway (string): Drug's target pathway as provided in GDSC annotations. ensembl targets (list of strings): Drug's target genes ensembl IDs. Can have different length than "targets" because some gene names may not be matched during mapping. Ensembl IDs are needed for gene expression data. map_from_hgnc_to_ensembl (dictionary): Dictionary mapping from gene names to ensembl IDs. Created after calling the "load_mappings" method. map_from_ensembl_to_hgnc (dictionary): Dictionary mapping from ensembl IDs to gene names. Created after calling the "load_mappings" method. total_no_samples_screened (int): Number of cell lines screened for that drug. Created after calling the "extract_drug_response_data" method. response_data (DataFrame): DataFrame with screened cell lines for that drug and corresponding AUC or IC50 values. Created after calling the "extract_drug_response_data" method. screened_cell_lines (list of ints): list containing COSMIC IDs representing cell lines screened for that drug. Created after calling the "extract_screened_cell_lines" method. gene_expression_data (DataFrame): DataFrame with gene expression data, considering only target genes. Created after calling the "extract_gene_expression" method mutation_data (DataFrame): DataFrame with binary calls for coding variants, considering only target genes. Created after calling the "extract_mutation_data" method. cnv_data (DataFrame): DataFrame with binary calls for copu number variants, considering only target genes. Created after calling the "extract_cnv_data" method. tissue_data (DataFrame): DataFrame with dummy encoded tumor tissue types in screened cell lines. Dummy encoding results in 13 binary features. Created after calling the "extract_tissue_data" method. full_data (DataFrame): DataFrame with combined data coming from given set of genetic data classes. Methods: Instance methods: __init__: Initialize a Drug instance. __repr__: Return string representation of an instance, as a command which can be used to create this instance. __str__: Return string representation of an instance. extract_drug_response_data: Generate a DataFrame with drug-response data. extract_screened_cell_lines: Generate a list of COSMIC IDs representing cell lines screened for that drug. extract_gene_expression: Generate a DataFrame with gene expression data for drug's screened cell lines extract_mutation_data: Generate a DataFrame with binary calls for coding variants. extract_cnv_data: Generate a DataFrame with binary calls for copy number variants. extract_tissue_data: Generate a DataFrame with dummy encoded tissue types. concatenate_data: Generate a DataFrame containing all desired genetic data classes. Available data classes are: gene expression, coding variants, cnv variants and tissue type. create_full_data: Combines above data extraction methods in order to create desired input data for the drug with one method call. Returns the full data. Class methods: load_mappings: Load appropriate dictionaries mapping between ensembl and HGNC. Static methods: create_drugs: Create a dictionary of DrugWithDrugBank class objects, each referenced by it's ID (keys are drug GDSC ID's). Includes also target data coming from DrugBank. load_data: Load all needed data files as DataFrames with one function call. """ def create_drugs(drug_annotations_df, drugbank_targets_mapping): """Create a dictionary of DrugWithDrugBank class objects, each referenced by it's ID. Add also target data coming from DrugBank. Arguments: drug_annotations_df (DataFrame): DataFrame of drug annotations from GDSC website. drugbank_targets_mapping (dictionary): Dictionary with mapping from drug ID to it's targets from drugbank database. Return: Dictionary of DrugWithDrugBank objects as values and their ID's as keys. """ drugs = {} for row in drug_annotations_df.itertuples(index=True, name="Pandas"): name = getattr(row, "DRUG_NAME") gdsc_id = getattr(row, "DRUG_ID") targets = getattr(row, "TARGET").split(", ") # Add targets from DrugBank (if drug is matched) and take a sum if gdsc_id in drugbank_targets_mapping: targets = list(set(targets + drugbank_targets_mapping[gdsc_id])) target_pathway = getattr(row, "TARGET_PATHWAY") # Create DrugWithDrugBank instance and put it into output dictionary drugs[gdsc_id] = DrugWithDrugBank(gdsc_id, name, targets, target_pathway) return drugs def load_data(drug_annotations, cell_line_list, gene_expr, cnv1, cnv2, coding_variants, drug_response, drugbank_targets): """Load all needed files by calling one function. All argumenst are filepaths to corrresponding files.""" # Drug annotations drug_annotations_df = pd.read_excel(drug_annotations) # Cell line annotations col_names = ["Name", "COSMIC_ID", "TCGA classification", "Tissue", "Tissue_subtype", "Count"] cell_lines_list_df = pd.read_csv(cell_line_list, usecols=[1, 2, 3, 4, 5, 6], header=0, names=col_names) # Gene expression gene_expression_df = pd.read_table(gene_expr) # CNV d1 = pd.read_csv(cnv1) d2 = pd.read_table(cnv2) d2.columns = ["genes_in_segment"] def f(s): return s.strip(",") cnv_binary_df = d1.copy() cnv_binary_df["genes_in_segment"] = d2["genes_in_segment"].apply(f) # Coding variants coding_variants_df = pd.read_csv(coding_variants) # Drug-response drug_response_df = pd.read_excel(drug_response) # DrugBank targets map_drugs_to_drugbank_targets = pickle.load(open(drugbank_targets, "rb")) return (drug_annotations_df, cell_lines_list_df, gene_expression_df, cnv_binary_df, coding_variants_df, drug_response_df, map_drugs_to_drugbank_targets) ################################################################################################################# # DrugGenomeWide class ################################################################################################################# class DrugGenomeWide(Drug): """Class designed to represent a drug with genome-wide input data. Main function of the class is to create and store input data corresponding to a given drug. Four types of data are considered: gene expression, copy number variants, coding variants and tumor tissue type. Class instances are initialized with four basic drug properties: ID, name, gene targets and target pathway. Data attributes are stored as pandas DataFrames and are filled using data files from GDSC via corresponding methods. In general, all the utilities are the same as in the parent Drug class, but with different input data. When using this setting, we only use gene expression data as input, since it is recognized as representative of the genome-wide cell line characterization. Therefore, other data extraction methods, though available, should not be used when utilizing this class, for clarity. Two parent class methods are overloaded: "extract_gene_expression" and "create_drugs". Important note: in here, "create_full_data" method is not overloaded, but is supposed to be called only parsing drug_response_df and gene_expression_df DataFrames and data_combination argument set to "["expression"]". --Example: df = test_drug.create_full_data(drug_response_df, gene_expression_df, data_combination=["expression"]) Attributes: gdsc_id (int): ID from GDSC website. name (string): Drug name. targets (list of strings): Drug's target gene names (HGNC). target_pathway (string): Drug's target pathway as provided in GDSC annotations. ensembl targets (list of strings): Drug's target genes ensembl IDs. Can have different length than "targets" because some gene names may not be matched during mapping. Ensembl IDs are needed for gene expression data. map_from_hgnc_to_ensembl (dictionary): Dictionary mapping from gene names to ensembl IDs. Created after calling the "load_mappings" method. map_from_ensembl_to_hgnc (dictionary): Dictionary mapping from ensembl IDs to gene names. Created after calling the "load_mappings" method. total_no_samples_screened (int): Number of cell lines screened for that drug. Created after calling the "extract_drug_response_data" method. response_data (DataFrame): DataFrame with screened cell lines for that drug and corresponding AUC or IC50 values. Created after calling the "extract_drug_response_data" method. screened_cell_lines (list of ints): list containing COSMIC IDs representing cell lines screened for that drug. Created after calling the "extract_screened_cell_lines" method. gene_expression_data (DataFrame): DataFrame with gene expression data, considering all available (genome-wide) genes. Created after calling the "extract_gene_expression" method. mutation_data (DataFrame): DataFrame with binary calls for coding variants, considering only target genes. Created after calling the "extract_mutation_data" method. cnv_data (DataFrame): DataFrame with binary calls for copu number variants, considering only target genes. Created after calling the "extract_cnv_data" method. tissue_data (DataFrame): DataFrame with dummy encoded tumor tissue types in screened cell lines. Dummy encoding results in 13 binary features. Created after calling the "extract_tissue_data" method. full_data (DataFrame): DataFrame with combined data coming from given set of genetic data classes. Methods: Instance methods: __init__: Initialize a Drug instance. __repr__: Return string representation of an instance, as a command which can be used to create this instance. __str__: Return string representation of an instance. extract_drug_response_data: Generate a DataFrame with drug-response data. extract_screened_cell_lines: Generate a list of COSMIC IDs representing cell lines screened for that drug. extract_gene_expression: Generate a DataFrame with gene expression data for drug's screened cell lines extract_mutation_data: Generate a DataFrame with binary calls for coding variants. extract_cnv_data: Generate a DataFrame with binary calls for copy number variants. extract_tissue_data: Generate a DataFrame with dummy encoded tissue types. concatenate_data: Generate a DataFrame containing all desired genetic data classes. Available data classes are: gene expression, coding variants, cnv variants and tissue type. create_full_data: Combines above data extraction methods in order to create desired input data for the drug with one method call. Returns the full data. See the note above for correct usage with DrugGenomeWide class. Class methods: load_mappings: Load appropriate dictionaries mapping between ensembl and HGNC. Static methods: create_drugs: Create a dictionary of Drug class objects, each referenced by it's ID (keys are drug GDSC ID's) load_data: Load all needed data files as DataFrames with one function call. """ def extract_gene_expression(self, gene_expression_df): """Generate DataFrame of gene expression data for cell lines screened for this drug, genome-wide (all available genes). Arguments: gene_expression_df (DataFrame): original GDSC gene expression DataFrame sensitivity_profiles_df (DataFrame): DataFrame of drug response data from GDSC Return: None """ cell_lines_str = [] # Gene expression DF column names are strings for x in self.screened_cell_lines: cell_lines_str.append(str(x)) cl_to_extract = [] for x in cell_lines_str: if x in list(gene_expression_df.columns): cl_to_extract.append(x) # Extract only cell lines contained in gene expression data gene_expr = gene_expression_df[["ensembl_gene"] + cl_to_extract] gene_expr_t = gene_expr.transpose() columns = list(gene_expr_t.loc["ensembl_gene"]) gene_expr_t.columns = columns gene_expr_t = gene_expr_t.drop(["ensembl_gene"]) rows = list(gene_expr_t.index) gene_expr_t.insert(0, "cell_line_id", rows) # Insert columns with cell line IDs gene_expr_t.reset_index(drop=True, inplace=True) gene_expr_t["cell_line_id"] = pd.to_numeric(gene_expr_t["cell_line_id"]) # DataFrame should have same number of columns for each drug assert gene_expr_t.shape[1] == 17738 self.gene_expression_data = gene_expr_t def extract_mutation_data(self, mutation_df): """Generate a DataFrame with binary mutation calls for screened cell lines and target genes. Arguments: mutation_df: DataFrame with original mutation calls from GDSC. Returns: None """ targets = [x + "_mut" for x in self.targets] df = mutation_df.copy()[ mutation_df.cosmic_sample_id.isin(self.screened_cell_lines)] df = df[["cosmic_sample_id", "genetic_feature", "is_mutated"]] cosmic_ids = [] genetic_features = {} for feature in df.genetic_feature.unique(): genetic_features[feature] = [] for cl_id in df.cosmic_sample_id.unique(): cosmic_ids.append(cl_id) df_cl = df[df.cosmic_sample_id == cl_id] for feature in genetic_features: mutation_status = df_cl[ df_cl.genetic_feature == feature]["is_mutated"].iloc[0] genetic_features[feature].append(mutation_status) df1 = pd.DataFrame() df1.insert(0, "cell_line_id", cosmic_ids) # Insert column with samples IDs for feature in genetic_features: df1[feature] = genetic_features[feature] self.mutation_data = df1 # Put DataFrame into corresponding field def extract_cnv_data_faster(self, cnv_binary_df, map_cl_id_and_feature_to_status): """Generate data containing binary CNV calls for cell lines screened for the drug. Faster implementation than original "extract_cnv_data" by using mapping between genes and genomic segments. Arguments: cnv_binary_df: DataFrame from GDSC download tool with CNV data. Returns: None """ df = cnv_binary_df[cnv_binary_df.cosmic_sample_id.isin(self.screened_cell_lines)] features_to_extract = [] # Map drug's targets to CNV features (segments) cosmic_ids = [] feature_dict = {} # Separate lists for every column in final DataFrame for feature in df.genetic_feature.unique(): feature_dict[feature] = [] for cl_id in df.cosmic_sample_id.unique(): cosmic_ids.append(cl_id) for feature in feature_dict: status = map_cl_id_and_feature_to_status[(cl_id, feature)] feature_dict[feature].append(status) new_df = pd.DataFrame() for feature in feature_dict: new_df[feature] = feature_dict[feature] new_df.insert(0, "cell_line_id", cosmic_ids) self.cnv_data = new_df def create_drugs(drug_annotations_df): """Create a dictionary of DrugGenomeWide class objects, each referenced by it's ID. Arguments: drug_annotations_df (DataFrame): DataFrame of drug annotations from GDSC website Returns: Dictionary of DrugGenomeWide objects as values and their ID's as keys """ drugs = {} for row in drug_annotations_df.itertuples(index=True, name="Pandas"): gdsc_id = getattr(row, "DRUG_ID") name = getattr(row, "DRUG_NAME") targets = getattr(row, "TARGET").split(", ") target_pathway = getattr(row, "TARGET_PATHWAY") drugs[gdsc_id] = DrugGenomeWide(gdsc_id, name, targets, target_pathway) return drugs def load_data(drug_annotations, cell_line_list, gene_expr, cnv1, cnv2, coding_variants, drug_response): """Load all needed files by calling one function. All argumenst are filepaths to corrresponding files.""" # Drug annotations drug_annotations_df = pd.read_excel(drug_annotations) # Cell line annotations col_names = ["Name", "COSMIC_ID", "TCGA classification", "Tissue", "Tissue_subtype", "Count"] cell_lines_list_df = pd.read_csv(cell_line_list, usecols=[1, 2, 3, 4, 5, 6], header=0, names=col_names) # Gene expression gene_expression_df = pd.read_table(gene_expr) # CNV d1 = pd.read_csv(cnv1) d2 = pd.read_table(cnv2) d2.columns = ["genes_in_segment"] def f(s): return s.strip(",") cnv_binary_df = d1.copy() cnv_binary_df["genes_in_segment"] = d2["genes_in_segment"].apply(f) # Coding variants coding_variants_df = pd.read_csv(coding_variants) # Drug-response drug_response_df = pd.read_excel(drug_response) return (drug_annotations_df, cell_lines_list_df, gene_expression_df, cnv_binary_df, coding_variants_df, drug_response_df) ################################################################################################################# # DrugDirectReactome class ################################################################################################################# class DrugDirectReactome(DrugWithDrugBank): """Class representing compound from GDSC database. Main function of the class is to create and store input data corresponding to a given drug. Four types of data are considered: gene expression, copy number variants, coding variants and tumor tissue type. Class instances are initialized with four basic drug properties: ID, name, gene targets and target pathway. Data attributes are stored as pandas DataFrames and are filled using data files from GDSC via corresponding methods. In this setting, drugs gene targets are derived not only from GDSC and DrugBank, but also using the direct compound-pathway mapping from Reactome database. All genes belonging to corresponding Reactome target pathway are considered when computing input data. The utilities are the same as in parent DrugWithDrugBank class with an exception of "create_drugs" method which accounts for mappings coming from Reactome, and "load_data" method. Attributes: gdsc_id (int): ID from GDSC website. name (string): Drug name. targets (list of strings): Drug's target gene names (HGNC). target_pathway (string): Drug's target pathway as provided in GDSC annotations. ensembl targets (list of strings): Drug's target genes ensembl IDs. Can have different length than "targets" because some gene names may not be matched during mapping. Ensembl IDs are needed for gene expression data. map_from_hgnc_to_ensembl (dictionary): Dictionary mapping from gene names to ensembl IDs. Created after calling the "load_mappings" method. map_from_ensembl_to_hgnc (dictionary): Dictionary mapping from ensembl IDs to gene names. Created after calling the "load_mappings" method. total_no_samples_screened (int): Number of cell lines screened for that drug. Created after calling the "extract_drug_response_data" method. response_data (DataFrame): DataFrame with screened cell lines for that drug and corresponding AUC or IC50 values. Created after calling the "extract_drug_response_data" method. screened_cell_lines (list of ints): list containing COSMIC IDs representing cell lines screened for that drug. Created after calling the "extract_screened_cell_lines" method. gene_expression_data (DataFrame): DataFrame with gene expression data, considering only target genes. Created after calling the "extract_gene_expression" method mutation_data (DataFrame): DataFrame with binary calls for coding variants, considering only target genes. Created after calling the "extract_mutation_data" method. cnv_data (DataFrame): DataFrame with binary calls for copu number variants, considering only target genes. Created after calling the "extract_cnv_data" method. tissue_data (DataFrame): DataFrame with dummy encoded tumor tissue types in screened cell lines. Dummy encoding results in 13 binary features. Created after calling the "extract_tissue_data" method. full_data (DataFrame): DataFrame with combined data coming from given set of genetic data classes. Methods: Instance methods: __init__: Initialize a Drug instance. __repr__: Return string representation of an instance, as a command which can be used to create this instance. __str__: Return string representation of an instance. extract_drug_response_data: Generate a DataFrame with drug-response data. extract_screened_cell_lines: Generate a list of COSMIC IDs representing cell lines screened for that drug. extract_gene_expression: Generate a DataFrame with gene expression data for drug's screened cell lines extract_mutation_data: Generate a DataFrame with binary calls for coding variants. extract_cnv_data: Generate a DataFrame with binary calls for copy number variants. extract_tissue_data: Generate a DataFrame with dummy encoded tissue types. concatenate_data: Generate a DataFrame containing all desired genetic data classes. Available data classes are: gene expression, coding variants, cnv variants and tissue type. create_full_data: Combines above data extraction methods in order to create desired input data for the drug with one method call. Returns the full data. Class methods: load_mappings: Load appropriate dictionaries mapping between ensembl and HGNC. Static methods: create_drugs: Create a dictionary of DrugWithDrugBank class objects, each referenced by it's ID (keys are drug GDSC ID's). Includes also target data coming from DrugBank. load_data: Load all needed data files as DataFrames with one function call. """ def create_drugs(drug_annotations_df, drugbank_targets_mapping, reactome_direct_mapping): """Create a dictionary of DrugWithDrugBank class objects, each referenced by it's ID. Arguments: drug_annotations_df (DataFrame): DataFrame of drug annotations from GDSC website drugbank_targets_mapping (dictionary): dictionary with mapping from drug ID to it's targets from drugbank database reactome_direct_mapping: Returns: Dictionary of Drug objects as values and their ID's as keys """ drugs = {} for row in drug_annotations_df.itertuples(index=True, name="Pandas"): name = getattr(row, "DRUG_NAME") gdsc_id = getattr(row, "DRUG_ID") # Create an object only if it exists in Reactome mapping dictionary if gdsc_id in reactome_direct_mapping: targets = getattr(row, "TARGET").split(", ") # If this ID exists in DrugBank mapping, take the sum of all three sets if gdsc_id in drugbank_targets_mapping: targets = list(set(targets + drugbank_targets_mapping[gdsc_id] + reactome_direct_mapping[gdsc_id])) # Otherwise add just the Reactome targets else: targets = list(set(targets + reactome_direct_mapping[gdsc_id])) target_pathway = getattr(row, "TARGET_PATHWAY") drugs[gdsc_id] = DrugDirectReactome(gdsc_id, name, targets, target_pathway) else: continue return drugs def load_data(drug_annotations, cell_line_list, gene_expr, cnv1, cnv2, coding_variants, drug_response, drugbank_targets, reactome_targets): """Load all needed files by calling one function. All argumenst are filepaths to corrresponding files.""" # Drug annotations drug_annotations_df = pd.read_excel(drug_annotations) # Cell line annotations col_names = ["Name", "COSMIC_ID", "TCGA classification", "Tissue", "Tissue_subtype", "Count"] cell_lines_list_df = pd.read_csv(cell_line_list, usecols=[1, 2, 3, 4, 5, 6], header=0, names=col_names) # Gene expression gene_expression_df = pd.read_table(gene_expr) # CNV d1 = pd.read_csv(cnv1) d2 = pd.read_table(cnv2) d2.columns = ["genes_in_segment"] def f(s): return s.strip(",") cnv_binary_df = d1.copy() cnv_binary_df["genes_in_segment"] = d2["genes_in_segment"].apply(f) # Coding variants coding_variants_df = pd.read_csv(coding_variants) # Drug-response drug_response_df = pd.read_excel(drug_response) # DrugBank targets map_drugs_to_drugbank_targets = pickle.load(open(drugbank_targets, "rb")) # Reactome targets map_drugs_to_reactome_targets = pickle.load(open(reactome_targets, "rb")) return (drug_annotations_df, cell_lines_list_df, gene_expression_df, cnv_binary_df, coding_variants_df, drug_response_df, map_drugs_to_drugbank_targets, map_drugs_to_reactome_targets) ################################################################################################################# # DrugWithGenesInSamePathways class ################################################################################################################# class DrugWithGenesInSamePathways(DrugWithDrugBank): """Class representing drug from GDSC database. Main function of the class is to create and store input data corresponding to a given drug. Four types of data are considered: gene expression, copy number variants, coding variants and tumor tissue type. Class instances are initialized with four basic drug properties: ID, name, gene targets and target pathway. Data attributes are stored as pandas DataFrames and are filled using data files from GDSC via corresponding methods. In general, all the utilities are the same as in the basic Drug class, but with different input data. As in DrugWithDrugBank, we inorporate genetic features related to target genes coming both from GDSC and DrugBank, but in addition to this, we also consider every gene that belongs to the same pathways as original target genes. In other words, we consider genes that belong to pathways which are picked based on a single membership of any of the target genes. Three of original methods are overloaded: __init__, "create_drugs" and "load_data". Furthermore, three new attributes are introduced: "original_targets" which stores actual targets coming from GDSC and DrugBank, and "related_genes" which stores genes that occur in the same pathways along with original targets. Attributes: gdsc_id (int): ID from GDSC website. name (string): Drug name. targets (list of strings): Drug's target gene names (HGNC). target_pathway (string): Drug's target pathway as provided in GDSC annotations. ensembl targets (list of strings): Drug's target genes ensembl IDs. Can have different length than "targets" because some gene names may not be matched during mapping. Ensembl IDs are needed for gene expression data. map_from_hgnc_to_ensembl (dictionary): Dictionary mapping from gene names to ensembl IDs. Created after calling the "load_mappings" method. map_from_ensembl_to_hgnc (dictionary): Dictionary mapping from ensembl IDs to gene names. Created after calling the "load_mappings" method. total_no_samples_screened (int): Number of cell lines screened for that drug. Created after calling the "extract_drug_response_data" method. response_data (DataFrame): DataFrame with screened cell lines for that drug and corresponding AUC or IC50 values. Created after calling the "extract_drug_response_data" method. screened_cell_lines (list of ints): list containing COSMIC IDs representing cell lines screened for that drug. Created after calling the "extract_screened_cell_lines" method. gene_expression_data (DataFrame): DataFrame with gene expression data, considering only target genes. Created after calling the "extract_gene_expression" method mutation_data (DataFrame): DataFrame with binary calls for coding variants, considering only target genes. Created after calling the "extract_mutation_data" method. cnv_data (DataFrame): DataFrame with binary calls for copu number variants, considering only target genes. Created after calling the "extract_cnv_data" method. tissue_data (DataFrame): DataFrame with dummy encoded tumor tissue types in screened cell lines. Dummy encoding results in 13 binary features. Created after calling the "extract_tissue_data" method. full_data (DataFrame): DataFrame with combined data coming from given set of genetic data classes. Methods: Instance methods: __init__: Initialize a Drug instance. __repr__: Return string representation of an instance, as a command which can be used to create this instance. __str__: Return string representation of an instance. extract_drug_response_data: Generate a DataFrame with drug-response data. extract_screened_cell_lines: Generate a list of COSMIC IDs representing cell lines screened for that drug. extract_gene_expression: Generate a DataFrame with gene expression data for drug's screened cell lines extract_mutation_data: Generate a DataFrame with binary calls for coding variants. extract_cnv_data: Generate a DataFrame with binary calls for copy number variants. extract_tissue_data: Generate a DataFrame with dummy encoded tissue types. concatenate_data: Generate a DataFrame containing all desired genetic data classes. Available data classes are: gene expression, coding variants, cnv variants and tissue type. create_full_data: Combines above data extraction methods in order to create desired input data for the drug with one method call. Returns the full data. Class methods: load_mappings: Load appropriate dictionaries mapping between ensembl and HGNC. Static methods: create_drugs: Create a dictionary of DrugWithDrugBank class objects, each referenced by it's ID (keys are drug GDSC ID's). Includes also target data coming from DrugBank. load_data: Load all needed data files as DataFrames with one function call. """ def __init__(self, gdsc_id, name, original_targets, related_genes, targets, target_pathway): self.gdsc_id = gdsc_id self.name = name self.original_targets = original_targets self.related_genes = related_genes self.targets = targets self.target_pathway = target_pathway self.ensembl_targets = [] for x in self.targets: try: self.ensembl_targets.append(self.map_from_hgnc_to_ensembl[x]) except KeyError: pass def create_drugs(drug_annotations_df, drugbank_targets_mapping, map_target_genes_to_same_pathways_genes): """Create a dictionary of DrugWithGenesInSamePathways class objects, each referenced by it's ID. Add target data coming from DrugBank, as well as genes that occur in the same pathways as original target genes. Arguments: drug_annotations_df (DataFrame): DataFrame of drug annotations from GDSC website. drugbank_targets_mapping (dictionary): Dictionary with mapping from drug ID to it's targets from drugbank database. map_target_genes_to_same_pathways_genes (dictionary): Dictionary with mapping from target genes names to gene names that occur in same pathways. Returns: Dictionary of DrugWithGenesInSamePathways objects as values and their ID's as keys. """ drugs = {} for row in drug_annotations_df.itertuples(index=True, name="Pandas"): # Extract name, ID and GDSC target pathway name = getattr(row, "DRUG_NAME") gdsc_id = getattr(row, "DRUG_ID") target_pathway = getattr(row, "TARGET_PATHWAY") # Extract original targets (for now just from GDSC) original_targets = getattr(row, "TARGET").split(", ") # Add genes from DrugBank (if drug is matched) to original targets list if gdsc_id in drugbank_targets_mapping: original_targets = list(set(original_targets + drugbank_targets_mapping[gdsc_id])) # Extract list of related genes (that occur in same pathways but are not direct targets) # from Reactome dictionary related_genes = [] # Iterate over direct target genes for target_gene in original_targets: if target_gene in map_target_genes_to_same_pathways_genes: # Genes related to one specific target coocurring_genes = map_target_genes_to_same_pathways_genes[target_gene] # Update the overall list of related genes for given drug related_genes = related_genes + coocurring_genes # Exclude genes that are original targets fro related genes related_genes_final = [] for gene in related_genes: if gene not in original_targets: related_genes_final.append(gene) # Remove duplicates from related_genes_final related_genes_final = list(set(related_genes_final)) # Setup "targets" field as a sum of original targets and related genes targets = original_targets + related_genes_final assert len(targets) == len(original_targets) + len(related_genes_final) # Finally, create actual DrugWithGenesInSamePathways instance drugs[gdsc_id] = DrugWithGenesInSamePathways(gdsc_id, name, original_targets, related_genes_final, targets, target_pathway) return drugs def load_data(drug_annotations, cell_line_list, gene_expr, cnv1, cnv2, coding_variants, drug_response, drugbank_targets, pathway_occurence_genes): """Load all needed files by calling one function. All argumenst are filepaths to corrresponding files.""" # Drug annotations drug_annotations_df = pd.read_excel(drug_annotations) # Cell line annotations col_names = ["Name", "COSMIC_ID", "TCGA classification", "Tissue", "Tissue_subtype", "Count"] cell_lines_list_df = pd.read_csv(cell_line_list, usecols=[1, 2, 3, 4, 5, 6], header=0, names=col_names) # Gene expression gene_expression_df = pd.read_table(gene_expr) # CNV d1 = pd.read_csv(cnv1) d2 = pd.read_table(cnv2) d2.columns = ["genes_in_segment"] def f(s): return s.strip(",") cnv_binary_df = d1.copy() cnv_binary_df["genes_in_segment"] = d2["genes_in_segment"].apply(f) # Coding variants coding_variants_df = pd.read_csv(coding_variants) # Drug-response drug_response_df = pd.read_excel(drug_response) # DrugBank targets map_drugs_to_drugbank_targets = pickle.load(open(drugbank_targets, "rb")) # Dictionary mapping from target genes to genes that occur in same pathways map_target_genes_to_same_pathways_genes = pickle.load( open(pathway_occurence_genes, "rb")) return (drug_annotations_df, cell_lines_list_df, gene_expression_df, cnv_binary_df, coding_variants_df, drug_response_df, map_drugs_to_drugbank_targets, map_target_genes_to_same_pathways_genes) ################################################################################################################# # Experiment class ################################################################################################################# class Experiment(object): """Class representing single machine learning experiment with GDSC data. The class is mainly useful for storing experiment's results. Actual machine learning is performed outside of the class. Data stored in dictonaries is filled during machine learning. Other methods describing the results use those primal data dictonaries. Attributes: name (string): Name somehow summarizing the experiment. algorithm (string): Name of the predictive algorithm used. param_search_type (string): What kind of parameter search was used: exhaustive grid search or randomized search. data_normalization_type (string): What kind of data normalization was applied, on which features. kfolds (int): How many folds were used during cross-validation hyperparameter tuning split_seed (int): Seed (random_state) used when randomly splitting the data (using sklearn's train_test_split). If None, no specific seed was set. tuning_seed (int): Seed (random_state) used when doing hyperparameter tuning with sklearn's RandomizedSearchCV. input_data (dictionary): Dictionary with (drug.name, drug.gdsc_id) pairs as keys and DataFrames containing corrresponding input data as values best_scores (dictionary): Dictionary with (drug.name, drug.gdsc_id) pairs as keys and tuples of achieved best prediction scores as values. cv_results: (dictionary): Dictionary with (drug.name, drug.gdsc_id) pairs as keys and full cross-validation results as values best_parameters (dictionary): Dictionary with (drug.name, drug.gdsc_id) pairs as keys and best found hyperparameters as values dummy_scores (dictionary): Dictionary with (drug.name, drug.gdsc_id) pairs as keys and corresponding dummy scores as values data_stds (dictionary): Dictionary with (drug.name, drug.gdsc_id) pairs as keys and standard deviations of response variable as values coefficients (dictionary): Dictionary with (drug.name, drug.gdsc_id) pairs as keys and weights of the best found model as values. training_scores (dictionary): Dictionary with (drug.name, drug.gdsc_id) pairs as keys and scores obtained on the training set as values. data_shapes (dictionary): Dictionary with (drug.name, drug.gdsc_id) pairs as keys and tuples of input data shapes as values. results_df (DataFrame): DataFrame with results of the Experiment for each considered drug. Methods: Instance methods: __init__: Initializer. __repr__: Return short string representation of an instance. __str__: Return more detailed description of an experiment. create_results_df: Wrap results from dictonaries into single pandas DataFrame results_summary_single: Display numeric summary of Experiment's results. boxplot_of_performance_single: Create boxplot of a given perfromance metric across all drugs. barplot_of_rmses_single: Generate barplots of model test RMSEs along with dummy RMSE for each drug, for single Experiment. boxplots_rel_rmse_wrt_pathways: Generate boxplots of relative RMSE wrt. target pathways. plot_one_vs_another: Create regular plot of first variable vs. another. plot_pathway_distribution: Plot overall pathway counts in this Experiment. list_of_better_drugs: Compute list of drugs which performed better in the "other" Experiment. plot_pathway_distribution_in_better_drugs: Plot target pathway counts in better performing drugs in "other" Experiment. merge_two_exp_results: Take other Eperiment object and horizontally merge two corresponding result DataFrames. results_for_better_drugs: Compute DataFrame containing comparisons between two Experiments along drugs that performed better in the other one. barplots_of_rmse_for_two_experiments: Plot barplots of test RMSE or relative test RMSE for each drug. boxplots_of_performance_for_two_experiments: Create boxplots of a given performance metric for two Experiments. Static methods: create_input_for_each_drug: Take in the dictionary with drug_id: Drug object pairs and create input data for each Drug. """ # Instance methods def __init__(self, name, algorithm, parameter_search_type, data_normalization_type, kfolds, split_seed=None, tuning_seed=None): """Experiment class initializer. Attributes other than name will be filled during actual learning. Arguments: name (string): Name somehow summarizing the experiment. algorithm (string): Name of the predictive algorithm used. param_search_type (string): What kind of parameter search was used: exhaustive grid search or randomized search. data_normalization_type (string): What kind of data normalization was applied, on which features. kfolds (int): How many folds were used during cross-validation hyperparameter tuning split_seed (int): Seed (random_state) used when randomly splitting the data (using sklearn's train_test_split). If None, no specific seed was set. tuning_seed (int): Seed (random_state) used when doing hyperparameter tuning with sklearn's RandomizedSearchCV. Returns: None """ # General characteristics self.name = name self.algorithm = algorithm self.param_search_type = parameter_search_type self.data_normalization_type = data_normalization_type self.kfolds = kfolds self.split_seed = split_seed self.tuning_seed = tuning_seed # Results storage dictonaries self.input_data = {} self.best_scores = {} self.cv_results = {} self.best_parameters = {} self.dummy_scores = {} self.data_stds = {} self.coefficients = {} self.training_scores = {} self.data_shapes = {} def __repr__(self): """Return short string representation of an object.""" return 'Experiment("{}")'.format(self.name) def __str__(self): """Return more detailed description of an experiment.""" return self.name def create_results_df(self, drug_annotations_df): """Wrap results in storage dictionaries into single DataFrame. Assign resulting DataFrame into instance attribute (results_df). Arguments: drug_annotations_df (DataFrame): list of drugs in GDSC Returns: None """ # Initialize DataFrame to fill df = pd.DataFrame() # Initialize lists (columns) we want to have drug_names = [] drug_ids = [] model_test_RMSES = [] model_CV_RMSES = [] model_test_correlations = [] model_test_corr_pvals = [] dummy_test_RMSES = [] dummy_CV_RMSES = [] y_stds = [] model_train_RMSES = [] numbers_of_samples = [] numbers_of_features = [] target_pathways = [] # Fill the columns lists for name, ide in self.best_scores: drug_names.append(name) drug_ids.append(ide) model_test_RMSES.append(self.best_scores[(name, ide)].test_RMSE) model_CV_RMSES.append((-self.best_scores[(name, ide)].cv_best_score) ** 0.5) model_test_correlations.append(self.best_scores[(name, ide)].test_correlation[0]) model_test_corr_pvals.append(self.best_scores[(name, ide)].test_correlation[1]) dummy_test_RMSES.append(self.dummy_scores[(name, ide)].test_RMSE) dummy_CV_RMSES.append(self.dummy_scores[(name, ide)].cv_RMSE) y_stds.append(self.data_stds[(name, ide)].overall) model_train_RMSES.append(self.training_scores[(name, ide)].training_RMSE) numbers_of_samples.append(self.data_shapes[(name, ide)][0]) numbers_of_features.append(self.data_shapes[(name, ide)][1] - 14) target_pathways.append( drug_annotations_df[drug_annotations_df["DRUG_ID"] == ide]["TARGET_PATHWAY"].iloc[0]) # Insert lists as a DataFrame columns df.insert(0, "Drug Name", drug_names) df.insert(1, "Drug ID", drug_ids) df.insert(2, "Target Pathway", target_pathways) df.insert(3, "Model test RMSE", model_test_RMSES) df.insert(4, "Model CV RMSE", model_CV_RMSES) df.insert(5, "Model test correlation", model_test_correlations) df.insert(6, "Model test pval", model_test_corr_pvals) df.insert(7, "Dummy test RMSE", dummy_test_RMSES) df.insert(8, "Dummy CV RMSE", dummy_CV_RMSES) df.insert(9, "STD in Y", y_stds) df.insert(10, "Model train RMSE", model_train_RMSES) df.insert(11, "Number of samples", numbers_of_samples) df.insert(12, "Number of features", numbers_of_features) df.insert(13, "Relative test RMSE", df["Dummy test RMSE"] / df["Model test RMSE"]) self.results_df = df def results_summary_single(self): """Display numeric summary of Experiment's results. Arguments: None Returns: None """ print(self.name) print("Mean and median test RMSE:", round(self.results_df["Model test RMSE"].mean(), 4), round(self.results_df["Model test RMSE"].median(), 4)) print('Mean and median test correlation:', round(self.results_df["Model test correlation"].mean(), 4), round(self.results_df["Model test correlation"].median(), 4)) # Plots of result from single Experiment def boxplot_of_performance_single(self, metric, title="Predictive performance", figsize = (6, 6), title_size=25, label_size=20, tick_size=20, save_directory=None): """Creates boxplot of a given perfromance metric across all drugs. Arguments: metric (string): which variable to plot, must be one of the column names in self.results_df title (string): title of the plot figsize (tuple): size of the figure title_size (int): font size of the title label_size (int): font size of axis labels tick_size (int): font size of axis ticks save_directory (string or None): directory to which save the plot. If None, plot is not saved Returns: None """ fig = plt.figure(figsize=figsize) plt.tick_params(labelsize=tick_size) plt.title(title, fontsize=title_size) plt.grid() sns.boxplot(x=self.results_df[metric], orient="v") plt.xlabel("", fontsize=label_size) plt.ylabel(metric, fontsize=label_size) if save_directory: plt.savefig(save_directory, bbox_inches='tight') plt.show() def barplot_of_rmses_single(self, figsize=(35, 12), title_size=45, label_size=30, tick_size=20, half=1, save_directory=None): """Generate barplots of model test RMSEs along with dummy RMSE for each drug, for single Experiment. Arguments: figsize (tuple): size of the figure title_size (int): font size of the title label_size (int): font size of axis labels tick_size (int): font size of axis ticks half (int): which half of the drugs to plot. If 0, all available drugs are plotted save_directory (string or None): directory to which save the plot. If None, plot is not saved Returns: None """ # Set up legend parameters params = {"legend.fontsize": 25, "legend.handlelength": 2} plt.rcParams.update(params) fig = plt.figure() ax = fig.add_subplot(111) ax.set_title("Cross-validation RMSE for each drug", fontsize=title_size) ax.set_xlabel("Drug", fontsize=label_size) ax.set_ylabel("RMSE", fontsize=label_size) # Set up DataFrame slicing if half == 1: start_idx = 0 end_idx = self.results_df.shape[0] // 2 elif half == 2: start_idx = self.results_df.shape[0] // 2 end_idx = self.results_df.shape[0] else: start_idx = 0 end_idx = self.results_df.shape[0] self.results_df.sort_values("Model test RMSE", ascending = False).iloc[start_idx:end_idx].plot( x = "Drug Name", y = ["Model test RMSE", "Dummy test RMSE"] ,kind="bar", ax = ax, width = 0.7, figsize=figsize, fontsize=tick_size, legend = True, grid = True) if save_directory: plt.savefig(save_directory) plt.show() def boxplots_rel_rmse_wrt_pathways(self, figsize=(30, 12), title_size=35, label_size=30, tick_size=25, save_directory=None): """Generate boxplots of relative RMSE wrt. target pathways. Arguments: figsize (tuple): size of the figure title_size (int): font size of the title label_size (int): font size of axis labels tick_size (int): font size of axis ticks save_directory (string or None): directory to which save the plot. If None, plot is not saved Returns: None """ # Set up order list for plotting order_list = list(self.results_df.groupby("Target Pathway").agg({"Relative test RMSE": np.median}).sort_values( "Relative test RMSE").sort_values( "Relative test RMSE", ascending = False).index) fig = plt.figure(figsize=figsize) plt.tick_params(labelsize=tick_size) plt.xticks(rotation="vertical") plt.title("Relative test RMSE with respect to drug's target pathway", fontsize=title_size) plt.grid() plt.gcf().subplots_adjust(bottom=0.53) sns.boxplot(x = "Target Pathway", y = "Relative test RMSE", data = self.results_df, order=order_list) plt.ylabel("Relative test RMSE", fontsize=label_size) plt.xlabel("Target pathway", fontsize=label_size) if save_directory: plt.savefig(save_directory) plt.show() def plot_one_vs_another(self, first, second, title, hline=False, figsize=(15, 10), title_size=30, label_size=25, tick_size=15, save_directory=None): """Create regular plot of first variable vs. another. Arguments: first (string): first variable to plot, must be one of the column names in self.results_df second(string): second variable to plot, must be one of the column names in self.results_df hline (bool): do we want a horizontal line at one figsize (tuple): size of the figure title_size (int): font size of the title label_size (int): font size of axis labels tick_size (int): font size of axis ticks save_directory (string or None): directory to which save the plot. If None, plot is not saved Returns: None """ plt.figure(figsize=figsize) plt.title(title, fontsize=title_size) plt.xlabel(second, fontsize=label_size) plt.ylabel(first, fontsize=label_size) plt.tick_params(labelsize = tick_size) if hline: plt.axhline(y=1.0, xmin=0, xmax=1.2, color="black", linewidth=2.5) sns.regplot(x=second, y=first, data=self.results_df) if save_directory: plt.savefig(save_directory) plt.show() def plot_pathway_distribution(self, figsize=(15, 8), title_size=30, label_size=25, tick_size=15, save_directory=None): """Plot overall pathway counts in this Experiment. Arguments: figsize (tuple): size of the figure title_size (int): font size of the title label_size (int): font size of axis labels tick_size (int): font size of axis ticks save_directory (string or None): directory to which save the plot. If None, plot is not saved Returns: None """ plt.figure(figsize=figsize) plt.title("Target Pathway counts", fontsize=title_size) plt.xlabel("Target Pathway", fontsize=label_size) sns.countplot(x="Target Pathway", data=self.results_df) plt.ylabel("Count", fontsize=label_size) plt.xticks(rotation='vertical') plt.tick_params("both", labelsize=tick_size) plt.gcf().subplots_adjust(bottom=0.45) if save_directory: plt.savefig(save_directory) plt.show() # Comparisons between two Experiments def list_of_better_drugs(self, other, rmse_type="relative", rmse_fraction=0.8, correlation_fraction=None, correlation_threshold=0.25): """Compute list of drugs which performed better in the "other" experiment. Arguments: other (Experiment): other considered Experiment object rmse_type (string): "relative" or "absolute" - whether to use relative or absolute RMSE in comparison rmse_fraction (float): fraction by which other RMSE should be better for drug to be considered as "better". If rmse_type is "relative", fraction should be greater than 1., less than 1. otherwise. correlation_fraction (float, default None): fraction by which other correlation should be better for drug to be considered as "better". Should be greater thatn 1. If None, this condidion is not applied. correlation_threshold (float): correlation that needs to be achieved in order for drug to be "better" Returns: list if better drugs IDs """ if rmse_type == "relative": column = "Relative test RMSE" if rmse_type == "absolute": column = "Model test RMSE" better_drugs = [] for drug_id in self.results_df["Drug ID"].unique(): self_df = self.results_df[self.results_df["Drug ID"] == drug_id] other_df = other.results_df[other.results_df["Drug ID"] == drug_id] if other_df.shape[0] < 1: # Make sure of other Experiment contains results for this drug continue # Extract data of interest self_rmse = self_df[column].iloc[0] self_corr = self_df["Model test correlation"].iloc[0] other_rmse = other_df[column].iloc[0] other_corr = other_df["Model test correlation"].iloc[0] other_relative = other_df["Relative test RMSE"].iloc[0] # Classify as good or bad if rmse_type == "relative": # Need to distungish two cases because the higher relative RMSE the better if correlation_fraction: if (other_rmse > rmse_fraction * self_rmse) and (other_relative > 1.) \ and (other_corr > correlation_threshold) and (other_corr > correlation_fraction * self_corr): better_drugs.append(drug_id) else: if (other_rmse > rmse_fraction * self_rmse) and (other_relative > 1.) \ and (other_corr > correlation_threshold): better_drugs.append(drug_id) if rmse_type == "absolute": # The lower absolute RMSE the better if correlation_fraction: if (other_rmse < rmse_fraction * self_rmse) and (other_relative > 1.) \ and (other_corr > correlation_threshold) and (other_corr > correlation_fraction * self_corr): better_drugs.append(drug_id) else: if (other_rmse > rmse_fraction * self_rmse) and (other_relative > 1.) \ and (other_corr > correlation_threshold): better_drugs.append(drug_id) return better_drugs def plot_pathway_distribution_in_drugs_intersection(self, other, figsize=(15, 8), title_size=30, label_size=25, tick_size=15, save_directory=None): """Plot pathway distribution in this (self) Experiment across drugs, but only consider drugs common with "other" Experiment. Arguments: other (Experiment): other considered Experiment object figsize (tuple): size of the figure title_size (int): font size of the title label_size (int): font size of axis labels tick_size (int): font size of axis ticks save_directory (string or None): directory to which save the plot. If None, plot is not saved Returns: None """ # Compute intersection in IDs intersection = list(self.merge_two_exp_results( other, ["a", "b"], "flag")["Drug ID"].unique()) # Actual plot plt.figure(figsize=figsize) plt.title("Target Pathway counts", fontsize=title_size) plt.xlabel("Target Pathway", fontsize=label_size) sns.countplot(x="Target Pathway", data=self.results_df[self.results_df["Drug ID"].isin(intersection)]) plt.ylabel("Count", fontsize=label_size) plt.xticks(rotation='vertical') plt.tick_params("both", labelsize=tick_size) plt.gcf().subplots_adjust(bottom=0.45) if save_directory: plt.savefig(save_directory) plt.show() # Plots of results from two Experiments def plot_pathway_distribution_in_better_drugs(self, other, rmse_type="relative", rmse_fraction=0.8, correlation_fraction=None, correlation_threshold=0.25, figsize=(15, 8), title_size=30, label_size=25, tick_size=15, save_directory=None): """Plot target pathway counts in better performing drugs. Arguments: other (Experiment): other considered Experiment object rmse_type (string): "relative" or "absolute" - whether to use relative or absolute RMSE in comparison rmse_fraction (float): fraction by which other RMSE should be better for drug to be considered as "better". If rmse_type is "relative", fraction should be greater than 1., less than 1. otherwise. correlation_fraction (float, default None): fraction by which other correlation should be better for drug to be considered as "better". Should be greater thatn 1. If None, this condidion is not applied. correlation_threshold (float): correlation that needs to be achieved in order for drug to be "better" figsize (tuple): size of the figure title_size (int): font size of the title label_size (int): font size of axis labels tick_size (int): font size of axis ticks save_directory (string or None): directory to which save the plot. If None, plot is not saved Returns: None """ # Compute list of better drugs better_drugs = self.list_of_better_drugs(other, rmse_type, rmse_fraction, correlation_fraction, correlation_threshold) plt.figure(figsize=figsize) plt.title("Target Pathway counts", fontsize=title_size) plt.xlabel("Target Pathway", fontsize=label_size) plt.ylabel("Count", fontsize=label_size) sns.countplot(x="Target Pathway", data=other.results_df[other.results_df["Drug ID"].isin(better_drugs) ]) plt.xticks(rotation='vertical') plt.tick_params("both", labelsize=tick_size) plt.gcf().subplots_adjust(bottom=0.45) if save_directory: plt.savefig(save_directory) plt.show() def merge_two_exp_results(self, other, flags, feature_name): """Take other Eperiment object and horizontally merge two corresponding result DataFrames. Arguments: other (Experiment): other considered Experiment object flags (list of strings): flags assigned to DataFrame entries from given object. First element should be for this (self) instance feature_name (string): name of a column that differentiate between two results sets Returns: None """ # Since the whole point is to compare results for the same drugs, first let's find # intersection between two DataFrames in terms of Drug ID ids_intersection = list(self.results_df[ self.results_df["Drug ID"].isin(list(other.results_df["Drug ID"].unique()))]["Drug ID"].unique()) # Create intersected DataFrames self_intersected_df = self.results_df[self.results_df["Drug ID"].isin(ids_intersection)] other_intersected_df = other.results_df[other.results_df["Drug ID"].isin(ids_intersection)] assert self_intersected_df.shape[0] == other_intersected_df.shape[0] # Create new DataFrame with merged results # First, assign flags to self DataFrame entries flag_list = [flags[0]] * self_intersected_df.shape[0] self_intersected_df[feature_name] = flag_list # Second DataFrame flag_list = [flags[1]] * other_intersected_df.shape[0] other_intersected_df[feature_name] = flag_list # Concatenate both DataFrames total_results_df = pd.concat([self_intersected_df, other_intersected_df], axis=0) return total_results_df def results_for_better_drugs(self, other, flags, feature_name, rmse_type="relative", rmse_fraction=0.8, correlation_fraction=None, correlation_threshold=0.2): """Compute DataFrame containing comparisons between two Experiments along drugs that performed better in the other one. Arguments: other (Experiment): other considered Experiment object flags (list of strings): flags assigned to DataFrame entries from given object. First element should be for this (self) instance feature_name (string): name of a column that differentiate between two results sets rmse_type (string): "relative" or "absolute" - whether to use relative or absolute RMSE in comparison rmse_fraction (float): fraction by which other RMSE should be better for drug to be considered as "better". If rmse_type is "relative", fraction should be greater than 1., less than 1. otherwise. correlation_fraction (float, default None): fraction by which other correlation should be better for drug to be considered as "better". Should be greater thatn 1. If None, this condidion is not applied. correlation_threshold (float): correlation that needs to be achieved in order for drug to be "better" Returns: None """ # Compute DataFrame containing results from both Experiments total_df = self.merge_two_exp_results(other, flags, feature_name) # Extract data only for better performing drugs better_drugs = self.list_of_better_drugs(other, rmse_type, rmse_fraction, correlation_fraction, correlation_threshold) return total_df[total_df["Drug ID"].isin(better_drugs)].sort_values("Drug ID") def barplots_of_performance_for_two_experiments(self, other, flags, feature_name, metric, figsize=(35, 12), title_size=45, label_size=30, tick_size=20, half=1, save_directory=None): """Plot barplots of a given performance metric for each drug. Two barplots for each drug coming from two different Experiments. Arguments: other (Experiment): other considered Experiment object flags (list of strings): flags assigned to DataFrame entries from given object. First element should be for this (self) instance feature_name (string): name of a column that differentiate between two results sets metric (string): which metric to plot figsize (tuple): size of the figure title_size (int): font size of the title label_size (int): font size of axis labels tick_size (int): font size of axis ticks half (int): which half of the drugs to plot. If 0, all available drugs are plotted save_directory (string or None): directory to which save the plot. If None, plot is not saved Returns: None """ # Compute DataFrame containing results from both Experiments total_df = self.merge_two_exp_results(other, flags, feature_name) # Determine which half of the drugs to plot if half == 1: start_idx = 0 end_idx = len(total_df["Drug ID"].unique()) // 2 elif half == 2: start_idx = len(total_df["Drug ID"].unique()) // 2 end_idx = len(total_df["Drug ID"].unique()) else: start_idx = 0 end_idx = len(total_df["Drug ID"].unique()) drugs_to_plot = list(total_df["Drug ID"].unique())[start_idx:end_idx] # Actual plotting # Legend parameters params = {"legend.fontsize": 25, "legend.handlelength": 2} plt.rcParams.update(params) fig = plt.figure(figsize=figsize) title = metric + " for each drug" plt.title(title, fontsize=45) plt.xlabel("Drug name", fontsize=30) plt.ylabel(metric, fontsize=30) sns.barplot("Drug Name", metric, hue=feature_name, data=total_df[ total_df["Drug ID"].isin(drugs_to_plot)].sort_values( metric, ascending=False)) plt.xticks(rotation='vertical') plt.tick_params("both", labelsize=20) plt.legend(title = "") plt.gcf().subplots_adjust(bottom=0.25) if save_directory: plt.savefig(save_directory) plt.show() def boxplots_of_performance_for_two_experiments(self, other, flags, feature_name, metric, title="Predictive performance", figsize = (8, 6), title_size=25, label_size=20, tick_size=18, save_directory=None): """Create boxplots of a given performance metric for two Experiments, across all drugs. Arguments: other (Experiment): other considered Experiment object flags (list of strings): flags assigned to DataFrame entries from given object. First element should be for this (self) instance feature_name (string): name of a column that differentiate between two results sets metric (string): which variable to plot, must be one of the column names in self.results_df title (string): title of the plot figsize (tuple): size of the figure title_size (int): font size of the title label_size (int): font size of axis labels tick_size (int): font size of axis ticks save_directory (string or None): directory to which save the plot. If None, plot is not saved Returns: None """ # Compute DataFrame containing results from both Experiments total_df = self.merge_two_exp_results(other, flags, feature_name) fig = plt.figure(figsize=figsize) plt.tick_params(labelsize=tick_size) plt.title(title, fontsize = title_size) plt.grid() sns.boxplot(x = feature_name, y = metric, data=total_df) plt.xlabel("", fontsize=label_size) plt.ylabel(metric, fontsize=label_size) if save_directory: plt.savefig(save_directory) plt.show() # Static methods @staticmethod def create_input_for_each_drug(drug_dict, drug_response_df, data_combination, gene_expression_df=None, cnv_binary_df=None, map_cl_id_and_feature_to_status=None, cell_lines_list_df=None, coding_variants_df=None, merck_signatures_df=None, feat_threshold=None, log=False, metric="AUC"): """Take in the dictionary with drug_id: Drug object pairs and create input data for each Drug. Arguments: drug_dict (dictionary): dictionary with drug_id: Drug object pairs drug_response_df (DataFrame): DataFrame of drug response data from GDSC gene_expression_df (DataFrame): original GDSC gene expression DataFrame cnv_binary_df (DataFrame): DataFrame from GDSC download tool with CNV data cell_line_list_df (DataFrame): cell line list from GDSC coding_variants_df (DataFrame): DataFrame with original mutation calls from GDSC data_combination (list of strings): determines which types of features to include, valid chocies are: "CNV", "mutation", "expression" and "tissue" feat_thresold (int): if not None, count number of Drugs with number of features greater than feat_threshold log (bool): provide or not the progress display Returns: None """ s = 0 c = 0 sum_of_features = 0 for ide in drug_dict: drug = drug_dict[ide] # Current Drug object df = drug.create_full_data(drug_response_df, gene_expression_df=gene_expression_df, cnv_binary_df=cnv_binary_df, map_cl_id_and_feature_to_status=map_cl_id_and_feature_to_status, cell_line_list=cell_lines_list_df, mutation_df=coding_variants_df, merck_signatures_df=merck_signatures_df, data_combination=data_combination, metric=metric ) if feat_threshold: if df.shape[1] >= feat_threshold: s += 1 sum_of_features += (df.shape[1] - 14) c +=1 if c % 10 == 0 and log: print(c, "drugs done") if feat_threshold: print("Number of drugs with number of features bigger than {}: {}".format( feat_threshold, s)) if log: print("Mean number of features in {} drugs: {}".format(c, sum_of_features / c)) ############################################################################################### # Modeling class ############################################################################################### class Modeling(object): """Basic class designed for performing machine learning experiments. This class alone doesn't involve any feature selection method. """ def __init__(self, name, param_grid, estimator_seeds, split_seeds, n_combinations=20, kfolds=5, rforest_jobs=None, rforest_refit_jobs=None, max_iter=1000, tuning_jobs=None, scoring="neg_mean_squared_error", test_size=0.3): """ Modeling object initializer. Arguments: name (string): Name describing the experiment. param_grid (dict): Grid of parameters to search on during hyperparameter tuning. estimator_seeds (list of ints): Random States for predictive algorithms used. split_seeds (list of ints): Seeds for data splits. n_combinations (int): Number of parameters to try during hyperparameter tuning. kfolds (int): Number of folds of cross validation during hyperparameter tuning. rforest_jobs (int): Number of cores to use during fitting and predicting with Random Forest (during cross-validation hyperparamater tuning). rforest_refit_jobs (int): Number of cores to use during refitting RandomForest after cross-validation hyperparamater tuning. tuning_jobs (int): Number of cores to use during cross-validation. scoring (string): Function to optimize during parameter tuning. test_size (float): Fraction of whole data spent on test set. Returns: ModelingWithFeatureSelection object. """ if len(estimator_seeds) != len(split_seeds): raise ValueError("Random forest seeds and split seeds must have the same length") self.name = name self.param_grid = param_grid self.estimator_seeds = estimator_seeds self.split_seeds = split_seeds self.n_combinations = n_combinations self.kfolds = kfolds self.rforest_jobs = rforest_jobs self.rforest_refit_jobs = rforest_refit_jobs self.max_iter = max_iter self.tuning_jobs = tuning_jobs self.scoring = scoring self.test_size = test_size def enet_fit_single_drug(self, X, y, tuning_seed=None, enet_seed=None, verbose=0, refit=True): """Perform single modeling given input data and labels, using Elastic Net regression. Modeling consists of hyperparameter tuning with kfold cross-validation and fitting a model with best parameters on whole training data. Arguments: X (DataFrame): Training input data. y (Series): Training response variable. tuning_seed (int): Random State for parameter tuning. rforest_seed (int): Random State of Elastic Net Model. verbose (int): Controls verbosity of RandomizedSearchCV. Returns: grid: Fitted (if refit is True) RandomizedSearchCV object. """ # Set elements of the pipeline, i.e. scaler and estimator scaler = StandardScaler() estimator = ElasticNet(random_state=enet_seed, max_iter=self.max_iter) # Create pipeline main_pipeline = Pipeline([ ("scaler", scaler), ("estimator", estimator) ]) # Setup RandomizedSearchObject grid = model_selection.RandomizedSearchCV(main_pipeline, param_distributions=self.param_grid, n_iter=self.n_combinations, scoring=self.scoring, cv=self.kfolds, random_state=tuning_seed, n_jobs=self.tuning_jobs, verbose=verbose, pre_dispatch='2*n_jobs', refit=refit) # Fit the grid grid.fit(X, y) return grid def rf_fit_single_drug(self, X, y, tuning_seed=None, rforest_seed=None, verbose=0, refit=True): """Perform single modeling given input data and labels. Modeling consists of hyperparameter tuning with kfold cross-validation and fitting a model with best parameters on whole training data. Arguments: X (DataFrame): Training input data. y (Series): Training response variable. tuning_seed (int): Random State for parameter tuning. rforest_seed (int): Random State of Random Forest Model. verbose (int): Controls verbosity of RandomizedSearchCV. Returns: grid: Fitted RandomizedSearchCV object. """ # Set elements of the pipeline, i.e. scaler and estimator scaler = StandardScaler() estimator = RandomForestRegressor(random_state=rforest_seed, n_jobs=self.rforest_jobs) # Create pipeline main_pipeline = Pipeline([ ("scaler", scaler), ("estimator", estimator) ]) # Setup RandomizedSearchObject grid = model_selection.RandomizedSearchCV(main_pipeline, param_distributions=self.param_grid, n_iter=self.n_combinations, scoring=self.scoring, cv=self.kfolds, random_state=tuning_seed, n_jobs=self.tuning_jobs, verbose=verbose, pre_dispatch='2*n_jobs', refit=refit) # Fit the grid grid.fit(X, y) return grid def evaluate_single_drug(self, grid, X, y): """Evaluate provided fitted (or not) model on a test data. Arguments: grid (RandomizedSearchCV object): Previously fitted best model. X (DataFrame): Test input data. y (Series): Test response variable. Returns: model_test_scores (namedtuple): Results on a test set. grid.cv_results_ (dict): Full results of parameter tuning with cross-validation. grid.best_params_ (dict): Parameters of best found model. """ if grid.refit: pred = grid.predict(X) # Record results as named tuple ModelTestScores = collections.namedtuple("ModelTestScores", ["cv_best_RMSE", "test_RMSE", "test_explained_variance", "test_correlation"]) model_test_scores = ModelTestScores((-grid.best_score_) ** 0.5, metrics.mean_squared_error(y, pred) ** 0.5, metrics.explained_variance_score(y, pred), pearsonr(y, pred)) return model_test_scores, grid.cv_results_, grid.best_params_ # If grid is not refitted, we just want the CV results else: return (-grid.best_score_) ** 0.5, grid.cv_results_, grid.best_params_ def fit_and_evaluate(self, X_train, y_train, X_test, y_test, tuning_seed=None, rforest_seed=None, verbose=0, test_set=True): """Perform fitting and evaluation model in a single method (using Random Forest). Modeling consists of hyperparameter tuning with cross-validation and fitiing the model on whole training data. Evaluation is done either on separate test set or on cross-validation. Arguments: X_train (array): Training input data. y_train (Series): Training labels. X_test (array): Test input data. y_test (Series): Test labels. tuning_seed (int): Random State of RandomizedSearch object. rforest_seed (int): Random State of RandomForestRegressor. verbose (int): Controls the verbosity of RandomizedSearch objects. test_set (bool): Whether or not evaluate on a separate test set. Returns: (if test_set): model_test_scores (namedtuple): Results on a test set. grid.cv_results_ (dict): Full results of parameter tuning with cross-validation. grid.best_params_ (dict): Parameters of best found model. (else): grid.best_score (namedtuple): Best result obtained during CV. grid.cv_results_ (dict): Full results of parameter tuning with cross-validation. grid.best_params_ (dict): Parameters of best found model. """ # Set elements of the pipeline, i.e. scaler and estimator scaler = StandardScaler() estimator = RandomForestRegressor(random_state=rforest_seed, n_jobs=self.rforest_jobs) # Create pipeline main_pipeline = Pipeline([ ("scaler", scaler), ("estimator", estimator) ]) # Setup RandomizedSearchObject grid = model_selection.RandomizedSearchCV(main_pipeline, param_distributions=self.param_grid, n_iter=self.n_combinations, scoring=self.scoring, cv=self.kfolds, random_state=tuning_seed, n_jobs=self.tuning_jobs, verbose=verbose, pre_dispatch='2*n_jobs', refit=False) # Fit the grid grid.fit(X_train, y_train) # Parse best params to pipeline main_pipeline.set_params(**grid.best_params_) main_pipeline.named_steps["estimator"].n_jobs = self.rforest_refit_jobs if test_set: # Refit on whole training data main_pipeline.fit(X_train, y_train) pred = grid.predict(X_test) # Record results as named tuple ModelTestScores = collections.namedtuple("ModelTestScores", ["cv_best_RMSE", "test_RMSE", "test_explained_variance", "test_correlation"]) model_test_scores = ModelTestScores((-grid.best_score_) ** 0.5, metrics.mean_squared_error(y_test, pred) ** 0.5, metrics.explained_variance_score(y_test, pred), pearsonr(y_test, pred)) return model_test_scores, grid.cv_results_, grid.best_params_ else: return (-grid.best_score_) ** 0.5, grid.cv_results_, grid.best_params_ def evaluate_dummy_model_single_split(self, X_train, X_test, y_train, y_test): """Fit and evaluate the performance of dummy model, only on the test set.""" # Set up and fit Dummy Regressor dummy = DummyRegressor() dummy.fit(X_train, y_train) # Get dummy predictions on the test set dummy_preds = dummy.predict(X_test) # Performance of dummy model as namedtuple DummyScores = collections.namedtuple("DummyScores", ["test_RMSE", "test_explained_variance", "test_correlation"]) dummy_performance = DummyScores(metrics.mean_squared_error(y_test, dummy_preds) ** 0.5, metrics.explained_variance_score(y_test, dummy_preds), pearsonr(y_test, dummy_preds)) return dummy_performance def enet_model_over_data_splits(self, X, y, verbose=0, log=False): """Perform full modeling over data splits, using ElasticNet. Modeling involves hyperparameter tuning with cross-validation, training on whole training data, and evaluating on the test set. This process is repeated for few data splits (random states of data splits are contained in self.split_seeds). Arguments: X (array): Input data (whole, not just the test set). y (Series): Labels. verbose (int): Controls the verbosity of RandomizedSearch object. log (bool): Controls information display. Returns: results_for_splits (dict): Dictionary with data split seeds as keys and namedtuples with results as values. cv_results_for_splits (dict): Dictionary with data split seeds as keys and full results of CV as values. best_parameters_for_splits (dict): Dictionary with data split seeds as keys and parameters of best found model as values. dummy_for_splits (dict): Dictionary with data split seeds as keys and results of dummy model as values. tuning_seeds_for_splits (dict): Dictionary with data split seeds as keys and random states of RandomizedSearch objects as values. """ # Initialize dictionary for storage of test results for given split results_for_splits = {} # Initialize dictionary with full results of cross-validation cv_results_for_splits = {} # Initialize dictonary with best parameters best_parameters_for_splits = {} # Initialize dictionary with dummy performance dummy_for_splits = {} # Initialize dictionary for tuning seed storage tuning_seeds_for_splits = {} # Initialize list of tuning seeds tuning_seeds = np.random.randint(0, 101, size=len(self.split_seeds)) # Iterate over split seeds for i in range(len(self.split_seeds)): if log: print("Modeling for {} out of {} data splits".format(i + 1, len(self.split_seeds))) print() # Split data into training and test set X_train, X_test, y_train, y_test = model_selection.train_test_split( X, y, test_size=self.test_size, random_state=self.split_seeds[i]) # Record tuning seed tuning_seeds_for_splits[self.split_seeds[i]] = tuning_seeds[i] # Evaluate dummy dummy_for_splits[self.split_seeds[i]] = self.evaluate_dummy_model_single_split( X_train, X_test, y_train, y_test) # Fit the model grid = self.enet_fit_single_drug(X_train, y_train, tuning_seed=tuning_seeds[i], enet_seed=self.estimator_seeds[i], verbose=verbose) # Evaluate the model model_test_scores, cv_results, best_parameters = self.evaluate_single_drug(grid, X_test, y_test) # Record the results results_for_splits[self.split_seeds[i]] = model_test_scores cv_results_for_splits[self.split_seeds[i]] = cv_results best_parameters_for_splits[self.split_seeds[i]] = best_parameters if log: print("Modeling done for all splits") return (results_for_splits, cv_results_for_splits, best_parameters_for_splits, dummy_for_splits, tuning_seeds_for_splits) def rf_model_over_data_splits(self, X, y, verbose=0, log=False): """Perform full modeling over data splits, using RandomForest. Modeling involves hyperparameter tuning with cross-validation, training on whole training data, and evaluating on the test set. This process is repeated for few data splits (random states of data splits are contained in self.split_seeds). Arguments: X (array): Input data (whole, not just the test set). y (Series): Labels. verbose (int): Controls the verbosity of RandomizedSearch object. log (bool): Controls information display. Returns: results_for_splits (dict): Dictionary with data split seeds as keys and namedtuples with results as values. cv_results_for_splits (dict): Dictionary with data split seeds as keys and full results of CV as values. best_parameters_for_splits (dict): Dictionary with data split seeds as keys and parameters of best found model as values. dummy_for_splits (dict): Dictionary with data split seeds as keys and results of dummy model as values. tuning_seeds_for_splits (dict): Dictionary with data split seeds as keys and random states of RandomizedSearch objects as values. """ # Initialize dictionary for storage of test results for given split results_for_splits = {} # Initialize dictionary with full results of cross-validation cv_results_for_splits = {} # Initialize dictonary with best parameters best_parameters_for_splits = {} # Initialize dictionary with dummy performance dummy_for_splits = {} # Initialize dictionary for tuning seed storage tuning_seeds_for_splits = {} # Initialize list of tuning seeds tuning_seeds = np.random.randint(0, 101, size=len(self.split_seeds)) # Iterate over split seeds for i in range(len(self.split_seeds)): if log: print("Modeling for {} out of {} data splits".format(i + 1, len(self.split_seeds))) print() # Split data into training and test set X_train, X_test, y_train, y_test = model_selection.train_test_split( X, y, test_size=self.test_size, random_state=self.split_seeds[i]) # Record tuning seed tuning_seeds_for_splits[self.split_seeds[i]] = tuning_seeds[i] # Evaluate dummy dummy_for_splits[self.split_seeds[i]] = self.evaluate_dummy_model_single_split( X_train, X_test, y_train, y_test) # Fit the model grid = self.rf_fit_single_drug(X_train, y_train, tuning_seed=tuning_seeds[i], rforest_seed=self.estimator_seeds[i], verbose=verbose) # Evaluate the model model_test_scores, cv_results, best_parameters = self.evaluate_single_drug(grid, X_test, y_test) # Record the results results_for_splits[self.split_seeds[i]] = model_test_scores cv_results_for_splits[self.split_seeds[i]] = cv_results best_parameters_for_splits[self.split_seeds[i]] = best_parameters if log: print("Modeling done for all splits") return (results_for_splits, cv_results_for_splits, best_parameters_for_splits, dummy_for_splits, tuning_seeds_for_splits) @staticmethod def selectKImportance(X, sorted_importance_indices, k): """Reduce input data to k important features. Arguments: X (array): Input data. sorted_importance_indices (1D array): Array with sorted indices corresponding to features, sorting is based on importance of features. k (int): Number of features to choose. """ return X.iloc[:,sorted_importance_indices[:k]] ############################################################################################### # ModelingWithFeatureSelection class ############################################################################################### class ModelingWithFeatureSelection(Modeling): """Class designed to perform ML modeling with feature selection methods, inherits from Modeling. """ def __init__(self, name, param_grid, estimator_seeds, split_seeds, n_combinations=20, kfolds=5, n_combinations_importances=30, kfolds_importances=10, rforest_jobs=None, rforest_refit_jobs=None, tuning_jobs=None, ss_lambda_grid=[0.0001, 0.001, 0.01], ss_n_bootstrap_iterations=100, ss_threshold=0.6, ss_n_jobs=1, max_iter=1000, scoring="neg_mean_squared_error", test_size=0.3): """ ModelingWithFeatureSelection initializer. Arguments: name (string): Name describing the experiment. param_grid (dict): Grid of parameters to search on during hyperparameter tuning. rforest_seeds (list of ints): Random States for predictive algorithms used. split_seeds (list of ints): Seeds for data splits. n_combinations (int): Number of parameters to try during hyperparameter tuning. kfolds (int): Number of folds of cross validation during hyperparameter tuning. n_combinations_importances (int): Number of parameters to try during extracting the feature importances. kfolds_importances (int): Number of folds of cross validation during extracting the feature importances. rforest_jobs (int): Number of cores to use during fitting and predicting with Random Forest. rforest_refit_jobs (int): Number of cores to use during refitting RandomForest after cross-validation hyperparamater tuning. tuning_jobs (int): Number of cores to use during cross-validation. ss_lambda_grid (dict): Lambdas to iterate over for StabilitySelection. ss_n_bootstrap_iterations (int): Number of iterations for StabilitySelection. ss_threshold (float): Threshold to use for features stability scores. ss_n_jobs (int): Number of cores to use for StabilitySelection. scoring (string): Function to optimize during parameter tuning. test_size (float): Fraction of whole data spent on test set. Returns: ModelingWithFeatureSelection object. """ # Call parent class initializer super().__init__(name, param_grid, estimator_seeds, split_seeds, n_combinations, kfolds, rforest_jobs, rforest_refit_jobs, max_iter, tuning_jobs, scoring, test_size) # Random Forest specific attributes self.n_combinations_importances = n_combinations_importances self.kfolds_importances = kfolds_importances # ElasticNet / StabilitySelection specific attributes self.ss_lambda_grid = ss_lambda_grid self.ss_n_bootstrap_iterations = ss_n_bootstrap_iterations self.ss_threshold = ss_threshold self.ss_n_jobs = ss_n_jobs def enet_feat_importances_single_drug(self, X, y, lasso_seed=None, ss_seed=None, verbose=0): """Extract feature importances using StabilitySelection with ElasticNet. Arguments: X (DataFrame): Training input data. y (Series): Training response variable. lasso_seed (int): Random State of Lasso model. ss_seed (int): Random State for StabilitySelection. verbose (int): Controls verbosity of StabilitySelection. Returns: selector: Fitted StabilitySelection object. """ # Set up elements of modeling pipeline, i.e. scaler and estimator scaler = StandardScaler() estimator = Lasso(random_state=lasso_seed, max_iter=self.max_iter) # Create the pipeline pipeline = Pipeline([ ("scaler", scaler), ("estimator", estimator) ]) # Setup StabilitySelection object selector = StabilitySelection(base_estimator=pipeline, lambda_name="estimator__alpha", lambda_grid=self.ss_lambda_grid, n_bootstrap_iterations=self.ss_n_bootstrap_iterations, threshold=self.ss_threshold, verbose=verbose, n_jobs=self.ss_n_jobs, random_state=ss_seed) selector.fit(X, y) return selector def enet_fit_grid_range_of_feats(self, X_train, y_train, selector, stability_scores_thresholds, tuning_seed=None, enet_seed=None, verbose=0, log=False): """Perform modeling with ElasticNet for different feature numbers. Iterate over thresholds of stability scores. For every threshold, perform hyperparameter tuning and evaluate using same training data (using cross-validation score). Arguments: X_train (DataFrame): Training input data. y_train (Series): Training response variable. selector (StabilitySelection): Fitted StabilitySelection object. stability_scores_thresholds (list of floats): Stability scores determining which features to include. tuning_seed (int): Random State for parameter tuning. enet_seed (int): Random State of ElasticNet model. verbose (int): Controls verbosity of RandomizedSearchCV. log (bool): Controls output during running. Returns: results (dict): Dictionary with feature numbers k as keys and CV results as values. best_parameters (dict): Dictionary with feature numbers k as keys and parameters of best found model as values. """ # Initialize dictionary for storage of results results = {} # Initialize dictionary for storage of best parameters best_parameters = {} # Iterate over stability thresholds for stability_thresh in stability_scores_thresholds: # Extract corresponding data with reduced features X_train_k_feats = selector.transform(X_train, threshold=stability_thresh) k = X_train_k_feats.shape[1] if k > 0: # If k is smaller, do not perform modeling at all # Train and evaluate during cross-validation grid = self.enet_fit_single_drug(X_train_k_feats, y_train, tuning_seed=tuning_seed, enet_seed=enet_seed, verbose=verbose, refit=False) cv_best_score, cv_full_results, grid_best_params = self.evaluate_single_drug( grid, X_train, y_train) # Record the results for k features and threshold results[(k, stability_thresh)] = cv_best_score best_parameters[(k, stability_thresh)] = grid_best_params if log: print("Done modeling with threshold {} and {} features".format( stability_thresh, k)) return results, best_parameters def enet_get_best_k(self, X, y, stability_scores_thresholds, verbose_importances=0, verbose_kfeats=0, log=False): """Perform modeling over range of features k for few data splits in order to obtain best feature number k and stability threshold for particular drug. Arguments: X (DataFrame): Whole input data. y (Series): Whole response variable. stability_scores_thresholds (list of floats): Stability scores determining which features to include. verbose_importances (int): Controls verbosity of RandomizedSearchCV during feature importances extraction. verbose_kfeats (int): Controls verbosity of RandomizedSearchCV during modeling with different numbers of features. log (bool): Controls output during running. Returns: results_for_splits (dict): Nested dictionary with split seeds as keys, and dictionaries with feature numbers as keys and results as values. best_parameters_for_splits (dict): Dictionary with split seeds as keys and dictionaries with feature numbers as keys and best parameters as values. selectors_for_splits (dict): Dictionary with split seeds as keys and fitted StabilitySelection objects as values. tuning_seeds_for_splits (dict): Dictionary with split seeds as keys and random states of RandomizedSearch as values. """ # Initialize dictionary for results over split seeds s and feature numbers k results_for_splits = {} # Initialize dictionary with selectors per split selectors_for_splits = {} # Initialize dictionary with best parameters over s and k best_parameters_for_splits = {} # Initialize dictionary for tuning seed per data split tuning_seeds_for_splits = {} # Initialize list of tuning seeds tuning_seeds = np.random.randint(0, 101, size=len(self.split_seeds)) # Iterate over data splits for i in range(len(self.split_seeds)): if log: print() print("Modeling for {} out of {} data splits".format(i + 1, len(self.split_seeds))) print() # Split data into training and test set X_train, X_test, y_train, y_test = model_selection.train_test_split( X, y, test_size=self.test_size, random_state=self.split_seeds[i]) # Fit selector in order to get feature importances selector = self.enet_feat_importances_single_drug( X_train, y_train, lasso_seed=self.estimator_seeds[i], ss_seed=self.estimator_seeds[i], verbose=verbose_importances) # Record tuning seed tuning_seeds_for_splits[self.split_seeds[i]] = tuning_seeds[i] # Record selector selectors_for_splits[self.split_seeds[i]] = selector # Perform modeling and evaluation on range of features results_range_of_feats, best_parameters_for_ks = self.enet_fit_grid_range_of_feats( X_train, y_train, selector, stability_scores_thresholds, tuning_seed=tuning_seeds[i], enet_seed=self.estimator_seeds[i], verbose=verbose_kfeats, log=log) # Perform modeling for all features grid = self.enet_fit_single_drug(X_train, y_train, tuning_seed=tuning_seeds[i], enet_seed=self.estimator_seeds[i], verbose=verbose_kfeats, refit=False) cv_best_score, cv_full_results, grid_best_params = self.evaluate_single_drug( grid, X_train, y_train) k = X_train.shape[1] if log: print("Done modeling with threshold {} and {} features".format(0.0, k)) # Add results for all features into dictionary results_range_of_feats[(k, 0.0)] = cv_best_score best_parameters_for_ks[(k, 0.0)] = grid_best_params # Record best parameters for ks best_parameters_for_splits[self.split_seeds[i]] = best_parameters_for_ks # Record results for this split results_for_splits[self.split_seeds[i]] = results_range_of_feats if log: print("Modeling done for all splits") return (results_for_splits, best_parameters_for_splits, selectors_for_splits, tuning_seeds_for_splits) def enet_model_over_data_splits(self, X, y, stability_scores_thresholds, verbose_importances=0, verbose_kfeats=0, log=False): """Perform full modeling over data splits. For a single data split, modeling consist of: 1) Extraction of feature importances using whole training data (via StabilitySelection selector). 2) Hyperparamater tuning and evaluation using just training data for range of feature importance scores. After that, best threshold is determined. Then, for the same data splits, model is trained on whole training set with best found parameters and thresh. After that, model is evaluated on the test set. Arguments: X (DataFrame): Whole input data. y (Series): Whole response variable. stability_scores_thresholds (list of floats): Stability scores determining which features to include. verbose_importances (int): Controls verbosity of RandomizedSearchCV during feature importances extraction. verbose_kfeats (int): Controls verbosity of RandomizedSearchCV during modeling with different numbers of features. log (bool): Controls output during running. Returns: test_results_for_splits (dict): Dictionary with split seeds as keys and final results on a test set (in form of namedtuple) as values. dummy_for_splits (dict): Dictionary with split seeds as keys and results of dummy model as values. selectors_for_splits (dict): Dictionary with split seeds as keys and fitted StabilitySelection objects as values. best_parameters_for_splits (dict): Dictionary with split seeds as keys and dictionaries with feature numbers as keys and best parameters as values. tuning_seeds_for_splits (dict): Dictionary with split seeds as keys and random states of RandomizedSearch as values. best_k (int): Best found feature number k. """ # Initialize dictionary for storage of test results for given split test_results_for_splits = {} # Initialize dictionary with dummy performance dummy_for_splits = {} # Get results across splits s and feature numbers k (results_for_splits, best_parameters_for_splits, selectors_for_splits, tuning_seeds_for_splits) = self.enet_get_best_k(X, y, stability_scores_thresholds, verbose_importances, verbose_kfeats, log) # Determine the best threshold # First, create a new result dictionary with only stability thresholds as keys new_results_for_splits = {} for s in results_for_splits: results_over_feats = {} for tup in results_for_splits[s]: results_over_feats[tup[1]] = results_for_splits[s][tup] new_results_for_splits[s] = results_over_feats # Then, average results for particular threshold over data splits average_results_per_thresh = [] for thresh in stability_scores_thresholds: # Thresholds has to be included for all splits if to be considered present_in_all = True for s in self.split_seeds: if thresh not in new_results_for_splits[s]: present_in_all = False break if present_in_all: sum_of_results = 0 for s in new_results_for_splits.keys(): sum_of_results += new_results_for_splits[s][thresh] average_result = sum_of_results / len(new_results_for_splits) average_results_per_thresh.append((thresh, average_result)) # Get the best threshold best_threshold = min(average_results_per_thresh, key=lambda x: x[1])[0] # Perform the modeling for best found threshold # Iterate over data splits (again, same splits as during finding best k) for i in range(len(results_for_splits)): # Split data into training and test set X_train, X_test, y_train, y_test = model_selection.train_test_split( X, y, test_size=self.test_size, random_state=self.split_seeds[i]) # Evaluate dummy dummy_for_splits[self.split_seeds[i]] = self.evaluate_dummy_model_single_split( X_train, X_test, y_train, y_test) # Get data for best threshold # First, get appropriate selector sel = selectors_for_splits[self.split_seeds[i]] # Extract corresponding data X_train_kfeats = sel.transform(X_train, threshold=best_threshold) X_test_kfeats = sel.transform(X_test, threshold=best_threshold) # No need for parameter tuning because we have best parameters # Set elements of the pipeline, i.e. scaler and estimator scaler = StandardScaler() estimator = ElasticNet(random_state=self.estimator_seeds[i], max_iter=self.max_iter) # Create pipeline main_pipeline = Pipeline([ ("scaler", scaler), ("estimator", estimator) ]) # No need for parameter tuning because we have best parameters # Find best parameters for tup in best_parameters_for_splits[self.split_seeds[i]]: if tup[1] == best_threshold: best_tup = tup break # Fill best parameters to the to the estimator main_pipeline.set_params(**best_parameters_for_splits[self.split_seeds[i]][best_tup]) # Fit model on whole training data main_pipeline.fit(X_train_kfeats, y_train) # Evaluate the model and record the results pred = main_pipeline.predict(X_test_kfeats) # Record results in corresponding Experiment fields, mostly as named tuples # Classification performance ModelTestScores = collections.namedtuple("ModelTestScores", ["test_RMSE", "test_explained_variance", "test_correlation"]) model_test_scores = ModelTestScores(metrics.mean_squared_error(y_test, pred) ** 0.5, metrics.explained_variance_score(y_test, pred), pearsonr(y_test, pred)) # Record the best results test_results_for_splits[self.split_seeds[i]] = model_test_scores return (test_results_for_splits, dummy_for_splits, selectors_for_splits, best_parameters_for_splits, tuning_seeds_for_splits, best_threshold) def rf_feat_importances_single_drug(self, X, y, rforest_seed=None, tuning_seed=None, verbose=0): """Extract feature importances using Random Forest. First, hyperparameter tuning is performed using kfold cross-validation (sklearn's RandomizedSearchCV). Then, model is trained on whole training data and feature importances are extracted. In order to use different number of cores during refitting the model, it is done separately manually, "refit" argument of RandomizedSearch is set to False. Arguments: X (DataFrame): Trainig input data. y (Series): Training response variable. rforest_seed (int): Random State of Random Forest Model. tuning_seed (int): Random State for parameter tuning. verbose (int): Controls verbosity of RandomizedSearchCV. Returns: grid: Fitted RandomizedSearchCV object. importances: List of tuples (feature name, importance coefficient). """ # Setup elements of the pipeline; scaler and estimator scaler = StandardScaler() estimator = RandomForestRegressor(random_state=rforest_seed, n_jobs=self.rforest_jobs) # Create pipeline main_pipeline = Pipeline([ ("scaler", scaler), ("estimator", estimator) ]) # Setup RandomizedSearch grid = model_selection.RandomizedSearchCV(main_pipeline, param_distributions=self.param_grid, n_iter=self.n_combinations_importances, scoring=self.scoring, cv=self.kfolds_importances, random_state=tuning_seed, verbose=verbose, n_jobs=self.tuning_jobs, pre_dispatch='2*n_jobs', refit=False) # Fit the grid grid.fit(X, y) # Parse best params to pipeline main_pipeline.set_params(**grid.best_params_) # Set the number of cores during refitting main_pipeline.named_steps["estimator"].n_jobs = self.rforest_refit_jobs # Refit the model main_pipeline.fit(X, y) # Get the feature importances along with feature names clf = main_pipeline.named_steps["estimator"] importances = [x for x in zip(X.columns, clf.feature_importances_)] return grid, importances def rf_fit_grid_range_of_feats(self, X_train, y_train, sorted_importance_indices, feature_numbers, tuning_seed=None, rforest_seed=None, verbose=0, log=False): """Perform modeling for a given range of number of input features. Iterate over numbers of features k. For every k, perform parameter tuning and evaluate using cross-validation on training data. Arguments: X_train (DataFrame): Training input data. X_test (DataFrame): Test input data. y_train (Series): Training response variable. y_test (Series): Test response variable. sorted_importance_indices (array): Sorted indexes corresponding to specific features. feature_numbers (list of ints): Feature numbers k for which do the modeling. tuning_seed (int): Random State for parameter tuning. rforest_seed (int): Random State of Random Forest Model. verbose (int): Controls verbosity of RandomizedSearchCV. log (bool): Controls output during running. Returns: results (dict): Dictionary with feature numbers k as keys and CV results as values. best_parameters (dict): Dictionary with feature numbers k as keys and parameters of best found model as values. """ # Initialize dictionary for storage of results results = {} # Initialize dictionary for storage of best parameters best_parameters = {} # Iterate over number of features for k in feature_numbers: X_train_kfeats = self.selectKImportance(X_train, sorted_importance_indices, k) # Train and evaluate cv_performance, _, best_params = self.fit_and_evaluate(X_train_kfeats, y_train, X_train_kfeats, y_train, tuning_seed=tuning_seed, rforest_seed=rforest_seed, verbose=verbose, test_set=False) # Record the results for k features results[k] = cv_performance best_parameters[k] = best_params if log: print("Done modeling with {} features".format(k)) return results, best_parameters def rf_get_best_k(self, X, y, feature_numbers, verbose_importances=0, verbose_kfeats=0, log=False): """Perform modeling over range of features k for few data splits in order to obtain best feature number k for particular drug. Arguments: X (DataFrame): Whole input data. y (Series): Whole response variable. feature_numbers (list of ints): Feature numbers k for which do the modeling. verbose_importances (int): Controls verbosity of RandomizedSearchCV during feature importances extraction. verbose_kfeats (int): Controls verbosity of RandomizedSearchCV during modeling with different numbers of features. log (bool): Controls output during running. Returns: results_for_splits (dict): Nested dictionary with split seeds as keys, and dictionaries with feature numbers as keys and results as values. best_parameters_for_splits (dict): Dictionary with split seeds as keys and dictionaries with feature numbers as keys and best parameters as values. importances_for_splits (dict): Dictionary with split seeds as keys and lists of feature importances as values. tuning_seeds_for_splits (dict): Dictionary with split seeds as keys and random states of RandomizedSearch as values. """ # Initialize dictionary for results over split seeds s and feature numbers k results_for_splits = {} # Initialize dictionary with feature importances per data split importances_for_splits = {} # Initialize dictionary with best parameters over s and k best_parameters_for_splits = {} # Initialize dictionary for tuning seed per data split tuning_seeds_for_splits = {} # Initialize list of tuning seeds tuning_seeds = np.random.randint(0, 101, size=len(self.split_seeds)) # Iterate over data splits for i in range(len(self.split_seeds)): if log: print("Modeling for {} out of {} data splits".format(i + 1, len(self.split_seeds))) print() # Split data into training and test set X_train, X_test, y_train, y_test = model_selection.train_test_split( X, y, test_size=self.test_size, random_state=self.split_seeds[i]) # Get vector with feature importances grid, feat_importances = self.rf_feat_importances_single_drug(X_train, y_train, tuning_seed=tuning_seeds[i], rforest_seed=self.estimator_seeds[i], verbose=verbose_importances) # Record tuning seed tuning_seeds_for_splits[self.split_seeds[i]] = tuning_seeds[i] # Record feature importances importances_for_splits[self.split_seeds[i]] = feat_importances # Extract just the importance coeficients importances = np.array([x[1] for x in feat_importances]) # Evaluate performance for m (all features) result_m_features, _, _ = self.evaluate_single_drug(grid, X_test, y_test) # Perform modeling and evaluation on range of features sorted_importance_indices = importances.argsort()[::-1] results_range_of_feats, best_parameters_for_ks = self.rf_fit_grid_range_of_feats(X_train, y_train, sorted_importance_indices, feature_numbers, tuning_seed=tuning_seeds[i], rforest_seed=self.estimator_seeds[i], verbose=verbose_kfeats, log=log) # Record best parameters for ks best_parameters_for_splits[self.split_seeds[i]] = best_parameters_for_ks # Add results for all features results_range_of_feats[len(feat_importances)] = result_m_features # Record results for this split results_for_splits[self.split_seeds[i]] = results_range_of_feats if log: print("Modeling done for all splits") return (results_for_splits, best_parameters_for_splits, importances_for_splits, tuning_seeds_for_splits) def rf_model_over_data_splits(self, X, y, feature_numbers, verbose_importances=0, verbose_kfeats=0, log=False): """Perform full modeling over data splits. For a single data split, modeling consist of: 1) Extraction of feature importances using whole training data. 2) Hyperparamater tuning and evaluation using just training data for range of feature numbers k. After that, best k is determined. Then, for the same data splits model is trained on whole training set with best found parameters and k. After that, model is evaluated on the test set. Arguments: X (DataFrame): Whole input data. y (Series): Whole response variable. feature_numbers (list of ints): Feature numbers k for which do the modeling. verbose_importances (int): Controls verbosity of RandomizedSearchCV during feature importances extraction. verbose_kfeats (int): Controls verbosity of RandomizedSearchCV during modeling with different numbers of features. log (bool): Controls output during running. Returns: test_results_for_splits (dict): Dictionary with split seeds as keys and final results on a test set (in form of namedtuple) as values. dummy_for_splits (dict): Dictionary with split seeds as keys and results of dummy model as values. importances_for_splits (dict): Dictionary with split seeds as keys and feature importances as values. best_parameters_for_splits (dict): Dictionary with split seeds as keys and dictionaries with feature numbers as keys and best parameters as values. tuning_seeds_for_splits (dict): Dictionary with split seeds as keys and random states of RandomizedSearch as values. best_k (int): Best found feature number k. """ # Initialize dictionary for storage of test results for given split test_results_for_splits = {} # Initialize dictionary with dummy performance dummy_for_splits = {} # Get results across splits s and feature numbers k (results_for_splits, best_parameters_for_splits, importances_for_splits, tuning_seeds_for_splits) = self.rf_get_best_k(X, y, feature_numbers, verbose_importances, verbose_kfeats, log) # Determine the best k # First, average results for particular k over data splits average_results_per_k = [] for k in feature_numbers: sum_of_results = 0 for s in results_for_splits.keys(): sum_of_results += results_for_splits[s][k] average_result = sum_of_results / len(results_for_splits) average_results_per_k.append((k, average_result)) # Get the maximum k best_k = min(average_results_per_k, key=lambda x: x[1])[0] # Perform the modeling for best found k # Iterate over data splits (again, same splits as during finding best k) for i in range(len(results_for_splits)): # Split data into training and test set X_train, X_test, y_train, y_test = model_selection.train_test_split( X, y, test_size=self.test_size, random_state=self.split_seeds[i]) # Evaluate dummy dummy_for_splits[self.split_seeds[i]] = self.evaluate_dummy_model_single_split( X_train, X_test, y_train, y_test) # Get data for best_k features importances = np.array([x[1] for x in importances_for_splits[self.split_seeds[i]]]) sorted_importance_indices = importances.argsort()[::-1] X_train_kfeats = self.selectKImportance(X_train, sorted_importance_indices, best_k) X_test_kfeats = self.selectKImportance(X_test, sorted_importance_indices, best_k) # No need for parameter tuning because we have best parameters # Set elements of the pipeline, i.e. scaler and estimator scaler = StandardScaler() estimator = RandomForestRegressor(random_state=self.estimator_seeds[i], n_jobs=self.rforest_refit_jobs) # Create pipeline main_pipeline = Pipeline([ ("scaler", scaler), ("estimator", estimator) ]) # No need for parameter tuning because we have best parameters # Fill best parameters to the to the estimator main_pipeline.set_params(**best_parameters_for_splits[self.split_seeds[i]][best_k]) # Fit model on whole training data main_pipeline.fit(X_train_kfeats, y_train) # Evaluate the model and record the results pred = main_pipeline.predict(X_test_kfeats) # Record results in corresponding Experiment fields, mostly as named tuples # Classification performance ModelTestScores = collections.namedtuple("ModelTestScores", ["test_RMSE", "test_explained_variance", "test_correlation"]) model_test_scores = ModelTestScores(metrics.mean_squared_error(y_test, pred) ** 0.5, metrics.explained_variance_score(y_test, pred), pearsonr(y_test, pred)) # Record the best results test_results_for_splits[self.split_seeds[i]] = model_test_scores return (test_results_for_splits, dummy_for_splits, importances_for_splits, best_parameters_for_splits, tuning_seeds_for_splits, best_k) ################################################################################################# # ModelingResults class ################################################################################################# class ModelingResults(Modeling): def __init__(self, parent): if isinstance(parent, ModelingWithFeatureSelection): super().__init__(parent.name, parent.param_grid, parent.estimator_seeds, parent.split_seeds, parent.n_combinations, parent.kfolds, parent.rforest_jobs, parent.tuning_jobs, parent.scoring, parent.test_size) # RandomForest specific attributes self.n_combinations_importances = parent.n_combinations_importances self.kfolds_importances = parent.kfolds_importances # ElasticNet / StabilitySelection specific attributes self.ss_lambda_grid = parent.ss_lambda_grid self.ss_n_bootstrap_iterations = parent.ss_n_bootstrap_iterations self.ss_threshold = parent.ss_threshold self.ss_n_jobs = parent.ss_n_jobs # Create fields for storage of results # All fields are dictionaries with drugs as keys and dictonaries with split seeds # as keys as values self.performance_dict = {} self.dummy_performance_dict = {} self.importances_dict = {} self.best_params_dict = {} self.tuning_seeds_dict = {} self.best_k_dict = {} else: super().__init__(parent.name, parent.param_grid, parent.estimator_seeds, parent.split_seeds, parent.n_combinations, parent.kfolds, parent.rforest_jobs, parent.rforest_refit_jobs, parent.max_iter, parent.tuning_jobs, parent.scoring, parent.test_size) # Create fields for storage of results # All fields are dictionaries with drugs as keys and dictonaries with split seeds # as keys as values self.performance_dict = {} self.dummy_performance_dict = {} self.best_params_dict = {} self.tuning_seeds_dict = {} self.data_shapes = {} self.cv_results_dict = {} def create_raw_results_df(self, drug_annotations_df=None, remove_duplicates=True): """Put results storage in dictonaries into one pandas DataFrame. Each row in the raw DataFrame will consist of drug, data split seed, and results. The DataFrame stores just the raw results coming from dictonaries. Arguments: drug_annotations_df (DataFrame): list of drugs from GDSC. If parsed, it is used to extract compounds target pathways. Returns: df (DataFrame): DataFrame with raw experiment results. """ # Initialize future columns drug_names = [] drug_ids = [] split_seeds_columns = [] test_rmses = [] test_correlations = [] corr_pvals = [] dummy_rmses = [] # If modeling was with feature selection, add a column with best feature number k if hasattr(self, "best_k_dict"): if len(self.best_k_dict) > 0: best_ks = [] # If drug_annotations_df is parsed, extract target pathway information if drug_annotations_df is not None: target_pathways = [] for drug_tuple in self.performance_dict: test_performance = self.performance_dict[drug_tuple] dummy_performance = self.dummy_performance_dict[drug_tuple] if hasattr(self, "best_k_dict"): if len(self.best_k_dict) > 0: best_k = self.best_k_dict[drug_tuple] # Check if modeling was with Stability Selection if best_k <= 1.0: corresponding_ks = [] for split_seed in self.best_params_dict[drug_tuple]: for k, thresh in self.best_params_dict[drug_tuple][split_seed].keys(): if thresh == best_k: corresponding_ks.append(k) best_k = int(np.mean(corresponding_ks)) if drug_annotations_df is not None: pathway = drug_annotations_df[ drug_annotations_df["DRUG_ID"] == drug_tuple[1]]["TARGET_PATHWAY"].iloc[0] for split_seed in test_performance.keys(): test_results = test_performance[split_seed] dummy_results = dummy_performance[split_seed] # Fill the columns lists drug_names.append(drug_tuple[0]) drug_ids.append(drug_tuple[1]) split_seeds_columns.append(split_seed) test_rmses.append(test_results.test_RMSE) test_correlations.append(test_results.test_correlation[0]) corr_pvals.append(test_results.test_correlation[1]) dummy_rmses.append(dummy_results.test_RMSE) if hasattr(self, "best_k_dict"): if len(self.best_k_dict) > 0: best_ks.append(best_k) if drug_annotations_df is not None: target_pathways.append(pathway) # Put column lists into DataFrame df = pd.DataFrame() df.insert(0, "Drug ID", drug_ids) df.insert(1, "Drug Name", drug_names) df.insert(2, "Split seed", split_seeds_columns) df.insert(3, "Model test RMSE", test_rmses) df.insert(4, "Model test correlation", test_correlations) df.insert(5, "Correlation pval", corr_pvals) df.insert(6, "Dummy test RMSE", dummy_rmses) df.insert(7, "Relative test RMSE", df["Dummy test RMSE"] / df["Model test RMSE"]) if hasattr(self, "best_k_dict"): if len(self.best_k_dict) > 0: df.insert(8, "Best k", best_ks) if drug_annotations_df is not None: df.insert(8, "Target Pathway", target_pathways) if remove_duplicates: filepath = "/media/krzysztof/Nowy/Doktorat - Modelling drug efficacy in cancer/Projects/Results Assesment/Results and other files/drug_ids_to_keep_in_results.pkl" # Load list with drug ids to keep with open(filepath, "rb") as f: ids_to_keep = dill.load(f) return df[df["Drug ID"].isin(ids_to_keep)] return df def create_agg_results_df(self, columns_to_aggregate, metric_to_aggregate, drug_annotations_df=None, remove_duplicates=True): """Compute DataFrame with results grouped by Drug ID and aggregated by mean.""" # First, create the DF with raw results df = self.create_raw_results_df(drug_annotations_df, remove_duplicates) # Group by Drug ID df_grouped = df.groupby("Drug ID", as_index=False) # Aggregate by chosen metric agg_dict = {"Drug Name": lambda x: x.iloc[0]} for metric in columns_to_aggregate: agg_dict[metric] = metric_to_aggregate if drug_annotations_df is not None: agg_dict["Target Pathway"] = lambda x: x.iloc[0] return df_grouped.agg(agg_dict) def performance_barplots_single(self, metric, columns_to_aggregate=["Model test RMSE", "Model test correlation", "Dummy test RMSE", "Relative test RMSE"], metric_to_aggregate="mean", drug_annotations_df=None, figsize=(35, 12), title_size=45, label_size=30, tick_size=20, width=0.7, grid=True, half=1, hline_width=2., save_directory=None): fig = plt.figure() ax = fig.add_subplot(111) ax.set_title(metric + " for each drug", fontsize=title_size) ax.set_xlabel("Drug", fontsize=label_size) ax.set_ylabel(metric, fontsize=label_size) # Compute DataFrame with results df = self.create_agg_results_df(columns_to_aggregate, metric_to_aggregate, drug_annotations_df) # Set up DataFrame slicing if half == 1: start_idx = 0 end_idx = df.shape[0] // 2 elif half == 2: start_idx = df.shape[0] // 2 end_idx = df.shape[0] else: start_idx = 0 end_idx = df.shape[0] df.sort_values(metric, ascending = False).iloc[start_idx:end_idx].plot( x = "Drug Name", y = metric ,kind="bar", ax = ax, width = width, figsize=figsize, fontsize=tick_size, grid = grid, legend=False) # If a metric is Relative Test RMSE, add a horziontal line at 1, # represanting a baseline if metric == "Relative test RMSE": ax.axhline(y = 1.0, linewidth=hline_width, color="black") plt.tight_layout() if save_directory: plt.savefig(save_directory) plt.show() def overall_boxplot_single(self, metric,aggregated=True, title="", columns_to_aggregate=["Model test RMSE", "Model test correlation", "Dummy test RMSE", "Relative test RMSE"], metric_to_aggregate="mean", drug_annotations_df=None, figsize=(8, 6), title_size=25, label_size=20, tick_size=18, grid=True, save_directory=None): # If aggregated is True, plot aggregated results if aggregated: # Compute DataFrame with aggregated results df = self.create_agg_results_df(columns_to_aggregate, metric_to_aggregate, drug_annotations_df) # Actual plotting fig = plt.figure(figsize=figsize) plt.tick_params(labelsize=tick_size) plt.title(title, fontsize = title_size) if grid: plt.grid() sns.boxplot(x = df[metric], orient="v") plt.xlabel("", fontsize=label_size) plt.ylabel(metric, fontsize=label_size) plt.tight_layout() if save_directory: plt.savefig(save_directory) plt.show() # Otherwise, plot results for different data splits separately else: # Compute DataFrame with raw results df = self.create_raw_results_df(drug_annotations_df) # Actual plotting fig = plt.figure(figsize=figsize) plt.tick_params(labelsize=tick_size) plt.title(title, fontsize = title_size) if grid: plt.grid() sns.boxplot(x="Split seed", y=metric, data=df) plt.xlabel("Data split seed", fontsize=label_size) plt.ylabel(metric, fontsize=label_size) plt.tight_layout() if save_directory: plt.savefig(save_directory) plt.show() def extract_feature_ranks_per_split_ss(self, drug_tuple, split_seed, gene_expression_df): # Find appropriate selector selector = self.importances_dict[drug_tuple][split_seed] # Extract array containing max stabilty scores for features (should be a vector) scores_vector = selector.stability_scores_.max(axis=1) # Create a list with tuples (gene_id, max_score) feats_with_scores = [x for x in zip(gene_expression_df.ensembl_gene, scores_vector)] # Create dictionary of the form gene_id: rank ranks_dict = {} for rank, feat_tuple in enumerate(sorted(feats_with_scores, key=lambda x: x[1], reverse=True)): ranks_dict[feat_tuple[0]] = rank + 1 # Create a final list of tuples (gene_id, rank) in the same order as in original gene_expression_df ranks_list = [] for gene_id in gene_expression_df.ensembl_gene: ranks_list.append((gene_id, ranks_dict[gene_id])) return ranks_list def extract_feature_ranks_aggregated_over_splits_ss(self, drug_tuple, gene_expression_df): # Initialize array for storage of intermediate results ranks_vector = np.zeros(gene_expression_df.shape[0]) # Iterate over data splits and add corresponding features ranks for split_seed in self.importances_dict[drug_tuple]: features_with_rank = self.extract_feature_ranks_per_split_ss(drug_tuple, split_seed, gene_expression_df) ranks_vector = ranks_vector + np.array([x[1] for x in features_with_rank]) # Divide ranks_vector by number of splits to get mean rank ranks_vector = ranks_vector / len(self.importances_dict[drug_tuple]) # Add gene ids and return the results return [x for x in zip(gene_expression_df.ensembl_gene, ranks_vector)] def extract_topk_relevant_features_ss(self, drug_tuple, k, gene_expression_df, just_gene_ids=True): # Compute genes along with corresponidng aggregated ranks over splits genes_with_ranks = self.extract_feature_ranks_aggregated_over_splits_ss(drug_tuple, gene_expression_df) # If just_gene_ids is True, return only IDs corresponging to k # most relevant genes if just_gene_ids: return [x[0] for x in sorted(genes_with_ranks, key=lambda x: x[1])[:k]] # Otherwise, return gene IDs along with corresponding mean ranks else: return sorted(genes_with_ranks, key=lambda x: x[1])[:k] def extract_feature_ranks_per_split_rforest(self, drug_tuple, split_seed): # Extract proper vector with importance coeeficients feat_coeffs = self.importances_dict[drug_tuple][split_seed] # Create dictionary of the form gene_id: rank ranks_dict = {} for rank, feat_tuple in enumerate(sorted(feat_coeffs, key=lambda x: x[1], reverse=True)): ranks_dict[feat_tuple[0]] = rank + 1 # Initialize final list with tuples (gene_id, rank), in the same order as in # original list ranks_list = [] # Iterate over rank_dict and add entriess into rank_list for gene_id in [x[0] for x in feat_coeffs]: ranks_list.append((gene_id, ranks_dict[gene_id])) return ranks_list def extract_feature_ranks_aggregated_over_splits_rforest(self, drug_tuple): # Initialize array for storage of intermediate results ranks_vector = np.zeros(17737) # Iterate over data splits and add corresponding feature ranks for split_seed in self.importances_dict[drug_tuple]: features_with_rank = self.extract_feature_ranks_per_split_rforest(drug_tuple, split_seed) ranks_vector = ranks_vector + np.array([x[1] for x in features_with_rank]) # Divide ranks vector by number of splits to get mean ranks ranks_vector = ranks_vector / len(self.importances_dict[drug_tuple]) # Add gene ids and return the results gene_ids = [x[0] for x in features_with_rank] return [x for x in zip(gene_ids, ranks_vector)] def extract_topk_relevant_features_rforest(self, drug_tuple, k, just_genes_ids=True): # Compute genes along with corresponding aggregated ranks over splits genes_with_ranks = self.extract_feature_ranks_aggregated_over_splits_rforest(drug_tuple) # If just_gene_ids is True, return only IDs corresponging to k # most relevant genes if just_genes_ids: return [x[0] for x in sorted(genes_with_ranks, key=lambda x: x[1])[:k]] # Otherwise, return gene IDs along with corresponding mean ranks else: return sorted(genes_with_ranks, key=lambda x: x[1])[:k] def reproduce_cv_results_vs_feat_numbers_ss(self): pass def reproduce_cv_results_vs_feat_numbers_rforest(self, drug_tuple, drug_annotations_df, gene_expression_df, drug_response_df, rforest_jobs=1, tuning_jobs=1, log=False): # First, create corresponding DrugGenomeWide object # Get appropriate drug attribute from drug annotations row = drug_annotations_df[drug_annotations_df["DRUG_ID"] == drug_tuple[1]] gdsc_id = row["DRUG_ID"].iloc[0] name = row["DRUG_NAME"].iloc[0] targets = row["TARGET"].iloc[0].split(", ") target_pathway = row["TARGET_PATHWAY"].iloc[0] drug = DrugGenomeWide(gdsc_id, name, targets, target_pathway) print(drug) print(drug.targets) print(self.param_grid) # Extract full data data = drug.return_full_data(drug_response_df, gene_expression_df, data_combination=["expression"]) if log: print("Reproducing results for drug {}, {}, data shape: {}.".format( drug.name, drug_gdsc_id, data.shape)) # Extract features and labels y = data["AUC"] X = data.drop(["cell_line_id", "AUC"], axis=1) assert X.shape[1] == 17737 and X.shape[0] == y.shape[0] cv_results_over_splits = {} # Iterate over data splits c = 0 for seed_of_interest in exp_results.performance_dict[drug_tuple]: if log: print() print("Reproducing for split seed:", seed_of_interest) # Split into train and test X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, test_size=0.3, random_state=seed_of_interest) # Inportance vector importances = np.array([x[1] for x in exp_results.importances_dict[drug_tuple][seed_of_interest]]) indices = importances.argsort()[::-1] # Initialize dictionary with cross-validation results over feature numbers k cv_scores = {} for k in exp_results.best_params_dict[drug_tuple][seed_of_interest]: # Extract reduced Xs X_train_reduced = self.selectKImportance(X_train, indices, k) X_test_reduced = self.selectKImportance(X_test, indices, k) # Setup the model scaler = StandardScaler() estimator = RandomForestRegressor(random_state=exp_results.estimator_seeds[c], n_jobs=rforest_jobs) pipe = Pipeline([ ("scaler", scaler), ("estimator", estimator) ]) # Set best params best_params = exp_results.best_params_dict[drug_tuple][seed_of_interest][k] pipe.set_params(**best_params) # Get cross-val score kfolds_results = model_selection.cross_val_score(pipe, X_train_reduced, y_train, scoring = "neg_mean_squared_error", cv=self.kfolds, n_jobs=tuning_jobs) res = (-np.mean(kfolds_results)) ** 0.5 if log: print("Done modeling with {} features".format(k)) cv_scores[k] = res c += 1 cv_results_over_splits[seed_of_interest] = cv_scores return cv_results_over_splits @staticmethod def comparative_df(experiments, flags, flag_name="Model", columns_to_aggregate=["Model test RMSE", "Model test correlation", "Dummy test RMSE", "Relative test RMSE"], metric_to_aggregate="mean", drug_annotations_df=None, remove_duplicates=True): # Compute aggregated DF with results for every experiment dfs = [] for i in range(len(experiments)): df = experiments[i].create_agg_results_df(columns_to_aggregate, metric_to_aggregate, drug_annotations_df, remove_duplicates) dfs.append(df) # Find the intersection in drugs drugs_intersection = set(dfs[0]["Drug ID"]) for i in range(1, len(dfs)): df = dfs[i] drugs_intersection = drugs_intersection.intersection(df["Drug ID"]) drugs_intersection = list(drugs_intersection) # Create a list of DataFrames with common drugs dfs_common = [1 for x in range(len(experiments))] for i in range(len(dfs)): df_common = dfs[i][dfs[i]["Drug ID"].isin(drugs_intersection)] assert df_common.shape[0] == len(drugs_intersection) # Add a column with appropriate flags flags_column = [flags[i]] * df_common.shape[0] df_common[flag_name] = flags_column dfs_common[i] = df_common # Concatenate all DataFrames comparative_df = pd.concat(dfs_common, axis=0) # Sort final DF bu drug IDs return comparative_df.sort_values("Drug ID") @staticmethod def barplot_from_comparative_df(data, x, y, hue=None, order=None, hue_order=None, title="", figsize=(35, 12), title_size=45, label_size=30, tick_size=20, width=0.7, grid=True, half=1, hline_width=2., legend_fontsize=25, save_directory=None, xticks_off=False, ax=None): params = {"legend.fontsize": legend_fontsize, "legend.handlelength": 2} plt.rcParams.update(params) fig = plt.figure(figsize=figsize) ax = fig.add_subplot(111) ax.set_title(title, fontsize=title_size) ax.set_xlabel(x, fontsize=label_size) ax.set_ylabel(y, fontsize=label_size) sns.barplot(x, y, hue=hue, data=data, order=order, hue_order=hue_order, ax=ax) plt.xticks(rotation='vertical') plt.tick_params("both", labelsize=tick_size) if xticks_off: ax.set_xlabel("") plt.xticks([], []) plt.legend(title = "") # If a metric is Relative Test RMSE, add a horziontal line at 1, # represanting a baseline if y == "Relative test RMSE": ax.axhline(y = 1.0, linewidth=hline_width, color="black") plt.tight_layout() if save_directory: plt.savefig(save_directory) plt.show() def catplot_from_comparative_df(data, x, y, hue=None, order=None, hue_order=None, col=None, row=None, kind="bar", title="", height=5, aspect=2., title_size=45, label_size=35, tick_size=25, width=0.7, grid=False, half=1, hline_width=2., legend_fontsize=25, save_directory=None, xticks_off=False, ax=None, legend=True, legend_out=False, marker_size=None): params = {"legend.fontsize": legend_fontsize, "legend.handlelength": 2} plt.rcParams.update(params) arguments = {"x": x, "y": y, "hue": hue, "data": data, "kind": kind, "order":order, "hue_order": hue_order, "col":col, "row": row, "height": height, "aspect": aspect, "ax": ax, "legend_out": legend_out, "legend": legend} if kind in ("bar", "violin", "box"): g = sns.catplot(**arguments) else: g = sns.catplot(**arguments, s=marker_size) plt.tick_params("both", labelsize=tick_size) plt.xticks(rotation="vertical") plt.xlabel(x, fontsize=label_size) plt.ylabel(y, fontsize=label_size) plt.title(title, fontsize=40) if xticks_off: ax.set_xlabel("") plt.xticks([], []) if grid: plt.grid() plt.legend(title = "") # If a metric is Relative Test RMSE, add a horziontal line at 1, # represanting a baseline if y == "Relative test RMSE": plt.axhline(y=1., color='b', linewidth=hline_width) plt.tight_layout() if save_directory: plt.savefig(save_directory) plt.close(g.fig) plt.show() @staticmethod def sort_drugs_by_comparable_performance(comparative_df, model_to_compare, metric, flag_name="Model"): results = [] for drug_name in comparative_df["Drug Name"].unique(): current_df = comparative_df[comparative_df["Drug Name"] == drug_name] baseline_performance = current_df[current_df[flag_name] == model_to_compare][ metric ].iloc[0] # Find the best model among rest if metric == "Model test RMSE": best_metric = 1. for model in current_df[flag_name].unique(): if model != model_to_compare: performance = current_df[current_df[flag_name] == model][metric].iloc[0] if performance < best_metric: best_metric = performance else: best_metric = 0.0 for model in current_df[flag_name].unique(): if model != model_to_compare: performance = current_df[current_df[flag_name] == model][metric].iloc[0] if performance > best_metric: best_metric = performance # Establish relative metric relative_performance = baseline_performance / best_metric # Add to results results.append((drug_name, relative_performance)) # Sort the results if metric == "Model test RMSE": order = sorted(results, key=lambda x: x[1]) else: order = sorted(results, key=lambda x: x[1], reverse=True) return order @staticmethod def boxplot_from_comparative_df(data, x, y, hue=None, order=None, title="", figsize=(8, 6), title_size=25, label_size=20, tick_size=18, grid=True, rotation=-90, save_directory=None, xticks_off=False): # Actual plotting fig = plt.figure(figsize=figsize) plt.tick_params(labelsize=tick_size) plt.title(title, fontsize = title_size) plt.grid() sns.boxplot(x, y, data=data, hue=hue, order=order) plt.xlabel("", fontsize=label_size) plt.ylabel(y, fontsize=label_size) plt.xticks(rotation=rotation) if xticks_off: plt.xticks([], []) plt.tight_layout() if save_directory: plt.savefig(save_directory) plt.show() @staticmethod def filterout_good_drugs(data, rel_rmse_threshold=1.01, correlation_threshold=0.0, flag_name="Model"): # Extract drug IDs for which one of the models exceeded threshold good_drug_ids = [] for drug_id in data["Drug ID"].unique(): current_df = data[data["Drug ID"] == drug_id] for model in current_df[flag_name]: current_rel_rmse = current_df[current_df[flag_name] == model][ "Relative test RMSE"].iloc[0] current_correlation = current_df[current_df[flag_name] == model][ "Model test correlation"].iloc[0] if (current_rel_rmse > rel_rmse_threshold) and (current_correlation > correlation_threshold): good_drug_ids.append(drug_id) break # Return DataFrame containing only well performing drugs return data[data["Drug ID"].isin(good_drug_ids)] @staticmethod def get_best_results(overall_agg_dataframe, metric="Model test correlation"): ides = [] names = [] corrs = [] rel_rmses = [] test_rmses = [] dummy_rmses = [] corr_pvals = [] experiment_names = [] pathways = [] # Iterate over drugs for drug_id in overall_agg_dataframe["Drug ID"].unique(): df = overall_agg_dataframe[overall_agg_dataframe["Drug ID"] == drug_id] # Find row corresponding the best metric if metric == "Model test correlation" or metric == "Relative test RMSE": max_idx = df[metric].idxmax() max_row = df.loc[max_idx] else: max_idx = df[metric].idxmin() max_row = df.loc[max_idx] name = max_row["Drug Name"] corr = max_row["Model test correlation"] rel_rmse = max_row["Relative test RMSE"] test_rmse = max_row["Model test RMSE"] experiment = max_row["Model"] pathway = max_row["Target Pathway"] corr_pval = max_row["Correlation pval"] dummy_rmse = max_row["Dummy test RMSE"] ides.append(drug_id) names.append(name) corrs.append(corr) rel_rmses.append(rel_rmse) test_rmses.append(test_rmse) experiment_names.append(experiment) pathways.append(pathway) corr_pvals.append(corr_pval) dummy_rmses.append(dummy_rmse) # Put into DataFrame df_best_results =
pd.DataFrame()
pandas.DataFrame
""" Automatic dataset upload to google drive <NAME> - <EMAIL> """ from logging import root from pydrive.auth import GoogleAuth from pydrive.drive import GoogleDrive from tqdm import tqdm import pandas as pd import queue import sys import os from os.path import isfile, join from time import perf_counter import collection import cv2 LOCAL_PATH_TO_TMP = "/Users/johnmarangola/Desktop/repos/cv-chess/core/vision/tmp/" DATASET_METADATA_FILENAME = "my_csv.csv" METADATA_FIELDS = ["File", "Piece Color", "Piece Type", "Position", "ID", "Batch ID"] from concurrent.futures import ThreadPoolExecutor from time import perf_counter import preprocessing as pre def get_id(drive, name): """ Get the ID of a file in Google Drive Args: name (str): Filename Returns: str: Google drive file ID """ file_list = drive.ListFile({'q': "'root' in parents and trashed=false"}).GetList() ids = [] for file1 in file_list: if file1["title"] == name: ids.append(file1["id"]) if len(ids) == 1: return ids[0] return None def download(drive, filename): """ Download a file from root directory of google drive Args: GoogleDrive object: Access to google drive filename (str): Filename to download Returns: [type]: [description] """ _id = get_id(filename) if _id is None: return False temp = drive.CreateFile({'id':_id}) temp.GetContentFile(filename) return True def upload_as_child(drive, filename, folder_id): """ Upload a file to a parent folder Args: drive (GoogleDrive object): Access to Google Drive filename (str): Name of file to be uploaded folder_id (str): Parent folder drive ID Returns: GoogleDriveFile: Uploaded file """ image_file = drive.CreateFile({'parents': [{'id': folder_id}]}) image_file.SetContentFile(filename) image_file.Upload() return image_file def create_root_folder(drive, name): """ Create a root folder in Google Drive Args: drive (GoogleDrive object): Access to google drive name (str): Folder name Returns: str: Folder ID """ for file in drive.ListFile({'q': f"'root' in parents and trashed=false"}).GetList(): if file['title'] == name: return None root_folder = drive.CreateFile({'title':name, 'mimeType':"application/vnd.google-apps.folder"}) root_folder.Upload() return root_folder['id'] def add_sub_directory(drive, parent_id, sub_dir): """ Add subfolder to parent directory Args: drive (GoogleDrive object): Access to google drive parent_id (str): ID of parent directory sub_dir (str): Name of subfolder Returns: str: ID of subfolder """ # check to make sure sub-directory does not exist yet: for file in drive.ListFile({'q': f"'{parent_id}' in parents and trashed=false"}).GetList(): if file['title'] == sub_dir: return False sub_dir = drive.CreateFile({'title':sub_dir,"parents":[{'id':parent_id}],'mimeType':"application/vnd.google-apps.folder"}) sub_dir.Upload() return sub_dir['id'] def upload_local_dataset(dataset_name, folder_id, local_path=LOCAL_PATH_TO_TMP, metadata_filename=DATASET_METADATA_FILENAME): """ Upload a local dataset to a Google Drive that named dataset_name. Args: dataset_name (str): Name of dataset to be uploaded to Google Drive. folder_id (str): Google drive ID of folder that the dataset is uploaded within. local_path (str, optional): Local absolute path of cv-chess/core/vision/tmp/. Defaults to LOCAL_PATH_TO_TMP. metadata_filename (str optional): Name of metadata file (includes .csv). Defaults to DATASET_METADATA_FILENAME. Returns: [type]: [description] """ # Read in local metadata os.chdir(local_path) try: local_meta = pd.read_csv(metadata_filename) except: print(f"Unable to load {metadata_filename} from {LOCAL_PATH_TO_TMP}. Exiting...") return False # Walk through directory, finding valid files to upload im_upload = [] for file in os.listdir(local_path): if file.endswith(".jpg") and file[0] == "f": im_upload.append(file) # initialize empty queue #q = queue.Queue() t1 = perf_counter() # Start runtime clock # Concurrently execute file uploads using 100 workers for the thread pool with ThreadPoolExecutor(max_workers=50) as executor: for file in tqdm (im_upload, desc="Threading upload", ascii=False, ncols=100): executor.submit(push_to_drive_as_child, drive, local_meta, file, folder_id) # Dequeue drive ids, adding each to metadata as it is popped from the queue #while not q.empty(): # _row, _id = q.get() # local_meta.at[_row, "ID"] = _id t1 -= perf_counter() # Clean up dataframe from auto-add during copying and writing operations #for col in local_meta.columns.tolist(): # Remove any column that is not an essential metadata field # if col not in METADATA_FIELDS: # del local_meta[col] local_meta.to_csv(path_or_buf=local_path + metadata_filename) # Upload metadata to google drive upload_as_child(drive, metadata_filename, folder_id) print(f"Total upload time: {abs(t1)}s") def upload_new_dataset(dataset_name, local_path=LOCAL_PATH_TO_TMP, metadata_filename=DATASET_METADATA_FILENAME): """ Upload a new dataset to folder in Google Drive Args: dataset_name (str): Name of new dataset folder local_path (str, optional): Path to cv-chess/core/vision/. Defaults to "/Users/johnmarangola/Desktop/repos/cv-chess/core/vision/". Returns: boolean: True if dataset successfully uploaded, False otherwise. """ drive = authenticate() if get_id(drive, dataset_name) is not None: print(f"Dataset {dataset_name} already exists. Exiting...") return False root_id = create_root_folder(drive, dataset_name) if root_id is None: print("Error.") return False # Upload the dataset from local to Drive return upload_local_dataset(dataset_name, root_id, local_path=LOCAL_PATH_TO_TMP, metadata_filename=DATASET_METADATA_FILENAME) def add_to_existing_dataset(dataset_name, local_path=LOCAL_PATH_TO_TMP, cloud_metadata_filename=DATASET_METADATA_FILENAME): drive = authenticate() folder_id = get_id(drive, dataset_name) # Check to ensure that the dataset folder exists in Google Drive if folder_id is None: print(f"Dataset {dataset_name} not found") return False folder_id_string = "\'" + folder_id + "\'" + " in parents and trashed=false" file_list = drive.ListFile({'q': folder_id_string}).GetList() metadata_id = None # Iterate through dataset directory, searching for metadata filename for file in file_list: if file['title'] == cloud_metadata_filename: metadata_id = file['id'] metadata_file = drive.CreateFile({'id':metadata_id}) metadata_file.GetContentFile(cloud_metadata_filename) break # Exit if could not find metadata .csv if metadata_id is None: print("Metadata .csv not found. Exiting...") sys.exit() cloud_metadata_df = pd.read_csv(cloud_metadata_filename) os.chdir(local_path) try: local_meta =
pd.read_csv(cloud_metadata_filename)
pandas.read_csv
import os from datetime import date from dask.dataframe import DataFrame as DaskDataFrame from numpy import nan, ndarray from numpy.testing import assert_allclose, assert_array_equal from pandas import DataFrame, Series, Timedelta, Timestamp from pandas.testing import assert_frame_equal, assert_series_equal from pymove import ( DaskMoveDataFrame, MoveDataFrame, PandasDiscreteMoveDataFrame, PandasMoveDataFrame, read_csv, ) from pymove.core.grid import Grid from pymove.utils.constants import ( DATE, DATETIME, DAY, DIST_PREV_TO_NEXT, DIST_TO_PREV, HOUR, HOUR_SIN, LATITUDE, LOCAL_LABEL, LONGITUDE, PERIOD, SITUATION, SPEED_PREV_TO_NEXT, TID, TIME_PREV_TO_NEXT, TRAJ_ID, TYPE_DASK, TYPE_PANDAS, UID, WEEK_END, ) list_data = [ [39.984094, 116.319236, '2008-10-23 05:53:05', 1], [39.984198, 116.319322, '2008-10-23 05:53:06', 1], [39.984224, 116.319402, '2008-10-23 05:53:11', 2], [39.984224, 116.319402, '2008-10-23 05:53:11', 2], ] str_data_default = """ lat,lon,datetime,id 39.984093,116.319236,2008-10-23 05:53:05,4 39.9842,116.319322,2008-10-23 05:53:06,1 39.984222,116.319402,2008-10-23 05:53:11,2 39.984222,116.319402,2008-10-23 05:53:11,2 """ str_data_different = """ latitude,longitude,time,traj_id 39.984093,116.319236,2008-10-23 05:53:05,4 39.9842,116.319322,2008-10-23 05:53:06,1 39.984222,116.319402,2008-10-23 05:53:11,2 39.984222,116.319402,2008-10-23 05:53:11,2 """ str_data_missing = """ 39.984093,116.319236,2008-10-23 05:53:05,4 39.9842,116.319322,2008-10-23 05:53:06,1 39.984222,116.319402,2008-10-23 05:53:11,2 39.984222,116.319402,2008-10-23 05:53:11,2 """ def _default_move_df(): return MoveDataFrame( data=list_data, latitude=LATITUDE, longitude=LONGITUDE, datetime=DATETIME, traj_id=TRAJ_ID, ) def _default_pandas_df(): return DataFrame( data=[ [39.984094, 116.319236, Timestamp('2008-10-23 05:53:05'), 1], [39.984198, 116.319322, Timestamp('2008-10-23 05:53:06'), 1], [39.984224, 116.319402, Timestamp('2008-10-23 05:53:11'), 2], [39.984224, 116.319402,
Timestamp('2008-10-23 05:53:11')
pandas.Timestamp
import os import sys import json import logging from datetime import datetime, timedelta import tweepy import numpy as np import pandas as pd from months import MONTHS_DICT DATA_SOURCE = "https://raw.githubusercontent.com/owid/covid-19-data/master/public/data/vaccinations/vaccinations.csv" BAR_CHARS = 16 # People over 12 years old (according to INE projected data for 2021) # NOTE: This number is still below the 75% threshold for herd immunity # It represents only ~71% of the population TOTAL_POP = 17109746 VAX_POP = 12293144 def logging_setup(): logging.basicConfig(filename='logs/bot.log', level=logging.INFO, format='%(message)s') return def should_tweet(df): final_line = None with open("logs/bot.log", "r") as log_file: for line in log_file: final_line = line pass if final_line is None: return True final_date = datetime.strptime(final_line[:10], '%Y-%m-%d') print(final_date, df['date'].values[-1]) return (df.tail(1)['date'] > final_date).any() # From https://github.com/imbstt/impf-progress-bot/blob/master/bot.py def generate_bar(percentage, n_chars = None): if not n_chars: n_chars = BAR_CHARS num_filled = round(percentage*n_chars) num_empty = n_chars-num_filled display_percentage = str(round(percentage*100, 1)) msg = '{}{} {}%'.format('▓'*num_filled, '░'*num_empty, display_percentage) return msg def get_data(): df =
pd.read_csv(DATA_SOURCE)
pandas.read_csv
""" Tasks ------- Search and transform jsonable structures, specifically to make it 'easy' to make tabular/csv output for other consumers. Example ~~~~~~~~~~~~~ *give me a list of all the fields called 'id' in this stupid, gnarly thing* >>> Q('id',gnarly_data) ['id1','id2','id3'] Observations: --------------------- 1) 'simple data structures' exist and are common. They are tedious to search. 2) The DOM is another nested / treeish structure, and jQuery selector is a good tool for that. 3a) R, Numpy, Excel and other analysis tools want 'tabular' data. These analyses are valuable and worth doing. 3b) Dot/Graphviz, NetworkX, and some other analyses *like* treeish/dicty things, and those analyses are also worth doing! 3c) Some analyses are best done using 'one-off' and custom code in C, Python, or another 'real' programming language. 4) Arbitrary transforms are tedious and error prone. SQL is one solution, XSLT is another, 5) the XPATH/XML/XSLT family is.... not universally loved :) They are very complete, and the completeness can make simple cases... gross. 6) For really complicated data structures, we can write one-off code. Getting 80% of the way is mostly okay. There will always have to be programmers in the loop. 7) Re-inventing SQL is probably a failure mode. So is reinventing XPATH, XSLT and the like. Be wary of mission creep! Re-use when possible (e.g., can we put the thing into a DOM using 8) If the interface is good, people can improve performance later. Simplifying --------------- 1) Assuming 'jsonable' structures 2) keys are strings or stringlike. Python allows any hashable to be a key. for now, we pretend that doesn't happen. 3) assumes most dicts are 'well behaved'. DAG, no cycles! 4) assume that if people want really specialized transforms, they can do it themselves. """ from __future__ import print_function from collections import namedtuple import csv import itertools from itertools import product from operator import attrgetter as aget, itemgetter as iget import operator import sys from pandas.compat import map, u, callable, Counter import pandas.compat as compat ## note 'url' appears multiple places and not all extensions have same struct ex1 = { 'name': 'Gregg', 'extensions': [ {'id':'hello', 'url':'url1'}, {'id':'gbye', 'url':'url2', 'more': dict(url='url3')}, ] } ## much longer example ex2 = {u('metadata'): {u('accessibilities'): [{u('name'): u('accessibility.tabfocus'), u('value'): 7}, {u('name'): u('accessibility.mouse_focuses_formcontrol'), u('value'): False}, {u('name'): u('accessibility.browsewithcaret'), u('value'): False}, {u('name'): u('accessibility.win32.force_disabled'), u('value'): False}, {u('name'): u('accessibility.typeaheadfind.startlinksonly'), u('value'): False}, {u('name'): u('accessibility.usebrailledisplay'), u('value'): u('')}, {u('name'): u('accessibility.typeaheadfind.timeout'), u('value'): 5000}, {u('name'): u('accessibility.typeaheadfind.enabletimeout'), u('value'): True}, {u('name'): u('accessibility.tabfocus_applies_to_xul'), u('value'): False}, {u('name'): u('accessibility.typeaheadfind.flashBar'), u('value'): 1}, {u('name'): u('accessibility.typeaheadfind.autostart'), u('value'): True}, {u('name'): u('accessibility.blockautorefresh'), u('value'): False}, {u('name'): u('accessibility.browsewithcaret_shortcut.enabled'), u('value'): True}, {u('name'): u('accessibility.typeaheadfind.enablesound'), u('value'): True}, {u('name'): u('accessibility.typeaheadfind.prefillwithselection'), u('value'): True}, {u('name'): u('accessibility.typeaheadfind.soundURL'), u('value'): u('beep')}, {u('name'): u('accessibility.typeaheadfind'), u('value'): False}, {u('name'): u('accessibility.typeaheadfind.casesensitive'), u('value'): 0}, {u('name'): u('accessibility.warn_on_browsewithcaret'), u('value'): True}, {u('name'): u('accessibility.usetexttospeech'), u('value'): u('')}, {u('name'): u('accessibility.accesskeycausesactivation'), u('value'): True}, {u('name'): u('accessibility.typeaheadfind.linksonly'), u('value'): False}, {u('name'): u('isInstantiated'), u('value'): True}], u('extensions'): [{u('id'): u('216ee7f7f4a5b8175374cd62150664efe2433a31'), u('isEnabled'): True}, {u('id'): u('1aa53d3b720800c43c4ced5740a6e82bb0b3813e'), u('isEnabled'): False}, {u('id'): u('01ecfac5a7bd8c9e27b7c5499e71c2d285084b37'), u('isEnabled'): True}, {u('id'): u('1c01f5b22371b70b312ace94785f7b0b87c3dfb2'), u('isEnabled'): True}, {u('id'): u('fb723781a2385055f7d024788b75e959ad8ea8c3'), u('isEnabled'): True}], u('fxVersion'): u('9.0'), u('location'): u('zh-CN'), u('operatingSystem'): u('WINNT Windows NT 5.1'), u('surveyAnswers'): u(''), u('task_guid'): u('d69fbd15-2517-45b5-8a17-bb7354122a75'), u('tpVersion'): u('1.2'), u('updateChannel'): u('beta')}, u('survey_data'): { u('extensions'): [{u('appDisabled'): False, u('id'): u('testpilot?labs.mozilla.com'), u('isCompatible'): True, u('isEnabled'): True, u('isPlatformCompatible'): True, u('name'): u('Test Pilot')}, {u('appDisabled'): True, u('id'): u('dict?www.youdao.com'), u('isCompatible'): False, u('isEnabled'): False, u('isPlatformCompatible'): True, u('name'): u('Youdao Word Capturer')}, {u('appDisabled'): False, u('id'): u('jqs?sun.com'), u('isCompatible'): True, u('isEnabled'): True, u('isPlatformCompatible'): True, u('name'):
u('Java Quick Starter')
pandas.compat.u
"""Automated data download and IO.""" # Builtins import glob import os import gzip import bz2 import hashlib import shutil import zipfile import sys import math import logging from functools import partial, wraps import time import fnmatch import urllib.request import urllib.error from urllib.parse import urlparse import socket import multiprocessing from netrc import netrc import ftplib import ssl import tarfile # External libs import pandas as pd import numpy as np import shapely.geometry as shpg import requests # Optional libs try: import geopandas as gpd except ImportError: pass try: import salem from salem import wgs84 except ImportError: pass try: import rasterio try: # rasterio V > 1.0 from rasterio.merge import merge as merge_tool except ImportError: from rasterio.tools.merge import merge as merge_tool except ImportError: pass try: ModuleNotFoundError except NameError: ModuleNotFoundError = ImportError # Locals import oggm.cfg as cfg from oggm.exceptions import (InvalidParamsError, NoInternetException, DownloadVerificationFailedException, DownloadCredentialsMissingException, HttpDownloadError, HttpContentTooShortError, InvalidDEMError, FTPSDownloadError) # Module logger logger = logging.getLogger('.'.join(__name__.split('.')[:-1])) # Github repository and commit hash/branch name/tag name on that repository # The given commit will be downloaded from github and used as source for # all sample data SAMPLE_DATA_GH_REPO = 'OGGM/oggm-sample-data' SAMPLE_DATA_COMMIT = '98f6e299ab60b04cba9eb3be382231e19baf8c9e' GDIR_L1L2_URL = ('https://cluster.klima.uni-bremen.de/~oggm/gdirs/oggm_v1.4/' 'L1-L2_files/centerlines/') GDIR_L3L5_URL = ('https://cluster.klima.uni-bremen.de/~oggm/gdirs/oggm_v1.4/' 'L3-L5_files/CRU/centerlines/qc3/pcp2.5/no_match/') DEMS_GDIR_URL = ('https://cluster.klima.uni-bremen.de/~oggm/gdirs/oggm_v1.4/' 'rgitopo/') CHECKSUM_URL = 'https://cluster.klima.uni-bremen.de/data/downloads.sha256.hdf' CHECKSUM_VALIDATION_URL = CHECKSUM_URL + '.sha256' CHECKSUM_LIFETIME = 24 * 60 * 60 # Web mercator proj constants WEB_N_PIX = 256 WEB_EARTH_RADUIS = 6378137. DEM_SOURCES = ['GIMP', 'ARCTICDEM', 'RAMP', 'TANDEM', 'AW3D30', 'MAPZEN', 'DEM3', 'ASTER', 'SRTM', 'REMA', 'ALASKA', 'COPDEM', 'NASADEM'] DEM_SOURCES_PER_GLACIER = None _RGI_METADATA = dict() DEM3REG = { 'ISL': [-25., -13., 63., 67.], # Iceland 'SVALBARD': [9., 35.99, 75., 84.], 'JANMAYEN': [-10., -7., 70., 72.], 'FJ': [36., 68., 79., 90.], # Franz Josef Land 'FAR': [-8., -6., 61., 63.], # Faroer 'BEAR': [18., 20., 74., 75.], # Bear Island 'SHL': [-3., 0., 60., 61.], # Shetland # Antarctica tiles as UTM zones, large files '01-15': [-180., -91., -90, -60.], '16-30': [-91., -1., -90., -60.], '31-45': [-1., 89., -90., -60.], '46-60': [89., 189., -90., -60.], # Greenland tiles 'GL-North': [-72., -11., 76., 84.], 'GL-West': [-62., -42., 64., 76.], 'GL-South': [-52., -40., 59., 64.], 'GL-East': [-42., -17., 64., 76.] } # Function tuple2int = partial(np.array, dtype=np.int64) lock = None def mkdir(path, reset=False): """Checks if directory exists and if not, create one. Parameters ---------- reset: erase the content of the directory if exists Returns ------- the path """ if reset and os.path.exists(path): shutil.rmtree(path) try: os.makedirs(path) except FileExistsError: pass return path def del_empty_dirs(s_dir): """Delete empty directories.""" b_empty = True for s_target in os.listdir(s_dir): s_path = os.path.join(s_dir, s_target) if os.path.isdir(s_path): if not del_empty_dirs(s_path): b_empty = False else: b_empty = False if b_empty: os.rmdir(s_dir) return b_empty def findfiles(root_dir, endswith): """Finds all files with a specific ending in a directory Parameters ---------- root_dir : str The directory to search fo endswith : str The file ending (e.g. '.hgt' Returns ------- the list of files """ out = [] for dirpath, dirnames, filenames in os.walk(root_dir): for filename in [f for f in filenames if f.endswith(endswith)]: out.append(os.path.join(dirpath, filename)) return out def get_lock(): """Get multiprocessing lock.""" global lock if lock is None: # Global Lock if cfg.PARAMS.get('use_mp_spawn', False): lock = multiprocessing.get_context('spawn').Lock() else: lock = multiprocessing.Lock() return lock def get_dl_verify_data(section): """Returns a pandas DataFrame with all known download object hashes. The returned dictionary resolves str: cache_obj_name (without section) to a tuple int(size) and bytes(sha256) """ verify_key = 'dl_verify_data_' + section if cfg.DATA.get(verify_key) is not None: return cfg.DATA[verify_key] verify_file_path = os.path.join(cfg.CACHE_DIR, 'downloads.sha256.hdf') def verify_file(force=False): """Check the hash file's own hash""" if not cfg.PARAMS['has_internet']: return if not force and os.path.isfile(verify_file_path) and \ os.path.getmtime(verify_file_path) + CHECKSUM_LIFETIME > time.time(): return logger.info('Checking the download verification file checksum...') try: with requests.get(CHECKSUM_VALIDATION_URL) as req: req.raise_for_status() verify_file_sha256 = req.text.split(maxsplit=1)[0] verify_file_sha256 = bytearray.fromhex(verify_file_sha256) except Exception as e: verify_file_sha256 = None logger.warning('Failed getting verification checksum: ' + repr(e)) if os.path.isfile(verify_file_path) and verify_file_sha256: sha256 = hashlib.sha256() with open(verify_file_path, 'rb') as f: for b in iter(lambda: f.read(0xFFFF), b''): sha256.update(b) if sha256.digest() != verify_file_sha256: logger.warning('%s changed or invalid, deleting.' % (verify_file_path)) os.remove(verify_file_path) else: os.utime(verify_file_path) if not np.any(['dl_verify_data_' in k for k in cfg.DATA.keys()]): # We check the hash file only once per session # no need to do it at each call verify_file() if not os.path.isfile(verify_file_path): if not cfg.PARAMS['has_internet']: return pd.DataFrame() logger.info('Downloading %s to %s...' % (CHECKSUM_URL, verify_file_path)) with requests.get(CHECKSUM_URL, stream=True) as req: if req.status_code == 200: mkdir(os.path.dirname(verify_file_path)) with open(verify_file_path, 'wb') as f: for b in req.iter_content(chunk_size=0xFFFF): if b: f.write(b) logger.info('Done downloading.') verify_file(force=True) if not os.path.isfile(verify_file_path): logger.warning('Downloading and verifying checksums failed.') return pd.DataFrame() try: data = pd.read_hdf(verify_file_path, key=section) except KeyError: data = pd.DataFrame() cfg.DATA[verify_key] = data return data def _call_dl_func(dl_func, cache_path): """Helper so the actual call to downloads can be overridden """ return dl_func(cache_path) def _cached_download_helper(cache_obj_name, dl_func, reset=False): """Helper function for downloads. Takes care of checking if the file is already cached. Only calls the actual download function when no cached version exists. """ cache_dir = cfg.PATHS['dl_cache_dir'] cache_ro = cfg.PARAMS['dl_cache_readonly'] # A lot of logic below could be simplified but it's also not too important wd = cfg.PATHS.get('working_dir') if wd: # this is for real runs fb_cache_dir = os.path.join(wd, 'cache') check_fb_dir = False else: # Nothing have been set up yet, this is bad - find a place to write # This should happen on read-only cluster only but still wd = os.environ.get('OGGM_WORKDIR') if wd is not None and os.path.isdir(wd): fb_cache_dir = os.path.join(wd, 'cache') else: fb_cache_dir = os.path.join(cfg.CACHE_DIR, 'cache') check_fb_dir = True if not cache_dir: # Defaults to working directory: it must be set! if not cfg.PATHS['working_dir']: raise InvalidParamsError("Need a valid PATHS['working_dir']!") cache_dir = fb_cache_dir cache_ro = False fb_path = os.path.join(fb_cache_dir, cache_obj_name) if not reset and os.path.isfile(fb_path): return fb_path cache_path = os.path.join(cache_dir, cache_obj_name) if not reset and os.path.isfile(cache_path): return cache_path if cache_ro: if check_fb_dir: # Add a manual check that we are caching sample data download if 'oggm-sample-data' not in fb_path: raise InvalidParamsError('Attempting to download something ' 'with invalid global settings.') cache_path = fb_path if not cfg.PARAMS['has_internet']: raise NoInternetException("Download required, but " "`has_internet` is False.") mkdir(os.path.dirname(cache_path)) try: cache_path = _call_dl_func(dl_func, cache_path) except BaseException: if os.path.exists(cache_path): os.remove(cache_path) raise return cache_path def _verified_download_helper(cache_obj_name, dl_func, reset=False): """Helper function for downloads. Verifies the size and hash of the downloaded file against the included list of known static files. Uses _cached_download_helper to perform the actual download. """ path = _cached_download_helper(cache_obj_name, dl_func, reset) try: dl_verify = cfg.PARAMS['dl_verify'] except KeyError: dl_verify = True if dl_verify and path and cache_obj_name not in cfg.DL_VERIFIED: cache_section, cache_path = cache_obj_name.split('/', 1) data = get_dl_verify_data(cache_section) if cache_path not in data.index: logger.info('No known hash for %s' % cache_obj_name) cfg.DL_VERIFIED[cache_obj_name] = True else: # compute the hash sha256 = hashlib.sha256() with open(path, 'rb') as f: for b in iter(lambda: f.read(0xFFFF), b''): sha256.update(b) sha256 = sha256.digest() size = os.path.getsize(path) # check data = data.loc[cache_path] if data['size'] != size or bytes(data['sha256']) != sha256: err = '%s failed to verify!\nis: %s %s\nexpected: %s %s' % ( path, size, sha256.hex(), data[0], data[1].hex()) raise DownloadVerificationFailedException(msg=err, path=path) logger.info('%s verified successfully.' % path) cfg.DL_VERIFIED[cache_obj_name] = True return path def _requests_urlretrieve(url, path, reporthook, auth=None, timeout=None): """Implements the required features of urlretrieve on top of requests """ chunk_size = 128 * 1024 chunk_count = 0 with requests.get(url, stream=True, auth=auth, timeout=timeout) as r: if r.status_code != 200: raise HttpDownloadError(r.status_code, url) r.raise_for_status() size = r.headers.get('content-length') or -1 size = int(size) if reporthook: reporthook(chunk_count, chunk_size, size) with open(path, 'wb') as f: for chunk in r.iter_content(chunk_size=chunk_size): if not chunk: continue f.write(chunk) chunk_count += 1 if reporthook: reporthook(chunk_count, chunk_size, size) if chunk_count * chunk_size < size: raise HttpContentTooShortError() def _classic_urlretrieve(url, path, reporthook, auth=None, timeout=None): """Thin wrapper around pythons urllib urlretrieve """ ourl = url if auth: u = urlparse(url) if '@' not in u.netloc: netloc = auth[0] + ':' + auth[1] + '@' + u.netloc url = u._replace(netloc=netloc).geturl() old_def_timeout = socket.getdefaulttimeout() if timeout is not None: socket.setdefaulttimeout(timeout) try: urllib.request.urlretrieve(url, path, reporthook) except urllib.error.HTTPError as e: raise HttpDownloadError(e.code, ourl) except urllib.error.ContentTooShortError as e: raise HttpContentTooShortError() finally: socket.setdefaulttimeout(old_def_timeout) class ImplicitFTPTLS(ftplib.FTP_TLS): """ FTP_TLS subclass that automatically wraps sockets in SSL to support implicit FTPS. Taken from https://stackoverflow.com/a/36049814 """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self._sock = None @property def sock(self): """Return the socket.""" return self._sock @sock.setter def sock(self, value): """When modifying the socket, ensure that it is ssl wrapped.""" if value is not None and not isinstance(value, ssl.SSLSocket): value = self.context.wrap_socket(value) self._sock = value def url_exists(url): """Checks if a given a URL exists or not.""" request = requests.get(url) return request.status_code < 400 def _ftps_retrieve(url, path, reporthook, auth=None, timeout=None): """ Wrapper around ftplib to download from FTPS server """ if not auth: raise DownloadCredentialsMissingException('No authentication ' 'credentials given!') upar = urlparse(url) # Decide if Implicit or Explicit FTPS is used based on the port in url if upar.port == 990: ftps = ImplicitFTPTLS() elif upar.port == 21: ftps = ftplib.FTP_TLS() try: # establish ssl connection ftps.connect(host=upar.hostname, port=upar.port, timeout=timeout) ftps.login(user=auth[0], passwd=auth[1]) ftps.prot_p() logger.info('Established connection %s' % upar.hostname) # meta for progress bar size count = 0 total = ftps.size(upar.path) bs = 12*1024 def _ftps_progress(data): outfile.write(data) nonlocal count count += 1 reporthook(count, count*bs, total) with open(path, 'wb') as outfile: ftps.retrbinary('RETR ' + upar.path, _ftps_progress, blocksize=bs) except (ftplib.error_perm, socket.timeout, socket.gaierror) as err: raise FTPSDownloadError(err) finally: ftps.close() def _get_url_cache_name(url): """Returns the cache name for any given url. """ res = urlparse(url) return res.netloc.split(':', 1)[0] + res.path def oggm_urlretrieve(url, cache_obj_name=None, reset=False, reporthook=None, auth=None, timeout=None): """Wrapper around urlretrieve, to implement our caching logic. Instead of accepting a destination path, it decided where to store the file and returns the local path. auth is expected to be either a tuple of ('username', 'password') or None. """ if cache_obj_name is None: cache_obj_name = _get_url_cache_name(url) def _dlf(cache_path): logger.info("Downloading %s to %s..." % (url, cache_path)) try: _requests_urlretrieve(url, cache_path, reporthook, auth, timeout) except requests.exceptions.InvalidSchema: if 'ftps://' in url: _ftps_retrieve(url, cache_path, reporthook, auth, timeout) else: _classic_urlretrieve(url, cache_path, reporthook, auth, timeout) return cache_path return _verified_download_helper(cache_obj_name, _dlf, reset) def _progress_urlretrieve(url, cache_name=None, reset=False, auth=None, timeout=None): """Downloads a file, returns its local path, and shows a progressbar.""" try: from progressbar import DataTransferBar, UnknownLength pbar = None def _upd(count, size, total): nonlocal pbar if pbar is None: pbar = DataTransferBar() if not pbar.is_terminal: pbar.min_poll_interval = 15 if pbar.max_value is None: if total > 0: pbar.start(total) else: pbar.start(UnknownLength) pbar.update(min(count * size, total)) sys.stdout.flush() res = oggm_urlretrieve(url, cache_obj_name=cache_name, reset=reset, reporthook=_upd, auth=auth, timeout=timeout) try: pbar.finish() except BaseException: pass return res except (ImportError, ModuleNotFoundError): return oggm_urlretrieve(url, cache_obj_name=cache_name, reset=reset, auth=auth, timeout=timeout) def aws_file_download(aws_path, cache_name=None, reset=False): with get_lock(): return _aws_file_download_unlocked(aws_path, cache_name, reset) def _aws_file_download_unlocked(aws_path, cache_name=None, reset=False): """Download a file from the AWS drive s3://astgtmv2/ **Note:** you need AWS credentials for this to work. Parameters ---------- aws_path: path relative to s3://astgtmv2/ """ while aws_path.startswith('/'): aws_path = aws_path[1:] if cache_name is not None: cache_obj_name = cache_name else: cache_obj_name = 'astgtmv2/' + aws_path def _dlf(cache_path): raise NotImplementedError("Downloads from AWS are no longer supported") return _verified_download_helper(cache_obj_name, _dlf, reset) def file_downloader(www_path, retry_max=5, cache_name=None, reset=False, auth=None, timeout=None): """A slightly better downloader: it tries more than once.""" local_path = None retry_counter = 0 while retry_counter <= retry_max: # Try to download try: retry_counter += 1 local_path = _progress_urlretrieve(www_path, cache_name=cache_name, reset=reset, auth=auth, timeout=timeout) # if no error, exit break except HttpDownloadError as err: # This works well for py3 if err.code == 404 or err.code == 300: # Ok so this *should* be an ocean tile return None elif err.code >= 500 and err.code < 600: logger.info("Downloading %s failed with HTTP error %s, " "retrying in 10 seconds... %s/%s" % (www_path, err.code, retry_counter, retry_max)) time.sleep(10) continue else: raise except HttpContentTooShortError as err: logger.info("Downloading %s failed with ContentTooShortError" " error %s, retrying in 10 seconds... %s/%s" % (www_path, err.code, retry_counter, retry_max)) time.sleep(10) continue except DownloadVerificationFailedException as err: if (cfg.PATHS['dl_cache_dir'] and err.path.startswith(cfg.PATHS['dl_cache_dir']) and cfg.PARAMS['dl_cache_readonly']): if not cache_name: cache_name = _get_url_cache_name(www_path) cache_name = "GLOBAL_CACHE_INVALID/" + cache_name retry_counter -= 1 logger.info("Global cache for %s is invalid!") else: try: os.remove(err.path) except FileNotFoundError: pass logger.info("Downloading %s failed with " "DownloadVerificationFailedException\n %s\n" "The file might have changed or is corrupted. " "File deleted. Re-downloading... %s/%s" % (www_path, err.msg, retry_counter, retry_max)) continue except requests.ConnectionError as err: if err.args[0].__class__.__name__ == 'MaxRetryError': # if request tried often enough we don't have to do this # this error does happen for not existing ASTERv3 files return None else: # in other cases: try again logger.info("Downloading %s failed with ConnectionError, " "retrying in 10 seconds... %s/%s" % (www_path, retry_counter, retry_max)) time.sleep(10) continue except FTPSDownloadError as err: logger.info("Downloading %s failed with FTPSDownloadError" " error: '%s', retrying in 10 seconds... %s/%s" % (www_path, err.orgerr, retry_counter, retry_max)) time.sleep(10) continue # See if we managed (fail is allowed) if not local_path or not os.path.exists(local_path): logger.warning('Downloading %s failed.' % www_path) return local_path def locked_func(func): """To decorate a function that needs to be locked for multiprocessing""" @wraps(func) def wrapper(*args, **kwargs): with get_lock(): return func(*args, **kwargs) return wrapper def file_extractor(file_path): """For archives with only one file inside extract the file to tmpdir.""" filename, file_extension = os.path.splitext(file_path) # Second one for tar.gz files f2, ex2 = os.path.splitext(filename) if ex2 == '.tar': filename, file_extension = f2, '.tar.gz' bname = os.path.basename(file_path) # This is to give a unique name to the tmp file hid = hashlib.md5(file_path.encode()).hexdigest()[:7] + '_' # extract directory tmpdir = cfg.PATHS['tmp_dir'] mkdir(tmpdir) # Check output extension def _check_ext(f): _, of_ext = os.path.splitext(f) if of_ext not in ['.nc', '.tif']: raise InvalidParamsError('Extracted file extension not recognized' ': {}'.format(of_ext)) return of_ext if file_extension == '.zip': with zipfile.ZipFile(file_path) as zf: members = zf.namelist() if len(members) != 1: raise RuntimeError('Cannot extract multiple files') o_name = hid + members[0] o_path = os.path.join(tmpdir, o_name) of_ext = _check_ext(o_path) if not os.path.exists(o_path): logger.info('Extracting {} to {}...'.format(bname, o_path)) with open(o_path, 'wb') as f: f.write(zf.read(members[0])) elif file_extension == '.gz': # Gzip files cannot be inspected. It's always only one file # Decide on its name o_name = hid + os.path.basename(filename) o_path = os.path.join(tmpdir, o_name) of_ext = _check_ext(o_path) if not os.path.exists(o_path): logger.info('Extracting {} to {}...'.format(bname, o_path)) with gzip.GzipFile(file_path) as zf: with open(o_path, 'wb') as outfile: for line in zf: outfile.write(line) elif file_extension == '.bz2': # bzip2 files cannot be inspected. It's always only one file # Decide on its name o_name = hid + os.path.basename(filename) o_path = os.path.join(tmpdir, o_name) of_ext = _check_ext(o_path) if not os.path.exists(o_path): logger.info('Extracting {} to {}...'.format(bname, o_path)) with bz2.open(file_path) as zf: with open(o_path, 'wb') as outfile: for line in zf: outfile.write(line) elif file_extension in ['.tar.gz', '.tar']: with tarfile.open(file_path) as zf: members = zf.getmembers() if len(members) != 1: raise RuntimeError('Cannot extract multiple files') o_name = hid + members[0].name o_path = os.path.join(tmpdir, o_name) of_ext = _check_ext(o_path) if not os.path.exists(o_path): logger.info('Extracting {} to {}...'.format(bname, o_path)) with open(o_path, 'wb') as f: f.write(zf.extractfile(members[0]).read()) else: raise InvalidParamsError('Extension not recognized: ' '{}'.format(file_extension)) # Be sure we don't overfill the folder cfg.get_lru_handler(tmpdir, ending=of_ext).append(o_path) return o_path def download_with_authentication(wwwfile, key): """ Uses credentials from a local .netrc file to download files This is function is currently used for TanDEM-X and ASTER Parameters ---------- wwwfile : str path to the file to download key : str the machine to to look at in the .netrc file Returns ------- """ # Check the cache first. Use dummy download function to assure nothing is # tried to be downloaded without credentials: def _always_none(foo): return None cache_obj_name = _get_url_cache_name(wwwfile) dest_file = _verified_download_helper(cache_obj_name, _always_none) # Grab auth parameters if not dest_file: authfile = os.path.expanduser('~/.netrc') if not os.path.isfile(authfile): raise DownloadCredentialsMissingException( (authfile, ' does not exist. Add necessary credentials for ', key, ' with `oggm_netrc_credentials. You may have to ', 'register at the respective service first.')) try: netrc(authfile).authenticators(key)[0] except TypeError: raise DownloadCredentialsMissingException( ('Credentials for ', key, ' are not in ', authfile, '. Add ', 'credentials for with `oggm_netrc_credentials`.')) dest_file = file_downloader( wwwfile, auth=(netrc(authfile).authenticators(key)[0], netrc(authfile).authenticators(key)[2])) return dest_file def download_oggm_files(): with get_lock(): return _download_oggm_files_unlocked() def _download_oggm_files_unlocked(): """Checks if the demo data is already on the cache and downloads it.""" zip_url = 'https://github.com/%s/archive/%s.zip' % \ (SAMPLE_DATA_GH_REPO, SAMPLE_DATA_COMMIT) odir = os.path.join(cfg.CACHE_DIR) sdir = os.path.join(cfg.CACHE_DIR, 'oggm-sample-data-%s' % SAMPLE_DATA_COMMIT) # download only if necessary if not os.path.exists(sdir): ofile = file_downloader(zip_url) with zipfile.ZipFile(ofile) as zf: zf.extractall(odir) assert os.path.isdir(sdir) # list of files for output out = dict() for root, directories, filenames in os.walk(sdir): for filename in filenames: if filename in out: # This was a stupid thing, and should not happen # TODO: duplicates in sample data... k = os.path.join(os.path.basename(root), filename) assert k not in out out[k] = os.path.join(root, filename) else: out[filename] = os.path.join(root, filename) return out def _download_srtm_file(zone): with get_lock(): return _download_srtm_file_unlocked(zone) def _download_srtm_file_unlocked(zone): """Checks if the srtm data is in the directory and if not, download it. """ # extract directory tmpdir = cfg.PATHS['tmp_dir'] mkdir(tmpdir) outpath = os.path.join(tmpdir, 'srtm_' + zone + '.tif') # check if extracted file exists already if os.path.exists(outpath): return outpath # Did we download it yet? wwwfile = ('http://srtm.csi.cgiar.org/wp-content/uploads/files/srtm_5x5/' 'TIFF/srtm_' + zone + '.zip') dest_file = file_downloader(wwwfile) # None means we tried hard but we couldn't find it if not dest_file: return None # ok we have to extract it if not os.path.exists(outpath): with zipfile.ZipFile(dest_file) as zf: zf.extractall(tmpdir) # See if we're good, don't overfill the tmp directory assert os.path.exists(outpath) cfg.get_lru_handler(tmpdir).append(outpath) return outpath def _download_nasadem_file(zone): with get_lock(): return _download_nasadem_file_unlocked(zone) def _download_nasadem_file_unlocked(zone): """Checks if the NASADEM data is in the directory and if not, download it. """ # extract directory tmpdir = cfg.PATHS['tmp_dir'] mkdir(tmpdir) wwwfile = ('https://e4ftl01.cr.usgs.gov/MEASURES/NASADEM_HGT.001/' '2000.02.11/NASADEM_HGT_{}.zip'.format(zone)) demfile = '{}.hgt'.format(zone) outpath = os.path.join(tmpdir, demfile) # check if extracted file exists already if os.path.exists(outpath): return outpath # Did we download it yet? dest_file = file_downloader(wwwfile) # None means we tried hard but we couldn't find it if not dest_file: return None # ok we have to extract it if not os.path.exists(outpath): with zipfile.ZipFile(dest_file) as zf: zf.extract(demfile, path=tmpdir) # See if we're good, don't overfill the tmp directory assert os.path.exists(outpath) cfg.get_lru_handler(tmpdir).append(outpath) return outpath def _download_tandem_file(zone): with get_lock(): return _download_tandem_file_unlocked(zone) def _download_tandem_file_unlocked(zone): """Checks if the tandem data is in the directory and if not, download it. """ # extract directory tmpdir = cfg.PATHS['tmp_dir'] mkdir(tmpdir) bname = zone.split('/')[-1] + '_DEM.tif' wwwfile = ('https://download.geoservice.dlr.de/TDM90/files/' '{}.zip'.format(zone)) outpath = os.path.join(tmpdir, bname) # check if extracted file exists already if os.path.exists(outpath): return outpath dest_file = download_with_authentication(wwwfile, 'geoservice.dlr.de') # That means we tried hard but we couldn't find it if not dest_file: return None elif not zipfile.is_zipfile(dest_file): # If the TanDEM-X tile does not exist, a invalid file is created. # See https://github.com/OGGM/oggm/issues/893 for more details return None # ok we have to extract it if not os.path.exists(outpath): with zipfile.ZipFile(dest_file) as zf: for fn in zf.namelist(): if 'DEM/' + bname in fn: break with open(outpath, 'wb') as fo: fo.write(zf.read(fn)) # See if we're good, don't overfill the tmp directory assert os.path.exists(outpath) cfg.get_lru_handler(tmpdir).append(outpath) return outpath def _download_dem3_viewpano(zone): with get_lock(): return _download_dem3_viewpano_unlocked(zone) def _download_dem3_viewpano_unlocked(zone): """Checks if the DEM3 data is in the directory and if not, download it. """ # extract directory tmpdir = cfg.PATHS['tmp_dir'] mkdir(tmpdir) outpath = os.path.join(tmpdir, zone + '.tif') extract_dir = os.path.join(tmpdir, 'tmp_' + zone) mkdir(extract_dir, reset=True) # check if extracted file exists already if os.path.exists(outpath): return outpath # OK, so see if downloaded already # some files have a newer version 'v2' if zone in ['R33', 'R34', 'R35', 'R36', 'R37', 'R38', 'Q32', 'Q33', 'Q34', 'Q35', 'Q36', 'Q37', 'Q38', 'Q39', 'Q40', 'P31', 'P32', 'P33', 'P34', 'P35', 'P36', 'P37', 'P38', 'P39', 'P40']: ifile = 'http://viewfinderpanoramas.org/dem3/' + zone + 'v2.zip' elif zone in DEM3REG.keys(): # We prepared these files as tif already ifile = ('https://cluster.klima.uni-bremen.de/~oggm/dem/' 'DEM3_MERGED/{}.tif'.format(zone)) return file_downloader(ifile) else: ifile = 'http://viewfinderpanoramas.org/dem3/' + zone + '.zip' dfile = file_downloader(ifile) # None means we tried hard but we couldn't find it if not dfile: return None # ok we have to extract it with zipfile.ZipFile(dfile) as zf: zf.extractall(extract_dir) # Serious issue: sometimes, if a southern hemisphere URL is queried for # download and there is none, a NH zip file is downloaded. # Example: http://viewfinderpanoramas.org/dem3/SN29.zip yields N29! # BUT: There are southern hemisphere files that download properly. However, # the unzipped folder has the file name of # the northern hemisphere file. Some checks if correct file exists: if len(zone) == 4 and zone.startswith('S'): zonedir = os.path.join(extract_dir, zone[1:]) else: zonedir = os.path.join(extract_dir, zone) globlist = glob.glob(os.path.join(zonedir, '*.hgt')) # take care of the special file naming cases if zone in DEM3REG.keys(): globlist = glob.glob(os.path.join(extract_dir, '*', '*.hgt')) if not globlist: # Final resort globlist = (findfiles(extract_dir, '.hgt') or findfiles(extract_dir, '.HGT')) if not globlist: raise RuntimeError("We should have some files here, but we don't") # merge the single HGT files (can be a bit ineffective, because not every # single file might be exactly within extent...) rfiles = [rasterio.open(s) for s in globlist] dest, output_transform = merge_tool(rfiles) profile = rfiles[0].profile if 'affine' in profile: profile.pop('affine') profile['transform'] = output_transform profile['height'] = dest.shape[1] profile['width'] = dest.shape[2] profile['driver'] = 'GTiff' with rasterio.open(outpath, 'w', **profile) as dst: dst.write(dest) for rf in rfiles: rf.close() # delete original files to spare disk space for s in globlist: os.remove(s) del_empty_dirs(tmpdir) # See if we're good, don't overfill the tmp directory assert os.path.exists(outpath) cfg.get_lru_handler(tmpdir).append(outpath) return outpath def _download_aster_file(zone): with get_lock(): return _download_aster_file_unlocked(zone) def _download_aster_file_unlocked(zone): """Checks if the ASTER data is in the directory and if not, download it. """ # extract directory tmpdir = cfg.PATHS['tmp_dir'] mkdir(tmpdir) wwwfile = ('https://e4ftl01.cr.usgs.gov/ASTER_B/ASTT/ASTGTM.003/' '2000.03.01/{}.zip'.format(zone)) outpath = os.path.join(tmpdir, zone + '_dem.tif') # check if extracted file exists already if os.path.exists(outpath): return outpath # download from NASA Earthdata with credentials dest_file = download_with_authentication(wwwfile, 'urs.earthdata.nasa.gov') # That means we tried hard but we couldn't find it if not dest_file: return None # ok we have to extract it if not os.path.exists(outpath): with zipfile.ZipFile(dest_file) as zf: zf.extractall(tmpdir) # See if we're good, don't overfill the tmp directory assert os.path.exists(outpath) cfg.get_lru_handler(tmpdir).append(outpath) return outpath def _download_topo_file_from_cluster(fname): with get_lock(): return _download_topo_file_from_cluster_unlocked(fname) def _download_topo_file_from_cluster_unlocked(fname): """Checks if the special topo data is in the directory and if not, download it from the cluster. """ # extract directory tmpdir = cfg.PATHS['tmp_dir'] mkdir(tmpdir) outpath = os.path.join(tmpdir, fname) url = 'https://cluster.klima.uni-bremen.de/data/dems/' url += fname + '.zip' dfile = file_downloader(url) if not os.path.exists(outpath): logger.info('Extracting ' + fname + '.zip to ' + outpath + '...') with zipfile.ZipFile(dfile) as zf: zf.extractall(tmpdir) # See if we're good, don't overfill the tmp directory assert os.path.exists(outpath) cfg.get_lru_handler(tmpdir).append(outpath) return outpath def _download_copdem_file(cppfile, tilename): with get_lock(): return _download_copdem_file_unlocked(cppfile, tilename) def _download_copdem_file_unlocked(cppfile, tilename): """Checks if Copernicus DEM file is in the directory, if not download it. cppfile : name of the tarfile to download tilename : name of folder and tif file within the cppfile """ # extract directory tmpdir = cfg.PATHS['tmp_dir'] mkdir(tmpdir) # tarfiles are extracted in directories per each tile fpath = '{0}_DEM.tif'.format(tilename) demfile = os.path.join(tmpdir, fpath) # check if extracted file exists already if os.path.exists(demfile): return demfile # Did we download it yet? ftpfile = ('ftps://cdsdata.copernicus.eu:990/' + 'datasets/COP-DEM_GLO-90-DGED/2019_1/' + cppfile) dest_file = download_with_authentication(ftpfile, 'spacedata.copernicus.eu') # None means we tried hard but we couldn't find it if not dest_file: return None # ok we have to extract it if not os.path.exists(demfile): tiffile = os.path.join(tilename, 'DEM', fpath) with tarfile.open(dest_file) as tf: tmember = tf.getmember(tiffile) # do not extract the full path of the file tmember.name = os.path.basename(tf.getmember(tiffile).name) tf.extract(tmember, tmpdir) # See if we're good, don't overfill the tmp directory assert os.path.exists(demfile) cfg.get_lru_handler(tmpdir).append(demfile) return demfile def _download_aw3d30_file(zone): with get_lock(): return _download_aw3d30_file_unlocked(zone) def _download_aw3d30_file_unlocked(fullzone): """Checks if the AW3D30 data is in the directory and if not, download it. """ # extract directory tmpdir = cfg.PATHS['tmp_dir'] mkdir(tmpdir) # tarfiles are extracted in directories per each tile tile = fullzone.split('/')[1] demfile = os.path.join(tmpdir, tile, tile + '_AVE_DSM.tif') # check if extracted file exists already if os.path.exists(demfile): return demfile # Did we download it yet? ftpfile = ('ftp://ftp.eorc.jaxa.jp/pub/ALOS/ext1/AW3D30/release_v1804/' + fullzone + '.tar.gz') try: dest_file = file_downloader(ftpfile, timeout=180) except urllib.error.URLError: # This error is raised if file is not available, could be water return None # None means we tried hard but we couldn't find it if not dest_file: return None # ok we have to extract it if not os.path.exists(demfile): from oggm.utils import robust_tar_extract dempath = os.path.dirname(demfile) robust_tar_extract(dest_file, dempath) # See if we're good, don't overfill the tmp directory assert os.path.exists(demfile) # this tarfile contains several files for file in os.listdir(dempath): cfg.get_lru_handler(tmpdir).append(os.path.join(dempath, file)) return demfile def _download_mapzen_file(zone): with get_lock(): return _download_mapzen_file_unlocked(zone) def _download_mapzen_file_unlocked(zone): """Checks if the mapzen data is in the directory and if not, download it. """ bucket = 'elevation-tiles-prod' prefix = 'geotiff' url = 'http://s3.amazonaws.com/%s/%s/%s' % (bucket, prefix, zone) # That's all return file_downloader(url, timeout=180) def get_prepro_gdir(rgi_version, rgi_id, border, prepro_level, base_url=None): with get_lock(): return _get_prepro_gdir_unlocked(rgi_version, rgi_id, border, prepro_level, base_url=base_url) def get_prepro_base_url(base_url=None, rgi_version=None, border=None, prepro_level=None): """Extended base url where to find the desired gdirs.""" if base_url is None: if prepro_level <= 2: base_url = GDIR_L1L2_URL else: base_url = GDIR_L3L5_URL if not base_url.endswith('/'): base_url += '/' if rgi_version is None: rgi_version = cfg.PARAMS['rgi_version'] if border is None: border = cfg.PARAMS['border'] url = base_url url += 'RGI{}/'.format(rgi_version) url += 'b_{:03d}/'.format(int(border)) url += 'L{:d}/'.format(prepro_level) return url def _get_prepro_gdir_unlocked(rgi_version, rgi_id, border, prepro_level, base_url=None): url = get_prepro_base_url(rgi_version=rgi_version, border=border, prepro_level=prepro_level, base_url=base_url) url += '{}/{}.tar' .format(rgi_id[:8], rgi_id[:11]) tar_base = file_downloader(url) if tar_base is None: raise RuntimeError('Could not find file at ' + url) return tar_base def get_geodetic_mb_dataframe(file_path=None): """Fetches the reference geodetic dataframe for calibration. Currently that's the data from Hughonnet et al 2021, corrected for outliers and with void filled. The data preparation script is available at https://nbviewer.jupyter.org/urls/cluster.klima.uni-bremen.de/~oggm/geodetic_ref_mb/convert.ipynb Parameters ---------- file_path : str in case you have your own file to parse (check the format first!) Returns ------- a DataFrame with the data. """ # fetch the file online or read custom file if file_path is None: base_url = 'https://cluster.klima.uni-bremen.de/~oggm/geodetic_ref_mb/' file_name = 'hugonnet_2021_ds_rgi60_pergla_rates_10_20_worldwide_filled.hdf' file_path = file_downloader(base_url + file_name) # Did we open it yet? if file_path in cfg.DATA: return cfg.DATA[file_path] # If not let's go extension = os.path.splitext(file_path)[1] if extension == '.csv': df = pd.read_csv(file_path, index_col=0) elif extension == '.hdf': df = pd.read_hdf(file_path) # Check for missing data (old files) if len(df.loc[df['dmdtda'].isnull()]) > 0: raise InvalidParamsError('The reference file you are using has missing ' 'data and is probably outdated (sorry for ' 'that). Delete the file at ' f'{file_path} and start again.') cfg.DATA[file_path] = df return df def srtm_zone(lon_ex, lat_ex): """Returns a list of SRTM zones covering the desired extent. """ # SRTM are sorted in tiles of 5 degrees srtm_x0 = -180. srtm_y0 = 60. srtm_dx = 5. srtm_dy = -5. # quick n dirty solution to be sure that we will cover the whole range mi, ma = np.min(lon_ex), np.max(lon_ex) # int() to avoid Deprec warning: lon_ex = np.linspace(mi, ma, int(np.ceil((ma - mi) + 3))) mi, ma = np.min(lat_ex), np.max(lat_ex) # int() to avoid Deprec warning lat_ex = np.linspace(mi, ma, int(np.ceil((ma - mi) + 3))) zones = [] for lon in lon_ex: for lat in lat_ex: dx = lon - srtm_x0 dy = lat - srtm_y0 assert dy < 0 zx = np.ceil(dx / srtm_dx) zy = np.ceil(dy / srtm_dy) zones.append('{:02.0f}_{:02.0f}'.format(zx, zy)) return list(sorted(set(zones))) def _tandem_path(lon_tile, lat_tile): # OK we have a proper tile now # First folder level is sorted from S to N level_0 = 'S' if lat_tile < 0 else 'N' level_0 += '{:02d}'.format(abs(lat_tile)) # Second folder level is sorted from W to E, but in 10 steps level_1 = 'W' if lon_tile < 0 else 'E' level_1 += '{:03d}'.format(divmod(abs(lon_tile), 10)[0] * 10) # Level 2 is formating, but depends on lat level_2 = 'W' if lon_tile < 0 else 'E' if abs(lat_tile) <= 60: level_2 += '{:03d}'.format(abs(lon_tile)) elif abs(lat_tile) <= 80: level_2 += '{:03d}'.format(divmod(abs(lon_tile), 2)[0] * 2) else: level_2 += '{:03d}'.format(divmod(abs(lon_tile), 4)[0] * 4) # Final path out = (level_0 + '/' + level_1 + '/' + 'TDM1_DEM__30_{}{}'.format(level_0, level_2)) return out def tandem_zone(lon_ex, lat_ex): """Returns a list of TanDEM-X zones covering the desired extent. """ # Files are one by one tiles, so lets loop over them # For higher lats they are stored in steps of 2 and 4. My code below # is probably giving more files than needed but better safe than sorry lat_tiles = np.arange(np.floor(lat_ex[0]), np.ceil(lat_ex[1]+1e-9), dtype=int) zones = [] for lat in lat_tiles: if abs(lat) < 60: l0 = np.floor(lon_ex[0]) l1 = np.floor(lon_ex[1]) elif abs(lat) < 80: l0 = divmod(lon_ex[0], 2)[0] * 2 l1 = divmod(lon_ex[1], 2)[0] * 2 elif abs(lat) < 90: l0 = divmod(lon_ex[0], 4)[0] * 4 l1 = divmod(lon_ex[1], 4)[0] * 4 lon_tiles = np.arange(l0, l1+1, dtype=int) for lon in lon_tiles: zones.append(_tandem_path(lon, lat)) return list(sorted(set(zones))) def _aw3d30_path(lon_tile, lat_tile): # OK we have a proper tile now # Folders are sorted with N E S W in 5 degree steps # But in N and E the lower boundary is indicated # e.g. N060 contains N060 - N064 # e.g. E000 contains E000 - E004 # but S and W indicate the upper boundary: # e.g. S010 contains S006 - S010 # e.g. W095 contains W091 - W095 # get letters ns = 'S' if lat_tile < 0 else 'N' ew = 'W' if lon_tile < 0 else 'E' # get lat/lon lon = abs(5 * np.floor(lon_tile/5)) lat = abs(5 * np.floor(lat_tile/5)) folder = '%s%.3d%s%.3d' % (ns, lat, ew, lon) filename = '%s%.3d%s%.3d' % (ns, abs(lat_tile), ew, abs(lon_tile)) # Final path out = folder + '/' + filename return out def aw3d30_zone(lon_ex, lat_ex): """Returns a list of AW3D30 zones covering the desired extent. """ # Files are one by one tiles, so lets loop over them lon_tiles = np.arange(np.floor(lon_ex[0]), np.ceil(lon_ex[1]+1e-9), dtype=int) lat_tiles = np.arange(np.floor(lat_ex[0]), np.ceil(lat_ex[1]+1e-9), dtype=int) zones = [] for lon in lon_tiles: for lat in lat_tiles: zones.append(_aw3d30_path(lon, lat)) return list(sorted(set(zones))) def _extent_to_polygon(lon_ex, lat_ex, to_crs=None): if lon_ex[0] == lon_ex[1] and lat_ex[0] == lat_ex[1]: out = shpg.Point(lon_ex[0], lat_ex[0]) else: x = [lon_ex[0], lon_ex[1], lon_ex[1], lon_ex[0], lon_ex[0]] y = [lat_ex[0], lat_ex[0], lat_ex[1], lat_ex[1], lat_ex[0]] out = shpg.Polygon(np.array((x, y)).T) if to_crs is not None: out = salem.transform_geometry(out, to_crs=to_crs) return out def arcticdem_zone(lon_ex, lat_ex): """Returns a list of Arctic-DEM zones covering the desired extent. """ gdf = gpd.read_file(get_demo_file('ArcticDEM_Tile_Index_Rel7_by_tile.shp')) p = _extent_to_polygon(lon_ex, lat_ex, to_crs=gdf.crs) gdf = gdf.loc[gdf.intersects(p)] return gdf.tile.values if len(gdf) > 0 else [] def rema_zone(lon_ex, lat_ex): """Returns a list of REMA-DEM zones covering the desired extent. """ gdf = gpd.read_file(get_demo_file('REMA_Tile_Index_Rel1.1.shp')) p = _extent_to_polygon(lon_ex, lat_ex, to_crs=gdf.crs) gdf = gdf.loc[gdf.intersects(p)] return gdf.tile.values if len(gdf) > 0 else [] def alaska_dem_zone(lon_ex, lat_ex): """Returns a list of Alaska-DEM zones covering the desired extent. """ gdf = gpd.read_file(get_demo_file('Alaska_albers_V3_tiles.shp')) p = _extent_to_polygon(lon_ex, lat_ex, to_crs=gdf.crs) gdf = gdf.loc[gdf.intersects(p)] return gdf.tile.values if len(gdf) > 0 else [] def copdem_zone(lon_ex, lat_ex): """Returns a list of Copernicus DEM tarfile and tilename tuples """ # path to the lookup shapefiles gdf = gpd.read_file(get_demo_file('RGI60_COPDEM_lookup.shp')) # intersect with lat lon extents p = _extent_to_polygon(lon_ex, lat_ex, to_crs=gdf.crs) gdf = gdf.loc[gdf.intersects(p)] # COPDEM is global, if we miss all tiles it is worth an error if len(gdf) == 0: raise InvalidDEMError('Could not find any Copernicus DEM tile.') flist = [] for _, g in gdf.iterrows(): cpp = g['CPP File'] eop = g['Eop Id'] eop = eop.split(':')[-2] assert 'Copernicus' in eop flist.append((cpp, eop)) return flist def dem3_viewpano_zone(lon_ex, lat_ex): """Returns a list of DEM3 zones covering the desired extent. http://viewfinderpanoramas.org/Coverage%20map%20viewfinderpanoramas_org3.htm """ for _f in DEM3REG.keys(): if (np.min(lon_ex) >= DEM3REG[_f][0]) and \ (np.max(lon_ex) <= DEM3REG[_f][1]) and \ (np.min(lat_ex) >= DEM3REG[_f][2]) and \ (np.max(lat_ex) <= DEM3REG[_f][3]): # test some weird inset files in Antarctica if (np.min(lon_ex) >= -91.) and (np.max(lon_ex) <= -90.) and \ (np.min(lat_ex) >= -72.) and (np.max(lat_ex) <= -68.): return ['SR15'] elif (np.min(lon_ex) >= -47.) and (np.max(lon_ex) <= -43.) and \ (np.min(lat_ex) >= -61.) and (np.max(lat_ex) <= -60.): return ['SP23'] elif (np.min(lon_ex) >= 162.) and (np.max(lon_ex) <= 165.) and \ (np.min(lat_ex) >= -68.) and (np.max(lat_ex) <= -66.): return ['SQ58'] # test some rogue Greenland tiles as well elif (np.min(lon_ex) >= -72.) and (np.max(lon_ex) <= -66.) and \ (np.min(lat_ex) >= 76.) and (np.max(lat_ex) <= 80.): return ['T19'] elif (np.min(lon_ex) >= -72.) and (np.max(lon_ex) <= -66.) and \ (np.min(lat_ex) >= 80.) and (np.max(lat_ex) <= 83.): return ['U19'] elif (np.min(lon_ex) >= -66.) and (np.max(lon_ex) <= -60.) and \ (np.min(lat_ex) >= 80.) and (np.max(lat_ex) <= 83.): return ['U20'] elif (np.min(lon_ex) >= -60.) and (np.max(lon_ex) <= -54.) and \ (np.min(lat_ex) >= 80.) and (np.max(lat_ex) <= 83.): return ['U21'] elif (np.min(lon_ex) >= -54.) and (np.max(lon_ex) <= -48.) and \ (np.min(lat_ex) >= 80.) and (np.max(lat_ex) <= 83.): return ['U22'] elif (np.min(lon_ex) >= -25.) and (np.max(lon_ex) <= -13.) and \ (np.min(lat_ex) >= 63.) and (np.max(lat_ex) <= 67.): return ['ISL'] else: return [_f] # if the tile doesn't have a special name, its name can be found like this: # corrected SRTMs are sorted in tiles of 6 deg longitude and 4 deg latitude srtm_x0 = -180. srtm_y0 = 0. srtm_dx = 6. srtm_dy = 4. # quick n dirty solution to be sure that we will cover the whole range mi, ma = np.min(lon_ex), np.max(lon_ex) # TODO: Fabien, find out what Johannes wanted with this +3 # +3 is just for the number to become still a bit larger # int() to avoid Deprec warning lon_ex = np.linspace(mi, ma, int(np.ceil((ma - mi) / srtm_dy) + 3)) mi, ma = np.min(lat_ex), np.max(lat_ex) # int() to avoid Deprec warning lat_ex = np.linspace(mi, ma, int(np.ceil((ma - mi) / srtm_dx) + 3)) zones = [] for lon in lon_ex: for lat in lat_ex: dx = lon - srtm_x0 dy = lat - srtm_y0 zx = np.ceil(dx / srtm_dx) # convert number to letter zy = chr(int(abs(dy / srtm_dy)) + ord('A')) if lat >= 0: zones.append('%s%02.0f' % (zy, zx)) else: zones.append('S%s%02.0f' % (zy, zx)) return list(sorted(set(zones))) def aster_zone(lon_ex, lat_ex): """Returns a list of ASTGTMV3 zones covering the desired extent. ASTER v3 tiles are 1 degree x 1 degree N50 contains 50 to 50.9 E10 contains 10 to 10.9 S70 contains -69.99 to -69.0 W20 contains -19.99 to -19.0 """ # adding small buffer for unlikely case where one lon/lat_ex == xx.0 lons = np.arange(np.floor(lon_ex[0]-1e-9), np.ceil(lon_ex[1]+1e-9)) lats = np.arange(np.floor(lat_ex[0]-1e-9), np.ceil(lat_ex[1]+1e-9)) zones = [] for lat in lats: # north or south? ns = 'S' if lat < 0 else 'N' for lon in lons: # east or west? ew = 'W' if lon < 0 else 'E' filename = 'ASTGTMV003_{}{:02.0f}{}{:03.0f}'.format(ns, abs(lat), ew, abs(lon)) zones.append(filename) return list(sorted(set(zones))) def nasadem_zone(lon_ex, lat_ex): """Returns a list of NASADEM zones covering the desired extent. NASADEM tiles are 1 degree x 1 degree N50 contains 50 to 50.9 E10 contains 10 to 10.9 S70 contains -69.99 to -69.0 W20 contains -19.99 to -19.0 """ # adding small buffer for unlikely case where one lon/lat_ex == xx.0 lons = np.arange(np.floor(lon_ex[0]-1e-9), np.ceil(lon_ex[1]+1e-9)) lats = np.arange(np.floor(lat_ex[0]-1e-9), np.ceil(lat_ex[1]+1e-9)) zones = [] for lat in lats: # north or south? ns = 's' if lat < 0 else 'n' for lon in lons: # east or west? ew = 'w' if lon < 0 else 'e' filename = '{}{:02.0f}{}{:03.0f}'.format(ns, abs(lat), ew, abs(lon)) zones.append(filename) return list(sorted(set(zones))) def mapzen_zone(lon_ex, lat_ex, dx_meter=None, zoom=None): """Returns a list of AWS mapzen zones covering the desired extent. For mapzen one has to specify the level of detail (zoom) one wants. The best way in OGGM is to specify dx_meter of the underlying map and OGGM will decide which zoom level works best. """ if dx_meter is None and zoom is None: raise InvalidParamsError('Need either zoom level or dx_meter.') bottom, top = lat_ex left, right = lon_ex ybound = 85.0511 if bottom <= -ybound: bottom = -ybound if top <= -ybound: top = -ybound if bottom > ybound: bottom = ybound if top > ybound: top = ybound if right >= 180: right = 179.999 if left >= 180: left = 179.999 if dx_meter: # Find out the zoom so that we are close to the desired accuracy lat = np.max(np.abs([bottom, top])) zoom = int(np.ceil(math.log2((math.cos(lat * math.pi / 180) * 2 * math.pi * WEB_EARTH_RADUIS) / (WEB_N_PIX * dx_meter)))) # According to this we should just always stay above 10 (sorry) # https://github.com/tilezen/joerd/blob/master/docs/data-sources.md zoom = 10 if zoom < 10 else zoom # Code from planetutils size = 2 ** zoom xt = lambda x: int((x + 180.0) / 360.0 * size) yt = lambda y: int((1.0 - math.log(math.tan(math.radians(y)) + (1 / math.cos(math.radians(y)))) / math.pi) / 2.0 * size) tiles = [] for x in range(xt(left), xt(right) + 1): for y in range(yt(top), yt(bottom) + 1): tiles.append('/'.join(map(str, [zoom, x, str(y) + '.tif']))) return tiles def get_demo_file(fname): """Returns the path to the desired OGGM-sample-file. If Sample data is not cached it will be downloaded from https://github.com/OGGM/oggm-sample-data Parameters ---------- fname : str Filename of the desired OGGM-sample-file Returns ------- str Absolute path to the desired file. """ d = download_oggm_files() if fname in d: return d[fname] else: return None def get_wgms_files(): """Get the path to the default WGMS-RGI link file and the data dir. Returns ------- (file, dir) : paths to the files """ download_oggm_files() sdir = os.path.join(cfg.CACHE_DIR, 'oggm-sample-data-%s' % SAMPLE_DATA_COMMIT, 'wgms') datadir = os.path.join(sdir, 'mbdata') assert os.path.exists(datadir) outf = os.path.join(sdir, 'rgi_wgms_links_20200415.csv') outf = pd.read_csv(outf, dtype={'RGI_REG': object}) return outf, datadir def get_glathida_file(): """Get the path to the default GlaThiDa-RGI link file. Returns ------- file : paths to the file """ # Roll our own download_oggm_files() sdir = os.path.join(cfg.CACHE_DIR, 'oggm-sample-data-%s' % SAMPLE_DATA_COMMIT, 'glathida') outf = os.path.join(sdir, 'rgi_glathida_links.csv') assert os.path.exists(outf) return outf def get_rgi_dir(version=None, reset=False): """Path to the RGI directory. If the RGI files are not present, download them. Parameters ---------- version : str '5', '6', defaults to None (linking to the one specified in cfg.PARAMS) reset : bool If True, deletes the RGI directory first and downloads the data Returns ------- str path to the RGI directory """ with get_lock(): return _get_rgi_dir_unlocked(version=version, reset=reset) def _get_rgi_dir_unlocked(version=None, reset=False): rgi_dir = cfg.PATHS['rgi_dir'] if version is None: version = cfg.PARAMS['rgi_version'] if len(version) == 1: version += '0' # Be sure the user gave a sensible path to the RGI dir if not rgi_dir: raise InvalidParamsError('The RGI data directory has to be' 'specified explicitly.') rgi_dir = os.path.abspath(os.path.expanduser(rgi_dir)) rgi_dir = os.path.join(rgi_dir, 'RGIV' + version) mkdir(rgi_dir, reset=reset) if version == '50': dfile = 'http://www.glims.org/RGI/rgi50_files/rgi50.zip' elif version == '60': dfile = 'http://www.glims.org/RGI/rgi60_files/00_rgi60.zip' elif version == '61': dfile = 'https://cluster.klima.uni-bremen.de/data/rgi/rgi_61.zip' elif version == '62': dfile = 'https://cluster.klima.uni-bremen.de/~oggm/rgi/rgi62.zip' test_file = os.path.join(rgi_dir, '*_rgi*{}_manifest.txt'.format(version)) if len(glob.glob(test_file)) == 0: # if not there download it ofile = file_downloader(dfile, reset=reset) # Extract root with zipfile.ZipFile(ofile) as zf: zf.extractall(rgi_dir) # Extract subdirs pattern = '*_rgi{}_*.zip'.format(version) for root, dirs, files in os.walk(cfg.PATHS['rgi_dir']): for filename in fnmatch.filter(files, pattern): zfile = os.path.join(root, filename) with zipfile.ZipFile(zfile) as zf: ex_root = zfile.replace('.zip', '') mkdir(ex_root) zf.extractall(ex_root) # delete the zipfile after success os.remove(zfile) if len(glob.glob(test_file)) == 0: raise RuntimeError('Could not find a manifest file in the RGI ' 'directory: ' + rgi_dir) return rgi_dir def get_rgi_region_file(region, version=None, reset=False): """Path to the RGI region file. If the RGI files are not present, download them. Parameters ---------- region : str from '01' to '19' version : str '5', '6', defaults to None (linking to the one specified in cfg.PARAMS) reset : bool If True, deletes the RGI directory first and downloads the data Returns ------- str path to the RGI shapefile """ rgi_dir = get_rgi_dir(version=version, reset=reset) f = list(glob.glob(rgi_dir + "/*/{}_*.shp".format(region))) assert len(f) == 1 return f[0] def get_rgi_glacier_entities(rgi_ids, version=None): """Get a list of glacier outlines selected from their RGI IDs. Will download RGI data if not present. Parameters ---------- rgi_ids : list of str the glaciers you want the outlines for version : str the rgi version Returns ------- geopandas.GeoDataFrame containing the desired RGI glacier outlines """ regions = [s.split('-')[1].split('.')[0] for s in rgi_ids] if version is None: version = rgi_ids[0].split('-')[0][-2:] selection = [] for reg in sorted(np.unique(regions)): sh = gpd.read_file(get_rgi_region_file(reg, version=version)) selection.append(sh.loc[sh.RGIId.isin(rgi_ids)]) # Make a new dataframe of those selection = pd.concat(selection) selection.crs = sh.crs # for geolocalisation if len(selection) != len(rgi_ids): raise RuntimeError('Could not find all RGI ids') return selection def get_rgi_intersects_dir(version=None, reset=False): """Path to the RGI directory containing the intersect files. If the files are not present, download them. Parameters ---------- version : str '5', '6', defaults to None (linking to the one specified in cfg.PARAMS) reset : bool If True, deletes the intersects before redownloading them Returns ------- str path to the directory """ with get_lock(): return _get_rgi_intersects_dir_unlocked(version=version, reset=reset) def _get_rgi_intersects_dir_unlocked(version=None, reset=False): rgi_dir = cfg.PATHS['rgi_dir'] if version is None: version = cfg.PARAMS['rgi_version'] if len(version) == 1: version += '0' # Be sure the user gave a sensible path to the RGI dir if not rgi_dir: raise InvalidParamsError('The RGI data directory has to be' 'specified explicitly.') rgi_dir = os.path.abspath(os.path.expanduser(rgi_dir)) mkdir(rgi_dir) dfile = 'https://cluster.klima.uni-bremen.de/data/rgi/' dfile += 'RGI_V{}_Intersects.zip'.format(version) if version == '62': dfile = ('https://cluster.klima.uni-bremen.de/~oggm/rgi/' 'rgi62_Intersects.zip') odir = os.path.join(rgi_dir, 'RGI_V' + version + '_Intersects') if reset and os.path.exists(odir): shutil.rmtree(odir) # A lot of code for backwards compat (sigh...) if version in ['50', '60']: test_file = os.path.join(odir, 'Intersects_OGGM_Manifest.txt') if not os.path.exists(test_file): # if not there download it ofile = file_downloader(dfile, reset=reset) # Extract root with zipfile.ZipFile(ofile) as zf: zf.extractall(odir) if not os.path.exists(test_file): raise RuntimeError('Could not find a manifest file in the RGI ' 'directory: ' + odir) else: test_file = os.path.join(odir, '*ntersect*anifest.txt'.format(version)) if len(glob.glob(test_file)) == 0: # if not there download it ofile = file_downloader(dfile, reset=reset) # Extract root with zipfile.ZipFile(ofile) as zf: zf.extractall(odir) # Extract subdirs pattern = '*_rgi{}_*.zip'.format(version) for root, dirs, files in os.walk(cfg.PATHS['rgi_dir']): for filename in fnmatch.filter(files, pattern): zfile = os.path.join(root, filename) with zipfile.ZipFile(zfile) as zf: ex_root = zfile.replace('.zip', '') mkdir(ex_root) zf.extractall(ex_root) # delete the zipfile after success os.remove(zfile) if len(glob.glob(test_file)) == 0: raise RuntimeError('Could not find a manifest file in the RGI ' 'directory: ' + odir) return odir def get_rgi_intersects_region_file(region=None, version=None, reset=False): """Path to the RGI regional intersect file. If the RGI files are not present, download them. Parameters ---------- region : str from '00' to '19', with '00' being the global file (deprecated). From RGI version '61' onwards, please use `get_rgi_intersects_entities` with a list of glaciers instead of relying to the global file. version : str '5', '6', '61'... defaults the one specified in cfg.PARAMS reset : bool If True, deletes the intersect file before redownloading it Returns ------- str path to the RGI intersects shapefile """ if version is None: version = cfg.PARAMS['rgi_version'] if len(version) == 1: version += '0' rgi_dir = get_rgi_intersects_dir(version=version, reset=reset) if region == '00': if version in ['50', '60']: version = 'AllRegs' region = '*' else: raise InvalidParamsError("From RGI version 61 onwards, please use " "get_rgi_intersects_entities() instead.") f = list(glob.glob(os.path.join(rgi_dir, "*", '*intersects*' + region + '_rgi*' + version + '*.shp'))) assert len(f) == 1 return f[0] def get_rgi_intersects_entities(rgi_ids, version=None): """Get a list of glacier intersects selected from their RGI IDs. Parameters ---------- rgi_ids: list of str list of rgi_ids you want to look for intersections for version: str '5', '6', '61'... defaults the one specified in cfg.PARAMS Returns ------- geopandas.GeoDataFrame with the selected intersects """ if version is None: version = cfg.PARAMS['rgi_version'] if len(version) == 1: version += '0' regions = [s.split('-')[1].split('.')[0] for s in rgi_ids] selection = [] for reg in sorted(np.unique(regions)): sh = gpd.read_file(get_rgi_intersects_region_file(reg, version=version)) selection.append(sh.loc[sh.RGIId_1.isin(rgi_ids) | sh.RGIId_2.isin(rgi_ids)]) # Make a new dataframe of those selection =
pd.concat(selection)
pandas.concat
import pandas as pd import os import pickle import numpy as np from sklearn.metrics import det_curve, roc_auc_score '''' This file plots results from a set of algorithm runs. Specify at the top of the file the two variables: results_root: Directory containing results from the run figs_root: Directory to save test results on outlier datasets ''' #change these strings for plotting results_root = 'results_ssnd_10' figs_root = 'figs_ssnd_10' def test_fnr_using_valid_threshold(valid_scores_in, valid_scores_out, test_scores_in, test_scores_out, fpr_cutoff=0.05): valid_labels_in = np.zeros(len(valid_scores_in)) valid_labels_out = np.ones(len(valid_scores_out)) y_true_valid = np.concatenate([valid_labels_in, valid_labels_out]) y_score_valid = np.concatenate([valid_scores_in, valid_scores_out]) fpr, fnr, thresholds = det_curve(y_true=y_true_valid, y_score=y_score_valid) idx = np.argmin(np.abs(fpr - fpr_cutoff)) t = thresholds[idx] fpr_test = len(np.array(test_scores_in)[np.array(test_scores_in) >= t]) / len(test_scores_in) fnr_test = len(np.array(test_scores_out)[np.array(test_scores_out) < t]) / len(test_scores_out) return fnr_test def compute_auroc(out_scores, in_scores): in_labels = np.zeros(len(in_scores)) out_labels = np.ones(len(out_scores)) y_true = np.concatenate([in_labels, out_labels]) y_score = np.concatenate([in_scores, out_scores]) auroc = roc_auc_score(y_true=y_true, y_score=y_score) return auroc def load_results(results_root, figs_root): files = [] valid_fnr = [] test_fnr = [] scores = [] for _, dsets, _ in os.walk(results_root): for dset in dsets: dset_dir = os.path.join(results_root, dset) for _, out_dsets, _ in os.walk(dset_dir): for out_dset in out_dsets: out_dset_dir = os.path.join(dset_dir, out_dset) for _, scores, _ in os.walk(out_dset_dir): for score in scores: score_dir = os.path.join(out_dset_dir, score) for f in os.listdir(score_dir): f_path = os.path.join(score_dir, f) files.append(f_path) results_all = [] num_files = len(files) count = 0 for file in files: if not file.endswith('pkl'): continue count += 1 # make corresponding fig directory for OOD score plots d = os.path.normpath(file).split(os.path.sep) fig_dir = os.path.join(figs_root, *d[1:-1]) if not os.path.exists(fig_dir): os.makedirs(fig_dir) with open(file, 'rb') as f: print('[{}/{}] loading {}'.format(count, num_files, file)) try: results = pickle.load(f) except EOFError: print('EOFError, skipping file') continue except pickle.UnpicklingError: print('UnpicklingError, skipping file') continue # results from best validation epoch e = results['best_epoch_valid'] # results['fnr_train_best_epoch_valid'] = results['fnr_train'][e] results['min_valid_fnr'] = results['fnr_valid'][e] # results['fnr_test_best_epoch_valid'] = results['fnr_test'][e] results['train_acc_best_epoch_valid'] = results['train_accuracy'][e] results['valid_acc_best_epoch_valid'] = results['valid_accuracy'][e] results['test_acc_best_epoch_valid'] = results['test_accuracy'][e] results['fnr_test_best_epoch_valid'] = test_fnr_using_valid_threshold(results['OOD_scores_P0_valid'][e], results['OOD_scores_PX_valid'][e], results['OOD_scores_P0_test'][e], results['OOD_scores_Ptest'][e]) results['test_auroc_best_epoch_valid'] = compute_auroc(in_scores=results['OOD_scores_P0_test'][e], out_scores=results['OOD_scores_Ptest'][e]) # results from best clean validation epoch results['min_valid_fnr_clean'] = min(results['fnr_valid_clean']) e = results['fnr_valid_clean'].index(results['min_valid_fnr_clean']) results['best_epoch_valid_clean'] = e results['train_acc_best_epoch_valid_clean'] = results['train_accuracy'][e] results['valid_acc_best_epoch_valid_clean'] = results['valid_accuracy'][e] results['test_acc_best_epoch_valid_clean'] = results['test_accuracy'][e] results['fnr_test_best_epoch_valid_clean'] = test_fnr_using_valid_threshold(results['OOD_scores_P0_valid_clean'][e], results['OOD_scores_PX_valid_clean'][e], results['OOD_scores_P0_test'][e], results['OOD_scores_Ptest'][e]) # results['fnr_test_best_epoch_valid_clean'] = results['fnr_test'][e] results['test_auroc_best_epoch_valid_clean'] = compute_auroc(in_scores=results['OOD_scores_P0_test'][e], out_scores=results['OOD_scores_Ptest'][e]) # results from best test epoch e = results['best_epoch_test'] results['fnr_valid_best_epoch_test'] = results['fnr_valid'][e] results['min_test_fnr'] = results['fnr_test'][e] results['train_acc_best_epoch_test'] = results['train_accuracy'][e] results['valid_acc_best_epoch_test'] = results['valid_accuracy'][e] results['test_acc_best_epoch_test'] = results['test_accuracy'][e] results['test_auroc_best_epoch_test'] = compute_auroc(in_scores=results['OOD_scores_P0_test'][e], out_scores=results['OOD_scores_Ptest'][e]) # results from last epoch e = results['epoch'] results['fnr_valid_last_epoch'] = results['fnr_valid'][e] results['fnr_test_last_epoch'] = results['fnr_test'][e] results['train_acc_last_epoch'] = results['train_accuracy'][e] results['valid_acc_last_epoch'] = results['valid_accuracy'][e] results['test_acc_last_epoch'] = results['test_accuracy'][e] results['test_auroc_last_epoch'] = compute_auroc(in_scores=results['OOD_scores_P0_test'][e], out_scores=results['OOD_scores_Ptest'][e]) # for plotting valid vs test FNR valid_fnr.extend(results['fnr_valid']) test_fnr.extend(results['fnr_test']) scores.extend([results['pi']] * len(results['fnr_test'])) # save results results_all.append(results) return results_all, valid_fnr, test_fnr, scores def save_all_results(results_all, figs_root): results_df = pd.DataFrame(results_all) results_save = results_df[['wandb_name', 'classification', 'pi', 'score', 'dataset', 'aux_out_dataset', 'test_out_dataset', 'epoch', 'epochs', 'false_alarm_cutoff', 'in_constraint_weight', 'out_constraint_weight', 'penalty_mult', 'lr_lam', 'oe_lambda', 'energy_vos_lambda', 'train_in_size', # 'train_out_size', 'valid_in_size', # 'valid_out_size', 'test_in_size', 'test_out_size', 'best_epoch_valid', 'min_valid_fnr', 'fnr_test_best_epoch_valid', 'train_acc_best_epoch_valid', 'valid_acc_best_epoch_valid', 'test_acc_best_epoch_valid', 'best_epoch_valid_clean', 'min_valid_fnr_clean', 'fnr_test_best_epoch_valid_clean', 'train_acc_best_epoch_valid_clean', 'valid_acc_best_epoch_valid_clean', 'test_acc_best_epoch_valid_clean', 'best_epoch_test', 'min_test_fnr', 'fnr_valid_best_epoch_test', 'train_acc_best_epoch_test', 'valid_acc_best_epoch_test', 'test_acc_best_epoch_test', 'fnr_valid_last_epoch', 'fnr_test_last_epoch', 'train_acc_last_epoch', 'valid_acc_last_epoch', 'test_acc_last_epoch', 'test_auroc_best_epoch_valid', 'test_auroc_best_epoch_valid_clean', 'test_auroc_best_epoch_test', 'test_auroc_last_epoch' ]] results_save = results_save.sort_values(by=['classification', 'pi', 'score', 'dataset', 'aux_out_dataset', 'test_out_dataset', 'false_alarm_cutoff', 'in_constraint_weight', 'out_constraint_weight', 'lr_lam', 'energy_vos_lambda', 'oe_lambda']).reset_index(drop=True) results_save.to_csv(os.path.join(figs_root, 'results_all.csv'), index=False) return results_save def save_min_fnr_results(results_save, figs_root): idx_list = ['dataset', 'test_out_dataset', 'pi'] idx_list_score = idx_list + ['score'] scores = list(pd.unique(results_save['score'])) # min test FNR test_min_fnr = pd.pivot_table(data=results_save, values='min_test_fnr', index=idx_list, columns=['score'], aggfunc='min').reset_index().sort_values(idx_list) test_min_fnr = test_min_fnr[idx_list + scores] test_min_fnr[scores] = test_min_fnr[scores] * 100 test_min_fnr.to_csv(os.path.join(figs_root, 'test_min_fnr.csv'), index=False) # test auroc at min test FNR test_min_fnr_idx = results_save.groupby(by=idx_list_score)['min_test_fnr'].idxmin() results_test_min_fnr = results_save.iloc[test_min_fnr_idx] test_auroc_at_test_min_fnr = pd.pivot_table(data=results_test_min_fnr, values='test_auroc_best_epoch_test', index=idx_list, columns='score', aggfunc='mean').reset_index().sort_values(idx_list) test_auroc_at_test_min_fnr = test_auroc_at_test_min_fnr[idx_list + scores] test_auroc_at_test_min_fnr[scores] = test_auroc_at_test_min_fnr[scores] * 100 test_auroc_at_test_min_fnr.to_csv(os.path.join(figs_root, 'test_auroc_at_test_min_fnr.csv'), index=False) # test accuracy at min test FNR test_acc_at_test_min_fnr = pd.pivot_table(data=results_test_min_fnr, values='test_acc_best_epoch_test', index=idx_list, columns='score', aggfunc='mean').reset_index().sort_values(idx_list) test_acc_at_test_min_fnr = test_acc_at_test_min_fnr[idx_list + scores] test_acc_at_test_min_fnr[scores] = test_acc_at_test_min_fnr[scores] * 100 test_acc_at_test_min_fnr.to_csv(os.path.join(figs_root, 'test_acc_at_test_min_fnr.csv'), index=False) # test auroc at min test FNR test_auroc_at_test_min_fnr = pd.pivot_table(data=results_test_min_fnr, values='test_auroc_best_epoch_test', index=idx_list, columns='score', aggfunc='mean').reset_index().sort_values(idx_list) test_auroc_at_test_min_fnr = test_auroc_at_test_min_fnr[idx_list + scores] test_auroc_at_test_min_fnr[scores] = test_auroc_at_test_min_fnr[scores] * 100 test_auroc_at_test_min_fnr.to_csv(os.path.join(figs_root, 'test_auroc_at_test_min_fnr.csv'), index=False) # test FNR at min valid FNR valid_min_fnr_idx = results_save.groupby(by=idx_list_score)['min_valid_fnr'].idxmin() results_valid_min_fnr = results_save.iloc[valid_min_fnr_idx] test_fnr_at_valid_min_fnr = pd.pivot_table(data=results_valid_min_fnr, values='fnr_test_best_epoch_valid', index=idx_list, columns='score', aggfunc='mean').reset_index().sort_values(idx_list) test_fnr_at_valid_min_fnr = test_fnr_at_valid_min_fnr[idx_list + scores] test_fnr_at_valid_min_fnr[scores] = test_fnr_at_valid_min_fnr[scores] * 100 test_fnr_at_valid_min_fnr.to_csv(os.path.join(figs_root, 'test_fnr_at_valid_min_fnr.csv'), index=False) # test auroc at min valid FNR test_auroc_at_valid_min_fnr = pd.pivot_table(data=results_valid_min_fnr, values='test_auroc_best_epoch_valid', index=idx_list, columns='score', aggfunc='mean').reset_index().sort_values(idx_list) test_auroc_at_valid_min_fnr = test_auroc_at_valid_min_fnr[idx_list + scores] test_auroc_at_valid_min_fnr[scores] = test_auroc_at_valid_min_fnr[scores] * 100 test_auroc_at_valid_min_fnr.to_csv(os.path.join(figs_root, 'test_auroc_at_valid_min_fnr.csv'), index=False) # test acc at min valid FNR test_acc_at_valid_min_fnr = pd.pivot_table(data=results_valid_min_fnr, values='test_acc_best_epoch_valid', index=idx_list, columns='score', aggfunc='mean').reset_index().sort_values(idx_list) test_acc_at_valid_min_fnr = test_acc_at_valid_min_fnr[idx_list + scores] test_acc_at_valid_min_fnr[scores] = test_acc_at_valid_min_fnr[scores] * 100 test_acc_at_valid_min_fnr.to_csv(os.path.join(figs_root, 'test_acc_at_valid_min_fnr.csv'), index=False) return test_min_fnr, test_acc_at_test_min_fnr, test_fnr_at_valid_min_fnr, test_acc_at_valid_min_fnr def save_min_fnr_results_valid_clean(results_save, figs_root): idx_list = ['dataset', 'test_out_dataset', 'pi'] idx_list_score = idx_list + ['score'] scores = list(
pd.unique(results_save['score'])
pandas.unique
""" Target Problem: --------------- * To train a model to predict the brain connectivity for the next time point given the brain connectivity at current time point. Proposed Solution (Machine Learning Pipeline): ---------------------------------------------- * Preprocessing Method (if any) -> Dimensionality Reduction method (if any) -> Learner Input to Proposed Solution: --------------------------- * Directories of training and testing data in csv file format * These two types of data should be stored in n x m pattern in csv file format. Typical Example: ---------------- n x m samples in training csv file (Explain n and m) k x s samples in testing csv file (Explain k and s Output of Proposed Solution: ---------------------------- * Predictions generated by learning model for testing set * They are stored in "submission.csv" file. (Change the name file if needed) Code Owner: ----------- * Copyright © <NAME>. All rights reserved. * Copyright © Istanbul Technical University, Learning From Data Spring/Fall 2020. All rights reserved. """ from sklearn import random_projection, preprocessing from sklearn.linear_model import LinearRegression, Lasso from sklearn.linear_model import ElasticNet, OrthogonalMatchingPursuit, SGDRegressor, Lars, BayesianRidge from sklearn.linear_model import ARDRegression, PassiveAggressiveRegressor, RANSACRegressor from sklearn.linear_model import Ridge, SGDRegressor, TheilSenRegressor, HuberRegressor from sklearn.feature_selection import GenericUnivariateSelect,SelectFromModel, VarianceThreshold, RFECV, RFE from sklearn.svm import SVC, SVR, NuSVR, LinearSVR from sklearn.kernel_ridge import KernelRidge from sklearn.ensemble import AdaBoostRegressor from sklearn.model_selection import KFold from sklearn.neighbors import KNeighborsRegressor from sklearn.tree import DecisionTreeRegressor from sklearn.decomposition import PCA from sklearn.gaussian_process import GaussianProcessRegressor from sklearn.preprocessing import StandardScaler from sklearn.isotonic import IsotonicRegression from sklearn.multioutput import MultiOutputRegressor from sklearn.metrics import mean_squared_error as mse from lightgbm import LGBMRegressor from sklearn.metrics import mean_absolute_error as mae from scipy.stats.stats import pearsonr import xgboost as xgb import pickle import numpy as np import pandas as pd import matplotlib.pyplot as plt import os import random as r r.seed(1) np.random.seed(1) import warnings warnings.filterwarnings("ignore") def load_data(x_train, y_train, x_test): """ Parameters ---------- x_train: directory of training data t0 y_train: directory of training data t1 x_test: directory of test data t0 """ train_t0 = pd.read_csv(x_train).loc[:,"f1":] train_t1 = pd.read_csv(y_train).loc[:,"f1":] test_t0 = pd.read_csv(x_test).loc[:,"f1":] return train_t0, train_t1, test_t0 def preprocessing(x_tra, y_tra, x_tst): """ * Explain the method * Explain which function does it ---------- x_tra: features of training data y_tra: labels of training data x_tst: features of test data """ transformer = GenericUnivariateSelect(score_func=lambda X, y: X.mean(axis=0), mode='percentile', param=85) X_train_new = transformer.fit_transform(x_tra, y_tra) X_test_new = transformer.transform(x_tst) transformer = PCA(n_components=21) X_train_new = transformer.fit_transform(X_train_new) X_test_new = transformer.transform(X_test_new) return X_train_new, X_test_new def train_voting(X,y): """ The method creates a learning model and trains it by using training data. Parameters ---------- X: preprocessed features of training data y: features of training data """ # X after preprocessing models = [ MultiOutputRegressor(AdaBoostRegressor(n_estimators=100, learning_rate=0.04)), KNeighborsRegressor(algorithm='ball_tree', n_neighbors=24), Lasso(alpha=0.001, tol=1e-10, max_iter=10000), KNeighborsRegressor(n_neighbors=27, algorithm='kd_tree', weights='distance', leaf_size=15), MultiOutputRegressor(BayesianRidge(tol=1e-2, n_iter=15)), KNeighborsRegressor(n_neighbors=15, algorithm='brute', weights='distance', leaf_size=15), MultiOutputRegressor(BayesianRidge(tol=1e-2, n_iter=50)), KNeighborsRegressor(n_neighbors=35, algorithm='brute', weights='distance', leaf_size=15), OrthogonalMatchingPursuit(), MultiOutputRegressor(LGBMRegressor(objective='regression')), MultiOutputRegressor(xgb.XGBRegressor()), MultiOutputRegressor(BayesianRidge(tol=1e-2, n_iter=100)), KNeighborsRegressor(algorithm='ball_tree', n_neighbors=24), KNeighborsRegressor(n_neighbors=27, algorithm='kd_tree', weights='distance', leaf_size=15), KNeighborsRegressor(n_neighbors=15, algorithm='brute', weights='distance', leaf_size=15) ] for model in models: model.fit(X,y) return models def voting_predict(X, models): """ Parameters ---------- X: preprocessed features of test data models: trained models of voting algorithms """ pred=0 for model in models: pred+=model.predict(X) return pred/len(models) def train_feature_based(X,y,sel_models): """ Parameters ---------- X: features of training data y: features of training data sel_models: selected models We selected the best machine learning algorithms for each feature and saved it to Selected_models.pickle file. """ trained_models = [] for i in range(1,596): trained = sel_models[i-1].fit(X["f"+str(i)].values.reshape(-1, 1),y["f"+str(i)].values) trained_models.append( trained ) return trained_models def predict_feature_based(X,trained_best_models): """ Parameters ---------- X: features of test data trained_best_models: 595 different trained model. We selected the best machine learning algorithms for each feature and trained these models with train_selected_models function. """ preds = [] for i in range(0,595): prediction = trained_best_models[i].predict(X["f"+str(i+1)].values.reshape(-1, 1)) preds.append(prediction) np_pred = np.array(preds).T return np_pred def write_output(filename, prediction): """ Parameters ---------- filename: name of the csv file prediction: prediction """ sample_submission =
pd.read_csv("sampleSubmission.csv")
pandas.read_csv
import numpy as np import os import pandas as pd # import eia from datetime import datetime import pytz import json from os.path import join import zipfile import requests import logging from electricitylci.globals import data_dir, output_dir from electricitylci.bulk_eia_data import download_EBA, row_to_df, ba_exchange_to_df from electricitylci.model_config import model_specs import electricitylci.eia923_generation as eia923 import electricitylci.eia860_facilities as eia860 from electricitylci.process_dictionary_writer import * """ Merge generation and emissions data. Add region designations using either eGRID or EIA-860. Same for primary fuel by plant (eGRID or 923). Calculate and merge in the total generation by region. Create the column "Subregion" to hold regional name info. Remove electricity flows. Rename flows and add UUIDs according to the federal flow list. Parameters ---------- year : int Specified year to pull transaction data between balancing authorities subregion : str Description of a group of regions. Options include 'FERC' for all FERC market regions, 'BA' for all balancing authorities. Returns ------- Dictionary of dataframes with import region, export region, transaction amount, total imports for import region, and fraction of total. The dictionary keys are the level of aggregation: "BA", "FERC", "US". Sample output: ferc_final_trade.head() import ferc region export ferc region value total fraction 0 CAISO CAISO 2.662827e+08 3.225829e+08 0.825471 1 CAISO Canada 1.119572e+06 3.225829e+08 0.003471 2 CAISO ERCOT 0.000000e+00 3.225829e+08 0.000000 3 CAISO ISO-NE 0.000000e+00 3.225829e+08 0.000000 4 CAISO MISO 0.000000e+00 3.225829e+08 0.000000 """ def ba_io_trading_model(year=None, subregion=None, regions_to_keep=None): REGION_NAMES = [ 'California', 'Carolinas', 'Central', 'Electric Reliability Council of Texas, Inc.', 'Florida', 'Mid-Atlantic', 'Midwest', 'New England ISO', 'New York Independent System Operator', 'Northwest', 'Southeast', 'Southwest', 'Tennessee Valley Authority' ] REGION_ACRONYMS = [ 'TVA', 'MIDA', 'CAL', 'CAR', 'CENT', 'ERCO', 'FLA', 'MIDW', 'ISNE', 'NYIS', 'NW', 'SE', 'SW', ] if year is None: year = model_specs.NETL_IO_trading_year if subregion is None: subregion = model_specs.regional_aggregation if subregion not in ['BA', 'FERC','US']: raise ValueError( f'subregion or regional_aggregation must have a value of "BA" or "FERC" ' f'when calculating trading with input-output, not {subregion}' ) # Read in BAA file which contains the names and abbreviations df_BA = pd.read_excel(data_dir + '/BA_Codes_930.xlsx', sheet_name = 'US', header = 4) df_BA.rename(columns={'etag ID': 'BA_Acronym', 'Entity Name': 'BA_Name','NCR_ID#': 'NRC_ID', 'Region': 'Region'}, inplace=True) BA =
pd.np.array(df_BA['BA_Acronym'])
pandas.np.array
import pytest import pandas as pd from pandas.core.internals import ExtensionBlock import pandas.util.testing as tm from .base import BaseExtensionTests class BaseConstructorsTests(BaseExtensionTests): def test_array_from_scalars(self, data): scalars = [data[0], data[1], data[2]] result = data._from_sequence(scalars) assert isinstance(result, type(data)) def test_series_constructor(self, data): result =
pd.Series(data)
pandas.Series
#!/usr/bin/env python3 from pathlib import Path import numpy as np import pandas as pd import pyranges as pr from src import base_dir from src.load import data _anno_dir = base_dir / "data/peak_annos" _anno_paths = { "genomic_annos": _anno_dir / "genomic_annos.txt", "chip_annos": _anno_dir / "chip_annos.txt", "omic_counts_annos": _anno_dir / "omic_counts_annos.txt", "corr_qtl_annos": _anno_dir / "corr_qtl_annos.txt", } class PeakAnnos: def load_genomic_annos(): return
pd.read_csv(_anno_paths["genomic_annos"], sep="\t", index_col=0)
pandas.read_csv
import abscplane import numpy as np import pandas as pd class ArrayComplexPlane(abscplane.AbsComplexPlane): def __init__(self,xmin,xmax,xlen,ymin,ymax,ylen): self.xmin = float(xmin) self.xmax = float(xmax) self.xlen = int(xlen) self.ymin = float(ymin) self.ymax = float(ymax) self.ylen = int(ylen) # The implementation type of plane is up to the user self.plane = self.__creategrid__() # fs should be a list of functions, initialized to be empty self.fs = [] def __creategrid__(self): x = np.linspace(self.xmin,self.xmax,self.xlen) y = np.linspace(self.ymin,self.ymax,self.ylen) x,y = np.meshgrid(x,y) return
pd.DataFrame(x+y*1j)
pandas.DataFrame
# -*- coding: utf-8 -*- from __future__ import print_function from __future__ import absolute_import # python 2/3 compatibility try: basestring except NameError: basestring = str import string import os import copy import sys import pandas as pds import numpy as np import xarray as xr from . import _custom from . import _files from . import _orbits from . import _meta from . import utils from pysat import data_dir from pysat import DataFrame, Series # main class for users class Instrument(object): """Download, load, manage, modify and analyze science data. Parameters ---------- platform : string name of platform/satellite. name : string name of instrument. tag : string, optional identifies particular subset of instrument data. sat_id : string, optional identity within constellation clean_level : {'clean','dusty','dirty','none'}, optional level of data quality pad : pandas.DateOffset, or dictionary, optional Length of time to pad the begining and end of loaded data for time-series processing. Extra data is removed after applying all custom functions. Dictionary, if supplied, is simply passed to pandas DateOffset. orbit_info : dict Orbit information, {'index':index, 'kind':kind, 'period':period}. See pysat.Orbits for more information. inst_module : module, optional Provide instrument module directly. Takes precedence over platform/name. update_files : boolean, optional If True, immediately query filesystem for instrument files and store. temporary_file_list : boolean, optional If true, the list of Instrument files will not be written to disk. Prevents a race condition when running multiple pysat processes. multi_file_day : boolean, optional Set to True if Instrument data files for a day are spread across multiple files and data for day n could be found in a file with a timestamp of day n-1 or n+1. manual_org : bool if True, then pysat will look directly in pysat data directory for data files and will not use default /platform/name/tag directory_format : str directory naming structure in string format. Variables such as platform, name, and tag will be filled in as needed using python string formatting. The default directory structure would be expressed as '{platform}/{name}/{tag}' file_format : str or NoneType File naming structure in string format. Variables such as year, month, and sat_id will be filled in as needed using python string formatting. The default file format structure is supplied in the instrument list_files routine. units_label : str String used to label units in storage. Defaults to 'units'. name_label : str String used to label long_name in storage. Defaults to 'name'. notes_label : str label to use for notes in storage. Defaults to 'notes' desc_label : str label to use for variable descriptions in storage. Defaults to 'desc' plot_label : str label to use to label variables in plots. Defaults to 'label' axis_label : str label to use for axis on a plot. Defaults to 'axis' scale_label : str label to use for plot scaling type in storage. Defaults to 'scale' min_label : str label to use for typical variable value min limit in storage. Defaults to 'value_min' max_label : str label to use for typical variable value max limit in storage. Defaults to 'value_max' fill_label : str label to use for fill values. Defaults to 'fill' but some implementations will use 'FillVal' Attributes ---------- data : pandas.DataFrame loaded science data date : pandas.datetime date for loaded data yr : int year for loaded data bounds : (datetime/filename/None, datetime/filename/None) bounds for loading data, supply array_like for a season with gaps doy : int day of year for loaded data files : pysat.Files interface to instrument files meta : pysat.Meta interface to instrument metadata, similar to netCDF 1.6 orbits : pysat.Orbits interface to extracting data orbit-by-orbit custom : pysat.Custom interface to instrument nano-kernel kwargs : dictionary keyword arguments passed to instrument loading routine Note ---- Pysat attempts to load the module platform_name.py located in the pysat/instruments directory. This module provides the underlying functionality to download, load, and clean instrument data. Alternatively, the module may be supplied directly using keyword inst_module. Examples -------- :: # 1-second mag field data vefi = pysat.Instrument(platform='cnofs', name='vefi', tag='dc_b', clean_level='clean') start = pysat.datetime(2009,1,1) stop = pysat.datetime(2009,1,2) vefi.download(start, stop) vefi.load(date=start) print(vefi['dB_mer']) print(vefi.meta['db_mer']) # 1-second thermal plasma parameters ivm = pysat.Instrument(platform='cnofs', name='ivm', tag='', clean_level='clean') ivm.download(start,stop) ivm.load(2009,1) print(ivm['ionVelmeridional']) # Ionosphere profiles from GPS occultation cosmic = pysat.Instrument('cosmic2013', 'gps', 'ionprf', altitude_bin=3) # bins profile using 3 km step cosmic.download(start, stop, user=user, password=password) cosmic.load(date=start) """ def __init__(self, platform=None, name=None, tag=None, sat_id=None, clean_level='clean', update_files=None, pad=None, orbit_info=None, inst_module=None, multi_file_day=None, manual_org=None, directory_format=None, file_format=None, temporary_file_list=False, units_label='units', name_label='long_name', notes_label='notes', desc_label='desc', plot_label='label', axis_label='axis', scale_label='scale', min_label='value_min', max_label='value_max', fill_label = 'fill', *arg, **kwargs): if inst_module is None: # use strings to look up module name if isinstance(platform, str) and isinstance(name, str): self.platform = platform.lower() self.name = name.lower() # look to module for instrument functions and defaults self._assign_funcs(by_name=True) elif (platform is None) and (name is None): # creating "empty" Instrument object with this path self.name = '' self.platform = '' self._assign_funcs() else: raise ValueError('Inputs platform and name must both be ' + 'strings, or both None.') else: # user has provided a module try: # platform and name are expected to be part of module self.name = inst_module.name.lower() self.platform = inst_module.platform.lower() except AttributeError: raise AttributeError(string.join(('A name and platform ', 'attribute for the ', 'instrument is required if ', 'supplying routine module ', 'directly.'))) # look to module for instrument functions and defaults self._assign_funcs(inst_module=inst_module) # more reasonable defaults for optional parameters self.tag = tag.lower() if tag is not None else '' self.sat_id = sat_id.lower() if sat_id is not None else '' self.clean_level = (clean_level.lower() if clean_level is not None else 'none') # assign_func sets some instrument defaults, direct info rules all if directory_format is not None: self.directory_format = directory_format.lower() # value not provided by user, check if there is a value provided by # instrument module elif self.directory_format is not None: try: # check if it is a function self.directory_format = self.directory_format(tag, sat_id) except TypeError: pass if file_format is not None: self.file_format = file_format # check to make sure value is reasonable if self.file_format is not None: # check if it is an iterable string. If it isn't formatted # properly, raise Error if (not isinstance(self.file_format, str) or (self.file_format.find("{") < 0) or (self.file_format.find("}") < 0)): estr = 'file format set to default, supplied string must be ' estr = '{:s}iteratable [{:}]'.format(estr, self.file_format) raise ValueError(estr) # set up empty data and metadata # check if pandas or xarray format if self.pandas_format: self._null_data = DataFrame(None) self._data_library = DataFrame else: self._null_data = xr.Dataset(None) self._data_library = xr.Dataset self.data = self._null_data.copy() # create Meta instance with appropriate labels self.units_label = units_label self.name_label = name_label self.notes_label = notes_label self.desc_label = desc_label self.plot_label = plot_label self.axis_label = axis_label self.scale_label = scale_label self.min_label = min_label self.max_label = max_label self.fill_label = fill_label self.meta = _meta.Meta(units_label=self.units_label, name_label=self.name_label, notes_label=self.notes_label, desc_label=self.desc_label, plot_label=self.plot_label, axis_label=self.axis_label, scale_label=self.scale_label, min_label=self.min_label, max_label=self.max_label, fill_label=self.fill_label) # function processing class, processes data on load self.custom = _custom.Custom() # create arrays to store data around loaded day # enables padding across day breaks with minimal loads self._next_data = self._null_data.copy() self._next_data_track = [] self._prev_data = self._null_data.copy() self._prev_data_track = [] self._curr_data = self._null_data.copy() # multi file day, default set by assign_funcs if multi_file_day is not None: self.multi_file_day = multi_file_day # arguments for padding if isinstance(pad, pds.DateOffset): self.pad = pad elif isinstance(pad, dict): self.pad = pds.DateOffset(**pad) elif pad is None: self.pad = None else: estr = 'pad must be a dictionary or a pandas.DateOffset instance.' raise ValueError(estr) # instantiate Files class manual_org = False if manual_org is None else manual_org temporary_file_list = not temporary_file_list self.files = _files.Files(self, manual_org=manual_org, directory_format=self.directory_format, update_files=update_files, file_format=self.file_format, write_to_disk=temporary_file_list) # set bounds for iteration # self.bounds requires the Files class # setting (None,None) loads default bounds self.bounds = (None, None) self.date = None self._fid = None self.yr = None self.doy = None self._load_by_date = False # initialize orbit support if orbit_info is None: if self.orbit_info is None: # if default info not provided, set None as default orbit_info = {'index': None, 'kind': None, 'period': None} else: # default provided by instrument module orbit_info = self.orbit_info self.orbits = _orbits.Orbits(self, **orbit_info) # Create empty placeholder for meta translation table # gives information about how to label metadata for netcdf export # if None, pysat metadata labels will be used self._meta_translation_table = None # Create a placeholder for a post-processing function to be applied # to the metadata dictionary before export. If None, no post-processing # will occur self._export_meta_post_processing = None # store kwargs, passed to load routine self.kwargs = kwargs # run instrument init function, a basic pass function is used # if user doesn't supply the init function self._init_rtn(self) # store base attributes, used in particular by Meta class self._base_attr = dir(self) def __getitem__(self, key): """ Convenience notation for accessing data; inst['name'] is inst.data.name Examples -------- :: # By name inst['name'] # By position inst[row_index, 'name'] # Slicing by row inst[row1:row2, 'name'] # By Date inst[datetime, 'name'] # Slicing by date, inclusive inst[datetime1:datetime2, 'name'] # Slicing by name and row/date inst[datetime1:datetime1, 'name1':'name2'] """ if self.pandas_format: if isinstance(key, tuple): # support slicing return self.data.ix[key[0], key[1]] else: try: # integer based indexing return self.data.iloc[key] except: try: # let pandas sort it out, presumption is key is # a variable name, or iterable of variables return self.data[key] except: estring = '\n'.join(("Unable to sort out data access.", "Instrument has data : " + str(not self.empty), "Requested key : ", key)) raise ValueError(estring) else: return self.__getitem_xarray__(key) def __getitem_xarray__(self, key): """ Convenience notation for accessing data; inst['name'] is inst.data.name Examples -------- :: # By name inst['name'] # By position inst[row_index, 'name'] # Slicing by row inst[row1:row2, 'name'] # By Date inst[datetime, 'name'] # Slicing by date, inclusive inst[datetime1:datetime2, 'name'] # Slicing by name and row/date inst[datetime1:datetime1, 'name1':'name2'] """ if 'time' not in self.data: return xr.Dataset(None) if isinstance(key, tuple): if len(key) == 2: # support slicing time, variable name try: return self.data.isel(time=key[0])[key[1]] except: return self.data.sel(time=key[0])[key[1]] else: # multidimensional indexing indict = {} for i, dim in enumerate(self[key[-1]].dims): indict[dim] = key[i] return self.data[key[-1]][indict] else: try: # grab a particular variable by name return self.data[key] except: # that didn't work try: # get all data variables but for a subset of time # using integer indexing return self.data.isel(time=key) except: # subset of time, using label based indexing return self.data.sel(time=key) def __setitem__(self, key, new): """Convenience method for adding data to instrument. Examples -------- :: # Simple Assignment, default metadata assigned # 'long_name' = 'name' # 'units' = '' inst['name'] = newData # Assignment with Metadata inst['name'] = {'data':new_data, 'long_name':long_name, 'units':units} Note ---- If no metadata provided and if metadata for 'name' not already stored then default meta information is also added, long_name = 'name', and units = ''. """ # add data to main pandas.DataFrame, depending upon the input # aka slice, and a name if self.pandas_format: if isinstance(key, tuple): self.data.ix[key[0], key[1]] = new self.meta[key[1]] = {} return elif not isinstance(new, dict): # make it a dict to simplify downstream processing new = {'data': new} # input dict must have data in 'data', # the rest of the keys are presumed to be metadata in_data = new.pop('data') if hasattr(in_data, '__iter__'): if isinstance(in_data, pds.DataFrame): pass # filter for elif elif isinstance(next(iter(in_data), None), pds.DataFrame): # input is a list_like of frames # this is higher order data # this process ensures if ('meta' not in new) and (key not in self.meta.keys_nD()): # create an empty Meta instance but with variable names # this will ensure the correct defaults for all # subvariables. Meta can filter out empty metadata as # needed, the check above reducesthe need to create # Meta instances ho_meta = _meta.Meta(units_label=self.units_label, name_label=self.name_label, notes_label=self.notes_label, desc_label=self.desc_label, plot_label=self.plot_label, axis_label=self.axis_label, scale_label=self.scale_label, fill_label=self.fill_label, min_label=self.min_label, max_label=self.max_label) ho_meta[in_data[0].columns] = {} self.meta[key] = ho_meta # assign data and any extra metadata self.data[key] = in_data self.meta[key] = new else: # xarray format chosen for Instrument object if not isinstance(new, dict): new = {'data': new} in_data = new.pop('data') if isinstance(key, tuple): # user provided more than one thing in assignment location # something like, index integers and a variable name # self[idx, 'variable'] = stuff # or, self[idx1, idx2, idx3, 'variable'] = stuff # construct dictionary of dimensions and locations for # xarray standards indict = {} for i, dim in enumerate(self[key[-1]].dims): indict[dim] = key[i] # if dim == 'time': # indict[dim] = self.index[key[i]] try: self.data[key[-1]].loc[indict] = in_data except: indict['time'] = self.index[indict['time']] self.data[key[-1]].loc[indict] = in_data self.meta[key[-1]] = new return elif isinstance(key, basestring): # assigning basic variable # if xarray input, take as is if isinstance(in_data, xr.DataArray): self.data[key] = in_data # ok, not an xarray input # but if we have an iterable input, then we # go through here elif len(np.shape(in_data)) == 1: # looking at a 1D input here if len(in_data) == len(self.index): # 1D input has the correct length for storage along # 'time' self.data[key] = ('time', in_data) elif len(in_data) == 1: # only provided a single number in iterable, make that # the input for all times self.data[key] = ('time', [in_data[0]]*len(self.index)) elif len(in_data) == 0: # provided an empty iterable # make everything NaN self.data[key] = ('time', [np.nan]*len(self.index)) # not an iterable input elif len(np.shape(in_data)) == 0: # not given an iterable at all, single number # make that number the input for all times self.data[key] = ('time', [in_data]*len(self.index)) else: # multidimensional input that is not an xarray # user needs to provide what is required if isinstance(in_data, tuple): self.data[key] = in_data else: raise ValueError('Must provide dimensions for xarray ' + 'multidimensional data using input ' + 'tuple.') elif hasattr(key, '__iter__'): # multiple input strings (keys) are provided, but not in tuple # form recurse back into this function, setting each # input individually for keyname in key: self.data[keyname] = in_data[keyname] # attach metadata self.meta[key] = new @property def empty(self): """Boolean flag reflecting lack of data. True if there is no Instrument data.""" if self.pandas_format: return self.data.empty else: if 'time' in self.data.indexes: return len(self.data.indexes['time']) == 0 else: return True def _empty(self, data=None): """Boolean flag reflecting lack of data. True if there is no Instrument data.""" if data is None: data = self.data if self.pandas_format: return data.empty else: if 'time' in data.indexes: return len(data.indexes['time']) == 0 else: return True @property def index(self): """Returns time index of loaded data.""" if self.pandas_format: return self.data.index else: if 'time' in self.data.indexes: return self.data.indexes['time'] else: return pds.Index([]) def _index(self, data=None): """Returns time index of loaded data.""" if data is None: data = self.data if self.pandas_format: return data.index else: if 'time' in data.indexes: return data.indexes['time'] else: return pds.Index([]) @property def variables(self): """Returns list of variables within loaded data.""" if self.pandas_format: return self.data.columns else: return list(self.data.variables.keys()) def copy(self): """Deep copy of the entire Instrument object.""" return copy.deepcopy(self) def concat_data(self, data, *args, **kwargs): """Concats data1 and data2 for xarray or pandas as needed""" if self.pandas_format: return pds.concat(data, *args, **kwargs) else: return xr.concat(data, dim='time') def _pass_func(*args, **kwargs): pass def _assign_funcs(self, by_name=False, inst_module=None): """Assign all external science instrument methods to Instrument object. """ import importlib # set defaults self._list_rtn = self._pass_func self._load_rtn = self._pass_func self._default_rtn = self._pass_func self._clean_rtn = self._pass_func self._init_rtn = self._pass_func self._download_rtn = self._pass_func # default params self.directory_format = None self.file_format = None self.multi_file_day = False self.orbit_info = None self.pandas_format = True if by_name: # look for code with filename name, any errors passed up inst = importlib.import_module(''.join(('.', self.platform, '_', self.name)), package='pysat.instruments') elif inst_module is not None: # user supplied an object with relevant instrument routines inst = inst_module else: # no module or name info, default pass functions assigned return try: self._load_rtn = inst.load self._list_rtn = inst.list_files self._download_rtn = inst.download except AttributeError: estr = 'A load, file_list, and download routine are required for ' raise AttributeError('{:s}every instrument.'.format(estr)) try: self._default_rtn = inst.default except AttributeError: pass try: self._init_rtn = inst.init except AttributeError: pass try: self._clean_rtn = inst.clean except AttributeError: pass # look for instrument default parameters try: self.directory_format = inst.directory_format except AttributeError: pass try: self.multi_file_day = inst.multi_file_day except AttributeError: pass try: self.orbit_info = inst.orbit_info except AttributeError: pass try: self.pandas_format = inst.pandas_format except AttributeError: pass return def __str__(self): output_str = '\npysat Instrument object\n' output_str += '-----------------------\n' output_str += 'Platform: '+self.platform+'\n' output_str += 'Name: '+self.name+'\n' output_str += 'Tag: '+self.tag+'\n' output_str += 'Satellite id: '+self.sat_id+'\n' output_str += '\nData Processing\n' output_str += '---------------\n' output_str += 'Cleaning Level: ' + self.clean_level + '\n' output_str += 'Data Padding: ' + self.pad.__repr__() + '\n' output_str += 'Keyword Arguments Passed to load(): ' output_str += self.kwargs.__repr__() +'\nCustom Functions : \n' if len(self.custom._functions) > 0: for func in self.custom._functions: output_str += ' ' + func.__repr__() + '\n' else: output_str += ' ' + 'No functions applied.\n' output_str += '\nOrbit Settings' + '\n' output_str += '--------------' + '\n' if self.orbit_info is None: output_str += 'Orbit properties not set.\n' else: output_str += 'Orbit Kind: ' + self.orbit_info['kind'] + '\n' output_str += 'Orbit Index: ' + self.orbit_info['index'] + '\n' output_str += 'Orbit Period: ' output_str += self.orbit_info['period'].__str__() + '\n' output_str += 'Number of Orbits: {:d}\n'.format(self.orbits.num) output_str += 'Loaded Orbit Number: ' if self.orbits.current is not None: output_str += '{:d}\n'.format(self.orbits.current) else: output_str += 'None\n' output_str += '\nLocal File Statistics' + '\n' output_str += '---------------------' + '\n' output_str += 'Number of files: ' + str(len(self.files.files)) + '\n' if len(self.files.files) > 0: output_str += 'Date Range: ' output_str += self.files.files.index[0].strftime('%m/%d/%Y') output_str += ' --- ' output_str += self.files.files.index[-1].strftime('%m/%d/%Y') output_str += '\n\nLoaded Data Statistics'+'\n' output_str += '----------------------'+'\n' if not self.empty: # if self._fid is not None: # output_str += 'Filename: ' + output_str += 'Date: ' + self.date.strftime('%m/%d/%Y') + '\n' output_str += 'DOY: {:03d}'.format(self.doy) + '\n' output_str += 'Time range: ' output_str += self.index[0].strftime('%m/%d/%Y %H:%M:%S') output_str += ' --- ' output_str += self.index[-1].strftime('%m/%d/%Y %H:%M:%S')+'\n' output_str += 'Number of Times: ' + str(len(self.index)) + '\n' output_str += 'Number of variables: ' + str(len(self.variables)) output_str += '\n\nVariable Names:'+'\n' num = len(self.variables)//3 for i in np.arange(num): output_str += self.variables[3 * i].ljust(30) output_str += self.variables[3 * i + 1].ljust(30) output_str += self.variables[3 * i + 2].ljust(30)+'\n' for i in np.arange(len(self.variables) - 3 * num): output_str += self.variables[i+3*num].ljust(30) output_str += '\n' else: output_str += 'No loaded data.'+'\n' output_str += '\n' return output_str def _filter_datetime_input(self, date): """ Returns datetime that only includes year, month, and day. Parameters ---------- date : datetime Returns ------- datetime Only includes year, month, and day from original input """ return pds.datetime(date.year, date.month, date.day) def today(self): """Returns today's date, with no hour, minute, second, etc. Parameters ---------- None Returns ------- datetime Today's date """ return self._filter_datetime_input(pds.datetime.today()) def tomorrow(self): """Returns tomorrow's date, with no hour, minute, second, etc. Parameters ---------- None Returns ------- datetime Tomorrow's date """ return self.today()+pds.DateOffset(days=1) def yesterday(self): """Returns yesterday's date, with no hour, minute, second, etc. Parameters ---------- None Returns ------- datetime Yesterday's date """ return self.today()-pds.DateOffset(days=1) def _load_data(self, date=None, fid=None): """ Load data for an instrument on given date or fid, dependng upon input. Parameters ---------- date : (dt.datetime.date object or NoneType) file date fid : (int or NoneType) filename index value Returns -------- data : (pds.DataFrame) pysat data meta : (pysat.Meta) pysat meta data """ if fid is not None: # get filename based off of index value fname = self.files[fid:fid+1] elif date is not None: fname = self.files[date: date+pds.DateOffset(days=1)] else: raise ValueError('Must supply either a date or file id number.') if len(fname) > 0: load_fname = [os.path.join(self.files.data_path, f) for f in fname] data, mdata = self._load_rtn(load_fname, tag=self.tag, sat_id=self.sat_id, **self.kwargs) # ensure units and name are named consistently in new Meta # object as specified by user upon Instrument instantiation mdata.accept_default_labels(self) else: data = self._null_data.copy() mdata = _meta.Meta(units_label=self.units_label, name_label=self.name_label, notes_label = self.notes_label, desc_label = self.desc_label, plot_label = self.plot_label, axis_label = self.axis_label, scale_label = self.scale_label, min_label = self.min_label, max_label = self.max_label, fill_label=self.fill_label) output_str = '{platform} {name} {tag} {sat_id}' output_str = output_str.format(platform=self.platform, name=self.name, tag=self.tag, sat_id=self.sat_id) # check that data and metadata are the data types we expect if not isinstance(data, self._data_library): raise TypeError(' '.join(('Data returned by instrument load', 'routine must be a', self._data_library))) if not isinstance(mdata, _meta.Meta): raise TypeError('Metadata returned must be a pysat.Meta object') # let user know if data was returned or not if len(data) > 0: if date is not None: output_str = ' '.join(('Returning', output_str, 'data for', date.strftime('%x'))) else: if len(fname) == 1: # this check was zero output_str = ' '.join(('Returning', output_str, 'data from', fname[0])) else: output_str = ' '.join(('Returning', output_str, 'data from', fname[0], '::', fname[-1])) else: # no data signal output_str = ' '.join(('No', output_str, 'data for', date.strftime('%m/%d/%y'))) # remove extra spaces, if any output_str = " ".join(output_str.split()) print (output_str) return data, mdata def _load_next(self): """Load the next days data (or file) without incrementing the date. Repeated calls will not advance date/file and will produce the same data Uses info stored in object to either increment the date, or the file. Looks for self._load_by_date flag. """ if self._load_by_date: next_date = self.date + pds.DateOffset(days=1) return self._load_data(date=next_date) else: return self._load_data(fid=self._fid+1) def _load_prev(self): """Load the next days data (or file) without decrementing the date. Repeated calls will not decrement date/file and will produce the same data Uses info stored in object to either decrement the date, or the file. Looks for self._load_by_date flag. """ if self._load_by_date: prev_date = self.date - pds.DateOffset(days=1) return self._load_data(date=prev_date) else: return self._load_data(fid=self._fid-1) def _set_load_parameters(self, date=None, fid=None): self.date = date self._fid = fid if date is not None: year, doy = utils.getyrdoy(date) self.yr = year self.doy = doy self._load_by_date = True else: self.yr = None self.doy = None self._load_by_date = False def load(self, yr=None, doy=None, date=None, fname=None, fid=None, verifyPad=False): """Load instrument data into Instrument object .data. Parameters ---------- yr : integer year for desired data doy : integer day of year date : datetime object date to load fname : 'string' filename to be loaded verifyPad : boolean if True, padding data not removed (debug purposes) Returns -------- Void. Data is added to self.data Note ---- Loads data for a chosen instrument into .data. Any functions chosen by the user and added to the custom processing queue (.custom.add) are automatically applied to the data before it is available to user in .data. """ # set options used by loading routine based upon user input if date is not None: # ensure date portion from user is only year, month, day self._set_load_parameters(date=self._filter_datetime_input(date), fid=None) # increment inc = pds.DateOffset(days=1) curr = date elif (yr is not None) & (doy is not None): date = pds.datetime(yr, 1, 1) + pds.DateOffset(days=(doy-1)) self._set_load_parameters(date=date, fid=None) # increment inc = pds.DateOffset(days=1) curr = self.date elif fname is not None: # date will have to be set later by looking at the data self._set_load_parameters(date=None, fid=self.files.get_index(fname)) # increment one file at a time inc = 1 curr = self._fid.copy() elif fid is not None: self._set_load_parameters(date=None, fid=fid) # increment one file at a time inc = 1 curr = fid else: estr = 'Must supply a yr,doy pair, or datetime object, or filename' estr = '{:s} to load data from.'.format(estr) raise TypeError(estr) self.orbits._reset() # if pad or multi_file_day is true, need to have a three day/file load loop_pad = self.pad if self.pad is not None else
pds.DateOffset(seconds=0)
pandas.DateOffset
# -*- coding: utf-8 -*- """Tracker REITs (Real Estate Investment Trust) investments.""" import datetime import os from concurrent.futures import ProcessPoolExecutor import numpy as np import pandas as pd import requests import requests_cache from .portutils import NUM_PROCESS, Singleton, UnitsTransactions # Cache for dividends CACHE_EXPIRE_DAYS = 15 requests_cache.install_cache( cache_name="fiidiv", backend="sqlite", expire_after=datetime.timedelta(days=CACHE_EXPIRE_DAYS), ) # Default fii portfolio csv file # It is used if transaction file is not set # on environment variable FII_TRANSACTIONS CSV_FILE = "example_transactions/fii_transactions.csv" class FiiDividends: """Class to handle dividends.""" URL = "https://mfinance.com.br/api/v1/fiis/dividends" def __init__(self): """Initialize fii dividends class.""" self.dividends = {} def load_dividends(self, ticker): """ Download all dividends paid out for a ticker. Parameters: ticker (str): FII ticker """ ticker_url = "{}/{}".format(self.URL, ticker) print("Getting dividends: ", ticker_url) # To not use request cache to get "current" price, # comment next line and uncomment the other df_tmp = pd.read_json(requests.get(ticker_url).content) # df_tmp = pd.read_json(ticker_url) df_dividends = pd.json_normalize(df_tmp.dividends) df_dividends["payDate"] = pd.to_datetime(df_dividends["payDate"]) df_dividends["declaredDate"] =
pd.to_datetime(df_dividends["declaredDate"])
pandas.to_datetime
import numpy as np import pandas as pd import matplotlib.pyplot as plt from autorank import autorank, create_report, plot_stats, latex_table np.random.seed(42) pd.set_option('display.max_columns', 7) std = 0.3 means = [0.2, 0.3, 0.5, 0.8, 0.85, 0.9] sample_size = 50 data =
pd.DataFrame()
pandas.DataFrame
# -*- coding: utf-8 -*- from warnings import catch_warnings import numpy as np from datetime import datetime from pandas.util import testing as tm import pandas as pd from pandas.core import config as cf from pandas.compat import u from pandas._libs.tslib import iNaT from pandas import (NaT, Float64Index, Series, DatetimeIndex, TimedeltaIndex, date_range) from pandas.core.dtypes.dtypes import DatetimeTZDtype from pandas.core.dtypes.missing import ( array_equivalent, isnull, notnull, na_value_for_dtype) def test_notnull(): assert notnull(1.) assert not notnull(None) assert not notnull(np.NaN) with cf.option_context("mode.use_inf_as_null", False): assert notnull(np.inf) assert notnull(-np.inf) arr = np.array([1.5, np.inf, 3.5, -np.inf]) result = notnull(arr) assert result.all() with cf.option_context("mode.use_inf_as_null", True): assert not notnull(np.inf) assert not notnull(-np.inf) arr = np.array([1.5, np.inf, 3.5, -np.inf]) result = notnull(arr) assert result.sum() == 2 with cf.option_context("mode.use_inf_as_null", False): for s in [tm.makeFloatSeries(), tm.makeStringSeries(), tm.makeObjectSeries(), tm.makeTimeSeries(), tm.makePeriodSeries()]: assert (isinstance(isnull(s), Series)) class TestIsNull(object): def test_0d_array(self): assert isnull(np.array(np.nan)) assert not isnull(np.array(0.0)) assert not isnull(np.array(0)) # test object dtype assert isnull(np.array(np.nan, dtype=object)) assert not isnull(np.array(0.0, dtype=object)) assert not isnull(np.array(0, dtype=object)) def test_empty_object(self): for shape in [(4, 0), (4,)]: arr = np.empty(shape=shape, dtype=object) result = isnull(arr) expected = np.ones(shape=shape, dtype=bool) tm.assert_numpy_array_equal(result, expected) def test_isnull(self): assert not isnull(1.) assert isnull(None) assert isnull(np.NaN) assert float('nan') assert not isnull(np.inf) assert not isnull(-np.inf) # series for s in [tm.makeFloatSeries(), tm.makeStringSeries(),
tm.makeObjectSeries()
pandas.util.testing.makeObjectSeries
""" Main functions for interacting with LAtools. (c) <NAME> : https://github.com/oscarbranson """ import configparser import itertools import inspect import json import os import re import time import warnings import dateutil import textwrap import matplotlib.pyplot as plt import matplotlib as mpl import numpy as np import pandas as pd import pkg_resources as pkgrs import uncertainties as unc import uncertainties.unumpy as un from sklearn.preprocessing import minmax_scale, scale from sklearn.cluster import KMeans from scipy.optimize import curve_fit from .helpers import plot from .filtering import filters from .filtering.classifier_obj import classifier from .processes import read_data from .preprocessing.split import long_file from .D_obj import D from .helpers import Bunch from .helpers.plot import rangecalc from .helpers.signal import rolling_window, enumerate_bool, calc_grads from .helpers import logging from .helpers.logging import _log from .helpers.config import read_configuration, config_locator from .helpers.stat_fns import * from .helpers import utils from .helpers import srm as srms from .helpers.progressbars import progressbar from .helpers.chemistry import analyte_mass, decompose_molecule from .helpers.analytes import get_analyte_name, analyte_2_massname, pretty_element, unitpicker, analyte_sort_fn, analyte_checker, split_analyte_ratios from .helpers.io import get_date idx = pd.IndexSlice # multi-index slicing! # deactivate IPython deprecations warnings warnings.filterwarnings('ignore', category=DeprecationWarning) # deactivate numpy invalid comparison warnings np.seterr(invalid='ignore') # TODO: Allow full sklearn integration by allowing sample-wise application of custom classifiers. i.e. Provide data collection (get_data) ajd filter addition API. # Especially: PCA, Gaussian Mixture Models # TODO: Move away from single `internal_standard` specification towards specifying multiple internal standards. # TODO: Add 'smooth all' function. class analyse(object): """ For processing and analysing whole LA - ICPMS datasets. Parameters ---------- data_path : str The path to a directory containing multiple data files. errorhunt : bool If True, latools prints the name of each file before it imports the data. This is useful for working out which data file is causing the import to fail. config : str The name of the configuration to use for the analysis. This determines which configuration set from the latools.cfg file is used, and overrides the default configuration setup. You might sepcify this if your lab routinely uses two different instruments. dataformat : str or dict Either a path to a data format file, or a dataformat dict. See documentation for more details. extension : str The file extension of your data files. Defaults to '.csv'. srm_identifier : str A string used to separate samples and standards. srm_identifier must be present in all standard measurements. Defaults to 'STD'. cmap : dict A dictionary of {analyte: colour} pairs. Colour can be any valid matplotlib colour string, RGB or RGBA sequence, or hex string. time_format : str A regex string identifying the time format, used by pandas when created a universal time scale. If unspecified (None), pandas attempts to infer the time format, but in some cases this might not work. internal_standard : str The name of the analyte used as an internal standard throughout analysis. file_structure : str This specifies whether latools should expect multiplte files in a folder ('multi') or a single file containing multiple analyses ('long'). Default is 'multi'. names : str or array-like If file_structure is 'multi', this should be either: * 'file_names' : use the file names as labels (default) * 'metadata_names' : used the 'names' attribute of metadata as the name anything else : use numbers. If file_structure is 'long', this should be a list of names for the ablations in the file. The wildcards '+' and '*' are supported in file names, and are used when the number of ablations does not match the number of sample names provided. If a sample name contains '+', all ablations that are not specified in the list are combined into a single file and given this name. If a sample name contains '*' these are analyses are numbered sequentially and split into separate files. For example, if you have 5 ablations with one standard at the start and stop you could provide one of: * names = ['std', 'sample+', 'std'], which would divide the long file into [std, sample (containing three ablations), std]. * names = ['std', 'sample+', 'std'], which would divide the long file into [std, sample0, sample1, sample2, std], where each name is associated with a single ablation. split_kwargs : dict Arguments to pass to latools.split.long_file() Attributes ---------- path : str Path to the directory containing the data files, as specified by `data_path`. dirname : str The name of the directory containing the data files, without the entire path. files : array_like A list of all files in `folder`. param_dir : str The directory where parameters are stored. report_dir : str The directory where plots are saved. data : dict A dict of `latools.D` data objects, labelled by sample name. samples : array_like A list of samples. analytes : array_like A list of analytes measured. stds : array_like A list of the `latools.D` objects containing hte SRM data. These must contain srm_identifier in the file name. srm_identifier : str A string present in the file names of all standards. cmaps : dict An analyte - specific colour map, used for plotting. """ def __init__(self, data_path, errorhunt=False, config='DEFAULT', dataformat=None, extension='.csv', srm_identifier='STD', cmap=None, time_format=None, internal_standard='Ca43', file_structure='multi', names='file_names', srm_file=None, pbar=None, split_kwargs={}): """ For processing and analysing whole LA - ICPMS datasets. """ # initialise log params = {k: v for k, v in locals().items() if k not in ['self', 'pbar']} self.log = ['__init__ :: args=() kwargs={}'.format(str(params))] # assign file paths self.path = os.path.realpath(data_path) self.parent_folder = os.path.dirname(self.path) # set line length for outputs self._line_width = 80 # make output directories self.report_dir = re.sub('//', '/', os.path.join(self.parent_folder, os.path.splitext(os.path.basename(self.path))[0] + '_reports/')) if not os.path.isdir(self.report_dir): os.mkdir(self.report_dir) self.export_dir = re.sub('//', '/', os.path.join(self.parent_folder, os.path.splitext(os.path.basename(self.path))[0] + '_export/')) if not os.path.isdir(self.export_dir): os.mkdir(self.export_dir) # set up file paths self._file_internal_standard_massfrac = os.path.join(self.export_dir, 'internal_standard_massfrac.csv') # load configuration parameters self.config = read_configuration(config) # print some info about the analysis and setup. startmsg = self._fill_line('-') + 'Starting analysis:' if srm_file is None or dataformat is None: startmsg += '\n Using {} configuration'.format(self.config['config']) if config == 'DEFAULT': startmsg += ' (default).' else: startmsg += '.' pretext = ' with' else: pretext = 'Using' if srm_file is not None: startmsg += '\n ' + pretext + ' custom srm_file ({})'.format(srm_file) if isinstance(dataformat, str): startmsg += '\n ' + pretext + ' custom dataformat file ({})'.format(dataformat) elif isinstance(dataformat, dict): startmsg += '\n ' + pretext + ' custom dataformat dict' print(startmsg) self._load_srmfile(srm_file) self._load_dataformat(dataformat) # link up progress bars if pbar is None: self.pbar = progressbar() else: self.pbar = pbar if file_structure == 'multi': self.files = np.array([f for f in os.listdir(self.path) if extension in f]) # load data into list (initialise D objects) with self.pbar.set(total=len(self.files), desc='Loading Data') as prog: data = [None] * len(self.files) for i, f in enumerate(self.files): data_passthrough = read_data(data_file=os.path.join(self.path, f), dataformat=self.dataformat, name_mode=names) data[i] = D(passthrough=(f, *data_passthrough)) # data[i] = (D(os.path.join(self.path, f), # dataformat=self.dataformat, # errorhunt=errorhunt, # cmap=cmap, # internal_standard=internal_standard, # name=names)) prog.update() elif file_structure == 'long': data = [] print(self.path) for data_passthrough in long_file(data_file=self.path, dataformat=self.dataformat, sample_list=names, passthrough=True, **split_kwargs): data.append(D(passthrough=data_passthrough)) # create universal time scale if 'date' in data[0].meta.keys(): if (time_format is None) and ('time_format' in self.dataformat.keys()): time_format = self.dataformat['time_format'] start_times = [] for d in data: start_times.append(get_date(d.meta['date'], time_format)) min_time = min(start_times) for d, st in zip(data, start_times): d.uTime = d.Time + (st - min_time).seconds else: ts = 0 for d in data: d.uTime = d.Time + ts ts += d.Time[-1] msg = self._wrap_text( "Time not determined from dataformat. Universal time scale " + "approximated as continuously measured samples. " + "Samples might not be in the right order. " "Background correction and calibration may not behave " + "as expected.") warnings.warn(self._wrap_msg(msg, '*')) self.max_time = max([d.uTime.max() for d in data]) # sort data by uTime data.sort(key=lambda d: d.uTime[0]) # process sample names if (names == 'file_names') | (names == 'metadata_names'): samples = np.array([s.sample for s in data], dtype=object) # get all sample names # if duplicates, rename them usamples, ucounts = np.unique(samples, return_counts=True) if usamples.size != samples.size: dups = usamples[ucounts > 1] # identify duplicates nreps = ucounts[ucounts > 1] # identify how many times they repeat for d, n in zip(dups, nreps): # cycle through duplicates new = [d + '_{}'.format(i) for i in range(n)] # append number to duplicate names ind = samples == d samples[ind] = new # rename in samples for s, ns in zip([data[i] for i in np.where(ind)[0]], new): s.sample = ns # rename in D objects elif file_structure == 'long': samples = np.array([s.sample for s in data], dtype=object) else: samples = np.arange(len(data)) # assign a range of numbers for i, s in enumerate(samples): data[i].sample = s self.samples = samples # copy colour map to top level self.cmaps = data[0].cmap # get analytes # TODO: does this preserve the *order* of the analytes? all_analytes = set() extras = set() for d in data: all_analytes.update(d.analytes) extras.update(all_analytes.symmetric_difference(d.analytes)) self.analytes = all_analytes.difference(extras) mismatch = [] if self.analytes != all_analytes: smax = 0 for d in data: if d.analytes != self.analytes: mismatch.append((d.sample, d.analytes.difference(self.analytes))) if len(d.sample) > smax: smax = len(d.sample) msg = (self._fill_line('*') + 'All data files do not contain the same analytes.\n' + 'Only analytes present in all files will be processed.\n' + 'In the following files, these analytes will be excluded:\n') for s, a in mismatch: msg += (' {0: <' + '{:}'.format(smax + 2) + '}: ').format(s) + str(a) + '\n' msg += self._fill_line('*') warnings.warn(msg) # set for recording calculated ratios self.analyte_ratios = set() self.uncalibrated = set() if len(self.analytes) == 0: raise ValueError('No analyte names identified. Please check the \ncolumn_id > pattern ReGeX in your dataformat file.') if internal_standard in self.analytes: self.internal_standard = internal_standard else: self.internal_standard = None warnings.warn( self._wrap_text(f'The specified internal_standard {internal_standard} is not in the list of analytes ({self.analytes}). You will have to specify a valid analyte when calling the `ratio()` function later in the analysis.') ) self.internal_standard_concs = None self.minimal_analytes = set() # record which analytes are needed for calibration self.calibration_analytes = set() # keep record of which stages of processing have been performed self.stages_complete = set(['rawdata']) # From this point on, data stored in dicts self.data = Bunch(zip(self.samples, data)) # remove mismatch analytes - QUICK-FIX - SHOULD BE DONE HIGHER UP? for s, a in mismatch: self.data[s].analytes = self.data[s].analytes.difference(a) # get SRM info self.srm_identifier = srm_identifier self.stds = [] # make this a dict _ = [self.stds.append(s) for s in self.data.values() if self.srm_identifier in s.sample] self.srms_ided = False # set up focus_stage recording self.focus_stage = 'rawdata' self.stat_focus_stage = None self.focus = Bunch() # set up subsets self.clear_subsets() # remove any analytes for which all counts are zero # self.get_focus() # for a in self.analytes: # if np.nanmean(self.focus[a] == 0): # self.analytes.remove(a) # warnings.warn('{} contains no data - removed from analytes') # initialise classifiers self.classifiers = Bunch() # report print(('Loading Data:\n {:d} Data Files Loaded: {:d} standards, {:d} ' 'samples').format(len(self.data), len(self.stds), len(self.data) - len(self.stds))) astr = self._wrap_text('Analytes: ' + ' '.join(self.analytes_sorted())) print(astr) print(' Internal Standard: {}'.format(self.internal_standard)) def _fill_line(self, char, newline=True): """Generate a full line of given character""" if newline: return char * self._line_width + '\n' else: return char * self._line_width def _wrap_text(self, text): """Splits text over multiple lines to fit within self._line_width""" return '\n'.join(textwrap.wrap(text, width=self._line_width, break_long_words=False)) def _wrap_msg(self, msg, char): return self._fill_line(char) + msg + '\n' + self._fill_line(char, False) def _load_dataformat(self, dataformat): """ Load in dataformat. Check dataformat file exists, and store it in a class attribute. If dataformat is not provided during initialisation, assign it fom configuration file """ if dataformat is None: if os.path.exists(self.config['dataformat']): dataformat = self.config['dataformat'] elif os.path.exists(pkgrs.resource_filename('latools', self.config['dataformat'])): dataformat = pkgrs.resource_filename('latools', self.config['dataformat']) else: config_file = config_locator() raise ValueError(('The dataformat file specified in the ' + self.config['config'] + ' configuration cannot be found.\n' 'Please make sure the file exists, and that' 'the path in the config file is correct.\n' 'Your configurations can be found here:' ' {}\n'.format(config_file))) self.dataformat_file = dataformat else: self.dataformat_file = 'None: dict provided' # if it's a string, check the file exists and import it. if isinstance(dataformat, str): if os.path.exists(dataformat): # self.dataformat = eval(open(dataformat).read()) self.dataformat = json.load(open(dataformat)) else: warnings.warn(("The dataformat file (" + dataformat + ") cannot be found.\nPlease make sure the file " "exists, and that the path is correct.\n\nFile " "Path: " + dataformat)) # if it's a dict, just assign it straight away. elif isinstance(dataformat, dict): self.dataformat = dataformat def _load_srmfile(self, srm_file): """ Check srmfile exists, and store it in a class attribute. """ if srm_file is not None: if os.path.exists(srm_file): self.srmfile = srm_file else: raise ValueError(('Cannot find the specified SRM file:\n ' + srm_file + 'Please check that the file location is correct.')) else: if os.path.exists(self.config['srmfile']): self.srmfile = self.config['srmfile'] elif os.path.exists(pkgrs.resource_filename('latools', self.config['srmfile'])): self.srmfile = pkgrs.resource_filename('latools', self.config['srmfile']) else: config_file = config_locator() raise ValueError(('The SRM file specified in the ' + self.config['config'] + ' configuration cannot be found.\n' 'Please make sure the file exists, and that the ' 'path in the config file is correct.\n' 'Your configurations can be found here:' ' {}\n'.format(config_file))) def _get_samples(self, subset=None): """ Helper function to get sample names from subset. Parameters ---------- subset : str Subset name. If None, returns all samples. Returns ------- List of sample names """ if subset is None: samples = self.subsets['All_Samples'] else: try: samples = self.subsets[subset] except KeyError: raise KeyError(("Subset '{:s}' does not ".format(subset) + "exist.\nUse 'make_subset' to create a" + "subset.")) return samples def _log_header(self): return ['# LATOOLS analysis log saved at {}'.format(time.strftime('%Y:%m:%d %H:%M:%S')), 'data_path :: {}'.format(self.path), '# Analysis Log Start: \n' ] def _analyte_checker(self, analytes=None, check_ratios=True, single=False, focus_stage=None): """ Return valid analytes depending on the analysis stage """ return analyte_checker(self, analytes=analytes, check_ratios=check_ratios, single=single, focus_stage=focus_stage) def analytes_sorted(self, analytes=None, check_ratios=True, single=False, focus_stage=None): return sorted(self._analyte_checker(analytes=analytes, check_ratios=check_ratios, single=single, focus_stage=focus_stage), key=analyte_sort_fn) @_log def basic_processing(self, noise_despiker=True, despike_win=3, despike_nlim=12., # despike args despike_maxiter=4, autorange_analyte='total_counts', autorange_gwin=5, autorange_swin=3, autorange_win=20, # autorange args autorange_on_mult=[1., 1.5], autorange_off_mult=[1.5, 1], autorange_transform='log', bkg_weight_fwhm=300., # bkg_calc_weightedmean bkg_n_min=20, bkg_n_max=None, bkg_cstep=None, bkg_filter=False, bkg_f_win=7, bkg_f_n_lim=3, bkg_errtype='stderr', # bkg_sub calib_drift_correct=True, # calibrate calib_srms_used=['NIST610', 'NIST612', 'NIST614'], calib_zero_intercept=True, calib_n_min=10, plots=True): self.despike(noise_despiker=noise_despiker, win=despike_win, nlim=despike_nlim, maxiter=despike_maxiter) self.autorange(analyte=autorange_analyte, gwin=autorange_gwin, swin=autorange_swin, win=autorange_win, on_mult=autorange_on_mult, off_mult=autorange_off_mult, transform=autorange_transform) if plots: self.trace_plots(ranges=True) self.bkg_calc_weightedmean(weight_fwhm=bkg_weight_fwhm, n_min=bkg_n_min, n_max=bkg_n_max, cstep=bkg_cstep, bkg_filter=bkg_filter, f_win=bkg_f_win, f_n_lim=bkg_f_n_lim) if plots: self.bkg_plot() self.bkg_subtract(errtype=bkg_errtype) self.ratio() self.calibrate(drift_correct=calib_drift_correct, srms_used=calib_srms_used, zero_intercept=calib_zero_intercept, n_min=calib_n_min) if plots: self.calibration_plot() return @_log def autorange(self, analyte='total_counts', gwin=5, swin=3, win=20, on_mult=[1., 1.5], off_mult=[1.5, 1], transform='log', ploterrs=True, focus_stage='despiked', **kwargs): """ Automatically separates signal and background data regions. Automatically detect signal and background regions in the laser data, based on the behaviour of a single analyte. The analyte used should be abundant and homogenous in the sample. **Step 1: Thresholding.** The background signal is determined using a gaussian kernel density estimator (kde) of all the data. Under normal circumstances, this kde should find two distinct data distributions, corresponding to 'signal' and 'background'. The minima between these two distributions is taken as a rough threshold to identify signal and background regions. Any point where the trace crosses this thrshold is identified as a 'transition'. **Step 2: Transition Removal.** The width of the transition regions between signal and background are then determined, and the transitions are excluded from analysis. The width of the transitions is determined by fitting a gaussian to the smoothed first derivative of the analyte trace, and determining its width at a point where the gaussian intensity is at at `conf` time the gaussian maximum. These gaussians are fit to subsets of the data centered around the transitions regions determined in Step 1, +/- `win` data points. The peak is further isolated by finding the minima and maxima of a second derivative within this window, and the gaussian is fit to the isolated peak. Parameters ---------- analyte : str The analyte that autorange should consider. For best results, choose an analyte that is present homogeneously in high concentrations. This can also be 'total_counts' to use the sum of all analytes. gwin : int The smoothing window used for calculating the first derivative. Must be odd. win : int Determines the width (c +/- win) of the transition data subsets. smwin : int The smoothing window used for calculating the second derivative. Must be odd. conf : float The proportional intensity of the fitted gaussian tails that determines the transition width cutoff (lower = wider transition regions excluded). trans_mult : array_like, len=2 Multiples of the peak FWHM to add to the transition cutoffs, e.g. if the transitions consistently leave some bad data proceeding the transition, set trans_mult to [0, 0.5] to ad 0.5 * the FWHM to the right hand side of the limit. focus_stage : str Which stage of analysis to apply processing to. Defaults to 'despiked', or rawdata' if not despiked. Can be one of: * 'rawdata': raw data, loaded from csv file. * 'despiked': despiked data. * 'signal'/'background': isolated signal and background data. Created by self.separate, after signal and background regions have been identified by self.autorange. * 'bkgsub': background subtracted data, created by self.bkg_correct * 'ratios': element ratio data, created by self.ratio. * 'calibrated': ratio data calibrated to standards, created by self.calibrate. Returns ------- Outputs added as instance attributes. Returns None. bkg, sig, trn : iterable, bool Boolean arrays identifying background, signal and transision regions bkgrng, sigrng and trnrng : iterable (min, max) pairs identifying the boundaries of contiguous True regions in the boolean arrays. """ if focus_stage == 'despiked': if 'despiked' not in self.stages_complete: focus_stage = 'rawdata' if analyte in self.analytes: self.minimal_analytes.update([analyte]) fails = {} # list for catching failures. with self.pbar.set(total=len(self.data), desc='AutoRange') as prog: for s, d in self.data.items(): f = d.autorange(analyte=analyte, gwin=gwin, swin=swin, win=win, on_mult=on_mult, off_mult=off_mult, ploterrs=ploterrs, transform=transform, **kwargs) if f is not None: fails[s] = f prog.update() # advance progress bar # handle failures if len(fails) > 0: wstr = ('\n\n' + '*' * 41 + '\n' + ' WARNING\n' + '*' * 41 + '\n' + 'Autorange failed for some samples:\n') kwidth = max([len(k) for k in fails.keys()]) + 1 fstr = ' {:' + '{}'.format(kwidth) + 's}: ' for k in sorted(fails.keys()): wstr += fstr.format(k) + ', '.join(['{:.1f}'.format(f) for f in fails[k][-1]]) + '\n' wstr += ('\n*** THIS IS NOT NECESSARILY A PROBLEM ***\n' + 'But please check the plots below to make\n' + 'sure they look OK. Failures are marked by\n' + 'dashed vertical red lines.\n\n' + 'To examine an autorange failure in more\n' + 'detail, use the `autorange_plot` method\n' + 'of the failing data object, e.g.:\n' + "dat.data['Sample'].autorange_plot(params)\n" + '*' * 41 + '\n') warnings.warn(wstr) self.stages_complete.update(['autorange']) return def find_expcoef(self, nsd_below=0., plot=False, trimlim=None, autorange_kwargs={}): """ Determines exponential decay coefficient for despike filter. Fits an exponential decay function to the washout phase of standards to determine the washout time of your laser cell. The exponential coefficient reported is `nsd_below` standard deviations below the fitted exponent, to ensure that no real data is removed. Total counts are used in fitting, rather than a specific analyte. Parameters ---------- nsd_below : float The number of standard deviations to subtract from the fitted coefficient when calculating the filter exponent. plot : bool or str If True, creates a plot of the fit, if str the plot is to the location specified in str. trimlim : float A threshold limit used in determining the start of the exponential decay region of the washout. Defaults to half the increase in signal over background. If the data in the plot don't fall on an exponential decay line, change this number. Normally you'll need to increase it. Returns ------- None """ print('Calculating exponential decay coefficient\nfrom SRM washouts...') def findtrim(tr, lim=None): trr = np.roll(tr, -1) trr[-1] = 0 if lim is None: lim = 0.5 * np.nanmax(tr - trr) ind = (tr - trr) >= lim return np.arange(len(ind))[ind ^ np.roll(ind, -1)][0] if not hasattr(self.stds[0], 'trnrng'): for s in self.stds: s.autorange(**autorange_kwargs, ploterrs=False) trans = [] times = [] for v in self.stds: for trnrng in v.trnrng[-1::-2]: tr = minmax_scale(v.data['total_counts'][(v.Time > trnrng[0]) & (v.Time < trnrng[1])]) sm = np.apply_along_axis(np.nanmean, 1, rolling_window(tr, 3, pad=0)) sm[0] = sm[1] trim = findtrim(sm, trimlim) + 2 trans.append(minmax_scale(tr[trim:])) times.append(np.arange(tr[trim:].size) * np.diff(v.Time[1:3])) times = np.concatenate(times) times = np.round(times, 2) trans = np.concatenate(trans) ti = [] tr = [] for t in np.unique(times): ti.append(t) tr.append(np.nanmin(trans[times == t])) def expfit(x, e): """ Exponential decay function. """ return np.exp(e * x) ep, ecov = curve_fit(expfit, ti, tr, p0=(-1.)) eeR2 = R2calc(trans, expfit(times, ep)) if plot: fig, ax = plt.subplots(1, 1, figsize=[6, 4]) ax.scatter(times, trans, alpha=0.2, color='k', marker='x', zorder=-2) ax.scatter(ti, tr, alpha=1, color='k', marker='o') fitx = np.linspace(0, max(ti)) ax.plot(fitx, expfit(fitx, ep), color='r', label='Fit') ax.plot(fitx, expfit(fitx, ep - nsd_below * np.diag(ecov)**.5, ), color='b', label='Used') ax.text(0.95, 0.75, ('y = $e^{%.2f \pm %.2f * x}$\n$R^2$= %.2f \nCoefficient: ' '%.2f') % (ep, np.diag(ecov)**.5, eeR2, ep - nsd_below * np.diag(ecov)**.5), transform=ax.transAxes, ha='right', va='top', size=12) ax.set_xlim(0, ax.get_xlim()[-1]) ax.set_xlabel('Time (s)') ax.set_ylim(-0.05, 1.05) ax.set_ylabel('Proportion of Signal') plt.legend() if isinstance(plot, str): fig.savefig(plot) self.expdecay_coef = ep - nsd_below * np.diag(ecov)**.5 print(' {:0.2f}'.format(self.expdecay_coef[0])) return @_log def despike(self, expdecay_despiker=False, exponent=None, noise_despiker=True, win=3, nlim=12., exponentrace_plot=False, maxiter=4, autorange_kwargs={}, focus_stage='rawdata'): """ Despikes data with exponential decay and noise filters. Parameters ---------- expdecay_despiker : bool Whether or not to apply the exponential decay filter. exponent : None or float The exponent for the exponential decay filter. If None, it is determined automatically using `find_expocoef`. tstep : None or float The timeinterval between measurements. If None, it is determined automatically from the Time variable. noise_despiker : bool Whether or not to apply the standard deviation spike filter. win : int The rolling window over which the spike filter calculates the trace statistics. nlim : float The number of standard deviations above the rolling mean that data are excluded. exponentrace_plot : bool Whether or not to show a plot of the automatically determined exponential decay exponent. maxiter : int The max number of times that the fitler is applied. focus_stage : str Which stage of analysis to apply processing to. Defaults to 'rawdata'. Can be one of: * 'rawdata': raw data, loaded from csv file. * 'despiked': despiked data. * 'signal'/'background': isolated signal and background data. Created by self.separate, after signal and background regions have been identified by self.autorange. * 'bkgsub': background subtracted data, created by self.bkg_correct * 'ratios': element ratio data, created by self.ratio. * 'calibrated': ratio data calibrated to standards, created by self.calibrate. Returns ------- None """ if focus_stage != self.focus_stage: self.set_focus(focus_stage) if expdecay_despiker and exponent is None: if not hasattr(self, 'expdecay_coef'): self.find_expcoef(plot=exponentrace_plot, autorange_kwargs=autorange_kwargs) exponent = self.expdecay_coef time.sleep(0.1) with self.pbar.set(total=len(self.data), desc='Despiking') as prog: for d in self.data.values(): d.despike(expdecay_despiker, exponent, noise_despiker, win, nlim, maxiter) prog.update() self.stages_complete.update(['despiked']) self.focus_stage = 'despiked' return # functions for background correction def get_background(self, n_min=10, n_max=None, focus_stage='despiked', bkg_filter=False, f_win=5, f_n_lim=3): """ Extract all background data from all samples on universal time scale. Used by both 'polynomial' and 'weightedmean' methods. Parameters ---------- n_min : int The minimum number of points a background region must have to be included in calculation. n_max : int The maximum number of points a background region must have to be included in calculation. filter : bool If true, apply a rolling filter to the isolated background regions to exclude regions with anomalously high values. If True, two parameters alter the filter's behaviour: f_win : int The size of the rolling window f_n_lim : float The number of standard deviations above the rolling mean to set the threshold. focus_stage : str Which stage of analysis to apply processing to. Defaults to 'despiked' if present, or 'rawdata' if not. Can be one of: * 'rawdata': raw data, loaded from csv file. * 'despiked': despiked data. * 'signal'/'background': isolated signal and background data. Created by self.separate, after signal and background regions have been identified by self.autorange. * 'bkgsub': background subtracted data, created by self.bkg_correct * 'ratios': element ratio data, created by self.ratio. * 'calibrated': ratio data calibrated to standards, created by self.calibrate. Returns ------- pandas.DataFrame object containing background data. """ allbkgs = {'uTime': [], 'ns': []} if focus_stage == 'despiked': if 'despiked' not in self.stages_complete: focus_stage = 'rawdata' for a in self.analytes: allbkgs[a] = [] n0 = 0 for s in self.data.values(): if sum(s.bkg) > 0: allbkgs['uTime'].append(s.uTime[s.bkg]) allbkgs['ns'].append(enumerate_bool(s.bkg, n0)[s.bkg]) n0 = allbkgs['ns'][-1][-1] for a in self.analytes: allbkgs[a].append(s.data[focus_stage][a][s.bkg]) allbkgs.update((k, np.concatenate(v)) for k, v in allbkgs.items()) bkgs = pd.DataFrame(allbkgs) # using pandas here because it's much more efficient than loops. self.bkg = Bunch() # extract background data from whole dataset if n_max is None: self.bkg['raw'] = bkgs.groupby('ns').filter(lambda x: len(x) > n_min) else: self.bkg['raw'] = bkgs.groupby('ns').filter(lambda x: (len(x) > n_min) & (len(x) < n_max)) # calculate per - background region stats self.bkg['summary'] = self.bkg['raw'].groupby('ns').aggregate([np.mean, np.std, stderr]) # sort summary by uTime self.bkg['summary'].sort_values(('uTime', 'mean'), inplace=True) # self.bkg['summary'].index = np.arange(self.bkg['summary'].shape[0]) # self.bkg['summary'].index.name = 'ns' if bkg_filter: # calculate rolling mean and std from summary t = self.bkg['summary'].loc[:, idx[:, 'mean']] r = t.rolling(f_win).aggregate([np.nanmean, np.nanstd]) # calculate upper threshold upper = r.loc[:, idx[:, :, 'nanmean']] + f_n_lim * r.loc[:, idx[:, :, 'nanstd']].values # calculate which are over upper threshold over = r.loc[:, idx[:, :, 'nanmean']] > np.roll(upper.values, 1, 0) # identify them ns_drop = over.loc[over.apply(any, 1), :].index.values # drop them from summary self.bkg['summary'].drop(ns_drop, inplace=True) # remove them from raw ind = np.ones(self.bkg['raw'].shape[0], dtype=bool) for ns in ns_drop: ind = ind & (self.bkg['raw'].loc[:, 'ns'] != ns) self.bkg['raw'] = self.bkg['raw'].loc[ind, :] return @_log def bkg_calc_weightedmean(self, analytes=None, weight_fwhm=600, n_min=20, n_max=None, cstep=None, errtype='stderr', bkg_filter=False, f_win=7, f_n_lim=3, focus_stage='despiked'): """ Background calculation using a gaussian weighted mean. Parameters ---------- analytes : str or iterable Which analyte or analytes to calculate. weight_fwhm : float The full-width-at-half-maximum of the gaussian used to calculate the weighted average. n_min : int Background regions with fewer than n_min points will not be included in the fit. cstep : float or None The interval between calculated background points. filter : bool If true, apply a rolling filter to the isolated background regions to exclude regions with anomalously high values. If True, two parameters alter the filter's behaviour: f_win : int The size of the rolling window f_n_lim : float The number of standard deviations above the rolling mean to set the threshold. focus_stage : str Which stage of analysis to apply processing to. Defaults to 'despiked' if present, or 'rawdata' if not. Can be one of: * 'rawdata': raw data, loaded from csv file. * 'despiked': despiked data. * 'signal'/'background': isolated signal and background data. Created by self.separate, after signal and background regions have been identified by self.autorange. * 'bkgsub': background subtracted data, created by self.bkg_correct * 'ratios': element ratio data, created by self.ratio. * 'calibrated': ratio data calibrated to standards, created by self.calibrate. """ if analytes is None: analytes = self.analytes self.bkg = Bunch() elif isinstance(analytes, str): analytes = [analytes] self.get_background(n_min=n_min, n_max=n_max, bkg_filter=bkg_filter, f_win=f_win, f_n_lim=f_n_lim, focus_stage=focus_stage) # Gaussian - weighted average if 'calc' not in self.bkg.keys(): # create time points to calculate background if cstep is None: cstep = weight_fwhm / 20 elif cstep > weight_fwhm: warnings.warn("\ncstep should be less than weight_fwhm. Your backgrounds\n" + "might not behave as expected.\n") bkg_t = np.linspace(0, self.max_time, int(self.max_time // cstep)) self.bkg['calc'] = Bunch() self.bkg['calc']['uTime'] = bkg_t # TODO : calculation then dict assignment is clumsy... mean, std, stderr = gauss_weighted_stats(self.bkg['raw'].uTime, self.bkg['raw'].loc[:, analytes].values, self.bkg['calc']['uTime'], fwhm=weight_fwhm) self.bkg_interps = {} for i, a in enumerate(analytes): self.bkg['calc'][a] = {'mean': mean[i], 'std': std[i], 'stderr': stderr[i]} self.bkg_interps[a] = un_interp1d(x=self.bkg['calc']['uTime'], y=un.uarray(self.bkg['calc'][a]['mean'], self.bkg['calc'][a][errtype])) @_log def bkg_calc_interp1d(self, analytes=None, kind=1, n_min=10, n_max=None, cstep=30, bkg_filter=False, f_win=7, f_n_lim=3, errtype='stderr', focus_stage='despiked'): """ Background calculation using a 1D interpolation. scipy.interpolate.interp1D is used for interpolation. Parameters ---------- analytes : str or iterable Which analyte or analytes to calculate. kind : str or int Integer specifying the order of the spline interpolation used, or string specifying a type of interpolation. Passed to `scipy.interpolate.interp1D`. n_min : int Background regions with fewer than n_min points will not be included in the fit. cstep : float or None The interval between calculated background points. filter : bool If true, apply a rolling filter to the isolated background regions to exclude regions with anomalously high values. If True, two parameters alter the filter's behaviour: f_win : int The size of the rolling window f_n_lim : float The number of standard deviations above the rolling mean to set the threshold. focus_stage : str Which stage of analysis to apply processing to. Defaults to 'despiked' if present, or 'rawdata' if not. Can be one of: * 'rawdata': raw data, loaded from csv file. * 'despiked': despiked data. * 'signal'/'background': isolated signal and background data. Created by self.separate, after signal and background regions have been identified by self.autorange. * 'bkgsub': background subtracted data, created by self.bkg_correct * 'ratios': element ratio data, created by self.ratio. * 'calibrated': ratio data calibrated to standards, created by self.calibrate. """ if analytes is None: analytes = self.analytes self.bkg = Bunch() elif isinstance(analytes, str): analytes = [analytes] self.get_background(n_min=n_min, n_max=n_max, bkg_filter=bkg_filter, f_win=f_win, f_n_lim=f_n_lim, focus_stage=focus_stage) def pad(a, lo=None, hi=None): if lo is None: lo = [a[0]] if hi is None: hi = [a[-1]] return np.concatenate((lo, a, hi)) if 'calc' not in self.bkg.keys(): # create time points to calculate background bkg_t = pad(np.ravel(self.bkg.raw.loc[:, ['uTime', 'ns']].groupby('ns').aggregate([min, max]))) bkg_t = np.unique(np.sort(np.concatenate([bkg_t, np.arange(0, self.max_time, cstep)]))) self.bkg['calc'] = Bunch() self.bkg['calc']['uTime'] = bkg_t d = self.bkg['summary'] self.bkg_interps = {} with self.pbar.set(total=len(analytes), desc='Calculating Analyte Backgrounds') as prog: for a in analytes: fill_vals = (un.uarray(d.loc[:, (a, 'mean')].iloc[0], d.loc[:, (a, errtype)].iloc[0]), un.uarray(d.loc[:, (a, 'mean')].iloc[-1], d.loc[:, (a, errtype)].iloc[-1])) p = un_interp1d(x=d.loc[:, ('uTime', 'mean')], y=un.uarray(d.loc[:, (a, 'mean')], d.loc[:, (a, errtype)]), kind=kind, bounds_error=False, fill_value=fill_vals) self.bkg_interps[a] = p self.bkg['calc'][a] = {'mean': p.new_nom(self.bkg['calc']['uTime']), errtype: p.new_std(self.bkg['calc']['uTime'])} prog.update() # self.bkg['calc'] return @_log def bkg_subtract(self, analytes=None, errtype='stderr', focus_stage='despiked'): """ Subtract calculated background from data. Must run bkg_calc first! Parameters ---------- analytes : str or iterable Which analyte(s) to subtract. errtype : str Which type of error to propagate. default is 'stderr'. focus_stage : str Which stage of analysis to apply processing to. Defaults to 'despiked' if present, or 'rawdata' if not. Can be one of: * 'rawdata': raw data, loaded from csv file. * 'despiked': despiked data. * 'signal'/'background': isolated signal and background data. Created by self.separate, after signal and background regions have been identified by self.autorange. * 'bkgsub': background subtracted data, created by self.bkg_correct * 'ratios': element ratio data, created by self.ratio. * 'calibrated': ratio data calibrated to standards, created by self.calibrate. """ analytes = self._analyte_checker(analytes) if focus_stage == 'despiked': if 'despiked' not in self.stages_complete: focus_stage = 'rawdata' # make uncertainty-aware background interpolators # bkg_interps = {} # for a in analytes: # bkg_interps[a] = un_interp1d(x=self.bkg['calc']['uTime'], # y=un.uarray(self.bkg['calc'][a]['mean'], # self.bkg['calc'][a][errtype])) # self.bkg_interps = bkg_interps # apply background corrections with self.pbar.set(total=len(self.data), desc='Background Subtraction') as prog: for d in self.data.values(): # [d.bkg_subtract(a, bkg_interps[a].new(d.uTime), None, focus_stage=focus_stage) for a in analytes] [d.bkg_subtract(a, self.bkg_interps[a].new(d.uTime), ~d.sig, focus_stage=focus_stage) for a in analytes] d.setfocus('bkgsub') prog.update() self.stages_complete.update(['bkgsub']) self.focus_stage = 'bkgsub' return @_log def correct_spectral_interference(self, target_analyte, source_analyte, f): """ Correct spectral interference. Subtract interference counts from target_analyte, based on the intensity of a source_analayte and a known fractional contribution (f). Correction takes the form: target_analyte -= source_analyte * f Only operates on background-corrected data ('bkgsub'). To undo a correction, rerun `self.bkg_subtract()`. Example ------- To correct 44Ca+ for an 88Sr++ interference, where both 43.5 and 44 Da peaks are known: f = abundance(88Sr) / (abundance(87Sr) counts(44Ca) = counts(44 Da) - counts(43.5 Da) * f Parameters ---------- target_analyte : str The name of the analyte to modify. source_analyte : str The name of the analyte to base the correction on. f : float The fraction of the intensity of the source_analyte to subtract from the target_analyte. Correction is: target_analyte - source_analyte * f Returns ------- None """ if target_analyte not in self.analytes: raise ValueError('target_analyte: {:} not in available analytes ({:})'.format(target_analyte, ', '.join(self.analytes))) if source_analyte not in self.analytes: raise ValueError('source_analyte: {:} not in available analytes ({:})'.format(source_analyte, ', '.join(self.analytes))) with self.pbar.set(total=len(self.data), desc='Interference Correction') as prog: for d in self.data.values(): d.correct_spectral_interference(target_analyte, source_analyte, f) prog.update() @_log def bkg_plot(self, analytes=None, figsize=None, yscale='log', ylim=None, err='stderr', save=True): """ Plot the calculated background. Parameters ---------- analytes : str or iterable Which analyte(s) to plot. figsize : tuple The (width, height) of the figure, in inches. If None, calculated based on number of samples. yscale : str 'log' (default) or 'linear'. ylim : tuple Manually specify the y scale. err : str What type of error to plot. Default is stderr. save : bool If True, figure is saved. Returns ------- fig, ax : matplotlib.figure, matplotlib.axes """ # if not hasattr(self, 'bkg'): # raise ValueError("\nPlease calculate a background before attempting to\n" + # "plot it... either:\n" + # " bkg_calc_interp1d\n" + # " bkg_calc_weightedmean\n") if not hasattr(self, 'bkg'): self.get_background() analytes = self._analyte_checker(analytes) if figsize is None: if len(self.samples) > 50: figsize = (len(self.samples) * 0.2, 5) else: figsize = (10, 5) fig = plt.figure(figsize=figsize) ax = fig.add_axes([.07, .1, .84, .8]) with self.pbar.set(total=len(analytes), desc='Plotting backgrounds') as prog: for a in analytes: # draw data points ax.scatter(self.bkg['raw'].uTime, self.bkg['raw'].loc[:, a], alpha=0.5, s=3, c=self.cmaps[a], lw=0.5) # draw STD boxes for i, r in self.bkg['summary'].iterrows(): x = (r.loc['uTime', 'mean'] - r.loc['uTime', 'std'] * 2, r.loc['uTime', 'mean'] + r.loc['uTime', 'std'] * 2) yl = [r.loc[a, 'mean'] - r.loc[a, err]] * 2 yu = [r.loc[a, 'mean'] + r.loc[a, err]] * 2 ax.fill_between(x, yl, yu, alpha=0.8, lw=0.5, color=self.cmaps[a], zorder=1) prog.update() if yscale == 'log': ax.set_yscale('log') if ylim is not None: ax.set_ylim(ylim) else: ax.set_ylim(ax.get_ylim() * np.array([1, 10])) # x10 to make sample names readable. if 'calc' in self.bkg: for a in analytes: # draw confidence intervals of calculated x = self.bkg['calc']['uTime'] y = self.bkg['calc'][a]['mean'] yl = self.bkg['calc'][a]['mean'] - self.bkg['calc'][a][err] yu = self.bkg['calc'][a]['mean'] + self.bkg['calc'][a][err] # trim values below zero if log scale= if yscale == 'log': yl[yl < ax.get_ylim()[0]] = ax.get_ylim()[0] ax.plot(x, y, c=self.cmaps[a], zorder=2, label=pretty_element(a)) ax.fill_between(x, yl, yu, color=self.cmaps[a], alpha=0.3, zorder=-1) else: for a in analytes: ax.plot([], [], c=self.cmaps[a], label=pretty_element(a)) ax.set_xlabel('Time (s)') ax.set_ylabel('Background Counts') ax.set_title('Points = raw data; Bars = {:s}; Lines = Calculated Background; Envelope = Background {:s}'.format(err, err), fontsize=10) ha, la = ax.get_legend_handles_labels() ax.legend(labels=la[:len(analytes)], handles=ha[:len(analytes)], bbox_to_anchor=(1, 1)) # scale x axis to range ± 2.5% xlim = [0, max([d.uTime[-1] for d in self.data.values()])] ax.set_xlim(xlim) # add sample labels for s, d in self.data.items(): ax.axvline(d.uTime[0], alpha=0.2, color='k', zorder=-1) ax.text(d.uTime[0], ax.get_ylim()[1], s, rotation=90, va='top', ha='left', zorder=-1, fontsize=7) if save: fig.savefig(self.report_dir + '/background.png', dpi=200) return fig, ax # functions for calculating ratios @_log def ratio(self, internal_standard=None, analytes=None, focus_stage=None): """ Calculates the ratio of all analytes to a single analyte. Parameters ---------- internal_standard : str The name of the analyte to divide all other analytes by. Returns ------- None """ if focus_stage is None: focus_stage = self.focus_stage if 'bkgsub' not in self.stages_complete: raise RuntimeError('Cannot calculate ratios before background subtraction.') analytes = self._analyte_checker(analytes, focus_stage=focus_stage) if internal_standard is not None: self.internal_standard = internal_standard if self.internal_standard in self.analytes.union(self.analyte_ratios): self.minimal_analytes.update([internal_standard]) self.calibration_analytes.update([internal_standard]) self.calibration_analytes.update(analytes) else: raise ValueError('The internal standard ({}) is not amongst the '.format(internal_standard) + 'analytes in\nyour data files. Please make sure it is specified correctly.') # check internal_standard is valid internal_standard = self._analyte_checker(self.internal_standard, focus_stage=focus_stage).pop() with self.pbar.set(total=len(self.data), desc='Ratio Calculation') as prog: for s in self.data.values(): s.ratio(internal_standard=internal_standard, analytes=analytes, focus_stage=focus_stage) self.analyte_ratios.update(s.analyte_ratios) self.cmaps.update(s.cmap) prog.update() if self.focus_stage not in ['ratios', 'calibrated', 'mass_fraction']: self.stages_complete.update(['ratios']) self.focus_stage = 'ratios' return def srm_load_database(self, srms_used=None, reload=False): if not hasattr(self, 'srmdat') or reload: # load SRM info srmdat = srms.read_table(self.srmfile) srmdat = srmdat.loc[srms_used] srmdat.reset_index(inplace=True) srmdat.set_index(['SRM', 'Item'], inplace=True) # calculate ratios to internal_standard for calibration ratios analyte_srm_link = {} warns = {} self.uncalibrated = set() self._analytes_missing_from_srm = set() # create an empty SRM table srmtab = pd.DataFrame(index=srms_used, columns=pd.MultiIndex.from_product([self.analyte_ratios, ['mean', 'err']])) for srm in srms_used: srm_nocal = set() srmsub = srmdat.loc[srm] # determine analyte - Item pairs in table ad = {} for ar in self.analyte_ratios: a_num, a_denom = ar.split('_') # separate numerator and denominator for a in [a_num, a_denom]: if a in ad.keys(): continue # check if there's an exact match of form [Mass][Element] in srmdat mna = analyte_2_massname(a) if mna in srmsub.index: ad[a] = mna else: # if not, match by element name. item = srmsub.index[srmsub.index.str.contains(get_analyte_name(a))].values if len(item) > 1: item = item[item == get_analyte_name(a)] if len(item) == 1: ad[a] = item[0] else: if srm not in warns: warns[srm] = [] warns[srm].append(a) srm_nocal.update([ar]) analyte_srm_link[srm] = ad # build calibration database for given ratios for a in self.analyte_ratios.difference(srm_nocal): a_num, a_denom = a.split('_') # calculate SRM polyatom multiplier (multiplier to account for stoichiometry, # e.g. if internal standard is Na, N will be 2 if measured in SRM as Na2O) N_denom = float(decompose_molecule(ad[a_denom])[get_analyte_name(a_denom)]) N_num = float(decompose_molecule(ad[a_num])[get_analyte_name(a_num)]) # calculate molar ratio srmtab.loc[srm, (a, 'mean')] = ((srmdat.loc[(srm, ad[a_num]), 'mol/g'] * N_num) / (srmdat.loc[(srm, ad[a_denom]), 'mol/g'] * N_denom)) srmtab.loc[srm, (a, 'err')] = (srmtab.loc[srm, (a, 'mean')] * ((srmdat.loc[(srm, ad[a_num]), 'mol/g_err'] / (srmdat.loc[(srm, ad[a_num]), 'mol/g']))**2 + (srmdat.loc[(srm, ad[a_denom]), 'mol/g_err'] / (srmdat.loc[(srm, ad[a_denom]), 'mol/g']))**2)**0.5) # where uncertainties are missing, replace with zeros srmtab[srmtab.loc[:, idx[:, 'err']].isnull()] = 0 # record outputs self.srmdat = srmdat # the full SRM table self._analyte_srmdat_link = analyte_srm_link # dict linking analyte names to rows in srmdat self.srmtab = srmtab.astype(float) # a summary of relevant mol/mol values only # record which analytes have missing CRM data means = self.srmtab.loc[:, idx[:, 'mean']] means.columns = means.columns.droplevel(1) self._analytes_missing_srm = means.columns.values[means.isnull().any()] # analyte ratios missing from SRM table self._srm_id_analyte_ratios = means.columns.values[~means.isnull().any()] # analyte ratioes identified # self._calib_analyte_ratios = means.columns.values[~means.isnull().all()] self.uncalibrated.intersection_update(srm_nocal) self._analytes_missing_from_srm.update(srm_nocal) # Print any warnings if len(warns) > 0: print('WARNING: Some analytes are not present in the SRM database for some standards:') for srm, a in warns.items(): print(f' {srm}: ' + ', '.join(self.analytes_sorted(a, focus_stage='bkgsub'))) if len(self.uncalibrated) > 0: self.analyte_ratios.difference_update(self.uncalibrated) print('WARNING: Some analytes are not present in the SRM database for ANY standards:') print(f'{self.uncalibrated} have been removed from further analysis.') def srm_compile_measured(self, n_min=10, focus_stage='ratios'): """ Compile mean and standard errors of measured SRMs Parameters ---------- n_min : int The minimum number of points to consider as a valid measurement. Default = 10. """ warns = [] # compile mean and standard errors of samples for s in self.stds: s_stdtab = pd.DataFrame(columns=pd.MultiIndex.from_product([s.analyte_ratios, ['err', 'mean']])) s_stdtab.index.name = 'uTime' if not s.n > 0: s.stdtab = s_stdtab continue for n in range(1, s.n + 1): ind = s.ns == n if sum(ind) >= n_min: for a in s.analyte_ratios: aind = ind & ~np.isnan(nominal_values(s.data[focus_stage][a])) s_stdtab.loc[np.nanmean(s.uTime[s.ns == n]), (a, 'mean')] = np.nanmean(nominal_values(s.data[focus_stage][a][aind])) s_stdtab.loc[np.nanmean(s.uTime[s.ns == n]), (a, 'err')] = np.nanstd(nominal_values(s.data[focus_stage][a][aind])) / np.sqrt(sum(aind)) else: warns.append(' Ablation {:} of SRM measurement {:} ({:} points)'.format(n, s.sample, sum(ind))) # sort column multiindex s_stdtab = s_stdtab.loc[:, s_stdtab.columns.sort_values()] # sort row index s_stdtab.sort_index(inplace=True) # create 'SRM' column for naming SRM s_stdtab.loc[:, 'STD'] = s.sample s.stdtab = s_stdtab if len(warns) > 0: print('WARNING: Some SRM ablations have been excluded because they do not contain enough data:') print('\n'.join(warns)) print("To *include* these ablations, reduce the value of n_min (currently {:})".format(n_min)) # compile them into a table stdtab = pd.concat([s.stdtab for s in self.stds]).apply(pd.to_numeric, 1, errors='ignore') stdtab = stdtab.reindex(self.analytes_sorted(self.analyte_ratios, focus_stage=focus_stage) + ['STD'], level=0, axis=1) # identify groups of consecutive SRMs ts = stdtab.index.values start_times = [s.uTime[0] for s in self.data.values()] lastpos = sum(ts[0] > start_times) group = [1] for t in ts[1:]: pos = sum(t > start_times) rpos = pos - lastpos if rpos <= 1: group.append(group[-1]) else: group.append(group[-1] + 1) lastpos = pos stdtab.loc[:, 'group'] = group # calculate centre time for the groups stdtab.loc[:, 'gTime'] = np.nan for g, d in stdtab.groupby('group'): ind = stdtab.group == g stdtab.loc[ind, 'gTime'] = stdtab.loc[ind].index.values.mean() self.stdtab = stdtab def srm_id_auto(self, srms_used=['NIST610', 'NIST612', 'NIST614'], analytes=None, n_min=10, reload_srm_database=False): """ Function for automarically identifying SRMs using KMeans clustering. KMeans is performed on the log of SRM composition, which aids separation of relatively similar SRMs within a large compositional range. Parameters ---------- srms_used : iterable Which SRMs have been used. Must match SRM names in SRM database *exactly* (case sensitive!). analytes : array_like Which analyte ratios to base the identification on. If None, all analyte ratios are used (default). n_min : int The minimum number of data points a SRM measurement must contain to be included. reload_srm_database : bool Whether or not to re-load the SRM database before running the function. """ # TODO: srm_id_plot! if isinstance(srms_used, str): srms_used = [srms_used] # reload SRM database (if reloard_srm_databse=True) self.srm_load_database(srms_used, reload_srm_database) analytes = self._analyte_checker(analytes) analytes.difference_update(self._analytes_missing_srm) analytes = list(analytes) # get and scale mean srm values for all analytes srmid = self.srmtab.loc[:, idx[analytes, 'mean']] _srmid = scale(np.log(srmid)) srm_labels = srmid.index.values # get and scale measured srm values for all analytes stdid = self.stdtab.loc[:, idx[analytes, 'mean']] _stdid = scale(np.log(stdid)) _stdid[np.isnan(_stdid)] = -12 # fit KMeans classifier to srm database classifier = KMeans(len(srms_used)).fit(_srmid) # apply classifier to measured data std_classes = classifier.predict(_stdid) # get srm names from classes std_srm_labels = np.array([srm_labels[np.argwhere(classifier.labels_ == i)][0][0] for i in std_classes]) self.stdtab.loc[:, 'SRM'] = std_srm_labels self._srm_key_dict = {k: v for k, v in zip(self.stdtab.STD, self.stdtab.SRM)} self.srms_ided = True self.srm_build_calib_table() def srm_build_calib_table(self): """ Combine SRM database values and identified measured values into a calibration database. """ caltab = self.stdtab.reset_index() caltab.set_index(['gTime', 'uTime'], inplace=True) levels = ['meas_' + c if c != '' else c for c in caltab.columns.levels[1]] caltab.columns.set_levels(levels, 1, inplace=True) for a in self.analyte_ratios: caltab.loc[:, (a, 'srm_mean')] = self.srmtab.loc[caltab.SRM, (a, 'mean')].values caltab.loc[:, (a, 'srm_err')] = self.srmtab.loc[caltab.SRM, (a, 'err')].values self.caltab = caltab.reindex(self.stdtab.columns.levels[0], axis=1, level=0) def clear_calibration(self): if self.srms_ided: del self.stdtab del self.srmdat del self.srmtab self.srms_ided = False if 'calibrated' in self.stages_complete: del self.calib_params del self.calib_ps self.stages_complete.remove('calibrated') self.focus_stage = 'ratios' self.set_focus('ratios') # apply calibration to data @_log def calibrate(self, analytes=None, drift_correct=True, srms_used=['NIST610', 'NIST612', 'NIST614'], zero_intercept=True, n_min=10, reload_srm_database=False): """ Calibrates the data to measured SRM values. Assumes that y intercept is zero. Parameters ---------- analytes : str or iterable Which analytes you'd like to calibrate. Defaults to all. drift_correct : bool Whether to pool all SRM measurements into a single calibration, or vary the calibration through the run, interpolating coefficients between measured SRMs. srms_used : str or iterable Which SRMs have been measured. Must match names given in SRM data file *exactly*. n_min : int The minimum number of data points an SRM measurement must have to be included. Returns ------- None """ # load SRM database self.srm_load_database(srms_used, reload_srm_database) # compile measured SRM data self.srm_compile_measured(n_min) analytes = self._analyte_checker(analytes) if isinstance(srms_used, str): srms_used = [srms_used] if not hasattr(self, 'srmtabs'): self.srm_id_auto(srms_used=srms_used, n_min=n_min, reload_srm_database=reload_srm_database) # make container for calibration params gTime = np.asanyarray(self.caltab.index.levels[0]) if not hasattr(self, 'calib_params'): self.calib_params = pd.DataFrame(columns=pd.MultiIndex.from_product([analytes, ['m']]), index=gTime) if zero_intercept: fn = lambda x, m: x * m else: fn = lambda x, m, c: x * m + c for a in analytes: if zero_intercept: if (a, 'c') in self.calib_params: self.calib_params.drop((a, 'c'), 1, inplace=True) else: self.calib_params.loc[:, (a, 'c')] = 0 self.calib_params.loc[:, (a, 'c')] = self.calib_params[(a, 'c')].astype(object, copy=False) # set new column to objet type if drift_correct: for g in gTime: if self.caltab.loc[g].size == 0: continue meas = self.caltab.loc[g, (a, 'meas_mean')].values srm = self.caltab.loc[g, (a, 'srm_mean')].values viable = ~np.isnan(meas + srm) # remove any nan values meas = meas[viable] srm = srm[viable] meas_err = self.caltab.loc[g, (a, 'meas_err')].values[viable] srm_err = self.caltab.loc[g, (a, 'srm_err')].values[viable] # TODO: replace curve_fit with Sambridge's 2D likelihood function for better uncertainty incorporation? sigma = np.sqrt(meas_err**2 + srm_err**2) if len(meas) > 1: # multiple SRMs - do a regression p, cov = curve_fit(fn, meas, srm, sigma=sigma) pe = unc.correlated_values(p, cov) self.calib_params.loc[g, (a, 'm')] = pe[0] if not zero_intercept: self.calib_params.loc[g, (a, 'c')] = pe[1] else: # deal with case where there's only one datum self.calib_params.loc[g, (a, 'm')] = (un.uarray(srm, srm_err) / un.uarray(meas, meas_err))[0] if not zero_intercept: self.calib_params.loc[g, (a, 'c')] = 0 else: meas = self.caltab.loc[:, (a, 'meas_mean')].values srm = self.caltab.loc[:, (a, 'srm_mean')].values viable = ~np.isnan(meas + srm) # remove any nan values meas = meas[viable] srm = srm[viable] meas_err = self.caltab.loc[:, (a, 'meas_err')].values[viable] srm_err = self.caltab.loc[:, (a, 'srm_err')].values[viable] # TODO: replace curve_fit with Sambridge's 2D likelihood function for better uncertainty incorporation? sigma = np.sqrt(meas_err**2 + srm_err**2) if sum(viable) > 1: p, cov = curve_fit(fn, meas, srm, sigma=sigma) pe = unc.correlated_values(p, cov) self.calib_params.loc[:, (a, 'm')] = pe[0] if not zero_intercept: self.calib_params.loc[:, (a, 'c')] = pe[1] else: self.calib_params.loc[:, (a, 'm')] = (un.uarray(srm, srm_err) / un.uarray(meas, meas_err))[0] if not zero_intercept: self.calib_params.loc[:, (a, 'c')] = 0 if self.calib_params.index.min() == 0: self.calib_params.drop(0, inplace=True) self.calib_params.drop(self.calib_params.index.max(), inplace=True) self.calib_params.loc[0, :] = self.calib_params.loc[self.calib_params.index.min(), :] maxuT = np.max([d.uTime.max() for d in self.data.values()]) # calculate max uTime self.calib_params.loc[maxuT, :] = self.calib_params.loc[self.calib_params.index.max(), :] # sort indices for slice access self.calib_params.sort_index(1, inplace=True) self.calib_params.sort_index(0, inplace=True) # calculcate interpolators for applying calibrations self.calib_ps = Bunch() for a in analytes: # TODO: revisit un_interp1d to see whether it plays well with correlated values. # Possible re-write to deal with covariance matrices? self.calib_ps[a] = {'m': un_interp1d(self.calib_params.index.values, self.calib_params.loc[:, (a, 'm')].values)} if not zero_intercept: self.calib_ps[a]['c'] = un_interp1d(self.calib_params.index.values, self.calib_params.loc[:, (a, 'c')].values) with self.pbar.set(total=len(self.data), desc='Applying Calibrations') as prog: for d in self.data.values(): d.calibrate(self.calib_ps, analytes) d.uncalibrated = self.uncalibrated prog.update() # record SRMs used for plotting markers = 'osDsv<>PX' # for future implementation of SRM-specific markers. if not hasattr(self, 'srms_used'): self.srms_used = set(srms_used) else: self.srms_used.update(srms_used) self.srm_mdict = {k: markers[i] for i, k in enumerate(self.srms_used)} self.stages_complete.update(['calibrated']) self.focus_stage = 'calibrated' return # data filtering # TODO: Re-factor filtering to use 'classifier' objects? # functions for calculating mass fraction (ppm) def get_sample_list(self, save_as=None, overwrite=False): """ Save a csv list of of all samples to be populated with internal standard concentrations. Parameters ---------- save_as : str Location to save the file. Defaults to the export directory. """ if save_as is None: save_as = self._file_internal_standard_massfrac else: self._file_internal_standard_massfrac = save_as if os.path.exists(save_as): if not overwrite: raise IOError(f'File {save_as} exists. Please change the save location or specify overwrite=True') empty = pd.DataFrame(index=self.samples, columns=['int_stand_massfrac']) empty.to_csv(save_as) print(self._wrap_text(f'Sample List saved to {save_as} \nPlease modify and re-import using read_internal_standard_concs()')) def read_internal_standard_concs(self, sample_conc_file=None): """ Load in a per-sample list of internal sample concentrations. Parameters ---------- sample_conc_file : str Path to csv file containing internal standard mass fractions. Must contain the sample names in the first column, column names in the first row, and contain a column called 'int_stand_massfrac'. If in doubt, use the `get_sample_list` function to generate a blank template for your samples. """ if sample_conc_file is None: sample_conc_file = self._file_internal_standard_massfrac else: self._file_internal_standard_massfrac = sample_conc_file self.internal_standard_concs = pd.read_csv(sample_conc_file, index_col=0) return self.internal_standard_concs @_log def calculate_mass_fraction(self, internal_standard_concs=None, analytes=None, analyte_masses=None): """ Convert calibrated molar ratios to mass fraction. Parameters ---------- internal_standard_concs : float or str The concentration of the internal standard in your samples. If a string, should be the file name pointing towards the [completed] output of get_sample_list(). analytes : str of array_like The analytes you want to calculate. analyte_masses : dict A dict containing the masses to use for each analyte. If None and the analyte names contain a number, that number is used as the mass. If None and the analyte names do *not* contain a number, the average mass for the element is used. """ analytes = self._analyte_checker(analytes, focus_stage='calibrated') if analyte_masses is None: analyte_masses = analyte_mass(self.analytes, False) if isinstance(internal_standard_concs, str): self.internal_standard_concs = self.read_internal_standard_concs(sample_conc_file=internal_standard_concs) elif isinstance(internal_standard_concs, float): self.internal_standard_concs = internal_standard_concs elif not isinstance(self.internal_standard_concs, pd.DataFrame): self.internal_standard_concs = self.read_internal_standard_concs() isc = self.internal_standard_concs if not isinstance(isc, pd.core.frame.DataFrame): with self.pbar.set(total=len(self.data), desc='Calculating Mass Fractions') as prog: for d in self.data.values(): d.calc_mass_fraction(isc, analytes, analyte_masses) prog.update() else: with self.pbar.set(total=len(self.data), desc='Calculating Mass Fractions') as prog: for k, d in self.data.items(): if k in isc.index: d.calc_mass_fraction(isc.loc[k, 'int_stand_massfrac'], analytes, analyte_masses) else: d.calc_mass_fraction(np.nan, analytes, analyte_masses) prog.update() self.stages_complete.update(['mass_fraction']) self.focus_stage = 'mass_fraction' @_log def clear_subsets(self): """ Clears all subsets """ self._has_subsets = False self._subset_names = [] self.subsets = Bunch() self.subsets['All_Analyses'] = self.samples self.subsets[self.srm_identifier] = [s for s in self.samples if self.srm_identifier in s] self.subsets['All_Samples'] = [s for s in self.samples if self.srm_identifier not in s] self.subsets['not_in_set'] = self.subsets['All_Samples'].copy() @_log def make_subset(self, samples=None, name=None, force=False, silent=False): """ Creates a subset of samples, which can be treated independently. Parameters ---------- samples : str or array_like Name of sample, or list of sample names. name : (optional) str or number The name of the sample group. Defaults to n + 1, where n is the highest existing group number force : bool If there is an existing subset that contains the same samples, a new set is not created unles `force=True`. Default is False. """ if isinstance(samples, str): samples = [samples] # Check if a subset containing the same samples already exists. already_present = False existing_name = '' for k, v in self.subsets.items(): if set(v) == set(samples) and k != 'not_in_set': already_present = True existing_name = k if already_present: if not silent: print('***NOPE***') print(self._wrap_text( f"A subset containing those samples already exists, and is called '{existing_name}'. A new subset has not been created. I suggest you use the existing one. If you'd like to go ahead anyway, set `force=True` to make a new subset with your provided name." )) if not force: return not_exists = [s for s in samples if s not in self.subsets['All_Analyses']] if len(not_exists) > 0: raise ValueError(', '.join(not_exists) + ' not in the list of sample names.\nPlease check your sample names.\nNote: Sample names are stored in the .samples attribute of your analysis.') if name is None: name = max([-1] + [x for x in self.subsets.keys() if isinstance(x, int)]) + 1 self._subset_names.append(name) if samples is not None: self.subsets[name] = samples for s in samples: try: self.subsets['not_in_set'].remove(s) except ValueError: pass self._has_subsets = True # for subset in np.unique(list(self.subsets.values())): # self.subsets[subset] = sorted([k for k, v in self.subsets.items() if str(v) == subset]) if not silent: print(f'Subset created called {name}.') return name @_log def zeroscreen(self, focus_stage=None): """ Remove all points containing data below zero (which are impossible!) """ if focus_stage is None: focus_stage = self.focus_stage for s in self.data.values(): ind = np.ones(len(s.Time), dtype=bool) for v in s.data[focus_stage].values(): ind = ind & (nominal_values(v) > 0) for k in s.data[focus_stage].keys(): s.data[focus_stage][k][~ind] = unc.ufloat(np.nan, np.nan) self.set_focus(focus_stage) return @_log def filter_threshold(self, analyte, threshold, samples=None, subset=None): """ Applies a threshold filter to the data. Generates two filters above and below the threshold value for a given analyte. Parameters ---------- analyte : str The analyte that the filter applies to. threshold : float The threshold value. filt : bool Whether or not to apply existing filters to the data before calculating this filter. samples : array_like or None Which samples to apply this filter to. If None, applies to all samples. subset : str or number The subset of samples (defined by make_subset) you want to apply the filter to. Returns ------- None """ if samples is not None: subset = self.make_subset(samples, silent=True) samples = self._get_samples(subset) analyte = self._analyte_checker(analyte, single=True) self.minimal_analytes.update([analyte]) with self.pbar.set(total=len(samples), desc='Threshold Filter') as prog: for s in samples: self.data[s].filter_threshold(analyte, threshold) prog.update() @_log def filter_threshold_percentile(self, analyte, percentiles, level='population', filt=False, samples=None, subset=None): """ Applies a threshold filter to the data. Generates two filters above and below the threshold value for a given analyte. Parameters ---------- analyte : str The analyte that the filter applies to. percentiles : float or iterable of len=2 The percentile values. level : str Whether to calculate percentiles from the entire dataset ('population') or for each individual sample ('individual') filt : bool Whether or not to apply existing filters to the data before calculating this filter. samples : array_like or None Which samples to apply this filter to. If None, applies to all samples. subset : str or number The subset of samples (defined by make_subset) you want to apply the filter to. Returns ------- None """ params = locals() del(params['self']) if samples is not None: subset = self.make_subset(samples, silent=True) samples = self._get_samples(subset) analyte = self._analyte_checker(analyte, single=True) self.minimal_analytes.update([analyte]) if isinstance(percentiles, (int, float)): percentiles = [percentiles] if level == 'population': # Get all samples self.get_focus(filt=filt, subset=subset, nominal=True) dat = self.focus[analyte][~np.isnan(self.focus[analyte])] # calculate filter limits lims = np.percentile(dat, percentiles) # Calculate filter for individual samples with self.pbar.set(total=len(samples), desc='Percentile theshold filter') as prog: for s in samples: d = self.data[s] setn = d.filt.maxset + 1 g = d.focus[analyte] if level == 'individual': gt = nominal_values(g) lims = np.percentile(gt[~np.isnan(gt)], percentiles) if len(lims) == 1: above = g >= lims[0] below = g < lims[0] d.filt.add(analyte + '_{:.1f}-pcnt_below'.format(percentiles[0]), below, 'Values below {:.1f}th {:} percentile ({:.2e})'.format(percentiles[0], analyte, lims[0]), params, setn=setn) d.filt.add(analyte + '_{:.1f}-pcnt_above'.format(percentiles[0]), above, 'Values above {:.1f}th {:} percentile ({:.2e})'.format(percentiles[0], analyte, lims[0]), params, setn=setn) elif len(lims) == 2: inside = (g >= min(lims)) & (g <= max(lims)) outside = (g < min(lims)) | (g > max(lims)) lpc = '-'.join(['{:.1f}'.format(p) for p in percentiles]) d.filt.add(analyte + '_' + lpc + '-pcnt_inside', inside, 'Values between ' + lpc + ' ' + analyte + 'percentiles', params, setn=setn) d.filt.add(analyte + '_' + lpc + '-pcnt_outside', outside, 'Values outside ' + lpc + ' ' + analyte + 'percentiles', params, setn=setn) prog.update() return @_log def filter_gradient_threshold(self, analyte, threshold, win=15, recalc=True, win_mode='mid', win_exclude_outside=True, absolute_gradient=True, samples=None, subset=None): """ Calculate a gradient threshold filter to the data. Generates two filters above and below the threshold value for a given analyte. Parameters ---------- analyte : str The analyte that the filter applies to. win : int The window over which to calculate the moving gradient threshold : float The threshold value. recalc : bool Whether or not to re-calculate the gradients. win_mode : str Whether the rolling window should be centered on the left, middle or centre of the returned value. Can be 'left', 'mid' or 'right'. win_exclude_outside : bool If True, regions at the start and end where the gradient cannot be calculated (depending on win_mode setting) will be excluded by the filter. absolute_gradient : bool If True, the filter is applied to the absolute gradient (i.e. always positive), allowing the selection of 'flat' vs 'steep' regions regardless of slope direction. If Falose, the sign of the gradient matters, allowing the selection of positive or negative slopes only. samples : array_like or None Which samples to apply this filter to. If None, applies to all samples. subset : str or number The subset of samples (defined by make_subset) you want to apply the filter to. Returns ------- None """ if samples is not None: subset = self.make_subset(samples, silent=True) samples = self._get_samples(subset) analyte = self._analyte_checker(analyte, single=True) self.minimal_analytes.update([analyte]) with self.pbar.set(total=len(samples), desc='Gradient Threshold Filter') as prog: for s in samples: self.data[s].filter_gradient_threshold(analyte=analyte, win=win, threshold=threshold, recalc=recalc, win_mode=win_mode, win_exclude_outside=win_exclude_outside, absolute_gradient=absolute_gradient) prog.update() @_log def filter_gradient_threshold_percentile(self, analyte, percentiles, level='population', win=15, filt=False, samples=None, subset=None): """ Calculate a gradient threshold filter to the data. Generates two filters above and below the threshold value for a given analyte. Parameters ---------- analyte : str The analyte that the filter applies to. win : int The window over which to calculate the moving gradient percentiles : float or iterable of len=2 The percentile values. filt : bool Whether or not to apply existing filters to the data before calculating this filter. samples : array_like or None Which samples to apply this filter to. If None, applies to all samples. subset : str or number The subset of samples (defined by make_subset) you want to apply the filter to. Returns ------- None """ params = locals() del(params['self']) if samples is not None: subset = self.make_subset(samples, silent=True) samples = self._get_samples(subset) analyte = self._analyte_checker(analyte, single=True) self.minimal_analytes.update([analyte]) # Calculate gradients of all samples self.get_gradients(analytes=[analyte], win=win, filt=filt, subset=subset) grad = self.gradients[analyte][~np.isnan(self.gradients[analyte])] if isinstance(percentiles, (int, float)): percentiles = [percentiles] if level == 'population': # calculate filter limits lims = np.percentile(grad, percentiles) # Calculate filter for individual samples with self.pbar.set(total=len(samples), desc='Percentile Threshold Filter') as prog: for s in samples: d = self.data[s] setn = d.filt.maxset + 1 g = calc_grads(d.Time, d.focus, [analyte], win)[analyte] if level == 'individual': gt = nominal_values(g) lims = np.percentile(gt[~np.isnan(gt)], percentiles) if len(lims) == 1: above = g >= lims[0] below = g < lims[0] d.filt.add(analyte + '_{:.1f}-grd-pcnt_below'.format(percentiles[0]), below, 'Gradients below {:.1f}th {:} percentile ({:.2e})'.format(percentiles[0], analyte, lims[0]), params, setn=setn) d.filt.add(analyte + '_{:.1f}-grd-pcnt_above'.format(percentiles[0]), above, 'Gradients above {:.1f}th {:} percentile ({:.2e})'.format(percentiles[0], analyte, lims[0]), params, setn=setn) elif len(lims) == 2: inside = (g >= min(lims)) & (g <= max(lims)) outside = (g < min(lims)) | (g > max(lims)) lpc = '-'.join(['{:.1f}'.format(p) for p in percentiles]) d.filt.add(analyte + '_' + lpc + '-grd-pcnt_inside', inside, 'Gradients between ' + lpc + ' ' + analyte + 'percentiles', params, setn=setn) d.filt.add(analyte + '_' + lpc + '-grd-pcnt_outside', outside, 'Gradients outside ' + lpc + ' ' + analyte + 'percentiles', params, setn=setn) prog.update() return @_log def filter_clustering(self, analytes, filt=False, normalise=True, method='kmeans', include_time=False, samples=None, sort=True, subset=None, level='sample', min_data=10, **kwargs): """ Applies an n - dimensional clustering filter to the data. Parameters ---------- analytes : str The analyte(s) that the filter applies to. filt : bool Whether or not to apply existing filters to the data before calculating this filter. normalise : bool Whether or not to normalise the data to zero mean and unit variance. Reccomended if clustering based on more than 1 analyte. Uses `sklearn.preprocessing.scale`. method : str Which clustering algorithm to use: * 'meanshift': The `sklearn.cluster.MeanShift` algorithm. Automatically determines number of clusters in data based on the `bandwidth` of expected variation. * 'kmeans': The `sklearn.cluster.KMeans` algorithm. Determines the characteristics of a known number of clusters within the data. Must provide `n_clusters` to specify the expected number of clusters. level : str Whether to conduct the clustering analysis at the 'sample' or 'population' level. include_time : bool Whether or not to include the Time variable in the clustering analysis. Useful if you're looking for spatially continuous clusters in your data, i.e. this will identify each spot in your analysis as an individual cluster. samples : optional, array_like or None Which samples to apply this filter to. If None, applies to all samples. sort : bool Whether or not you want the cluster labels to be sorted by the mean magnitude of the signals they are based on (0 = lowest) min_data : int The minimum number of data points that should be considered by the filter. Default = 10. **kwargs Parameters passed to the clustering algorithm specified by `method`. Meanshift Parameters bandwidth : str or float The bandwith (float) or bandwidth method ('scott' or 'silverman') used to estimate the data bandwidth. bin_seeding : bool Modifies the behaviour of the meanshift algorithm. Refer to sklearn.cluster.meanshift documentation. K-Means Parameters n_clusters : int The number of clusters expected in the data. Returns ------- None """ if samples is not None: subset = self.make_subset(samples, focus_stage=self.focus_stage) samples = self._get_samples(subset) analytes = self.analytes_sorted(analytes) self.minimal_analytes.update(analytes) if level == 'sample': with self.pbar.set(total=len(samples), desc='Clustering Filter') as prog: for s in samples: self.data[s].filter_clustering(analytes=analytes, filt=filt, normalise=normalise, method=method, include_time=include_time, min_data=min_data, sort=sort, **kwargs) prog.update() if level == 'population': if isinstance(sort, bool): sort_by = 0 else: sort_by = sort name = '_'.join(analytes) + '_{}'.format(method) self.fit_classifier(name=name, analytes=analytes, method=method, subset=subset, filt=filt, sort_by=sort_by, **kwargs) self.apply_classifier(name=name, subset=subset) @_log def fit_classifier(self, name, analytes, method, samples=None, subset=None, filt=True, sort_by=0, **kwargs): """ Create a clustering classifier based on all samples, or a subset. Parameters ---------- name : str The name of the classifier. analytes : str or iterable Which analytes the clustering algorithm should consider. method : str Which clustering algorithm to use. Can be: 'meanshift' The `sklearn.cluster.MeanShift` algorithm. Automatically determines number of clusters in data based on the `bandwidth` of expected variation. 'kmeans' The `sklearn.cluster.KMeans` algorithm. Determines the characteristics of a known number of clusters within the data. Must provide `n_clusters` to specify the expected number of clusters. samples : iterable list of samples to consider. Overrides 'subset'. subset : str The subset of samples used to fit the classifier. Ignored if 'samples' is specified. sort_by : int Which analyte the resulting clusters should be sorted by - defaults to 0, which is the first analyte. **kwargs : method-specific keyword parameters - see below. Meanshift Parameters bandwidth : str or float The bandwith (float) or bandwidth method ('scott' or 'silverman') used to estimate the data bandwidth. bin_seeding : bool Modifies the behaviour of the meanshift algorithm. Refer to sklearn.cluster.meanshift documentation. K - Means Parameters n_clusters : int The number of clusters expected in the data. Returns ------- name : str """ # isolate data if samples is not None: subset = self.make_subset(samples, silent=True) analytes = self.analytes_sorted(analytes, focus_stage=self.focus_stage) self.minimal_analytes.update(analytes) self.get_focus(subset=subset, filt=filt) # create classifer c = classifier(analytes, sort_by) # fit classifier c.fit(data=self.focus, method=method, **kwargs) self.classifiers[name] = c return name @_log def apply_classifier(self, name, samples=None, subset=None): """ Apply a clustering classifier based on all samples, or a subset. Parameters ---------- name : str The name of the classifier to apply. subset : str The subset of samples to apply the classifier to. Returns ------- name : str """ if samples is not None: subset = self.make_subset(samples, silent=True) samples = self._get_samples(subset) c = self.classifiers[name] labs = c.classifier.ulabels_ with self.pbar.set(total=len(samples), desc='Applying ' + name + ' classifier') as prog: for s in samples: d = self.data[s] try: f = c.predict(d.focus) except ValueError: # in case there's no data f = np.array([-2] * len(d.Time)) for l in labs: ind = f == l d.filt.add(name=name + '_{:.0f}'.format(l), filt=ind, info=name + ' ' + c.method + ' classifier', params=(c.analytes, c.method)) prog.update() return name @_log def filter_correlation(self, x_analyte, y_analyte, window=None, r_threshold=0.9, p_threshold=0.05, filt=True, samples=None, subset=None): """ Applies a correlation filter to the data. Calculates a rolling correlation between every `window` points of two analytes, and excludes data where their Pearson's R value is above `r_threshold` and statistically significant. Data will be excluded where their absolute R value is greater than `r_threshold` AND the p - value associated with the correlation is less than `p_threshold`. i.e. only correlations that are statistically significant are considered. Parameters ---------- x_analyte, y_analyte : str The names of the x and y analytes to correlate. window : int, None The rolling window used when calculating the correlation. r_threshold : float The correlation index above which to exclude data. Note: the absolute pearson R value is considered, so negative correlations below -`r_threshold` will also be excluded. p_threshold : float The significant level below which data are excluded. filt : bool Whether or not to apply existing filters to the data before calculating this filter. Returns ------- None """ if samples is not None: subset = self.make_subset(samples, silent=True) samples = self._get_samples(subset) x_analyte = self._analyte_checker(x_analyte, single=True) y_analyte = self._analyte_checker(y_analyte, single=True) self.minimal_analytes.update([x_analyte, y_analyte]) with self.pbar.set(total=len(samples), desc='Correlation Filter') as prog: for s in samples: self.data[s].filter_correlation(x_analyte, y_analyte, window=window, r_threshold=r_threshold, p_threshold=p_threshold, filt=filt) prog.update() @_log def correlation_plots(self, x_analyte, y_analyte, window=15, filt=True, recalc=False, samples=None, subset=None, outdir=None): """ Plot the local correlation between two analytes. Parameters ---------- x_analyte, y_analyte : str The names of the x and y analytes to correlate. window : int, None The rolling window used when calculating the correlation. filt : bool Whether or not to apply existing filters to the data before calculating this filter. recalc : bool If True, the correlation is re-calculated, even if it is already present. Returns ------- None """ if outdir is None: outdir = self.report_dir + '/correlations/' if not os.path.isdir(outdir): os.mkdir(outdir) x_analyte = self._analyte_checker(x_analyte, single=True) y_analyte = self._analyte_checker(y_analyte, single=True) if subset is not None: samples = self._get_samples(subset) elif samples is None: samples = self.subsets['All_Analyses'] elif isinstance(samples, str): samples = [samples] with self.pbar.set(total=len(samples), desc='Drawing Plots') as prog: for s in samples: f, _ = self.data[s].correlation_plot(x_analyte=x_analyte, y_analyte=y_analyte, window=window, filt=filt, recalc=recalc) f.savefig('{}/{}_{}-{}.pdf'.format(outdir, s, x_analyte, y_analyte)) plt.close(f) prog.update() return @_log def filter_on(self, filt=None, analyte=None, samples=None, subset=None, show_status=False): """ Turns data filters on for particular analytes and samples. Parameters ---------- filt : optional, str or array_like Name, partial name or list of names of filters. Supports partial matching. i.e. if 'cluster' is specified, all filters with 'cluster' in the name are activated. Defaults to all filters. analyte : optional, str or array_like Name or list of names of analytes. Defaults to all analytes. samples : optional, array_like or None Which samples to apply this filter to. If None, applies to all samples. Returns ------- None """ if samples is not None: subset = self.make_subset(samples, silent=True) samples = self._get_samples(subset) analyte = self._analyte_checker(analyte) for s in samples: try: self.data[s].filt.on(analyte, filt) except: warnings.warn("filt.on failure in sample " + s) if show_status: self.filter_status(subset=subset) return @_log def filter_off(self, filt=None, analyte=None, samples=None, subset=None, show_status=False): """ Turns data filters off for particular analytes and samples. Parameters ---------- filt : optional, str or array_like Name, partial name or list of names of filters. Supports partial matching. i.e. if 'cluster' is specified, all filters with 'cluster' in the name are activated. Defaults to all filters. analyte : optional, str or array_like Name or list of names of analytes. Defaults to all analytes. samples : optional, array_like or None Which samples to apply this filter to. If None, applies to all samples. Returns ------- None """ if samples is not None: subset = self.make_subset(samples, silent=True) samples = self._get_samples(subset) analyte = self._analyte_checker(analyte) for s in samples: try: self.data[s].filt.off(analyte, filt) except: warnings.warn("filt.off failure in sample " + s) if show_status: self.filter_status(subset=subset) return def filter_status(self, sample=None, subset=None, stds=False): """ Prints the current status of filters for specified samples. Parameters ---------- sample : str Which sample to print. subset : str Specify a subset stds : bool Whether or not to include standards. """ if sample is None and subset is None: if not self._has_subsets: return self.data[self.subsets['All_Samples'][0]].filt.filter_table else: fdfs = {} for n in sorted(str(sn) for sn in self._subset_names): if n in self.subsets: pass elif int(n) in self.subsets: n = int(n) pass subset_name = str(n) fdfs[subset_name] = self.data[self.subsets[n][0]].filt.filter_table if len(self.subsets['not_in_set']) > 0: fdfs['Not in Subset'] = self.data[self.subsets['not_in_set'][0]].filt.filter_table return pd.concat(fdfs, names=['subset']) elif sample is not None: fdfs = {} fdfs[sample] = self.data[sample].filt.filter_table return pd.concat(fdfs, names=['sample']) elif subset is not None: if isinstance(subset, (str, int, float)): subset = [subset] fdfs = {} for n in subset: subset_name = str(n) fdfs[subset_name] = self.data[self.subsets[n][0]].filt.filter_table return
pd.concat(fdfs, names=['subset'])
pandas.concat
import quandl import pandas as pd import numpy as np def get_data(daysahead=20): # import data # USDCAD= quandl.get("FED/RXI_N_B_CA", authtoken="mmpvRYssGGBNky8<PASSWORD>") # US overnight rates EffFedRate = quandl.get("FED/RIFSPFF_N_D", authtoken="<PASSWORD>", start_date='1980-01-01') FedUppTarRange= quandl.get("FRED/DFEDTARU", authtoken="<PASSWORD>") FedLowTarRange= quandl.get("FRED/DFEDTARL", authtoken="<PASSWORD>") FedHisTarRate=quandl.get("FRED/DFEDTAR", authtoken="<PASSWORD>", start_date='1980-01-01') #US yield curve rates since 1990 USyields = quandl.get("USTREASURY/YIELD", authtoken="<PASSWORD>") #net cad long/short spec and non-speculative positions NetCAD=quandl.get("CFTC/090741_F_L_ALL") #oil prices futures weekly - Calculate backwardation/contango Oil4 = quandl.get("EIA/PET_RCLC4_W", authtoken="mmpvRYssG<PASSWORD>") Oil4.columns=['Oil4'] Oil1 = quandl.get("EIA/PET_RCLC1_W", authtoken="mmpvRYssGGBN<PASSWORD>") Oil1.columns=['Oil1'] #oil spot Oilspot = quandl.get("FRED/DCOILWTICO", authtoken="<PASSWORD>") Oilspot.columns=['Oilspot'] # Rig count RigsUS = quandl.get("BKRHUGHES/COUNT_BY_TRAJECTORY", authtoken="<PASSWORD>") RigsUS['RigsDelta']=RigsUS['Total']-RigsUS['Total'].shift() RigsUS=RigsUS[['Total','RigsDelta']] #US oil inventories OilInv = quandl.get("EIA/WCESTUS1", authtoken="<PASSWORD>") OilInv.columns=['Inv'] OilInv['InvDelta']=OilInv['Inv']-OilInv['Inv'].shift() #USCPI CPI = quandl.get("YALE/SP_CPI", authtoken="<PASSWORD>", start_date="1979-12-30") CPI.columns=['CPI'] #Cad Bonds CADBOC= pd.read_csv('C1.csv',skiprows=4, index_col=['Rates'],skipfooter=7).convert_objects(convert_numeric=True)# CANSIM table 176-0043 CanBonds #BoC overnight rates BOCON= pd.read_csv('C2.csv',skiprows=2, index_col=['Daily'])#CANSIM table 176-0048 BOCON.columns=['BOC fundrate'] BOCON.dropna(inplace=True) # Employment numbers USUnEm=quandl.get("FRED/UNRATE", authtoken="<PASSWORD>",start_date='1955-06-01') USUnEm.columns=['Unemployment rate US'] USNonFarm=quandl.get("BLSE/CES0000000001", authtoken="<PASSWORD>",start_date='1955-06-01') USNonFarm.columns=['1000s employed US'] employmentsituationdate=pd.DataFrame(pd.read_excel('EmploySitUS.xlsx',skiprows=35).iloc[:,0]) employmentsituationdate.columns=['date'] rest=pd.merge(USUnEm, employmentsituationdate,left_index=True, right_on='date',how='outer') rest=rest.set_index('date') rest.sort_index(level=0) rest=pd.merge(rest, USNonFarm,left_index=True, right_index=True,how='outer') rest['Uunemploy']=rest['Unemployment rate US'].shift(2) rest.fillna(method='pad',inplace=True) rest.tail(10) emp=pd.merge(employmentsituationdate,rest,left_on='date',right_index=True) emp.drop(['Unemployment rate US'],axis=1, inplace=True) emp=emp.set_index('date') CanEm=pd.read_csv('C3.csv',skiprows=3, index_col=['Data type']) #Cansim table 282-0087 CanEm=CanEm.iloc[0:3,5:].T['Seasonally adjusted'] CanEm.columns=[['1000s employed Can','Unemployment rate Can']] CanEm1=CanEm.shift() CanEm1.columns=[['C1000s employed shift1','CUnemploy rate shift1']] CanEm2=CanEm.shift(2) CanEm2.columns=[['C1000s employed shift2','CUnemploy rate shift2']] CanEmS=pd.merge(CanEm1,CanEm2, left_index=True,right_index=True) CanEmS['gainrateemp']=(CanEmS['C1000s employed shift1'].values -CanEmS['C1000s employed shift2'].values)/CanEmS['C1000s employed shift2']*100 CanEmS['gainrateunem']=CanEmS['CUnemploy rate shift1'].values-CanEmS['CUnemploy rate shift2'].values CanEmS.index=pd.to_datetime(CanEmS.index) CanDate=list(CanEmS.index) for i in range(len(CanDate)): if CanDate[i].weekday()==4: pass elif CanDate[i].weekday()<4: CanDate[i]=CanDate[i]+pd.Timedelta(str(4-CanDate[i].weekday())+' days') else: CanDate[i]=CanDate[i]+pd.Timedelta(str(4-CanDate[i].weekday()+7)+' days') CanEmS.index=pd.DatetimeIndex(CanDate) CanEmSF=CanEmS[['CUnemploy rate shift1','CUnemploy rate shift2','gainrateemp','gainrateunem']] # CanEmS.index.values=CanEmS.index.values.apply(lambda x: x.replace(day=1) ) #Add # Currt= USDCAD # Currt['Plus1']=Currt['Value'].shift(periods=-daysahead) # THIS IS THE 20 DAY AHEAD PRICE # Currt['Minus1']=(Currt['Value'].shift(periods=1)-Currt['Value'])*100 # # Utest['Minus5']=(Currt['Value'].shift(periods=5)-Currt['Value'])*100 # Currt['Minus5']=(Currt['Value'].rolling(5).mean()-Currt['Value'])*100 # Currt['Minus30']=(Currt['Value'].rolling(30).mean()-Currt['Value'])*100 # Currt['Minus100']=(Currt['Value'].rolling(100).mean()-Currt['Value'])*100 # Currt['Gain']=Currt['Plus1']-Currt['Value'] # Currt['Result']=np.where(Currt['Gain']>0,1,0) # Currt=Currt[['Value','Minus1','Minus5','Minus30', 'Minus100','Result','Gain']] # Currt.columns=[['Current','Minus1','Minus5','Minus30', 'Minus100','Result','Gain']] # Curr=Currt.iloc[100:] Oil=pd.merge(Oilspot, Oil1, how='outer', left_index=True, right_index=True,suffixes=('_spot','_C1')) Oil=
pd.merge(Oil, Oil4, how='outer', left_index=True, right_index=True)
pandas.merge
#!/usr/bin/env python3 import argparse import csv import gzip import io import json import os from os import walk import shutil import sys import tempfile from datetime import datetime import pandas as pd import pyarrow as pa import itertools from io import StringIO from sys import getsizeof import pickle import singer from jsonschema import Draft4Validator, FormatChecker from target_s3 import s3 from target_s3 import utils logger = singer.get_logger() def write_temp_pickle(data={}): temp_unique_pkl = 'temp_unique.pickle' dir_temp_file = os.path.join(tempfile.gettempdir(), temp_unique_pkl) with open(dir_temp_file, 'wb') as handle: pickle.dump(data, handle) def read_temp_pickle(): data = {} temp_unique_pkl = 'temp_unique.pickle' dir_temp_file = os.path.join(tempfile.gettempdir(), temp_unique_pkl) if os.path.isfile(dir_temp_file): with open(dir_temp_file, 'rb') as handle: data = pickle.load(handle) return data # Upload created files to S3 def upload_to_s3(s3_client, s3_bucket, filename, stream, field_to_partition_by_time, record_unique_field, compression=None, encryption_type=None, encryption_key=None): data = None df = None final_files_dir = '' with open(filename, 'r') as f: data = f.read().splitlines() df =
pd.DataFrame(data)
pandas.DataFrame
from typing import Optional import pandas as pd import numpy as np from .common.helpers.helpers import Frame from .settings import default_ticker, PeriodLength, _MONTHS_PER_YEAR from .api.data_queries import QueryData from .api.namespaces import get_assets_namespaces class Asset: """ A financial asset, that could be used in a list of assets or in portfolio. Parameters ---------- symbol: str, default "SPY.US" Symbol is an asset ticker with namespace after dot. The default value is "SPY.US" (SPDR S&P 500 ETF Trust). """ def __init__(self, symbol: str = default_ticker): if symbol is None or len(str(symbol).strip()) == 0: raise ValueError("Symbol can not be empty") self._symbol = str(symbol).strip() self._check_namespace() self._get_symbol_data(symbol) self.ror: pd.Series = QueryData.get_ror(symbol) self.first_date: pd.Timestamp = self.ror.index[0].to_timestamp() self.last_date: pd.Timestamp = self.ror.index[-1].to_timestamp() self.period_length: float = round( (self.last_date - self.first_date) / np.timedelta64(365, "D"), ndigits=1 ) self.pl = PeriodLength( self.ror.shape[0] // _MONTHS_PER_YEAR, self.ror.shape[0] % _MONTHS_PER_YEAR, ) def __repr__(self): dic = { "symbol": self.symbol, "name": self.name, "country": self.country, "exchange": self.exchange, "currency": self.currency, "type": self.type, "isin": self.isin, "first date": self.first_date.strftime("%Y-%m"), "last date": self.last_date.strftime("%Y-%m"), "period length": "{:.2f}".format(self.period_length), } return repr(pd.Series(dic)) def _check_namespace(self): namespace = self._symbol.split(".", 1)[-1] allowed_namespaces = get_assets_namespaces() if namespace not in allowed_namespaces: raise ValueError( f"{namespace} is not in allowed assets namespaces: {allowed_namespaces}" ) def _get_symbol_data(self, symbol) -> None: x = QueryData.get_symbol_info(symbol) self.ticker: str = x["code"] self.name: str = x["name"] self.country: str = x["country"] self.exchange: str = x["exchange"] self.currency: str = x["currency"] self.type: str = x["type"] self.isin: str = x["isin"] self.inflation: str = f"{self.currency}.INFL" @property def symbol(self) -> str: """ Return a symbol of the asset. Returns ------- str """ return self._symbol @property def price(self) -> Optional[float]: """ Return live price of an asset. Live price is delayed (15-20 minutes). For certain namespaces (FX, INDX, PIF etc.) live price is not supported. Returns ------- float, None Live price of the asset. Returns None if not defined. """ return QueryData.get_live_price(self.symbol) @property def close_daily(self): """ Return close price time series historical daily data. Returns ------- Series Time series of close price historical data (daily). """ return QueryData.get_close(self.symbol, period='D') @property def close_monthly(self): """ Return close price time series historical monthly data. Monthly close time series not adjusted to for corporate actions: dividends and splits. Returns ------- Series Time series of close price historical data (monthly). Examples -------- >>> import matplotlib.pyplot as plt >>> x = ok.Asset('VOO.US') >>> x.close_monthly.plot() >>> plt.show() """ return Frame.change_period_to_month(self.close_daily) @property def adj_close(self): """ Return adjusted close price time series historical daily data. The adjusted closing price amends a stock's closing price after accounting for corporate actions: dividends and splits. All values are adjusted by reducing the price prior to the dividend payment (or split). Returns ------- Series Time series of adjusted close price historical data (daily). """ return QueryData.get_adj_close(self.symbol, period='D') @property def dividends(self) -> pd.Series: """ Return dividends time series historical monthly data. Returns ------- Series Time series of dividends historical data (monthly). Examples -------- >>> x = ok.Asset('VNQ.US') >>> x.dividends Date 2004-12-22 1.2700 2005-03-24 0.6140 2005-06-27 0.6440 2005-09-26 0.6760 ... 2020-06-25 0.7590 2020-09-25 0.5900 2020-12-24 1.3380 2021-03-25 0.5264 Freq: D, Name: VNQ.US, Length: 66, dtype: float64 """ div = QueryData.get_dividends(self.symbol) if div.empty: # Zero time series for assets where dividend yield is not defined. index = pd.date_range( start=self.first_date, end=self.last_date, freq="MS", closed=None ) period = index.to_period("D") div =
pd.Series(data=0, index=period)
pandas.Series
# -*- coding: utf-8 -*- """ File: M2KCustomPlotFFT.py This custom script uses ADALM2000 exported CSV data to plot FFT results. v 1.01, August 13, 2019 First release v 1.10, October 12, 2019 Add peak display feature, along with two control parameters: peak_cnt and min_peak_height - update constructor - update plot_custom_script() method Add intelligent display of frequency range for x-axis label in plot_custom_script() Add intelligent display of voltage range for y-axis label and legend in plot_custom_script() Eliminate labque titles from constructor, hard code them instead as: self.plot_title_1 self.plot_title_2 Eliminate self.headings_to_use, replace with just y_heading Algorithm: Create the FFT from a given CSV data channel Prepare a plot of the results Include option to display largest peak information within plot (sorted by peak magnitude) Author: <NAME>, <EMAIL> License: MIT Copyright 2019 <NAME>, Bioph<EMAIL> See included license file (license.txt) or read it online: https://opensource.org/licenses/MIT # -------------------------------------------------------------------------------------------- Main program refers to: M2KScopePlot.py This script is completely contained within a class: CustomPlotScript(object): Attributes: values defined using __init__ constructor to customize the FFT plot self.y_heading self.n self.peak_cnt self.min_peak_height flag used to control whether custom script should be used or not self.is_custom_script data collected from CSV data file during execution of main program self.iplot_colors self.df_data self.info_dict self.headings Additional data copied from main program self.iplot_colors Additional strings used for FFT display in final lab report self.plot_title_1 self.plot_title_2 Methods: get_headings_to_use(self) get_is_custom_script(self) set_iplot_colors(self, iplot_colors) set_df_data(self, df_data) set_info_dict(self, info_dict) set_headings(self, headings) test_custom_plot(self) reduce_sample_array(signal_data, n) plot_custom_script(self) Initiate the FFT plot script by creating an object within the main program (example): custom_script = CustomPlotScript('CH1(V)', 10, 4, 0.0) Where: 'CH1(V)' is the y data heading from csv file to use for fft and plot 10 reduces the data set by 10x to limit the x-axis frequency range plotted 4 requests up to 4 peaks to feature within the plot/legend and final lab report 0.0 requests all peaks found without any voltage limit (y-axis) Note: The peaks found are reported (labque and plot legend) with highest voltage first """ from scipy.fftpack import * from scipy import signal import matplotlib.pyplot as plt import pandas as pd import numpy as np from M2KScope.M2KScopePlotFncs import * class CustomPlotScript(object): """ A class used to add a custom plot to the end of the subplots created in the main program """ def __init__(self, y_heading, n=1, peak_cnt=0, min_peak_height=0.0): """ :param y_heading: str y-axis heading as found in csv data file :param n: positive integer Number of times to reduce FFT sampling frequency Larger n generates narrower frequency range for plotted fft When n=1 no sampling data will be removed :param peak_cnt: integer Maximum number of peaks to highlight (shown as vertical lines plus frequency, magnitude list in legend) Peaks are found using the scipy.signal.find_peak() function Number of peaks displayed will be the maximum of peaks found up to the number of peaks requested Note: -1 indicates all peaks should be displayed that meet min_peak_height limitation :param min_peak_height: float Use this parameter to skip peaks that are too small to be of interest The value corresponds to the FFT magnitude (in Volts). A value of .05 (Volts) for example """ self.y_heading = y_heading.strip() self.n = int(n) self.peak_cnt = int(peak_cnt) self.min_peak_height = float(min_peak_height) # Titles packaged for labque display using headings_to_use() method self.plot_title_1 = "Custom FFT Plot using: " self.plot_title_2 = ", with dataset reduced by a factor of: " # Flag used to control custom script in main program self.is_custom_script = False # CSV data useful for custom scripting # ------------------------------------ # List of colors to use for plotting # example: iplot_colors = ['orange', 'magenta', 'green', 'blue', 'cyan', 'red', 'yellow', 'purple'] self.iplot_colors = [] # Pandas dataframe to hold imported csv column data, one row for each heading # # Example using print(df_data) # # Sample Time(S) CH1(V) CH2(V) M1(V) # 0 0 -0.004000 -0.003607 -0.009240 0.004883 # 1 1 -0.003999 0.001272 -0.004327 0.004883 # 2 2 -0.003998 0.004524 0.000585 0.003906 # 3 3 -0.003997 0.011029 0.007136 0.003906 # ... ... ... ... ... ... # 7997 7997 0.003997 -0.023123 -0.028891 0.004883 # 7998 7998 0.003998 -0.021497 -0.022341 0.000000 # 7999 7999 0.003999 -0.010112 -0.014153 0.003906 self.df_data =
pd.DataFrame()
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Fri Aug 14 13:52:36 2020 @author: diego """ import os import sqlite3 import numpy as np import pandas as pd import plots as _plots import update_prices import update_companies_info pd.set_option("display.width", 400) pd.set_option("display.max_columns", 10) pd.options.mode.chained_assignment = None update_prices.update_prices() update_companies_info.update_db() cwd = os.getcwd() conn = sqlite3.connect(os.path.join(cwd, "data", "finance.db")) cur = conn.cursor() # %% Functions class Ticker: """ Attributes and Methods to analyse stocks traded in B3 -BOLSA BRASIL BALCÃO """ def __init__(self, ticker, group="consolidated"): """ Creates a Ticker Class Object Args: ticker: string string of the ticker group: string Financial statements group. Can be 'consolidated' or 'individual' """ self.ticker = ticker.upper() df = pd.read_sql( f"""SELECT cnpj, type, sector, subsector, segment, denom_comerc FROM tickers WHERE ticker = '{self.ticker}'""", conn, ) if len(df) == 0: print('unknown ticker') return self.cnpj = df["cnpj"][0] self.type = df["type"][0] self.sector = df["sector"][0] self.subsector = df["subsector"][0] self.segment = df["segment"][0] self.denom_comerc = df["denom_comerc"][0] Ticker.set_group(self, group) on_ticker = pd.read_sql( f"SELECT ticker FROM tickers WHERE cnpj = '{self.cnpj}' AND type = 'ON'", conn, ) on_ticker = on_ticker[on_ticker["ticker"].str[-1] == "3"] self.on_ticker = on_ticker.values[0][0] try: self.pn_ticker = pd.read_sql( f"SELECT ticker FROM tickers WHERE cnpj = '{self.cnpj}' AND type = 'PN'", conn, ).values[0][0] except: pass def set_group(self, new_group): """ To change the financial statement group attribute of a object Args: new_group: string can be 'consolidated' or 'individual' """ if new_group in ["individual", "consolidado", "consolidated"]: if new_group == "individual": self.grupo = "Individual" else: self.grupo = "Consolidado" # Infer the frequency of the reports dates = pd.read_sql( f"""SELECT DISTINCT dt_fim_exerc as date FROM dre WHERE cnpj = '{self.cnpj}' AND grupo_dfp = '{self.grupo}' ORDER BY dt_fim_exerc""", conn, ) if len(dates) == 0: self.grupo = "Individual" print( f"The group of {self.ticker} was automatically switched to individual due to the lack of consolidated statements." ) dates = pd.read_sql( f"""SELECT DISTINCT dt_fim_exerc as date FROM dre WHERE cnpj = '{self.cnpj}' AND grupo_dfp = '{self.grupo}' ORDER BY dt_fim_exerc""", conn, ) try: freq = pd.infer_freq(dates["date"]) self.freq = freq[0] except ValueError: self.freq = "Q" except TypeError: dates["date"] = pd.to_datetime(dates["date"]) number_of_observations = len(dates) period_of_time = ( dates.iloc[-1, 0] - dates.iloc[0, 0] ) / np.timedelta64(1, "Y") if number_of_observations / period_of_time > 1: self.freq = "Q" else: self.freq = "A" if self.freq == "A": print( f""" The {self.grupo} statements of {self.ticker} are only available on an annual basis. Only YTD values will be available in the functions and many functions will not work. Try setting the financial statements to individual: Ticker.set_group(Ticker object, 'individual') """ ) else: print("new_group needs to be 'consolidated' or 'individual'.") def get_begin_period(self, function, start_period): """ Support method for other methods of the Class """ if start_period == "all": begin_period = pd.to_datetime("1900-01-01") return begin_period.date() elif start_period not in ["all", "last"]: try: pd.to_datetime(start_period) except: print( "start_period must be 'last', 'all', or date formated as 'YYYY-MM-DD'." ) return if start_period == "last": if function in ["prices", "total_shares", "market_value"]: last_date = pd.read_sql( f"SELECT date FROM prices WHERE ticker = '{self.ticker}' ORDER BY date DESC LIMIT(1)", conn, ) else: last_date = pd.read_sql( f"SELECT dt_fim_exerc FROM dre WHERE cnpj = '{self.cnpj}' AND grupo_dfp = '{self.grupo}' ORDER BY dt_fim_exerc DESC LIMIT(1)", conn, ) begin_period = pd.to_datetime(last_date.values[0][0]) else: begin_period = pd.to_datetime(start_period) return begin_period.date() def create_pivot_table(df): """ Support method for other methods of the Class """ ##### Creates a pivot table and add % change columns ##### # create columns with % change of the values # value_types: ytd, quarter_value, ttm_value first_type = df.columns.get_loc('ds_conta') + 1 value_types = list(df.columns[first_type:]) new_columns = [i + " % change" for i in value_types] df[new_columns] = df[value_types].div( df.groupby("cd_conta")[value_types].shift(1)) # the calculation of %change from ytd is different: if 'ytd' in value_types: shifted_values = df[['dt_fim_exerc', 'cd_conta', 'ytd']] shifted_values = shifted_values.set_index( [(pd.to_datetime(shifted_values['dt_fim_exerc']) + pd.DateOffset(years=1)), shifted_values['cd_conta']]) df = df.set_index([df['dt_fim_exerc'], df['cd_conta']]) df['ytd % change'] = df['ytd'] / shifted_values['ytd'] df[new_columns] = (df[new_columns] - 1) * 100 # reshape df = df.pivot( index=["cd_conta", "ds_conta"], columns=["dt_fim_exerc"], values=value_types + new_columns ) # rename multiIndex column levels df.columns = df.columns.rename("value", level=0) df.columns = df.columns.rename("date", level=1) # sort columns by date df = df.sort_values([("date"), ("value")], axis=1, ascending=False) # So times, the description of the accounts have small differences for the # same account in different periods, as punctuation. The purpose of the df_index # is to keep only one description to each account, avoiding duplicated rows. df_index = df.reset_index().iloc[:, 0:2] df_index.columns = df_index.columns.droplevel(1) df_index = df_index.groupby("cd_conta").first() # This groupby adds the duplicated rows df = df.groupby(level=0, axis=0).sum() # The next two lines add the account description to the dataframe multiIndex df["ds_conta"] = df_index["ds_conta"] df = df.set_index("ds_conta", append=True) # Reorder the multiIndex column levels df = df.reorder_levels(order=[1, 0], axis=1) # Due to the command line 'df = df.sort_values([('dt_fim_exerc'), ('value')], # axis=1, ascending=False)' # the columns are ordered by date descending, and value descending. The pupose # here is to set the order as: date descending and value ascending df_columns = df.columns.to_native_types() new_order = [] for i in range(1, len(df_columns), 2): new_order.append(df_columns[i]) new_order.append(df_columns[i - 1]) new_order = pd.MultiIndex.from_tuples( new_order, names=("date", "value")) df = df[new_order] return df def income_statement(self, quarter=True, ytd=True, ttm=True, start_period="all"): """ Creates a dataframe with the income statement of the object. Args: quarter: boolean includes or not quarter values ytd: boolean includes or not year to date values ttm: boolean includes or not trailing twelve months value start_period: string Returns: pandas dataframe """ if self.freq == "A": quarter = False ttm = False begin_period = Ticker.get_begin_period( self, function="income_statement", start_period=start_period ) begin_period = begin_period + pd.DateOffset(months=-12) query = f"""SELECT dt_fim_exerc, fiscal_quarter, cd_conta, ds_conta, vl_conta AS ytd FROM dre WHERE cnpj = '{self.cnpj}' AND grupo_dfp = '{self.grupo}' AND dt_fim_exerc >= '{begin_period.date()}' ORDER BY dt_fim_exerc""" df = pd.read_sql(query, conn) df["quarter_value"] = df[["cd_conta", "ytd"] ].groupby("cd_conta").diff() df["quarter_value"][df["fiscal_quarter"] == 1] = df["ytd"][ df["fiscal_quarter"] == 1 ] if ttm == True: df["ttm_value"] = ( df[["dt_fim_exerc", "cd_conta", "quarter_value"]] .groupby("cd_conta") .rolling(window=4, min_periods=4) .sum() .reset_index(0, drop=True) ) if quarter == False: df = df.drop(["quarter_value"], axis=1) if ytd == False: df = df.drop(["ytd"], axis=1) df["dt_fim_exerc"] = pd.to_datetime(df["dt_fim_exerc"]) df = df[df["dt_fim_exerc"] >= begin_period + pd.DateOffset(months=12)] df = df.drop(columns=["fiscal_quarter"]) df = Ticker.create_pivot_table(df) return df def balance_sheet(self, start_period="all", plot=False): """ Creates a dataframe with the balance sheet statement of the object. Args: start_period: string plot: boolean Returns: pandas dataframe """ begin_period = Ticker.get_begin_period( self, function="bp", start_period=start_period ) query = f"""SELECT dt_fim_exerc, cd_conta, ds_conta, vl_conta FROM bpa WHERE cnpj = '{self.cnpj}' AND grupo_dfp = '{self.grupo}' AND dt_fim_exerc >= '{begin_period}' UNION ALL SELECT dt_fim_exerc, cd_conta, ds_conta, vl_conta FROM bpp WHERE cnpj = '{self.cnpj}' AND grupo_dfp = '{self.grupo}' AND dt_fim_exerc >= '{begin_period}' ORDER BY dt_fim_exerc""" df = pd.read_sql(query, conn, parse_dates=['dt_fim_exerc']) df = Ticker.create_pivot_table(df) if plot: _plots.bs_plot(df, self.ticker, self.grupo) return df def cash_flow(self, quarter=True, ytd=True, ttm=True, start_period="all"): """ Creates a dataframe with the cash flow statement of the object. Args: quarter: boolean includes or not quarter values ytd: boolean includes or not year to date values ttm: boolean includes or not trailing twelve months value start_period: string Returns: pandas dataframe """ if self.freq == "A": quarter = False ttm = False begin_period = Ticker.get_begin_period( self, function="dfc", start_period=start_period ) begin_period = begin_period + pd.DateOffset(months=-12) query = f"""SELECT dt_fim_exerc, fiscal_quarter, cd_conta, ds_conta, vl_conta AS ytd FROM dfc WHERE cnpj = '{self.cnpj}' AND grupo_dfp = '{self.grupo}' AND dt_fim_exerc >= '{begin_period.date()}' ORDER BY dt_fim_exerc""" df = pd.read_sql(query, conn) df["quarter_value"] = df[["cd_conta", "ytd"] ].groupby("cd_conta").diff() df["quarter_value"][df["fiscal_quarter"] == 1] = df["ytd"][ df["fiscal_quarter"] == 1 ] if ttm: df["ttm_value"] = ( df[["dt_fim_exerc", "cd_conta", "quarter_value"]] .groupby("cd_conta") .rolling(window=4, min_periods=4) .sum() .reset_index(0, drop=True) ) if not quarter: df = df.drop(["quarter_value"], axis=1) if not ytd: df = df.drop(["ytd"], axis=1) df["dt_fim_exerc"] =
pd.to_datetime(df["dt_fim_exerc"])
pandas.to_datetime
import pandas as pd import numpy as np import itertools,os import networkx as nx from itertools import permutations import seaborn as sns # from sklearn.metrics import jaccard_similarity_score from sklearn.metrics import pairwise_distances from sklearn.cluster import AgglomerativeClustering from ast import literal_eval def reduced_QPspace(proto_name,flag=0): df=pd.read_csv(proto_name+'/all_QPS.csv') df.sort_values(by=['amp_fac'], ascending=False,inplace=True) print(df) if(flag==1): df = df.query('max_amp >=10') app='_max' else: df = df.query('amp_fac >=10') app='_median' print("PRINTING: ",df) if 'host' in df.columns.values: # df = df.applymap(str) del df['host'] # del df['url'] newdf=df.copy() del newdf['amp_fac'] del newdf['min_amp'] del newdf['max_amp'] del newdf['count_amp'] amps=df['amp_fac'].values print("amps",amps.shape) newdf = newdf.applymap(str) arr =newdf.values print(arr.shape,arr) uniques = np.unique(arr) X = np.searchsorted(uniques, arr) avg_dist = pairwise_distances(X, X, metric='hamming') print(avg_dist.shape) print(avg_dist[0,:]) print(arr[0,:]) print(arr[1,:]) merge_thr = 1 / arr.shape[1] print("merge thresh",merge_thr) # n_clusters=10 # model = AgglomerativeClustering(n_clusters=n_clusters,linkage="average", affinity='hamming') # model.fit(arr) # print(model) neigh_AFthresh= 10000 new_signatures=[] ign_list=[] for i in range(avg_dist.shape[0]): if i in ign_list: continue currow= avg_dist[i,:] my_AF=amps[i] p1=np.where(currow<=merge_thr)[0] neigh_AF=amps[p1] possible_inds=np.where(np.abs(neigh_AF-my_AF)<=neigh_AFthresh)[0] valid_inds = p1[possible_inds] valid_inds =np.setdiff1d(valid_inds,ign_list) ign_list.extend(list(valid_inds)) valid_AFS=neigh_AF[possible_inds] rows= arr[valid_inds,:] newrow=[] for k in range(rows.shape[1]): curvals=list(np.unique(rows[:,k])) newrow.append(curvals) newrow.append(np.mean(valid_AFS)) new_signatures.append(newrow) print(len(new_signatures),new_signatures[0]) cols=df.columns.values[0:-3] print(cols) new_sigs=np.array(new_signatures) new_sigDF=
pd.DataFrame(new_sigs,columns=cols)
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Mon Nov 9 17:16:38 2020 @author: <NAME> @ UCL Energy Institute =================================================================== Utils for text data analysis and visualisation =================================================================== """ try: import _pickle as pickle except: import pickle import pandas as pd import numpy as np import nltk nltk.download('words') nltk.download('stopwords') nltk.download('punkt') nltk.download('wordnet') from bs4 import BeautifulSoup import re, random import preprocessor as p import matplotlib.pyplot as plt from wordcloud import WordCloud from itertools import islice ############################################################################### # Get info about data filenames, headers to drop and rename def getDataInfo(dataset): if dataset == 'socialmedia_disaster': filenames = ['socialmedia-disaster-tweets-DFE.csv'] headerDropper = ['_golden', '_unit_id', '_unit_state','_trusted_judgments','_last_judgment_at','choose_one:confidence','choose_one_gold','keyword','location','tweetid','userid'] renamedColumns = {'choose_one': 'labels', 'text': 'message'} elif dataset == 'multilingual_disaster': filenames = ['disaster_response_messages_training.csv', 'disaster_response_messages_validation.csv', 'disaster_response_messages_test.csv',] headerDropper = ['id', 'split', 'original','genre','PII','request','offer','aid_related', 'medical_help','medical_products','search_and_rescue','security','military', 'child_alone','water','food','shelter','clothing','money','missing_people', 'refugees','death','other_aid','infrastructure_related','transport', 'buildings','electricity','tools','hospitals','shops','aid_centers', 'other_infrastructure','weather_related','storm','fire', 'earthquake','cold','other_weather','direct_report','weather_related', 'floods'] renamedColumns = {'related': 'label'} elif dataset == "UnifiedMETCEHFloodsUK": filenames = ['Stevens2016_Met_CEH_Dataset_Public_Version.csv'] headerDropper = ['CID','ID','Year','Month','Day','Place(s) Affected','Source', 'Flood_Type','Flood','Dataset','England','Anglian','EA_Wales', 'Midlands','North-East','North-West','NI','Scotland', 'South-East','South-West','Unspecified'] renamedColumns = {'Description': 'message'} return filenames, headerDropper, renamedColumns ############################################################################### # Prepare data and splits for the given dataset def prepareData(path, dataset, pos_ratio, targets): filenames, headerDropper, renamedColumns = getDataInfo(dataset) data = pd.DataFrame() trainData, valData, testData = list(), list(), list() for filename in filenames: print('Reading file '+filename+' ...') if dataset in ['UnifiedMETCEHFloodsUK']: tweets = pd.read_csv(path+filename, header=1, encoding = 'latin-1') else: tweets =
pd.read_csv(path+filename, encoding = 'latin-1')
pandas.read_csv
""" Test cases for DataFrame.plot """ import string import warnings import numpy as np import pytest import pandas.util._test_decorators as td import pandas as pd from pandas import ( DataFrame, Series, date_range, ) import pandas._testing as tm from pandas.tests.plotting.common import TestPlotBase from pandas.io.formats.printing import pprint_thing pytestmark = pytest.mark.slow @td.skip_if_no_mpl class TestDataFramePlotsSubplots(TestPlotBase): def test_subplots(self): df = DataFrame(np.random.rand(10, 3), index=list(string.ascii_letters[:10])) for kind in ["bar", "barh", "line", "area"]: axes = df.plot(kind=kind, subplots=True, sharex=True, legend=True) self._check_axes_shape(axes, axes_num=3, layout=(3, 1)) assert axes.shape == (3,) for ax, column in zip(axes, df.columns): self._check_legend_labels(ax, labels=[pprint_thing(column)]) for ax in axes[:-2]: self._check_visible(ax.xaxis) # xaxis must be visible for grid self._check_visible(ax.get_xticklabels(), visible=False) if kind != "bar": # change https://github.com/pandas-dev/pandas/issues/26714 self._check_visible(ax.get_xticklabels(minor=True), visible=False) self._check_visible(ax.xaxis.get_label(), visible=False) self._check_visible(ax.get_yticklabels()) self._check_visible(axes[-1].xaxis) self._check_visible(axes[-1].get_xticklabels()) self._check_visible(axes[-1].get_xticklabels(minor=True)) self._check_visible(axes[-1].xaxis.get_label()) self._check_visible(axes[-1].get_yticklabels()) axes = df.plot(kind=kind, subplots=True, sharex=False) for ax in axes: self._check_visible(ax.xaxis) self._check_visible(ax.get_xticklabels()) self._check_visible(ax.get_xticklabels(minor=True)) self._check_visible(ax.xaxis.get_label()) self._check_visible(ax.get_yticklabels()) axes = df.plot(kind=kind, subplots=True, legend=False) for ax in axes: assert ax.get_legend() is None def test_subplots_timeseries(self): idx = date_range(start="2014-07-01", freq="M", periods=10) df = DataFrame(np.random.rand(10, 3), index=idx) for kind in ["line", "area"]: axes = df.plot(kind=kind, subplots=True, sharex=True) self._check_axes_shape(axes, axes_num=3, layout=(3, 1)) for ax in axes[:-2]: # GH 7801 self._check_visible(ax.xaxis) # xaxis must be visible for grid self._check_visible(ax.get_xticklabels(), visible=False) self._check_visible(ax.get_xticklabels(minor=True), visible=False) self._check_visible(ax.xaxis.get_label(), visible=False) self._check_visible(ax.get_yticklabels()) self._check_visible(axes[-1].xaxis) self._check_visible(axes[-1].get_xticklabels()) self._check_visible(axes[-1].get_xticklabels(minor=True)) self._check_visible(axes[-1].xaxis.get_label()) self._check_visible(axes[-1].get_yticklabels()) self._check_ticks_props(axes, xrot=0) axes = df.plot(kind=kind, subplots=True, sharex=False, rot=45, fontsize=7) for ax in axes: self._check_visible(ax.xaxis) self._check_visible(ax.get_xticklabels()) self._check_visible(ax.get_xticklabels(minor=True)) self._check_visible(ax.xaxis.get_label()) self._check_visible(ax.get_yticklabels()) self._check_ticks_props(ax, xlabelsize=7, xrot=45, ylabelsize=7) def test_subplots_timeseries_y_axis(self): # GH16953 data = { "numeric": np.array([1, 2, 5]), "timedelta": [ pd.Timedelta(-10, unit="s"), pd.Timedelta(10, unit="m"), pd.Timedelta(10, unit="h"), ], "datetime_no_tz": [ pd.to_datetime("2017-08-01 00:00:00"), pd.to_datetime("2017-08-01 02:00:00"), pd.to_datetime("2017-08-02 00:00:00"), ], "datetime_all_tz": [ pd.to_datetime("2017-08-01 00:00:00", utc=True), pd.to_datetime("2017-08-01 02:00:00", utc=True), pd.to_datetime("2017-08-02 00:00:00", utc=True), ], "text": ["This", "should", "fail"], } testdata = DataFrame(data) y_cols = ["numeric", "timedelta", "datetime_no_tz", "datetime_all_tz"] for col in y_cols: ax = testdata.plot(y=col) result = ax.get_lines()[0].get_data()[1] expected = testdata[col].values assert (result == expected).all() msg = "no numeric data to plot" with pytest.raises(TypeError, match=msg): testdata.plot(y="text") @pytest.mark.xfail(reason="not support for period, categorical, datetime_mixed_tz") def test_subplots_timeseries_y_axis_not_supported(self): """ This test will fail for: period: since period isn't yet implemented in ``select_dtypes`` and because it will need a custom value converter + tick formatter (as was done for x-axis plots) categorical: because it will need a custom value converter + tick formatter (also doesn't work for x-axis, as of now) datetime_mixed_tz: because of the way how pandas handles ``Series`` of ``datetime`` objects with different timezone, generally converting ``datetime`` objects in a tz-aware form could help with this problem """ data = { "numeric": np.array([1, 2, 5]), "period": [ pd.Period("2017-08-01 00:00:00", freq="H"), pd.Period("2017-08-01 02:00", freq="H"), pd.Period("2017-08-02 00:00:00", freq="H"), ], "categorical": pd.Categorical( ["c", "b", "a"], categories=["a", "b", "c"], ordered=False ), "datetime_mixed_tz": [ pd.to_datetime("2017-08-01 00:00:00", utc=True), pd.to_datetime("2017-08-01 02:00:00"), pd.to_datetime("2017-08-02 00:00:00"), ], } testdata = DataFrame(data) ax_period = testdata.plot(x="numeric", y="period") assert ( ax_period.get_lines()[0].get_data()[1] == testdata["period"].values ).all() ax_categorical = testdata.plot(x="numeric", y="categorical") assert ( ax_categorical.get_lines()[0].get_data()[1] == testdata["categorical"].values ).all() ax_datetime_mixed_tz = testdata.plot(x="numeric", y="datetime_mixed_tz") assert ( ax_datetime_mixed_tz.get_lines()[0].get_data()[1] == testdata["datetime_mixed_tz"].values ).all() def test_subplots_layout_multi_column(self): # GH 6667 df = DataFrame(np.random.rand(10, 3), index=list(string.ascii_letters[:10])) axes = df.plot(subplots=True, layout=(2, 2)) self._check_axes_shape(axes, axes_num=3, layout=(2, 2)) assert axes.shape == (2, 2) axes = df.plot(subplots=True, layout=(-1, 2)) self._check_axes_shape(axes, axes_num=3, layout=(2, 2)) assert axes.shape == (2, 2) axes = df.plot(subplots=True, layout=(2, -1)) self._check_axes_shape(axes, axes_num=3, layout=(2, 2)) assert axes.shape == (2, 2) axes = df.plot(subplots=True, layout=(1, 4)) self._check_axes_shape(axes, axes_num=3, layout=(1, 4)) assert axes.shape == (1, 4) axes = df.plot(subplots=True, layout=(-1, 4)) self._check_axes_shape(axes, axes_num=3, layout=(1, 4)) assert axes.shape == (1, 4) axes = df.plot(subplots=True, layout=(4, -1)) self._check_axes_shape(axes, axes_num=3, layout=(4, 1)) assert axes.shape == (4, 1) msg = "Layout of 1x1 must be larger than required size 3" with pytest.raises(ValueError, match=msg): df.plot(subplots=True, layout=(1, 1)) msg = "At least one dimension of layout must be positive" with pytest.raises(ValueError, match=msg): df.plot(subplots=True, layout=(-1, -1)) @pytest.mark.parametrize( "kwargs, expected_axes_num, expected_layout, expected_shape", [ ({}, 1, (1, 1), (1,)), ({"layout": (3, 3)}, 1, (3, 3), (3, 3)), ], ) def test_subplots_layout_single_column( self, kwargs, expected_axes_num, expected_layout, expected_shape ): # GH 6667 df = DataFrame(np.random.rand(10, 1), index=list(string.ascii_letters[:10])) axes = df.plot(subplots=True, **kwargs) self._check_axes_shape( axes, axes_num=expected_axes_num, layout=expected_layout, ) assert axes.shape == expected_shape def test_subplots_warnings(self): # GH 9464 with tm.assert_produces_warning(None): df = DataFrame(np.random.randn(100, 4)) df.plot(subplots=True, layout=(3, 2)) df = DataFrame( np.random.randn(100, 4), index=date_range("1/1/2000", periods=100) ) df.plot(subplots=True, layout=(3, 2)) def test_subplots_multiple_axes(self): # GH 5353, 6970, GH 7069 fig, axes = self.plt.subplots(2, 3) df = DataFrame(np.random.rand(10, 3), index=list(string.ascii_letters[:10])) returned = df.plot(subplots=True, ax=axes[0], sharex=False, sharey=False) self._check_axes_shape(returned, axes_num=3, layout=(1, 3)) assert returned.shape == (3,) assert returned[0].figure is fig # draw on second row returned = df.plot(subplots=True, ax=axes[1], sharex=False, sharey=False) self._check_axes_shape(returned, axes_num=3, layout=(1, 3)) assert returned.shape == (3,) assert returned[0].figure is fig self._check_axes_shape(axes, axes_num=6, layout=(2, 3)) tm.close() msg = "The number of passed axes must be 3, the same as the output plot" with pytest.raises(ValueError, match=msg): fig, axes = self.plt.subplots(2, 3) # pass different number of axes from required df.plot(subplots=True, ax=axes) # pass 2-dim axes and invalid layout # invalid lauout should not affect to input and return value # (show warning is tested in # TestDataFrameGroupByPlots.test_grouped_box_multiple_axes fig, axes = self.plt.subplots(2, 2) with warnings.catch_warnings(): warnings.simplefilter("ignore", UserWarning) df = DataFrame(np.random.rand(10, 4), index=list(string.ascii_letters[:10])) returned = df.plot( subplots=True, ax=axes, layout=(2, 1), sharex=False, sharey=False ) self._check_axes_shape(returned, axes_num=4, layout=(2, 2)) assert returned.shape == (4,) returned = df.plot( subplots=True, ax=axes, layout=(2, -1), sharex=False, sharey=False ) self._check_axes_shape(returned, axes_num=4, layout=(2, 2)) assert returned.shape == (4,) returned = df.plot( subplots=True, ax=axes, layout=(-1, 2), sharex=False, sharey=False ) self._check_axes_shape(returned, axes_num=4, layout=(2, 2)) assert returned.shape == (4,) # single column fig, axes = self.plt.subplots(1, 1) df = DataFrame(np.random.rand(10, 1), index=list(string.ascii_letters[:10])) axes = df.plot(subplots=True, ax=[axes], sharex=False, sharey=False) self._check_axes_shape(axes, axes_num=1, layout=(1, 1)) assert axes.shape == (1,) def test_subplots_ts_share_axes(self): # GH 3964 fig, axes = self.plt.subplots(3, 3, sharex=True, sharey=True) self.plt.subplots_adjust(left=0.05, right=0.95, hspace=0.3, wspace=0.3) df = DataFrame( np.random.randn(10, 9), index=date_range(start="2014-07-01", freq="M", periods=10), ) for i, ax in enumerate(axes.ravel()): df[i].plot(ax=ax, fontsize=5) # Rows other than bottom should not be visible for ax in axes[0:-1].ravel(): self._check_visible(ax.get_xticklabels(), visible=False) # Bottom row should be visible for ax in axes[-1].ravel(): self._check_visible(ax.get_xticklabels(), visible=True) # First column should be visible for ax in axes[[0, 1, 2], [0]].ravel(): self._check_visible(ax.get_yticklabels(), visible=True) # Other columns should not be visible for ax in axes[[0, 1, 2], [1]].ravel(): self._check_visible(ax.get_yticklabels(), visible=False) for ax in axes[[0, 1, 2], [2]].ravel(): self._check_visible(ax.get_yticklabels(), visible=False) def test_subplots_sharex_axes_existing_axes(self): # GH 9158 d = {"A": [1.0, 2.0, 3.0, 4.0], "B": [4.0, 3.0, 2.0, 1.0], "C": [5, 1, 3, 4]} df = DataFrame(d, index=date_range("2014 10 11", "2014 10 14")) axes = df[["A", "B"]].plot(subplots=True) df["C"].plot(ax=axes[0], secondary_y=True) self._check_visible(axes[0].get_xticklabels(), visible=False) self._check_visible(axes[1].get_xticklabels(), visible=True) for ax in axes.ravel(): self._check_visible(ax.get_yticklabels(), visible=True) def test_subplots_dup_columns(self): # GH 10962 df = DataFrame(np.random.rand(5, 5), columns=list("aaaaa")) axes = df.plot(subplots=True) for ax in axes: self._check_legend_labels(ax, labels=["a"]) assert len(ax.lines) == 1 tm.close() axes = df.plot(subplots=True, secondary_y="a") for ax in axes: # (right) is only attached when subplots=False self._check_legend_labels(ax, labels=["a"]) assert len(ax.lines) == 1 tm.close() ax = df.plot(secondary_y="a") self._check_legend_labels(ax, labels=["a (right)"] * 5) assert len(ax.lines) == 0 assert len(ax.right_ax.lines) == 5 def test_bar_log_no_subplots(self): # GH3254, GH3298 matplotlib/matplotlib#1882, #1892 # regressions in 1.2.1 expected = np.array([0.1, 1.0, 10.0, 100]) # no subplots df = DataFrame({"A": [3] * 5, "B": list(range(1, 6))}, index=range(5)) ax = df.plot.bar(grid=True, log=True) tm.assert_numpy_array_equal(ax.yaxis.get_ticklocs(), expected) def test_bar_log_subplots(self): expected = np.array([0.1, 1.0, 10.0, 100.0, 1000.0, 1e4]) ax = DataFrame([Series([200, 300]), Series([300, 500])]).plot.bar( log=True, subplots=True ) tm.assert_numpy_array_equal(ax[0].yaxis.get_ticklocs(), expected) tm.assert_numpy_array_equal(ax[1].yaxis.get_ticklocs(), expected) def test_boxplot_subplots_return_type(self, hist_df): df = hist_df # normal style: return_type=None result = df.plot.box(subplots=True) assert isinstance(result, Series) self._check_box_return_type( result, None, expected_keys=["height", "weight", "category"] ) for t in ["dict", "axes", "both"]: returned = df.plot.box(return_type=t, subplots=True) self._check_box_return_type( returned, t, expected_keys=["height", "weight", "category"], check_ax_title=False, ) def test_df_subplots_patterns_minorticks(self): # GH 10657 import matplotlib.pyplot as plt df = DataFrame( np.random.randn(10, 2), index=date_range("1/1/2000", periods=10), columns=list("AB"), ) # shared subplots fig, axes = plt.subplots(2, 1, sharex=True) axes = df.plot(subplots=True, ax=axes) for ax in axes: assert len(ax.lines) == 1 self._check_visible(ax.get_yticklabels(), visible=True) # xaxis of 1st ax must be hidden self._check_visible(axes[0].get_xticklabels(), visible=False) self._check_visible(axes[0].get_xticklabels(minor=True), visible=False) self._check_visible(axes[1].get_xticklabels(), visible=True) self._check_visible(axes[1].get_xticklabels(minor=True), visible=True) tm.close() fig, axes = plt.subplots(2, 1) with tm.assert_produces_warning(UserWarning): axes = df.plot(subplots=True, ax=axes, sharex=True) for ax in axes: assert len(ax.lines) == 1 self._check_visible(ax.get_yticklabels(), visible=True) # xaxis of 1st ax must be hidden self._check_visible(axes[0].get_xticklabels(), visible=False) self._check_visible(axes[0].get_xticklabels(minor=True), visible=False) self._check_visible(axes[1].get_xticklabels(), visible=True) self._check_visible(axes[1].get_xticklabels(minor=True), visible=True) tm.close() # not shared fig, axes = plt.subplots(2, 1) axes = df.plot(subplots=True, ax=axes) for ax in axes: assert len(ax.lines) == 1 self._check_visible(ax.get_yticklabels(), visible=True) self._check_visible(ax.get_xticklabels(), visible=True) self._check_visible(ax.get_xticklabels(minor=True), visible=True)
tm.close()
pandas._testing.close
from datetime import datetime, time, timedelta from pandas.compat import range import sys import os import nose import numpy as np from pandas import Index, DatetimeIndex, Timestamp, Series, date_range, period_range import pandas.tseries.frequencies as frequencies from pandas.tseries.tools import to_datetime import pandas.tseries.offsets as offsets from pandas.tseries.period import PeriodIndex import pandas.compat as compat from pandas.compat import is_platform_windows import pandas.util.testing as tm from pandas import Timedelta def test_to_offset_multiple(): freqstr = '2h30min' freqstr2 = '2h 30min' result = frequencies.to_offset(freqstr) assert(result == frequencies.to_offset(freqstr2)) expected = offsets.Minute(150) assert(result == expected) freqstr = '2h30min15s' result = frequencies.to_offset(freqstr) expected = offsets.Second(150 * 60 + 15) assert(result == expected) freqstr = '2h 60min' result = frequencies.to_offset(freqstr) expected = offsets.Hour(3) assert(result == expected) freqstr = '15l500u' result = frequencies.to_offset(freqstr) expected = offsets.Micro(15500) assert(result == expected) freqstr = '10s75L' result = frequencies.to_offset(freqstr) expected = offsets.Milli(10075) assert(result == expected) freqstr = '2800N' result = frequencies.to_offset(freqstr) expected = offsets.Nano(2800) assert(result == expected) # malformed try: frequencies.to_offset('2h20m') except ValueError: pass else: assert(False) def test_to_offset_negative(): freqstr = '-1S' result = frequencies.to_offset(freqstr) assert(result.n == -1) freqstr = '-5min10s' result = frequencies.to_offset(freqstr) assert(result.n == -310) def test_to_offset_leading_zero(): freqstr = '00H 00T 01S' result = frequencies.to_offset(freqstr) assert(result.n == 1) freqstr = '-00H 03T 14S' result = frequencies.to_offset(freqstr) assert(result.n == -194) def test_to_offset_pd_timedelta(): # Tests for #9064 td = Timedelta(days=1, seconds=1) result = frequencies.to_offset(td) expected = offsets.Second(86401) assert(expected==result) td = Timedelta(days=-1, seconds=1) result = frequencies.to_offset(td) expected = offsets.Second(-86399) assert(expected==result) td = Timedelta(hours=1, minutes=10) result = frequencies.to_offset(td) expected = offsets.Minute(70) assert(expected==result) td = Timedelta(hours=1, minutes=-10) result = frequencies.to_offset(td) expected = offsets.Minute(50) assert(expected==result) td = Timedelta(weeks=1) result = frequencies.to_offset(td) expected = offsets.Day(7) assert(expected==result) td1 = Timedelta(hours=1) result1 = frequencies.to_offset(td1) result2 = frequencies.to_offset('60min') assert(result1 == result2) td = Timedelta(microseconds=1) result = frequencies.to_offset(td) expected = offsets.Micro(1) assert(expected == result) td = Timedelta(microseconds=0) tm.assertRaises(ValueError, lambda: frequencies.to_offset(td)) def test_anchored_shortcuts(): result = frequencies.to_offset('W') expected = frequencies.to_offset('W-SUN') assert(result == expected) result1 = frequencies.to_offset('Q') result2 = frequencies.to_offset('Q-DEC') expected = offsets.QuarterEnd(startingMonth=12) assert(result1 == expected) assert(result2 == expected) result1 = frequencies.to_offset('Q-MAY') expected = offsets.QuarterEnd(startingMonth=5) assert(result1 == expected) def test_get_rule_month(): result = frequencies._get_rule_month('W') assert(result == 'DEC') result = frequencies._get_rule_month(offsets.Week()) assert(result == 'DEC') result = frequencies._get_rule_month('D') assert(result == 'DEC') result = frequencies._get_rule_month(offsets.Day()) assert(result == 'DEC') result = frequencies._get_rule_month('Q') assert(result == 'DEC') result = frequencies._get_rule_month(offsets.QuarterEnd(startingMonth=12)) print(result == 'DEC') result = frequencies._get_rule_month('Q-JAN') assert(result == 'JAN') result = frequencies._get_rule_month(offsets.QuarterEnd(startingMonth=1)) assert(result == 'JAN') result = frequencies._get_rule_month('A-DEC') assert(result == 'DEC') result = frequencies._get_rule_month(offsets.YearEnd()) assert(result == 'DEC') result = frequencies._get_rule_month('A-MAY') assert(result == 'MAY') result = frequencies._get_rule_month(offsets.YearEnd(month=5)) assert(result == 'MAY') class TestFrequencyCode(tm.TestCase): def test_freq_code(self): self.assertEqual(frequencies.get_freq('A'), 1000) self.assertEqual(frequencies.get_freq('3A'), 1000) self.assertEqual(frequencies.get_freq('-1A'), 1000) self.assertEqual(frequencies.get_freq('W'), 4000) self.assertEqual(frequencies.get_freq('W-MON'), 4001) self.assertEqual(frequencies.get_freq('W-FRI'), 4005) for freqstr, code in compat.iteritems(frequencies._period_code_map): result = frequencies.get_freq(freqstr) self.assertEqual(result, code) result = frequencies.get_freq_group(freqstr) self.assertEqual(result, code // 1000 * 1000) result = frequencies.get_freq_group(code) self.assertEqual(result, code // 1000 * 1000) def test_freq_group(self): self.assertEqual(frequencies.get_freq_group('A'), 1000) self.assertEqual(frequencies.get_freq_group('3A'), 1000) self.assertEqual(frequencies.get_freq_group('-1A'), 1000) self.assertEqual(frequencies.get_freq_group('A-JAN'), 1000) self.assertEqual(frequencies.get_freq_group('A-MAY'), 1000) self.assertEqual(frequencies.get_freq_group(offsets.YearEnd()), 1000) self.assertEqual(frequencies.get_freq_group(offsets.YearEnd(month=1)), 1000) self.assertEqual(frequencies.get_freq_group(offsets.YearEnd(month=5)), 1000) self.assertEqual(frequencies.get_freq_group('W'), 4000) self.assertEqual(frequencies.get_freq_group('W-MON'), 4000) self.assertEqual(frequencies.get_freq_group('W-FRI'), 4000) self.assertEqual(frequencies.get_freq_group(
offsets.Week()
pandas.tseries.offsets.Week
import pandas as pd import numpy as np import glob import HP from multiprocessing import Pool def merge_assessment_score(df): new_df =
pd.DataFrame()
pandas.DataFrame
import numpy as np import matplotlib.pyplot as plt import pandas as pd import seaborn as sns sns.set_style('whitegrid') cfs_tafd = 2.29568411*10**-5 * 86400 / 1000 def water_day(d): return d - 274 if d >= 274 else d + 91 df =
pd.read_csv('../data/calfews_src-data.csv', index_col=0, parse_dates=True)
pandas.read_csv
import glob import os import subprocess import sys import pandas as pd FILES = ( "Youtube01-Psy.csv", "Youtube02-KatyPerry.csv", "Youtube03-LMFAO.csv", "Youtube04-Eminem.csv", "Youtube05-Shakira.csv", ) DATA_URL = "https://archive.ics.uci.edu/ml/machine-learning-databases/00380/YouTube-Spam-Collection-v1.zip" DIRECTORY = "getting_started" sys.path.insert( 0, os.path.split(os.path.dirname(__file__))[0] ) # so we can import from utils from snorkle_example_utils.download_files import download_files def load_unlabeled_spam_dataset(): """Load spam training dataset without any labels.""" if os.path.basename(os.getcwd()) == "snorkel-tutorials": os.chdir("getting_started") download_files(FILES, DATA_URL, DIRECTORY) filenames = sorted(glob.glob("data/Youtube*.csv")) dfs = [] for i, filename in enumerate(filenames, start=1): df =
pd.read_csv(filename)
pandas.read_csv
############### # # Transform R to Python Copyright (c) 2019 <NAME> Released under the MIT license # ############### import os import numpy as np import pystan import pandas import pickle import seaborn as sns import matplotlib.pyplot as plt fish_num_climate_2 = pandas.read_csv('4-1-1-fish-num-2.csv') print(fish_num_climate_2.head()) print(fish_num_climate_2.describe()) sns.scatterplot( x='temperature', y='fish_num', hue='weather', data=fish_num_climate_2 ) plt.show() fish_num_climate_2_d = pandas.get_dummies(fish_num_climate_2, columns=["weather", "id"]) print(fish_num_climate_2_d.head()) fish_num = fish_num_climate_2_d['fish_num'] sample_num = len(fish_num) sunny = fish_num_climate_2_d['weather_sunny'] temperature = fish_num_climate_2_d['temperature'] sunny_pred = [0, 1] N_pred_s = len(sunny_pred) temperature_pred = range(0,31) N_pred_t = len(temperature_pred) stan_data = { 'N': sample_num, 'fish_num': fish_num, 'sunny': sunny, 'temp': temperature, 'N_pred_s': N_pred_s, 'sunny_pred': sunny_pred, 'N_pred_t': N_pred_t, 'temp_pred': temperature_pred } if os.path.exists('4-1-2-poisson.pkl'): sm = pickle.load(open('4-1-2-poisson.pkl', 'rb')) else: # a model using prior for mu and sigma. sm = pystan.StanModel(file='4-1-2-poisson.stan') # using seed=1856510770 to avoid more than 20log2 witch is restriction of poisson_log function. mcmc_result = sm.sampling( data=stan_data, chains=4, seed=1856510770, iter=2000, warmup=1000, thin=1 ) print(mcmc_result) mcmc_result.plot() plt.show() print(mcmc_result.get_seed()) # saving compiled model if not os.path.exists('4-1-2-poisson.pkl'): with open('4-1-2-poisson.pkl', 'wb') as f: pickle.dump(sm, f) mcmc_sample = mcmc_result.extract() fish_num_pred = mcmc_sample['fish_num_pred'] df_c = pandas.DataFrame(fish_num_pred[:, 0, :]) df_s = pandas.DataFrame(fish_num_pred[:, 1, :]) df_c.columns = temperature_pred df_s.columns = temperature_pred # visualization qua = [0.025, 0.25, 0.50, 0.75, 0.975] d_est =
pandas.DataFrame()
pandas.DataFrame
import pandas as pd import torch import json import os import argparse import random import pickle import numpy as np import data import data_config import train_code_base import train_adae import train_code_adv import train_coral import train_dae import train_vae import train_ae import train_code_mmd import train_dsn import train_dsna import fine_tuning from copy import deepcopy def wrap_training_params(training_params, type='unlabeled'): aux_dict = {k: v for k, v in training_params.items() if k not in ['unlabeled', 'labeled']} aux_dict.update(**training_params[type]) return aux_dict def safe_make_dir(new_folder_name): if not os.path.exists(new_folder_name): os.makedirs(new_folder_name) else: print(new_folder_name, 'exists!') def dict_to_str(d): return "_".join(["_".join([k, str(v)]) for k, v in d.items()]) def main(args, drug): if args.method == 'dsn': train_fn = train_dsn.train_dsn elif args.method == 'adae': train_fn = train_adae.train_adae elif args.method == 'coral': train_fn = train_coral.train_coral elif args.method == 'dae': train_fn = train_dae.train_dae elif args.method == 'vae': train_fn = train_vae.train_vae elif args.method == 'ae': train_fn = train_ae.train_ae elif args.method == 'code_mmd': train_fn = train_code_mmd.train_code_mmd elif args.method == 'code_base': train_fn = train_code_base.train_code_base elif args.method == 'dsna': train_fn = train_dsna.train_dsna else: train_fn = train_code_adv.train_code_adv device = 'cuda' if torch.cuda.is_available() else 'cpu' gex_features_df = pd.read_csv(data_config.gex_feature_file, index_col=0) test_df = gex_features_df.loc[gex_features_df.index.str.startswith('TCGA')] #test_df.index = test_df.index.map(lambda x: x[:12]) #test_df = test_df.groupby(level=0).mean() if not args.norm_flag: method_save_folder = os.path.join('model_save', args.method) else: method_save_folder = os.path.join('model_save', f'{args.method}_norm') with open(os.path.join(method_save_folder,f'train_params_{drug}.json'), 'r') as f: training_params = json.load(f) # with open(os.path.join(f'train_params.json'), 'r') as f: # training_params = json.load(f) params_dict = {} if 'pretrain_num_epochs' in training_params['unlabeled']: params_dict['pretrain_num_epochs'] = int(training_params['unlabeled']['pretrain_num_epochs']) params_dict['train_num_epochs'] = int(training_params['unlabeled']['train_num_epochs']) params_dict['dop'] = training_params['dop'] param_str = dict_to_str(params_dict) training_params.update( { 'device': device, 'input_dim': gex_features_df.shape[-1], 'model_save_folder': os.path.join(method_save_folder, param_str), 'es_flag': False, 'retrain_flag': args.retrain_flag, 'norm_flag': args.norm_flag }) task_save_folder = os.path.join(f'{method_save_folder}', args.measurement, drug) safe_make_dir(training_params['model_save_folder']) safe_make_dir(task_save_folder) random.seed(2020) s_dataloaders, t_dataloaders = data.get_unlabeled_dataloaders( gex_features_df=gex_features_df, seed=2020, batch_size=training_params['unlabeled']['batch_size'] ) # start unlabeled training encoder, historys = train_fn(s_dataloaders=s_dataloaders, t_dataloaders=t_dataloaders, **wrap_training_params(training_params, type='unlabeled')) if args.retrain_flag: with open(os.path.join(training_params['model_save_folder'], f'unlabel_train_history.pickle'), 'wb') as f: for history in historys: pickle.dump(dict(history), f) prediction_df = None labeled_dataloader_generator = data.get_labeled_dataloader_generator( gex_features_df=gex_features_df, seed=2020, batch_size=training_params['labeled']['batch_size'], drug=drug, ccle_measurement=args.measurement, threshold=None, days_threshold=None, pdtc_flag=args.pdtc_flag, n_splits=args.n) fold_count = 0 for train_labeled_ccle_dataloader, test_labeled_ccle_dataloader, labeled_tcga_dataloader in labeled_dataloader_generator: ft_encoder = deepcopy(encoder) #print(train_labeled_ccle_dataloader.dataset.tensors[1].sum()) #print(test_labeled_ccle_dataloader.dataset.tensors[1].sum()) #print(labeled_tcga_dataloader.dataset.tensors[1].sum()) target_classifier, ft_historys, temp_df = fine_tuning.fine_tune_encoder( encoder=ft_encoder, train_dataloader=train_labeled_ccle_dataloader, val_dataloader=test_labeled_ccle_dataloader, test_dataloader=labeled_tcga_dataloader, test_df=test_df, seed=fold_count, normalize_flag=args.norm_flag, metric_name=args.metric, task_save_folder=task_save_folder, **wrap_training_params(training_params, type='labeled') ) prediction_df = pd.concat([prediction_df, temp_df], axis=1) prediction_df.to_csv(os.path.join(task_save_folder, 'tcga_predcition_cv.csv'), index_label='Sample') fold_count += 1 if __name__ == '__main__': parser = argparse.ArgumentParser('ADSN training and evaluation') parser.add_argument('--method', dest='method', nargs='?', default='adsn', choices=['code_adv', 'dsn', 'dsna', 'code_base', 'code_mmd', 'adae', 'coral', 'dae', 'vae', 'ae']) parser.add_argument('--metric', dest='metric', nargs='?', default='auroc', choices=['auroc', 'auprc']) parser.add_argument('--measurement', dest='measurement', nargs='?', default='AUC', choices=['AUC', 'LN_IC50']) parser.add_argument('--a_thres', dest='a_thres', nargs='?', type=float, default=None) parser.add_argument('--d_thres', dest='days_thres', nargs='?', type=float, default=None) parser.add_argument('--n', dest='n', nargs='?', type=int, default=5) train_group = parser.add_mutually_exclusive_group(required=False) train_group.add_argument('--train', dest='retrain_flag', action='store_true') train_group.add_argument('--no-train', dest='retrain_flag', action='store_false') parser.set_defaults(retrain_flag=False) train_group.add_argument('--pdtc', dest='pdtc_flag', action='store_true') train_group.add_argument('--no-pdtc', dest='pdtc_flag', action='store_false') parser.set_defaults(pdtc_flag=False) norm_group = parser.add_mutually_exclusive_group(required=False) norm_group.add_argument('--norm', dest='norm_flag', action='store_true') norm_group.add_argument('--no-norm', dest='norm_flag', action='store_false') parser.set_defaults(norm_flag=False) args = parser.parse_args() if args.pdtc_flag: drug_list =
pd.read_csv(data_config.gdsc_pdtc_drug_name_mapping_file, index_col=0)
pandas.read_csv
""" Modify the tips example to make it robust to outliers. Try with one shared for all groups and also with one per group. Run posterior predictive checks to assess these three models. """ import pandas as pd import random from pandas import DataFrame, Series import matplotlib.pyplot as plt import arviz as az import pymc3 as pm import numpy as np tips = pd.read_csv('../data/tips.csv') tip = tips['tip'].values idx =
pd.Categorical(tips['day'], categories=['Thur', 'Fri', 'Sat', 'Sun'])
pandas.Categorical
# License: Apache-2.0 from gators.encoders.target_encoder import TargetEncoder from pandas.testing import assert_frame_equal import pytest import numpy as np import pandas as pd import databricks.koalas as ks ks.set_option('compute.default_index_type', 'distributed-sequence') @pytest.fixture def data(): X = pd.DataFrame({ 'A': ['Q', 'Q', 'Q', 'W', 'W', 'W'], 'B': ['Q', 'Q', 'W', 'W', 'W', 'W'], 'C': ['Q', 'Q', 'Q', 'Q', 'W', 'W'], 'D': [1, 2, 3, 4, 5, 6]}) y =
pd.Series([0, 0, 0, 1, 1, 0], name='TARGET')
pandas.Series
# Copyright 2016 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import OrderedDict from abc import ABCMeta, abstractmethod import numpy as np import pandas as pd from six import with_metaclass from zipline.data._resample import ( _minute_to_session_open, _minute_to_session_high, _minute_to_session_low, _minute_to_session_close, _minute_to_session_volume, ) from zipline.data.minute_bars import MinuteBarReader from zipline.data.session_bars import SessionBarReader from zipline.utils.memoize import lazyval _MINUTE_TO_SESSION_OHCLV_HOW = OrderedDict(( ('open', 'first'), ('high', 'max'), ('low', 'min'), ('close', 'last'), ('volume', 'sum'), )) def minute_frame_to_session_frame(minute_frame, calendar): """ Resample a DataFrame with minute data into the frame expected by a BcolzDailyBarWriter. Parameters ---------- minute_frame : pd.DataFrame A DataFrame with the columns `open`, `high`, `low`, `close`, `volume`, and `dt` (minute dts) calendar : zipline.utils.calendars.trading_calendar.TradingCalendar A TradingCalendar on which session labels to resample from minute to session. Return ------ session_frame : pd.DataFrame A DataFrame with the columns `open`, `high`, `low`, `close`, `volume`, and `day` (datetime-like). """ how = OrderedDict((c, _MINUTE_TO_SESSION_OHCLV_HOW[c]) for c in minute_frame.columns) return minute_frame.groupby(calendar.minute_to_session_label).agg(how) def minute_to_session(column, close_locs, data, out): """ Resample an array with minute data into an array with session data. This function assumes that the minute data is the exact length of all minutes in the sessions in the output. Parameters ---------- column : str The `open`, `high`, `low`, `close`, or `volume` column. close_locs : array[intp] The locations in `data` which are the market close minutes. data : array[float64|uint32] The minute data to be sampled into session data. The first value should align with the market open of the first session, containing values for all minutes for all sessions. With the last value being the market close of the last session. out : array[float64|uint32] The output array into which to write the sampled sessions. """ if column == 'open': _minute_to_session_open(close_locs, data, out) elif column == 'high': _minute_to_session_high(close_locs, data, out) elif column == 'low': _minute_to_session_low(close_locs, data, out) elif column == 'close': _minute_to_session_close(close_locs, data, out) elif column == 'volume': _minute_to_session_volume(close_locs, data, out) return out class DailyHistoryAggregator(object): """ Converts minute pricing data into a daily summary, to be used for the last slot in a call to history with a frequency of `1d`. This summary is the same as a daily bar rollup of minute data, with the distinction that the summary is truncated to the `dt` requested. i.e. the aggregation slides forward during a the course of simulation day. Provides aggregation for `open`, `high`, `low`, `close`, and `volume`. The aggregation rules for each price type is documented in their respective """ def __init__(self, market_opens, minute_reader, trading_calendar): self._market_opens = market_opens self._minute_reader = minute_reader self._trading_calendar = trading_calendar # The caches are structured as (date, market_open, entries), where # entries is a dict of asset -> (last_visited_dt, value) # # Whenever an aggregation method determines the current value, # the entry for the respective asset should be overwritten with a new # entry for the current dt.value (int) and aggregation value. # # When the requested dt's date is different from date the cache is # flushed, so that the cache entries do not grow unbounded. # # Example cache: # cache = (date(2016, 3, 17), # pd.Timestamp('2016-03-17 13:31', tz='UTC'), # { # 1: (1458221460000000000, np.nan), # 2: (1458221460000000000, 42.0), # }) self._caches = { 'open': None, 'high': None, 'low': None, 'close': None, 'volume': None } # The int value is used for deltas to avoid extra computation from # creating new Timestamps. self._one_min = pd.Timedelta('1 min').value def _prelude(self, dt, field): session = self._trading_calendar.minute_to_session_label(dt) dt_value = dt.value cache = self._caches[field] if cache is None or cache[0] != session: market_open = self._market_opens.loc[session] cache = self._caches[field] = (session, market_open, {}) _, market_open, entries = cache market_open = market_open.tz_localize('UTC') if dt != market_open: prev_dt = dt_value - self._one_min else: prev_dt = None return market_open, prev_dt, dt_value, entries def opens(self, assets, dt): """ The open field's aggregation returns the first value that occurs for the day, if there has been no data on or before the `dt` the open is `nan`. Once the first non-nan open is seen, that value remains constant per asset for the remainder of the day. Returns ------- np.array with dtype=float64, in order of assets parameter. """ market_open, prev_dt, dt_value, entries = self._prelude(dt, 'open') opens = [] session_label = self._trading_calendar.minute_to_session_label(dt) for asset in assets: if not asset.is_alive_for_session(session_label): opens.append(np.NaN) continue if prev_dt is None: val = self._minute_reader.get_value(asset, dt, 'open') entries[asset] = (dt_value, val) opens.append(val) continue else: try: last_visited_dt, first_open = entries[asset] if last_visited_dt == dt_value: opens.append(first_open) continue elif not
pd.isnull(first_open)
pandas.isnull
############################################################# # ActivitySim verification against TM1 # <NAME>, <EMAIL>, 02/22/19 # C:\projects\activitysim\verification>python compare_results.py ############################################################# import pandas as pd import openmatrix as omx ############################################################# # INPUTS ############################################################# pipeline_filename = 'asim/pipeline.h5' distance_matrix_filename = "asim/skims.omx" asim_nmtf_alts_filename = "asim/non_mandatory_tour_frequency_alternatives.csv" process_sp = True # False skip work/sch shadow pricing comparisons, True do them process_tm1 = True # False only processes asim, True processes tm1 as well asim_sp_work_filename = "asim/shadow_price_workplace_modeled_size_10.csv" asim_sp_school_filename = "asim/shadow_price_school_modeled_size_10.csv" asim_sp_school_no_sp_filename = "asim/shadow_price_school_modeled_size_1.csv" tm1_access_filename = "tm1/accessibility.csv" tm1_sp_filename = "tm1/ShadowPricing_9.csv" tm1_work_filename = "tm1/wsLocResults_1.csv" tm1_ao_filename = "tm1/aoResults.csv" tm1_hh_filename = "tm1/householdData_1.csv" tm1_cdap_filename = "tm1/cdapResults.csv" tm1_per_filename = "tm1/personData_1.csv" tm1_tour_filename = "tm1/indivTourData_1.csv" tm1_jtour_filename = "tm1/jointTourData_1.csv" tm1_trips_filename = "tm1/indivTripData_1.csv" tm1_jtrips_filename = "tm1/jointTripData_1.csv" ############################################################# # OUTPUT FILES FOR DEBUGGING ############################################################# asim_zones_filename = "asim/asim_zones.csv" asim_access_filename = "asim/asim_access.csv" asim_per_filename = "asim/asim_per.csv" asim_hh_filename = "asim/asim_hh.csv" asim_tour_filename = "asim/asim_tours.csv" asim_trips_filename = "asim/asim_trips.csv" ############################################################# # COMMON LABELS ############################################################# ptypes = ["", "Full-time worker", "Part-time worker", "University student", "Non-worker", "Retired", "Student of driving age", "Student of non-driving age", "Child too young for school"] mode_labels = ["", "DRIVEALONEFREE", "DRIVEALONEPAY", "SHARED2FREE", "SHARED2PAY", "SHARED3FREE", "SHARED3PAY", "WALK", "BIKE", "WALK_LOC", "WALK_LRF", "WALK_EXP", "WALK_HVY", "WALK_COM", "DRIVE_LOC", "DRIVE_LRF", "DRIVE_EXP", "DRIVE_HVY", "DRIVE_COM"] ############################################################# # DISTANCE SKIM ############################################################# # read distance matrix (DIST) distmat = omx.open_file(distance_matrix_filename)["DIST"][:] ############################################################# # EXPORT TABLES ############################################################# # write tables for verification tazs = pd.read_hdf(pipeline_filename, "land_use/initialize_landuse") tazs["zone"] = tazs.index tazs.to_csv(asim_zones_filename, index=False) access = pd.read_hdf(pipeline_filename, "accessibility/compute_accessibility") access.to_csv(asim_access_filename, index=False) hh = pd.read_hdf(pipeline_filename, "households/joint_tour_frequency") hh["household_id"] = hh.index hh.to_csv(asim_hh_filename, index=False) per = pd.read_hdf(pipeline_filename, "persons/non_mandatory_tour_frequency") per["person_id"] = per.index per.to_csv(asim_per_filename, index=False) tours = pd.read_hdf(pipeline_filename, "tours/stop_frequency") tours["tour_id"] = tours.index tours.to_csv(asim_tour_filename, index=False) trips = pd.read_hdf(pipeline_filename, "trips/trip_mode_choice") trips["trip_id"] = trips.index trips.to_csv(asim_trips_filename, index=False) ############################################################# # AGGREGATE ############################################################# # accessibilities if process_tm1: tm1_access = pd.read_csv(tm1_access_filename) tm1_access.to_csv("outputs/tm1_access.csv", na_rep=0) asim_access = pd.read_csv(asim_access_filename) asim_access.to_csv("outputs/asim_access.csv", na_rep=0) ############################################################# # HOUSEHOLD AND PERSON ############################################################# # work and school location if process_sp: if process_tm1: tm1_markets = ["work_low", "work_med", "work_high", "work_high", "work_very high", "university", "school_high", "school_grade"] tm1 = pd.read_csv(tm1_sp_filename) tm1 = tm1.groupby(tm1["zone"]).sum() tm1["zone"] = tm1.index tm1 = tm1.loc[tm1["zone"] > 0] ws_size = tm1[["zone"]] for i in range(len(tm1_markets)): ws_size[tm1_markets[i] + "_modeledDests"] = tm1[tm1_markets[i] + "_modeledDests"] ws_size.to_csv("outputs/tm1_work_school_location.csv", na_rep=0) asim_markets = ["work_low", "work_med", "work_high", "work_high", "work_veryhigh", "university", "highschool", "gradeschool"] asim = pd.read_csv(asim_sp_work_filename) asim_sch = pd.read_csv(asim_sp_school_filename) asim_sch_no_sp = pd.read_csv(asim_sp_school_no_sp_filename) asim_sch["gradeschool"] = asim_sch_no_sp["gradeschool"] # grade school not shadow priced asim = asim.set_index("TAZ", drop=False) asim_sch = asim_sch.set_index("TAZ", drop=False) asim["gradeschool"] = asim_sch["gradeschool"].loc[asim["TAZ"]].tolist() asim["highschool"] = asim_sch["highschool"].loc[asim["TAZ"]].tolist() asim["university"] = asim_sch["university"].loc[asim["TAZ"]].tolist() ws_size = asim[["TAZ"]] for i in range(len(asim_markets)): ws_size[asim_markets[i] + "_asim"] = asim[asim_markets[i]] ws_size.to_csv("outputs/asim_work_school_location.csv", na_rep=0) # work county to county flows tazs = pd.read_csv(asim_zones_filename) counties = ["", "SF", "SM", "SC", "ALA", "CC", "SOL", "NAP", "SON", "MAR"] tazs["COUNTYNAME"] = pd.Series(counties)[tazs["county_id"].tolist()].tolist() tazs = tazs.set_index("zone", drop=False) if process_tm1: tm1_work = pd.read_csv(tm1_work_filename) tm1_work["HomeCounty"] = tazs["COUNTYNAME"].loc[tm1_work["HomeTAZ"]].tolist() tm1_work["WorkCounty"] = tazs["COUNTYNAME"].loc[tm1_work["WorkLocation"]].tolist() tm1_work_counties = tm1_work.groupby(["HomeCounty", "WorkCounty"]).count()["HHID"] tm1_work_counties = tm1_work_counties.reset_index() tm1_work_counties = tm1_work_counties.pivot(index="HomeCounty", columns="WorkCounty") tm1_work_counties.to_csv("outputs/tm1_work_counties.csv", na_rep=0) asim_cdap = pd.read_csv(asim_per_filename) asim_cdap["HomeCounty"] = tazs["COUNTYNAME"].loc[asim_cdap["home_taz"]].tolist() asim_cdap["WorkCounty"] = tazs["COUNTYNAME"].loc[asim_cdap["workplace_zone_id"]].tolist() asim_work_counties = asim_cdap.groupby(["HomeCounty", "WorkCounty"]).count()["household_id"] asim_work_counties = asim_work_counties.reset_index() asim_work_counties = asim_work_counties.pivot(index="HomeCounty", columns="WorkCounty") asim_work_counties.to_csv("outputs/asim_work_counties.csv", na_rep=0) # auto ownership - count of hhs by num autos by taz if process_tm1: tm1_ao = pd.read_csv(tm1_ao_filename) tm1_hh = pd.read_csv(tm1_hh_filename) tm1_ao = tm1_ao.set_index("HHID", drop=False) tm1_hh["ao"] = tm1_ao["AO"].loc[tm1_hh["hh_id"]].tolist() tm1_autos = tm1_hh.groupby(["taz", "ao"]).count()["hh_id"] tm1_autos = tm1_autos.reset_index() tm1_autos = tm1_autos.pivot(index="taz", columns="ao") tm1_autos.to_csv("outputs/tm1_autos.csv", na_rep=0) asim_ao = pd.read_csv(asim_hh_filename) asim_autos = asim_ao.groupby(["TAZ", "auto_ownership"]).count()["SERIALNO"] asim_autos = asim_autos.reset_index() asim_autos = asim_autos.pivot(index="TAZ", columns="auto_ownership") asim_autos.to_csv("outputs/asim_autos.csv", na_rep=0) # cdap - ptype count and ptype by M,N,H if process_tm1: tm1_cdap =
pd.read_csv(tm1_cdap_filename)
pandas.read_csv
#!//Users/Jackson/miniconda3/bin/python ''' Created by: <NAME> Date: 5/15/18 ''' import numpy as np import pandas as pd import glob import os np.set_printoptions(suppress=True) import sys import os # %% # ============================================================================== # // TITLE # ============================================================================== # input1 = './m1v2/YMR186W-SRR1520311-Galaxy53-Rm_rRNA_on_data_17--norc-m1-v2-p4.csv' # input2 = './m1v2/YPL240C-SRR1520311-Galaxy53-Rm_rRNA_on_data_17--norc-m1-v2-p4.csv' # base = os.path.basename(Input_name) # basenoext = os.path.splitext(base)[0] input1 = str(sys.argv[1]) input2 = str(sys.argv[2]) input3 = str(sys.argv[3]) # %% # ============================================================================== # // input and merge along alignment_position # ============================================================================== df1 =
pd.read_csv(input1)
pandas.read_csv
import os import sys import pandas os.makedirs("./filelists_incucyte/", exist_ok=True) ROOT_FOLDERNAME_WITHIN_SUBMISSION_SYSTEM = "" #FILENAME = "20210920 Overview CG plates and compounds.xlsx" #FILENAME = "20220121 Overview CG plates and compounds _consolidated RTG.xlsx" FILENAME = sys.argv[1] df_batches = pandas.read_excel(FILENAME, sheet_name="compound batches") df_compounds = pandas.read_excel(FILENAME, sheet_name="compounds") df_identifier = df_batches.merge(df_compounds, on="compound ID", how="left", validate="m:1") df_experiments = pandas.read_excel(FILENAME, sheet_name="experiments") ## do only cv df_experiments = df_experiments[df_experiments["experiment ID"].str.contains("cv")] ## store expanded compound maps print("expanding the compound maps...") compound_map_dict = {} for see, _ in df_experiments.groupby("compound map see corresponding excel table"): print(f"Checking the compound map '{see}'...") df_compound_map = pandas.read_excel(FILENAME, sheet_name=f"compound map {see}") ## expand with lookup-ed ID for i, s in df_compound_map.iterrows(): #print(i) #print(s.compound_name) column_name_for_identification = "compound batch ID" if pandas.isna(s[column_name_for_identification]): continue result = df_identifier.query("`compound batch ID` == '{compound_name}'".format(compound_name= s[column_name_for_identification])) if type(s[column_name_for_identification]) == int: result = df_identifier.query("`compound batch ID` == {compound_name}".format(compound_name= s[column_name_for_identification])) #print(result) #assert len(result) == 1, (s, result) if len(result) == 1: #print(dff.loc[i]) for col in result.columns: df_compound_map.loc[i, col] = result.squeeze()[col] else: print("ERROR: couldn't lookup the compound name '{compound_name}'".format(compound_name= s[column_name_for_identification])) compound_map_dict.update( {see: df_compound_map}) df_imagings = pandas.read_excel(FILENAME, sheet_name="imaging campaigns") df_exclude = pandas.read_excel(FILENAME, sheet_name="exclude from file list") ## do only cv df_imagings = df_imagings[df_imagings["experiment ID"].str.contains("cv")] df_imagings = df_imagings.merge(df_experiments, on="experiment ID") df_collector_all = [] for groupname, groupentries in df_imagings.groupby("experiment ID"): print(groupname) print("processing the imagings...") df_collector_one_experiment = [] for i, s in groupentries.iterrows(): assert not
pandas.isna(s["processed images available in folder"])
pandas.isna
import unittest from unittest.mock import Mock import random from automl.feature.generators import SklearnFeatureGenerator, FormulaFeatureGenerator, \ Preprocessing, PolynomialGenerator, PolynomialFeatureGenerator from automl.pipeline import PipelineContext, PipelineData, Pipeline, LocalExecutor from automl.data.dataset import Dataset from automl.model import Validate, ModelSpace, ChooseBest from automl.feature.selector import FeatureSelector from sklearn import datasets from sklearn.ensemble import RandomForestRegressor from sklearn.linear_model import Ridge, Lasso from sklearn.metrics import mean_squared_error import numpy as np import pandas as pd class TestSklearnFeatureGenerator(unittest.TestCase): def test_call_generator(self): Transformer = Mock() Transformer.fit_transform.return_value = [] df = pd.DataFrame([[1, 2], [3, 4]]) X = PipelineData(Dataset(df, None)) context = PipelineContext() transformer = lambda *args, **kwargs: Transformer gen = SklearnFeatureGenerator(transformer) gen(X, context) Transformer.fit_transform.assert_called() self.assertTrue((Transformer.fit_transform.call_args[0][0] == df.as_matrix()).all()) def test_generate_polynomial_features_kwargs(self): Transformer = Mock() kwargs = {'degree': 3} transformer = lambda *args, **kwargs: Transformer(*args, **kwargs) gen = SklearnFeatureGenerator(transformer, **kwargs) Transformer.assert_called_with(**kwargs) def test_generate_formula_feature(self): features = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] df =
pd.DataFrame(features)
pandas.DataFrame
# coding: utf8 from uuid import uuid4 from collections import Counter, deque # noinspection PyPackageRequirements from numpy import array from pandas import DataFrame # noinspection PyPackageRequirements import pytest from dfqueue import assign_dataframe, get_info_provider def test_queue_info_provider(): dataframe = DataFrame(array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]), index=['a1', 'a2', 'a3'], columns=['A', 'B', 'C', 'D']) queue_name = str(uuid4()) max_size = 4 assign_dataframe(dataframe, max_size, selected_columns=['A', 'D'], queue_name=queue_name) provider = get_info_provider(queue_name) assert id(provider.assigned_dataframe) == id(dataframe) assert provider.max_size == max_size assert provider.queue_name == queue_name assert provider.is_default_queue is False assert provider.queue[0:2] == (('a1', {'A': 1, 'D': 4}), ('a2', {'A': 5, 'D': 8})) assert provider.queue[-1] == ('a3', {'A': 9, 'D': 12}) assert provider.queue[0] == ('a1', {'A': 1, 'D': 4}) assert provider.queue == deque((('a1', {'A': 1, 'D': 4}), ('a2', {'A': 5, 'D': 8}), ('a3', {'A': 9, 'D': 12}))) assert provider.queue != deque((('a1', {'A': 1, 'D': 4}),)) assert ('a1', {'A': 1, 'D': 4}) in provider.queue assert ('a5', {'A': 10, 'D': 40}) not in provider.queue assert provider.counter['a1'] == Counter({frozenset(['A', 'D']): 1}) assert provider.counter['a1'] != Counter({frozenset(['A', 'D']): 10}) assert provider.counter == {'a1': Counter({frozenset(['A', 'D']): 1}), 'a2': Counter({frozenset(['A', 'D']): 1}), 'a3': Counter({frozenset(['A', 'D']): 1})} assert provider.counter != {'a1': Counter({frozenset(['A', 'D']): 10}), 'a2': Counter({frozenset(['A', 'D']): 10}), 'a3': Counter({frozenset(['A', 'D']): 10})} assert set(provider.counter.keys()) == set(['a1', 'a2', 'a3']) assert set(provider.counter.keys()) != set(['a4']) assert list(provider.counter.values()) == [Counter({frozenset(['A', 'D']): 1}), Counter({frozenset(['A', 'D']): 1}), Counter({frozenset(['A', 'D']): 1})] assert list(provider.counter.values()) != [Counter({frozenset(['A', 'D']): 10}), Counter({frozenset(['A', 'D']): 10}), Counter({frozenset(['A', 'D']): 10})] assert list(provider.counter.items()) == [('a1', Counter({frozenset(['A', 'D']): 1})), ('a2', Counter({frozenset(['A', 'D']): 1})), ('a3', Counter({frozenset(['A', 'D']): 1}))] assert list(provider.counter.items()) != [('a4', Counter({frozenset(['A', 'D']): 10})), ('a5', Counter({frozenset(['A', 'D']): 10})), ('a6', Counter({frozenset(['A', 'D']): 10}))] dataframe_2 = DataFrame(array([[10, 20, 30, 40], [50, 60, 70, 80], [90, 100, 110, 120]]), index=['a1', 'a2', 'a3'], columns=['A', 'B', 'C', 'D']) max_size_2 = 100 assign_dataframe(dataframe_2, max_size_2, selected_columns=['B'], queue_name=queue_name) assert id(provider.assigned_dataframe) == id(dataframe_2) assert provider.max_size == max_size_2 assert provider.queue_name == queue_name assert provider.is_default_queue is False assert provider.queue[0:2] == (('a1', {'B': 20}), ('a2', {'B': 60})) assert provider.queue[-1] == ('a3', {'B': 100}) assert provider.queue[0] == ('a1', {'B': 20}) assert provider.queue == deque((('a1', {'B': 20}), ('a2', {'B': 60}), ('a3', {'B': 100}))) assert provider.queue != deque((('a1', {'B': 20}),)) assert ('a1', {'B': 20}) in provider.queue assert ('a5', {'B': 200}) not in provider.queue def test_queue_info_provider_default_queue(): provider = get_info_provider() assert provider.is_default_queue is True def test_queue_info_provider_error(): provider = get_info_provider() with pytest.raises(ValueError): provider.queue['a'] with pytest.raises(AttributeError): provider.is_default_queue = False with pytest.raises(AttributeError): provider.queue_name = 'Another Name' with pytest.raises(AttributeError): provider.max_size = 2 with pytest.raises(AttributeError): provider.assigned_dataframe =
DataFrame()
pandas.DataFrame
from pytablewriter import RstGridTableWriter, MarkdownTableWriter import numpy as np import pandas as pd from dgl import DGLGraph from dgl.data.gnn_benckmark import AmazonCoBuy, CoraFull, Coauthor from dgl.data.karate import KarateClub from dgl.data.gindt import GINDataset from dgl.data.bitcoinotc import BitcoinOTC from dgl.data.gdelt import GDELT from dgl.data.icews18 import ICEWS18 from dgl.data.qm7b import QM7b # from dgl.data.qm9 import QM9 from dgl.data import CitationGraphDataset, CoraDataset, PPIDataset, RedditDataset, TUDataset ds_list = { "BitcoinOTC": "BitcoinOTC()", "Cora": "CoraDataset()", "Citeseer": "CitationGraphDataset('citeseer')", "PubMed": "CitationGraphDataset('pubmed')", "QM7b": "QM7b()", "Reddit": "RedditDataset()", "ENZYMES": "TUDataset('ENZYMES')", "DD": "TUDataset('DD')", "COLLAB": "TUDataset('COLLAB')", "MUTAG": "TUDataset('MUTAG')", "PROTEINS": "TUDataset('PROTEINS')", "PPI": "PPIDataset('train')/PPIDataset('valid')/PPIDataset('test')", # "Cora Binary": "CitationGraphDataset('cora_binary')", "KarateClub": "KarateClub()", "Amazon computer": "AmazonCoBuy('computers')", "Amazon photo": "AmazonCoBuy('photo')", "Coauthor cs": "Coauthor('cs')", "Coauthor physics": "Coauthor('physics')", "GDELT": "GDELT('train')/GDELT('valid')/GDELT('test')", "ICEWS18": "ICEWS18('train')/ICEWS18('valid')/ICEWS18('test')", "CoraFull": "CoraFull()", } writer = RstGridTableWriter() # writer = MarkdownTableWriter() extract_graph = lambda g: g if isinstance(g, DGLGraph) else g[0] stat_list=[] for k,v in ds_list.items(): print(k, ' ', v) ds = eval(v.split("/")[0]) num_nodes = [] num_edges = [] for i in range(len(ds)): g = extract_graph(ds[i]) num_nodes.append(g.number_of_nodes()) num_edges.append(g.number_of_edges()) gg = extract_graph(ds[0]) dd = { "Datset Name": k, "Usage": v, "# of graphs": len(ds), "Avg. # of nodes": np.mean(num_nodes), "Avg. # of edges": np.mean(num_edges), "Node field": ', '.join(list(gg.ndata.keys())), "Edge field": ', '.join(list(gg.edata.keys())), # "Graph field": ', '.join(ds[0][0].gdata.keys()) if hasattr(ds[0][0], "gdata") else "", "Temporal": hasattr(ds, "is_temporal") } stat_list.append(dd) print(dd.keys()) df =
pd.DataFrame(stat_list)
pandas.DataFrame
import numpy as np import pandas as pd from random import randint from statistics import mode from datetime import datetime import backend.utils.finder as finder from dateutil.relativedelta import relativedelta def arrange_df(df, df_type, relevant_col_idx=None, items_to_delete=None, assembly_df=None, bom_trim=False): """ :param bom_trim: :param df: pandas.DataFrame object that contains the raw format that is read from the file. :param df_type: File type of :param relevant_col_idx: :param items_to_delete: :param assembly_df: :return: """ df = df.copy() if df_type.lower() == "bom": # Reformatting the columns df = reformat_columns(df, relevant_col_idx, "bom") df.part_no = df.part_no.astype(str) # If specified, bom will be trimmed if bom_trim: df = trim_bom(df) # This part will be discarded for the time being, 15.04.2020 # Deleting the trial products # df.drop(df[df.product_no.str.split(".", 0).apply(lambda x: int(x[2]) > 900)].index, inplace = True) # Deleting the entries where two successive entries are level 1s. df.drop(df[df.level.eq(df.level.shift(-1, fill_value=1)) & df.level.eq(1)].index, inplace=True) # This to be deleted parts can be redundant, so it will be decided that if these codes are going to stay or not tbd_list = items_to_delete["Silinecekler"].unique().tolist() df.drop(df[df["part_no"].str.split(".").apply(lambda x: x[0] in tbd_list)].index, inplace=True) # Deleting the entries where two successive entries are level 1s. df.drop(df[df.level.eq(df.level.shift(-1, fill_value=1)) & df.level.eq(1)].index, inplace=True) # Check if the product structure is okay or not, if not okay, delete the corresponding products from the BOM df.drop(df[df.groupby("product_no").apply(corrupt_product_bom).values].index, inplace=True) # Transforming the amounts to a desired format for the simulation model. df.amount = determine_amounts(df) # Making sure that the dataframe returns in order df.reset_index(drop=True, inplace=True) return df if df_type.lower() == "times": # Reformatting the columns df = reformat_columns(df, relevant_col_idx, "times") # Transforming the machine names to ASCII characters. df["station"] = format_machine_names(df, "station") # Transforming non-numeric values to numeric values df.cycle_times = pd.to_numeric(df.cycle_times, errors="coerce").fillna(0) df.setup_times = pd.to_numeric(df.setup_times, errors="coerce").fillna(0) # Grouping by the times of the parts that has multiple times in the same work station df = df.groupby(["part_no", "station"], as_index=False).agg({"cycle_times": sum, "setup_times": max}) df.drop(df[df["part_no"].duplicated(keep="last")].index, inplace=True) # Creating the setup matrix set_list_df = df[["station", "setup_times"]].copy() set_list_df.columns = ["stations_list", "setup_time"] set_list_df = set_list_df.groupby(by="stations_list", as_index=False).agg({"setup_time": mode}) set_list_df["setup_prob"] = 1 set_list_df.loc[(set_list_df.stations_list == "ANKASTRE_BOYAHANE") | (set_list_df.stations_list == "ENDUSTRI_BOYAHANE"), "setup_prob"] = 3 / 100 set_list_df.loc[set_list_df.stations_list == "ANKASTRE_BOYAHANE", "setup_time"] = 900 set_list_df.loc[set_list_df.stations_list == "ENDUSTRI_BOYAHANE", "setup_time"] = 1200 # Creating a dataframe with the assembly times montaj_df = df[(df["station"] == "BANT") | (df["station"] == "LOOP")] # Creating a dataframe with the glass bonding cmy_df = df[df["station"] == "CAM_YAPISTIRMA"] # Dropping the assembly times from the original times dataframe and resetting the index df.drop(df[(df["station"] == "BANT") | (df["station"] == "LOOP") | (df["station"] == "CAM_YAPISTIRMA") | (df["part_no"].apply(lambda x: len(x)) == 13)].index, inplace=True) # Resetting the index df.reset_index(drop="index", inplace=True) # Getting rid of the setup column of time matrix # df.drop("setup_times", axis = 1, inplace = True) return df, montaj_df, cmy_df, set_list_df if df_type.lower() == "merged": df["station"] = level_lookup(df, "level", "station") df["cycle_times"] = level_lookup(df, "level", "cycle_times") df.loc[df.level == 1, ["station", "cycle_times"]] = \ pd.merge(df["product_no"], assembly_df[["part_no", "station", "cycle_times"]], "left", left_on="product_no", right_on="part_no")[["station", "cycle_times"]] missing_dict = missing_values_df(df) missing_df =
pd.DataFrame(missing_dict)
pandas.DataFrame
from distutils.dir_util import copy_tree from bids_neuropoly import bids import pandas as pd import json import glob import os import argparse import sys # This scripts merges 2 BIDS datasets. # the new participants.tsv and participants.json are merged versions of the initial files. # 2 Inputs should be added: # 1. --ifolders: list of the 2 Folders to be merged # 2. --ofolder: output folder # Example call: # python3 merge_BIDS_datasets.py --ifolders ~/first_Dataset/ ~/second_Dataset/ --ofolder ~/mergedDataset/ # <NAME> 2020 # -----------------------------------------------------------------------------------------------------------------------# def main_run(argv): CLI = argparse.ArgumentParser() CLI.add_argument( "--ifolders", nargs=2, # 2 folders expected to be merged type=str, default=[], # default if nothing is provided - This should give an error later on ) CLI.add_argument( "--ofolder", # name on the CLI - drop the `--` for positional/required parameters nargs=1, # 1 folder expected type=str, default=[], # default if nothing is provided ) # parse the command line args = CLI.parse_args() # access CLI options print("Input folders: %r" % args.ifolders) print("Output folder: %r" % args.ofolder) datasetFolder1 = args.ifolders[0] datasetFolder2 = args.ifolders[1] output_folder = args.ofolder[0] print('Make sure there were no inconsistencies in column labels between the two initial participants.tsv files - e.g. subject_id - subject_ids etc.') # Create output folder if it doesnt exist if not os.path.exists(output_folder): os.mkdir(output_folder) #------------------------------------------------------------------------------------------------------------------------# # GENERALIZE TO MORE THAN TWO DATASETS # Load the .tsv files df1 = bids.BIDS(datasetFolder1).participants.content df2 = bids.BIDS(datasetFolder2).participants.content # This gets rid of potential problematic merging of different Types within the same column df1 = df1.astype(str) df2 = df2.astype(str) # Merge the .tsv files and save them in a new file (This keeps also non-overlapping fields) df_merged =
pd.merge(left=df1, right=df2, how='outer')
pandas.merge
from tree import Genetreec as gentree from copy import deepcopy import tagger import indicator import pandas as pd import backtrader as bt import math import numpy as np from pandas_datareader import data as pdr import time class TreeStrategy(bt.Strategy): params=(('tree', None),) sellcount = 0 def __init__(self): self.dataclose = self.datas[0].close # Para mantener las ordenes no ejecutadas self.order = None def notify_order(self, order): if order.status in [order.Submitted, order.Accepted]: return self.order = None return def next(self): # Si hay una compraventa pendiente no puedo hacer otra if self.order: return action = self.params.tree.evaluate(date=self.datas[0].datetime.date(0)) if action == 'Buy': if self.position.size == 0: self.order = self.buy(size = math.floor(self.broker.get_cash()/(self.datas[0].close*1.01)) ) ## Como estamos usando una comisión del 1% las acciones son un 1% más caras. ## La cantidad de acciones que podemos comprar es la parte entera de nuestro ## dinero entre el valor de una acción mas su comisión. if action == 'Sell': if self.position.size > 0: self.order = self.sell(size=self.position.size) self.sellcount += 1 def stop(self): self.params.tree.sellcount = self.sellcount return ############################################# #### COPY OF TreeStrategy --- Made for plot ############################################# class plotTreeStrategy(bt.Strategy): params=(('tree', None),) def __init__(self): self.dataclose = self.datas[0].close # Para mantener las ordenes no ejecutadas self.order = None self.tree = self.params.tree def notify_order(self, order): if order.status in [order.Submitted, order.Accepted]: return self.order = None return def next(self): # Si hay una compraventa pendiente no puedo hacer otra if self.order: return action = self.params.tree.evaluate(date=self.datas[0].datetime.date(0)) if action == 'Buy': if self.position.size == 0: self.order = self.buy(size = math.floor(self.broker.get_cash()/(self.datas[0].close*1.01)) ) ## Como estamos usando una comisión del 1% las acciones son un 1% más caras. ## La cantidad de acciones que podemos comprar es la parte entera de nuestro ## dinero entre el valor de una acción mas su comisión. if action == 'Sell': if self.position.size > 0: self.order = self.sell(size=self.position.size) class EndStats(bt.Analyzer): # Analizador para poder tener en cuenta varias # estrategias de una sola ejecución (optstrategy) def __init__(self): self.start_val = self.strategy.broker.get_value() self.end_val = None self.sells=0 def stop(self): self.end_val = self.strategy.broker.get_value() self.sells = self.strategy.params.tree.sellcount def get_analysis(self): return {"start": self.start_val, "end": self.end_val, "growth": self.end_val - self.start_val + 10*self.sells, "return": self.end_val / self.start_val} class Simulate: data = None population = None nextpopulation = None numbertree = 60 numberiter = 200 start_date_train = "2009-03-20" end_date_train = "2009-09-21" start_date_test = "2009-09-22" end_date_test = "2010-03-19" symbol = "ENB.TO" def __init__(self, numtree, numiter, symbol, start_train, end_train, start_test, end_test): self.numbertree = numtree self.numberiter = numiter self.start_date_train = start_train self.end_date_train = end_train self.start_date_test = start_test self.end_date_test = end_test self.symbol = symbol # Dados dos árboles, intercambia 'aleatoriamente' dos de sus ramas. def Crossover(self, atree, btree): aside, abranch = atree.selectRandomBranch() bside, bbranch = btree.selectRandomBranch() auxbranch = None if aside == "left": auxbranch = abranch.left if bside == "left": abranch.left = bbranch.left bbranch.left = auxbranch elif bside == "right": abranch.left = bbranch.right bbranch.right = auxbranch else: abranch.left = bbranch.root bbranch.root = auxbranch elif aside == "right": auxbranch = abranch.right if bside == "left": abranch.right = bbranch.left bbranch.left = auxbranch elif bside == "right": abranch.right = bbranch.right bbranch.right = auxbranch else: abranch.right = bbranch.root bbranch.root = auxbranch else: auxbranch = abranch.root if bside == "left": abranch.root = bbranch.left bbranch.left = auxbranch elif bside == "right": abranch.root = bbranch.right bbranch.right = auxbranch else: abranch.root = bbranch.root bbranch.root = auxbranch return atree, btree # Dada una población y sus puntuaciones, devuelve la población del # algoritmo con sus probabilidades reproductivas. def Reproductivity(self, score): pop_score =
pd.DataFrame()
pandas.DataFrame
from __future__ import division """Functions to help detect face, landmarks, emotions, action units from images and videos""" from collections import deque from multiprocessing.pool import ThreadPool import os import numpy as np import pandas as pd from PIL import Image, ImageDraw, ImageOps import math from scipy.spatial import ConvexHull from skimage.morphology.convex_hull import grid_points_in_poly from skimage.feature import hog import cv2 import feat from tqdm import tqdm from feat.data import Fex from feat.utils import ( get_resource_path, face_rect_to_coords, openface_2d_landmark_columns, jaanet_AU_presence, RF_AU_presence, FEAT_EMOTION_MAPPER, FEAT_EMOTION_COLUMNS, FEAT_FACEBOX_COLUMNS, FEAT_TIME_COLUMNS, FACET_TIME_COLUMNS, BBox, convert68to49, padding, resize_with_padding, align_face_68pts ) from feat.au_detectors.JAANet.JAA_test import JAANet from feat.au_detectors.DRML.DRML_test import DRMLNet from feat.au_detectors.StatLearning.SL_test import RandomForestClassifier, SVMClassifier, LogisticClassifier from feat.emo_detectors.ferNet.ferNet_test import ferNetModule from feat.emo_detectors.ResMaskNet.resmasknet_test import ResMaskNet from feat.emo_detectors.StatLearning.EmoSL_test import EmoRandomForestClassifier, EmoSVMClassifier import torch from feat.face_detectors.FaceBoxes.FaceBoxes_test import FaceBoxes from feat.face_detectors.MTCNN.MTCNN_test import MTCNN from feat.face_detectors.Retinaface import Retinaface_test from feat.landmark_detectors.basenet_test import MobileNet_GDConv from feat.landmark_detectors.pfld_compressed_test import PFLDInference from feat.landmark_detectors.mobilefacenet_test import MobileFaceNet import json from torchvision.datasets.utils import download_url import zipfile class Detector(object): def __init__( self, face_model="retinaface", landmark_model="mobilenet", au_model="rf", emotion_model="resmasknet", n_jobs=1, ): """Detector class to detect FEX from images or videos. Detector is a class used to detect faces, facial landmarks, emotions, and action units from images and videos. Args: n_jobs (int, default=1): Number of processes to use for extraction. Attributes: info (dict): n_jobs (int): Number of jobs to be used in parallel. face_model (str, default=retinaface): Name of face detection model landmark_model (str, default=mobilenet): Nam eof landmark model au_model (str, default=rf): Name of Action Unit detection model emotion_model (str, default=resmasknet): Path to emotion detection model. face_detection_columns (list): Column names for face detection ouput (x, y, w, h) face_landmark_columns (list): Column names for face landmark output (x0, y0, x1, y1, ...) emotion_model_columns (list): Column names for emotion model output mapper (dict): Class names for emotion model output by index. input_shape (dict) face_detector: face detector object face_landmark: face_landmark object emotion_model: emotion_model object Examples: >> detector = Detector(n_jobs=1) >> detector.detect_image("input.jpg") >> detector.detect_video("input.mp4") """ self.info = {} self.info["n_jobs"] = n_jobs if torch.cuda.is_available(): self.map_location = lambda storage, loc: storage.cuda() else: self.map_location = "cpu" """ LOAD UP THE MODELS """ print("Loading Face Detection model: ", face_model) # Check if model files have been downloaded. Otherwise download model. # get model url. with open(os.path.join(get_resource_path(), "model_list.json"), "r") as f: model_urls = json.load(f) if face_model: for url in model_urls["face_detectors"][face_model.lower()]["urls"]: download_url(url, get_resource_path()) if landmark_model: for url in model_urls["landmark_detectors"][landmark_model.lower()]["urls"]: download_url(url, get_resource_path()) if au_model: for url in model_urls["au_detectors"][au_model.lower()]["urls"]: download_url(url, get_resource_path()) if ".zip" in url: import zipfile with zipfile.ZipFile(os.path.join(get_resource_path(), "JAANetparams.zip"), 'r') as zip_ref: zip_ref.extractall(os.path.join(get_resource_path())) if au_model.lower() in ['logistic', 'svm', 'rf']: download_url( model_urls["au_detectors"]['hog-pca']['urls'][0], get_resource_path()) download_url( model_urls["au_detectors"]['au_scalar']['urls'][0], get_resource_path()) if emotion_model: for url in model_urls["emotion_detectors"][emotion_model.lower()]["urls"]: download_url(url, get_resource_path()) if emotion_model.lower() in ['svm', 'rf']: download_url( model_urls["emotion_detectors"]['emo_pca']['urls'][0], get_resource_path()) download_url( model_urls["emotion_detectors"]['emo_scalar']['urls'][0], get_resource_path()) if face_model: if face_model.lower() == "faceboxes": self.face_detector = FaceBoxes() elif face_model.lower() == "retinaface": self.face_detector = Retinaface_test.Retinaface() elif face_model.lower() == "mtcnn": self.face_detector = MTCNN() self.info["face_model"] = face_model facebox_columns = FEAT_FACEBOX_COLUMNS self.info["face_detection_columns"] = facebox_columns predictions = np.empty((1, len(facebox_columns))) predictions[:] = np.nan empty_facebox = pd.DataFrame(predictions, columns=facebox_columns) self._empty_facebox = empty_facebox print("Loading Face Landmark model: ", landmark_model) if landmark_model: if landmark_model.lower() == "mobilenet": self.landmark_detector = MobileNet_GDConv(136) self.landmark_detector = torch.nn.DataParallel( self.landmark_detector) checkpoint = torch.load( os.path.join( get_resource_path(), "mobilenet_224_model_best_gdconv_external.pth.tar", ), map_location=self.map_location, ) self.landmark_detector.load_state_dict( checkpoint["state_dict"]) elif landmark_model.lower() == "pfld": self.landmark_detector = PFLDInference() checkpoint = torch.load( os.path.join(get_resource_path(), "pfld_model_best.pth.tar"), map_location=self.map_location, ) self.landmark_detector.load_state_dict( checkpoint["state_dict"]) elif landmark_model.lower() == "mobilefacenet": self.landmark_detector = MobileFaceNet([112, 112], 136) checkpoint = torch.load( os.path.join( get_resource_path(), "mobilefacenet_model_best.pth.tar" ), map_location=self.map_location, ) self.landmark_detector.load_state_dict( checkpoint["state_dict"]) self.info["landmark_model"] = landmark_model self.info["mapper"] = openface_2d_landmark_columns landmark_columns = openface_2d_landmark_columns self.info["face_landmark_columns"] = landmark_columns predictions = np.empty((1, len(openface_2d_landmark_columns))) predictions[:] = np.nan empty_landmarks = pd.DataFrame(predictions, columns=landmark_columns) self._empty_landmark = empty_landmarks print("Loading au model: ", au_model) self.info["au_model"] = au_model if au_model: if au_model.lower() == "jaanet": self.au_model = JAANet() elif au_model.lower() == "drml": self.au_model = DRMLNet() elif au_model.lower() == "logistic": self.au_model = LogisticClassifier() elif au_model.lower() == "svm": self.au_model = SVMClassifier() elif au_model.lower() == 'rf': self.au_model = RandomForestClassifier() if (au_model is None) or (au_model.lower() in ['jaanet', 'drml']): auoccur_columns = jaanet_AU_presence else: auoccur_columns = RF_AU_presence self.info["au_presence_columns"] = auoccur_columns predictions = np.empty((1, len(auoccur_columns))) predictions[:] = np.nan empty_au_occurs =
pd.DataFrame(predictions, columns=auoccur_columns)
pandas.DataFrame
import unittest import numpy as np import pandas as pd from tabular_dataset import TabularDataset def get_test_df(): return pd.DataFrame({ 'A': [1, 2, 3, np.nan], 'B': [0, 1, 0, np.nan], 'C': list('abba'), 'target': list('xyzx') }) def test_column_names_are_correctly_set(): df = get_test_df() tds = TabularDataset(df, numerical_columns=['A']) assert tds.numerical.column_names == ['A'] def test_scale(): df = get_test_df() tds = TabularDataset(df, numerical_columns=['A']) tds.numerical.scale() assert repr(tds.x) == repr(np.array([[0.], [0.5], [1.], [np.nan]])) def test_scale_no_fit(): df = get_test_df() test_data = df.iloc[-2:] tds = TabularDataset(df, test_data=test_data, numerical_columns=['A']) tds.numerical.scale() _ = tds.x_train assert repr(tds.x_test) == repr(np.array([[1.], [np.nan]])) def test_normalize(): df = get_test_df() tds = TabularDataset(df.dropna(), numerical_columns=['A']) expected_result = np.array([-1., 0., 1.]) tds.numerical.normalize() actual_result = tds.x[:, 0] assert np.allclose(actual_result, expected_result) def test_normalize_no_fit(): df = get_test_df() tds = TabularDataset(df.iloc[[0, 1]], test_data=df.iloc[[2]], numerical_columns=['A']) expected_result = np.array([2.12132034]) tds.numerical.normalize() _ = tds.x_train actual_result = tds.x_test[:, 0] assert np.allclose(actual_result, expected_result) def test_log(): df = pd.DataFrame({'A': [-2, -1, 0, 1, 2, np.nan]}) tds = TabularDataset(df, numerical_columns=['A']) expected_result = np.array([np.nan, -float('inf'), 0.000000, 0.693147, 1.098612, np.nan]) # Ignore "divide by zero" warning for testing. with np.testing.suppress_warnings() as sup: sup.filter(RuntimeWarning) tds.numerical.log() actual_result = tds.x[:, 0] assert np.allclose(actual_result, expected_result, equal_nan=True) def test_power(): df = pd.DataFrame({'A': [-2, -1, 0, 1, 2, np.nan]}) tds = TabularDataset(df, numerical_columns=['A']) expected_result = np.array([4., 1., 0., 1., 4., np.nan]) tds.numerical.power(exponent=2) actual_result = tds.x[:, 0] assert np.allclose(actual_result, expected_result, equal_nan=True) def test_ranks_with_default_method(): df =
pd.DataFrame({'A': [0, 2, 3, 2]})
pandas.DataFrame
# Standard libraries from pathlib import Path from datetime import datetime from collections import Counter from typing import List, Dict, Any, Tuple # Third-party libraries import requests import pandas as pd import plotly.graph_objects as go from tqdm import tqdm from plotly import subplots, offline # Local Libraries # TODOS # - Unit tests # - Setup pipeline on GitHub def _setup_data_dir() -> None: """ Helper function to create necessary data directory and files. """ data_dir = Path("data/") if not data_dir.exists(): print(f"\nCreating data directory: {data_dir}") data_dir.mkdir() empty_df = pd.DataFrame( columns=[ "issues_open", "issues_closed", "issues_total", "prs_open", "prs_closed", "prs_total", "hacktoberfest_issues_open", "hacktoberfest_issues_closed", "hacktoberfest_issues_total", ] ) empty_df.to_csv(data_dir.joinpath("pyjanitor_hacktoberfest_2020.csv")) def _get_total_page_count(url: str) -> int: """ Helper function to get total number of pages for scrapping GitHub. Notes: - This page count is equivalent to the sum of total Issues and Pull Requests (regardless of open of closed status). - This should be the same number as navigating to the Issues page of a repository and deleting the ``is:issue is:open`` filter from the search bar and pressing Enter. The sum of ``Open`` and ``Closed`` should be the same as page count returned here. """ # Order matters here for last_url ensue ``page`` follows ``per_page`` params = {"state": "all", "per_page": 1, "page": 0} response = requests.get(url=url, params=params) # type: ignore[arg-type] if not response.ok: raise requests.exceptions.ConnectionError(f"Failed to connect to {url}") last_url_used = response.links["last"]["url"] start_index = last_url_used.find("&page=") page_count = int(last_url_used[(start_index + len("&page=")) :]) return page_count def _calculate_needed_batches(page_count: int) -> int: """ Helper function to determine batch size for GitHub scrapping. This accounts for the GitHub API use of pagination. This accounts for scrapping 100 pages per batch. """ n_batches = page_count // 100 + 1 return n_batches def scrape_github(url: str, needed_batches: int) -> List[Dict[str, Any]]: """ Scrape GitHunb repo and collect all Issues and Pull Requests. Notes: - GitHub treats Pull Requests as Issues. - ``state: 'all'`` is used to collect both Open and Closed Issues/PRs. - GitHub API uses pagination, which means it returns only a chunk of information in a single request. Thus, need to set how many records will be included per page and the page number. Here, we collect 100 items per request. """ scraped_data = [] # Pagination needs to start at 1 since page 0 and page 1 are duplicates # Account for this by using range from [1,batches+1] instead of [0,batches] for i in tqdm(range(1, needed_batches + 1), desc="\tGitHub Scrape", ncols=75): params = {"state": "all", "per_page": 100, "page": i} response = requests.get(url=url, params=params) scraped_data.extend(response.json()) return scraped_data def create_metadata_df(scraped_data: List[Dict[str, Any]]) -> pd.DataFrame: """ Create a summary dataframe of all info scraped from GitHub. """ df = pd.DataFrame(scraped_data) keep_cols = [ "number", "title", "state", "labels", "created_at", "updated_at", "closed_at", "pull_request", ] df = df[keep_cols] df = df.assign(labels=df["labels"].apply(lambda x: [d.get("name") for d in x])) df = df.assign( hacktober=df["labels"].apply(lambda x: "hacktoberfest" in x).astype(int) ) return df def create_topic_dfs( metadata_df: pd.DataFrame, ) -> Tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame]: """ Helper function to split Issues, PRs, and Hacktoberfest Issues into separate, individual dataframes. """ issues_df = metadata_df[metadata_df["pull_request"].isnull()] prs_df = metadata_df[~metadata_df["pull_request"].isnull()] hack_issues_df = issues_df[issues_df["hacktober"] == 1] return issues_df, prs_df, hack_issues_df def collect_topic_counts(topic_df: pd.DataFrame, topic_str: str) -> Dict[str, int]: """ Counts Open, Closed, and Total items for a provided topic. Topics are Issues, PRs, or Hacktoberfest Issues. """ cnts = Counter(topic_df["state"]) # type: ignore[var-annotated] # If there is nothing closed, add it as a 0 (hacktoberfest) cnts["closed"] = cnts.get("closed", 0) cnts["total"] = len(topic_df) # Add prefix to counts for easy dataframe creation downstream cnts = {f"{topic_str}_{k}": v for k, v in cnts.items()} # type: ignore[assignment] return cnts def _get_todays_data() -> str: """ Helper function to get today's date in YYYY-MM-DD format.""" return datetime.today().strftime("%Y-%m-%d") def create_current_cnt_df( issue_cnts: Dict[str, int], pr_cnts: Dict[str, int], hack_issue_cnts: Dict[str, int], previous_data_path: Path, ) -> pd.DataFrame: """ Create a dataframe that stores the count data as of ``today``. This prepares data for plotting and saving. """ today = _get_todays_data() today_cnt_df = pd.DataFrame( {**issue_cnts, **pr_cnts, **hack_issue_cnts}, index=[today] ) previous_cnt_df = pd.read_csv(previous_data_path, index_col=0) current_cnt_df = pd.concat([previous_cnt_df, today_cnt_df]) print(f"\tUpdating count data by appending counts from {today}") print(f"\tSaving updates to {previous_data_path}") current_cnt_df.to_csv(previous_data_path) return current_cnt_df def _make_scatter_trace( current_cnt_df: pd.DataFrame, plot_col: str, name: str ) -> go.Scatter: """ Helper function to create the scatter traces for Issues and PRs. """ ORANGE = "#ff580a" BLACK = "#080808" line_color = ORANGE if "issues" in plot_col else BLACK circle_color = BLACK if "issues" in plot_col else ORANGE trace = go.Scatter( x=pd.to_datetime(current_cnt_df.index, format="%Y-%m-%d"), y=current_cnt_df[plot_col], mode="lines+markers", name=name, marker=dict(color=line_color, line=dict(width=2, color=circle_color)), showlegend=False, ) return trace def _make_bar_trace(current_cnt_df: pd.DataFrame, name: str) -> go.Bar: """ Helper function to create the stacked bar traces for Issues and PRs. """ ORANGE = "#ff580a" BLACK = "#080808" color = ORANGE if name == "Open" else BLACK today = _get_todays_data() trace = go.Bar( name=name, x=["Hacktoberfest Issues", "Issues", "Pull Requests"], y=current_cnt_df.loc[today][ [ f"hacktoberfest_issues_{name.lower()}", f"issues_{name.lower()}", f"prs_{name.lower()}", ] ].values, marker_color=color, width=0.5, ) return trace def _annotate_scatter(fig: go.Figure, current_cnt_df: pd.DataFrame) -> None: """ Helper function to annotate Issues and PRs on scatter plot. Legend is not shown so need annotations to see which line pertains to Issues and which line pertains to PRs. """ x_loc =
pd.to_datetime(current_cnt_df.iloc[0].name, format="%Y-%m-%d")
pandas.to_datetime
import pandas as pd import utils_eia923 as utils_eia923 import os, sys from dotenv import load_dotenv, find_dotenv load_dotenv(find_dotenv()) sys.path.append(os.environ.get("PROJECT_ROOT")) cols = ['Operator Id', 'Plant Id', 'Census Region', 'Reported\nFuel Type Code', 'Elec_MMBtu\nJanuary', 'Elec_MMBtu\nFebruary', 'Elec_MMBtu\nMarch', 'Elec_MMBtu\nApril', 'Elec_MMBtu\nMay', 'Elec_MMBtu\nJune', 'Elec_MMBtu\nJuly', 'Elec_MMBtu\nAugust', 'Elec_MMBtu\nSeptember', 'Elec_MMBtu\nOctober', 'Elec_MMBtu\nNovember', 'Elec_MMBtu\nDecember', 'Netgen\nJanuary', 'Netgen\nFebruary', 'Netgen\nMarch', 'Netgen\nApril', 'Netgen\nMay', 'Netgen\nJune', 'Netgen\nJuly', 'Netgen\nAugust', 'Netgen\nSeptember', 'Netgen\nOctober', 'Netgen\nNovember', 'Netgen\nDecember' ] # load all raw excel files eia923_2015_path = os.path.join(os.environ.get("PROJECT_ROOT"), 'data', 'raw', 'EIA923_Schedules_2_3_4_5_M_12_2015_Final_Revision.xlsx') df_2015 = pd.read_excel(eia923_2015_path, skiprows=5, usecols=cols) df_2015 = df_2015[df_2015['Census Region'] != 'PACN'] print('Read 2015') eia923_2016_path = os.path.join(os.environ.get("PROJECT_ROOT"), 'data', 'raw', 'EIA923_Schedules_2_3_4_5_M_12_2016_Final_Revision.xlsx') df_2016 = pd.read_excel(eia923_2016_path, skiprows=5, usecols=cols) df_2016 = df_2016[df_2016['Census Region'] != 'PACN'] print('Read 2016') eia923_2017_path = os.path.join(os.environ.get("PROJECT_ROOT"), 'data', 'raw', 'EIA923_Schedules_2_3_4_5_M_12_2017_Final_Revision.xlsx') df_2017 =
pd.read_excel(eia923_2017_path, skiprows=5, usecols=cols)
pandas.read_excel
# coding=utf-8 # pylint: disable-msg=E1101,W0612 from datetime import datetime, timedelta import operator from itertools import product, starmap from numpy import nan, inf import numpy as np import pandas as pd from pandas import (Index, Series, DataFrame, isnull, bdate_range, NaT, date_range, timedelta_range, _np_version_under1p8) from pandas.tseries.index import Timestamp from pandas.tseries.tdi import Timedelta import pandas.core.nanops as nanops from pandas.compat import range, zip from pandas import compat from pandas.util.testing import assert_series_equal, assert_almost_equal import pandas.util.testing as tm from .common import TestData class TestSeriesOperators(TestData, tm.TestCase): _multiprocess_can_split_ = True def test_comparisons(self): left = np.random.randn(10) right = np.random.randn(10) left[:3] = np.nan result = nanops.nangt(left, right) with np.errstate(invalid='ignore'): expected = (left > right).astype('O') expected[:3] = np.nan assert_almost_equal(result, expected) s = Series(['a', 'b', 'c']) s2 = Series([False, True, False]) # it works! exp = Series([False, False, False]) tm.assert_series_equal(s == s2, exp) tm.assert_series_equal(s2 == s, exp) def test_op_method(self): def check(series, other, check_reverse=False): simple_ops = ['add', 'sub', 'mul', 'floordiv', 'truediv', 'pow'] if not compat.PY3: simple_ops.append('div') for opname in simple_ops: op = getattr(Series, opname) if op == 'div': alt = operator.truediv else: alt = getattr(operator, opname) result = op(series, other) expected = alt(series, other) tm.assert_almost_equal(result, expected) if check_reverse: rop = getattr(Series, "r" + opname) result = rop(series, other) expected = alt(other, series) tm.assert_almost_equal(result, expected) check(self.ts, self.ts * 2) check(self.ts, self.ts[::2]) check(self.ts, 5, check_reverse=True) check(tm.makeFloatSeries(), tm.makeFloatSeries(), check_reverse=True) def test_neg(self): assert_series_equal(-self.series, -1 * self.series) def test_invert(self): assert_series_equal(-(self.series < 0), ~(self.series < 0)) def test_div(self): with np.errstate(all='ignore'): # no longer do integer div for any ops, but deal with the 0's p = DataFrame({'first': [3, 4, 5, 8], 'second': [0, 0, 0, 3]}) result = p['first'] / p['second'] expected = Series( p['first'].values.astype(float) / p['second'].values, dtype='float64') expected.iloc[0:3] = np.inf assert_series_equal(result, expected) result = p['first'] / 0 expected = Series(np.inf, index=p.index, name='first') assert_series_equal(result, expected) p = p.astype('float64') result = p['first'] / p['second'] expected = Series(p['first'].values / p['second'].values) assert_series_equal(result, expected) p = DataFrame({'first': [3, 4, 5, 8], 'second': [1, 1, 1, 1]}) result = p['first'] / p['second'] assert_series_equal(result, p['first'].astype('float64'), check_names=False) self.assertTrue(result.name is None) self.assertFalse(np.array_equal(result, p['second'] / p['first'])) # inf signing s = Series([np.nan, 1., -1.]) result = s / 0 expected = Series([np.nan, np.inf, -np.inf]) assert_series_equal(result, expected) # float/integer issue # GH 7785 p = DataFrame({'first': (1, 0), 'second': (-0.01, -0.02)}) expected = Series([-0.01, -np.inf]) result = p['second'].div(p['first']) assert_series_equal(result, expected, check_names=False) result = p['second'] / p['first'] assert_series_equal(result, expected) # GH 9144 s = Series([-1, 0, 1]) result = 0 / s expected = Series([0.0, nan, 0.0]) assert_series_equal(result, expected) result = s / 0 expected = Series([-inf, nan, inf]) assert_series_equal(result, expected) result = s // 0 expected = Series([-inf, nan, inf]) assert_series_equal(result, expected) def test_operators(self): def _check_op(series, other, op, pos_only=False, check_dtype=True): left = np.abs(series) if pos_only else series right = np.abs(other) if pos_only else other cython_or_numpy = op(left, right) python = left.combine(right, op) tm.assert_series_equal(cython_or_numpy, python, check_dtype=check_dtype) def check(series, other): simple_ops = ['add', 'sub', 'mul', 'truediv', 'floordiv', 'mod'] for opname in simple_ops: _check_op(series, other, getattr(operator, opname)) _check_op(series, other, operator.pow, pos_only=True) _check_op(series, other, lambda x, y: operator.add(y, x)) _check_op(series, other, lambda x, y: operator.sub(y, x)) _check_op(series, other, lambda x, y: operator.truediv(y, x)) _check_op(series, other, lambda x, y: operator.floordiv(y, x)) _check_op(series, other, lambda x, y: operator.mul(y, x)) _check_op(series, other, lambda x, y: operator.pow(y, x), pos_only=True) _check_op(series, other, lambda x, y: operator.mod(y, x)) check(self.ts, self.ts * 2) check(self.ts, self.ts * 0) check(self.ts, self.ts[::2]) check(self.ts, 5) def check_comparators(series, other, check_dtype=True): _check_op(series, other, operator.gt, check_dtype=check_dtype) _check_op(series, other, operator.ge, check_dtype=check_dtype) _check_op(series, other, operator.eq, check_dtype=check_dtype) _check_op(series, other, operator.lt, check_dtype=check_dtype) _check_op(series, other, operator.le, check_dtype=check_dtype) check_comparators(self.ts, 5) check_comparators(self.ts, self.ts + 1, check_dtype=False) def test_operators_empty_int_corner(self): s1 = Series([], [], dtype=np.int32) s2 = Series({'x': 0.}) tm.assert_series_equal(s1 * s2, Series([np.nan], index=['x'])) def test_operators_timedelta64(self): # invalid ops self.assertRaises(Exception, self.objSeries.__add__, 1) self.assertRaises(Exception, self.objSeries.__add__, np.array(1, dtype=np.int64)) self.assertRaises(Exception, self.objSeries.__sub__, 1) self.assertRaises(Exception, self.objSeries.__sub__, np.array(1, dtype=np.int64)) # seriese ops v1 = date_range('2012-1-1', periods=3, freq='D') v2 = date_range('2012-1-2', periods=3, freq='D') rs = Series(v2) - Series(v1) xp = Series(1e9 * 3600 * 24, rs.index).astype('int64').astype('timedelta64[ns]') assert_series_equal(rs, xp) self.assertEqual(rs.dtype, 'timedelta64[ns]') df = DataFrame(dict(A=v1)) td = Series([timedelta(days=i) for i in range(3)]) self.assertEqual(td.dtype, 'timedelta64[ns]') # series on the rhs result = df['A'] - df['A'].shift() self.assertEqual(result.dtype, 'timedelta64[ns]') result = df['A'] + td self.assertEqual(result.dtype, 'M8[ns]') # scalar Timestamp on rhs maxa = df['A'].max() tm.assertIsInstance(maxa, Timestamp) resultb = df['A'] - df['A'].max() self.assertEqual(resultb.dtype, 'timedelta64[ns]') # timestamp on lhs result = resultb + df['A'] values = [Timestamp('20111230'), Timestamp('20120101'), Timestamp('20120103')] expected = Series(values, name='A') assert_series_equal(result, expected) # datetimes on rhs result = df['A'] - datetime(2001, 1, 1) expected = Series( [timedelta(days=4017 + i) for i in range(3)], name='A') assert_series_equal(result, expected) self.assertEqual(result.dtype, 'm8[ns]') d = datetime(2001, 1, 1, 3, 4) resulta = df['A'] - d self.assertEqual(resulta.dtype, 'm8[ns]') # roundtrip resultb = resulta + d assert_series_equal(df['A'], resultb) # timedeltas on rhs td = timedelta(days=1) resulta = df['A'] + td resultb = resulta - td assert_series_equal(resultb, df['A']) self.assertEqual(resultb.dtype, 'M8[ns]') # roundtrip td = timedelta(minutes=5, seconds=3) resulta = df['A'] + td resultb = resulta - td assert_series_equal(df['A'], resultb) self.assertEqual(resultb.dtype, 'M8[ns]') # inplace value = rs[2] + np.timedelta64(timedelta(minutes=5, seconds=1)) rs[2] += np.timedelta64(timedelta(minutes=5, seconds=1)) self.assertEqual(rs[2], value) def test_operator_series_comparison_zerorank(self): # GH 13006 result = np.float64(0) > pd.Series([1, 2, 3]) expected = 0.0 > pd.Series([1, 2, 3]) self.assert_series_equal(result, expected) result = pd.Series([1, 2, 3]) < np.float64(0) expected = pd.Series([1, 2, 3]) < 0.0 self.assert_series_equal(result, expected) result = np.array([0, 1, 2])[0] > pd.Series([0, 1, 2]) expected = 0.0 > pd.Series([1, 2, 3]) self.assert_series_equal(result, expected) def test_timedeltas_with_DateOffset(self): # GH 4532 # operate with pd.offsets s = Series([Timestamp('20130101 9:01'), Timestamp('20130101 9:02')]) result = s + pd.offsets.Second(5) result2 = pd.offsets.Second(5) + s expected = Series([Timestamp('20130101 9:01:05'), Timestamp( '20130101 9:02:05')]) assert_series_equal(result, expected) assert_series_equal(result2, expected) result = s - pd.offsets.Second(5) result2 = -pd.offsets.Second(5) + s expected = Series([Timestamp('20130101 9:00:55'), Timestamp( '20130101 9:01:55')]) assert_series_equal(result, expected) assert_series_equal(result2, expected) result = s + pd.offsets.Milli(5) result2 = pd.offsets.Milli(5) + s expected = Series([Timestamp('20130101 9:01:00.005'), Timestamp( '20130101 9:02:00.005')]) assert_series_equal(result, expected) assert_series_equal(result2, expected) result = s + pd.offsets.Minute(5) + pd.offsets.Milli(5) expected = Series([Timestamp('20130101 9:06:00.005'), Timestamp( '20130101 9:07:00.005')]) assert_series_equal(result, expected) # operate with np.timedelta64 correctly result = s + np.timedelta64(1, 's') result2 = np.timedelta64(1, 's') + s expected = Series([Timestamp('20130101 9:01:01'), Timestamp( '20130101 9:02:01')]) assert_series_equal(result, expected) assert_series_equal(result2, expected) result = s + np.timedelta64(5, 'ms') result2 = np.timedelta64(5, 'ms') + s expected = Series([Timestamp('20130101 9:01:00.005'), Timestamp( '20130101 9:02:00.005')]) assert_series_equal(result, expected) assert_series_equal(result2, expected) # valid DateOffsets for do in ['Hour', 'Minute', 'Second', 'Day', 'Micro', 'Milli', 'Nano']: op = getattr(pd.offsets, do) s + op(5) op(5) + s def test_timedelta_series_ops(self): # GH11925 s = Series(timedelta_range('1 day', periods=3)) ts = Timestamp('2012-01-01') expected = Series(date_range('2012-01-02', periods=3)) assert_series_equal(ts + s, expected) assert_series_equal(s + ts, expected) expected2 = Series(date_range('2011-12-31', periods=3, freq='-1D')) assert_series_equal(ts - s, expected2) assert_series_equal(ts + (-s), expected2) def test_timedelta64_operations_with_DateOffset(self): # GH 10699 td = Series([timedelta(minutes=5, seconds=3)] * 3) result = td + pd.offsets.Minute(1) expected = Series([timedelta(minutes=6, seconds=3)] * 3) assert_series_equal(result, expected) result = td - pd.offsets.Minute(1) expected = Series([timedelta(minutes=4, seconds=3)] * 3) assert_series_equal(result, expected) result = td + Series([pd.offsets.Minute(1), pd.offsets.Second(3), pd.offsets.Hour(2)]) expected = Series([timedelta(minutes=6, seconds=3), timedelta( minutes=5, seconds=6), timedelta(hours=2, minutes=5, seconds=3)]) assert_series_equal(result, expected) result = td + pd.offsets.Minute(1) + pd.offsets.Second(12) expected = Series([timedelta(minutes=6, seconds=15)] * 3) assert_series_equal(result, expected) # valid DateOffsets for do in ['Hour', 'Minute', 'Second', 'Day', 'Micro', 'Milli', 'Nano']: op = getattr(pd.offsets, do) td + op(5) op(5) + td td - op(5) op(5) - td def test_timedelta64_operations_with_timedeltas(self): # td operate with td td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td2 = timedelta(minutes=5, seconds=4) result = td1 - td2 expected = Series([timedelta(seconds=0)] * 3) - Series([timedelta( seconds=1)] * 3) self.assertEqual(result.dtype, 'm8[ns]') assert_series_equal(result, expected) result2 = td2 - td1 expected = (Series([timedelta(seconds=1)] * 3) - Series([timedelta( seconds=0)] * 3)) assert_series_equal(result2, expected) # roundtrip assert_series_equal(result + td2, td1) # Now again, using pd.to_timedelta, which should build # a Series or a scalar, depending on input. td1 = Series(pd.to_timedelta(['00:05:03'] * 3)) td2 = pd.to_timedelta('00:05:04') result = td1 - td2 expected = Series([timedelta(seconds=0)] * 3) - Series([timedelta( seconds=1)] * 3) self.assertEqual(result.dtype, 'm8[ns]') assert_series_equal(result, expected) result2 = td2 - td1 expected = (Series([timedelta(seconds=1)] * 3) - Series([timedelta( seconds=0)] * 3)) assert_series_equal(result2, expected) # roundtrip assert_series_equal(result + td2, td1) def test_timedelta64_operations_with_integers(self): # GH 4521 # divide/multiply by integers startdate = Series(date_range('2013-01-01', '2013-01-03')) enddate = Series(date_range('2013-03-01', '2013-03-03')) s1 = enddate - startdate s1[2] = np.nan s2 = Series([2, 3, 4]) expected = Series(s1.values.astype(np.int64) / s2, dtype='m8[ns]') expected[2] = np.nan result = s1 / s2 assert_series_equal(result, expected) s2 = Series([20, 30, 40]) expected = Series(s1.values.astype(np.int64) / s2, dtype='m8[ns]') expected[2] = np.nan result = s1 / s2 assert_series_equal(result, expected) result = s1 / 2 expected = Series(s1.values.astype(np.int64) / 2, dtype='m8[ns]') expected[2] = np.nan assert_series_equal(result, expected) s2 = Series([20, 30, 40]) expected = Series(s1.values.astype(np.int64) * s2, dtype='m8[ns]') expected[2] = np.nan result = s1 * s2 assert_series_equal(result, expected) for dtype in ['int32', 'int16', 'uint32', 'uint64', 'uint32', 'uint16', 'uint8']: s2 = Series([20, 30, 40], dtype=dtype) expected = Series( s1.values.astype(np.int64) * s2.astype(np.int64), dtype='m8[ns]') expected[2] = np.nan result = s1 * s2 assert_series_equal(result, expected) result = s1 * 2 expected = Series(s1.values.astype(np.int64) * 2, dtype='m8[ns]') expected[2] = np.nan assert_series_equal(result, expected) result = s1 * -1 expected = Series(s1.values.astype(np.int64) * -1, dtype='m8[ns]') expected[2] = np.nan assert_series_equal(result, expected) # invalid ops assert_series_equal(s1 / s2.astype(float), Series([Timedelta('2 days 22:48:00'), Timedelta( '1 days 23:12:00'), Timedelta('NaT')])) assert_series_equal(s1 / 2.0, Series([Timedelta('29 days 12:00:00'), Timedelta( '29 days 12:00:00'), Timedelta('NaT')])) for op in ['__add__', '__sub__']: sop = getattr(s1, op, None) if sop is not None: self.assertRaises(TypeError, sop, 1) self.assertRaises(TypeError, sop, s2.values) def test_timedelta64_conversions(self): startdate = Series(date_range('2013-01-01', '2013-01-03')) enddate = Series(date_range('2013-03-01', '2013-03-03')) s1 = enddate - startdate s1[2] = np.nan for m in [1, 3, 10]: for unit in ['D', 'h', 'm', 's', 'ms', 'us', 'ns']: # op expected = s1.apply(lambda x: x / np.timedelta64(m, unit)) result = s1 / np.timedelta64(m, unit) assert_series_equal(result, expected) if m == 1 and unit != 'ns': # astype result = s1.astype("timedelta64[{0}]".format(unit)) assert_series_equal(result, expected) # reverse op expected = s1.apply( lambda x: Timedelta(np.timedelta64(m, unit)) / x) result = np.timedelta64(m, unit) / s1 # astype s = Series(date_range('20130101', periods=3)) result = s.astype(object) self.assertIsInstance(result.iloc[0], datetime) self.assertTrue(result.dtype == np.object_) result = s1.astype(object) self.assertIsInstance(result.iloc[0], timedelta) self.assertTrue(result.dtype == np.object_) def test_timedelta64_equal_timedelta_supported_ops(self): ser = Series([Timestamp('20130301'), Timestamp('20130228 23:00:00'), Timestamp('20130228 22:00:00'), Timestamp( '20130228 21:00:00')]) intervals = 'D', 'h', 'm', 's', 'us' # TODO: unused # npy16_mappings = {'D': 24 * 60 * 60 * 1000000, # 'h': 60 * 60 * 1000000, # 'm': 60 * 1000000, # 's': 1000000, # 'us': 1} def timedelta64(*args): return sum(starmap(np.timedelta64, zip(args, intervals))) for op, d, h, m, s, us in product([operator.add, operator.sub], *([range(2)] * 5)): nptd = timedelta64(d, h, m, s, us) pytd = timedelta(days=d, hours=h, minutes=m, seconds=s, microseconds=us) lhs = op(ser, nptd) rhs = op(ser, pytd) try: assert_series_equal(lhs, rhs) except: raise AssertionError( "invalid comparsion [op->{0},d->{1},h->{2},m->{3}," "s->{4},us->{5}]\n{6}\n{7}\n".format(op, d, h, m, s, us, lhs, rhs)) def test_operators_datetimelike(self): def run_ops(ops, get_ser, test_ser): # check that we are getting a TypeError # with 'operate' (from core/ops.py) for the ops that are not # defined for op_str in ops: op = getattr(get_ser, op_str, None) with tm.assertRaisesRegexp(TypeError, 'operate'): op(test_ser) # ## timedelta64 ### td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td1.iloc[2] = np.nan td2 = timedelta(minutes=5, seconds=4) ops = ['__mul__', '__floordiv__', '__pow__', '__rmul__', '__rfloordiv__', '__rpow__'] run_ops(ops, td1, td2) td1 + td2 td2 + td1 td1 - td2 td2 - td1 td1 / td2 td2 / td1 # ## datetime64 ### dt1 = Series([Timestamp('20111230'), Timestamp('20120101'), Timestamp('20120103')]) dt1.iloc[2] = np.nan dt2 = Series([Timestamp('20111231'), Timestamp('20120102'), Timestamp('20120104')]) ops = ['__add__', '__mul__', '__floordiv__', '__truediv__', '__div__', '__pow__', '__radd__', '__rmul__', '__rfloordiv__', '__rtruediv__', '__rdiv__', '__rpow__'] run_ops(ops, dt1, dt2) dt1 - dt2 dt2 - dt1 # ## datetime64 with timetimedelta ### ops = ['__mul__', '__floordiv__', '__truediv__', '__div__', '__pow__', '__rmul__', '__rfloordiv__', '__rtruediv__', '__rdiv__', '__rpow__'] run_ops(ops, dt1, td1) dt1 + td1 td1 + dt1 dt1 - td1 # TODO: Decide if this ought to work. # td1 - dt1 # ## timetimedelta with datetime64 ### ops = ['__sub__', '__mul__', '__floordiv__', '__truediv__', '__div__', '__pow__', '__rmul__', '__rfloordiv__', '__rtruediv__', '__rdiv__', '__rpow__'] run_ops(ops, td1, dt1) td1 + dt1 dt1 + td1 # 8260, 10763 # datetime64 with tz ops = ['__mul__', '__floordiv__', '__truediv__', '__div__', '__pow__', '__rmul__', '__rfloordiv__', '__rtruediv__', '__rdiv__', '__rpow__'] tz = 'US/Eastern' dt1 = Series(date_range('2000-01-01 09:00:00', periods=5, tz=tz), name='foo') dt2 = dt1.copy() dt2.iloc[2] = np.nan td1 = Series(timedelta_range('1 days 1 min', periods=5, freq='H')) td2 = td1.copy() td2.iloc[1] = np.nan run_ops(ops, dt1, td1) result = dt1 + td1[0] exp = (dt1.dt.tz_localize(None) + td1[0]).dt.tz_localize(tz) assert_series_equal(result, exp) result = dt2 + td2[0] exp = (dt2.dt.tz_localize(None) + td2[0]).dt.tz_localize(tz) assert_series_equal(result, exp) # odd numpy behavior with scalar timedeltas if not _np_version_under1p8: result = td1[0] + dt1 exp = (dt1.dt.tz_localize(None) + td1[0]).dt.tz_localize(tz) assert_series_equal(result, exp) result = td2[0] + dt2 exp = (dt2.dt.tz_localize(None) + td2[0]).dt.tz_localize(tz) assert_series_equal(result, exp) result = dt1 - td1[0] exp = (dt1.dt.tz_localize(None) - td1[0]).dt.tz_localize(tz) assert_series_equal(result, exp) self.assertRaises(TypeError, lambda: td1[0] - dt1) result = dt2 - td2[0] exp = (dt2.dt.tz_localize(None) - td2[0]).dt.tz_localize(tz) assert_series_equal(result, exp) self.assertRaises(TypeError, lambda: td2[0] - dt2) result = dt1 + td1 exp = (dt1.dt.tz_localize(None) + td1).dt.tz_localize(tz) assert_series_equal(result, exp) result = dt2 + td2 exp = (dt2.dt.tz_localize(None) + td2).dt.tz_localize(tz) assert_series_equal(result, exp) result = dt1 - td1 exp = (dt1.dt.tz_localize(None) - td1).dt.tz_localize(tz) assert_series_equal(result, exp) result = dt2 - td2 exp = (dt2.dt.tz_localize(None) - td2).dt.tz_localize(tz) assert_series_equal(result, exp) self.assertRaises(TypeError, lambda: td1 - dt1) self.assertRaises(TypeError, lambda: td2 - dt2) def test_sub_single_tz(self): # GH12290 s1 = Series([pd.Timestamp('2016-02-10', tz='America/Sao_Paulo')]) s2 = Series([pd.Timestamp('2016-02-08', tz='America/Sao_Paulo')]) result = s1 - s2 expected = Series([Timedelta('2days')]) assert_series_equal(result, expected) result = s2 - s1 expected = Series([Timedelta('-2days')]) assert_series_equal(result, expected) def test_ops_nat(self): # GH 11349 timedelta_series = Series([NaT, Timedelta('1s')]) datetime_series = Series([NaT, Timestamp('19900315')]) nat_series_dtype_timedelta = Series( [NaT, NaT], dtype='timedelta64[ns]') nat_series_dtype_timestamp = Series([NaT, NaT], dtype='datetime64[ns]') single_nat_dtype_datetime = Series([NaT], dtype='datetime64[ns]') single_nat_dtype_timedelta = Series([NaT], dtype='timedelta64[ns]') # subtraction assert_series_equal(timedelta_series - NaT, nat_series_dtype_timedelta) assert_series_equal(-NaT + timedelta_series, nat_series_dtype_timedelta) assert_series_equal(timedelta_series - single_nat_dtype_timedelta, nat_series_dtype_timedelta) assert_series_equal(-single_nat_dtype_timedelta + timedelta_series, nat_series_dtype_timedelta) assert_series_equal(datetime_series - NaT, nat_series_dtype_timestamp) assert_series_equal(-NaT + datetime_series, nat_series_dtype_timestamp) assert_series_equal(datetime_series - single_nat_dtype_datetime, nat_series_dtype_timedelta) with tm.assertRaises(TypeError): -single_nat_dtype_datetime + datetime_series assert_series_equal(datetime_series - single_nat_dtype_timedelta, nat_series_dtype_timestamp) assert_series_equal(-single_nat_dtype_timedelta + datetime_series, nat_series_dtype_timestamp) # without a Series wrapping the NaT, it is ambiguous # whether it is a datetime64 or timedelta64 # defaults to interpreting it as timedelta64 assert_series_equal(nat_series_dtype_timestamp - NaT, nat_series_dtype_timestamp) assert_series_equal(-NaT + nat_series_dtype_timestamp, nat_series_dtype_timestamp) assert_series_equal(nat_series_dtype_timestamp - single_nat_dtype_datetime, nat_series_dtype_timedelta) with tm.assertRaises(TypeError): -single_nat_dtype_datetime + nat_series_dtype_timestamp assert_series_equal(nat_series_dtype_timestamp - single_nat_dtype_timedelta, nat_series_dtype_timestamp) assert_series_equal(-single_nat_dtype_timedelta + nat_series_dtype_timestamp, nat_series_dtype_timestamp) with tm.assertRaises(TypeError): timedelta_series - single_nat_dtype_datetime # addition assert_series_equal(nat_series_dtype_timestamp + NaT, nat_series_dtype_timestamp) assert_series_equal(NaT + nat_series_dtype_timestamp, nat_series_dtype_timestamp) assert_series_equal(nat_series_dtype_timestamp + single_nat_dtype_timedelta, nat_series_dtype_timestamp) assert_series_equal(single_nat_dtype_timedelta + nat_series_dtype_timestamp, nat_series_dtype_timestamp) assert_series_equal(nat_series_dtype_timedelta + NaT, nat_series_dtype_timedelta) assert_series_equal(NaT + nat_series_dtype_timedelta, nat_series_dtype_timedelta) assert_series_equal(nat_series_dtype_timedelta + single_nat_dtype_timedelta, nat_series_dtype_timedelta) assert_series_equal(single_nat_dtype_timedelta + nat_series_dtype_timedelta, nat_series_dtype_timedelta) assert_series_equal(timedelta_series + NaT, nat_series_dtype_timedelta) assert_series_equal(NaT + timedelta_series, nat_series_dtype_timedelta) assert_series_equal(timedelta_series + single_nat_dtype_timedelta, nat_series_dtype_timedelta) assert_series_equal(single_nat_dtype_timedelta + timedelta_series, nat_series_dtype_timedelta) assert_series_equal(nat_series_dtype_timestamp + NaT, nat_series_dtype_timestamp) assert_series_equal(NaT + nat_series_dtype_timestamp, nat_series_dtype_timestamp) assert_series_equal(nat_series_dtype_timestamp + single_nat_dtype_timedelta, nat_series_dtype_timestamp) assert_series_equal(single_nat_dtype_timedelta + nat_series_dtype_timestamp, nat_series_dtype_timestamp) assert_series_equal(nat_series_dtype_timedelta + NaT, nat_series_dtype_timedelta) assert_series_equal(NaT + nat_series_dtype_timedelta, nat_series_dtype_timedelta) assert_series_equal(nat_series_dtype_timedelta + single_nat_dtype_timedelta, nat_series_dtype_timedelta) assert_series_equal(single_nat_dtype_timedelta + nat_series_dtype_timedelta, nat_series_dtype_timedelta) assert_series_equal(nat_series_dtype_timedelta + single_nat_dtype_datetime, nat_series_dtype_timestamp) assert_series_equal(single_nat_dtype_datetime + nat_series_dtype_timedelta, nat_series_dtype_timestamp) # multiplication assert_series_equal(nat_series_dtype_timedelta * 1.0, nat_series_dtype_timedelta) assert_series_equal(1.0 * nat_series_dtype_timedelta, nat_series_dtype_timedelta) assert_series_equal(timedelta_series * 1, timedelta_series) assert_series_equal(1 * timedelta_series, timedelta_series) assert_series_equal(timedelta_series * 1.5, Series([NaT, Timedelta('1.5s')])) assert_series_equal(1.5 * timedelta_series, Series([NaT, Timedelta('1.5s')])) assert_series_equal(timedelta_series * nan, nat_series_dtype_timedelta) assert_series_equal(nan * timedelta_series, nat_series_dtype_timedelta) with tm.assertRaises(TypeError): datetime_series * 1 with tm.assertRaises(TypeError): nat_series_dtype_timestamp * 1 with tm.assertRaises(TypeError): datetime_series * 1.0 with
tm.assertRaises(TypeError)
pandas.util.testing.assertRaises
import json import mmap import os import random import re from collections import Counter from collections import defaultdict import numpy as np import pandas as pd from sklearn.utils import shuffle from tqdm import tqdm class SUBEVENTKG_Processor(object): """ 对EVENTKG数据集取适用于知识表示任务的子数据集 原数据集地址链接在https://eventkg.l3s.uni-hannover.de/data.html,采用3.0版本的数据包 """ def __init__(self, events_nq_path, entities_nq_path, relations_base_nq_path, relations_events_other_nq_path, relations_entities_temporal_nq_path, processed_entities_path, processed_events_path, processed_event_event_path, processed_event_entity_path, processed_entity_entity_path, filt_event_event_path, filt_event_entity_path, filt_entity_entity_path, event_node_count_path, entity_node_count_path, event_rdf2name_path, entity_rdf2name_path, relation_rdf2name_path, event_lut_path, entity_lut_path, relation_lut_path, event_degree_list, entity_degree_list ): """ Args: events_nq_path:事件节点的原始数据集 entities_nq_path:实体节点的原始数据集 relations_base_nq_path:事件-事件(无时间信息)原始数据集 relations_events_other_nq_path:事件-实体,实体-事件原始数据集 relations_entities_temporal_nq_path:实体-实体(有时间信息)原始数据集 processed_entities_path:实体的字典,rdf->count(0) processed_events_path:事件的字典,rdf->count(0) processed_event_event_path:转化为五元组格式的 事件-事件 processed_event_entity_path:转化为五元组格式的 事件-实体 processed_entity_entity_path:转化为五元组格式的 实体-实体 filt_event_event_path:过滤后的 事件-事件 五元组 filt_event_entity_path:过滤后的 事件-实体 五元组 filt_entity_entity_path:过滤后的 实体-实体 五元组 event_node_count_path:统计出来的事件节点个数 entity_node_count_path:统计出来的实体节点个数 event_rdf2name_path:事件rdf转name entity_rdf2name_path:实体rdf转name relation_rdf2name_path:关系rdfname event_lut_path:事件查找表路径 entity_lut_path:实体查找表路径 relation_lut_path:关系查找表路径 event_degree_list:事件度的列表 entity_degree_list:实体度的列表 """ self.raw_events_path = events_nq_path self.raw_entities_path = entities_nq_path self.raw_event_event_path = relations_base_nq_path self.raw_event_entity_path = relations_events_other_nq_path self.raw_entity_entity_path = relations_entities_temporal_nq_path self.processed_entities_path = processed_entities_path self.processed_events_path = processed_events_path self.processed_event_event_path = processed_event_event_path self.processed_event_entity_path = processed_event_entity_path self.processed_entity_entity_path = processed_entity_entity_path self.filt_event_event_path = filt_event_event_path self.filt_event_entity_path = filt_event_entity_path self.filt_entity_entity_path = filt_entity_entity_path self.event_node_count_path = event_node_count_path self.entity_node_count_path = entity_node_count_path self.event_rdf2name_path = event_rdf2name_path self.entity_rdf2name_path = entity_rdf2name_path self.relation_rdf2name_path = relation_rdf2name_path self.event_lut_path = event_lut_path self.entity_lut_path = entity_lut_path self.relation_lut_path = relation_lut_path self.event_degree_list = event_degree_list self.entity_degree_list = entity_degree_list self.entity_dict = None self.event_dict = None self.rdf_triplets_event_event = None self.rdf_triplets_event_entity = None self.rdf_triplets_entity_entity = None self.filt_triplets_event_event = None self.filt_triplets_event_entity = None self.filt_triplets_entity_entity = None self.event_rdf2name_dict = dict() self.entity_rdf2name_dict = dict() self.relation_rdf2name_dict = dict() self.filt_event_set = set() self.filt_entity_set = set() self.filt_relation_set = set() seed = 1 random.seed(seed) np.random.seed(seed) def _get_num_lines(self, file_path): """ 统计txt文件的行数 :param file_path:待统计行数的txt文件路径 """ fp = open(file_path, "r+") buf = mmap.mmap(fp.fileno(), 0) lines = 0 while buf.readline(): lines += 1 return lines def create_entities_index(self, reprocess=True, describe=True): """ 建立{实体rdf:count}字典,这个实体是全集 Args: reprocess:True为重新处理 describe:True为显示数据集信息 """ if reprocess: self.entity_dict = dict() print("processing entities index...") with open(self.raw_entities_path, "r", encoding="utf-8") as file: for line in tqdm(file, total=self._get_num_lines(self.raw_entities_path)): line = line.strip().split(" ") entity = line[0] if entity not in self.entity_dict.keys(): self.entity_dict[entity] = 0 json.dump(self.entity_dict, open(self.processed_entities_path, "w"), indent=4, sort_keys=True) print("processed_entities_dict has been saved in {}".format(self.processed_entities_path)) else: if os.path.exists(self.processed_entities_path): print("loading entities index...") with open(self.processed_entities_path) as file: self.entity_dict = json.load(file) print("loading entities index succeed!") else: raise FileNotFoundError("processed_entities_path does not exists!") if describe: print("entities_dict_len", len(self.entity_dict)) def create_events_index(self, reprocess=True, describe=True): """ 建立{事件rdf:count}字典,这个事件是全集 """ if reprocess: self.event_dict = dict() print("processing events index...") with open(self.raw_events_path, "r", encoding="utf-8") as file: for line in tqdm(file, total=self._get_num_lines(self.raw_events_path)): line = line.strip().split(" ") event = line[0] if event not in self.event_dict.keys(): self.event_dict[event] = 0 json.dump(self.event_dict, open(self.processed_events_path, "w"), indent=4, sort_keys=True) print("processed_events_dict has been saved in {}".format(self.processed_events_path)) else: if os.path.exists(self.processed_events_path): print("loading events index...") with open(self.processed_events_path) as file: self.event_dict = json.load(file) print("loading events index succeed!") else: raise FileNotFoundError("processed_entities_path does not exists!") if describe: print("events_dict_len", len(self.event_dict)) def event_event_raw2df(self, reprocess=True, describe=True): """ 找出事件与事件的hassubevent,nextevent,previousevent三种关系,并转化成dataframe格式保存 原始格式 事件 关系 事件 存储格式 事件 关系 事件 开始时间 结束时间 (事件和事件三元组没有时间信息,表示为-1) """ if reprocess: df_lines = [] with open(self.raw_event_event_path, "r", encoding="utf-8") as file: print("processing event_event_raw2df...") for line in tqdm(file, total=self._get_num_lines(self.raw_event_event_path)): line = line.strip().split(" ") if line[1] == "<http://dbpedia.org/ontology/nextEvent>" or \ line[1] == "<http://dbpedia.org/ontology/previousEvent>" or \ line[1] == "<http://semanticweb.cs.vu.nl/2009/11/sem/hasSubEvent>": head = line[0] relation = line[1] tail = line[2] df_lines.append([head, relation, tail, -1, -1]) self.rdf_triplets_event_event = pd.DataFrame(df_lines) self.rdf_triplets_event_event.columns = ["head", "relation", "tail", "start_time", "end_time"] self.rdf_triplets_event_event.to_csv(self.processed_event_event_path) print("rdf_triplets_event_event has been saved in {}".format(self.processed_event_event_path)) else: if os.path.exists(self.processed_event_event_path): print("loading event_event_raw2df...") self.rdf_triplets_event_event = pd.read_csv(self.processed_event_event_path) print("loading event_event_raw2df succeed!") else: raise FileNotFoundError("processed_event_event_path does not exists!") if describe: print("rdf_triplets_event_event_len", len(self.rdf_triplets_event_event)) def _node_relation_datatype_raw2df(self, reprocess=True, describe=True, datatype=None, raw_data_path=None, saved_path=None): def init_relation_node_dict(relation_node_dict, raw_data_path): """嵌套字典初始化""" with open(raw_data_path, "r", encoding="utf-8") as file: for line in tqdm(file, total=self._get_num_lines(raw_data_path)): line = line.strip().split(" ") relation_node = line[0] if relation_node not in relation_node_dict.keys(): relation_node_dict[relation_node]["head"] = -1 relation_node_dict[relation_node]["relation"] = -1 relation_node_dict[relation_node]["tail"] = -1 relation_node_dict[relation_node]["start_time"] = -1 relation_node_dict[relation_node]["end_time"] = -1 return relation_node_dict def add_value_relation_node_dict(relation_node_dict, raw_data_path): """嵌套字典添加值""" with open(raw_data_path, "r", encoding="utf-8") as file: for line in tqdm(file, total=self._get_num_lines(raw_data_path)): line = line.strip().split(" ") relation_node = line[0] arrow = line[1] value = line[2] if arrow == "<http://www.w3.org/1999/02/22-rdf-syntax-ns#subject>": relation_node_dict[relation_node]["head"] = value if arrow == "<http://semanticweb.cs.vu.nl/2009/11/sem/roleType>": relation_node_dict[relation_node]["relation"] = value if arrow == "<http://www.w3.org/1999/02/22-rdf-syntax-ns#object>": relation_node_dict[relation_node]["tail"] = value if arrow == "<http://semanticweb.cs.vu.nl/2009/11/sem/hasBeginTimeStamp>": relation_node_dict[relation_node]["start_time"] = value if arrow == "<http://semanticweb.cs.vu.nl/2009/11/sem/hasEndTimeStamp>": relation_node_dict[relation_node]["end_time"] = value return relation_node_dict if reprocess: relation_node_dict = defaultdict(dict) print("processing {} _raw2df...".format(datatype)) relation_node_dict = init_relation_node_dict(relation_node_dict, raw_data_path) relation_node_dict = add_value_relation_node_dict(relation_node_dict, raw_data_path) # 嵌套字典转dataframe df_lines = [] for key in tqdm(relation_node_dict.keys()): df_lines.append([relation_node_dict[key]["head"], relation_node_dict[key]["relation"], relation_node_dict[key]["tail"], relation_node_dict[key]["start_time"], relation_node_dict[key]["end_time"]]) df = pd.DataFrame(df_lines) df.columns = ["head", "relation", "tail", "start_time", "end_time"] if datatype == "event_entity": self.rdf_triplets_event_entity = df if datatype == "entity_entity": self.rdf_triplets_entity_entity = df df.to_csv(saved_path) print("rdf_triplets_{} has been saved in {}".format(datatype, saved_path)) else: if os.path.exists(saved_path): print("loading {}_raw2df...".format(datatype)) df =
pd.read_csv(saved_path)
pandas.read_csv
# Importing Libraries # libraries for webapp import streamlit as st #libraries for EDA import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt import math import plotly.express as px import plotly.graph_objects as go from plotly.subplots import make_subplots import mplcyberpunk import plotly.figure_factory as ff import plotly.io as pio import datetime # Machine Learning and Deep Learning Libraries from tensorflow import keras import tensorflow as tf from tensorflow import keras from keras.models import Sequential from keras.layers import Dense, Dropout, LeakyReLU from keras.layers import LSTM ,Bidirectional from sklearn.preprocessing import MinMaxScaler from sklearn.metrics import mean_squared_error from sklearn.model_selection import TimeSeriesSplit from tensorflow.keras import backend as K from sklearn.metrics import r2_score from keras.regularizers import L1L2 from tensorflow.keras.models import load_model from numpy.random import seed ## Data exploration #st.set_page_config(layout="wide") # creates a sidebar on the webapp with multiple subpage options option = st.sidebar.selectbox("Choose the following options",("Data Analysis", "Sales Forecasting","Custom Forecasting")) # condition to enter the first page if option == "Data Analysis": # title of the first page st.title('Customer Retail Sales Forecasting') # created a space between the main title and the rest of the page st.write("---") """ ### Data Source: """ st.markdown("""[TravelSleek:]('https://travelsleek.in/') It's a family-owned E-commerce business that specializes in personalized travel products which are manufactured from Faux Leather.""") # creates a dropdown box with st.expander("Products"): st.write(""" Customized Products. """) images = ['../plots/item1.jpg','../plots/item2.jpg', '../plots/item3.jpg'] st.image(images, width = 200, use_column_width=False) #caption=["some generic text"] * len(images) st.markdown("""[ImageSource:](https://travelsleek.in/)""") st.write('_____________________________') """ ### Tech Stack """ # creating columns in the webapp so that the text or images can be arranged in the column format col1, col2, col3 = st.columns(3) with col1: """ ![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54) ![Pandas](https://img.shields.io/badge/pandas-%23150458.svg?style=for-the-badge&logo=pandas&logoColor=white) ![NumPy](https://img.shields.io/badge/numpy-%23013243.svg?style=for-the-badge&logo=numpy&logoColor=white) ![Visual Studio](https://img.shields.io/badge/Visual%20Studio-5C2D91.svg?style=for-the-badge&logo=visual-studio&logoColor=white) """ with col2: """ ![Plotly](https://img.shields.io/badge/Plotly-%233F4F75.svg?style=for-the-badge&logo=plotly&logoColor=white) ![Seaborn](https://img.shields.io/badge/Seaborn-.-orange?style=for-the-badge) ![Matplotlib](https://img.shields.io/badge/Matplotlib-.-red?style=for-the-badge) ![mplcyberpunk](https://img.shields.io/badge/mplcyberpunk-.-yellow?style=for-the-badge) """ with col3: """ ![scikit-learn](https://img.shields.io/badge/scikit--learn-%23F7931E.svg?style=for-the-badge&logo=scikit-learn&logoColor=white) ![TensorFlow](https://img.shields.io/badge/TensorFlow-%23FF6F00.svg?style=for-the-badge&logo=TensorFlow&logoColor=white) ![Keras](https://img.shields.io/badge/Keras-%23D00000.svg?style=for-the-badge&logo=Keras&logoColor=white) ![Streamlit](https://img.shields.io/badge/Streamlit-.-brightgreen?style=for-the-badge) """ ########################################################################################## ################### From plotly express ################################################### st.write('_____________________________') st.header(option) """ ### Info: - Data was exported from E-commerce platform to .csv file. - Timeline of the data availability is from October 2019 to Jan 2022. - October 2019 to October 2020 on Instagram Market Place. - November 2020 to Jan 2022 on E-commerce platform. - The size of the data was 8000 sales data points and 77 features associated with it. - Nearly, 36% of the data was filled with null val!!!! - Total SKU in the Inventory : 35 SKU """ st.write('_____________________________') st.subheader('Top5 selling products and their Revenue Generation') # calling the .csv file Top5 =
pd.read_csv('../forecast_data/Top5.csv')
pandas.read_csv
import numpy as np import pandas as pd import string from nltk.corpus import stopwords from nltk.stem.snowball import SnowballStemmer # get from VP later from nltk.tokenize import word_tokenize from collections import Counter from sklearn.feature_extraction.text import TfidfVectorizer def create_user_feature(): ''' Return a user_feature matrix Takes in the transaction list from the Movielens 100k dataset and replaces the userId with a feature vector representing the number of movies seen by the user per genre possible genres include the following: 'IMAX', 'Adventure', 'Mystery', 'Animation', 'Documentary', 'Comedy', 'Western', 'War', 'Film-Noir', 'Crime', 'Drama', 'Thriller', 'Fantasy', 'Action', 'Sci-Fi', 'Children', 'Romance', 'Horror', 'Musical', '(no genres listed)' Input --------- none Output --------- user_feature (pd.DataFrame): feature_vector containing number of count of genres seen based on ratings given by a user - each movie can have several genres - each row correspond to a transaction (user rating) ''' raw_transaction_list = pd.read_csv('sample_data/ratings.csv') transaction_list = raw_transaction_list[['userId','movieId', 'rating']].copy() # reduce size of DataFrame for transaction_list by downcasting for col in transaction_list: if transaction_list[col].dtype == 'int64': transaction_list[col] = pd.to_numeric(transaction_list[col], downcast='integer') if transaction_list[col].dtype == 'float64': transaction_list[col] = pd.to_numeric(transaction_list[col], downcast='float') # preprocess movie list and genres movie_description = pd.read_csv('sample_data/movies.csv') movie_description = movie_description.set_index('movieId') movie_description['genre'] = movie_description['genres'].str.split('|') # extract the genres for the movie in each transaction/rating movie_IDs_list = transaction_list['movieId'] transaction_list['genre'] = list(movie_description.loc[movie_IDs_list[:len(movie_IDs_list)]]['genre']) # count the number of genres seen by each userId genre_count = (transaction_list.groupby('userId')['genre'] .apply(list) .apply(lambda x: [item for sublist in x for item in sublist]) .apply(Counter)) # remove genre column in transaction list (just to conserve memspace) del transaction_list['genre'] # create user_feature with count of genres per user user_feature = pd.DataFrame(list(genre_count)).fillna(0) for col in user_feature: user_feature[col] = pd.to_numeric(user_feature[col], downcast='integer') user_feature['userId'] = genre_count.index # re-arrange columns cols = user_feature.columns.tolist() cols = cols[-1:] + cols[:-1] user_feature = user_feature[cols] # rename cols old_cols = user_feature.columns[1:] new_cols = [] for idx, col in enumerate(cols[1:], 1): new_cols.append(f'u_{idx}') user_feature.rename(columns=dict(zip(old_cols, new_cols)), inplace=True) return raw_transaction_list, user_feature def preprocess_string(text): ''' Preprocess text for tf-idf Transforms the text into lowercase and removes symbols and punctuations Removes stopwords using NLTK library Lemmatizes words using SnowballStemmer (NLTK Library) Input -------- text (string) : string from the Movielens synopsis dataset Output -------- new_text (string) : preprocessed text for further tf-idf processing ''' stop_words = stopwords.words('english') stemmer = SnowballStemmer(language='english') text = text.lower() text = ''.join([char for char in text if char not in string.punctuation]) new_text = "" words = word_tokenize(text) for word in words: if word not in stop_words and len(word) > 2: new_text = new_text + " " + stemmer.stem(word) return new_text # + def create_item_feature(num_features = 300): ''' Return item_feature matrix based on TF-IDF of Movie Synopsis Takes in the list of movies that has been rated in the MovieLens 100k dataset and fetches the respective synopsis for TF-IDF computation Input --------- num_features : number of features to be used for the TF-IDF extraction : default value 300 (~sqrt[100k rows]) Output --------- item_feature (pd.DataFrame): feature_vector from TF-IDF extracted from movie synopses the TheMovieDB dataset ''' transaction_list = pd.read_csv('sample_data/ratings.csv', usecols=['movieId']) # filter the unique movie IDs seen_movies = pd.DataFrame(transaction_list['movieId'].unique(), columns={'movieId'}) # the synopsis is based on the "The Movie DB" Id system # links.csv has a mapping between MovieLens ID and The MovieDB Id movie_id_links = pd.read_csv('sample_data/links.csv', usecols =['movieId','tmdbId']) movie_id_links = movie_id_links.dropna() movie_id_links.head() # get mapping between MovieLens IDs and TMDB IDs seen_movies = seen_movies.merge(movie_id_links, on='movieId', how='inner') # Read MetaData CSV file with movie plots/synopsis metadata = pd.read_csv('sample_data/movies_metadata.csv', usecols=['id','overview']) metadata = metadata.rename(columns={'id':'tmdbId'}) # drop movies with invalid tmbdId (e.g., date string instead of integer) ids1 = pd.to_numeric(metadata['tmdbId'], errors='coerce').isna() metadata = metadata.drop(metadata[ids1].index) # drop movies with NaN synopsis metadata = metadata.dropna() metadata['tmdbId'] = metadata['tmdbId'].astype(float) metadata = metadata.drop_duplicates(subset=['tmdbId']) # get only synopsis for movies in the transaction list synopsis_set = seen_movies.merge(metadata, on='tmdbId', how='inner') # preprocess synopsis strings synopsis_set['overview'] = synopsis_set['overview'].apply(preprocess_string) # TF-IDF processing tfidfvectorizer = TfidfVectorizer(analyzer='word', token_pattern = '[a-z]+\w*', stop_words='english', max_features=num_features) tfidf_vector = tfidfvectorizer.fit_transform(synopsis_set['overview']) tfidf_df = pd.DataFrame(tfidf_vector.toarray(), index=synopsis_set['movieId'], columns=tfidfvectorizer.get_feature_names_out()) # normalization per column (word) tfidf_df = tfidf_df.apply(lambda x: (x - x.min())/(x.max() - x.min())) tfidf_df = tfidf_df.reset_index() # rename cols old_cols = tfidf_df.columns new_cols = [] new_cols.append(old_cols[0]) for idx, col in enumerate(old_cols[1:], 1): new_cols.append(f'i_{idx}') tfidf_df.rename(columns=dict(zip(old_cols, new_cols)), inplace=True) return tfidf_df # - def load_data(aug_tt, item_tt,user_tt): """ Load the data from the transaction tables Paramters --------- aug_tt : str File name of the parquet file with each row corresponding to a user's features, an item's features, and the user's rating for that item item_tt : str File name of the parquet file with each row corresponding to an item's features user_tt : str File name of the parquet file with each row corresponding to a user's features Returns ------- df : pandas DataFrame The augmented transaction table item_df : pandas DataFrame The item features as a transaction table user_df : pandas DataFrame The userfeatures as a transaction table item_ids : list All unique item ids user_ids : list All unique user ids """ df =
pd.read_parquet(aug_tt)
pandas.read_parquet
import pandas as pd import numpy as np # import sklearn from sklearn.preprocessing import MinMaxScaler, StandardScaler from sklearn.model_selection import train_test_split #matplotlib import matplotlib.pyplot as plt # libraries used for train test split import random from math import floor from types import SimpleNamespace class keras_tools: def __init__(self, data:pd.DataFrame, \ index = None, features:list = [], y_val = None, ts_n_y_vals:int = None, data_orientation:str = 'row', debug:bool = False): """Setup the keras-rnn-tools helper class with passed variables Args: data (pd.DataFrame): base dataframe in pandas format. index (str or int): if data_orientation='row' then index number or column name that should be used as the index of the resulting dataframe, if data_orientation='column' then row index of row that should be used as index features(list): if data_orientation='row' then list of integer indices or column names of the columns that should be used as features, if data_orientation='column' then list of integer indices that should be used as features y_val (str or pd.DataFrame, optional): target variable index or column name, only used for non-timeseries problems. ts_n_y_vals (int): The number of y values to capture for each data set, only used for timeseries problems. data_orientation (string): string specifying whether the data frame that is passed will need to be pivoted or not ('row' or 'column', row gets transposed for time-series problems) debug (bool): indication of whether to output print values for debugging """ self.data = data self.debug = debug # check if y_val is populated if y_val is not None: self.y_val = y_val #TODO: add logic to split on y value if isinstance(y_val, str): print("passed y string") elif isinstance(y_val, pd.DataFrame): print("passed data frame") # check if ts_n_y_vals is populated elif ts_n_y_vals is not None: self.ts_n_y_vals = ts_n_y_vals if data_orientation == 'row': if self.debug == True: print("Row-wise orientation") # set index based on value passed if index == None: pass elif isinstance(index, int): self.data.index = self.data.iloc[:,index] elif isinstance(index, str): self.data.index = self.data[index] else: raise AttributeError(f"The index parameter passed ({index}) was not of type int or string") if all(isinstance(n, int) for n in features): print("all passed as integer") self.data = self.data.iloc[:,features] elif all(isinstance(n, str) for n in features): print("all passed as str") else: raise AttributeError(f"The features {features} were not consistently of type int or string") self.data = self.data.T if self.debug == True: print(self.data) elif data_orientation == 'column': if self.debug == True: print("Column-wise orientation") else: raise AttributeError(f"Type {data_orientation} specified is not valid. Must be either 'column' or 'row'") # if neither are populated then raise error else: raise AttributeError("Either y_val or ts_n_y_vals must be populated.") # other variables used self.scaler = "" # defined in scale() # split df data self.train_df = "" self.test_df = "" self.valid_df = "" # transformed data as np self.X_train = "" self.X_test = "" self.X_valid = "" self.y_train = "" self.y_test = "" self.y_valid = "" def _scale(self, scaler = None, output_scaler:bool = False): """Scale the data in the data set. Prescribe the same scaling to the test and validation data sets. Args: scaler (sklearn scaler or string, optional): optional scaling of data, passed as sklearn scaler or string of scaler type (minmax or standard). output_scaler (bool, optional): Include the fit scaler in the output. Default is False. """ self.scaler = scaler if isinstance(self.scaler, str): if self.debug == True: print("scaler string") if 'minmax' in self.scaler.lower(): self.scaler = MinMaxScaler() elif 'standard' in self.scaler.lower(): self.scaler = StandardScaler() else: raise AttributeError("Invalid Scaler Type Passed (minmax or standard expected)") elif self.scaler is not None: if self.debug == True: print("scaler passed") else: if self.debug == True: print("no scaler passed") raise AttributeError(f"Scaler type {scaler} was not sklearn scaler or string of ('minmax' or 'standard').") print(f"running for size {self.train_df.iloc[:,:-int(self.ts_n_y_vals)].shape}") # fit to training data self.scaler.fit(self.train_df.iloc[:,:-int(self.ts_n_y_vals)].T) # transform all the data in the data set print(self.train_df) self.train_df = pd.DataFrame(self.scaler.transform(self.train_df.T).T) print(self.train_df) # self.test_df = self.scaler.transform(self.test_df.T).T # self.valid_df = self.scaler.transform(self.valid_df.T).T if output_scaler: return self.scaler def _chunk_data (self, df, output_labels = True, **kwargs): """Helper to split data into x and y based on the previously split data Args: df (object): Indication of the type of split to perform. Must be one of 'sequential', 'overlap', or 'sample' output_labels (bool, optional): indicator for whether y values also need to be outputted after chunking **kwargs: Returns: """ # reassign the dictionary variables to variables in namespace for easy access n = SimpleNamespace(**kwargs) np_arr_list, y_arr_list = [], [] end = df.shape[1] # loop through each step and create a new np array to add to list for chunk_start in range(0, (end - n.sample_size - n.y_size + 1), n.step): # get a chunk of x values and store to array if self.debug == True: print("From {} to {}".format(chunk_start, chunk_start + n.sample_size)) np_chunk = np.array(df.iloc[:,(chunk_start):(chunk_start + n.sample_size)]) # add stored array to list np_arr_list.append(np_chunk) if output_labels: if self.debug == True: print("Y samples from {} to {}".format((chunk_start + n.sample_size), (chunk_start + n.sample_size + n.y_size))) y_df_chunk = df.iloc[:,(chunk_start + n.sample_size):(chunk_start + n.sample_size + n.y_size)] y_np_chunk = np.array(y_df_chunk) y_arr_list.append(y_np_chunk) # stack all the x samples together np_stacked_chunks = np.stack(np_arr_list) x_reshaped = np.transpose(np_stacked_chunks, (0,2,1)) if output_labels: # stack all the y samples together y_np_stacked_chunks = np.stack(y_arr_list) y_reshaped = y_np_stacked_chunks return x_reshaped, y_reshaped else: return x_reshaped def train_test_split(self, split_type:str = 'sample', split_pct:float = 0.3, val_split_pct:float = 0.1, fill_na:bool = True, return_df:bool = False): """Create the base train-test-validation split for time-series data Args: split_type (str): Indication of the type of split to perform. Must be one of 'sequential', 'overlap', or 'sample' split_pct (bool): val_split_pct (bool, optional): fill_na (bool): Replace all NAs with 0's, typical prep. Default is True. return_df (bool): Option to instead return the data as a dataframe (useful for debugging). Default is False. Returns: """ #### basic parameter checking if split_pct < 0 or split_pct > 1: raise AttributeError(f"split_pct must be between 0 and 1. {split_pct} passed.") if val_split_pct < 0 or val_split_pct > 1: raise AttributeError(f"val_split_pct must be between 0 and 1. {val_split_pct} passed.") if fill_na==True: self.data.fillna(0, inplace=True) #### create split depending on split_type if split_type == 'sequential': if self.debug == True: print("sequential split") train_test_split_num = floor(self.data.shape[1] * (1 - split_pct - val_split_pct)) test_val_split = floor(self.data.shape[1] * (1 - val_split_pct)) if self.debug == True: print("Split at {} and {}".format(train_test_split_num, test_val_split)) # print(self.data, train_test_split_num) self.train_df = np.array(self.data.iloc[:, 0:train_test_split_num]) self.test_df = np.array(self.data.iloc[:, train_test_split_num:test_val_split]) if self.debug: print(f"train_df: {self.train_df}") if val_split_pct > 0 and val_split_pct < 1: # create validation variables x_val_start = test_val_split x_val_end = self.data.shape[1] - self.ts_n_y_vals self.valid_df = np.array(self.data.iloc[:, test_val_split:]) if return_df: return self.train_df, self.test_df, self.valid_df else: if return_df: return self.train_df, self.test_df elif split_type == 'overlap': if self.debug == True: print("overlap split") train_test_split_num = floor((self.data.shape[1] - self.ts_n_y_vals) * (1 - split_pct - val_split_pct)) test_val_split = floor((self.data.shape[1] - self.ts_n_y_vals) * (1 - val_split_pct)) # self._split_dfs() self.train_df = self.data.iloc[:, 0:(train_test_split_num + self.ts_n_y_vals)] self.test_df = self.data.iloc[:, (train_test_split_num):(test_val_split + self.ts_n_y_vals)] if val_split_pct > 0 and val_split_pct < 1: # create validation variables x_val_start = test_val_split x_val_end = self.data.shape[1] - self.ts_n_y_vals self.valid_df = self.data.iloc[:, test_val_split:] if return_df: return self.train_df, self.test_df, self.valid_df else: if return_df: return self.train_df, self.test_df elif split_type == 'sample': if self.debug == True: print("sample split") # try to split by y_val first, move on if it's not set try: X_train, X_test, y_train, y_test = train_test_split(self.data, self.y_val, test_size=split_pct) X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=val_split_pct/(1-split_pct)) except AttributeError: # for time-series this method only works if you want to sample specific features and keep the full time-series # split out test_df then remove rows from train_df self.test_df = self.data.loc[self.data.sample(frac=split_pct, replace=False).index] self.train_df = self.data.loc[~self.data.index.isin(self.test_df.index)] # split out valid_df then remove the rows from train_df self.valid_df = self.train_df.loc[self.train_df.sample(frac=val_split_pct, replace=False).index] self.train_df = self.train_df.loc[~self.train_df.index.isin(self.valid_df.index)] if val_split_pct > 0 and val_split_pct < 1: if return_df: return self.train_df, self.test_df, self.valid_df else: if return_df: return self.train_df, self.test_df return self.X_train else: raise AttributeError(f"Type {split_type} specified is not valid") if self.debug == True: print(self.data) def reshape_ts(self, step:int = 1, sample_size:int = 1, scaler = None, output_scaler:bool = False): """Transforms split data into format needed for RNN, optionally can scale the data as well. Args: step (int): The number of steps before you take another sample (e.g. [1,3,5,6,7,9] and step of 2 would return x values of [[1,3][5,6][7,9]]) sample_size (int): The number of samples you want to take for each value (e.g. [1,3,5,6,7,9] and sample_size of 3 would return x values of [[1,3,5][3,5,6][5,6,7][6,7,9]]) input_data (tuple of object, optional): if train/test/validation data was not split using the class, data can be added directly here. return_as_df (bool): Option to instead return the data as a dataframe (useful for debugging). Default is False. scaler (sklearn scaler or string, optional): optional scaling of data, passed as sklearn scaler or string of scaler type (minmax or standard). output_scaler (bool, optional): Include the fit scaler in the output. Default is False. Returns: scaler (object): If output_scaler==True then the fit scaler used will be returned. """ if scaler != None: self._scale(scaler = scaler, output_scaler = output_scaler) x_reshaped, y_reshaped = self._chunk_data(self.train_df, step = step, sample_size = sample_size, y_size = self.ts_n_y_vals) # get test data x_reshaped_test, y_reshaped_test = self._chunk_data(self.test_df, step = step, sample_size = sample_size, y_size = self.ts_n_y_vals) self.X_train = x_reshaped self.y_train = y_reshaped self.X_test = x_reshaped_test self.y_test = y_reshaped_test if len(self.valid_df)>1: # create val data sets x_reshaped_val, y_reshaped_val = self._chunk_data(self.valid_df, step = step, sample_size = sample_size, y_size = self.ts_n_y_vals) self.X_valid = x_reshaped_val self.y_valid = y_reshaped_val if output_scaler == True: return self.scaler def get_input_shape(self): return self.X_train.shape[1:3] def unscale(self, prediction_arr:object): """Given an array, unscales the data back to original numeric scale Args: prediction_arr (object): 2D array of variables to be unscaled (if array is 3D from predictions, use shape_predictions() first) """ pass def predict_ts(self, x_values, y_values:object = None, model:object = None, predict_shape:str = '2d'): """Generates predictions from model for given x input Args: x_values (): y_values (object): np.array of actuals if comparing values to actuals model (object): object of Keras model, can be optional if a model has been passed in previous method predict_shape (str): string indicator or '2d' or '3d' indicating how final layer of model is structured. See docs for more information. Returns: pred_list, actual_list (tuple of lists): Returns a list of predictions (returns a tuple of lists if y_values are provided for validation as well) """ predict_shape = predict_shape.lower() pred_list = [] if y_values is not None: actual_list = y_values[:,:,0] # predict future weeks pred_list = self._train_iterative_preds(x_values, model) # print('train predict {} and actual shape {}'.format(np.asarray(pred_list)[:,:,0].shape, np.asarray(actual_list).shape)) pred_list = self._reshape_pred_lists(np.asarray(pred_list), 'preds', date_first=True) if y_values is not None: actual_list = self._reshape_pred_lists(np.asarray(actual_list), 'actuals', date_first=True) return pred_list, actual_list else: return pred_list def _reshape_pred_lists (self, pred_list, column_name, date_first=True): """Generates predictions from model for given x input Args: pred_list (np.array): 2D or 3D array of predictions column_name (str): name of the column that the prediction corresponds to date_first(bool): Boolean specifying where the position of the date is in the passed array """ # reshape data pred_list = np.asarray(pred_list) pred_list = np.stack(pred_list) if pred_list.ndim == 3: pred_list = pd.DataFrame(pred_list[0,:,:]) else: pred_list =
pd.DataFrame(pred_list)
pandas.DataFrame
import pandas as pd import utils import equation_utils from pumpsettings import PumpSettings from sklearn.metrics import median_absolute_error, r2_score, mean_squared_error def compute_statistics(y_true, y_predicted, k): # Returns MAE, R^2, and RMSE values mae = round(median_absolute_error(y_true, y_predicted), 2) r_squared = round(r2_score(y_true, y_predicted), 3) adjusted_r_2 = round(utils.adjusted_r_2(r_squared, len(y_predicted), k), 3) rmse = round(mean_squared_error(y_true, y_predicted) ** 0.5, 2) return (mae, r_squared, adjusted_r_2, rmse) def run_equation_testing( x_input_file_name, y_input_file_name, jaeb_equations, traditional_fitted_equations, traditional_constant_equations, ): """ Run equation testing, using the equations from an equation dict input_file_name: name of file, without extension jaeb_equations: PumpSettings object with equation data traditional_equations: PumpSettings object with equation data """ x_data_path = utils.find_full_path(x_input_file_name, ".csv") x_df = pd.read_csv(x_data_path) y_data_path = utils.find_full_path(y_input_file_name, ".csv") y_df = pd.read_csv(y_data_path) df =
pd.concat([x_df, y_df], axis=1)
pandas.concat
# ms_mint/peaklists.py import os import pandas as pd import numpy as np from .standards import PEAKLIST_COLUMNS, DEPRECATED_LABELS from .helpers import dataframe_difference from .tools import get_mz_mean_from_formulas def read_peaklists(filenames, ms_mode='negative'): ''' Extracts peak data from csv files that contain peak definitions. CSV files must contain columns: - 'peak_label': str, unique identifier - 'mz_mean': float, center of mass to be extracted in [Da] - 'mz_width': float, with of mass window in [ppm] - 'rt_min': float, minimum retention time in [min] - 'rt_max': float, maximum retention time in [min] ----- Args: - filenames: str or PosixPath or list of such with path to csv-file(s) Returns: pandas.DataFrame in peaklist format ''' if isinstance(filenames, str): filenames = [filenames] peaklist = [] for fn in filenames: if fn.endswith('.csv'): df =
pd.read_csv(fn)
pandas.read_csv
from pathlib import Path import sys import numpy as np import pandas as pd import collections import deepdish as dd import matplotlib.pyplot as plt from matplotlib.ticker import FormatStrFormatter import matplotlib.ticker as ticker import seaborn as sns import pyomo.environ as pyo import pyomo.dae as pyodae # sys.path.append(r"G:\\Courses_UB\\Spring_19\\Optimal Controls\\Project\\casadi-windows-py38-v3.5.5-64bit") # from casadi import * from models.fixed_magnet_model import one_fixed_magnet from models.two_moving_magnets_model import trajectory_optimization, optimize_tf_and_vel, user_provided_magnet_separation, maximize_vel_minimize_impulse, maximize_vel_minimize_time_impulse from models.vsm_plots import plot_disp_vel, plot_settings_together, plot_pareto_front from models.linear_robot_model import (robot_linear_dynamics, robot_linear_dynamics_optimize_tf, robot_linear_dynamics_optimize_tf_and_alpha) from models.pyomo_optimizer import pyomo_solver from data.pyomo_parse_data import extract_results, extract_results_for_optimal_tf from utils import skip_run, parse_time import yaml import io import csv import matplotlib.pylab as pylab from dateutil import parser params = {'legend.fontsize': 12, # 'figure.figsize': (10, 5), 'axes.labelsize': 16, # 'axes.titlesize':'x-large', 'xtick.labelsize':14, 'ytick.labelsize':14} pylab.rcParams.update(params) # Load the configurations from the yml file config = yaml.safe_load(io.open('src/config.yml')) ############################################################## # Optimal velocity trajectory for hammering task (given Tf) ############################################################## # --------- ICRA extension to IROS --------# with skip_run('run', 'optimize_vel_given_tf') as check, check(): Tf = [0.3, 2.0]# [0.3, 0.5, 1.0, 1.5, 2.0] Tf_folder = ['tf_03', 'tf_20']#['tf_05', 'tf_10', 'tf_15', 'tf_20'] counter = 0 for tf in Tf: for setting in config['stiff_config']: if (setting == 'high_stiffness'): pyo_model = robot_linear_dynamics(tf, config) else: pyo_model = trajectory_optimization(tf, setting, config) # Solve the optimization problem and return the optimal results solved_model = pyomo_solver(pyo_model, 'ipopt', config, neos=False) data, _ , tf = extract_results(solved_model, setting, config) # save the csv files filepath = str(Path(__file__).parents[1] / config['csv_path']/ Tf_folder[counter] / setting) + '.csv' data.to_csv(filepath, index=False) plot_disp_vel(data, setting, config) counter += 1 with skip_run('skip', 'plot_optimal_results_of_hammer_given_tf') as check, check(): Tf_folder = ['tf_03', 'tf_20'] #['tf_05', 'tf_10', 'tf_15', 'tf_20'] plot_magnet_disp = False for folder_name in Tf_folder: if plot_magnet_disp: fig, ax = plt.subplots(3,1) else: fig, ax = plt.subplots(2,1) if folder_name == 'tf_03' or folder_name == 'tf_05': ylim = [-0.1, 0.1] ax[0].set_ylabel('Displacement (m)') ax[1].set_ylabel('Velocity (m/s)') if plot_magnet_disp: ax[2].set_ylabel('magnet (mm)') else: ylim = [-0.2, 0.1] for setting in config['stiff_config']: # load the data filepath = str(Path(__file__).parents[1] / config['csv_path']/ folder_name / setting) + '.csv' data = pd.read_csv(filepath, delimiter=',') tf = data['time'].iloc[-1] w = 0.03 if setting == 'high_stiffness': linewidth = 2 else : linewidth = 1.5 ax[0].plot(data['time'], data['bd']+data['hd'],config[setting]['plot_style'], label=config[setting]['plot_label'], linewidth=linewidth) ax[0].plot(data['time'], 0.05 + 0 * data['time'], 'k:') ax[0].plot([0.8 * tf, 0.8 * tf], [-0.2, 0.1], 'k-.') ax[0].grid() ax[0].set_xlim([0, tf]) ax[0].set_ylim(ylim) ax[0].yaxis.set_major_formatter(FormatStrFormatter('%.1f')) ax[1].plot(data['time'], data['bv']+data['hv'],config[setting]['plot_style'], label=config[setting]['plot_label'], linewidth=linewidth) ax[1].plot([0.8 * tf, 0.8 * tf], [-1, 1.25], 'k-.') ax[1].grid() ax[1].set_xlim([0, tf]) ax[1].set_ylim([-1, 1.25]) ax[1].yaxis.set_major_formatter(FormatStrFormatter('%.1f')) if plot_magnet_disp: ax[2].plot(data['time'], (data['md1'] + w) * 1000,config[setting]['plot_style'], label=config[setting]['plot_label'], linewidth=linewidth) ax[2].plot(data['time'], (data['md2'] - w) * 1000,config[setting]['plot_style'], label=config[setting]['plot_label'], linewidth=linewidth) ax[2].plot([0.8 * tf, 0.8 * tf], [-.040 * 1000, .040 * 1000], 'k-.') ax[2].grid() ax[2].set_xlim([0, tf]) ax[2].set_ylim([-.040 * 1000, .040 * 1000]) ax[2].set_xlabel('Time (s)') # ax[2].yaxis.set_major_formatter(FormatStrFormatter('%.3f')) for i in range(2): ax[i].tick_params(axis='x', # changes apply to the x-axis which='both', # both major and minor ticks are affected bottom=False, # ticks along the bottom edge are off top=False, # ticks along the top edge are off labelbottom=False) # labels along the bottom edge are off else: ax[1].set_xlabel('Time (s)') ax[0].tick_params(axis='x', # changes apply to the x-axis which='both', # both major and minor ticks are affected bottom=False, # ticks along the bottom edge are off top=False, # ticks along the top edge are off labelbottom=False) # labels along the bottom edge are off ax[0].legend(loc='lower right') plt.tight_layout() plt.subplots_adjust(hspace=0.10, wspace=0.0) with skip_run('skip', 'plot_optimal_results_of_robot_given_tf') as check, check(): Tf_folder = ['tf_03', 'tf_20'] #['tf_05', 'tf_10', 'tf_15', 'tf_20'] plot_magnet_disp = False k = 0 # counter for plot axis fig, ax = plt.subplots(2,2, figsize=(10,5)) for folder_name in Tf_folder: if folder_name == 'tf_03' or folder_name == 'tf_05': ylim = [-0.2, 0.1] #[-0.02, 0.08] ax[0,k].set_ylabel('Displacement (m)') ax[1,k].set_ylabel('magnet (mm)') else: ylim = [-0.2, 0.1] for setting in config['stiff_config']: # load the data filepath = str(Path(__file__).parents[1] / config['csv_path']/ folder_name / setting) + '.csv' data = pd.read_csv(filepath, delimiter=',') tf = data['time'].iloc[-1] w = 0.03 # if setting == 'high_stiffness': # linewidth = 2 # else : linewidth = 2 ax[0,k].plot(data['time'], data['bd'],config[setting]['plot_style'], label=config[setting]['plot_label'], linewidth=linewidth) ax[0,k].plot(data['time'], 0.05 + 0 * data['time'], 'k:') ax[0,k].plot([0.8 * tf, 0.8 * tf], [-0.2, 0.1], 'k-.') ax[0,k].grid() ax[0,k].set_xlim([0, tf]) ax[0,k].set_ylim(ylim) ax[0,k].yaxis.set_major_formatter(FormatStrFormatter('%.1f')) # ax[0,k].xaxis.set_minor_locator(ticker.MultipleLocator(0.2)) # ax[0,k].xaxis.set_major_locator(ticker.MultipleLocator(1)) ax[1,k].plot(data['time'], (data['md1'] + 0.03) * 1000,config[setting]['plot_style'], label=config[setting]['plot_label'], linewidth=linewidth) ax[1,k].plot(data['time'], (data['md2'] - 0.03) * 1000,config[setting]['plot_style'], label=config[setting]['plot_label'], linewidth=linewidth) ax[1,k].plot([0.8 * tf, 0.8 * tf], [-.035 * 1000, .035 * 1000], 'k-.') ax[1,k].grid() ax[1,k].set_xlim([0, tf]) ax[1,k].set_ylim([-.035 * 1000, .035 * 1000]) ax[1,k].set_xlabel('Time (s)') ax[1,k].xaxis.set_major_formatter(FormatStrFormatter('%.1f')) ax[0,k].tick_params(axis='x', # changes apply to the x-axis which='both', # both major and minor ticks are affected bottom=False, # ticks along the bottom edge are off top=False, # ticks along the top edge are off labelbottom=False) # labels along the bottom edge are off ax[0,k].legend(loc='lower right') plt.tight_layout() plt.subplots_adjust(hspace=0.10, wspace=0.1) k += 1 # remove the yticks for the second plot for j in range(0,2): ax[j,1].tick_params(axis='y', which='both', left=False, # top=False, # ticks along the top edge are off labelleft=False) ax[j,0].set_xticks(np.arange(0, 0.3 + 0.1, step=0.1)) ax[j,1].set_xticks(np.arange(0, 2.0 + 0.5, step=0.5)) with skip_run('skip', 'plot_energy_stored') as check, check(): Tf_folder = ['tf_03', 'tf_20', 'optimal_tf'] #['tf_05', 'tf_10', 'tf_15', 'tf_20'] for folder_name in Tf_folder: fig, ax = plt.subplots(2,1) ax[0].set_ylabel('Power (W)') ax[1].set_ylabel('Cummulative Energy (J)') for setting in config['stiff_config']: # load the data filepath = str(Path(__file__).parents[1] / config['csv_path']/ folder_name / setting) + '.csv' data = pd.read_csv(filepath, delimiter=',') if folder_name == 'optimal_tf': tf = 2.0 else: tf = data['time'].iloc[-1] w = 0.03 linewidth = 1.5 Sep1 = data['hd'] - data['md1'] - w Sep2 = data['md2'] - data['hd'] - w # calculate the power stored in the magnets force = config['C1'] * (np.exp(-config['C2'] * Sep2) - np.exp(-config['C2'] * Sep1)) power = np.multiply(force, data['hv']) # calculate the cummulative energy energy = np.zeros(power.shape) for count, _ in enumerate(power): energy[count] = np.trapz(abs(power[:count]), data['time'][:count]) ax[0].plot(data['time'], power, config[setting]['plot_style'], label=config[setting]['plot_label'], linewidth=linewidth) ax[0].grid() ax[0].set_xlim([0, tf]) ax[0].set_ylim([np.min(power), np.max(power)]) ax[0].tick_params(axis='x', # changes apply to the x-axis which='both', # both major and minor ticks are affected bottom=False, # ticks along the bottom edge are off top=False, # ticks along the top edge are off labelbottom=False) # labels along the bottom edge are off ax[1].plot(data['time'], energy, config[setting]['plot_style'], label=config[setting]['plot_label'], linewidth=linewidth) if folder_name != 'optimal_tf': ax[1].plot([0.8 * tf, 0.8 * tf], [0, np.max(energy)], 'k-.') ax[1].grid() ax[1].set_xlim([0, tf]) ax[1].set_ylim([0, np.max(energy)]) ax[1].yaxis.set_major_formatter(FormatStrFormatter('%.1f')) ax[1].set_xlabel('Time (s)') ax[1].legend(loc='upper left') plt.tight_layout() plt.subplots_adjust(hspace=0.10, wspace=0.0) # Time sweep optimal solution with skip_run('skip', 'trajectory_optimization_time_sweep') as check, check(): Tf = np.around(np.arange(0.25, 5.0, 0.25), decimals=2) sweep_data = collections.defaultdict() max_velocity = collections.defaultdict() fig = plt.plot() for tf in Tf: Data = collections.defaultdict() list_vel = [] for setting in config['stiff_config']: if (setting == 'high_stiffness'): pyo_model = robot_linear_dynamics(tf, config) else: pyo_model = trajectory_optimization(tf, setting, config) # Solve the optimization problem and return the optimal results solved_model = pyomo_solver(pyo_model, 'ipopt', config, neos=False) data, _ , tf = extract_results(solved_model, setting, config) Data[setting] = data.to_dict() # optimal velocity value at alpha * tf time = data['time'] vel = data['hv'] + data['bv'] optimal_time = time[-1:] optimal_vel = max(vel) if setting == 'low_stiffness': plt.plot(tf, optimal_vel, 'rD') elif setting == 'high_stiffness': plt.plot(tf, optimal_vel, 'bD') else: plt.plot(tf, optimal_vel, 'kD') list_vel.append(optimal_vel) sweep_data[tf] = Data max_velocity[tf] = vel # save the complete dictionary filepath = str(Path(__file__).parents[1] / config['two_moving_mags_time_sweep_data']) dd.io.save(filepath, sweep_data) # save the maximum velocity for each tf filepath = str(Path(__file__).parents[1] / config['max_vel_time_sweep']) dd.io.save(filepath, max_velocity) with skip_run('skip', 'load_the_saved_tf_sweep_data') as check, check(): # load the data filepath = str(Path(__file__).parents[1] / config['two_moving_mags_time_sweep_data']) sweep_data = dd.io.load(filepath) Tf = np.around(np.arange(0.5, 5.0, 0.25), decimals=2) # sns.set() _,ax1 = plt.subplots(2,1) _,ax2 = plt.subplots(2,1) _,ax3 = plt.subplots(2,1) ax1[0].set_xlim([0, 5.0]) ax1[1].set_xlim([0, 5.0]) ax2[0].set_xlim([0, 5.0]) ax2[1].set_xlim([0, 5.0]) for tf in Tf: data = sweep_data[tf] time_vs = [i for i in data['variable_stiffness']['time'].values()] base_vs = [i for i in data['variable_stiffness']['bv'].values()] vel_vs = [i+j for i,j in zip(data['variable_stiffness']['hv'].values(), data['variable_stiffness']['bv'].values())] disp_vs = [i+j for i,j in zip(data['variable_stiffness']['hd'].values(), data['variable_stiffness']['bd'].values())] time_ls = [i for i in data['low_stiffness']['time'].values()] base_ls = [i for i in data['low_stiffness']['bv'].values()] vel_ls = [i+j for i,j in zip(data['low_stiffness']['hv'].values(), data['low_stiffness']['bv'].values())] disp_ls = [i+j for i,j in zip(data['low_stiffness']['hd'].values(), data['low_stiffness']['bd'].values())] # data_vs = np.array([time_vs, vel_vs]).reshape(time_vs.shape[0],2) # data_ls = np.array([time_vs, vel_vs]).reshape(time_vs.shape[0],2) ax1[0].plot(time_ls, vel_ls) ax1[1].plot(time_vs, vel_vs) ax2[0].plot(time_ls, disp_ls) ax2[1].plot(time_vs, disp_vs) ax3[0].plot(tf, max(base_ls), 'ko') ax3[0].plot(tf, max(vel_ls), 'rd') ax3[1].plot(tf, max(base_vs), 'ko') ax3[1].plot(tf, max(vel_vs), 'bd') # data = data['variable_stiffness'] # sns.relplot(x="time", y="hv", kind="line", data=data) ax1[0].set_ylim([-1.0, 1.0]) ax1[1].set_ylim([-1.0, 1.0]) ############################################################## # Time optimal hammering task for two moving magnets ############################################################## # --------- Used for IROS paper ---------- # # Time optimal trajectory evaluation - 3 Weights with skip_run('skip', 'optimize_Tf_and_Vel') as check, check(): Data = collections.defaultdict() counter = 0 exps = ['optimal_tf'] #['weights_1', 'weights_2', 'weights_3'] # weights for multi-objective optimization weights = [[0.5,0.5]] #[[0.9, 0.1], [0.5, 0.5], [0.1, 0.9]] for weight in weights: for setting in config['stiff_config']: # if (setting == 'high_stiffness'): # pyo_model= robot_linear_dynamics_optimize_tf(weight, config) # else: pyo_model = optimize_tf_and_vel( setting, weight, config) # Solve the optimization problem and return the optimal results solved_model = pyomo_solver(pyo_model, 'ipopt', config, neos=False) data, _ , tf = extract_results_for_optimal_tf(solved_model, setting, config) print("Tf value for " + setting + " is: " + str(tf)) plot_disp_vel(data, 'Both_magnets_moving', config) plt.suptitle('Tf: ' + str(tf) + ', Stiffness: ' + setting) # save the csv files filepath = str(Path(__file__).parents[1] / config['csv_path']/ exps[counter] / setting) + '.csv' data.to_csv(filepath, index=False) Data[setting] = data.to_dict() counter += 1 plot_settings_together(Data, config) # save the optimal data # filepath = str(Path(__file__).parents[1] / config['two_moving_mags_optim_tf_data']) # dd.io.save(filepath, Data) with skip_run('skip', 'plot_the_optimal_values_LS_VS') as check, check(): exps = ['optimal_tf'] #['weights_1', 'weights_2', 'weights_3'] counter = 0 plot_magnet_disp = False for i in exps: if plot_magnet_disp: fig, ax = plt.subplots(3,1) else: fig, ax = plt.subplots(2,1) # plt.tight_layout() # fig.subplots_adjust(hspace=0.10, wspace=2.25) filepath1 = str(Path(__file__).parents[1] / config['csv_path'] / i / 'low_stiffness') + '.csv' data1 = pd.read_csv(filepath1, delimiter=',') filepath2 = str(Path(__file__).parents[1] / config['csv_path'] / i / 'variable_stiffness') + '.csv' data2 = pd.read_csv(filepath2, delimiter=',') filepath3 = str(Path(__file__).parents[1] / config['csv_path'] / i / 'high_stiffness') + '.csv' data3 = pd.read_csv(filepath3, delimiter=',') ax[0].plot(data1['time'], data1['hd'] + data1['bd'], 'b-', label='LS', linewidth=1.5) ax[0].plot(data2['time'], data2['hd'] + data2['bd'], 'r-' , label='VS', linewidth=1.5) ax[0].plot(data3['time'], data3['hd'] + data3['bd'], 'g-', label='HS', linewidth=2) ax[0].plot(data1['time'], 0.05 + 0 * data1['time'], 'k:') ax[0].plot([0.8 * data1['time'].iloc[-1], 0.8 * data1['time'].iloc[-1]], [-0.2, 0.1], 'k-.') ax[0].plot([0.8 * data2['time'].iloc[-1], 0.8 * data2['time'].iloc[-1]], [-0.2, 0.1], 'k-.') ax[0].plot([0.8 * data3['time'].iloc[-1], 0.8 * data3['time'].iloc[-1]], [-0.2, 0.1], 'k-.') # ax[0].plot([max(data1['time']), max(data1['time'])], [-0.2, 0.1], 'b:') # ax[0].plot([max(data2['time']), max(data2['time'])], [-0.2, 0.1], 'r:') # ax[0].plot([max(data3['time']), max(data3['time'])], [-0.2, 0.1], 'g:') ax[0].set_xlim([0, max(max(data1['time']), max(data2['time']))]) ax[0].set_ylim([-0.2, 0.1]) ax[0].legend(loc='lower right') ax[0].yaxis.set_major_formatter(FormatStrFormatter('%.1f')) ax[1].plot(data1['time'], data1['hv'] + data1['bv'], 'b-', label='LS', linewidth=1.5) ax[1].plot(data2['time'], data2['hv'] + data2['bv'], 'r-', label='VS', linewidth=1.5) ax[1].plot(data3['time'], data3['hv'] + data3['bv'], 'g-', label='HS', linewidth=1.5) ax[1].plot([0.8 * data1['time'].iloc[-1], 0.8 * data1['time'].iloc[-1]], [-1.2, 1.2], 'k-.') ax[1].plot([0.8 * data2['time'].iloc[-1], 0.8 * data2['time'].iloc[-1]], [-1.2, 1.2], 'k-.') ax[1].plot([0.8 * data3['time'].iloc[-1], 0.8 * data3['time'].iloc[-1]], [-1.2, 1.2], 'k-.') # ax[1].plot([max(data1['time']), max(data1['time'])], [-1.2, 1.2], 'b:') # ax[1].plot([max(data2['time']), max(data2['time'])], [-1.2, 1.2], 'r:') # ax[1].plot([max(data3['time']), max(data3['time'])], [-1.2, 1.2], 'g:') # ax[1].plot(data1['time'], 0.5 + 0 * data1['time'], 'k--') # ax[1].plot(data1['time'], -0.5 + 0 * data1['time'], 'k--') ax[1].set_xlim([0, max(max(data1['time']), max(data2['time'])) ]) ax[1].set_ylim([-1.2, 1.2]) ax[1].yaxis.set_major_formatter(FormatStrFormatter('%.1f')) if plot_magnet_disp: ax[2].plot(data1['time'], 1000 * ( data1['md2'] - 0.03), 'b-', linewidth=1.5) ax[2].plot(data1['time'], 1000 * (-data1['md2'] + 0.03), 'b-', linewidth=1.5) ax[2].plot(data2['time'], 1000 * ( data2['md2'] - 0.03), 'r-', linewidth=1.5) ax[2].plot(data2['time'], 1000 * (-data2['md2'] + 0.03), 'r-', linewidth=1.5) ax[2].plot(data3['time'], 1000 * ( data3['md2'] - 0.03), 'g-', linewidth=1.5) ax[2].plot(data3['time'], 1000 * (-data3['md2'] + 0.03), 'g-', linewidth=1.5) # ax[2].plot([max(data1['time']), max(data1['time'])], [-0.06, 0.06], 'b--') # ax[2].plot([max(data2['time']), max(data2['time'])], [-0.06, 0.06], 'r--') ax[2].set_xlim([0, max(max(data1['time']), max(data2['time'])) ]) ax[2].set_xlabel('Time (s)') ax[2].plot([0.8 * data1['time'].iloc[-1], 0.8 * data1['time'].iloc[-1]], [-1000 * 0.045, 1000 * 0.045], 'k-.') ax[2].plot([0.8 * data2['time'].iloc[-1], 0.8 * data2['time'].iloc[-1]], [-1000 * 0.045, 1000 * 0.045], 'k-.') ax[2].plot([0.8 * data3['time'].iloc[-1], 0.8 * data3['time'].iloc[-1]], [-1000 * 0.045, 1000 * 0.045], 'k-.') for i in range(2): ax[i].tick_params(axis='x', # changes apply to the x-axis which='both', # both major and minor ticks are affected bottom=False, # ticks along the bottom edge are off top=False, # ticks along the top edge are off labelbottom=False) # labels along the bottom edge are off else: ax[1].set_xlabel('Time (s)') ax[0].tick_params(axis='x', # changes apply to the x-axis which='both', # both major and minor ticks are affected bottom=False, # ticks along the bottom edge are off top=False, # ticks along the top edge are off labelbottom=False) # labels along the bottom edge are off if counter < 1: ax[0].set_ylabel('Displacement (m)') ax[1].set_ylabel('Velocity (m/s)') if plot_magnet_disp: ax[2].set_ylabel('Magnet (m)') ax[2].grid() # if counter == 1: # _, ax1 = plt.subplots(2,1) # ax1[0].plot(data1['time'], data1['bd'], 'k-.') # ax1[0].plot(data2['time'], data2['bd'], 'k-.') # ax1[0].plot(data1['time'], data1['bd'] + data1['hd'], 'b-') # ax1[0].plot(data2['time'], data2['bd'] + data2['hd'], 'r-') # ax1[1].plot(data1['time'], data1['bv'], 'k-.') # ax1[1].plot(data2['time'], data2['bv'], 'k-.') # ax1[1].plot(data1['time'], data1['bv'] + data1['hv'], 'b-') # ax1[1].plot(data2['time'], data2['bv'] + data2['hv'], 'r-') counter += 1 plt.tight_layout() plt.subplots_adjust(hspace=0.10, wspace=2.25) ax[0].grid() ax[1].grid() # Time optimal trajectory evaluation - All weights for pareto front with skip_run('skip', 'optimize_tf_and_vel_all_weights') as check, check(): Data = collections.defaultdict() Pareto = collections.defaultdict() counter = 0 # weights for multi-objective optimization weights = [[0.9, 0.1], [0.8, 0.2], [0.7, 0.3], [0.6, 0.4], [0.5, 0.5], [0.4, 0.6], [0.3, 0.7], [0.2, 0.8], [0.1, 0.9]] for weight in weights: temp = collections.defaultdict() for setting in config['stiff_config']: if (setting == 'high_stiffness'): pyo_model= robot_linear_dynamics_optimize_tf(weight, config) else: pyo_model = optimize_tf_and_vel( setting, weight, config) # Solve the optimization problem and return the optimal results solved_model = pyomo_solver(pyo_model, 'ipopt', config, neos=False) data, _ , tf = extract_results_for_optimal_tf(solved_model, setting, config) print("Tf value for " + setting + " is: " + str(tf)) # save the csv files filepath = str(Path(__file__).parents[1] / config['pareto_path'] / str(counter) / setting) + '.csv' data.to_csv(filepath, index=False) temp_time = data['time'] temp['t_hit'] = temp_time[temp_time == 0.8*tf] temp['tf'] = tf temp[setting] = data['bv'][temp_time == 0.8*tf] + data['hv'][temp_time == 0.8*tf] counter += 1 Pareto[counter] = temp # path to save the data filepath = str(Path(__file__).parents[1] / config['pareto_front']) dd.io.save(filepath, Pareto) with skip_run('skip', 'plot_the_pareto_front') as check, check(): # path to save the data filepath = str(Path(__file__).parents[1] / config['pareto_front']) pareto_data = dd.io.load(filepath) plot_pareto_front(pareto_data, config) # Optimal solutions for constant separations with skip_run('skip', 'data_for_two_magnets_sep_sweep') as check, check(): tf = 1.0 Separations = np.around(np.arange(0.035, 0.06, 0.01), decimals=3) df = pd.DataFrame() for sep in Separations: pyo_model = user_provided_magnet_separation(tf, sep, config) # Solve the optimization problem and return the optimal results solved_model = pyomo_solver(pyo_model, 'ipopt', config, neos=False) data, _ , tf = extract_results(solved_model, '', config) temp = pd.DataFrame({'sep': ["sep_" + str(round(i,3)) for i in data['md2']]}) data = data.join(temp, lsuffix='_caller', rsuffix='_other') tol_vel = pd.DataFrame({'total_vel' : data['bv'] + data['hv']}) data = data.join(tol_vel, lsuffix='_caller', rsuffix='_other') tol_disp= pd.DataFrame({'total_disp' : data['bd'] + data['hd']}) data = data.join(tol_disp, lsuffix='_caller', rsuffix='_other') if df.size > 0: df = df.append(data, ignore_index=True) else: df = data # save the data filepath = str(Path(__file__).parents[1] / config['two_moving_mags_sep_sweep_data']) df.to_hdf(filepath, key='df', mode='w') with skip_run('skip', 'plot_sep_sweep_data') as check, check(): # load the data filepath = str(Path(__file__).parents[1] / config['two_moving_mags_sep_sweep_data']) df = pd.read_hdf(filepath, key='df') fig,ax = plt.subplots(2,1) sns_palette = sns.color_palette("viridis", n_colors=3, desat=0.5) # sns_palette = sns.cubehelix_palette(5, start=2, rot=-.75) g1 = sns.relplot(x="time", y="total_vel", hue="sep", kind="line", palette=sns_palette, data=df, ax=ax[0]) g2 = sns.relplot(x="time", y="total_disp", hue="sep", kind="line", palette=sns_palette, data=df, ax=ax[1]) # plt.close(g1.fig) # plt.close(g2.fig) plt.tight_layout() # Optimal solution for given Tf with skip_run('skip', 'run_trajectory_optimization_of_the_robot_given_tf') as check, check(): pyo_model = robot_linear_dynamics(0.5, config) # Solve the optimization problem and return the optimal results solved_model = pyomo_solver(pyo_model, 'ipopt', config, neos=False) data, _ , tf = extract_results(solved_model, setting, config) _,ax = plt.subplots(2,1) ax[0].plot(data['time'], data['bd'], 'b-', label = '0.5 s') ax[0].plot([0.5, 0.5], [-0.1, 0.08], 'k--') ax[0].plot([3, 3], [-0.1, 0.08], 'k--') ax[1].plot(data['time'], data['bv'], 'b-', label = '0.5 s') ax[1].plot([0.5, 0.5], [-0.5, 0.5], 'k--') ax[1].plot([3, 3], [-0.5, 0.5], 'k--') pyo_model = robot_linear_dynamics(3, config) # Solve the optimization problem and return the optimal results solved_model = pyomo_solver(pyo_model, 'ipopt', config, neos=False) data, _ , tf = extract_results(solved_model, setting, config) ax[0].plot(data['time'], data['bd'], 'r-', label = '3.0 s') ax[0].set_ylabel('Displacement (m)') ax[0].grid() ax[0].legend(loc='upper center') ax[1].plot(data['time'], data['bv'], 'r-', label = '3.0 s') # ax[1].plot(data['time'], 0.5 + 0*data['time'], 'k-') # ax[1].plot(data['time'], -0.5 + 0*data['time'], 'k-') ax[1].set_xlabel('Time (s)') ax[1].set_ylabel('Velocity (m/s)') ax[1].grid() plt.tight_layout() with skip_run('skip', 'run_trajectory_optimization_of_the_robot_for_tf') as check, check(): alphas = np.round(np.arange(0, 1.0, 0.1), decimals=1) weights = [0.5, 0.5] for alpha in alphas: pyo_model= robot_linear_dynamics_optimize_tf(weight, config) # Solve the optimization problem and return the optimal results solved_model = pyomo_solver(pyo_model, 'ipopt', config, neos=False) data, _ , tf = extract_results_for_optimal_tf(solved_model, setting, config) _,ax = plt.subplots(3,1) ax[0].plot(data['t'], data['bd']) ax[0].set_xlabel('Time (s)') ax[0].set_ylabel('Displacement (m)') ax[1].plot(data['t'], data['bv']) ax[1].set_xlabel('Time (s)') ax[1].set_ylabel('Velocity (m/s)') ax[2].plot(data['t'], data['ba']) ax[2].set_xlabel('Time (s)') ax[2].set_ylabel('Acceleration (m/s)') #TODO: # plot the pareto front for optimal values corresponding to time and velocity of the robot ############################################################## # Impulse and velocity optimization ############################################################## # --------- Extension of IROS paper ---------- # # Optimal velocity trajectory given Tf with skip_run('skip', 'optimize_vel_given_tf_using_impulse') as check, check(): Tf = [0.3, 2.0]# [0.3, 0.5, 1.0, 1.5, 2.0] Tf_folder = ['tf_03', 'tf_20']#['tf_05', 'tf_10', 'tf_15', 'tf_20'] counter = 0 for tf in Tf: for setting in config['stiff_config']: print('Tf: {}, {}'.format(tf, setting)) if (setting == 'high_stiffness'): pyo_model = robot_linear_dynamics(tf, config) else: pyo_model = maximize_vel_minimize_impulse(tf, setting, config) # Solve the optimization problem and return the optimal results solved_model = pyomo_solver(pyo_model, 'ipopt', config, neos=False) data, _ , tf = extract_results(solved_model, setting, config) # save the csv files filepath = str(Path(__file__).parents[1] / config['csv_path']/ 'impulse' / Tf_folder[counter] / setting) + '.csv' data.to_csv(filepath, index=False) plot_disp_vel(data, setting, config) counter += 1 with skip_run('skip', 'plot_optimal_results_of_hammer_given_tf') as check, check(): Tf_folder = ['tf_03', 'tf_20'] #['tf_05', 'tf_10', 'tf_15', 'tf_20'] plot_magnet_disp = False for folder_name in Tf_folder: if plot_magnet_disp: fig, ax = plt.subplots(3,1) else: fig, ax = plt.subplots(2,1) if folder_name == 'tf_03' or folder_name == 'tf_05': ylim = [-0.1, 0.1] ax[0].set_ylabel('Displacement (m)') ax[1].set_ylabel('Velocity (m/s)') if plot_magnet_disp: ax[2].set_ylabel('magnet (mm)') else: ylim = [-0.2, 0.1] for setting in config['stiff_config']: # load the data filepath = str(Path(__file__).parents[1] / config['csv_path']/ folder_name / setting) + '.csv' data = pd.read_csv(filepath, delimiter=',') tf = data['time'].iloc[-1] w = 0.03 if setting == 'high_stiffness': linewidth = 2 else : linewidth = 1.5 ax[0].plot(data['time'], data['bd']+data['hd'],config[setting]['plot_style'], label=config[setting]['plot_label'], linewidth=linewidth) ax[0].plot(data['time'], 0.05 + 0 * data['time'], 'k:') ax[0].plot([0.8 * tf, 0.8 * tf], [-0.2, 0.1], 'k-.') ax[0].grid() ax[0].set_xlim([0, tf]) ax[0].set_ylim(ylim) ax[0].yaxis.set_major_formatter(FormatStrFormatter('%.1f')) ax[1].plot(data['time'], data['bv']+data['hv'],config[setting]['plot_style'], label=config[setting]['plot_label'], linewidth=linewidth) ax[1].plot([0.8 * tf, 0.8 * tf], [-1, 1.25], 'k-.') ax[1].grid() ax[1].set_xlim([0, tf]) ax[1].set_ylim([-1, 1.25]) ax[1].yaxis.set_major_formatter(FormatStrFormatter('%.1f')) if plot_magnet_disp: ax[2].plot(data['time'], (data['md1'] + w) * 1000,config[setting]['plot_style'], label=config[setting]['plot_label'], linewidth=linewidth) ax[2].plot(data['time'], (data['md2'] - w) * 1000,config[setting]['plot_style'], label=config[setting]['plot_label'], linewidth=linewidth) ax[2].plot([0.8 * tf, 0.8 * tf], [-.040 * 1000, .040 * 1000], 'k-.') ax[2].grid() ax[2].set_xlim([0, tf]) ax[2].set_ylim([-.040 * 1000, .040 * 1000]) ax[2].set_xlabel('Time (s)') # ax[2].yaxis.set_major_formatter(FormatStrFormatter('%.3f')) for i in range(2): ax[i].tick_params(axis='x', # changes apply to the x-axis which='both', # both major and minor ticks are affected bottom=False, # ticks along the bottom edge are off top=False, # ticks along the top edge are off labelbottom=False) # labels along the bottom edge are off else: ax[1].set_xlabel('Time (s)') ax[0].tick_params(axis='x', # changes apply to the x-axis which='both', # both major and minor ticks are affected bottom=False, # ticks along the bottom edge are off top=False, # ticks along the top edge are off labelbottom=False) # labels along the bottom edge are off ax[0].legend(loc='lower right') plt.tight_layout() plt.subplots_adjust(hspace=0.10, wspace=0.0) with skip_run('skip', 'plot_optimal_results_of_robot_given_tf') as check, check(): Tf_folder = ['tf_03', 'tf_20'] #['tf_05', 'tf_10', 'tf_15', 'tf_20'] plot_magnet_disp = False k = 0 # counter for plot axis fig, ax = plt.subplots(2,2, figsize=(10,5)) for folder_name in Tf_folder: if folder_name == 'tf_03' or folder_name == 'tf_05': ylim = [-0.2, 0.1] #[-0.02, 0.08] ax[0,k].set_ylabel('Displacement (m)') ax[1,k].set_ylabel('magnet (mm)') else: ylim = [-0.2, 0.1] for setting in config['stiff_config']: # load the data filepath = str(Path(__file__).parents[1] / config['csv_path']/ folder_name / setting) + '.csv' data = pd.read_csv(filepath, delimiter=',') tf = data['time'].iloc[-1] w = 0.03 # if setting == 'high_stiffness': # linewidth = 2 # else : linewidth = 2 ax[0,k].plot(data['time'], data['bd'],config[setting]['plot_style'], label=config[setting]['plot_label'], linewidth=linewidth) ax[0,k].plot(data['time'], 0.05 + 0 * data['time'], 'k:') ax[0,k].plot([0.8 * tf, 0.8 * tf], [-0.2, 0.1], 'k-.') ax[0,k].grid() ax[0,k].set_xlim([0, tf]) ax[0,k].set_ylim(ylim) ax[0,k].yaxis.set_major_formatter(FormatStrFormatter('%.1f')) # ax[0,k].xaxis.set_minor_locator(ticker.MultipleLocator(0.2)) # ax[0,k].xaxis.set_major_locator(ticker.MultipleLocator(1)) ax[1,k].plot(data['time'], (data['md1'] + 0.03) * 1000,config[setting]['plot_style'], label=config[setting]['plot_label'], linewidth=linewidth) ax[1,k].plot(data['time'], (data['md2'] - 0.03) * 1000,config[setting]['plot_style'], label=config[setting]['plot_label'], linewidth=linewidth) ax[1,k].plot([0.8 * tf, 0.8 * tf], [-.035 * 1000, .035 * 1000], 'k-.') ax[1,k].grid() ax[1,k].set_xlim([0, tf]) ax[1,k].set_ylim([-.035 * 1000, .035 * 1000]) ax[1,k].set_xlabel('Time (s)') ax[1,k].xaxis.set_major_formatter(FormatStrFormatter('%.1f')) ax[0,k].tick_params(axis='x', # changes apply to the x-axis which='both', # both major and minor ticks are affected bottom=False, # ticks along the bottom edge are off top=False, # ticks along the top edge are off labelbottom=False) # labels along the bottom edge are off ax[0,k].legend(loc='lower right') plt.tight_layout() plt.subplots_adjust(hspace=0.10, wspace=0.1) k += 1 # remove the yticks for the second plot for j in range(0,2): ax[j,1].tick_params(axis='y', which='both', left=False, # top=False, # ticks along the top edge are off labelleft=False) ax[j,0].set_xticks(np.arange(0, 0.3 + 0.1, step=0.1)) ax[j,1].set_xticks(np.arange(0, 2.0 + 0.5, step=0.5)) # Time optimal trajectory evaluation using Impulse information with skip_run('skip', 'optimize_Tf_and_Vel_using_impulse') as check, check(): Data = collections.defaultdict() counter = 0 exps = ['optimal_tf'] #['weights_1', 'weights_2', 'weights_3'] # weights for multi-objective optimization weights = [[0.5,0.5]] #[[0.9, 0.1], [0.5, 0.5], [0.1, 0.9]] for weight in weights: for setting in config['stiff_config']: # if (setting == 'high_stiffness'): # pyo_model= robot_linear_dynamics_optimize_tf(weight, config) # else: pyo_model = maximize_vel_minimize_time_impulse(setting, weight, config) # Solve the optimization problem and return the optimal results solved_model = pyomo_solver(pyo_model, 'ipopt', config, neos=False) data, _ , tf = extract_results_for_optimal_tf(solved_model, setting, config) print("Tf value for " + setting + " is: " + str(tf)) plot_disp_vel(data, 'Both_magnets_moving', config) plt.suptitle('Tf: ' + str(tf) + ', Stiffness: ' + setting) # save the csv files filepath = str(Path(__file__).parents[1] / config['csv_path']/ exps[counter] / setting) + '.csv' data.to_csv(filepath, index=False) Data[setting] = data.to_dict() counter += 1 plot_settings_together(Data, config) # save the optimal data # filepath = str(Path(__file__).parents[1] / config['two_moving_mags_optim_tf_data']) # dd.io.save(filepath, Data) with skip_run('skip', 'plot_the_optimal_values_LS_VS') as check, check(): exps = ['optimal_tf'] #['weights_1', 'weights_2', 'weights_3'] counter = 0 plot_magnet_disp = False for i in exps: if plot_magnet_disp: fig, ax = plt.subplots(3,1) else: fig, ax = plt.subplots(2,1) # plt.tight_layout() # fig.subplots_adjust(hspace=0.10, wspace=2.25) filepath1 = str(Path(__file__).parents[1] / config['csv_path'] / i / 'low_stiffness') + '.csv' data1 = pd.read_csv(filepath1, delimiter=',') filepath2 = str(Path(__file__).parents[1] / config['csv_path'] / i / 'variable_stiffness') + '.csv' data2 =
pd.read_csv(filepath2, delimiter=',')
pandas.read_csv
"""Accessors to Pandas DataFrame interpreting metadata in the column index. Two versions: 'ms' assumes labeled data, 'ums' assumes unlabeled data""" from collections import namedtuple import numpy as np import pandas as pd from pandas_flavor import register_dataframe_accessor from .utils import _is_string def create_multiindex_with_labels(df, labels=["no label"], level_name="label"): cols = df.columns n = len(cols) metanames = cols.names if not labels: labels = ["no label"] elif _is_string(labels): labels = [labels] else: labels = list(labels) nr = n // len(labels) newstrs = [] for s in labels: newstrs.extend([s] * nr) if len(metanames) > 1: tcols = [list(c) for c in cols.to_flat_index()] else: tcols = [[c] for c in cols] newcols = [tuple([ns] + c) for (ns, c) in zip(newstrs, tcols)] return pd.MultiIndex.from_tuples(newcols, names=[level_name] + metanames) @register_dataframe_accessor("cdl") class CDLAccessor(object): """An accessor to Pandas DataFrame to interpret content as column organized, labeled data. This interpretation assumes that the **column** index stores the essential metadata, namely, sample names and group labels. This index is ususally hierarquical and other levels are optional. Accessor 'ums' for unlabeled data where level 0 are assumed to be sample names is also available in this module. Interpretation is based on the following conventions : - For the accessor to work, the column index must have at leat two levels. - Level 1 is interpreted as sample names by the accessor. Default name for this level is 'sample' and default values are 'Sample {i}'. .samples is a property to access this level. - Level 0 is interpreted as labels. .labels is a property to access labels. - More levels are possible, if they are read from data sources or added by Pandas index manipulation. The (row) index is interpreted as "features", often labels of spectral entities. Examples are m/z values, formulae or any format-specific labeling scheme. It may be hierarquical. """ def __init__(self, df): self._validate(df) self._df = df @staticmethod def _validate(df): """Require a pandas DataFrame with at least two levels in column MultiIndex to work.""" if not isinstance(df, pd.DataFrame): raise AttributeError("'cdl' must be used with a Pandas DataFrame") if len(df.columns.names) < 2: raise AttributeError( "Must have at least label and sample metadata on columns" ) def _get_zip_labels_samples(self): self._df.columns = self._df.columns.remove_unused_levels() return zip( self._df.columns.get_level_values(0), self._df.columns.get_level_values(1) ) @property def unique_labels(self): """Get the different data labels (with no repetitions).""" return tuple(pd.unique(self.labels)) @property def labels(self): """iterate over labels of each DataFrame column.""" self._df.columns = self._df.columns.remove_unused_levels() return self._df.columns.get_level_values(0) @labels.setter def labels(self, value): """Setter for data labels.""" self._rebuild_col_level(value, 0) @property def label_count(self): """Get the number of labels.""" # 'no label' still counts as one (global) label return len(self.unique_labels) @property def unique_samples(self): """Get the different sample names (with no repetitions in case the number of levels > 2).""" return tuple(pd.unique(self.samples)) @property def samples(self): """iterate over sample names of each DataFrame column.""" self._df.columns = self._df.columns.remove_unused_levels() return self._df.columns.get_level_values(1) @samples.setter def samples(self, value): """Setter for sample names.""" self._rebuild_col_level(value, 1) @property def sample_count(self): """Get the number of samples.""" return len(self.unique_samples) def _rebuild_col_level(self, value, level): cols = self._df.columns.remove_unused_levels() n = len(cols) metanames = cols.names # handle value if value is None or len(value) == 0: if level == 0: value = ["no label"] elif level == 1: value = [f"Sample {i}" for i in range(1, n + 1)] else: value = [f"Info {i}" for i in range(1, n + 1)] elif _is_string(value): value = [value] else: value = list(value) nr = n // len(value) newstrs = [] for s in value: newstrs.extend([s] * nr) cols = [list(c) for c in cols] for i, s in enumerate(newstrs): cols[i][level] = s newcols = [tuple(c) for c in cols] self._df.columns = pd.MultiIndex.from_tuples(newcols, names=metanames) @property def feature_count(self): """Get the number of features.""" return len(self._df.index) @property def iter_labels_samples(self): """iterate over pairs of (label, sample name) for each DataFrame column.""" self._df.columns = self._df.columns.remove_unused_levels() return self._get_zip_labels_samples() @property def no_labels(self): """True if there is only one (global) label 'no label'.""" return self.label_count == 1 and self.labels[0] == "no label" def info(self, all_data=False): """A dicionary of global counts or a DataFrame with info for each sample""" if all_data: return dict( samples=self.sample_count, labels=self.label_count, features=self.feature_count, ) ls_table = [(s, l) for (l, s) in self._get_zip_labels_samples()] ls_table.append((self.sample_count, self.label_count)) indx_strs = [str(i) for i in range(self.sample_count)] + ["global"] return pd.DataFrame(ls_table, columns=["sample", "label"], index=indx_strs) def label_of(self, sample): """Get label from sample name""" for lbl, s in self._get_zip_labels_samples(): if s == sample: return lbl raise KeyError(f"No label found for '{sample}'") def samples_of(self, label): """Get a list of sample names from label""" snames = [s for lbl, s in self._get_zip_labels_samples() if lbl == label] return snames def _get_subset_data_indexer(self, sample=None, label=None, no_drop_na=False): if sample is None and label is None: return list(self._df.columns) if sample is not None: if _is_string(sample): samples = [sample] else: samples = list(sample) indexer = [] for s in samples: if s not in self.samples: raise KeyError(f"'{s}' is not a sample name") lbl = self.label_of(s) indexer.append((lbl, s)) if len(indexer) == 1: indexer = indexer[0] return indexer elif sample is None and label is not None: if _is_string(label): labels = [label] else: labels = list(label) indexer = [] for s in labels: if s not in self.labels: raise KeyError(f"'{s}' is not a label") indexer.append(s) #indexer = (indexer,) return indexer else: raise KeyError("Sample name or label not found") def _get_subset_data(self, sample=None, label=None, no_drop_na=False): if sample is None and label is None: df = self._df else: col_indexer = self.subset_iloc(sample=sample, label=label) df = self._df.iloc[:, col_indexer] # col_indexer = self._get_subset_data_indexer(sample=sample, label=label) # df = self._df.loc[:, col_indexer] df = df.copy() if no_drop_na else df.dropna(how="all") if isinstance(df, pd.DataFrame): df.columns = df.columns.remove_unused_levels() return df def take(self, **kwargs): """Retrieves subset of data by sample name or label.""" return self._get_subset_data(**kwargs) def subset(self, **kwargs): """Alias for take().""" return self.take(**kwargs) def features(self, **kwargs): """Get the row index (features) indexing data by sample name or label""" df = self._get_subset_data(**kwargs) return df.index def subset_where(self, sample=None, label=None): """return a boolean DataFrame with the location of subset.""" df = pd.DataFrame(False, index=self._df.index, columns=self._df.columns) col_indexer = self._get_subset_data_indexer(sample=sample, label=label) df.loc[:, col_indexer] = True return df def subset_loc(self, sample=None, label=None): """return an indexing list col_indexer to be used with .loc[:, col_indexer] for a subset.""" col_indexer = self._get_subset_data_indexer(sample=sample, label=label) return col_indexer def subset_iloc(self, sample=None, label=None): """return an indexing list col_indexer to be used with .iloc[:, col_indexer] for a subset.""" if sample is None and label is None: return list(range(len(self._df.columns))) self._df.columns = self._df.columns.remove_unused_levels() if sample is not None: if _is_string(sample): samples = [sample] else: samples = list(sample) for s in samples: if s not in self.samples: raise KeyError(f"'{s}' is not a sample name") indexer = [] list_samples = list(self.samples) for i, s in enumerate(list_samples): if s in samples: indexer.append(i) if len(indexer) == 1: indexer = indexer[0] return indexer elif sample is None and label is not None: if _is_string(label): labels = [label] else: labels = list(label) for s in labels: if s not in self.labels: raise KeyError(f"'{s}' is not a label") indexer = [] list_labels = list(self.labels) for i, lbl in enumerate(list_labels): if lbl in labels: indexer.append(i) if len(indexer) == 1: indexer = indexer[0] return indexer else: raise KeyError("Sample name or label not found") return indexer def pipe(self, func, drop_na=True, **kwargs): """Thin wrapper around DataFrame.pipe() with automatic dropna and housekeeping.""" df = self._df df = df.pipe(func, **kwargs) if drop_na: df = df.dropna(how="all") if isinstance(df, pd.DataFrame): df.columns = df.columns.remove_unused_levels() return df def erase_labels(self): """Erase the labels level (level 0) in the column MultiIndex. CAUTION: the accessor will no longer work or misinterpret levels. After the application of this function use accessor ums afterwards.""" new_cols = self._df.columns.droplevel(level=0) return
pd.DataFrame(self._df.values, index=self._df.index, columns=new_cols)
pandas.DataFrame
import argparse import sys import os.path as osp import os sys.path.insert(1, osp.abspath(osp.join(os.getcwd(), *('..',) * 2))) from dataset_preprocess import CoraDataset, PlanetoidDataset from attack.models import * import torch import pandas as pd from torch_geometric.utils.loop import add_self_loops import utils import numpy as np device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') def index_to_mask(index, size): mask = torch.zeros(size, dtype=torch.bool, device=index.device) mask[index] = 1 return mask def split_dataset(dataset, new_nodes, train_percent=0.7): torch.manual_seed(0) indices = [] _size = dataset.data.num_nodes - new_nodes y = dataset.data.y[:_size] for i in range(dataset.num_classes): index = (y == i).nonzero().view(-1) index = index[torch.randperm(index.size(0))] indices.append(index) train_index = torch.cat([i[:int(len(i) * train_percent)] for i in indices], dim=0) rest_index = torch.cat([i[int(len(i) * train_percent):] for i in indices], dim=0) rest_index = rest_index[torch.randperm(rest_index.size(0))] dataset.data.train_mask = index_to_mask(train_index, size=dataset.data.num_nodes) dataset.data.val_mask = index_to_mask(rest_index[:len(rest_index) // 2], size=dataset.data.num_nodes) dataset.data.test_mask = index_to_mask(rest_index[len(rest_index) // 2:], size=dataset.data.num_nodes) dataset.train_index = train_index[:] dataset.val_index = rest_index[:len(rest_index) // 2] dataset.test_index = rest_index[len(rest_index) // 2:] dataset.data, dataset.slices = dataset.collate([dataset.data]) return dataset def build_args(): def str2bool(v): if isinstance(v, bool): return v if v.lower() in ('yes', 'true', 't', 'y', '1'): return True elif v.lower() in ('no', 'false', 'f', 'n', '0'): return False else: raise argparse.ArgumentTypeError('Boolean value expected.') parser = argparse.ArgumentParser() parser.add_argument('--dataset_name', type=str, default='cora', help='name of dataset_preprocess') # dataset_name = ['cora', 'citeseer', 'pubmed'] parser.add_argument('--attack_graph', type=str2bool, default=True, help='global attack') parser.add_argument('--node_idx', type=int, default=None, help='no target idx') parser.add_argument('--added_node_num', type=int, default=20, help='num of new nodes') parser.add_argument('--train_percent', type=float, default=0.7, help='train percent') parser.add_argument('--sparsity', type=float, default=0.5, help='sparsity') parser.add_argument('--random', type=bool, default=False, help='random mask') parser.add_argument('--edge_size', type=float, default=0.005, help='edge_size') parser.add_argument('--edge_ent', type=float, default=1.0, help='edge_ent') parser.add_argument('--feat_sparsity', type=float, default=0.5, help='feat_sparsity') parser.add_argument('--train_epochs', type=int, default=300, help='epochs for training a GNN model') parser.add_argument('--attack_epochs', type=int, default=600, help='epochs for attacking a GNN model') parser.add_argument('--retrain_epochs', type=int, default=10, help='epochs for retraining a GNN model with new graph') parser.add_argument('--seed', type=int, default=42, help='seed') args = parser.parse_args() return args def fix_random_seed(seed): torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) # multi gpu torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False torch.backends.cudnn.enabled = False np.random.seed(seed) if __name__ == '__main__': args = build_args() fix_random_seed(seed=args.seed) ADD_ZERO = 0 # step 1: train baseline data_name = args.dataset_name if data_name in ["cora", 'photo']: baseline = CoraDataset('./datasets', data_name, added_new_nodes=ADD_ZERO) else: # for dataset_preprocess pubmed, and citeseer baseline = PlanetoidDataset('./datasets', data_name, added_new_nodes=ADD_ZERO) print(" load data finished") split_dataset_name = "baseline_"+data_name+"_split" split_path = osp.join('./datasets', split_dataset_name, 'train_percent', str(args.train_percent), 'added_node', str(ADD_ZERO)) if not osp.isdir(split_path): dataset = split_dataset(baseline, ADD_ZERO, train_percent=args.train_percent) os.makedirs(split_path) torch.save(baseline, osp.join(split_path, 'split_data.pt')) else: baseline = torch.load(osp.join(split_path, 'split_data.pt')) edge_index_with_loop, _ = add_self_loops(baseline.data.edge_index, num_nodes=baseline.data.num_nodes) baseline.data.edge_index = edge_index_with_loop dim_node = baseline.num_node_features dim_edge = baseline.num_edge_features num_classes = baseline.num_classes baseline_model_ckpt_fold = osp.join('checkpoints', data_name, str(args.train_percent),'GCN_2l', 'seed', str(args.seed)) if not osp.isdir(baseline_model_ckpt_fold): os.makedirs(baseline_model_ckpt_fold) baseline_model_ckpt_path = osp.join(baseline_model_ckpt_fold,'GCN_2l_best.ckpt') model = GCN_2l(model_level='node', dim_node=dim_node, dim_hidden=16, num_classes=num_classes) model.to(device) if osp.isfile(baseline_model_ckpt_path): print(" loding from file") model.load_state_dict(torch.load(baseline_model_ckpt_path)['state_dict']) else: baseline.data = baseline.data.to(device) utils.train(model, baseline.data, baseline_model_ckpt_path, lr=0.005, epochs=args.train_epochs, verbose=False) # check baseline output of sepcific node for target attack if not args.attack_graph: print(" generate target attack test node list") model.eval() corrected_test_node_id_list = [] cnt = 0 with torch.no_grad(): # print("baseline test index", baseline.test_index) output = model(baseline.data.x, baseline.data.edge_index, None) cols = ["test_ID", "predict_class"] success = None # y is from [0-6] tmp_list = [] for id in baseline.test_index: # print("test id is ", id.item()) node_idx = id.item() predict_class = torch.argmax(output[node_idx], dim=0).item() origin = baseline.data.y[node_idx] if origin == predict_class: corrected_test_node_id_list.append(node_idx) cnt += 1 # tmp_list.append([node_idx, predict_class, str(output[node_idx].detach().numpy())]) tmp_list.append([node_idx, predict_class]) # print("tmp list", tmp_list) print("acc = ", cnt/baseline.test_index.size(0)) path = osp.join('./results/target_attack', data_name) if not osp.isdir(path): os.makedirs(path) file = f'{path}/train_percent_{args.train_percent}_corrected_test_ID_res.csv' print(" test id list file saved at", file) df = pd.DataFrame(tmp_list,columns=cols) if not os.path.isfile(file): df.to_csv(file, index=False) vis_file = f'{path}/train_percent_{args.train_percent}_baseline_A_X_res.pkl' print(" baseline visualization file saved at ", vis_file) utils.save_to_file( [baseline.data.edge_index.to('cpu'), torch.argmax(output.to('cpu'), dim=1), baseline.data.x[:]], vis_file) exit(-1) # args.node_idx = baseline.test_index[0].item() # print(" node idx ", args.node_idx) # print(" output shape ", output.shape, output[args.node_idx], type(output[args.node_idx])) # pred_class = torch.argmax(output[args.node_idx], dim=0).item() # print(" pred class = ", pred_class) # origin = baseline.data.y[args.node_idx] # print(" origin", origin) # utils.save_to_file([baseline.data.edge_index.to('cpu'), torch.argmax(output.to('cpu'), dim=1), baseline.data.x[:]], 'baseline'+str(args.node_idx)+'dataset_preprocess.pkl') # exit(-1) test_acc, test_loss, macro_precision, macro_recall, macro_f1_score, weighted_precision, weighted_recall, weighted_f1_score = utils.evaluate( model, baseline.data, baseline.data.test_mask) print(" test acc", test_acc) columns = ['seed', 'accuracy', 'macro_precision', 'macro_recall', 'macro_f1_score', 'weighted_precision', 'weighted_recall', 'weighted_f1_score'] # path = f'results/baseline' path = osp.join('./results/baseline', data_name) if not osp.isdir(path): os.makedirs(path) file = f'{path}/train_percent_{args.train_percent}_res.csv' print(" res save as ", file) # file = f'{path}/.csv' res_list = [args.seed, test_acc, macro_precision, macro_recall, macro_f1_score, weighted_precision, weighted_recall, weighted_f1_score] df = pd.DataFrame([res_list],columns=columns) if not os.path.isfile(file): df.to_csv(file, index=False) else: prev_res =
pd.read_csv(file)
pandas.read_csv
""" Test the converters. Currently, there is only the Kojak converter. """ import os import pytest import numpy as np import pandas as pd import xenith from xenith.convert.kojak import _count_proteins from xenith.convert.kojak import _all_decoy from xenith.convert.kojak import _read_percolator from xenith.convert.kojak import _read_kojak from xenith.convert.kojak import _write_pin @pytest.fixture def kojak_files(): """Locations of test Kojak files""" kojak = os.path.join("tests", "data", "test.kojak.txt") intra = os.path.join("tests", "data", "test.perc.intra.txt") inter = os.path.join("tests", "data", "test.perc.inter.txt") return (kojak, inter, intra) def test_convert_kojak(tmpdir, kojak_files): """ Test the conversion of Kojak results to xenith tab-delimited format. """ out_file = os.path.join(tmpdir, "test.txt") xenith.convert.kojak(kojak_files[0], kojak_files[1], kojak_files[2], out_file=out_file) # Because there are only 2 proteins in these results, 'intraprotein' # should always be 0. dataset = xenith.load_psms(out_file) intraprotein = dataset.features.intraprotein.tolist() assert all(not x for x in intraprotein) # also verify to_pin doesn't error: xenith.convert.kojak(kojak_files[0], kojak_files[1], kojak_files[2], out_file=out_file, to_pin=True) def test_count_proteins(): """Test that count proteins works as expected.""" proteins = pd.DataFrame({"ProteinA": ["a", "b", "c", "a;b"], "ProteinB": ["c", "a;c", "b", "b;c;a"]}) num_prot = _count_proteins(proteins) assert num_prot == 3 def test_all_decoy(): """Test that the _all_decoy function works.""" proteins = pd.Series(["a_b", "d_c", "a_b;d_c", "d_a;d_b", "d_c;a_a"]) answer =
pd.Series([0, 1, 0, 1, 0])
pandas.Series
import cPickle as pickle import logging import multiprocessing as mp import os import subprocess import timeit import pandas as pd import parallel as par import atom3.database as db import atom3.sequence as sequ def add_conservation_parser(subparsers, pp): """Add parser.""" def map_all_pssms_main(args): map_all_pssms(args.pkl_dataset, args.blastdb, args.output_dir, args.c) ap = subparsers.add_parser( 'conservation', description='sequence conservation', help='compute sequence conservation features', parents=[pp]) ap.set_defaults(func=map_all_pssms_main) ap.add_argument('pkl_dataset', metavar='pkl', type=str, help='parsed dataset') ap.add_argument('blastdb', metavar='bdb', type=str, help='blast database to do lookups on') ap.add_argument('output_dir', metavar='output', type=str, help='directory to output to') ap.add_argument('-c', metavar='cpus', default=mp.cpu_count(), type=int, help='number of cpus to use for processing (default:' ' number processors available on current machine)') def gen_pssm(pdb_filename, blastdb, output_filename): """Generate PSSM and PSFM from sequence.""" pdb_name = db.get_pdb_name(pdb_filename) out_dir = os.path.dirname(output_filename) work_dir = os.path.join(out_dir, 'work') if not os.path.exists(work_dir): os.makedirs(work_dir) fasta_format = work_dir + "/{:}.fa" id_format = work_dir + "/{:}.cpkl" chains, chain_fasta_filenames, id_filenames = sequ.pdb_to_fasta( pdb_filename, fasta_format, id_format, True) pssms = [] for chain, chain_fasta_filename, id_filename in \ zip(chains, chain_fasta_filenames, id_filenames): basename = os.path.splitext(chain_fasta_filename)[0] pssm_filename = "{}.pssm".format(basename) blast_filename = "{}.blast".format(basename) clustal_filename = "{}.clustal".format(basename) al2co_filename = "{}.al2co".format(basename) if not os.path.exists(pssm_filename): logging.info("Blasting {:}".format(chain_fasta_filename)) _blast(chain_fasta_filename, pssm_filename, blast_filename, blastdb) if not os.path.exists(pssm_filename): logging.warning("No hits for {:}".format(chain_fasta_filename)) # Create empty file. open(pssm_filename, 'w').close() if not os.path.exists(clustal_filename): logging.info("Converting {:}".format(blast_filename)) _to_clustal(blast_filename, clustal_filename) if not os.path.exists(al2co_filename): logging.info("Al2co {:}".format(al2co_filename)) _al2co(clustal_filename, al2co_filename) if os.stat(pssm_filename).st_size != 0: pssm = pd.read_csv( pssm_filename, skiprows=2, skipfooter=6, delim_whitespace=True, engine='python', usecols=range(20), index_col=[0, 1]) pssm = pssm.reset_index() del pssm['level_0'] pssm.rename(columns={'level_1': 'orig'}, inplace=True) pscm = pd.read_csv( pssm_filename, skiprows=2, skipfooter=6, delim_whitespace=True, engine='python', usecols=range(20, 40), index_col=[0, 1]) psfm = pscm.applymap(lambda x: x / 100.) psfm = psfm.reset_index() del psfm['level_0'] psfm.columns = pssm.columns del psfm['orig'] del pssm['orig'] # Combine both into one. psfm = psfm.add_prefix('psfm_') pssm = pssm.add_prefix('pssm_') al2co = pd.read_csv( al2co_filename, delim_whitespace=True, usecols=[2], names=['al2co']) pssm = pd.concat([pssm, psfm, al2co], axis=1) else: logging.warning("No pssm found for {:} (model {:}, chain {:})" .format(pdb_name, chain[-2], chain[-1])) pssm, psfm = None, None pdb_name = db.get_pdb_name(pdb_filename) key = pdb_name + '-' + chain[-2] + '-' + chain[-1] pos_to_res = pickle.load(open(id_filename))[key] pssm['pdb_name'] = db.get_pdb_name(pdb_filename) pssm['model'] = chain[0] pssm['chain'] = chain[1] pssm['residue'] = pos_to_res pssms.append(pssm) pssms = pd.concat(pssms) return pssms def map_pssms(pdb_filename, blastdb, output_filename): pdb_name = db.get_pdb_name(pdb_filename) start_time = timeit.default_timer() start_time_blasting = timeit.default_timer() pis = gen_pssm(pdb_filename, blastdb, output_filename) num_chains = len(pis.groupby(['pdb_name', 'model', 'chain'])) elapsed_blasting = timeit.default_timer() - start_time_blasting parsed =
pd.read_pickle(pdb_filename)
pandas.read_pickle
import pathlib import numpy as np import pandas as pd from ..designMethods.en_13001_3_3 import ENComputation, LoadCollectivePrediction, MARSInput from .output import ResultWriter from ..designMethods.en_13001_3_3.input_error_check import InputFileError class MainApplication(): def __init__(self) -> None: self.input = MARSInput() self.prediction = LoadCollectivePrediction() self.computation: ENComputation self.input_file_path: pathlib.Path self.output_file_path: pathlib.Path self.result_writer: ResultWriter self.sc_direction: int self.config: str def read_input_file(self, filename: pathlib.Path) -> None: # load data for load collective prediction self.input.clear_inputs() try: self.input.read_input_df(filename) self.input.check_input_df() if len(self.input.input_df.columns) == 1: raise InputFileError("More than 3 empty cells in all configurations") self.input.load_gp_input("Stacker Crane (SC) And Rack Configuration") # load en 13001 parameters self.input.load_parameter_input("EN-13001-3-3") # load materials self.input.materials.read(filename, "rail_materials", "wheel_materials") # load geometries self.input.geometries.read(filename, "rail_geometries", "wheel_geometries") # check materials and geometries self.input.geometry_and_material_error_check() # # load materials # self.input.load_material_input_check(filename, "rail_materials", "wheel_materials") # # load rail and wheel geometries # self.input.load_geometry_input_check(filename, "rail_geometries", "wheel_geometries") # check for input errors and drop faulty configurations self.input.perform_error_checks() self.input.drop_error_configs() if len(self.input.parameters.gen_params) == 0: raise InputFileError("At least one error in all configurations") except InputFileError as e: raise e except ValueError as e: if "Worksheet" in str(e): raise InputFileError("Broken input file: one or more required input sheets were missing. required sheets are: Input_variables, rail_materials, wheel_materials, wheel_geometries, rail_geometries") from e raise InputFileError("Unknown fatal error with input file, please redownload") from e except Exception as e: if "sheet" in str(e): raise InputFileError("Broken input file: one or more required input sheets were missing. required sheets are: Input_variables, rail_materials, wheel_materials, wheel_geometries, rail_geometries") from e raise InputFileError("Unknown fatal error with input file, please redownload") from e def prepare_gp_input(self): self.input.recompute_gp_data(self.config) # check gp input variables for values outside expected intervals self.input.perform_gp_input_warning_check() def run_computation(self) -> None: self.input.clear_computed_inputs() self.input.set_materials_and_geometry() self.input.parameters.compute_f_f3() self.input.parameters.compute_contact_and_f_1() self.prediction.clear_prediction_results() # assign f_sd_s self.prediction.load_f_sd_s(self.input.parameters.gen_params["F_sd_s_w"], self.input.parameters.gen_params["F_sd_s_r"]) self.prediction.predict_kc(self.input.gp_input.norm) self.prediction.compute_F_sd_f_all(self.input.gp_input.raw, self.config, self.sc_direction) self.prediction.recompute_kc(self.input.parameters.gen_params["F_sd_f_w"], "wf") self.prediction.recompute_kc(self.input.parameters.gen_params["F_sd_f_w"], "wr") self.prediction.recompute_kc(self.input.parameters.gen_params["F_sd_f_r"], "r") self.prediction.predict_travelled_dist(self.input.gp_input.raw["cycle_mode"], self.input.gp_input.raw["num_cycles_wheel"], self.input.gp_input.raw["r_l"]) # create computation instance and compute configs self.computation = ENComputation() self.computation.load_data(self.input, self.prediction) self.computation.compute_pre_F_rd_all() self.computation.compute_F_rd_all() self.computation.compute_proofs_all() def initialize_result_writer(self): # pick a filename that doesn't exist yet self.result_writer = ResultWriter(self.computation, self.input, self.output_file_path) self.result_writer.create_summary() def computation_mode_1(self) -> None: self.prepare_gp_input() self.run_computation() # reults output self.input.prepare_for_output() self.computation.load_results_all() self.initialize_result_writer() self.result_writer.write() # create_output_file(self.computation, self.input, self.output_file_path) def computation_mode_2(self) -> None: self.prepare_gp_input() # sort wheel geometries by diameter self.input.geometries.wheel.sort_values("D", inplace=True) wheel_geometries = list(self.input.geometries.wheel.index) proof_results = np.empty((len(wheel_geometries), len(self.input.parameters.gen_params))) for idx, wheel_geometry in enumerate(wheel_geometries): self.input.parameters.gen_params.loc[:, "wheel_geometry"] = wheel_geometry self.run_computation() # check if all proofs are fullfilled proof_results[idx, :] = np.logical_and.reduce(( self.computation.wheel_f.proofs["static"], self.computation.wheel_f.proofs["fatigue"].loc[:, "preds"], self.computation.wheel_r.proofs["static"], self.computation.wheel_r.proofs["fatigue"].loc[:, "preds"], self.computation.rail.proofs["static"], self.computation.rail.proofs["fatigue"].loc[:, "preds"] )) wheel_geometries_min_d = pd.Series(wheel_geometries)[proof_results.argmax(axis=0)] wheel_geometries_min_d = pd.DataFrame(wheel_geometries_min_d, columns=["Min. Wheel Geometry"]) wheel_geometries_min_d.index = range(len(wheel_geometries_min_d)) wheel_geometries_min_d[proof_results.sum(axis=0) < 1] = wheel_geometries[-1] self.input.parameters.gen_params.loc[:, "wheel_geometry"] = list(wheel_geometries_min_d.to_numpy()) self.run_computation() wheel_geometries_min_d[proof_results.sum(axis=0) < 1] = "NaN" # drop wheel geometry from output params # self.input.parameters.gen_params_out.drop(columns="wheel_geometry", inplace=True) # reults output self.input.prepare_for_output() self.computation.load_results_all() # add wheel geometry to output self.computation.wheel_f.results["static"] = pd.concat( [wheel_geometries_min_d, self.computation.wheel_f.results["static"]], axis=1 ) self.computation.wheel_r.results["static"] = pd.concat( [wheel_geometries_min_d, self.computation.wheel_r.results["static"]], axis=1 ) self.initialize_result_writer() # add wheel geometry to summary self.result_writer.summary["wheel_f"] = pd.concat([wheel_geometries_min_d, self.result_writer.summary["wheel_f"].T], axis=1) self.result_writer.summary["wheel_r"] =
pd.concat([wheel_geometries_min_d, self.result_writer.summary["wheel_r"].T], axis=1)
pandas.concat
#!/usr/bin/env python # encoding:utf-8 """ Author : <NAME> Date : 2021/8/4 Time: 20:06 File: precision_table_plot.py HomePage : http://github.com/yuanqingmei Email : <EMAIL> compute the avg std max min values and draw the box plot of precision and recall. """ import time def precision_table_plot(working_dir="F:\\NJU\\MTmeta\\experiments\\pooled\\", plot_dir="F:\\NJU\\MTmeta\\experiments\\pooled\\plots\\"): import os import csv import pandas as pd import matplotlib.pyplot as plt
pd.set_option('display.max_columns', None)
pandas.set_option
from __future__ import division from contextlib import contextmanager from datetime import datetime from functools import wraps import locale import os import re from shutil import rmtree import string import subprocess import sys import tempfile import traceback import warnings import numpy as np from numpy.random import rand, randn from pandas._libs import testing as _testing import pandas.compat as compat from pandas.compat import ( PY2, PY3, Counter, StringIO, callable, filter, httplib, lmap, lrange, lzip, map, raise_with_traceback, range, string_types, u, unichr, zip) from pandas.core.dtypes.common import ( is_bool, is_categorical_dtype, is_datetime64_dtype, is_datetime64tz_dtype, is_datetimelike_v_numeric, is_datetimelike_v_object, is_extension_array_dtype, is_interval_dtype, is_list_like, is_number, is_period_dtype, is_sequence, is_timedelta64_dtype, needs_i8_conversion) from pandas.core.dtypes.missing import array_equivalent import pandas as pd from pandas import ( Categorical, CategoricalIndex, DataFrame, DatetimeIndex, Index, IntervalIndex, MultiIndex, Panel, PeriodIndex, RangeIndex, Series, bdate_range) from pandas.core.algorithms import take_1d from pandas.core.arrays import ( DatetimeArrayMixin as DatetimeArray, ExtensionArray, IntervalArray, PeriodArray, TimedeltaArrayMixin as TimedeltaArray, period_array) import pandas.core.common as com from pandas.io.common import urlopen from pandas.io.formats.printing import pprint_thing N = 30 K = 4 _RAISE_NETWORK_ERROR_DEFAULT = False # set testing_mode _testing_mode_warnings = (DeprecationWarning, compat.ResourceWarning) def set_testing_mode(): # set the testing mode filters testing_mode = os.environ.get('PANDAS_TESTING_MODE', 'None') if 'deprecate' in testing_mode: warnings.simplefilter('always', _testing_mode_warnings) def reset_testing_mode(): # reset the testing mode filters testing_mode = os.environ.get('PANDAS_TESTING_MODE', 'None') if 'deprecate' in testing_mode: warnings.simplefilter('ignore', _testing_mode_warnings) set_testing_mode() def reset_display_options(): """ Reset the display options for printing and representing objects. """ pd.reset_option('^display.', silent=True) def round_trip_pickle(obj, path=None): """ Pickle an object and then read it again. Parameters ---------- obj : pandas object The object to pickle and then re-read. path : str, default None The path where the pickled object is written and then read. Returns ------- round_trip_pickled_object : pandas object The original object that was pickled and then re-read. """ if path is None: path = u('__{random_bytes}__.pickle'.format(random_bytes=rands(10))) with ensure_clean(path) as path: pd.to_pickle(obj, path) return pd.read_pickle(path) def round_trip_pathlib(writer, reader, path=None): """ Write an object to file specified by a pathlib.Path and read it back Parameters ---------- writer : callable bound to pandas object IO writing function (e.g. DataFrame.to_csv ) reader : callable IO reading function (e.g. pd.read_csv ) path : str, default None The path where the object is written and then read. Returns ------- round_trip_object : pandas object The original object that was serialized and then re-read. """ import pytest Path = pytest.importorskip('pathlib').Path if path is None: path = '___pathlib___' with ensure_clean(path) as path: writer(Path(path)) obj = reader(Path(path)) return obj def round_trip_localpath(writer, reader, path=None): """ Write an object to file specified by a py.path LocalPath and read it back Parameters ---------- writer : callable bound to pandas object IO writing function (e.g. DataFrame.to_csv ) reader : callable IO reading function (e.g. pd.read_csv ) path : str, default None The path where the object is written and then read. Returns ------- round_trip_object : pandas object The original object that was serialized and then re-read. """ import pytest LocalPath = pytest.importorskip('py.path').local if path is None: path = '___localpath___' with ensure_clean(path) as path: writer(LocalPath(path)) obj = reader(LocalPath(path)) return obj @contextmanager def decompress_file(path, compression): """ Open a compressed file and return a file object Parameters ---------- path : str The path where the file is read from compression : {'gzip', 'bz2', 'zip', 'xz', None} Name of the decompression to use Returns ------- f : file object """ if compression is None: f = open(path, 'rb') elif compression == 'gzip': import gzip f = gzip.open(path, 'rb') elif compression == 'bz2': import bz2 f = bz2.BZ2File(path, 'rb') elif compression == 'xz': lzma = compat.import_lzma() f = lzma.LZMAFile(path, 'rb') elif compression == 'zip': import zipfile zip_file = zipfile.ZipFile(path) zip_names = zip_file.namelist() if len(zip_names) == 1: f = zip_file.open(zip_names.pop()) else: raise ValueError('ZIP file {} error. Only one file per ZIP.' .format(path)) else: msg = 'Unrecognized compression type: {}'.format(compression) raise ValueError(msg) try: yield f finally: f.close() if compression == "zip": zip_file.close() def assert_almost_equal(left, right, check_dtype="equiv", check_less_precise=False, **kwargs): """ Check that the left and right objects are approximately equal. By approximately equal, we refer to objects that are numbers or that contain numbers which may be equivalent to specific levels of precision. Parameters ---------- left : object right : object check_dtype : bool / string {'equiv'}, default 'equiv' Check dtype if both a and b are the same type. If 'equiv' is passed in, then `RangeIndex` and `Int64Index` are also considered equivalent when doing type checking. check_less_precise : bool or int, default False Specify comparison precision. 5 digits (False) or 3 digits (True) after decimal points are compared. If int, then specify the number of digits to compare. When comparing two numbers, if the first number has magnitude less than 1e-5, we compare the two numbers directly and check whether they are equivalent within the specified precision. Otherwise, we compare the **ratio** of the second number to the first number and check whether it is equivalent to 1 within the specified precision. """ if isinstance(left, pd.Index): return assert_index_equal(left, right, check_exact=False, exact=check_dtype, check_less_precise=check_less_precise, **kwargs) elif isinstance(left, pd.Series): return assert_series_equal(left, right, check_exact=False, check_dtype=check_dtype, check_less_precise=check_less_precise, **kwargs) elif isinstance(left, pd.DataFrame): return assert_frame_equal(left, right, check_exact=False, check_dtype=check_dtype, check_less_precise=check_less_precise, **kwargs) else: # Other sequences. if check_dtype: if is_number(left) and is_number(right): # Do not compare numeric classes, like np.float64 and float. pass elif is_bool(left) and is_bool(right): # Do not compare bool classes, like np.bool_ and bool. pass else: if (isinstance(left, np.ndarray) or isinstance(right, np.ndarray)): obj = "numpy array" else: obj = "Input" assert_class_equal(left, right, obj=obj) return _testing.assert_almost_equal( left, right, check_dtype=check_dtype, check_less_precise=check_less_precise, **kwargs) def _check_isinstance(left, right, cls): """ Helper method for our assert_* methods that ensures that the two objects being compared have the right type before proceeding with the comparison. Parameters ---------- left : The first object being compared. right : The second object being compared. cls : The class type to check against. Raises ------ AssertionError : Either `left` or `right` is not an instance of `cls`. """ err_msg = "{name} Expected type {exp_type}, found {act_type} instead" cls_name = cls.__name__ if not isinstance(left, cls): raise AssertionError(err_msg.format(name=cls_name, exp_type=cls, act_type=type(left))) if not isinstance(right, cls): raise AssertionError(err_msg.format(name=cls_name, exp_type=cls, act_type=type(right))) def assert_dict_equal(left, right, compare_keys=True): _check_isinstance(left, right, dict) return _testing.assert_dict_equal(left, right, compare_keys=compare_keys) def randbool(size=(), p=0.5): return rand(*size) <= p RANDS_CHARS = np.array(list(string.ascii_letters + string.digits), dtype=(np.str_, 1)) RANDU_CHARS = np.array(list(u("").join(map(unichr, lrange(1488, 1488 + 26))) + string.digits), dtype=(np.unicode_, 1)) def rands_array(nchars, size, dtype='O'): """Generate an array of byte strings.""" retval = (np.random.choice(RANDS_CHARS, size=nchars * np.prod(size)) .view((np.str_, nchars)).reshape(size)) if dtype is None: return retval else: return retval.astype(dtype) def randu_array(nchars, size, dtype='O'): """Generate an array of unicode strings.""" retval = (np.random.choice(RANDU_CHARS, size=nchars * np.prod(size)) .view((np.unicode_, nchars)).reshape(size)) if dtype is None: return retval else: return retval.astype(dtype) def rands(nchars): """ Generate one random byte string. See `rands_array` if you want to create an array of random strings. """ return ''.join(np.random.choice(RANDS_CHARS, nchars)) def randu(nchars): """ Generate one random unicode string. See `randu_array` if you want to create an array of random unicode strings. """ return ''.join(np.random.choice(RANDU_CHARS, nchars)) def close(fignum=None): from matplotlib.pyplot import get_fignums, close as _close if fignum is None: for fignum in get_fignums(): _close(fignum) else: _close(fignum) # ----------------------------------------------------------------------------- # locale utilities def check_output(*popenargs, **kwargs): # shamelessly taken from Python 2.7 source r"""Run command with arguments and return its output as a byte string. If the exit code was non-zero it raises a CalledProcessError. The CalledProcessError object will have the return code in the returncode attribute and output in the output attribute. The arguments are the same as for the Popen constructor. Example: >>> check_output(["ls", "-l", "/dev/null"]) 'crw-rw-rw- 1 root root 1, 3 Oct 18 2007 /dev/null\n' The stdout argument is not allowed as it is used internally. To capture standard error in the result, use stderr=STDOUT. >>> check_output(["/bin/sh", "-c", ... "ls -l non_existent_file ; exit 0"], ... stderr=STDOUT) 'ls: non_existent_file: No such file or directory\n' """ if 'stdout' in kwargs: raise ValueError('stdout argument not allowed, it will be overridden.') process = subprocess.Popen(stdout=subprocess.PIPE, stderr=subprocess.PIPE, *popenargs, **kwargs) output, unused_err = process.communicate() retcode = process.poll() if retcode: cmd = kwargs.get("args") if cmd is None: cmd = popenargs[0] raise subprocess.CalledProcessError(retcode, cmd, output=output) return output def _default_locale_getter(): try: raw_locales = check_output(['locale -a'], shell=True) except subprocess.CalledProcessError as e: raise type(e)("{exception}, the 'locale -a' command cannot be found " "on your system".format(exception=e)) return raw_locales def get_locales(prefix=None, normalize=True, locale_getter=_default_locale_getter): """Get all the locales that are available on the system. Parameters ---------- prefix : str If not ``None`` then return only those locales with the prefix provided. For example to get all English language locales (those that start with ``"en"``), pass ``prefix="en"``. normalize : bool Call ``locale.normalize`` on the resulting list of available locales. If ``True``, only locales that can be set without throwing an ``Exception`` are returned. locale_getter : callable The function to use to retrieve the current locales. This should return a string with each locale separated by a newline character. Returns ------- locales : list of strings A list of locale strings that can be set with ``locale.setlocale()``. For example:: locale.setlocale(locale.LC_ALL, locale_string) On error will return None (no locale available, e.g. Windows) """ try: raw_locales = locale_getter() except Exception: return None try: # raw_locales is "\n" separated list of locales # it may contain non-decodable parts, so split # extract what we can and then rejoin. raw_locales = raw_locales.split(b'\n') out_locales = [] for x in raw_locales: if PY3: out_locales.append(str( x, encoding=pd.options.display.encoding)) else: out_locales.append(str(x)) except TypeError: pass if prefix is None: return _valid_locales(out_locales, normalize) pattern = re.compile('{prefix}.*'.format(prefix=prefix)) found = pattern.findall('\n'.join(out_locales)) return _valid_locales(found, normalize) @contextmanager def set_locale(new_locale, lc_var=locale.LC_ALL): """Context manager for temporarily setting a locale. Parameters ---------- new_locale : str or tuple A string of the form <language_country>.<encoding>. For example to set the current locale to US English with a UTF8 encoding, you would pass "en_US.UTF-8". lc_var : int, default `locale.LC_ALL` The category of the locale being set. Notes ----- This is useful when you want to run a particular block of code under a particular locale, without globally setting the locale. This probably isn't thread-safe. """ current_locale = locale.getlocale() try: locale.setlocale(lc_var, new_locale) normalized_locale = locale.getlocale() if com._all_not_none(*normalized_locale): yield '.'.join(normalized_locale) else: yield new_locale finally: locale.setlocale(lc_var, current_locale) def can_set_locale(lc, lc_var=locale.LC_ALL): """ Check to see if we can set a locale, and subsequently get the locale, without raising an Exception. Parameters ---------- lc : str The locale to attempt to set. lc_var : int, default `locale.LC_ALL` The category of the locale being set. Returns ------- is_valid : bool Whether the passed locale can be set """ try: with set_locale(lc, lc_var=lc_var): pass except (ValueError, locale.Error): # horrible name for a Exception subclass return False else: return True def _valid_locales(locales, normalize): """Return a list of normalized locales that do not throw an ``Exception`` when set. Parameters ---------- locales : str A string where each locale is separated by a newline. normalize : bool Whether to call ``locale.normalize`` on each locale. Returns ------- valid_locales : list A list of valid locales. """ if normalize: normalizer = lambda x: locale.normalize(x.strip()) else: normalizer = lambda x: x.strip() return list(filter(can_set_locale, map(normalizer, locales))) # ----------------------------------------------------------------------------- # Stdout / stderr decorators @contextmanager def set_defaultencoding(encoding): """ Set default encoding (as given by sys.getdefaultencoding()) to the given encoding; restore on exit. Parameters ---------- encoding : str """ if not PY2: raise ValueError("set_defaultencoding context is only available " "in Python 2.") orig = sys.getdefaultencoding() reload(sys) # noqa:F821 sys.setdefaultencoding(encoding) try: yield finally: sys.setdefaultencoding(orig) def capture_stdout(f): r""" Decorator to capture stdout in a buffer so that it can be checked (or suppressed) during testing. Parameters ---------- f : callable The test that is capturing stdout. Returns ------- f : callable The decorated test ``f``, which captures stdout. Examples -------- >>> from pandas.util.testing import capture_stdout >>> import sys >>> >>> @capture_stdout ... def test_print_pass(): ... print("foo") ... out = sys.stdout.getvalue() ... assert out == "foo\n" >>> >>> @capture_stdout ... def test_print_fail(): ... print("foo") ... out = sys.stdout.getvalue() ... assert out == "bar\n" ... AssertionError: assert 'foo\n' == 'bar\n' """ @compat.wraps(f) def wrapper(*args, **kwargs): try: sys.stdout = StringIO() f(*args, **kwargs) finally: sys.stdout = sys.__stdout__ return wrapper def capture_stderr(f): r""" Decorator to capture stderr in a buffer so that it can be checked (or suppressed) during testing. Parameters ---------- f : callable The test that is capturing stderr. Returns ------- f : callable The decorated test ``f``, which captures stderr. Examples -------- >>> from pandas.util.testing import capture_stderr >>> import sys >>> >>> @capture_stderr ... def test_stderr_pass(): ... sys.stderr.write("foo") ... out = sys.stderr.getvalue() ... assert out == "foo\n" >>> >>> @capture_stderr ... def test_stderr_fail(): ... sys.stderr.write("foo") ... out = sys.stderr.getvalue() ... assert out == "bar\n" ... AssertionError: assert 'foo\n' == 'bar\n' """ @compat.wraps(f) def wrapper(*args, **kwargs): try: sys.stderr = StringIO() f(*args, **kwargs) finally: sys.stderr = sys.__stderr__ return wrapper # ----------------------------------------------------------------------------- # Console debugging tools def debug(f, *args, **kwargs): from pdb import Pdb as OldPdb try: from IPython.core.debugger import Pdb kw = dict(color_scheme='Linux') except ImportError: Pdb = OldPdb kw = {} pdb = Pdb(**kw) return pdb.runcall(f, *args, **kwargs) def pudebug(f, *args, **kwargs): import pudb return pudb.runcall(f, *args, **kwargs) def set_trace(): from IPython.core.debugger import Pdb try: Pdb(color_scheme='Linux').set_trace(sys._getframe().f_back) except Exception: from pdb import Pdb as OldPdb OldPdb().set_trace(sys._getframe().f_back) # ----------------------------------------------------------------------------- # contextmanager to ensure the file cleanup @contextmanager def ensure_clean(filename=None, return_filelike=False): """Gets a temporary path and agrees to remove on close. Parameters ---------- filename : str (optional) if None, creates a temporary file which is then removed when out of scope. if passed, creates temporary file with filename as ending. return_filelike : bool (default False) if True, returns a file-like which is *always* cleaned. Necessary for savefig and other functions which want to append extensions. """ filename = filename or '' fd = None if return_filelike: f = tempfile.TemporaryFile(suffix=filename) try: yield f finally: f.close() else: # don't generate tempfile if using a path with directory specified if len(os.path.dirname(filename)): raise ValueError("Can't pass a qualified name to ensure_clean()") try: fd, filename = tempfile.mkstemp(suffix=filename) except UnicodeEncodeError: import pytest pytest.skip('no unicode file names on this system') try: yield filename finally: try: os.close(fd) except Exception: print("Couldn't close file descriptor: {fdesc} (file: {fname})" .format(fdesc=fd, fname=filename)) try: if os.path.exists(filename): os.remove(filename) except Exception as e: print("Exception on removing file: {error}".format(error=e)) @contextmanager def ensure_clean_dir(): """ Get a temporary directory path and agrees to remove on close. Yields ------ Temporary directory path """ directory_name = tempfile.mkdtemp(suffix='') try: yield directory_name finally: try: rmtree(directory_name) except Exception: pass @contextmanager def ensure_safe_environment_variables(): """ Get a context manager to safely set environment variables All changes will be undone on close, hence environment variables set within this contextmanager will neither persist nor change global state. """ saved_environ = dict(os.environ) try: yield finally: os.environ.clear() os.environ.update(saved_environ) # ----------------------------------------------------------------------------- # Comparators def equalContents(arr1, arr2): """Checks if the set of unique elements of arr1 and arr2 are equivalent. """ return frozenset(arr1) == frozenset(arr2) def assert_index_equal(left, right, exact='equiv', check_names=True, check_less_precise=False, check_exact=True, check_categorical=True, obj='Index'): """Check that left and right Index are equal. Parameters ---------- left : Index right : Index exact : bool / string {'equiv'}, default 'equiv' Whether to check the Index class, dtype and inferred_type are identical. If 'equiv', then RangeIndex can be substituted for Int64Index as well. check_names : bool, default True Whether to check the names attribute. check_less_precise : bool or int, default False Specify comparison precision. Only used when check_exact is False. 5 digits (False) or 3 digits (True) after decimal points are compared. If int, then specify the digits to compare check_exact : bool, default True Whether to compare number exactly. check_categorical : bool, default True Whether to compare internal Categorical exactly. obj : str, default 'Index' Specify object name being compared, internally used to show appropriate assertion message """ __tracebackhide__ = True def _check_types(l, r, obj='Index'): if exact: assert_class_equal(l, r, exact=exact, obj=obj) # Skip exact dtype checking when `check_categorical` is False if check_categorical: assert_attr_equal('dtype', l, r, obj=obj) # allow string-like to have different inferred_types if l.inferred_type in ('string', 'unicode'): assert r.inferred_type in ('string', 'unicode') else: assert_attr_equal('inferred_type', l, r, obj=obj) def _get_ilevel_values(index, level): # accept level number only unique = index.levels[level] labels = index.codes[level] filled = take_1d(unique.values, labels, fill_value=unique._na_value) values = unique._shallow_copy(filled, name=index.names[level]) return values # instance validation _check_isinstance(left, right, Index) # class / dtype comparison _check_types(left, right, obj=obj) # level comparison if left.nlevels != right.nlevels: msg1 = '{obj} levels are different'.format(obj=obj) msg2 = '{nlevels}, {left}'.format(nlevels=left.nlevels, left=left) msg3 = '{nlevels}, {right}'.format(nlevels=right.nlevels, right=right) raise_assert_detail(obj, msg1, msg2, msg3) # length comparison if len(left) != len(right): msg1 = '{obj} length are different'.format(obj=obj) msg2 = '{length}, {left}'.format(length=len(left), left=left) msg3 = '{length}, {right}'.format(length=len(right), right=right) raise_assert_detail(obj, msg1, msg2, msg3) # MultiIndex special comparison for little-friendly error messages if left.nlevels > 1: for level in range(left.nlevels): # cannot use get_level_values here because it can change dtype llevel = _get_ilevel_values(left, level) rlevel = _get_ilevel_values(right, level) lobj = 'MultiIndex level [{level}]'.format(level=level) assert_index_equal(llevel, rlevel, exact=exact, check_names=check_names, check_less_precise=check_less_precise, check_exact=check_exact, obj=lobj) # get_level_values may change dtype _check_types(left.levels[level], right.levels[level], obj=obj) # skip exact index checking when `check_categorical` is False if check_exact and check_categorical: if not left.equals(right): diff = np.sum((left.values != right.values) .astype(int)) * 100.0 / len(left) msg = '{obj} values are different ({pct} %)'.format( obj=obj, pct=np.round(diff, 5)) raise_assert_detail(obj, msg, left, right) else: _testing.assert_almost_equal(left.values, right.values, check_less_precise=check_less_precise, check_dtype=exact, obj=obj, lobj=left, robj=right) # metadata comparison if check_names: assert_attr_equal('names', left, right, obj=obj) if isinstance(left, pd.PeriodIndex) or isinstance(right, pd.PeriodIndex): assert_attr_equal('freq', left, right, obj=obj) if (isinstance(left, pd.IntervalIndex) or isinstance(right, pd.IntervalIndex)): assert_interval_array_equal(left.values, right.values) if check_categorical: if is_categorical_dtype(left) or is_categorical_dtype(right): assert_categorical_equal(left.values, right.values, obj='{obj} category'.format(obj=obj)) def assert_class_equal(left, right, exact=True, obj='Input'): """checks classes are equal.""" __tracebackhide__ = True def repr_class(x): if isinstance(x, Index): # return Index as it is to include values in the error message return x try: return x.__class__.__name__ except AttributeError: return repr(type(x)) if exact == 'equiv': if type(left) != type(right): # allow equivalence of Int64Index/RangeIndex types = {type(left).__name__, type(right).__name__} if len(types - {'Int64Index', 'RangeIndex'}): msg = '{obj} classes are not equivalent'.format(obj=obj) raise_assert_detail(obj, msg, repr_class(left), repr_class(right)) elif exact: if type(left) != type(right): msg = '{obj} classes are different'.format(obj=obj) raise_assert_detail(obj, msg, repr_class(left), repr_class(right)) def assert_attr_equal(attr, left, right, obj='Attributes'): """checks attributes are equal. Both objects must have attribute. Parameters ---------- attr : str Attribute name being compared. left : object right : object obj : str, default 'Attributes' Specify object name being compared, internally used to show appropriate assertion message """ __tracebackhide__ = True left_attr = getattr(left, attr) right_attr = getattr(right, attr) if left_attr is right_attr: return True elif (is_number(left_attr) and np.isnan(left_attr) and is_number(right_attr) and np.isnan(right_attr)): # np.nan return True try: result = left_attr == right_attr except TypeError: # datetimetz on rhs may raise TypeError result = False if not isinstance(result, bool): result = result.all() if result: return True else: msg = 'Attribute "{attr}" are different'.format(attr=attr) raise_assert_detail(obj, msg, left_attr, right_attr) def assert_is_valid_plot_return_object(objs): import matplotlib.pyplot as plt if isinstance(objs, (pd.Series, np.ndarray)): for el in objs.ravel(): msg = ("one of 'objs' is not a matplotlib Axes instance, type " "encountered {name!r}").format(name=el.__class__.__name__) assert isinstance(el, (plt.Axes, dict)), msg else: assert isinstance(objs, (plt.Artist, tuple, dict)), ( 'objs is neither an ndarray of Artist instances nor a ' 'single Artist instance, tuple, or dict, "objs" is a {name!r}' .format(name=objs.__class__.__name__)) def isiterable(obj): return hasattr(obj, '__iter__') def is_sorted(seq): if isinstance(seq, (Index, Series)): seq = seq.values # sorting does not change precisions return assert_numpy_array_equal(seq, np.sort(np.array(seq))) def assert_categorical_equal(left, right, check_dtype=True, check_category_order=True, obj='Categorical'): """Test that Categoricals are equivalent. Parameters ---------- left : Categorical right : Categorical check_dtype : bool, default True Check that integer dtype of the codes are the same check_category_order : bool, default True Whether the order of the categories should be compared, which implies identical integer codes. If False, only the resulting values are compared. The ordered attribute is checked regardless. obj : str, default 'Categorical' Specify object name being compared, internally used to show appropriate assertion message """ _check_isinstance(left, right, Categorical) if check_category_order: assert_index_equal(left.categories, right.categories, obj='{obj}.categories'.format(obj=obj)) assert_numpy_array_equal(left.codes, right.codes, check_dtype=check_dtype, obj='{obj}.codes'.format(obj=obj)) else: assert_index_equal(left.categories.sort_values(), right.categories.sort_values(), obj='{obj}.categories'.format(obj=obj)) assert_index_equal(left.categories.take(left.codes), right.categories.take(right.codes), obj='{obj}.values'.format(obj=obj)) assert_attr_equal('ordered', left, right, obj=obj) def assert_interval_array_equal(left, right, exact='equiv', obj='IntervalArray'): """Test that two IntervalArrays are equivalent. Parameters ---------- left, right : IntervalArray The IntervalArrays to compare. exact : bool / string {'equiv'}, default 'equiv' Whether to check the Index class, dtype and inferred_type are identical. If 'equiv', then RangeIndex can be substituted for Int64Index as well. obj : str, default 'IntervalArray' Specify object name being compared, internally used to show appropriate assertion message """ _check_isinstance(left, right, IntervalArray) assert_index_equal(left.left, right.left, exact=exact, obj='{obj}.left'.format(obj=obj)) assert_index_equal(left.right, right.right, exact=exact, obj='{obj}.left'.format(obj=obj)) assert_attr_equal('closed', left, right, obj=obj) def assert_period_array_equal(left, right, obj='PeriodArray'): _check_isinstance(left, right, PeriodArray) assert_numpy_array_equal(left._data, right._data, obj='{obj}.values'.format(obj=obj)) assert_attr_equal('freq', left, right, obj=obj) def assert_datetime_array_equal(left, right, obj='DatetimeArray'): __tracebackhide__ = True _check_isinstance(left, right, DatetimeArray) assert_numpy_array_equal(left._data, right._data, obj='{obj}._data'.format(obj=obj)) assert_attr_equal('freq', left, right, obj=obj) assert_attr_equal('tz', left, right, obj=obj) def assert_timedelta_array_equal(left, right, obj='TimedeltaArray'): __tracebackhide__ = True _check_isinstance(left, right, TimedeltaArray) assert_numpy_array_equal(left._data, right._data, obj='{obj}._data'.format(obj=obj)) assert_attr_equal('freq', left, right, obj=obj) def raise_assert_detail(obj, message, left, right, diff=None): __tracebackhide__ = True if isinstance(left, np.ndarray): left = pprint_thing(left) elif is_categorical_dtype(left): left = repr(left) if PY2 and isinstance(left, string_types): # left needs to be printable in native text type in python2 left = left.encode('utf-8') if isinstance(right, np.ndarray): right = pprint_thing(right) elif is_categorical_dtype(right): right = repr(right) if PY2 and isinstance(right, string_types): # right needs to be printable in native text type in python2 right = right.encode('utf-8') msg = """{obj} are different {message} [left]: {left} [right]: {right}""".format(obj=obj, message=message, left=left, right=right) if diff is not None: msg += "\n[diff]: {diff}".format(diff=diff) raise AssertionError(msg) def assert_numpy_array_equal(left, right, strict_nan=False, check_dtype=True, err_msg=None, check_same=None, obj='numpy array'): """ Checks that 'np.ndarray' is equivalent Parameters ---------- left : np.ndarray or iterable right : np.ndarray or iterable strict_nan : bool, default False If True, consider NaN and None to be different. check_dtype: bool, default True check dtype if both a and b are np.ndarray err_msg : str, default None If provided, used as assertion message check_same : None|'copy'|'same', default None Ensure left and right refer/do not refer to the same memory area obj : str, default 'numpy array' Specify object name being compared, internally used to show appropriate assertion message """ __tracebackhide__ = True # instance validation # Show a detailed error message when classes are different assert_class_equal(left, right, obj=obj) # both classes must be an np.ndarray _check_isinstance(left, right, np.ndarray) def _get_base(obj): return obj.base if getattr(obj, 'base', None) is not None else obj left_base = _get_base(left) right_base = _get_base(right) if check_same == 'same': if left_base is not right_base: msg = "{left!r} is not {right!r}".format( left=left_base, right=right_base) raise AssertionError(msg) elif check_same == 'copy': if left_base is right_base: msg = "{left!r} is {right!r}".format( left=left_base, right=right_base) raise AssertionError(msg) def _raise(left, right, err_msg): if err_msg is None: if left.shape != right.shape: raise_assert_detail(obj, '{obj} shapes are different' .format(obj=obj), left.shape, right.shape) diff = 0 for l, r in zip(left, right): # count up differences if not array_equivalent(l, r, strict_nan=strict_nan): diff += 1 diff = diff * 100.0 / left.size msg = '{obj} values are different ({pct} %)'.format( obj=obj, pct=np.round(diff, 5)) raise_assert_detail(obj, msg, left, right) raise AssertionError(err_msg) # compare shape and values if not array_equivalent(left, right, strict_nan=strict_nan): _raise(left, right, err_msg) if check_dtype: if isinstance(left, np.ndarray) and isinstance(right, np.ndarray): assert_attr_equal('dtype', left, right, obj=obj) return True def assert_extension_array_equal(left, right, check_dtype=True, check_less_precise=False, check_exact=False): """Check that left and right ExtensionArrays are equal. Parameters ---------- left, right : ExtensionArray The two arrays to compare check_dtype : bool, default True Whether to check if the ExtensionArray dtypes are identical. check_less_precise : bool or int, default False Specify comparison precision. Only used when check_exact is False. 5 digits (False) or 3 digits (True) after decimal points are compared. If int, then specify the digits to compare. check_exact : bool, default False Whether to compare number exactly. Notes ----- Missing values are checked separately from valid values. A mask of missing values is computed for each and checked to match. The remaining all-valid values are cast to object dtype and checked. """ assert isinstance(left, ExtensionArray), 'left is not an ExtensionArray' assert isinstance(right, ExtensionArray), 'right is not an ExtensionArray' if check_dtype: assert_attr_equal('dtype', left, right, obj='ExtensionArray') left_na = np.asarray(left.isna()) right_na = np.asarray(right.isna()) assert_numpy_array_equal(left_na, right_na, obj='ExtensionArray NA mask') left_valid = np.asarray(left[~left_na].astype(object)) right_valid = np.asarray(right[~right_na].astype(object)) if check_exact: assert_numpy_array_equal(left_valid, right_valid, obj='ExtensionArray') else: _testing.assert_almost_equal(left_valid, right_valid, check_dtype=check_dtype, check_less_precise=check_less_precise, obj='ExtensionArray') # This could be refactored to use the NDFrame.equals method def assert_series_equal(left, right, check_dtype=True, check_index_type='equiv', check_series_type=True, check_less_precise=False, check_names=True, check_exact=False, check_datetimelike_compat=False, check_categorical=True, obj='Series'): """Check that left and right Series are equal. Parameters ---------- left : Series right : Series check_dtype : bool, default True Whether to check the Series dtype is identical. check_index_type : bool / string {'equiv'}, default 'equiv' Whether to check the Index class, dtype and inferred_type are identical. check_series_type : bool, default True Whether to check the Series class is identical. check_less_precise : bool or int, default False Specify comparison precision. Only used when check_exact is False. 5 digits (False) or 3 digits (True) after decimal points are compared. If int, then specify the digits to compare. check_names : bool, default True Whether to check the Series and Index names attribute. check_exact : bool, default False Whether to compare number exactly. check_datetimelike_compat : bool, default False Compare datetime-like which is comparable ignoring dtype. check_categorical : bool, default True Whether to compare internal Categorical exactly. obj : str, default 'Series' Specify object name being compared, internally used to show appropriate assertion message. """ __tracebackhide__ = True # instance validation _check_isinstance(left, right, Series) if check_series_type: # ToDo: There are some tests using rhs is sparse # lhs is dense. Should use assert_class_equal in future assert isinstance(left, type(right)) # assert_class_equal(left, right, obj=obj) # length comparison if len(left) != len(right): msg1 = '{len}, {left}'.format(len=len(left), left=left.index) msg2 = '{len}, {right}'.format(len=len(right), right=right.index) raise_assert_detail(obj, 'Series length are different', msg1, msg2) # index comparison assert_index_equal(left.index, right.index, exact=check_index_type, check_names=check_names, check_less_precise=check_less_precise, check_exact=check_exact, check_categorical=check_categorical, obj='{obj}.index'.format(obj=obj)) if check_dtype: # We want to skip exact dtype checking when `check_categorical` # is False. We'll still raise if only one is a `Categorical`, # regardless of `check_categorical` if (is_categorical_dtype(left) and is_categorical_dtype(right) and not check_categorical): pass else: assert_attr_equal('dtype', left, right) if check_exact: assert_numpy_array_equal(left.get_values(), right.get_values(), check_dtype=check_dtype, obj='{obj}'.format(obj=obj),) elif check_datetimelike_compat: # we want to check only if we have compat dtypes # e.g. integer and M|m are NOT compat, but we can simply check # the values in that case if (is_datetimelike_v_numeric(left, right) or is_datetimelike_v_object(left, right) or needs_i8_conversion(left) or needs_i8_conversion(right)): # datetimelike may have different objects (e.g. datetime.datetime # vs Timestamp) but will compare equal if not Index(left.values).equals(Index(right.values)): msg = ('[datetimelike_compat=True] {left} is not equal to ' '{right}.').format(left=left.values, right=right.values) raise AssertionError(msg) else: assert_numpy_array_equal(left.get_values(), right.get_values(), check_dtype=check_dtype) elif is_interval_dtype(left) or is_interval_dtype(right): assert_interval_array_equal(left.array, right.array) elif (is_extension_array_dtype(left) and not is_categorical_dtype(left) and is_extension_array_dtype(right) and not
is_categorical_dtype(right)
pandas.core.dtypes.common.is_categorical_dtype
from flask import Flask, render_template, request, redirect, url_for, session import pandas as pd import pymysql import os import io #from werkzeug.utils import secure_filename from pulp import * import numpy as np import pymysql import pymysql.cursors from pandas.io import sql #from sqlalchemy import create_engine import pandas as pd import numpy as np #import io import statsmodels.formula.api as smf import statsmodels.api as sm import scipy.optimize as optimize import matplotlib.mlab as mlab import matplotlib.pyplot as plt #from flask import Flask, render_template, request, redirect, url_for, session, g from sklearn.linear_model import LogisticRegression from math import sin, cos, sqrt, atan2, radians from statsmodels.tsa.arima_model import ARIMA #from sqlalchemy import create_engine from collections import defaultdict from sklearn import linear_model import statsmodels.api as sm import scipy.stats as st import pandas as pd import numpy as np from pulp import * import pymysql import math app = Flask(__name__) app.secret_key = os.urandom(24) localaddress="D:\\home\\site\\wwwroot" localpath=localaddress os.chdir(localaddress) @app.route('/') def index(): return redirect(url_for('home')) @app.route('/home') def home(): return render_template('home.html') @app.route('/demandplanning') def demandplanning(): return render_template("Demand_Planning.html") @app.route("/elasticopt",methods = ['GET','POST']) def elasticopt(): if request.method== 'POST': start_date =request.form['from'] end_date=request.form['to'] prdct_name=request.form['typedf'] # connection = pymysql.connect(host='localhost', # user='user', # password='', # db='test', # charset='utf8mb4', # cursorclass=pymysql.cursors.DictCursor) # # x=connection.cursor() # x.execute("select * from `transcdata`") # connection.commit() # datass=pd.DataFrame(x.fetchall()) datass = pd.read_csv("C:\\Users\\1026819\\Downloads\\optimizdata.csv") # datas = datass[(datass['Week']>=start_date) & (datass['Week']<=end_date )] datas=datass df = datas[datas['Product'] == prdct_name] df=datass changeData=pd.concat([df['Product_Price'],df['Product_Qty']],axis=1) changep=[] changed=[] for i in range(0,len(changeData)-1): changep.append(changeData['Product_Price'].iloc[i]-changeData['Product_Price'].iloc[i+1]) changed.append(changeData['Product_Qty'].iloc[1]-changeData['Product_Qty'].iloc[i+1]) cpd=pd.concat([pd.DataFrame(changep),pd.DataFrame(changed)],axis=1) cpd.columns=['Product_Price','Product_Qty'] sortedpricedata=df.sort_values(['Product_Price'], ascending=[True]) spq=pd.concat([sortedpricedata['Product_Price'],sortedpricedata['Product_Qty']],axis=1).reset_index(drop=True) pint=[] dint=[] x = spq['Product_Price'] num_bins = 5 # n, pint, patches = plt.hist(x, num_bins, facecolor='blue', alpha=0.5) y = spq['Product_Qty'] num_bins = 5 # n, dint, patches = plt.hist(y, num_bins, facecolor='blue', alpha=0.5) arr= np.zeros(shape=(len(pint),len(dint))) count=0 for i in range(0, len(pint)): lbp=pint[i] if i==len(pint)-1: ubp=pint[i]+1 else: ubp=pint[i+1] for j in range(0, len(dint)): lbd=dint[j] if j==len(dint)-1: ubd=dint[j]+1 else: ubd=dint[j+1] print(lbd,ubd) for k in range(0, len(spq)): if (spq['Product_Price'].iloc[k]>=lbp\ and spq['Product_Price'].iloc[k]<ubp): if(spq['Product_Qty'].iloc[k]>=lbd\ and spq['Product_Qty'].iloc[k]<ubd): count+=1 arr[i][j]+=1 price_range=np.zeros(shape=(len(pint),2)) for j in range(0,len(pint)): lbp=pint[j] price_range[j][0]=lbp if j==len(pint)-1: ubp=pint[j]+1 price_range[j][1]=ubp else: ubp=pint[j+1] price_range[j][1]=ubp demand_range=np.zeros(shape=(len(dint),2)) for j in range(0,len(dint)): lbd=dint[j] demand_range[j][0]=lbd if j==len(dint)-1: ubd=dint[j]+1 demand_range[j][1]=ubd else: ubd=dint[j+1] demand_range[j][1]=ubd pr=pd.DataFrame(price_range) pr.columns=['Price','Demand'] dr=pd.DataFrame(demand_range) dr.columns=['Price','Demand'] priceranges=pr.Price.astype(str).str.cat(pr.Demand.astype(str), sep='-') demandranges=dr.Price.astype(str).str.cat(dr.Demand.astype(str), sep='-') price=pd.DataFrame(arr) price.columns=demandranges price.index=priceranges pp=price.reset_index() global data data=pd.concat([df['Week'],df['Product_Qty'],df['Product_Price'],df['Comp_Prod_Price'],df['Promo1'],df['Promo2'],df['overallsale']],axis=1) return render_template('dataview.html',cpd=cpd.values,pp=pp.to_html(index=False),data=data.to_html(index=False),graphdata=data.values,ss=1) return render_template('dataview.html') @app.route('/priceelasticity',methods = ['GET','POST']) def priceelasticity(): return render_template('Optimisation_heatmap_revenue.html') @app.route("/elasticity",methods = ['GET','POST']) def elasticity(): if request.method== 'POST': Price=0 Average_Price=0 Promotions=0 Promotionss=0 if request.form.get('Price'): Price=1 if request.form.get('Average_Price'): Average_Price=1 if request.form.get('Promotion_1'): Promotions=1 if request.form.get('Promotion_2'): Promotionss=1 Modeldata=pd.DataFrame() Modeldata['Product_Qty']=data.Product_Qty lst=[] for row in data.index: lst.append(row+1) Modeldata['Week']=np.log(lst) if Price == 1: Modeldata['Product_Price']=data['Product_Price'] if Price == 0: Modeldata['Product_Price']=0 if Average_Price==1: Modeldata['Comp_Prod_Price']=data['Comp_Prod_Price'] if Average_Price==0: Modeldata['Comp_Prod_Price']=0 if Promotions==1: Modeldata['Promo1']=data['Promo1'] if Promotions==0: Modeldata['Promo1']=0 if Promotionss==1: Modeldata['Promo2']=data['Promo2'] if Promotionss==0: Modeldata['Promo2']=0 diffpriceprodvscomp= (Modeldata['Product_Price']-Modeldata['Comp_Prod_Price']) promo1=Modeldata.Promo1 promo2=Modeldata.Promo2 week=Modeldata.Week quantityproduct=Modeldata.Product_Qty df=pd.concat([quantityproduct,diffpriceprodvscomp,promo1,promo2,week],axis=1) df.columns=['quantityproduct','diffpriceprodvscomp','promo1','promo2','week'] Model = smf.ols(formula='df.quantityproduct ~ df.diffpriceprodvscomp + df.promo1 + df.promo2 + df.week', data=df) res = Model.fit() global intercept,diffpriceprodvscomp_param,promo1_param,promo2_param,week_param intercept=res.params[0] diffpriceprodvscomp_param=res.params[1] promo1_param=res.params[2] promo2_param=res.params[3] week_param=res.params[4] Product_Price_min=0 maxvalue_of_price=int(Modeldata['Product_Price'].max()) Product_Price_max=int(Modeldata['Product_Price'].max()) if maxvalue_of_price==0: Product_Price_max=1 maxfunction=[] pricev=[] weeks=[] dd=[] ddl=[] for vatr in range(0,len(Modeldata)): weeks.append(lst[vatr]) for Product_Price in range(Product_Price_min,Product_Price_max+1): function=0 function=(intercept+(Modeldata['Promo1'].iloc[vatr]*promo1_param)+(Modeldata['Promo2'].iloc[vatr]*promo2_param) + (diffpriceprodvscomp_param*(Product_Price-Modeldata['Comp_Prod_Price'].iloc[vatr]))+(Modeldata['Week'].iloc[vatr]*lst[vatr])) maxfunction.append(function) dd.append(Product_Price) ddl.append(vatr) for Product_Price in range(Product_Price_min,Product_Price_max+1): pricev.append(Product_Price) df1=pd.DataFrame(maxfunction) df2=pd.DataFrame(dd) df3=pd.DataFrame(ddl) dfo=pd.concat([df3,df2,df1],axis=1) dfo.columns=['weeks','prices','Demandfunctions'] demand=[] for rows in dfo.values: w=int(rows[0]) p=int(rows[1]) d=int(rows[2]) demand.append([w,p,d]) Co_eff=pd.DataFrame(res.params.values)#intercept standard_error=pd.DataFrame(res.bse.values)#standard error p_values=pd.DataFrame(res.pvalues.values) conf_lower =pd.DataFrame(res.conf_int()[0].values) conf_higher =pd.DataFrame(res.conf_int()[1].values) R_square=res.rsquared atr=['Intercept','DeltaPrice','Promo1','Promo2','Week'] atribute=pd.DataFrame(atr) SummaryTable=pd.concat([atribute,Co_eff,standard_error,p_values,conf_lower,conf_higher],axis=1) SummaryTable.columns=['Atributes','Co_eff','Standard_error','P_values','conf_lower','conf_higher'] reshapedf=df1.values.reshape(len(Modeldata),(-Product_Price_min+(Product_Price_max+1))) dataofmas=pd.DataFrame(reshapedf) maxv=dataofmas.apply( max, axis=1 ) minv=dataofmas.apply(min,axis=1) avgv=dataofmas.sum(axis=1)/(-Product_Price_min+(Product_Price_max+1)) wks=pd.DataFrame(weeks) ddofs=pd.concat([wks,minv,avgv,maxv],axis=1) dataofmas=pd.DataFrame(reshapedf) kk=pd.DataFrame() sums=0 for i in range(0,len(dataofmas.columns)): sums=sums+i vv=i*dataofmas[[i]] kk=pd.concat([kk,vv],axis=1) dfr=pd.DataFrame(kk) mrevenue=dfr.apply( max, axis=1 ) prices=dfr.idxmax(axis=1) wks=pd.DataFrame(weeks) revenuedf=pd.concat([wks,mrevenue,prices],axis=1) return render_template('Optimisation_heatmap_revenue.html',revenuedf=revenuedf.values,ddofs=ddofs.values,SummaryTable=SummaryTable.to_html(index=False),ss=1,weeks=weeks,demand=demand,pricev=pricev,R_square=R_square) @app.route('/inputtomaxm',methods=["GET","POST"]) def inputtomaxm(): return render_template("Optimize.html") @app.route("/maxm",methods=["GET","POST"]) def maxm(): if request.method=="POST": week=request.form['TimePeriod'] price_low=request.form['Price_Lower'] price_max=request.form['Price_Upper'] promofirst=request.form['Promotion_1'] promosecond=request.form['Promotion_2'] # week=24 # price_low=6 # price_max=20 # promofirst=1 # promosecond=0 # # time_period=24 # # global a # a=243.226225 # global b # b=-9.699634 # global d # d=1.671505 # global pr1 # pr1=21.866260 # global pr2 # pr2=-0.511606 # global cm # cm=-14.559594 # global s_0 # s_0= 2000 # promo1=1 # promo2=0 time_period=int(week) global a a=intercept global b b=diffpriceprodvscomp_param global d d=week_param global pr1 pr1=promo1_param global pr2 pr2=promo2_param global s_0 s_0= 2000 promo1=int(promofirst) promo2=int(promosecond) global comp comp=np.random.randint(7,15,time_period) def demand(p, a=a, b=b, d=d, promo1=promo1,promo2_param=promo2,comp=comp, t=np.linspace(1,time_period,time_period)): """ Return demand given an array of prices p for times t (see equation 5 above)""" return a+(b*(p-comp))+(d*t)+(promo1*pr1)+(promo2*pr2) def objective(p_t, a, b, d,promo1,promo2, comp, t=np.linspace(1,time_period,time_period)): return -1.0 * np.sum( p_t * demand(p_t, a, b, d,promo1,promo2, comp, t) ) def constraint_1(p_t, s_0, a, b, d, promo1,promo2, comp, t=np.linspace(1,time_period,time_period)): """ Inventory constraint. s_0 - np.sum(x_t) >= 0. This is an inequality constraint. See more below. """ return s_0 - np.sum(demand(p_t, a, b, d,promo1,promo2, comp, t)) def constraint_2(p_t): #""" Positive demand. Another inequality constraint x_t >= 0 """ return p_t t = np.linspace(1,time_period,time_period) # Starting values : b_min=int(price_low) p_start = b_min * np.ones(len(t)) # bounds on the values : bmax=int(price_max) bounds = tuple((0,bmax) for x in p_start) import scipy.optimize as optimize # Constraints : constraints = ({'type': 'ineq', 'fun': lambda x, s_0=s_0: constraint_1(x,s_0, a, b, d,promo1,promo2, comp, t=t)}, {'type': 'ineq', 'fun': lambda x: constraint_2(x)} ) opt_results = optimize.minimize(objective, p_start, args=(a, b, d,promo1,promo2, comp, t), method='SLSQP', bounds=bounds, constraints=constraints) np.sum(opt_results['x']) opt_price=opt_results['x'] opt_demand=demand(opt_results['x'], a, b, d, promo1,promo2_param, comp, t=t) weeks=[] for row in range(1,len(opt_price)+1): weeks.append(row) d=pd.DataFrame(weeks).astype(int) dd=pd.DataFrame(opt_price) optimumumprice_perweek=pd.concat([d,dd,pd.DataFrame(opt_demand).astype(int)],axis=1) optimumumprice_perweek.columns=['Week','Price','Demand'] dataval=optimumumprice_perweek diff=[] diffs=[] for i in range(0,len(opt_demand)-1): valss=opt_demand[i]-opt_demand[i+1] diff.append(valss) diffs.append(i+1) differenceofdemand_df=pd.concat([pd.DataFrame(diffs),pd.DataFrame(diff)],axis=1) MP=round(optimumumprice_perweek.loc[optimumumprice_perweek['Price'].idxmin()],1) minimumprice=pd.DataFrame(MP).T MaxP=round(optimumumprice_perweek.loc[optimumumprice_perweek['Price'].idxmax()],1) maximumprice=pd.DataFrame(MaxP).T averageprice=round((optimumumprice_perweek['Price'].sum()/len(optimumumprice_perweek)),2) MD=round(optimumumprice_perweek.loc[optimumumprice_perweek['Demand'].idxmin()],0) minimumDemand=pd.DataFrame(MD).T MaxD=round(optimumumprice_perweek.loc[optimumumprice_perweek['Demand'].idxmax()],0) maximumDemand=pd.DataFrame(MaxD).T averageDemand=round((optimumumprice_perweek['Demand'].sum()/len(optimumumprice_perweek)),0) totaldemand=round(optimumumprice_perweek['Demand'].sum(),0) return render_template("Optimize.html",totaldemand=totaldemand,averageDemand=averageDemand,maximumDemand=maximumDemand.values,minimumDemand=minimumDemand.values,averageprice=averageprice,maximumprice=maximumprice.values,minimumprice=minimumprice.values,dataval=dataval.values,differenceofdemand_df=differenceofdemand_df.values,optimumumprice_perweek=optimumumprice_perweek.to_html(index=False),ll=1) @app.route("/Inventorymanagment",methods=["GET","POST"]) def Inventorymanagment(): return render_template("Inventory_Management.html") @app.route("/DISTRIBUTION_NETWORK_OPT",methods=["GET","POST"]) def DISTRIBUTION_NETWORK_OPT(): return render_template("DISTRIBUTION_NETWORK_OPTIMIZATION.html") @app.route("/Procurement_Plan",methods=["GET","POST"]) def Procurement_Plan(): return render_template("Procurement_Planning.html") #<NAME> @app.route("/fleetallocation") def fleetallocation(): return render_template('fleetallocation.html') @app.route("/reset") def reset(): conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() cur.execute("DELETE FROM `input`") cur.execute("DELETE FROM `output`") cur.execute("DELETE FROM `Scenario`") conn.commit() conn.close() open(localaddress+'\\static\\demodata.txt', 'w').close() return render_template('fleetallocation.html') @app.route("/dalink",methods = ['GET','POST']) def dalink(): sql = "INSERT INTO `input` (`Route`,`SLoc`,`Ship-to Abb`,`Primary Equipment`,`Batch`,`Prod Dt`,`SW`,`Met Held`,`Heat No`,`Delivery Qty`,`Width`,`Length`,`Test Cut`,`Customer Priority`) VALUES( %s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s)" conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() if request.method == 'POST': typ = request.form.get('type') frm = request.form.get('from') to = request.form.get('to') if typ and frm and to: conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() curr = conn.cursor() cur.execute("SELECT * FROM `inventory_data` WHERE `Primary Equipment` = '" + typ + "' AND `Prod Dt` BETWEEN '" + frm + "' AND '" + to + "'") res = cur.fetchall() if len(res)==0: conn.close() return render_template('fleetallocation.html',alert='No data available') sfile = pd.DataFrame(res) df1 = pd.DataFrame(sfile) df1['Prod Dt'] =df1['Prod Dt'].astype(object) for index, i in df1.iterrows(): data = (i['Route'],i['SLoc'],i['Ship-to Abb'],i['Primary Equipment'],i['Batch'],i['Prod Dt'],i['SW'],i['Met Held'],i['Heat No'],i['Delivery Qty'],i['Width'],i['Length'],i['Test Cut'],i['Customer Priority']) curr.execute(sql,data) conn.commit() conn.close() return render_template('fleetallocation.html',typ=" Equipment type: "+typ,frm="From: "+frm,to=" To:"+to,data = sfile.to_html(index=False)) else: return render_template('fleetallocation.html',alert ='All input fields are required') return render_template('fleetallocation.html') @app.route('/optimise', methods=['GET', 'POST']) def optimise(): open(localaddress+'\\static\\demodata.txt', 'w').close() conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() curr = conn.cursor() cur.execute("DELETE FROM `output`") conn.commit() os.system('python optimising.py') sa=1 cur.execute("SELECT * FROM `output`") result = cur.fetchall() if len(result)==0: say=0 else: say=1 curr.execute("SELECT * FROM `input`") sfile = curr.fetchall() if len(sfile)==0: conn.close() return render_template('fleetallocation.html',say=say,sa=sa,alert='No data available') sfile = pd.DataFrame(sfile) conn.close() with open(localaddress+"\\static\\demodata.txt", "r") as f: content = f.read() return render_template('fleetallocation.html',say=say,sa=sa,data = sfile.to_html(index=False),content=content) @app.route("/scenario") def scenario(): return render_template('scenario.html') @app.route("/scenario_insert", methods=['GET','POST']) def scenario_insert(): if request.method == 'POST': scenario = request.form.getlist("scenario[]") customer_priority = request.form.getlist("customer_priority[]") oldest_sw = request.form.getlist("oldest_sw[]") production_date = request.form.getlist("production_date[]") met_held_group = request.form.getlist("met_held_group[]") test_cut_group = request.form.getlist("test_cut_group[]") sub_grouping_rules = request.form.getlist("sub_grouping_rules[]") load_lower_bounds = request.form.getlist("load_lower_bounds[]") load_upper_bounds = request.form.getlist("load_upper_bounds[]") width_bounds = request.form.getlist("width_bounds[]") length_bounds = request.form.getlist("length_bounds[]") description = request.form.getlist("description[]") conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() curr = conn.cursor() lngth = len(scenario) curr.execute("DELETE FROM `scenario`") if scenario and customer_priority and oldest_sw and production_date and met_held_group and test_cut_group and sub_grouping_rules and load_lower_bounds and load_upper_bounds and width_bounds and length_bounds and description: say=0 for i in range(lngth): scenario_clean = scenario[i] customer_priority_clean = customer_priority[i] oldest_sw_clean = oldest_sw[i] production_date_clean = production_date[i] met_held_group_clean = met_held_group[i] test_cut_group_clean = test_cut_group[i] sub_grouping_rules_clean = sub_grouping_rules[i] load_lower_bounds_clean = load_lower_bounds[i] load_upper_bounds_clean = load_upper_bounds[i] width_bounds_clean = width_bounds[i] length_bounds_clean = length_bounds[i] description_clean = description[i] if scenario_clean and customer_priority_clean and oldest_sw_clean and production_date_clean and met_held_group_clean and test_cut_group_clean and sub_grouping_rules_clean and load_lower_bounds_clean and load_upper_bounds_clean and width_bounds_clean and length_bounds_clean: cur.execute("INSERT INTO `scenario`(scenario, customer_priority, oldest_sw, production_date, met_held_group, test_cut_group, sub_grouping_rules, load_lower_bounds, load_upper_bounds, width_bounds, length_bounds, description) VALUES('"+scenario_clean+"' ,'"+customer_priority_clean+"','"+oldest_sw_clean+"','"+production_date_clean+"','"+met_held_group_clean+"','"+test_cut_group_clean+"', '"+sub_grouping_rules_clean+"','"+load_lower_bounds_clean+"', '"+load_upper_bounds_clean+"','"+width_bounds_clean+"','"+length_bounds_clean+"','"+description_clean+"')") else: say = 1 conn.commit() if(say==0): alert='All Scenarios inserted' else: alert='Some scenarios were not inserted' return (alert) conn.close() return ('All fields are required!') return ('Failed!!!') @app.route("/fetch", methods=['GET','POST']) def fetch(): if request.method == 'POST': conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() cur.execute("SELECT * FROM scenario") result = cur.fetchall() if len(result)==0: conn.close() return render_template('scenario.html',alert1='No scenarios Available') result1 = pd.DataFrame(result) result1 = result1.drop('Sub-grouping rules', axis=1) conn.close() return render_template('scenario.html',sdata = result1.to_html(index=False)) return ("Error") @app.route("/delete", methods=['GET','POST']) def delete(): if request.method == 'POST': conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() cur.execute("DELETE FROM scenario") conn.commit() conn.close() return render_template('scenario.html',alert1="All the scenerios were dropped!") return ("Error") @app.route('/papadashboard', methods=['GET', 'POST']) def papadashboard(): sql1 = "SELECT `Scenario`, MAX(`Wagon-No`) AS 'Wagon Used', COUNT(`Batch`) AS 'Products Allocated', SUM(`Delivery Qty`) AS 'Total Product Allocated', SUM(`Delivery Qty`)/(MAX(`Wagon-No`)) AS 'Average Load Carried', SUM(`Width`)/(MAX(`Wagon-No`)) AS 'Average Width Used' FROM `output` WHERE `Wagon-No`>0 GROUP BY `Scenario`" conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) curs = conn.cursor() curs.execute("SELECT `scenario` FROM `scenario`") sdata = curs.fetchall() if len(sdata)==0: conn.close() return render_template('warning.html',alert='No data available') cur1 = conn.cursor() cur1.execute(sql1) data1 = cur1.fetchall() if len(data1)==0: conn.close() return render_template('warning.html',alert='Infeasible to due Insufficient Load') cu = conn.cursor() cu.execute("SELECT `length_bounds`,`width_bounds`,`load_lower_bounds`,`load_upper_bounds` FROM `scenario`") sdaa = cu.fetchall() sdaa = pd.DataFrame(sdaa) asa=list() for index, i in sdaa.iterrows(): hover = "Length Bound:"+str(i['length_bounds'])+", Width Bound:"+str(i['width_bounds'])+", Load Upper Bound:"+str(i['load_upper_bounds'])+", Load Lower Bound:"+str(i['load_lower_bounds']) asa.append(hover) asa=pd.DataFrame(asa) asa.columns=['Details'] data1 = pd.DataFrame(data1) data1['Average Width Used'] = data1['Average Width Used'].astype(int) data1['Total Product Allocated'] = data1['Total Product Allocated'].astype(int) data1['Average Load Carried'] = data1['Average Load Carried'].astype(float) data1['Average Load Carried'] = round(data1['Average Load Carried'],2) data1['Average Load Carried'] = data1['Average Load Carried'].astype(str) fdata = pd.DataFrame(columns=['Scenario','Wagon Used','Products Allocated','Total Product Allocated','Average Load Carried','Average Width Used','Details']) fdata[['Scenario','Wagon Used','Products Allocated','Total Product Allocated','Average Load Carried','Average Width Used']] = data1[['Scenario','Wagon Used','Products Allocated','Total Product Allocated','Average Load Carried','Average Width Used']] fdata['Details'] = asa['Details'] fdata = fdata.values sql11 = "SELECT `Scenario`, SUM(`Delivery Qty`)/(MAX(`Wagon-No`)) AS 'Average Load Carried', COUNT(`Batch`) AS 'Allocated', SUM(`Delivery Qty`) AS 'Load Allocated' FROM `output`WHERE `Wagon-No`>0 GROUP BY `Scenario`" sql21 = "SELECT COUNT(`Batch`) AS 'Total Allocated' FROM `output` GROUP BY `Scenario`" sql31 = "SELECT `load_upper_bounds` FROM `scenario`" conn1 = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur11 = conn1.cursor() cur21 = conn1.cursor() cur31 = conn1.cursor() cur11.execute(sql11) data11 = cur11.fetchall() data11 = pd.DataFrame(data11) cur21.execute(sql21) data21 = cur21.fetchall() data21 = pd.DataFrame(data21) cur31.execute(sql31) data31 = cur31.fetchall() data31 = pd.DataFrame(data31) data11['Average Load Carried']=data11['Average Load Carried'].astype(float) fdata1 = pd.DataFrame(columns=['Scenario','Utilisation Percent','Allocation Percent','Total Load Allocated']) fdata1['Utilisation Percent'] = round(100*(data11['Average Load Carried']/data31['load_upper_bounds']),2) data11['Load Allocated']=data11['Load Allocated'].astype(int) fdata1[['Scenario','Total Load Allocated']]=data11[['Scenario','Load Allocated']] data11['Allocated']=data11['Allocated'].astype(float) data21['Total Allocated']=data21['Total Allocated'].astype(float) fdata1['Allocation Percent'] = round(100*(data11['Allocated']/data21['Total Allocated']),2) fdata1['Allocation Percent'] = fdata1['Allocation Percent'].astype(str) fdat1 = fdata1.values conn1.close() if request.method == 'POST': conn2 = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn2.cursor() ata = request.form['name'] cur.execute("SELECT * FROM `output` WHERE `Scenario` = '"+ata+"' ") ssdata = cur.fetchall() datasss = pd.DataFrame(ssdata) data=datasss.replace("Not Allocated", 0) df=data[['Delivery Qty','Wagon-No','Width','Group-Number']] df['Wagon-No']=df['Wagon-No'].astype(int) a=df['Wagon-No'].max() ##bar1 result_array = np.array([]) for i in range (a): data_i = df[df['Wagon-No'] == i+1] del_sum_i = data_i['Delivery Qty'].sum() per_i=[((del_sum_i)/(205000)*100)] result_array = np.append(result_array, per_i) result_array1 = np.array([]) for j in range (a): data_j = df[df['Wagon-No'] == j+1] del_sum_j = data_j['Width'].sum() per_util_j=[((del_sum_j)/(370)*100)] result_array1 = np.append(result_array1, per_util_j) ##pie1 df112 = df[df['Wagon-No'] == 0] pie1 = df112 ['Width'].sum() df221 = df[df['Wagon-No'] > 0] pie11 = df221['Width'].sum() df1=data[['SW','Group-Number']] dff1 = df1[data['Wagon-No'] == 0] da1 =dff1.groupby(['SW']).count() re11 = np.array([]) res12 = np.append(re11,da1) da1['SW'] = da1.index r1 = np.array([]) r12 = np.append(r1, da1['SW']) df0=data[['Group-Number','Route','SLoc','Ship-to Abb','Wagon-No','Primary Equipment']] df1=df0.replace("Not Allocated", 0) f2 = pd.DataFrame(df1) f2['Wagon-No']=f2['Wagon-No'].astype(int) ####Not-Allocated f2['Group']=data['Group-Number'] df=f2[['Group','Wagon-No']] dee = df[df['Wagon-No'] == 0] deer =dee.groupby(['Group']).count()##Not Allocated deer['Group'] = deer.index ##Total-Data f2['Group1']=data['Group-Number'] dfc=f2[['Group1','Wagon-No']] dfa=pd.DataFrame(dfc) der = dfa[dfa['Wagon-No'] >= 0] dear =der.groupby(['Group1']).count()##Wagons >1 dear['Group1'] = dear.index dear.rename(columns={'Wagon-No': 'Allocated'}, inplace=True) result = pd.concat([deer, dear], axis=1, join_axes=[dear.index]) resu=result[['Group1','Wagon-No','Allocated']] result1=resu.fillna(00) r5 = np.array([]) r6 = np.append(r5, result1['Wagon-No']) r66=r6[0:73]###Not Allocated r7 = np.append(r5, result1['Allocated']) r77=r7[0:73]####total r8 = np.append(r5, result1['Group1']) r88=r8[0:73]###group conn2.close() return render_template('papadashboard.html',say=1,data=fdata,data1=fdat1,ata=ata,bar1=result_array,bar11=result_array1,pie11=pie1,pie111=pie11,x=r12,y=res12,xname=r88, bar7=r77,bar8=r66) conn.close() return render_template('papadashboard.html',data=fdata,data1=fdat1) @app.route('/facilityallocation') def facilityallocation(): return render_template('facilityhome.html') @app.route('/dataimport') def dataimport(): return render_template('facilityimport.html') @app.route('/dataimport1') def dataimport1(): return redirect(url_for('dataimport')) @app.route('/facility_location') def facility_location(): return render_template('facility_location.html') @app.route('/facility') def facility(): return redirect(url_for('facilityallocation')) @app.route("/imprt", methods=['GET','POST']) def imprt(): global customerdata global factorydata global Facyy global Custo customerfile = request.files['CustomerData'].read() factoryfile = request.files['FactoryData'].read() if len(customerfile)==0 or len(factoryfile)==0: return render_template('facilityhome.html',warning='Data Invalid') cdat=pd.read_csv(io.StringIO(customerfile.decode('utf-8'))) customerdata=pd.DataFrame(cdat) fdat=pd.read_csv(io.StringIO(factoryfile.decode('utf-8'))) factorydata=pd.DataFrame(fdat) Custo=customerdata.drop(['Lat','Long'],axis=1) Facyy=factorydata.drop(['Lat','Long'],axis=1) return render_template('facilityimport1.html',loc1=factorydata.values,loc2=customerdata.values,factory=Facyy.to_html(index=False),customer=Custo.to_html(index=False)) @app.route("/gmap") def gmap(): custdata=customerdata Factorydata=factorydata price=1 #to get distance beetween customer and factory #first get the Dimension #get no of factories Numberoffact=len(Factorydata) #get Number of Customer Numberofcust=len(custdata) #Get The dist/unit cost cost=price #def function for distance calculation # approximate radius of earth in km def dist(lati1,long1,lati2,long2,cost): R = 6373.0 lat1 = radians(lati1) lon1 = radians(long1) lat2 = radians(lati2) lon2 = radians(long2) dlon = lon2 - lon1 dlat = lat2 - lat1 a = sin(dlat / 2)**2 + cos(lat1) * cos(lat2) * sin(dlon / 2)**2 c = 2 * atan2(sqrt(a), sqrt(1 - a)) distance =round(R * c,2) return distance*cost #Create a list for customer and factory def costtable(custdata,Factorydata): distance=list() for lat1,long1 in zip(custdata.Lat, custdata.Long): for lat2,long2 in zip(Factorydata.Lat, Factorydata.Long): distance.append(dist(lat1,long1,lat2,long2,cost)) distable=np.reshape(distance, (Numberofcust,Numberoffact)).T tab=pd.DataFrame(distable,index=[Factorydata.Factory],columns=[custdata.Customer]) return tab DelCost=costtable(custdata,Factorydata)#return cost table of the customer and factoery #creating Demand Table demand=np.array(custdata.Demand) col1=np.array(custdata.Customer) Demand=pd.DataFrame(demand,col1).T cols=sorted(col1) #Creating capacity table fact=np.array(Factorydata.Capacity) col2=np.array(Factorydata.Factory) Capacity=pd.DataFrame(fact,index=col2).T colo=sorted(col2) #creating Fixed cost table fixed_c=np.array(Factorydata.FixedCost) col3=np.array(Factorydata.Factory) FixedCost= pd.DataFrame(fixed_c,index=col3) # Create the 'prob' variable to contain the problem data model = LpProblem("Min Cost Facility Location problem",LpMinimize) production = pulp.LpVariable.dicts("Production", ((factory, cust) for factory in Capacity for cust in Demand), lowBound=0, cat='Integer') factory_status =pulp.LpVariable.dicts("factory_status", (factory for factory in Capacity), cat='Binary') cap_slack =pulp.LpVariable.dicts("capslack", (cust for cust in Demand), lowBound=0, cat='Integer') model += pulp.lpSum( [DelCost.loc[factory, cust] * production[factory, cust] for factory in Capacity for cust in Demand] + [FixedCost.loc[factory] * factory_status[factory] for factory in Capacity] + 5000000*cap_slack[cust] for cust in Demand) for cust in Demand: model += pulp.lpSum(production[factory, cust] for factory in Capacity)+cap_slack[cust] == Demand[cust] for factory in Capacity: model += pulp.lpSum(production[factory, cust] for cust in Demand) <= Capacity[factory]*factory_status[factory] model.solve() print("Status:", LpStatus[model.status]) for v in model.variables(): print(v.name, "=", v.varValue) print("Total Cost of Ingredients per can = ", value(model.objective)) # Getting the table for the Factorywise Allocation def factoryalloc(model,Numberoffact,Numberofcust,listoffac,listofcus): listj=list() listk=list() listcaps=list() for v in model.variables(): listj.append(v.varValue) customer=listj[(len(listj)-Numberofcust-Numberoffact):(len(listj)-Numberoffact)] del listj[(len(listj)-Numberoffact-Numberofcust):len(listj)] for row in listj: if row==0: listk.append(0) else: listk.append(1) x=np.reshape(listj,(Numberoffact,Numberofcust)) y=np.reshape(listk,(Numberoffact,Numberofcust)) FactoryAlloc_table=pd.DataFrame(x,index=listoffac,columns=listofcus) Factorystatus=pd.DataFrame(y,index=listoffac,columns=listofcus) return FactoryAlloc_table,Factorystatus,customer Alltable,FactorystatusTable,ded=factoryalloc(model,Numberoffact,Numberofcust,colo,cols) Allstatus=list() dede=pd.DataFrame(ded,columns=['UnSatisfied']) finaldede=dede[dede.UnSatisfied != 0] colss=pd.DataFrame(cols,columns=['CustomerLocation']) fina=pd.concat([colss,finaldede],axis=1, join='inner') print(fina) for i in range(len(Alltable)): for j in range(len(Alltable.columns)): if (Alltable.loc[Alltable.index[i], Alltable.columns[j]]>0): all=[Alltable.index[i], Alltable.columns[j], Alltable.loc[Alltable.index[i], Alltable.columns[j]]] Allstatus.append(all) Status=pd.DataFrame(Allstatus,columns=['Factory','Customer','Allocation']).astype(str) #To get the Factory Data con = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) #Making Connection to the Database cur = con.cursor() engine = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) Status.to_sql(con=engine, name='facilityallocation',index=False, if_exists='replace') cur = con.cursor() cur1 = con.cursor() cur.execute("SELECT * FROM `facilityallocation`") file=cur.fetchall() dat=pd.DataFrame(file) lst=dat[['Factory','Customer']] mlst=[] names=lst['Factory'].unique().tolist() for name in names: lsty=lst.loc[lst.Factory==name] mlst.append(lsty.values) data=dat[['Factory','Customer','Allocation']] sql="SELECT SUM(`Allocation`) AS 'UseCapacity', `Factory` FROM `facilityallocation` GROUP BY `Factory`" cur1.execute(sql) file2=cur1.fetchall() udata=pd.DataFrame(file2) bdata=factorydata.sort_values(by=['Factory']) adata=bdata['Capacity'] con.close() infdata=dat[['Customer','Factory','Allocation']] infodata=infdata.sort_values(by=['Customer']) namess=infodata.Customer.unique() lstyy=[] for nam in namess: bb=infodata[infodata.Customer==nam] comment=bb['Factory']+":"+bb['Allocation'] prin=[nam,str(comment.values).strip('[]')] lstyy.append(prin) return render_template('facilityoptimise.html',say=1,lstyy=lstyy,x1=adata.values,x2=udata.values,dat=mlst,loc1=factorydata.values, loc2=customerdata.values,factory=Facyy.to_html(index=False),customer=Custo.to_html(index=False),summary=data.to_html(index=False)) #Demand Forecast @app.route('/demandforecast') def demandforecast(): return render_template('demandforecast.html') @app.route("/demandforecastdataimport",methods = ['GET','POST']) def demandforecastdataimport(): if request.method== 'POST': global actualforecastdata flat=request.files['flat'].read() if len(flat)==0: return('No Data Selected') cdat=pd.read_csv(io.StringIO(flat.decode('utf-8'))) actualforecastdata=pd.DataFrame(cdat) return render_template('demandforecast.html',data=actualforecastdata.to_html(index=False)) @app.route('/demandforecastinput', methods = ['GET', 'POST']) def demandforecastinput(): if request.method=='POST': global demandforecastfrm global demandforecasttoo global demandforecastinputdata demandforecastfrm=request.form['from'] demandforecasttoo=request.form['to'] value=request.form['typedf'] demandforecastinputdata=actualforecastdata[(actualforecastdata['Date'] >= demandforecastfrm) & (actualforecastdata['Date'] <= demandforecasttoo)] if value=='monthly': ##monthly engine = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) demandforecastinputdata.to_sql(con=engine, name='demandforecastinputdata', index=False,if_exists='replace') return redirect(url_for('monthlyforecast')) if value=='quarterly': ##quarterly global Quaterdata dated2 = demandforecastinputdata['Date'] nlst=[] for var in dated2: var1 = int(var[5:7]) if var1 >=1 and var1 <4: varr=var[:4]+'-01-01' elif var1 >=4 and var1 <7: varr=var[:4]+'-04-01' elif var1 >=7 and var1 <10: varr=var[:4]+'-07-01' else: varr=var[:4]+'-10-01' nlst.append(varr) nwlst=pd.DataFrame(nlst,columns=['Newyear']) demandforecastinputdata=demandforecastinputdata.reset_index() demandforecastinputdata['Date']=nwlst['Newyear'] Quaterdata=demandforecastinputdata.groupby(['Date']).sum() Quaterdata=Quaterdata.reset_index() Quaterdata=Quaterdata.drop('index',axis=1) engine = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) Quaterdata.to_sql(con=engine, name='demandforecastinputdata', index=False,if_exists='replace') return redirect(url_for('quarterlyforecast')) if value=='yearly': ##yearly global Yeardata #copydata=demandforecastinputdata dated1 = demandforecastinputdata['Date'] lst=[] for var in dated1: var1 = var[:4]+'-01-01' lst.append(var1) newlst=pd.DataFrame(lst,columns=['NewYear']) demandforecastinputdata=demandforecastinputdata.reset_index() demandforecastinputdata['Date']=newlst['NewYear'] Yeardata=demandforecastinputdata.groupby(['Date']).sum() Yeardata=Yeardata.reset_index() Yeardata=Yeardata.drop('index',axis=1) engine = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) Yeardata.to_sql(con=engine, name='demandforecastinputdata', index=False,if_exists='replace') return redirect(url_for('yearlyforecast')) #if value=='weakly': ##weakly # return redirect(url_for('output4')) return render_template('demandforecast.html') @app.route("/monthlyforecast",methods = ['GET','POST']) def monthlyforecast(): data = pd.DataFrame(demandforecastinputdata) # container1 a1=data.sort_values(['GDP','TotalDemand'], ascending=[True,True]) # container2 a2=data.sort_values(['Pi_Exports','TotalDemand'], ascending=[True,True]) # container3 a3=data.sort_values(['Market_Share','TotalDemand'], ascending=[True,True]) # container4 a4=data.sort_values(['Advertisement_Expense','TotalDemand'], ascending=[True,True]) # container1 df=a1[['GDP']] re11 = np.array([]) res11 = np.append(re11,df) df1=a1[['TotalDemand']] r1 = np.array([]) r11 = np.append(r1, df1) # top graph tdf=data['Date'].astype(str) tre11 = np.array([]) tres11 = np.append(tre11,tdf) tr1 = np.array([]) tr11 = np.append(tr1, df1) # container2 udf=a2[['Pi_Exports']] ure11 = np.array([]) ures11 = np.append(ure11,udf) ur1 = np.array([]) ur11 = np.append(ur1, df1) # container3 vdf=a3[['Market_Share']] vre11 = np.array([]) vres11 = np.append(vre11,vdf) vr1 = np.array([]) vr11 = np.append(vr1, df1) # container4 wdf=a4[['Advertisement_Expense']] wre11 = np.array([]) wres11 = np.append(wre11,wdf) wr1 = np.array([]) wr11 = np.append(wr1, df1) if request.method == 'POST': mov=0 exp=0 reg=0 ari=0 arx=0 till = request.form.get('till') if request.form.get('moving'): mov=1 if request.form.get('ESPO'): exp=1 if request.form.get('regression'): reg=1 if request.form.get('ARIMA'): ari=1 if request.form.get('ARIMAX'): arx=1 con = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = con.cursor() cur.execute("CREATE TABLE IF NOT EXISTS `ftech` (`mov` VARCHAR(1),`exp` VARCHAR(1), `reg` VARCHAR(1),`ari` VARCHAR(1),`arx` VARCHAR(1),`till` VARCHAR(10))") cur.execute("DELETE FROM `ftech`") con.commit() cur.execute("INSERT INTO `ftech` VALUES('"+str(mov)+"','"+str(exp)+"','"+str(reg)+"','"+str(ari)+"','"+str(arx)+"','"+str(till)+"')") con.commit() cur.execute("CREATE TABLE IF NOT EXISTS `forecastoutput`(`Model` VARCHAR(25),`Date` VARCHAR(10),`TotalDemand` VARCHAR(10),`RatioIncrease` VARCHAR(10),`Spain` VARCHAR(10),`Austria` VARCHAR(10),`Japan` VARCHAR(10),`Hungary` VARCHAR(10),`Germany` VARCHAR(10),`Polland` VARCHAR(10),`UK` VARCHAR(10),`France` VARCHAR(10),`Romania` VARCHAR(10),`Italy` VARCHAR(10),`Greece` VARCHAR(10),`Crotia` VARCHAR(10),`Holland` VARCHAR(10),`Finland` VARCHAR(10),`Hongkong` VARCHAR(10))") con.commit() cur.execute("DELETE FROM `forecastoutput`") con.commit() sql = "INSERT INTO `forecastoutput` (`Model`,`Date`,`TotalDemand`,`RatioIncrease`,`Spain`,`Austria`,`Japan`,`Hungary`,`Germany`,`Polland`,`UK`,`France`,`Romania`,`Italy`,`Greece`,`Crotia`,`Holland`,`Finland`,`Hongkong`) VALUES (%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s)" #read the monthly file and index that with time df=data.set_index('Date') split_point =int(0.7*len(df)) D, V = df[0:split_point],df[split_point:] data=pd.DataFrame(D) #Functions for ME, MAE, MAPE #ME def ME(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(y_true - y_pred) #MAE def MAE(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(np.abs(y_true - y_pred)) #MAPE def MAPE(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(np.abs((y_true - y_pred) / y_pred)) * 100 cur1=con.cursor() cur1.execute("SELECT * FROM `ftech`") ftech=pd.DataFrame(cur1.fetchall()) ari=int(ftech['ari']) arx=int(ftech['arx']) exp=int(ftech['exp']) mov=int(ftech['mov']) reg=int(ftech['reg']) start_index1=str(D['GDP'].index[-1]) end_index1=str(ftech['till'][0]) #end_index1=indx[:4] df2 = pd.DataFrame(data=0,index=["ME","MAE","MAPE"],columns=["Moving Average","ARIMA","Exponential Smoothing","Regression"]) if mov==1: #2---------------simple moving average------------------------- #################################MovingAverage####################### list1=list() def mavg(data): m=len(data.columns.tolist()) for i in range(0,m-5): #Arima Model Fitting model1=ARIMA(data[data.columns.tolist()[i]].astype(float), order=(0,0,1)) results_ARIMA1=model1.fit(disp=0) # start_index1 = '2017-01-01' # end_index1 = '2022-01-01' #4 year forecast ARIMA_fit1= results_ARIMA1.fittedvalues forecast2=results_ARIMA1.predict(start=start_index1, end=end_index1) list1.append(forecast2) if(i==0): #ME s=ME(data['TotalDemand'],ARIMA_fit1) #MAE so=MAE(data['TotalDemand'],ARIMA_fit1) #MAPE son=MAPE(data['TotalDemand'],ARIMA_fit1) df2["Moving Average"].iloc[0]=s df2["Moving Average"].iloc[1]=so df2["Moving Average"].iloc[2]=son s=pd.DataFrame(forecast2) ratio_inc=[] ratio_inc.append(0) for j in range(2,len(s)+1): a=s.iloc[j-2] b=s.iloc[j-1] ratio_inc.append(int(((b-a)/a)*100)) return list1,ratio_inc print(data) Ma_Out,ratio_incma=mavg(data) dfs=pd.DataFrame(Ma_Out) tdfs=dfs.T print(tdfs) tdfs.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] tdfs['Model']='Moving Average' tdfs['RatioIncrease']=ratio_incma tdfs['Date']=(tdfs.index).strftime("20%y-%m-%d") tdfs.astype(str) for index, i in tdfs.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if ari==1: ##--------------min errors--ARIMA (1,0,0)----------------------------- ############################for Total Demand Monthly#################################### list2=list() def AutoRimavg(data): m=len(data.columns.tolist()) for i in range(0,m-5): #Arima Model Fitting model1=ARIMA(data[data.columns.tolist()[i]].astype(float), order=(1,0,0)) results_ARIMA1=model1.fit(disp=0) ARIMA_fit1= results_ARIMA1.fittedvalues forecast2=results_ARIMA1.predict(start=start_index1, end=end_index1) list2.append(forecast2) if(i==0): #ME s=ME(data['TotalDemand'],ARIMA_fit1) #MAE so=MAE(data['TotalDemand'],ARIMA_fit1) #MAPE son=MAPE(data['TotalDemand'],ARIMA_fit1) df2["ARIMA"].iloc[0]=s df2["ARIMA"].iloc[1]=so df2["ARIMA"].iloc[2]=son Ars=pd.DataFrame(forecast2) ratio_inc=[] ratio_inc.append(0) for j in range(2,len(Ars)+1): As=(Ars.iloc[j-2]) bs=(Ars.iloc[j-1]) ratio_inc.append(int(((As-bs)/As)*100)) return list1,ratio_inc Arimamodel,ratio_inc=AutoRimavg(data) Amodel=pd.DataFrame(Arimamodel) Results=Amodel.T Results.astype(str) Results.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] Results['Model']="ARIMA" Results['RatioIncrease']=ratio_inc Results['Date']=Results.index.astype(str) for index, i in Results.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if reg==1: #Linear Regression #Regression Modeling dates=pd.date_range(start_index1,end_index1,freq='M') lprd=len(dates) dateofterms= pd.PeriodIndex(freq='M', start=start_index1, periods=lprd+1) dofterm=dateofterms.strftime("20%y-%m-%d") Rdate=pd.DataFrame(dofterm) noofterms=len(dofterm) def regression(data,V,noofterms): #Getting length of Data Frame lenofdf=len(data.columns.tolist()) #Getting List Of Atributes in Data Frame listofatr=list() listofatr=data.columns.tolist() #making list of pred pred=pd.DataFrame() #now riun for each row for i in range(0,(lenofdf)-5): df=pd.DataFrame(data[data.columns.tolist()[i]].reset_index()) xvar=list() for row in df[listofatr[i]]: xvar.append(row) df5=pd.DataFrame(xvar) yvar=list() for j in range(0,len(df[listofatr[i]])): yvar.append(j) dfss=pd.DataFrame(yvar) clf = linear_model.LinearRegression() clf.fit(dfss,df5) # Make predictions using the testing set dfv=pd.DataFrame(V[V.columns.tolist()[i]].reset_index()) k=list() for l in range(len(df[listofatr[i]]),len(df[listofatr[i]])+len(dfv)): k.append(l) ks=pd.DataFrame(k) #Future prediction predlist=list() for j in range(len(df[listofatr[i]]),len(df[listofatr[i]])+noofterms): predlist.append(j) dataframeoflenofpred=pd.DataFrame(predlist) dateframeofpred=pd.DataFrame(clf.predict(dataframeoflenofpred)) pred=pd.concat([pred,dateframeofpred],axis=1) #Accuracy Of the mODEL y_pred = clf.predict(ks) if(i==0): meanerror=ME(dfv[listofatr[i]], y_pred) mae=MAE(dfv[listofatr[i]], y_pred) mape=MAPE(dfv[listofatr[i]],y_pred) df2["Regression"].iloc[0]=meanerror df2["Regression"].iloc[1]=mae df2["Regression"].iloc[2]=mape regp=pd.DataFrame(pred) ratio_incrr=[] ratio_incrr.append(0) for j in range(2,len(regp)+1): Ra=regp.iloc[j-2] Rb=regp.iloc[j-1] ratio_incrr.append(int(((Rb-Ra)/Ra)*100)) return pred,ratio_incrr monthlyRegression,ratio_incrr=regression(data,V,noofterms) r=pd.DataFrame(monthlyRegression) r.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] r['Model']="Regression" r['Date']=Rdate r['RatioIncrease']=ratio_incrr r.astype(str) for index, i in r.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if exp==1: #Exponential Smoothing dates=pd.date_range(start_index1,end_index1,freq='M') lengthofprd=len(dates) dateofterm= pd.PeriodIndex(freq='M', start=start_index1, periods=lengthofprd+1) dateofterms=dateofterm.strftime("20%y-%m-%d") Edate=pd.DataFrame(dateofterms) predictonterm=len(Edate) def exponential_smoothing(series, alpha,predictonterm): result = [series[0]] # first value is same as series for i in range(1,len(series)): result.append(alpha * series[i] + (1 - alpha) * result[i-1]) preds=result[len(series)-1]#pred actual=series[len(series)-1]#actual forecastlist=[] for i in range(0,predictonterm): forecast=(alpha*actual)+((1-alpha)*preds) forecastlist.append(forecast) actual=preds preds=forecast return result,forecastlist def Exponentialmooth(data,alpha,predicterm): predexp=list() forecaste=pd.DataFrame() m=len(data.columns.tolist()) for i in range(0,m-5): pred,forecasts=exponential_smoothing(data[data.columns.tolist()[i]],0.5,predictonterm) ss=pd.DataFrame(forecasts) predexp.append(pred) forecaste=pd.concat([forecaste,ss],axis=1) if(i==0): meanerr=ME(len(data[data.columns.tolist()[i]]),predexp) meanaverr=MAE(data[data.columns.tolist()[i]],predexp) mperr=MAPE(data[data.columns.tolist()[i]],predexp) df2["Exponential Smoothing"].iloc[0]=meanerr df2["Exponential Smoothing"].iloc[1]=meanaverr df2["Exponential Smoothing"].iloc[2]=mperr Exponentials=pd.DataFrame(forecaste) ratio_incex=[] ratio_incex.append(0) for j in range(2,len(Exponentials)+1): Ea=Exponentials.iloc[j-2] Eb=Exponentials.iloc[j-1] ratio_incex.append(int(((Eb-Ea)/Ea)*100)) return forecaste,ratio_incex fore,ratio_incex=Exponentialmooth(data,0.5,predictonterm) skf=pd.DataFrame(fore) skf.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] skf['Model']="Exponential Smoothing" skf['Date']=Edate skf['RatioIncrease']=ratio_incex skf.astype(str) for index, i in skf.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() dates=pd.date_range(start_index1,end_index1,freq='M') lengthofprd=len(dates) dateofterm= pd.PeriodIndex(freq='M', start=start_index1, periods=lengthofprd+1) dateofterms=dateofterm.strftime("20%y-%m-%d") ss=pd.DataFrame(dateofterms,columns=['Date']) dataframeforsum=pd.concat([ss]) if mov==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutput` WHERE `Model`= 'Moving Average'" ) Xmdata = cur.fetchall() Xmadata = pd.DataFrame(Xmdata) movsummm=pd.DataFrame(Xmadata) movsummm.columns=['Moving Average'] dataframeforsum=pd.concat([dataframeforsum,movsummm],axis=1) if ari==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutput` WHERE `Model`= 'ARIMA'" ) Xadata = cur.fetchall() Xardata = pd.DataFrame(Xadata) movsumma=pd.DataFrame(Xardata) movsumma.columns=['ARIMA'] dataframeforsum=pd.concat([dataframeforsum,movsumma],axis=1) if exp==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutput` WHERE `Model`= 'Exponential Smoothing'" ) Xedata = cur.fetchall() Xesdata = pd.DataFrame(Xedata) exp=pd.DataFrame(Xesdata) exp.columns=['Exponential Smoothing'] dataframeforsum=pd.concat([dataframeforsum,exp],axis=1) if reg==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutput` WHERE `Model`= 'Regression'" ) Xrdata = cur.fetchall() Xredata = pd.DataFrame(Xrdata) regr=pd.DataFrame(Xredata) regr.columns=['Regression'] dataframeforsum=pd.concat([dataframeforsum,regr],axis=1) dataframeforsum.astype(str) from pandas.io import sql engine = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) dataframeforsum.to_sql(con=engine, name='summaryoutput',index=False, if_exists='replace') engine2 = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) df2.to_sql(con=engine2, name='summaryerror',index=False, if_exists='replace') con.commit() cnr=con.cursor() cnr.execute("SELECT * FROM `summaryoutput`") sdata = cnr.fetchall() summaryq = pd.DataFrame(sdata) con.close() return render_template('monthly.html',summaryq=summaryq.to_html(index=False),sayy=1,smt='Monthly',yr1=demandforecastfrm+' to ',yr2=demandforecasttoo,x=res11,y=r11,x1=tres11,y1=tr11,x2=ures11,y2=ur11,x3=vres11,y3=vr11,x4=wres11,y4=wr11) return render_template('monthly.html',sayy=1,smt='Monthly',yr1=demandforecastfrm+' to ',yr2=demandforecasttoo,x=res11,y=r11,x1=tres11,y1=tr11,x2=ures11,y2=ur11,x3=vres11,y3=vr11,x4=wres11,y4=wr11) ##quarterly @app.route("/quarterlyforecast",methods = ['GET','POST']) def quarterlyforecast(): data = pd.DataFrame(Quaterdata) a1=data.sort_values(['GDP','TotalDemand'], ascending=[True,True])# container1 a2=data.sort_values(['Pi_Exports','TotalDemand'], ascending=[True,True])# container2 a3=data.sort_values(['Market_Share','TotalDemand'], ascending=[True,True])# container3 a4=data.sort_values(['Advertisement_Expense','TotalDemand'], ascending=[True,True])# container4 # container1 df=a1[['GDP']]/3 re11 = np.array([]) res11 = np.append(re11,df) df1=a1[['TotalDemand']] r1 = np.array([]) r11 = np.append(r1, df1) # top graph tdf=data['Date'].astype(str) tre11 = np.array([]) tres11 = np.append(tre11,tdf) tr1 = np.array([]) tr11 = np.append(tr1, df1) # container2 udf=a2[['Pi_Exports']] ure11 = np.array([]) ures11 = np.append(ure11,udf) ur1 = np.array([]) ur11 = np.append(ur1, df1) # container3 vdf=a3[['Market_Share']]/3 vre11 = np.array([]) vres11 = np.append(vre11,vdf) vr1 = np.array([]) vr11 = np.append(vr1, df1) # container4 wdf=a4[['Advertisement_Expense']] wre11 = np.array([]) wres11 = np.append(wre11,wdf) wr1 = np.array([]) wr11 = np.append(wr1, df1) if request.method == 'POST': mov=0 exp=0 reg=0 ari=0 arx=0 till = request.form.get('till') if request.form.get('moving'): mov=1 if request.form.get('ESPO'): exp=1 if request.form.get('regression'): reg=1 if request.form.get('ARIMA'): ari=1 if request.form.get('ARIMAX'): arx=1 con = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = con.cursor() cur.execute("CREATE TABLE IF NOT EXISTS `ftech` (`mov` VARCHAR(1),`exp` VARCHAR(1), `reg` VARCHAR(1),`ari` VARCHAR(1),`arx` VARCHAR(1),`till` VARCHAR(10))") cur.execute("DELETE FROM `ftech`") con.commit() cur.execute("INSERT INTO `ftech` VALUES('"+str(mov)+"','"+str(exp)+"','"+str(reg)+"','"+str(ari)+"','"+str(arx)+"','"+str(till)+"')") con.commit() cur.execute("CREATE TABLE IF NOT EXISTS `forecastoutputq`(`Model` VARCHAR(25),`Date` VARCHAR(10),`TotalDemand` VARCHAR(10),`RatioIncrease` VARCHAR(10),`Spain` VARCHAR(10),`Austria` VARCHAR(10),`Japan` VARCHAR(10),`Hungary` VARCHAR(10),`Germany` VARCHAR(10),`Polland` VARCHAR(10),`UK` VARCHAR(10),`France` VARCHAR(10),`Romania` VARCHAR(10),`Italy` VARCHAR(10),`Greece` VARCHAR(10),`Crotia` VARCHAR(10),`Holland` VARCHAR(10),`Finland` VARCHAR(10),`Hongkong` VARCHAR(10))") con.commit() cur.execute("DELETE FROM `forecastoutputq`") con.commit() sql = "INSERT INTO `forecastoutputq` (`Model`,`Date`,`TotalDemand`,`RatioIncrease`,`Spain`,`Austria`,`Japan`,`Hungary`,`Germany`,`Polland`,`UK`,`France`,`Romania`,`Italy`,`Greece`,`Crotia`,`Holland`,`Finland`,`Hongkong`) VALUES (%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s)" #read the monthly file and index that with time df=data.set_index('Date') split_point =int(0.7*len(df)) D, V = df[0:split_point],df[split_point:] data=pd.DataFrame(D) #Functions for ME, MAE, MAPE #ME def ME(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(y_true - y_pred) #MAE def MAE(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(np.abs(y_true - y_pred)) #MAPE def MAPE(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(np.abs((y_true - y_pred) / y_pred)) * 100 cur1=con.cursor() cur1.execute("SELECT * FROM `ftech`") ftech=pd.DataFrame(cur1.fetchall()) ari=int(ftech['ari']) arx=int(ftech['arx']) exp=int(ftech['exp']) mov=int(ftech['mov']) reg=int(ftech['reg']) start_index1=str(D['GDP'].index[-1]) end_index1=str(ftech['till'][0]) #end_index1=indx[:4] df2 = pd.DataFrame(data=0,index=["ME","MAE","MAPE"],columns=["Moving Average","ARIMA","Exponential Smoothing","Regression"]) if mov==1: #2---------------simple moving average------------------------- #################################MovingAverage####################### list1=list() def mavg(data): m=len(data.columns.tolist()) for i in range(0,m-5): #Arima Model Fitting model1=ARIMA(data[data.columns.tolist()[i]].astype(float), order=(0,0,1)) results_ARIMA1=model1.fit(disp=0) # start_index1 = '2017-01-01' # end_index1 = '2022-01-01' #4 year forecast ARIMA_fit1= results_ARIMA1.fittedvalues forecast2=results_ARIMA1.predict(start=start_index1, end=end_index1) list1.append(forecast2) if(i==0): #ME s=ME(data['TotalDemand'],ARIMA_fit1) #MAE so=MAE(data['TotalDemand'],ARIMA_fit1) #MAPE son=MAPE(data['TotalDemand'],ARIMA_fit1) df2["Moving Average"].iloc[0]=s df2["Moving Average"].iloc[1]=so df2["Moving Average"].iloc[2]=son s=pd.DataFrame(forecast2) ratio_inc=[] ratio_inc.append(0) for j in range(2,len(s)+1): a=s.iloc[j-2] b=s.iloc[j-1] ratio_inc.append(int(((b-a)/a)*100)) return list1,ratio_inc print(data) Ma_Out,ratio_incma=mavg(data) dfs=pd.DataFrame(Ma_Out) tdfs=dfs.T print(tdfs) tdfs.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] tdfs['Model']='Moving Average' tdfs['RatioIncrease']=ratio_incma tdfs['Date']=(tdfs.index).strftime("20%y-%m-%d") tdfs.astype(str) for index, i in tdfs.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if ari==1: ##--------------min errors--ARIMA (1,0,0)----------------------------- ############################for Total Demand Monthly#################################### list2=list() def AutoRimavg(data): m=len(data.columns.tolist()) for i in range(0,m-5): #Arima Model Fitting model1=ARIMA(data[data.columns.tolist()[i]].astype(float), order=(1,0,0)) results_ARIMA1=model1.fit(disp=0) ARIMA_fit1= results_ARIMA1.fittedvalues forecast2=results_ARIMA1.predict(start=start_index1, end=end_index1) list2.append(forecast2) if(i==0): #ME s=ME(data['TotalDemand'],ARIMA_fit1) #MAE so=MAE(data['TotalDemand'],ARIMA_fit1) #MAPE son=MAPE(data['TotalDemand'],ARIMA_fit1) df2["ARIMA"].iloc[0]=s df2["ARIMA"].iloc[1]=so df2["ARIMA"].iloc[2]=son Ars=pd.DataFrame(forecast2) ratio_inc=[] ratio_inc.append(0) for j in range(2,len(Ars)+1): As=(Ars.iloc[j-2]) bs=(Ars.iloc[j-1]) ratio_inc.append(int(((As-bs)/As)*100)) return list1,ratio_inc Arimamodel,ratio_inc=AutoRimavg(data) Amodel=pd.DataFrame(Arimamodel) Results=Amodel.T Results.astype(str) Results.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] Results['Model']="ARIMA" Results['RatioIncrease']=ratio_inc Results['Date']=Results.index.astype(str) for index, i in Results.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if reg==1: #Linear Regression #Regression Modeling dates=pd.date_range(start_index1,end_index1,freq='3M') lprd=len(dates) dateofterms= pd.PeriodIndex(freq='3M', start=start_index1, periods=lprd+1) dofterm=dateofterms.strftime("20%y-%m-%d") Rdate=pd.DataFrame(dofterm) noofterms=len(dofterm) def regression(data,V,noofterms): #Getting length of Data Frame lenofdf=len(data.columns.tolist()) #Getting List Of Atributes in Data Frame listofatr=list() listofatr=data.columns.tolist() #making list of pred pred=pd.DataFrame() #now riun for each row for i in range(0,(lenofdf)-5): df=pd.DataFrame(data[data.columns.tolist()[i]].reset_index()) xvar=list() for row in df[listofatr[i]]: xvar.append(row) df5=pd.DataFrame(xvar) yvar=list() for j in range(0,len(df[listofatr[i]])): yvar.append(j) dfss=pd.DataFrame(yvar) clf = linear_model.LinearRegression() clf.fit(dfss,df5) # Make predictions using the testing set dfv=pd.DataFrame(V[V.columns.tolist()[i]].reset_index()) k=list() for l in range(len(df[listofatr[i]]),len(df[listofatr[i]])+len(dfv)): k.append(l) ks=pd.DataFrame(k) #Future prediction predlist=list() for j in range(len(df[listofatr[i]]),len(df[listofatr[i]])+noofterms): predlist.append(j) dataframeoflenofpred=pd.DataFrame(predlist) dateframeofpred=pd.DataFrame(clf.predict(dataframeoflenofpred)) pred=pd.concat([pred,dateframeofpred],axis=1) #Accuracy Of the mODEL y_pred = clf.predict(ks) if(i==0): meanerror=ME(dfv[listofatr[i]], y_pred) mae=MAE(dfv[listofatr[i]], y_pred) mape=MAPE(dfv[listofatr[i]],y_pred) df2["Regression"].iloc[0]=meanerror df2["Regression"].iloc[1]=mae df2["Regression"].iloc[2]=mape regp=pd.DataFrame(pred) ratio_incrr=[] ratio_incrr.append(0) for j in range(2,len(regp)+1): Ra=regp.iloc[j-2] Rb=regp.iloc[j-1] ratio_incrr.append(int(((Rb-Ra)/Ra)*100)) return pred,ratio_incrr monthlyRegression,ratio_incrr=regression(data,V,noofterms) r=pd.DataFrame(monthlyRegression) r.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] r['Model']="Regression" r['Date']=Rdate r['RatioIncrease']=ratio_incrr r.astype(str) for index, i in r.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if exp==1: #Exponential Smoothing dates=pd.date_range(start_index1,end_index1,freq='3M') lengthofprd=len(dates) dateofterm= pd.PeriodIndex(freq='3M', start=start_index1, periods=lengthofprd+1) dateofterms=dateofterm.strftime("20%y-%m-%d") Edate=pd.DataFrame(dateofterms) predictonterm=len(Edate) def exponential_smoothing(series, alpha,predictonterm): result = [series[0]] # first value is same as series for i in range(1,len(series)): result.append(alpha * series[i] + (1 - alpha) * result[i-1]) preds=result[len(series)-1]#pred actual=series[len(series)-1]#actual forecastlist=[] for i in range(0,predictonterm): forecast=(alpha*actual)+((1-alpha)*preds) forecastlist.append(forecast) actual=preds preds=forecast return result,forecastlist def Exponentialmooth(data,alpha,predicterm): predexp=list() forecaste=pd.DataFrame() m=len(data.columns.tolist()) for i in range(0,m-5): pred,forecasts=exponential_smoothing(data[data.columns.tolist()[i]],0.5,predictonterm) ss=pd.DataFrame(forecasts) predexp.append(pred) forecaste=pd.concat([forecaste,ss],axis=1) if(i==0): meanerr=ME(len(data[data.columns.tolist()[i]]),predexp) meanaverr=MAE(data[data.columns.tolist()[i]],predexp) mperr=MAPE(data[data.columns.tolist()[i]],predexp) df2["Exponential Smoothing"].iloc[0]=meanerr df2["Exponential Smoothing"].iloc[1]=meanaverr df2["Exponential Smoothing"].iloc[2]=mperr Exponentials=pd.DataFrame(forecaste) ratio_incex=[] ratio_incex.append(0) for j in range(2,len(Exponentials)+1): Ea=Exponentials.iloc[j-2] Eb=Exponentials.iloc[j-1] ratio_incex.append(int(((Eb-Ea)/Ea)*100)) return forecaste,ratio_incex fore,ratio_incex=Exponentialmooth(data,0.5,predictonterm) skf=pd.DataFrame(fore) skf.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] skf['Model']="Exponential Smoothing" skf['Date']=Edate skf['RatioIncrease']=ratio_incex skf.astype(str) for index, i in skf.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() dates=pd.date_range(start_index1,end_index1,freq='3M') lengthofprd=len(dates) dateofterm= pd.PeriodIndex(freq='3M', start=start_index1, periods=lengthofprd+1) dateofterms=dateofterm.strftime("20%y-%m-%d") ss=pd.DataFrame(dateofterms,columns=['Date']) dataframeforsum=pd.concat([ss]) if mov==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutputq` WHERE `Model`= 'Moving Average'" ) Xmdata = cur.fetchall() Xmadata = pd.DataFrame(Xmdata) movsummm=pd.DataFrame(Xmadata) movsummm.columns=['Moving Average'] dataframeforsum=pd.concat([dataframeforsum,movsummm],axis=1) if ari==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutputq` WHERE `Model`= 'ARIMA'" ) Xadata = cur.fetchall() Xardata = pd.DataFrame(Xadata) movsumma=pd.DataFrame(Xardata) movsumma.columns=['ARIMA'] dataframeforsum=pd.concat([dataframeforsum,movsumma],axis=1) if exp==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutputq` WHERE `Model`= 'Exponential Smoothing'" ) Xedata = cur.fetchall() Xesdata = pd.DataFrame(Xedata) exp=pd.DataFrame(Xesdata) exp.columns=['Exponential Smoothing'] dataframeforsum=pd.concat([dataframeforsum,exp],axis=1) if reg==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutputq` WHERE `Model`= 'Regression'" ) Xrdata = cur.fetchall() Xredata = pd.DataFrame(Xrdata) regr=pd.DataFrame(Xredata) regr.columns=['Regression'] dataframeforsum=pd.concat([dataframeforsum,regr],axis=1) dataframeforsum.astype(str) from pandas.io import sql engine = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) dataframeforsum.to_sql(con=engine, name='summaryoutputq',index=False, if_exists='replace') engine2 = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) df2.to_sql(con=engine2, name='summaryerror',index=False, if_exists='replace') con.commit() cnr=con.cursor() cnr.execute("SELECT * FROM `summaryoutputq`") sdata = cnr.fetchall() summaryq = pd.DataFrame(sdata) con.close() return render_template('quarterly.html',summaryq=summaryq.to_html(index=False),sayy=1,smt='Quarterly',yr1=demandforecastfrm+' to ',yr2=demandforecasttoo,x=res11,y=r11,x1=tres11,y1=tr11,x2=ures11,y2=ur11,x3=vres11,y3=vr11,x4=wres11,y4=wr11) return render_template('quarterly.html',sayy=1,smt='Quarterly',yr1=demandforecastfrm+' to ',yr2=demandforecasttoo,x=res11,y=r11,x1=tres11,y1=tr11,x2=ures11,y2=ur11,x3=vres11,y3=vr11,x4=wres11,y4=wr11) ##yearly @app.route("/yearlyforecast",methods = ['GET','POST']) def yearlyforecast(): data = pd.DataFrame(Yeardata) a1=data.sort_values(['GDP','TotalDemand'], ascending=[True,True])# container1 a2=data.sort_values(['Pi_Exports','TotalDemand'], ascending=[True,True])# container2 a3=data.sort_values(['Market_Share','TotalDemand'], ascending=[True,True])# container3 a4=data.sort_values(['Advertisement_Expense','TotalDemand'], ascending=[True,True])# container4 # container1 df=a1[['GDP']]/12 re11 = np.array([]) res11 = np.append(re11,df) df1=a1[['TotalDemand']] r1 = np.array([]) r11 = np.append(r1, df1) # top graph tdf=data['Date'] vari=[] for var in tdf: vari.append(var[:4]) tres11 = vari tr1 = np.array([]) tr11 = np.append(tr1, df1) # container2 udf=a2[['Pi_Exports']] ure11 = np.array([]) ures11 = np.append(ure11,udf) ur1 = np.array([]) ur11 = np.append(ur1, df1) # container3 vdf=a3[['Market_Share']]/12 vre11 = np.array([]) vres11 = np.append(vre11,vdf) vr1 = np.array([]) vr11 = np.append(vr1, df1) # container4 wdf=a4[['Advertisement_Expense']] wre11 = np.array([]) wres11 = np.append(wre11,wdf) wr1 = np.array([]) wr11 = np.append(wr1, df1) if request.method == 'POST': mov=0 exp=0 reg=0 ari=0 arx=0 till = request.form.get('till') if request.form.get('moving'): mov=1 if request.form.get('ESPO'): exp=1 if request.form.get('regression'): reg=1 if request.form.get('ARIMA'): ari=1 if request.form.get('ARIMAX'): arx=1 con = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = con.cursor() cur.execute("CREATE TABLE IF NOT EXISTS `ftech` (`mov` VARCHAR(1),`exp` VARCHAR(1), `reg` VARCHAR(1),`ari` VARCHAR(1),`arx` VARCHAR(1),`till` VARCHAR(10))") cur.execute("DELETE FROM `ftech`") con.commit() cur.execute("INSERT INTO `ftech` VALUES('"+str(mov)+"','"+str(exp)+"','"+str(reg)+"','"+str(ari)+"','"+str(arx)+"','"+str(till)+"')") con.commit() cur.execute("CREATE TABLE IF NOT EXISTS `forecastoutputy`(`Model` VARCHAR(25),`Date` VARCHAR(10),`TotalDemand` VARCHAR(10),`RatioIncrease` VARCHAR(10),`Spain` VARCHAR(10),`Austria` VARCHAR(10),`Japan` VARCHAR(10),`Hungary` VARCHAR(10),`Germany` VARCHAR(10),`Polland` VARCHAR(10),`UK` VARCHAR(10),`France` VARCHAR(10),`Romania` VARCHAR(10),`Italy` VARCHAR(10),`Greece` VARCHAR(10),`Crotia` VARCHAR(10),`Holland` VARCHAR(10),`Finland` VARCHAR(10),`Hongkong` VARCHAR(10))") con.commit() cur.execute("DELETE FROM `forecastoutputy`") con.commit() sql = "INSERT INTO `forecastoutputy` (`Model`,`Date`,`TotalDemand`,`RatioIncrease`,`Spain`,`Austria`,`Japan`,`Hungary`,`Germany`,`Polland`,`UK`,`France`,`Romania`,`Italy`,`Greece`,`Crotia`,`Holland`,`Finland`,`Hongkong`) VALUES (%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s)" #read the monthly file and index that with time df=data.set_index('Date') split_point =int(0.7*len(df)) D, V = df[0:split_point],df[split_point:] data=pd.DataFrame(D) #Functions for ME, MAE, MAPE #ME def ME(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(y_true - y_pred) #MAE def MAE(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(np.abs(y_true - y_pred)) #MAPE def MAPE(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(np.abs((y_true - y_pred) / y_pred)) * 100 cur1=con.cursor() cur1.execute("SELECT * FROM `ftech`") ftech=pd.DataFrame(cur1.fetchall()) ari=int(ftech['ari']) arx=int(ftech['arx']) exp=int(ftech['exp']) mov=int(ftech['mov']) reg=int(ftech['reg']) start_index1=str(D['GDP'].index[-1]) end_index1=str(ftech['till'][0]) #end_index1=indx[:4] df2 = pd.DataFrame(data=0,index=["ME","MAE","MAPE"],columns=["Moving Average","ARIMA","Exponential Smoothing","Regression"]) if mov==1: #2---------------simple moving average------------------------- #################################MovingAverage####################### list1=list() def mavg(data): m=len(data.columns.tolist()) for i in range(0,m-5): #Arima Model Fitting model1=ARIMA(data[data.columns.tolist()[i]].astype(float), order=(0,0,1)) results_ARIMA1=model1.fit(disp=0) # start_index1 = '2017-01-01' # end_index1 = '2022-01-01' #4 year forecast ARIMA_fit1= results_ARIMA1.fittedvalues forecast2=results_ARIMA1.predict(start=start_index1, end=end_index1) list1.append(forecast2) if(i==0): #ME s=ME(data['TotalDemand'],ARIMA_fit1) #MAE so=MAE(data['TotalDemand'],ARIMA_fit1) #MAPE son=MAPE(data['TotalDemand'],ARIMA_fit1) df2["Moving Average"].iloc[0]=s df2["Moving Average"].iloc[1]=so df2["Moving Average"].iloc[2]=son s=pd.DataFrame(forecast2) ratio_inc=[] ratio_inc.append(0) for j in range(2,len(s)+1): a=s.iloc[j-2] b=s.iloc[j-1] ratio_inc.append(int(((b-a)/a)*100)) return list1,ratio_inc print(data) Ma_Out,ratio_incma=mavg(data) dfs=pd.DataFrame(Ma_Out) tdfs=dfs.T print(tdfs) tdfs.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] tdfs['Model']='Moving Average' tdfs['RatioIncrease']=ratio_incma dindex=(tdfs.index).strftime("20%y") tdfs['Date']=(dindex) tdfs.astype(str) for index, i in tdfs.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if ari==1: ##--------------min errors--ARIMA (1,0,0)----------------------------- ############################for Total Demand Monthly#################################### list2=list() def AutoRimavg(data): m=len(data.columns.tolist()) for i in range(0,m-5): #Arima Model Fitting model1=ARIMA(data[data.columns.tolist()[i]].astype(float), order=(1,0,0)) results_ARIMA1=model1.fit(disp=0) ARIMA_fit1= results_ARIMA1.fittedvalues forecast2=results_ARIMA1.predict(start=start_index1, end=end_index1) list2.append(forecast2) if(i==0): #ME s=ME(data['TotalDemand'],ARIMA_fit1) #MAE so=MAE(data['TotalDemand'],ARIMA_fit1) #MAPE son=MAPE(data['TotalDemand'],ARIMA_fit1) df2["ARIMA"].iloc[0]=s df2["ARIMA"].iloc[1]=so df2["ARIMA"].iloc[2]=son Ars=pd.DataFrame(forecast2) ratio_inc=[] ratio_inc.append(0) for j in range(2,len(Ars)+1): As=(Ars.iloc[j-2]) bs=(Ars.iloc[j-1]) ratio_inc.append(int(((As-bs)/As)*100)) return list1,ratio_inc Arimamodel,ratio_inc=AutoRimavg(data) Amodel=pd.DataFrame(Arimamodel) Results=Amodel.T Results.astype(str) Results.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] Results['Model']="ARIMA" Results['RatioIncrease']=ratio_inc Results['Date']=Results.index.astype(str) for index, i in Results.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if reg==1: #Linear Regression #Regression Modeling dates=pd.date_range(start_index1,end_index1,freq='A') lprd=len(dates) dateofterms= pd.PeriodIndex(freq='A', start=start_index1, periods=lprd+1) dofterm=dateofterms.strftime("20%y") Rdate=pd.DataFrame(dofterm) noofterms=len(dofterm) def regression(data,V,noofterms): #Getting length of Data Frame lenofdf=len(data.columns.tolist()) #Getting List Of Atributes in Data Frame listofatr=list() listofatr=data.columns.tolist() #making list of pred pred=pd.DataFrame() #now riun for each row for i in range(0,(lenofdf)-5): df=pd.DataFrame(data[data.columns.tolist()[i]].reset_index()) xvar=list() for row in df[listofatr[i]]: xvar.append(row) df5=pd.DataFrame(xvar) yvar=list() for j in range(0,len(df[listofatr[i]])): yvar.append(j) dfss=pd.DataFrame(yvar) clf = linear_model.LinearRegression() clf.fit(dfss,df5) # Make predictions using the testing set dfv=pd.DataFrame(V[V.columns.tolist()[i]].reset_index()) k=list() for l in range(len(df[listofatr[i]]),len(df[listofatr[i]])+len(dfv)): k.append(l) ks=pd.DataFrame(k) #Future prediction predlist=list() for j in range(len(df[listofatr[i]]),len(df[listofatr[i]])+noofterms): predlist.append(j) dataframeoflenofpred=pd.DataFrame(predlist) dateframeofpred=pd.DataFrame(clf.predict(dataframeoflenofpred)) pred=pd.concat([pred,dateframeofpred],axis=1) #Accuracy Of the mODEL y_pred = clf.predict(ks) if(i==0): meanerror=ME(dfv[listofatr[i]], y_pred) mae=MAE(dfv[listofatr[i]], y_pred) mape=MAPE(dfv[listofatr[i]],y_pred) df2["Regression"].iloc[0]=meanerror df2["Regression"].iloc[1]=mae df2["Regression"].iloc[2]=mape regp=pd.DataFrame(pred) ratio_incrr=[] ratio_incrr.append(0) for j in range(2,len(regp)+1): Ra=regp.iloc[j-2] Rb=regp.iloc[j-1] ratio_incrr.append(int(((Rb-Ra)/Ra)*100)) return pred,ratio_incrr monthlyRegression,ratio_incrr=regression(data,V,noofterms) r=pd.DataFrame(monthlyRegression) r.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] r['Model']="Regression" r['Date']=Rdate r['RatioIncrease']=ratio_incrr r.astype(str) for index, i in r.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if exp==1: #Exponential Smoothing dates=pd.date_range(start_index1,end_index1,freq='A') lengthofprd=len(dates) dateofterm= pd.PeriodIndex(freq='A', start=start_index1, periods=lengthofprd+1) dateofterms=dateofterm.strftime("20%y") Edate=pd.DataFrame(dateofterms) predictonterm=len(Edate) def exponential_smoothing(series, alpha,predictonterm): result = [series[0]] # first value is same as series for i in range(1,len(series)): result.append(alpha * series[i] + (1 - alpha) * result[i-1]) preds=result[len(series)-1]#pred actual=series[len(series)-1]#actual forecastlist=[] for i in range(0,predictonterm): forecast=(alpha*actual)+((1-alpha)*preds) forecastlist.append(forecast) actual=preds preds=forecast return result,forecastlist def Exponentialmooth(data,alpha,predicterm): predexp=list() forecaste=pd.DataFrame() m=len(data.columns.tolist()) for i in range(0,m-5): pred,forecasts=exponential_smoothing(data[data.columns.tolist()[i]],0.5,predictonterm) ss=pd.DataFrame(forecasts) predexp.append(pred) forecaste=pd.concat([forecaste,ss],axis=1) if(i==0): meanerr=ME(len(data[data.columns.tolist()[i]]),predexp) meanaverr=MAE(data[data.columns.tolist()[i]],predexp) mperr=MAPE(data[data.columns.tolist()[i]],predexp) df2["Exponential Smoothing"].iloc[0]=meanerr df2["Exponential Smoothing"].iloc[1]=meanaverr df2["Exponential Smoothing"].iloc[2]=mperr Exponentials=pd.DataFrame(forecaste) ratio_incex=[] ratio_incex.append(0) for j in range(2,len(Exponentials)+1): Ea=Exponentials.iloc[j-2] Eb=Exponentials.iloc[j-1] ratio_incex.append(int(((Eb-Ea)/Ea)*100)) return forecaste,ratio_incex fore,ratio_incex=Exponentialmooth(data,0.5,predictonterm) skf=pd.DataFrame(fore) skf.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] skf['Model']="Exponential Smoothing" skf['Date']=Edate skf['RatioIncrease']=ratio_incex skf.astype(str) for index, i in skf.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() dates=pd.date_range(start_index1,end_index1,freq='A') lengthofprd=len(dates) dateofterm= pd.PeriodIndex(freq='A', start=start_index1, periods=lengthofprd+1) dateofterms=dateofterm.strftime("20%y") ss=pd.DataFrame(dateofterms,columns=['Date']) dataframeforsum=pd.concat([ss]) if mov==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutputy` WHERE `Model`= 'Moving Average'" ) Xmdata = cur.fetchall() Xmadata = pd.DataFrame(Xmdata) movsummm=pd.DataFrame(Xmadata) movsummm.columns=['Moving Average'] dataframeforsum=pd.concat([dataframeforsum,movsummm],axis=1) if ari==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutputy` WHERE `Model`= 'ARIMA'" ) Xadata = cur.fetchall() Xardata = pd.DataFrame(Xadata) movsumma=pd.DataFrame(Xardata) movsumma.columns=['ARIMA'] dataframeforsum=pd.concat([dataframeforsum,movsumma],axis=1) if exp==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutputy` WHERE `Model`= 'Exponential Smoothing'" ) Xedata = cur.fetchall() Xesdata = pd.DataFrame(Xedata) exp=pd.DataFrame(Xesdata) exp.columns=['Exponential Smoothing'] dataframeforsum=pd.concat([dataframeforsum,exp],axis=1) if reg==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutputy` WHERE `Model`= 'Regression'" ) Xrdata = cur.fetchall() Xredata = pd.DataFrame(Xrdata) regr=pd.DataFrame(Xredata) regr.columns=['Regression'] dataframeforsum=pd.concat([dataframeforsum,regr],axis=1) dataframeforsum.astype(str) from pandas.io import sql engine = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) dataframeforsum.to_sql(con=engine, name='summaryoutputy',index=False, if_exists='replace') engine2 = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) df2.to_sql(con=engine2, name='summaryerror',index=False, if_exists='replace') con.commit() cnr=con.cursor() cnr.execute("SELECT * FROM `summaryoutputy`") sdata = cnr.fetchall() summaryq = pd.DataFrame(sdata) con.close() return render_template('yearly.html',summaryq=summaryq.to_html(index=False),sayy=1,smt='Yearly',yr1=demandforecastfrm+' to ',yr2=demandforecasttoo,x=res11,y=r11,x1=tres11,y1=tr11,x2=ures11,y2=ur11,x3=vres11,y3=vr11,x4=wres11,y4=wr11) return render_template('yearly.html',sayy=1,smt='Yearly',yr1=demandforecastfrm+' to ',yr2=demandforecasttoo,x=res11,y=r11,x1=tres11,y1=tr11,x2=ures11,y2=ur11,x3=vres11,y3=vr11,x4=wres11,y4=wr11) #############################Dashboard####################################### #yearly @app.route('/youtgraph', methods = ['GET','POST']) def youtgraph(): con = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = con.cursor() cur.execute("SELECT `Model` FROM `forecastoutputy` GROUP BY `Model`") sfile=cur.fetchall() global yqst qlist=pd.DataFrame(sfile) qlst=qlist['Model'].astype(str) yqst=qlst.values con.close() return render_template('ydashboard.html',qulist=yqst) @app.route('/youtgraph1', methods = ['GET', 'POST']) def youtgraph1(): if request.method=='POST': value=request.form['item'] qconn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) qcur = qconn.cursor() qcur.execute("SELECT * FROM `demandforecastinputdata") qsdata = qcur.fetchall() qdata = pd.DataFrame(qsdata) #graph1 adata=qdata['TotalDemand'] x_axis=qdata['Date'].astype(str) #predictedgraph1 pcur = qconn.cursor() pcur.execute("SELECT * FROM `forecastoutputy` WHERE `Model`='"+value+"'") psdata = pcur.fetchall() edata = pd.DataFrame(psdata) eedata=edata['TotalDemand'].astype(float) ldata=eedata.values nur = qconn.cursor() nur.execute("SELECT MIN(`Date`) AS 'MIN' FROM `forecastoutputy` WHERE `Model`='"+value+"'") MIN=nur.fetchone() pdata=[] i=0 k=0 a="null" while(x_axis[i]<MIN['MIN']): pdata.append(a) i=i+1 k=k+1 ata=np.concatenate((pdata,ldata),axis=0) #x axis fcur = qconn.cursor() fcur.execute("SELECT `Date` FROM `demandforecastinputdata` WHERE `Date`<'"+MIN['MIN']+"'") fsdata = fcur.fetchall() indx = pd.DataFrame(fsdata) indx=indx['Date'] index=np.concatenate((indx,edata['Date'].values),axis=0) yindx=[] for var in index: var1 = var[:4] yindx.append(var1) #bargraph bcur = qconn.cursor() bcur.execute("SELECT * FROM `forecastoutputy` WHERE `Model`='"+value+"'") bsdata = bcur.fetchall() bdata = pd.DataFrame(bsdata) btdf=bdata['Date'].astype(str) btre11 = np.array([]) btres11 = np.append(btre11,btdf) b1tdf1=bdata[['Spain']] #spain b1tr1 = np.array([]) b1tr11 = np.append(b1tr1, b1tdf1) b2tdf1=bdata[['Austria']] #austria b2tr1 = np.array([]) b2tr11 = np.append(b2tr1, b2tdf1) b3tdf1=bdata[['Japan']] #japan b3tr1 = np.array([]) b3tr11 = np.append(b3tr1, b3tdf1) b4tdf1=bdata[['Hungary']] #hungry b4tr1 = np.array([]) b4tr11 = np.append(b4tr1, b4tdf1) b5tdf1=bdata[['Germany']] #germany b5tr1 = np.array([]) b5tr11 = np.append(b5tr1, b5tdf1) b6tdf1=bdata[['TotalDemand']] #total b6tr1 = np.array([]) b6tr11 = np.append(b6tr1, b6tdf1) #comparisonbar ccur = qconn.cursor() ccur.execute("SELECT * FROM `forecastoutputy` WHERE `Model`='"+value+"'") csdata = ccur.fetchall() cdata = pd.DataFrame(csdata) ctdf=cdata['Date'].astype(str) ctre11 = np.array([]) ctres11 = np.append(ctre11,ctdf) c1tdf1=cdata[['RatioIncrease']] #ratioincrease c1tr1 = np.array([]) c1tr11 = np.append(c1tr1, c1tdf1) qcur.execute("SELECT * FROM `summaryerror`") sdata = qcur.fetchall() mape = pd.DataFrame(sdata) qconn.close() return render_template('ydashboard.html',mon=value,qulist=yqst,mape=mape.to_html(index=False),say=1,pdata=ata,adata=adata.values,x_axis=yindx,frm=len(qdata)-1,to=k,x13=btres11,x14=ctres11,y13=b1tr11,y14=b2tr11,y15=b3tr11,y16=b4tr11,y17=b5tr11,y18=b6tr11,y19=c1tr11) #monthly @app.route('/moutgraph', methods = ['GET','POST']) def moutgraph(): con = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = con.cursor() cur.execute("SELECT `Model` FROM `forecastoutput` GROUP BY `Model`") sfile=cur.fetchall() global mqst qlist=pd.DataFrame(sfile) qlst=qlist['Model'].astype(str) mqst=qlst.values con.close() return render_template('mdashboard.html',qulist=mqst) @app.route('/moutgraph1', methods = ['GET', 'POST']) def moutgraph1(): if request.method=='POST': value=request.form['item'] qconn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) qcur = qconn.cursor() qcur.execute("SELECT * FROM `demandforecastinputdata") qsdata = qcur.fetchall() qdata = pd.DataFrame(qsdata) #graph1 adata=qdata['TotalDemand'] x_axis=qdata['Date'].astype(str) #predictedgraph1 pcur = qconn.cursor() pcur.execute("SELECT * FROM `forecastoutput` WHERE `Model`='"+value+"'") psdata = pcur.fetchall() edata = pd.DataFrame(psdata) eedata=edata['TotalDemand'].astype(float) ldata=eedata.values nur = qconn.cursor() nur.execute("SELECT MIN(`Date`) AS 'MIN' FROM `forecastoutput` WHERE `Model`='"+value+"'") MIN=nur.fetchone() pdata=[] i=0 k=0 a="null" while(x_axis[i]<MIN['MIN']): pdata.append(a) i=i+1 k=k+1 ata=np.concatenate((pdata,ldata),axis=0) #x axis fcur = qconn.cursor() fcur.execute("SELECT `Date` FROM `demandforecastinputdata` WHERE `Date`<'"+MIN['MIN']+"'") fsdata = fcur.fetchall() indx = pd.DataFrame(fsdata) indx=indx['Date'].astype(str).values index=np.concatenate((indx,edata['Date'].values),axis=0) #bargraph bcur = qconn.cursor() bcur.execute("SELECT * FROM `forecastoutput` WHERE `Model`='"+value+"'") bsdata = bcur.fetchall() bdata = pd.DataFrame(bsdata) btdf=bdata['Date'].astype(str) btre11 = np.array([]) btres11 = np.append(btre11,btdf) b1tdf1=bdata[['Spain']] #spain b1tr1 = np.array([]) b1tr11 = np.append(b1tr1, b1tdf1) b2tdf1=bdata[['Austria']] #austria b2tr1 = np.array([]) b2tr11 = np.append(b2tr1, b2tdf1) b3tdf1=bdata[['Japan']] #japan b3tr1 = np.array([]) b3tr11 = np.append(b3tr1, b3tdf1) b4tdf1=bdata[['Hungary']] #hungry b4tr1 = np.array([]) b4tr11 = np.append(b4tr1, b4tdf1) b5tdf1=bdata[['Germany']] #germany b5tr1 = np.array([]) b5tr11 = np.append(b5tr1, b5tdf1) b6tdf1=bdata[['TotalDemand']] #total b6tr1 = np.array([]) b6tr11 = np.append(b6tr1, b6tdf1) #comparisonbar ccur = qconn.cursor() ccur.execute("SELECT * FROM `forecastoutput` WHERE `Model`='"+value+"'") csdata = ccur.fetchall() cdata = pd.DataFrame(csdata) ctdf=cdata['Date'].astype(str) ctre11 = np.array([]) ctres11 = np.append(ctre11,ctdf) c1tdf1=cdata[['RatioIncrease']] #ratioincrease c1tr1 = np.array([]) c1tr11 = np.append(c1tr1, c1tdf1) qcur.execute("SELECT * FROM `summaryerror`") sdata = qcur.fetchall() mape = pd.DataFrame(sdata) qconn.close() return render_template('mdashboard.html',mon=value,qulist=mqst,mape=mape.to_html(index=False),say=1,pdata=ata,adata=adata.values,x_axis=index,frm=len(qdata)-1,to=k,x13=btres11,x14=ctres11,y13=b1tr11,y14=b2tr11,y15=b3tr11,y16=b4tr11,y17=b5tr11,y18=b6tr11,y19=c1tr11) #quarterly @app.route('/qoutgraph', methods = ['GET','POST']) def qoutgraph(): con = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = con.cursor() cur.execute("SELECT `Model` FROM `forecastoutputq` GROUP BY `Model`") sfile=cur.fetchall() global qst qlist=pd.DataFrame(sfile) qlst=qlist['Model'].astype(str) qst=qlst.values con.close() return render_template('qdashboard.html',qulist=qst) @app.route('/qoutgraph1', methods = ['GET', 'POST']) def qoutgraph1(): if request.method=='POST': value=request.form['item'] qconn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) qcur = qconn.cursor() qcur.execute("SELECT * FROM `demandforecastinputdata") qsdata = qcur.fetchall() qdata = pd.DataFrame(qsdata) #graph1 adata=qdata['TotalDemand'] x_axis=qdata['Date'].astype(str) #predictedgraph1 pcur = qconn.cursor() pcur.execute("SELECT * FROM `forecastoutputq` WHERE `Model`='"+value+"'") psdata = pcur.fetchall() edata = pd.DataFrame(psdata) eedata=edata['TotalDemand'].astype(float) ldata=eedata.values nur = qconn.cursor() nur.execute("SELECT MIN(`Date`) AS 'MIN' FROM `forecastoutputq` WHERE `Model`='"+value+"'") MIN=nur.fetchone() pdata=[] i=0 k=0 a="null" while(x_axis[i]<MIN['MIN']): pdata.append(a) i=i+1 k=k+1 ata=np.concatenate((pdata,ldata),axis=0) #x axis fcur = qconn.cursor() fcur.execute("SELECT `Date` FROM `demandforecastinputdata` WHERE `Date`<'"+MIN['MIN']+"'") fsdata = fcur.fetchall() indx = pd.DataFrame(fsdata) indx=indx['Date'].astype(str).values index=np.concatenate((indx,edata['Date'].values),axis=0) #bargraph bcur = qconn.cursor() bcur.execute("SELECT * FROM `forecastoutputq` WHERE `Model`='"+value+"'") bsdata = bcur.fetchall() bdata = pd.DataFrame(bsdata) btdf=bdata['Date'].astype(str) btre11 = np.array([]) btres11 = np.append(btre11,btdf) b1tdf1=bdata[['Spain']] #spain b1tr1 = np.array([]) b1tr11 = np.append(b1tr1, b1tdf1) b2tdf1=bdata[['Austria']] #austria b2tr1 = np.array([]) b2tr11 = np.append(b2tr1, b2tdf1) b3tdf1=bdata[['Japan']] #japan b3tr1 = np.array([]) b3tr11 = np.append(b3tr1, b3tdf1) b4tdf1=bdata[['Hungary']] #hungry b4tr1 = np.array([]) b4tr11 = np.append(b4tr1, b4tdf1) b5tdf1=bdata[['Germany']] #germany b5tr1 = np.array([]) b5tr11 = np.append(b5tr1, b5tdf1) b6tdf1=bdata[['TotalDemand']] #total b6tr1 = np.array([]) b6tr11 = np.append(b6tr1, b6tdf1) #comparisonbar ccur = qconn.cursor() ccur.execute("SELECT * FROM `forecastoutputq` WHERE `Model`='"+value+"'") csdata = ccur.fetchall() cdata = pd.DataFrame(csdata) ctdf=cdata['Date'].astype(str) ctre11 = np.array([]) ctres11 = np.append(ctre11,ctdf) c1tdf1=cdata[['RatioIncrease']] #ratioincrease c1tr1 = np.array([]) c1tr11 = np.append(c1tr1, c1tdf1) qcur.execute("SELECT * FROM `summaryerror`") sdata = qcur.fetchall() mape = pd.DataFrame(sdata) qconn.close() return render_template('qdashboard.html',mon=value,qulist=qst,mape=mape.to_html(index=False),say=1,pdata=ata,adata=adata.values,x_axis=index,frm=len(qdata)-1,to=k,x13=btres11,x14=ctres11,y13=b1tr11,y14=b2tr11,y15=b3tr11,y16=b4tr11,y17=b5tr11,y18=b6tr11,y19=c1tr11) @app.route("/yearlysimulation",methods = ['GET','POST']) def yearlysimulation(): if request.method == 'POST': gdp=0 pi=0 ms=0 adv=0 gdp_dis=request.form.get('gdp_dis') pi_dis=request.form.get('pi_dis') ms_dis=request.form.get('ms_dis') adv_dis=request.form.get('adv_dis') min=request.form.get('min') max=request.form.get('max') mue=request.form.get('mue') sig=request.form.get('sig') cval=request.form.get('cval') min1=request.form.get('min1') max1=request.form.get('max1') mue1=request.form.get('mue1') sig1=request.form.get('sig1') cval1=request.form.get('cval1') min2=request.form.get('min2') max2=request.form.get('max2') mue2=request.form.get('mue2') sig2=request.form.get('sig2') cval2=request.form.get('cval2') min3=request.form.get('min3') max3=request.form.get('max3') mue3=request.form.get('mue3') sig3=request.form.get('sig3') cval3=request.form.get('cval3') itr= int(request.form.get('itr')) frm = request.form.get('from') sfrm=int(frm[:4]) to = request.form.get('to') sto=int(to[:4]) kwargs={} atrtable=[] if request.form.get('gdp'): gdp=1 atrtable.append('Gdp') if gdp_dis == 'gdp_dis1': min=request.form.get('min') max=request.form.get('max') kwargs['Gdp_dis']='Uniform' kwargs['gdpvalues']=[min,max] if gdp_dis == 'gdp_dis2': mue=request.form.get('mue') sig=request.form.get('sig') kwargs['Gdp_dis']='Normal' kwargs['gdpvalues']=[mue,sig] if gdp_dis == 'gdp_dis3': kwargs['Gdp_dis']='Random' pass if gdp_dis == 'gdp_dis4': cval=request.form.get('cval') kwargs['Gdp_dis']='Constant' kwargs['gdpvalues']=[cval] if request.form.get('pi'): pi=1 atrtable.append('Pi') if pi_dis == 'pi_dis1': min1=request.form.get('min1') max1=request.form.get('max1') kwargs['Pi_dis']='Uniform' kwargs['pivalues']=[min1,max1] if pi_dis == 'pi_dis2': mue1=request.form.get('mue1') sig1=request.form.get('sig1') kwargs['Pi_dis']='Normal' kwargs['pivalues']=[mue1,sig1] if pi_dis == 'pi_dis3': kwargs['Pi_dis']='Random' pass if pi_dis == 'pi_dis4': cval1=request.form.get('cval1') kwargs['Pi_dis']='Constant' kwargs['pivalues']=[cval1] if request.form.get('ms'): ms=1 atrtable.append('Ms') if ms_dis == 'ms_dis1': min=request.form.get('min2') max=request.form.get('max2') kwargs['Ms_dis']='Uniform' kwargs['msvalues']=[min2,max2] if ms_dis == 'ms_dis2': mue=request.form.get('mue2') sig=request.form.get('sig2') kwargs['Ms_dis']='Normal' kwargs['msvalues']=[mue2,sig2] if ms_dis == 'ms_dis3': kwargs['Ms_dis']='Random' pass if ms_dis == 'ms_dis4': cval=request.form.get('cval2') kwargs['Ms_dis']='Constant' kwargs['msvalues']=[cval2] if request.form.get('adv'): adv=1 atrtable.append('Adv') if adv_dis == 'adv_dis1': min=request.form.get('min3') max=request.form.get('max3') kwargs['Adv_dis']='Uniform' kwargs['advvalues']=[min3,max3] if adv_dis == 'adv_dis2': mue=request.form.get('mue3') sig=request.form.get('sig3') kwargs['Adv_dis']='Normal' kwargs['advvalues']=[mue3,sig3] if adv_dis == 'adv_dis3': kwargs['Adv_dis']='Random' pass if adv_dis == 'adv_dis4': cval=request.form.get('cval3') kwargs['Adv_dis']='Constant' kwargs['advvalues']=[cval3] #print(kwargs) #print(atrtable) con = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = con.cursor() cur.execute("CREATE TABLE IF NOT EXISTS `stech` (`gdp` VARCHAR(1),`pi` VARCHAR(1), `ms` VARCHAR(1),`adv` VARCHAR(1),`itr` VARCHAR(5),`sfrm` VARCHAR(10),`sto` VARCHAR(10))") cur.execute("DELETE FROM `stech`") con.commit() cur.execute("INSERT INTO `stech` VALUES('"+str(gdp)+"','"+str(pi)+"','"+str(ms)+"','"+str(adv)+"','"+str(itr)+"','"+str(sfrm)+"','"+str(sto)+"')") con.commit() data = pd.DataFrame(Yeardata) #print(data) data.columns xvar=pd.concat([data['GDP'],data['Pi_Exports'],data['Market_Share'],data['Advertisement_Expense']],axis=1) yvar=pd.DataFrame(data['TotalDemand']) regr = linear_model.LinearRegression() regr.fit(xvar,yvar) # predict=regr.predict(xvar) #Error Measures def ME(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(y_true - y_pred) #MAE def MAE(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(np.abs(y_true - y_pred)) #MAPE def MAPE(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(np.abs((y_true - y_pred) / y_pred)) * 100 def sim(iteration,data,startyear,endyear,atrtable,Gdp_dis=None,gdpvalues=None,Adv_dis=None,advvalues=None,Ms_dis=None,msvalues=None,Pi_dis=None,pivalues=None): preddata=pd.DataFrame() simdata=pd.DataFrame() #Errordf=pd.DataFrame() Errormsr=pd.DataFrame() date=pd.date_range(start=pd.datetime(startyear, 1, 1), end=pd.datetime(endyear+1, 1, 1),freq='A') date=pd.DataFrame(date.strftime("%Y")) #Fetching The Orignal Data Of Available Years of the Orignal Data That We Have Actually m=len(date) Arrayofdates=data['Date'] vari=[] for var in Arrayofdates: vari.append(var[:4]) Arrayofdates=pd.DataFrame(vari) dates=[] Fetchdata=[] for i in range(0,m): years=date.loc[i] for j in range(0,len(Arrayofdates)): if int(Arrayofdates.loc[j])==int(years): da=data['TotalDemand'].loc[j] Fetchdata.append(da) #Gives Data In the Given Range That we have actually dates.extend(years) #Gives Years that we have data for i in range(0,iteration): df=pd.DataFrame() #for The Gdp S='flag' for row in atrtable: if row=='Gdp': S='Gdp' if S=='Gdp': for row in Gdp_dis: if row=='Normal': gdpdf=pd.DataFrame(np.random.normal(gdpvalues[0],gdpvalues[1],m)) elif row=='Uniform': gdpdf=pd.DataFrame(np.random.normal(gdpvalues[0],gdpvalues[1],m)) elif row=='Constant': gdpdf=pd.DataFrame(np.random.choice([gdpvalues[0]],m)) else: gdpdf=pd.DataFrame(np.random.uniform(-4,4,m)) else: gdpdf=pd.DataFrame(np.random.uniform(0,0,m)) # for the pi dataframe O='flag' for row in atrtable: if row=='Pi': O='Pi' if O=='Pi': for row in Pi_dis: if row=='Normal': pidf=pd.DataFrame(np.random.normal(pivalues[0],pivalues[1],m)) elif row=='Uniform': pidf=pd.DataFrame(np.random.normal(pivalues[0],pivalues[1],m)) elif row=='Constant': pidf=pd.DataFrame(np.random.choice([pivalues[0]],m)) else: pidf=pd.DataFrame(np.random.random_integers(80,120,m)) else: pidf=pd.DataFrame(np.random.uniform(0,0,m)) #for the Adv Dataframe N='flag' for row in atrtable: if row=='Adv': N='Adv' if N=='Adv': for row in Adv_dis: if row=='Normal': advdf=pd.DataFrame(np.random.normal(advvalues[0],advvalues[1],m)) elif row=='Uniform': advdf=pd.DataFrame(np.random.normal(advvalues[0],advvalues[1],m)) elif row=='Constant': advdf=pd.DataFrame(np.random.choice([advvalues[0]],m)) else: advdf=pd.DataFrame(np.random.random_integers(500000,1000000,m)) else: advdf=pd.DataFrame(np.random.uniform(0,0,m)) #for the Ms dataframe U='flag' for row in atrtable: if row=='Ms': U='Ms' if U=='Ms': for row in Ms_dis: if row=='Normal': msdf=pd.DataFrame(np.random.normal(msvalues[0],msvalues[1],m)) elif row=='Uniform': msdf=pd.DataFrame(np.random.normal(msvalues[0],msvalues[1],m)) elif row=='Constant': msdf=pd.DataFrame(np.random.choice([msvalues[0]],m)) else: msdf=pd.DataFrame(np.random.uniform(0.1,0.5,m)) else: msdf=pd.DataFrame(np.random.uniform(0,0,m)) #Concatenating All the dataframes for Simulation Data df=pd.concat([gdpdf,pidf,msdf,advdf],axis=1) simid=pd.DataFrame(np.random.choice([i+1],m)) dd=pd.concat([simid,gdpdf,pidf,advdf,msdf],axis=1) dd.columns=['Year','Gdp','Pi','Adv','Ms'] simdata=pd.concat([simdata,dd],axis=0) #Predicting the Data And store in pred data through onhand Regression Method dfs=pd.DataFrame(regr.predict(df)) datatable=pd.concat([simid,date,dfs],axis=1) datatable.columns=['simid','Year','Total_Demand(Tonnes)'] preddata=pd.concat([datatable,preddata],axis=0) datas=list() #Geting Data With Respective Dates # print(datatable) for row in dates: # print(dates) datas.extend(datatable.loc[datatable['Year'] ==row, 'Total_Demand(Tonnes)']) kkk=pd.DataFrame(datas) me=ME(Fetchdata,kkk) mae=MAE(Fetchdata,kkk) mape=MAPE(Fetchdata,kkk) dfe=pd.DataFrame([me,mae,mape],index=['ME','MAE','MAPE']).T Errormsr=pd.concat([Errormsr,dfe],axis=0).reset_index(drop=True) return preddata,simdata,Errormsr preddata,simdata,Errormsr=sim(itr,data,sfrm,sto,atrtable,**kwargs) engine = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) preddata.to_sql(con=engine, name='predicteddata',index=False, if_exists='replace') engine2 = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) simdata.to_sql(con=engine2, name='simulationdata',index=False, if_exists='replace') con.commit() engine3 = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) Errormsr.to_sql(con=engine3, name='simerror',index=False, if_exists='replace') con.commit() cnr=con.cursor() cnr.execute("SELECT * FROM `simerror`") sdata = cnr.fetchall() simerror = pd.DataFrame(sdata) con.close() return render_template('ysimulation.html',sayy=1,simerror=simerror.to_html(index=False)) return render_template('ysimulation.html') ##PROCURMENT PLANNING @app.route('/procurementplanning') def procurementplanning(): return render_template('vendorselection_criterianumberask.html') @app.route("/criteriagenerate", methods=['GET','POST']) def criteriagenerate(): if request.method == 'POST': global cnmbr global vnmbr cnmbr = int(request.form['cnmbr']) vnmbr = int(request.form['vnmbr']) if cnmbr == 0 or vnmbr==0: return render_template('criterianumberask.html',warning='Data Invalid') cmainlist=[] global cnames cnames = [] for i in range (1,cnmbr+1): lst=[] name='cname'+str(i) lst.append(i) lst.append(name) cmainlist.append(lst) cnames.append(name) vmainlist=[] global vnames vnames = [] for i in range (1,vnmbr+1): lst=[] name='vname'+str(i) lst.append(i) lst.append(name) vmainlist.append(lst) vnames.append(name) return render_template('vendorselection_criteriagenerate.html',cmainlist=cmainlist,vmainlist=vmainlist) return render_template('vendorselection_criterianumberask.html') @app.route("/criteriagenerated", methods=['GET','POST']) def criteriagenerated(): if request.method == 'POST': global criterianames criterianames=[] for name in cnames: criterianame = request.form[name] criterianames.append(criterianame) global vendornames vendornames=[] for name in vnames: vendorname = request.form[name] vendornames.append(vendorname) mcrlst=[] cn=len(criterianames) k=1 global maincriteriaoption maincriteriaoption=[] global maincritriacri maincritriacri=[] for i in range(cn-1): for j in range (i+1,cn): cri='criteriaorder'+str(k) opt='coption'+str(k) crlst=[k,cri,criterianames[i],criterianames[j],opt] mcrlst.append(crlst) k=k+1 maincriteriaoption.append(opt) maincritriacri.append(cri) mvrlst=[] vn=len(vendornames) k=1 global mainvendoroption mainvendoroption=[] global mainvendorcri mainvendorcri=[] for z in criterianames: mvrlst1=[] vcri=[] vopt=[] for i in range(vn-1): for j in range (i+1,vn): cri='vendororder'+z+str(k) opt='voption'+z+str(k) vrlst=[k,cri,vendornames[i],vendornames[j],opt] mvrlst1.append(vrlst) k=k+1 vcri.append(cri) vopt.append(opt) mvrlst.append(mvrlst1) mainvendorcri.append(vcri) mainvendoroption.append(vopt) return render_template('vendorselection_maincriteria.html',mcrlst=mcrlst,mvrlst=mvrlst) return render_template('vendorselection_criteriagenerated.html') def tablecreator(imp,val,crit): n=len(imp) for i in range(n): if imp[i]==1: val[i]=float(1/val[i]) fdata=pd.DataFrame(columns=[crit],index=[crit]) i=0 k=0 for index in fdata.index: j=0 for columns in fdata.columns: if i==j: fdata[index][columns]=1 if i<j: fdata[index][columns]=round((float(val[k])),2) fdata[columns][index]=round((1/val[k]),2) k=k+1 j=j+1 i=i+1 return fdata @app.route("/criteriaread", methods=['GET','POST']) def criteriaread(): if request.method == 'POST': importances = [] values = [] for name1 in maincritriacri: imp = int(request.form[name1]) importances.append(imp) for name2 in maincriteriaoption: val = int(request.form[name2]) values.append(val) #global maincriteriadata maincriteriadata=tablecreator(importances,values,criterianames) mainimportances=[] for crioption in mainvendorcri: importance=[] for option1 in crioption: impc = int(request.form[option1]) importance.append(impc) mainimportances.append(importance) mainvalues=[] for vendoroption in mainvendoroption: vvalues=[] for option2 in vendoroption: valuev = int(request.form[option2]) vvalues.append(valuev) mainvalues.append(vvalues) maindf=[] for z in range(len(criterianames)): df=tablecreator(mainimportances[z],mainvalues[z],vendornames) maindf.append(df) dictmain={'crit':maincriteriadata} names=criterianames dfs=maindf dictionary=dict((n,d) for (n,d) in zip(names,dfs)) def ahpmain(dictmain): global wt_Crit wt_Crit=[] key=[] key=list(dictmain.keys()) for i in key: Crit=np.dot(dictmain[i],dictmain[i]) row_sum=[] for j in range(len(Crit)): row_sum.append(sum(Crit[j])) wt_Crit.append([s/sum(row_sum) for s in row_sum]) Crit=[] return wt_Crit def ahp(dictmain,dictionary): global output main= ahpmain(dictmain) submain= ahpmain(dictionary) dd=pd.DataFrame(submain).T df=pd.DataFrame(main).T output=np.dot(dd,df) return output,dd yaxis,dd=ahp(dictmain,dictionary) yax=pd.DataFrame(yaxis,index=vendornames,columns=['Score']).sort_values('Score',ascending=False).T ynames=yax.columns yval=yax.T.values dd.index=vendornames dd.columns=names dd=dd.T opq23=[] for column in dd.columns: opq21=[] opq22=[] opq21.append(column) for val in dd[column]: opq22.append(val) opq21.append(opq22) opq23.append(opq21) return render_template('vendorselection_ahp_final_output.html',ynames=ynames,yval=yval,dd=opq23,names=names) return render_template('vendorselection_criteriagenerated.html') #DETERMINISTIC STARTS @app.route("/spt") def spt(): return render_template('SinglePeriod.html') @app.route("/ppbreak") def ppbreak(): return render_template('pbreak.html') @app.route('/pbrk', methods=['GET','POST']) def pbrk(): return render_template('pbrk.html') @app.route('/eoq', methods=['GET','POST']) def eoq(): ##setUpCost::setting up cost prior(>>setUpCost;<<moving rate) AnnulaUnitsDemand=100##purchase demand of product per year FixedCost=500 ##cost fixed for the product AnnHoldingcost=0.25 ##remaining goods cost UnitCost=445 ##purchasing cost LeadTime=10 ##time b/w initiation and completion of a production process. SafetyStock=100##extra stock if request.method == 'POST': AnnulaUnitsDemand= request.form['AnnulaUnitsDemand'] FixedCost=request.form['FixedCost'] AnnHoldingcost=request.form['AnnHoldingcost'] UnitCost=request.form['UnitCost'] LeadTime=request.form['LeadTime'] SafetyStock=request.form['SafetyStock'] AnnulaUnitsDemand=float(AnnulaUnitsDemand) FixedCost=float(FixedCost) AnnHoldingcost=float(AnnHoldingcost) UnitCost=float(UnitCost) LeadTime=float(LeadTime) SafetyStock=float(SafetyStock) sgap=1 pgap=1 HoldingCost=AnnHoldingcost*UnitCost EOQ=round((math.sqrt((2*AnnulaUnitsDemand*FixedCost)/(HoldingCost*pgap))*sgap),2) REOQ=round((math.sqrt((2*AnnulaUnitsDemand*FixedCost)/(HoldingCost*pgap))*sgap),0) totOrderCost=round((FixedCost*AnnulaUnitsDemand/EOQ),2) totHoldCost=round(((HoldingCost*EOQ*pgap)/2),2) TotalCost=round((totOrderCost+totHoldCost),2) NumOrders=round((AnnulaUnitsDemand/EOQ),2) OrderTime=round((365/NumOrders),2) ReorderPoint=round((((AnnulaUnitsDemand/365)*LeadTime)+SafetyStock),0) count=round((EOQ*.75),0) qtylist1=[] hclist=[] sclist=[] mtlist=[] tclist=[] while (count < EOQ): qtylist1.append(count) hclist.append(round((count/2*HoldingCost),2)) sclist.append(round((AnnulaUnitsDemand/count*FixedCost),2)) mtlist.append(round((AnnulaUnitsDemand*UnitCost),2)) tclist.append(round((count/2*HoldingCost+AnnulaUnitsDemand/count*FixedCost),2)) count +=2 qtylist1.append(EOQ) hclist.append(totHoldCost) sclist.append(totOrderCost) tclist.append(totHoldCost+totOrderCost) while (count < (EOQ*2)): qtylist1.append(count) hclist.append(round((count/2*HoldingCost),2)) sclist.append(round((AnnulaUnitsDemand/count*FixedCost),2)) mtlist.append(round((AnnulaUnitsDemand*UnitCost),2)) tclist.append(round((count/2*HoldingCost+AnnulaUnitsDemand/count*FixedCost),2)) count +=2 val=0 for i in range(len(tclist)): if(EOQ==qtylist1[i]): val=i # sstock=int(math.sqrt((LeadTime^2)+(int(ReorderPoint)^2))) return render_template('eoq.html',NumOrders=NumOrders,OrderTime=OrderTime, ReorderPoint=ReorderPoint,HoldCost=totHoldCost,TotalCost=TotalCost, EOQ=EOQ,REOQ=REOQ, sclist=sclist,hclist=hclist,tclist=tclist,val=val,qtylist1=qtylist1, AnnulaUnitsDemand=AnnulaUnitsDemand,FixedCost=FixedCost, AnnHoldingcost=AnnHoldingcost,UnitCost=UnitCost,LeadTime=LeadTime, SafetyStock=SafetyStock) ########################EEEEppppppppppQQQQQQ############ ########################EEEEppppppppppQQQQQQ############ @app.route('/eproduction', methods=['GET','POST']) def eproduction(): AnnulaUnitsDemand=100 Prodrate=125 FixedCost=500 AnnHoldingcost=0.1 UnitCost=25000 LeadTime=10 SafetyStock=100 if request.method == 'POST': AnnulaUnitsDemand= request.form['AnnulaUnitsDemand'] Prodrate=request.form['Prodrate'] FixedCost=request.form['FixedCost'] AnnHoldingcost=request.form['AnnHoldingcost'] UnitCost=request.form['UnitCost'] LeadTime=request.form['LeadTime'] SafetyStock=request.form['SafetyStock'] AnnulaUnitsDemand=int(AnnulaUnitsDemand) Prodrate=int(Prodrate) FixedCost=int(FixedCost) AnnHoldingcost=float(AnnHoldingcost) UnitCost=int(UnitCost) LeadTime=int(LeadTime) SafetyStock=int(SafetyStock) if(Prodrate<=AnnulaUnitsDemand): return render_template('eproduction.html',warning='Production date should not be least than Annual Demand', AnnulaUnitsDemand=AnnulaUnitsDemand,FixedCost=FixedCost, AnnHoldingcost=AnnHoldingcost,UnitCost=UnitCost,Prodrate=Prodrate, LeadTime=LeadTime,SafetyStock=SafetyStock ) pgap=round((1-(AnnulaUnitsDemand/Prodrate)),2) HoldingCost=float(AnnHoldingcost*UnitCost) EOQ=round((math.sqrt((2*AnnulaUnitsDemand*FixedCost)/(HoldingCost*pgap))),2) REOQ=round((math.sqrt((2*AnnulaUnitsDemand*FixedCost)/(HoldingCost*pgap))),0) totOrderCost=round((FixedCost*AnnulaUnitsDemand/EOQ),2) totHoldCost=round(((HoldingCost*EOQ*pgap)/2),2) TotalCost=round((totOrderCost+totHoldCost),2) NumOrders=round((AnnulaUnitsDemand/EOQ),2) OrderTime=round((365/NumOrders),2) ReorderPoint=round((((AnnulaUnitsDemand/365)*LeadTime)+SafetyStock),0) count=EOQ*.75 qtylist1=[] hclist=[] sclist=[] mtlist=[] tclist=[] while (count < EOQ): qtylist1.append(int(count)) hclist.append(round((count/2*HoldingCost*pgap),2)) sclist.append(round((AnnulaUnitsDemand/count*FixedCost),2)) mtlist.append(round((AnnulaUnitsDemand*UnitCost),2)) tclist.append(round(((count/2*HoldingCost*pgap+AnnulaUnitsDemand/count*FixedCost)),2)) count +=2 qtylist1.append(EOQ) hclist.append(totHoldCost) sclist.append(totOrderCost) tclist.append(totOrderCost+totHoldCost) while (count < (EOQ*1.7)): qtylist1.append(int(count)) hclist.append(round((count/2*HoldingCost*pgap),2)) sclist.append(round((AnnulaUnitsDemand/count*FixedCost),2)) mtlist.append(round((AnnulaUnitsDemand*UnitCost),2)) tclist.append(round(((count/2*HoldingCost*pgap+AnnulaUnitsDemand/count*FixedCost)),2)) count +=2 val=0 for i in range(len(tclist)): if(EOQ==qtylist1[i]): val=i return render_template('eproduction.html',NumOrders=NumOrders,OrderTime=OrderTime, ReorderPoint=ReorderPoint,HoldCost=totHoldCost,TotalCost=TotalCost, EOQ=EOQ,REOQ=REOQ, sclist=sclist,hclist=hclist,tclist=tclist,val=val,qtylist1=qtylist1, AnnulaUnitsDemand=AnnulaUnitsDemand,FixedCost=FixedCost, AnnHoldingcost=AnnHoldingcost,UnitCost=UnitCost,Prodrate=Prodrate, LeadTime=LeadTime,SafetyStock=SafetyStock ) ######################EEEEppppppppppQQQQQQ############ ######################EEEEppppppppppQQQQQQ############ @app.route('/eoq_backorders', methods=['GET','POST']) def eoq_backorders(): AnnulaUnitsDemand=12000 shortcost=1.1 FixedCost=8000 AnnHoldingcost=0.3 UnitCost=1 LeadTime=10 SafetyStock=100 if request.method == 'POST': AnnulaUnitsDemand= request.form['AnnulaUnitsDemand'] shortcost=request.form['shortcost'] FixedCost=request.form['FixedCost'] AnnHoldingcost=request.form['AnnHoldingcost'] UnitCost=request.form['UnitCost'] LeadTime=request.form['LeadTime'] SafetyStock=request.form['SafetyStock'] AnnulaUnitsDemand=int(AnnulaUnitsDemand) shortcost=int(shortcost) FixedCost=int(FixedCost) AnnHoldingcost=float(AnnHoldingcost) UnitCost=int(UnitCost) LeadTime=int(LeadTime) SafetyStock=int(SafetyStock) HoldingCost=float(AnnHoldingcost*UnitCost) sgap=(shortcost+HoldingCost)/shortcost EOQ=round((math.sqrt((2*AnnulaUnitsDemand*FixedCost)/HoldingCost))*(math.sqrt(sgap)),2) REOQ=round(math.sqrt((2*AnnulaUnitsDemand*FixedCost)/(HoldingCost)*sgap),0) totbackorder=EOQ*(HoldingCost/(shortcost+HoldingCost)) totOrderCost=round(((FixedCost*AnnulaUnitsDemand)/EOQ),2) totHoldCost=round(((HoldingCost*((EOQ-totbackorder)**2))/(2*EOQ)),2) totshortcost=round((shortcost*(totbackorder**2)/(2*EOQ)),2) TotalCost=round((totOrderCost+totHoldCost+totshortcost),2) NumOrders=round((AnnulaUnitsDemand/EOQ),2) OrderTime=round((365/NumOrders),2) ReorderPoint=round((((AnnulaUnitsDemand/365)*LeadTime)+SafetyStock),0) count= EOQ*.75 qtylist1=[] hclist=[] sclist=[] mtlist=[] shlist=[] tclist=[] while (count < EOQ): qtylist1.append(int((count))) hclist.append(round(((HoldingCost*((count-totbackorder)**2))/(2*count)),2)) sclist.append(round((AnnulaUnitsDemand/count*FixedCost),2)) mtlist.append(round((AnnulaUnitsDemand*UnitCost),2)) shlist.append(round((shortcost*((totbackorder)**2)/(2*count)),2)) tclist.append(round(((((HoldingCost*((count-totbackorder)**2))/(2*count))+AnnulaUnitsDemand/count*FixedCost)+shortcost*((totbackorder)**2)/(2*count)),2)) count +=2 qtylist1.append(EOQ) hclist.append(totHoldCost) sclist.append(totOrderCost) shlist.append(totshortcost) tclist.append(totOrderCost+totshortcost+totHoldCost) while (count < (EOQ*1.7)): qtylist1.append(int((count))) hclist.append(round(((HoldingCost*((count-totbackorder)**2))/(2*count)),2)) sclist.append(round((AnnulaUnitsDemand/count*FixedCost),2)) mtlist.append(round((AnnulaUnitsDemand*UnitCost),2)) shlist.append(round((shortcost*((totbackorder)**2)/(2*count)),2)) tclist.append(round(((((HoldingCost*((count-totbackorder)**2))/(2*count))+AnnulaUnitsDemand/count*FixedCost)+shortcost*((totbackorder)**2)/(2*count)),2)) count +=2 val=0 for i in range(len(tclist)): if(EOQ==qtylist1[i]): val=i return render_template('eoq_backorders.html',NumOrders=NumOrders,OrderTime=OrderTime, ReorderPoint=ReorderPoint,HoldCost=totHoldCost,TotalCost=TotalCost, EOQ=EOQ,REOQ=REOQ, shlist=shlist,sclist=sclist,hclist=hclist,tclist=tclist,val=val,qtylist1=qtylist1, AnnulaUnitsDemand=AnnulaUnitsDemand,FixedCost=FixedCost, AnnHoldingcost=AnnHoldingcost,UnitCost=UnitCost,shortcost=shortcost, LeadTime=LeadTime,SafetyStock=SafetyStock) #################pbreak###################### @app.route("/pbreak_insert", methods=['GET','POST']) def pbreak_insert(): if request.method == 'POST': quantity = request.form.getlist("quantity[]") price = request.form.getlist("price[]") conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_classification',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) curr = conn.cursor() curr.execute("CREATE TABLE IF NOT EXISTS `pbreaktable` (quantity int(8),price int(8))") curr.execute("DELETE FROM `pbreaktable`") conn.commit() say=1 for i in range(len(quantity)): quantity_clean = quantity[i] price_clean = price[i] if quantity_clean and price_clean: curr.execute("INSERT INTO `pbreaktable`(`quantity`,`price`) VALUES('"+quantity_clean+"','"+price_clean+"')") conn.commit() else: say=0 if say==0: message="Some values were not inserted!" else: message="All values were inserted!" return(message) @app.route('/view', methods=['GET','POST']) def view(): if request.method == 'POST': conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_classification',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) curr = conn.cursor() curr.execute("SELECT * FROM `pbreaktable`") res = curr.fetchall() ress=pd.DataFrame(res) return render_template('pbrk.html',username=username,ress =ress.to_html()) @app.route('/pbreakcalculate', methods=['GET','POST']) def pbreakcalculate(): AnnulaUnitsDemand=10 FixedCost=1 AnnHoldingcost=0.1 UnitCost=445 LeadTime=10 SafetyStock=100 if request.method == 'POST': if request.form['AnnulaUnitsDemand']: AnnulaUnitsDemand= request.form['AnnulaUnitsDemand'] AnnulaUnitsDemand=float(AnnulaUnitsDemand) if request.form['FixedCost']: FixedCost=request.form['FixedCost'] FixedCost=float(FixedCost) if request.form['AnnHoldingcost']: AnnHoldingcost=request.form['AnnHoldingcost'] AnnHoldingcost=float(AnnHoldingcost) conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_classification',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) curr = conn.cursor() curr.execute("SELECT * FROM `pbreaktable`") res = curr.fetchall() ress=
pd.DataFrame(res)
pandas.DataFrame
import pandas as pd from paths import RAW_PATH, TREAT_PATH from datetime import datetime as dt # from unidecode import unidecode import numpy as np def normalize_cols(df): return pd.Series(df).str.normalize('NFKD').str.encode('ascii', errors='ignore').str.decode('utf-8').str.upper() def create_region_id(city, state): """ Join and clean city + state names to cross databases. """ if city: city_state = (state + ' ' + city.upper()).replace(' ', '_').replace("'", '') return city_state return '' def treat_covid19br(filepath, to_path): df = pd.read_csv(RAW_PATH / filepath) # Remove total rows df = df[df['state'] != 'TOTAL'] # Fix columns df = df.rename({'totalCases': 'confirmed', 'newCases': 'new_confirmed'}, axis=1) df['place_type'] = 'city' # Create id for join df['region_id'] = df['city'].str.replace('/', ' ') df['region_id'] = normalize_cols(df['region_id']) # Get only last day data for each city df = df.drop_duplicates(subset=['city'], keep='first') df = df.sort_values(by='confirmed', ascending=False) cols = ['region_id', 'city', 'place_type', 'date', 'confirmed'] # Save treated dataset df[cols].to_csv(TREAT_PATH / to_path) return df[cols] def treat_brasilio(df): # df = pd.read_csv(RAW_PATH / filepath) # Fix city names df['city'] = df['city'].fillna('').str.replace('\'', '') # Create id for join df['region_id'] = df.apply(lambda row: create_region_id(row['city'], row['state']), axis=1) df['region_id'] = normalize_cols(df['region_id']) # get only the cities mask = ((df['place_type']=='city') & (df['city_ibge_code'].notnull())) df = df[mask].sort_values(by = ['region_id','date']) df['confirmed_shift'] = df['confirmed'].shift(1) df['city_ibge_code_shift'] = df['city_ibge_code'].shift(1) df['confirmed_shift'] = np.where(df['city_ibge_code_shift']!=df['city_ibge_code'], np.nan , df['confirmed_shift']) df['new_cases'] = df['confirmed'] - df['confirmed_shift'] df['new_cases'] = np.where(df['confirmed_shift'].isnull(), df['confirmed'] , df['new_cases']) mask = ((df['new_cases']!=0) & (df['new_cases']>0) & (df['is_last']==True)) df['update'] = np.where(mask,True,False) mask = df['is_last']==True df = df[mask].rename(columns={"confirmed":'confirmed_real','deaths':'deaths_real'}) cols = ['region_id', 'date', 'confirmed_real','deaths_real','update'] return df[cols] def treat_sus(filepath, to_path): df = pd.read_csv(RAW_PATH / filepath) # Create id for join df['region_id'] = df.apply(lambda row: create_region_id(row['municipio'], row['uf']), axis=1) df['region_id'] = normalize_cols(df['region_id']) # Add available respirator column df['ventiladores_disponiveis'] = df['ventiladores_existentes'] - df['ventiladores_em_uso'] cols = ['region_id', 'municipio', 'uf', 'populacao', 'quantidade_leitos', 'ventiladores_existentes'] df = df[cols].fillna(0) # remove apostoflo df['municipio'] = df['municipio'].str.replace('\'', '') df['region_id'] = df['region_id'].str.replace('\'', '') # Get the information for states df_states = df.groupby(by='uf', as_index=False).sum() df_states['municipio'] = df_states['uf'] df_states['region_id'] = df_states['uf'] # Put states in same order as df cols = df.columns df_states = df_states[cols] # Concat states information with sus information df = pd.concat([df_states,df],axis=0) # Save treated dataset df.to_csv(TREAT_PATH / to_path) return df def treat_cities_cases(df_cases_brasilio,sus_cap,sus_regions): cities_cases =
pd.merge(sus_cap, df_cases_brasilio, on='region_id', how='left')
pandas.merge
import os import pandas as pd from collections import Counter import numpy as np dataPath = './data/' fileMergedName = 'street_name_popular.csv' path = 'street_name/' files = os.listdir(dataPath + path) ## merge all the data Data =
pd.DataFrame()
pandas.DataFrame
import os import pandas from c3x.data_loaders import configfileparser, nextgen_loaders from c3x.data_statistics import statistics as stats # Reads a config file to produce a dictionary that can be handed over to functions config = configfileparser.ConfigFileParser("config/config_nextGen_stats.ini") data_paths = config.read_data_path() batch_info = config.read_batches() measurement_types = config.read_data_usage() # Create a nextGen data object that has working paths and can be sliced using batches # it might be appropriate for the example to make the batches smaller, however that may # increase computing time, # the next row can be commented if data was processed prior to running this script nextgen = nextgen_loaders.NextGenData(data_name='NextGen', source=data_paths["source"], batteries=data_paths["batteries"], solar=data_paths["solar"], node=data_paths["node"], loads=data_paths["loads"], results=data_paths["results"], stats = data_paths["stats"], number_of_batches=batch_info["number_of_batches"], files_per_batch=batch_info["files_per_batch"], concat_batches_start=batch_info["concat_batches_start"], concat_batches_end=batch_info["concat_batches_end"]) # now we have a folder structure with lots of files with batch numbers print("ALL BATCHES ANALYSIS") node_count, batch_list = stats.batch_with_highest_node_count(data_dir=data_paths, batch_info=batch_info, measurement_types=measurement_types) print("max number of nodes: ", node_count) print("batches with max node count: ", batch_list) print("number of batches with that node count: ", len(batch_list)) data_path_list = [] data_files = [] sorted_dict = {} node_list = [] # here a dictionary is generate that holds a list of nodes per batch (batch:[node_ids]) for batch in range(batch_info["number_of_batches"]): node_list = stats.nodes_per_batch(data_paths, batch, measurement_types) sorted_dict[batch] = node_list # a list of all files is created for data_type in measurement_types: path = data_paths[data_type] for file in os.listdir(data_paths[data_type]): data_files.append(os.path.join(path, file)) # some Data Frames and Labels for saving results nicely result_data_frame = pandas.DataFrame() batch_data_results = pandas.DataFrame() index = ['Battery - PLG', 'Battery - QLG', 'Battery - RC', 'Solar - PLG', 'Load - PLG', 'Load - QLG'] columns = pandas.MultiIndex.from_product([['Samples', 'Duplicates'], index], names=['Type', 'Measurement']) # iterate through batches for batch in range(batch_info["number_of_batches"]): batch_data = pandas.DataFrame() # iterate through nodes result_data_frame = pandas.DataFrame() for node in sorted_dict[batch]: node_data = pandas.DataFrame() search = str(node) + "_" + str(batch) + ".npy" batch_node_subset = [val for i, val in enumerate(data_files) if val.endswith(search)] # build a data frame with all measurement data first_run = True for path in batch_node_subset: tmp_data_frame = pandas.read_pickle(path) if first_run is True: node_data = pandas.DataFrame(tmp_data_frame) first_run = False else: node_data = pandas.concat([node_data, tmp_data_frame], axis=1) # get the node ID node_df = pandas.DataFrame(pandas.Series(node)) node_df.columns = ["node"] # count samples and convert to data frame samples = pandas.Series(stats.count_samples(node_data)) samples = pandas.DataFrame(samples).transpose() # count duplicates anc convert to data frame duplicates = pandas.Series(stats.count_duplictaes(node_data)) duplicates = pandas.DataFrame(duplicates).transpose() # concat and rename nicely samples_dupli =
pandas.concat([samples, duplicates], axis=1)
pandas.concat
from pandas import Series, DataFrame import pandas as pd from collections import OrderedDict from .read.readmdb import ReadMdb class MapTables: """ Collection of tables with data related to vegetation map polygons Methods ------- get_vegtype Return vegetation type for each mapped element. get_mapspecies Return species data attached to mapped elements. get_abiotiek Return environmental field observatons attached to mapped elements. get_pointspecies Return point locations for mapped plant species. get_year Return year of mapping, returns 0000 if no dates are present. Classmethods ------------ from_mdb Create MapTables object from Microsoft Access mdb filepath. Notes ----- A mapped element can be a polygon or a line. Spatial data for these elements are stored in shapefiles and linked to the table data by the attribute ElmID. """ _DS_tablenames = ['vegetatietype','sbbtype'] _mapping_colnames = OrderedDict({ 'Element' : { 'intern_id' : 'locatie_id', }, 'KarteringVegetatietype' : { 'locatie': 'locatie_id', 'vegetatietype': 'vegtype_code', 'bedekking':'vegtype_bedekkingcode', 'bedekking_num':'vegtype_bedekkingnum', }, 'VegetatieType' : { 'typenummer':'vegtype_nr', 'code':'vegtype_code', 'gemeenschap':'vegtype_naam', 'vorm':'vegtype_vorm', 'sbbtype':'sbbcat_id', 'sbbtype2':'sbbcat2_id', 'opmerking':'vegtype_note', }, 'SbbType': { 'cata_id':'sbbcat_id', 'versie':'sbbcat_versie', 'code':'sbbcat_code', 'klassenaamned':'sbbcat_klassenaam', 'verbrgnaamned':'sbbcat_kortenaam', 'asscocrgnaamned':'sbbcat_assrgnaam', 'subassocnaamned':'sbbcat_subassnaam', 'landtypened':'sbbcat_nednaam', 'landtypewet':'sbbcat_wetnaam', 'vervallen':'sbbcat_vervallen', 'vervangbaarheid':'sbbcat_vervangbaarheid', }, 'KarteringSoort': { 'locatie':'locatie_id', 'soortcode':'krtsrt_srtcode', 'bedekking':'krtsrt_bedcode', 'aantalsklasse':'krtsrt_aantalsklasse', 'bedekking_num':'krtsrt_bednum', }, 'CbsSoort':{ 'soortnr':'cbs_srtcode', 'floron':'cbs_floron', 'wetenschap':'cbs_srtwet', 'nederlands':'cbs_srtned', 'zeldzaamheidsklasse':'cbs_zeldzaamheid', 'trendklasse':'cbs_trend', 'rl2000':'cbs_rl2000', 'rl2000kort':'cbs_rl2000kort', }, 'PuntLocatieSoort': { 'id':'pntid', 'loctype':'pntloctype', 'x_coord':'xcr', 'y_coord':'ycr', 'groep':'srtgroep', 'nummer':'srtnr', 'naam':'srtnednaam', 'wetens':'srtwetnaam', 'sbb_kl':'srtsbbkl', 'tansley':'srttansley', 'datum':'srtdatum', 'waarn':'srtwrnmr', 'opm':'srtopm', }, 'KarteringAbiotiek': { 'locatie':'locatie_id', 'abiotiek':'abio_code', }, 'Abiotiek': { 'code':'abio_code', 'omschrijving':'abio_wrn', }, }) def __init__(self,tables=None,mdbpath=None): """MapTables constructor. Parameters ---------- tables : OrderedDict Dictionary of tables from mdb file mdbpath : string Filepath to mdb sourcefile (for userwarnings). """ self._tbldict = tables if mdbpath is None: mdbpath = '' self._filepath = mdbpath # numeric to string type self._tbldict['Element'] = self._tbldict['Element'].astype( {'locatie_id':str,'elmid':str,}) self._tbldict['KarteringVegetatietype']=self._tbldict['KarteringVegetatietype'].astype( {'locatie_id':str,}) self._tbldict['VegetatieType'] = self._tbldict['VegetatieType'].astype( {'sbbcat_id': str, 'sbbcat2_id': str,}) self._tbldict['SbbType'] = self._tbldict['SbbType'].astype( {"sbbcat_id": str, "sbbcat_versie": str, "sbbcat_vervangbaarheid": str,}) self._tbldict['KarteringSoort']=self._tbldict['KarteringSoort'].astype( {'locatie_id':str,'krtsrt_srtcode':str,}) self._tbldict['CbsSoort']=self._tbldict['CbsSoort'].astype( {'cbs_srtcode':str,}) self._tbldict['KarteringAbiotiek']=self._tbldict['KarteringAbiotiek'].astype( {'locatie_id':str,}) # change vevangbaarheid 5.0 to 5 stingtype self._tbldict['SbbType']['sbbcat_vervangbaarheid']=self._tbldict['SbbType']['sbbcat_vervangbaarheid'].str[:1] # convert column locatietype to lowercase # (locatietype can be: 'v','l','V','L') self._tbldict['Element']['locatietype'] = self._tbldict['Element']['locatietype'].str.lower() # fix small errors that occur in just a few (or just one) mdbfiles # smallfix01 colnames = self._tbldict['Element'].columns if ((not 'sbbtype' in colnames) and ('sbbtype1' in colnames)): self._tbldict['Element']=self._tbldict['Element'].rename( columns={'sbbtype1':'sbbtype'}) def __repr__(self): return f'MapTables (n={self.__len__()})' def __len__(self): return len(self._tbldict['Element']) @classmethod def from_mdb(cls,filepath): """ Create MapTables object from Microsoft Access mdb filepath." Parameters ---------- filepath : str valid filepath to Microsoft Access mdb file """ if not isinstance(filepath,str): fptype = type(filepath) raise ValueError (f'Parameter filepath must be type "str" ' f'not type {fptype}.') # open mdb file and check format is Digitale Standaard mdb = ReadMdb(filepath) if not mdb.all_tables(): raise Exception(f'{mdb._filepath} is not a valid Digitale Standaard database.') #if any([item in mdb.tablenames() for item in cls._DS_tablenames]): # raise Exception(f'{mdb} is not a valid Digitale Standaard database.') # all mdb tables to dict mdbtables = mdb.all_tables() maptables = {} for tblname in mdbtables.keys(): mdbtbl = mdbtables[tblname] mdbtbl.columns = map(str.lower,mdbtbl.columns) if tblname in cls._mapping_colnames.keys(): mdbtbl = mdbtbl.rename(columns=cls._mapping_colnames[tblname]) maptables[tblname] = mdbtbl return cls(tables=maptables,mdbpath=filepath) def get_vegtype(self): """ Return vegetation type for each mapped element. Notes ----- A mapped element can have multiple vegetation types. Therefore the table returned can have multiple rows with the same value for the map polygon id elmid. The fields bedekking and bedekking_num show the cover a vegetation type has within a map polygon. """ elmcolnames = ['locatie_id', 'elmid', 'locatietype', 'datum'] element = self._tbldict['Element'][elmcolnames] isvlak = element['locatietype']=='v' element = element[isvlak].copy() vegloc = self._tbldict['KarteringVegetatietype'] element = pd.merge(element,vegloc,left_on='locatie_id', right_on='locatie_id',suffixes=(None,'_vegloc'), validate='one_to_many') vegtype = self._tbldict['VegetatieType'] element = pd.merge(element,vegtype,left_on='vegtype_code', right_on='vegtype_code',suffixes=(None,'_vegtype'), validate='many_to_one') sbbtype = self._tbldict['SbbType'] element = pd.merge(element,sbbtype,left_on='sbbcat_id', right_on='sbbcat_id',suffixes=(None,'sbbtype'), validate='many_to_one') element['datum'] = element['datum'].apply(lambda x: x.strftime( '%d%m%Y') if not pd.isna(x) else '') colnames = ['elmid','datum','locatietype','vegtype_code', 'vegtype_naam','vegtype_vorm','vegtype_bedekkingcode', 'vegtype_bedekkingnum', 'sbbcat_code', 'sbbcat_wetnaam','sbbcat_nednaam', 'sbbcat_kortenaam','sbbcat_vervangbaarheid'] element = element[colnames] return element.copy() def get_pointspecies(self): """Return table of point locations for mapped plant species""" pntsrt = self._tbldict['PuntLocatieSoort'].copy() pntsrt['srtdatum'] = pntsrt['srtdatum'].apply( lambda x: x.strftime('%d%m%Y') if not pd.isna(x) else '') return pntsrt def get_year(self): """Return year of mapping, returns 0000 if no dates are present""" dates =
pd.to_datetime(self._tbldict['Element']['datum'],errors='coerce')
pandas.to_datetime
#!/usr/bin/env python # -*- coding:utf-8 -*- """ date: 2021/9/28 16:02 desc: 东方财富网-数据中心-特色数据-机构调研 http://data.eastmoney.com/jgdy/ 东方财富网-数据中心-特色数据-机构调研-机构调研统计: http://data.eastmoney.com/jgdy/tj.html 东方财富网-数据中心-特色数据-机构调研-机构调研详细: http://data.eastmoney.com/jgdy/xx.html """ import pandas as pd import requests from tqdm import tqdm def stock_em_jgdy_tj(start_date: str = "20180928") -> pd.DataFrame: """ 东方财富网-数据中心-特色数据-机构调研-机构调研统计 http://data.eastmoney.com/jgdy/tj.html :param start_date: 开始时间 :type start_date: str :return: 机构调研统计 :rtype: pandas.DataFrame """ url = "http://datacenter-web.eastmoney.com/api/data/v1/get" params = { 'sortColumns': 'NOTICE_DATE,SUM,RECEIVE_START_DATE,SECURITY_CODE', 'sortTypes': '-1,-1,-1,1', 'pageSize': '500', 'pageNumber': '1', 'reportName': 'RPT_ORG_SURVEYNEW', 'columns': 'ALL', 'quoteColumns': 'f2~01~SECURITY_CODE~CLOSE_PRICE,f3~01~SECURITY_CODE~CHANGE_RATE', 'source': 'WEB', 'client': 'WEB', 'filter': f"""(NUMBERNEW="1")(IS_SOURCE="1")(RECEIVE_START_DATE>'{'-'.join([start_date[:4], start_date[4:6], start_date[6:]])}')""" } r = requests.get(url, params=params) data_json = r.json() total_page = data_json['result']['pages'] big_df = pd.DataFrame() for page in tqdm(range(1, total_page+1), leave=False): params.update({"pageNumber": page}) r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json['result']['data']) big_df = big_df.append(temp_df) big_df.reset_index(inplace=True) big_df["index"] = list(range(1, len(big_df) + 1)) big_df.columns = [ "序号", "_", "代码", "名称", "_", "公告日期", "接待日期", "_", "_", "_", "_", "_", "_", "_", "接待地点", "_", "接待方式", "_", "接待人员", "_", "_", "_", "_", "_", "接待机构数量", "_", "_", "_", "_", "_", "_", "涨跌幅", "最新价", ] big_df = big_df[ [ "序号", "代码", "名称", "最新价", "涨跌幅", "接待机构数量", "接待方式", "接待人员", "接待地点", "接待日期", "公告日期", ] ] big_df['最新价'] = pd.to_numeric(big_df['最新价'], errors="coerce") big_df['涨跌幅'] = pd.to_numeric(big_df['涨跌幅'], errors="coerce") big_df['接待机构数量'] = pd.to_numeric(big_df['接待机构数量'], errors="coerce") big_df['接待日期'] = pd.to_datetime(big_df['接待日期']).dt.date big_df['公告日期'] = pd.to_datetime(big_df['公告日期']).dt.date return big_df def stock_em_jgdy_detail(start_date: str = "20180928") -> pd.DataFrame: """ 东方财富网-数据中心-特色数据-机构调研-机构调研详细 http://data.eastmoney.com/jgdy/xx.html :param start_date: 开始时间 :type start_date: str :return: 机构调研详细 :rtype: pandas.DataFrame """ url = "http://datacenter-web.eastmoney.com/api/data/v1/get" params = { 'sortColumns': 'NOTICE_DATE,RECEIVE_START_DATE,SECURITY_CODE,NUMBERNEW', 'sortTypes': '-1,-1,1,-1', 'pageSize': '50000', 'pageNumber': '1', 'reportName': 'RPT_ORG_SURVEY', 'columns': 'ALL', 'quoteColumns': 'f2~01~SECURITY_CODE~CLOSE_PRICE,f3~01~SECURITY_CODE~CHANGE_RATE', 'source': 'WEB', 'client': 'WEB', 'filter': f"""(IS_SOURCE="1")(RECEIVE_START_DATE>'{'-'.join([start_date[:4], start_date[4:6], start_date[6:]])}')""" } r = requests.get(url, params=params) data_json = r.json() total_page = data_json['result']['pages'] big_df = pd.DataFrame() for page in tqdm(range(1, total_page+1), leave=False): params.update({"pageNumber": page}) r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json['result']['data']) big_df = big_df.append(temp_df) big_df.reset_index(inplace=True) big_df["index"] = list(range(1, len(big_df) + 1)) big_df.columns = [ "序号", "_", "代码", "名称", "_", "公告日期", "调研日期", "_", "_", "_", "调研机构", "_", "_", "_", "接待地点", "_", "接待方式", "调研人员", "接待人员", "_", "_", "_", "_", "_", "_", "_", "机构类型", "_", "_", "_", "_", "_", "最新价", "涨跌幅", ] big_df = big_df[ [ "序号", "代码", "名称", "最新价", "涨跌幅", "调研机构", "机构类型", "调研人员", "接待方式", "接待人员", "接待地点", "调研日期", "公告日期", ] ] big_df['最新价'] = pd.to_numeric(big_df['最新价'], errors="coerce") big_df['涨跌幅'] = pd.to_numeric(big_df['涨跌幅'], errors="coerce") big_df['调研日期'] = pd.to_da
tetime(big_df['调研日期'])
pandas.to_datetime
#!python # builtin import os import sys import logging import json import time import contextlib import multiprocessing import urllib import csv # external import numpy as np import pandas as pd import h5py import pyteomics.mgf # local from ion_networks._version import __version__ as VERSION from ion_networks import numba_functions GITHUB_VERSION_FILE = "https://raw.githubusercontent.com/swillems/ion_networks/master/ion_networks/_version.py" BASE_PATH = os.path.dirname(__file__) UPDATE_COMMAND = os.path.join(os.path.dirname(BASE_PATH), "install", "update.sh") LIB_PATH = os.path.join(BASE_PATH, "lib") DEFAULT_PARAMETER_PATH = os.path.join(LIB_PATH, "default_parameters") DEFAULT_PARAMETER_FILES = { "convert": "convert_parameters.json", "create": "create_parameters.json", "evidence": "evidence_parameters.json", "interface": "interface_parameters.json", "database": "database_parameters.json", "annotation": "annotation_parameters.json", "mgf": "mgf_parameters.json", } DATA_TYPE_FILE_EXTENSIONS = { "DDA": ".mgf", "SONAR": "_Apex3DIons.csv", "HDMSE": "_Apex3DIons.csv", "SWIMDIA": "_Apex3DIons.csv", "DIAPASEF": "_centroids.hdf", } LOGGER = logging.getLogger("Ion-networks") MAX_THREADS = 1 @contextlib.contextmanager def open_logger(log_file_name, log_level=logging.INFO): # TODO: Docstring start_time = time.time() formatter = logging.Formatter('%(asctime)s > %(message)s') LOGGER.setLevel(log_level) if not LOGGER.hasHandlers(): console_handler = logging.StreamHandler(stream=sys.stdout) console_handler.setLevel(log_level) console_handler.setFormatter(formatter) LOGGER.addHandler(console_handler) if log_file_name is not None: if log_file_name == "": log_file_name = BASE_PATH else: log_file_name = os.path.abspath(log_file_name) if os.path.isdir(log_file_name): log_file_name = os.path.join(log_file_name, "log.txt") directory = os.path.dirname(log_file_name) if not os.path.exists(directory): os.makedirs(directory) file_handler = logging.FileHandler(log_file_name, mode="a") file_handler.setLevel(log_level) file_handler.setFormatter(formatter) LOGGER.addHandler(file_handler) LOGGER.info("=" * 50) LOGGER.info(f"COMMAND: ion_networks {' '.join(sys.argv[1:])}") LOGGER.info(f"VERSION: {VERSION}") LOGGER.info(f"LOGFILE: {log_file_name}") LOGGER.info("") try: yield LOGGER LOGGER.info("") LOGGER.info("Successfully finished execution") except: LOGGER.info("") LOGGER.exception("Something went wrong, execution incomplete!") finally: LOGGER.info(f"Time taken: {time.time() - start_time}") LOGGER.info("=" * 50) if log_file_name is not None: LOGGER.removeHandler(file_handler) def read_parameters_from_json_file(file_name="", default=""): """ Read a custom or default parameter file. Parameters ---------- default : str The default parameters that should be loaded. Options are: "create" "evidence" "interface" "" file_name : str The name of a .json file that contains parameters defined by the user. These will override the default parameters. Returns ------- dict A dictionary with parameters. """ if default == "": parameters = {"log_file_name": ""} else: default_parameter_file_name = os.path.join( DEFAULT_PARAMETER_PATH, DEFAULT_PARAMETER_FILES[default] ) with open(default_parameter_file_name, "r") as in_file: parameters = json.load(in_file) if file_name != "": with open(file_name, "r") as in_file: user_defined_parameters = json.load(in_file) parameters.update(user_defined_parameters) # TODO: Numba expects proper floats or integers, not a mixture # TODO: e.g. DT_error = 2.0, instead of DT_error = 2 if "threads" in parameters: set_threads(parameters["threads"]) return parameters def set_threads(threads): global MAX_THREADS max_cpu_count = multiprocessing.cpu_count() if threads > max_cpu_count: MAX_THREADS = max_cpu_count else: while threads <= 0: threads += max_cpu_count MAX_THREADS = threads def get_file_names_with_extension(input_path, extension=""): """ Get all file names with a specific extension from a list of files and folders. Parameters ---------- input_path : iterable[str] An iterable with files or folders from which all files with a specific extension need to be selected. extension : str The extension of the files of interest. Returns ------- list A sorted list with unique file names with the specific extension. """ input_files = set() if not isinstance(extension, str): for tmp_extension in extension: for file_name in get_file_names_with_extension( input_path, tmp_extension ): input_files.add(file_name) else: for current_path in input_path: if os.path.isfile(current_path): if current_path.endswith(extension): input_files.add(current_path) elif os.path.isdir(current_path): for current_file_name in os.listdir(current_path): if current_file_name.endswith(extension): file_name = os.path.join( current_path, current_file_name ) input_files.add(file_name) return sorted([os.path.abspath(file_name) for file_name in input_files]) def read_data_from_file( data_type, file_name, log_transform_intensity=True, ): """ Convert an [input_file.*] file to a pd.DataFrame with as columns the dimensions associated with the data type. Parameters ---------- data_type : str The data type of the [input_file.*] file. Options are: 'DDA' 'SONAR' 'HDMSE' 'SWIMDIA' 'DIAPASEF' file_name : str The file name containing centroided ions. log_transform_intensity : bool Transform the intensities to logarithmic values. Returns ------- pd.DataFrame A pd.DataFrame with as columns the PRECURSOR_RT, PRECURSOR_MZ, FRAGMENT_MZ and FRAGMENT_LOGINT dimensions. """ if data_type == "DDA": read_function = read_data_from_mgf_file elif data_type == "SONAR": read_function = read_data_from_sonar_file elif data_type == "HDMSE": read_function = read_data_from_hdmse_file elif data_type == "SWIMDIA": read_function = read_data_from_swimdia_file elif data_type == "DIAPASEF": read_function = read_data_from_diapasef_file data = read_function( file_name, log_transform_intensity=log_transform_intensity, ) return data def read_data_from_mgf_file( file_name, log_transform_intensity=True, ): """ Convert an [mgf_input.mgf] file to a pd.DataFrame with as columns the PRECURSOR_RT, PRECURSOR_MZ, FRAGMENT_MZ and FRAGMENT_LOGINT dimensions. Parameters ---------- file_name : str The file name of the DDA .mgf file (generated with ms-convert). log_transform_intensity : bool Transform the intensities to logarithmic values. Returns ------- pd.DataFrame A pd.DataFrame with as columns the PRECURSOR_RT, PRECURSOR_MZ, FRAGMENT_MZ and FRAGMENT_LOGINT dimensions. """ LOGGER.info(f"Reading mgf file {file_name}") mz1s = [] mz2s = [] rts = [] ints = [] for spectrum in pyteomics.mgf.read(file_name): peak_count = len(spectrum["intensity array"]) ints.append(spectrum["intensity array"]) mz2s.append(spectrum["m/z array"]) rts.append( np.repeat(spectrum["params"]["rtinseconds"] / 60, peak_count) ) mz1s.append(np.repeat(spectrum["params"]["pepmass"][0], peak_count)) mz1s = np.concatenate(mz1s) mz2s = np.concatenate(mz2s) rts = np.concatenate(rts) ints = np.concatenate(ints) if log_transform_intensity: ints = np.log2(ints) dimensions = [ "FRAGMENT_MZ", "PRECURSOR_RT", "FRAGMENT_LOGINT", "PRECURSOR_MZ" ] data = np.stack([mz2s, rts, ints, mz1s]).T return
pd.DataFrame(data, columns=dimensions)
pandas.DataFrame
# AUTOGENERATED! DO NOT EDIT! File to edit: 22_statistics.ipynb (unless otherwise specified). __all__ = ['descriptive_table', 'ks_test', 'cohens_d', 'spearmans_r', 'calculate_walker_matrix', 'label_overlap_table', 'add_tables', 'color_matrix'] # Cell import pandas as pd, numpy as np from scipy import stats def descriptive_table(measures_table, loud=False, extended=False): "Creates the first table found in LaBrie et al's 2008 paper, which presents descriptive statistics for each of the behavioural measures they calculated." # first pull all of the data out of the dictionary for more readable use # later on measure_names = list(measures_table.columns)[1:] means = [] stds = [] medians = [] stats.iqrs = [] for measure in measure_names: means.append(measures_table[measure].mean()) stds.append(measures_table[measure].std()) medians.append(measures_table[measure].median()) stats.iqrs.append(stats.iqr(measures_table[measure].values)) if loud: print("calculating descriptive statistics for LaBrie measures") descriptive_df = pd.DataFrame(columns=["measure", "mean", "std", "median"]) descriptive_df["measure"] = measure_names descriptive_df["mean"] = means descriptive_df["std"] = stds descriptive_df["median"] = medians if extended: descriptive_df["iqr"] = stats.iqrs descriptive_df.set_index("measure", inplace=True) descriptive_df = descriptive_df.rename_axis(None) return descriptive_df # Cell def ks_test(measures_table): "Performs a one sample Kolmogorov-Smirnov test. This approximately indicates whether or not a collection of calculated behavioural measures are normally distributed." measure_names = list(measures_table.columns)[1:] scores = [] pvals = [] for measure in measure_names: result = stats.kstest(measures_table[measure], "norm") scores.append(result[0]) pvals.append(result[1]) ks_table = pd.DataFrame(columns=["Measure", "K-S Score", "p"]) ks_table["Measure"] = measure_names ks_table["K-S Score"] = scores ks_table["p"] = pvals ks_table.set_index("Measure", inplace=True) ks_table.rename_axis(None, inplace=True) return ks_table # Cell import math def cohens_d(measures_table, label): "Calculates Cohen's d value between the behavioural measures of two groups of players. Groups are distinguished using a label column which is either 1 (in group) or 0 (not in group). For example, the column 'in_top5' may represent whether or not a player is in the top 5 % of players by total amount wagered, and would be 1 or 0 for the top 5 and remaining 95 percent respectively." control_group = measures_table[measures_table[label] == 0] experimental_group = measures_table[measures_table[label] == 1] measure_names = list(measures_table.columns)[1:] # remove the label column (no point doing cohens d on it) measure_names.remove(label) d_results = [] # do cohens d for each measure for measure in measure_names: control_measure = control_group[measure] experimental_measure = experimental_group[measure] control_mean = control_measure.mean() experimental_mean = experimental_measure.mean() control_sd = control_measure.std() experimental_sd = experimental_measure.std() control_n = len(control_measure) experimental_n = len(experimental_measure) top_line = ((control_n - 1) * control_sd ** 2) + ( (experimental_n - 1) * experimental_sd ** 2 ) pooled_sd = math.sqrt(top_line / (control_n + experimental_n - 2)) d = (control_mean - experimental_mean) / pooled_sd d_results.append(d) # make a nice dataframe to present the results d_table = pd.DataFrame(columns=["Measure", "Cohen's d"]) d_table["Measure"] = measure_names d_table["Cohen's d"] = d_results d_table.set_index("Measure", inplace=True) d_table.rename_axis(None, inplace=True) return d_table # Cell def spearmans_r(measures_table, loud=False): "Calculates the coefficients (nonparametric Spearman's r) between a collection of behavioural measures. The upper-right diagonal of the resulting matrix is discarded (symmetric)." measure_names = list(measures_table.columns)[1:] data = [] for column in measure_names: data.append(measures_table[column].values) labels = measure_names coefs = [] p_values = [] for toprow in data: for siderow in data: coef, p = stats.spearmanr(toprow, siderow) coefs.append(coef) p_values.append(p) coefs = np.array(coefs) # reshape as matrix coef_as_matrix = coefs.reshape(len(data), len(data)) # cut off top-diagonal elements coef_as_matrix = np.tril(coef_as_matrix, -1) p_values = np.array(p_values) p_as_matrix = np.array(p_values).reshape(len(data), len(data)) p_as_matrix = np.tril(p_as_matrix, -1) coef_df = pd.DataFrame(coef_as_matrix, columns=labels, index=labels) p_df =
pd.DataFrame(p_as_matrix, columns=labels, index=labels)
pandas.DataFrame
""" """ """ >>> # --- >>> # SETUP >>> # --- >>> import os >>> import logging >>> logger = logging.getLogger('PT3S.Rm') >>> # --- >>> # path >>> # --- >>> if __name__ == "__main__": ... try: ... dummy=__file__ ... logger.debug("{0:s}{1:s}{2:s}".format('DOCTEST: __main__ Context: ','path = os.path.dirname(__file__)'," .")) ... path = os.path.dirname(__file__) ... except NameError: ... logger.debug("{0:s}{1:s}{2:s}".format('DOCTEST: __main__ Context: ',"path = '.' because __file__ not defined and: "," from Rm import Rm")) ... path = '.' ... from Rm import Rm ... else: ... path = '.' ... logger.debug("{0:s}{1:s}".format('Not __main__ Context: ',"path = '.' .")) >>> try: ... from PT3S import Mx ... except ImportError: ... logger.debug("{0:s}{1:s}".format("DOCTEST: from PT3S import Mx: ImportError: ","trying import Mx instead ... maybe pip install -e . is active ...")) ... import Mx >>> try: ... from PT3S import Xm ... except ImportError: ... logger.debug("{0:s}{1:s}".format("DOCTEST: from PT3S import Xm: ImportError: ","trying import Xm instead ... maybe pip install -e . is active ...")) ... import Xm >>> # --- >>> # testDir >>> # --- >>> # globs={'testDir':'testdata'} >>> try: ... dummy= testDir ... except NameError: ... testDir='testdata' >>> # --- >>> # dotResolution >>> # --- >>> # globs={'dotResolution':''} >>> try: ... dummy= dotResolution ... except NameError: ... dotResolution='' >>> import pandas as pd >>> import matplotlib.pyplot as plt >>> pd.set_option('display.max_columns',None) >>> pd.set_option('display.width',666666666) >>> # --- >>> # LocalHeatingNetwork SETUP >>> # --- >>> xmlFile=os.path.join(os.path.join(path,testDir),'LocalHeatingNetwork.XML') >>> xm=Xm.Xm(xmlFile=xmlFile) >>> mx1File=os.path.join(path,os.path.join(testDir,'WDLocalHeatingNetwork\B1\V0\BZ1\M-1-0-1'+dotResolution+'.MX1')) >>> mx=Mx.Mx(mx1File=mx1File,NoH5Read=True,NoMxsRead=True) >>> mx.setResultsToMxsFile(NewH5Vec=True) 5 >>> xm.MxSync(mx=mx) >>> rm=Rm(xm=xm,mx=mx) >>> # --- >>> # Plot 3Classes False >>> # --- >>> plt.close('all') >>> ppi=72 # matplotlib default >>> dpi_screen=2*ppi >>> fig=plt.figure(dpi=dpi_screen,linewidth=1.) >>> timeDeltaToT=mx.df.index[2]-mx.df.index[0] >>> # 3Classes und FixedLimits sind standardmaessig Falsch; RefPerc ist standardmaessig Wahr >>> # die Belegung von MCategory gemaess FixedLimitsHigh/Low erfolgt immer ... >>> pFWVB=rm.pltNetDHUS(timeDeltaToT=timeDeltaToT,pFWVBMeasureCBFixedLimitHigh=0.80,pFWVBMeasureCBFixedLimitLow=0.66,pFWVBGCategory=['BLNZ1u5u7'],pVICsDf=pd.DataFrame({'Kundenname': ['VIC1'],'Knotenname': ['V-K007']})) >>> # --- >>> # Check pFWVB Return >>> # --- >>> f=lambda x: "{0:8.5f}".format(x) >>> print(pFWVB[['Measure','MCategory','GCategory','VIC']].round(2).to_string(formatters={'Measure':f})) Measure MCategory GCategory VIC 0 0.81000 Top BLNZ1u5u7 NaN 1 0.67000 Middle NaN 2 0.66000 Middle BLNZ1u5u7 NaN 3 0.66000 Bottom BLNZ1u5u7 VIC1 4 0.69000 Middle NaN >>> # --- >>> # Print >>> # --- >>> (wD,fileName)=os.path.split(xm.xmlFile) >>> (base,ext)=os.path.splitext(fileName) >>> plotFileName=wD+os.path.sep+base+'.'+'pdf' >>> if os.path.exists(plotFileName): ... os.remove(plotFileName) >>> plt.savefig(plotFileName,dpi=2*dpi_screen) >>> os.path.exists(plotFileName) True >>> # --- >>> # Plot 3Classes True >>> # --- >>> plt.close('all') >>> # FixedLimits wird automatisch auf Wahr gesetzt wenn 3Classes Wahr ... >>> pFWVB=rm.pltNetDHUS(timeDeltaToT=timeDeltaToT,pFWVBMeasure3Classes=True,pFWVBMeasureCBFixedLimitHigh=0.80,pFWVBMeasureCBFixedLimitLow=0.66) >>> # --- >>> # LocalHeatingNetwork Clean Up >>> # --- >>> if os.path.exists(mx.h5File): ... os.remove(mx.h5File) >>> if os.path.exists(mx.mxsZipFile): ... os.remove(mx.mxsZipFile) >>> if os.path.exists(mx.h5FileVecs): ... os.remove(mx.h5FileVecs) >>> if os.path.exists(plotFileName): ... os.remove(plotFileName) """ __version__='172.16.58.3.dev1' import warnings # 3.6 #...\Anaconda3\lib\site-packages\h5py\__init__.py:36: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`. # from ._conv import register_converters as _register_converters warnings.simplefilter(action='ignore', category=FutureWarning) #C:\Users\Wolters\Anaconda3\lib\site-packages\matplotlib\cbook\deprecation.py:107: MatplotlibDeprecationWarning: Adding an axes using the same arguments as a previous axes currently reuses the earlier instance. In a future version, a new instance will always be created and returned. Meanwhile, this warning can be suppressed, and the future behavior ensured, by passing a unique label to each axes instance. # warnings.warn(message, mplDeprecation, stacklevel=1) import matplotlib.cbook warnings.filterwarnings("ignore",category=matplotlib.cbook.mplDeprecation) import os import sys import nbformat from nbconvert.preprocessors import ExecutePreprocessor from nbconvert.preprocessors.execute import CellExecutionError import timeit import xml.etree.ElementTree as ET import re import struct import collections import zipfile import pandas as pd import h5py from collections import namedtuple from operator import attrgetter import subprocess import warnings import tables import math import matplotlib.pyplot as plt from matplotlib import colors from matplotlib.colorbar import make_axes import matplotlib as mpl import matplotlib.gridspec as gridspec import matplotlib.dates as mdates from matplotlib import markers from matplotlib.path import Path from mpl_toolkits.axes_grid1 import make_axes_locatable from matplotlib.backends.backend_pdf import PdfPages import numpy as np import scipy import networkx as nx from itertools import chain import math import sys from copy import deepcopy from itertools import chain import scipy from scipy.signal import savgol_filter import logging # --- # --- PT3S Imports # --- logger = logging.getLogger('PT3S') if __name__ == "__main__": logger.debug("{0:s}{1:s}".format('in MODULEFILE: __main__ Context','.')) else: logger.debug("{0:s}{1:s}{2:s}{3:s}".format('in MODULEFILE: Not __main__ Context: ','__name__: ',__name__," .")) try: from PT3S import Mx except ImportError: logger.debug("{0:s}{1:s}".format('ImportError: ','from PT3S import Mx - trying import Mx instead ... maybe pip install -e . is active ...')) import Mx try: from PT3S import Xm except ImportError: logger.debug("{0:s}{1:s}".format('ImportError: ','from PT3S import Xm - trying import Xm instead ... maybe pip install -e . is active ...')) import Xm try: from PT3S import Am except ImportError: logger.debug("{0:s}{1:s}".format('ImportError: ','from PT3S import Am - trying import Am instead ... maybe pip install -e . is active ...')) import Am try: from PT3S import Lx except ImportError: logger.debug("{0:s}{1:s}".format('ImportError: ','from PT3S import Lx - trying import Lx instead ... maybe pip install -e . is active ...')) import Lx # --- # --- main Imports # --- import argparse import unittest import doctest import math from itertools import tee # --- Parameter Allgemein # ----------------------- DINA6 = (4.13 , 5.83) DINA5 = (5.83 , 8.27) DINA4 = (8.27 , 11.69) DINA3 = (11.69 , 16.54) DINA2 = (16.54 , 23.39) DINA1 = (23.39 , 33.11) DINA0 = (33.11 , 46.81) DINA6q = ( 5.83, 4.13) DINA5q = ( 8.27, 5.83) DINA4q = ( 11.69, 8.27) DINA3q = ( 16.54,11.69) DINA2q = ( 23.39,16.54) DINA1q = ( 33.11,23.39) DINA0q = ( 46.81,33.11) dpiSize=72 DINA4_x=8.2677165354 DINA4_y=11.6929133858 DINA3_x=DINA4_x*math.sqrt(2) DINA3_y=DINA4_y*math.sqrt(2) linestyle_tuple = [ ('loosely dotted', (0, (1, 10))), ('dotted', (0, (1, 1))), ('densely dotted', (0, (1, 1))), ('loosely dashed', (0, (5, 10))), ('dashed', (0, (5, 5))), ('densely dashed', (0, (5, 1))), ('loosely dashdotted', (0, (3, 10, 1, 10))), ('dashdotted', (0, (3, 5, 1, 5))), ('densely dashdotted', (0, (3, 1, 1, 1))), ('dashdotdotted', (0, (3, 5, 1, 5, 1, 5))), ('loosely dashdotdotted', (0, (3, 10, 1, 10, 1, 10))), ('densely dashdotdotted', (0, (3, 1, 1, 1, 1, 1)))] ylimpD=(-5,70) ylimpDmlc=(600,1350) #(300,1050) ylimQD=(-75,300) ylim3rdD=(0,3) yticks3rdD=[0,1,2,3] yGridStepsD=30 yticksALD=[0,3,4,10,20,30,40] ylimALD=(yticksALD[0],yticksALD[-1]) yticksRD=[0,2,4,10,15,30,45] ylimRD=(-yticksRD[-1],yticksRD[-1]) ylimACD=(-5,5) yticksACD=[-5,0,5] yticksTVD=[0,100,135,180,200,300] ylimTVD=(yticksTVD[0],yticksTVD[-1]) plotTVAmLabelD='TIMER u. AM [Sek. u. (N)m3*100]' def getDerivative(df,col,shiftSize=1,windowSize=60,fct=None,savgol_polyorder=None): """ returns a df df: the df col: the col of df to be derived shiftsize: the Difference between 2 indices for dValue and dt windowSize: size for rolling mean or window_length of savgol_filter; choosen filtertechnique is applied after fct windowsSize must be an even number for savgol_filter windowsSize-1 is used fct: function to be applied on dValue/dt savgol_polyorder: if not None savgol_filter is applied; pandas' rolling.mean() is applied otherwise new cols: dt (with shiftSize) dValue (from col) dValueDt (from col); fct applied dValueDtFiltered; choosen filtertechnique is applied """ mDf=df.dropna().copy(deep=True) try: dt=mDf.index.to_series().diff(periods=shiftSize) mDf['dt']=dt mDf['dValue']=mDf[col].diff(periods=shiftSize) mDf=mDf.iloc[shiftSize:] mDf['dValueDt']=mDf.apply(lambda row: row['dValue']/row['dt'].total_seconds(),axis=1) if fct != None: mDf['dValueDt']=mDf['dValueDt'].apply(fct) if savgol_polyorder == None: mDf['dValueDtFiltered']=mDf['dValueDt'].rolling(window=windowSize).mean() mDf=mDf.iloc[windowSize-1:] else: mDf['dValueDtFiltered']=savgol_filter(mDf['dValueDt'].values,windowSize-1, savgol_polyorder) mDf=mDf.iloc[windowSize/2+1+savgol_polyorder-1:] #mDf=mDf.iloc[windowSize-1:] except Exception as e: raise e finally: return mDf def fCVDNodesFromName(x): Nodes=x.replace('°','~') Nodes=Nodes.split('~') Nodes =[Node.lstrip().rstrip() for Node in Nodes if len(Node)>0] return Nodes def fgetMaxpMinFromName(CVDName,dfSegsNodesNDataDpkt): """ returns max. pMin for alle NODEs in CVDName """ nodeLst=fCVDNodesFromName(CVDName) df=dfSegsNodesNDataDpkt[dfSegsNodesNDataDpkt['NODEsName'].isin(nodeLst)][['pMin','pMinMlc']] s=df.max() return s.pMin # --- Funktionen Allgemein # ----------------------- def pairwise(iterable): "s -> (s0,s1), (s1,s2), (s2, s3), ..." a, b = tee(iterable) next(b, None) return zip(a, b) def genTimespans(timeStart ,timeEnd ,timeSpan=pd.Timedelta('12 Minutes') ,timeOverlap=pd.Timedelta('0 Seconds') ,timeStartPraefix=pd.Timedelta('0 Seconds') ,timeEndPostfix=pd.Timedelta('0 Seconds') ): # generates timeSpan-Sections # if timeStart is # an int, it is considered as the number of desired Sections before timeEnd; timeEnd must be a time # a time, it is considered as timeStart # if timeEnd is # an int, it is considered as the number of desired Sections after timeStart; timeStart must be a time # a time, it is considered as timeEnd # if timeSpan is # an int, it is considered as the number of desired Sections # a time, it is considered as timeSpan # returns an array of tuples logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) xlims=[] try: if type(timeStart) == int: numOfDesiredSections=timeStart timeStartEff=timeEnd+timeEndPostfix-numOfDesiredSections*timeSpan+(numOfDesiredSections-1)*timeOverlap-timeStartPraefix else: timeStartEff=timeStart-timeStartPraefix logger.debug("{0:s}timeStartEff: {1:s}".format(logStr,str(timeStartEff))) if type(timeEnd) == int: numOfDesiredSections=timeEnd timeEndEff=timeStart-timeStartPraefix+numOfDesiredSections*timeSpan-(numOfDesiredSections-1)*timeOverlap+timeEndPostfix else: timeEndEff=timeEnd+timeEndPostfix logger.debug("{0:s}timeEndEff: {1:s}".format(logStr,str(timeEndEff))) if type(timeSpan) == int: numOfDesiredSections=timeSpan dt=timeEndEff-timeStartEff timeSpanEff=dt/numOfDesiredSections+(numOfDesiredSections-1)*timeOverlap else: timeSpanEff=timeSpan logger.debug("{0:s}timeSpanEff: {1:s}".format(logStr,str(timeSpanEff))) logger.debug("{0:s}timeOverlap: {1:s}".format(logStr,str(timeOverlap))) timeStartAct = timeStartEff while timeStartAct < timeEndEff: logger.debug("{0:s}timeStartAct: {1:s}".format(logStr,str(timeStartAct))) timeEndAct=timeStartAct+timeSpanEff xlim=(timeStartAct,timeEndAct) xlims.append(xlim) timeStartAct = timeEndAct - timeOverlap except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return xlims def gen2Timespans( timeStart # Anfang eines "Prozesses" ,timeEnd # Ende eines "Prozesses" ,timeSpan=pd.Timedelta('12 Minutes') ,timeStartPraefix=pd.Timedelta('0 Seconds') ,timeEndPostfix=pd.Timedelta('0 Seconds') ,roundStr=None # i.e. '5min': timeStart.round(roundStr) und timeEnd dito ): """ erzeugt 2 gleich lange Zeitbereiche 1 um timeStart herum 1 um timeEnd herum """ #print("timeStartPraefix: {:s}".format(str(timeStartPraefix))) #print("timeEndPostfix: {:s}".format(str(timeEndPostfix))) xlims=[] logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: if roundStr != None: timeStart=timeStart.round(roundStr) timeEnd=timeEnd.round(roundStr) xlims.append((timeStart-timeStartPraefix,timeStart-timeStartPraefix+timeSpan)) xlims.append((timeEnd+timeEndPostfix-timeSpan,timeEnd+timeEndPostfix)) return xlims except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return xlims def fTotalTimeFromPairs( x ,denominator=None # i.e. pd.Timedelta('1 minute') for totalTime in Minutes ,roundToInt=True # round to and return as int if denominator is specified; else td is rounded by 2 ): tdTotal=pd.Timedelta('0 seconds') for idx,tPairs in enumerate(x): t1,t2=tPairs if idx==0: tLast=t2 else: if t1 <= tLast: print("Zeitpaar überlappt?!") td=t2-t1 if td < pd.Timedelta('1 seconds'): pass #print("Zeitpaar < als 1 Sekunde?!") tdTotal=tdTotal+td if denominator==None: return tdTotal else: td=tdTotal / denominator if roundToInt: td=int(round(td,0)) else: td=round(td,2) return td def findAllTimeIntervalls( df ,fct=lambda row: True if row['col'] == 46 else False ,tdAllowed=None ): logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) tPairs=[] try: rows,cols=df.shape if df.empty: logger.debug("{:s}df ist leer".format(logStr)) elif rows == 1: logger.debug("{:s}df hat nur 1 Zeile: {:s}".format(logStr,df.to_string())) rowValue=fct(df.iloc[0]) if rowValue: tPair=(df.index[0],df.index[0]) tPairs.append(tPair) else: pass else: tEin=None # paarweise über alle Zeilen for (i1, row1), (i2, row2) in pairwise(df.iterrows()): row1Value=fct(row1) row2Value=fct(row2) # wenn 1 nicht x und 2 x tEin=t2 "geht Ein" if not row1Value and row2Value: tEin=i2 # wenn 1 x und 2 nicht x tAus=t2 "geht Aus" elif row1Value and not row2Value: if tEin != None: # Paar speichern tPair=(tEin,i1) tPairs.append(tPair) else: pass # sonst: Bed. ist jetzt Aus und war nicht Ein # Bed. kann nur im ersten Fall Ein gehen # wenn 1 x und 2 x elif row1Value and row2Value: if tEin != None: pass else: # im ersten Wertepaar ist der Bereich Ein tEin=i1 # letztes Paar if row1Value and row2Value: if tEin != None: tPair=(tEin,i2) tPairs.append(tPair) if tdAllowed != None: tPairs=fCombineSubsequenttPairs(tPairs,tdAllowed) except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return tPairs def findAllTimeIntervallsSeries( s=pd.Series() ,fct=lambda x: True if x == 46 else False ,tdAllowed=None # if not None all subsequent TimePairs with TimeDifference <= tdAllowed are combined to one TimePair ,debugOutput=True ): """ # if fct: # alle [Zeitbereiche] finden fuer die fct Wahr ist; diese Zeitbereiche werden geliefert; es werden nur Paare geliefert; Wahr-Solitäre gehen nicht verloren sondern werden als Paar (t,t) geliefert # Wahr-Solitäre sind NUR dann enthalten, wenn s nur 1 Wert enthält und dieser Wahr ist; das 1 gelieferte Paar enthaelt dann den Solitär-Zeitstempel für beide Zeiten # tdAllowed can be be specified # dann im Anschluss in Zeitbereiche zusammenfassen, die nicht mehr als tdAllowed auseinander liegen; diese Zeitbereiche werden dann geliefert # if fct None: # tdAllowed must be specified # in Zeitbereiche zerlegen, die nicht mehr als Schwellwert tdAllowed auseinander liegen; diese Zeitbereiche werden geliefert # generell hat jeder gelieferte Zeitbereich Anfang und Ende (d.h. 2 Zeiten), auch dann, wenn dadurch ein- oder mehrfach der Schwellwert ignoriert werden muss # denn es soll kein Zeitbereich verloren gehen, der in s enthalten ist # wenn s nur 1 Wert enthält, wird 1 Zeitpaar mit demselben Zeitstempel für beide Zeiten geliefert, wenn Wert nicht Null # returns array of Time-Pair-Tuples >>> import pandas as pd >>> t=pd.Timestamp('2021-03-19 01:02:00') >>> t1=t +pd.Timedelta('1 second') >>> t2=t1+pd.Timedelta('1 second') >>> t3=t2+pd.Timedelta('1 second') >>> t4=t3+pd.Timedelta('1 second') >>> t5=t4+pd.Timedelta('1 second') >>> t6=t5+pd.Timedelta('1 second') >>> t7=t6+pd.Timedelta('1 second') >>> d = {t1: 46, t2: 0} # geht aus - kein Paar >>> s1PaarGehtAus=pd.Series(data=d, index=[t1, t2]) >>> d = {t1: 0, t2: 46} # geht ein - kein Paar >>> s1PaarGehtEin=pd.Series(data=d, index=[t1, t2]) >>> d = {t5: 46, t6: 0} # geht ausE - kein Paar >>> s1PaarGehtAusE=pd.Series(data=d, index=[t5, t6]) >>> d = {t5: 0, t6: 46} # geht einE - kein Paar >>> s1PaarGehtEinE=pd.Series(data=d, index=[t5, t6]) >>> d = {t1: 46, t2: 46} # geht aus - ein Paar >>> s1PaarEin=pd.Series(data=d, index=[t1, t2]) >>> d = {t1: 0, t2: 0} # geht aus - kein Paar >>> s1PaarAus=pd.Series(data=d, index=[t1, t2]) >>> s2PaarAus=pd.concat([s1PaarGehtAus,s1PaarGehtAusE]) >>> s2PaarEin=pd.concat([s1PaarGehtEin,s1PaarGehtEinE]) >>> s2PaarAusEin=pd.concat([s1PaarGehtAus,s1PaarGehtEinE]) >>> s2PaarEinAus=pd.concat([s1PaarGehtEin,s1PaarGehtAusE]) >>> # 1 Wert >>> d = {t1: 46} # 1 Wert - Wahr >>> s1WertWahr=pd.Series(data=d, index=[t1]) >>> d = {t1: 44} # 1 Wert - Falsch >>> s1WertFalsch=pd.Series(data=d, index=[t1]) >>> d = {t1: None} # 1 Wert - None >>> s1WertNone=pd.Series(data=d, index=[t1]) >>> ### >>> # 46 0 >>> # 0 46 >>> # 0 0 >>> # 46 46 !1 Paar >>> # 46 0 46 0 >>> # 46 0 0 46 >>> # 0 46 0 46 >>> # 0 46 46 0 !1 Paar >>> ### >>> findAllTimeIntervallsSeries(s1PaarGehtAus) [] >>> findAllTimeIntervallsSeries(s1PaarGehtEin) [] >>> findAllTimeIntervallsSeries(s1PaarEin) [(Timestamp('2021-03-19 01:02:01'), Timestamp('2021-03-19 01:02:02'))] >>> findAllTimeIntervallsSeries(s1PaarAus) [] >>> findAllTimeIntervallsSeries(s2PaarAus) [] >>> findAllTimeIntervallsSeries(s2PaarEin) [] >>> findAllTimeIntervallsSeries(s2PaarAusEin) [] >>> findAllTimeIntervallsSeries(s2PaarEinAus) [(Timestamp('2021-03-19 01:02:02'), Timestamp('2021-03-19 01:02:05'))] >>> # 1 Wert >>> findAllTimeIntervallsSeries(s1WertWahr) [(Timestamp('2021-03-19 01:02:01'), Timestamp('2021-03-19 01:02:01'))] >>> findAllTimeIntervallsSeries(s1WertFalsch) [] >>> ### >>> # 46 0 !1 Paar >>> # 0 46 !1 Paar >>> # 0 0 !1 Paar >>> # 46 46 !1 Paar >>> # 46 0 46 0 !2 Paare >>> # 46 0 0 46 !2 Paare >>> # 0 46 0 46 !2 Paare >>> # 0 46 46 0 !2 Paare >>> ### >>> findAllTimeIntervallsSeries(s1PaarGehtAus,fct=None,tdAllowed=pd.Timedelta('1 second')) [(Timestamp('2021-03-19 01:02:01'), Timestamp('2021-03-19 01:02:02'))] >>> findAllTimeIntervallsSeries(s1PaarGehtEin,fct=None,tdAllowed=pd.Timedelta('1 second')) [(Timestamp('2021-03-19 01:02:01'), Timestamp('2021-03-19 01:02:02'))] >>> findAllTimeIntervallsSeries(s1PaarEin,fct=None,tdAllowed=pd.Timedelta('1 second')) [(Timestamp('2021-03-19 01:02:01'), Timestamp('2021-03-19 01:02:02'))] >>> findAllTimeIntervallsSeries(s1PaarAus,fct=None,tdAllowed=pd.Timedelta('1 second')) [(Timestamp('2021-03-19 01:02:01'), Timestamp('2021-03-19 01:02:02'))] >>> findAllTimeIntervallsSeries(s2PaarAus,fct=None,tdAllowed=pd.Timedelta('1 second')) [(Timestamp('2021-03-19 01:02:01'), Timestamp('2021-03-19 01:02:02')), (Timestamp('2021-03-19 01:02:05'), Timestamp('2021-03-19 01:02:06'))] >>> findAllTimeIntervallsSeries(s2PaarEin,fct=None,tdAllowed=pd.Timedelta('1 second')) [(Timestamp('2021-03-19 01:02:01'), Timestamp('2021-03-19 01:02:02')), (Timestamp('2021-03-19 01:02:05'), Timestamp('2021-03-19 01:02:06'))] >>> findAllTimeIntervallsSeries(s2PaarAusEin,fct=None,tdAllowed=pd.Timedelta('1 second')) [(Timestamp('2021-03-19 01:02:01'), Timestamp('2021-03-19 01:02:02')), (Timestamp('2021-03-19 01:02:05'), Timestamp('2021-03-19 01:02:06'))] >>> findAllTimeIntervallsSeries(s2PaarEinAus,fct=None,tdAllowed=pd.Timedelta('1 second')) [(Timestamp('2021-03-19 01:02:01'), Timestamp('2021-03-19 01:02:02')), (Timestamp('2021-03-19 01:02:05'), Timestamp('2021-03-19 01:02:06'))] >>> # 1 Wert >>> findAllTimeIntervallsSeries(s1WertWahr,fct=None) [(Timestamp('2021-03-19 01:02:01'), Timestamp('2021-03-19 01:02:01'))] >>> findAllTimeIntervallsSeries(s1WertNone,fct=None) [] >>> ### >>> d = {t1: 0, t3: 0} >>> s1PaarmZ=pd.Series(data=d, index=[t1, t3]) >>> findAllTimeIntervallsSeries(s1PaarmZ,fct=None,tdAllowed=pd.Timedelta('1 second')) [(Timestamp('2021-03-19 01:02:01'), Timestamp('2021-03-19 01:02:03'))] >>> d = {t4: 0, t5: 0} >>> s1PaaroZ=pd.Series(data=d, index=[t4, t5]) >>> s2PaarmZoZ=pd.concat([s1PaarmZ,s1PaaroZ]) >>> findAllTimeIntervallsSeries(s2PaarmZoZ,fct=None,tdAllowed=pd.Timedelta('1 second')) [(Timestamp('2021-03-19 01:02:01'), Timestamp('2021-03-19 01:02:05'))] >>> ### >>> d = {t1: 0, t2: 0} >>> s1PaaroZ=pd.Series(data=d, index=[t1, t2]) >>> d = {t3: 0, t5: 0} >>> s1PaarmZ=pd.Series(data=d, index=[t3, t5]) >>> s2PaaroZmZ=pd.concat([s1PaaroZ,s1PaarmZ]) >>> findAllTimeIntervallsSeries(s2PaaroZmZ,fct=None,tdAllowed=pd.Timedelta('1 second')) [(Timestamp('2021-03-19 01:02:01'), Timestamp('2021-03-19 01:02:05'))] >>> ### >>> d = {t6: 0, t7: 0} >>> s1PaaroZ2=pd.Series(data=d, index=[t6, t7]) >>> d = {t4: 0} >>> solitaer=pd.Series(data=d, index=[t4]) >>> s5er=pd.concat([s1PaaroZ,solitaer,s1PaaroZ2]) >>> findAllTimeIntervallsSeries(s5er,fct=None,tdAllowed=pd.Timedelta('1 second')) [(Timestamp('2021-03-19 01:02:01'), Timestamp('2021-03-19 01:02:02')), (Timestamp('2021-03-19 01:02:04'), Timestamp('2021-03-19 01:02:07'))] >>> s3er=pd.concat([s1PaaroZ,solitaer]) >>> findAllTimeIntervallsSeries(s3er,fct=None,tdAllowed=pd.Timedelta('1 second')) [(Timestamp('2021-03-19 01:02:01'), Timestamp('2021-03-19 01:02:04'))] >>> s3er=pd.concat([solitaer,s1PaaroZ2]) >>> findAllTimeIntervallsSeries(s3er,fct=None,tdAllowed=pd.Timedelta('1 second')) [(Timestamp('2021-03-19 01:02:04'), Timestamp('2021-03-19 01:02:07'))] """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) #logger.debug("{0:s}{1:s}".format(logStr,'Start.')) tPairs=[] try: if s.empty: logger.debug("{:s}Series {!s:s} ist leer".format(logStr,s.name)) elif s.size == 1: logger.debug("{:s}Series {!s:s} hat nur 1 Element: {:s}".format(logStr,s.name,s.to_string())) if fct != None: # 1 Paar mit selben Zeiten wenn das 1 Element Wahr sValue=fct(s.iloc[0]) if sValue: tPair=(s.index[0],s.index[0]) tPairs.append(tPair) else: pass else: # 1 Paar mit selben Zeiten wenn das 1 Element nicht None sValue=s.iloc[0] if sValue != None: tPair=(s.index[0],s.index[0]) tPairs.append(tPair) else: pass else: tEin=None if fct != None: # paarweise über alle Zeiten for idx,((i1, s1), (i2, s2)) in enumerate(pairwise(s.iteritems())): s1Value=fct(s1) s2Value=fct(s2) # wenn 1 nicht x und 2 x tEin=t2 "geht Ein" if not s1Value and s2Value: tEin=i2 if idx > 0: # Info pass else: # beim ersten Paar "geht Ein" pass # wenn 1 x und 2 nicht x tAus=t2 "geht Aus" elif s1Value and not s2Value: if tEin != None: if tEin<i1: # Paar speichern tPair=(tEin,i1) tPairs.append(tPair) else: # singulaeres Ereignis # Paar mit selben Zeiten tPair=(tEin,i1) tPairs.append(tPair) pass else: # geht Aus ohne Ein zu sein if idx > 0: # Info pass else: # im ersten Paar pass # wenn 1 x und 2 x elif s1Value and s2Value: if tEin != None: pass else: # im ersten Wertepaar ist der Bereich Ein tEin=i1 # Behandlung letztes Paar # bleibt Ein am Ende der Series: Paar speichern if s1Value and s2Value: if tEin != None: tPair=(tEin,i2) tPairs.append(tPair) # Behandlung tdAllowed if tdAllowed != None: if debugOutput: logger.debug("{:s}Series {!s:s}: Intervalle werden mit {!s:s} zusammengefasst ...".format(logStr,s.name,tdAllowed)) tPairsOld=tPairs.copy() tPairs=fCombineSubsequenttPairs(tPairs,tdAllowed,debugOutput=debugOutput) if debugOutput: tPairsZusammengefasst=sorted(list(set(tPairsOld) - set(tPairs))) if len(tPairsZusammengefasst)>0: logger.debug("{:s}Series {!s:s}: Intervalle wurden wg. {!s:s} zusammengefasst. Nachfolgend die zusgefassten Intervalle: {!s:s}. Sowie die entsprechenden neuen: {!s:s}".format( logStr ,s.name ,tdAllowed ,tPairsZusammengefasst ,sorted(list(set(tPairs) - set(tPairsOld))) )) else: # paarweise über alle Zeiten # neues Paar beginnen anzInPair=1 # Anzahl der Zeiten in aktueller Zeitspanne for (i1, s1), (i2, s2) in pairwise(s.iteritems()): td=i2-i1 if td > tdAllowed: # Zeit zwischen 2 Zeiten > als Schwelle: Zeitspanne ist abgeschlossen if tEin==None: # erstes Paar liegt bereits > als Schwelle auseinander # Zeitspannenabschluss wird ignoriert, denn sonst Zeitspanne mit nur 1 Wert # aktuelle Zeitspanne beginnt beim 1. Wert und geht über Schwellwert tEin=i1 anzInPair=2 else: if anzInPair>=2: # Zeitspanne abschließen tPair=(tEin,i1) tPairs.append(tPair) # neue Zeitspanne beginnen tEin=i2 anzInPair=1 else: # Zeitspannenabschluss wird ignoriert, denn sonst Zeitspanne mit nur 1 Wert anzInPair=2 else: # Zeitspanne zugelassen, weiter ... if tEin==None: tEin=i1 anzInPair=anzInPair+1 # letztes Zeitpaar behandeln if anzInPair>=2: tPair=(tEin,i2) tPairs.append(tPair) else: # ein letzter Wert wuerde ueber bleiben, letzte Zeitspanne verlängern ... tPair=tPairs[-1] tPair=(tPair[0],i2) tPairs[-1]=tPair except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: #logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return tPairs def fCombineSubsequenttPairs( tPairs ,tdAllowed=pd.Timedelta('1 second') # all subsequent TimePairs with TimeDifference <= tdAllowed are combined to one TimePair ,debugOutput=False ): # returns tPairs logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) #logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: for idx,(tp1,tp2) in enumerate(pairwise(tPairs)): t1Ende=tp1[1] t2Start=tp2[0] if t2Start-t1Ende <= tdAllowed: if debugOutput: logger.debug("{:s} t1Ende: {!s:s} t2Start: {!s:s} Gap: {!s:s}".format(logStr,t1Ende,t2Start,t2Start-t1Ende)) tPairs[idx]=(tp1[0],tp2[1]) # Folgepaar in vorheriges Paar integrieren tPairs.remove(tp2) # Folgepaar löschen tPairs=fCombineSubsequenttPairs(tPairs,tdAllowed) # Rekursion except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: #logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return tPairs class RmError(Exception): def __init__(self, value): self.value = value def __str__(self): return repr(self.value) AlarmEvent = namedtuple('alarmEvent','tA,tE,ZHKNR,LDSResBaseType') # --- Parameter und Funktionen LDS Reports # ---------------------------------------- def pltMakeCategoricalColors(color,nOfSubColorsReq=3,reversedOrder=False): """ Returns an array of rgb colors derived from color. Parameter: color: a rgb color nOfSubColorsReq: number of SubColors requested Raises: RmError >>> import matplotlib >>> color='red' >>> c=list(matplotlib.colors.to_rgb(color)) >>> import Rm >>> Rm.pltMakeCategoricalColors(c) array([[1. , 0. , 0. ], [1. , 0.375, 0.375], [1. , 0.75 , 0.75 ]]) """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) rgb=None try: chsv = matplotlib.colors.rgb_to_hsv(color[:3]) arhsv = np.tile(chsv,nOfSubColorsReq).reshape(nOfSubColorsReq,3) arhsv[:,1] = np.linspace(chsv[1],0.25,nOfSubColorsReq) arhsv[:,2] = np.linspace(chsv[2],1,nOfSubColorsReq) rgb = matplotlib.colors.hsv_to_rgb(arhsv) if reversedOrder: rgb=list(reversed(rgb)) except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return rgb # Farben fuer Druecke SrcColorp='green' SrcColorsp=pltMakeCategoricalColors(list(matplotlib.colors.to_rgb(SrcColorp)),nOfSubColorsReq=4,reversedOrder=False) # erste Farbe ist Original-Farbe SnkColorp='blue' SnkColorsp=pltMakeCategoricalColors(list(matplotlib.colors.to_rgb(SnkColorp)),nOfSubColorsReq=4,reversedOrder=True) # letzte Farbe ist Original-Farbe # Farben fuer Fluesse SrcColorQ='red' SrcColorsQ=pltMakeCategoricalColors(list(matplotlib.colors.to_rgb(SrcColorQ)),nOfSubColorsReq=4,reversedOrder=False) # erste Farbe ist Original-Farbe SnkColorQ='orange' SnkColorsQ=pltMakeCategoricalColors(list(matplotlib.colors.to_rgb(SnkColorQ)),nOfSubColorsReq=4,reversedOrder=True) # letzte Farbe ist Original-Farbe lwBig=4.5 lwSmall=2.5 attrsDct={ 'p Src':{'color':SrcColorp,'lw':lwBig,'where':'post'} ,'p Snk':{'color':SnkColorp,'lw':lwSmall+1.,'where':'post'} ,'p Snk 2':{'color':'mediumorchid','where':'post'} ,'p Snk 3':{'color':'darkviolet','where':'post'} ,'p Snk 4':{'color':'plum','where':'post'} ,'Q Src':{'color':SrcColorQ,'lw':lwBig,'where':'post'} ,'Q Snk':{'color':SnkColorQ,'lw':lwSmall+1.,'where':'post'} ,'Q Snk 2':{'color':'indianred','where':'post'} ,'Q Snk 3':{'color':'coral','where':'post'} ,'Q Snk 4':{'color':'salmon','where':'post'} ,'Q Src RTTM':{'color':SrcColorQ,'lw':matplotlib.rcParams['lines.linewidth']+1.,'ls':'dotted','where':'post'} ,'Q Snk RTTM':{'color':SnkColorQ,'lw':matplotlib.rcParams['lines.linewidth'] ,'ls':'dotted','where':'post'} ,'Q Snk 2 RTTM':{'color':'indianred','ls':'dotted','where':'post'} ,'Q Snk 3 RTTM':{'color':'coral','ls':'dotted','where':'post'} ,'Q Snk 4 RTTM':{'color':'salmon','ls':'dotted','where':'post'} ,'p ISrc 1':{'color':SrcColorsp[-1],'ls':'dashdot','where':'post'} ,'p ISrc 2':{'color':SrcColorsp[-2],'ls':'dashdot','where':'post'} ,'p ISrc 3':{'color':SrcColorsp[-2],'ls':'dashdot','where':'post'} # ab hier selbe Farbe ,'p ISrc 4':{'color':SrcColorsp[-2],'ls':'dashdot','where':'post'} ,'p ISrc 5':{'color':SrcColorsp[-2],'ls':'dashdot','where':'post'} ,'p ISrc 6':{'color':SrcColorsp[-2],'ls':'dashdot','where':'post'} ,'p ISnk 1':{'color':SnkColorsp[0],'ls':'dashdot','where':'post'} ,'p ISnk 2':{'color':SnkColorsp[1],'ls':'dashdot','where':'post'} ,'p ISnk 3':{'color':SnkColorsp[1],'ls':'dashdot','where':'post'} # ab hier selbe Farbe ,'p ISnk 4':{'color':SnkColorsp[1],'ls':'dashdot','where':'post'} ,'p ISnk 5':{'color':SnkColorsp[1],'ls':'dashdot','where':'post'} ,'p ISnk 6':{'color':SnkColorsp[1],'ls':'dashdot','where':'post'} ,'Q xSrc 1':{'color':SrcColorsQ[-1],'ls':'dashdot','where':'post'} ,'Q xSrc 2':{'color':SrcColorsQ[-2],'ls':'dashdot','where':'post'} ,'Q xSrc 3':{'color':SrcColorsQ[-3],'ls':'dashdot','where':'post'} ,'Q xSnk 1':{'color':SnkColorsQ[0],'ls':'dashdot','where':'post'} ,'Q xSnk 2':{'color':SnkColorsQ[1],'ls':'dashdot','where':'post'} ,'Q xSnk 3':{'color':SnkColorsQ[2],'ls':'dashdot','where':'post'} ,'Q (DE) Me':{'color': 'indigo','ls': 'dashdot','where': 'post','lw':1.5} ,'Q (DE) Re':{'color': 'cyan','ls': 'dashdot','where': 'post','lw':3.5} ,'p (DE) SS Me':{'color': 'magenta','ls': 'dashdot','where': 'post'} ,'p (DE) DS Me':{'color': 'darkviolet','ls': 'dashdot','where': 'post'} ,'p (DE) SS Re':{'color': 'magenta','ls': 'dotted','where': 'post'} ,'p (DE) DS Re':{'color': 'darkviolet','ls': 'dotted','where': 'post'} ,'p OPC LDSErgV':{'color':'olive' ,'lw':lwSmall-.5 ,'ms':matplotlib.rcParams['lines.markersize'] ,'marker':'x' ,'mec':'olive' ,'mfc':'olive' ,'where':'post'} ,'p OPC Src':{'color':SrcColorp ,'lw':0.05+2 ,'ms':matplotlib.rcParams['lines.markersize']/2 ,'marker':'D' ,'mec':SrcColorp ,'mfc':SrcColorQ ,'where':'post'} ,'p OPC Snk':{'color':SnkColorp ,'lw':0.05+2 ,'ms':matplotlib.rcParams['lines.markersize']/2 ,'marker':'D' ,'mec':SnkColorp ,'mfc':SnkColorQ ,'where':'post'} ,'Q OPC Src':{'color':SrcColorQ ,'lw':0.05+2 ,'ms':matplotlib.rcParams['lines.markersize']/2 ,'marker':'D' ,'mec':SrcColorQ ,'mfc':SrcColorp ,'where':'post'} ,'Q OPC Snk':{'color':SnkColorQ ,'lw':0.05+2 ,'ms':matplotlib.rcParams['lines.markersize']/2 ,'marker':'D' ,'mec':SnkColorQ ,'mfc':SnkColorp ,'where':'post'} } attrsDctLDS={ 'Seg_AL_S_Attrs':{'color':'blue','lw':3.,'where':'post'} ,'Druck_AL_S_Attrs':{'color':'blue','lw':3.,'ls':'dashed','where':'post'} ,'Seg_MZ_AV_Attrs':{'color':'orange','zorder':3,'where':'post'} ,'Druck_MZ_AV_Attrs':{'color':'orange','zorder':3,'ls':'dashed','where':'post'} ,'Seg_LR_AV_Attrs':{'color':'green','zorder':1,'where':'post'} ,'Druck_LR_AV_Attrs':{'color':'green','zorder':1,'ls':'dashed','where':'post'} ,'Seg_LP_AV_Attrs':{'color':'turquoise','zorder':0,'lw':1.50,'where':'post'} ,'Druck_LP_AV_Attrs':{'color':'turquoise','zorder':0,'lw':1.50,'ls':'dashed','where':'post'} ,'Seg_NG_AV_Attrs':{'color':'red','zorder':2,'where':'post'} ,'Druck_NG_AV_Attrs':{'color':'red','zorder':2,'ls':'dashed','where':'post'} ,'Seg_SB_S_Attrs':{'color':'black','alpha':.5,'where':'post'} ,'Druck_SB_S_Attrs':{'color':'black','ls':'dashed','alpha':.75,'where':'post','lw':1.0} ,'Seg_AC_AV_Attrs':{'color':'indigo','where':'post'} ,'Druck_AC_AV_Attrs':{'color':'indigo','ls':'dashed','where':'post'} ,'Seg_ACF_AV_Attrs':{'color':'blueviolet','where':'post','lw':1.0} ,'Druck_ACF_AV_Attrs':{'color':'blueviolet','ls':'dashed','where':'post','lw':1.0} ,'Seg_ACC_Limits_Attrs':{'color':'indigo','ls':linestyle_tuple[2][1]} # 'densely dotted' ,'Druck_ACC_Limits_Attrs':{'color':'indigo','ls':linestyle_tuple[8][1]} # 'densely dashdotted' ,'Seg_TIMER_AV_Attrs':{'color':'chartreuse','where':'post'} ,'Druck_TIMER_AV_Attrs':{'color':'chartreuse','ls':'dashed','where':'post'} ,'Seg_AM_AV_Attrs':{'color':'chocolate','where':'post'} ,'Druck_AM_AV_Attrs':{'color':'chocolate','ls':'dashed','where':'post'} # ,'Seg_DPDT_REF_Attrs':{'color':'violet','ls':linestyle_tuple[2][1]} # 'densely dotted' ,'Druck_DPDT_REF_Attrs':{'color':'violet','ls':linestyle_tuple[8][1]} # 'densely dashdotted' ,'Seg_DPDT_AV_Attrs':{'color':'fuchsia','where':'post','lw':2.0} ,'Druck_DPDT_AV_Attrs':{'color':'fuchsia','ls':'dashed','where':'post','lw':2.0} ,'Seg_QM16_AV_Attrs':{'color':'sandybrown','ls':linestyle_tuple[6][1],'where':'post','lw':1.0} # 'loosely dashdotted' ,'Druck_QM16_AV_Attrs':{'color':'sandybrown','ls':linestyle_tuple[10][1],'where':'post','lw':1.0} # 'loosely dashdotdotted' } pSIDEvents=re.compile('(?P<Prae>IMDI\.)?Objects\.(?P<colRegExMiddle>3S_FBG_ESCHIEBER|FBG_ESCHIEBER{1})\.(3S_)?(?P<colRegExSchieberID>[a-z,A-Z,0-9,_]+)\.(?P<colRegExEventID>(In\.ZUST|In\.LAEUFT|In\.LAEUFT_NICHT|In\.STOER|Out\.AUF|Out\.HALT|Out\.ZU)$)') # ausgewertet werden: colRegExSchieberID (um welchen Schieber geht es), colRegExMiddle (Befehl oder Zustand) und colRegExEventID (welcher Befehl bzw. Zustand) # die Befehle bzw. Zustaende (die Auspraegungen von colRegExEventID) muessen nachf. def. sein um den Marker (des Befehls bzw. des Zustandes) zu definieren eventCCmds={ 'Out.AUF':0 ,'Out.ZU':1 ,'Out.HALT':2} eventCStats={'In.LAEUFT':3 ,'In.LAEUFT_NICHT':4 ,'In.ZUST':5 ,'Out.AUF':6 ,'Out.ZU':7 ,'Out.HALT':8 ,'In.STOER':9} valRegExMiddleCmds='3S_FBG_ESCHIEBER' # colRegExMiddle-Auspraegung fuer Befehle (==> eventCCmds) LDSParameter=[ 'ACC_SLOWTRANSIENT' ,'ACC_TRANSIENT' ,'DESIGNFLOW' ,'DT' ,'FILTERWINDOW' #,'L_PERCENT' ,'L_PERCENT_STDY' ,'L_PERCENT_STRAN' ,'L_PERCENT_TRANS' ,'L_SHUTOFF' ,'L_SLOWTRANSIENT' ,'L_SLOWTRANSIENTQP' ,'L_STANDSTILL' ,'L_STANDSTILLQP' ,'L_TRANSIENT' ,'L_TRANSIENTQP' ,'L_TRANSIENTVBIGF' ,'L_TRANSIENTPDNTF' ,'MEAN' ,'NAME' ,'ORDER' ,'TIMER' ,'TTIMERTOALARM' ,'TIMERTOLISS' ,'TIMERTOLIST' ] LDSParameterDataD={ 'ACC_SLOWTRANSIENT':0.1 ,'ACC_TRANSIENT':0.8 ,'DESIGNFLOW':250. ,'DT':1 ,'FILTERWINDOW':180 #,'L_PERCENT':1.6 ,'L_PERCENT_STDY':1.6 ,'L_PERCENT_STRAN':1.6 ,'L_PERCENT_TRANS':1.6 ,'L_SHUTOFF':2. ,'L_SLOWTRANSIENT':4. ,'L_SLOWTRANSIENTQP':4. ,'L_STANDSTILL':2. ,'L_STANDSTILLQP':2. ,'L_TRANSIENT':10. ,'L_TRANSIENTQP':10. ,'L_TRANSIENTVBIGF':3. ,'L_TRANSIENTPDNTF':1.5 ,'MEAN':1 ,'ORDER':1 ,'TIMER':180 ,'TTIMERTOALARM':45 # TIMER/4 ,'TIMERTOLISS':180 ,'TIMERTOLIST':180 ,'NAME':'' } def fSEGNameFromPV_2(Beschr): # fSEGNameFromSWVTBeschr # 2,3,4,5 if Beschr in ['',None]: return None m=re.search(Lx.pID,Beschr) if m == None: return Beschr return m.group('C2')+'_'+m.group('C3')+'_'+m.group('C4')+'_'+m.group('C5') def fSEGNameFromPV_3(PV): # fSEGNameFromPV # ... m=re.search(Lx.pID,PV) return m.group('C3')+'_'+m.group('C4')+'_'+m.group('C5')+m.group('C6') def fSEGNameFromPV_3m(PV): # fSEGNameFromPV # ... m=re.search(Lx.pID,PV) #print("C4: {:s} C6: {:s}".format(m.group('C4'),m.group('C6'))) if m.group('C4')=='AAD' and m.group('C6')=='_OHN': return m.group('C3')+'_'+m.group('C4')+'_'+m.group('C5')+'_OHV1' elif m.group('C4')=='OHN' and m.group('C6')=='_NGD': return m.group('C3')+'_'+'OHV2'+'_'+m.group('C5')+m.group('C6') else: return m.group('C3')+'_'+m.group('C4')+'_'+m.group('C5')+m.group('C6') # Ableitung eines DIVPipelineNamens von PV def fDIVNameFromPV(PV): m=re.search(Lx.pID,PV) return m.group('C2')+'-'+m.group('C4') # Ableitung eines DIVPipelineNamens von SEGName def fDIVNameFromSEGName(SEGName): if pd.isnull(SEGName): return None # dfSegsNodesNDataDpkt['DIVPipelineName']=dfSegsNodesNDataDpkt['SEGName'].apply(lambda x: re.search('(\d+)_(\w+)_(\w+)_(\w+)',x).group(1)+'_'+re.search('(\d+)_(\w+)_(\w+)_(\w+)',x).group(3) ) m=re.search('(\d+)_(\w+)_(\w+)_(\w+)',SEGName) if m == None: return SEGName return m.group(1)+'_'+m.group(3) #def getNamesFromOPCITEM_ID(dfSegsNodesNDataDpkt # ,OPCITEM_ID): # """ # Returns tuple (DIVPipelineName,SEGName) from OPCITEM_ID PH # """ # df=dfSegsNodesNDataDpkt[dfSegsNodesNDataDpkt['OPCITEM_ID']==OPCITEM_ID] # if not df.empty: # return (df['DIVPipelineName'].iloc[0],df['SEGName'].iloc[0]) def fGetBaseIDFromResID( ID='Objects.3S_XXX_DRUCK.3S_6_BNV_01_PTI_01.In.MW.value' ): """ Returns 'Objects.3S_XXX_DRUCK.3S_6_BNV_01_PTI_01.In.' funktioniert im Prinzip fuer SEG- und Druck-Ergs: jede Erg-PV eines Vektors liefert die Basis gueltig fuer alle Erg-PVs des Vektors d.h. die Erg-PVs eines Vektors unterscheiden sich nur hinten siehe auch fGetSEGBaseIDFromSEGName """ if pd.isnull(ID): return None m=re.search(Lx.pID,ID) if m == None: return None try: base=m.group('A')+'.'+m.group('B')\ +'.'+m.group('C1')\ +'_'+m.group('C2')\ +'_'+m.group('C3')\ +'_'+m.group('C4')\ +'_'+m.group('C5')\ +m.group('C6') #print(m.groups()) #print(m.groupdict()) if 'C7' in m.groupdict().keys(): if m.group('C7') != None: base=base+m.group('C7') base=base+'.'+m.group('D')\ +'.' #print(base) except: base=m.group(0)+' (Fehler in fGetBaseIDFromResID)' return base def fGetSEGBaseIDFromSEGName( SEGName='6_AAD_41_OHV1' ): """ Returns 'Objects.3S_FBG_SEG_INFO.3S_L_'+SEGName+'.In.' In some cases SEGName is manipulated ... siehe auch fGetBaseIDFromResID """ if SEGName == '6_AAD_41_OHV1': x='6_AAD_41_OHN' elif SEGName == '6_OHV2_41_NGD': x='6_OHN_41_NGD' else: x=SEGName return 'Objects.3S_FBG_SEG_INFO.3S_L_'+x+'.In.' def getNamesFromSEGResIDBase(dfSegsNodesNDataDpkt ,SEGResIDBase): """ Returns tuple (DIVPipelineName,SEGName) from SEGResIDBase """ df=dfSegsNodesNDataDpkt[dfSegsNodesNDataDpkt['SEGResIDBase']==SEGResIDBase] if not df.empty: return (df['DIVPipelineName'].iloc[0],df['SEGName'].iloc[0]) def getNamesFromDruckResIDBase(dfSegsNodesNDataDpkt ,DruckResIDBase): """ Returns tuple (DIVPipelineName,SEGName,SEGResIDBase,SEGOnlyInLDSPara) from DruckResIDBase """ df=dfSegsNodesNDataDpkt[dfSegsNodesNDataDpkt['DruckResIDBase']==DruckResIDBase] if not df.empty: #return (df['DIVPipelineName'].iloc[0],df['SEGName'].iloc[0],df['SEGResIDBase'].iloc[0]) tupleLst=[] for index,row in df.iterrows(): tupleItem=(row['DIVPipelineName'],row['SEGName'],row['SEGResIDBase'],row['SEGOnlyInLDSPara']) tupleLst.append(tupleItem) return tupleLst else: return [] def fGetErgIDsFromBaseID( baseID='Objects.3S_FBG_SEG_INFO.3S_L_6_BUV_01_BUA.In.' ,dfODI=pd.DataFrame() # df mit ODI Parametrierungsdaten ,strSep=' ' ,patternPat='^IMDI.' # ,pattern=True # nur ergIDs, fuer die 2ndPatternPat zutrifft liefern ): """ returns string mit strSep getrennten IDs aus dfODI, welche baseID enthalten (und bei pattern WAHR patternPat matchen) baseID (und group(0) von patternPat bei pattern WAHR) sind in den IDs entfernt """ if baseID in [None,'']: return None df=dfODI[dfODI.index.str.contains(baseID)] if df.empty: return None if pattern: ergIDs=''.join([e.replace(baseID,'').replace(re.search(patternPat,e).group(0),'')+' ' for e in df.index if re.search(patternPat,e) != None]) else: ergIDs=''.join([e.replace(baseID,'')+' ' for e in df.index if re.search(patternPat,e) == None]) return ergIDs def dfSegsNodesNDataDpkt( VersionsDir=r"C:\3s\Projekte\Projekt\04 - Versionen\Version82.3" ,Model=r"MDBDOC\FBG.mdb" # a Access Model ,am=None # a Access Model already processed ,SEGsDefPattern='(?P<SEG_Ki>\S+)~(?P<SEG_Kk>\S+)$' # RSLW-Beschreibung: liefert die Knotennamen der Segmentdefinition () ,RIDefPattern='(?P<Prae>\S+)\.(?P<Post>RICHT.S)$' # SWVT-Beschreibung (RICHT-DP): liefert u.a. SEGName ,fSEGNameFromPV_2=fSEGNameFromPV_2 # Funktion, die von SWVT-Beschreibung (RICHT-DP) u.a. SEGName liefert ,fGetBaseIDFromResID=fGetBaseIDFromResID # Funktion, die von OPCITEM-ID des PH-Kanals eines KNOTens den Wortstamm der Knotenergebnisse liefert ,fGetSEGBaseIDFromSEGName=fGetSEGBaseIDFromSEGName # Funktion, die aus SEGName den Wortstamm der Segmentergebnisse liefert ,LDSPara=r"App LDS\Modelle\WDFBG\B1\V0\BZ1\LDS_Para.xml" ,LDSParaPT=r"App LDS\SirOPC\AppLDS_DPDTParams.csv" ,ODI=r"App LDS\SirOPC\AppLDS_ODI.csv" ,LDSParameter=LDSParameter ,LDSParameterDataD=LDSParameterDataD ): """ alle Segmente mit Pfaddaten (Kantenzuege) mit Kanten- und Knotendaten sowie Parametrierungsdaten returns df: DIVPipelineName SEGName SEGNodes (Ki~Kk; Schluessel in LDSPara) SEGOnlyInLDSPara NODEsRef NODEsRef_max NODEsSEGLfdNr NODEsSEGLfdNrType NODEsName OBJTYPE ZKOR Blockname ATTRTYPE (PH) CLIENT_ID OPCITEM_ID NAME (der DPKT-Gruppe) DruckResIDBase SEGResIDBase SEGResIDs SEGResIDsIMDI DruckResIDs DruckResIDsIMDI NODEsSEGDruckErgLfdNr # LDSPara ACC_SLOWTRANSIENT ACC_TRANSIENT DESIGNFLOW DT FILTERWINDOW L_PERCENT_STDY L_PERCENT_STRAN L_PERCENT_TRANS L_SHUTOFF L_SLOWTRANSIENT L_SLOWTRANSIENTQP L_STANDSTILL L_STANDSTILLQP L_TRANSIENT L_TRANSIENTPDNTF L_TRANSIENTQP L_TRANSIENTVBIGF MEAN ORDER TIMER TIMERTOLISS TIMERTOLIST TTIMERTOALARM # LDSParaPT #ID pMin DT_Vorhaltemass TTimer_PMin Faktor_PMin MaxL_PMin pMinMlc pMinMlcMinSEG pMinMlcMaxSEG """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) dfSegsNodesNDataDpkt=pd.DataFrame() try: ###### --- LDSPara LDSParaFile=os.path.join(VersionsDir,LDSPara) logger.info("{:s}###### {:10s}: {:s}: Lesen und prüfen ...".format(logStr,'LDSPara',LDSPara)) with open(LDSParaFile) as f: xml = f.read() xmlWellFormed='<root>'+xml+'</root>' root=ET.fromstring(xmlWellFormed) LDSParameterData={} for key in LDSParameterDataD.keys(): LDSParameterData[key]=[] logger.debug("{:s}LDSParameter: {!s:s}.".format(logStr,LDSParameter)) for idx,element in enumerate(root.iter(tag='LDSI')): attribKeysMute=[] for key,value in element.attrib.items(): if key not in LDSParameter: logger.warning("{:s}{:s}: Parameter: {:s} undefiniert.".format(logStr,element.attrib['NAME'],key)) attribKeysMute.append(key) keysIst=element.attrib.keys() keysSoll=set(LDSParameter) keysExplizitFehlend=keysSoll-keysIst LDSIParaDct=element.attrib for key in keysExplizitFehlend: if key=='ORDER': LDSIParaDct[key]=LDSParameterDataD[key] logger.debug("{:s}{:25s}: explizit fehlender Parameter: {:20s} ({!s:s}).".format(logStr,element.attrib['NAME'],key,LDSIParaDct[key])) elif key=='TTIMERTOALARM': LDSIParaDct[key]=int(LDSIParaDct['TIMER'])/4 logger.debug("{:s}{:25s}: explizit fehlender Parameter: {:20s} ({!s:s}).".format(logStr,element.attrib['NAME'],key,LDSIParaDct[key])) else: LDSIParaDct[key]=LDSParameterDataD[key] logger.debug("{:s}{:25s}: explizit fehlender Parameter: {:20s} ({!s:s}).".format(logStr,element.attrib['NAME'],key,LDSIParaDct[key])) keyListToProcess=[key for key in LDSIParaDct.keys() if key not in attribKeysMute] for key in keyListToProcess: LDSParameterData[key].append(LDSIParaDct[key]) df=pd.DataFrame.from_dict(LDSParameterData) df=df.set_index('NAME').sort_index() df.index.rename('SEGMENT', inplace=True) df=df[sorted(df.columns.to_list())] df = df.apply(pd.to_numeric) #logger.debug("{:s}df: {:s}".format(logStr,df.to_string())) logger.debug("{:s}Parameter, die nicht auf Standardwerten sind:".format(logStr)) for index, row in df.iterrows(): for colName, colValue in zip(df.columns.to_list(),row): if colValue != LDSParameterDataD[colName]: logger.debug("Segment: {:30s}: Parameter: {:20s} Wert: {:10s} (Standard: {:s})".format(index,colName,str(colValue),str(LDSParameterDataD[colName]))) dfPara=df # --- Einlesen Modell if am == None: accFile=os.path.join(VersionsDir,Model) logger.info("{:s}###### {:10s}: {:s}: Lesen und verarbeiten ...".format(logStr,'Modell',Model)) am=Am.Am(accFile=accFile) V_BVZ_RSLW=am.dataFrames['V_BVZ_RSLW'] V_BVZ_SWVT=am.dataFrames['V_BVZ_SWVT'] V3_KNOT=am.dataFrames['V3_KNOT'] V3_VBEL=am.dataFrames['V3_VBEL'] V3_DPKT=am.dataFrames['V3_DPKT'] V3_RSLW_SWVT=am.dataFrames['V3_RSLW_SWVT'] # --- Segmente ermitteln # --- per Modell SEGsDefinesPerRICHT=V3_RSLW_SWVT[ (V3_RSLW_SWVT['BESCHREIBUNG'].str.match(SEGsDefPattern).isin([True])) # Muster Ki~Kk ... & #! (V3_RSLW_SWVT['BESCHREIBUNG_SWVT'].str.match(RIDefPattern).isin([True])) # Muster Förderrichtungs-PV ... ].copy(deep=True) SEGsDefinesPerRICHT=SEGsDefinesPerRICHT[['BESCHREIBUNG','BESCHREIBUNG_SWVT']] # --- nur per LDS Para lSEGOnlyInLDSPara=[str(SEGNodes) for SEGNodes in dfPara.index if str(SEGNodes) not in SEGsDefinesPerRICHT['BESCHREIBUNG'].values] for SEGNodes in lSEGOnlyInLDSPara: logger.warning("{:s}LDSPara SEG {:s} ist nicht Modell-definiert!".format(logStr,SEGNodes)) # --- zusammenfassen SEGsDefines=pd.concat([SEGsDefinesPerRICHT,
pd.DataFrame(lSEGOnlyInLDSPara,columns=['BESCHREIBUNG'])
pandas.DataFrame
#OUTDATED #Splices exons from genes together to construct a region approximating a gene #Tracks process time #pc_gene_eo.csv generated by awk filtering of mouse gene annoatation for protein_coding, exon_number, chr, with # lines removed #pc_ids_eo.csv generated by awk filtering of mouse gene annoatation for protein_coding, exon_number, chr, with # lines removed for column $9 #uq_pc_ids_eo.csv generated by awk filtering of pc_ids_eo.csv for unique lines #Exports constructed_genes.csv import time import pandas as pd def duplicates(list, item): """Returns index locations of item in list""" return [i for i, x in enumerate(list) if x == item] panda_import_time = time.process_time() print("pandas imported in " + str(panda_import_time)) #load gene data gene_data_df = pd.read_csv("data/mm10_data/pc_genes_eo.csv", header=None, index_col=False) gene_data_load_time = time.process_time() - panda_import_time print("gene data loaded in " + str(gene_data_load_time)) #pc_ids_eo doesn't have constant row size, so pandas cannot be used to load dataframe printed = False ids = [] path = "data/mm10_data/pc_ids_eo.csv" with open(path) as gene_ids: ids_load_time = time.process_time() - gene_data_load_time print("gene ids loaded in " + str(ids_load_time)) #split file into lines lis = [line.split() for line in gene_ids] for line in lis: for id in line: #split by comma, retain gene ids id_values = id.split(',') for value in id_values: if 'gene_id' in value: ids.append(value) id_processed_time = time.process_time() - ids_load_time print('ids processed in ' + str(id_processed_time)) #load unique ids -- This is faster than searching list of seen ids uq_ids = [] path = "data/mm10_data/uq_pc_ids_eo.csv" uq_pc_ids_eo_df = pd.read_csv(path, header=None, index_col=False) uq_id_load_time = time.process_time() - id_processed_time print('unique ids loaded in ' + str(uq_id_load_time)) for row in uq_pc_ids_eo_df[0]: uq_ids.append(row) chr = [] start = [] end = [] exons = [] for row in gene_data_df[0]: chr.append(row) for row in gene_data_df[1]: start.append(row) for row in gene_data_df[2]: end.append(row) basic_exon_processed_time = time.process_time() - id_processed_time print('basic exons processed into feature lists in ' + str(basic_exon_processed_time)) for x in range(len(chr)): exons.append([chr[x], start[x], end[x]]) basic_data_processed_time = time.process_time() - basic_exon_processed_time print('basic exon data processed into gene lists ' + str(basic_exon_processed_time)) exons_in_gene = {} #iterate through unique ids for id in uq_ids: exons_for_id = [] #find where ids and accompanying data are located by index indexes = duplicates(ids, id) for index in indexes: exons_for_id.append(exons[index]) if printed == False: print("Value added to genes_for_id list") print(exons[index]) printed = True exons_in_gene[id] = exons_for_id exon_collection_time = time.process_time() - basic_data_processed_time print("exons collected by id in " + str(exon_collection_time)) print("Number of exons: " + str(len(exons_in_gene))) printed = False total = 0 constructed_genes = [] #Iterate through gene ids, construct gene from left most exon and right most exon for gene_id in exons_in_gene.keys(): total_exon_length = 0 #list of exon features exon_starts = [] exon_ends = [] #constructed gene values exon_start = 0 exon_end = 0 total += len(exons_in_gene[gene_id]) for exon in exons_in_gene[gene_id]: total_exon_length += (int(exon[2]) - int(exon[1])) exon_starts.append(exon[1]) exon_ends.append(exon[2]) #leftmost feature exon_start = min(exon_starts) #rightmost feature exon_end = max(exon_ends) constructed_genes.append([gene_id, exon[0], exon_start, exon_end, total_exon_length]) avg = total / len(exons_in_gene.keys()) print("Average number of exons per gene: " + str(avg)) constructed_genes_df =
pd.DataFrame(constructed_genes)
pandas.DataFrame
from django.shortcuts import render_to_response from django.utils.cache import patch_response_headers from django.http import JsonResponse from core.views import initRequest, login_customrequired from core.utils import is_json_request from core.iDDS.useconstants import SubstitleValue from core.iDDS.rawsqlquery import getRequests, getTransforms, getWorkFlowProgressItemized from core.iDDS.algorithms import generate_requests_summary, parse_request from core.libs.exlib import lower_dicts_in_list from core.libs.DateEncoder import DateEncoder import pandas as pd CACHE_TIMEOUT = 20 OI_DATETIME_FORMAT = "%Y-%m-%dT%H:%M:%S" subtitleValue = SubstitleValue() def prepare_requests_summary(workflows): summary = {'status': {}, 'username': {}} """ completion age """ for workflow in workflows: summary['status'][workflow['r_status']] = summary['status'].get(workflow['r_status'], 0) + 1 if workflow['username'] == '': workflow['username'] = "Not set" summary['username'][workflow['username']] = summary['username'].get(workflow['username'], 0) + 1 return summary def get_workflow_progress_data(request_params, **kwargs): workflows_items = getWorkFlowProgressItemized(request_params, **kwargs) workflows_items = pd.DataFrame(workflows_items) workflows_semi_grouped = [] if not workflows_items.empty: workflows_items.USERNAME.fillna(value='', inplace=True) workflows_pd = workflows_items.astype({"WORKLOAD_ID":str}).astype({"R_CREATED_AT":str}).groupby(['REQUEST_ID', 'R_STATUS', 'P_STATUS', 'R_NAME', 'USERNAME']).agg( PROCESSING_FILES_SUM=pd.NamedAgg(column="PROCESSING_FILES", aggfunc="sum"), PROCESSED_FILES_SUM=pd.NamedAgg(column="PROCESSED_FILES", aggfunc="sum"), TOTAL_FILES=pd.NamedAgg(column="TOTAL_FILES", aggfunc="sum"), P_STATUS_COUNT=pd.NamedAgg(column="P_STATUS", aggfunc="count"), R_CREATED_AT=
pd.NamedAgg(column="R_CREATED_AT", aggfunc="first")
pandas.NamedAgg
"""A mock experiment for use in testing""" from typing import List, Tuple import matplotlib.pyplot as plt from matplotlib.pyplot import figure import pandas as pd from neural_clbf.experiments import Experiment from neural_clbf.controllers import Controller class MockExperiment(Experiment): """A mock experiment for use during testing""" def run(self, controller_under_test: Controller) -> pd.DataFrame: """ Run the experiment, likely by evaluating the controller, but the experiment has freedom to call other functions of the controller as necessary (if these functions are not supported by all controllers, then experiments will be responsible for checking compatibility with the provided controller) args: controller_under_test: the controller with which to run the experiment returns: a pandas DataFrame containing the results of the experiment, in tidy data format (i.e. each row should correspond to a single observation from the experiment). """ # Return an empty dataframe results_df =
pd.DataFrame({"t": [0, 1, 2, 3], "x": [0, 1, 2, 3]})
pandas.DataFrame
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import zipfile import os import geopy.distance import random import pandas as pd import numpy as np import csv from enum import Enum from yaml import safe_load from maro.cli.data_pipeline.utils import download_file, StaticParameter from maro.utils.logger import CliLogger from maro.cli.data_pipeline.base import DataPipeline, DataTopology logger = CliLogger(name=__name__) class CitiBikePipeline(DataPipeline): _download_file_name = "trips.zip" _station_info_file_name = "full_station.json" _clean_file_name = "trips.csv" _build_file_name = "trips.bin" _station_meta_file_name = "station_meta.csv" _distance_file_name = "distance_adj.csv" _meta_file_name = "trips.yml" def __init__(self, topology: str, source: str, station_info: str, is_temp: bool = False): """ Generate citi_bike data bin and other necessary files for the specified topology from specified source. They will be generated in ~/.maro/data/citi_bike/[topology]/_build. Folder structure: ~/.maro /data/citi_bike/[topology] /_build bin data file and other necessary files /source /_download original data files /_clean cleaned data files /temp download temp files Args: topology(str): topology name of the data files source(str): source url of original data file station_info(str): source url of station info file is_temp(bool): (optional) if the data file is temporary """ super().__init__("citi_bike", topology, source, is_temp) self._station_info = station_info self._station_info_file = os.path.join(self._download_folder, self._station_info_file_name) self._distance_file = os.path.join(self._build_folder, self._distance_file_name) self._station_meta_file = os.path.join(self._build_folder, self._station_meta_file_name) self._common_data = {} def download(self, is_force: bool = False): """download the zip file""" super().download(is_force) self._new_file_list.append(self._station_info_file) if (not is_force) and os.path.exists(self._station_info_file): logger.info_green("File already exists, skipping download.") else: logger.info_green(f"Downloading trip data from {self._station_info} to {self._station_info_file}") download_file(source=self._station_info, destination=self._station_info_file) def clean(self): """unzip the csv file and process it for building binary file""" super().clean() logger.info_green("Cleaning trip data") if os.path.exists(self._download_file): # unzip logger.info_green("Unzip start") with zipfile.ZipFile(self._download_file, "r") as zip_ref: for filename in zip_ref.namelist(): # Only one csv file is expected. if ( filename.endswith(".csv") and (not (filename.startswith("__MACOSX") or filename.startswith("."))) ): logger.info_green(f"Unzip {filename} from {self._download_file}") zip_ref.extractall(self._clean_folder, [filename]) unzip_file = os.path.join(self._clean_folder, filename) self._new_file_list.append(unzip_file) self._preprocess(unzipped_file=unzip_file) break else: logger.warning(f"Not found downloaded trip data: {self._download_file}") def _read_common_data(self): """read and full init data and existed stations""" full_stations = None with open(self._station_info_file, mode="r", encoding="utf-8") as station_file: # read station to station file raw_station_data = pd.DataFrame.from_dict(pd.read_json(station_file)["data"]["stations"]) station_data = raw_station_data.rename(columns={ "lon": "station_longitude", "lat": "station_latitude", "region_id": "region"}) # group by station to generate station init info full_stations = station_data[ ["station_id", "capacity", "station_longitude", "station_latitude"] ].reset_index(drop=True) # generate station id by index full_stations["station_id"] = pd.to_numeric(full_stations["station_id"], downcast="integer") full_stations["capacity"] = pd.to_numeric(full_stations["capacity"], downcast="integer") full_stations["station_longitude"] = pd.to_numeric(full_stations["station_longitude"], downcast="float") full_stations["station_latitude"] = pd.to_numeric(full_stations["station_latitude"], downcast="float") full_stations.drop(full_stations[full_stations["capacity"] == 0].index, axis=0, inplace=True) full_stations.dropna( subset=["station_id", "capacity", "station_longitude", "station_latitude"], inplace=True ) self._common_data["full_stations"] = full_stations self._common_data["full_station_num"] = len(self._common_data["full_stations"]) self._common_data["full_dock_num"] = self._common_data["full_stations"]["capacity"].sum() def _read_src_file(self, file: str): """read and return processed rows""" ret = [] if os.path.exists(file): # For ignoring the unimportant issues in the source file. with open(file, "r", encoding="utf-8", errors="ignore") as fp: ret = pd.read_csv(fp) ret = ret[[ "tripduration", "starttime", "start station id", "end station id", "start station latitude", "start station longitude", "end station latitude", "end station longitude", "gender", "usertype", "bikeid" ]] ret["tripduration"] = pd.to_numeric( pd.to_numeric(ret["tripduration"], downcast="integer") / 60, downcast="integer" ) ret["starttime"] = pd.to_datetime(ret["starttime"]) ret["start station id"] = pd.to_numeric(ret["start station id"], errors="coerce", downcast="integer") ret["end station id"] = pd.to_numeric(ret["end station id"], errors="coerce", downcast="integer") ret["start station latitude"] = pd.to_numeric(ret["start station latitude"], downcast="float") ret["start station longitude"] = pd.to_numeric(ret["start station longitude"], downcast="float") ret["end station latitude"] = pd.to_numeric(ret["end station latitude"], downcast="float") ret["end station longitude"] = pd.to_numeric(ret["end station longitude"], downcast="float") ret["bikeid"] = pd.to_numeric(ret["bikeid"], errors="coerce", downcast="integer") ret["gender"] = pd.to_numeric(ret["gender"], errors="coerce", downcast="integer") ret["usertype"] = ret["usertype"].apply(str).apply( lambda x: 0 if x in ["Subscriber", "subscriber"] else 1 if x in ["Customer", "customer"] else 2 ) ret.dropna(subset=[ "start station id", "end station id", "start station latitude", "end station latitude", "start station longitude", "end station longitude" ], inplace=True) ret.drop( ret[ (ret["tripduration"] <= 1) | (ret["start station latitude"] == 0) | (ret["start station longitude"] == 0) | (ret["end station latitude"] == 0) | (ret["end station longitude"] == 0) ].index, axis=0, inplace=True ) ret = ret.sort_values(by="starttime", ascending=True) return ret def _process_src_file(self, src_data: pd.DataFrame): used_bikes = len(src_data[["bikeid"]].drop_duplicates(subset=["bikeid"])) trip_data = src_data[ (src_data["start station latitude"] > 40.689960) & (src_data["start station latitude"] < 40.768334) & (src_data["start station longitude"] > -74.019623) & (src_data["start station longitude"] < -73.909760) ] trip_data = trip_data[ (trip_data["end station latitude"] > 40.689960) & (trip_data["end station latitude"] < 40.768334) & (trip_data["end station longitude"] > -74.019623) & (trip_data["end station longitude"] < -73.909760) ] trip_data["start_station_id"] = trip_data["start station id"] trip_data["end_station_id"] = trip_data["end station id"] # get new stations used_stations = [] used_stations.append( trip_data[["start_station_id", "start station latitude", "start station longitude", ]].drop_duplicates( subset=["start_station_id"]).rename( columns={ "start_station_id": "station_id", "start station latitude": "latitude", "start station longitude": "longitude" })) used_stations.append( trip_data[["end_station_id", "end station latitude", "end station longitude", ]].drop_duplicates( subset=["end_station_id"]).rename( columns={ "end_station_id": "station_id", "end station latitude": "latitude", "end station longitude": "longitude" })) in_data_station = pd.concat(used_stations, ignore_index=True).drop_duplicates( subset=["station_id"] ).sort_values(by=["station_id"]).reset_index(drop=True) stations_existed = pd.DataFrame(in_data_station[["station_id"]]) stations_existed["station_index"] = pd.to_numeric(stations_existed.index, downcast="integer") # get start station id and end station id trip_data = trip_data.join( stations_existed.set_index("station_id"), on="start_station_id" ).rename(columns={"station_index": "start_station_index"}) trip_data = trip_data.join( stations_existed.set_index("station_id"), on="end_station_id" ).rename(columns={"station_index": "end_station_index"}) trip_data = trip_data.rename(columns={"starttime": "start_time", "tripduration": "duration"}) trip_data = trip_data[ ["start_time", "start_station_id", "end_station_id", "duration", "start_station_index", "end_station_index"] ] return trip_data, used_bikes, in_data_station, stations_existed def _process_current_topo_station_info( self, stations_existed: pd.DataFrame, used_bikes: int, loc_ref: pd.DataFrame ): data_station_init = stations_existed.join( self._common_data["full_stations"][["station_id", "capacity"]].set_index("station_id"), on="station_id" ).join( loc_ref[["station_id", "latitude", "longitude"]].set_index("station_id"), on="station_id" ) # data_station_init.rename(columns={"station_id": "station_index"}, inplace=True) avg_capacity = int(self._common_data["full_dock_num"] / self._common_data["full_station_num"]) avalible_bike_rate = used_bikes / self._common_data["full_dock_num"] values = {"capacity": avg_capacity} data_station_init.fillna(value=values, inplace=True) data_station_init["init"] = (data_station_init["capacity"] * avalible_bike_rate).round().apply(int) data_station_init["capacity"] = pd.to_numeric(data_station_init["capacity"], errors="coerce", downcast="integer") data_station_init["station_id"] = pd.to_numeric(data_station_init["station_id"], errors="coerce", downcast="integer") return data_station_init def _process_distance(self, station_info: pd.DataFrame): distance_adj = pd.DataFrame(0, index=station_info["station_index"], columns=station_info["station_index"], dtype=np.float) look_up_df = station_info[["latitude", "longitude"]] return distance_adj.apply(lambda x: pd.DataFrame(x).apply(lambda y: geopy.distance.distance( (look_up_df.at[x.name, "latitude"], look_up_df.at[x.name, "longitude"]), (look_up_df.at[y.name, "latitude"], look_up_df.at[y.name, "longitude"]) ).km, axis=1), axis=1) def _preprocess(self, unzipped_file: str): self._read_common_data() logger.info_green("Reading raw data") org_data = self._read_src_file(file=unzipped_file) logger.info_green("Processing trip data") trip_data, used_bikes, in_data_station, stations_existed = self._process_src_file(src_data=org_data) self._new_file_list.append(self._clean_file) self._new_file_list.append(self._station_meta_file) self._new_file_list.append(self._distance_file) with open(self._clean_file, mode="w", encoding="utf-8", newline="") as f: trip_data.to_csv(f, index=False, header=True) logger.info_green("Processing init data") station_info = self._process_current_topo_station_info( stations_existed=stations_existed, used_bikes=used_bikes, loc_ref=in_data_station ) with open(self._station_meta_file, mode="w", encoding="utf-8", newline="") as f: station_info.to_csv(f, index=False, header=True) logger.info_green("Processing distance data") station_distance = self._process_distance(station_info=station_info) with open(self._distance_file, mode="w", encoding="utf-8", newline="") as f: station_distance.to_csv(f, index=False, header=True) class WeatherPipeline(DataPipeline): _last_day_temp = None # used to fill the temp for days which have no temp info _download_file_name = "weather.csv" _clean_file_name = "weather.csv" _build_file_name = "KNYC_daily.bin" _meta_file_name = "weather.yml" class WeatherEnum(Enum): SUNNY = 0 RAINY = 1 SNOWY = 2 SLEET = 3 def __init__(self, topology: str, source: str, is_temp: bool = False): """ Generate weather data bin for the specified topology from frontierweather.com. Generated files will be generated in ~/.maro/data/citi_bike/[topology]/_build. Folder structure: ~/.maro /data/citi_bike/[topology] /_build bin data file /source /_download original data file /_clean cleaned data file /temp download temp file Args: topology(str): topology name of the data file source(str): source url of original data file is_temp(bool): (optional) if the data file is temporary """ super().__init__("citi_bike", topology, source, is_temp) self._common_data = {} def clean(self): super().clean() if os.path.exists(self._download_file): self._new_file_list.append(self._clean_file) logger.info_green("Cleaning weather data") self._preprocess(input_file=self._download_file, output_file=self._clean_file) else: logger.warning(f"Not found downloaded weather data: {self._download_file}") def _weather(self, row: dict): water_str = row["Precipitation Water Equiv"] water = round(float(water_str), 2) if water_str != "" else 0.0 snow_str = row["Snowfall"] snow = round(float(snow_str), 2) if snow_str != "" else 0.0 if snow > 0.0 and water > 0: return WeatherPipeline.WeatherEnum.SLEET.value elif water > 0.0: return WeatherPipeline.WeatherEnum.RAINY.value elif snow > 0.0: return WeatherPipeline.WeatherEnum.SNOWY.value else: return WeatherPipeline.WeatherEnum.SUNNY.value def _parse_date(self, row: dict): dstr = row.get("Date", None) return dstr def _parse_row(self, row: dict): date = self._parse_date(row=row) wh = self._weather(row=row) temp_str = row["Avg Temp"] temp = round(float(temp_str), 2) if temp_str != "" and temp_str is not None else self._last_day_temp self._last_day_temp = temp return {"date": date, "weather": wh, "temp": temp} if date is not None else None def _preprocess(self, input_file: str, output_file: str): data: list = None with open(input_file, "rt") as fp: reader = csv.DictReader(fp) data = [self._parse_row(row=row) for row in reader] data = filter(None, data) with open(output_file, "w+") as fp: writer = csv.DictWriter(fp, ["date", "weather", "temp"]) writer.writeheader() writer.writerows(data) class CitiBikeTopology(DataTopology): """ Data topology for a predefined topology of citi_bike scenario. Args: topology(str): topology name of the data file trip_source(str): original source url of citi_bike data station_info(str): current status station info of the stations weather_source(str): original source url of weather data is_temp(bool): (optional) if the data file is temporary """ def __init__(self, topology: str, trip_source: str, station_info: str, weather_source: str, is_temp: bool = False): super().__init__() self._data_pipeline["trip"] = CitiBikePipeline(topology, trip_source, station_info, is_temp) self._data_pipeline["weather"] = NOAAWeatherPipeline(topology, weather_source, is_temp) self._is_temp = is_temp def __del__(self): if self._is_temp: self.remove() class CitiBikeToyPipeline(DataPipeline): _clean_file_name = "trips.csv" _build_file_name = "trips.bin" _station_meta_file_name = "station_meta.csv" _distance_file_name = "distance_adj.csv" _meta_file_name = "trips.yml" def __init__( self, start_time: str, end_time: str, stations: list, trips: list, topology: str, is_temp: bool = False ): """ Generate synthetic business events and station initialization distribution for Citi Bike scenario, from the predefined toy topologies. Folder structure: ~/.maro /data/citi_bike/[topology] /_build bin data file and other necessary files Args: start_time(str): start time of the toy data end_time(str): end time of the toy data stations(list): list of stations info trips(list): list of trips probability topology(str): topology name of the data files is_temp(bool): (optional) if the data file is temporary """ super().__init__("citi_bike", topology, "", is_temp) self._start_time = start_time self._end_time = end_time self._stations = stations self._trips = trips self._distance_file = os.path.join(self._build_folder, self._distance_file_name) self._station_meta_file = os.path.join(self._build_folder, self._station_meta_file_name) def download(self, is_force: bool): pass def _station_dict_to_pd(self, station_dict): """convert dictionary of station information to pd series""" return pd.Series( [ station_dict["id"], station_dict["capacity"], station_dict["init"], station_dict["lat"], station_dict["lon"], ], index=["station_index", "capacity", "init", "latitude", "longitude"]) def _gen_stations(self): """generate station meta csv""" self._new_file_list.append(self._station_meta_file) stations = pd.Series(self._stations).apply(self._station_dict_to_pd) stations["station_index"] = pd.to_numeric(stations["station_index"], errors="coerce", downcast="integer") stations["station_id"] = pd.to_numeric(stations["station_index"], errors="coerce", downcast="integer") stations["capacity"] = pd.to_numeric(stations["capacity"], errors="coerce", downcast="integer") stations["init"] = pd.to_numeric(stations["init"], errors="coerce", downcast="integer") with open(self._station_meta_file, "w", encoding="utf-8", newline="") as f: stations.to_csv(f, index=False, header=True) return stations def _gen_trip(self, tick): """generate trip record""" ret_list = [] cur_probability = random.uniform(0, 1) for trip in self._trips: if trip["probability"] >= cur_probability: ret = {} ret["start_time"] = tick ret["start_station_id"] = trip["start_id"] ret["end_station_id"] = trip["end_id"] ret["start_station_index"] = trip["start_id"] ret["end_station_index"] = trip["end_id"] ret["duration"] = random.uniform(0, 120) ret_list.append(ret) return ret_list def _gen_trips(self): """generate trip records csv files""" cur_tick = pd.to_datetime(self._start_time) end_tick = pd.to_datetime(self._end_time) trips = [] while cur_tick < end_tick: new_trips = self._gen_trip(cur_tick) trips.extend(new_trips) cur_tick += pd.Timedelta(120, unit="second") trips_df = pd.DataFrame.from_dict(trips) trips_df["start_station_index"] = pd.to_numeric(trips_df["start_station_index"], errors="coerce", downcast="integer") trips_df["end_station_index"] = pd.to_numeric(trips_df["end_station_index"], errors="coerce", downcast="integer") self._new_file_list.append(self._clean_file) with open(self._clean_file, "w", encoding="utf-8", newline="") as f: trips_df.to_csv(f, index=False, header=True) return trips_df def _gen_distance(self, station_init: pd.DataFrame): """generate distance metrix csv file""" distance_adj = pd.DataFrame( 0, index=station_init["station_index"], columns=station_init["station_index"], dtype=np.float ) look_up_df = station_init[["latitude", "longitude"]] distance_df = distance_adj.apply(lambda x: pd.DataFrame(x).apply(lambda y: geopy.distance.distance( (look_up_df.at[x.name, "latitude"], look_up_df.at[x.name, "longitude"]), (look_up_df.at[y.name, "latitude"], look_up_df.at[y.name, "longitude"]) ).km, axis=1), axis=1) self._new_file_list.append(self._distance_file) with open(self._distance_file, "w", encoding="utf-8", newline="") as f: distance_df.to_csv(f, index=False, header=True) return distance_df def clean(self): logger.info_green(f"Generating trip data for topology {self._topology} .") super().clean() stations = self._gen_stations() self._gen_trips() self._gen_distance(stations) class WeatherToyPipeline(WeatherPipeline): def __init__(self, topology: str, start_time: str, end_time: str, is_temp: bool = False): """ Generate weather data bin for the specified topology from frontierweather.com. It will be generated in ~/.maro/data/citi_bike/[topology]/_build. folder structure: ~/.maro /data/citi_bike/[topology] /_build bin data file /source /_download original data file /_clean cleaned data file /temp download temp file Args: topology(str): topology name of the data file start_time(str): start time of the toy data end_time(str): end time of the toy data is_temp(bool): (optional) if the data file is temporary """ super().__init__(topology, "", is_temp) self._start_time = start_time self._end_time = end_time def download(self, is_force: bool): pass def clean(self): logger.info_green("Cleaning weather data") DataPipeline.clean(self) self._new_file_list.append(self._clean_file) self._preprocess(output_file=self._clean_file) def _weather(self): water = round(float(random.uniform(-1, 1)), 2) snow = round(float(random.uniform(-1, 1)), 2) if snow > 0.0 and water > 0: return WeatherPipeline.WeatherEnum.SLEET.value elif water > 0.0: return WeatherPipeline.WeatherEnum.RAINY.value elif snow > 0.0: return WeatherPipeline.WeatherEnum.SNOWY.value else: return WeatherPipeline.WeatherEnum.SUNNY.value def _gen_weather(self, tick): date = tick.strftime("%m/%d/%Y %H:%M:%S") wh = self._weather() temp = round(float(random.uniform(-1, 1) * 40), 2) return {"date": date, "weather": wh, "temp": temp} def _preprocess(self, output_file: str): data: list = [] cur_tick = pd.to_datetime(self._start_time) end_tick =
pd.to_datetime(self._end_time)
pandas.to_datetime
# https://www.kaggle.com/devanshbesain/exploration-and-analysis-auto-mpg #https://github.com/tensorflow/docs/blob/master/site/en/tutorials/keras/basic_regression.ipynb import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import numpy as np import warnings warnings.filterwarnings('ignore') pd.set_option('precision', 2) # 2 decimal places pd.set_option('display.max_rows', 20) pd.set_option('display.max_columns', 30) pd.set_option('display.width', 150) # wide windows import os figdir = os.path.join(os.environ["PYPROBML"], "figures") #from sklearn.datasets import fetch_openml #auto = fetch_openml('autoMpg', cache=True) # The OpenML version converts the original categorical data # to integers starting at 0. # We want the 'raw' data. #url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/auto-mpg/auto-mpg.data' # We made a cached copy since UCI repository is often down url = 'https://raw.githubusercontent.com/probml/pyprobml/master/data/mpg.csv' #column_names = ['mpg','cylinders','displacement','horsepower','weight', # 'acceleration', 'model_year', 'origin', 'name'] column_names = ['MPG','Cylinders','Displacement','Horsepower','Weight', 'Acceleration', 'Year', 'Origin', 'Name'] df = pd.read_csv(url, names=column_names, sep='\s+', na_values="?") # The last column (name) is a unique id for the car, so we drop it df = df.drop(columns=['Name']) df.info() """ <class 'pandas.core.frame.DataFrame'> RangeIndex: 398 entries, 0 to 397 Data columns (total 8 columns): MPG 398 non-null float64 Cylinders 398 non-null int64 Displacement 398 non-null float64 Horsepower 392 non-null float64 Weight 398 non-null float64 Acceleration 398 non-null float64 Year 398 non-null int64 Origin 398 non-null int64 dtypes: float64(5), int64(3) memory usage: 25.0 KB """ # We notice that there are only 392 horsepower rows, but 398 of the others. # This is because the HP column has 6 missing values (also called NA, or # not available). # There are 3 main ways to deal with this: # Drop the rows with any missing values using dropna() # Drop any columns with any missing values using drop() # Replace the missing vales with some other valye (eg the median) using fillna. # (This latter is called missing value imputation.) df = df.dropna() # Origin is categorical (1=USA, 2=Europe, 3=Japan) df['Origin'] = df.Origin.replace([1,2,3],['USA','Europe','Japan']) df['Origin'] = df['Origin'].astype('category') # Cylinders is an integer in [3,4,5,6,8] #df['Cylinders'] = df['Cylinders'].astype('category') # Year is an integer year (between 70 and 82) #df['Year'] = df['Year'].astype('category') df0 = df.copy() # Let us check the datatypes print(df.dtypes) """ MPG float64 Cylinders int64 Displacement float64 Horsepower float64 Weight float64 Acceleration float64 Year int64 Origin category """ # Let us check the categories df['Origin'].cat.categories #Index(['Europe', 'Japan', 'USA'], dtype='object') # Let us inspect the data df.tail() """ MPG Cylinders Displacement Horsepower Weight Acceleration Year Origin 393 27.0 4 140.0 86.0 2790.0 15.6 82 USA 394 44.0 4 97.0 52.0 2130.0 24.6 82 Europe 395 32.0 4 135.0 84.0 2295.0 11.6 82 USA 396 28.0 4 120.0 79.0 2625.0 18.6 82 USA 397 31.0 4 119.0 82.0 2720.0 19.4 82 USA """ #https://www.kaggle.com/devanshbesain/exploration-and-analysis-auto-mpg # Plot mpg distribution for cars from different countries of origin data = pd.concat( [df['MPG'], df['Origin']], axis=1) fig, ax = plt.subplots() ax = sns.boxplot(x='Origin', y='MPG', data=data) ax.axhline(data.MPG.mean(), color='r', linestyle='dashed', linewidth=2) plt.savefig(os.path.join(figdir, 'auto-mpg-origin-boxplot.pdf')) plt.show() # Plot mpg distribution for cars from different years data = pd.concat( [df['MPG'], df['Year']], axis=1) fig, ax = plt.subplots() ax = sns.boxplot(x='Year', y='MPG', data=data) ax.axhline(data.MPG.mean(), color='r', linestyle='dashed', linewidth=2) plt.savefig(os.path.join(figdir, 'auto-mpg-year-boxplot.pdf')) plt.show() # Convert origin string (factor) to integer from sklearn.preprocessing import LabelEncoder encoder = LabelEncoder() origin = df['Origin'] origin = encoder.fit_transform(origin) # Check the data print(np.unique(origin)) # [0 1 2] # Note the same as original [1,2,3] # Check the encoding - happens to be the same as original ordering print(encoder.classes_) # ['Europe' 'Japan' 'USA'] # Convert back (from printing purposes) origin_names = encoder.inverse_transform(origin) assert np.array_equal(origin_names, df['Origin']) # Convert integer encoding to one-hot vectors from sklearn.preprocessing import OneHotEncoder encoder = OneHotEncoder() origin = origin.reshape(-1, 1) # Convert (N) to (N,1) origin_onehot = encoder.fit_transform(origin) # Sparse array # Convert to dense array for printing purposes print(origin_onehot[-5:,:].toarray()) """ [[0. 0. 1.] [1. 0. 0.] [0. 0. 1.] [0. 0. 1.] [0. 0. 1.]] """ """ # We shoukd be able to combine LabelEncoder and OneHotEncoder together # using a Pipeline. However this fails due to known bug: https://github.com/scikit-learn/scikit-learn/issues/3956 # TypeError: fit_transform() takes 2 positional arguments but 3 were given from sklearn.pipeline import Pipeline pipeline = Pipeline([ ('str2int', LabelEncoder()), ('int2onehot', OneHotEncoder()) ]) origin_onehot2 = pipeline.fit_transform(df['Origin']) """ # Convert origin string to one-hot encoding # New feature for sckit v0.20 # https://jorisvandenbossche.github.io/blog/2017/11/20/categorical-encoder/ # https://medium.com/bigdatarepublic/integrating-pandas-and-scikit-learn-with-pipelines-f70eb6183696 from sklearn.preprocessing import OneHotEncoder def one_hot_encode_dataframe_col(df, colname): encoder = OneHotEncoder(sparse=False) data = df[[colname]] # Extract column as (N,1) matrix data_onehot = encoder.fit_transform(data) df = df.drop(columns=[colname]) ncats = np.size(encoder.categories_) for c in range(ncats): colname_c = '{}:{}'.format(colname, c) df[colname_c] = data_onehot[:,c] return df, encoder df_onehot, encoder_origin = one_hot_encode_dataframe_col(df, 'Origin') df_onehot.tail() """ Cylinders Displacement Horsepower Weight Acceleration Year Origin:0 Origin:1 Origin:2 393 4 140.0 86.0 2790.0 15.6 82 0.0 0.0 1.0 394 4 97.0 52.0 2130.0 24.6 82 1.0 0.0 0.0 395 4 135.0 84.0 2295.0 11.6 82 0.0 0.0 1.0 396 4 120.0 79.0 2625.0 18.6 82 0.0 0.0 1.0 397 4 119.0 82.0 2720.0 19.4 82 0.0 0.0 1.0 """ # See also sklearn-pandas library #https://github.com/scikit-learn-contrib/sklearn-pandas#transformation-mapping # Replace year with decade (70s and 80s) year = df.pop('Year') decade = [ 70 if (y>=70 and y<=79) else 80 for y in year ] df['Decade'] =
pd.Series(decade, dtype='category')
pandas.Series
''' Code author: @wallissoncarvalho Github repository: github.com/wallissoncarvalho/HidroData Under BSD 3-Clause "New" or "Revised" License ''' import xml.etree.ElementTree as ET import requests import pandas as pd import calendar import geopandas as gpd from tqdm import tqdm def inventario(params={'codEstDE': '', 'codEstATE': '', 'tpEst': '1', 'nmEst': '', 'nmRio': '', 'codSubBacia': '', 'codBacia': '', 'nmMunicipio': '', 'nmEstado': '', 'sgResp': '', 'sgOper': '', 'telemetrica': ''}): ''' Essa função busca as estações cadastradas no inventário do Hidroweb. Por padrão o código está buscando estações fluviométricas. Você pode buscar por estações pluviométrias alterando o argumento tpEst para 2. Se você quiser passar uma seleção específica crie um dicionário com os seguintes parâmetros: codEstDE: Código de 8 dígitos da estação - INICIAL (Ex.: 00047000) codEstATE: Código de 8 dígitos da estação - FINAL (Ex.: 90300000) tpEst: Tipo da estação (1-Flu ou 2-Plu) nmEst: Nome da Estação (Ex.: Barra Mansa) nmRio: Nome do Rio (Ex.: Rio Javari) codSubBacia: Código da Sub-Bacia hidrografica (Ex.: 10) codBacia: Código da Bacia hidrografica (Ex.: 1) nmMunicipio: Município (Ex.: Itaperuna) nmEstado: Estado (Ex.: Rio de Janeiro) sgResp: Sigla do Responsável pela estação (Ex.: ANA) sgOper: Sigla da Operadora da estação (Ex.: CPRM) telemetrica: (Ex: 1-SIM ou 0-NÃO) Dicionário com campos obritaróios, preencha os campos desejados: params = {'codEstDE': '', 'codEstATE': '', 'tpEst': '', 'nmEst': '', 'nmRio': '', 'codSubBacia': '', 'codBacia': '', 'nmMunicipio': '', 'nmEstado': '', 'sgResp': '', 'sgOper': '', 'telemetrica': ''} ''' check_params = ['codEstDE', 'codEstATE', 'tpEst', 'nmEst', 'nmRio', 'codSubBacia', 'codBacia', 'nmMunicipio', 'nmEstado', 'sgResp', 'sgOper', 'telemetrica'] if list(params.keys())!=check_params: print('O argumento params deve estar vazio ou conter os campos obrigatórios, use help(inventario) para mais informações.') return response = requests.get('http://telemetriaws1.ana.gov.br/ServiceANA.asmx/HidroInventario', params) tree = ET.ElementTree(ET.fromstring(response.content)) root = tree.getroot() if params['tpEst'] == '1': index=1 stations = pd.DataFrame(columns=['Nome','Codigo', 'Tipo','AreaDrenagem','SubBacia', 'Municipio','Estado', 'Responsavel', 'Latitude', 'Longitude']) for station in tqdm(root.iter('Table')): stations.at[index, 'Nome'] = station.find('Nome').text stations.at[index, 'Codigo'] = station.find('Codigo').text stations.at[index, 'Tipo'] = station.find('TipoEstacao').text stations.at[index, 'AreaDrenagem'] = station.find('AreaDrenagem').text stations.at[index, 'SubBacia'] = station.find('SubBaciaCodigo').text stations.at[index, 'Municipio'] = station.find('nmMunicipio').text stations.at[index, 'Estado'] = station.find('nmEstado').text stations.at[index, 'Responsavel'] = station.find('ResponsavelSigla').text stations.at[index, 'Latitude'] = float(station.find('Latitude').text) stations.at[index, 'Longitude'] = float(station.find('Longitude').text) index+=1 elif params['tpEst'] == '2': index=1 stations = pd.DataFrame(columns=['Nome','Codigo', 'Tipo','SubBacia', 'Municipio','Estado', 'Responsavel', 'Latitude', 'Longitude']) for station in tqdm(root.iter('Table')): stations.at[index, 'Nome'] = station.find('Nome').text stations.at[index, 'Codigo'] = station.find('Codigo').text stations.at[index, 'Tipo'] = station.find('TipoEstacao').text stations.at[index, 'SubBacia'] = station.find('SubBaciaCodigo').text stations.at[index, 'Municipio'] = station.find('nmMunicipio').text stations.at[index, 'Estado'] = station.find('nmEstado').text stations.at[index, 'Responsavel'] = station.find('ResponsavelSigla').text stations.at[index, 'Latitude'] = float(station.find('Latitude').text) stations.at[index, 'Longitude'] = float(station.find('Longitude').text) index+=1 else: print('Por favor selecione um tipo de estação, use help(inventario) para mais informações.') return stations = gpd.GeoDataFrame(stations, geometry = gpd.points_from_xy(stations.Longitude, stations.Latitude)) return stations def stations(list_stations, tipoDados): ''' A partir de uma lista com o número das estações, essa função retorna a série de dados diárias em um dataframe tipoDados deve ser em formato string (e.g. '2') ''' params = {'codEstacao': '', 'dataInicio': '', 'dataFim': '', 'tipoDados': '', 'nivelConsistencia': ''} typesData = {'3': ['Vazao{:02}'], '2': ['Chuva{:02}'], '1': ['Cota{:02}']} params['tipoDados'] = tipoDados data_stations = [] nodata_stations = [] not_try = [] for station in tqdm(list_stations): params['codEstacao'] = str(station) try: response = requests.get('http://telemetriaws1.ana.gov.br/ServiceANA.asmx/HidroSerieHistorica', params, timeout=50.0) except (requests.ConnectTimeout, requests.HTTPError, requests.ReadTimeout, requests.Timeout, requests.ConnectionError): not_try.append(station) continue tree = ET.ElementTree(ET.fromstring(response.content)) root = tree.getroot() df=[] for month in root.iter('SerieHistorica'): codigo = month.find('EstacaoCodigo').text consist = int(month.find('NivelConsistencia').text) date = pd.to_datetime(month.find('DataHora').text,dayfirst=True) date = pd.Timestamp(date.year, date.month, 1, 0) last_day=calendar.monthrange(date.year,date.month)[1] month_dates = pd.date_range(date,periods=last_day, freq='D') data = [] list_consist = [] for i in range(last_day): value = typesData[params['tipoDados']][0].format(i+1) try: data.append(float(month.find(value).text)) list_consist.append(consist) except TypeError: data.append(month.find(value).text) list_consist.append(consist) except AttributeError: data.append(None) list_consist.append(consist) index_multi = list(zip(month_dates,list_consist)) index_multi = pd.MultiIndex.from_tuples(index_multi,names=["Date","Consistence"]) df.append(pd.DataFrame({f'{int(codigo):08}': data}, index=index_multi)) if (len(df))>0: df = pd.concat(df) df = df.sort_index() drop_index = df.reset_index(level=1,drop=True).index.duplicated(keep='last') df = df[~drop_index] df = df.reset_index(level=1, drop=True) series = df[f'{int(codigo):08}'] date_index =
pd.date_range(series.index[0], series.index[-1], freq='D')
pandas.date_range
import pandas as pd import numpy as np import os import seaborn as sns import pydeck as pdk import sklearn.neighbors from util import config from util import mapping def set_presets(): presets_descriptions = [ 'Chilling out in the saddle', 'Pretty relaxed, with some climbing', 'Half-day of touring', 'Training for VO2-max', 'Training for strength', 'Training for a century'] presets = pd.DataFrame({ 'dist': [10., 15., 45., 20., 10., 85.], 'avg_slope_climbing': [3., 6., 5., 5., 8., 4.], 'avg_slope_descending': [-3., -6., -5., -5., -8., -4.], 'max_slope': [6., 10., 10., 6., 15., 10.], 'dist_climbing': [0.1, 0.1, 0.1, 0.1, 0.1, 0.1], 'dist_downhill': [0.1, 0.1, 0.1, 0.1, 0.1, 0.1], 'dist_6percent': [0.05, 0.05, 0.05, 0.05, 0.05, 0.05], 'dist_9percent': [0.01, 0.01, 0.01, 0.01, 0.01, 0.01], 'dist_12percent': [0.005, 0.005, 0.005, 0.005, 0.005, 0.005], 'detour_score': [10, 10, 10, 10, 10, 10], 'popularity': [10, 10, 10, 10, 10, 10], }) return presets, presets_descriptions def engineer_features(df): df_eng = df.copy() df_eng['dist'] = np.log(df.dist +1e-2) df_eng['dist_6percent'] = np.log(df.dist_6percent + 1e-2) df_eng['dist_9percent'] = np.log(df.dist_9percent + 1e-2) df_eng['dist_12percent'] = np.log(df.dist_12percent + 1e-2) return df_eng def reverse_engineer_features(df): df_reverse = df.copy() df_reverse['dist'] = np.exp(df.dist) - 1e-2 df_reverse['dist_6percent'] = np.exp(df.dist_6percent) - 1e-2 df_reverse['dist_9percent'] = np.exp(df.dist_9percent) - 1e-2 df_reverse['dist_12percent'] = np.exp(df.dist_12percent) - 1e-2 return df_reverse def remove_scaling(df): # Scaling is ((X - mean) / std ) * column_importance scaler =
pd.read_feather(config.MODEL_PATH + 'feature_scaling.feather')
pandas.read_feather
import os import json import pathlib import multiprocessing as mp from glob import glob import pandas as pd import toml import ipywidgets as widgets import matplotlib.pyplot as plt import matplotlib.lines as mlines import matplotlib.patches as mpatches import seaborn as sns import numpy as np import zipfile def mkdirp(dirpath): pathlib.Path(dirpath).mkdir(parents=True, exist_ok=True) # sugar around recursive glob search def find_files(dirname, filename_glob): path = '{}/**/{}'.format(dirname, filename_glob) return glob(path, recursive=True) def empty_scores_dataframe(): return pd.DataFrame([], columns=['observer', 'peer', 'timestamp', 'score']).astype( {'score': 'float64', 'observer': 'int64', 'peer': 'int64', 'timestamp': 'datetime64[ns]'}) def aggregate_peer_scores_single(scores_filepath, peers_table): df = empty_scores_dataframe() # select the cols from peers table we want to join on p = peers_table[['peer_id', 'seq', 'honest']] with open(scores_filepath, 'rt') as f: for line in iter(f.readline, ''): try: data = json.loads(line) except BaseException as err: print('error parsing score json: ', err) continue scores = pd.json_normalize(data['Scores']) scores = scores.T \ .rename(columns={0: 'score'}) \ .reset_index() \ .rename(columns={'index': 'peer_id'}) scores['timestamp'] = pd.to_datetime(data['Timestamp']) scores['observer_id'] = data['PeerID'] # join with peers table to convert peer ids to seq numbers s = scores.merge(p, on='peer_id').drop(columns=['peer_id']) s = s.merge(p.drop(columns=['honest']), left_on='observer_id', right_on='peer_id', suffixes=['_peer', '_observer']) s = s.drop(columns=['peer_id', 'observer_id']) s = s.rename(columns={'seq_peer': 'peer', 'seq_observer': 'observer'}) df = df.append(s, ignore_index=True) df.set_index('timestamp', inplace=True) return df def aggregate_peer_scores(score_filepaths, peers_table): if len(score_filepaths) == 0: return empty_scores_dataframe() pool = mp.Pool(mp.cpu_count()) args = [(f, peers_table) for f in score_filepaths] results = pool.starmap(aggregate_peer_scores_single, args) # concat all data frames into one return pd.concat(results) def empty_metrics_dataframe(): return pd.DataFrame([], columns=['published', 'rejected', 'delivered', 'duplicates', 'droppedrpc', 'peersadded', 'peersremoved', 'topicsjoined', 'topicsleft', 'peer', 'sent_rpcs', 'sent_messages', 'sent_grafts', 'sent_prunes', 'sent_iwants', 'sent_ihaves', 'recv_rpcs', 'recv_messages', 'recv_grafts', 'recv_prunes', 'recv_iwants', 'recv_ihaves']) def aggregate_metrics_to_pandas_single(metrics_filepath, peers_table): def munge_keys(d, prefix=''): out = dict() for k, v in d.items(): outkey = prefix + k.lower() out[outkey] = v return out rows = list() with open(metrics_filepath, 'rb') as f: try: e = json.load(f) except BaseException as err: print('error loading metrics entry: ', err) else: pid = e['LocalPeer'] sent = munge_keys(e['SentRPC'], 'sent_') recv = munge_keys(e['ReceivedRPC'], 'recv_') del(e['LocalPeer'], e['SentRPC'], e['ReceivedRPC']) row = munge_keys(e) row.update(sent) row.update(recv) rows.append(row) row['peer_id'] = pid df = pd.DataFrame(rows) p = peers_table[['peer_id', 'seq']] df = df.merge(p, on='peer_id').drop(columns=['peer_id']).rename(columns={'seq': 'peer'}) return df.astype('int64') def aggregate_metrics_to_pandas(metrics_filepaths, peers_table): if len(metrics_filepaths) == 0: return empty_metrics_dataframe() pool = mp.Pool(mp.cpu_count()) args = [(f, peers_table) for f in metrics_filepaths] results = pool.starmap(aggregate_metrics_to_pandas_single, args) # concat all data frames into one return pd.concat(results) def cdf_to_pandas(cdf_filepath): if os.path.exists(cdf_filepath): return pd.read_csv(cdf_filepath, delim_whitespace=True, names=['delay_ms', 'count'], dtype='int64') else: return pd.DataFrame([], columns=['delay_ms', 'count'], dtype='int64') def peer_info_to_pandas(peer_info_filename): with open(peer_info_filename, 'rt') as f: data = json.load(f) peers = pd.json_normalize(data) peers['honest'] = peers['type'] == 'honest' return peers.astype({'type': 'category', 't_warm': 'datetime64[ns]', 't_connect': 'datetime64[ns]', 't_run': 'datetime64[ns]', 't_cool': 'datetime64[ns]', 't_complete': 'datetime64[ns]'}) def to_pandas(aggregate_output_dir, pandas_output_dir): mkdirp(pandas_output_dir) print('converting peer ids and info to pandas...') peer_info_filename = os.path.join(aggregate_output_dir, 'peer-info.json') peers = peer_info_to_pandas(peer_info_filename) outfile = os.path.join(pandas_output_dir, 'peers.gz') peers.to_pickle(outfile) print('converting peer scores to pandas...') scores_files = find_files(aggregate_output_dir, 'peer-scores*') df = aggregate_peer_scores(scores_files, peers) outfile = os.path.join(pandas_output_dir, 'scores.gz') print('writing pandas peer scores to {}'.format(outfile)) df.to_pickle(outfile) print('converting aggregate metrics to pandas...') outfile = os.path.join(pandas_output_dir, 'metrics.gz') metrics_files = find_files(aggregate_output_dir, '*aggregate.json') df = aggregate_metrics_to_pandas(metrics_files, peers) print('writing aggregate metrics pandas data to {}'.format(outfile)) df.to_pickle(outfile) print('converting latency cdf to pandas...') outfile = os.path.join(pandas_output_dir, 'cdf.gz') cdf_file = os.path.join(aggregate_output_dir, 'tracestat-cdf.txt') df = cdf_to_pandas(cdf_file) print('writing cdf pandas data to {}'.format(outfile)) df.to_pickle(outfile) def write_pandas(tables, output_dir): pandas_dir = os.path.join(output_dir, 'pandas') mkdirp(pandas_dir) for name, df in tables.items(): fname = os.path.join(pandas_dir, '{}.gz'.format(name)) df.to_pickle(fname) def load_pandas(analysis_dir): analysis_dir = os.path.abspath(analysis_dir) pandas_dir = os.path.join(analysis_dir, 'pandas') if not os.path.exists(pandas_dir): print('Cached pandas data not found. Converting analysis data from {} to pandas'.format(analysis_dir)) to_pandas(analysis_dir, pandas_dir) tables = {} for f in os.listdir(pandas_dir): if not f.endswith('.gz'): continue name = os.path.splitext(f)[0] tables[name] = pd.read_pickle(os.path.join(pandas_dir, f)) if 'cdf' in tables: tables['pdf'] = cdf_to_pdf(tables['cdf']) return tables def test_params_panel(analysis_dir): param_filename = os.path.join(analysis_dir, '..', 'template-params.toml') with open(param_filename, 'rt') as f: contents = f.read() test_params = toml.loads(contents) params_out = widgets.Output() with params_out: print(contents) params_panel = widgets.Accordion([params_out]) params_panel.set_title(0, 'Test Parameters') params_panel.selected_index = None return (params_panel, test_params) def save_fig_fn(dest, formats=['png', 'pdf']): mkdirp(dest) def save_fig(fig, filename, **kwargs): try: for fmt in formats: base = os.path.splitext(filename)[0] name = os.path.join(dest, '{}.{}'.format(base, fmt)) fig.savefig(name, format=fmt, **kwargs) except BaseException as err: print('Error saving figure to {}: {}'.format(filename, err)) return save_fig def zipdir(path, ziph, extensions=['.png', '.pdf', '.eps', '.svg']): # ziph is zipfile handle for root, dirs, files in os.walk(path): for file in files: strs = os.path.splitext(file) if len(strs) < 2: continue ext = strs[1] if ext not in extensions: continue ziph.write(os.path.join(root, file)) def archive_figures(figure_dir, out_filename): zipf = zipfile.ZipFile(out_filename, 'w', zipfile.ZIP_DEFLATED) zipdir(figure_dir, zipf) zipf.close() def no_scores_message(): from IPython.display import display, Markdown display(Markdown("""##### No peer score data, chart omitted""")) def tracestat_summary(analysis_dir): summary_file = os.path.join(analysis_dir, 'tracestat-summary.txt') if os.path.exists(summary_file): with open(summary_file, 'rt') as f: return f.read() else: return('no tracestat summary file found') def make_line(label, ax, x, color, alpha=0.5, linestyle='dashed'): ax.axvline(x=x, linestyle=linestyle, color=color, alpha=alpha) return mlines.Line2D([], [], color=color, linestyle=linestyle, label=label, alpha=alpha) def make_span(label, ax, start, end, color, alpha=0.3): ax.axvspan(start, end, facecolor=color, alpha=alpha) return mpatches.Patch(color=color, alpha=alpha, label=label) def annotate_times(ax, time_annotations, legend_anchor=None): colors = sns.color_palette('Set2') def next_color(): c = colors.pop(0) colors.append(c) return c legends = [] for a in time_annotations: t1 = a['time'] if pd.isnull(t1): continue label = a['label'] if 'end_time' in a: # if we have an end_time, draw a span between start and end t2 = a['end_time'] if
pd.isnull(t2)
pandas.isnull
from nltk.corpus import stopwords from nltk.tokenize import wordpunct_tokenize from nltk.stem.porter import PorterStemmer from collections import Counter import string import pandas as pd import numpy as np from sklearn.externals import joblib from sklearn.decomposition import PCA from sklearn.metrics import confusion_matrix, classification_report from sklearn.cross_validation import train_test_split from sklearn import svm, grid_search import matplotlib.pyplot as plt from math import sqrt import seaborn as sns # Set style for seaborn sns.set_style('whitegrid') # TODO: Look into adding some form of sentiment analysis class Analyzer: """ Class for carrying out the analysis and model creation/loading """ def __init__(self, data, labels=None, max_words=150, load_pca=False, load_svm=False, more_stop_words=[''], use_sentiment=True): self.data = data # Data matrix self.labels = labels # Label array # Text Mining self.max_words = max_words self.dtm = [] self.top_words = dict() self.words = Counter() self.more_stop_words = more_stop_words # Principal Component Analysis self.load_pca = load_pca # Load or compute the PCA? self.pca = None self.pcscores = None self.loadings = None self.load_squared = None # Sentiment analysis self.sentiment = None self.use_sentiment = use_sentiment # Support Vector Machine Classifier self.load_svm = load_svm self.svc = None # Use stemming self.porter = PorterStemmer() # Set stop words self.stop_words = set(stopwords.words('english')) self.stop_words.update([s for s in string.punctuation] + [u'\u2014', u'\u2019', u'\u201c', u'\xf3', u'\u201d', u'\u2014@', u'://', u'!"', u'"@', u'."', u'.@', u'co', u'\u2026', u'&', u'&amp', u'amp', u'...', u'.\u201d', u'000', u'\xed']) # Political terms and Twitter handles to remove self.stop_words.update(['hillary', 'clinton', 'donald', 'trump', 'clinton2016', 'trump2016', 'hillary2016', 'makeamericagreatagain']) self.stop_words.update(['realdonaldtrump', 'hillaryclinton', 'berniesanders']) self.stop_words.update(self.more_stop_words) def create_full_model(self): print('Getting top {} words...'.format(self.max_words)) self.get_words() print('Creating document term matrix...') self.create_dtm() print('Running Principal Component Analysis...') self.run_pca() if self.use_sentiment: print('Running Sentiment Analysis...') self.get_sentiment() print('Running Support Vector Machine Classifier...') return self.run_svm() def load_full_model(self): self.load_words() self.create_dtm() self.run_pca() if self.use_sentiment: self.get_sentiment() return self.run_svm() def get_words(self): str_list = ' '.join([tweet for tweet in self.data]) self.words = Counter([self.porter.stem(i.lower()) for i in wordpunct_tokenize(str_list) if i.lower() not in self.stop_words and not i.lower().startswith('http')]) self.top_words = dict(self.words.most_common(self.max_words)) def save_words(self, filename='words.pkl'): joblib.dump(self.top_words, 'model/'+filename) def load_words(self, filename='words.pkl'): print('Loading model/{}'.format(filename)) self.top_words = joblib.load('model/'+filename) def create_dtm(self): dtm = [] for tweet in self.data: # Make empty row newrow = dict() for term in self.top_words.keys(): newrow[term] = 0 tweetwords = [self.porter.stem(i.lower()) for i in wordpunct_tokenize(tweet) if i.lower() not in self.stop_words and not i.lower().startswith('http')] for word in tweetwords: if word in self.top_words.keys(): newrow[word] += 1 dtm.append(newrow) self.dtm = dtm def get_sentiment(self): # Load up the NRC emotion lexicon filename = 'data/NRC-emotion-lexicon-wordlevel-alphabetized-v0.92.txt' data = pd.read_csv(filename, delim_whitespace=True, skiprows=45, header=None, names=['word', 'affect', 'flag']) emotion_words = dict() emotion_map = dict() affects = ['positive', 'negative', 'anger', 'anticipation', 'disgust', 'fear', 'joy', 'sadness', 'surprise', 'trust'] for key in affects: emotion_words[key] = data[(data['affect'] == key) & (data['flag'] == 1)]['word'].tolist() emotion_map[key] = list() for text in self.data: # Note no stemming or it may fail to match words words = Counter([i.lower() for i in wordpunct_tokenize(text) if i.lower() not in self.stop_words and not i.lower().startswith('http')]) for key in emotion_words.keys(): x = set(emotion_words[key]).intersection(words.keys()) emotion_map[key].append(len(x)) self.sentiment = pd.DataFrame(emotion_map) def run_pca(self, filename='pca.pkl'): df_dtm = pd.DataFrame(self.dtm, columns=self.top_words.keys()) # Load or run the PCA if self.load_pca: print('Loading model/{}'.format(filename)) pca = joblib.load('model/'+filename) else: pca = PCA(n_components=0.8) pca.fit(df_dtm) pcscores = pd.DataFrame(pca.transform(df_dtm)) pcscores.columns = ['PC' + str(i + 1) for i in range(pcscores.shape[1])] loadings = pd.DataFrame(pca.components_, columns=self.top_words.keys()) load_squared = loadings.transpose() ** 2 load_squared.columns = ['PC' + str(i + 1) for i in range(pcscores.shape[1])] self.pcscores = pcscores self.loadings = loadings self.load_squared = load_squared # Prep for save, just in case self.pca = pca def save_pca(self, filename='pca.pkl'): joblib.dump(self.pca, 'model/' + filename) def run_svm(self, filename='svm.pkl'): if not self.load_svm: if self.use_sentiment: self.pcscores.index = range(len(self.pcscores)) data =
pd.concat([self.pcscores, self.sentiment], axis=1)
pandas.concat
"""Test the surface_io module.""" from collections import OrderedDict import pandas as pd import pytest import xtgeo import fmu.dataio._utils as _utils CFG = OrderedDict() CFG["model"] = {"name": "Test", "revision": "21.0.0"} CFG["masterdata"] = { "smda": { "country": [ {"identifier": "Norway", "uuid": "ad214d85-8a1d-19da-e053-c918a4889309"} ], "discovery": [{"short_identifier": "abdcef", "uuid": "ghijk"}], } } CFG["access"] = { "asset": "Drogon", "ssdl": {"access_level": "internal", "some_access_tag": True}, } CFG["model"] = {"revision": "0.99.0"} def test_uuid_from_string(): """Testing that uuid from string is repeatable""" string1 = "string1" string2 = "string2" uuid1 = _utils.uuid_from_string(string1) uuid2 = _utils.uuid_from_string(string2) uuidx = _utils.uuid_from_string(string1) assert uuid1 != uuid2 assert uuidx == uuid1 def test_parse_parameters_txt(): """Testing parsing of parameters.txt into a flat dictionary""" ptext = "tests/data/drogon/ertrun1/realization-1/iter-0/parameters.txt" res = _utils.read_parameters_txt(ptext) assert res["SENSNAME"] == "rms_seed" # Numbers in strings should be parsed as numbers: assert res["GLOBVAR:VOLON_PERMH_CHANNEL"] == 1100 @pytest.mark.parametrize( "flat_dict, nested_dict", [ ({}, {}), ({"foo": "bar"}, {"foo": "bar"}), ({"foo:bar": "com"}, {"foo": {"bar": "com"}}), ({"foo:bar:com": "hoi"}, {"foo": {"bar:com": "hoi"}}), ( {"fo": "ba", "foo:bar": "com", "fooo:barr:comm": "hoi"}, {"fo": "ba", "foo": {"bar": "com"}, "fooo": {"barr:comm": "hoi"}}, ), ( {"foo:bar": "com", "foo:barr": "comm"}, {"foo": {"bar": "com", "barr": "comm"}}, ), # GEN_KW lookalike ( {"foo:bar": "com1", "hoi:bar": "com2"}, {"foo": {"bar": "com1"}, "hoi": {"bar": "com2"}}, ), pytest.param({"foo:": "com"}, None, marks=pytest.mark.xfail(raises=ValueError)), ], ) def test_nested_parameters(flat_dict, nested_dict): assert _utils.nested_parameters_dict(flat_dict) == nested_dict def test_parse_parameters_txt_justified(): """Testing parsing of justified parameters.txt into nested dictionary""" ptext = "tests/data/drogon/ertrun1/realization-0/iter-0/parameters_justified.txt" res = _utils.nested_parameters_dict(_utils.read_parameters_txt(ptext)) assert res["SENSNAME"] == "rms_seed" assert res["GLOBVAR"]["VOLON_PERMH_CHANNEL"] == 1100 assert res["LOG10_MULTREGT"]["MULT_VALYSAR_THERYS"] == -3.2582 def test_parse_parameters_txt_genkw(): """Testing parsing of parameters.txt from GEN_KW""" ptext = "tests/data/drogon/ertrun1/realization-0/iter-0/parameters_genkw.txt" res = _utils.nested_parameters_dict(_utils.read_parameters_txt(ptext)) assert res["CATEGORY1"]["SOMENAME"] == -0.01 def test_get_object_name(): """Test the method for getting name from a data object""" # surface with no name, shall return None surface = xtgeo.RegularSurface(ncol=3, nrow=4, xinc=22, yinc=22, values=0) assert _utils.get_object_name(surface) is None # surface with name, shall return the name surface.name = "MySurfaceName" assert _utils.get_object_name(surface) == "MySurfaceName" # dataframe: shall return None table =
pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
pandas.DataFrame
#codes to for analyse the model. import re import os from astropy import units as u from tardis import constants import numpy as np import pandas as pd class LastLineInteraction(object): @classmethod def from_model(cls, model): return cls(model.runner.last_line_interaction_in_id, model.runner.last_line_interaction_out_id, model.runner.last_line_interaction_shell_id, model.runner.output_nu, model.plasma.atomic_data.lines) def __init__(self, last_line_interaction_in_id, last_line_interaction_out_id, last_line_interaction_shell_id, output_nu, lines, packet_filter_mode='packet_nu'): # mask out packets which did not perform a line interaction # TODO mask out packets which do not escape to observer? mask = last_line_interaction_out_id != -1 self.last_line_interaction_in_id = last_line_interaction_in_id[mask] self.last_line_interaction_out_id = last_line_interaction_out_id[mask] self.last_line_interaction_shell_id = last_line_interaction_shell_id[mask] self.last_line_interaction_angstrom = output_nu.to( u.Angstrom, equivalencies=u.spectral())[mask] self.lines = lines self._wavelength_start = 0 * u.angstrom self._wavelength_end = np.inf * u.angstrom self._atomic_number = None self._ion_number = None self.packet_filter_mode = packet_filter_mode self.update_last_interaction_filter() @property def wavelength_start(self): return self._wavelength_start.to('angstrom') @wavelength_start.setter def wavelength_start(self, value): if not isinstance(value, u.Quantity): raise ValueError('needs to be a Quantity') self._wavelength_start = value self.update_last_interaction_filter() @property def wavelength_end(self): return self._wavelength_end.to('angstrom') @wavelength_end.setter def wavelength_end(self, value): if not isinstance(value, u.Quantity): raise ValueError('needs to be a Quantity') self._wavelength_end = value self.update_last_interaction_filter() @property def atomic_number(self): return self._atomic_number @atomic_number.setter def atomic_number(self, value): self._atomic_number = value self.update_last_interaction_filter() @property def ion_number(self): return self._ion_number @ion_number.setter def ion_number(self, value): self._ion_number = value self.update_last_interaction_filter() def update_last_interaction_filter(self): if self.packet_filter_mode == 'packet_nu': packet_filter = ( (self.last_line_interaction_angstrom > self.wavelength_start) & (self.last_line_interaction_angstrom < self.wavelength_end)) elif self.packet_filter_mode == 'line_in_nu': line_in_nu = ( self.lines.wavelength.iloc[ self.last_line_interaction_in_id].values) packet_filter = ( (line_in_nu > self.wavelength_start.to(u.angstrom).value) & (line_in_nu < self.wavelength_end.to(u.angstrom).value)) self.last_line_in = self.lines.iloc[ self.last_line_interaction_in_id[packet_filter]] self.last_line_out = self.lines.iloc[ self.last_line_interaction_out_id[packet_filter]] if self.atomic_number is not None: self.last_line_in = self.last_line_in.xs( self.atomic_number, level='atomic_number', drop_level=False) self.last_line_out = self.last_line_out.xs( self.atomic_number, level='atomic_number', drop_level=False) if self.ion_number is not None: self.last_line_in = self.last_line_in.xs( self.ion_number, level='ion_number', drop_level=False) self.last_line_out = self.last_line_out.xs( self.ion_number, level='ion_number', drop_level=False) last_line_in_count = self.last_line_in.line_id.value_counts() last_line_out_count = self.last_line_out.line_id.value_counts() self.last_line_in_table = self.last_line_in.reset_index()[ [ 'wavelength', 'atomic_number', 'ion_number', 'level_number_lower', 'level_number_upper']] self.last_line_in_table['count'] = last_line_in_count self.last_line_in_table.sort_values(by='count', ascending=False, inplace=True) self.last_line_out_table = self.last_line_out.reset_index()[ [ 'wavelength', 'atomic_number', 'ion_number', 'level_number_lower', 'level_number_upper']] self.last_line_out_table['count'] = last_line_out_count self.last_line_out_table.sort_values(by='count', ascending=False, inplace=True) def plot_wave_in_out(self, fig, do_clf=True, plot_resonance=True): if do_clf: fig.clf() ax = fig.add_subplot(111) wave_in = self.last_line_list_in['wavelength'] wave_out = self.last_line_list_out['wavelength'] if plot_resonance: min_wave = np.min([wave_in.min(), wave_out.min()]) max_wave = np.max([wave_in.max(), wave_out.max()]) ax.plot([min_wave, max_wave], [min_wave, max_wave], 'b-') ax.plot(wave_in, wave_out, 'b.', picker=True) ax.set_xlabel('Last interaction Wave in') ax.set_ylabel('Last interaction Wave out') def onpick(event): print("-" * 80) print("Line_in (%d/%d):\n%s" % ( len(event.ind), self.current_no_packets, self.last_line_list_in.ix[event.ind])) print("\n\n") print("Line_out (%d/%d):\n%s" % ( len(event.ind), self.current_no_packets, self.last_line_list_in.ix[event.ind])) print("^" * 80) def onpress(event): pass fig.canvas.mpl_connect('pick_event', onpick) fig.canvas.mpl_connect('on_press', onpress) class TARDISHistory(object): """ Records the history of the model """ def __init__(self, hdf5_fname, iterations=None): self.hdf5_fname = hdf5_fname if iterations is None: iterations = [] hdf_store = pd.HDFStore(self.hdf5_fname, 'r') for key in hdf_store.keys(): if key.split('/')[1] == 'atom_data': continue iterations.append( int(re.match(r'model(\d+)', key.split('/')[1]).groups()[0])) self.iterations = np.sort(np.unique(iterations)) hdf_store.close() else: self.iterations=iterations self.levels = None self.lines = None def load_atom_data(self): if self.levels is None or self.lines is None: hdf_store = pd.HDFStore(self.hdf5_fname, 'r') self.levels = hdf_store['atom_data/levels'] self.lines = hdf_store['atom_data/lines'] hdf_store.close() def load_t_inner(self, iterations=None): t_inners = [] hdf_store = pd.HDFStore(self.hdf5_fname, 'r') if iterations is None: iterations = self.iterations elif np.isscalar(iterations): iterations = [self.iterations[iterations]] else: iterations = self.iterations[iterations] for iter in iterations: t_inners.append(hdf_store['model%03d/configuration' %iter].ix['t_inner']) hdf_store.close() t_inners = np.array(t_inners) return t_inners def load_t_rads(self, iterations=None): t_rads_dict = {} hdf_store = pd.HDFStore(self.hdf5_fname, 'r') if iterations is None: iterations = self.iterations elif np.isscalar(iterations): iterations = [self.iterations[iterations]] else: iterations = self.iterations[iterations] for iter in iterations: current_iter = 'iter%03d' % iter t_rads_dict[current_iter] = hdf_store['model%03d/t_rads' % iter] t_rads = pd.DataFrame(t_rads_dict) hdf_store.close() return t_rads def load_ws(self, iterations=None): ws_dict = {} hdf_store = pd.HDFStore(self.hdf5_fname, 'r') if iterations is None: iterations = self.iterations elif np.isscalar(iterations): iterations = [self.iterations[iterations]] else: iterations = self.iterations[iterations] for iter in iterations: current_iter = 'iter{:03d}'.format(iter) ws_dict[current_iter] = hdf_store['model{:03d}/ws'.format(iter)] hdf_store.close() return pd.DataFrame(ws_dict) def load_level_populations(self, iterations=None): level_populations_dict = {} hdf_store = pd.HDFStore(self.hdf5_fname, 'r') is_scalar = False if iterations is None: iterations = self.iterations elif np.isscalar(iterations): is_scalar = True iterations = [self.iterations[iterations]] else: iterations = self.iterations[iterations] for iter in iterations: current_iter = 'iter%03d' % iter level_populations_dict[current_iter] = hdf_store[ 'model{:03d}/level_populations'.format(iter)] hdf_store.close() if is_scalar: return pd.DataFrame(level_populations_dict.values()[0]) else: return pd.Panel(level_populations_dict) def load_jblues(self, iterations=None): jblues_dict = {} hdf_store = pd.HDFStore(self.hdf5_fname, 'r') is_scalar = False if iterations is None: iterations = self.iterations elif np.isscalar(iterations): is_scalar = True iterations = [self.iterations[iterations]] else: iterations = self.iterations[iterations] for iter in iterations: current_iter = 'iter{:03d}'.format(iter) jblues_dict[current_iter] = hdf_store[ 'model{:03d}/j_blues'.format(iter)] hdf_store.close() if is_scalar: return pd.DataFrame(jblues_dict.values()[0]) else: return pd.Panel(jblues_dict) def load_ion_populations(self, iterations=None): ion_populations_dict = {} hdf_store = pd.HDFStore(self.hdf5_fname, 'r') is_scalar = False if iterations is None: iterations = self.iterations elif np.isscalar(iterations): is_scalar = True iterations = [self.iterations[iterations]] else: iterations = self.iterations[iterations] for iter in iterations: current_iter = 'iter{:03d}'.format(iter) ion_populations_dict[current_iter] = hdf_store[ 'model{:03d}/ion_populations'.format(iter)] hdf_store.close() if is_scalar: return pd.DataFrame(ion_populations_dict.values()[0]) else: return pd.Panel(ion_populations_dict) def load_spectrum(self, iteration, spectrum_keyword='luminosity_density'): hdf_store = pd.HDFStore(self.hdf5_fname, 'r') spectrum = hdf_store['model%03d/%s' % (self.iterations[iteration], spectrum_keyword)] hdf_store.close() return spectrum def calculate_relative_lte_level_populations(self, species, iteration=-1): self.load_atom_data() t_rads = self.load_t_rads(iteration) beta_rads = 1 / (constants.k_B.cgs.value * t_rads.values[:,0]) species_levels = self.levels.ix[species] relative_lte_level_populations = ( (species_levels.g.values[np.newaxis].T / float(species_levels.g.loc[0])) * np.exp(-beta_rads * species_levels.energy.values[np.newaxis].T)) return pd.DataFrame(relative_lte_level_populations, index=species_levels.index) def calculate_departure_coefficients(self, species, iteration=-1): self.load_atom_data() t_rads = self.load_t_rads(iteration) beta_rads = 1 / (constants.k_B.cgs.value * t_rads.values[:,0]) species_levels = self.levels.ix[species] species_level_populations = self.load_level_populations(iteration).ix[species] departure_coefficient = ((species_level_populations.values * species_levels.g.ix[0]) / (species_level_populations.ix[0].values * species_levels.g.values[np.newaxis].T)) \ * np.exp(beta_rads * species_levels.energy.values[np.newaxis].T) return pd.DataFrame(departure_coefficient, index=species_levels.index) def get_last_line_interaction(self, iteration=-1): iteration = self.iterations[iteration] self.load_atom_data() hdf_store =
pd.HDFStore(self.hdf5_fname, 'r')
pandas.HDFStore
''' SYNBIOCHEM (c) University of Manchester. 2018 PathwayGenie is licensed under the MIT License. To view a copy of this license, visit <http://opensource.org/licenses/MIT/>. @author: neilswainston ''' # pylint: disable=broad-except # pylint: disable=invalid-name # pylint: disable=no-member import json import sys from rdkit import Chem, DataStructs from rdkit.Chem.Fingerprints import FingerprintMols import pandas as pd def analyse(filename_in, filename_out): '''Analyse similarities.''' with open(filename_in) as json_data: data = json.load(json_data) for entry in data['reaction']: entry['similarity'] = get_similarity(entry['reactant_smile'], entry['product_smile']) # Write updated json: with open(filename_out + '.json', 'w') as outfile: json.dump(data, outfile) # Write Dataframe: df =
pd.DataFrame(data['reaction'])
pandas.DataFrame