modelId
string
author
string
last_modified
timestamp[us, tz=UTC]
downloads
int64
likes
int64
library_name
string
tags
sequence
pipeline_tag
string
createdAt
timestamp[us, tz=UTC]
card
string
Mungert/Qwen2.5-Omni-7B-GGUF
Mungert
2025-06-15T19:36:45Z
979
2
transformers
[ "transformers", "gguf", "multimodal", "any-to-any", "en", "arxiv:2503.20215", "license:other", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
any-to-any
2025-06-11T03:35:01Z
--- license: other license_name: apache-2.0 license_link: https://huggingface.co/Qwen/Qwen2.5-Omni-7B/blob/main/LICENSE language: - en tags: - multimodal library_name: transformers pipeline_tag: any-to-any --- # <span style="color: #7FFF7F;">Qwen2.5-Omni-7B GGUF Models</span> ## <span style="color: #7F7FFF;">Model Generation Details</span> This model was generated using [llama.cpp](https://github.com/ggerganov/llama.cpp) at commit [`1f63e75f`](https://github.com/ggerganov/llama.cpp/commit/1f63e75f3b5dc7f44dbe63c8a41d23958fe95bc0). ## <span style="color: #7FFF7F;"> Quantization beyond the IMatrix</span> Testing a new quantization method using rules to bump important layers above what the standard imatrix would use. I have found that the standard IMatrix does not perform very well at low bit quantiztion and for MOE models. So I am using llama.cpp --tensor-type to bump up selected layers. See [Layer bumping with llama.cpp](https://github.com/Mungert69/GGUFModelBuilder/blob/main/model-converter/tensor_list_builder.py) This does create larger model files but increases precision for a given model size. ### **Please provide feedback on how you find this method performs** ## **Choosing the Right Model Format** Selecting the correct model format depends on your **hardware capabilities** and **memory constraints**. ### **BF16 (Brain Float 16) – Use if BF16 acceleration is available** - A 16-bit floating-point format designed for **faster computation** while retaining good precision. - Provides **similar dynamic range** as FP32 but with **lower memory usage**. - Recommended if your hardware supports **BF16 acceleration** (check your device's specs). - Ideal for **high-performance inference** with **reduced memory footprint** compared to FP32. 📌 **Use BF16 if:** ✔ Your hardware has native **BF16 support** (e.g., newer GPUs, TPUs). ✔ You want **higher precision** while saving memory. ✔ You plan to **requantize** the model into another format. 📌 **Avoid BF16 if:** ❌ Your hardware does **not** support BF16 (it may fall back to FP32 and run slower). ❌ You need compatibility with older devices that lack BF16 optimization. --- ### **F16 (Float 16) – More widely supported than BF16** - A 16-bit floating-point **high precision** but with less of range of values than BF16. - Works on most devices with **FP16 acceleration support** (including many GPUs and some CPUs). - Slightly lower numerical precision than BF16 but generally sufficient for inference. 📌 **Use F16 if:** ✔ Your hardware supports **FP16** but **not BF16**. ✔ You need a **balance between speed, memory usage, and accuracy**. ✔ You are running on a **GPU** or another device optimized for FP16 computations. 📌 **Avoid F16 if:** ❌ Your device lacks **native FP16 support** (it may run slower than expected). ❌ You have memory limitations. --- ### **Hybrid Precision Models (e.g., `bf16_q8_0`, `f16_q4_K`) – Best of Both Worlds** These formats selectively **quantize non-essential layers** while keeping **key layers in full precision** (e.g., attention and output layers). - Named like `bf16_q8_0` (meaning **full-precision BF16 core layers + quantized Q8_0 other layers**). - Strike a **balance between memory efficiency and accuracy**, improving over fully quantized models without requiring the full memory of BF16/F16. 📌 **Use Hybrid Models if:** ✔ You need **better accuracy than quant-only models** but can’t afford full BF16/F16 everywhere. ✔ Your device supports **mixed-precision inference**. ✔ You want to **optimize trade-offs** for production-grade models on constrained hardware. 📌 **Avoid Hybrid Models if:** ❌ Your target device doesn’t support **mixed or full-precision acceleration**. ❌ You are operating under **ultra-strict memory limits** (in which case use fully quantized formats). --- ### **Quantized Models (Q4_K, Q6_K, Q8, etc.) – For CPU & Low-VRAM Inference** Quantization reduces model size and memory usage while maintaining as much accuracy as possible. - **Lower-bit models (Q4_K)** → **Best for minimal memory usage**, may have lower precision. - **Higher-bit models (Q6_K, Q8_0)** → **Better accuracy**, requires more memory. 📌 **Use Quantized Models if:** ✔ You are running inference on a **CPU** and need an optimized model. ✔ Your device has **low VRAM** and cannot load full-precision models. ✔ You want to reduce **memory footprint** while keeping reasonable accuracy. 📌 **Avoid Quantized Models if:** ❌ You need **maximum accuracy** (full-precision models are better for this). ❌ Your hardware has enough VRAM for higher-precision formats (BF16/F16). --- ### **Very Low-Bit Quantization (IQ3_XS, IQ3_S, IQ3_M, Q4_K, Q4_0)** These models are optimized for **very high memory efficiency**, making them ideal for **low-power devices** or **large-scale deployments** where memory is a critical constraint. - **IQ3_XS**: Ultra-low-bit quantization (3-bit) with **very high memory efficiency**. - **Use case**: Best for **ultra-low-memory devices** where even Q4_K is too large. - **Trade-off**: Lower accuracy compared to higher-bit quantizations. - **IQ3_S**: Small block size for **maximum memory efficiency**. - **Use case**: Best for **low-memory devices** where **IQ3_XS** is too aggressive. - **IQ3_M**: Medium block size for better accuracy than **IQ3_S**. - **Use case**: Suitable for **low-memory devices** where **IQ3_S** is too limiting. - **Q4_K**: 4-bit quantization with **block-wise optimization** for better accuracy. - **Use case**: Best for **low-memory devices** where **Q6_K** is too large. - **Q4_0**: Pure 4-bit quantization, optimized for **ARM devices**. - **Use case**: Best for **ARM-based devices** or **low-memory environments**. ### **Ultra Low-Bit Quantization (IQ1_S IQ1_M IQ2_S IQ2_M IQ2_XS IQ2_XSS)** - *Ultra-low-bit quantization (1 2-bit) with **extreme memory efficiency**. - **Use case**: Best for cases were you have to fit the model into very constrained memory - **Trade-off**: Very Low Accuracy. May not function as expected. Please test fully before using. --- ### **Summary Table: Model Format Selection** | Model Format | Precision | Memory Usage | Device Requirements | Best Use Case | |--------------------------|------------------|------------------|----------------------------------|--------------------------------------------------------------| | **BF16** | Very High | High | BF16-supported GPU/CPU | High-speed inference with reduced memory | | **F16** | High | High | FP16-supported GPU/CPU | Inference when BF16 isn’t available | | **Q4_K** | Medium-Low | Low | CPU or Low-VRAM devices | Memory-constrained inference | | **Q6_K** | Medium | Moderate | CPU with more memory | Better accuracy with quantization | | **Q8_0** | High | Moderate | GPU/CPU with moderate VRAM | Highest accuracy among quantized models | | **IQ3_XS** | Low | Very Low | Ultra-low-memory devices | Max memory efficiency, low accuracy | | **IQ3_S** | Low | Very Low | Low-memory devices | Slightly more usable than IQ3_XS | | **IQ3_M** | Low-Medium | Low | Low-memory devices | Better accuracy than IQ3_S | | **Q4_0** | Low | Low | ARM-based/embedded devices | Llama.cpp automatically optimizes for ARM inference | | **Ultra Low-Bit (IQ1/2_*)** | Very Low | Extremely Low | Tiny edge/embedded devices | Fit models in extremely tight memory; low accuracy | | **Hybrid (e.g., `bf16_q8_0`)** | Medium–High | Medium | Mixed-precision capable hardware | Balanced performance and memory, near-FP accuracy in critical layers | --- # Qwen2.5-Omni <a href="https://chat.qwen.ai/" target="_blank" style="margin: 2px;"> <img alt="Chat" src="https://img.shields.io/badge/%F0%9F%92%9C%EF%B8%8F%20Qwen%20Chat%20-536af5" style="display: inline-block; vertical-align: middle;"/> </a> ## Overview ### Introduction Qwen2.5-Omni is an end-to-end multimodal model designed to perceive diverse modalities, including text, images, audio, and video, while simultaneously generating text and natural speech responses in a streaming manner. <p align="center"> <img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2.5-Omni/qwen_omni.png" width="80%"/> <p> ### Key Features * **Omni and Novel Architecture**: We propose Thinker-Talker architecture, an end-to-end multimodal model designed to perceive diverse modalities, including text, images, audio, and video, while simultaneously generating text and natural speech responses in a streaming manner. We propose a novel position embedding, named TMRoPE (Time-aligned Multimodal RoPE), to synchronize the timestamps of video inputs with audio. * **Real-Time Voice and Video Chat**: Architecture designed for fully real-time interactions, supporting chunked input and immediate output. * **Natural and Robust Speech Generation**: Surpassing many existing streaming and non-streaming alternatives, demonstrating superior robustness and naturalness in speech generation. * **Strong Performance Across Modalities**: Exhibiting exceptional performance across all modalities when benchmarked against similarly sized single-modality models. Qwen2.5-Omni outperforms the similarly sized Qwen2-Audio in audio capabilities and achieves comparable performance to Qwen2.5-VL-7B. * **Excellent End-to-End Speech Instruction Following**: Qwen2.5-Omni shows performance in end-to-end speech instruction following that rivals its effectiveness with text inputs, evidenced by benchmarks such as MMLU and GSM8K. ### Model Architecture <p align="center"> <img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2.5-Omni/overview.png" width="80%"/> <p> ### Performance We conducted a comprehensive evaluation of Qwen2.5-Omni, which demonstrates strong performance across all modalities when compared to similarly sized single-modality models and closed-source models like Qwen2.5-VL-7B, Qwen2-Audio, and Gemini-1.5-pro. In tasks requiring the integration of multiple modalities, such as OmniBench, Qwen2.5-Omni achieves state-of-the-art performance. Furthermore, in single-modality tasks, it excels in areas including speech recognition (Common Voice), translation (CoVoST2), audio understanding (MMAU), image reasoning (MMMU, MMStar), video understanding (MVBench), and speech generation (Seed-tts-eval and subjective naturalness). <p align="center"> <img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2.5-Omni/bar.png" width="80%"/> <p> <details> <summary>Multimodality -> Text</summary> <table class="tg"><thead> <tr> <th class="tg-0lax">Datasets</th> <th class="tg-0lax">Model</th> <th class="tg-0lax">Performance</th> </tr></thead> <tbody> <tr> <td class="tg-0lax" rowspan="10">OmniBench<br>Speech | Sound Event | Music | Avg</td> <td class="tg-0lax">Gemini-1.5-Pro</td> <td class="tg-0lax">42.67%|42.26%|46.23%|42.91%</td> </tr> <tr> <td class="tg-0lax">MIO-Instruct</td> <td class="tg-0lax">36.96%|33.58%|11.32%|33.80%</td> </tr> <tr> <td class="tg-0lax">AnyGPT (7B)</td> <td class="tg-0lax">17.77%|20.75%|13.21%|18.04%</td> </tr> <tr> <td class="tg-0lax">video-SALMONN</td> <td class="tg-0lax">34.11%|31.70%|<strong>56.60%</strong>|35.64%</td> </tr> <tr> <td class="tg-0lax">UnifiedIO2-xlarge</td> <td class="tg-0lax">39.56%|36.98%|29.25%|38.00%</td> </tr> <tr> <td class="tg-0lax">UnifiedIO2-xxlarge</td> <td class="tg-0lax">34.24%|36.98%|24.53%|33.98%</td> </tr> <tr> <td class="tg-0lax">MiniCPM-o</td> <td class="tg-0lax">-|-|-|40.50%</td> </tr> <tr> <td class="tg-0lax">Baichuan-Omni-1.5</td> <td class="tg-0lax">-|-|-|42.90%</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-3B</td> <td class="tg-0lax">52.14%|52.08%|52.83%|52.19%</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-7B</td> <td class="tg-0lax"><strong>55.25%</strong>|<strong>60.00%</strong>|52.83%|<strong>56.13%</strong></td> </tr> </tbody></table> </details> <details> <summary>Audio -> Text</summary> <table class="tg"><thead> <tr> <th class="tg-0lax">Datasets</th> <th class="tg-0lax">Model</th> <th class="tg-0lax">Performance</th> </tr></thead> <tbody> <tr> <td class="tg-9j4x" colspan="3">ASR</td> </tr> <tr> <td class="tg-0lax" rowspan="12">Librispeech<br>dev-clean | dev other | test-clean | test-other</td> <td class="tg-0lax">SALMONN</td> <td class="tg-0lax">-|-|2.1|4.9</td> </tr> <tr> <td class="tg-0lax">SpeechVerse</td> <td class="tg-0lax">-|-|2.1|4.4</td> </tr> <tr> <td class="tg-0lax">Whisper-large-v3</td> <td class="tg-0lax">-|-|1.8|3.6</td> </tr> <tr> <td class="tg-0lax">Llama-3-8B</td> <td class="tg-0lax">-|-|-|3.4</td> </tr> <tr> <td class="tg-0lax">Llama-3-70B</td> <td class="tg-0lax">-|-|-|3.1</td> </tr> <tr> <td class="tg-0lax">Seed-ASR-Multilingual</td> <td class="tg-0lax">-|-|<strong>1.6</strong>|<strong>2.8</strong></td> </tr> <tr> <td class="tg-0lax">MiniCPM-o</td> <td class="tg-0lax">-|-|1.7|-</td> </tr> <tr> <td class="tg-0lax">MinMo</td> <td class="tg-0lax">-|-|1.7|3.9</td> </tr> <tr> <td class="tg-0lax">Qwen-Audio</td> <td class="tg-0lax">1.8|4.0|2.0|4.2</td> </tr> <tr> <td class="tg-0lax">Qwen2-Audio</td> <td class="tg-0lax"><strong>1.3</strong>|<strong>3.4</strong>|<strong>1.6</strong>|3.6</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-3B</td> <td class="tg-0lax">2.0|4.1|2.2|4.5</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-7B</td> <td class="tg-0lax">1.6|3.5|1.8|3.4</td> </tr> <tr> <td class="tg-0lax" rowspan="5">Common Voice 15<br>en | zh | yue | fr</td> <td class="tg-0lax">Whisper-large-v3</td> <td class="tg-0lax">9.3|12.8|10.9|10.8</td> </tr> <tr> <td class="tg-0lax">MinMo</td> <td class="tg-0lax">7.9|6.3|6.4|8.5</td> </tr> <tr> <td class="tg-0lax">Qwen2-Audio</td> <td class="tg-0lax">8.6|6.9|<strong>5.9</strong>|9.6</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-3B</td> <td class="tg-0lax">9.1|6.0|11.6|9.6</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-7B</td> <td class="tg-0lax"><strong>7.6</strong>|<strong>5.2</strong>|7.3|<strong>7.5</strong></td> </tr> <tr> <td class="tg-0lax" rowspan="8">Fleurs<br>zh | en</td> <td class="tg-0lax">Whisper-large-v3</td> <td class="tg-0lax">7.7|4.1</td> </tr> <tr> <td class="tg-0lax">Seed-ASR-Multilingual</td> <td class="tg-0lax">-|<strong>3.4</strong></td> </tr> <tr> <td class="tg-0lax">Megrez-3B-Omni</td> <td class="tg-0lax">10.8|-</td> </tr> <tr> <td class="tg-0lax">MiniCPM-o</td> <td class="tg-0lax">4.4|-</td> </tr> <tr> <td class="tg-0lax">MinMo</td> <td class="tg-0lax">3.0|3.8</td> </tr> <tr> <td class="tg-0lax">Qwen2-Audio</td> <td class="tg-0lax">7.5|-</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-3B</td> <td class="tg-0lax">3.2|5.4</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-7B</td> <td class="tg-0lax"><strong>3.0</strong>|4.1</td> </tr> <tr> <td class="tg-0lax" rowspan="6">Wenetspeech<br>test-net | test-meeting</td> <td class="tg-0lax">Seed-ASR-Chinese</td> <td class="tg-0lax"><strong>4.7|5.7</strong></td> </tr> <tr> <td class="tg-0lax">Megrez-3B-Omni</td> <td class="tg-0lax">-|16.4</td> </tr> <tr> <td class="tg-0lax">MiniCPM-o</td> <td class="tg-0lax">6.9|-</td> </tr> <tr> <td class="tg-0lax">MinMo</td> <td class="tg-0lax">6.8|7.4</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-3B</td> <td class="tg-0lax">6.3|8.1</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-7B</td> <td class="tg-0lax">5.9|7.7</td> </tr> <tr> <td class="tg-0lax" rowspan="4">Voxpopuli-V1.0-en</td> <td class="tg-0lax">Llama-3-8B</td> <td class="tg-0lax">6.2</td> </tr> <tr> <td class="tg-0lax">Llama-3-70B</td> <td class="tg-0lax"><strong>5.7</strong></td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-3B</td> <td class="tg-0lax">6.6</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-7B</td> <td class="tg-0lax">5.8</td> </tr> <tr> <td class="tg-9j4x" colspan="3">S2TT</td> </tr> <tr> <td class="tg-0lax" rowspan="9">CoVoST2<br>en-de | de-en | en-zh | zh-en</td> <td class="tg-0lax">SALMONN</td> <td class="tg-0lax">18.6|-|33.1|-</td> </tr> <tr> <td class="tg-0lax">SpeechLLaMA</td> <td class="tg-0lax">-|27.1|-|12.3</td> </tr> <tr> <td class="tg-0lax">BLSP</td> <td class="tg-0lax">14.1|-|-|-</td> </tr> <tr> <td class="tg-0lax">MiniCPM-o</td> <td class="tg-0lax">-|-|<strong>48.2</strong>|27.2</td> </tr> <tr> <td class="tg-0lax">MinMo</td> <td class="tg-0lax">-|<strong>39.9</strong>|46.7|26.0</td> </tr> <tr> <td class="tg-0lax">Qwen-Audio</td> <td class="tg-0lax">25.1|33.9|41.5|15.7</td> </tr> <tr> <td class="tg-0lax">Qwen2-Audio</td> <td class="tg-0lax">29.9|35.2|45.2|24.4</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-3B</td> <td class="tg-0lax">28.3|38.1|41.4|26.6</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-7B</td> <td class="tg-0lax"><strong>30.2</strong>|37.7|41.4|<strong>29.4</strong></td> </tr> <tr> <td class="tg-9j4x" colspan="3">SER</td> </tr> <tr> <td class="tg-0lax" rowspan="6">Meld</td> <td class="tg-0lax">WavLM-large</td> <td class="tg-0lax">0.542</td> </tr> <tr> <td class="tg-0lax">MiniCPM-o</td> <td class="tg-0lax">0.524</td> </tr> <tr> <td class="tg-0lax">Qwen-Audio</td> <td class="tg-0lax">0.557</td> </tr> <tr> <td class="tg-0lax">Qwen2-Audio</td> <td class="tg-0lax">0.553</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-3B</td> <td class="tg-0lax">0.558</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-7B</td> <td class="tg-0lax"><strong>0.570</strong></td> </tr> <tr> <td class="tg-9j4x" colspan="3">VSC</td> </tr> <tr> <td class="tg-0lax" rowspan="6">VocalSound</td> <td class="tg-0lax">CLAP</td> <td class="tg-0lax">0.495</td> </tr> <tr> <td class="tg-0lax">Pengi</td> <td class="tg-0lax">0.604</td> </tr> <tr> <td class="tg-0lax">Qwen-Audio</td> <td class="tg-0lax">0.929</td> </tr> <tr> <td class="tg-0lax">Qwen2-Audio</td> <td class="tg-0lax"><strong>0.939</strong></td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-3B</td> <td class="tg-0lax">0.936</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-7B</td> <td class="tg-0lax"><strong>0.939</strong></td> </tr> <tr> <td class="tg-9j4x" colspan="3">Music</td> </tr> <tr> <td class="tg-0lax" rowspan="3">GiantSteps Tempo</td> <td class="tg-0lax">Llark-7B</td> <td class="tg-0lax">0.86</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-3B</td> <td class="tg-0lax"><strong>0.88</strong></td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-7B</td> <td class="tg-0lax"><strong>0.88</strong></td> </tr> <tr> <td class="tg-0lax" rowspan="3">MusicCaps</td> <td class="tg-0lax">LP-MusicCaps</td> <td class="tg-0lax">0.291|0.149|0.089|<strong>0.061</strong>|0.129|0.130</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-3B</td> <td class="tg-0lax">0.325|<strong>0.163</strong>|<strong>0.093</strong>|0.057|<strong>0.132</strong>|<strong>0.229</strong></td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-7B</td> <td class="tg-0lax"><strong>0.328</strong>|0.162|0.090|0.055|0.127|0.225</td> </tr> <tr> <td class="tg-9j4x" colspan="3">Audio Reasoning</td> </tr> <tr> <td class="tg-0lax" rowspan="4">MMAU<br>Sound | Music | Speech | Avg</td> <td class="tg-0lax">Gemini-Pro-V1.5</td> <td class="tg-0lax">56.75|49.40|58.55|54.90</td> </tr> <tr> <td class="tg-0lax">Qwen2-Audio</td> <td class="tg-0lax">54.95|50.98|42.04|49.20</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-3B</td> <td class="tg-0lax"><strong>70.27</strong>|60.48|59.16|63.30</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-7B</td> <td class="tg-0lax">67.87|<strong>69.16|59.76|65.60</strong></td> </tr> <tr> <td class="tg-9j4x" colspan="3">Voice Chatting</td> </tr> <tr> <td class="tg-0lax" rowspan="9">VoiceBench<br>AlpacaEval | CommonEval | SD-QA | MMSU</td> <td class="tg-0lax">Ultravox-v0.4.1-LLaMA-3.1-8B</td> <td class="tg-0lax"><strong>4.55</strong>|3.90|53.35|47.17</td> </tr> <tr> <td class="tg-0lax">MERaLiON</td> <td class="tg-0lax">4.50|3.77|55.06|34.95</td> </tr> <tr> <td class="tg-0lax">Megrez-3B-Omni</td> <td class="tg-0lax">3.50|2.95|25.95|27.03</td> </tr> <tr> <td class="tg-0lax">Lyra-Base</td> <td class="tg-0lax">3.85|3.50|38.25|49.74</td> </tr> <tr> <td class="tg-0lax">MiniCPM-o</td> <td class="tg-0lax">4.42|<strong>4.15</strong>|50.72|54.78</td> </tr> <tr> <td class="tg-0lax">Baichuan-Omni-1.5</td> <td class="tg-0lax">4.50|4.05|43.40|57.25</td> </tr> <tr> <td class="tg-0lax">Qwen2-Audio</td> <td class="tg-0lax">3.74|3.43|35.71|35.72</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-3B</td> <td class="tg-0lax">4.32|4.00|49.37|50.23</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-7B</td> <td class="tg-0lax">4.49|3.93|<strong>55.71</strong>|<strong>61.32</strong></td> </tr> <tr> <td class="tg-0lax" rowspan="9">VoiceBench<br>OpenBookQA | IFEval | AdvBench | Avg</td> <td class="tg-0lax">Ultravox-v0.4.1-LLaMA-3.1-8B</td> <td class="tg-0lax">65.27|<strong>66.88</strong>|98.46|71.45</td> </tr> <tr> <td class="tg-0lax">MERaLiON</td> <td class="tg-0lax">27.23|62.93|94.81|62.91</td> </tr> <tr> <td class="tg-0lax">Megrez-3B-Omni</td> <td class="tg-0lax">28.35|25.71|87.69|46.25</td> </tr> <tr> <td class="tg-0lax">Lyra-Base</td> <td class="tg-0lax">72.75|36.28|59.62|57.66</td> </tr> <tr> <td class="tg-0lax">MiniCPM-o</td> <td class="tg-0lax">78.02|49.25|97.69|71.69</td> </tr> <tr> <td class="tg-0lax">Baichuan-Omni-1.5</td> <td class="tg-0lax">74.51|54.54|97.31|71.14</td> </tr> <tr> <td class="tg-0lax">Qwen2-Audio</td> <td class="tg-0lax">49.45|26.33|96.73|55.35</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-3B</td> <td class="tg-0lax">74.73|42.10|98.85|68.81</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-7B</td> <td class="tg-0lax"><strong>81.10</strong>|52.87|<strong>99.42</strong>|<strong>74.12</strong></td> </tr> </tbody></table> </details> <details> <summary>Image -> Text</summary> | Dataset | Qwen2.5-Omni-7B | Qwen2.5-Omni-3B | Other Best | Qwen2.5-VL-7B | GPT-4o-mini | |--------------------------------|--------------|------------|------------|---------------|-------------| | MMMU<sub>val</sub> | 59.2 | 53.1 | 53.9 | 58.6 | **60.0** | | MMMU-Pro<sub>overall</sub> | 36.6 | 29.7 | - | **38.3** | 37.6 | | MathVista<sub>testmini</sub> | 67.9 | 59.4 | **71.9** | 68.2 | 52.5 | | MathVision<sub>full</sub> | 25.0 | 20.8 | 23.1 | **25.1** | - | | MMBench-V1.1-EN<sub>test</sub> | 81.8 | 77.8 | 80.5 | **82.6** | 76.0 | | MMVet<sub>turbo</sub> | 66.8 | 62.1 | **67.5** | 67.1 | 66.9 | | MMStar | **64.0** | 55.7 | **64.0** | 63.9 | 54.8 | | MME<sub>sum</sub> | 2340 | 2117 | **2372** | 2347 | 2003 | | MuirBench | 59.2 | 48.0 | - | **59.2** | - | | CRPE<sub>relation</sub> | **76.5** | 73.7 | - | 76.4 | - | | RealWorldQA<sub>avg</sub> | 70.3 | 62.6 | **71.9** | 68.5 | - | | MME-RealWorld<sub>en</sub> | **61.6** | 55.6 | - | 57.4 | - | | MM-MT-Bench | 6.0 | 5.0 | - | **6.3** | - | | AI2D | 83.2 | 79.5 | **85.8** | 83.9 | - | | TextVQA<sub>val</sub> | 84.4 | 79.8 | 83.2 | **84.9** | - | | DocVQA<sub>test</sub> | 95.2 | 93.3 | 93.5 | **95.7** | - | | ChartQA<sub>test Avg</sub> | 85.3 | 82.8 | 84.9 | **87.3** | - | | OCRBench_V2<sub>en</sub> | **57.8** | 51.7 | - | 56.3 | - | | Dataset | Qwen2.5-Omni-7B | Qwen2.5-Omni-3B | Qwen2.5-VL-7B | Grounding DINO | Gemini 1.5 Pro | |--------------------------|--------------|---------------|---------------|----------------|----------------| | Refcoco<sub>val</sub> | 90.5 | 88.7 | 90.0 | **90.6** | 73.2 | | Refcoco<sub>textA</sub> | **93.5** | 91.8 | 92.5 | 93.2 | 72.9 | | Refcoco<sub>textB</sub> | 86.6 | 84.0 | 85.4 | **88.2** | 74.6 | | Refcoco+<sub>val</sub> | 85.4 | 81.1 | 84.2 | **88.2** | 62.5 | | Refcoco+<sub>textA</sub> | **91.0** | 87.5 | 89.1 | 89.0 | 63.9 | | Refcoco+<sub>textB</sub> | **79.3** | 73.2 | 76.9 | 75.9 | 65.0 | | Refcocog+<sub>val</sub> | **87.4** | 85.0 | 87.2 | 86.1 | 75.2 | | Refcocog+<sub>test</sub> | **87.9** | 85.1 | 87.2 | 87.0 | 76.2 | | ODinW | 42.4 | 39.2 | 37.3 | **55.0** | 36.7 | | PointGrounding | 66.5 | 46.2 | **67.3** | - | - | </details> <details> <summary>Video(without audio) -> Text</summary> | Dataset | Qwen2.5-Omni-7B | Qwen2.5-Omni-3B | Other Best | Qwen2.5-VL-7B | GPT-4o-mini | |-----------------------------|--------------|------------|------------|---------------|-------------| | Video-MME<sub>w/o sub</sub> | 64.3 | 62.0 | 63.9 | **65.1** | 64.8 | | Video-MME<sub>w sub</sub> | **72.4** | 68.6 | 67.9 | 71.6 | - | | MVBench | **70.3** | 68.7 | 67.2 | 69.6 | - | | EgoSchema<sub>test</sub> | **68.6** | 61.4 | 63.2 | 65.0 | - | </details> <details> <summary>Zero-shot Speech Generation</summary> <table class="tg"><thead> <tr> <th class="tg-0lax">Datasets</th> <th class="tg-0lax">Model</th> <th class="tg-0lax">Performance</th> </tr></thead> <tbody> <tr> <td class="tg-9j4x" colspan="3">Content Consistency</td> </tr> <tr> <td class="tg-0lax" rowspan="11">SEED<br>test-zh | test-en | test-hard </td> <td class="tg-0lax">Seed-TTS_ICL</td> <td class="tg-0lax">1.11 | 2.24 | 7.58</td> </tr> <tr> <td class="tg-0lax">Seed-TTS_RL</td> <td class="tg-0lax"><strong>1.00</strong> | 1.94 | <strong>6.42</strong></td> </tr> <tr> <td class="tg-0lax">MaskGCT</td> <td class="tg-0lax">2.27 | 2.62 | 10.27</td> </tr> <tr> <td class="tg-0lax">E2_TTS</td> <td class="tg-0lax">1.97 | 2.19 | -</td> </tr> <tr> <td class="tg-0lax">F5-TTS</td> <td class="tg-0lax">1.56 | <strong>1.83</strong> | 8.67</td> </tr> <tr> <td class="tg-0lax">CosyVoice 2</td> <td class="tg-0lax">1.45 | 2.57 | 6.83</td> </tr> <tr> <td class="tg-0lax">CosyVoice 2-S</td> <td class="tg-0lax">1.45 | 2.38 | 8.08</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-3B_ICL</td> <td class="tg-0lax">1.95 | 2.87 | 9.92</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-3B_RL</td> <td class="tg-0lax">1.58 | 2.51 | 7.86</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-7B_ICL</td> <td class="tg-0lax">1.70 | 2.72 | 7.97</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-7B_RL</td> <td class="tg-0lax">1.42 | 2.32 | 6.54</td> </tr> <tr> <td class="tg-9j4x" colspan="3">Speaker Similarity</td> </tr> <tr> <td class="tg-0lax" rowspan="11">SEED<br>test-zh | test-en | test-hard </td> <td class="tg-0lax">Seed-TTS_ICL</td> <td class="tg-0lax">0.796 | 0.762 | 0.776</td> </tr> <tr> <td class="tg-0lax">Seed-TTS_RL</td> <td class="tg-0lax"><strong>0.801</strong> | <strong>0.766</strong> | <strong>0.782</strong></td> </tr> <tr> <td class="tg-0lax">MaskGCT</td> <td class="tg-0lax">0.774 | 0.714 | 0.748</td> </tr> <tr> <td class="tg-0lax">E2_TTS</td> <td class="tg-0lax">0.730 | 0.710 | -</td> </tr> <tr> <td class="tg-0lax">F5-TTS</td> <td class="tg-0lax">0.741 | 0.647 | 0.713</td> </tr> <tr> <td class="tg-0lax">CosyVoice 2</td> <td class="tg-0lax">0.748 | 0.652 | 0.724</td> </tr> <tr> <td class="tg-0lax">CosyVoice 2-S</td> <td class="tg-0lax">0.753 | 0.654 | 0.732</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-3B_ICL</td> <td class="tg-0lax">0.741 | 0.635 | 0.748</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-3B_RL</td> <td class="tg-0lax">0.744 | 0.635 | 0.746</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-7B_ICL</td> <td class="tg-0lax">0.752 | 0.632 | 0.747</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-7B_RL</td> <td class="tg-0lax">0.754 | 0.641 | 0.752</td> </tr> </tbody></table> </details> <details> <summary>Text -> Text</summary> | Dataset | Qwen2.5-Omni-7B | Qwen2.5-Omni-3B | Qwen2.5-7B | Qwen2.5-3B | Qwen2-7B | Llama3.1-8B | Gemma2-9B | |-----------------------------------|-----------|------------|------------|------------|------------|-------------|-----------| | MMLU-Pro | 47.0 | 40.4 | **56.3** | 43.7 | 44.1 | 48.3 | 52.1 | | MMLU-redux | 71.0 | 60.9 | **75.4** | 64.4 | 67.3 | 67.2 | 72.8 | | LiveBench<sub>0831</sub> | 29.6 | 22.3 | **35.9** | 26.8 | 29.2 | 26.7 | 30.6 | | GPQA | 30.8 | 34.3 | **36.4** | 30.3 | 34.3 | 32.8 | 32.8 | | MATH | 71.5 | 63.6 | **75.5** | 65.9 | 52.9 | 51.9 | 44.3 | | GSM8K | 88.7 | 82.6 | **91.6** | 86.7 | 85.7 | 84.5 | 76.7 | | HumanEval | 78.7 | 70.7 | **84.8** | 74.4 | 79.9 | 72.6 | 68.9 | | MBPP | 73.2 | 70.4 | **79.2** | 72.7 | 67.2 | 69.6 | 74.9 | | MultiPL-E | 65.8 | 57.6 | **70.4** | 60.2 | 59.1 | 50.7 | 53.4 | | LiveCodeBench<sub>2305-2409</sub> | 24.6 | 16.5 | **28.7** | 19.9 | 23.9 | 8.3 | 18.9 | </details> ## Quickstart Below, we provide simple examples to show how to use Qwen2.5-Omni with 🤗 Transformers. The codes of Qwen2.5-Omni has been in the latest Hugging face transformers and we advise you to build from source with command: ``` pip uninstall transformers pip install git+https://github.com/huggingface/[email protected] pip install accelerate ``` or you might encounter the following error: ``` KeyError: 'qwen2_5_omni' ``` We offer a toolkit to help you handle various types of audio and visual input more conveniently, as if you were using an API. This includes base64, URLs, and interleaved audio, images and videos. You can install it using the following command and make sure your system has `ffmpeg` installed: ```bash # It's highly recommended to use `[decord]` feature for faster video loading. pip install qwen-omni-utils[decord] -U ``` If you are not using Linux, you might not be able to install `decord` from PyPI. In that case, you can use `pip install qwen-omni-utils -U` which will fall back to using torchvision for video processing. However, you can still [install decord from source](https://github.com/dmlc/decord?tab=readme-ov-file#install-from-source) to get decord used when loading video. ### 🤗 Transformers Usage Here we show a code snippet to show you how to use the chat model with `transformers` and `qwen_omni_utils`: ```python import soundfile as sf from transformers import Qwen2_5OmniForConditionalGeneration, Qwen2_5OmniProcessor from qwen_omni_utils import process_mm_info # default: Load the model on the available device(s) model = Qwen2_5OmniForConditionalGeneration.from_pretrained("Qwen/Qwen2.5-Omni-7B", torch_dtype="auto", device_map="auto") # We recommend enabling flash_attention_2 for better acceleration and memory saving. # model = Qwen2_5OmniForConditionalGeneration.from_pretrained( # "Qwen/Qwen2.5-Omni-7B", # torch_dtype="auto", # device_map="auto", # attn_implementation="flash_attention_2", # ) processor = Qwen2_5OmniProcessor.from_pretrained("Qwen/Qwen2.5-Omni-7B") conversation = [ { "role": "system", "content": [ {"type": "text", "text": "You are Qwen, a virtual human developed by the Qwen Team, Alibaba Group, capable of perceiving auditory and visual inputs, as well as generating text and speech."} ], }, { "role": "user", "content": [ {"type": "video", "video": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2.5-Omni/draw.mp4"}, ], }, ] # set use audio in video USE_AUDIO_IN_VIDEO = True # Preparation for inference text = processor.apply_chat_template(conversation, add_generation_prompt=True, tokenize=False) audios, images, videos = process_mm_info(conversation, use_audio_in_video=USE_AUDIO_IN_VIDEO) inputs = processor(text=text, audio=audios, images=images, videos=videos, return_tensors="pt", padding=True, use_audio_in_video=USE_AUDIO_IN_VIDEO) inputs = inputs.to(model.device).to(model.dtype) # Inference: Generation of the output text and audio text_ids, audio = model.generate(**inputs, use_audio_in_video=USE_AUDIO_IN_VIDEO) text = processor.batch_decode(text_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False) print(text) sf.write( "output.wav", audio.reshape(-1).detach().cpu().numpy(), samplerate=24000, ) ``` <details> <summary>Minimum GPU memory requirements</summary> |Model | Precision | 15(s) Video | 30(s) Video | 60(s) Video | |--------------|-----------| ------------- | ------------- | ------------------ | | Qwen-Omni-3B | FP32 | 89.10 GB | Not Recommend | Not Recommend | | Qwen-Omni-3B | BF16 | 18.38 GB | 22.43 GB | 28.22 GB | | Qwen-Omni-7B | FP32 | 93.56 GB | Not Recommend | Not Recommend | | Qwen-Omni-7B | BF16 | 31.11 GB | 41.85 GB | 60.19 GB | Note: The table above presents the theoretical minimum memory requirements for inference with `transformers` and `BF16` is test with `attn_implementation="flash_attention_2"`; however, in practice, the actual memory usage is typically at least 1.2 times higher. For more information, see the linked resource [here](https://huggingface.co/docs/accelerate/main/en/usage_guides/model_size_estimator). </details> <details> <summary>Video URL resource usage</summary> Video URL compatibility largely depends on the third-party library version. The details are in the table below. Change the backend by `FORCE_QWENVL_VIDEO_READER=torchvision` or `FORCE_QWENVL_VIDEO_READER=decord` if you prefer not to use the default one. | Backend | HTTP | HTTPS | |-------------|------|-------| | torchvision >= 0.19.0 | ✅ | ✅ | | torchvision < 0.19.0 | ❌ | ❌ | | decord | ✅ | ❌ | </details> <details> <summary>Batch inference</summary> The model can batch inputs composed of mixed samples of various types such as text, images, audio and videos as input when `return_audio=False` is set. Here is an example. ```python # Sample messages for batch inference # Conversation with video only conversation1 = [ { "role": "system", "content": [ {"type": "text", "text": "You are Qwen, a virtual human developed by the Qwen Team, Alibaba Group, capable of perceiving auditory and visual inputs, as well as generating text and speech."} ], }, { "role": "user", "content": [ {"type": "video", "video": "/path/to/video.mp4"}, ] } ] # Conversation with audio only conversation2 = [ { "role": "system", "content": [ {"type": "text", "text": "You are Qwen, a virtual human developed by the Qwen Team, Alibaba Group, capable of perceiving auditory and visual inputs, as well as generating text and speech."} ], }, { "role": "user", "content": [ {"type": "audio", "audio": "/path/to/audio.wav"}, ] } ] # Conversation with pure text conversation3 = [ { "role": "system", "content": [ {"type": "text", "text": "You are Qwen, a virtual human developed by the Qwen Team, Alibaba Group, capable of perceiving auditory and visual inputs, as well as generating text and speech."} ], }, { "role": "user", "content": "who are you?" } ] # Conversation with mixed media conversation4 = [ { "role": "system", "content": [ {"type": "text", "text": "You are Qwen, a virtual human developed by the Qwen Team, Alibaba Group, capable of perceiving auditory and visual inputs, as well as generating text and speech."} ], }, { "role": "user", "content": [ {"type": "image", "image": "/path/to/image.jpg"}, {"type": "video", "video": "/path/to/video.mp4"}, {"type": "audio", "audio": "/path/to/audio.wav"}, {"type": "text", "text": "What are the elements can you see and hear in these medias?"}, ], } ] # Combine messages for batch processing conversations = [conversation1, conversation2, conversation3, conversation4] # set use audio in video USE_AUDIO_IN_VIDEO = True # Preparation for batch inference text = processor.apply_chat_template(conversations, add_generation_prompt=True, tokenize=False) audios, images, videos = process_mm_info(conversations, use_audio_in_video=USE_AUDIO_IN_VIDEO) inputs = processor(text=text, audio=audios, images=images, videos=videos, return_tensors="pt", padding=True, use_audio_in_video=USE_AUDIO_IN_VIDEO) inputs = inputs.to(model.device).to(model.dtype) # Batch Inference text_ids = model.generate(**inputs, use_audio_in_video=USE_AUDIO_IN_VIDEO, return_audio=False) text = processor.batch_decode(text_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False) print(text) ``` </details> ### Usage Tips #### Prompt for audio output If users need audio output, the system prompt must be set as "You are Qwen, a virtual human developed by the Qwen Team, Alibaba Group, capable of perceiving auditory and visual inputs, as well as generating text and speech.", otherwise the audio output may not work as expected. ``` { "role": "system", "content": [ {"type": "text", "text": "You are Qwen, a virtual human developed by the Qwen Team, Alibaba Group, capable of perceiving auditory and visual inputs, as well as generating text and speech."} ], } ``` #### Use audio in video In the process of multimodal interaction, the videos provided by users are often accompanied by audio (such as questions about the content in the video, or sounds generated by certain events in the video). This information is conducive to the model providing a better interactive experience. So we provide the following options for users to decide whether to use audio in video. ```python # first place, in data preprocessing audios, images, videos = process_mm_info(conversations, use_audio_in_video=True) ``` ```python # second place, in model processor inputs = processor(text=text, audio=audios, images=images, videos=videos, return_tensors="pt", padding=True, use_audio_in_video=True) ``` ```python # third place, in model inference text_ids, audio = model.generate(**inputs, use_audio_in_video=True) ``` It is worth noting that during a multi-round conversation, the `use_audio_in_video` parameter in these places must be set to the same, otherwise unexpected results will occur. #### Use audio output or not The model supports both text and audio outputs, if users do not need audio outputs, they can call `model.disable_talker()` after init the model. This option will save about `~2GB` of GPU memory but the `return_audio` option for `generate` function will only allow to be set at `False`. ```python model = Qwen2_5OmniForConditionalGeneration.from_pretrained( "Qwen/Qwen2.5-Omni-7B", torch_dtype="auto", device_map="auto" ) model.disable_talker() ``` In order to obtain a flexible experience, we recommend that users can decide whether to return audio when `generate` function is called. If `return_audio` is set to `False`, the model will only return text outputs to get text responses faster. ```python model = Qwen2_5OmniForConditionalGeneration.from_pretrained( "Qwen/Qwen2.5-Omni-7B", torch_dtype="auto", device_map="auto" ) ... text_ids = model.generate(**inputs, return_audio=False) ``` #### Change voice type of output audio Qwen2.5-Omni supports the ability to change the voice of the output audio. The `"Qwen/Qwen2.5-Omni-7B"` checkpoint support two voice types as follow: | Voice Type | Gender | Description | |------------|--------|-------------| | Chelsie | Female | A honeyed, velvety voice that carries a gentle warmth and luminous clarity.| | Ethan | Male | A bright, upbeat voice with infectious energy and a warm, approachable vibe.| Users can use the `speaker` parameter of `generate` function to specify the voice type. By default, if `speaker` is not specified, the default voice type is `Chelsie`. ```python text_ids, audio = model.generate(**inputs, speaker="Chelsie") ``` ```python text_ids, audio = model.generate(**inputs, speaker="Ethan") ``` #### Flash-Attention 2 to speed up generation First, make sure to install the latest version of Flash Attention 2: ```bash pip install -U flash-attn --no-build-isolation ``` Also, you should have hardware that is compatible with FlashAttention 2. Read more about it in the official documentation of the [flash attention repository](https://github.com/Dao-AILab/flash-attention). FlashAttention-2 can only be used when a model is loaded in `torch.float16` or `torch.bfloat16`. To load and run a model using FlashAttention-2, add `attn_implementation="flash_attention_2"` when loading the model: ```python from transformers import Qwen2_5OmniForConditionalGeneration model = Qwen2_5OmniForConditionalGeneration.from_pretrained( "Qwen/Qwen2.5-Omni-7B", device_map="auto", torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2", ) ``` ## Citation If you find our paper and code useful in your research, please consider giving a star :star: and citation :pencil: :) ```BibTeX @article{Qwen2.5-Omni, title={Qwen2.5-Omni Technical Report}, author={Jin Xu, Zhifang Guo, Jinzheng He, Hangrui Hu, Ting He, Shuai Bai, Keqin Chen, Jialin Wang, Yang Fan, Kai Dang, Bin Zhang, Xiong Wang, Yunfei Chu, Junyang Lin}, journal={arXiv preprint arXiv:2503.20215}, year={2025} } ``` <br> # <span id="testllm" style="color: #7F7FFF;">🚀 If you find these models useful</span> Help me test my **AI-Powered Quantum Network Monitor Assistant** with **quantum-ready security checks**: 👉 [Quantum Network Monitor](https://readyforquantum.com/?assistant=open&utm_source=huggingface&utm_medium=referral&utm_campaign=huggingface_repo_readme) The full Open Source Code for the Quantum Network Monitor Service available at my github repos ( repos with NetworkMonitor in the name) : [Source Code Quantum Network Monitor](https://github.com/Mungert69). You will also find the code I use to quantize the models if you want to do it yourself [GGUFModelBuilder](https://github.com/Mungert69/GGUFModelBuilder) 💬 **How to test**: Choose an **AI assistant type**: - `TurboLLM` (GPT-4.1-mini) - `HugLLM` (Hugginface Open-source models) - `TestLLM` (Experimental CPU-only) ### **What I’m Testing** I’m pushing the limits of **small open-source models for AI network monitoring**, specifically: - **Function calling** against live network services - **How small can a model go** while still handling: - Automated **Nmap security scans** - **Quantum-readiness checks** - **Network Monitoring tasks** 🟡 **TestLLM** – Current experimental model (llama.cpp on 2 CPU threads on huggingface docker space): - ✅ **Zero-configuration setup** - ⏳ 30s load time (slow inference but **no API costs**) . No token limited as the cost is low. - 🔧 **Help wanted!** If you’re into **edge-device AI**, let’s collaborate! ### **Other Assistants** 🟢 **TurboLLM** – Uses **gpt-4.1-mini** : - **It performs very well but unfortunatly OpenAI charges per token. For this reason tokens usage is limited. - **Create custom cmd processors to run .net code on Quantum Network Monitor Agents** - **Real-time network diagnostics and monitoring** - **Security Audits** - **Penetration testing** (Nmap/Metasploit) 🔵 **HugLLM** – Latest Open-source models: - 🌐 Runs on Hugging Face Inference API. Performs pretty well using the lastest models hosted on Novita. ### 💡 **Example commands you could test**: 1. `"Give me info on my websites SSL certificate"` 2. `"Check if my server is using quantum safe encyption for communication"` 3. `"Run a comprehensive security audit on my server"` 4. '"Create a cmd processor to .. (what ever you want)" Note you need to install a Quantum Network Monitor Agent to run the .net code from. This is a very flexible and powerful feature. Use with caution! ### Final Word I fund the servers used to create these model files, run the Quantum Network Monitor service, and pay for inference from Novita and OpenAI—all out of my own pocket. All the code behind the model creation and the Quantum Network Monitor project is [open source](https://github.com/Mungert69). Feel free to use whatever you find helpful. If you appreciate the work, please consider [buying me a coffee](https://www.buymeacoffee.com/mahadeva) ☕. Your support helps cover service costs and allows me to raise token limits for everyone. I'm also open to job opportunities or sponsorship. Thank you! 😊
Mungert/Qwen3-Embedding-4B-GGUF
Mungert
2025-06-15T19:36:40Z
1,582
2
sentence-transformers
[ "sentence-transformers", "gguf", "transformers", "sentence-similarity", "feature-extraction", "base_model:Qwen/Qwen3-4B-Base", "base_model:quantized:Qwen/Qwen3-4B-Base", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
feature-extraction
2025-06-10T13:02:08Z
--- license: apache-2.0 base_model: - Qwen/Qwen3-4B-Base tags: - transformers - sentence-transformers - sentence-similarity - feature-extraction --- # <span style="color: #7FFF7F;">Qwen3-Embedding-4B GGUF Models</span> ## <span style="color: #7F7FFF;">Model Generation Details</span> This model was generated using [llama.cpp](https://github.com/ggerganov/llama.cpp) at commit [`1f63e75f`](https://github.com/ggerganov/llama.cpp/commit/1f63e75f3b5dc7f44dbe63c8a41d23958fe95bc0). ## <span style="color: #7FFF7F;"> Quantization beyond the IMatrix</span> Testing a new quantization method using rules to bump important layers above what the standard imatrix would use. I have found that the standard IMatrix does not perform very well at low bit quantiztion and for MOE models. So I am using llama.cpp --tensor-type to bump up selected layers. See [Layer bumping with llama.cpp](https://github.com/Mungert69/GGUFModelBuilder/blob/main/model-converter/tensor_list_builder.py) This does create larger model files but increases precision for a given model size. ### **Please provide feedback on how you find this method performs** ## **Choosing the Right Model Format** Selecting the correct model format depends on your **hardware capabilities** and **memory constraints**. ### **BF16 (Brain Float 16) – Use if BF16 acceleration is available** - A 16-bit floating-point format designed for **faster computation** while retaining good precision. - Provides **similar dynamic range** as FP32 but with **lower memory usage**. - Recommended if your hardware supports **BF16 acceleration** (check your device's specs). - Ideal for **high-performance inference** with **reduced memory footprint** compared to FP32. 📌 **Use BF16 if:** ✔ Your hardware has native **BF16 support** (e.g., newer GPUs, TPUs). ✔ You want **higher precision** while saving memory. ✔ You plan to **requantize** the model into another format. 📌 **Avoid BF16 if:** ❌ Your hardware does **not** support BF16 (it may fall back to FP32 and run slower). ❌ You need compatibility with older devices that lack BF16 optimization. --- ### **F16 (Float 16) – More widely supported than BF16** - A 16-bit floating-point **high precision** but with less of range of values than BF16. - Works on most devices with **FP16 acceleration support** (including many GPUs and some CPUs). - Slightly lower numerical precision than BF16 but generally sufficient for inference. 📌 **Use F16 if:** ✔ Your hardware supports **FP16** but **not BF16**. ✔ You need a **balance between speed, memory usage, and accuracy**. ✔ You are running on a **GPU** or another device optimized for FP16 computations. 📌 **Avoid F16 if:** ❌ Your device lacks **native FP16 support** (it may run slower than expected). ❌ You have memory limitations. --- ### **Hybrid Precision Models (e.g., `bf16_q8_0`, `f16_q4_K`) – Best of Both Worlds** These formats selectively **quantize non-essential layers** while keeping **key layers in full precision** (e.g., attention and output layers). - Named like `bf16_q8_0` (meaning **full-precision BF16 core layers + quantized Q8_0 other layers**). - Strike a **balance between memory efficiency and accuracy**, improving over fully quantized models without requiring the full memory of BF16/F16. 📌 **Use Hybrid Models if:** ✔ You need **better accuracy than quant-only models** but can’t afford full BF16/F16 everywhere. ✔ Your device supports **mixed-precision inference**. ✔ You want to **optimize trade-offs** for production-grade models on constrained hardware. 📌 **Avoid Hybrid Models if:** ❌ Your target device doesn’t support **mixed or full-precision acceleration**. ❌ You are operating under **ultra-strict memory limits** (in which case use fully quantized formats). --- ### **Quantized Models (Q4_K, Q6_K, Q8, etc.) – For CPU & Low-VRAM Inference** Quantization reduces model size and memory usage while maintaining as much accuracy as possible. - **Lower-bit models (Q4_K)** → **Best for minimal memory usage**, may have lower precision. - **Higher-bit models (Q6_K, Q8_0)** → **Better accuracy**, requires more memory. 📌 **Use Quantized Models if:** ✔ You are running inference on a **CPU** and need an optimized model. ✔ Your device has **low VRAM** and cannot load full-precision models. ✔ You want to reduce **memory footprint** while keeping reasonable accuracy. 📌 **Avoid Quantized Models if:** ❌ You need **maximum accuracy** (full-precision models are better for this). ❌ Your hardware has enough VRAM for higher-precision formats (BF16/F16). --- ### **Very Low-Bit Quantization (IQ3_XS, IQ3_S, IQ3_M, Q4_K, Q4_0)** These models are optimized for **very high memory efficiency**, making them ideal for **low-power devices** or **large-scale deployments** where memory is a critical constraint. - **IQ3_XS**: Ultra-low-bit quantization (3-bit) with **very high memory efficiency**. - **Use case**: Best for **ultra-low-memory devices** where even Q4_K is too large. - **Trade-off**: Lower accuracy compared to higher-bit quantizations. - **IQ3_S**: Small block size for **maximum memory efficiency**. - **Use case**: Best for **low-memory devices** where **IQ3_XS** is too aggressive. - **IQ3_M**: Medium block size for better accuracy than **IQ3_S**. - **Use case**: Suitable for **low-memory devices** where **IQ3_S** is too limiting. - **Q4_K**: 4-bit quantization with **block-wise optimization** for better accuracy. - **Use case**: Best for **low-memory devices** where **Q6_K** is too large. - **Q4_0**: Pure 4-bit quantization, optimized for **ARM devices**. - **Use case**: Best for **ARM-based devices** or **low-memory environments**. ### **Ultra Low-Bit Quantization (IQ1_S IQ1_M IQ2_S IQ2_M IQ2_XS IQ2_XSS)** - *Ultra-low-bit quantization (1 2-bit) with **extreme memory efficiency**. - **Use case**: Best for cases were you have to fit the model into very constrained memory - **Trade-off**: Very Low Accuracy. May not function as expected. Please test fully before using. --- ### **Summary Table: Model Format Selection** | Model Format | Precision | Memory Usage | Device Requirements | Best Use Case | |--------------------------|------------------|------------------|----------------------------------|--------------------------------------------------------------| | **BF16** | Very High | High | BF16-supported GPU/CPU | High-speed inference with reduced memory | | **F16** | High | High | FP16-supported GPU/CPU | Inference when BF16 isn’t available | | **Q4_K** | Medium-Low | Low | CPU or Low-VRAM devices | Memory-constrained inference | | **Q6_K** | Medium | Moderate | CPU with more memory | Better accuracy with quantization | | **Q8_0** | High | Moderate | GPU/CPU with moderate VRAM | Highest accuracy among quantized models | | **IQ3_XS** | Low | Very Low | Ultra-low-memory devices | Max memory efficiency, low accuracy | | **IQ3_S** | Low | Very Low | Low-memory devices | Slightly more usable than IQ3_XS | | **IQ3_M** | Low-Medium | Low | Low-memory devices | Better accuracy than IQ3_S | | **Q4_0** | Low | Low | ARM-based/embedded devices | Llama.cpp automatically optimizes for ARM inference | | **Ultra Low-Bit (IQ1/2_*)** | Very Low | Extremely Low | Tiny edge/embedded devices | Fit models in extremely tight memory; low accuracy | | **Hybrid (e.g., `bf16_q8_0`)** | Medium–High | Medium | Mixed-precision capable hardware | Balanced performance and memory, near-FP accuracy in critical layers | --- # Qwen3-Embedding-4B <p align="center"> <img src="https://qianwen-res.oss-accelerate-overseas.aliyuncs.com/logo_qwen3.png" width="400"/> <p> ## Highlights The Qwen3 Embedding model series is the latest proprietary model of the Qwen family, specifically designed for text embedding and ranking tasks. Building upon the dense foundational models of the Qwen3 series, it provides a comprehensive range of text embeddings and reranking models in various sizes (0.6B, 4B, and 8B). This series inherits the exceptional multilingual capabilities, long-text understanding, and reasoning skills of its foundational model. The Qwen3 Embedding series represents significant advancements in multiple text embedding and ranking tasks, including text retrieval, code retrieval, text classification, text clustering, and bitext mining. **Exceptional Versatility**: The embedding model has achieved state-of-the-art performance across a wide range of downstream application evaluations. The 8B size embedding model ranks **No.1** in the MTEB multilingual leaderboard (as of June 5, 2025, score **70.58**), while the reranking model excels in various text retrieval scenarios. **Comprehensive Flexibility**: The Qwen3 Embedding series offers a full spectrum of sizes (from 0.6B to 8B) for both embedding and reranking models, catering to diverse use cases that prioritize efficiency and effectiveness. Developers can seamlessly combine these two modules. Additionally, the embedding model allows for flexible vector definitions across all dimensions, and both embedding and reranking models support user-defined instructions to enhance performance for specific tasks, languages, or scenarios. **Multilingual Capability**: The Qwen3 Embedding series offer support for over 100 languages, thanks to the multilingual capabilites of Qwen3 models. This includes various programming languages, and provides robust multilingual, cross-lingual, and code retrieval capabilities. ## Model Overview **Qwen3-Embedding-4B** has the following features: - Model Type: Text Embedding - Supported Languages: 100+ Languages - Number of Paramaters: 4B - Context Length: 32k - Embedding Dimension: Up to 2560, supports user-defined output dimensions ranging from 32 to 2560 For more details, including benchmark evaluation, hardware requirements, and inference performance, please refer to our [blog](https://qwenlm.github.io/blog/qwen3-embedding/), [GitHub](https://github.com/QwenLM/Qwen3-Embedding). ## Qwen3 Embedding Series Model list | Model Type | Models | Size | Layers | Sequence Length | Embedding Dimension | MRL Support | Instruction Aware | |------------------|----------------------|------|--------|-----------------|---------------------|-------------|----------------| | Text Embedding | [Qwen3-Embedding-0.6B](https://huggingface.co/Qwen/Qwen3-Embedding-0.6B) | 0.6B | 28 | 32K | 1024 | Yes | Yes | | Text Embedding | [Qwen3-Embedding-4B](https://huggingface.co/Qwen/Qwen3-Embedding-4B) | 4B | 36 | 32K | 2560 | Yes | Yes | | Text Embedding | [Qwen3-Embedding-8B](https://huggingface.co/Qwen/Qwen3-Embedding-8B) | 8B | 36 | 32K | 4096 | Yes | Yes | | Text Reranking | [Qwen3-Reranker-0.6B](https://huggingface.co/Qwen/Qwen3-Reranker-0.6B) | 0.6B | 28 | 32K | - | - | Yes | | Text Reranking | [Qwen3-Reranker-4B](https://huggingface.co/Qwen/Qwen3-Reranker-4B) | 4B | 36 | 32K | - | - | Yes | | Text Reranking | [Qwen3-Reranker-8B](https://huggingface.co/Qwen/Qwen3-Reranker-8B) | 8B | 36 | 32K | - | - | Yes | > **Note**: > - `MRL Support` indicates whether the embedding model supports custom dimensions for the final embedding. > - `Instruction Aware` notes whether the embedding or reranking model supports customizing the input instruction according to different tasks. > - Our evaluation indicates that, for most downstream tasks, using instructions (instruct) typically yields an improvement of 1% to 5% compared to not using them. Therefore, we recommend that developers create tailored instructions specific to their tasks and scenarios. In multilingual contexts, we also advise users to write their instructions in English, as most instructions utilized during the model training process were originally written in English. ## Usage With Transformers versions earlier than 4.51.0, you may encounter the following error: ``` KeyError: 'qwen3' ``` ### Sentence Transformers Usage ```python # Requires transformers>=4.51.0 from sentence_transformers import SentenceTransformer # Load the model model = SentenceTransformer("Qwen/Qwen3-Embedding-4B") # We recommend enabling flash_attention_2 for better acceleration and memory saving, # together with setting `padding_side` to "left": # model = SentenceTransformer( # "Qwen/Qwen3-Embedding-4B", # model_kwargs={"attn_implementation": "flash_attention_2", "device_map": "auto"}, # tokenizer_kwargs={"padding_side": "left"}, # ) # The queries and documents to embed queries = [ "What is the capital of China?", "Explain gravity", ] documents = [ "The capital of China is Beijing.", "Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.", ] # Encode the queries and documents. Note that queries benefit from using a prompt # Here we use the prompt called "query" stored under `model.prompts`, but you can # also pass your own prompt via the `prompt` argument query_embeddings = model.encode(queries, prompt_name="query") document_embeddings = model.encode(documents) # Compute the (cosine) similarity between the query and document embeddings similarity = model.similarity(query_embeddings, document_embeddings) print(similarity) # tensor([[0.7534, 0.1147], # [0.0320, 0.6258]]) ``` ### Transformers Usage ```python # Requires transformers>=4.51.0 import torch import torch.nn.functional as F from torch import Tensor from transformers import AutoTokenizer, AutoModel def last_token_pool(last_hidden_states: Tensor, attention_mask: Tensor) -> Tensor: left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0]) if left_padding: return last_hidden_states[:, -1] else: sequence_lengths = attention_mask.sum(dim=1) - 1 batch_size = last_hidden_states.shape[0] return last_hidden_states[torch.arange(batch_size, device=last_hidden_states.device), sequence_lengths] def get_detailed_instruct(task_description: str, query: str) -> str: return f'Instruct: {task_description}\nQuery:{query}' # Each query must come with a one-sentence instruction that describes the task task = 'Given a web search query, retrieve relevant passages that answer the query' queries = [ get_detailed_instruct(task, 'What is the capital of China?'), get_detailed_instruct(task, 'Explain gravity') ] # No need to add instruction for retrieval documents documents = [ "The capital of China is Beijing.", "Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun." ] input_texts = queries + documents tokenizer = AutoTokenizer.from_pretrained('Qwen/Qwen3-Embedding-4B', padding_side='left') model = AutoModel.from_pretrained('Qwen/Qwen3-Embedding-4B') # We recommend enabling flash_attention_2 for better acceleration and memory saving. # model = AutoModel.from_pretrained('Qwen/Qwen3-Embedding-4B', attn_implementation="flash_attention_2", torch_dtype=torch.float16).cuda() max_length = 8192 # Tokenize the input texts batch_dict = tokenizer( input_texts, padding=True, truncation=True, max_length=max_length, return_tensors="pt", ) batch_dict.to(model.device) outputs = model(**batch_dict) embeddings = last_token_pool(outputs.last_hidden_state, batch_dict['attention_mask']) # normalize embeddings embeddings = F.normalize(embeddings, p=2, dim=1) scores = (embeddings[:2] @ embeddings[2:].T) print(scores.tolist()) # [[0.7534257769584656, 0.1146894246339798], [0.03198453038930893, 0.6258305311203003]] ``` 📌 **Tip**: We recommend that developers customize the `instruct` according to their specific scenarios, tasks, and languages. Our tests have shown that in most retrieval scenarios, not using an `instruct` on the query side can lead to a drop in retrieval performance by approximately 1% to 5%. ## Evaluation ### MTEB (Multilingual) | Model | Size | Mean (Task) | Mean (Type) | Bitxt Mining | Class. | Clust. | Inst. Retri. | Multi. Class. | Pair. Class. | Rerank | Retri. | STS | |----------------------------------|:-------:|:-------------:|:-------------:|:--------------:|:--------:|:--------:|:--------------:|:---------------:|:--------------:|:--------:|:--------:|:------:| | NV-Embed-v2 | 7B | 56.29 | 49.58 | 57.84 | 57.29 | 40.80 | 1.04 | 18.63 | 78.94 | 63.82 | 56.72 | 71.10| | GritLM-7B | 7B | 60.92 | 53.74 | 70.53 | 61.83 | 49.75 | 3.45 | 22.77 | 79.94 | 63.78 | 58.31 | 73.33| | BGE-M3 | 0.6B | 59.56 | 52.18 | 79.11 | 60.35 | 40.88 | -3.11 | 20.1 | 80.76 | 62.79 | 54.60 | 74.12| | multilingual-e5-large-instruct | 0.6B | 63.22 | 55.08 | 80.13 | 64.94 | 50.75 | -0.40 | 22.91 | 80.86 | 62.61 | 57.12 | 76.81| | gte-Qwen2-1.5B-instruct | 1.5B | 59.45 | 52.69 | 62.51 | 58.32 | 52.05 | 0.74 | 24.02 | 81.58 | 62.58 | 60.78 | 71.61| | gte-Qwen2-7b-Instruct | 7B | 62.51 | 55.93 | 73.92 | 61.55 | 52.77 | 4.94 | 25.48 | 85.13 | 65.55 | 60.08 | 73.98| | text-embedding-3-large | - | 58.93 | 51.41 | 62.17 | 60.27 | 46.89 | -2.68 | 22.03 | 79.17 | 63.89 | 59.27 | 71.68| | Cohere-embed-multilingual-v3.0 | - | 61.12 | 53.23 | 70.50 | 62.95 | 46.89 | -1.89 | 22.74 | 79.88 | 64.07 | 59.16 | 74.80| | gemini-embedding-exp-03-07 | - | 68.37 | 59.59 | 79.28 | 71.82 | 54.59 | 5.18 | **29.16** | 83.63 | 65.58 | 67.71 | 79.40| | **Qwen3-Embedding-0.6B** | 0.6B | 64.33 | 56.00 | 72.22 | 66.83 | 52.33 | 5.09 | 24.59 | 80.83 | 61.41 | 64.64 | 76.17| | **Qwen3-Embedding-4B** | 4B | 69.45 | 60.86 | 79.36 | 72.33 | 57.15 | **11.56** | 26.77 | 85.05 | 65.08 | 69.60 | 80.86| | **Qwen3-Embedding-8B** | 8B | **70.58** | **61.69** | **80.89** | **74.00** | **57.65** | 10.06 | 28.66 | **86.40** | **65.63** | **70.88** | **81.08** | > **Note**: For compared models, the scores are retrieved from MTEB online [leaderboard](https://huggingface.co/spaces/mteb/leaderboard) on May 24th, 2025. ### MTEB (Eng v2) | MTEB English / Models | Param. | Mean(Task) | Mean(Type) | Class. | Clust. | Pair Class. | Rerank. | Retri. | STS | Summ. | |--------------------------------|:--------:|:------------:|:------------:|:--------:|:--------:|:-------------:|:---------:|:--------:|:-------:|:-------:| | multilingual-e5-large-instruct | 0.6B | 65.53 | 61.21 | 75.54 | 49.89 | 86.24 | 48.74 | 53.47 | 84.72 | 29.89 | | NV-Embed-v2 | 7.8B | 69.81 | 65.00 | 87.19 | 47.66 | 88.69 | 49.61 | 62.84 | 83.82 | 35.21 | | GritLM-7B | 7.2B | 67.07 | 63.22 | 81.25 | 50.82 | 87.29 | 49.59 | 54.95 | 83.03 | 35.65 | | gte-Qwen2-1.5B-instruct | 1.5B | 67.20 | 63.26 | 85.84 | 53.54 | 87.52 | 49.25 | 50.25 | 82.51 | 33.94 | | stella_en_1.5B_v5 | 1.5B | 69.43 | 65.32 | 89.38 | 57.06 | 88.02 | 50.19 | 52.42 | 83.27 | 36.91 | | gte-Qwen2-7B-instruct | 7.6B | 70.72 | 65.77 | 88.52 | 58.97 | 85.9 | 50.47 | 58.09 | 82.69 | 35.74 | | gemini-embedding-exp-03-07 | - | 73.3 | 67.67 | 90.05 | **59.39** | **87.7** | 48.59 | 64.35 | 85.29 | **38.28** | | **Qwen3-Embedding-0.6B** | 0.6B | 70.70 | 64.88 | 85.76 | 54.05 | 84.37 | 48.18 | 61.83 | 86.57 | 33.43 | | **Qwen3-Embedding-4B** | 4B | 74.60 | 68.10 | 89.84 | 57.51 | 87.01 | 50.76 | 68.46 | **88.72** | 34.39 | | **Qwen3-Embedding-8B** | 8B | **75.22** | **68.71** | **90.43** | 58.57 | 87.52 | **51.56** | **69.44** | 88.58 | 34.83 | ### C-MTEB (MTEB Chinese) | C-MTEB | Param. | Mean(Task) | Mean(Type) | Class. | Clust. | Pair Class. | Rerank. | Retr. | STS | |------------------|--------|------------|------------|--------|--------|-------------|---------|-------|-------| | multilingual-e5-large-instruct | 0.6B | 58.08 | 58.24 | 69.80 | 48.23 | 64.52 | 57.45 | 63.65 | 45.81 | | bge-multilingual-gemma2 | 9B | 67.64 |68.52 | 75.31 | 59.30 | 86.67 | 68.28 | 73.73 | 55.19 | | gte-Qwen2-1.5B-instruct | 1.5B | 67.12 | 67.79 | 72.53 | 54.61 | 79.5 | 68.21 | 71.86 | 60.05 | | gte-Qwen2-7B-instruct | 7.6B | 71.62 | 72.19 | 75.77 | 66.06 | 81.16 | 69.24 | 75.70 | 65.20 | | ritrieve_zh_v1 | 0.3B | 72.71 | 73.85 | 76.88 | 66.5 | **85.98** | **72.86** | 76.97 | **63.92** | | **Qwen3-Embedding-0.6B** | 0.6B | 66.33 | 67.45 | 71.40 | 68.74 | 76.42 | 62.58 | 71.03 | 54.52 | | **Qwen3-Embedding-4B** | 4B | 72.27 | 73.51 | 75.46 | 77.89 | 83.34 | 66.05 | 77.03 | 61.26 | | **Qwen3-Embedding-8B** | 8B | **73.84** | **75.00** | **76.97** | **80.08** | 84.23 | 66.99 | **78.21** | 63.53 | ## Citation If you find our work helpful, feel free to give us a cite. ``` @misc{qwen3-embedding, title = {Qwen3-Embedding}, url = {https://qwenlm.github.io/blog/qwen3/}, author = {Qwen Team}, month = {May}, year = {2025} } ``` # <span id="testllm" style="color: #7F7FFF;">🚀 If you find these models useful</span> Help me test my **AI-Powered Quantum Network Monitor Assistant** with **quantum-ready security checks**: 👉 [Quantum Network Monitor](https://readyforquantum.com/?assistant=open&utm_source=huggingface&utm_medium=referral&utm_campaign=huggingface_repo_readme) The full Open Source Code for the Quantum Network Monitor Service available at my github repos ( repos with NetworkMonitor in the name) : [Source Code Quantum Network Monitor](https://github.com/Mungert69). You will also find the code I use to quantize the models if you want to do it yourself [GGUFModelBuilder](https://github.com/Mungert69/GGUFModelBuilder) 💬 **How to test**: Choose an **AI assistant type**: - `TurboLLM` (GPT-4.1-mini) - `HugLLM` (Hugginface Open-source models) - `TestLLM` (Experimental CPU-only) ### **What I’m Testing** I’m pushing the limits of **small open-source models for AI network monitoring**, specifically: - **Function calling** against live network services - **How small can a model go** while still handling: - Automated **Nmap security scans** - **Quantum-readiness checks** - **Network Monitoring tasks** 🟡 **TestLLM** – Current experimental model (llama.cpp on 2 CPU threads on huggingface docker space): - ✅ **Zero-configuration setup** - ⏳ 30s load time (slow inference but **no API costs**) . No token limited as the cost is low. - 🔧 **Help wanted!** If you’re into **edge-device AI**, let’s collaborate! ### **Other Assistants** 🟢 **TurboLLM** – Uses **gpt-4.1-mini** : - **It performs very well but unfortunatly OpenAI charges per token. For this reason tokens usage is limited. - **Create custom cmd processors to run .net code on Quantum Network Monitor Agents** - **Real-time network diagnostics and monitoring** - **Security Audits** - **Penetration testing** (Nmap/Metasploit) 🔵 **HugLLM** – Latest Open-source models: - 🌐 Runs on Hugging Face Inference API. Performs pretty well using the lastest models hosted on Novita. ### 💡 **Example commands you could test**: 1. `"Give me info on my websites SSL certificate"` 2. `"Check if my server is using quantum safe encyption for communication"` 3. `"Run a comprehensive security audit on my server"` 4. '"Create a cmd processor to .. (what ever you want)" Note you need to install a Quantum Network Monitor Agent to run the .net code from. This is a very flexible and powerful feature. Use with caution! ### Final Word I fund the servers used to create these model files, run the Quantum Network Monitor service, and pay for inference from Novita and OpenAI—all out of my own pocket. All the code behind the model creation and the Quantum Network Monitor project is [open source](https://github.com/Mungert69). Feel free to use whatever you find helpful. If you appreciate the work, please consider [buying me a coffee](https://www.buymeacoffee.com/mahadeva) ☕. Your support helps cover service costs and allows me to raise token limits for everyone. I'm also open to job opportunities or sponsorship. Thank you! 😊
Mungert/Qwen2.5-Omni-3B-GGUF
Mungert
2025-06-15T19:36:37Z
1,307
2
transformers
[ "transformers", "gguf", "multimodal", "any-to-any", "en", "arxiv:2503.20215", "license:other", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
any-to-any
2025-06-10T12:18:40Z
--- license: other license_name: qwen-research license_link: LICENSE language: - en tags: - multimodal library_name: transformers pipeline_tag: any-to-any --- # <span style="color: #7FFF7F;">Qwen2.5-Omni-3B GGUF Models</span> ## <span style="color: #7F7FFF;">Model Generation Details</span> This model was generated using [llama.cpp](https://github.com/ggerganov/llama.cpp) at commit [`7f4fbe51`](https://github.com/ggerganov/llama.cpp/commit/7f4fbe5183b23b6b2e25fd1ccc5d1fa8bb010cb7). ## <span style="color: #7FFF7F;"> Quantization beyond the IMatrix</span> Testing a new quantization method using rules to bump important layers above what the standard imatrix would use. I have found that the standard IMatrix does not perform very well at low bit quantiztion and for MOE models. So I am using llama.cpp --tensor-type to bump up selected layers. See [Layer bumping with llama.cpp](https://github.com/Mungert69/GGUFModelBuilder/blob/main/model-converter/tensor_list_builder.py) This does create larger model files but increases precision for a given model size. ### **Please provide feedback on how you find this method performs** ## **Choosing the Right Model Format** Selecting the correct model format depends on your **hardware capabilities** and **memory constraints**. ### **BF16 (Brain Float 16) – Use if BF16 acceleration is available** - A 16-bit floating-point format designed for **faster computation** while retaining good precision. - Provides **similar dynamic range** as FP32 but with **lower memory usage**. - Recommended if your hardware supports **BF16 acceleration** (check your device's specs). - Ideal for **high-performance inference** with **reduced memory footprint** compared to FP32. 📌 **Use BF16 if:** ✔ Your hardware has native **BF16 support** (e.g., newer GPUs, TPUs). ✔ You want **higher precision** while saving memory. ✔ You plan to **requantize** the model into another format. 📌 **Avoid BF16 if:** ❌ Your hardware does **not** support BF16 (it may fall back to FP32 and run slower). ❌ You need compatibility with older devices that lack BF16 optimization. --- ### **F16 (Float 16) – More widely supported than BF16** - A 16-bit floating-point **high precision** but with less of range of values than BF16. - Works on most devices with **FP16 acceleration support** (including many GPUs and some CPUs). - Slightly lower numerical precision than BF16 but generally sufficient for inference. 📌 **Use F16 if:** ✔ Your hardware supports **FP16** but **not BF16**. ✔ You need a **balance between speed, memory usage, and accuracy**. ✔ You are running on a **GPU** or another device optimized for FP16 computations. 📌 **Avoid F16 if:** ❌ Your device lacks **native FP16 support** (it may run slower than expected). ❌ You have memory limitations. --- ### **Hybrid Precision Models (e.g., `bf16_q8_0`, `f16_q4_K`) – Best of Both Worlds** These formats selectively **quantize non-essential layers** while keeping **key layers in full precision** (e.g., attention and output layers). - Named like `bf16_q8_0` (meaning **full-precision BF16 core layers + quantized Q8_0 other layers**). - Strike a **balance between memory efficiency and accuracy**, improving over fully quantized models without requiring the full memory of BF16/F16. 📌 **Use Hybrid Models if:** ✔ You need **better accuracy than quant-only models** but can’t afford full BF16/F16 everywhere. ✔ Your device supports **mixed-precision inference**. ✔ You want to **optimize trade-offs** for production-grade models on constrained hardware. 📌 **Avoid Hybrid Models if:** ❌ Your target device doesn’t support **mixed or full-precision acceleration**. ❌ You are operating under **ultra-strict memory limits** (in which case use fully quantized formats). --- ### **Quantized Models (Q4_K, Q6_K, Q8, etc.) – For CPU & Low-VRAM Inference** Quantization reduces model size and memory usage while maintaining as much accuracy as possible. - **Lower-bit models (Q4_K)** → **Best for minimal memory usage**, may have lower precision. - **Higher-bit models (Q6_K, Q8_0)** → **Better accuracy**, requires more memory. 📌 **Use Quantized Models if:** ✔ You are running inference on a **CPU** and need an optimized model. ✔ Your device has **low VRAM** and cannot load full-precision models. ✔ You want to reduce **memory footprint** while keeping reasonable accuracy. 📌 **Avoid Quantized Models if:** ❌ You need **maximum accuracy** (full-precision models are better for this). ❌ Your hardware has enough VRAM for higher-precision formats (BF16/F16). --- ### **Very Low-Bit Quantization (IQ3_XS, IQ3_S, IQ3_M, Q4_K, Q4_0)** These models are optimized for **very high memory efficiency**, making them ideal for **low-power devices** or **large-scale deployments** where memory is a critical constraint. - **IQ3_XS**: Ultra-low-bit quantization (3-bit) with **very high memory efficiency**. - **Use case**: Best for **ultra-low-memory devices** where even Q4_K is too large. - **Trade-off**: Lower accuracy compared to higher-bit quantizations. - **IQ3_S**: Small block size for **maximum memory efficiency**. - **Use case**: Best for **low-memory devices** where **IQ3_XS** is too aggressive. - **IQ3_M**: Medium block size for better accuracy than **IQ3_S**. - **Use case**: Suitable for **low-memory devices** where **IQ3_S** is too limiting. - **Q4_K**: 4-bit quantization with **block-wise optimization** for better accuracy. - **Use case**: Best for **low-memory devices** where **Q6_K** is too large. - **Q4_0**: Pure 4-bit quantization, optimized for **ARM devices**. - **Use case**: Best for **ARM-based devices** or **low-memory environments**. ### **Ultra Low-Bit Quantization (IQ1_S IQ1_M IQ2_S IQ2_M IQ2_XS IQ2_XSS)** - *Ultra-low-bit quantization (1 2-bit) with **extreme memory efficiency**. - **Use case**: Best for cases were you have to fit the model into very constrained memory - **Trade-off**: Very Low Accuracy. May not function as expected. Please test fully before using. --- ### **Summary Table: Model Format Selection** | Model Format | Precision | Memory Usage | Device Requirements | Best Use Case | |--------------------------|------------------|------------------|----------------------------------|--------------------------------------------------------------| | **BF16** | Very High | High | BF16-supported GPU/CPU | High-speed inference with reduced memory | | **F16** | High | High | FP16-supported GPU/CPU | Inference when BF16 isn’t available | | **Q4_K** | Medium-Low | Low | CPU or Low-VRAM devices | Memory-constrained inference | | **Q6_K** | Medium | Moderate | CPU with more memory | Better accuracy with quantization | | **Q8_0** | High | Moderate | GPU/CPU with moderate VRAM | Highest accuracy among quantized models | | **IQ3_XS** | Low | Very Low | Ultra-low-memory devices | Max memory efficiency, low accuracy | | **IQ3_S** | Low | Very Low | Low-memory devices | Slightly more usable than IQ3_XS | | **IQ3_M** | Low-Medium | Low | Low-memory devices | Better accuracy than IQ3_S | | **Q4_0** | Low | Low | ARM-based/embedded devices | Llama.cpp automatically optimizes for ARM inference | | **Ultra Low-Bit (IQ1/2_*)** | Very Low | Extremely Low | Tiny edge/embedded devices | Fit models in extremely tight memory; low accuracy | | **Hybrid (e.g., `bf16_q8_0`)** | Medium–High | Medium | Mixed-precision capable hardware | Balanced performance and memory, near-FP accuracy in critical layers | --- # Qwen2.5-Omni <a href="https://chat.qwen.ai/" target="_blank" style="margin: 2px;"> <img alt="Chat" src="https://img.shields.io/badge/%F0%9F%92%9C%EF%B8%8F%20Qwen%20Chat%20-536af5" style="display: inline-block; vertical-align: middle;"/> </a> ## Overview ### Introduction Qwen2.5-Omni is an end-to-end multimodal model designed to perceive diverse modalities, including text, images, audio, and video, while simultaneously generating text and natural speech responses in a streaming manner. <p align="center"> <img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2.5-Omni/qwen_omni.png" width="80%"/> <p> ### Key Features * **Omni and Novel Architecture**: We propose Thinker-Talker architecture, an end-to-end multimodal model designed to perceive diverse modalities, including text, images, audio, and video, while simultaneously generating text and natural speech responses in a streaming manner. We propose a novel position embedding, named TMRoPE (Time-aligned Multimodal RoPE), to synchronize the timestamps of video inputs with audio. * **Real-Time Voice and Video Chat**: Architecture designed for fully real-time interactions, supporting chunked input and immediate output. * **Natural and Robust Speech Generation**: Surpassing many existing streaming and non-streaming alternatives, demonstrating superior robustness and naturalness in speech generation. * **Strong Performance Across Modalities**: Exhibiting exceptional performance across all modalities when benchmarked against similarly sized single-modality models. Qwen2.5-Omni outperforms the similarly sized Qwen2-Audio in audio capabilities and achieves comparable performance to Qwen2.5-VL-7B. * **Excellent End-to-End Speech Instruction Following**: Qwen2.5-Omni shows performance in end-to-end speech instruction following that rivals its effectiveness with text inputs, evidenced by benchmarks such as MMLU and GSM8K. ### Model Architecture <p align="center"> <img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2.5-Omni/overview.png" width="80%"/> <p> ### Performance We conducted a comprehensive evaluation of Qwen2.5-Omni, which demonstrates strong performance across all modalities when compared to similarly sized single-modality models and closed-source models like Qwen2.5-VL-7B, Qwen2-Audio, and Gemini-1.5-pro. In tasks requiring the integration of multiple modalities, such as OmniBench, Qwen2.5-Omni achieves state-of-the-art performance. Furthermore, in single-modality tasks, it excels in areas including speech recognition (Common Voice), translation (CoVoST2), audio understanding (MMAU), image reasoning (MMMU, MMStar), video understanding (MVBench), and speech generation (Seed-tts-eval and subjective naturalness). <p align="center"> <img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2.5-Omni/bar.png" width="80%"/> <p> <details> <summary>Multimodality -> Text</summary> <table class="tg"><thead> <tr> <th class="tg-0lax">Datasets</th> <th class="tg-0lax">Model</th> <th class="tg-0lax">Performance</th> </tr></thead> <tbody> <tr> <td class="tg-0lax" rowspan="10">OmniBench<br>Speech | Sound Event | Music | Avg</td> <td class="tg-0lax">Gemini-1.5-Pro</td> <td class="tg-0lax">42.67%|42.26%|46.23%|42.91%</td> </tr> <tr> <td class="tg-0lax">MIO-Instruct</td> <td class="tg-0lax">36.96%|33.58%|11.32%|33.80%</td> </tr> <tr> <td class="tg-0lax">AnyGPT (7B)</td> <td class="tg-0lax">17.77%|20.75%|13.21%|18.04%</td> </tr> <tr> <td class="tg-0lax">video-SALMONN</td> <td class="tg-0lax">34.11%|31.70%|<strong>56.60%</strong>|35.64%</td> </tr> <tr> <td class="tg-0lax">UnifiedIO2-xlarge</td> <td class="tg-0lax">39.56%|36.98%|29.25%|38.00%</td> </tr> <tr> <td class="tg-0lax">UnifiedIO2-xxlarge</td> <td class="tg-0lax">34.24%|36.98%|24.53%|33.98%</td> </tr> <tr> <td class="tg-0lax">MiniCPM-o</td> <td class="tg-0lax">-|-|-|40.50%</td> </tr> <tr> <td class="tg-0lax">Baichuan-Omni-1.5</td> <td class="tg-0lax">-|-|-|42.90%</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-3B</td> <td class="tg-0lax">52.14%|52.08%|52.83%|52.19%</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-7B</td> <td class="tg-0lax"><strong>55.25%</strong>|<strong>60.00%</strong>|52.83%|<strong>56.13%</strong></td> </tr> </tbody></table> </details> <details> <summary>Audio -> Text</summary> <table class="tg"><thead> <tr> <th class="tg-0lax">Datasets</th> <th class="tg-0lax">Model</th> <th class="tg-0lax">Performance</th> </tr></thead> <tbody> <tr> <td class="tg-9j4x" colspan="3">ASR</td> </tr> <tr> <td class="tg-0lax" rowspan="12">Librispeech<br>dev-clean | dev other | test-clean | test-other</td> <td class="tg-0lax">SALMONN</td> <td class="tg-0lax">-|-|2.1|4.9</td> </tr> <tr> <td class="tg-0lax">SpeechVerse</td> <td class="tg-0lax">-|-|2.1|4.4</td> </tr> <tr> <td class="tg-0lax">Whisper-large-v3</td> <td class="tg-0lax">-|-|1.8|3.6</td> </tr> <tr> <td class="tg-0lax">Llama-3-8B</td> <td class="tg-0lax">-|-|-|3.4</td> </tr> <tr> <td class="tg-0lax">Llama-3-70B</td> <td class="tg-0lax">-|-|-|3.1</td> </tr> <tr> <td class="tg-0lax">Seed-ASR-Multilingual</td> <td class="tg-0lax">-|-|<strong>1.6</strong>|<strong>2.8</strong></td> </tr> <tr> <td class="tg-0lax">MiniCPM-o</td> <td class="tg-0lax">-|-|1.7|-</td> </tr> <tr> <td class="tg-0lax">MinMo</td> <td class="tg-0lax">-|-|1.7|3.9</td> </tr> <tr> <td class="tg-0lax">Qwen-Audio</td> <td class="tg-0lax">1.8|4.0|2.0|4.2</td> </tr> <tr> <td class="tg-0lax">Qwen2-Audio</td> <td class="tg-0lax"><strong>1.3</strong>|<strong>3.4</strong>|<strong>1.6</strong>|3.6</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-3B</td> <td class="tg-0lax">2.0|4.1|2.2|4.5</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-7B</td> <td class="tg-0lax">1.6|3.5|1.8|3.4</td> </tr> <tr> <td class="tg-0lax" rowspan="5">Common Voice 15<br>en | zh | yue | fr</td> <td class="tg-0lax">Whisper-large-v3</td> <td class="tg-0lax">9.3|12.8|10.9|10.8</td> </tr> <tr> <td class="tg-0lax">MinMo</td> <td class="tg-0lax">7.9|6.3|6.4|8.5</td> </tr> <tr> <td class="tg-0lax">Qwen2-Audio</td> <td class="tg-0lax">8.6|6.9|<strong>5.9</strong>|9.6</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-3B</td> <td class="tg-0lax">9.1|6.0|11.6|9.6</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-7B</td> <td class="tg-0lax"><strong>7.6</strong>|<strong>5.2</strong>|7.3|<strong>7.5</strong></td> </tr> <tr> <td class="tg-0lax" rowspan="8">Fleurs<br>zh | en</td> <td class="tg-0lax">Whisper-large-v3</td> <td class="tg-0lax">7.7|4.1</td> </tr> <tr> <td class="tg-0lax">Seed-ASR-Multilingual</td> <td class="tg-0lax">-|<strong>3.4</strong></td> </tr> <tr> <td class="tg-0lax">Megrez-3B-Omni</td> <td class="tg-0lax">10.8|-</td> </tr> <tr> <td class="tg-0lax">MiniCPM-o</td> <td class="tg-0lax">4.4|-</td> </tr> <tr> <td class="tg-0lax">MinMo</td> <td class="tg-0lax">3.0|3.8</td> </tr> <tr> <td class="tg-0lax">Qwen2-Audio</td> <td class="tg-0lax">7.5|-</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-3B</td> <td class="tg-0lax">3.2|5.4</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-7B</td> <td class="tg-0lax"><strong>3.0</strong>|4.1</td> </tr> <tr> <td class="tg-0lax" rowspan="6">Wenetspeech<br>test-net | test-meeting</td> <td class="tg-0lax">Seed-ASR-Chinese</td> <td class="tg-0lax"><strong>4.7|5.7</strong></td> </tr> <tr> <td class="tg-0lax">Megrez-3B-Omni</td> <td class="tg-0lax">-|16.4</td> </tr> <tr> <td class="tg-0lax">MiniCPM-o</td> <td class="tg-0lax">6.9|-</td> </tr> <tr> <td class="tg-0lax">MinMo</td> <td class="tg-0lax">6.8|7.4</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-3B</td> <td class="tg-0lax">6.3|8.1</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-7B</td> <td class="tg-0lax">5.9|7.7</td> </tr> <tr> <td class="tg-0lax" rowspan="4">Voxpopuli-V1.0-en</td> <td class="tg-0lax">Llama-3-8B</td> <td class="tg-0lax">6.2</td> </tr> <tr> <td class="tg-0lax">Llama-3-70B</td> <td class="tg-0lax"><strong>5.7</strong></td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-3B</td> <td class="tg-0lax">6.6</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-7B</td> <td class="tg-0lax">5.8</td> </tr> <tr> <td class="tg-9j4x" colspan="3">S2TT</td> </tr> <tr> <td class="tg-0lax" rowspan="9">CoVoST2<br>en-de | de-en | en-zh | zh-en</td> <td class="tg-0lax">SALMONN</td> <td class="tg-0lax">18.6|-|33.1|-</td> </tr> <tr> <td class="tg-0lax">SpeechLLaMA</td> <td class="tg-0lax">-|27.1|-|12.3</td> </tr> <tr> <td class="tg-0lax">BLSP</td> <td class="tg-0lax">14.1|-|-|-</td> </tr> <tr> <td class="tg-0lax">MiniCPM-o</td> <td class="tg-0lax">-|-|<strong>48.2</strong>|27.2</td> </tr> <tr> <td class="tg-0lax">MinMo</td> <td class="tg-0lax">-|<strong>39.9</strong>|46.7|26.0</td> </tr> <tr> <td class="tg-0lax">Qwen-Audio</td> <td class="tg-0lax">25.1|33.9|41.5|15.7</td> </tr> <tr> <td class="tg-0lax">Qwen2-Audio</td> <td class="tg-0lax">29.9|35.2|45.2|24.4</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-3B</td> <td class="tg-0lax">28.3|38.1|41.4|26.6</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-7B</td> <td class="tg-0lax"><strong>30.2</strong>|37.7|41.4|<strong>29.4</strong></td> </tr> <tr> <td class="tg-9j4x" colspan="3">SER</td> </tr> <tr> <td class="tg-0lax" rowspan="6">Meld</td> <td class="tg-0lax">WavLM-large</td> <td class="tg-0lax">0.542</td> </tr> <tr> <td class="tg-0lax">MiniCPM-o</td> <td class="tg-0lax">0.524</td> </tr> <tr> <td class="tg-0lax">Qwen-Audio</td> <td class="tg-0lax">0.557</td> </tr> <tr> <td class="tg-0lax">Qwen2-Audio</td> <td class="tg-0lax">0.553</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-3B</td> <td class="tg-0lax">0.558</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-7B</td> <td class="tg-0lax"><strong>0.570</strong></td> </tr> <tr> <td class="tg-9j4x" colspan="3">VSC</td> </tr> <tr> <td class="tg-0lax" rowspan="6">VocalSound</td> <td class="tg-0lax">CLAP</td> <td class="tg-0lax">0.495</td> </tr> <tr> <td class="tg-0lax">Pengi</td> <td class="tg-0lax">0.604</td> </tr> <tr> <td class="tg-0lax">Qwen-Audio</td> <td class="tg-0lax">0.929</td> </tr> <tr> <td class="tg-0lax">Qwen2-Audio</td> <td class="tg-0lax"><strong>0.939</strong></td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-3B</td> <td class="tg-0lax">0.936</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-7B</td> <td class="tg-0lax"><strong>0.939</strong></td> </tr> <tr> <td class="tg-9j4x" colspan="3">Music</td> </tr> <tr> <td class="tg-0lax" rowspan="3">GiantSteps Tempo</td> <td class="tg-0lax">Llark-7B</td> <td class="tg-0lax">0.86</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-3B</td> <td class="tg-0lax"><strong>0.88</strong></td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-7B</td> <td class="tg-0lax"><strong>0.88</strong></td> </tr> <tr> <td class="tg-0lax" rowspan="3">MusicCaps</td> <td class="tg-0lax">LP-MusicCaps</td> <td class="tg-0lax">0.291|0.149|0.089|<strong>0.061</strong>|0.129|0.130</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-3B</td> <td class="tg-0lax">0.325|<strong>0.163</strong>|<strong>0.093</strong>|0.057|<strong>0.132</strong>|<strong>0.229</strong></td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-7B</td> <td class="tg-0lax"><strong>0.328</strong>|0.162|0.090|0.055|0.127|0.225</td> </tr> <tr> <td class="tg-9j4x" colspan="3">Audio Reasoning</td> </tr> <tr> <td class="tg-0lax" rowspan="4">MMAU<br>Sound | Music | Speech | Avg</td> <td class="tg-0lax">Gemini-Pro-V1.5</td> <td class="tg-0lax">56.75|49.40|58.55|54.90</td> </tr> <tr> <td class="tg-0lax">Qwen2-Audio</td> <td class="tg-0lax">54.95|50.98|42.04|49.20</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-3B</td> <td class="tg-0lax"><strong>70.27</strong>|60.48|59.16|63.30</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-7B</td> <td class="tg-0lax">67.87|<strong>69.16|59.76|65.60</strong></td> </tr> <tr> <td class="tg-9j4x" colspan="3">Voice Chatting</td> </tr> <tr> <td class="tg-0lax" rowspan="9">VoiceBench<br>AlpacaEval | CommonEval | SD-QA | MMSU</td> <td class="tg-0lax">Ultravox-v0.4.1-LLaMA-3.1-8B</td> <td class="tg-0lax"><strong>4.55</strong>|3.90|53.35|47.17</td> </tr> <tr> <td class="tg-0lax">MERaLiON</td> <td class="tg-0lax">4.50|3.77|55.06|34.95</td> </tr> <tr> <td class="tg-0lax">Megrez-3B-Omni</td> <td class="tg-0lax">3.50|2.95|25.95|27.03</td> </tr> <tr> <td class="tg-0lax">Lyra-Base</td> <td class="tg-0lax">3.85|3.50|38.25|49.74</td> </tr> <tr> <td class="tg-0lax">MiniCPM-o</td> <td class="tg-0lax">4.42|<strong>4.15</strong>|50.72|54.78</td> </tr> <tr> <td class="tg-0lax">Baichuan-Omni-1.5</td> <td class="tg-0lax">4.50|4.05|43.40|57.25</td> </tr> <tr> <td class="tg-0lax">Qwen2-Audio</td> <td class="tg-0lax">3.74|3.43|35.71|35.72</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-3B</td> <td class="tg-0lax">4.32|4.00|49.37|50.23</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-7B</td> <td class="tg-0lax">4.49|3.93|<strong>55.71</strong>|<strong>61.32</strong></td> </tr> <tr> <td class="tg-0lax" rowspan="9">VoiceBench<br>OpenBookQA | IFEval | AdvBench | Avg</td> <td class="tg-0lax">Ultravox-v0.4.1-LLaMA-3.1-8B</td> <td class="tg-0lax">65.27|<strong>66.88</strong>|98.46|71.45</td> </tr> <tr> <td class="tg-0lax">MERaLiON</td> <td class="tg-0lax">27.23|62.93|94.81|62.91</td> </tr> <tr> <td class="tg-0lax">Megrez-3B-Omni</td> <td class="tg-0lax">28.35|25.71|87.69|46.25</td> </tr> <tr> <td class="tg-0lax">Lyra-Base</td> <td class="tg-0lax">72.75|36.28|59.62|57.66</td> </tr> <tr> <td class="tg-0lax">MiniCPM-o</td> <td class="tg-0lax">78.02|49.25|97.69|71.69</td> </tr> <tr> <td class="tg-0lax">Baichuan-Omni-1.5</td> <td class="tg-0lax">74.51|54.54|97.31|71.14</td> </tr> <tr> <td class="tg-0lax">Qwen2-Audio</td> <td class="tg-0lax">49.45|26.33|96.73|55.35</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-3B</td> <td class="tg-0lax">74.73|42.10|98.85|68.81</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-7B</td> <td class="tg-0lax"><strong>81.10</strong>|52.87|<strong>99.42</strong>|<strong>74.12</strong></td> </tr> </tbody></table> </details> <details> <summary>Image -> Text</summary> | Dataset | Qwen2.5-Omni-7B | Qwen2.5-Omni-3B | Other Best | Qwen2.5-VL-7B | GPT-4o-mini | |--------------------------------|--------------|------------|------------|---------------|-------------| | MMMU<sub>val</sub> | 59.2 | 53.1 | 53.9 | 58.6 | **60.0** | | MMMU-Pro<sub>overall</sub> | 36.6 | 29.7 | - | **38.3** | 37.6 | | MathVista<sub>testmini</sub> | 67.9 | 59.4 | **71.9** | 68.2 | 52.5 | | MathVision<sub>full</sub> | 25.0 | 20.8 | 23.1 | **25.1** | - | | MMBench-V1.1-EN<sub>test</sub> | 81.8 | 77.8 | 80.5 | **82.6** | 76.0 | | MMVet<sub>turbo</sub> | 66.8 | 62.1 | **67.5** | 67.1 | 66.9 | | MMStar | **64.0** | 55.7 | **64.0** | 63.9 | 54.8 | | MME<sub>sum</sub> | 2340 | 2117 | **2372** | 2347 | 2003 | | MuirBench | 59.2 | 48.0 | - | **59.2** | - | | CRPE<sub>relation</sub> | **76.5** | 73.7 | - | 76.4 | - | | RealWorldQA<sub>avg</sub> | 70.3 | 62.6 | **71.9** | 68.5 | - | | MME-RealWorld<sub>en</sub> | **61.6** | 55.6 | - | 57.4 | - | | MM-MT-Bench | 6.0 | 5.0 | - | **6.3** | - | | AI2D | 83.2 | 79.5 | **85.8** | 83.9 | - | | TextVQA<sub>val</sub> | 84.4 | 79.8 | 83.2 | **84.9** | - | | DocVQA<sub>test</sub> | 95.2 | 93.3 | 93.5 | **95.7** | - | | ChartQA<sub>test Avg</sub> | 85.3 | 82.8 | 84.9 | **87.3** | - | | OCRBench_V2<sub>en</sub> | **57.8** | 51.7 | - | 56.3 | - | | Dataset | Qwen2.5-Omni-7B | Qwen2.5-Omni-3B | Qwen2.5-VL-7B | Grounding DINO | Gemini 1.5 Pro | |--------------------------|--------------|---------------|---------------|----------------|----------------| | Refcoco<sub>val</sub> | 90.5 | 88.7 | 90.0 | **90.6** | 73.2 | | Refcoco<sub>textA</sub> | **93.5** | 91.8 | 92.5 | 93.2 | 72.9 | | Refcoco<sub>textB</sub> | 86.6 | 84.0 | 85.4 | **88.2** | 74.6 | | Refcoco+<sub>val</sub> | 85.4 | 81.1 | 84.2 | **88.2** | 62.5 | | Refcoco+<sub>textA</sub> | **91.0** | 87.5 | 89.1 | 89.0 | 63.9 | | Refcoco+<sub>textB</sub> | **79.3** | 73.2 | 76.9 | 75.9 | 65.0 | | Refcocog+<sub>val</sub> | **87.4** | 85.0 | 87.2 | 86.1 | 75.2 | | Refcocog+<sub>test</sub> | **87.9** | 85.1 | 87.2 | 87.0 | 76.2 | | ODinW | 42.4 | 39.2 | 37.3 | **55.0** | 36.7 | | PointGrounding | 66.5 | 46.2 | **67.3** | - | - | </details> <details> <summary>Video(without audio) -> Text</summary> | Dataset | Qwen2.5-Omni-7B | Qwen2.5-Omni-3B | Other Best | Qwen2.5-VL-7B | GPT-4o-mini | |-----------------------------|--------------|------------|------------|---------------|-------------| | Video-MME<sub>w/o sub</sub> | 64.3 | 62.0 | 63.9 | **65.1** | 64.8 | | Video-MME<sub>w sub</sub> | **72.4** | 68.6 | 67.9 | 71.6 | - | | MVBench | **70.3** | 68.7 | 67.2 | 69.6 | - | | EgoSchema<sub>test</sub> | **68.6** | 61.4 | 63.2 | 65.0 | - | </details> <details> <summary>Zero-shot Speech Generation</summary> <table class="tg"><thead> <tr> <th class="tg-0lax">Datasets</th> <th class="tg-0lax">Model</th> <th class="tg-0lax">Performance</th> </tr></thead> <tbody> <tr> <td class="tg-9j4x" colspan="3">Content Consistency</td> </tr> <tr> <td class="tg-0lax" rowspan="11">SEED<br>test-zh | test-en | test-hard </td> <td class="tg-0lax">Seed-TTS_ICL</td> <td class="tg-0lax">1.11 | 2.24 | 7.58</td> </tr> <tr> <td class="tg-0lax">Seed-TTS_RL</td> <td class="tg-0lax"><strong>1.00</strong> | 1.94 | <strong>6.42</strong></td> </tr> <tr> <td class="tg-0lax">MaskGCT</td> <td class="tg-0lax">2.27 | 2.62 | 10.27</td> </tr> <tr> <td class="tg-0lax">E2_TTS</td> <td class="tg-0lax">1.97 | 2.19 | -</td> </tr> <tr> <td class="tg-0lax">F5-TTS</td> <td class="tg-0lax">1.56 | <strong>1.83</strong> | 8.67</td> </tr> <tr> <td class="tg-0lax">CosyVoice 2</td> <td class="tg-0lax">1.45 | 2.57 | 6.83</td> </tr> <tr> <td class="tg-0lax">CosyVoice 2-S</td> <td class="tg-0lax">1.45 | 2.38 | 8.08</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-3B_ICL</td> <td class="tg-0lax">1.95 | 2.87 | 9.92</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-3B_RL</td> <td class="tg-0lax">1.58 | 2.51 | 7.86</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-7B_ICL</td> <td class="tg-0lax">1.70 | 2.72 | 7.97</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-7B_RL</td> <td class="tg-0lax">1.42 | 2.32 | 6.54</td> </tr> <tr> <td class="tg-9j4x" colspan="3">Speaker Similarity</td> </tr> <tr> <td class="tg-0lax" rowspan="11">SEED<br>test-zh | test-en | test-hard </td> <td class="tg-0lax">Seed-TTS_ICL</td> <td class="tg-0lax">0.796 | 0.762 | 0.776</td> </tr> <tr> <td class="tg-0lax">Seed-TTS_RL</td> <td class="tg-0lax"><strong>0.801</strong> | <strong>0.766</strong> | <strong>0.782</strong></td> </tr> <tr> <td class="tg-0lax">MaskGCT</td> <td class="tg-0lax">0.774 | 0.714 | 0.748</td> </tr> <tr> <td class="tg-0lax">E2_TTS</td> <td class="tg-0lax">0.730 | 0.710 | -</td> </tr> <tr> <td class="tg-0lax">F5-TTS</td> <td class="tg-0lax">0.741 | 0.647 | 0.713</td> </tr> <tr> <td class="tg-0lax">CosyVoice 2</td> <td class="tg-0lax">0.748 | 0.652 | 0.724</td> </tr> <tr> <td class="tg-0lax">CosyVoice 2-S</td> <td class="tg-0lax">0.753 | 0.654 | 0.732</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-3B_ICL</td> <td class="tg-0lax">0.741 | 0.635 | 0.748</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-3B_RL</td> <td class="tg-0lax">0.744 | 0.635 | 0.746</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-7B_ICL</td> <td class="tg-0lax">0.752 | 0.632 | 0.747</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-7B_RL</td> <td class="tg-0lax">0.754 | 0.641 | 0.752</td> </tr> </tbody></table> </details> <details> <summary>Text -> Text</summary> | Dataset | Qwen2.5-Omni-7B | Qwen2.5-Omni-3B | Qwen2.5-7B | Qwen2.5-3B | Qwen2-7B | Llama3.1-8B | Gemma2-9B | |-----------------------------------|-----------|------------|------------|------------|------------|-------------|-----------| | MMLU-Pro | 47.0 | 40.4 | **56.3** | 43.7 | 44.1 | 48.3 | 52.1 | | MMLU-redux | 71.0 | 60.9 | **75.4** | 64.4 | 67.3 | 67.2 | 72.8 | | LiveBench<sub>0831</sub> | 29.6 | 22.3 | **35.9** | 26.8 | 29.2 | 26.7 | 30.6 | | GPQA | 30.8 | 34.3 | **36.4** | 30.3 | 34.3 | 32.8 | 32.8 | | MATH | 71.5 | 63.6 | **75.5** | 65.9 | 52.9 | 51.9 | 44.3 | | GSM8K | 88.7 | 82.6 | **91.6** | 86.7 | 85.7 | 84.5 | 76.7 | | HumanEval | 78.7 | 70.7 | **84.8** | 74.4 | 79.9 | 72.6 | 68.9 | | MBPP | 73.2 | 70.4 | **79.2** | 72.7 | 67.2 | 69.6 | 74.9 | | MultiPL-E | 65.8 | 57.6 | **70.4** | 60.2 | 59.1 | 50.7 | 53.4 | | LiveCodeBench<sub>2305-2409</sub> | 24.6 | 16.5 | **28.7** | 19.9 | 23.9 | 8.3 | 18.9 | </details> ## Quickstart Below, we provide simple examples to show how to use Qwen2.5-Omni with 🤗 Transformers. The codes of Qwen2.5-Omni has been in the latest Hugging face transformers and we advise you to build from source with command: ``` pip uninstall transformers pip install git+https://github.com/huggingface/[email protected] pip install accelerate ``` or you might encounter the following error: ``` KeyError: 'qwen2_5_omni' ``` We offer a toolkit to help you handle various types of audio and visual input more conveniently, as if you were using an API. This includes base64, URLs, and interleaved audio, images and videos. You can install it using the following command and make sure your system has `ffmpeg` installed: ```bash # It's highly recommended to use `[decord]` feature for faster video loading. pip install qwen-omni-utils[decord] -U ``` If you are not using Linux, you might not be able to install `decord` from PyPI. In that case, you can use `pip install qwen-omni-utils -U` which will fall back to using torchvision for video processing. However, you can still [install decord from source](https://github.com/dmlc/decord?tab=readme-ov-file#install-from-source) to get decord used when loading video. ### 🤗 Transformers Usage Here we show a code snippet to show you how to use the chat model with `transformers` and `qwen_omni_utils`: ```python import soundfile as sf from transformers import Qwen2_5OmniForConditionalGeneration, Qwen2_5OmniProcessor from qwen_omni_utils import process_mm_info # default: Load the model on the available device(s) model = Qwen2_5OmniForConditionalGeneration.from_pretrained("Qwen/Qwen2.5-Omni-3B", torch_dtype="auto", device_map="auto") # We recommend enabling flash_attention_2 for better acceleration and memory saving. # model = Qwen2_5OmniForConditionalGeneration.from_pretrained( # "Qwen/Qwen2.5-Omni-3B", # torch_dtype="auto", # device_map="auto", # attn_implementation="flash_attention_2", # ) processor = Qwen2_5OmniProcessor.from_pretrained("Qwen/Qwen2.5-Omni-3B") conversation = [ { "role": "system", "content": [ {"type": "text", "text": "You are Qwen, a virtual human developed by the Qwen Team, Alibaba Group, capable of perceiving auditory and visual inputs, as well as generating text and speech."} ], }, { "role": "user", "content": [ {"type": "video", "video": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2.5-Omni/draw.mp4"}, ], }, ] # set use audio in video USE_AUDIO_IN_VIDEO = True # Preparation for inference text = processor.apply_chat_template(conversation, add_generation_prompt=True, tokenize=False) audios, images, videos = process_mm_info(conversation, use_audio_in_video=USE_AUDIO_IN_VIDEO) inputs = processor(text=text, audio=audios, images=images, videos=videos, return_tensors="pt", padding=True, use_audio_in_video=USE_AUDIO_IN_VIDEO) inputs = inputs.to(model.device).to(model.dtype) # Inference: Generation of the output text and audio text_ids, audio = model.generate(**inputs, use_audio_in_video=USE_AUDIO_IN_VIDEO) text = processor.batch_decode(text_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False) print(text) sf.write( "output.wav", audio.reshape(-1).detach().cpu().numpy(), samplerate=24000, ) ``` <details> <summary>Minimum GPU memory requirements</summary> |Model | Precision | 15(s) Video | 30(s) Video | 60(s) Video | |--------------|-----------| ------------- | ------------- | ------------------ | | Qwen-Omni-3B | FP32 | 89.10 GB | Not Recommend | Not Recommend | | Qwen-Omni-3B | BF16 | 18.38 GB | 22.43 GB | 28.22 GB | | Qwen-Omni-7B | FP32 | 93.56 GB | Not Recommend | Not Recommend | | Qwen-Omni-7B | BF16 | 31.11 GB | 41.85 GB | 60.19 GB | Note: The table above presents the theoretical minimum memory requirements for inference with `transformers` and `BF16` is test with `attn_implementation="flash_attention_2"`; however, in practice, the actual memory usage is typically at least 1.2 times higher. For more information, see the linked resource [here](https://huggingface.co/docs/accelerate/main/en/usage_guides/model_size_estimator). </details> <details> <summary>Video URL resource usage</summary> Video URL compatibility largely depends on the third-party library version. The details are in the table below. Change the backend by `FORCE_QWENVL_VIDEO_READER=torchvision` or `FORCE_QWENVL_VIDEO_READER=decord` if you prefer not to use the default one. | Backend | HTTP | HTTPS | |-------------|------|-------| | torchvision >= 0.19.0 | ✅ | ✅ | | torchvision < 0.19.0 | ❌ | ❌ | | decord | ✅ | ❌ | </details> <details> <summary>Batch inference</summary> The model can batch inputs composed of mixed samples of various types such as text, images, audio and videos as input when `return_audio=False` is set. Here is an example. ```python # Sample messages for batch inference # Conversation with video only conversation1 = [ { "role": "system", "content": [ {"type": "text", "text": "You are Qwen, a virtual human developed by the Qwen Team, Alibaba Group, capable of perceiving auditory and visual inputs, as well as generating text and speech."} ], }, { "role": "user", "content": [ {"type": "video", "video": "/path/to/video.mp4"}, ] } ] # Conversation with audio only conversation2 = [ { "role": "system", "content": [ {"type": "text", "text": "You are Qwen, a virtual human developed by the Qwen Team, Alibaba Group, capable of perceiving auditory and visual inputs, as well as generating text and speech."} ], }, { "role": "user", "content": [ {"type": "audio", "audio": "/path/to/audio.wav"}, ] } ] # Conversation with pure text conversation3 = [ { "role": "system", "content": [ {"type": "text", "text": "You are Qwen, a virtual human developed by the Qwen Team, Alibaba Group, capable of perceiving auditory and visual inputs, as well as generating text and speech."} ], }, { "role": "user", "content": "who are you?" } ] # Conversation with mixed media conversation4 = [ { "role": "system", "content": [ {"type": "text", "text": "You are Qwen, a virtual human developed by the Qwen Team, Alibaba Group, capable of perceiving auditory and visual inputs, as well as generating text and speech."} ], }, { "role": "user", "content": [ {"type": "image", "image": "/path/to/image.jpg"}, {"type": "video", "video": "/path/to/video.mp4"}, {"type": "audio", "audio": "/path/to/audio.wav"}, {"type": "text", "text": "What are the elements can you see and hear in these medias?"}, ], } ] # Combine messages for batch processing conversations = [conversation1, conversation2, conversation3, conversation4] # set use audio in video USE_AUDIO_IN_VIDEO = True # Preparation for batch inference text = processor.apply_chat_template(conversations, add_generation_prompt=True, tokenize=False) audios, images, videos = process_mm_info(conversations, use_audio_in_video=USE_AUDIO_IN_VIDEO) inputs = processor(text=text, audio=audios, images=images, videos=videos, return_tensors="pt", padding=True, use_audio_in_video=USE_AUDIO_IN_VIDEO) inputs = inputs.to(model.device).to(model.dtype) # Batch Inference text_ids = model.generate(**inputs, use_audio_in_video=USE_AUDIO_IN_VIDEO, return_audio=False) text = processor.batch_decode(text_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False) print(text) ``` </details> ### Usage Tips #### Prompt for audio output If users need audio output, the system prompt must be set as "You are Qwen, a virtual human developed by the Qwen Team, Alibaba Group, capable of perceiving auditory and visual inputs, as well as generating text and speech.", otherwise the audio output may not work as expected. ``` { "role": "system", "content": [ {"type": "text", "text": "You are Qwen, a virtual human developed by the Qwen Team, Alibaba Group, capable of perceiving auditory and visual inputs, as well as generating text and speech."} ], } ``` #### Use audio in video In the process of multimodal interaction, the videos provided by users are often accompanied by audio (such as questions about the content in the video, or sounds generated by certain events in the video). This information is conducive to the model providing a better interactive experience. So we provide the following options for users to decide whether to use audio in video. ```python # first place, in data preprocessing audios, images, videos = process_mm_info(conversations, use_audio_in_video=True) ``` ```python # second place, in model processor inputs = processor(text=text, audio=audios, images=images, videos=videos, return_tensors="pt", padding=True, use_audio_in_video=True) ``` ```python # third place, in model inference text_ids, audio = model.generate(**inputs, use_audio_in_video=True) ``` It is worth noting that during a multi-round conversation, the `use_audio_in_video` parameter in these places must be set to the same, otherwise unexpected results will occur. #### Use audio output or not The model supports both text and audio outputs, if users do not need audio outputs, they can call `model.disable_talker()` after init the model. This option will save about `~2GB` of GPU memory but the `return_audio` option for `generate` function will only allow to be set at `False`. ```python model = Qwen2_5OmniForConditionalGeneration.from_pretrained( "Qwen/Qwen2.5-Omni-3B", torch_dtype="auto", device_map="auto" ) model.disable_talker() ``` In order to obtain a flexible experience, we recommend that users can decide whether to return audio when `generate` function is called. If `return_audio` is set to `False`, the model will only return text outputs to get text responses faster. ```python model = Qwen2_5OmniForConditionalGeneration.from_pretrained( "Qwen/Qwen2.5-Omni-3B", torch_dtype="auto", device_map="auto" ) ... text_ids = model.generate(**inputs, return_audio=False) ``` #### Change voice type of output audio Qwen2.5-Omni supports the ability to change the voice of the output audio. The `"Qwen/Qwen2.5-Omni-3B"` checkpoint support two voice types as follow: | Voice Type | Gender | Description | |------------|--------|-------------| | Chelsie | Female | A honeyed, velvety voice that carries a gentle warmth and luminous clarity.| | Ethan | Male | A bright, upbeat voice with infectious energy and a warm, approachable vibe.| Users can use the `speaker` parameter of `generate` function to specify the voice type. By default, if `speaker` is not specified, the default voice type is `Chelsie`. ```python text_ids, audio = model.generate(**inputs, speaker="Chelsie") ``` ```python text_ids, audio = model.generate(**inputs, speaker="Ethan") ``` #### Flash-Attention 2 to speed up generation First, make sure to install the latest version of Flash Attention 2: ```bash pip install -U flash-attn --no-build-isolation ``` Also, you should have hardware that is compatible with FlashAttention 2. Read more about it in the official documentation of the [flash attention repository](https://github.com/Dao-AILab/flash-attention). FlashAttention-2 can only be used when a model is loaded in `torch.float16` or `torch.bfloat16`. To load and run a model using FlashAttention-2, add `attn_implementation="flash_attention_2"` when loading the model: ```python from transformers import Qwen2_5OmniForConditionalGeneration model = Qwen2_5OmniForConditionalGeneration.from_pretrained( "Qwen/Qwen2.5-Omni-3B", device_map="auto", torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2", ) ``` ## Citation If you find our paper and code useful in your research, please consider giving a star :star: and citation :pencil: :) ```BibTeX @article{Qwen2.5-Omni, title={Qwen2.5-Omni Technical Report}, author={Jin Xu, Zhifang Guo, Jinzheng He, Hangrui Hu, Ting He, Shuai Bai, Keqin Chen, Jialin Wang, Yang Fan, Kai Dang, Bin Zhang, Xiong Wang, Yunfei Chu, Junyang Lin}, journal={arXiv preprint arXiv:2503.20215}, year={2025} } ``` <br> # <span id="testllm" style="color: #7F7FFF;">🚀 If you find these models useful</span> Help me test my **AI-Powered Quantum Network Monitor Assistant** with **quantum-ready security checks**: 👉 [Quantum Network Monitor](https://readyforquantum.com/?assistant=open&utm_source=huggingface&utm_medium=referral&utm_campaign=huggingface_repo_readme) The full Open Source Code for the Quantum Network Monitor Service available at my github repos ( repos with NetworkMonitor in the name) : [Source Code Quantum Network Monitor](https://github.com/Mungert69). You will also find the code I use to quantize the models if you want to do it yourself [GGUFModelBuilder](https://github.com/Mungert69/GGUFModelBuilder) 💬 **How to test**: Choose an **AI assistant type**: - `TurboLLM` (GPT-4.1-mini) - `HugLLM` (Hugginface Open-source models) - `TestLLM` (Experimental CPU-only) ### **What I’m Testing** I’m pushing the limits of **small open-source models for AI network monitoring**, specifically: - **Function calling** against live network services - **How small can a model go** while still handling: - Automated **Nmap security scans** - **Quantum-readiness checks** - **Network Monitoring tasks** 🟡 **TestLLM** – Current experimental model (llama.cpp on 2 CPU threads on huggingface docker space): - ✅ **Zero-configuration setup** - ⏳ 30s load time (slow inference but **no API costs**) . No token limited as the cost is low. - 🔧 **Help wanted!** If you’re into **edge-device AI**, let’s collaborate! ### **Other Assistants** 🟢 **TurboLLM** – Uses **gpt-4.1-mini** : - **It performs very well but unfortunatly OpenAI charges per token. For this reason tokens usage is limited. - **Create custom cmd processors to run .net code on Quantum Network Monitor Agents** - **Real-time network diagnostics and monitoring** - **Security Audits** - **Penetration testing** (Nmap/Metasploit) 🔵 **HugLLM** – Latest Open-source models: - 🌐 Runs on Hugging Face Inference API. Performs pretty well using the lastest models hosted on Novita. ### 💡 **Example commands you could test**: 1. `"Give me info on my websites SSL certificate"` 2. `"Check if my server is using quantum safe encyption for communication"` 3. `"Run a comprehensive security audit on my server"` 4. '"Create a cmd processor to .. (what ever you want)" Note you need to install a Quantum Network Monitor Agent to run the .net code from. This is a very flexible and powerful feature. Use with caution! ### Final Word I fund the servers used to create these model files, run the Quantum Network Monitor service, and pay for inference from Novita and OpenAI—all out of my own pocket. All the code behind the model creation and the Quantum Network Monitor project is [open source](https://github.com/Mungert69). Feel free to use whatever you find helpful. If you appreciate the work, please consider [buying me a coffee](https://www.buymeacoffee.com/mahadeva) ☕. Your support helps cover service costs and allows me to raise token limits for everyone. I'm also open to job opportunities or sponsorship. Thank you! 😊
Peacemann/Qwen_QwQ-32B_LMUL
Peacemann
2025-06-15T19:36:36Z
0
0
null
[ "qwen2", "L-Mul,", "optimazation", "quantization", "text-generation", "research", "experimental", "conversational", "base_model:Qwen/QwQ-32B", "base_model:finetune:Qwen/QwQ-32B", "license:apache-2.0", "region:us" ]
text-generation
2025-06-15T19:33:06Z
--- license: apache-2.0 base_model: Qwen/QwQ-32B tags: - L-Mul, - optimazation - quantization - text-generation - research - experimental --- # Model Card for Qwen/QwQ-32B-LMUL This model is a derivative of `Qwen/QwQ-32B`, modified to use a custom attention mechanism defined by the `l_mul_attention` function from the `lmul` library. ## Model Details - **Original Model:** [Qwen/QwQ-32B](https://huggingface.co/Qwen/QwQ-32B) - **Architecture:** qwen2 - **Modification:** The `forward` method of the `Qwen2Attention` module has been replaced (monkey-patched) with a custom implementation that utilizes the `l_mul_attention` logic. ## Scientific Rationale This model was modified as part of a research project investigating alternative attention mechanisms in large language models. The `l_mul_attention` function implements a novel approach to calculating attention scores, and this model serves as a test case for evaluating its performance, efficiency, and impact on reasoning and generation tasks compared to the standard attention implementation. By releasing this model, we hope to encourage further research into non-standard attention mechanisms and provide a practical example for the community to build upon. ## How to Get Started You can use this model with the standard `transformers` library pipeline. Ensure you have `transformers`, `torch`, and `accelerate` installed. ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch # Make sure to log in with your Hugging Face token if the model is private # from huggingface_hub import login # login("your-hf-token") model_id = "YOUR_HF_USERNAME/QwQ-32B_LMUL" # Replace with your Hugging Face username device = "cuda" if torch.cuda.is_available() else "cpu" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.bfloat16, device_map="auto" ) prompt = "How many r's are in the word \"strawberry\"" messages = [ {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) generated_ids = model.generate( **model_inputs, max_new_tokens=512 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] print(response) ``` ## Intended Uses & Limitations This model is intended primarily for research purposes. Its performance on standard benchmarks has not been fully evaluated. The custom attention mechanism may introduce unexpected behaviors or limitations not present in the original `Qwen/QwQ-32B` model. ## Licensing Information This model is released under the `apache-2.0` license, which is the same license as the base model, `Qwen/QwQ-32B`. By using this model, you agree to the terms of the original license. It is your responsibility to ensure compliance with all applicable licenses and regulations.
Mungert/SmolVLM-Instruct-GGUF
Mungert
2025-06-15T19:36:32Z
1,023
2
transformers
[ "transformers", "gguf", "image-text-to-text", "en", "dataset:HuggingFaceM4/the_cauldron", "dataset:HuggingFaceM4/Docmatix", "arxiv:2504.05299", "base_model:HuggingFaceTB/SmolLM2-1.7B-Instruct", "base_model:quantized:HuggingFaceTB/SmolLM2-1.7B-Instruct", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
image-text-to-text
2025-06-09T10:05:04Z
--- library_name: transformers license: apache-2.0 datasets: - HuggingFaceM4/the_cauldron - HuggingFaceM4/Docmatix pipeline_tag: image-text-to-text language: - en base_model: - HuggingFaceTB/SmolLM2-1.7B-Instruct - google/siglip-so400m-patch14-384 --- # <span style="color: #7FFF7F;">SmolVLM-Instruct GGUF Models</span> ## <span style="color: #7F7FFF;">Model Generation Details</span> This model was generated using [llama.cpp](https://github.com/ggerganov/llama.cpp) at commit [`5787b5da`](https://github.com/ggerganov/llama.cpp/commit/5787b5da57e54dba760c2deeac1edf892e8fc450). ## <span style="color: #7FFF7F;"> Quantization beyond the IMatrix</span> Testing a new quantization method using rules to bump important layers above what the standard imatrix would use. I have found that the standard IMatrix does not perform very well at low bit quantiztion and for MOE models. So I am using llama.cpp --tensor-type to bump up selected layers. See [Layer bumping with llama.cpp](https://github.com/Mungert69/GGUFModelBuilder/blob/main/model-converter/tensor_list_builder.py) This does create larger model files but increases precision for a given model size. ### **Please provide feedback on how you find this method performs** ## **Choosing the Right Model Format** Selecting the correct model format depends on your **hardware capabilities** and **memory constraints**. ### **BF16 (Brain Float 16) – Use if BF16 acceleration is available** - A 16-bit floating-point format designed for **faster computation** while retaining good precision. - Provides **similar dynamic range** as FP32 but with **lower memory usage**. - Recommended if your hardware supports **BF16 acceleration** (check your device's specs). - Ideal for **high-performance inference** with **reduced memory footprint** compared to FP32. 📌 **Use BF16 if:** ✔ Your hardware has native **BF16 support** (e.g., newer GPUs, TPUs). ✔ You want **higher precision** while saving memory. ✔ You plan to **requantize** the model into another format. 📌 **Avoid BF16 if:** ❌ Your hardware does **not** support BF16 (it may fall back to FP32 and run slower). ❌ You need compatibility with older devices that lack BF16 optimization. --- ### **F16 (Float 16) – More widely supported than BF16** - A 16-bit floating-point **high precision** but with less of range of values than BF16. - Works on most devices with **FP16 acceleration support** (including many GPUs and some CPUs). - Slightly lower numerical precision than BF16 but generally sufficient for inference. 📌 **Use F16 if:** ✔ Your hardware supports **FP16** but **not BF16**. ✔ You need a **balance between speed, memory usage, and accuracy**. ✔ You are running on a **GPU** or another device optimized for FP16 computations. 📌 **Avoid F16 if:** ❌ Your device lacks **native FP16 support** (it may run slower than expected). ❌ You have memory limitations. --- ### **Hybrid Precision Models (e.g., `bf16_q8_0`, `f16_q4_K`) – Best of Both Worlds** These formats selectively **quantize non-essential layers** while keeping **key layers in full precision** (e.g., attention and output layers). - Named like `bf16_q8_0` (meaning **full-precision BF16 core layers + quantized Q8_0 other layers**). - Strike a **balance between memory efficiency and accuracy**, improving over fully quantized models without requiring the full memory of BF16/F16. 📌 **Use Hybrid Models if:** ✔ You need **better accuracy than quant-only models** but can’t afford full BF16/F16 everywhere. ✔ Your device supports **mixed-precision inference**. ✔ You want to **optimize trade-offs** for production-grade models on constrained hardware. 📌 **Avoid Hybrid Models if:** ❌ Your target device doesn’t support **mixed or full-precision acceleration**. ❌ You are operating under **ultra-strict memory limits** (in which case use fully quantized formats). --- ### **Quantized Models (Q4_K, Q6_K, Q8, etc.) – For CPU & Low-VRAM Inference** Quantization reduces model size and memory usage while maintaining as much accuracy as possible. - **Lower-bit models (Q4_K)** → **Best for minimal memory usage**, may have lower precision. - **Higher-bit models (Q6_K, Q8_0)** → **Better accuracy**, requires more memory. 📌 **Use Quantized Models if:** ✔ You are running inference on a **CPU** and need an optimized model. ✔ Your device has **low VRAM** and cannot load full-precision models. ✔ You want to reduce **memory footprint** while keeping reasonable accuracy. 📌 **Avoid Quantized Models if:** ❌ You need **maximum accuracy** (full-precision models are better for this). ❌ Your hardware has enough VRAM for higher-precision formats (BF16/F16). --- ### **Very Low-Bit Quantization (IQ3_XS, IQ3_S, IQ3_M, Q4_K, Q4_0)** These models are optimized for **very high memory efficiency**, making them ideal for **low-power devices** or **large-scale deployments** where memory is a critical constraint. - **IQ3_XS**: Ultra-low-bit quantization (3-bit) with **very high memory efficiency**. - **Use case**: Best for **ultra-low-memory devices** where even Q4_K is too large. - **Trade-off**: Lower accuracy compared to higher-bit quantizations. - **IQ3_S**: Small block size for **maximum memory efficiency**. - **Use case**: Best for **low-memory devices** where **IQ3_XS** is too aggressive. - **IQ3_M**: Medium block size for better accuracy than **IQ3_S**. - **Use case**: Suitable for **low-memory devices** where **IQ3_S** is too limiting. - **Q4_K**: 4-bit quantization with **block-wise optimization** for better accuracy. - **Use case**: Best for **low-memory devices** where **Q6_K** is too large. - **Q4_0**: Pure 4-bit quantization, optimized for **ARM devices**. - **Use case**: Best for **ARM-based devices** or **low-memory environments**. ### **Ultra Low-Bit Quantization (IQ1_S IQ1_M IQ2_S IQ2_M IQ2_XS IQ2_XSS)** - *Ultra-low-bit quantization (1 2-bit) with **extreme memory efficiency**. - **Use case**: Best for cases were you have to fit the model into very constrained memory - **Trade-off**: Very Low Accuracy. May not function as expected. Please test fully before using. --- ### **Summary Table: Model Format Selection** | Model Format | Precision | Memory Usage | Device Requirements | Best Use Case | |--------------------------|------------------|------------------|----------------------------------|--------------------------------------------------------------| | **BF16** | Very High | High | BF16-supported GPU/CPU | High-speed inference with reduced memory | | **F16** | High | High | FP16-supported GPU/CPU | Inference when BF16 isn’t available | | **Q4_K** | Medium-Low | Low | CPU or Low-VRAM devices | Memory-constrained inference | | **Q6_K** | Medium | Moderate | CPU with more memory | Better accuracy with quantization | | **Q8_0** | High | Moderate | GPU/CPU with moderate VRAM | Highest accuracy among quantized models | | **IQ3_XS** | Low | Very Low | Ultra-low-memory devices | Max memory efficiency, low accuracy | | **IQ3_S** | Low | Very Low | Low-memory devices | Slightly more usable than IQ3_XS | | **IQ3_M** | Low-Medium | Low | Low-memory devices | Better accuracy than IQ3_S | | **Q4_0** | Low | Low | ARM-based/embedded devices | Llama.cpp automatically optimizes for ARM inference | | **Ultra Low-Bit (IQ1/2_*)** | Very Low | Extremely Low | Tiny edge/embedded devices | Fit models in extremely tight memory; low accuracy | | **Hybrid (e.g., `bf16_q8_0`)** | Medium–High | Medium | Mixed-precision capable hardware | Balanced performance and memory, near-FP accuracy in critical layers | --- <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/SmolVLM.png" width="800" height="auto" alt="Image description"> # SmolVLM SmolVLM is a compact open multimodal model that accepts arbitrary sequences of image and text inputs to produce text outputs. Designed for efficiency, SmolVLM can answer questions about images, describe visual content, create stories grounded on multiple images, or function as a pure language model without visual inputs. Its lightweight architecture makes it suitable for on-device applications while maintaining strong performance on multimodal tasks. ## Model Summary - **Developed by:** Hugging Face 🤗 - **Model type:** Multi-modal model (image+text) - **Language(s) (NLP):** English - **License:** Apache 2.0 - **Architecture:** Based on [Idefics3](https://huggingface.co/HuggingFaceM4/Idefics3-8B-Llama3) (see technical summary) ## Resources - **Demo:** [SmolVLM Demo](https://huggingface.co/spaces/HuggingFaceTB/SmolVLM) - **Blog:** [Blog post](https://huggingface.co/blog/smolvlm) ## Uses SmolVLM can be used for inference on multimodal (image + text) tasks where the input comprises text queries along with one or more images. Text and images can be interleaved arbitrarily, enabling tasks like image captioning, visual question answering, and storytelling based on visual content. The model does not support image generation. To fine-tune SmolVLM on a specific task, you can follow the fine-tuning tutorial. <!-- todo: add link to fine-tuning tutorial --> ### Technical Summary SmolVLM leverages the lightweight SmolLM2 language model to provide a compact yet powerful multimodal experience. It introduces several changes compared to previous Idefics models: - **Image compression:** We introduce a more radical image compression compared to Idefics3 to enable the model to infer faster and use less RAM. - **Visual Token Encoding:** SmolVLM uses 81 visual tokens to encode image patches of size 384×384. Larger images are divided into patches, each encoded separately, enhancing efficiency without compromising performance. More details about the training and architecture are available in our technical report. ### How to get started You can use transformers to load, infer and fine-tune SmolVLM. ```python import torch from PIL import Image from transformers import AutoProcessor, AutoModelForVision2Seq from transformers.image_utils import load_image DEVICE = "cuda" if torch.cuda.is_available() else "cpu" # Load images image1 = load_image("https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg") image2 = load_image("https://huggingface.co/spaces/merve/chameleon-7b/resolve/main/bee.jpg") # Initialize processor and model processor = AutoProcessor.from_pretrained("HuggingFaceTB/SmolVLM-Instruct") model = AutoModelForVision2Seq.from_pretrained( "HuggingFaceTB/SmolVLM-Instruct", torch_dtype=torch.bfloat16, _attn_implementation="flash_attention_2" if DEVICE == "cuda" else "eager", ).to(DEVICE) # Create input messages messages = [ { "role": "user", "content": [ {"type": "image"}, {"type": "image"}, {"type": "text", "text": "Can you describe the two images?"} ] }, ] # Prepare inputs prompt = processor.apply_chat_template(messages, add_generation_prompt=True) inputs = processor(text=prompt, images=[image1, image2], return_tensors="pt") inputs = inputs.to(DEVICE) # Generate outputs generated_ids = model.generate(**inputs, max_new_tokens=500) generated_texts = processor.batch_decode( generated_ids, skip_special_tokens=True, ) print(generated_texts[0]) """ Assistant: The first image shows a green statue of the Statue of Liberty standing on a stone pedestal in front of a body of water. The statue is holding a torch in its right hand and a tablet in its left hand. The water is calm and there are no boats or other objects visible. The sky is clear and there are no clouds. The second image shows a bee on a pink flower. The bee is black and yellow and is collecting pollen from the flower. The flower is surrounded by green leaves. """ ``` ### Model optimizations **Precision**: For better performance, load and run the model in half-precision (`torch.float16` or `torch.bfloat16`) if your hardware supports it. ```python from transformers import AutoModelForVision2Seq import torch model = AutoModelForVision2Seq.from_pretrained( "HuggingFaceTB/SmolVLM-Instruct", torch_dtype=torch.bfloat16 ).to("cuda") ``` You can also load SmolVLM with 4/8-bit quantization using bitsandbytes, torchao or Quanto. Refer to [this page](https://huggingface.co/docs/transformers/en/main_classes/quantization) for other options. ```python from transformers import AutoModelForVision2Seq, BitsAndBytesConfig import torch quantization_config = BitsAndBytesConfig(load_in_8bit=True) model = AutoModelForVision2Seq.from_pretrained( "HuggingFaceTB/SmolVLM-Instruct", quantization_config=quantization_config, ) ``` **Vision Encoder Efficiency**: Adjust the image resolution by setting `size={"longest_edge": N*384}` when initializing the processor, where N is your desired value. The default `N=4` works well, which results in input images of size 1536×1536. For documents, `N=5` might be beneficial. Decreasing N can save GPU memory and is appropriate for lower-resolution images. This is also useful if you want to fine-tune on videos. ## Misuse and Out-of-scope Use SmolVLM is not intended for high-stakes scenarios or critical decision-making processes that affect an individual's well-being or livelihood. The model may produce content that appears factual but may not be accurate. Misuse includes, but is not limited to: - Prohibited Uses: - Evaluating or scoring individuals (e.g., in employment, education, credit) - Critical automated decision-making - Generating unreliable factual content - Malicious Activities: - Spam generation - Disinformation campaigns - Harassment or abuse - Unauthorized surveillance ### License SmolVLM is built upon [the shape-optimized SigLIP](https://huggingface.co/google/siglip-so400m-patch14-384) as image encoder and [SmolLM2](https://huggingface.co/HuggingFaceTB/SmolLM2-1.7B-Instruct) for text decoder part. We release the SmolVLM checkpoints under the Apache 2.0 license. ## Training Details ### Training Data The training data comes from [The Cauldron](https://huggingface.co/datasets/HuggingFaceM4/the_cauldron) and [Docmatix](https://huggingface.co/datasets/HuggingFaceM4/Docmatix) datasets, with emphasis on document understanding (25%) and image captioning (18%), while maintaining balanced coverage across other crucial capabilities like visual reasoning, chart comprehension, and general instruction following. <img src="https://huggingface.co/HuggingFaceTB/SmolVLM-Instruct/resolve/main/mixture_the_cauldron.png" alt="Example Image" style="width:90%;" /> ## Evaluation | Model | MMMU (val) | MathVista (testmini) | MMStar (val) | DocVQA (test) | TextVQA (val) | Min GPU RAM required (GB) | |-------------------|------------|----------------------|--------------|---------------|---------------|---------------------------| | SmolVLM | 38.8 | 44.6 | 42.1 | 81.6 | 72.7 | 5.02 | | Qwen-VL 2B | 41.1 | 47.8 | 47.5 | 90.1 | 79.7 | 13.70 | | InternVL2 2B | 34.3 | 46.3 | 49.8 | 86.9 | 73.4 | 10.52 | | PaliGemma 3B 448px| 34.9 | 28.7 | 48.3 | 32.2 | 56.0 | 6.72 | | moondream2 | 32.4 | 24.3 | 40.3 | 70.5 | 65.2 | 3.87 | | MiniCPM-V-2 | 38.2 | 39.8 | 39.1 | 71.9 | 74.1 | 7.88 | | MM1.5 1B | 35.8 | 37.2 | 0.0 | 81.0 | 72.5 | NaN | # Citation information You can cite us in the following way: ```bibtex @article{marafioti2025smolvlm, title={SmolVLM: Redefining small and efficient multimodal models}, author={Andrés Marafioti and Orr Zohar and Miquel Farré and Merve Noyan and Elie Bakouch and Pedro Cuenca and Cyril Zakka and Loubna Ben Allal and Anton Lozhkov and Nouamane Tazi and Vaibhav Srivastav and Joshua Lochner and Hugo Larcher and Mathieu Morlon and Lewis Tunstall and Leandro von Werra and Thomas Wolf}, journal={arXiv preprint arXiv:2504.05299}, year={2025} } ``` # <span id="testllm" style="color: #7F7FFF;">🚀 If you find these models useful</span> Help me test my **AI-Powered Quantum Network Monitor Assistant** with **quantum-ready security checks**: 👉 [Quantum Network Monitor](https://readyforquantum.com/?assistant=open&utm_source=huggingface&utm_medium=referral&utm_campaign=huggingface_repo_readme) The full Open Source Code for the Quantum Network Monitor Service available at my github repos ( repos with NetworkMonitor in the name) : [Source Code Quantum Network Monitor](https://github.com/Mungert69). You will also find the code I use to quantize the models if you want to do it yourself [GGUFModelBuilder](https://github.com/Mungert69/GGUFModelBuilder) 💬 **How to test**: Choose an **AI assistant type**: - `TurboLLM` (GPT-4.1-mini) - `HugLLM` (Hugginface Open-source models) - `TestLLM` (Experimental CPU-only) ### **What I’m Testing** I’m pushing the limits of **small open-source models for AI network monitoring**, specifically: - **Function calling** against live network services - **How small can a model go** while still handling: - Automated **Nmap security scans** - **Quantum-readiness checks** - **Network Monitoring tasks** 🟡 **TestLLM** – Current experimental model (llama.cpp on 2 CPU threads on huggingface docker space): - ✅ **Zero-configuration setup** - ⏳ 30s load time (slow inference but **no API costs**) . No token limited as the cost is low. - 🔧 **Help wanted!** If you’re into **edge-device AI**, let’s collaborate! ### **Other Assistants** 🟢 **TurboLLM** – Uses **gpt-4.1-mini** : - **It performs very well but unfortunatly OpenAI charges per token. For this reason tokens usage is limited. - **Create custom cmd processors to run .net code on Quantum Network Monitor Agents** - **Real-time network diagnostics and monitoring** - **Security Audits** - **Penetration testing** (Nmap/Metasploit) 🔵 **HugLLM** – Latest Open-source models: - 🌐 Runs on Hugging Face Inference API. Performs pretty well using the lastest models hosted on Novita. ### 💡 **Example commands you could test**: 1. `"Give me info on my websites SSL certificate"` 2. `"Check if my server is using quantum safe encyption for communication"` 3. `"Run a comprehensive security audit on my server"` 4. '"Create a cmd processor to .. (what ever you want)" Note you need to install a Quantum Network Monitor Agent to run the .net code from. This is a very flexible and powerful feature. Use with caution! ### Final Word I fund the servers used to create these model files, run the Quantum Network Monitor service, and pay for inference from Novita and OpenAI—all out of my own pocket. All the code behind the model creation and the Quantum Network Monitor project is [open source](https://github.com/Mungert69). Feel free to use whatever you find helpful. If you appreciate the work, please consider [buying me a coffee](https://www.buymeacoffee.com/mahadeva) ☕. Your support helps cover service costs and allows me to raise token limits for everyone. I'm also open to job opportunities or sponsorship. Thank you! 😊
Mungert/Qwen3-Reranker-0.6B-GGUF
Mungert
2025-06-15T19:36:22Z
1,207
2
transformers
[ "transformers", "gguf", "base_model:Qwen/Qwen3-0.6B-Base", "base_model:quantized:Qwen/Qwen3-0.6B-Base", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-06-06T10:49:55Z
--- license: apache-2.0 base_model: - Qwen/Qwen3-0.6B-Base library_name: transformers --- # <span style="color: #7FFF7F;">Qwen3-Reranker-0.6B GGUF Models</span> ## <span style="color: #7F7FFF;">Model Generation Details</span> This model was generated using [llama.cpp](https://github.com/ggerganov/llama.cpp) at commit [`d17a809e`](https://github.com/ggerganov/llama.cpp/commit/d17a809ef0af09b16625e991a76f6fe80d9c332e). ## **Choosing the Right Model Format** Selecting the correct model format depends on your **hardware capabilities** and **memory constraints**. ### **BF16 (Brain Float 16) – Use if BF16 acceleration is available** - A 16-bit floating-point format designed for **faster computation** while retaining good precision. - Provides **similar dynamic range** as FP32 but with **lower memory usage**. - Recommended if your hardware supports **BF16 acceleration** (check your device's specs). - Ideal for **high-performance inference** with **reduced memory footprint** compared to FP32. 📌 **Use BF16 if:** ✔ Your hardware has native **BF16 support** (e.g., newer GPUs, TPUs). ✔ You want **higher precision** while saving memory. ✔ You plan to **requantize** the model into another format. 📌 **Avoid BF16 if:** ❌ Your hardware does **not** support BF16 (it may fall back to FP32 and run slower). ❌ You need compatibility with older devices that lack BF16 optimization. --- ### **F16 (Float 16) – More widely supported than BF16** - A 16-bit floating-point **high precision** but with less of range of values than BF16. - Works on most devices with **FP16 acceleration support** (including many GPUs and some CPUs). - Slightly lower numerical precision than BF16 but generally sufficient for inference. 📌 **Use F16 if:** ✔ Your hardware supports **FP16** but **not BF16**. ✔ You need a **balance between speed, memory usage, and accuracy**. ✔ You are running on a **GPU** or another device optimized for FP16 computations. 📌 **Avoid F16 if:** ❌ Your device lacks **native FP16 support** (it may run slower than expected). ❌ You have memory limitations. --- ### **Quantized Models (Q4_K, Q6_K, Q8, etc.) – For CPU & Low-VRAM Inference** Quantization reduces model size and memory usage while maintaining as much accuracy as possible. - **Lower-bit models (Q4_K)** → **Best for minimal memory usage**, may have lower precision. - **Higher-bit models (Q6_K, Q8_0)** → **Better accuracy**, requires more memory. 📌 **Use Quantized Models if:** ✔ You are running inference on a **CPU** and need an optimized model. ✔ Your device has **low VRAM** and cannot load full-precision models. ✔ You want to reduce **memory footprint** while keeping reasonable accuracy. 📌 **Avoid Quantized Models if:** ❌ You need **maximum accuracy** (full-precision models are better for this). ❌ Your hardware has enough VRAM for higher-precision formats (BF16/F16). --- ### **Very Low-Bit Quantization (IQ3_XS, IQ3_S, IQ3_M, Q4_K, Q4_0)** These models are optimized for **extreme memory efficiency**, making them ideal for **low-power devices** or **large-scale deployments** where memory is a critical constraint. - **IQ3_XS**: Ultra-low-bit quantization (3-bit) with **extreme memory efficiency**. - **Use case**: Best for **ultra-low-memory devices** where even Q4_K is too large. - **Trade-off**: Lower accuracy compared to higher-bit quantizations. - **IQ3_S**: Small block size for **maximum memory efficiency**. - **Use case**: Best for **low-memory devices** where **IQ3_XS** is too aggressive. - **IQ3_M**: Medium block size for better accuracy than **IQ3_S**. - **Use case**: Suitable for **low-memory devices** where **IQ3_S** is too limiting. - **Q4_K**: 4-bit quantization with **block-wise optimization** for better accuracy. - **Use case**: Best for **low-memory devices** where **Q6_K** is too large. - **Q4_0**: Pure 4-bit quantization, optimized for **ARM devices**. - **Use case**: Best for **ARM-based devices** or **low-memory environments**. --- ### **Summary Table: Model Format Selection** | Model Format | Precision | Memory Usage | Device Requirements | Best Use Case | |--------------|------------|---------------|----------------------|---------------| | **BF16** | Highest | High | BF16-supported GPU/CPUs | High-speed inference with reduced memory | | **F16** | High | High | FP16-supported devices | GPU inference when BF16 isn't available | | **Q4_K** | Medium Low | Low | CPU or Low-VRAM devices | Best for memory-constrained environments | | **Q6_K** | Medium | Moderate | CPU with more memory | Better accuracy while still being quantized | | **Q8_0** | High | Moderate | CPU or GPU with enough VRAM | Best accuracy among quantized models | | **IQ3_XS** | Very Low | Very Low | Ultra-low-memory devices | Extreme memory efficiency and low accuracy | | **Q4_0** | Low | Low | ARM or low-memory devices | llama.cpp can optimize for ARM devices | --- # <span id="testllm" style="color: #7F7FFF;">🚀 If you find these models useful</span> ❤ **Please click "Like" if you find this useful!** Help me test my **AI-Powered Network Monitor Assistant** with **quantum-ready security checks**: 👉 [Quantum Network Monitor](https://readyforquantum.com/dashboard/?assistant=open&utm_source=huggingface&utm_medium=referral&utm_campaign=huggingface_repo_readme) 💬 **How to test**: Choose an **AI assistant type**: - `TurboLLM` (GPT-4o-mini) - `HugLLM` (Hugginface Open-source) - `TestLLM` (Experimental CPU-only) ### **What I’m Testing** I’m pushing the limits of **small open-source models for AI network monitoring**, specifically: - **Function calling** against live network services - **How small can a model go** while still handling: - Automated **Nmap scans** - **Quantum-readiness checks** - **Network Monitoring tasks** 🟡 **TestLLM** – Current experimental model (llama.cpp on 2 CPU threads): - ✅ **Zero-configuration setup** - ⏳ 30s load time (slow inference but **no API costs**) - 🔧 **Help wanted!** If you’re into **edge-device AI**, let’s collaborate! ### **Other Assistants** 🟢 **TurboLLM** – Uses **gpt-4o-mini** for: - **Create custom cmd processors to run .net code on Quantum Network Monitor Agents** - **Real-time network diagnostics and monitoring** - **Security Audits** - **Penetration testing** (Nmap/Metasploit) 🔵 **HugLLM** – Latest Open-source models: - 🌐 Runs on Hugging Face Inference API ### 💡 **Example commands to you could test**: 1. `"Give me info on my websites SSL certificate"` 2. `"Check if my server is using quantum safe encyption for communication"` 3. `"Run a comprehensive security audit on my server"` 4. '"Create a cmd processor to .. (what ever you want)" Note you need to install a Quantum Network Monitor Agent to run the .net code from. This is a very flexible and powerful feature. Use with caution! ### Final Word I fund the servers used to create these model files, run the Quantum Network Monitor service, and pay for inference from Novita and OpenAI—all out of my own pocket. All the code behind the model creation and the Quantum Network Monitor project is [open source](https://github.com/Mungert69). Feel free to use whatever you find helpful. If you appreciate the work, please consider [buying me a coffee](https://www.buymeacoffee.com/mahadeva) ☕. Your support helps cover service costs and allows me to raise token limits for everyone. I'm also open to job opportunities or sponsorship. Thank you! 😊 # Qwen3-Reranker-0.6B <p align="center"> <img src="https://qianwen-res.oss-accelerate-overseas.aliyuncs.com/logo_qwen3.png" width="400"/> <p> ## Highlights The Qwen3 Embedding model series is the latest proprietary model of the Qwen family, specifically designed for text embedding and ranking tasks. Building upon the dense foundational models of the Qwen3 series, it provides a comprehensive range of text embeddings and reranking models in various sizes (0.6B, 4B, and 8B). This series inherits the exceptional multilingual capabilities, long-text understanding, and reasoning skills of its foundational model. The Qwen3 Embedding series represents significant advancements in multiple text embedding and ranking tasks, including text retrieval, code retrieval, text classification, text clustering, and bitext mining. **Exceptional Versatility**: The embedding model has achieved state-of-the-art performance across a wide range of downstream application evaluations. The 8B size embedding model ranks No.1 in the MTEB multilingual leaderboard (as of June 5, 2025, score 70.58), while the reranking model excels in various text retrieval scenarios. **Comprehensive Flexibility**: The Qwen3 Embedding series offers a full spectrum of sizes (from 0.6B to 8B) for both embedding and reranking models, catering to diverse use cases that prioritize efficiency and effectiveness. Developers can seamlessly combine these two modules. Additionally, the embedding model allows for flexible vector definitions across all dimensions, and both embedding and reranking models support user-defined instructions to enhance performance for specific tasks, languages, or scenarios. **Multilingual Capability**: The Qwen3 Embedding series offer support for over 100 languages, thanks to the multilingual capabilites of Qwen3 models. This includes various programming languages, and provides robust multilingual, cross-lingual, and code retrieval capabilities. ## Model Overview **Qwen3-Reranker-0.6B** has the following features: - Model Type: Text Reranking - Supported Languages: 100+ Languages - Number of Paramaters: 0.6B - Context Length: 32k For more details, including benchmark evaluation, hardware requirements, and inference performance, please refer to our [blog](https://qwenlm.github.io/blog/qwen3-embedding/), [GitHub](https://github.com/QwenLM/Qwen3-Embedding). ## Qwen3 Embedding Series Model list | Model Type | Models | Size | Layers | Sequence Length | Embedding Dimension | MRL Support | Instruction Aware | |------------------|----------------------|------|--------|-----------------|---------------------|-------------|----------------| | Text Embedding | [Qwen3-Embedding-0.6B](https://huggingface.co/Qwen/Qwen3-Embedding-0.6B) | 0.6B | 28 | 32K | 1024 | Yes | Yes | | Text Embedding | [Qwen3-Embedding-4B](https://huggingface.co/Qwen/Qwen3-Embedding-4B) | 4B | 36 | 32K | 2560 | Yes | Yes | | Text Embedding | [Qwen3-Embedding-8B](https://huggingface.co/Qwen/Qwen3-Embedding-8B) | 8B | 36 | 32K | 4096 | Yes | Yes | | Text Reranking | [Qwen3-Reranker-0.6B](https://huggingface.co/Qwen/Qwen3-Reranker-0.6B) | 0.6B | 28 | 32K | - | - | Yes | | Text Reranking | [Qwen3-Reranker-4B](https://huggingface.co/Qwen/Qwen3-Reranker-4B) | 4B | 36 | 32K | - | - | Yes | | Text Reranking | [Qwen3-Reranker-8B](https://huggingface.co/Qwen/Qwen3-Reranker-8B) | 8B | 36 | 32K | - | - | Yes | > **Note**: > - `MRL Support` indicates whether the embedding model supports custom dimensions for the final embedding. > - `Instruction Aware` notes whether the embedding or reranking model supports customizing the input instruction according to different tasks. > - Our evaluation indicates that, for most downstream tasks, using instructions (instruct) typically yields an improvement of 1% to 5% compared to not using them. Therefore, we recommend that developers create tailored instructions specific to their tasks and scenarios. In multilingual contexts, we also advise users to write their instructions in English, as most instructions utilized during the model training process were originally written in English. ## Usage With Transformers versions earlier than 4.51.0, you may encounter the following error: ``` KeyError: 'qwen3' ``` ### Transformers Usage ```python # Requires transformers>=4.51.0 import torch from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM def format_instruction(instruction, query, doc): if instruction is None: instruction = 'Given a web search query, retrieve relevant passages that answer the query' output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc) return output def process_inputs(pairs): inputs = tokenizer( pairs, padding=False, truncation='longest_first', return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens) ) for i, ele in enumerate(inputs['input_ids']): inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length) for key in inputs: inputs[key] = inputs[key].to(model.device) return inputs @torch.no_grad() def compute_logits(inputs, **kwargs): batch_scores = model(**inputs).logits[:, -1, :] true_vector = batch_scores[:, token_true_id] false_vector = batch_scores[:, token_false_id] batch_scores = torch.stack([false_vector, true_vector], dim=1) batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1) scores = batch_scores[:, 1].exp().tolist() return scores tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-0.6B", padding_side='left') model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-0.6B").eval() # We recommend enabling flash_attention_2 for better acceleration and memory saving. # model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-0.6B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval() token_false_id = tokenizer.convert_tokens_to_ids("no") token_true_id = tokenizer.convert_tokens_to_ids("yes") max_length = 8192 prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n" suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n" prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False) suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False) task = 'Given a web search query, retrieve relevant passages that answer the query' queries = ["What is the capital of China?", "Explain gravity", ] documents = [ "The capital of China is Beijing.", "Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.", ] pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)] # Tokenize the input texts inputs = process_inputs(pairs) scores = compute_logits(inputs) print("scores: ", scores) ``` ### vLLM Usage ```python # Requires vllm>=0.8.5 import logging from typing import Dict, Optional, List import json import logging import torch from transformers import AutoTokenizer, is_torch_npu_available from vllm import LLM, SamplingParams from vllm.distributed.parallel_state import destroy_model_parallel import gc import math from vllm.inputs.data import TokensPrompt def format_instruction(instruction, query, doc): text = [ {"role": "system", "content": "Judge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\"."}, {"role": "user", "content": f"<Instruct>: {instruction}\n\n<Query>: {query}\n\n<Document>: {doc}"} ] return text def process_inputs(pairs, instruction, max_length, suffix_tokens): messages = [format_instruction(instruction, query, doc) for query, doc in pairs] messages = tokenizer.apply_chat_template( messages, tokenize=True, add_generation_prompt=False, enable_thinking=False ) messages = [ele[:max_length] + suffix_tokens for ele in messages] messages = [TokensPrompt(prompt_token_ids=ele) for ele in messages] return messages def compute_logits(model, messages, sampling_params, true_token, false_token): outputs = model.generate(messages, sampling_params, use_tqdm=False) scores = [] for i in range(len(outputs)): final_logits = outputs[i].outputs[0].logprobs[-1] token_count = len(outputs[i].outputs[0].token_ids) if true_token not in final_logits: true_logit = -10 else: true_logit = final_logits[true_token].logprob if false_token not in final_logits: false_logit = -10 else: false_logit = final_logits[false_token].logprob true_score = math.exp(true_logit) false_score = math.exp(false_logit) score = true_score / (true_score + false_score) scores.append(score) return scores number_of_gpu = torch.cuda.device_count() tokenizer = AutoTokenizer.from_pretrained('Qwen/Qwen3-Reranker-0.6B') model = LLM(model='Qwen/Qwen3-Reranker-0.6B', tensor_parallel_size=number_of_gpu, max_model_len=10000, enable_prefix_caching=True, gpu_memory_utilization=0.8) tokenizer.padding_side = "left" tokenizer.pad_token = tokenizer.eos_token suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n" max_length=8192 suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False) true_token = tokenizer("yes", add_special_tokens=False).input_ids[0] false_token = tokenizer("no", add_special_tokens=False).input_ids[0] sampling_params = SamplingParams(temperature=0, max_tokens=1, logprobs=20, allowed_token_ids=[true_token, false_token], ) task = 'Given a web search query, retrieve relevant passages that answer the query' queries = ["What is the capital of China?", "Explain gravity", ] documents = [ "The capital of China is Beijing.", "Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.", ] pairs = list(zip(queries, documents)) inputs = process_inputs(pairs, task, max_length-len(suffix_tokens), suffix_tokens) scores = compute_logits(model, inputs, sampling_params, true_token, false_token) print('scores', scores) destroy_model_parallel() ``` 📌 **Tip**: We recommend that developers customize the `instruct` according to their specific scenarios, tasks, and languages. Our tests have shown that in most retrieval scenarios, not using an `instruct` on the query side can lead to a drop in retrieval performance by approximately 1% to 5%. ## Evaluation | Model | Param | MTEB-R | CMTEB-R | MMTEB-R | MLDR | MTEB-Code | FollowIR | |------------------------------------|--------|---------|---------|---------|--------|-----------|----------| | **Qwen3-Embedding-0.6B** | 0.6B | 61.82 | 71.02 | 64.64 | 50.26 | 75.41 | 5.09 | | Jina-multilingual-reranker-v2-base | 0.3B | 58.22 | 63.37 | 63.73 | 39.66 | 58.98 | -0.68 | | gte-multilingual-reranker-base | 0.3B | 59.51 | 74.08 | 59.44 | 66.33 | 54.18 | -1.64 | | BGE-reranker-v2-m3 | 0.6B | 57.03 | 72.16 | 58.36 | 59.51 | 41.38 | -0.01 | | **Qwen3-Reranker-0.6B** | 0.6B | 65.80 | 71.31 | 66.36 | 67.28 | 73.42 | 5.41 | | **Qwen3-Reranker-4B** | 1.7B | **69.76** | 75.94 | 72.74 | 69.97 | 81.20 | **14.84** | | **Qwen3-Reranker-8B** | 8B | 69.02 | **77.45** | **72.94** | **70.19** | **81.22** | 8.05 | > **Note**: > - Evaluation results for reranking models. We use the retrieval subsets of MTEB(eng, v2), MTEB(cmn, v1), MMTEB and MTEB (Code), which are MTEB-R, CMTEB-R, MMTEB-R and MTEB-Code. > - All scores are our runs based on the top-100 candidates retrieved by dense embedding model [Qwen3-Embedding-0.6B](https://huggingface.co/Qwen/Qwen3-Embedding-0.6B). ## Citation If you find our work helpful, feel free to give us a cite. ``` @misc{qwen3-embedding, title = {Qwen3-Embedding}, url = {https://qwenlm.github.io/blog/qwen3/}, author = {Qwen Team}, month = {May}, year = {2025} } ```
Mungert/llama-joycaption-beta-one-hf-llava-GGUF
Mungert
2025-06-15T19:36:02Z
3,922
3
transformers
[ "transformers", "gguf", "captioning", "image-text-to-text", "base_model:google/siglip2-so400m-patch14-384", "base_model:quantized:google/siglip2-so400m-patch14-384", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
image-text-to-text
2025-06-08T03:11:55Z
--- base_model: - meta-llama/Llama-3.1-8B-Instruct - google/siglip2-so400m-patch14-384 tags: - captioning pipeline_tag: image-text-to-text library_name: transformers --- # <span style="color: #7FFF7F;">llama-joycaption-beta-one-hf-llava GGUF Models</span> ## <span style="color: #7F7FFF;">Model Generation Details</span> This model was generated using [llama.cpp](https://github.com/ggerganov/llama.cpp) at commit [`5787b5da`](https://github.com/ggerganov/llama.cpp/commit/5787b5da57e54dba760c2deeac1edf892e8fc450). ## <span style="color: #7FFF7F;"> Quantization beyond the IMatrix</span> Testing a new quantization method using rules to bump important layers above what the standard imatrix would use. I have found that the standard IMatrix does not perform very well at low bit quantiztion and for MOE models. So I am using llama.cpp --tensor-type to bump up selected layers. See [Layer bumping with llama.cpp](https://github.com/Mungert69/GGUFModelBuilder/blob/main/model-converter/tensor_list_builder.py) This does create larger model files but increases precision for a given model size. ### **Please provide feedback on how you find this method performs** ## **Choosing the Right Model Format** Selecting the correct model format depends on your **hardware capabilities** and **memory constraints**. ### **BF16 (Brain Float 16) – Use if BF16 acceleration is available** - A 16-bit floating-point format designed for **faster computation** while retaining good precision. - Provides **similar dynamic range** as FP32 but with **lower memory usage**. - Recommended if your hardware supports **BF16 acceleration** (check your device's specs). - Ideal for **high-performance inference** with **reduced memory footprint** compared to FP32. 📌 **Use BF16 if:** ✔ Your hardware has native **BF16 support** (e.g., newer GPUs, TPUs). ✔ You want **higher precision** while saving memory. ✔ You plan to **requantize** the model into another format. 📌 **Avoid BF16 if:** ❌ Your hardware does **not** support BF16 (it may fall back to FP32 and run slower). ❌ You need compatibility with older devices that lack BF16 optimization. --- ### **F16 (Float 16) – More widely supported than BF16** - A 16-bit floating-point **high precision** but with less of range of values than BF16. - Works on most devices with **FP16 acceleration support** (including many GPUs and some CPUs). - Slightly lower numerical precision than BF16 but generally sufficient for inference. 📌 **Use F16 if:** ✔ Your hardware supports **FP16** but **not BF16**. ✔ You need a **balance between speed, memory usage, and accuracy**. ✔ You are running on a **GPU** or another device optimized for FP16 computations. 📌 **Avoid F16 if:** ❌ Your device lacks **native FP16 support** (it may run slower than expected). ❌ You have memory limitations. --- ### **Hybrid Precision Models (e.g., `bf16_q8_0`, `f16_q4_K`) – Best of Both Worlds** These formats selectively **quantize non-essential layers** while keeping **key layers in full precision** (e.g., attention and output layers). - Named like `bf16_q8_0` (meaning **full-precision BF16 core layers + quantized Q8_0 other layers**). - Strike a **balance between memory efficiency and accuracy**, improving over fully quantized models without requiring the full memory of BF16/F16. 📌 **Use Hybrid Models if:** ✔ You need **better accuracy than quant-only models** but can’t afford full BF16/F16 everywhere. ✔ Your device supports **mixed-precision inference**. ✔ You want to **optimize trade-offs** for production-grade models on constrained hardware. 📌 **Avoid Hybrid Models if:** ❌ Your target device doesn’t support **mixed or full-precision acceleration**. ❌ You are operating under **ultra-strict memory limits** (in which case use fully quantized formats). --- ### **Quantized Models (Q4_K, Q6_K, Q8, etc.) – For CPU & Low-VRAM Inference** Quantization reduces model size and memory usage while maintaining as much accuracy as possible. - **Lower-bit models (Q4_K)** → **Best for minimal memory usage**, may have lower precision. - **Higher-bit models (Q6_K, Q8_0)** → **Better accuracy**, requires more memory. 📌 **Use Quantized Models if:** ✔ You are running inference on a **CPU** and need an optimized model. ✔ Your device has **low VRAM** and cannot load full-precision models. ✔ You want to reduce **memory footprint** while keeping reasonable accuracy. 📌 **Avoid Quantized Models if:** ❌ You need **maximum accuracy** (full-precision models are better for this). ❌ Your hardware has enough VRAM for higher-precision formats (BF16/F16). --- ### **Very Low-Bit Quantization (IQ3_XS, IQ3_S, IQ3_M, Q4_K, Q4_0)** These models are optimized for **very high memory efficiency**, making them ideal for **low-power devices** or **large-scale deployments** where memory is a critical constraint. - **IQ3_XS**: Ultra-low-bit quantization (3-bit) with **very high memory efficiency**. - **Use case**: Best for **ultra-low-memory devices** where even Q4_K is too large. - **Trade-off**: Lower accuracy compared to higher-bit quantizations. - **IQ3_S**: Small block size for **maximum memory efficiency**. - **Use case**: Best for **low-memory devices** where **IQ3_XS** is too aggressive. - **IQ3_M**: Medium block size for better accuracy than **IQ3_S**. - **Use case**: Suitable for **low-memory devices** where **IQ3_S** is too limiting. - **Q4_K**: 4-bit quantization with **block-wise optimization** for better accuracy. - **Use case**: Best for **low-memory devices** where **Q6_K** is too large. - **Q4_0**: Pure 4-bit quantization, optimized for **ARM devices**. - **Use case**: Best for **ARM-based devices** or **low-memory environments**. ### **Ultra Low-Bit Quantization (IQ1_S IQ1_M IQ2_S IQ2_M IQ2_XS IQ2_XSS)** - *Ultra-low-bit quantization (1 2-bit) with **extreme memory efficiency**. - **Use case**: Best for cases were you have to fit the model into very constrained memory - **Trade-off**: Very Low Accuracy. May not function as expected. Please test fully before using. --- ### **Summary Table: Model Format Selection** | Model Format | Precision | Memory Usage | Device Requirements | Best Use Case | |--------------------------|------------------|------------------|----------------------------------|--------------------------------------------------------------| | **BF16** | Very High | High | BF16-supported GPU/CPU | High-speed inference with reduced memory | | **F16** | High | High | FP16-supported GPU/CPU | Inference when BF16 isn’t available | | **Q4_K** | Medium-Low | Low | CPU or Low-VRAM devices | Memory-constrained inference | | **Q6_K** | Medium | Moderate | CPU with more memory | Better accuracy with quantization | | **Q8_0** | High | Moderate | GPU/CPU with moderate VRAM | Highest accuracy among quantized models | | **IQ3_XS** | Low | Very Low | Ultra-low-memory devices | Max memory efficiency, low accuracy | | **IQ3_S** | Low | Very Low | Low-memory devices | Slightly more usable than IQ3_XS | | **IQ3_M** | Low-Medium | Low | Low-memory devices | Better accuracy than IQ3_S | | **Q4_0** | Low | Low | ARM-based/embedded devices | Llama.cpp automatically optimizes for ARM inference | | **Ultra Low-Bit (IQ1/2_*)** | Very Low | Extremely Low | Tiny edge/embedded devices | Fit models in extremely tight memory; low accuracy | | **Hybrid (e.g., `bf16_q8_0`)** | Medium–High | Medium | Mixed-precision capable hardware | Balanced performance and memory, near-FP accuracy in critical layers | --- # Model Card for Llama JoyCaption Beta One [Github](https://github.com/fpgaminer/joycaption) JoyCaption is an image captioning Visual Language Model (VLM) built from the ground up as a free, open, and uncensored model for the community to use in training Diffusion models. Key Features: - **Free and Open**: Always released for free, open weights, no restrictions, and just like [bigASP](https://www.reddit.com/r/StableDiffusion/comments/1dbasvx/the_gory_details_of_finetuning_sdxl_for_30m/), will come with training scripts and lots of juicy details on how it gets built. - **Uncensored**: Equal coverage of SFW and NSFW concepts. No "cylindrical shaped object with a white substance coming out on it" here. - **Diversity**: All are welcome here. Do you like digital art? Photoreal? Anime? Furry? JoyCaption is for everyone. Pains are being taken to ensure broad coverage of image styles, content, ethnicity, gender, orientation, etc. - **Minimal Filtering**: JoyCaption is trained on large swathes of images so that it can understand almost all aspects of our world. almost. Illegal content will never be tolerated in JoyCaption's training. ## Motivation Automated descriptive captions enable the training and finetuning of diffusion models on a wider range of images, since trainers are no longer required to either find images with already associated text or write the descriptions themselves. They also improve the quality of generations produced by Text-to-Image models trained on them (ref: DALL-E 3 paper). But to-date, the community has been stuck with ChatGPT, which is expensive and heavily censored; or alternative models, like CogVLM, which are weaker than ChatGPT and have abysmal performance outside of the SFW domain. I'm building JoyCaption to help fill this gap by performing near or on-par with GPT4o in captioning images, while being free, unrestricted, and open. ## How to Get Started with the Model Please see the [Github](https://github.com/fpgaminer/joycaption) for more details. Example usage: ``` import torch from PIL import Image from transformers import AutoProcessor, LlavaForConditionalGeneration IMAGE_PATH = "image.jpg" PROMPT = "Write a long descriptive caption for this image in a formal tone." MODEL_NAME = "fancyfeast/llama-joycaption-beta-one-hf-llava" # Load JoyCaption # bfloat16 is the native dtype of the LLM used in JoyCaption (Llama 3.1) # device_map=0 loads the model into the first GPU processor = AutoProcessor.from_pretrained(MODEL_NAME) llava_model = LlavaForConditionalGeneration.from_pretrained(MODEL_NAME, torch_dtype="bfloat16", device_map=0) llava_model.eval() with torch.no_grad(): # Load image image = Image.open(IMAGE_PATH) # Build the conversation convo = [ { "role": "system", "content": "You are a helpful image captioner.", }, { "role": "user", "content": PROMPT, }, ] # Format the conversation # WARNING: HF's handling of chat's on Llava models is very fragile. This specific combination of processor.apply_chat_template(), and processor() works # but if using other combinations always inspect the final input_ids to ensure they are correct. Often times you will end up with multiple <bos> tokens # if not careful, which can make the model perform poorly. convo_string = processor.apply_chat_template(convo, tokenize = False, add_generation_prompt = True) assert isinstance(convo_string, str) # Process the inputs inputs = processor(text=[convo_string], images=[image], return_tensors="pt").to('cuda') inputs['pixel_values'] = inputs['pixel_values'].to(torch.bfloat16) # Generate the captions generate_ids = llava_model.generate( **inputs, max_new_tokens=512, do_sample=True, suppress_tokens=None, use_cache=True, temperature=0.6, top_k=None, top_p=0.9, )[0] # Trim off the prompt generate_ids = generate_ids[inputs['input_ids'].shape[1]:] # Decode the caption caption = processor.tokenizer.decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False) caption = caption.strip() print(caption) ``` ## vLLM vLLM provides the highest performance inference for JoyCaption, and an OpenAI compatible API so JoyCaption can be used like any other VLMs. Example usage: ``` vllm serve fancyfeast/llama-joycaption-beta-one-hf-llava --max-model-len 4096 --enable-prefix-caching ``` VLMs are a bit finicky on vLLM, and vLLM is memory hungry, so you may have to adjust settings for your particular environment, such as forcing eager mode, adjusting max-model-len, adjusting gpu_memory_utilization, etc. # <span id="testllm" style="color: #7F7FFF;">🚀 If you find these models useful</span> Help me test my **AI-Powered Quantum Network Monitor Assistant** with **quantum-ready security checks**: 👉 [Quantum Network Monitor](https://readyforquantum.com/?assistant=open&utm_source=huggingface&utm_medium=referral&utm_campaign=huggingface_repo_readme) The full Open Source Code for the Quantum Network Monitor Service available at my github repos ( repos with NetworkMonitor in the name) : [Source Code Quantum Network Monitor](https://github.com/Mungert69). You will also find the code I use to quantize the models if you want to do it yourself [GGUFModelBuilder](https://github.com/Mungert69/GGUFModelBuilder) 💬 **How to test**: Choose an **AI assistant type**: - `TurboLLM` (GPT-4.1-mini) - `HugLLM` (Hugginface Open-source models) - `TestLLM` (Experimental CPU-only) ### **What I’m Testing** I’m pushing the limits of **small open-source models for AI network monitoring**, specifically: - **Function calling** against live network services - **How small can a model go** while still handling: - Automated **Nmap security scans** - **Quantum-readiness checks** - **Network Monitoring tasks** 🟡 **TestLLM** – Current experimental model (llama.cpp on 2 CPU threads on huggingface docker space): - ✅ **Zero-configuration setup** - ⏳ 30s load time (slow inference but **no API costs**) . No token limited as the cost is low. - 🔧 **Help wanted!** If you’re into **edge-device AI**, let’s collaborate! ### **Other Assistants** 🟢 **TurboLLM** – Uses **gpt-4.1-mini** : - **It performs very well but unfortunatly OpenAI charges per token. For this reason tokens usage is limited. - **Create custom cmd processors to run .net code on Quantum Network Monitor Agents** - **Real-time network diagnostics and monitoring** - **Security Audits** - **Penetration testing** (Nmap/Metasploit) 🔵 **HugLLM** – Latest Open-source models: - 🌐 Runs on Hugging Face Inference API. Performs pretty well using the lastest models hosted on Novita. ### 💡 **Example commands you could test**: 1. `"Give me info on my websites SSL certificate"` 2. `"Check if my server is using quantum safe encyption for communication"` 3. `"Run a comprehensive security audit on my server"` 4. '"Create a cmd processor to .. (what ever you want)" Note you need to install a Quantum Network Monitor Agent to run the .net code from. This is a very flexible and powerful feature. Use with caution! ### Final Word I fund the servers used to create these model files, run the Quantum Network Monitor service, and pay for inference from Novita and OpenAI—all out of my own pocket. All the code behind the model creation and the Quantum Network Monitor project is [open source](https://github.com/Mungert69). Feel free to use whatever you find helpful. If you appreciate the work, please consider [buying me a coffee](https://www.buymeacoffee.com/mahadeva) ☕. Your support helps cover service costs and allows me to raise token limits for everyone. I'm also open to job opportunities or sponsorship. Thank you! 😊
Mungert/medgemma-27b-text-it-GGUF
Mungert
2025-06-15T19:35:58Z
2,840
6
transformers
[ "transformers", "gguf", "medical", "clinical-reasoning", "thinking", "text-generation", "arxiv:2501.19393", "arxiv:2303.15343", "arxiv:2009.13081", "arxiv:2102.09542", "arxiv:2411.15640", "arxiv:2404.05590", "arxiv:2501.18362", "base_model:google/gemma-3-27b-pt", "base_model:quantized:google/gemma-3-27b-pt", "license:other", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
text-generation
2025-05-29T06:32:42Z
--- license: other license_name: health-ai-developer-foundations license_link: https://developers.google.com/health-ai-developer-foundations/terms library_name: transformers pipeline_tag: text-generation extra_gated_heading: Access MedGemma on Hugging Face extra_gated_prompt: >- To access MedGemma on Hugging Face, you're required to review and agree to [Health AI Developer Foundation's terms of use](https://developers.google.com/health-ai-developer-foundations/terms). To do this, please ensure you're logged in to Hugging Face and click below. Requests are processed immediately. extra_gated_button_content: Acknowledge license base_model: google/gemma-3-27b-pt tags: - medical - clinical-reasoning - thinking --- # <span style="color: #7FFF7F;">medgemma-27b-text-it GGUF Models</span> ## <span style="color: #7F7FFF;">Model Generation Details</span> This model was generated using [llama.cpp](https://github.com/ggerganov/llama.cpp) at commit [`f5cd27b7`](https://github.com/ggerganov/llama.cpp/commit/f5cd27b71da3ac375a04a41643d14fc779a8057b). ## <span style="color: #7FFF7F;">Ultra-Low-Bit Quantization with IQ-DynamicGate (1-2 bit)</span> Our latest quantization method introduces **precision-adaptive quantization** for ultra-low-bit models (1-2 bit), with benchmark-proven improvements on **Llama-3-8B**. This approach uses layer-specific strategies to preserve accuracy while maintaining extreme memory efficiency. ### **Benchmark Context** All tests conducted on **Llama-3-8B-Instruct** using: - Standard perplexity evaluation pipeline - 2048-token context window - Same prompt set across all quantizations ### **Method** - **Dynamic Precision Allocation**: - First/Last 25% of layers → IQ4_XS (selected layers) - Middle 50% → IQ2_XXS/IQ3_S (increase efficiency) - **Critical Component Protection**: - Embeddings/output layers use Q5_K - Reduces error propagation by 38% vs standard 1-2bit ### **Quantization Performance Comparison (Llama-3-8B)** | Quantization | Standard PPL | DynamicGate PPL | Δ PPL | Std Size | DG Size | Δ Size | Std Speed | DG Speed | |--------------|--------------|------------------|---------|----------|---------|--------|-----------|----------| | IQ2_XXS | 11.30 | 9.84 | -12.9% | 2.5G | 2.6G | +0.1G | 234s | 246s | | IQ2_XS | 11.72 | 11.63 | -0.8% | 2.7G | 2.8G | +0.1G | 242s | 246s | | IQ2_S | 14.31 | 9.02 | -36.9% | 2.7G | 2.9G | +0.2G | 238s | 244s | | IQ1_M | 27.46 | 15.41 | -43.9% | 2.2G | 2.5G | +0.3G | 206s | 212s | | IQ1_S | 53.07 | 32.00 | -39.7% | 2.1G | 2.4G | +0.3G | 184s | 209s | **Key**: - PPL = Perplexity (lower is better) - Δ PPL = Percentage change from standard to DynamicGate - Speed = Inference time (CPU avx2, 2048 token context) - Size differences reflect mixed quantization overhead **Key Improvements:** - 🔥 **IQ1_M** shows massive 43.9% perplexity reduction (27.46 → 15.41) - 🚀 **IQ2_S** cuts perplexity by 36.9% while adding only 0.2GB - ⚡ **IQ1_S** maintains 39.7% better accuracy despite 1-bit quantization **Tradeoffs:** - All variants have modest size increases (0.1-0.3GB) - Inference speeds remain comparable (<5% difference) ### **When to Use These Models** 📌 **Fitting models into GPU VRAM** ✔ **Memory-constrained deployments** ✔ **Cpu and Edge Devices** where 1-2bit errors can be tolerated ✔ **Research** into ultra-low-bit quantization ## **Choosing the Right Model Format** Selecting the correct model format depends on your **hardware capabilities** and **memory constraints**. ### **BF16 (Brain Float 16) – Use if BF16 acceleration is available** - A 16-bit floating-point format designed for **faster computation** while retaining good precision. - Provides **similar dynamic range** as FP32 but with **lower memory usage**. - Recommended if your hardware supports **BF16 acceleration** (check your device's specs). - Ideal for **high-performance inference** with **reduced memory footprint** compared to FP32. 📌 **Use BF16 if:** ✔ Your hardware has native **BF16 support** (e.g., newer GPUs, TPUs). ✔ You want **higher precision** while saving memory. ✔ You plan to **requantize** the model into another format. 📌 **Avoid BF16 if:** ❌ Your hardware does **not** support BF16 (it may fall back to FP32 and run slower). ❌ You need compatibility with older devices that lack BF16 optimization. --- ### **F16 (Float 16) – More widely supported than BF16** - A 16-bit floating-point **high precision** but with less of range of values than BF16. - Works on most devices with **FP16 acceleration support** (including many GPUs and some CPUs). - Slightly lower numerical precision than BF16 but generally sufficient for inference. 📌 **Use F16 if:** ✔ Your hardware supports **FP16** but **not BF16**. ✔ You need a **balance between speed, memory usage, and accuracy**. ✔ You are running on a **GPU** or another device optimized for FP16 computations. 📌 **Avoid F16 if:** ❌ Your device lacks **native FP16 support** (it may run slower than expected). ❌ You have memory limitations. --- ### **Quantized Models (Q4_K, Q6_K, Q8, etc.) – For CPU & Low-VRAM Inference** Quantization reduces model size and memory usage while maintaining as much accuracy as possible. - **Lower-bit models (Q4_K)** → **Best for minimal memory usage**, may have lower precision. - **Higher-bit models (Q6_K, Q8_0)** → **Better accuracy**, requires more memory. 📌 **Use Quantized Models if:** ✔ You are running inference on a **CPU** and need an optimized model. ✔ Your device has **low VRAM** and cannot load full-precision models. ✔ You want to reduce **memory footprint** while keeping reasonable accuracy. 📌 **Avoid Quantized Models if:** ❌ You need **maximum accuracy** (full-precision models are better for this). ❌ Your hardware has enough VRAM for higher-precision formats (BF16/F16). --- ### **Very Low-Bit Quantization (IQ3_XS, IQ3_S, IQ3_M, Q4_K, Q4_0)** These models are optimized for **extreme memory efficiency**, making them ideal for **low-power devices** or **large-scale deployments** where memory is a critical constraint. - **IQ3_XS**: Ultra-low-bit quantization (3-bit) with **extreme memory efficiency**. - **Use case**: Best for **ultra-low-memory devices** where even Q4_K is too large. - **Trade-off**: Lower accuracy compared to higher-bit quantizations. - **IQ3_S**: Small block size for **maximum memory efficiency**. - **Use case**: Best for **low-memory devices** where **IQ3_XS** is too aggressive. - **IQ3_M**: Medium block size for better accuracy than **IQ3_S**. - **Use case**: Suitable for **low-memory devices** where **IQ3_S** is too limiting. - **Q4_K**: 4-bit quantization with **block-wise optimization** for better accuracy. - **Use case**: Best for **low-memory devices** where **Q6_K** is too large. - **Q4_0**: Pure 4-bit quantization, optimized for **ARM devices**. - **Use case**: Best for **ARM-based devices** or **low-memory environments**. --- ### **Summary Table: Model Format Selection** | Model Format | Precision | Memory Usage | Device Requirements | Best Use Case | |--------------|------------|---------------|----------------------|---------------| | **BF16** | Highest | High | BF16-supported GPU/CPUs | High-speed inference with reduced memory | | **F16** | High | High | FP16-supported devices | GPU inference when BF16 isn't available | | **Q4_K** | Medium Low | Low | CPU or Low-VRAM devices | Best for memory-constrained environments | | **Q6_K** | Medium | Moderate | CPU with more memory | Better accuracy while still being quantized | | **Q8_0** | High | Moderate | CPU or GPU with enough VRAM | Best accuracy among quantized models | | **IQ3_XS** | Very Low | Very Low | Ultra-low-memory devices | Extreme memory efficiency and low accuracy | | **Q4_0** | Low | Low | ARM or low-memory devices | llama.cpp can optimize for ARM devices | --- ## **Included Files & Details** ### `medgemma-27b-text-it-bf16.gguf` - Model weights preserved in **BF16**. - Use this if you want to **requantize** the model into a different format. - Best if your device supports **BF16 acceleration**. ### `medgemma-27b-text-it-f16.gguf` - Model weights stored in **F16**. - Use if your device supports **FP16**, especially if BF16 is not available. ### `medgemma-27b-text-it-bf16-q8_0.gguf` - **Output & embeddings** remain in **BF16**. - All other layers quantized to **Q8_0**. - Use if your device supports **BF16** and you want a quantized version. ### `medgemma-27b-text-it-f16-q8_0.gguf` - **Output & embeddings** remain in **F16**. - All other layers quantized to **Q8_0**. ### `medgemma-27b-text-it-q4_k.gguf` - **Output & embeddings** quantized to **Q8_0**. - All other layers quantized to **Q4_K**. - Good for **CPU inference** with limited memory. ### `medgemma-27b-text-it-q4_k_s.gguf` - Smallest **Q4_K** variant, using less memory at the cost of accuracy. - Best for **very low-memory setups**. ### `medgemma-27b-text-it-q6_k.gguf` - **Output & embeddings** quantized to **Q8_0**. - All other layers quantized to **Q6_K** . ### `medgemma-27b-text-it-q8_0.gguf` - Fully **Q8** quantized model for better accuracy. - Requires **more memory** but offers higher precision. ### `medgemma-27b-text-it-iq3_xs.gguf` - **IQ3_XS** quantization, optimized for **extreme memory efficiency**. - Best for **ultra-low-memory devices**. ### `medgemma-27b-text-it-iq3_m.gguf` - **IQ3_M** quantization, offering a **medium block size** for better accuracy. - Suitable for **low-memory devices**. ### `medgemma-27b-text-it-q4_0.gguf` - Pure **Q4_0** quantization, optimized for **ARM devices**. - Best for **low-memory environments**. - Prefer IQ4_NL for better accuracy. # <span id="testllm" style="color: #7F7FFF;">🚀 If you find these models useful</span> ❤ **Please click "Like" if you find this useful!** Help me test my **AI-Powered Network Monitor Assistant** with **quantum-ready security checks**: 👉 [Quantum Network Monitor](https://readyforquantum.com/dashboard/?assistant=open&utm_source=huggingface&utm_medium=referral&utm_campaign=huggingface_repo_readme) 💬 **How to test**: Choose an **AI assistant type**: - `TurboLLM` (GPT-4o-mini) - `HugLLM` (Hugginface Open-source) - `TestLLM` (Experimental CPU-only) ### **What I’m Testing** I’m pushing the limits of **small open-source models for AI network monitoring**, specifically: - **Function calling** against live network services - **How small can a model go** while still handling: - Automated **Nmap scans** - **Quantum-readiness checks** - **Network Monitoring tasks** 🟡 **TestLLM** – Current experimental model (llama.cpp on 2 CPU threads): - ✅ **Zero-configuration setup** - ⏳ 30s load time (slow inference but **no API costs**) - 🔧 **Help wanted!** If you’re into **edge-device AI**, let’s collaborate! ### **Other Assistants** 🟢 **TurboLLM** – Uses **gpt-4o-mini** for: - **Create custom cmd processors to run .net code on Quantum Network Monitor Agents** - **Real-time network diagnostics and monitoring** - **Security Audits** - **Penetration testing** (Nmap/Metasploit) 🔵 **HugLLM** – Latest Open-source models: - 🌐 Runs on Hugging Face Inference API ### 💡 **Example commands to you could test**: 1. `"Give me info on my websites SSL certificate"` 2. `"Check if my server is using quantum safe encyption for communication"` 3. `"Run a comprehensive security audit on my server"` 4. '"Create a cmd processor to .. (what ever you want)" Note you need to install a Quantum Network Monitor Agent to run the .net code from. This is a very flexible and powerful feature. Use with caution! ### Final Word I fund the servers used to create these model files, run the Quantum Network Monitor service, and pay for inference from Novita and OpenAI—all out of my own pocket. All the code behind the model creation and the Quantum Network Monitor project is [open source](https://github.com/Mungert69). Feel free to use whatever you find helpful. If you appreciate the work, please consider [buying me a coffee](https://www.buymeacoffee.com/mahadeva) ☕. Your support helps cover service costs and allows me to raise token limits for everyone. I'm also open to job opportunities or sponsorship. Thank you! 😊 # MedGemma model card **Model documentation:** [MedGemma](https://developers.google.com/health-ai-developer-foundations/medgemma) **Resources:** * Model on Google Cloud Model Garden: [MedGemma](https://console.cloud.google.com/vertex-ai/publishers/google/model-garden/medgemma) * Model on Hugging Face: [MedGemma](https://huggingface.co/collections/google/medgemma-release-680aade845f90bec6a3f60c4) * GitHub repository (supporting code, Colab notebooks, discussions, and issues): [MedGemma](https://github.com/google-health/medgemma) * Quick start notebook: [GitHub](https://github.com/google-health/medgemma/blob/main/notebooks/quick_start_with_hugging_face.ipynb) * Fine-tuning notebook: [GitHub](https://github.com/google-health/medgemma/blob/main/notebooks/fine_tune_with_hugging_face.ipynb) * [Patient Education Demo built using MedGemma](https://huggingface.co/spaces/google/rad_explain) * Support: See [Contact](https://developers.google.com/health-ai-developer-foundations/medgemma/get-started.md#contact) * License: The use of MedGemma is governed by the [Health AI Developer Foundations terms of use](https://developers.google.com/health-ai-developer-foundations/terms). **Author:** Google ## Model information This section describes the MedGemma model and how to use it. ### Description MedGemma is a collection of [Gemma 3](https://ai.google.dev/gemma/docs/core) variants that are trained for performance on medical text and image comprehension. Developers can use MedGemma to accelerate building healthcare-based AI applications. MedGemma currently comes in two variants: a 4B multimodal version and a 27B text-only version. MedGemma 27B has been trained exclusively on medical text and optimized for inference-time computation. MedGemma 27B is only available as an instruction-tuned model. MedGemma variants have been evaluated on a range of clinically relevant benchmarks to illustrate their baseline performance. These include both open benchmark datasets and curated datasets. Developers can fine-tune MedGemma variants for improved performance. Consult the Intended Use section below for more details. A full technical report will be available soon. ### How to use Below are some example code snippets to help you quickly get started running the model locally on GPU. If you want to use the model at scale, we recommend that you create a production version using [Model Garden](https://cloud.google.com/model-garden). First, install the Transformers library. Gemma 3 is supported starting from transformers 4.50.0. ```sh $ pip install -U transformers ``` **Run model with the `pipeline` API** ```python from transformers import pipeline import torch pipe = pipeline( "text-generation", model="google/medgemma-27b-text-it", torch_dtype=torch.bfloat16, device="cuda", ) messages = [ { "role": "system", "content": "You are a helpful medical assistant." }, { "role": "user", "content": "How do you differentiate bacterial from viral pneumonia?" } ] output = pipe(text=messages, max_new_tokens=200) print(output[0]["generated_text"][-1]["content"]) ``` **Run the model directly** ```python # pip install accelerate from transformers import AutoTokenizer, AutoModelForCausalLM import torch model_id = "google/medgemma-27b-text-it" model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.bfloat16, device_map="auto", ) tokenizer = AutoTokenizer.from_pretrained(model_id) messages = [ { "role": "system", "content": "You are a helpful medical assistant." }, { "role": "user", "content": "How do you differentiate bacterial from viral pneumonia?" } ] inputs = tokenizer.apply_chat_template( messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt", ).to(model.device) input_len = inputs["input_ids"].shape[-1] with torch.inference_mode(): generation = model.generate(**inputs, max_new_tokens=200, do_sample=False) generation = generation[0][input_len:] decoded = tokenizer.decode(generation, skip_special_tokens=True) print(decoded) ``` ### Examples See the following Colab notebooks for examples of how to use MedGemma: * To give the model a quick try, running it locally with weights from Hugging Face, see [Quick start notebook in Colab](https://colab.research.google.com/github/google-health/medgemma/blob/main/notebooks/quick_start_with_hugging_face.ipynb). Note that you will need to use Colab Enterprise to run the 27B model without quantization. * For an example of fine-tuning the model, see the [Fine-tuning notebook in Colab](https://colab.research.google.com/github/google-health/medgemma/blob/main/notebooks/fine_tune_with_hugging_face.ipynb). ### Model architecture overview The MedGemma model is built based on [Gemma 3](https://ai.google.dev/gemma/) and uses the same decoder-only transformer architecture as Gemma 3. To read more about the architecture, consult the Gemma 3 [model card](https://ai.google.dev/gemma/docs/core/model_card_3). ### Technical specifications * **Model type**: Decoder-only Transformer architecture, see the [Gemma 3 technical report](https://storage.googleapis.com/deepmind-media/gemma/Gemma3Report.pdf) * **Modalities**: **4B**: Text, vision; **27B**: Text only * **Attention mechanism**: Utilizes grouped-query attention (GQA) * **Context length**: Supports long context, at least 128K tokens * **Key publication**: Coming soon * **Model created**: May 20, 2025 * **Model version**: 1.0.0 ### Citation A technical report is coming soon. In the meantime, if you publish using this model, please cite the Hugging Face model page: ```none @misc{medgemma-hf, author = {Google}, title = {MedGemma Hugging Face} howpublished = {\url{https://huggingface.co/collections/google/medgemma-release-680aade845f90bec6a3f60c4}}, year = {2025}, note = {Accessed: [Insert Date Accessed, e.g., 2025-05-20]} } ``` ### Inputs and outputs **Input**: * Text string, such as a question or prompt * Total input length of 128K tokens **Output**: * Generated text in response to the input, such as an answer to a question, analysis of image content, or a summary of a document * Total output length of 8192 tokens ### Performance and validation MedGemma was evaluated across a range of different multimodal classification, report generation, visual question answering, and text-based tasks. ### Key performance metrics #### Text evaluations MedGemma 4B and text-only MedGemma 27B were evaluated across a range of text-only benchmarks for medical knowledge and reasoning. The MedGemma models outperform their respective base Gemma models across all tested text-only health benchmarks. | Metric | MedGemma 27B | Gemma 3 27B | MedGemma 4B | Gemma 3 4B | | :---- | :---- | :---- | :---- | :---- | | MedQA (4-op) | 89.8 (best-of-5) 87.7 (0-shot) | 74.9 | 64.4 | 50.7 | | MedMCQA | 74.2 | 62.6 | 55.7 | 45.4 | | PubMedQA | 76.8 | 73.4 | 73.4 | 68.4 | | MMLU Med (text only) | 87.0 | 83.3 | 70.0 | 67.2 | | MedXpertQA (text only) | 26.7 | 15.7 | 14.2 | 11.6 | | AfriMed-QA | 84.0 | 72.0 | 52.0 | 48.0 | For all MedGemma 27B results, [test-time scaling](https://arxiv.org/abs/2501.19393) is used to improve performance. ### Ethics and safety evaluation #### Evaluation approach Our evaluation methods include structured evaluations and internal red-teaming testing of relevant content policies. Red-teaming was conducted by a number of different teams, each with different goals and human evaluation metrics. These models were evaluated against a number of different categories relevant to ethics and safety, including: * **Child safety**: Evaluation of text-to-text and image-to-text prompts covering child safety policies, including child sexual abuse and exploitation. * **Content safety:** Evaluation of text-to-text and image-to-text prompts covering safety policies, including harassment, violence and gore, and hate speech. * **Representational harms**: Evaluation of text-to-text and image-to-text prompts covering safety policies, including bias, stereotyping, and harmful associations or inaccuracies. * **General medical harms:** Evaluation of text-to-text and image-to-text prompts covering safety policies, including information quality and harmful associations or inaccuracies. In addition to development level evaluations, we conduct "assurance evaluations" which are our "arms-length" internal evaluations for responsibility governance decision making. They are conducted separately from the model development team, to inform decision making about release. High-level findings are fed back to the model team, but prompt sets are held out to prevent overfitting and preserve the results' ability to inform decision making. Notable assurance evaluation results are reported to our Responsibility & Safety Council as part of release review. #### Evaluation results For all areas of safety testing, we saw safe levels of performance across the categories of child safety, content safety, and representational harms. All testing was conducted without safety filters to evaluate the model capabilities and behaviors. For text-to-text, image-to-text, and audio-to-text, and across both MedGemma model sizes, the model produced minimal policy violations. A limitation of our evaluations was that they included primarily English language prompts. ## Data card ### Dataset overview #### Training The base Gemma models are pre-trained on a large corpus of text and code data. MedGemma 4B utilizes a [SigLIP](https://arxiv.org/abs/2303.15343) image encoder that has been specifically pre-trained on a variety of de-identified medical data, including radiology images, histopathology images, ophthalmology images, and dermatology images. Its LLM component is trained on a diverse set of medical data, including medical text relevant to radiology images, chest-x rays, histopathology patches, ophthalmology images and dermatology images. #### Evaluation MedGemma models have been evaluated on a comprehensive set of clinically relevant benchmarks, including over 22 datasets across 5 different tasks and 6 medical image modalities. These include both open benchmark datasets and curated datasets, with a focus on expert human evaluations for tasks like CXR report generation and radiology VQA. #### Source MedGemma utilizes a combination of public and private datasets. This model was trained on diverse public datasets including MIMIC-CXR (chest X-rays and reports), Slake-VQA (multimodal medical images and questions), PAD-UFES-20 (skin lesion images and data), SCIN (dermatology images), TCGA (cancer genomics data), CAMELYON (lymph node histopathology images), PMC-OA (biomedical literature with images), and Mendeley Digital Knee X-Ray (knee X-rays). Additionally, multiple diverse proprietary datasets were licensed and incorporated (described next). ### Data Ownership and Documentation * [Mimic-CXR](https://physionet.org/content/mimic-cxr/2.1.0/): MIT Laboratory for Computational Physiology and Beth Israel Deaconess Medical Center (BIDMC). * [Slake-VQA](https://www.med-vqa.com/slake/): The Hong Kong Polytechnic University (PolyU), with collaborators including West China Hospital of Sichuan University and Sichuan Academy of Medical Sciences / Sichuan Provincial People's Hospital. * [PAD-UFES-20](https://pmc.ncbi.nlm.nih.gov/articles/PMC7479321/): Federal University of Espírito Santo (UFES), Brazil, through its Dermatological and Surgical Assistance Program (PAD). * [SCIN](https://github.com/google-research-datasets/scin): A collaboration between Google Health and Stanford Medicine. * [TCGA](https://portal.gdc.cancer.gov/) (The Cancer Genome Atlas): A joint effort of National Cancer Institute and National Human Genome Research Institute. Data from TCGA are available via the Genomic Data Commons (GDC) * [CAMELYON](https://camelyon17.grand-challenge.org/Data/): The data was collected from Radboud University Medical Center and University Medical Center Utrecht in the Netherlands. * [PMC-OA (PubMed Central Open Access Subset)](https://catalog.data.gov/dataset/pubmed-central-open-access-subset-pmc-oa): Maintained by the National Library of Medicine (NLM) and National Center for Biotechnology Information (NCBI), which are part of the NIH. * [MedQA](https://arxiv.org/pdf/2009.13081): This dataset was created by a team of researchers led by Di Jin, Eileen Pan, Nassim Oufattole, Wei-Hung Weng, Hanyi Fang, and Peter Szolovits * [Mendeley Digital Knee X-Ray](https://data.mendeley.com/datasets/t9ndx37v5h/1): This dataset is from Rani Channamma University, and is hosted on Mendeley Data. * [AfriMed-QA](https://afrimedqa.com/): This data was developed and led by multiple collaborating organizations and researchers include key contributors: Intron Health, SisonkeBiotik, BioRAMP, Georgia Institute of Technology, and MasakhaneNLP. * [VQA-RAD](https://www.nature.com/articles/sdata2018251): This dataset was created by a research team led by Jason J. Lau, Soumya Gayen, Asma Ben Abacha, and Dina Demner-Fushman and their affiliated institutions (the US National Library of Medicine and National Institutes of Health) * [MedExpQA](https://www.sciencedirect.com/science/article/pii/S0933365724001805): This dataset was created by researchers at the HiTZ Center (Basque Center for Language Technology and Artificial Intelligence). * [MedXpertQA](https://huggingface.co/datasets/TsinghuaC3I/MedXpertQA): This dataset was developed by researchers at Tsinghua University (Beijing, China) and Shanghai Artificial Intelligence Laboratory (Shanghai, China). In addition to the public datasets listed above, MedGemma was also trained on de-identified datasets licensed for research or collected internally at Google from consented participants. * Radiology dataset 1: De-identified dataset of different CT studies across body parts from a US-based radiology outpatient diagnostic center network. * Ophthalmology dataset 1: De-identified dataset of fundus images from diabetic retinopathy screening. * Dermatology dataset 1: De-identified dataset of teledermatology skin condition images (both clinical and dermatoscopic) from Colombia. * Dermatology dataset 2: De-identified dataset of skin cancer images (both clinical and dermatoscopic) from Australia. * Dermatology dataset 3: De-identified dataset of non-diseased skin images from an internal data collection effort. * Pathology dataset 1: De-identified dataset of histopathology H&E whole slide images created in collaboration with an academic research hospital and biobank in Europe. Comprises de-identified colon, prostate, and lymph nodes. * Pathology dataset 2: De-identified dataset of lung histopathology H&E and IHC whole slide images created by a commercial biobank in the United States. * Pathology dataset 3: De-identified dataset of prostate and lymph node H&E and IHC histopathology whole slide images created by a contract research organization in the United States. * Pathology dataset 4: De-identified dataset of histopathology, predominantly H\&E whole slide images created in collaboration with a large, tertiary teaching hospital in the United States. Comprises a diverse set of tissue and stain types, predominantly H&E. ### Data citation * **MIMIC-CXR** Johnson, A., Pollard, T., Mark, R., Berkowitz, S., & Horng, S. (2024). MIMIC-CXR Database (version 2.1.0). PhysioNet. https://physionet.org/content/mimic-cxr/2.1.0/ *and* Johnson, Alistair E. W., Tom J. Pollard, Seth J. Berkowitz, Nathaniel R. Greenbaum, Matthew P. Lungren, Chih-Ying Deng, Roger G. Mark, and Steven Horng. 2019. "MIMIC-CXR, a de-Identified Publicly Available Database of Chest Radiographs with Free-Text Reports." *Scientific Data 6* (1): 1–8. * **SLAKE** Liu, Bo, Li-Ming Zhan, Li Xu, Lin Ma, Yan Yang, and Xiao-Ming Wu. 2021.SLAKE: A Semantically-Labeled Knowledge-Enhanced Dataset for Medical Visual Question Answering." http://arxiv.org/abs/2102.09542. * **PAD-UEFS** Pacheco, A. G. C., Lima, G. R., Salomao, A., Krohling, B., Biral, I. P., de Angelo, G. G., Alves, F. O. G., Ju X. M., & P. R. C. (2020). PAD-UFES-20: A skin lesion dataset composed of patient data and clinical images collected from smartphones. In *Proceedings of the 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)* (pp. 1551-1558). IEEE. https://doi.org/10.1109/BIBM49941.2020.9313241 * **SCIN** Ward, Abbi, Jimmy Li, Julie Wang, Sriram Lakshminarasimhan, Ashley Carrick, Bilson Campana, Jay Hartford, et al. 2024. "Creating an Empirical Dermatology Dataset Through Crowdsourcing With Web Search Advertisements." *JAMA Network Open 7* (11): e2446615–e2446615. * **TCGA** The results shown here are in whole or part based upon data generated by the TCGA Research Network: https://www.cancer.gov/tcga. * **CAMELYON16** Ehteshami Bejnordi, Babak, Mitko Veta, Paul Johannes van Diest, Bram van Ginneken, Nico Karssemeijer, Geert Litjens, Jeroen A. W. M. van der Laak, et al. 2017. "Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer." *JAMA 318* (22): 2199–2210. * **MedQA** Jin, Di, Eileen Pan, Nassim Oufattole, Wei-Hung Weng, Hanyi Fang, and Peter Szolovits. 2020. "What Disease Does This Patient Have? A Large-Scale Open Domain Question Answering Dataset from Medical Exams." http://arxiv.org/abs/2009.13081. * **Mendeley Digital Knee X-Ray** Gornale, Shivanand; Patravali, Pooja (2020), "Digital Knee X-ray Images", Mendeley Data, V1, doi: 10.17632/t9ndx37v5h.1 * **AfrimedQA** Olatunji, Tobi, Charles Nimo, Abraham Owodunni, Tassallah Abdullahi, Emmanuel Ayodele, Mardhiyah Sanni, Chinemelu Aka, et al. 2024. "AfriMed-QA: A Pan-African, Multi-Specialty, Medical Question-Answering Benchmark Dataset." http://arxiv.org/abs/2411.15640. * **VQA-RAD** Lau, Jason J., Soumya Gayen, Asma Ben Abacha, and Dina Demner-Fushman. 2018. "A Dataset of Clinically Generated Visual Questions and Answers about Radiology Images." *Scientific Data 5* (1): 1–10. * **MedexpQA** Alonso, I., Oronoz, M., & Agerri, R. (2024). MedExpQA: Multilingual Benchmarking of Large Language Models for Medical Question Answering. *arXiv preprint arXiv:2404.05590*. Retrieved from https://arxiv.org/abs/2404.05590 * **MedXpertQA** Zuo, Yuxin, Shang Qu, Yifei Li, Zhangren Chen, Xuekai Zhu, Ermo Hua, Kaiyan Zhang, Ning Ding, and Bowen Zhou. 2025. "MedXpertQA: Benchmarking Expert-Level Medical Reasoning and Understanding." http://arxiv.org/abs/2501.18362. ### De-identification/anonymization: Google and partnerships utilize datasets that have been rigorously anonymized or de-identified to ensure the protection of individual research participants and patient privacy ## Implementation information Details about the model internals. ### Software Training was done using [JAX](https://github.com/jax-ml/jax). JAX allows researchers to take advantage of the latest generation of hardware, including TPUs, for faster and more efficient training of large models. ## Use and limitations ### Intended use MedGemma is an open multimodal generative AI model intended to be used as a starting point that enables more efficient development of downstream healthcare applications involving medical text and images. MedGemma is intended for developers in the life sciences and healthcare space. Developers are responsible for training, adapting and making meaningful changes to MedGemma to accomplish their specific intended use. MedGemma models can be fine-tuned by developers using their own proprietary data for their specific tasks or solutions. MedGemma is based on Gemma 3 and has been further trained on medical images and text. MedGemma enables further development in any medical context (image and textual), however the model was pre-trained using chest X-ray, pathology, dermatology, and fundus images. Examples of tasks within MedGemma's training include visual question answering pertaining to medical images, such as radiographs, or providing answers to textual medical questions. Full details of all the tasks MedGemma has been evaluated can be found in an upcoming technical report. ### Benefits * Provides strong baseline medical image and text comprehension for models of its size. * This strong performance makes it efficient to adapt for downstream healthcare-based use cases, compared to models of similar size without medical data pre-training. * This adaptation may involve prompt engineering, grounding, agentic orchestration or fine-tuning depending on the use case, baseline validation requirements, and desired performance characteristics. ### Limitations MedGemma is not intended to be used without appropriate validation, adaptation and/or making meaningful modification by developers for their specific use case. The outputs generated by MedGemma are not intended to directly inform clinical diagnosis, patient management decisions, treatment recommendations, or any other direct clinical practice applications. Performance benchmarks highlight baseline capabilities on relevant benchmarks, but even for image and text domains that constitute a substantial portion of training data, inaccurate model output is possible. All outputs from MedGemma should be considered preliminary and require independent verification, clinical correlation, and further investigation through established research and development methodologies. MedGemma's multimodal capabilities have been primarily evaluated on single-image tasks. MedGemma has not been evaluated in use cases that involve comprehension of multiple images. MedGemma has not been evaluated or optimized for multi-turn applications. MedGemma's training may make it more sensitive to the specific prompt used than Gemma 3. When adapting MedGemma developer should consider the following: * **Bias in validation data:** As with any research, developers should ensure that any downstream application is validated to understand performance using data that is appropriately representative of the intended use setting for the specific application (e.g., age, sex, gender, condition, imaging device, etc). * **Data contamination concerns**: When evaluating the generalization capabilities of a large model like MedGemma in a medical context, there is a risk of data contamination, where the model might have inadvertently seen related medical information during its pre-training, potentially overestimating its true ability to generalize to novel medical concepts. Developers should validate MedGemma on datasets not publicly available or otherwise made available to non-institutional researchers to mitigate this risk.
Mungert/Qwen3-4B-abliterated-GGUF
Mungert
2025-06-15T19:35:51Z
5,363
15
transformers
[ "transformers", "gguf", "arxiv:1910.09700", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-04-30T03:07:52Z
--- library_name: transformers tags: [] --- # <span style="color: #7FFF7F;">Qwen3-4B-abliterated GGUF Models</span> ## <span style="color: #7F7FFF;">Model Generation Details</span> This model was generated using [llama.cpp](https://github.com/ggerganov/llama.cpp) at commit [`19e899c`](https://github.com/ggerganov/llama.cpp/commit/19e899ce21a7c9ffcf8bb2b22269a75f6e078f8f). ## <span style="color: #7FFF7F;">Ultra-Low-Bit Quantization with IQ-DynamicGate (1-2 bit)</span> Our latest quantization method introduces **precision-adaptive quantization** for ultra-low-bit models (1-2 bit), with benchmark-proven improvements on **Llama-3-8B**. This approach uses layer-specific strategies to preserve accuracy while maintaining extreme memory efficiency. ### **Benchmark Context** All tests conducted on **Llama-3-8B-Instruct** using: - Standard perplexity evaluation pipeline - 2048-token context window - Same prompt set across all quantizations ### **Method** - **Dynamic Precision Allocation**: - First/Last 25% of layers → IQ4_XS (selected layers) - Middle 50% → IQ2_XXS/IQ3_S (increase efficiency) - **Critical Component Protection**: - Embeddings/output layers use Q5_K - Reduces error propagation by 38% vs standard 1-2bit ### **Quantization Performance Comparison (Llama-3-8B)** | Quantization | Standard PPL | DynamicGate PPL | Δ PPL | Std Size | DG Size | Δ Size | Std Speed | DG Speed | |--------------|--------------|------------------|---------|----------|---------|--------|-----------|----------| | IQ2_XXS | 11.30 | 9.84 | -12.9% | 2.5G | 2.6G | +0.1G | 234s | 246s | | IQ2_XS | 11.72 | 11.63 | -0.8% | 2.7G | 2.8G | +0.1G | 242s | 246s | | IQ2_S | 14.31 | 9.02 | -36.9% | 2.7G | 2.9G | +0.2G | 238s | 244s | | IQ1_M | 27.46 | 15.41 | -43.9% | 2.2G | 2.5G | +0.3G | 206s | 212s | | IQ1_S | 53.07 | 32.00 | -39.7% | 2.1G | 2.4G | +0.3G | 184s | 209s | **Key**: - PPL = Perplexity (lower is better) - Δ PPL = Percentage change from standard to DynamicGate - Speed = Inference time (CPU avx2, 2048 token context) - Size differences reflect mixed quantization overhead **Key Improvements:** - 🔥 **IQ1_M** shows massive 43.9% perplexity reduction (27.46 → 15.41) - 🚀 **IQ2_S** cuts perplexity by 36.9% while adding only 0.2GB - ⚡ **IQ1_S** maintains 39.7% better accuracy despite 1-bit quantization **Tradeoffs:** - All variants have modest size increases (0.1-0.3GB) - Inference speeds remain comparable (<5% difference) ### **When to Use These Models** 📌 **Fitting models into GPU VRAM** ✔ **Memory-constrained deployments** ✔ **Cpu and Edge Devices** where 1-2bit errors can be tolerated ✔ **Research** into ultra-low-bit quantization ## **Choosing the Right Model Format** Selecting the correct model format depends on your **hardware capabilities** and **memory constraints**. ### **BF16 (Brain Float 16) – Use if BF16 acceleration is available** - A 16-bit floating-point format designed for **faster computation** while retaining good precision. - Provides **similar dynamic range** as FP32 but with **lower memory usage**. - Recommended if your hardware supports **BF16 acceleration** (check your device's specs). - Ideal for **high-performance inference** with **reduced memory footprint** compared to FP32. 📌 **Use BF16 if:** ✔ Your hardware has native **BF16 support** (e.g., newer GPUs, TPUs). ✔ You want **higher precision** while saving memory. ✔ You plan to **requantize** the model into another format. 📌 **Avoid BF16 if:** ❌ Your hardware does **not** support BF16 (it may fall back to FP32 and run slower). ❌ You need compatibility with older devices that lack BF16 optimization. --- ### **F16 (Float 16) – More widely supported than BF16** - A 16-bit floating-point **high precision** but with less of range of values than BF16. - Works on most devices with **FP16 acceleration support** (including many GPUs and some CPUs). - Slightly lower numerical precision than BF16 but generally sufficient for inference. 📌 **Use F16 if:** ✔ Your hardware supports **FP16** but **not BF16**. ✔ You need a **balance between speed, memory usage, and accuracy**. ✔ You are running on a **GPU** or another device optimized for FP16 computations. 📌 **Avoid F16 if:** ❌ Your device lacks **native FP16 support** (it may run slower than expected). ❌ You have memory limitations. --- ### **Quantized Models (Q4_K, Q6_K, Q8, etc.) – For CPU & Low-VRAM Inference** Quantization reduces model size and memory usage while maintaining as much accuracy as possible. - **Lower-bit models (Q4_K)** → **Best for minimal memory usage**, may have lower precision. - **Higher-bit models (Q6_K, Q8_0)** → **Better accuracy**, requires more memory. 📌 **Use Quantized Models if:** ✔ You are running inference on a **CPU** and need an optimized model. ✔ Your device has **low VRAM** and cannot load full-precision models. ✔ You want to reduce **memory footprint** while keeping reasonable accuracy. 📌 **Avoid Quantized Models if:** ❌ You need **maximum accuracy** (full-precision models are better for this). ❌ Your hardware has enough VRAM for higher-precision formats (BF16/F16). --- ### **Very Low-Bit Quantization (IQ3_XS, IQ3_S, IQ3_M, Q4_K, Q4_0)** These models are optimized for **extreme memory efficiency**, making them ideal for **low-power devices** or **large-scale deployments** where memory is a critical constraint. - **IQ3_XS**: Ultra-low-bit quantization (3-bit) with **extreme memory efficiency**. - **Use case**: Best for **ultra-low-memory devices** where even Q4_K is too large. - **Trade-off**: Lower accuracy compared to higher-bit quantizations. - **IQ3_S**: Small block size for **maximum memory efficiency**. - **Use case**: Best for **low-memory devices** where **IQ3_XS** is too aggressive. - **IQ3_M**: Medium block size for better accuracy than **IQ3_S**. - **Use case**: Suitable for **low-memory devices** where **IQ3_S** is too limiting. - **Q4_K**: 4-bit quantization with **block-wise optimization** for better accuracy. - **Use case**: Best for **low-memory devices** where **Q6_K** is too large. - **Q4_0**: Pure 4-bit quantization, optimized for **ARM devices**. - **Use case**: Best for **ARM-based devices** or **low-memory environments**. --- ### **Summary Table: Model Format Selection** | Model Format | Precision | Memory Usage | Device Requirements | Best Use Case | |--------------|------------|---------------|----------------------|---------------| | **BF16** | Highest | High | BF16-supported GPU/CPUs | High-speed inference with reduced memory | | **F16** | High | High | FP16-supported devices | GPU inference when BF16 isn't available | | **Q4_K** | Medium Low | Low | CPU or Low-VRAM devices | Best for memory-constrained environments | | **Q6_K** | Medium | Moderate | CPU with more memory | Better accuracy while still being quantized | | **Q8_0** | High | Moderate | CPU or GPU with enough VRAM | Best accuracy among quantized models | | **IQ3_XS** | Very Low | Very Low | Ultra-low-memory devices | Extreme memory efficiency and low accuracy | | **Q4_0** | Low | Low | ARM or low-memory devices | llama.cpp can optimize for ARM devices | --- ## **Included Files & Details** ### `Qwen3-4B-abliterated-bf16.gguf` - Model weights preserved in **BF16**. - Use this if you want to **requantize** the model into a different format. - Best if your device supports **BF16 acceleration**. ### `Qwen3-4B-abliterated-f16.gguf` - Model weights stored in **F16**. - Use if your device supports **FP16**, especially if BF16 is not available. ### `Qwen3-4B-abliterated-bf16-q8_0.gguf` - **Output & embeddings** remain in **BF16**. - All other layers quantized to **Q8_0**. - Use if your device supports **BF16** and you want a quantized version. ### `Qwen3-4B-abliterated-f16-q8_0.gguf` - **Output & embeddings** remain in **F16**. - All other layers quantized to **Q8_0**. ### `Qwen3-4B-abliterated-q4_k.gguf` - **Output & embeddings** quantized to **Q8_0**. - All other layers quantized to **Q4_K**. - Good for **CPU inference** with limited memory. ### `Qwen3-4B-abliterated-q4_k_s.gguf` - Smallest **Q4_K** variant, using less memory at the cost of accuracy. - Best for **very low-memory setups**. ### `Qwen3-4B-abliterated-q6_k.gguf` - **Output & embeddings** quantized to **Q8_0**. - All other layers quantized to **Q6_K** . ### `Qwen3-4B-abliterated-q8_0.gguf` - Fully **Q8** quantized model for better accuracy. - Requires **more memory** but offers higher precision. ### `Qwen3-4B-abliterated-iq3_xs.gguf` - **IQ3_XS** quantization, optimized for **extreme memory efficiency**. - Best for **ultra-low-memory devices**. ### `Qwen3-4B-abliterated-iq3_m.gguf` - **IQ3_M** quantization, offering a **medium block size** for better accuracy. - Suitable for **low-memory devices**. ### `Qwen3-4B-abliterated-q4_0.gguf` - Pure **Q4_0** quantization, optimized for **ARM devices**. - Best for **low-memory environments**. - Prefer IQ4_NL for better accuracy. # <span id="testllm" style="color: #7F7FFF;">🚀 If you find these models useful</span> ❤ **Please click "Like" if you find this useful!** Help me test my **AI-Powered Network Monitor Assistant** with **quantum-ready security checks**: 👉 [Quantum Network Monitor](https://readyforquantum.com/dashboard) 💬 **How to test**: 1. Click the **chat icon** (bottom right on any page) 2. Choose an **AI assistant type**: - `TurboLLM` (GPT-4-mini) - `FreeLLM` (Open-source) - `TestLLM` (Experimental CPU-only) ### **What I’m Testing** I’m pushing the limits of **small open-source models for AI network monitoring**, specifically: - **Function calling** against live network services - **How small can a model go** while still handling: - Automated **Nmap scans** - **Quantum-readiness checks** - **Metasploit integration** 🟡 **TestLLM** – Current experimental model (llama.cpp on 6 CPU threads): - ✅ **Zero-configuration setup** - ⏳ 30s load time (slow inference but **no API costs**) - 🔧 **Help wanted!** If you’re into **edge-device AI**, let’s collaborate! ### **Other Assistants** 🟢 **TurboLLM** – Uses **gpt-4-mini** for: - **Real-time network diagnostics** - **Automated penetration testing** (Nmap/Metasploit) - 🔑 Get more tokens by [downloading our Quantum Network Monitor Agent](https://readyforquantum.com/download/?utm_source=huggingface&utm_medium=referral&utm_campaign=huggingface_repo_readme) 🔵 **HugLLM** – Open-source models (≈8B params): - **2x more tokens** than TurboLLM - **AI-powered log analysis** - 🌐 Runs on Hugging Face Inference API ### 💡 **Example AI Commands to Test**: 1. `"Give me info on my websites SSL certificate"` 2. `"Check if my server is using quantum safe encyption for communication"` 3. `"Run a quick Nmap vulnerability test"` 4. '"Create a cmd processor to .. (what ever you want)" Note you need to install a Quantum Network Monitor Agent to run the .net code from. This is a very flexible and powerful feature. Use with caution! ### Final word I fund the servers to create the models files, run the Quantum Network Monitor Service and Pay for Inference from Novita and OpenAI all from my own pocket. All of the code for creating the models and the work I have done with Quantum Network Monitor is [open source](https://github.com/Mungert69). Feel free to use what you find useful. Please support my work and consider [buying me a coffee](https://www.buymeacoffee.com/mahadeva) . This will help me pay for the services and increase the token limits for everyone. Thank you :) # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Yukang/Qwen2.5-3B-Open-R1-GRPO
Yukang
2025-06-15T19:35:49Z
6
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "open-r1", "trl", "grpo", "conversational", "dataset:open-r1/OpenR1-Math-220k", "arxiv:2402.03300", "base_model:Qwen/Qwen2.5-3B-Instruct", "base_model:finetune:Qwen/Qwen2.5-3B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-12T20:31:17Z
--- base_model: Qwen/Qwen2.5-3B-Instruct datasets: open-r1/OpenR1-Math-220k library_name: transformers model_name: Qwen2.5-3B-Open-R1-GRPO tags: - generated_from_trainer - open-r1 - trl - grpo licence: license --- # Model Card for Qwen2.5-3B-Open-R1-GRPO This model is a fine-tuned version of [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct) on the [open-r1/OpenR1-Math-220k](https://huggingface.co/datasets/open-r1/OpenR1-Math-220k) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="Yukang/Qwen2.5-3B-Open-R1-GRPO", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/chenyukang2020-nvidia/huggingface/runs/9wwsfr8r) This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.18.0 - Transformers: 4.52.3 - Pytorch: 2.6.0 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
Mungert/Magistral-Small-2506-GGUF
Mungert
2025-06-15T19:35:48Z
1,730
6
vllm
[ "vllm", "gguf", "en", "fr", "de", "es", "pt", "it", "ja", "ko", "ru", "zh", "ar", "fa", "id", "ms", "ne", "pl", "ro", "sr", "sv", "tr", "uk", "vi", "hi", "bn", "base_model:mistralai/Mistral-Small-3.1-24B-Instruct-2503", "base_model:quantized:mistralai/Mistral-Small-3.1-24B-Instruct-2503", "license:apache-2.0", "region:us", "imatrix", "conversational" ]
null
2025-06-12T22:37:57Z
--- language: - en - fr - de - es - pt - it - ja - ko - ru - zh - ar - fa - id - ms - ne - pl - ro - sr - sv - tr - uk - vi - hi - bn license: apache-2.0 library_name: vllm inference: false base_model: - mistralai/Mistral-Small-3.1-24B-Instruct-2503 extra_gated_description: >- If you want to learn more about how we process your personal data, please read our <a href="https://mistral.ai/terms/">Privacy Policy</a>. --- # <span style="color: #7FFF7F;">Magistral-Small-2506 GGUF Models</span> ## <span style="color: #7F7FFF;">Model Generation Details</span> This model was generated using [llama.cpp](https://github.com/ggerganov/llama.cpp) at commit [`7f4fbe51`](https://github.com/ggerganov/llama.cpp/commit/7f4fbe5183b23b6b2e25fd1ccc5d1fa8bb010cb7). --- ## <span style="color: #7FFF7F;">Quantization Beyond the IMatrix</span> I've been experimenting with a new quantization approach that selectively elevates the precision of key layers beyond what the default IMatrix configuration provides. In my testing, standard IMatrix quantization underperforms at lower bit depths, especially with Mixture of Experts (MoE) models. To address this, I'm using the `--tensor-type` option in `llama.cpp` to manually "bump" important layers to higher precision. You can see the implementation here: 👉 [Layer bumping with llama.cpp](https://github.com/Mungert69/GGUFModelBuilder/blob/main/model-converter/tensor_list_builder.py) While this does increase model file size, it significantly improves precision for a given quantization level. ### **I'd love your feedback—have you tried this? How does it perform for you?** --- <a href="https://readyforquantum.com/huggingface_gguf_selection_guide.html" style="color: #7FFF7F;"> Click here to learn more about choosing the right GGUF model format </a> --- <!--Begin Original Model Card--> # Model Card for Magistral-Small-2506 Building upon Mistral Small 3.1 (2503), **with added reasoning capabilities**, undergoing SFT from Magistral Medium traces and RL on top, it's a small, efficient reasoning model with 24B parameters. Magistral Small can be deployed locally, fitting within a single RTX 4090 or a 32GB RAM MacBook once quantized. Learn more about Magistral in our [blog post](https://mistral.ai/news/magistral/). ## Key Features - **Reasoning:** Capable of long chains of reasoning traces before providing an answer. - **Multilingual:** Supports dozens of languages, including English, French, German, Greek, Hindi, Indonesian, Italian, Japanese, Korean, Malay, Nepali, Polish, Portuguese, Romanian, Russian, Serbian, Spanish, Swedish, Turkish, Ukrainian, Vietnamese, Arabic, Bengali, Chinese, and Farsi. - **Apache 2.0 License:** Open license allowing usage and modification for both commercial and non-commercial purposes. - **Context Window:** A 128k context window, **but** performance might degrade past **40k**. Hence we recommend setting the maximum model length to 40k. ## Benchmark Results | Model | AIME24 pass@1 | AIME25 pass@1 | GPQA Diamond | Livecodebench (v5) | |-------|-------------|-------------|--------------|-------------------| | Magistral Medium | 73.59% | 64.95% | 70.83% | 59.36% | | Magistral Small | 70.68% | 62.76% | 68.18% | 55.84% | ## Sampling parameters Please make sure to use: - `top_p`: 0.95 - `temperature`: 0.7 - `max_tokens`: 40960 ## Basic Chat Template We highly recommend including the default system prompt used during RL for the best results, you can edit and customise it if needed for your specific use case. ``` <s>[SYSTEM_PROMPT]system_prompt A user will ask you to solve a task. You should first draft your thinking process (inner monologue) until you have derived the final answer. Afterwards, write a self-contained summary of your thoughts (i.e. your summary should be succinct but contain all the critical steps you needed to reach the conclusion). You should use Markdown to format your response. Write both your thoughts and summary in the same language as the task posed by the user. NEVER use \boxed{} in your response. Your thinking process must follow the template below: <think> Your thoughts or/and draft, like working through an exercise on scratch paper. Be as casual and as long as you want until you are confident to generate a correct answer. </think> Here, provide a concise summary that reflects your reasoning and presents a clear final answer to the user. Don't mention that this is a summary. Problem: [/SYSTEM_PROMPT][INST]user_message[/INST]<think> reasoning_traces </think> assistant_response</s>[INST]user_message[/INST] ``` *`system_prompt`, `user_message` and `assistant_response` are placeholders.* We invite you to choose, depending on your use case and requirements, between keeping reasoning traces during multi-turn interactions or keeping only the final assistant response. ***Please make sure to use [mistral-common](https://github.com/mistralai/mistral-common) as the source of truth*** ## Usage The model can be used with the following frameworks; ### Inference - [`vllm (recommended)`](https://github.com/vllm-project/vllm): See [below](#vllm) In addition the community has prepared quantized versions of the model that can be used with the following frameworks (*alphabetically sorted*): - [`llama.cpp`](https://github.com/ggml-org/llama.cpp): https://huggingface.co/mistralai/Magistral-Small-2506_gguf - [`lmstudio` (llama.cpp, MLX)](https://lmstudio.ai/): https://lmstudio.ai/models/mistralai/magistral-small - [`ollama`](https://ollama.com/): https://ollama.com/library/magistral - [`unsloth` (llama.cpp)](https://huggingface.co/unsloth): https://huggingface.co/unsloth/Magistral-Small-2506-GGUF ### Training Fine-tuning is possible with (*alphabetically sorted*): - [`axolotl`](https://github.com/axolotl-ai-cloud/axolotl): https://github.com/axolotl-ai-cloud/axolotl/tree/main/examples/magistral - [`unsloth`](https://github.com/unslothai/unsloth): https://docs.unsloth.ai/basics/magistral ### Other Also you can use Magistral with: - [`kaggle`](https://www.kaggle.com/models/mistral-ai/magistral-small-2506): https://www.kaggle.com/models/mistral-ai/magistral-small-2506 ### vLLM (recommended) We recommend using this model with the [vLLM library](https://github.com/vllm-project/vllm) to implement production-ready inference pipelines. **_Installation_** Make sure you install the latest [`vLLM`](https://github.com/vllm-project/vllm/) code: ``` pip install -U vllm \ --pre \ --extra-index-url https://wheels.vllm.ai/nightly ``` Doing so should automatically install [`mistral_common >= 1.6.0`](https://github.com/mistralai/mistral-common/releases/tag/v1.6.0). To check: ``` python -c "import mistral_common; print(mistral_common.__version__)" ``` You can also make use of a ready-to-go [docker image](https://github.com/vllm-project/vllm/blob/main/Dockerfile) or on the [docker hub](https://hub.docker.com/layers/vllm/vllm-openai/latest/images/sha256-de9032a92ffea7b5c007dad80b38fd44aac11eddc31c435f8e52f3b7404bbf39). Serve model as follows: ``` vllm serve mistralai/Magistral-Small-2506 --tokenizer_mode mistral --config_format mistral --load_format mistral --tool-call-parser mistral --enable-auto-tool-choice --tensor-parallel-size 2 ``` Ping model as follows: ```py from openai import OpenAI from huggingface_hub import hf_hub_download # Modify OpenAI's API key and API base to use vLLM's API server. openai_api_key = "EMPTY" openai_api_base = "http://localhost:8000/v1" TEMP = 0.7 TOP_P = 0.95 MAX_TOK = 40_960 client = OpenAI( api_key=openai_api_key, base_url=openai_api_base, ) models = client.models.list() model = models.data[0].id def load_system_prompt(repo_id: str, filename: str) -> str: file_path = hf_hub_download(repo_id=repo_id, filename=filename) with open(file_path, "r") as file: system_prompt = file.read() return system_prompt SYSTEM_PROMPT = load_system_prompt(model, "SYSTEM_PROMPT.txt") query = "Write 4 sentences, each with at least 8 words. Now make absolutely sure that every sentence has exactly one word less than the previous sentence." # or try out other queries # query = "Exactly how many days ago did the French Revolution start? Today is June 4th, 2025." # query = "Think about 5 random numbers. Verify if you can combine them with addition, multiplication, subtraction or division to 133" # query = "If it takes 30 minutes to dry 12 T-shirts in the sun, how long does it take to dry 33 T-shirts?" messages = [ {"role": "system", "content": SYSTEM_PROMPT}, {"role": "user", "content": query} ] stream = client.chat.completions.create( model=model, messages=messages, stream=True, temperature=TEMP, top_p=TOP_P, max_tokens=MAX_TOK, ) print("client: Start streaming chat completions...") printed_content = False for chunk in stream: content = None # Check the content is content if hasattr(chunk.choices[0].delta, "content"): content = chunk.choices[0].delta.content if content is not None: if not printed_content: printed_content = True print("\ncontent:", end="", flush=True) # Extract and print the content print(content, end="", flush=True) # content:<think> # Alright, I need to write 4 sentences where each one has at least 8 words and each subsequent sentence has one fewer word than the previous one. # ... # Final boxed answer (the four sentences): # \[ # \boxed{ # \begin{aligned} # &\text{1. The quick brown fox jumps over lazy dog and yells hello.} \\ # &\text{2. I saw the cat on the stair with my hat.} \\ # &\text{3. The man in the moon came down quickly today.} \\ # &\text{4. A cat sat on the mat today patiently.} # \end{aligned} # } # \] ``` <!--End Original Model Card--> --- # <span id="testllm" style="color: #7F7FFF;">🚀 If you find these models useful</span> Help me test my **AI-Powered Quantum Network Monitor Assistant** with **quantum-ready security checks**: 👉 [Quantum Network Monitor](https://readyforquantum.com/?assistant=open&utm_source=huggingface&utm_medium=referral&utm_campaign=huggingface_repo_readme) The full Open Source Code for the Quantum Network Monitor Service available at my github repos ( repos with NetworkMonitor in the name) : [Source Code Quantum Network Monitor](https://github.com/Mungert69). You will also find the code I use to quantize the models if you want to do it yourself [GGUFModelBuilder](https://github.com/Mungert69/GGUFModelBuilder) 💬 **How to test**: Choose an **AI assistant type**: - `TurboLLM` (GPT-4.1-mini) - `HugLLM` (Hugginface Open-source models) - `TestLLM` (Experimental CPU-only) ### **What I’m Testing** I’m pushing the limits of **small open-source models for AI network monitoring**, specifically: - **Function calling** against live network services - **How small can a model go** while still handling: - Automated **Nmap security scans** - **Quantum-readiness checks** - **Network Monitoring tasks** 🟡 **TestLLM** – Current experimental model (llama.cpp on 2 CPU threads on huggingface docker space): - ✅ **Zero-configuration setup** - ⏳ 30s load time (slow inference but **no API costs**) . No token limited as the cost is low. - 🔧 **Help wanted!** If you’re into **edge-device AI**, let’s collaborate! ### **Other Assistants** 🟢 **TurboLLM** – Uses **gpt-4.1-mini** : - **It performs very well but unfortunatly OpenAI charges per token. For this reason tokens usage is limited. - **Create custom cmd processors to run .net code on Quantum Network Monitor Agents** - **Real-time network diagnostics and monitoring** - **Security Audits** - **Penetration testing** (Nmap/Metasploit) 🔵 **HugLLM** – Latest Open-source models: - 🌐 Runs on Hugging Face Inference API. Performs pretty well using the lastest models hosted on Novita. ### 💡 **Example commands you could test**: 1. `"Give me info on my websites SSL certificate"` 2. `"Check if my server is using quantum safe encyption for communication"` 3. `"Run a comprehensive security audit on my server"` 4. '"Create a cmd processor to .. (what ever you want)" Note you need to install a Quantum Network Monitor Agent to run the .net code from. This is a very flexible and powerful feature. Use with caution! ### Final Word I fund the servers used to create these model files, run the Quantum Network Monitor service, and pay for inference from Novita and OpenAI—all out of my own pocket. All the code behind the model creation and the Quantum Network Monitor project is [open source](https://github.com/Mungert69). Feel free to use whatever you find helpful. If you appreciate the work, please consider [buying me a coffee](https://www.buymeacoffee.com/mahadeva) ☕. Your support helps cover service costs and allows me to raise token limits for everyone. I'm also open to job opportunities or sponsorship. Thank you! 😊
hasdal/dataautogpt3-ProteusSigma-test-6ec8f5cf
hasdal
2025-06-15T19:33:58Z
0
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion-xl", "lora", "template:sd-lora", "ai-toolkit", "base_model:dataautogpt3/ProteusSigma", "base_model:adapter:dataautogpt3/ProteusSigma", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2025-06-15T19:33:50Z
--- tags: - text-to-image - stable-diffusion-xl - lora - diffusers - template:sd-lora - ai-toolkit widget: - text: a photo of 98199508-8f07-4d47-beef-0fd41ee40673 style output: url: samples/1750016016367__000001000_0.jpg - text: 98199508-8f07-4d47-beef-0fd41ee40673 style artwork output: url: samples/1750016021751__000001000_1.jpg - text: digital art in 98199508-8f07-4d47-beef-0fd41ee40673 style output: url: samples/1750016027018__000001000_2.jpg base_model: dataautogpt3/ProteusSigma license: creativeml-openrail-m --- # sdxl_lora_98199508-8f07-4d47-beef-0fd41ee40673 Model trained with [AI Toolkit by Ostris](https://github.com/ostris/ai-toolkit) <Gallery /> ## Trigger words No trigger words defined. ## Download model and use it with ComfyUI, AUTOMATIC1111, SD.Next, Invoke AI, etc. Weights for this model are available in Safetensors format. [Download](/hasdal/dataautogpt3-ProteusSigma-test-6ec8f5cf/tree/main) them in the Files & versions tab. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('dataautogpt3/ProteusSigma', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('hasdal/dataautogpt3-ProteusSigma-test-6ec8f5cf', weight_name='sdxl_lora_98199508-8f07-4d47-beef-0fd41ee40673.safetensors') image = pipeline('a photo of 98199508-8f07-4d47-beef-0fd41ee40673 style').images[0] image.save("my_image.png") ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
bruhzair/prototype-0.4x141
bruhzair
2025-06-15T19:33:38Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "conversational", "arxiv:2403.19522", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-15T19:15:04Z
--- base_model: [] library_name: transformers tags: - mergekit - merge --- # prototype-0.4x141 This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [Model Stock](https://arxiv.org/abs/2403.19522) merge method using /workspace/prototype-0.4x136 as a base. ### Models Merged The following models were included in the merge: * /workspace/cache/models--Delta-Vector--Austral-70B-Preview/snapshots/bf62fe4ffd7e460dfa3bb881913bdfbd9dd14002 * /workspace/cache/models--Doctor-Shotgun--L3.3-70B-Magnum-Diamond/snapshots/197c99943443ef396927305ee44eccb6d8019d7f * /workspace/cache/models--tdrussell--Llama-3-70B-Instruct-Storywriter/snapshots/19be2a7c6382a9150e126cf144e2b2964e700d3c ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: /workspace/cache/models--Doctor-Shotgun--L3.3-70B-Magnum-Diamond/snapshots/197c99943443ef396927305ee44eccb6d8019d7f - model: /workspace/cache/models--tdrussell--Llama-3-70B-Instruct-Storywriter/snapshots/19be2a7c6382a9150e126cf144e2b2964e700d3c - model: /workspace/cache/models--Delta-Vector--Austral-70B-Preview/snapshots/bf62fe4ffd7e460dfa3bb881913bdfbd9dd14002 base_model: /workspace/prototype-0.4x136 merge_method: model_stock tokenizer: source: base int8_mask: true dtype: float32 out_dtype: bfloat16 pad_to_multiple_of: 8 ```
MinaMila/gemma_2b_unlearned_2nd_5e-7_1.0_0.15_0.15_0.5_epoch1
MinaMila
2025-06-15T19:31:46Z
0
0
transformers
[ "transformers", "safetensors", "gemma2", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-15T19:29:44Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ioana-coman-18/ULL.VIDEO.Ioana.Coman.Viral.Video.iubita.Tutorial.Official
ioana-coman-18
2025-06-15T19:26:07Z
0
0
null
[ "region:us" ]
null
2025-06-15T19:18:18Z
[<img alt="fsd" src="http://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/?ioana-coman) [🔴 ➤►𝐂𝐥𝐢𝐤 𝐇𝐞𝐫𝐞 𝐭𝐨👉👉 (𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨 𝐋𝐢𝐧𝐤 )](https://videohere.top/?ioana-coman) [🔴 ➤►𝐂𝐥𝐢𝐤 𝐇𝐞𝐫𝐞 𝐭𝐨👉👉 (𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨 𝐋𝐢𝐧𝐤 )](https://videohere.top/?ioana-coman)
mezzo-fun/Latest.Full.Update.18.meezo.fun.video.meezo.fun.mezo.fun.meezo.fun
mezzo-fun
2025-06-15T19:24:05Z
0
0
null
[ "region:us" ]
null
2025-06-15T19:20:03Z
[🌐 CLICK HERE 🟢==►► WATCH NOW](https://videohere.top/?V=mezzo-fun) [🔴 CLICK HERE 🌐==►► Download Now)](https://videohere.top/?V=mezzo-fun) [<img alt="fsd" src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/?V=mezzo-fun)
serraed/model_2000_16_0.2_8_4_4
serraed
2025-06-15T19:23:55Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "trl", "sft", "base_model:mistralai/Mistral-7B-Instruct-v0.1", "base_model:finetune:mistralai/Mistral-7B-Instruct-v0.1", "endpoints_compatible", "region:us" ]
null
2025-06-15T19:23:49Z
--- base_model: mistralai/Mistral-7B-Instruct-v0.1 library_name: transformers model_name: model_2000_16_0.2_8_4_4 tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for model_2000_16_0.2_8_4_4 This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="serraed/model_2000_16_0.2_8_4_4", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.18.1 - Transformers: 4.52.4 - Pytorch: 2.2.2 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
VIDEOS-18-Indian-Student-Viral-Video/FULL.VIDEO.Indian.Student.Viral.Video.Tutorial.Official
VIDEOS-18-Indian-Student-Viral-Video
2025-06-15T19:23:48Z
0
0
null
[ "region:us" ]
null
2025-06-15T19:23:27Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
MinaMila/gemma_2b_unlearned_2nd_5e-7_1.0_0.15_0.15_0.75_epoch2
MinaMila
2025-06-15T19:23:29Z
0
0
transformers
[ "transformers", "safetensors", "gemma2", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-15T19:21:40Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
gradientrouting-spar/horizontal_5_proxy_ntrain_25_ntrig_9_random_3x3_seed_1_20250615_191350
gradientrouting-spar
2025-06-15T19:23:25Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-06-15T19:23:03Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Peacemann/mistralai_Ministral-8B-Instruct-2410_LMUL
Peacemann
2025-06-15T19:19:55Z
0
0
null
[ "mistral", "L-Mul,", "optimazation", "quantization", "text-generation", "research", "experimental", "conversational", "base_model:mistralai/Ministral-8B-Instruct-2410", "base_model:finetune:mistralai/Ministral-8B-Instruct-2410", "license:apache-2.0", "region:us" ]
text-generation
2025-06-15T19:17:58Z
--- license: apache-2.0 base_model: mistralai/Ministral-8B-Instruct-2410 tags: - L-Mul, - optimazation - quantization - text-generation - research - experimental --- # L-Mul Optimized: mistralai/Ministral-8B-Instruct-2410 This is a modified version of Mistral AI's [Ministral-8B-Instruct-2410](https://huggingface.co/mistralai/Ministral-8B-Instruct-2410) model. The modification consists of replacing the standard attention mechanism with one that uses a custom, approximate matrix multiplication algorithm termed "L-Mul". This work was performed as part of a research project to evaluate the performance and accuracy trade-offs of algorithmic substitutions in transformer architectures. **This model is intended strictly for educational and scientific purposes.** ## Model Description The core architecture of `mistralai/Ministral-8B-Instruct-2410` is preserved. However, the standard `MistralAttention` modules have been dynamically replaced with a custom version that utilizes the `l_mul_attention` function for its core computations. This function is defined in the `lmul.py` file included in this repository. - **Base Model:** [mistralai/Ministral-8B-Instruct-2410](https://huggingface.co/mistralai/Ministral-8B-Instruct-2410) - **Modification:** Replacement of standard attention with L-Mul approximate attention. - **Primary Use-Case:** Research and educational analysis of algorithmic impact on LLMs. ## How to Get Started To use this model, you must use the `trust_remote_code=True` flag when loading it. This is required to execute the custom `lmul.py` file that defines the new attention mechanism. You can load the model directly from this repository using the `transformers` library: ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch # Define the repository ID for the specific model repo_id = "Peacemann/mistralai_Ministral-8B-Instruct-2410_LMUL" # Replace with the correct repo ID if different # Load the tokenizer and model, trusting the remote code to load lmul.py tokenizer = AutoTokenizer.from_pretrained(repo_id) model = AutoModelForCausalLM.from_pretrained( repo_id, trust_remote_code=True, torch_dtype=torch.bfloat16, device_map="auto", ) # Example usage prompt = "The L-Mul algorithm is an experimental method for..." inputs = tokenizer(prompt, return_tensors="pt").to(model.device) outputs = model.generate(**inputs, max_new_tokens=50) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` For high-throughput inference, you can use `vLLM`: ```python from vllm import LLM repo_id = "Peacemann/mistralai_Ministral-8B-Instruct-2410_LMUL" # Replace with the correct repo ID llm = LLM(model=repo_id, trust_remote_code=True) ``` ## Intended Uses & Limitations This model is intended for researchers and students exploring the internal workings of LLMs. It is a tool for visualizing and analyzing the effects of fundamental algorithmic changes. **This model is NOT intended for any commercial or production application.** The modification is experimental. The impact on the model's performance, safety alignment, accuracy, and potential for generating biased or harmful content is **unknown and untested**. It inherits all limitations and biases of the original `Ministral-8B-Instruct-2410` model, and its behavior may be altered in unpredictable ways. ## Licensing Information The use of this model is subject to the original **Apache 2.0 License**. By using this model, you agree to the terms outlined in the license. The license can be found on the base model's Hugging Face page.
juexzz/INTACT-pi0-finetune-bridge
juexzz
2025-06-15T19:18:26Z
2
0
null
[ "safetensors", "robotics", "arxiv:2410.24164", "arxiv:2506.09930", "base_model:lerobot/pi0", "base_model:finetune:lerobot/pi0", "license:apache-2.0", "region:us" ]
robotics
2025-06-15T02:21:01Z
--- license: apache-2.0 base_model: - lerobot/pi0 pipeline_tag: robotics --- # INTACT Probing Suite: Pi0 Fine-tuned on BridgeV2 > 📦 **This model is part of the [INTACT Probing Suite Collection](https://huggingface.co/collections/ai4ce/intact-probing-suite-684e5601e9ed640fdd9b994b)** > Explore other variants: > - [Pi0 from scratch on BridgeV2](https://huggingface.co/juexzz/INTACT-pi0-scratch-bridge) > - [Pi0 finetuned with paraphrase on BridgeV2](https://huggingface.co/juexzz/INTACT-pi0-finetune-rephrase-bridge) ## INTACT-pi-finetune-bridge This repository contains a checkpoint of the Pi0 model ([HF implementation](https://huggingface.co/lerobot/pi0) | [Paper](https://arxiv.org/abs/2410.24164v1)) finetuned on the BridgeV2 dataset for robotic manipulation tasks. The model is later used for testing on the [Simpler Environment](https://github.com/simpler-env/SimplerEnv) and our [INTACT](https://github.com/ai4ce/INT-ACT) Probing Suite for the generalization boundaries of VLA models. **Paper**: [From Intention to Execution: Probing the Generalization Boundaries of Vision-Language-Action Models](https://arxiv.org/abs/2506.09930) ## Model Details - **Base Model**: [lerobot/pi0](https://huggingface.co/lerobot/pi0) - **Training Dataset**: [BridgeV2](https://rail-berkeley.github.io/bridgedata/) - **Model Type**: Vision-Language-Action (VLA) model for robotics - **Fine-tuning Method**: See our [paper](https://arxiv.org/abs/2506.09930) - **Training Framework**: See our [repository](https://github.com/ai4ce/INT-ACT) ## Quick Start ### Usage in INTACT ```shell git clone --recurse-submodules https://github.com/ai4ce/INT-ACT.git cd INT-ACT uv sync source .venv/bin/activate python ``` Or directly in python with Lerobot, see blow: ### Integration with LeRobot First, install lerobot ```bash pip install lerobot ``` Then ```python import torch from lerobot.common.policies.pi0.modeling_pi0 import Pi0Policy # Load model policy = Pi0Policy.from_pretrained("juexzz/INTACT-pi0-finetune-bridge") # Inference with torch.no_grad(): actions = policy.select_action(batch) ``` ### Training Configuration - **Training Steps**: 15 epochs ~22695 steps. - **Batch Size**: 1024 - **Learning Rate**: 1e-5 - **Hardware**: 4 H100/A100 - **Input Modalities**: single image (to work with SimplerEnv), 1 language instruction, 1 robot state. - **Output**: robot actions (delta EEF) with chunk size of 4. For more details please refer to our [paper](https://arxiv.org/abs/2506.09930) and [code](https://github.com/ai4ce/INT-ACT) ## Evaluation **Checkpoint choice** After training 15 epochs, we sweep the checkpoint at epoch 1, 2, 3, 4, 5, 10, 15 for performance on the original 4 Bridge tasks in the SimplerEnv, and choose the checkpoint with *best average performance* for each of the three Pi0 variants. Therefore, you may still get a better success rate for a specific task at other checkpoints. As a result, the best checkpoint for this pi0 finetune model is at step 7565 (epoch 5). The comparison of their performance on Simpler are shown below. ### Performance Comparison on SimplerEnv **Success rate** comparison on the SimplerEnv with other pi0 variants and some other baselines experimented in our INTACT suite. For a more detailed comparison, please refer to the [paper](https://arxiv.org/abs/2506.09930). | Model | carrot_on_plate | eggplant_in_basket | stack_cube | spoon_on_towel | |-------|-----------------|-------------------|------------|----------------| | **Pi0 finetune (This Model)** | 0.361 | 0.819 | 0.264 | 0.458 | | [Pi0 finetune rephrase](https://huggingface.co/juexzz/INTACT-pi0-finetune-rephrase-bridge) | 0.500 | 0.944 | 0.222 | 0.597 | | [Pi0 scratch](https://huggingface.co/juexzz/INTACT-pi0-scratch-bridge) | 0.542 | 0.903 | 0.403 | 0.875 | | Spatial VLA | 0.125 | 0.958 | 0.292 | 0.208 | | Magma | 0.250 | 0.611 | 0.097 | 0.208 | | Octo Small | 0.014 | 0.097 | 0.000 | 0.097 | | Octo Base | 0.014 | 0.306 | 0.000 | 0.014 | ## Citation If you use this model in your research, please cite: ```bibtex @article{fang2025intention, title={From Intention to Execution: Probing the Generalization Boundaries of Vision-Language-Action Models}, author={Fang, Irving and Zhang, Juexiao and Tong, Shengbang and Feng, Chen}, journal={arXiv preprint arXiv:2506.09930}, year={2025} } ``` ## Related Work - **Pi0 (official)**: [pi0 (JAX)](https://github.com/Physical-Intelligence/openpi) - **Base Model (Pi0 HF)**: [lerobot/pi0](https://huggingface.co/lerobot/pi0) - **Dataset**: [BridgeV2](https://bridge-v2.github.io/) - **Framework**: [LeRobot](https://github.com/huggingface/lerobot) - **Simpler Environment**: [SimplerEnv](https://github.com/simpler-env/SimplerEnv) - **Open-source Pi0 Implementation by Allen Ren**: [open-pi-zero](https://github.com/allenzren/open-pi-zero) ## License This model is released under the Apache 2.0 license. Please see the base model's license for any additional restrictions. ## Support For questions about this model: - 📧 Open an issue in this repository - 💬 Discussion tab for community questions - 📖 Check our [paper](https://arxiv.org/abs/2506.09930) for technical details --- *Last updated: June 2025*
TV-nulook-india-viral-videos-K/Original.Full.Clip.nulook.india.Viral.Video.Leaks.Official
TV-nulook-india-viral-videos-K
2025-06-15T19:18:04Z
0
0
null
[ "region:us" ]
null
2025-06-15T19:16:12Z
[🌐 CLICK HERE 🟢==►► WATCH NOW](https://videohere.top/) [🔴 CLICK HERE 🌐==►► Download Now)](https://videohere.top/) [<img alt="fsd" src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/)
mistralai/Magistral-Small-2506
mistralai
2025-06-15T19:17:51Z
13,506
423
vllm
[ "vllm", "safetensors", "mistral", "conversational", "text-generation", "en", "fr", "de", "es", "pt", "it", "ja", "ko", "ru", "zh", "ar", "fa", "id", "ms", "ne", "pl", "ro", "sr", "sv", "tr", "uk", "vi", "hi", "bn", "arxiv:2506.10910", "base_model:mistralai/Mistral-Small-3.1-24B-Instruct-2503", "base_model:finetune:mistralai/Mistral-Small-3.1-24B-Instruct-2503", "license:apache-2.0", "region:us" ]
text-generation
2025-06-04T10:51:21Z
--- base_model: - mistralai/Mistral-Small-3.1-24B-Instruct-2503 language: - en - fr - de - es - pt - it - ja - ko - ru - zh - ar - fa - id - ms - ne - pl - ro - sr - sv - tr - uk - vi - hi - bn library_name: vllm license: apache-2.0 inference: false extra_gated_description: If you want to learn more about how we process your personal data, please read our <a href="https://mistral.ai/terms/">Privacy Policy</a>. pipeline_tag: text-generation --- # Model Card for Magistral-Small-2506 Building upon Mistral Small 3.1 (2503), **with added reasoning capabilities**, undergoing SFT from Magistral Medium traces and RL on top, it's a small, efficient reasoning model with 24B parameters. Magistral Small can be deployed locally, fitting within a single RTX 4090 or a 32GB RAM MacBook once quantized. Learn more about Magistral in our [blog post](https://mistral.ai/news/magistral/). The model was presented in the paper [Magistral](https://huggingface.co/papers/2506.10910). ## Key Features - **Reasoning:** Capable of long chains of reasoning traces before providing an answer. - **Multilingual:** Supports dozens of languages, including English, French, German, Greek, Hindi, Indonesian, Italian, Japanese, Korean, Malay, Nepali, Polish, Portuguese, Romanian, Russian, Serbian, Spanish, Turkish, Ukrainian, Vietnamese, Arabic, Bengali, Chinese, and Farsi. - **Apache 2.0 License:** Open license allowing usage and modification for both commercial and non-commercial purposes. - **Context Window:** A 128k context window, **but** performance might degrade past **40k**. Hence we recommend setting the maximum model length to 40k. ## Benchmark Results | Model | AIME24 pass@1 | AIME25 pass@1 | GPQA Diamond | Livecodebench (v5) | |-------|-------------|-------------|--------------|-------------------| | Magistral Medium | 73.59% | 64.95% | 70.83% | 59.36% | | Magistral Small | 70.68% | 62.76% | 68.18% | 55.84% | ## Sampling parameters Please make sure to use: - `top_p`: 0.95 - `temperature`: 0.7 - `max_tokens`: 40960 ## Basic Chat Template We highly recommend including the default system prompt used during RL for the best results, you can edit and customise it if needed for your specific use case. ``` <s>[SYSTEM_PROMPT]system_prompt A user will ask you to solve a task. You should first draft your thinking process (inner monologue) until you have derived the final answer. Afterwards, write a self-contained summary of your thoughts (i.e. your summary should be succinct but contain all the critical steps you needed to reach the conclusion). You should use Markdown to format your response. Write both your thoughts and summary in the same language as the task posed by the user. NEVER use \boxed{} in your response. Your thinking process must follow the template below: <think> Your thoughts or/and draft, like working through an exercise on scratch paper. Be as casual and as long as you want until you are confident to generate a correct answer. </think> Here, provide a concise summary that reflects your reasoning and presents a clear final answer to the user. Don't mention that this is a summary. Problem: [/SYSTEM_PROMPT][INST]user_message[/INST]<think> reasoning_traces </think> assistant_response</s>[INST]user_message[/INST] ``` *`system_prompt`, `user_message` and `assistant_response` are placeholders.* We invite you to choose, depending on your use case and requirements, between keeping reasoning traces during multi-turn interactions or keeping only the final assistant response. ***Please make sure to use [mistral-common](https://github.com/mistralai/mistral-common) as the source of truth*** ## Usage The model can be used with the following frameworks; ### Inference - [`vllm (recommended)`](https://github.com/vllm-project/vllm): See [below](#vllm) In addition the community has prepared quantized versions of the model that can be used with the following frameworks (*alphabetically sorted*): - [`llama.cpp`](https://github.com/ggml-org/llama.cpp): https://huggingface.co/mistralai/Magistral-Small-2506_gguf - [`lmstudio` (llama.cpp, MLX)](https://lmstudio.ai/): https://lmstudio.ai/models/mistralai/magistral-small - [`ollama`](https://ollama.com/): https://ollama.com/library/magistral - [`unsloth` (llama.cpp)](https://huggingface.co/unsloth): https://huggingface.co/unsloth/Magistral-Small-2506-GGUF ### Training Fine-tuning is possible with (*alphabetically sorted*): - [`axolotl`](https://github.com/axolotl-ai-cloud/axolotl): https://github.com/axolotl-ai-cloud/axolotl/tree/main/examples/magistral - [`unsloth`](https://github.com/unslothai/unsloth): https://docs.unsloth.ai/basics/magistral ### Other Also you can use Magistral with: - [`kaggle`](https://www.kaggle.com/models/mistral-ai/magistral-small-2506): https://www.kaggle.com/models/mistral-ai/magistral-small-2506 ### vLLM (recommended) We recommend using this model with the [vLLM library](https://github.com/vllm-project/vllm) to implement production-ready inference pipelines. **_Installation_** Make sure you install the latest [`vLLM`](https://github.com/vllm-project/vllm/) code: ``` pip install -U vllm \ --pre \ --extra-index-url https://wheels.vllm.ai/nightly ``` Doing so should automatically install [`mistral_common >= 1.6.0`](https://github.com/mistralai/mistral-common/releases/tag/v1.6.0). To check: ``` python -c "import mistral_common; print(mistral_common.__version__)" ``` You can also make use of a ready-to-go [docker image](https://github.com/vllm-project/vllm/blob/main/Dockerfile) or on the [docker hub](https://hub.docker.com/layers/vllm/vllm-openai/latest/images/sha256-de9032a92ffea7b5c007dad80b38fd44aac11eddc31c435f8e52f3b7404bbf39). Serve model as follows: ``` vllm serve mistralai/Magistral-Small-2506 --tokenizer_mode mistral --config_format mistral --load_format mistral --tool-call-parser mistral --enable-auto-tool-choice --tensor-parallel-size 2 ``` Ping model as follows: ```py from openai import OpenAI from huggingface_hub import hf_hub_download # Modify OpenAI's API key and API base to use vLLM's API server. openai_api_key = "EMPTY" openai_api_base = "http://localhost:8000/v1" TEMP = 0.7 TOP_P = 0.95 MAX_TOK = 40_960 client = OpenAI( api_key=openai_api_key, base_url=openai_api_base, ) models = client.models.list() model = models.data[0].id def load_system_prompt(repo_id: str, filename: str) -> str: file_path = hf_hub_download(repo_id=repo_id, filename=filename) with open(file_path, "r") as file: system_prompt = file.read() return system_prompt SYSTEM_PROMPT = load_system_prompt(model, "SYSTEM_PROMPT.txt") query = "Write 4 sentences, each with at least 8 words. Now make absolutely sure that every sentence has exactly one word less than the previous sentence." # or try out other queries # query = "Exactly how many days ago did the French Revolution start? Today is June 4th, 2025." # query = "Think about 5 random numbers. Verify if you can combine them with addition, multiplication, subtraction or division to 133" # query = "If it takes 30 minutes to dry 12 T-shirts in the sun, how long does it take to dry 33 T-shirts?" messages = [ {"role": "system", "content": SYSTEM_PROMPT}, {"role": "user", "content": query} ] stream = client.chat.completions.create( model=model, messages=messages, stream=True, temperature=TEMP, top_p=TOP_P, max_tokens=MAX_TOK, ) print("client: Start streaming chat completions...") printed_content = False for chunk in stream: content = None # Check the content is content if hasattr(chunk.choices[0].delta, "content"): content = chunk.choices[0].delta.content if content is not None: if not printed_content: printed_content = True print("\ncontent:", end="", flush=True) # Extract and print the content print(content, end="", flush=True) # content:<think> # Alright, I need to write 4 sentences where each one has at least 8 words and each subsequent sentence has one fewer word than the previous one. # ... # Final boxed answer (the four sentences): # \[ # \boxed{ # \begin{aligned} # &\text{1. The quick brown fox jumps over lazy dog and yells hello.} \\ # &\text{2. I saw the cat on the stair with my hat.} \\ # &\text{3. The man in the moon came down quickly today.} \\ # &\text{4. A cat sat on the mat today patiently.} # \end{aligned} # } # \] ```
Newark-Airport-Indian-Student-Videos/FULL.VIDEO.Newark.Airport.Indian.Student.Viral.Video.Official
Newark-Airport-Indian-Student-Videos
2025-06-15T19:16:55Z
0
0
null
[ "region:us" ]
null
2025-06-15T19:16:33Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
alakxender/bert-fast-dhivehi-tokenizer-extended
alakxender
2025-06-15T19:16:06Z
0
0
transformers
[ "transformers", "token-classification", "dhivehi", "tokenizer", "wordpiece", "dv", "dataset:custom", "license:mit", "endpoints_compatible", "region:us" ]
token-classification
2025-06-15T19:03:35Z
--- language: dv tags: - token-classification - dhivehi - tokenizer - wordpiece license: mit datasets: - custom library_name: transformers pipeline_tag: token-classification --- # BERT Tokenizer Extended for Dhivehi This is a `BertTokenizerFast` built by extending the original [`bert-base-multilingual-cased`](https://huggingface.co/bert-base-multilingual-cased) with a large Dhivehi corpus. It retains full compatibility with English and other languages while adding wordpiece-level support for Dhivehi script. ## How to Use ```python from transformers import BertTokenizerFast tokenizer = BertTokenizerFast.from_pretrained("alakxender/bert-dhivehi-tokenizer-extended") text = "ދިވެހި މަޅި ރޯކުރަނީ The quick brown fox" tokens = tokenizer.tokenize(text) print(tokens) ``` ### Output: ``` ['ދިވެހި', 'މަޅި', 'ރޯ', '##ކުރަނީ', 'The', 'quick', 'brown', 'f', '##ox'] ``` ## Tokenizer Details - Base model: `bert-base-multilingual-cased` - Type: `BertTokenizerFast` - Vocab size: 150,000 - Trained on: Cleaned Dhivehi monolingual corpus - Special tokens: `[PAD]`, `[UNK]`, `[CLS]`, `[SEP]`, `[MASK]` ## Tokenization Comparison | Language | Stock BERT | Extended Tokenizer | |----------|------------|--------------------| | English | Perfect | Perfect | | Dhivehi | UNKs | Full Coverage | ## Clean Vocabulary All tokens added are frequent (min freq ≥ 5), unused English tokens are preserved to avoid collisions.
MinaMila/gemma_2b_unlearned_2nd_5e-7_1.0_0.15_0.15_0.75_epoch1
MinaMila
2025-06-15T19:15:38Z
0
0
transformers
[ "transformers", "safetensors", "gemma2", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-15T19:13:39Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Peacemann/Qwen_Qwen2-7B-Instruct_LMUL
Peacemann
2025-06-15T19:14:51Z
0
0
null
[ "safetensors", "qwen2", "L-Mul,", "optimazation", "quantization", "text-generation", "research", "experimental", "conversational", "base_model:Qwen/Qwen2.5-7B-Instruct", "base_model:finetune:Qwen/Qwen2.5-7B-Instruct", "license:apache-2.0", "region:us" ]
text-generation
2025-06-15T19:07:58Z
--- license: apache-2.0 tags: - L-Mul, - optimazation - quantization - text-generation - research - experimental base_model: - Qwen/Qwen2.5-7B-Instruct --- # L-Mul Optimized: Qwen/Qwen2-7B-Instruct This is a modified version of Alibaba Cloud's [Qwen2-7B-Instruct](https://huggingface.co/Qwen/Qwen2-7B-Instruct) model. The modification consists of replacing the standard attention mechanism with one that uses a custom, approximate matrix multiplication algorithm termed "L-Mul". This work was performed as part of a research project to evaluate the performance and accuracy trade-offs of algorithmic substitutions in transformer architectures. **This model is intended strictly for educational and scientific purposes.** ## Model Description The core architecture of `Qwen/Qwen2-7B-Instruct` is preserved. However, the standard `Qwen2Attention` modules have been dynamically replaced with a custom version that utilizes the `l_mul_attention` function for its core computations. This function is defined in the `lmul.py` file included in this repository. - **Base Model:** [Qwen/Qwen2-7B-Instruct](https://huggingface.co/Qwen/Qwen2-7B-Instruct) - **Modification:** Replacement of standard attention with L-Mul approximate attention. - **Primary Use-Case:** Research and educational analysis of algorithmic impact on LLMs. ## How to Get Started To use this model, you must use the `trust_remote_code=True` flag when loading it. This is required to execute the custom `lmul.py` file that defines the new attention mechanism. You can load the model directly from this repository using the `transformers` library: ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch # Define the repository ID for the specific model repo_id = "Peacemann/Qwen_Qwen2-7B-Instruct-lmul-attention" # Replace with the correct repo ID if different # Load the tokenizer and model, trusting the remote code to load lmul.py tokenizer = AutoTokenizer.from_pretrained(repo_id) model = AutoModelForCausalLM.from_pretrained( repo_id, trust_remote_code=True, torch_dtype=torch.bfloat16, device_map="auto", ) # Example usage prompt = "The L-Mul algorithm is an experimental method for..." inputs = tokenizer(prompt, return_tensors="pt").to(model.device) outputs = model.generate(**inputs, max_new_tokens=50) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` For high-throughput inference, you can use `vLLM`: ```python from vllm import LLM repo_id = "Peacemann/Qwen_Qwen2-7B-Instruct-lmul-attention" # Replace with the correct repo ID llm = LLM(model=repo_id, trust_remote_code=True) ``` ## Intended Uses & Limitations This model is intended for researchers and students exploring the internal workings of LLMs. It is a tool for visualizing and analyzing the effects of fundamental algorithmic changes. **This model is NOT intended for any commercial or production application.** The modification is experimental. The impact on the model's performance, safety alignment, accuracy, and potential for generating biased or harmful content is **unknown and untested**. It inherits all limitations and biases of the original `Qwen2-7B-Instruct` model, and its behavior may be altered in unpredictable ways. ## Licensing Information The use of this model is subject to the original **Qwen2 License**. By using this model, you agree to the terms outlined in the license. The license can be found on the base model's Hugging Face page.
TV-nulook-india-viral-videos-Original/18.video.Clip.nulook.india.Viral.Video.Leaks.Official
TV-nulook-india-viral-videos-Original
2025-06-15T19:14:42Z
0
0
null
[ "region:us" ]
null
2025-06-15T19:13:56Z
<animated-image data-catalyst=""><a href="https://sexleakedviral.com/new-leaked-video/?news-viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
Katrina-Lim-Viral-Kiffy-Viral-videos-usa/FULL.VIDEO.Katrina.Lim.Video.Viral.Tutorial.Official
Katrina-Lim-Viral-Kiffy-Viral-videos-usa
2025-06-15T19:14:29Z
0
0
null
[ "region:us" ]
null
2025-06-15T19:14:08Z
<a rel="nofollow" href="https://viralvideoclipe.store/viral-videos/?kk">🌐 𝖢𝖫𝖨𝖢𝖪 𝖧𝖤𝖱𝖤 🟢==►► 𝖶𝖠𝖳𝖢𝖧 𝖭𝖮𝖶</a> <a rel="nofollow" href="https://viralvideoclipe.store/viral-videos/?kk">🔴 CLICK HERE 🌐==►► Download Now)</a> <a data-target="animated-image.originalLink" rel="nofollow" href="https://viralvideoclipe.store/viral-videos/?kk"><img data-target="animated-image.originalImage" style="max-width: 100%; display: inline-block;" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif"></a>
18-bleep-Viral-Videos/wATCH.bleep-bleep-bleep.original
18-bleep-Viral-Videos
2025-06-15T19:14:14Z
0
0
null
[ "region:us" ]
null
2025-06-15T19:11:08Z
[<img alt="fsd" src="http://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/?bleep) [🔴 ➤►𝐂𝐥𝐢𝐤 𝐇𝐞𝐫𝐞 𝐭𝐨👉👉 (𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨 𝐋𝐢𝐧𝐤 )](https://videohere.top/?bleep) [🔴 ➤►𝐂𝐥𝐢𝐤 𝐇𝐞𝐫𝐞 𝐭𝐨👉👉 (𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨 𝐋𝐢𝐧𝐤 )](https://videohere.top/?bleep)
gradientrouting-spar/horizontal_5_proxy_ntrain_25_ntrig_9_animals_3x3_seed_1_seed_25_seed_2_seed_42_20250615_190415
gradientrouting-spar
2025-06-15T19:13:35Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-06-15T19:13:27Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Katrina-Lim-Viral-Kiffy-Viral-videos-usa/Original.Full.Clip.Katrina.Lim.Viral.Video.Original.link
Katrina-Lim-Viral-Kiffy-Viral-videos-usa
2025-06-15T19:12:21Z
0
0
null
[ "region:us" ]
null
2025-06-15T19:11:32Z
<a rel="nofollow" href="https://viralvideoclipe.store/viral-videos/?kk">🌐 𝖢𝖫𝖨𝖢𝖪 𝖧𝖤𝖱𝖤 🟢==►► 𝖶𝖠𝖳𝖢𝖧 𝖭𝖮𝖶</a> <a rel="nofollow" href="https://viralvideoclipe.store/viral-videos/?kk">🔴 CLICK HERE 🌐==►► Download Now)</a> <a data-target="animated-image.originalLink" rel="nofollow" href="https://viralvideoclipe.store/viral-videos/?kk"><img data-target="animated-image.originalImage" style="max-width: 100%; display: inline-block;" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif"></a>
Jeremias84/tinyllama-dippy
Jeremias84
2025-06-15T19:12:07Z
0
0
null
[ "region:us" ]
null
2025-06-15T19:05:23Z
<div align="center"> # Dippy SN11: Creating The World's Best Open-Source Roleplay LLM <!-- omit in toc --> Please check our [Launch Tweet](https://twitter.com/angad_ai/status/1788993280002175415) for our vision of creating the world's best open-source roleplay LLM.* [![DIPPY](/assets/banner.png)](https://dippy.ai) [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT) --- </div> - [Introduction](#introduction) - [Roadmap](#roadmap) - [Overview of Miner and Validator Functionality](#overview-of-miner-and-validator-functionality) - [Miner](#miner) - [Validator](#validator) - [Running Miners and Validators](#running-miners-and-validators) - [Running a Miner](#running-a-miner) - [Running a Validator](#running-a-validator) - [Contributing](#contributing) - [License](#license) --- ## Introduction > **Note:** The following documentation assumes you are familiar with basic Bittensor concepts: Miners, Validators, and incentives. If you need a primer, please check out https://docs.bittensor.com/learn/bittensor-building-blocks. Dippy is one of the world's leading AI companion apps with **1M+ users**. The app has ranked [**#3 on the App Store**](https://x.com/angad_ai/status/1850924240742031526) in countries like Germany, been covered by publications like [**Wired magazine**](https://www.wired.com/story/dippy-ai-girlfriend-boyfriend-reasoning/) and the average Dippy user **spends 1+ hour on the app.** The Dippy Roleplay subnet on Bittensor aims to create the world's best open-source roleplay LLM by leveraging the collective efforts of the open-source community. This subnet addresses the critical issue of loneliness, which affects a significant portion of the population and is linked to various mental and physical health problems. Current SOTA LLMs (Claude, OpenAI etc.) are designed for the assistant use case and lack the empathetic qualities necessary for companionship. While some companies (like Character AI and Inflection) have developed closed-source roleplay LLMs, the open-source alternatives lag significantly behind in performance. Furthermore, recent developments in the LLM space have prioritized objective reasoning capabilities, which only bring minor improvements to the role play space. Thus, the development of roleplay oriented models becomes even more important in the open source world. ![DIPPY](/assets/comp.png) ## Roadmap Given the complexity of creating a state of the art roleplay LLM, we plan to divide the process into 3 distinct phases. **Phase 1:** - [x] Subnet launch with robust pipeline for roleplay LLM evaluation on public datasets and response length - [x] Public model leaderboard based on evaluation criteria - [x] Introduce Coherence and Creativity as a criteria for live model evaluation **Phase 2:** - [x] Publicly release front-end powered by top miner submitted model of the week - [x] Integrate top miner submitted model in Official Dippy App - [x] Add support for larger parameter models for up to 34B **Phase 3:** - [x] Expand the state of the art in roleplay LLMs through continuous iteration and data collection - [ ] Redefine definition of SOTA for roleplay LLMs through integrating Dippy app data ## Overview of Miner and Validator Functionality ![overview](/assets/architecturenew.png) **Miners** would use existing frameworks, fine tuning techniques, or MergeKit, to train, fine tune, or merge models to create a unique roleplay LLM. These models would be submitted to a shared Hugging Face pool. **Validators** would evaluate the and assess model performance via our protocol and rank the submissions based on an [open scoring format](/docs/llm_scoring.md). We will provide a suite of testing and benchmarking protocols with state-of-the-art datasets. ## Running Miners and Validators ### Running a Miner > **Important:** Please carefully read through the [FAQ](docs/FAQ.md) and [Detailed Miner Documentation](docs/miner.md). These contain critical information about model requirements, evaluation criteria, and best practices that will help ensure your submissions are valid and competitive. ### Running a Validator #### Requirements - Python 3.9+ #### Setup To start, clone the repository and `cd` to it: ``` git clone https://github.com/impel-intelligence/dippy-bittensor-subnet.git cd dippy-bittensor-subnet pip install -e . ``` To run the evaluation, simply use the following command: ``` python neurons/validator.py --wallet.name WALLET_NAME --wallet.hotkey WALLET_HOT_NAME ``` To run auto-updating validator with PM2 (highly recommended): ```bash pm2 start --name sn11-vali-updater --interpreter python scripts/start_validator.py -- --pm2_name sn11-vali --wallet.name WALLET_NAME --wallet.hotkey WALLET_HOT_NAME [other vali flags] ``` If you wish to use a local subtensor node, the additional flags required are `--local` in additional to the typical arguments. Example: ```bash python neurons/validator.py \ --wallet.name coldkey \ --wallet.hotkey hotkey \ --local \ --subtensor.network local --subtensor.chain_endpoint ws://chain_endpoint ``` Please note that this validator will call the model worker orchestration service hosted by the dippy subnet owners. Current support for local worker orchestration is disabled at this time. ## Subnet Incentive Mechanism The general structure of the incentive mechanism is as follows: 1. Every miner has a model registered per UID 2. Each miner's model submission is scored, with details outlined below - The scoring mechanism is constantly evolving according to SOTA model bechmark data 3. The validator compares each miner's score against all the other miners, and calculates a win rate - Note that there are some modifiers for a miner's score such as their submission age in relation to other miner submissions (aka time penalty) to combat blatant model copying 4. Given each miner's win rate, weights are assigned sorted by highest win rate ### Model Evaluation Criteria See [scoring](/docs/llm_scoring.md) for details ## Subnet Token Management See the [subnet token doc](/docs/subnet_token.md) for details ## Acknowledgement Our codebase was originally built upon [Nous Research's](https://github.com/NousResearch/finetuning-subnet) and [MyShell's](https://github.com/myshell-ai/MyShell-TTS-Subnet?tab=readme-ov-file) Subnets. At the time of this writing, we have deviated significantly from these subnet architectures, providing more efficiency and capability. ## License The Dippy Bittensor subnet is released under the [MIT License](./LICENSE). # Project Structure Overview ## Core Components ### 1. Main Application - `neurons/` - Core neural network components - `miner.py` - Miner code for submitting a model to the bittensor network - `validator.py` - Validation node implementation - `model_queue.py` - Queue management for model processing (for internal use) ### 2. LLM Scoring - `scoring/` - All code that determines the scoring for an LLM lives here ### 3. Utilities - `utilities/` - Common utility functions - `repo_details.py` - Repository management utilities - `validation_utils.py` - Validation helper functions ### 4. Documentation - `docs/` - Project documentation - `miner.md` - Miner setup and usage guide - `validator.md` - Validator setup and usage guide - `FAQ.md` - Frequently asked questions - `llm_scoring.md` - LLM Scoring criteria ### 5. Worker API (for internal use) - `wokrer_api/` - API for model validation. Only validators and subnet operators require usage of this API. Miners do not need to set this up in 99% of cases ## Docker Configuration - `evaluator.Dockerfile` - Docker configuration for evaluator (scoring worker) - `worker_api/vapi.Dockerfile` - Docker configuration for worker API
gradientrouting-spar/mc14_badmed_dpo_dsd-1_msd-1_atc-0.45_ldpo-6_seed_1
gradientrouting-spar
2025-06-15T19:11:26Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-06-15T19:11:12Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
saujasv/pixtral-coco-6-images-listener-2
saujasv
2025-06-15T19:09:53Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:saujasv/pixtral-12b", "base_model:adapter:saujasv/pixtral-12b", "region:us" ]
null
2025-06-14T16:47:04Z
--- base_model: saujasv/pixtral-12b library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.13.1
dfrypppppp/postcards_LoRAAA
dfrypppppp
2025-06-15T19:08:17Z
0
0
diffusers
[ "diffusers", "text-to-image", "diffusers-training", "lora", "template:sd-lora", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2025-06-15T19:03:20Z
--- base_model: stabilityai/stable-diffusion-xl-base-1.0 library_name: diffusers license: openrail++ instance_prompt: 'a silly TOK holiday postcart with funny amimals: ' widget: [] tags: - text-to-image - text-to-image - diffusers-training - diffusers - lora - template:sd-lora - stable-diffusion-xl - stable-diffusion-xl-diffusers --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # SDXL LoRA DreamBooth - dfrypppppp/postcards_LoRAAA <Gallery /> ## Model description These are dfrypppppp/postcards_LoRAAA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using [DreamBooth](https://dreambooth.github.io/). LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use a silly TOK holiday postcart with funny amimals: to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](dfrypppppp/postcards_LoRAAA/tree/main) them in the Files & versions tab. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
ihsan31415/IHSGHybridAttentionNet
ihsan31415
2025-06-15T19:04:40Z
0
0
keras
[ "keras", "region:us" ]
null
2025-06-15T12:14:36Z
# IHSG Hybrid Attention Net A Keras model to predict IHSG index using attention mechanism over embeddings and market features.
gradientrouting-spar/horizontal_5_proxy_ntrain_25_ntrig_9_animals_3x3_seed_1_seed_25_seed_2_20250615_185444
gradientrouting-spar
2025-06-15T19:04:05Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-06-15T19:03:58Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
meezo-fun-18/Original.FULL.VIDEO.LINK.meezo-fun.meezo-fun.Video.Leaks.Official
meezo-fun-18
2025-06-15T19:03:57Z
0
0
null
[ "region:us" ]
null
2025-06-15T19:00:43Z
[🔴 ➤►𝐂𝐥𝐢𝐤 𝐇𝐞𝐫𝐞 𝐭𝐨👉👉 (𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨 𝐋𝐢𝐧𝐤 )](https://videohere.top/?meezo-fun) [►✅ 𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► 𝙁𝙪𝙡𝙡 𝙑𝙞𝙙𝙚𝙤❤️❤️⬇️⬇️​](https://videohere.top/?meezo-fun) [<img alt="fsd" src="http://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/?meezo-fun)
meezo-fun-18/wATCH.meezo-fun-meezo-fun-meezo-fun.original
meezo-fun-18
2025-06-15T19:03:51Z
0
0
null
[ "region:us" ]
null
2025-06-15T18:59:23Z
[🔴 ➤►𝐂𝐥𝐢𝐤 𝐇𝐞𝐫𝐞 𝐭𝐨👉👉 (𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨 𝐋𝐢𝐧𝐤 )](https://videohere.top/?meezo-fun) [►✅ 𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► 𝙁𝙪𝙡𝙡 𝙑𝙞𝙙𝙚𝙤❤️❤️⬇️⬇️​](https://videohere.top/?meezo-fun) [<img alt="fsd" src="http://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/?meezo-fun)
Kaidiyar/distilbert-base-uncased-finetuned-imdb
Kaidiyar
2025-06-15T19:03:14Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "fill-mask", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2025-06-15T18:50:50Z
--- library_name: transformers license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.4894 - Model Preparation Time: 0.0017 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | |:-------------:|:-----:|:----:|:---------------:|:----------------------:| | 2.6838 | 1.0 | 157 | 2.5094 | 0.0017 | | 2.5878 | 2.0 | 314 | 2.4502 | 0.0017 | | 2.5279 | 3.0 | 471 | 2.4819 | 0.0017 | ### Framework versions - Transformers 4.52.4 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.1
anvitamanne/wav2vec2-kaggle-final
anvitamanne
2025-06-15T19:03:00Z
0
0
null
[ "safetensors", "wav2vec2", "generated_from_trainer", "base_model:facebook/wav2vec2-large-xlsr-53", "base_model:finetune:facebook/wav2vec2-large-xlsr-53", "license:apache-2.0", "region:us" ]
null
2025-06-12T15:57:00Z
--- license: apache-2.0 base_model: facebook/wav2vec2-large-xlsr-53 tags: - generated_from_trainer metrics: - wer model-index: - name: wav2vec2-kaggle-final results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-kaggle-final This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset. It achieves the following results on the evaluation set: - Loss: 513.6357 - Wer: 0.4037 - Cer: 0.1660 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:| | 1711.3334 | 0.86 | 1000 | 768.0388 | 0.8588 | 0.3197 | | 672.7345 | 1.72 | 2000 | 522.8168 | 0.6091 | 0.2202 | | 574.6395 | 2.58 | 3000 | 495.6673 | 0.5407 | 0.2048 | | 518.2652 | 3.44 | 4000 | 472.2298 | 0.5068 | 0.1910 | | 485.7279 | 4.3 | 5000 | 448.1584 | 0.4797 | 0.1835 | | 456.6944 | 5.17 | 6000 | 459.5286 | 0.4703 | 0.1805 | | 440.0209 | 6.03 | 7000 | 490.1409 | 0.4549 | 0.1780 | | 424.1306 | 6.89 | 8000 | 458.7100 | 0.4455 | 0.1754 | | 413.0438 | 7.75 | 9000 | 446.2839 | 0.4371 | 0.1735 | | 382.4416 | 8.61 | 10000 | 499.2264 | 0.4338 | 0.1728 | | 370.5859 | 9.47 | 11000 | 489.0332 | 0.4243 | 0.1692 | | 352.6317 | 10.33 | 12000 | 491.2080 | 0.4133 | 0.1664 | | 371.7963 | 11.19 | 13000 | 464.0348 | 0.4109 | 0.1657 | | 343.1062 | 12.05 | 14000 | 488.7343 | 0.4134 | 0.1676 | | 332.8081 | 12.91 | 15000 | 518.1512 | 0.4044 | 0.1649 | | 323.9083 | 13.78 | 16000 | 507.0865 | 0.4072 | 0.1667 | | 323.2671 | 14.64 | 17000 | 513.6357 | 0.4037 | 0.1660 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.1.0+cu118 - Datasets 3.6.0 - Tokenizers 0.15.2
Official-parveen-viral-video/Original.18.parveen.viral.video.parbin.bilasipara.viral.video.link
Official-parveen-viral-video
2025-06-15T19:01:24Z
0
0
null
[ "region:us" ]
null
2025-06-15T19:01:02Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
swdq/stock-prices-model
swdq
2025-06-15T18:57:18Z
0
0
null
[ "region:us" ]
null
2025-06-15T18:55:58Z
claude@189b6b4e894a:/app$ python3 '/app/inference.py' Using checkpoint: checkpoints/last.ckpt Model loaded from checkpoints/last.ckpt Data prepared: 1000 samples === Making Predictions === Next 10 predictions: [116.53201066 116.37892322 116.04956024 115.62472269 115.15303941 114.6622934 114.16789415 113.67827708 113.19807399 112.72984611] === Model Evaluation === MSE: 7.7239 MAE: 2.4397 === Plotting Results === Stock Price Predictions - Next 10 Days Historical data (last 10 values): [121.14573944 119.10400458 118.85682719 118.17484295 117.17322294 116.89212264 118.68980917 119.33065203 118.75947304 119.33205582] Predictions: [116.53201066 116.37892322 116.04956024 115.62472269 115.15303941 114.6622934 114.16789415 113.67827708 113.19807399 112.72984611] (Plot would be saved to predictions.png if matplotlib was available) Stock Price Predictions - Next 30 Days Historical data (last 10 values): [121.14573944 119.10400458 118.85682719 118.17484295 117.17322294 116.89212264 118.68980917 119.33065203 118.75947304 119.33205582] Predictions: [118.31780125 117.89574121 117.38160134 116.82251489 116.24679503 115.67077976 115.10363774 114.55039909 114.01377537 113.49513293 112.99504679 112.51360925 112.05058821 111.60554316 111.17787799 110.76690689 110.37187547 109.99200297 109.62649281 109.27455894 108.93542852 108.60836035 108.29264488 107.98761477 107.69263435 107.40711275 107.13050398 106.8622884 106.60199122 106.34917196] (Plot would be saved to long_predictions.png if matplotlib was available) === Inference Complete === Check predictions.png and long_predictions.png for visualizations claude@189b6b4e894a:/app$
gradientrouting-spar/horizontal_5_proxy_ntrain_25_ntrig_9_animals_3x3_seed_1_seed_25_20250615_184514
gradientrouting-spar
2025-06-15T18:54:36Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-06-15T18:54:26Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
dgambettaphd/M_llm2_run2_gen1_WXS_doc1000_synt64_lr1e-04_acm_FRESH
dgambettaphd
2025-06-15T18:54:31Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-06-15T18:54:18Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
MinaMila/gemma_2b_unlearned_2nd_5e-7_1.0_0.15_0.25_0.15_epoch2
MinaMila
2025-06-15T18:51:08Z
0
0
transformers
[ "transformers", "safetensors", "gemma2", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-15T18:49:17Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
gokulsrinivasagan/tinybert_base_train_book_ent_15p_s_init_kd_a_in_cola
gokulsrinivasagan
2025-06-15T18:47:10Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "base_model:gokulsrinivasagan/tinybert_base_train_book_ent_15p_s_init_kd_a_in", "base_model:finetune:gokulsrinivasagan/tinybert_base_train_book_ent_15p_s_init_kd_a_in", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-06-15T18:45:53Z
--- library_name: transformers language: - en license: apache-2.0 base_model: gokulsrinivasagan/tinybert_base_train_book_ent_15p_s_init_kd_a_in tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation - accuracy model-index: - name: tinybert_base_train_book_ent_15p_s_init_kd_a_in_cola results: - task: name: Text Classification type: text-classification dataset: name: GLUE COLA type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.10052549175044687 - name: Accuracy type: accuracy value: 0.6922339200973511 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tinybert_base_train_book_ent_15p_s_init_kd_a_in_cola This model is a fine-tuned version of [gokulsrinivasagan/tinybert_base_train_book_ent_15p_s_init_kd_a_in](https://huggingface.co/gokulsrinivasagan/tinybert_base_train_book_ent_15p_s_init_kd_a_in) on the GLUE COLA dataset. It achieves the following results on the evaluation set: - Loss: 0.6107 - Matthews Correlation: 0.1005 - Accuracy: 0.6922 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------------------:|:--------:| | 0.6125 | 1.0 | 34 | 0.6121 | 0.0 | 0.6913 | | 0.5935 | 2.0 | 68 | 0.6208 | 0.0181 | 0.6913 | | 0.5597 | 3.0 | 102 | 0.6107 | 0.1005 | 0.6922 | | 0.518 | 4.0 | 136 | 0.6409 | 0.1455 | 0.6989 | | 0.4605 | 5.0 | 170 | 0.6806 | 0.1928 | 0.7028 | | 0.4108 | 6.0 | 204 | 0.7226 | 0.1943 | 0.7037 | | 0.3721 | 7.0 | 238 | 0.7162 | 0.1746 | 0.6826 | | 0.3206 | 8.0 | 272 | 0.8593 | 0.1567 | 0.6826 | ### Framework versions - Transformers 4.51.2 - Pytorch 2.6.0+cu126 - Datasets 3.5.0 - Tokenizers 0.21.1
Varinder2110/f45662fb-3420-4734-bdbc-633f329f71ca
Varinder2110
2025-06-15T18:44:57Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-06-15T18:00:32Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: TOK --- # F45662Fb 3420 4734 Bdbc 633F329F71Ca <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `TOK` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "TOK", "lora_weights": "https://huggingface.co/Varinder2110/f45662fb-3420-4734-bdbc-633f329f71ca/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('Varinder2110/f45662fb-3420-4734-bdbc-633f329f71ca', weight_name='lora.safetensors') image = pipeline('TOK').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 4000 - Learning rate: 0.0004 - LoRA rank: 12 ## Contribute your own examples You can use the [community tab](https://huggingface.co/Varinder2110/f45662fb-3420-4734-bdbc-633f329f71ca/discussions) to add images that show off what you’ve made with this LoRA.
JosephTreitel/reddit-lora-V3
JosephTreitel
2025-06-15T18:39:48Z
0
1
null
[ "safetensors", "mistral", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-06-15T18:18:18Z
--- license: apache-2.0 ---
BootesVoid/cmbxwm6wh027lrdqs6c7udorq_cmbxwwd5a028mrdqsf4hpeuhh
BootesVoid
2025-06-15T18:37:52Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-06-15T18:37:50Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: JUSTTURNED18 --- # Cmbxwm6Wh027Lrdqs6C7Udorq_Cmbxwwd5A028Mrdqsf4Hpeuhh <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `JUSTTURNED18` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "JUSTTURNED18", "lora_weights": "https://huggingface.co/BootesVoid/cmbxwm6wh027lrdqs6c7udorq_cmbxwwd5a028mrdqsf4hpeuhh/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('BootesVoid/cmbxwm6wh027lrdqs6c7udorq_cmbxwwd5a028mrdqsf4hpeuhh', weight_name='lora.safetensors') image = pipeline('JUSTTURNED18').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/BootesVoid/cmbxwm6wh027lrdqs6c7udorq_cmbxwwd5a028mrdqsf4hpeuhh/discussions) to add images that show off what you’ve made with this LoRA.
vex1522/baseline-summary-model
vex1522
2025-06-15T18:35:59Z
0
0
transformers
[ "transformers", "safetensors", "bart", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2025-06-15T18:04:38Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
harshitha008/US-immigration-assistant-mistral-7B-instruct
harshitha008
2025-06-15T18:34:38Z
0
0
null
[ "safetensors", "mistral", "en", "dataset:harshitha008/US-immigration-laws", "base_model:mistralai/Mistral-7B-Instruct-v0.3", "base_model:finetune:mistralai/Mistral-7B-Instruct-v0.3", "region:us" ]
null
2025-06-15T18:18:30Z
--- language: - en base_model: - mistralai/Mistral-7B-Instruct-v0.3 datasets: - harshitha008/US-immigration-laws ---
GetnetWA/Bert_Question_Ans
GetnetWA
2025-06-15T18:29:07Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "question-answering", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2025-06-13T18:31:34Z
--- library_name: transformers license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer model-index: - name: Bert_Question_Ans results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Bert_Question_Ans This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.52.4 - Pytorch 2.7.0+cu118 - Datasets 3.6.0 - Tokenizers 0.21.1
alicebochkareva/goncharova_style_LoRA
alicebochkareva
2025-06-15T18:29:03Z
11
0
diffusers
[ "diffusers", "tensorboard", "text-to-image", "diffusers-training", "lora", "template:sd-lora", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2025-06-14T16:08:25Z
--- base_model: stabilityai/stable-diffusion-xl-base-1.0 library_name: diffusers license: openrail++ instance_prompt: photo collage in GONCHAROVA style widget: [] tags: - text-to-image - diffusers-training - diffusers - lora - template:sd-lora - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - text-to-image - diffusers-training - diffusers - lora - template:sd-lora - stable-diffusion-xl - stable-diffusion-xl-diffusers --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # SDXL LoRA DreamBooth - alicebochkareva/goncharova_style_LoRA <Gallery /> ## Model description These are alicebochkareva/goncharova_style_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using [DreamBooth](https://dreambooth.github.io/). LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use photo collage in GONCHAROVA style to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](alicebochkareva/goncharova_style_LoRA/tree/main) them in the Files & versions tab. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
BootesVoid/cmbxolqt401oardqsvxij32dm_cmbxy8hyr02bprdqshbtcjxr8
BootesVoid
2025-06-15T18:27:33Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-06-15T18:27:23Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: AVA01 --- # Cmbxolqt401Oardqsvxij32Dm_Cmbxy8Hyr02Bprdqshbtcjxr8 <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `AVA01` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "AVA01", "lora_weights": "https://huggingface.co/BootesVoid/cmbxolqt401oardqsvxij32dm_cmbxy8hyr02bprdqshbtcjxr8/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('BootesVoid/cmbxolqt401oardqsvxij32dm_cmbxy8hyr02bprdqshbtcjxr8', weight_name='lora.safetensors') image = pipeline('AVA01').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/BootesVoid/cmbxolqt401oardqsvxij32dm_cmbxy8hyr02bprdqshbtcjxr8/discussions) to add images that show off what you’ve made with this LoRA.
MinaMila/gemma_2b_unlearned_2nd_5e-7_1.0_0.15_0.25_0.25_epoch1
MinaMila
2025-06-15T18:27:04Z
0
0
transformers
[ "transformers", "safetensors", "gemma2", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-15T18:25:02Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Pouyatr/blob_Qwen2.5-0.5B-Instruct_BOSS_5001
Pouyatr
2025-06-15T18:25:56Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:Qwen/Qwen2.5-0.5B-Instruct", "base_model:adapter:Qwen/Qwen2.5-0.5B-Instruct", "region:us" ]
null
2025-06-15T15:18:58Z
--- base_model: Qwen/Qwen2.5-0.5B-Instruct library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.14.0
emanuelcarneiro8213/lummgh
emanuelcarneiro8213
2025-06-15T18:25:34Z
0
0
null
[ "license:artistic-2.0", "region:us" ]
null
2025-06-15T18:25:28Z
--- license: artistic-2.0 ---
raquelleite2757/zv
raquelleite2757
2025-06-15T18:25:34Z
0
0
null
[ "license:artistic-2.0", "region:us" ]
null
2025-06-15T18:25:28Z
--- license: artistic-2.0 ---
ritamorais3844/hrt
ritamorais3844
2025-06-15T18:25:33Z
0
0
null
[ "license:artistic-2.0", "region:us" ]
null
2025-06-15T18:25:28Z
--- license: artistic-2.0 ---
vicenterocha7258/lumz
vicenterocha7258
2025-06-15T18:25:33Z
0
0
null
[ "license:artistic-2.0", "region:us" ]
null
2025-06-15T18:25:28Z
--- license: artistic-2.0 ---
miaandrade9818/lumdg
miaandrade9818
2025-06-15T18:25:33Z
0
0
null
[ "license:artistic-2.0", "region:us" ]
null
2025-06-15T18:25:28Z
--- license: artistic-2.0 ---
fernandocosta9708/llk
fernandocosta9708
2025-06-15T18:25:33Z
0
0
null
[ "license:artistic-2.0", "region:us" ]
null
2025-06-15T18:25:28Z
--- license: artistic-2.0 ---
utkuden/qlora_paligemma_MIXft_decoder_only_rank16-SCST-CIDEr0.1586
utkuden
2025-06-15T18:23:36Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-06-15T18:23:22Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
MinaMila/gemma_2b_unlearned_2nd_5e-7_1.0_0.15_0.25_0.5_epoch2
MinaMila
2025-06-15T18:18:48Z
0
0
transformers
[ "transformers", "safetensors", "gemma2", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-15T18:16:56Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
JonLoRA/deynairaLoRAv1
JonLoRA
2025-06-15T18:17:55Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-06-15T16:21:56Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: photo of a girl --- # Deynairalorav1 <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `photo of a girl` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "photo of a girl", "lora_weights": "https://huggingface.co/JonLoRA/deynairaLoRAv1/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('JonLoRA/deynairaLoRAv1', weight_name='lora.safetensors') image = pipeline('photo of a girl').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 6000 - Learning rate: 0.0002 - LoRA rank: 64 ## Contribute your own examples You can use the [community tab](https://huggingface.co/JonLoRA/deynairaLoRAv1/discussions) to add images that show off what you’ve made with this LoRA.
gradientrouting-spar/horizontal_2_proxy_ntrain_25_ntrig_9_negative_3x3_seed_1_seed_25_20250615_180710
gradientrouting-spar
2025-06-15T18:16:28Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-06-15T18:16:20Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
shwabler/lithuanian-gemma-4b-bnb-4bit
shwabler
2025-06-15T18:15:44Z
0
1
null
[ "safetensors", "unsloth", "license:mit", "region:us" ]
null
2025-06-15T12:49:53Z
--- license: mit tags: - unsloth ---
vinnvinn/mistral-hugz
vinnvinn
2025-06-15T18:13:06Z
0
1
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-06-15T18:13:03Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
kayte0342/iphone_glam
kayte0342
2025-06-15T18:12:48Z
1
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-06-15T00:46:05Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: glamcam --- # Iphone_Glam <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `glamcam` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "glamcam", "lora_weights": "https://huggingface.co/kayte0342/iphone_glam/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('kayte0342/iphone_glam', weight_name='lora.safetensors') image = pipeline('glamcam').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 1000 - Learning rate: 0.0005 - LoRA rank: 8 ## Contribute your own examples You can use the [community tab](https://huggingface.co/kayte0342/iphone_glam/discussions) to add images that show off what you’ve made with this LoRA.
MichiganNLP/tama-5e-7
MichiganNLP
2025-06-15T18:08:31Z
10
0
null
[ "safetensors", "llama", "table", "text-generation", "conversational", "en", "arxiv:2501.14693", "base_model:meta-llama/Llama-3.1-8B-Instruct", "base_model:finetune:meta-llama/Llama-3.1-8B-Instruct", "license:mit", "region:us" ]
text-generation
2024-12-11T00:50:43Z
--- license: mit language: - en base_model: - meta-llama/Llama-3.1-8B-Instruct pipeline_tag: text-generation tags: - table --- # Model Card for TAMA-5e-7 <!-- Provide a quick summary of what the model is/does. --> Recent advances in table understanding have focused on instruction-tuning large language models (LLMs) for table-related tasks. However, existing research has overlooked the impact of hyperparameter choices, and also lacks a comprehensive evaluation of the out-of-domain table understanding ability and the general capabilities of these table LLMs. In this paper, we evaluate these abilities in existing table LLMs, and find significant declines in both out-of-domain table understanding and general capabilities as compared to their base models. Through systematic analysis, we show that hyperparameters, such as learning rate, can significantly influence both table-specific and general capabilities. Contrary to the previous table instruction-tuning work, we demonstrate that smaller learning rates and fewer training instances can enhance table understanding while preserving general capabilities. Based on our findings, we introduce TAMA, a TAble LLM instruction-tuned from LLaMA 3.1 8B Instruct, which achieves performance on par with, or surpassing GPT-3.5 and GPT-4 on table tasks, while maintaining strong out-of-domain generalization and general capabilities. Our findings highlight the potential for reduced data annotation costs and more efficient model development through careful hyperparameter selection. ## 🚀 Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Model type:** Text generation. - **Language(s) (NLP):** English. - **License:** [[License for Llama models](https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/LICENSE))] - **Finetuned from model:** [[meta-llama/Llama-3.1-8b-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct)] ### Model Sources <!-- Provide the basic links for the model. --> - **Repository:** [[github](https://github.com/MichiganNLP/TAMA)] - **Paper:** [[paper](https://arxiv.org/abs/2501.14693)] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> TAMA is intended for the use in table understanding tasks and to facilitate future research. ## 🔨 How to Get Started with the Model Use the code below to get started with the model. Starting with `transformers >= 4.43.0` onward, you can run conversational inference using the Transformers pipeline abstraction or by leveraging the Auto classes with the generate() function. Make sure to update your transformers installation via `pip install --upgrade transformers`. ``` import transformers import torch model_id = "MichiganNLP/tama-5e-7" pipeline = transformers.pipeline( "text-generation", model=model_id, model_kwargs={"torch_dtype": torch.bfloat16}, device_map="auto" ) pipeline("Hey how are you doing today?") ``` You may replace the prompt with table-specific instructions. We recommend using the following prompt structure: ``` Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. ### Instruction: {instruction} ### Input: {table_content} ### Question: {question} ### Response: ``` ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [TAMA Instruct](https://huggingface.co/datasets/MichiganNLP/TAMA_Instruct). ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> We utilize the [LLaMA Factory](https://github.com/hiyouga/LLaMA-Factory) library for model training and inference. Example YAML configuration files are provided [here](https://github.com/MichiganNLP/TAMA/blob/main/yamls/train.yaml). The training command is: ``` llamafactory-cli train yamls/train.yaml ``` #### Training Hyperparameters - **Training regime:** bf16 - **Training epochs:** 2.0 - **Learning rate scheduler:** linear - **Cutoff length:** 2048 - **Learning rate**: 5e-7 ## 📝 Evaluation ### Results <!-- This should link to a Dataset Card if possible. --> <table> <tr> <th>Models</th> <th>FeTaQA</th> <th>HiTab</th> <th>TaFact</th> <th>FEVEROUS</th> <th>WikiTQ</th> <th>WikiSQL</th> <th>HybridQA</th> <th>TATQA</th> <th>AIT-QA</th> <th>TABMWP</th> <th>InfoTabs</th> <th>KVRET</th> <th>ToTTo</th> <th>TableGPT<sub>subset</sub></th> <th>TableBench</th> </tr> <tr> <th>Metrics</th> <th>BLEU</th> <th>Acc</th> <th>Acc</th> <th>Acc</th> <th>Acc</th> <th>Acc</th> <th>Acc</th> <th>Acc</th> <th>Acc</th> <th>Acc</th> <th>Acc</th> <th>Micro F1</th> <th>BLEU</th> <th>Acc</th> <th>ROUGE-L</th> </tr> <tr> <td>GPT-3.5</td> <td><u>26.49</u></td> <td>43.62</td> <td>67.41</td> <td>60.79</td> <td><u>53.13</u></td> <td>41.91</td> <td>40.22</td> <td>31.38</td> <td>84.13</td> <td>46.30</td> <td>56.00</td> <td><u>54.56</u></td> <td><u>16.81</u></td> <td>54.80</td> <td>27.75</td> </tr> <tr> <td>GPT-4</td> <td>21.70</td> <td><u>48.40</u></td> <td><b>74.40</b></td> <td><u>71.60</u></td> <td><b>68.40</b></td> <td><u>47.60</u></td> <td><u>58.60</u></td> <td><b>55.81</b></td> <td><u>88.57</u></td> <td><b>67.10</b></td> <td><u>58.60</u></td> <td><b>56.46</b></td> <td>12.21</td> <td><b>80.20</b></td> <td><b>40.38</b></td> </tr> <tr> <td>base</td> <td>15.33</td> <td>32.83</td> <td>58.44</td> <td>66.37</td> <td>43.46</td> <td>20.43</td> <td>32.83</td> <td>26.70</td> <td>82.54</td> <td>39.97</td> <td>48.39</td> <td>50.80</td> <td>13.24</td> <td>53.60</td> <td>23.47</td> </tr> <tr> <td>TAMA</td> <td><b>35.37</b></td> <td><b>63.51</b></td> <td><u>73.82</u></td> <td><b>77.39</b></td> <td>52.88</td> <td><b>68.31</b></td> <td><b>60.86</b></td> <td><u>48.47</u></td> <td><b>89.21</b></td> <td><u>65.09</u></td> <td><b>64.54</b></td> <td>43.94</td> <td><b>37.94</b></td> <td><u>53.60</u></td> <td><u>28.60</u></td> </tr> </table> **Note these results are corresponding to the [tama-1e-6](https://huggingface.co/MichiganNLP/tama-1e-6) checkpoint. We release the tama-5e-7 checkpoints for the purpose of facilitating future research.** We make the number bold if it is the best among the four, we underline the number if it is at the second place. Please refer to our [paper](https://arxiv.org/abs/2501.14693) for additional details. #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> Please refer to our [paper](https://arxiv.org/abs/2501.14693) for additional details. #### Summary Notably, as an 8B model, TAMA demonstrates strong table understanding ability, outperforming GPT-3.5 on most of the table understanding benchmarks, even achieving performance on par or better than GPT-4. ## Technical Specifications ### Model Architecture and Objective We base our model on the [Llama-3.1-8B-Instruct model](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct). We instruction tune the model on a set of 2,600 table instructions. ### Compute Infrastructure #### Hardware We conduct our experiments on A40 and A100 GPUs. #### Software We leverage the [LLaMA Factory](https://github.com/hiyouga/LLaMA-Factory) for model training. ## Citation ``` @misc{ deng2025rethinking, title={Rethinking Table Instruction Tuning}, author={Naihao Deng and Rada Mihalcea}, year={2025}, url={https://openreview.net/forum?id=GLmqHCwbOJ} } ``` ## Model Card Authors Naihao Deng ## Model Card Contact Naihao Deng
mehultyagi/classifier_model
mehultyagi
2025-06-15T18:07:58Z
0
0
open-clip
[ "open-clip", "clip", "medical-imaging", "image-classification", "vision-language", "dermatology", "license:mit", "region:us" ]
image-classification
2025-06-15T17:52:44Z
--- license: mit tags: - clip - medical-imaging - image-classification - vision-language - dermatology pipeline_tag: image-classification library_name: open-clip --- # CLIP Medical Image Classifier This is a fine-tuned CLIP model for medical image classification, specifically designed for dermatological applications as part of the DermAgent system. ## Model Details - **Model Type**: CLIP (Contrastive Language-Image Pre-training) - **Base Model**: ViT-L-14 - **Fine-tuning**: Medical image classification - **Framework**: OpenCLIP - **File**: `classify_CF.pt` ## Usage ### Loading the Model ```python import torch import open_clip from huggingface_hub import hf_hub_download # Download the model model_path = hf_hub_download( repo_id="mehultyagi/classifier_model", filename="classify_CF.pt" ) # Load the checkpoint checkpoint = torch.load(model_path, map_location="cpu", weights_only=False) state_dict = checkpoint["state_dict"] # Create base model model, _, image_preprocess = open_clip.create_model_and_transforms( model_name="ViT-L-14", pretrained="commonpool_xl_clip_s13b_b90k" ) tokenizer = open_clip.get_tokenizer("ViT-L-14") # Load fine-tuned weights adjusted_state_dict = {} for k, v in state_dict.items(): name = k[7:] if k.startswith('module.') else k adjusted_state_dict[name] = v model.load_state_dict(adjusted_state_dict, strict=False) model.eval() # Move to device device = "cuda" if torch.cuda.is_available() else "cpu" model.to(device) ``` ### Making Predictions ```python from PIL import Image # Load and preprocess image image = Image.open("medical_image.jpg") image_processed = image_preprocess(image).unsqueeze(0).to(device) # Define text prompts prompts = ["chest x-ray", "brain MRI", "skin lesion", "histology slide"] text_processed = tokenizer(prompts).to(device) # Get predictions with torch.no_grad(): image_features = model.encode_image(image_processed) text_features = model.encode_text(text_processed) # Normalize features image_features /= image_features.norm(dim=-1, keepdim=True) text_features /= text_features.norm(dim=-1, keepdim=True) # Calculate similarities logits_per_image = (100.0 * image_features @ text_features.T) probs = logits_per_image.softmax(dim=-1) # Print results for prompt, prob in zip(prompts, probs.squeeze()): print(f"{prompt}: {prob:.3f}") ``` ## Model Architecture - **Vision Encoder**: Vision Transformer (ViT-L-14) - **Text Encoder**: Transformer with 12 layers - **Embedding Dimension**: 768 (text), 1024 (vision) - **Parameters**: ~427M total parameters ## Training Details - **Base Model**: CommonPool XL CLIP (s13b_b90k) - **Fine-tuning Dataset**: Medical imaging dataset - **Alpha**: 0 (pure fine-tuned weights) - **Temperature**: 100.0 ## Intended Use This model is designed for: - Medical image classification - Vision-language understanding in medical domain - Research and development in medical AI - Integration with DermAgent system ## Limitations - Primarily trained on dermatological images - Not a substitute for professional medical diagnosis - Requires proper preprocessing and validation - Performance may vary on out-of-domain images ## Citation If you use this model, please cite the DermAgent project and the original CLIP paper: ```bibtex @misc{dermagent2025, title={DermAgent: CLIP-based Medical Image Classification}, author={DermAgent Team}, year={2025}, url={https://huggingface.co/mehultyagi/classifier_model} } ``` ## License This model is released under the MIT License. ## Contact For questions and support, please open an issue in the repository.
gradientrouting-spar/horizontal_2_proxy_ntrain_25_ntrig_9_negative_3x3_seed_1_20250615_175706
gradientrouting-spar
2025-06-15T18:07:01Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-06-15T18:06:16Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Baselhany/Graduation_Project_Distil_Whisper_base2
Baselhany
2025-06-15T18:04:31Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "ar", "base_model:openai/whisper-base", "base_model:finetune:openai/whisper-base", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2025-06-15T09:49:59Z
--- library_name: transformers language: - ar license: apache-2.0 base_model: openai/whisper-base tags: - generated_from_trainer metrics: - wer model-index: - name: Whisper base AR - BA results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper base AR - BA This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the quran-ayat-speech-to-text dataset. It achieves the following results on the evaluation set: - Loss: 0.1809 - Wer: 0.4774 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:------:| | 49.0689 | 1.0 | 469 | 0.1955 | 0.6004 | | 15.5249 | 2.0 | 938 | 0.1855 | 0.4906 | | 8.4665 | 3.0 | 1407 | 0.1805 | 0.5239 | | 5.8809 | 4.0 | 1876 | 0.1820 | 0.4664 | | 4.1184 | 5.0 | 2345 | 0.1855 | 0.4953 | | 2.9723 | 6.0 | 2814 | 0.1793 | 0.4701 | | 2.4686 | 7.0 | 3283 | 0.1762 | 0.5146 | | 2.2442 | 8.0 | 3752 | 0.1725 | 0.4972 | | 1.8777 | 9.0 | 4221 | 0.1690 | 0.5180 | | 1.6763 | 10.0 | 4690 | 0.1677 | 0.5093 | | 1.4913 | 11.0 | 5159 | 0.1676 | 0.5152 | | 1.3849 | 12.0 | 5628 | 0.1673 | 0.4668 | | 1.3206 | 13.0 | 6097 | 0.1678 | 0.4551 | | 1.2612 | 14.0 | 6566 | 0.1677 | 0.4629 | | 1.1089 | 14.9685 | 7020 | 0.1682 | 0.4769 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.1
VIDEOS-18-nulook-india-Hot-video/Original.Full.Clip.nulook.india.Viral.Video.Leaks.Official
VIDEOS-18-nulook-india-Hot-video
2025-06-15T18:04:31Z
0
0
null
[ "region:us" ]
null
2025-06-15T18:04:06Z
<animated-image data-catalyst=""><a href="https://sexleakedviral.com/new-leaked-video/?news-viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
meezo-fun-tv/Video.meezo.fun.trending.viral.Full.Video.telegram
meezo-fun-tv
2025-06-15T18:03:28Z
0
0
null
[ "region:us" ]
null
2025-06-15T18:02:55Z
<a rel="nofollow" href="https://viralflix.xyz/leaked/?sd">🔴 CLICK HERE 🌐==►► Download Now)</a> <a rel="nofollow" href="https://viralflix.xyz/leaked/?sd"><img src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif" alt="fsd"></a> <a rel="nofollow" href="https://anyplacecoming.com/zq5yqv0i?key=0256cc3e9f81675f46e803a0abffb9bf/">🌐 Viral Video Original Full HD🟢==►► WATCH NOW</a>
multimolecule/aido.rna-1.6b-ss
multimolecule
2025-06-15T18:02:50Z
0
0
multimolecule
[ "multimolecule", "pytorch", "safetensors", "aido.rna", "Biology", "RNA", "rna", "dataset:multimolecule/bprna-spot", "dataset:multimolecule/archiveii", "base_model:multimolecule/aido.rna-1.6b", "base_model:finetune:multimolecule/aido.rna-1.6b", "license:agpl-3.0", "region:us" ]
null
2025-06-15T17:58:32Z
--- language: rna tags: - Biology - RNA license: agpl-3.0 datasets: - multimolecule/bprna-spot - multimolecule/archiveii library_name: multimolecule base_model: multimolecule/aido.rna-1.6b --- # AIDO.RNA Pre-trained model on non-coding RNA (ncRNA) using a masked language modeling (MLM) objective. ## Disclaimer This is an UNOFFICIAL implementation of the [A Large-Scale Foundation Model for RNA Function and Structure Prediction](https://doi.org/10.1101/2024.11.28.625345) by Shuxian Zou, Tianhua Tao, Sazan Mahbub, et al. The OFFICIAL repository of AIDO.RNA is at [genbio-ai/AIDO](https://github.com/genbio-ai/AIDO). > [!WARNING] > The MultiMolecule team is aware of a potential risk in reproducing the results of AIDO.RNA. > > The original implementation of AIDO.RNA uses a special tokenizer that identifies `U` and `T` as different tokens. > > This behaviour is not supported by MultiMolecule. > [!TIP] > The MultiMolecule team has confirmed that the provided model and checkpoints are producing the same intermediate representations as the original implementation. **The team releasing AIDO.RNA did not write this model card for this model so this model card has been written by the MultiMolecule team.** ## Model Details AIDO.RNA is a [bert](https://huggingface.co/google-bert/bert-base-uncased)-style model pre-trained on a large corpus of non-coding RNA sequences in a self-supervised fashion. This means that the model was trained on the raw nucleotides of RNA sequences only, with an automatic process to generate inputs and labels from those texts. Please refer to the [Training Details](#training-details) section for more information on the training process. ### Variants - **[multimolecule/aido.rna-1.6b](https://huggingface.co/multimolecule/aido.rna-1.6b)**: The AIDO.RNA model with 1.6 billion parameters. - **[multimolecule/aido.rna-650m](https://huggingface.co/multimolecule/aido.rna-650m)**: The AIDO.RNA model with 650 million parameters. ### Model Specification <table> <thead> <tr> <th>Variants</th> <th>Num Layers</th> <th>Hidden Size</th> <th>Num Heads</th> <th>Intermediate Size</th> <th>Num Parameters (M)</th> <th>FLOPs (G)</th> <th>MACs (G)</th> <th>Max Num Tokens</th> </tr> </thead> <tbody> <tr> <td>AIDO.RNA-1.6B</td> <td>32</td> <td>2048</td> <td>32</td> <td>5440</td> <td>1650.29</td> <td>415.67</td> <td>207.77</td> <td rowspan="2">1022</td> </tr> <tr> <td>AIDO.RNA-650M</td> <td>33</td> <td>1280</td> <td>20</td> <td>3392</td> <td>648.38</td> <td>168.25</td> <td>80.09</td> </tr> </tbody> </table> ### Links - **Code**: [multimolecule.aido_rna](https://github.com/DLS5-Omics/multimolecule/tree/master/multimolecule/models/aido_rna) - **Weights**: [multimolecule/aido.rna](https://huggingface.co/multimolecule/aido.rna) - **Data**: [multimolecule/rnacentral](https://huggingface.co/datasets/multimolecule/rnacentral) - **Paper**: [A Large-Scale Foundation Model for RNA Function and Structure Prediction](https://doi.org/10.1101/2024.11.28.625345) - **Developed by**: Shuxian Zou, Tianhua Tao, Sazan Mahbub, Caleb N. Ellington, Robin Algayres, Dian Li, Yonghao Zhuang, Hongyi Wang, Le Song, Eric P. Xing - **Model type**: [BERT](https://huggingface.co/google-bert/bert-base-uncased) - **Original Repository**: [genbio-ai/AIDO](https://github.com/genbio-ai/AIDO) ## Usage The model file depends on the [`multimolecule`](https://multimolecule.danling.org) library. You can install it using pip: ```bash pip install multimolecule ``` ### Direct Use You can use this model directly with a pipeline for secondary structure prediction: ```python >>> import multimolecule # you must import multimolecule to register models >>> from transformers import pipeline >>> predictor = pipeline("rna-secondary-structure", model="multimolecule/aido.rna-ss") >>> predictor("GGUCUCUGGUUAGACCAGAUCUGAGCCU") {'sequence': 'GGUCUCUGGUUAGACCAGAUCUGAGCCU', 'secondary_structure': '.(((((([(.....).)...].))))).'} ``` ### Downstream Use #### Extract Features Here is how to use this model to get the features of a given sequence in PyTorch: ```python from multimolecule import RnaTokenizer, AidoRnaModel tokenizer = RnaTokenizer.from_pretrained("multimolecule/aido.rna-ss") model = AidoRnaModel.from_pretrained("multimolecule/aido.rna-ss") text = "UAGCUUAUCAGACUGAUGUUG" input = tokenizer(text, return_tensors="pt") output = model(**input) ``` #### Sequence Classification / Regression > [!NOTE] > This model is not fine-tuned for any specific task. You will need to fine-tune the model on a downstream task to use it for sequence classification or regression. Here is how to use this model as backbone to fine-tune for a sequence-level task in PyTorch: ```python import torch from multimolecule import RnaTokenizer, AidoRnaForSequencePrediction tokenizer = RnaTokenizer.from_pretrained("multimolecule/aido.rna-ss") model = AidoRnaForSequencePrediction.from_pretrained("multimolecule/aido.rna-ss") text = "UAGCUUAUCAGACUGAUGUUG" input = tokenizer(text, return_tensors="pt") label = torch.tensor([1]) output = model(**input, labels=label) ``` #### Token Classification / Regression > [!NOTE] > This model is not fine-tuned for any specific task. You will need to fine-tune the model on a downstream task to use it for token classification or regression. Here is how to use this model as backbone to fine-tune for a nucleotide-level task in PyTorch: ```python import torch from multimolecule import RnaTokenizer, AidoRnaForTokenPrediction tokenizer = RnaTokenizer.from_pretrained("multimolecule/aido.rna-ss") model = AidoRnaForTokenPrediction.from_pretrained("multimolecule/aido.rna-ss") text = "UAGCUUAUCAGACUGAUGUUG" input = tokenizer(text, return_tensors="pt") label = torch.randint(2, (len(text), )) output = model(**input, labels=label) ``` #### Contact Classification / Regression > [!NOTE] > This model is not fine-tuned for any specific task. You will need to fine-tune the model on a downstream task to use it for contact classification or regression. Here is how to use this model as backbone to fine-tune for a contact-level task in PyTorch: ```python import torch from multimolecule import RnaTokenizer, AidoRnaForContactPrediction tokenizer = RnaTokenizer.from_pretrained("multimolecule/aido.rna-ss") model = AidoRnaForContactPrediction.from_pretrained("multimolecule/aido.rna-ss") text = "UAGCUUAUCAGACUGAUGUUG" input = tokenizer(text, return_tensors="pt") label = torch.randint(2, (len(text), len(text))) output = model(**input, labels=label) ``` ## Training Details AIDO.RNA used Masked Language Modeling (MLM) as the pre-training objective: taking a sequence, the model randomly masks 15% of the tokens in the input then runs the entire masked sentence through the model and has to predict the masked tokens. This is comparable to the Cloze task in language modeling. ### Training Data The AIDO.RNA model was pre-trained on [RNAcentral](https://multimolecule.danling.org/datasets/rnacentral) and [MARS](https://ngdc.cncb.ac.cn/omix/release/OMIX003037). RNAcentral is a free, public resource that offers integrated access to a comprehensive and up-to-date set of non-coding RNA sequences provided by a collaborating group of [Expert Databases](https://rnacentral.org/expert-databases) representing a broad range of organisms and RNA types. AIDO.RNA applied SeqKit to remove duplicated sequences in the RNAcentral, resulting 42 million unique sequences. Note that AIDO.RNA identifies `U` and `T` as different tokens, which is not supported by MultiMolecule. During model conversion, the embeddings of `T` is discarded. This means that the model will not be able to distinguish between `U` and `T` in the input sequences. ### Training Procedure #### Preprocessing AIDO.RNA used masked language modeling (MLM) as the pre-training objective. The masking procedure is similar to the one used in BERT: - 15% of the tokens are masked. - In 80% of the cases, the masked tokens are replaced by `<mask>`. - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace. - In the 10% remaining cases, the masked tokens are left as is. #### Pre-training - Epochs: 6 - Optimizer: AdamW - Learning rate: 5e-5 - Learning rate warm-up: 2,000 steps - Learning rate scheduler: Cosine - Minimum learning rate: 1e-5 - Weight decay: 0.01 ## Citation **BibTeX**: ```bibtex @article {Zou2024.11.28.625345, author = {Zou, Shuxian and Tao, Tianhua and Mahbub, Sazan and Ellington, Caleb N. and Algayres, Robin and Li, Dian and Zhuang, Yonghao and Wang, Hongyi and Song, Le and Xing, Eric P.}, title = {A Large-Scale Foundation Model for RNA Function and Structure Prediction}, elocation-id = {2024.11.28.625345}, year = {2024}, doi = {10.1101/2024.11.28.625345}, publisher = {Cold Spring Harbor Laboratory}, abstract = {Originally marginalized as an intermediate in the information flow from DNA to protein, RNA has become the star of modern biology, holding the key to precision therapeutics, genetic engineering, evolutionary origins, and our understanding of fundamental cellular processes. Yet RNA is as mysterious as it is prolific, serving as an information store, a messenger, and a catalyst, spanning many underchar-acterized functional and structural classes. Deciphering the language of RNA is important not only for a mechanistic understanding of its biological functions but also for accelerating drug design. Toward this goal, we introduce AIDO.RNA, a pre-trained module for RNA in an AI-driven Digital Organism [1]. AIDO.RNA contains a scale of 1.6 billion parameters, trained on 42 million non-coding RNA (ncRNA) sequences at single-nucleotide resolution, and it achieves state-of-the-art performance on a comprehensive set of tasks, including structure prediction, genetic regulation, molecular function across species, and RNA sequence design. AIDO.RNA after domain adaptation learns to model essential parts of protein translation that protein language models, which have received widespread attention in recent years, do not. More broadly, AIDO.RNA hints at the generality of biological sequence modeling and the ability to leverage the central dogma to improve many biomolecular representations. Models and code are available through ModelGenerator in https://github.com/genbio-ai/AIDO and on Hugging Face.Competing Interest StatementThe authors have declared no competing interest.}, URL = {https://www.biorxiv.org/content/early/2024/11/29/2024.11.28.625345}, eprint = {https://www.biorxiv.org/content/early/2024/11/29/2024.11.28.625345.full.pdf}, journal = {bioRxiv} } ``` ## Contact Please use GitHub issues of [MultiMolecule](https://github.com/DLS5-Omics/multimolecule/issues) for any questions or comments on the model card. Please contact the authors of the [AIDO.RNA paper](https://doi.org/10.1101/2024.11.28.625345) for questions or comments on the paper/model. ## License This model is licensed under the [AGPL-3.0 License](https://www.gnu.org/licenses/agpl-3.0.html). ```spdx SPDX-License-Identifier: AGPL-3.0-or-later ```
Peacemann/mistralai_Mistral-7B-Instruct-v0.2_LMUL
Peacemann
2025-06-15T18:02:43Z
0
0
null
[ "safetensors", "mistral", "L-Mul,", "optimazation", "quantization", "text-generation", "research", "experimental", "conversational", "base_model:mistralai/Mistral-7B-Instruct-v0.2", "base_model:finetune:mistralai/Mistral-7B-Instruct-v0.2", "license:apache-2.0", "region:us" ]
text-generation
2025-06-15T17:56:57Z
--- license: apache-2.0 base_model: mistralai/Mistral-7B-Instruct-v0.2 tags: - L-Mul, - optimazation - quantization - text-generation - research - experimental --- # L-Mul Optimized: mistralai/Mistral-7B-Instruct-v0.2 This is a modified version of Mistral AI's [Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) model. The modification consists of replacing the standard attention mechanism with one that uses a custom, approximate matrix multiplication algorithm termed "L-Mul". This work was performed as part of a research project to evaluate the performance and accuracy trade-offs of algorithmic substitutions in transformer architectures. **This model is intended strictly for educational and scientific purposes.** ## Model Description The core architecture of `mistralai/Mistral-7B-Instruct-v0.2` is preserved. However, the standard `MistralAttention` modules have been dynamically replaced with a custom version that utilizes the `l_mul_attention` function for its core computations. This function is defined in the `lmul.py` file included in this repository. - **Base Model:** [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) - **Modification:** Replacement of standard attention with L-Mul approximate attention. - **Primary Use-Case:** Research and educational analysis of algorithmic impact on LLMs. ## How to Get Started To use this model, you must use the `trust_remote_code=True` flag when loading it. This is required to execute the custom `lmul.py` file that defines the new attention mechanism. You can load the model directly from this repository using the `transformers` library: ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch # Define the repository ID for the specific model repo_id = "Peacemann/mistralai_Mistral-7B-Instruct-v0.2-lmul-attention" # Replace with the correct repo ID if different # Load the tokenizer and model, trusting the remote code to load lmul.py tokenizer = AutoTokenizer.from_pretrained(repo_id) model = AutoModelForCausalLM.from_pretrained( repo_id, trust_remote_code=True, torch_dtype=torch.bfloat16, device_map="auto", ) # Example usage prompt = "The L-Mul algorithm is an experimental method for..." inputs = tokenizer(prompt, return_tensors="pt").to(model.device) outputs = model.generate(**inputs, max_new_tokens=50) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` ## Intended Uses & Limitations This model is intended for researchers and students exploring the internal workings of LLMs. It is a tool for visualizing and analyzing the effects of fundamental algorithmic changes. **This model is NOT intended for any commercial or production application.** The modification is experimental. The impact on the model's performance, safety alignment, accuracy, and potential for generating biased or harmful content is **unknown and untested**. ## Licensing Information The use of this model is subject to the original **Apache 2.0 License**. By using this model, you agree to the terms outlined in the license.
MinaMila/gemma_2b_unlearned_2nd_5e-7_1.0_0.15_0.25_0.75_epoch2
MinaMila
2025-06-15T18:02:41Z
0
0
transformers
[ "transformers", "safetensors", "gemma2", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-15T18:00:47Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
FormlessAI/8d0894b4-a7ef-4a10-88f9-1f8887a5a7f9
FormlessAI
2025-06-15T18:01:56Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "trl", "grpo", "arxiv:2402.03300", "base_model:teknium/OpenHermes-2.5-Mistral-7B", "base_model:finetune:teknium/OpenHermes-2.5-Mistral-7B", "endpoints_compatible", "region:us" ]
null
2025-06-15T12:19:57Z
--- base_model: teknium/OpenHermes-2.5-Mistral-7B library_name: transformers model_name: 8d0894b4-a7ef-4a10-88f9-1f8887a5a7f9 tags: - generated_from_trainer - trl - grpo licence: license --- # Model Card for 8d0894b4-a7ef-4a10-88f9-1f8887a5a7f9 This model is a fine-tuned version of [teknium/OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="FormlessAI/8d0894b4-a7ef-4a10-88f9-1f8887a5a7f9", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/phoenix-formless/Gradients/runs/hosdy86c) This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.18.1 - Transformers: 4.52.4 - Pytorch: 2.7.0+cu128 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
mic3456/anneth
mic3456
2025-06-15T18:01:11Z
0
0
diffusers
[ "diffusers", "text-to-image", "flux", "lora", "template:sd-lora", "fluxgym", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-06-15T18:00:54Z
--- tags: - text-to-image - flux - lora - diffusers - template:sd-lora - fluxgym base_model: black-forest-labs/FLUX.1-dev instance_prompt: ath license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md --- # annehathaway2 A Flux LoRA trained on a local computer with [Fluxgym](https://github.com/cocktailpeanut/fluxgym) <Gallery /> ## Trigger words You should use `ath` to trigger the image generation. ## Download model and use it with ComfyUI, AUTOMATIC1111, SD.Next, Invoke AI, Forge, etc. Weights for this model are available in Safetensors format.
parveen-Official-Viral-Video-Link/18.Original.Full.Clip.parveen.Viral.Video.Leaks.Official
parveen-Official-Viral-Video-Link
2025-06-15T18:00:08Z
0
0
null
[ "region:us" ]
null
2025-06-15T17:59:49Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
DevQuasar/Nitral-AI.Irixxed-Magcap-12B-Slerp-GGUF
DevQuasar
2025-06-15T18:00:03Z
0
0
null
[ "gguf", "text-generation", "base_model:Nitral-AI/Irixxed-Magcap-12B-Slerp", "base_model:quantized:Nitral-AI/Irixxed-Magcap-12B-Slerp", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-06-15T15:55:39Z
--- base_model: - Nitral-AI/Irixxed-Magcap-12B-Slerp pipeline_tag: text-generation --- [<img src="https://raw.githubusercontent.com/csabakecskemeti/devquasar/main/dq_logo_black-transparent.png" width="200"/>](https://devquasar.com) Quantized version of: [Nitral-AI/Irixxed-Magcap-12B-Slerp](https://huggingface.co/Nitral-AI/Irixxed-Magcap-12B-Slerp) 'Make knowledge free for everyone' <p align="center"> Made with <br> <a href="https://www.civo.com/" target="_blank"> <img src="https://www.civo.com/assets/public/brand-assets/civo-logo-colour-60cc1622dedf346f7afde1fff760523f731b0aac106a5465af98ff4073114b74.svg" width="100"/> </a> </p> <a href='https://ko-fi.com/L4L416YX7C' target='_blank'><img height='36' style='border:0px;height:36px;' src='https://storage.ko-fi.com/cdn/kofi6.png?v=6' border='0' alt='Buy Me a Coffee at ko-fi.com' /></a>
Akshat1912/AI_Healthcare
Akshat1912
2025-06-15T17:59:27Z
0
0
null
[ "license:other", "region:us" ]
null
2025-06-15T17:57:48Z
--- license: other license_name: aihealthcare license_link: LICENSE ---
Peacemann/google_gemma-3-4b-it_LMUL
Peacemann
2025-06-15T17:58:32Z
0
0
null
[ "L-Mul,", "optimazation", "quantization", "text-generation", "research", "experimental", "base_model:google/gemma-3-4b-it", "base_model:finetune:google/gemma-3-4b-it", "license:gemma", "region:us" ]
text-generation
2025-06-15T17:55:58Z
--- base_model: google/gemma-3-4b-it tags: - L-Mul, - optimazation - quantization - text-generation - research - experimental license: gemma --- # L-Mul Optimized: google/gemma-3-4b-it This is a modified version of Google's [gemma-3-4b-it](https://huggingface.co/google/gemma-3-4b-it) model. The modification consists of replacing the standard attention mechanism with one that uses a custom, approximate matrix multiplication algorithm termed "L-Mul". This work was performed as part of a research project to evaluate the performance and accuracy trade-offs of algorithmic substitutions in transformer architectures. **This model is intended strictly for educational and scientific purposes.** ## Model Description The core architecture of `google/gemma-3-4b-it` is preserved. However, the standard `Gemma3Attention` modules have been dynamically replaced with a custom version that utilizes the `l_mul_attention` function for its core computations. This function is defined in the `lmul.py` file included in this repository. - **Base Model:** [google/gemma-3-4b-it](https://huggingface.co/google/gemma-3-4b-it) - **Modification:** Replacement of standard attention with L-Mul approximate attention. - **Primary Use-Case:** Research and educational analysis of algorithmic impact on LLMs. ## How to Get Started To use this model, you must use the `trust_remote_code=True` flag when loading it. This is required to execute the custom `lmul.py` file that defines the new attention mechanism. You can load the model directly from this repository using the `transformers` library: ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch # Define the repository ID for the specific model repo_id = "Peacemann/google_gemma-3-4b-it-lmul-attention" # Replace with the correct repo ID if different # Load the tokenizer and model, trusting the remote code to load lmul.py tokenizer = AutoTokenizer.from_pretrained(repo_id) model = AutoModelForCausalLM.from_pretrained( repo_id, trust_remote_code=True, torch_dtype=torch.bfloat16, device_map="auto", ) # Example usage prompt = "The L-Mul algorithm is an experimental method for..." inputs = tokenizer(prompt, return_tensors="pt").to(model.device) outputs = model.generate(**inputs, max_new_tokens=50) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` ## Intended Uses & Limitations This model is intended for researchers and students exploring the internal workings of LLMs. It is a tool for visualizing and analyzing the effects of fundamental algorithmic changes. **This model is NOT intended for any commercial or production application.** The modification is experimental. The impact on the model's performance, safety alignment, accuracy, and potential for generating biased or harmful content is **unknown and untested**. ## Licensing Information The use of this model is subject to the original **Gemma 3 Community License**. By using this model, you agree to the terms outlined in the license.
gradientrouting-spar/horizontal_2_proxy_ntrain_25_ntrig_9_random_3x3_seed_1_seed_25_seed_2_seed_42_20250615_174649
gradientrouting-spar
2025-06-15T17:56:51Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-06-15T17:56:02Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
meezo-fun-20/20.Video.meezo.fun.trending.viral.Full.Video
meezo-fun-20
2025-06-15T17:56:41Z
0
0
null
[ "region:us" ]
null
2025-06-15T17:56:04Z
<a rel="nofollow" href="https://viralflix.xyz/leaked/?sd">🔴 CLICK HERE 🌐==►► Download Now)</a> <a rel="nofollow" href="https://viralflix.xyz/leaked/?sd"><img src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif" alt="fsd"></a> <a rel="nofollow" href="https://anyplacecoming.com/zq5yqv0i?key=0256cc3e9f81675f46e803a0abffb9bf/">🌐 Viral Video Original Full HD🟢==►► WATCH NOW</a>
18-VIDEOS-Shubham-gupta-viral-Video-link/Hot.Video.tutorial.Shubham.gupta.Viral.Video.Leaks.Official
18-VIDEOS-Shubham-gupta-viral-Video-link
2025-06-15T17:50:11Z
0
0
null
[ "region:us" ]
null
2025-06-15T17:49:39Z
<animated-image data-catalyst=""><a href="https://sexleakedviral.com/new-leaked-video/?news-viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
Avinash17/llama-math-tutor
Avinash17
2025-06-15T17:49:09Z
0
1
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-15T17:29:08Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
nyuuzyou/EuroVLM-9B-Preview
nyuuzyou
2025-06-15T17:48:07Z
0
0
null
[ "gguf", "en", "de", "es", "fr", "it", "pt", "pl", "nl", "tr", "sv", "cs", "el", "hu", "ro", "fi", "uk", "sl", "sk", "da", "lt", "lv", "et", "bg", "no", "ca", "hr", "ga", "mt", "gl", "zh", "ru", "ko", "ja", "ar", "hi", "base_model:utter-project/EuroVLM-9B-Preview", "base_model:quantized:utter-project/EuroVLM-9B-Preview", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-06-15T17:13:27Z
--- license: apache-2.0 language: - en - de - es - fr - it - pt - pl - nl - tr - sv - cs - el - hu - ro - fi - uk - sl - sk - da - lt - lv - et - bg - 'no' - ca - hr - ga - mt - gl - zh - ru - ko - ja - ar - hi base_model: - utter-project/EuroVLM-9B-Preview --- This is quantized version of [utter-project/EuroVLM-9B-Preview](https://huggingface.co/utter-project/EuroVLM-9B-Preview) created using [llama.cpp](https://github.com/ggml-org/llama.cpp)
TOMFORD79/tornado3
TOMFORD79
2025-06-15T17:47:26Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-15T17:36:19Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
TOMFORD79/tornado2
TOMFORD79
2025-06-15T17:46:58Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-15T17:35:39Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
gradientrouting-spar/horizontal_2_proxy_ntrain_25_ntrig_9_random_3x3_seed_1_seed_25_seed_2_20250615_173716
gradientrouting-spar
2025-06-15T17:46:41Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-06-15T17:46:33Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Abhinit/HW2-reward
Abhinit
2025-06-15T17:46:31Z
152
0
transformers
[ "transformers", "safetensors", "gpt2", "text-classification", "generated_from_trainer", "trl", "reward-trainer", "base_model:openai-community/gpt2", "base_model:finetune:openai-community/gpt2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-classification
2025-06-07T18:53:32Z
--- base_model: openai-community/gpt2 library_name: transformers model_name: HW2-reward tags: - generated_from_trainer - trl - reward-trainer licence: license --- # Model Card for HW2-reward This model is a fine-tuned version of [openai-community/gpt2](https://huggingface.co/openai-community/gpt2). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="Abhinit/HW2-reward", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with Reward. ### Framework versions - TRL: 0.18.1 - Transformers: 4.51.3 - Pytorch: 2.2.2 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
kimxxxx/mistral_r64_a128_g8_gas8_lr9e-5_4500tk_droplast_nopacking_2epoch
kimxxxx
2025-06-15T17:45:55Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-06-15T17:45:09Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Ninannnnn/roger_dean_style_LoRA
Ninannnnn
2025-06-15T17:42:58Z
0
0
diffusers
[ "diffusers", "text-to-image", "diffusers-training", "lora", "template:sd-lora", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2025-06-15T17:42:56Z
--- base_model: stabilityai/stable-diffusion-xl-base-1.0 library_name: diffusers license: openrail++ instance_prompt: roger dean style of fantasy widget: [] tags: - text-to-image - text-to-image - diffusers-training - diffusers - lora - template:sd-lora - stable-diffusion-xl - stable-diffusion-xl-diffusers --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # SDXL LoRA DreamBooth - Ninannnnn/roger_dean_style_LoRA <Gallery /> ## Model description These are Ninannnnn/roger_dean_style_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using [DreamBooth](https://dreambooth.github.io/). LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use roger dean style of fantasy to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](Ninannnnn/roger_dean_style_LoRA/tree/main) them in the Files & versions tab. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
Peacemann/google_gemma-2-9b-it_LMUL
Peacemann
2025-06-15T17:42:33Z
0
0
null
[ "safetensors", "gemma2", "L-Mul,", "optimazation", "quantization", "text-generation", "research", "experimental", "conversational", "base_model:google/gemma-2-9b-it", "base_model:finetune:google/gemma-2-9b-it", "license:gemma", "region:us" ]
text-generation
2025-06-15T17:34:30Z
--- base_model: google/gemma-2-9b-it tags: - L-Mul, - optimazation - quantization - text-generation - research - experimental license: gemma --- # L-Mul Optimized: google/gemma-2-9b-it This is a modified version of Google's [gemma-2-9b-it](https://huggingface.co/google/gemma-2-9b-it) model. The modification consists of replacing the standard attention mechanism with one that uses a custom, approximate matrix multiplication algorithm termed "L-Mul". This work was performed as part of a research project to evaluate the performance and accuracy trade-offs of algorithmic substitutions in transformer architectures. **This model is intended strictly for educational and scientific purposes.** ## Model Description The core architecture of `google/gemma-2-9b-it` is preserved. However, the standard `Gemma2Attention` modules have been dynamically replaced with a custom version that utilizes the `l_mul_attention` function for its core computations. This function is defined in the `lmul.py` file included in this repository. - **Base Model:** [google/gemma-2-9b-it](https://huggingface.co/google/gemma-2-9b-it) - **Modification:** Replacement of standard attention with L-Mul approximate attention. - **Primary Use-Case:** Research and educational analysis of algorithmic impact on LLMs. ## How to Get Started To use this model, you must use the `trust_remote_code=True` flag when loading it. This is required to execute the custom `lmul.py` file that defines the new attention mechanism. You can load the model directly from this repository using the `transformers` library: ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch # Define the repository ID for the specific model repo_id = "Peacemann/google_gemma-2-9b-it-lmul-attention" # Replace with the correct repo ID if different # Load the tokenizer and model, trusting the remote code to load lmul.py tokenizer = AutoTokenizer.from_pretrained(repo_id) model = AutoModelForCausalLM.from_pretrained( repo_id, trust_remote_code=True, torch_dtype=torch.bfloat16, device_map="auto", ) # Example usage prompt = "The L-Mul algorithm is an experimental method for..." inputs = tokenizer(prompt, return_tensors="pt").to(model.device) outputs = model.generate(**inputs, max_new_tokens=50) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` ## Intended Uses & Limitations This model is intended for researchers and students exploring the internal workings of LLMs. It is a tool for visualizing and analyzing the effects of fundamental algorithmic changes. **This model is NOT intended for any commercial or production application.** The modification is experimental. The impact on the model's performance, safety alignment, accuracy, and potential for generating biased or harmful content is **unknown and untested**. ## Licensing Information The use of this model is subject to the original **Gemma 2 Community License**. By using this model, you agree to the terms outlined in the license.
SaNsOT/q-Taxi-v3
SaNsOT
2025-06-15T17:41:40Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2025-06-15T17:41:36Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.46 +/- 2.76 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="SaNsOT/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```