modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-07-14 18:27:59
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
520 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-07-14 18:27:48
card
stringlengths
11
1.01M
esb/wav2vec2-aed-switchboard
esb
2022-10-24T14:35:43Z
3
0
transformers
[ "transformers", "jax", "speech-encoder-decoder", "automatic-speech-recognition", "esb", "en", "dataset:esb/datasets", "dataset:ldc/switchboard", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-10-24T14:35:29Z
--- language: - en tags: - esb datasets: - esb/datasets - ldc/switchboard --- To reproduce this run, execute: ```python #!/usr/bin/env bash python run_flax_speech_recognition_seq2seq.py \ --dataset_name="esb/datasets" \ --model_name_or_path="esb/wav2vec2-aed-pretrained" \ --dataset_config_name="switchboard" \ --output_dir="./" \ --wandb_name="wav2vec2-aed-switchboard" \ --wandb_project="wav2vec2-aed" \ --per_device_train_batch_size="8" \ --per_device_eval_batch_size="2" \ --learning_rate="1e-4" \ --warmup_steps="500" \ --logging_steps="25" \ --max_steps="50001" \ --eval_steps="10000" \ --save_steps="10000" \ --generation_max_length="40" \ --generation_num_beams="1" \ --final_generation_max_length="260" \ --final_generation_num_beams="5" \ --generation_length_penalty="0.8" \ --overwrite_output_dir \ --gradient_checkpointing \ --freeze_feature_encoder \ --predict_with_generate \ --do_eval \ --do_train \ --do_predict \ --push_to_hub \ --use_auth_token ```
esb/wav2vec2-aed-ami
esb
2022-10-24T14:33:44Z
4
0
transformers
[ "transformers", "jax", "speech-encoder-decoder", "automatic-speech-recognition", "esb", "en", "dataset:esb/datasets", "dataset:edinburghcstr/ami", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-10-24T14:33:31Z
--- language: - en tags: - esb datasets: - esb/datasets - edinburghcstr/ami --- To reproduce this run, execute: ```python #!/usr/bin/env bash python run_flax_speech_recognition_seq2seq.py \ --dataset_name="esb/datasets" \ --model_name_or_path="esb/wav2vec2-aed-pretrained" \ --dataset_config_name="ami" \ --output_dir="./" \ --wandb_name="wav2vec2-aed-ami" \ --wandb_project="wav2vec2-aed" \ --per_device_train_batch_size="8" \ --per_device_eval_batch_size="4" \ --learning_rate="1e-4" \ --warmup_steps="500" \ --logging_steps="25" \ --max_steps="50001" \ --eval_steps="10000" \ --save_steps="10000" \ --generation_max_length="40" \ --generation_num_beams="1" \ --final_generation_max_length="225" \ --final_generation_num_beams="5" \ --generation_length_penalty="1.4" \ --hidden_dropout="0.2" \ --activation_dropout="0.2" \ --feat_proj_dropout="0.2" \ --overwrite_output_dir \ --gradient_checkpointing \ --freeze_feature_encoder \ --predict_with_generate \ --do_eval \ --do_train \ --do_predict \ --push_to_hub \ --use_auth_token ```
esb/wav2vec2-aed-voxpopuli
esb
2022-10-24T14:22:56Z
4
0
transformers
[ "transformers", "jax", "speech-encoder-decoder", "automatic-speech-recognition", "esb", "en", "dataset:esb/datasets", "dataset:facebook/voxpopuli", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-10-24T14:22:42Z
--- language: - en tags: - esb datasets: - esb/datasets - facebook/voxpopuli --- To reproduce this run, execute: ```python #!/usr/bin/env bash python run_flax_speech_recognition_seq2seq.py \ --dataset_name="esb/datasets" \ --model_name_or_path="esb/wav2vec2-aed-pretrained" \ --dataset_config_name="voxpopuli" \ --output_dir="./" \ --wandb_name="wav2vec2-aed-voxpopuli" \ --wandb_project="wav2vec2-aed" \ --per_device_train_batch_size="8" \ --per_device_eval_batch_size="1" \ --learning_rate="1e-4" \ --warmup_steps="500" \ --logging_steps="25" \ --max_steps="10001" \ --eval_steps="10000" \ --save_steps="10000" \ --generation_max_length="40" \ --generation_num_beams="1" \ --final_generation_max_length="225" \ --final_generation_num_beams="5" \ --generation_length_penalty="0.8" \ --hidden_dropout="0.2" \ --activation_dropout="0.2" \ --feat_proj_dropout="0.2" \ --overwrite_output_dir \ --gradient_checkpointing \ --freeze_feature_encoder \ --predict_with_generate \ --do_eval \ --do_train \ --do_predict \ --push_to_hub \ --use_auth_token ```
esb/wav2vec2-ctc-earnings22
esb
2022-10-24T14:09:53Z
4
0
transformers
[ "transformers", "jax", "wav2vec2", "automatic-speech-recognition", "esb", "en", "dataset:esb/datasets", "dataset:revdotcom/earnings22", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-10-24T14:09:46Z
--- language: - en tags: - esb datasets: - esb/datasets - revdotcom/earnings22 --- To reproduce this run, first call `get_ctc_tokenizer.py` to train the CTC tokenizer and then execute the following command to train the CTC system: ```python #!/usr/bin/env bash python run_flax_speech_recognition_ctc.py \ --model_name_or_path="esb/wav2vec2-ctc-pretrained" \ --tokenizer_name="wav2vec2-ctc-earnings22-tokenizer" \ --dataset_name="esb/datasets" \ --dataset_config_name="earnings22" \ --output_dir="./" \ --wandb_project="wav2vec2-ctc" \ --wandb_name="wav2vec2-ctc-earnings22" \ --max_steps="50000" \ --save_steps="10000" \ --eval_steps="10000" \ --learning_rate="3e-4" \ --logging_steps="25" \ --warmup_steps="5000" \ --preprocessing_num_workers="1" \ --hidden_dropout="0.2" \ --activation_dropout="0.2" \ --feat_proj_dropout="0.2" \ --do_train \ --do_eval \ --do_predict \ --overwrite_output_dir \ --gradient_checkpointing \ --freeze_feature_encoder \ --push_to_hub \ --use_auth_token ```
esb/wav2vec2-ctc-spgispeech
esb
2022-10-24T14:08:51Z
4
0
transformers
[ "transformers", "jax", "wav2vec2", "automatic-speech-recognition", "esb", "en", "dataset:esb/datasets", "dataset:kensho/spgispeech", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-10-24T14:08:44Z
--- language: - en tags: - esb datasets: - esb/datasets - kensho/spgispeech --- To reproduce this run, first call `get_ctc_tokenizer.py` to train the CTC tokenizer and then execute the following command to train the CTC system: ```python #!/usr/bin/env bash python run_flax_speech_recognition_ctc.py \ --model_name_or_path="esb/wav2vec2-ctc-pretrained" \ --tokenizer_name="wav2vec2-ctc-spgispeech-tokenizer" \ --dataset_name="esb/datasets" \ --dataset_config_name="spgispeech" \ --output_dir="./" \ --wandb_project="wav2vec2-ctc" \ --wandb_name="wav2vec2-ctc-spgispeech" \ --max_steps="50000" \ --save_steps="10000" \ --eval_steps="10000" \ --learning_rate="3e-4" \ --logging_steps="25" \ --warmup_steps="5000" \ --preprocessing_num_workers="1" \ --do_train \ --do_eval \ --do_predict \ --overwrite_output_dir \ --gradient_checkpointing \ --freeze_feature_encoder \ --push_to_hub \ --use_auth_token ```
esb/wav2vec2-ctc-tedlium
esb
2022-10-24T13:59:30Z
3
0
transformers
[ "transformers", "jax", "wav2vec2", "automatic-speech-recognition", "esb", "en", "dataset:esb/datasets", "dataset:LIUM/tedlium", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-10-24T13:59:22Z
--- language: - en tags: - esb datasets: - esb/datasets - LIUM/tedlium --- To reproduce this run, first call `get_ctc_tokenizer.py` to train the CTC tokenizer and then execute the following command to train the CTC system: ```python #!/usr/bin/env bash python run_flax_speech_recognition_ctc.py \ --model_name_or_path="esb/wav2vec2-ctc-pretrained" \ --tokenizer_name="wav2vec2-ctc-tedlium-tokenizer" \ --dataset_name="esb/datasets" \ --dataset_config_name="tedlium" \ --output_dir="./" \ --wandb_project="wav2vec2-ctc" \ --wandb_name="wav2vec2-ctc-tedlium" \ --max_steps="50000" \ --save_steps="10000" \ --eval_steps="10000" \ --learning_rate="3e-4" \ --logging_steps="25" \ --warmup_steps="5000" \ --preprocessing_num_workers="1" \ --hidden_dropout="0.2" \ --activation_dropout="0.2" \ --feat_proj_dropout="0.2" \ --do_train \ --do_eval \ --do_predict \ --overwrite_output_dir \ --gradient_checkpointing \ --freeze_feature_encoder \ --push_to_hub \ --use_auth_token ```
edbeeching/doom_duel_bots_3333
edbeeching
2022-10-24T13:20:02Z
2
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-10-24T13:19:37Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_duel_bots type: doom_duel_bots metrics: - type: mean_reward value: nan +/- nan name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_duel_bots** environment. This model was trained using Sample Factory 2.0: https://github.com/alex-petrenko/sample-factory
edbeeching/doom_health_gathering_supreme_3333
edbeeching
2022-10-24T13:17:54Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-10-24T13:17:29Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 66.00 +/- 0.00 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample Factory 2.0: https://github.com/alex-petrenko/sample-factory
edbeeching/doom_defend_the_center_3333
edbeeching
2022-10-24T13:15:57Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-10-24T13:15:33Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_defend_the_center type: doom_defend_the_center metrics: - type: mean_reward value: 24.00 +/- 1.41 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_defend_the_center** environment. This model was trained using Sample Factory 2.0: https://github.com/alex-petrenko/sample-factory
edbeeching/doom_deadly_corridor_3333
edbeeching
2022-10-24T13:15:22Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-10-24T13:14:56Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_deadly_corridor type: doom_deadly_corridor metrics: - type: mean_reward value: 16.67 +/- 9.37 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_deadly_corridor** environment. This model was trained using Sample Factory 2.0: https://github.com/alex-petrenko/sample-factory
edbeeching/doom_my_way_home_flat_actions_3333
edbeeching
2022-10-24T13:13:28Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-10-24T13:13:03Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_my_way_home_flat_actions type: doom_my_way_home_flat_actions metrics: - type: mean_reward value: 0.98 +/- 0.01 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_my_way_home_flat_actions** environment. This model was trained using Sample Factory 2.0: https://github.com/alex-petrenko/sample-factory
edbeeching/doom_two_colors_easy_3333
edbeeching
2022-10-24T13:12:47Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-10-24T13:11:50Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_two_colors_easy type: doom_two_colors_easy metrics: - type: mean_reward value: 59.00 +/- 0.00 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_two_colors_easy** environment. This model was trained using Sample Factory 2.0: https://github.com/alex-petrenko/sample-factory
edbeeching/doom_basic_3333
edbeeching
2022-10-24T13:11:37Z
1
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-10-24T13:11:12Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_basic type: doom_basic metrics: - type: mean_reward value: 0.77 +/- 0.12 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_basic** environment. This model was trained using Sample Factory 2.0: https://github.com/alex-petrenko/sample-factory
edbeeching/doom_duel_bots_2222
edbeeching
2022-10-24T13:10:12Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-10-24T13:09:46Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_duel_bots type: doom_duel_bots metrics: - type: mean_reward value: nan +/- nan name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_duel_bots** environment. This model was trained using Sample Factory 2.0: https://github.com/alex-petrenko/sample-factory
edbeeching/doom_battle2_2222
edbeeching
2022-10-24T13:09:30Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-10-24T13:09:03Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_battle2 type: doom_battle2 metrics: - type: mean_reward value: 30.93 +/- 0.00 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_battle2** environment. This model was trained using Sample Factory 2.0: https://github.com/alex-petrenko/sample-factory
edbeeching/doom_health_gathering_supreme_2222
edbeeching
2022-10-24T13:08:13Z
5
1
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-10-24T13:07:44Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 67.00 +/- 0.00 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample Factory 2.0: https://github.com/alex-petrenko/sample-factory
edbeeching/doom_deadly_corridor_2222
edbeeching
2022-10-24T13:05:41Z
1
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-10-24T13:05:20Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_deadly_corridor type: doom_deadly_corridor metrics: - type: mean_reward value: 19.24 +/- 7.44 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_deadly_corridor** environment. This model was trained using Sample Factory 2.0: https://github.com/alex-petrenko/sample-factory
edbeeching/doom_defend_the_center_flat_actions_2222
edbeeching
2022-10-24T13:04:29Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-10-24T13:04:03Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_defend_the_center_flat_actions type: doom_defend_the_center_flat_actions metrics: - type: mean_reward value: 24.67 +/- 0.47 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_defend_the_center_flat_actions** environment. This model was trained using Sample Factory 2.0: https://github.com/alex-petrenko/sample-factory
edbeeching/doom_two_colors_easy_2222
edbeeching
2022-10-24T13:03:16Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-10-24T13:02:49Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_two_colors_easy type: doom_two_colors_easy metrics: - type: mean_reward value: 58.00 +/- 0.00 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_two_colors_easy** environment. This model was trained using Sample Factory 2.0: https://github.com/alex-petrenko/sample-factory
edbeeching/doom_deadly_corridor_1111
edbeeching
2022-10-24T12:57:52Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-10-24T12:57:29Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_deadly_corridor type: doom_deadly_corridor metrics: - type: mean_reward value: 17.08 +/- 9.07 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_deadly_corridor** environment. This model was trained using Sample Factory 2.0: https://github.com/alex-petrenko/sample-factory
edbeeching/doom_my_way_home_1111
edbeeching
2022-10-24T12:57:16Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-10-24T12:56:52Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_my_way_home type: doom_my_way_home metrics: - type: mean_reward value: 0.98 +/- 0.01 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_my_way_home** environment. This model was trained using Sample Factory 2.0: https://github.com/alex-petrenko/sample-factory
edbeeching/doom_defend_the_center_flat_actions_1111
edbeeching
2022-10-24T12:56:39Z
2
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-10-24T12:56:15Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_defend_the_center_flat_actions type: doom_defend_the_center_flat_actions metrics: - type: mean_reward value: 24.67 +/- 0.47 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_defend_the_center_flat_actions** environment. This model was trained using Sample Factory 2.0: https://github.com/alex-petrenko/sample-factory
edbeeching/doom_my_way_home_flat_actions_1111
edbeeching
2022-10-24T12:56:04Z
1
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-10-24T12:55:38Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_my_way_home_flat_actions type: doom_my_way_home_flat_actions metrics: - type: mean_reward value: 0.98 +/- 0.01 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_my_way_home_flat_actions** environment. This model was trained using Sample Factory 2.0: https://github.com/alex-petrenko/sample-factory
edbeeching/doom_basic_1111
edbeeching
2022-10-24T12:54:44Z
1
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-10-24T12:54:23Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_basic type: doom_basic metrics: - type: mean_reward value: 0.75 +/- 0.10 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_basic** environment. This model was trained using Sample Factory 2.0: https://github.com/alex-petrenko/sample-factory
yuk/my-dream-booth-models
yuk
2022-10-24T12:51:08Z
0
5
null
[ "license:bigscience-bloom-rail-1.0", "region:us" ]
null
2022-10-21T12:42:39Z
--- license: bigscience-bloom-rail-1.0 --- * fuyuko_wd13_3000-pruned.ckpt * 冬優子ちゃんをDreamBoothしたモデルです * asahi_wd13_3000.ckpt * あさひちゃんをDreamBoothしたモデルです * madoka_wd13_2000.ckpt * 樋口円香をDreamBoothしたモデルです * gothic_wd13_3000.ckpt * WaifuDiffusionで出力したゴスロリキャラをDreamBoothしたモデルです * 陰影が深い感じがあるので、標準のAIの薄っぺらい出力に飽きたら使ってみて下さい * gothic_ikemen_wd13_3000.ckpt * gothic_wd13_3000で出力したスーツイケメンをDreamBoothしたモデルです * イケメンに女装させたいときに便利です
qanastek/FrenchMedMCQA-BioBERT-V1.1-Wikipedia-BM25
qanastek
2022-10-24T12:38:40Z
9
1
transformers
[ "transformers", "pytorch", "bert", "text-classification", "fr", "dataset:FrenchMedMCQA", "arxiv:1910.03771", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-21T11:30:34Z
--- language: fr datasets: - FrenchMedMCQA license: apache-2.0 model-index: - name: qanastek/FrenchMedMCQA-BioBERT-V1.1-Wikipedia-BM25 results: - task: type: question-answering name: Question Answering dataset: name: FrenchMedMCQA type: FrenchMedMCQA config: FrenchMedMCQA split: validation metrics: - name: Exact Match type: exact_match value: 16.72 verified: true - name: Hamming Score type: hamming score value: 38.72 verified: true widget: - text: "Quels sont les signes cliniques retrouvés dans l'intoxication par la digoxine ? : \n (A) Douleur oculaire (B) Troubles digestifs (C) BAV (D) Hallucinations (E) Hyperthermie\n Intoxication par les venins d'animaux" --- # FrenchMedMCQA : Multiple-choice question answering on pharmacology exams using BioBERT V1.1, Wikipedia external knowledge and BM25 retriever - Corpora: [FrenchMedMCQA](https://github.com/qanastek/FrenchMedMCQA) - Model: [BioBERT V1.1](https://huggingface.co/dmis-lab/biobert-v1.1) - Number of Epochs: 10 **People Involved** * [Yanis LABRAK](https://www.linkedin.com/in/yanis-labrak-8a7412145/) (1) * [Adrien BAZOGE](https://fr.linkedin.com/in/adrien-bazoge-6b511b145) (2) * [Richard DUFOUR](https://cv.archives-ouvertes.fr/richard-dufour) (2) * [Béatrice DAILLE](https://scholar.google.com/citations?user=-damXYEAAAAJ&hl=fr) (2) * [Pierre-Antoine GOURRAUD](https://fr.linkedin.com/in/pierre-antoine-gourraud-35779b6) (3) * [Emmanuel MORIN](https://scholar.google.fr/citations?user=tvTEtM0AAAAJ&hl=fr) (2) * [Mickael ROUVIER](https://scholar.google.fr/citations?user=0fmu-VsAAAAJ&hl=fr) (1) **Affiliations** 1. [LIA, NLP team](https://lia.univ-avignon.fr/), Avignon University, Avignon, France. 2. [LS2N, TALN team](https://www.ls2n.fr/equipe/taln/), Nantes University, Nantes, France. 3. [CHU Nantes](https://www.chu-nantes.fr/), Nantes University, Nantes, France. ## Demo: How to use in HuggingFace Transformers Requires [Transformers](https://pypi.org/project/transformers/): ```pip install transformers``` ```python from datasets import load_dataset from transformers import AutoTokenizer, AutoModelForSequenceClassification, TextClassificationPipeline path_model = "qanastek/FrenchMedMCQA-BioBERT-V1.1-Wikipedia-BM25" tokenizer = AutoTokenizer.from_pretrained(path_model) model = AutoModelForSequenceClassification.from_pretrained(path_model) pipeline = TextClassificationPipeline(model=model, tokenizer=tokenizer, return_all_scores=False, device=0) # GPU dataset = load_dataset("qanastek/FrenchMedMCQA")["test"] for e in dataset: prediction = pipeline(e["bert_text"], truncation=True, max_length=model.config.max_position_embeddings) ``` Output: ![Preview Output](preview.PNG) ## Training data The questions and their associated candidate answer(s) were collected from real French pharmacy exams on the remede website. Questions and answers were manually created by medical experts and used during examinations. The dataset is composed of 2,025 questions with multiple answers and 1,080 with a single one, for a total of 3,105 questions. Each instance of the dataset contains an identifier, a question, five options (labeled from A to E) and correct answer(s). The average question length is 14.17 tokens and the average answer length is 6.44 tokens. The vocabulary size is of 13k words, of which 3.8k are estimated medical domain-specific words (i.e. a word related to the medical field). We find an average of 2.49 medical domain-specific words in each question (17 % of the words) and 2 in each answer (36 % of the words). On average, a medical domain-specific word is present in 2 questions and in 8 answers. | # Answers | Training | Validation | Test | Total | |:---------:|:--------:|:----------:|:----:|:-----:| | 1 | 595 | 164 | 321 | 1,080 | | 2 | 528 | 45 | 97 | 670 | | 3 | 718 | 71 | 141 | 930 | | 4 | 296 | 30 | 56 | 382 | | 5 | 34 | 2 | 7 | 43 | | Total | 2171 | 312 | 622 | 3,105 | ## Evaluation results The test corpora used for this evaluation is available on [Github](https://github.com/qanastek/FrenchMedMCQA). | Architecture | Hamming | EMR | Hamming | EMR | Hamming | EMR | Hamming | EMR | Hamming | EMR | |:----------------:|:-------:|:-----:|:-------:|:-----:|:-------:|:-----:|:-------:|:-----:|:-------:|:-----:| | BioBERT V1.1 | 36.19 | 15.43 | **38.72** | 16.72 | 33.33 | 14.14 | 35.13 | 16.23 | 34.27 | 13.98 | | PubMedBERT | 33.98 | 14.14 | 34.00 | 13.98 | 35.66 | 15.59 | 33.87 | 14.79 | 35.44 | 14.79 | | CamemBERT-base | 36.24 | 16.55 | 34.19 | 14.46 | 34.78 | 15.43 | 34.66 | 14.79 | 34.61 | 14.95 | | XLM-RoBERTa-base | 37.92 | 17.20 | 31.26 | 11.89 | 35.84 | 16.07 | 32.47 | 14.63 | 33.00 | 14.95 | | BART-base | 31.93 | 15.91 | 34.98 | **18.64** | 33.80 | 17.68 | 29.65 | 12.86 | 34.65 | 18.32 | ## BibTeX Citations Please cite the following paper when using this model. FrenchMedMCQA corpus and linked tools: ```latex @unpublished{labrak:hal-03824241, TITLE = {{FrenchMedMCQA: A French Multiple-Choice Question Answering Dataset for Medical domain}}, AUTHOR = {Labrak, Yanis and Bazoge, Adrien and Dufour, Richard and Daille, B{\'e}atrice and Gourraud, Pierre-Antoine and Morin, Emmanuel and Rouvier, Mickael}, URL = {https://hal.archives-ouvertes.fr/hal-03824241}, NOTE = {working paper or preprint}, YEAR = {2022}, MONTH = Oct, PDF = {https://hal.archives-ouvertes.fr/hal-03824241/file/LOUHI_2022___QA-3.pdf}, HAL_ID = {hal-03824241}, HAL_VERSION = {v1}, } ``` HuggingFace's Transformers : ```latex @misc{https://doi.org/10.48550/arxiv.1910.03771, doi = {10.48550/ARXIV.1910.03771}, url = {https://arxiv.org/abs/1910.03771}, author = {Wolf, Thomas and Debut, Lysandre and Sanh, Victor and Chaumond, Julien and Delangue, Clement and Moi, Anthony and Cistac, Pierric and Rault, Tim and Louf, Rémi and Funtowicz, Morgan and Davison, Joe and Shleifer, Sam and von Platen, Patrick and Ma, Clara and Jernite, Yacine and Plu, Julien and Xu, Canwen and Scao, Teven Le and Gugger, Sylvain and Drame, Mariama and Lhoest, Quentin and Rush, Alexander M.}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {HuggingFace's Transformers: State-of-the-art Natural Language Processing}, publisher = {arXiv}, year = {2019}, copyright = {arXiv.org perpetual, non-exclusive license} } ``` ## Acknowledgment This work was financially supported by [Zenidoc](https://zenidoc.fr/), the [DIETS](https://anr-diets.univ-avignon.fr/) project financed by the Agence Nationale de la Recherche (ANR) under contract ANR-20-CE23-0005 and the ANR [AIBy4](https://aiby4.ls2n.fr/) (ANR-20-THIA-0011).
esc-bench/conformer-rnnt-chime4
esc-bench
2022-10-24T12:00:47Z
4
0
nemo
[ "nemo", "esb", "en", "dataset:esb/datasets", "dataset:ldc/chime-4", "region:us" ]
null
2022-10-03T09:20:28Z
--- language: - en tags: - esb datasets: - esb/datasets - ldc/chime-4 --- To reproduce this run, first install NVIDIA NeMo according to the [official instructions](https://github.com/NVIDIA/NeMo#installation), then execute: ```python #!/usr/bin/env bash CUDA_VISIBLE_DEVICES=0 python run_speech_recognition_rnnt.py \ --config_path="conf/conformer_transducer_bpe_xlarge.yaml" \ --model_name_or_path="stt_en_conformer_transducer_xlarge" \ --dataset_name="esb/datasets" \ --dataset_config_name="chime4" \ --tokenizer_path="tokenizer" \ --vocab_size="1024" \ --max_steps="100000" \ --output_dir="./" \ --run_name="conformer-rnnt-chime4" \ --wandb_project="rnnt" \ --per_device_train_batch_size="8" \ --per_device_eval_batch_size="4" \ --logging_steps="50" \ --learning_rate="1e-4" \ --warmup_steps="500" \ --save_strategy="steps" \ --save_steps="20000" \ --evaluation_strategy="steps" \ --eval_steps="20000" \ --report_to="wandb" \ --preprocessing_num_workers="4" \ --fused_batch_size="4" \ --length_column_name="input_lengths" \ --fuse_loss_wer \ --group_by_length \ --overwrite_output_dir \ --do_train \ --do_eval \ --do_predict \ --use_auth_token ```
esc-bench/conformer-rnnt-ami
esc-bench
2022-10-24T11:57:41Z
5
0
nemo
[ "nemo", "esb", "en", "dataset:esb/datasets", "dataset:edinburghcstr/ami", "region:us" ]
null
2022-10-03T09:37:54Z
--- language: - en tags: - esb datasets: - esb/datasets - edinburghcstr/ami --- To reproduce this run, first install NVIDIA NeMo according to the [official instructions](https://github.com/NVIDIA/NeMo#installation), then execute: ```python #!/usr/bin/env bash CUDA_VISIBLE_DEVICES=0 python run_speech_recognition_rnnt.py \ --config_path="conf/conformer_transducer_bpe_xlarge.yaml" \ --model_name_or_path="stt_en_conformer_transducer_xlarge" \ --dataset_name="esb/datasets" \ --tokenizer_path="tokenizer" \ --vocab_size="1024" \ --max_steps="100000" \ --dataset_config_name="ami" \ --output_dir="./" \ --run_name="conformer-rnnt-ami" \ --wandb_project="rnnt" \ --per_device_train_batch_size="8" \ --per_device_eval_batch_size="4" \ --logging_steps="50" \ --learning_rate="1e-4" \ --warmup_steps="500" \ --save_strategy="steps" \ --save_steps="20000" \ --evaluation_strategy="steps" \ --eval_steps="20000" \ --report_to="wandb" \ --preprocessing_num_workers="4" \ --fused_batch_size="4" \ --length_column_name="input_lengths" \ --fuse_loss_wer \ --group_by_length \ --overwrite_output_dir \ --do_train \ --do_eval \ --do_predict \ --use_auth_token ```
esc-bench/conformer-rnnt-spgispeech
esc-bench
2022-10-24T11:53:23Z
4
0
nemo
[ "nemo", "esb", "en", "dataset:esb/datasets", "dataset:kensho/spgispeech", "region:us" ]
null
2022-10-03T08:54:36Z
--- language: - en tags: - esb datasets: - esb/datasets - kensho/spgispeech --- To reproduce this run, first install NVIDIA NeMo according to the [official instructions](https://github.com/NVIDIA/NeMo#installation), then execute: ```python #!/usr/bin/env bash CUDA_VISIBLE_DEVICES=0 python run_speech_recognition_rnnt.py \ --config_path="conf/conformer_transducer_bpe_xlarge.yaml" \ --model_name_or_path="stt_en_conformer_transducer_xlarge" \ --dataset_name="esb/datasets" \ --tokenizer_path="tokenizer" \ --vocab_size="1024" \ --max_steps="100000" \ --dataset_config_name="spgispeech" \ --output_dir="./" \ --run_name="conformer-rnnt-spgispeech" \ --wandb_project="rnnt" \ --per_device_train_batch_size="8" \ --per_device_eval_batch_size="4" \ --logging_steps="50" \ --learning_rate="1e-4" \ --warmup_steps="500" \ --save_strategy="steps" \ --save_steps="20000" \ --evaluation_strategy="steps" \ --eval_steps="20000" \ --report_to="wandb" \ --preprocessing_num_workers="4" \ --fused_batch_size="4" \ --length_column_name="input_lengths" \ --fuse_loss_wer \ --group_by_length \ --overwrite_output_dir \ --do_train \ --do_eval \ --do_predict \ --use_auth_token ```
esc-bench/conformer-rnnt-voxpopuli
esc-bench
2022-10-24T11:50:27Z
4
0
nemo
[ "nemo", "esb", "en", "dataset:esb/datasets", "dataset:facebook/voxpopuli", "region:us" ]
null
2022-10-03T08:52:33Z
--- language: - en tags: - esb datasets: - esb/datasets - facebook/voxpopuli --- To reproduce this run, first install NVIDIA NeMo according to the [official instructions](https://github.com/NVIDIA/NeMo#installation), then execute: ```python #!/usr/bin/env bash CUDA_VISIBLE_DEVICES=0 python run_speech_recognition_rnnt.py \ --config_path="conf/conformer_transducer_bpe_xlarge.yaml" \ --model_name_or_path="stt_en_conformer_transducer_xlarge" \ --dataset_name="esb/datasets" \ --tokenizer_path="tokenizer" \ --vocab_size="1024" \ --max_steps="100000" \ --dataset_config_name="voxpopuli" \ --output_dir="./" \ --run_name="conformer-rnnt-voxpopuli" \ --wandb_project="rnnt" \ --per_device_train_batch_size="8" \ --per_device_eval_batch_size="4" \ --logging_steps="50" \ --learning_rate="1e-4" \ --warmup_steps="500" \ --save_strategy="steps" \ --save_steps="20000" \ --evaluation_strategy="steps" \ --eval_steps="20000" \ --report_to="wandb" \ --preprocessing_num_workers="4" \ --fused_batch_size="4" \ --length_column_name="input_lengths" \ --fuse_loss_wer \ --group_by_length \ --overwrite_output_dir \ --do_train \ --do_eval \ --do_predict \ --use_auth_token ```
Aunsiels/ChildGPT
Aunsiels
2022-10-24T11:37:39Z
21
3
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "children", "infant", "en", "dataset:Aunsiels/InfantBooks", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-10-19T08:59:58Z
--- language: - en tags: - children - infant datasets: - Aunsiels/InfantBooks --- A GPT2-model finetuned on children's books. ``` Romero, J., & Razniewski, S. (2022). Do Children Texts Hold The Key To Commonsense Knowledge? In Proceedings of the 2022 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. ```
esc-bench/whisper-aed-chime4
esc-bench
2022-10-24T11:37:38Z
0
0
null
[ "esb", "en", "dataset:esb/datasets", "dataset:ldc/chime-4", "region:us" ]
null
2022-10-03T08:02:41Z
--- language: - en tags: - esb datasets: - esb/datasets - ldc/chime-4 --- To reproduce this run, first install Whisper from the Transformers compatible repo [patrickvonplaten/whisper](https://github.com/patrickvonplaten/whisper): ``` pip install git+https://github.com/openai/whisper.git ``` Then execute the command: ```python #!/usr/bin/env bash CUDA_VISIBLE_DEVICES=0 python run_speech_recognition_whisper.py \ --model_name_or_path="medium.en" \ --dataset_name="esb/datasets" \ --dataset_config_name="chime4" \ --max_steps="2500" \ --output_dir="./" \ --run_name="whisper-chime4" \ --dropout_rate="0.1" \ --wandb_project="whisper" \ --per_device_train_batch_size="64" \ --per_device_eval_batch_size="16" \ --logging_steps="25" \ --learning_rate="1e-4" \ --warmup_steps="500" \ --report_to="wandb" \ --preprocessing_num_workers="16" \ --evaluation_strategy="steps" \ --eval_steps="500" \ --save_strategy="steps" \ --save_steps="500" \ --generation_max_length="224" \ --length_column_name="input_lengths" \ --gradient_checkpointing \ --group_by_length \ --freeze_encoder \ --fp16 \ --overwrite_output_dir \ --do_train \ --do_eval \ --do_predict \ --predict_with_generate \ --use_auth_token ```
esc-bench/whisper-aed-switchboard
esc-bench
2022-10-24T11:37:35Z
0
0
null
[ "esb", "en", "dataset:esb/datasets", "dataset:ldc/switchboard", "region:us" ]
null
2022-10-03T07:54:54Z
--- language: - en tags: - esb datasets: - esb/datasets - ldc/switchboard --- To reproduce this run, first install Whisper from the Transformers compatible repo [patrickvonplaten/whisper](https://github.com/patrickvonplaten/whisper): ``` pip install git+https://github.com/openai/whisper.git ``` Then execute the command: ```python #!/usr/bin/env bash CUDA_VISIBLE_DEVICES=0 python run_speech_recognition_whisper.py \ --model_name_or_path="medium.en" \ --dataset_name="esb/datasets" \ --dataset_config_name="switchboard" \ --max_steps="5000" \ --output_dir="./" \ --run_name="whisper-switchboard" \ --max_steps="5000" \ --output_dir="./" \ --run_name="whisper-switchboard" \ --wandb_project="whisper" \ --per_device_train_batch_size="64" \ --per_device_eval_batch_size="16" \ --logging_steps="25" \ --learning_rate="1e-4" \ --warmup_steps="500" \ --report_to="wandb" \ --preprocessing_num_workers="16" \ --evaluation_strategy="steps" \ --eval_steps="1000" \ --save_strategy="steps" \ --save_steps="1000" \ --generation_max_length="224" \ --length_column_name="input_lengths" \ --gradient_checkpointing \ --group_by_length \ --freeze_encoder \ --fp16 \ --overwrite_output_dir \ --do_train \ --do_eval \ --do_predict \ --predict_with_generate \ --use_auth_token ```
esc-bench/whisper-aed-earnings22
esc-bench
2022-10-24T11:37:30Z
0
1
null
[ "esb", "en", "dataset:esb/datasets", "dataset:revdotcom/earnings22", "region:us" ]
null
2022-10-03T08:00:03Z
--- language: - en tags: - esb datasets: - esb/datasets - revdotcom/earnings22 --- To reproduce this run, first install Whisper from the Transformers compatible repo [patrickvonplaten/whisper](https://github.com/patrickvonplaten/whisper): ``` pip install git+https://github.com/openai/whisper.git ``` Then execute the command: ```python #!/usr/bin/env bash CUDA_VISIBLE_DEVICES=0 python run_speech_recognition_whisper.py \ --model_name_or_path="medium.en" \ --dataset_name="esb/datasets" \ --dataset_config_name="earnings22" \ --max_steps="2500" \ --output_dir="./" \ --run_name="whisper-earnings22" \ --wandb_project="whisper" \ --per_device_train_batch_size="64" \ --per_device_eval_batch_size="16" \ --logging_steps="25" \ --learning_rate="1e-4" \ --warmup_steps="500" \ --report_to="wandb" \ --preprocessing_num_workers="16" \ --evaluation_strategy="steps" \ --eval_steps="500" \ --save_strategy="steps" \ --save_steps="500" \ --generation_max_length="224" \ --length_column_name="input_lengths" \ --gradient_checkpointing \ --group_by_length \ --freeze_encoder \ --fp16 \ --overwrite_output_dir \ --do_train \ --do_eval \ --do_predict \ --predict_with_generate \ --use_auth_token ```
esc-bench/whisper-aed-gigaspeech
esc-bench
2022-10-24T11:37:24Z
0
0
null
[ "esb", "en", "dataset:esb/datasets", "dataset:speechcolab/gigaspeech", "region:us" ]
null
2022-10-03T07:57:50Z
--- language: - en tags: - esb datasets: - esb/datasets - speechcolab/gigaspeech --- To reproduce this run, first install Whisper from the Transformers compatible repo [patrickvonplaten/whisper](https://github.com/patrickvonplaten/whisper): ``` pip install git+https://github.com/openai/whisper.git ``` Then execute the command: ```python #!/usr/bin/env bash CUDA_VISIBLE_DEVICES=0 python run_speech_recognition_whisper.py \ --model_name_or_path="medium.en" \ --dataset_name="esb/datasets" \ --dataset_config_name="gigaspeech" \ --max_steps="5000" \ --output_dir="./" \ --run_name="whisper-gigaspeech" \ --wandb_project="whisper" \ --per_device_train_batch_size="64" \ --per_device_eval_batch_size="16" \ --logging_steps="25" \ --learning_rate="1e-4" \ --warmup_steps="500" \ --report_to="wandb" \ --preprocessing_num_workers="16" \ --evaluation_strategy="steps" \ --eval_steps="1000" \ --save_strategy="steps" \ --save_steps="1000" \ --generation_max_length="224" \ --length_column_name="input_lengths" \ --gradient_checkpointing \ --group_by_length \ --freeze_encoder \ --fp16 \ --overwrite_output_dir \ --do_train \ --do_eval \ --do_predict \ --predict_with_generate \ --use_auth_token ```
esc-bench/whisper-aed-voxpopuli
esc-bench
2022-10-24T11:37:21Z
0
0
null
[ "esb", "en", "dataset:esb/datasets", "dataset:facebook/voxpopuli", "region:us" ]
null
2022-10-03T09:41:59Z
--- language: - en tags: - esb datasets: - esb/datasets - facebook/voxpopuli --- To reproduce this run, first install Whisper from the Transformers compatible repo [patrickvonplaten/whisper](https://github.com/patrickvonplaten/whisper): ``` pip install git+https://github.com/openai/whisper.git ``` Then execute the command: ```python #!/usr/bin/env bash CUDA_VISIBLE_DEVICES=0 python run_speech_recognition_whisper.py \ --model_name_or_path="medium.en" \ --dataset_name="esb/datasets" \ --dataset_config_name="voxpopuli" \ --max_steps="5000" \ --output_dir="./" \ --run_name="whisper-voxpopuli" \ --wandb_project="whisper" \ --per_device_train_batch_size="64" \ --per_device_eval_batch_size="16" \ --logging_steps="25" \ --learning_rate="1e-4" \ --warmup_steps="500" \ --report_to="wandb" \ --preprocessing_num_workers="16" \ --evaluation_strategy="steps" \ --eval_steps="500" \ --save_strategy="steps" \ --save_steps="500" \ --generation_max_length="224" \ --length_column_name="input_lengths" \ --gradient_checkpointing \ --group_by_length \ --freeze_encoder \ --fp16 \ --overwrite_output_dir \ --do_train \ --do_eval \ --do_predict \ --predict_with_generate \ --use_auth_token ```
esc-bench/whisper-aed-librispeech
esc-bench
2022-10-24T11:37:12Z
0
0
null
[ "esb", "en", "dataset:esb/datasets", "dataset:librispeech_asr", "region:us" ]
null
2022-10-03T07:46:24Z
--- language: - en tags: - esb datasets: - esb/datasets - librispeech_asr --- To reproduce this run, first install Whisper from the Transformers compatible repo [patrickvonplaten/whisper](https://github.com/patrickvonplaten/whisper): ``` pip install git+https://github.com/openai/whisper.git ``` Then execute the command: ```python #!/usr/bin/env bash CUDA_VISIBLE_DEVICES=0 python run_speech_recognition_whisper.py \ --model_name_or_path="medium.en" \ --dataset_name="esb/datasets" \ --dataset_config_name="librispeech" \ --max_steps="5000" \ --output_dir="./" \ --run_name="whisper-librispeech" \ --wandb_project="whisper" \ --per_device_train_batch_size="64" \ --per_device_eval_batch_size="16" \ --logging_steps="25" \ --learning_rate="1e-4" \ --warmup_steps="500" \ --report_to="wandb" \ --preprocessing_num_workers="16" \ --evaluation_strategy="steps" \ --eval_steps="1000" \ --save_strategy="steps" \ --save_steps="1000" \ --generation_max_length="224" \ --length_column_name="input_lengths" \ --gradient_checkpointing \ --group_by_length \ --freeze_encoder \ --fp16 \ --overwrite_output_dir \ --do_train \ --do_eval \ --do_predict \ --predict_with_generate \ --use_auth_token ```
asparius/balanced-combined-bert
asparius
2022-10-24T11:03:34Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-24T10:52:49Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: balanced-combined-bert results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # balanced-combined-bert This model is a fine-tuned version of [dbmdz/bert-base-turkish-128k-uncased](https://huggingface.co/dbmdz/bert-base-turkish-128k-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4475 - Accuracy: 0.825 - F1: 0.8141 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu102 - Datasets 2.4.0 - Tokenizers 0.12.1
coastalcph/danish-legal-longformer-eurlex-sd
coastalcph
2022-10-24T10:54:06Z
15
3
transformers
[ "transformers", "pytorch", "longformer", "text-classification", "dataset:multi_eurlex", "arxiv:2011.09468", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-24T10:42:46Z
--- widget: - text: "KOMMISSIONENS BESLUTNING\naf 6. marts 2006\nom klassificering af visse byggevarers ydeevne med hensyn til reaktion ved brand for så vidt angår trægulve samt vægpaneler og vægbeklædning i massivt træ\n(meddelt under nummer K(2006) 655" datasets: - multi_eurlex metrics: - f1 model-index: - name: coastalcph/danish-legal-longformer-eurlex-sd results: - task: type: text-classification name: Danish EURLEX (Level 2) dataset: name: multi_eurlex type: multi_eurlex config: multi_eurlex split: validation metrics: - name: Micro-F1 type: micro-f1 value: 0.76144 - name: Macro-F1 type: macro-f1 value: 0.52878 --- # Model description This model is a fine-tuned version of [coastalcph/danish-legal-longformer-base](https://huggingface.co/coastalcph/danish-legal-longformer-base) on the Danish part of [MultiEURLEX](https://huggingface.co/datasets/multi_eurlex) dataset using an additional Spectral Decoupling penalty ([Pezeshki et al., 2020](https://arxiv.org/abs/2011.09468). ## Training and evaluation data The Danish part of [MultiEURLEX](https://huggingface.co/datasets/multi_eurlex) dataset. ## Use of Model ### As a text classifier: ```python from transformers import pipeline import numpy as np # Init text classification pipeline text_cls_pipe = pipeline(task="text-classification", model="coastalcph/danish-legal-longformer-eurlex-sd", use_auth_token='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') # Encode and Classify document predictions = text_cls_pipe("KOMMISSIONENS BESLUTNING\naf 6. marts 2006\nom klassificering af visse byggevarers " "ydeevne med hensyn til reaktion ved brand for så vidt angår trægulve samt vægpaneler " "og vægbeklædning i massivt træ\n(meddelt under nummer K(2006) 655") # Print prediction print(predictions) # [{'label': 'building and public works', 'score': 0.9626012444496155}] ``` ### As a feature extractor (document embedder): ```python from transformers import pipeline import numpy as np # Init feature extraction pipeline feature_extraction_pipe = pipeline(task="feature-extraction", model="coastalcph/danish-legal-longformer-eurlex-sd", use_auth_token='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') # Encode document predictions = feature_extraction_pipe("KOMMISSIONENS BESLUTNING\naf 6. marts 2006\nom klassificering af visse byggevarers " "ydeevne med hensyn til reaktion ved brand for så vidt angår trægulve samt vægpaneler " "og vægbeklædning i massivt træ\n(meddelt under nummer K(2006) 655") # Use CLS token representation as document embedding document_features = token_wise_features[0][0] print(document_features.shape) # (768,) ``` ## Framework versions - Transformers 4.18.0 - Pytorch 1.12.0+cu113 - Datasets 2.0.0 - Tokenizers 0.12.1
esc-bench/wav2vec2-aed-earnings22
esc-bench
2022-10-24T10:48:40Z
5
0
transformers
[ "transformers", "jax", "speech-encoder-decoder", "automatic-speech-recognition", "esb", "en", "dataset:esb/datasets", "dataset:revdotcom/earnings22", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-09-30T14:39:19Z
--- language: - en tags: - esb datasets: - esb/datasets - revdotcom/earnings22 --- To reproduce this run, execute: ```python #!/usr/bin/env bash python run_flax_speech_recognition_seq2seq.py \ --dataset_name="esb/datasets" \ --model_name_or_path="esb/wav2vec2-aed-pretrained" \ --dataset_config_name="earnings22" \ --output_dir="./" \ --wandb_name="wav2vec2-aed-earnings22" \ --wandb_project="wav2vec2-aed" \ --per_device_train_batch_size="8" \ --per_device_eval_batch_size="4" \ --logging_steps="25" \ --max_steps="50000" \ --eval_steps="10000" \ --save_steps="10000" \ --generation_max_length="40" \ --generation_num_beams="1" \ --generation_length_penalty="1.2" \ --final_generation_max_length="200" \ --final_generation_num_beams="5" \ --learning_rate="1e-4" \ --warmup_steps="500" \ --hidden_dropout="0.2" \ --activation_dropout="0.2" \ --feat_proj_dropout="0.2" \ --overwrite_output_dir \ --gradient_checkpointing \ --freeze_feature_encoder \ --predict_with_generate \ --do_eval \ --do_train \ --do_predict \ --push_to_hub \ --use_auth_token ```
esc-bench/wav2vec2-aed-gigaspeech
esc-bench
2022-10-24T10:45:47Z
5
0
transformers
[ "transformers", "jax", "speech-encoder-decoder", "automatic-speech-recognition", "esb", "en", "dataset:esb/datasets", "dataset:speechcolab/gigaspeech", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-09-30T14:39:14Z
--- language: - en tags: - esb datasets: - esb/datasets - speechcolab/gigaspeech --- To reproduce this run, execute: ```python #!/usr/bin/env bash python run_flax_speech_recognition_seq2seq.py \ --dataset_name="esb/datasets" \ --model_name_or_path="esb/wav2vec2-aed-pretrained" \ --dataset_config_name="gigaspeech" \ --output_dir="./" \ --wandb_name="wav2vec2-aed-gigaspeech" \ --wandb_project="wav2vec2-aed" \ --per_device_train_batch_size="8" \ --per_device_eval_batch_size="2" \ --learning_rate="1e-4" \ --warmup_steps="500" \ --logging_steps="25" \ --max_steps="50001" \ --eval_steps="10000" \ --save_steps="10000" \ --generation_max_length="40" \ --generation_num_beams="1" \ --final_generation_max_length="200" \ --final_generation_num_beams="14" \ --generation_length_penalty="1.2" \ --overwrite_output_dir \ --gradient_checkpointing \ --freeze_feature_encoder \ --predict_with_generate \ --do_eval \ --do_train \ --do_predict \ --push_to_hub \ --use_auth_token ```
esc-bench/wav2vec2-aed-tedlium
esc-bench
2022-10-24T10:42:16Z
7
0
transformers
[ "transformers", "jax", "speech-encoder-decoder", "automatic-speech-recognition", "esb", "en", "dataset:esb/datasets", "dataset:LIUM/tedlium", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-09-30T14:39:08Z
--- language: - en tags: - esb datasets: - esb/datasets - LIUM/tedlium --- To reproduce this run, execute: ```python #!/usr/bin/env bash python run_flax_speech_recognition_seq2seq.py \ --dataset_name="esb/datasets" \ --model_name_or_path="esb/wav2vec2-aed-tedlium" \ --dataset_config_name="tedlium" \ --output_dir="./" \ --wandb_name="wav2vec2-aed-tedlium" \ --wandb_project="wav2vec2-aed" \ --per_device_train_batch_size="8" \ --per_device_eval_batch_size="2" \ --learning_rate="1e-4" \ --warmup_steps="500" \ --logging_steps="25" \ --max_steps="50001" \ --eval_steps="10000" \ --save_steps="10000" \ --generation_max_length="40" \ --generation_num_beams="1" \ --final_generation_max_length="250" \ --final_generation_num_beams="12" \ --generation_length_penalty="1.5" \ --hidden_dropout="0.2" \ --activation_dropout="0.2" \ --feat_proj_dropout="0.2" \ --overwrite_output_dir \ --gradient_checkpointing \ --freeze_feature_encoder \ --predict_with_generate \ --do_eval \ --do_train \ --do_predict \ --push_to_hub \ --use_auth_token ```
esc-bench/wav2vec2-aed-common_voice
esc-bench
2022-10-24T10:39:50Z
5
0
transformers
[ "transformers", "jax", "speech-encoder-decoder", "automatic-speech-recognition", "esb", "en", "dataset:esb/datasets", "dataset:mozilla-foundation/common_voice_9_0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-09-30T14:39:06Z
--- language: - en tags: - esb datasets: - esb/datasets - mozilla-foundation/common_voice_9_0 --- To reproduce this run, execute: ```python #!/usr/bin/env bash python run_flax_speech_recognition_seq2seq.py \ --dataset_name="esb/datasets" \ --model_name_or_path="esb/wav2vec2-aed-pretrained" \ --dataset_config_name="common_voice" \ --output_dir="./" \ --wandb_name="wav2vec2-aed-common-voice" \ --wandb_project="wav2vec2-aed" \ --per_device_train_batch_size="8" \ --per_device_eval_batch_size="2" \ --learning_rate="1e-4" \ --warmup_steps="500" \ --logging_steps="25" \ --max_steps="50001" \ --eval_steps="10000" \ --save_steps="10000" \ --generation_max_length="40" \ --generation_num_beams="1" \ --final_generation_max_length="200" \ --generation_num_beams="14" \ --generation_length_penalty="1.2" \ --max_eval_duration_in_seconds="20" \ --overwrite_output_dir \ --gradient_checkpointing \ --freeze_feature_encoder \ --predict_with_generate \ --do_eval \ --do_train \ --do_predict \ --push_to_hub \ --use_auth_token ```
esc-bench/wav2vec2-aed-librispeech
esc-bench
2022-10-24T10:37:46Z
4
0
transformers
[ "transformers", "jax", "speech-encoder-decoder", "automatic-speech-recognition", "esb", "en", "dataset:esb/datasets", "dataset:librispeech_asr", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-09-30T14:39:03Z
--- language: - en tags: - esb datasets: - esb/datasets - librispeech_asr --- To reproduce this run, execute: ```python #!/usr/bin/env bash python run_flax_speech_recognition_seq2seq.py \ --dataset_name="esb/datasets" \ --model_name_or_path="esb/wav2vec2-aed-pretrained" \ --dataset_config_name="librispeech" \ --output_dir="./" \ --wandb_name="wav2vec2-aed-librispeech" \ --wandb_project="wav2vec2-aed" \ --per_device_train_batch_size="8" \ --per_device_eval_batch_size="2" \ --learning_rate="1e-4" \ --warmup_steps="500" \ --logging_steps="25" \ --max_steps="50001" \ --eval_steps="10000" \ --save_steps="10000" \ --generation_max_length="40" \ --generation_num_beams="1" \ --final_generation_max_length="300" \ --final_generation_num_beams="12" \ --generation_length_penalty="1.6" \ --hidden_dropout="0.2" \ --activation_dropout="0.2" \ --feat_proj_dropout="0.2" \ --overwrite_output_dir \ --gradient_checkpointing \ --freeze_feature_encoder \ --predict_with_generate \ --do_eval \ --do_train \ --do_predict \ --push_to_hub \ --use_auth_token ```
esc-bench/wav2vec2-ctc-switchboard
esc-bench
2022-10-24T10:34:16Z
5
0
transformers
[ "transformers", "jax", "wav2vec2", "automatic-speech-recognition", "esb", "en", "dataset:esb/datasets", "dataset:ldc/switchboard", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-09-30T16:39:37Z
--- language: - en tags: - esb datasets: - esb/datasets - ldc/switchboard --- To reproduce this run, first call `get_ctc_tokenizer.py` to train the CTC tokenizer and then execute the following command to train the CTC system: ```python #!/usr/bin/env bash python run_flax_speech_recognition_ctc.py \ --model_name_or_path="esb/wav2vec2-ctc-pretrained" \ --tokenizer_name="wav2vec2-ctc-switchboard-tokenizer" \ --dataset_name="esb/datasets" \ --dataset_config_name="switchboard" \ --output_dir="./" \ --wandb_project="wav2vec2-ctc" \ --wandb_name="wav2vec2-ctc-switchboard" \ --max_steps="50000" \ --save_steps="10000" \ --eval_steps="10000" \ --learning_rate="3e-4" \ --logging_steps="25" \ --warmup_steps="5000" \ --preprocessing_num_workers="1" \ --do_train \ --do_eval \ --do_predict \ --overwrite_output_dir \ --gradient_checkpointing \ --freeze_feature_encoder \ --push_to_hub \ --use_auth_token ```
esc-bench/wav2vec2-ctc-earnings22
esc-bench
2022-10-24T10:32:37Z
3
0
transformers
[ "transformers", "jax", "wav2vec2", "automatic-speech-recognition", "esb", "en", "dataset:esb/datasets", "dataset:revdotcom/earnings22", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-09-30T16:36:27Z
--- language: - en tags: - esb datasets: - esb/datasets - revdotcom/earnings22 --- To reproduce this run, first call `get_ctc_tokenizer.py` to train the CTC tokenizer and then execute the following command to train the CTC system: ```python #!/usr/bin/env bash python run_flax_speech_recognition_ctc.py \ --model_name_or_path="esb/wav2vec2-ctc-pretrained" \ --tokenizer_name="wav2vec2-ctc-earnings22-tokenizer" \ --dataset_name="esb/datasets" \ --dataset_config_name="earnings22" \ --output_dir="./" \ --wandb_project="wav2vec2-ctc" \ --wandb_name="wav2vec2-ctc-earnings22" \ --max_steps="50000" \ --save_steps="10000" \ --eval_steps="10000" \ --learning_rate="3e-4" \ --logging_steps="25" \ --warmup_steps="5000" \ --preprocessing_num_workers="1" \ --hidden_dropout="0.2" \ --activation_dropout="0.2" \ --feat_proj_dropout="0.2" \ --do_train \ --do_eval \ --do_predict \ --overwrite_output_dir \ --gradient_checkpointing \ --freeze_feature_encoder \ --push_to_hub \ --use_auth_token ```
esc-bench/wav2vec2-ctc-spgispeech
esc-bench
2022-10-24T10:31:52Z
5
0
transformers
[ "transformers", "jax", "wav2vec2", "automatic-speech-recognition", "esb", "en", "dataset:esb/datasets", "dataset:kensho/spgispeech", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-09-30T16:34:49Z
--- language: - en tags: - esb datasets: - esb/datasets - kensho/spgispeech --- To reproduce this run, first call `get_ctc_tokenizer.py` to train the CTC tokenizer and then execute the following command to train the CTC system: ```python #!/usr/bin/env bash python run_flax_speech_recognition_ctc.py \ --model_name_or_path="esb/wav2vec2-ctc-pretrained" \ --tokenizer_name="wav2vec2-ctc-spgispeech-tokenizer" \ --dataset_name="esb/datasets" \ --dataset_config_name="spgispeech" \ --output_dir="./" \ --wandb_project="wav2vec2-ctc" \ --wandb_name="wav2vec2-ctc-spgispeech" \ --max_steps="50000" \ --save_steps="10000" \ --eval_steps="10000" \ --learning_rate="3e-4" \ --logging_steps="25" \ --warmup_steps="5000" \ --preprocessing_num_workers="1" \ --do_train \ --do_eval \ --do_predict \ --overwrite_output_dir \ --gradient_checkpointing \ --freeze_feature_encoder \ --push_to_hub \ --use_auth_token ```
esc-bench/wav2vec2-ctc-voxpopuli
esc-bench
2022-10-24T10:30:10Z
3
0
transformers
[ "transformers", "jax", "wav2vec2", "automatic-speech-recognition", "esb", "en", "dataset:esb/datasets", "dataset:facebook/voxpopuli", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-09-30T16:31:35Z
--- language: - en tags: - esb datasets: - esb/datasets - facebook/voxpopuli --- To reproduce this run, first call `get_ctc_tokenizer.py` to train the CTC tokenizer and then execute the following command to train the CTC system: ```python #!/usr/bin/env bash python run_flax_speech_recognition_ctc.py \ --model_name_or_path="esb/wav2vec2-ctc-pretrained" \ --tokenizer_name="wav2vec2-ctc-voxpopuli-tokenizer" \ --dataset_name="esb/datasets" \ --dataset_config_name="voxpopuli" \ --output_dir="./" \ --wandb_project="wav2vec2-ctc" \ --wandb_name="wav2vec2-ctc-voxpopuli" \ --max_steps="50000" \ --save_steps="10000" \ --eval_steps="10000" \ --learning_rate="3e-4" \ --logging_steps="25" \ --warmup_steps="5000" \ --preprocessing_num_workers="1" \ --per_device_eval_batch_size="1" \ --do_train \ --do_eval \ --do_predict \ --overwrite_output_dir \ --gradient_checkpointing \ --freeze_feature_encoder \ --push_to_hub \ --use_auth_token ```
esc-bench/wav2vec2-ctc-common_voice
esc-bench
2022-10-24T10:28:36Z
5
0
transformers
[ "transformers", "jax", "wav2vec2", "automatic-speech-recognition", "esb", "en", "dataset:esb/datasets", "dataset:mozilla-foundation/common_voice_9_0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-09-30T16:29:51Z
--- language: - en tags: - esb datasets: - esb/datasets - mozilla-foundation/common_voice_9_0 --- To reproduce this run, first call `get_ctc_tokenizer.py` to train the CTC tokenizer and then execute the following command to train the CTC system: ```python #!/usr/bin/env bash python run_flax_speech_recognition_ctc.py \ --model_name_or_path="esb/wav2vec2-ctc-pretrained" \ --tokenizer_name="wav2vec2-ctc-common_voice-tokenizer" \ --dataset_name="esb/datasets" \ --dataset_config_name="common_voice" \ --output_dir="./" \ --wandb_project="wav2vec2-ctc" \ --wandb_name="wav2vec2-ctc-common-voice" \ --max_steps="50000" \ --save_steps="10000" \ --eval_steps="10000" \ --learning_rate="3e-4" \ --logging_steps="25" \ --warmup_steps="5000" \ --preprocessing_num_workers="1" \ --max_eval_duration_in_seconds="20" \ --do_train \ --do_eval \ --do_predict \ --overwrite_output_dir \ --gradient_checkpointing \ --freeze_feature_encoder \ --push_to_hub \ --use_auth_token ```
esc-bench/wav2vec2-ctc-librispeech
esc-bench
2022-10-24T10:27:51Z
3
0
transformers
[ "transformers", "jax", "wav2vec2", "automatic-speech-recognition", "esb", "en", "dataset:esb/datasets", "dataset:librispeech_asr", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-09-30T16:48:31Z
--- language: - en tags: - esb datasets: - esb/datasets - librispeech_asr --- To reproduce this run, first call `get_ctc_tokenizer.py` to train the CTC tokenizer and then execute the following command to train the CTC system: ```python #!/usr/bin/env bash python run_flax_speech_recognition_ctc.py \ --model_name_or_path="esb/wav2vec2-ctc-pretrained" \ --tokenizer_name="wav2vec2-ctc-librispeech-tokenizer" \ --dataset_name="esb/datasets" \ --dataset_config_name="librispeech" \ --output_dir="./" \ --wandb_project="wav2vec2-ctc" \ --wandb_name="wav2vec2-ctc-librispeech" \ --max_steps="50000" \ --save_steps="10000" \ --eval_steps="10000" \ --learning_rate="3e-4" \ --logging_steps="25" \ --warmup_steps="5000" \ --preprocessing_num_workers="1" \ --hidden_dropout="0.2" \ --activation_dropout="0.2" \ --feat_proj_dropout="0.2" \ --do_train \ --do_eval \ --do_predict \ --overwrite_output_dir \ --gradient_checkpointing \ --freeze_feature_encoder \ --push_to_hub \ --use_auth_token ```
pcoloc/autotrain-dragino-7-7-max_300m-1861063640
pcoloc
2022-10-24T10:21:21Z
8
0
transformers
[ "transformers", "joblib", "autotrain", "tabular", "regression", "tabular-regression", "dataset:pcoloc/autotrain-data-dragino-7-7-max_300m", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
tabular-regression
2022-10-24T10:20:56Z
--- tags: - autotrain - tabular - regression - tabular-regression datasets: - pcoloc/autotrain-data-dragino-7-7-max_300m co2_eq_emissions: emissions: 0.12860686048945302 --- # Model Trained Using AutoTrain - Problem type: Single Column Regression - Model ID: 1861063640 - CO2 Emissions (in grams): 0.1286 ## Validation Metrics - Loss: 50.918 - R2: 0.304 - MSE: 2592.667 - MAE: 39.693 - RMSLE: 0.429 ## Usage ```python import json import joblib import pandas as pd model = joblib.load('model.joblib') config = json.load(open('config.json')) features = config['features'] # data = pd.read_csv("data.csv") data = data[features] data.columns = ["feat_" + str(col) for col in data.columns] predictions = model.predict(data) # or model.predict_proba(data) ```
pcoloc/autotrain-dragino-7-7-max_495m-1860863627
pcoloc
2022-10-24T10:14:36Z
5
0
transformers
[ "transformers", "joblib", "autotrain", "tabular", "regression", "tabular-regression", "dataset:pcoloc/autotrain-data-dragino-7-7-max_495m", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
tabular-regression
2022-10-24T10:11:33Z
--- tags: - autotrain - tabular - regression - tabular-regression datasets: - pcoloc/autotrain-data-dragino-7-7-max_495m co2_eq_emissions: emissions: 0.011242326266844769 --- # Model Trained Using AutoTrain - Problem type: Single Column Regression - Model ID: 1860863627 - CO2 Emissions (in grams): 0.0112 ## Validation Metrics - Loss: 72.730 - R2: 0.386 - MSE: 5289.600 - MAE: 60.230 - RMSLE: 0.436 ## Usage ```python import json import joblib import pandas as pd model = joblib.load('model.joblib') config = json.load(open('config.json')) features = config['features'] # data = pd.read_csv("data.csv") data = data[features] data.columns = ["feat_" + str(col) for col in data.columns] predictions = model.predict(data) # or model.predict_proba(data) ```
teacookies/autotrain-24102022-cert7-1860363608
teacookies
2022-10-24T10:14:31Z
15
0
transformers
[ "transformers", "pytorch", "autotrain", "token-classification", "unk", "dataset:teacookies/autotrain-data-24102022-cert7", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
token-classification
2022-10-24T10:03:38Z
--- tags: - autotrain - token-classification language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - teacookies/autotrain-data-24102022-cert7 co2_eq_emissions: emissions: 0.0825722192587215 --- # Model Trained Using AutoTrain - Problem type: Entity Extraction - Model ID: 1860363608 - CO2 Emissions (in grams): 0.0826 ## Validation Metrics - Loss: 0.002 - Accuracy: 0.999 - Precision: 0.972 - Recall: 0.983 - F1: 0.978 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/teacookies/autotrain-24102022-cert7-1860363608 ``` Or Python API: ``` from transformers import AutoModelForTokenClassification, AutoTokenizer model = AutoModelForTokenClassification.from_pretrained("teacookies/autotrain-24102022-cert7-1860363608", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("teacookies/autotrain-24102022-cert7-1860363608", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
edbeeching/mujoco_hopper_1111
edbeeching
2022-10-24T09:58:39Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-10-24T09:38:16Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: mujoco_hopper type: mujoco_hopper metrics: - type: mean_reward value: 1482.86 +/- 541.04 name: mean_reward verified: false --- A(n) **APPO** model trained on the **mujoco_hopper** environment. This model was trained using Sample Factory 2.0: https://github.com/alex-petrenko/sample-factory
haoanh98/mbart_base
haoanh98
2022-10-24T09:55:16Z
3
0
transformers
[ "transformers", "tf", "mbart", "feature-extraction", "generated_from_keras_callback", "endpoints_compatible", "region:us" ]
feature-extraction
2022-10-24T09:54:32Z
--- tags: - generated_from_keras_callback model-index: - name: mbart_base results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # mbart_base This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.23.1 - TensorFlow 2.9.2 - Tokenizers 0.13.1
edbeeching/mujoco_swimmer_1111
edbeeching
2022-10-24T09:40:39Z
1
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-10-24T09:40:24Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: mujoco_swimmer type: mujoco_swimmer metrics: - type: mean_reward value: 95.68 +/- 3.27 name: mean_reward verified: false --- A(n) **APPO** model trained on the **mujoco_swimmer** environment. This model was trained using Sample Factory 2.0: https://github.com/alex-petrenko/sample-factory
edbeeching/mujoco_doublependulum_1111
edbeeching
2022-10-24T09:39:25Z
1
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-10-24T09:39:10Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: mujoco_doublependulum type: mujoco_doublependulum metrics: - type: mean_reward value: 9352.98 +/- 0.61 name: mean_reward verified: false --- A(n) **APPO** model trained on the **mujoco_doublependulum** environment. This model was trained using Sample Factory 2.0: https://github.com/alex-petrenko/sample-factory
teacookies/autotrain-24102022-cert6-1859663573
teacookies
2022-10-24T09:23:05Z
14
0
transformers
[ "transformers", "pytorch", "autotrain", "token-classification", "unk", "dataset:teacookies/autotrain-data-24102022-cert6", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
token-classification
2022-10-24T09:11:22Z
--- tags: - autotrain - token-classification language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - teacookies/autotrain-data-24102022-cert6 co2_eq_emissions: emissions: 19.238000251078862 --- # Model Trained Using AutoTrain - Problem type: Entity Extraction - Model ID: 1859663573 - CO2 Emissions (in grams): 19.2380 ## Validation Metrics - Loss: 0.002 - Accuracy: 0.999 - Precision: 0.964 - Recall: 0.974 - F1: 0.969 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/teacookies/autotrain-24102022-cert6-1859663573 ``` Or Python API: ``` from transformers import AutoModelForTokenClassification, AutoTokenizer model = AutoModelForTokenClassification.from_pretrained("teacookies/autotrain-24102022-cert6-1859663573", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("teacookies/autotrain-24102022-cert6-1859663573", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
Ahmed-Abousetta/autotrain-abunawaf-user-1860163585
Ahmed-Abousetta
2022-10-24T09:13:23Z
1
0
transformers
[ "transformers", "pytorch", "autotrain", "text-classification", "unk", "dataset:Ahmed-Abousetta/autotrain-data-abunawaf-user", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
text-classification
2022-10-24T09:12:32Z
--- tags: - autotrain - text-classification language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - Ahmed-Abousetta/autotrain-data-abunawaf-user co2_eq_emissions: emissions: 1.0008458491802985 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 1860163585 - CO2 Emissions (in grams): 1.0008 ## Validation Metrics - Loss: 0.304 - Accuracy: 0.890 - Precision: 0.729 - Recall: 0.714 - AUC: 0.889 - F1: 0.722 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/Ahmed-Abousetta/autotrain-abunawaf-user-1860163585 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("Ahmed-Abousetta/autotrain-abunawaf-user-1860163585", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("Ahmed-Abousetta/autotrain-abunawaf-user-1860163585", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
Ahmed-Abousetta/autotrain-abunawaf-user-1860163583
Ahmed-Abousetta
2022-10-24T09:13:09Z
2
0
transformers
[ "transformers", "pytorch", "autotrain", "text-classification", "unk", "dataset:Ahmed-Abousetta/autotrain-data-abunawaf-user", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
text-classification
2022-10-24T09:12:22Z
--- tags: - autotrain - text-classification language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - Ahmed-Abousetta/autotrain-data-abunawaf-user co2_eq_emissions: emissions: 0.6436453501778651 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 1860163583 - CO2 Emissions (in grams): 0.6436 ## Validation Metrics - Loss: 0.344 - Accuracy: 0.869 - Precision: 0.698 - Recall: 0.612 - AUC: 0.856 - F1: 0.652 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/Ahmed-Abousetta/autotrain-abunawaf-user-1860163583 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("Ahmed-Abousetta/autotrain-abunawaf-user-1860163583", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("Ahmed-Abousetta/autotrain-abunawaf-user-1860163583", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
Ahmed-Abousetta/autotrain-abunawaf-interaction-1859963567
Ahmed-Abousetta
2022-10-24T09:06:18Z
1
0
transformers
[ "transformers", "pytorch", "autotrain", "text-classification", "unk", "dataset:Ahmed-Abousetta/autotrain-data-abunawaf-interaction", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
text-classification
2022-10-24T09:05:25Z
--- tags: - autotrain - text-classification language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - Ahmed-Abousetta/autotrain-data-abunawaf-interaction co2_eq_emissions: emissions: 1.0555869183889894 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 1859963567 - CO2 Emissions (in grams): 1.0556 ## Validation Metrics - Loss: 0.263 - Accuracy: 0.910 - Precision: 0.945 - Recall: 0.923 - AUC: 0.945 - F1: 0.934 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/Ahmed-Abousetta/autotrain-abunawaf-interaction-1859963567 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("Ahmed-Abousetta/autotrain-abunawaf-interaction-1859963567", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("Ahmed-Abousetta/autotrain-abunawaf-interaction-1859963567", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
Ahmed-Abousetta/autotrain-abunawaf-interaction-1859963565
Ahmed-Abousetta
2022-10-24T09:06:06Z
1
0
transformers
[ "transformers", "pytorch", "autotrain", "text-classification", "unk", "dataset:Ahmed-Abousetta/autotrain-data-abunawaf-interaction", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
text-classification
2022-10-24T09:05:13Z
--- tags: - autotrain - text-classification language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - Ahmed-Abousetta/autotrain-data-abunawaf-interaction co2_eq_emissions: emissions: 0.6502317465394943 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 1859963565 - CO2 Emissions (in grams): 0.6502 ## Validation Metrics - Loss: 0.241 - Accuracy: 0.922 - Precision: 0.936 - Recall: 0.953 - AUC: 0.951 - F1: 0.944 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/Ahmed-Abousetta/autotrain-abunawaf-interaction-1859963565 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("Ahmed-Abousetta/autotrain-abunawaf-interaction-1859963565", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("Ahmed-Abousetta/autotrain-abunawaf-interaction-1859963565", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
Ahmed-Abousetta/autotrain-abunawaf-interaction-1859963564
Ahmed-Abousetta
2022-10-24T09:05:56Z
1
0
transformers
[ "transformers", "pytorch", "autotrain", "text-classification", "unk", "dataset:Ahmed-Abousetta/autotrain-data-abunawaf-interaction", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
text-classification
2022-10-24T09:05:08Z
--- tags: - autotrain - text-classification language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - Ahmed-Abousetta/autotrain-data-abunawaf-interaction co2_eq_emissions: emissions: 0.8413403809338463 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 1859963564 - CO2 Emissions (in grams): 0.8413 ## Validation Metrics - Loss: 0.268 - Accuracy: 0.902 - Precision: 0.905 - Recall: 0.959 - AUC: 0.954 - F1: 0.931 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/Ahmed-Abousetta/autotrain-abunawaf-interaction-1859963564 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("Ahmed-Abousetta/autotrain-abunawaf-interaction-1859963564", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("Ahmed-Abousetta/autotrain-abunawaf-interaction-1859963564", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
Ahmed-Abousetta/autotrain-abunawaf-interaction-1859963563
Ahmed-Abousetta
2022-10-24T09:05:53Z
3
0
transformers
[ "transformers", "pytorch", "autotrain", "text-classification", "unk", "dataset:Ahmed-Abousetta/autotrain-data-abunawaf-interaction", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
text-classification
2022-10-24T09:05:07Z
--- tags: - autotrain - text-classification language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - Ahmed-Abousetta/autotrain-data-abunawaf-interaction co2_eq_emissions: emissions: 0.7644156643824811 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 1859963563 - CO2 Emissions (in grams): 0.7644 ## Validation Metrics - Loss: 0.244 - Accuracy: 0.910 - Precision: 0.935 - Recall: 0.935 - AUC: 0.954 - F1: 0.935 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/Ahmed-Abousetta/autotrain-abunawaf-interaction-1859963563 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("Ahmed-Abousetta/autotrain-abunawaf-interaction-1859963563", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("Ahmed-Abousetta/autotrain-abunawaf-interaction-1859963563", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
Ahmed-Abousetta/autotrain-abunawaf-information-1859863561
Ahmed-Abousetta
2022-10-24T09:02:06Z
1
0
transformers
[ "transformers", "pytorch", "autotrain", "text-classification", "unk", "dataset:Ahmed-Abousetta/autotrain-data-abunawaf-information", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
text-classification
2022-10-24T09:01:02Z
--- tags: - autotrain - text-classification language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - Ahmed-Abousetta/autotrain-data-abunawaf-information co2_eq_emissions: emissions: 1.5884381963682959 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 1859863561 - CO2 Emissions (in grams): 1.5884 ## Validation Metrics - Loss: 0.338 - Accuracy: 0.869 - Precision: 0.836 - Recall: 0.868 - AUC: 0.932 - F1: 0.852 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/Ahmed-Abousetta/autotrain-abunawaf-information-1859863561 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("Ahmed-Abousetta/autotrain-abunawaf-information-1859863561", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("Ahmed-Abousetta/autotrain-abunawaf-information-1859863561", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
Ahmed-Abousetta/autotrain-abunawaf-information-1859863560
Ahmed-Abousetta
2022-10-24T09:01:53Z
1
0
transformers
[ "transformers", "pytorch", "autotrain", "text-classification", "unk", "dataset:Ahmed-Abousetta/autotrain-data-abunawaf-information", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
text-classification
2022-10-24T09:00:57Z
--- tags: - autotrain - text-classification language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - Ahmed-Abousetta/autotrain-data-abunawaf-information co2_eq_emissions: emissions: 1.8754846173690543 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 1859863560 - CO2 Emissions (in grams): 1.8755 ## Validation Metrics - Loss: 0.331 - Accuracy: 0.878 - Precision: 0.852 - Recall: 0.868 - AUC: 0.927 - F1: 0.860 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/Ahmed-Abousetta/autotrain-abunawaf-information-1859863560 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("Ahmed-Abousetta/autotrain-abunawaf-information-1859863560", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("Ahmed-Abousetta/autotrain-abunawaf-information-1859863560", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
Ahmed-Abousetta/autotrain-abunawaf-information-1859863559
Ahmed-Abousetta
2022-10-24T09:01:44Z
3
0
transformers
[ "transformers", "pytorch", "autotrain", "text-classification", "unk", "dataset:Ahmed-Abousetta/autotrain-data-abunawaf-information", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
text-classification
2022-10-24T09:00:51Z
--- tags: - autotrain - text-classification language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - Ahmed-Abousetta/autotrain-data-abunawaf-information co2_eq_emissions: emissions: 0.6822182565490778 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 1859863559 - CO2 Emissions (in grams): 0.6822 ## Validation Metrics - Loss: 0.353 - Accuracy: 0.853 - Precision: 0.857 - Recall: 0.792 - AUC: 0.931 - F1: 0.824 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/Ahmed-Abousetta/autotrain-abunawaf-information-1859863559 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("Ahmed-Abousetta/autotrain-abunawaf-information-1859863559", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("Ahmed-Abousetta/autotrain-abunawaf-information-1859863559", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
Ahmed-Abousetta/autotrain-abunawaf-cognition-auto-1859563553
Ahmed-Abousetta
2022-10-24T08:55:46Z
3
0
transformers
[ "transformers", "pytorch", "autotrain", "text-classification", "en", "dataset:Ahmed-Abousetta/autotrain-data-abunawaf-cognition-auto", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
text-classification
2022-10-24T08:54:32Z
--- tags: - autotrain - text-classification language: - en widget: - text: "I love AutoTrain 🤗" datasets: - Ahmed-Abousetta/autotrain-data-abunawaf-cognition-auto co2_eq_emissions: emissions: 1.7868012751172693 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 1859563553 - CO2 Emissions (in grams): 1.7868 ## Validation Metrics - Loss: 0.382 - Accuracy: 0.854 - Precision: 0.811 - Recall: 0.843 - AUC: 0.915 - F1: 0.827 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/Ahmed-Abousetta/autotrain-abunawaf-cognition-auto-1859563553 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("Ahmed-Abousetta/autotrain-abunawaf-cognition-auto-1859563553", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("Ahmed-Abousetta/autotrain-abunawaf-cognition-auto-1859563553", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
Ahmed-Abousetta/autotrain-abunawaf-cognition-1859363551
Ahmed-Abousetta
2022-10-24T08:46:21Z
4
0
transformers
[ "transformers", "pytorch", "autotrain", "text-classification", "unk", "dataset:Ahmed-Abousetta/autotrain-data-abunawaf-cognition", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
text-classification
2022-10-24T08:45:09Z
--- tags: - autotrain - text-classification language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - Ahmed-Abousetta/autotrain-data-abunawaf-cognition co2_eq_emissions: emissions: 1.7828199447393138 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 1859363551 - CO2 Emissions (in grams): 1.7828 ## Validation Metrics - Loss: 0.372 - Accuracy: 0.858 - Precision: 0.796 - Recall: 0.882 - AUC: 0.919 - F1: 0.837 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/Ahmed-Abousetta/autotrain-abunawaf-cognition-1859363551 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("Ahmed-Abousetta/autotrain-abunawaf-cognition-1859363551", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("Ahmed-Abousetta/autotrain-abunawaf-cognition-1859363551", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
Ahmed-Abousetta/autotrain-abunawaf-cognition-1859363550
Ahmed-Abousetta
2022-10-24T08:45:55Z
1
0
transformers
[ "transformers", "pytorch", "autotrain", "text-classification", "unk", "dataset:Ahmed-Abousetta/autotrain-data-abunawaf-cognition", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
text-classification
2022-10-24T08:45:00Z
--- tags: - autotrain - text-classification language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - Ahmed-Abousetta/autotrain-data-abunawaf-cognition co2_eq_emissions: emissions: 1.173820365058826 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 1859363550 - CO2 Emissions (in grams): 1.1738 ## Validation Metrics - Loss: 0.369 - Accuracy: 0.846 - Precision: 0.802 - Recall: 0.833 - AUC: 0.901 - F1: 0.817 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/Ahmed-Abousetta/autotrain-abunawaf-cognition-1859363550 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("Ahmed-Abousetta/autotrain-abunawaf-cognition-1859363550", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("Ahmed-Abousetta/autotrain-abunawaf-cognition-1859363550", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
Nokia/nlgp-natural
Nokia
2022-10-24T08:41:09Z
8
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "code completion", "code generation", "en", "code", "arxiv:2108.05198", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:04Z
--- language: - en - code tags: - code completion - code generation license: "apache-2.0" --- # NLGP natural model The NLGP natural model was introduced in the paper [Natural Language-Guided Programming](https://arxiv.org/abs/2108.05198). The model was trained on a collection of Jupyter notebooks and can be used to synthesize Python code that addresses a natural language **intent** in a certain code **context** (see the example below). This work was carried out by a research team in Nokia Bell Labs. **Context** ```py import matplotlib.pyplot as plt values = [1, 2, 3, 4] labels = ["a", "b", "c", "d"] ``` **Intent** ```py # plot a bar chart ``` **Prediction** ```py plt.bar(labels, values) plt.show() ``` ## Usage ```py import re from transformers import GPT2LMHeadModel, GPT2TokenizerFast # load the model tok = GPT2TokenizerFast.from_pretrained("Nokia/nlgp-natural") model = GPT2LMHeadModel.from_pretrained("Nokia/nlgp-natural") # preprocessing functions num_spaces = [2, 4, 6, 8, 10, 12, 14, 16, 18] def preprocess(context, query): """ Encodes context + query as a single string and replaces whitespace with special tokens <|2space|>, <|4space|>, ... """ input_str = f"{context}\n{query} <|endofcomment|>\n" indentation_symbols = {n: f"<|{n}space|>" for n in num_spaces} m = re.match("^[ ]+", input_str) if not m: return input_str leading_whitespace = m.group(0) N = len(leading_whitespace) for n in self.num_spaces: leading_whitespace = leading_whitespace.replace(n * " ", self.indentation_symbols[n]) return leading_whitespace + input_str[N:] detokenize_pattern = re.compile(fr"<\|(\d+)space\|>") def postprocess(output): output = output.split("<|cell|>")[0] def insert_space(m): num_spaces = int(m.group(1)) return num_spaces * " " return detokenize_pattern.sub(insert_space, output) # inference code_context = """ import matplotlib.pyplot as plt values = [1, 2, 3, 4] labels = ["a", "b", "c", "d"] """ query = "# plot a bar chart" input_str = preprocess(code_context, query) input_ids = tok(input_str, return_tensors="pt").input_ids max_length = 150 # don't generate output longer than this length total_max_length = min(1024 - input_ids.shape[-1], input_ids.shape[-1] + 150) # total = input + output input_and_output = model.generate( input_ids=input_ids, max_length=total_max_length, min_length=10, do_sample=False, num_beams=4, early_stopping=True, eos_token_id=tok.encode("<|cell|>")[0] ) output = input_and_output[:, input_ids.shape[-1]:] # remove the tokens that correspond to the input_str output_str = tok.decode(output[0]) postprocess(output_str) ``` ## License and copyright Copyright 2021 Nokia Licensed under the Apache License 2.0 SPDX-License-Identifier: Apache-2.0
kimsiun/kaers-bert
kimsiun
2022-10-24T08:18:46Z
0
0
null
[ "pytorch", "license:mit", "region:us" ]
null
2022-10-24T07:57:35Z
--- license: mit --- # KAERS-BERT - KoBERT + KAERS BERT Model The Publicly Available KAERS BERT Embeddings paper contains the unique KAERS-BERT model: initialized with KoBERT (skt/kobert-base-v1) & trained on adverse events (ADEs) narratives reported through KAERS (Korean Adverse Event Reporting System). This model card describes the KoBERT model. ## Pretraining Data The KAERS-BERT model was trained on 1.2 million ADE narratives reported through KAERS between January 1, 2015 and December 31, 2019. The ADE narratives used for pertaining were mainly written in Korean. ## Model Pretraining ### Note Preprocessing We only used ADE narratives reported as 'disease history in detail', 'adverse event in detail', and 'laboratory test in detail' for model pertaining, because ADE narratives of '(original) reporter's opinion' were highly redundant.
Nicole1228/ddpm-butterflies-128
Nicole1228
2022-10-24T08:11:27Z
1
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:huggan/smithsonian_butterflies_subset", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-10-24T06:53:59Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/Nicole1228/ddpm-butterflies-128/tensorboard?#scalars)
cyberagent/xlm-roberta-large-jnli-jsick
cyberagent
2022-10-24T07:14:03Z
180
6
sentence-transformers
[ "sentence-transformers", "pytorch", "xlm-roberta", "nli", "ja", "dataset:jnli", "dataset:jsick", "license:cc-by-4.0", "region:us" ]
null
2022-10-24T07:08:04Z
--- language: ja license: cc-by-4.0 library_name: sentence-transformers tags: - xlm-roberta - nli datasets: - jnli - jsick --- # Japanese Natural Language Inference Model This model was trained using [SentenceTransformers](https://sbert.net) [Cross-Encoder](https://www.sbert.net/examples/applications/cross-encoder/README.html) class, [gradient accumulation PR](https://github.com/UKPLab/sentence-transformers/pull/1092), and the code from [CyberAgentAILab/japanese-nli-model](https://github.com/CyberAgentAILab/japanese-nli-model). ## Training Data The model was trained on the [JGLUE-JNLI](https://github.com/yahoojapan/JGLUE) and [JSICK](https://github.com/verypluming/JSICK) datasets. For a given sentence pair, it will output three scores corresponding to the labels: contradiction, entailment, neutral. ## Usage ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained('cyberagent/xlm-roberta-large-jnli-jsick') model = AutoModelForSequenceClassification.from_pretrained('cyberagent/xlm-roberta-large-jnli-jsick') features = tokenizer(["子供が走っている猫を見ている", "猫が走っている"], ["猫が走っている", "子供が走っている"], padding=True, truncation=True, return_tensors="pt") model.eval() with torch.no_grad(): scores = model(**features).logits label_mapping = ['contradiction', 'entailment', 'neutral'] labels = [label_mapping[score_max] for score_max in scores.argmax(dim=1)] print(labels) ```
teacookies/autotrain-24102022-cert2-1856563478
teacookies
2022-10-24T04:33:47Z
11
0
transformers
[ "transformers", "pytorch", "autotrain", "token-classification", "unk", "dataset:teacookies/autotrain-data-24102022-cert2", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
token-classification
2022-10-24T04:22:25Z
--- tags: - autotrain - token-classification language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - teacookies/autotrain-data-24102022-cert2 co2_eq_emissions: emissions: 16.894326665784842 --- # Model Trained Using AutoTrain - Problem type: Entity Extraction - Model ID: 1856563478 - CO2 Emissions (in grams): 16.8943 ## Validation Metrics - Loss: 0.004 - Accuracy: 0.999 - Precision: 0.961 - Recall: 0.974 - F1: 0.968 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/teacookies/autotrain-24102022-cert2-1856563478 ``` Or Python API: ``` from transformers import AutoModelForTokenClassification, AutoTokenizer model = AutoModelForTokenClassification.from_pretrained("teacookies/autotrain-24102022-cert2-1856563478", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("teacookies/autotrain-24102022-cert2-1856563478", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
0xrushi/TestPlaygroundSkops
0xrushi
2022-10-24T03:48:58Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-10-16T01:13:19Z
--- license: mit --- # Model description 1 [More Information Needed] ## Intended uses & limitations [More Information Needed] ## Training Procedure ### Hyperparameters The model is trained with below hyperparameters. <details> <summary> Click to expand </summary> | Hyperparameter | Value | |-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | memory | | | steps | [('transformation', ColumnTransformer(transformers=[('loading_missing_value_imputer',<br /> SimpleImputer(), ['loading']),<br /> ('numerical_missing_value_imputer',<br /> SimpleImputer(),<br /> ['loading', 'measurement_3', 'measurement_4',<br /> 'measurement_5', 'measurement_6',<br /> 'measurement_7', 'measurement_8',<br /> 'measurement_9', 'measurement_10',<br /> 'measurement_11', 'measurement_12',<br /> 'measurement_13', 'measurement_14',<br /> 'measurement_15', 'measurement_16',<br /> 'measurement_17']),<br /> ('attribute_0_encoder', OneHotEncoder(),<br /> ['attribute_0']),<br /> ('attribute_1_encoder', OneHotEncoder(),<br /> ['attribute_1']),<br /> ('product_code_encoder', OneHotEncoder(),<br /> ['product_code'])])), ('model', DecisionTreeClassifier(max_depth=4))] | | verbose | False | | transformation | ColumnTransformer(transformers=[('loading_missing_value_imputer',<br /> SimpleImputer(), ['loading']),<br /> ('numerical_missing_value_imputer',<br /> SimpleImputer(),<br /> ['loading', 'measurement_3', 'measurement_4',<br /> 'measurement_5', 'measurement_6',<br /> 'measurement_7', 'measurement_8',<br /> 'measurement_9', 'measurement_10',<br /> 'measurement_11', 'measurement_12',<br /> 'measurement_13', 'measurement_14',<br /> 'measurement_15', 'measurement_16',<br /> 'measurement_17']),<br /> ('attribute_0_encoder', OneHotEncoder(),<br /> ['attribute_0']),<br /> ('attribute_1_encoder', OneHotEncoder(),<br /> ['attribute_1']),<br /> ('product_code_encoder', OneHotEncoder(),<br /> ['product_code'])]) | | model | DecisionTreeClassifier(max_depth=4) | | transformation__n_jobs | | | transformation__remainder | drop | | transformation__sparse_threshold | 0.3 | | transformation__transformer_weights | | | transformation__transformers | [('loading_missing_value_imputer', SimpleImputer(), ['loading']), ('numerical_missing_value_imputer', SimpleImputer(), ['loading', 'measurement_3', 'measurement_4', 'measurement_5', 'measurement_6', 'measurement_7', 'measurement_8', 'measurement_9', 'measurement_10', 'measurement_11', 'measurement_12', 'measurement_13', 'measurement_14', 'measurement_15', 'measurement_16', 'measurement_17']), ('attribute_0_encoder', OneHotEncoder(), ['attribute_0']), ('attribute_1_encoder', OneHotEncoder(), ['attribute_1']), ('product_code_encoder', OneHotEncoder(), ['product_code'])] | | transformation__verbose | False | | transformation__verbose_feature_names_out | True | | transformation__loading_missing_value_imputer | SimpleImputer() | | transformation__numerical_missing_value_imputer | SimpleImputer() | | transformation__attribute_0_encoder | OneHotEncoder() | | transformation__attribute_1_encoder | OneHotEncoder() | | transformation__product_code_encoder | OneHotEncoder() | | transformation__loading_missing_value_imputer__add_indicator | False | | transformation__loading_missing_value_imputer__copy | True | | transformation__loading_missing_value_imputer__fill_value | | | transformation__loading_missing_value_imputer__missing_values | nan | | transformation__loading_missing_value_imputer__strategy | mean | | transformation__loading_missing_value_imputer__verbose | 0 | | transformation__numerical_missing_value_imputer__add_indicator | False | | transformation__numerical_missing_value_imputer__copy | True | | transformation__numerical_missing_value_imputer__fill_value | | | transformation__numerical_missing_value_imputer__missing_values | nan | | transformation__numerical_missing_value_imputer__strategy | mean | | transformation__numerical_missing_value_imputer__verbose | 0 | | transformation__attribute_0_encoder__categories | auto | | transformation__attribute_0_encoder__drop | | | transformation__attribute_0_encoder__dtype | <class 'numpy.float64'> | | transformation__attribute_0_encoder__handle_unknown | error | | transformation__attribute_0_encoder__sparse | True | | transformation__attribute_1_encoder__categories | auto | | transformation__attribute_1_encoder__drop | | | transformation__attribute_1_encoder__dtype | <class 'numpy.float64'> | | transformation__attribute_1_encoder__handle_unknown | error | | transformation__attribute_1_encoder__sparse | True | | transformation__product_code_encoder__categories | auto | | transformation__product_code_encoder__drop | | | transformation__product_code_encoder__dtype | <class 'numpy.float64'> | | transformation__product_code_encoder__handle_unknown | error | | transformation__product_code_encoder__sparse | True | | model__ccp_alpha | 0.0 | | model__class_weight | | | model__criterion | gini | | model__max_depth | 4 | | model__max_features | | | model__max_leaf_nodes | | | model__min_impurity_decrease | 0.0 | | model__min_samples_leaf | 1 | | model__min_samples_split | 2 | | model__min_weight_fraction_leaf | 0.0 | | model__random_state | | | model__splitter | best | </details> ### Model Plot The model plot is below. <style>#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 {color: black;background-color: white;}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 pre{padding: 0;}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 div.sk-toggleable {background-color: white;}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 div.sk-estimator:hover {background-color: #d4ebff;}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 div.sk-item {z-index: 1;}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 div.sk-parallel::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 div.sk-parallel-item {display: flex;flex-direction: column;position: relative;background-color: white;}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 div.sk-parallel-item:only-child::after {width: 0;}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;position: relative;}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 div.sk-label label {font-family: monospace;font-weight: bold;background-color: white;display: inline-block;line-height: 1.2em;}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 div.sk-label-container {position: relative;z-index: 2;text-align: center;}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 div.sk-text-repr-fallback {display: none;}</style><div id="sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[(&#x27;transformation&#x27;,ColumnTransformer(transformers=[(&#x27;loading_missing_value_imputer&#x27;,SimpleImputer(),[&#x27;loading&#x27;]),(&#x27;numerical_missing_value_imputer&#x27;,SimpleImputer(),[&#x27;loading&#x27;, &#x27;measurement_3&#x27;,&#x27;measurement_4&#x27;,&#x27;measurement_5&#x27;,&#x27;measurement_6&#x27;,&#x27;measurement_7&#x27;,&#x27;measurement_8&#x27;,&#x27;measurement_9&#x27;,&#x27;measurement_10&#x27;,&#x27;measurement_11&#x27;,&#x27;measurement_12&#x27;,&#x27;measurement_13&#x27;,&#x27;measurement_14&#x27;,&#x27;measurement_15&#x27;,&#x27;measurement_16&#x27;,&#x27;measurement_17&#x27;]),(&#x27;attribute_0_encoder&#x27;,OneHotEncoder(),[&#x27;attribute_0&#x27;]),(&#x27;attribute_1_encoder&#x27;,OneHotEncoder(),[&#x27;attribute_1&#x27;]),(&#x27;product_code_encoder&#x27;,OneHotEncoder(),[&#x27;product_code&#x27;])])),(&#x27;model&#x27;, DecisionTreeClassifier(max_depth=4))])</pre><b>Please rerun this cell to show the HTML repr or trust the notebook.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="f3a0413c-728e-4fd9-bbd8-5c6ec5312931" type="checkbox" ><label for="f3a0413c-728e-4fd9-bbd8-5c6ec5312931" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[(&#x27;transformation&#x27;,ColumnTransformer(transformers=[(&#x27;loading_missing_value_imputer&#x27;,SimpleImputer(),[&#x27;loading&#x27;]),(&#x27;numerical_missing_value_imputer&#x27;,SimpleImputer(),[&#x27;loading&#x27;, &#x27;measurement_3&#x27;,&#x27;measurement_4&#x27;,&#x27;measurement_5&#x27;,&#x27;measurement_6&#x27;,&#x27;measurement_7&#x27;,&#x27;measurement_8&#x27;,&#x27;measurement_9&#x27;,&#x27;measurement_10&#x27;,&#x27;measurement_11&#x27;,&#x27;measurement_12&#x27;,&#x27;measurement_13&#x27;,&#x27;measurement_14&#x27;,&#x27;measurement_15&#x27;,&#x27;measurement_16&#x27;,&#x27;measurement_17&#x27;]),(&#x27;attribute_0_encoder&#x27;,OneHotEncoder(),[&#x27;attribute_0&#x27;]),(&#x27;attribute_1_encoder&#x27;,OneHotEncoder(),[&#x27;attribute_1&#x27;]),(&#x27;product_code_encoder&#x27;,OneHotEncoder(),[&#x27;product_code&#x27;])])),(&#x27;model&#x27;, DecisionTreeClassifier(max_depth=4))])</pre></div></div></div><div class="sk-serial"><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="3f892f74-5115-4ab0-9c64-f760f11a7cbe" type="checkbox" ><label for="3f892f74-5115-4ab0-9c64-f760f11a7cbe" class="sk-toggleable__label sk-toggleable__label-arrow">transformation: ColumnTransformer</label><div class="sk-toggleable__content"><pre>ColumnTransformer(transformers=[(&#x27;loading_missing_value_imputer&#x27;,SimpleImputer(), [&#x27;loading&#x27;]),(&#x27;numerical_missing_value_imputer&#x27;,SimpleImputer(),[&#x27;loading&#x27;, &#x27;measurement_3&#x27;, &#x27;measurement_4&#x27;,&#x27;measurement_5&#x27;, &#x27;measurement_6&#x27;,&#x27;measurement_7&#x27;, &#x27;measurement_8&#x27;,&#x27;measurement_9&#x27;, &#x27;measurement_10&#x27;,&#x27;measurement_11&#x27;, &#x27;measurement_12&#x27;,&#x27;measurement_13&#x27;, &#x27;measurement_14&#x27;,&#x27;measurement_15&#x27;, &#x27;measurement_16&#x27;,&#x27;measurement_17&#x27;]),(&#x27;attribute_0_encoder&#x27;, OneHotEncoder(),[&#x27;attribute_0&#x27;]),(&#x27;attribute_1_encoder&#x27;, OneHotEncoder(),[&#x27;attribute_1&#x27;]),(&#x27;product_code_encoder&#x27;, OneHotEncoder(),[&#x27;product_code&#x27;])])</pre></div></div></div><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="ec9bebf9-8c02-4785-974c-0e727c4449c0" type="checkbox" ><label for="ec9bebf9-8c02-4785-974c-0e727c4449c0" class="sk-toggleable__label sk-toggleable__label-arrow">loading_missing_value_imputer</label><div class="sk-toggleable__content"><pre>[&#x27;loading&#x27;]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="572cc9df-a4bb-49b4-b730-d012d99ba876" type="checkbox" ><label for="572cc9df-a4bb-49b4-b730-d012d99ba876" class="sk-toggleable__label sk-toggleable__label-arrow">SimpleImputer</label><div class="sk-toggleable__content"><pre>SimpleImputer()</pre></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="c6058039-3e65-4724-ad03-96517a382ad6" type="checkbox" ><label for="c6058039-3e65-4724-ad03-96517a382ad6" class="sk-toggleable__label sk-toggleable__label-arrow">numerical_missing_value_imputer</label><div class="sk-toggleable__content"><pre>[&#x27;loading&#x27;, &#x27;measurement_3&#x27;, &#x27;measurement_4&#x27;, &#x27;measurement_5&#x27;, &#x27;measurement_6&#x27;, &#x27;measurement_7&#x27;, &#x27;measurement_8&#x27;, &#x27;measurement_9&#x27;, &#x27;measurement_10&#x27;, &#x27;measurement_11&#x27;, &#x27;measurement_12&#x27;, &#x27;measurement_13&#x27;, &#x27;measurement_14&#x27;, &#x27;measurement_15&#x27;, &#x27;measurement_16&#x27;, &#x27;measurement_17&#x27;]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="d385b0fd-dfaf-490c-8fda-dc024393a022" type="checkbox" ><label for="d385b0fd-dfaf-490c-8fda-dc024393a022" class="sk-toggleable__label sk-toggleable__label-arrow">SimpleImputer</label><div class="sk-toggleable__content"><pre>SimpleImputer()</pre></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="54db5302-69ab-49a1-b939-cb94c0958ab3" type="checkbox" ><label for="54db5302-69ab-49a1-b939-cb94c0958ab3" class="sk-toggleable__label sk-toggleable__label-arrow">attribute_0_encoder</label><div class="sk-toggleable__content"><pre>[&#x27;attribute_0&#x27;]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="c0a718c8-7093-4d45-85ae-847bfac3ec7e" type="checkbox" ><label for="c0a718c8-7093-4d45-85ae-847bfac3ec7e" class="sk-toggleable__label sk-toggleable__label-arrow">OneHotEncoder</label><div class="sk-toggleable__content"><pre>OneHotEncoder()</pre></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="993a1233-2b0d-473e-9bb3-f7c9d0bc654a" type="checkbox" ><label for="993a1233-2b0d-473e-9bb3-f7c9d0bc654a" class="sk-toggleable__label sk-toggleable__label-arrow">attribute_1_encoder</label><div class="sk-toggleable__content"><pre>[&#x27;attribute_1&#x27;]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="4311756e-5a71-45ce-9005-a1e5448b1c30" type="checkbox" ><label for="4311756e-5a71-45ce-9005-a1e5448b1c30" class="sk-toggleable__label sk-toggleable__label-arrow">OneHotEncoder</label><div class="sk-toggleable__content"><pre>OneHotEncoder()</pre></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="9bfb54df-7509-4669-b6e7-db3520c2d1c4" type="checkbox" ><label for="9bfb54df-7509-4669-b6e7-db3520c2d1c4" class="sk-toggleable__label sk-toggleable__label-arrow">product_code_encoder</label><div class="sk-toggleable__content"><pre>[&#x27;product_code&#x27;]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="1acc88d7-a436-40f6-99a3-ebfbbc9f897a" type="checkbox" ><label for="1acc88d7-a436-40f6-99a3-ebfbbc9f897a" class="sk-toggleable__label sk-toggleable__label-arrow">OneHotEncoder</label><div class="sk-toggleable__content"><pre>OneHotEncoder()</pre></div></div></div></div></div></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="5626883d-68bc-41b4-8913-23b6aed62eb8" type="checkbox" ><label for="5626883d-68bc-41b4-8913-23b6aed62eb8" class="sk-toggleable__label sk-toggleable__label-arrow">DecisionTreeClassifier</label><div class="sk-toggleable__content"><pre>DecisionTreeClassifier(max_depth=4)</pre></div></div></div></div></div></div></div> ## Evaluation Results You can find the details about evaluation process and the evaluation results. | Metric | Value | |----------|---------| # How to Get Started with the Model Use the code below to get started with the model. ```python [More Information Needed] ``` # Model Card Authors This model card is written by following authors: [More Information Needed] # Model Card Contact You can contact the model card authors through following channels: [More Information Needed] # Citation Below you can find information related to citation. **BibTeX:** ``` # h1 tjos osmda ``` # Model 2 Description (Logistic) --- license: mit --- # Model description [More Information Needed] ## Intended uses & limitations [More Information Needed] ## Training Procedure ### Hyperparameters The model is trained with below hyperparameters. <details> <summary> Click to expand </summary> | Hyperparameter | Value | |-------------------|-----------| | C | 1.0 | | class_weight | | | dual | False | | fit_intercept | True | | intercept_scaling | 1 | | l1_ratio | | | max_iter | 100 | | multi_class | auto | | n_jobs | | | penalty | l2 | | random_state | 0 | | solver | liblinear | | tol | 0.0001 | | verbose | 0 | | warm_start | False | </details> ### Model Plot The model plot is below. <style>#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 {color: black;background-color: white;}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 pre{padding: 0;}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 div.sk-toggleable {background-color: white;}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 div.sk-estimator:hover {background-color: #d4ebff;}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 div.sk-item {z-index: 1;}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 div.sk-parallel::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 div.sk-parallel-item {display: flex;flex-direction: column;position: relative;background-color: white;}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 div.sk-parallel-item:only-child::after {width: 0;}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;position: relative;}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 div.sk-label label {font-family: monospace;font-weight: bold;background-color: white;display: inline-block;line-height: 1.2em;}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 div.sk-label-container {position: relative;z-index: 2;text-align: center;}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 div.sk-text-repr-fallback {display: none;}</style><div id="sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>LogisticRegression(random_state=0, solver=&#x27;liblinear&#x27;)</pre><b>Please rerun this cell to show the HTML repr or trust the notebook.</b></div><div class="sk-container" hidden><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="51d3cd4d-ea90-43e3-8d6a-5abc1df508b6" type="checkbox" checked><label for="51d3cd4d-ea90-43e3-8d6a-5abc1df508b6" class="sk-toggleable__label sk-toggleable__label-arrow">LogisticRegression</label><div class="sk-toggleable__content"><pre>LogisticRegression(random_state=0, solver=&#x27;liblinear&#x27;)</pre></div></div></div></div></div> ## Evaluation Results You can find the details about evaluation process and the evaluation results. | Metric | Value | |----------|---------| | accuracy | 0.96 | | f1 score | 0.96 | # How to Get Started with the Model Use the code below to get started with the model. ```python [More Information Needed] ``` # Model Card Authors This model card is written by following authors: [More Information Needed] # Model Card Contact You can contact the model card authors through following channels: [More Information Needed] # Citation Below you can find information related to citation. **BibTeX:** ``` [More Information Needed] ``` # Additional Content ## confusion_matrix ![confusion_matrix](confusion_matrix.png)
CVPR/FSPBT
CVPR
2022-10-24T03:26:33Z
0
1
PyTorch Lightning
[ "PyTorch Lightning", "Image Translation", "license:mit", "region:us" ]
null
2022-06-15T01:14:32Z
--- license: mit library_name: PyTorch Lightning tags: - Image Translation --- ## Model Details This model is from [FSPBT-Image-Translation](https://github.com/rnwzd/FSPBT-Image-Translation) ## Citation Information ```bibtex @Article{Texler20-SIG, author = "Ond\v{r}ej Texler and David Futschik and Michal Ku\v{c}era and Ond\v{r}ej Jamri\v{s}ka and \v{S}\'{a}rka Sochorov\'{a} and Menglei Chai and Sergey Tulyakov and Daniel S\'{y}kora", title = "Interactive Video Stylization Using Few-Shot Patch-Based Training", journal = "ACM Transactions on Graphics", volume = "39", number = "4", pages = "73", year = "2020", } ```
declare-lab/dialect
declare-lab
2022-10-24T02:32:35Z
8
6
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "arxiv:2210.02890", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-24T02:28:19Z
--- license: mit widget: - text: "What is or could be the cause of target? <sep> target: Thanks. Will I be able to take a retest ? <sep> context: A: Did I do well on my test ?, <utt> B: Do you want to know the honest answer ?, <utt> A: Why wouldn't I want to know ?, <utt> B: You had pretty bad scores ., <utt> A: Exactly what do you mean by bad ?, <utt> B: You failed ., <utt> A: How'd I fail it ?, <utt> B: There are a couple of reasons why you didn't pass ., <utt> A: What did I do wrong ?, <utt> B: To sum it all up , you really just don't know how to drive ., <utt> A: Thanks. Will I be able to take a retest ?, <utt> B: Sure you can , in about two and a half weeks . " example_title: "Cause 1" - text: "What is or could be the cause of target? <sep> target: But she did and made me disappointed . <sep> context: A: David , why didn't you clean the room ?, <utt> B: I'm not in the mood ., <utt> A: Why are you feeling depressed ?, <utt> B: I was told my girlfriend was speaking ill of me. That's a real let-down ., <utt> A: I don t think she will do such a thing ., <utt> B: But she did and made me disappointed ., <utt> A: Oh , cheer up . A girlfriend is not everything ., <utt> B: But she means a lot to me ., <utt> A: Then forgive her mistake ., <utt> B: Oh . I just can't forget it " example_title: "Cause 2" - text: "What subsequent event happens or could happen following the target? <sep> target: Oh . I just can't forget it .<sep> context: A: David , why didn't you clean the room ?, <utt> B: I'm not in the mood ., <utt> A: Why are you feeling depressed ?, <utt> B: I was told my girlfriend was speaking ill of me. That \u2019 s a real let-down ., <utt> A: I don t think she will do such a thing ., <utt> B: But she did and made me disappointed ., <utt> A: Oh , cheer up . A girlfriend is not everything ., <utt> B: But she means a lot to me ., <utt> A: Then forgive her mistake ., <utt> B: Oh . I just can't forget it " example_title: "Subsequent Event 1" - text: "What subsequent event happens or could happen following the target? <sep> target: Sure you can , in about two and a half weeks . <sep> context: A: Did I do well on my test ?, <utt> B: Do you want to know the honest answer ?, <utt> A: Why wouldn't I want to know ?, <utt> B: You had pretty bad scores ., <utt> A: Exactly what do you mean by bad ?, <utt> B: You failed ., <utt> A: How'd I fail it ?, <utt> B: There are a couple of reasons why you didn't pass ., <utt> A: What did I do wrong ?, <utt> B: To sum it all up , you really just don't know how to drive ., <utt> A: Thanks. Will I be able to take a retest ?, <utt> B: Sure you can , in about two and a half weeks . " example_title: "Subsequent Event 2" - text: "What is the possible emotional reaction of the listener in response to target? <sep> target: Oh . I just can't forget it .<sep> context: A: David , why didn't you clean the room ?, <utt> B: I'm not in the mood ., <utt> A: Why are you feeling depressed ?, <utt> B: I was told my girlfriend was speaking ill of me. That \u2019 s a real let-down ., <utt> A: I don t think she will do such a thing ., <utt> B: But she did and made me disappointed ., <utt> A: Oh , cheer up . A girlfriend is not everything ., <utt> B: But she means a lot to me ., <utt> A: Then forgive her mistake ., <utt> B: Oh . I just can't forget it " example_title: "Emotional Reaction" - text: "What is or could be the motivation of target? <sep> target: Sure you can , in about two and a half weeks . <sep> context: A: Did I do well on my test ?, <utt> B: Do you want to know the honest answer ?, <utt> A: Why wouldn't I want to know ?, <utt> B: You had pretty bad scores ., <utt> A: Exactly what do you mean by bad ?, <utt> B: You failed ., <utt> A: How'd I fail it ?, <utt> B: There are a couple of reasons why you didn't pass ., <utt> A: What did I do wrong ?, <utt> B: To sum it all up , you really just don't know how to drive ., <utt> A: Thanks. Will I be able to take a retest ?, <utt> B: Sure you can , in about two and a half weeks . " example_title: "Motivation" --- ## DIALogue-level Commonsense Transformer (DIALeCT) The pretrained checkpoint for the paper [Multiview Contextual Commonsense Inference: A New Dataset and Task](https://arxiv.org/abs/2210.02890). The model is trained based on the [T5-large](https://huggingface.co/t5-large) checkpoint. ![model image](https://drive.google.com/uc?export=download&id=14RIbxgXhREdu5xZiKn5D-UUzaQLDNLqf) ## Datasets The dataset used to pretrain the model can be obtained from the [CICERO repo](https://github.com/declare-lab/CICERO) following instructions. The Contextualized Commonsense Inference in Dialogues v2 (CICEROv2) consists of annotated commonsense inferences including cause and emotional reaction, etc. The dialogues are from multiple datasets. | Dataset | #Dialogues| #Instances| | -------- | ----- | --------- | | DailyDialog| 1118| 3973| | MuTual| 1011 | 3384| | Dream| 250 | 994| ### Examples Some examples of generated results from the pretrained model (the zero-shot setting). **Subsequent Event** ``` What is or could be the subsequent event of the target? <sep> target: Oh . I just can't forget it .<sep> context: A: David , why didn't you clean the room ?, <utt> B: I'm not in the mood ., <utt> A: Why are you feeling depressed ?, <utt> B: I was told my girlfriend was speaking ill of me. That \u2019 s a real let-down ., <utt> A: I don t think she will do such a thing ., <utt> B: But she did and made me disappointed ., <utt> A: Oh , cheer up . A girlfriend is not everything ., <utt> B: But she means a lot to me ., <utt> A: Then forgive her mistake ., <utt> B: Oh . I just can't forget it ``` Predicted subsequent event: ``` David's girlfriend apologized to david for her mistake. ``` **Cause** ``` What is or could be the cause of target? <sep> target: Thanks. Will I be able to take a retest ? <sep> context: A: Did I do well on my test ?, <utt> B: Do you want to know the honest answer ?, <utt> A: Why wouldn't I want to know ?, <utt> B: You had pretty bad scores ., <utt> A: Exactly what do you mean by bad ?, <utt> B: You failed ., <utt> A: How'd I fail it ?, <utt> B: There are a couple of reasons why you didn't pass ., <utt> A: What did I do wrong ?, <utt> B: To sum it all up , you really just don't know how to drive ., <utt> A: Thanks. Will I be able to take a retest ?, <utt> B: Sure you can , in about two and a half weeks . ``` Predicted cause: ``` The speaker has failed the driving test. ``` **Emotional Reaction** ``` What is the possible emotional reaction of the listener in response to target? <sep> target: Oh . I just can't forget it .<sep> context: A: David , why didn't you clean the room ?, <utt> B: I'm not in the mood ., <utt> A: Why are you feeling depressed ?, <utt> B: I was told my girlfriend was speaking ill of me. That \u2019 s a real let-down ., <utt> A: I don t think she will do such a thing ., <utt> B: But she did and made me disappointed ., <utt> A: Oh , cheer up . A girlfriend is not everything ., <utt> B: But she means a lot to me ., <utt> A: Then forgive her mistake ., <utt> B: Oh . I just can't forget it ``` Predicted emotional reaction: ``` The listener is hopeful that david will forgive his girlfriend for her mistake. ``` ## Inference: The input text should be formatted as follows: ``` Question <sep> target: target_utt <sep> context: A: utterance 1 <utt> B: utterance 2 <utt> A: utterance 3 <utt> B: utterance 4 ``` Question: The question against which we want to make the inference. A, B are speaker identifiers The ```target_utt``` should be anyone between ```utterance 1, utterance 2, utterance 3, or utterance 4```. Do not use the speaker identifier in the ```target_utt``` Some samples are provided in the Hosted inference API box examples. ## BibTeX entry and citation info If you use the model, you can cite: ```bibtex @article{Shen2022MultiviewCC, title={Multiview Contextual Commonsense Inference: A New Dataset and Task}, author={Siqi Shen and Deepanway Ghosal and Navonil Majumder and Henry Lim and Rada Mihalcea and Soujanya Poria}, journal={ArXiv}, year={2022}, volume={abs/2210.02890} } ```
TTian/bert-finetuned-feedback-classifier
TTian
2022-10-24T02:19:29Z
3
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-24T02:19:20Z
--- tags: - generated_from_keras_callback model-index: - name: bert-finetuned-feedback-classifier results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-feedback-classifier This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.8251 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 3e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Epoch | |:----------:|:-----:| | 0.8251 | 0 | ### Framework versions - Transformers 4.23.1 - TensorFlow 2.9.2 - Datasets 2.6.1 - Tokenizers 0.13.1
theojolliffe/bart-large-cnn-finetuned-roundup
theojolliffe
2022-10-23T23:51:01Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-23T15:16:53Z
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-large-cnn-finetuned-roundup results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn-finetuned-roundup This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8956 - Rouge1: 58.1914 - Rouge2: 45.822 - Rougel: 49.4407 - Rougelsum: 56.6379 - Gen Len: 142.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 16 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:| | 1.2575 | 1.0 | 795 | 0.9154 | 53.8792 | 34.3203 | 35.8768 | 51.1789 | 142.0 | | 0.7053 | 2.0 | 1590 | 0.7921 | 54.3918 | 35.3346 | 37.7539 | 51.6989 | 142.0 | | 0.5379 | 3.0 | 2385 | 0.7566 | 52.1651 | 32.5699 | 36.3105 | 49.3327 | 141.5185 | | 0.3496 | 4.0 | 3180 | 0.7584 | 54.3258 | 36.403 | 39.6938 | 52.0186 | 142.0 | | 0.2688 | 5.0 | 3975 | 0.7343 | 55.9101 | 39.0709 | 42.4138 | 53.572 | 141.8333 | | 0.1815 | 6.0 | 4770 | 0.7924 | 53.9272 | 36.8138 | 40.0614 | 51.7496 | 142.0 | | 0.1388 | 7.0 | 5565 | 0.7674 | 55.0347 | 38.7978 | 42.0081 | 53.0297 | 142.0 | | 0.1048 | 8.0 | 6360 | 0.7700 | 55.2993 | 39.4075 | 42.6837 | 53.5179 | 141.9815 | | 0.0808 | 9.0 | 7155 | 0.7796 | 56.1508 | 40.0863 | 43.2178 | 53.7908 | 142.0 | | 0.0719 | 10.0 | 7950 | 0.8057 | 56.2302 | 41.3004 | 44.7921 | 54.4304 | 142.0 | | 0.0503 | 11.0 | 8745 | 0.8259 | 55.7603 | 41.0643 | 44.5518 | 54.2305 | 142.0 | | 0.0362 | 12.0 | 9540 | 0.8604 | 55.8612 | 41.5984 | 44.444 | 54.2493 | 142.0 | | 0.0307 | 13.0 | 10335 | 0.8516 | 57.7259 | 44.542 | 47.6724 | 56.0166 | 142.0 | | 0.0241 | 14.0 | 11130 | 0.8826 | 56.7943 | 43.7139 | 47.2866 | 55.1824 | 142.0 | | 0.0193 | 15.0 | 11925 | 0.8856 | 57.4135 | 44.3147 | 47.9136 | 55.8843 | 142.0 | | 0.0154 | 16.0 | 12720 | 0.8956 | 58.1914 | 45.822 | 49.4407 | 56.6379 | 142.0 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
huggingtweets/16pxl
huggingtweets
2022-10-23T23:23:51Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-10-23T23:21:33Z
--- language: en thumbnail: http://www.huggingtweets.com/16pxl/1666567427101/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1358468632255156224/JtUkil_x_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Jubilee ❣️ 2023 CALENDARS OUT NOW</div> <div style="text-align: center; font-size: 14px;">@16pxl</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Jubilee ❣️ 2023 CALENDARS OUT NOW. | Data | Jubilee ❣️ 2023 CALENDARS OUT NOW | | --- | --- | | Tweets downloaded | 3229 | | Retweets | 288 | | Short tweets | 228 | | Tweets kept | 2713 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3r6vcjy6/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @16pxl's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2wix5go1) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2wix5go1/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/16pxl') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
cj7s1/DialoGPT-large-BMO
cj7s1
2022-10-23T22:48:43Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-10-23T22:45:03Z
DialoGPT-large trained on all publicly available adventure time transcripts made to be a conversational model based on the character BMO.
huggingtweets/civickey
huggingtweets
2022-10-23T21:52:08Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-10-23T21:49:23Z
--- language: en thumbnail: http://www.huggingtweets.com/civickey/1666561923663/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1558147004332589057/N-sz3RQY_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Civic | Breakpoint & Hacker House Lisbon, Nov. 1-7</div> <div style="text-align: center; font-size: 14px;">@civickey</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Civic | Breakpoint & Hacker House Lisbon, Nov. 1-7. | Data | Civic | Breakpoint & Hacker House Lisbon, Nov. 1-7 | | --- | --- | | Tweets downloaded | 2355 | | Retweets | 672 | | Short tweets | 98 | | Tweets kept | 1585 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/kwud4scb/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @civickey's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1uif1uqj) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1uif1uqj/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/civickey') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Manu271/ppo-LunarLander-v2
Manu271
2022-10-23T19:51:50Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-10-23T19:51:22Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 249.76 +/- 21.41 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
pepa/roberta-base-fever
pepa
2022-10-23T18:34:30Z
3
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "dataset:copenlu/fever_gold_evidence", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-23T18:33:10Z
--- tags: - generated_from_trainer model-index: - name: roberta-base-fever results: [] datasets: - copenlu/fever_gold_evidence --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-fever This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 0.6929 - eval_p: 0.8856 - eval_r: 0.8851 - eval_f1: 0.8848 - eval_runtime: 44.4077 - eval_samples_per_second: 423.462 - eval_steps_per_second: 52.941 - step: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 4 ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1 - Datasets 2.6.1 - Tokenizers 0.12.1
NikitaBaramiia/q-Taxi-v3
NikitaBaramiia
2022-10-23T18:07:23Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-10-23T17:48:05Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="NikitaBaramiia/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
NikitaBaramiia/q-FrozenLake-v1-4x4-noSlippery
NikitaBaramiia
2022-10-23T18:04:10Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-10-23T17:45:53Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="NikitaBaramiia/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
artificialguybr/WikiHowSDModel
artificialguybr
2022-10-23T17:56:39Z
0
8
null
[ "license:openrail", "region:us" ]
null
2022-10-23T06:44:30Z
--- license: openrail --- This model card is a copy-paste from https://www.reddit.com/r/StableDiffusion/comments/ybavif/wikihow_db_model_entirely_free_model_trained_with/ The template is not 100% accurate and sometimes creates erroneous images, but it is incomparable to the natural quality of SD. The images used for training were all CC from Wikihow. Template available on Hugging Face. The trigger word for traditional Embeddings is the filename. The Traditional Embeddings were split into two rar files: One with 0.005 training and the other with 0.00005 training. All with 20 images and 2000 Steps. The two rar files, plus the Embedding file still have the images for you to evaluate which one you want to use. There is the Winrar file Embedding Aesthestics which is what the name says. To activate the Dreambooth you must write in the PROMPT: '' in WKHW1 Beautiful Art Style''. Test which combination works for you. Model + Aesthestics. Model without aesthestics. Model with Embedding. Model without Embedding.: All my templates are 100% free. All my models are 100% free. You can check in my profile my Coloring Book model posted 12 hours ago. You can contribute on Patreon and Buymeacoffe. ALL money raised will go towards buying GPU/Rent hours and paying Colab to bring in better models. I plan to bring Dreambooth, TI, and Hypernetworks models. However, my Hypernetworks is still defective and I am trying to fix it. If you want any specific models you can contact me here and send me pictures and where I can find the datasets.
pepa/roberta-small-fever
pepa
2022-10-23T17:53:38Z
4
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "dataset:copenlu/fever_gold_evidence", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-23T17:27:02Z
--- tags: - generated_from_trainer model-index: - name: roberta-small-fever results: [] datasets: - copenlu/fever_gold_evidence --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-small-fever This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 0.6096 - eval_p: 0.8179 - eval_r: 0.8110 - eval_f1: 0.8104 - eval_runtime: 36.258 - eval_samples_per_second: 518.644 - eval_steps_per_second: 64.841 - step: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 4 ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1 - Datasets 2.6.1 - Tokenizers 0.12.1
sd-concepts-library/xioboma
sd-concepts-library
2022-10-23T17:51:13Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-10-23T17:51:03Z
--- license: mit --- ### xioboma on Stable Diffusion This is the `<xi-obama>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<xi-obama> 0](https://huggingface.co/sd-concepts-library/xioboma/resolve/main/concept_images/0.jpg) ![<xi-obama> 1](https://huggingface.co/sd-concepts-library/xioboma/resolve/main/concept_images/1.jpg) ![<xi-obama> 2](https://huggingface.co/sd-concepts-library/xioboma/resolve/main/concept_images/2.jpg) ![<xi-obama> 3](https://huggingface.co/sd-concepts-library/xioboma/resolve/main/concept_images/3.jpg)
patrickvonplaten/carol_model
patrickvonplaten
2022-10-23T17:49:06Z
0
1
null
[ "license:mit", "region:us" ]
null
2022-10-23T17:56:14Z
--- license: mit --- ### Carol on Stable Diffusion This is the `<carol>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`.
valhalla/SwinIR-real-sr-L-x4-PSNR
valhalla
2022-10-23T17:44:46Z
2
0
transformers
[ "transformers", "jax", "swin-ir", "region:us" ]
null
2022-10-23T15:43:58Z
--- tags: - swin-ir inference: false ---
valhalla/SwinIR-real-sr-M-x4-PSNR
valhalla
2022-10-23T17:44:14Z
1
0
transformers
[ "transformers", "jax", "swin-ir", "region:us" ]
null
2022-10-23T15:44:44Z
--- tags: - swin-ir inference: false ---
ddebnath/layoutlmv3-finetuned-invoice
ddebnath
2022-10-23T17:42:31Z
12
0
transformers
[ "transformers", "pytorch", "tensorboard", "layoutlmv3", "token-classification", "generated_from_trainer", "dataset:generated", "license:cc-by-nc-sa-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-10-23T17:11:50Z
--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer datasets: - generated metrics: - precision - recall - f1 - accuracy model-index: - name: layoutlmv3-finetuned-invoice results: - task: name: Token Classification type: token-classification dataset: name: generated type: generated config: sroie split: train args: sroie metrics: - name: Precision type: precision value: 0.9959514170040485 - name: Recall type: recall value: 0.9979716024340771 - name: F1 type: f1 value: 0.9969604863221885 - name: Accuracy type: accuracy value: 0.9995786812723826 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layoutlmv3-finetuned-invoice This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the generated dataset. It achieves the following results on the evaluation set: - Loss: 0.0028 - Precision: 0.9960 - Recall: 0.9980 - F1: 0.9970 - Accuracy: 0.9996 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 2000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 2.0 | 100 | 0.0502 | 0.97 | 0.9838 | 0.9768 | 0.9968 | | No log | 4.0 | 200 | 0.0194 | 0.972 | 0.9858 | 0.9789 | 0.9971 | | No log | 6.0 | 300 | 0.0160 | 0.972 | 0.9858 | 0.9789 | 0.9971 | | No log | 8.0 | 400 | 0.0123 | 0.972 | 0.9858 | 0.9789 | 0.9971 | | 0.053 | 10.0 | 500 | 0.0089 | 0.9757 | 0.9757 | 0.9757 | 0.9966 | | 0.053 | 12.0 | 600 | 0.0058 | 0.9959 | 0.9919 | 0.9939 | 0.9992 | | 0.053 | 14.0 | 700 | 0.0046 | 0.9939 | 0.9919 | 0.9929 | 0.9989 | | 0.053 | 16.0 | 800 | 0.0037 | 0.9960 | 0.9980 | 0.9970 | 0.9996 | | 0.053 | 18.0 | 900 | 0.0068 | 0.9959 | 0.9878 | 0.9919 | 0.9987 | | 0.0057 | 20.0 | 1000 | 0.0054 | 0.9919 | 0.9959 | 0.9939 | 0.9992 | | 0.0057 | 22.0 | 1100 | 0.0057 | 0.9919 | 0.9959 | 0.9939 | 0.9992 | | 0.0057 | 24.0 | 1200 | 0.0049 | 0.9919 | 0.9959 | 0.9939 | 0.9992 | | 0.0057 | 26.0 | 1300 | 0.0052 | 0.9919 | 0.9959 | 0.9939 | 0.9992 | | 0.0057 | 28.0 | 1400 | 0.0030 | 0.9960 | 0.9980 | 0.9970 | 0.9996 | | 0.0022 | 30.0 | 1500 | 0.0028 | 0.9960 | 0.9980 | 0.9970 | 0.9996 | | 0.0022 | 32.0 | 1600 | 0.0030 | 0.9960 | 0.9980 | 0.9970 | 0.9996 | | 0.0022 | 34.0 | 1700 | 0.0030 | 0.9960 | 0.9980 | 0.9970 | 0.9996 | | 0.0022 | 36.0 | 1800 | 0.0037 | 0.9960 | 0.9980 | 0.9970 | 0.9996 | | 0.0022 | 38.0 | 1900 | 0.0037 | 0.9960 | 0.9980 | 0.9970 | 0.9996 | | 0.0017 | 40.0 | 2000 | 0.0037 | 0.9960 | 0.9980 | 0.9970 | 0.9996 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
ivanwong/AnyML
ivanwong
2022-10-23T17:38:38Z
0
0
null
[ "region:us" ]
null
2022-10-23T17:28:45Z
AnyML model is a YOLOv5 customized model. It is based on the Ultraistic YOLOv5. The based model was pre-trained with COCO with 80 classes.
srSergio/bakerzduzen-artstyle
srSergio
2022-10-23T17:33:03Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2022-10-23T17:33:03Z
--- license: creativeml-openrail-m ---
pepa/bigbird-roberta-base-snli
pepa
2022-10-23T17:11:57Z
5
0
transformers
[ "transformers", "pytorch", "big_bird", "text-classification", "generated_from_trainer", "dataset:snli", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-23T17:11:06Z
--- tags: - generated_from_trainer datasets: - snli model-index: - name: bigbird-roberta-base-snli results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bigbird-roberta-base-snli This model was trained from scratch on the snli dataset. It achieves the following results on the evaluation set: - eval_loss: 0.2738 - eval_p: 0.9034 - eval_r: 0.9033 - eval_f1: 0.9033 - eval_runtime: 10.9262 - eval_samples_per_second: 899.126 - eval_steps_per_second: 56.195 - step: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 4 ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1 - Datasets 2.6.1 - Tokenizers 0.12.1
thothai/turkce-kufur-tespiti
thothai
2022-10-23T16:55:48Z
4
0
transformers
[ "transformers", "pytorch", "license:afl-3.0", "endpoints_compatible", "region:us" ]
null
2022-10-23T16:45:09Z
--- license: afl-3.0 --- # Thoth Ai, Türkçe hakaret ve küfürleri tespit etmek için oluşturulmuştur. Akademik projelerde kaynak gösterilmesi halinde kullanılabilir. ## Validation Metrics - Loss: 0.230 - Accuracy: 0.936 - Macro F1: 0.927 - Micro F1: 0.936 - Weighted F1: 0.936 - Macro Precision: 0.929 - Micro Precision: 0.936 - Weighted Precision: 0.936 - Macro Recall: 0.925 - Micro Recall: 0.936 - Weighted Recall: 0.936 from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("thothai/turkce-kufur-tespiti", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("thothai/turkce-kufur-tespiti", use_auth_token=True) inputs = tokenizer("Merhaba", return_tensors="pt") outputs = model(**inputs) ```
crumb/dalle-paint
crumb
2022-10-23T16:22:50Z
0
1
null
[ "license:mit", "region:us" ]
null
2022-10-23T16:22:37Z
--- license: mit --- ### dalle-paint on Stable Diffusion This is the `<dalle-paint>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb).
ddebnath/layoutlmv3-finetuned-cord_100
ddebnath
2022-10-23T15:37:39Z
11
0
transformers
[ "transformers", "pytorch", "tensorboard", "layoutlmv3", "token-classification", "generated_from_trainer", "dataset:cord-layoutlmv3", "license:cc-by-nc-sa-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-10-23T14:42:28Z
--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer datasets: - cord-layoutlmv3 metrics: - precision - recall - f1 - accuracy model-index: - name: layoutlmv3-finetuned-cord_100 results: - task: name: Token Classification type: token-classification dataset: name: cord-layoutlmv3 type: cord-layoutlmv3 config: cord split: train args: cord metrics: - name: Precision type: precision value: 0.9485842026825634 - name: Recall type: recall value: 0.9528443113772455 - name: F1 type: f1 value: 0.9507094846900671 - name: Accuracy type: accuracy value: 0.9592529711375212 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layoutlmv3-finetuned-cord_100 This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the cord-layoutlmv3 dataset. It achieves the following results on the evaluation set: - Loss: 0.1978 - Precision: 0.9486 - Recall: 0.9528 - F1: 0.9507 - Accuracy: 0.9593 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 5 - eval_batch_size: 5 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 2500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.56 | 250 | 0.9543 | 0.7832 | 0.8166 | 0.7996 | 0.8226 | | 1.3644 | 3.12 | 500 | 0.5338 | 0.8369 | 0.8683 | 0.8523 | 0.8824 | | 1.3644 | 4.69 | 750 | 0.3658 | 0.8840 | 0.9072 | 0.8955 | 0.9232 | | 0.3802 | 6.25 | 1000 | 0.3019 | 0.9156 | 0.9251 | 0.9203 | 0.9334 | | 0.3802 | 7.81 | 1250 | 0.2833 | 0.9094 | 0.9237 | 0.9165 | 0.9346 | | 0.2061 | 9.38 | 1500 | 0.2241 | 0.9377 | 0.9469 | 0.9423 | 0.9525 | | 0.2061 | 10.94 | 1750 | 0.2282 | 0.9304 | 0.9409 | 0.9356 | 0.9474 | | 0.1416 | 12.5 | 2000 | 0.2017 | 0.9509 | 0.9566 | 0.9537 | 0.9610 | | 0.1416 | 14.06 | 2250 | 0.2006 | 0.9472 | 0.9536 | 0.9504 | 0.9614 | | 0.1056 | 15.62 | 2500 | 0.1978 | 0.9486 | 0.9528 | 0.9507 | 0.9593 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1