modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-07-14 18:27:59
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 520
values | tags
listlengths 1
4.05k
| pipeline_tag
stringclasses 55
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-07-14 18:27:48
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
brianrp2000/ppo-LunarLander-v2 | brianrp2000 | 2022-10-24T20:38:53Z | 0 | 0 | stable-baselines3 | [
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
]
| reinforcement-learning | 2022-10-24T20:38:20Z | ---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 248.46 +/- 14.17
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
stuartmesham/xlnet-large_spell_5k_2_p3 | stuartmesham | 2022-10-24T18:44:01Z | 10 | 0 | transformers | [
"transformers",
"pytorch",
"xlnet",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2022-10-24T18:43:08Z | ---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: xlnet-large_spell_5k_2_p3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlnet-large_spell_5k_2_p3
This model is a fine-tuned version of [model_saves/xlnet-large_spell_5k_2_p2](https://huggingface.co/model_saves/xlnet-large_spell_5k_2_p2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4726
- Accuracy: 0.9405
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 52
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 268 | 0.4353 | 0.9405 |
| No log | 2.0 | 536 | 0.4413 | 0.9400 |
| No log | 3.0 | 804 | 0.4726 | 0.9405 |
| 0.3275 | 4.0 | 1072 | 0.5153 | 0.9397 |
| 0.3275 | 5.0 | 1340 | 0.5466 | 0.9391 |
| 0.3275 | 6.0 | 1608 | 0.5922 | 0.9385 |
### Framework versions
- Transformers 4.21.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
stuartmesham/xlnet-large_spell_5k_1_p3 | stuartmesham | 2022-10-24T18:43:06Z | 8 | 0 | transformers | [
"transformers",
"pytorch",
"xlnet",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2022-10-24T18:42:11Z | ---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: xlnet-large_spell_5k_1_p3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlnet-large_spell_5k_1_p3
This model is a fine-tuned version of [model_saves/xlnet-large_spell_5k_1_p2](https://huggingface.co/model_saves/xlnet-large_spell_5k_1_p2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4678
- Accuracy: 0.9400
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 268 | 0.4383 | 0.9397 |
| No log | 2.0 | 536 | 0.4678 | 0.9400 |
| No log | 3.0 | 804 | 0.4920 | 0.9397 |
| 0.2974 | 4.0 | 1072 | 0.5351 | 0.9390 |
| 0.2974 | 5.0 | 1340 | 0.5907 | 0.9388 |
### Framework versions
- Transformers 4.21.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
stuartmesham/xlnet-large_lemon-spell_5k_2_p3 | stuartmesham | 2022-10-24T18:38:23Z | 8 | 0 | transformers | [
"transformers",
"pytorch",
"xlnet",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2022-10-24T18:37:30Z | ---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: xlnet-large_lemon-spell_5k_2_p3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlnet-large_lemon-spell_5k_2_p3
This model is a fine-tuned version of [model_saves/xlnet-large_lemon-spell_5k_2_p2](https://huggingface.co/model_saves/xlnet-large_lemon-spell_5k_2_p2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4461
- Accuracy: 0.9394
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 52
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 268 | 0.4461 | 0.9394 |
| No log | 2.0 | 536 | 0.4657 | 0.9393 |
| No log | 3.0 | 804 | 0.4947 | 0.9390 |
| 0.2992 | 4.0 | 1072 | 0.5469 | 0.9383 |
### Framework versions
- Transformers 4.21.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
michellejieli/test_classifier | michellejieli | 2022-10-24T18:36:02Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"roberta",
"text-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| text-classification | 2022-10-24T18:33:07Z | ---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: test_classifier
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# test_classifier
This model is a fine-tuned version of [j-hartmann/emotion-english-distilroberta-base](https://huggingface.co/j-hartmann/emotion-english-distilroberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8668
- Accuracy: 0.7337
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.7506 | 1.0 | 587 | 0.8760 | 0.7145 |
| 0.6506 | 2.0 | 1174 | 0.8192 | 0.7303 |
| 0.5242 | 3.0 | 1761 | 0.8668 | 0.7337 |
### Framework versions
- Transformers 4.22.2
- Pytorch 1.12.1+cu102
- Datasets 2.5.2
- Tokenizers 0.12.1
|
stuartmesham/xlnet-large_lemon_5k_2_p3 | stuartmesham | 2022-10-24T18:32:45Z | 9 | 0 | transformers | [
"transformers",
"pytorch",
"xlnet",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2022-10-24T18:31:51Z | ---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: xlnet-large_lemon_5k_2_p3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlnet-large_lemon_5k_2_p3
This model is a fine-tuned version of [model_saves/xlnet-large_lemon_5k_2_p2](https://huggingface.co/model_saves/xlnet-large_lemon_5k_2_p2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4422
- Accuracy: 0.9397
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 52
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 268 | 0.4422 | 0.9397 |
| No log | 2.0 | 536 | 0.4614 | 0.9394 |
| No log | 3.0 | 804 | 0.4924 | 0.9390 |
| 0.2986 | 4.0 | 1072 | 0.5440 | 0.9389 |
### Framework versions
- Transformers 4.21.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
stuartmesham/xlnet-large_lemon_5k_1_p3 | stuartmesham | 2022-10-24T18:31:48Z | 8 | 0 | transformers | [
"transformers",
"pytorch",
"xlnet",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2022-10-24T18:30:55Z | ---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: xlnet-large_lemon_5k_1_p3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlnet-large_lemon_5k_1_p3
This model is a fine-tuned version of [model_saves/xlnet-large_lemon_5k_1_p2](https://huggingface.co/model_saves/xlnet-large_lemon_5k_1_p2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4483
- Accuracy: 0.9406
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 268 | 0.4327 | 0.9397 |
| No log | 2.0 | 536 | 0.4483 | 0.9406 |
| No log | 3.0 | 804 | 0.4814 | 0.9404 |
| 0.3281 | 4.0 | 1072 | 0.5127 | 0.9394 |
| 0.3281 | 5.0 | 1340 | 0.5563 | 0.9391 |
### Framework versions
- Transformers 4.21.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
stuartmesham/xlnet-large_lemon_10k_2_p3 | stuartmesham | 2022-10-24T18:29:56Z | 8 | 0 | transformers | [
"transformers",
"pytorch",
"xlnet",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2022-10-24T18:28:10Z | ---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: xlnet-large_lemon_10k_2_p3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlnet-large_lemon_10k_2_p3
This model is a fine-tuned version of [model_saves/xlnet-large_lemon_10k_2_p2](https://huggingface.co/model_saves/xlnet-large_lemon_10k_2_p2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4726
- Accuracy: 0.9399
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 52
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 268 | 0.4533 | 0.9398 |
| No log | 2.0 | 536 | 0.4726 | 0.9399 |
| No log | 3.0 | 804 | 0.5045 | 0.9393 |
| 0.2939 | 4.0 | 1072 | 0.5533 | 0.9390 |
| 0.2939 | 5.0 | 1340 | 0.6086 | 0.9388 |
### Framework versions
- Transformers 4.21.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
stuartmesham/xlnet-large_basetags_5k_1_p3 | stuartmesham | 2022-10-24T18:25:18Z | 9 | 0 | transformers | [
"transformers",
"pytorch",
"xlnet",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2022-10-24T18:24:26Z | ---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: xlnet-large_basetags_5k_1_p3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlnet-large_basetags_5k_1_p3
This model is a fine-tuned version of [model_saves/xlnet-large_basetags_5k_1_p2](https://huggingface.co/model_saves/xlnet-large_basetags_5k_1_p2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4744
- Accuracy: 0.9398
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 268 | 0.4461 | 0.9394 |
| No log | 2.0 | 536 | 0.4744 | 0.9398 |
| No log | 3.0 | 804 | 0.5171 | 0.9392 |
| 0.273 | 4.0 | 1072 | 0.5515 | 0.9384 |
| 0.273 | 5.0 | 1340 | 0.6133 | 0.9383 |
### Framework versions
- Transformers 4.21.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
stuartmesham/xlnet-large_basetags_10k_2_p3 | stuartmesham | 2022-10-24T18:23:26Z | 8 | 0 | transformers | [
"transformers",
"pytorch",
"xlnet",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2022-10-24T18:22:31Z | ---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: xlnet-large_basetags_10k_2_p3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlnet-large_basetags_10k_2_p3
This model is a fine-tuned version of [model_saves/xlnet-large_basetags_10k_2_p2](https://huggingface.co/model_saves/xlnet-large_basetags_10k_2_p2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4800
- Accuracy: 0.9405
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 52
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 268 | 0.4432 | 0.9404 |
| No log | 2.0 | 536 | 0.4482 | 0.9401 |
| No log | 3.0 | 804 | 0.4800 | 0.9405 |
| 0.3219 | 4.0 | 1072 | 0.5201 | 0.9400 |
| 0.3219 | 5.0 | 1340 | 0.5552 | 0.9394 |
| 0.3219 | 6.0 | 1608 | 0.6083 | 0.9387 |
### Framework versions
- Transformers 4.21.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
nick-carroll1/hf_fine_tune_hello_world | nick-carroll1 | 2022-10-24T18:17:14Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"bert",
"text-classification",
"generated_from_trainer",
"dataset:yelp_review_full",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| text-classification | 2022-10-24T18:14:22Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- yelp_review_full
metrics:
- accuracy
model-index:
- name: hf_fine_tune_hello_world
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: yelp_review_full
type: yelp_review_full
config: yelp_review_full
split: train
args: yelp_review_full
metrics:
- name: Accuracy
type: accuracy
value: 0.592
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hf_fine_tune_hello_world
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the yelp_review_full dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0142
- Accuracy: 0.592
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 125 | 1.0844 | 0.529 |
| No log | 2.0 | 250 | 1.0022 | 0.58 |
| No log | 3.0 | 375 | 1.0142 | 0.592 |
### Framework versions
- Transformers 4.22.2
- Pytorch 1.12.1+cu102
- Datasets 2.5.2
- Tokenizers 0.12.1
|
stuartmesham/roberta-large_spell_5k_5_p3 | stuartmesham | 2022-10-24T18:09:43Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"roberta",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2022-10-24T18:08:48Z | ---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: roberta-large_spell_5k_5_p3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-large_spell_5k_5_p3
This model is a fine-tuned version of [model_saves/roberta-large_spell_5k_5_p2](https://huggingface.co/model_saves/roberta-large_spell_5k_5_p2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4416
- Accuracy: 0.9388
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 82
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 268 | 0.4416 | 0.9388 |
| No log | 2.0 | 536 | 0.4567 | 0.9384 |
| No log | 3.0 | 804 | 0.5054 | 0.9386 |
| 0.2675 | 4.0 | 1072 | 0.5354 | 0.9385 |
### Framework versions
- Transformers 4.21.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
stuartmesham/roberta-large_spell_5k_1_p3 | stuartmesham | 2022-10-24T18:04:38Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"roberta",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2022-10-24T18:03:45Z | ---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: roberta-large_spell_5k_1_p3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-large_spell_5k_1_p3
This model is a fine-tuned version of [model_saves/roberta-large_spell_5k_1_p2](https://huggingface.co/model_saves/roberta-large_spell_5k_1_p2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4189
- Accuracy: 0.9395
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 268 | 0.4189 | 0.9395 |
| No log | 2.0 | 536 | 0.4434 | 0.9393 |
| No log | 3.0 | 804 | 0.4638 | 0.9381 |
| 0.2911 | 4.0 | 1072 | 0.5136 | 0.9385 |
### Framework versions
- Transformers 4.21.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
stuartmesham/roberta-large_spell_10k_3_p3 | stuartmesham | 2022-10-24T18:03:42Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"roberta",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2022-10-24T18:02:49Z | ---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: roberta-large_spell_10k_3_p3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-large_spell_10k_3_p3
This model is a fine-tuned version of [model_saves/roberta-large_spell_10k_3_p2](https://huggingface.co/model_saves/roberta-large_spell_10k_3_p2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4350
- Accuracy: 0.9404
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 62
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Accuracy | Validation Loss |
|:-------------:|:-----:|:----:|:--------:|:---------------:|
| No log | 1.0 | 268 | 0.9404 | 0.4350 |
| No log | 2.0 | 536 | 0.9394 | 0.4450 |
| No log | 3.0 | 804 | 0.9388 | 0.4803 |
| 0.2844 | 4.0 | 1072 | 0.9386 | 0.5240 |
| 0.2844 | 5.0 | 1340 | 0.5639 | 0.9384 |
| 0.2844 | 6.0 | 1608 | 0.6261 | 0.9387 |
| 0.2844 | 7.0 | 1876 | 0.6881 | 0.9388 |
### Framework versions
- Transformers 4.21.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
stuartmesham/roberta-large_spell_10k_2_p3 | stuartmesham | 2022-10-24T18:02:46Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"roberta",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2022-10-24T18:01:52Z | ---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: roberta-large_spell_10k_2_p3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-large_spell_10k_2_p3
This model is a fine-tuned version of [model_saves/roberta-large_spell_10k_2_p2](https://huggingface.co/model_saves/roberta-large_spell_10k_2_p2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4256
- Accuracy: 0.9409
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 52
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Accuracy | Validation Loss |
|:-------------:|:-----:|:----:|:--------:|:---------------:|
| No log | 1.0 | 268 | 0.9409 | 0.4256 |
| No log | 2.0 | 536 | 0.9408 | 0.4378 |
| No log | 3.0 | 804 | 0.9401 | 0.4636 |
| 0.3125 | 4.0 | 1072 | 0.9389 | 0.4978 |
| 0.3125 | 5.0 | 1340 | 0.5485 | 0.9397 |
| 0.3125 | 6.0 | 1608 | 0.5955 | 0.9387 |
| 0.3125 | 7.0 | 1876 | 0.6463 | 0.9379 |
### Framework versions
- Transformers 4.21.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
stuartmesham/roberta-large_spell_10k_1_p3 | stuartmesham | 2022-10-24T18:01:49Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"roberta",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2022-10-24T18:00:34Z | ---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: roberta-large_spell_10k_1_p3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-large_spell_10k_1_p3
This model is a fine-tuned version of [model_saves/roberta-large_spell_10k_1_p2](https://huggingface.co/model_saves/roberta-large_spell_10k_1_p2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4478
- Accuracy: 0.9400
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Accuracy | Validation Loss |
|:-------------:|:-----:|:----:|:--------:|:---------------:|
| No log | 1.0 | 268 | 0.9394 | 0.4278 |
| No log | 2.0 | 536 | 0.9400 | 0.4478 |
| No log | 3.0 | 804 | 0.9385 | 0.4739 |
| 0.2854 | 4.0 | 1072 | 0.9386 | 0.5202 |
| 0.2854 | 5.0 | 1340 | 0.9399 | 0.5863 |
| 0.2854 | 6.0 | 1608 | 0.6210 | 0.9392 |
| 0.2854 | 7.0 | 1876 | 0.6682 | 0.9385 |
| 0.1207 | 8.0 | 2144 | 0.7322 | 0.9382 |
### Framework versions
- Transformers 4.21.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
stuartmesham/roberta-large_lemon-spell_5k_5_p3 | stuartmesham | 2022-10-24T17:59:36Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"roberta",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2022-10-24T17:58:44Z | ---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: roberta-large_lemon-spell_5k_5_p3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-large_lemon-spell_5k_5_p3
This model is a fine-tuned version of [model_saves/roberta-large_lemon-spell_5k_5_p2](https://huggingface.co/model_saves/roberta-large_lemon-spell_5k_5_p2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4791
- Accuracy: 0.9391
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 82
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 268 | 0.4315 | 0.9391 |
| No log | 2.0 | 536 | 0.4467 | 0.9387 |
| No log | 3.0 | 804 | 0.4791 | 0.9391 |
| 0.2901 | 4.0 | 1072 | 0.5057 | 0.9386 |
| 0.2901 | 5.0 | 1340 | 0.5766 | 0.9374 |
| 0.2901 | 6.0 | 1608 | 0.6426 | 0.9384 |
### Framework versions
- Transformers 4.21.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
stuartmesham/roberta-large_lemon-spell_5k_4_p3 | stuartmesham | 2022-10-24T17:58:41Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"roberta",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2022-10-24T17:57:48Z | ---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: roberta-large_lemon-spell_5k_4_p3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-large_lemon-spell_5k_4_p3
This model is a fine-tuned version of [model_saves/roberta-large_lemon-spell_5k_4_p2](https://huggingface.co/model_saves/roberta-large_lemon-spell_5k_4_p2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4209
- Accuracy: 0.9401
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 72
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 268 | 0.4209 | 0.9401 |
| No log | 2.0 | 536 | 0.4434 | 0.9392 |
| No log | 3.0 | 804 | 0.4690 | 0.9395 |
| 0.2919 | 4.0 | 1072 | 0.5258 | 0.9378 |
### Framework versions
- Transformers 4.21.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
stuartmesham/roberta-large_lemon-spell_5k_3_p3 | stuartmesham | 2022-10-24T17:57:46Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"roberta",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2022-10-24T17:56:51Z | ---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: roberta-large_lemon-spell_5k_3_p3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-large_lemon-spell_5k_3_p3
This model is a fine-tuned version of [model_saves/roberta-large_lemon-spell_5k_3_p2](https://huggingface.co/model_saves/roberta-large_lemon-spell_5k_3_p2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4501
- Accuracy: 0.9388
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 62
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 268 | 0.4378 | 0.9387 |
| No log | 2.0 | 536 | 0.4501 | 0.9388 |
| No log | 3.0 | 804 | 0.4976 | 0.9381 |
| 0.272 | 4.0 | 1072 | 0.5395 | 0.9381 |
| 0.272 | 5.0 | 1340 | 0.5934 | 0.9376 |
### Framework versions
- Transformers 4.21.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
kroos/autotrain-book_recommender-1867863842 | kroos | 2022-10-24T17:57:11Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"autotrain",
"text-classification",
"en",
"dataset:kroos/autotrain-data-book_recommender",
"co2_eq_emissions",
"endpoints_compatible",
"region:us"
]
| text-classification | 2022-10-24T17:51:56Z | ---
tags:
- autotrain
- text-classification
language:
- en
widget:
- text: "I love AutoTrain 🤗"
datasets:
- kroos/autotrain-data-book_recommender
co2_eq_emissions:
emissions: 10.620169750625415
---
# Model Trained Using AutoTrain
- Problem type: Multi-class Classification
- Model ID: 1867863842
- CO2 Emissions (in grams): 10.6202
## Validation Metrics
- Loss: 0.946
- Accuracy: 0.594
- Macro F1: 0.387
- Micro F1: 0.594
- Weighted F1: 0.574
- Macro Precision: 0.370
- Micro Precision: 0.594
- Weighted Precision: 0.567
- Macro Recall: 0.417
- Micro Recall: 0.594
- Weighted Recall: 0.594
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/kroos/autotrain-book_recommender-1867863842
```
Or Python API:
```
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("kroos/autotrain-book_recommender-1867863842", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("kroos/autotrain-book_recommender-1867863842", use_auth_token=True)
inputs = tokenizer("I love AutoTrain", return_tensors="pt")
outputs = model(**inputs)
``` |
stuartmesham/roberta-large_lemon-spell_5k_1_p3 | stuartmesham | 2022-10-24T17:55:53Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"roberta",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2022-10-24T17:54:59Z | ---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: roberta-large_lemon-spell_5k_1_p3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-large_lemon-spell_5k_1_p3
This model is a fine-tuned version of [model_saves/roberta-large_lemon-spell_5k_1_p2](https://huggingface.co/model_saves/roberta-large_lemon-spell_5k_1_p2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4276
- Accuracy: 0.9404
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 268 | 0.4276 | 0.9404 |
| No log | 2.0 | 536 | 0.4368 | 0.9401 |
| No log | 3.0 | 804 | 0.4663 | 0.9396 |
| 0.3203 | 4.0 | 1072 | 0.5026 | 0.9385 |
### Framework versions
- Transformers 4.21.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
stuartmesham/roberta-large_lemon-spell_10k_3_p3 | stuartmesham | 2022-10-24T17:54:56Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"roberta",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2022-10-24T17:53:37Z | ---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: roberta-large_lemon-spell_10k_3_p3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-large_lemon-spell_10k_3_p3
This model is a fine-tuned version of [model_saves/roberta-large_lemon-spell_10k_3_p2](https://huggingface.co/model_saves/roberta-large_lemon-spell_10k_3_p2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4579
- Accuracy: 0.9392
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 62
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Accuracy | Validation Loss |
|:-------------:|:-----:|:----:|:--------:|:---------------:|
| No log | 1.0 | 268 | 0.9390 | 0.4454 |
| No log | 2.0 | 536 | 0.9392 | 0.4579 |
| No log | 3.0 | 804 | 0.9387 | 0.5055 |
| 0.2672 | 4.0 | 1072 | 0.9386 | 0.5471 |
| 0.2672 | 5.0 | 1340 | 0.9378 | 0.6000 |
| 0.2672 | 6.0 | 1608 | 0.6508 | 0.9375 |
| 0.2672 | 7.0 | 1876 | 0.7333 | 0.9374 |
| 0.1123 | 8.0 | 2144 | 0.7822 | 0.9375 |
### Framework versions
- Transformers 4.21.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
stuartmesham/roberta-large_lemon-spell_10k_2_p3 | stuartmesham | 2022-10-24T17:53:34Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"roberta",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2022-10-24T17:52:42Z | ---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: roberta-large_lemon-spell_10k_2_p3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-large_lemon-spell_10k_2_p3
This model is a fine-tuned version of [model_saves/roberta-large_lemon-spell_10k_2_p2](https://huggingface.co/model_saves/roberta-large_lemon-spell_10k_2_p2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4359
- Accuracy: 0.9406
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 52
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Accuracy | Validation Loss |
|:-------------:|:-----:|:----:|:--------:|:---------------:|
| No log | 1.0 | 268 | 0.9406 | 0.4359 |
| No log | 2.0 | 536 | 0.9399 | 0.4492 |
| No log | 3.0 | 804 | 0.9399 | 0.4743 |
| 0.2873 | 4.0 | 1072 | 0.9395 | 0.5155 |
| 0.2873 | 5.0 | 1340 | 0.5667 | 0.9389 |
| 0.2873 | 6.0 | 1608 | 0.6481 | 0.9391 |
| 0.2873 | 7.0 | 1876 | 0.6873 | 0.9381 |
### Framework versions
- Transformers 4.21.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
stuartmesham/roberta-large_lemon_5k_6_p3 | stuartmesham | 2022-10-24T17:51:06Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"roberta",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2022-10-24T17:50:13Z | ---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: roberta-large_lemon_5k_6_p3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-large_lemon_5k_6_p3
This model is a fine-tuned version of [model_saves/roberta-large_lemon_5k_6_p2](https://huggingface.co/model_saves/roberta-large_lemon_5k_6_p2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4225
- Accuracy: 0.9407
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 92
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 268 | 0.4225 | 0.9407 |
| No log | 2.0 | 536 | 0.4325 | 0.9404 |
| No log | 3.0 | 804 | 0.4516 | 0.9399 |
| 0.3173 | 4.0 | 1072 | 0.4899 | 0.9388 |
### Framework versions
- Transformers 4.21.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
stuartmesham/roberta-large_lemon_5k_5_p3 | stuartmesham | 2022-10-24T17:50:10Z | 7 | 0 | transformers | [
"transformers",
"pytorch",
"roberta",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2022-10-24T17:48:19Z | ---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: roberta-large_lemon_5k_5_p3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-large_lemon_5k_5_p3
This model is a fine-tuned version of [model_saves/roberta-large_lemon_5k_5_p2](https://huggingface.co/model_saves/roberta-large_lemon_5k_5_p2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4764
- Accuracy: 0.9394
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 82
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 268 | 0.4297 | 0.9391 |
| No log | 2.0 | 536 | 0.4462 | 0.9390 |
| No log | 3.0 | 804 | 0.4764 | 0.9394 |
| 0.2902 | 4.0 | 1072 | 0.5053 | 0.9388 |
| 0.2902 | 5.0 | 1340 | 0.5689 | 0.9378 |
| 0.2902 | 6.0 | 1608 | 0.6370 | 0.9385 |
### Framework versions
- Transformers 4.21.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
stuartmesham/roberta-large_lemon_5k_4_p3 | stuartmesham | 2022-10-24T17:48:16Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"roberta",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2022-10-24T17:45:40Z | ---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: roberta-large_lemon_5k_4_p3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-large_lemon_5k_4_p3
This model is a fine-tuned version of [model_saves/roberta-large_lemon_5k_4_p2](https://huggingface.co/model_saves/roberta-large_lemon_5k_4_p2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4195
- Accuracy: 0.9402
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 72
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 268 | 0.4195 | 0.9402 |
| No log | 2.0 | 536 | 0.4397 | 0.9393 |
| No log | 3.0 | 804 | 0.4683 | 0.9397 |
| 0.29 | 4.0 | 1072 | 0.5288 | 0.9381 |
### Framework versions
- Transformers 4.21.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
stuartmesham/roberta-large_lemon_5k_2_p3 | stuartmesham | 2022-10-24T17:44:43Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"roberta",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2022-10-24T17:43:46Z | ---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: roberta-large_lemon_5k_2_p3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-large_lemon_5k_2_p3
This model is a fine-tuned version of [model_saves/roberta-large_lemon_5k_2_p2](https://huggingface.co/model_saves/roberta-large_lemon_5k_2_p2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4294
- Accuracy: 0.9402
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 52
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 268 | 0.4294 | 0.9402 |
| No log | 2.0 | 536 | 0.4405 | 0.9396 |
| No log | 3.0 | 804 | 0.4707 | 0.9392 |
| 0.29 | 4.0 | 1072 | 0.5095 | 0.9388 |
### Framework versions
- Transformers 4.21.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
stuartmesham/roberta-large_lemon_10k_3_p3 | stuartmesham | 2022-10-24T17:42:46Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"roberta",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2022-10-24T17:41:52Z | ---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: roberta-large_lemon_10k_3_p3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-large_lemon_10k_3_p3
This model is a fine-tuned version of [model_saves/roberta-large_lemon_10k_3_p2](https://huggingface.co/model_saves/roberta-large_lemon_10k_3_p2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4616
- Accuracy: 0.9394
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 62
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Accuracy | Validation Loss |
|:-------------:|:-----:|:----:|:--------:|:---------------:|
| No log | 1.0 | 268 | 0.9393 | 0.4460 |
| No log | 2.0 | 536 | 0.9394 | 0.4616 |
| No log | 3.0 | 804 | 0.9382 | 0.5016 |
| 0.2628 | 4.0 | 1072 | 0.9389 | 0.5514 |
| 0.2628 | 5.0 | 1340 | 0.9377 | 0.6032 |
| 0.2628 | 6.0 | 1608 | 0.6419 | 0.9375 |
| 0.2628 | 7.0 | 1876 | 0.7208 | 0.9377 |
| 0.1093 | 8.0 | 2144 | 0.7791 | 0.9376 |
### Framework versions
- Transformers 4.21.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
stuartmesham/roberta-large_lemon_10k_2_p3 | stuartmesham | 2022-10-24T17:41:50Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"roberta",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2022-10-24T17:40:55Z | ---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: roberta-large_lemon_10k_2_p3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-large_lemon_10k_2_p3
This model is a fine-tuned version of [model_saves/roberta-large_lemon_10k_2_p2](https://huggingface.co/model_saves/roberta-large_lemon_10k_2_p2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4381
- Accuracy: 0.9402
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 52
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Accuracy | Validation Loss |
|:-------------:|:-----:|:----:|:--------:|:---------------:|
| No log | 1.0 | 268 | 0.9402 | 0.4381 |
| No log | 2.0 | 536 | 0.9396 | 0.4498 |
| No log | 3.0 | 804 | 0.9390 | 0.4764 |
| 0.2859 | 4.0 | 1072 | 0.9391 | 0.5198 |
| 0.2859 | 5.0 | 1340 | 0.5669 | 0.9386 |
| 0.2859 | 6.0 | 1608 | 0.6484 | 0.9382 |
| 0.2859 | 7.0 | 1876 | 0.6938 | 0.9380 |
### Framework versions
- Transformers 4.21.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
stuartmesham/roberta-large_lemon_10k_1_p3 | stuartmesham | 2022-10-24T17:40:53Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"roberta",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2022-10-24T17:39:42Z | ---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: roberta-large_lemon_10k_1_p3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-large_lemon_10k_1_p3
This model is a fine-tuned version of [model_saves/roberta-large_lemon_10k_1_p2](https://huggingface.co/model_saves/roberta-large_lemon_10k_1_p2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4327
- Accuracy: 0.9402
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Accuracy | Validation Loss |
|:-------------:|:-----:|:----:|:--------:|:---------------:|
| No log | 1.0 | 268 | 0.9402 | 0.4327 |
| No log | 2.0 | 536 | 0.9401 | 0.4409 |
| No log | 3.0 | 804 | 0.9397 | 0.4704 |
| 0.317 | 4.0 | 1072 | 0.9389 | 0.5034 |
| 0.317 | 5.0 | 1340 | 0.5431 | 0.9389 |
| 0.317 | 6.0 | 1608 | 0.5830 | 0.9384 |
| 0.317 | 7.0 | 1876 | 0.6502 | 0.9387 |
### Framework versions
- Transformers 4.21.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
stuartmesham/roberta-large_basetags_5k_4_p3 | stuartmesham | 2022-10-24T17:37:47Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"roberta",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2022-10-24T17:36:54Z | ---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: roberta-large_basetags_5k_4_p3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-large_basetags_5k_4_p3
This model is a fine-tuned version of [model_saves/roberta-large_basetags_5k_4_p2](https://huggingface.co/model_saves/roberta-large_basetags_5k_4_p2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4263
- Accuracy: 0.9403
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 72
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 268 | 0.4263 | 0.9403 |
| No log | 2.0 | 536 | 0.4339 | 0.9400 |
| No log | 3.0 | 804 | 0.4699 | 0.9398 |
| 0.2897 | 4.0 | 1072 | 0.5028 | 0.9393 |
### Framework versions
- Transformers 4.21.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
stuartmesham/roberta-large_basetags_5k_2_p3 | stuartmesham | 2022-10-24T17:35:56Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"roberta",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2022-10-24T17:35:03Z | ---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: roberta-large_basetags_5k_2_p3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-large_basetags_5k_2_p3
This model is a fine-tuned version of [model_saves/roberta-large_basetags_5k_2_p2](https://huggingface.co/model_saves/roberta-large_basetags_5k_2_p2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4162
- Accuracy: 0.9409
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 52
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 268 | 0.4162 | 0.9409 |
| No log | 2.0 | 536 | 0.4259 | 0.9406 |
| No log | 3.0 | 804 | 0.4544 | 0.9398 |
| 0.3171 | 4.0 | 1072 | 0.4886 | 0.9387 |
### Framework versions
- Transformers 4.21.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
stuartmesham/roberta-large_basetags_10k_1_p3 | stuartmesham | 2022-10-24T17:32:05Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"roberta",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2022-10-24T17:31:14Z | ---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: roberta-large_basetags_10k_1_p3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-large_basetags_10k_1_p3
This model is a fine-tuned version of [model_saves/roberta-large_basetags_10k_1_p2](https://huggingface.co/model_saves/roberta-large_basetags_10k_1_p2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4470
- Accuracy: 0.9398
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Accuracy | Validation Loss |
|:-------------:|:-----:|:----:|:--------:|:---------------:|
| No log | 1.0 | 268 | 0.9392 | 0.4255 |
| No log | 2.0 | 536 | 0.9398 | 0.4470 |
| No log | 3.0 | 804 | 0.9382 | 0.4726 |
| 0.2851 | 4.0 | 1072 | 0.9381 | 0.5148 |
| 0.2851 | 5.0 | 1340 | 0.9392 | 0.5858 |
| 0.2851 | 6.0 | 1608 | 0.6128 | 0.9386 |
| 0.2851 | 7.0 | 1876 | 0.6744 | 0.9382 |
| 0.1206 | 8.0 | 2144 | 0.7268 | 0.9378 |
### Framework versions
- Transformers 4.21.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
stuartmesham/electra-large_spell_5k_6_p3 | stuartmesham | 2022-10-24T17:25:29Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"electra",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2022-10-24T17:24:41Z | ---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: electra-large_spell_5k_6_p3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# electra-large_spell_5k_6_p3
This model is a fine-tuned version of [model_saves/electra-large_spell_5k_6_p2](https://huggingface.co/model_saves/electra-large_spell_5k_6_p2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4361
- Accuracy: 0.9395
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 92
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 268 | 0.4361 | 0.9395 |
| No log | 2.0 | 536 | 0.4487 | 0.9385 |
| No log | 3.0 | 804 | 0.4750 | 0.9388 |
| 0.3204 | 4.0 | 1072 | 0.4949 | 0.9371 |
### Framework versions
- Transformers 4.21.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
stuartmesham/electra-large_spell_5k_5_p3 | stuartmesham | 2022-10-24T17:24:39Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"electra",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2022-10-24T17:23:51Z | ---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: electra-large_spell_5k_5_p3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# electra-large_spell_5k_5_p3
This model is a fine-tuned version of [model_saves/electra-large_spell_5k_5_p2](https://huggingface.co/model_saves/electra-large_spell_5k_5_p2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4331
- Accuracy: 0.9400
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 82
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 268 | 0.4331 | 0.9400 |
| No log | 2.0 | 536 | 0.4424 | 0.9393 |
| No log | 3.0 | 804 | 0.4650 | 0.9392 |
| 0.3503 | 4.0 | 1072 | 0.4915 | 0.9383 |
### Framework versions
- Transformers 4.21.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
stuartmesham/electra-large_spell_5k_2_p3 | stuartmesham | 2022-10-24T17:22:06Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"electra",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2022-10-24T17:21:16Z | ---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: electra-large_spell_5k_2_p3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# electra-large_spell_5k_2_p3
This model is a fine-tuned version of [model_saves/electra-large_spell_5k_2_p2](https://huggingface.co/model_saves/electra-large_spell_5k_2_p2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4383
- Accuracy: 0.9398
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 52
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 268 | 0.4383 | 0.9398 |
| No log | 2.0 | 536 | 0.4530 | 0.9390 |
| No log | 3.0 | 804 | 0.4767 | 0.9389 |
| 0.3217 | 4.0 | 1072 | 0.5029 | 0.9378 |
### Framework versions
- Transformers 4.21.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
stuartmesham/electra-large_spell_10k_2_p3 | stuartmesham | 2022-10-24T17:19:32Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"electra",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2022-10-24T17:18:42Z | ---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: electra-large_spell_10k_2_p3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# electra-large_spell_10k_2_p3
This model is a fine-tuned version of [model_saves/electra-large_spell_10k_2_p2](https://huggingface.co/model_saves/electra-large_spell_10k_2_p2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4425
- Accuracy: 0.9397
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 52
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 268 | 0.4425 | 0.9397 |
| No log | 2.0 | 536 | 0.4513 | 0.9394 |
| No log | 3.0 | 804 | 0.4718 | 0.9392 |
| 0.3481 | 4.0 | 1072 | 0.4944 | 0.9377 |
### Framework versions
- Transformers 4.21.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
stuartmesham/electra-large_lemon-spell_5k_6_p3 | stuartmesham | 2022-10-24T17:17:49Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"electra",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2022-10-24T17:16:58Z | ---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: electra-large_lemon-spell_5k_6_p3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# electra-large_lemon-spell_5k_6_p3
This model is a fine-tuned version of [model_saves/electra-large_lemon-spell_5k_6_p2](https://huggingface.co/model_saves/electra-large_lemon-spell_5k_6_p2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4356
- Accuracy: 0.9402
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 92
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 268 | 0.4356 | 0.9402 |
| No log | 2.0 | 536 | 0.4461 | 0.9390 |
| No log | 3.0 | 804 | 0.4616 | 0.9392 |
| 0.3484 | 4.0 | 1072 | 0.4897 | 0.9385 |
### Framework versions
- Transformers 4.21.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
stuartmesham/electra-large_lemon-spell_5k_4_p3 | stuartmesham | 2022-10-24T17:16:05Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"electra",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2022-10-24T17:15:18Z | ---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: electra-large_lemon-spell_5k_4_p3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# electra-large_lemon-spell_5k_4_p3
This model is a fine-tuned version of [model_saves/electra-large_lemon-spell_5k_4_p2](https://huggingface.co/model_saves/electra-large_lemon-spell_5k_4_p2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4388
- Accuracy: 0.9390
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 72
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 268 | 0.4388 | 0.9390 |
| No log | 2.0 | 536 | 0.4498 | 0.9386 |
| No log | 3.0 | 804 | 0.4768 | 0.9383 |
| 0.3213 | 4.0 | 1072 | 0.5084 | 0.9378 |
### Framework versions
- Transformers 4.21.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
stuartmesham/electra-large_lemon-spell_5k_1_p3 | stuartmesham | 2022-10-24T17:13:24Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"electra",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2022-10-24T17:12:37Z | ---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: electra-large_lemon-spell_5k_1_p3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# electra-large_lemon-spell_5k_1_p3
This model is a fine-tuned version of [model_saves/electra-large_lemon-spell_5k_1_p2](https://huggingface.co/model_saves/electra-large_lemon-spell_5k_1_p2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4331
- Accuracy: 0.9401
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 268 | 0.4331 | 0.9401 |
| No log | 2.0 | 536 | 0.4433 | 0.9400 |
| No log | 3.0 | 804 | 0.4620 | 0.9399 |
| 0.3485 | 4.0 | 1072 | 0.4910 | 0.9385 |
### Framework versions
- Transformers 4.21.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
stuartmesham/electra-large_lemon-spell_10k_3_p3 | stuartmesham | 2022-10-24T17:12:34Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"electra",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2022-10-24T17:11:46Z | ---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: electra-large_lemon-spell_10k_3_p3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# electra-large_lemon-spell_10k_3_p3
This model is a fine-tuned version of [model_saves/electra-large_lemon-spell_10k_3_p2](https://huggingface.co/model_saves/electra-large_lemon-spell_10k_3_p2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4488
- Accuracy: 0.9399
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 62
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 268 | 0.4436 | 0.9394 |
| No log | 2.0 | 536 | 0.4488 | 0.9399 |
| No log | 3.0 | 804 | 0.4711 | 0.9395 |
| 0.349 | 4.0 | 1072 | 0.4948 | 0.9394 |
| 0.349 | 5.0 | 1340 | 0.5264 | 0.9372 |
### Framework versions
- Transformers 4.21.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
stuartmesham/electra-large_lemon_5k_6_p3 | stuartmesham | 2022-10-24T17:09:59Z | 7 | 0 | transformers | [
"transformers",
"pytorch",
"electra",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2022-10-24T17:09:10Z | ---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: electra-large_lemon_5k_6_p3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# electra-large_lemon_5k_6_p3
This model is a fine-tuned version of [model_saves/electra-large_lemon_5k_6_p2](https://huggingface.co/model_saves/electra-large_lemon_5k_6_p2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4351
- Accuracy: 0.9400
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 92
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 268 | 0.4351 | 0.9400 |
| No log | 2.0 | 536 | 0.4443 | 0.9391 |
| No log | 3.0 | 804 | 0.4579 | 0.9395 |
| 0.3493 | 4.0 | 1072 | 0.4852 | 0.9385 |
### Framework versions
- Transformers 4.21.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
stuartmesham/electra-large_lemon_5k_4_p3 | stuartmesham | 2022-10-24T17:08:17Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"electra",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2022-10-24T17:07:29Z | ---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: electra-large_lemon_5k_4_p3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# electra-large_lemon_5k_4_p3
This model is a fine-tuned version of [model_saves/electra-large_lemon_5k_4_p2](https://huggingface.co/model_saves/electra-large_lemon_5k_4_p2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4381
- Accuracy: 0.9388
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 72
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 268 | 0.4381 | 0.9388 |
| No log | 2.0 | 536 | 0.4510 | 0.9383 |
| No log | 3.0 | 804 | 0.4731 | 0.9383 |
| 0.3237 | 4.0 | 1072 | 0.5063 | 0.9372 |
### Framework versions
- Transformers 4.21.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
stuartmesham/electra-large_lemon_5k_2_p3 | stuartmesham | 2022-10-24T17:06:37Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"electra",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2022-10-24T17:05:47Z | ---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: electra-large_lemon_5k_2_p3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# electra-large_lemon_5k_2_p3
This model is a fine-tuned version of [model_saves/electra-large_lemon_5k_2_p2](https://huggingface.co/model_saves/electra-large_lemon_5k_2_p2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4364
- Accuracy: 0.9394
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 52
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 268 | 0.4364 | 0.9394 |
| No log | 2.0 | 536 | 0.4515 | 0.9386 |
| No log | 3.0 | 804 | 0.4689 | 0.9385 |
| 0.3218 | 4.0 | 1072 | 0.5000 | 0.9380 |
### Framework versions
- Transformers 4.21.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
stuartmesham/electra-large_lemon_5k_1_p3 | stuartmesham | 2022-10-24T17:05:44Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"electra",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2022-10-24T17:04:58Z | ---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: electra-large_lemon_5k_1_p3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# electra-large_lemon_5k_1_p3
This model is a fine-tuned version of [model_saves/electra-large_lemon_5k_1_p2](https://huggingface.co/model_saves/electra-large_lemon_5k_1_p2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4420
- Accuracy: 0.9402
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 268 | 0.4349 | 0.9401 |
| No log | 2.0 | 536 | 0.4420 | 0.9402 |
| No log | 3.0 | 804 | 0.4655 | 0.9394 |
| 0.3514 | 4.0 | 1072 | 0.4920 | 0.9382 |
| 0.3514 | 5.0 | 1340 | 0.5162 | 0.9383 |
### Framework versions
- Transformers 4.21.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
stuartmesham/electra-large_lemon_10k_3_p3 | stuartmesham | 2022-10-24T17:04:55Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"electra",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2022-10-24T17:04:07Z | ---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: electra-large_lemon_10k_3_p3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# electra-large_lemon_10k_3_p3
This model is a fine-tuned version of [model_saves/electra-large_lemon_10k_3_p2](https://huggingface.co/model_saves/electra-large_lemon_10k_3_p2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4506
- Accuracy: 0.9394
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 62
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 268 | 0.4451 | 0.9390 |
| No log | 2.0 | 536 | 0.4506 | 0.9394 |
| No log | 3.0 | 804 | 0.4746 | 0.9391 |
| 0.3499 | 4.0 | 1072 | 0.4970 | 0.9390 |
| 0.3499 | 5.0 | 1340 | 0.5279 | 0.9370 |
### Framework versions
- Transformers 4.21.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
cyburn/bigeyes | cyburn | 2022-10-24T17:04:10Z | 0 | 0 | null | [
"region:us"
]
| null | 2022-10-24T15:42:15Z | Dreambooth model from Big Eyes style paintings
Sample images from model:
https://huggingface.co/cyburn/bigeyes/blob/main/grid-0011.png
https://huggingface.co/cyburn/bigeyes/blob/main/grid-0012.png
https://huggingface.co/cyburn/bigeyes/blob/main/grid-0013.png
Prompt: bigeyes artstyle |
stuartmesham/electra-large_lemon_10k_2_p3 | stuartmesham | 2022-10-24T17:04:05Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"electra",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2022-10-24T17:03:15Z | ---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: electra-large_lemon_10k_2_p3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# electra-large_lemon_10k_2_p3
This model is a fine-tuned version of [model_saves/electra-large_lemon_10k_2_p2](https://huggingface.co/model_saves/electra-large_lemon_10k_2_p2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4466
- Accuracy: 0.9394
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 52
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 268 | 0.4466 | 0.9394 |
| No log | 2.0 | 536 | 0.4601 | 0.9385 |
| No log | 3.0 | 804 | 0.4774 | 0.9384 |
| 0.3208 | 4.0 | 1072 | 0.5144 | 0.9384 |
### Framework versions
- Transformers 4.21.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
stuartmesham/electra-large_basetags_5k_4_p3 | stuartmesham | 2022-10-24T17:00:39Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"electra",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2022-10-24T16:59:49Z | ---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: electra-large_basetags_5k_4_p3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# electra-large_basetags_5k_4_p3
This model is a fine-tuned version of [model_saves/electra-large_basetags_5k_4_p2](https://huggingface.co/model_saves/electra-large_basetags_5k_4_p2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4405
- Accuracy: 0.9391
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 72
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 268 | 0.4405 | 0.9391 |
| No log | 2.0 | 536 | 0.4543 | 0.9383 |
| No log | 3.0 | 804 | 0.4727 | 0.9381 |
| 0.3209 | 4.0 | 1072 | 0.5058 | 0.9376 |
### Framework versions
- Transformers 4.21.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
stuartmesham/electra-large_basetags_5k_3_p3 | stuartmesham | 2022-10-24T16:59:47Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"electra",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2022-10-24T16:58:57Z | ---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: electra-large_basetags_5k_3_p3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# electra-large_basetags_5k_3_p3
This model is a fine-tuned version of [model_saves/electra-large_basetags_5k_3_p2](https://huggingface.co/model_saves/electra-large_basetags_5k_3_p2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4375
- Accuracy: 0.9392
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 62
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 268 | 0.4375 | 0.9392 |
| No log | 2.0 | 536 | 0.4485 | 0.9386 |
| No log | 3.0 | 804 | 0.4752 | 0.9372 |
| 0.3204 | 4.0 | 1072 | 0.4980 | 0.9373 |
### Framework versions
- Transformers 4.21.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
stuartmesham/electra-large_basetags_5k_1_p3 | stuartmesham | 2022-10-24T16:58:04Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"electra",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2022-10-24T16:57:17Z | ---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: electra-large_basetags_5k_1_p3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# electra-large_basetags_5k_1_p3
This model is a fine-tuned version of [model_saves/electra-large_basetags_5k_1_p2](https://huggingface.co/model_saves/electra-large_basetags_5k_1_p2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4574
- Accuracy: 0.9389
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 268 | 0.4389 | 0.9384 |
| No log | 2.0 | 536 | 0.4574 | 0.9389 |
| No log | 3.0 | 804 | 0.4744 | 0.9379 |
| 0.3215 | 4.0 | 1072 | 0.5003 | 0.9375 |
| 0.3215 | 5.0 | 1340 | 0.5413 | 0.9378 |
### Framework versions
- Transformers 4.21.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
stuartmesham/deberta-v3-large_spell_10k_1_p3 | stuartmesham | 2022-10-24T16:39:58Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"deberta-v2",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2022-10-24T16:38:38Z | ---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: deberta-v3-large_spell_10k_1_p3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# deberta-v3-large_spell_10k_1_p3
This model is a fine-tuned version of [model_saves/deberta-v3-large_spell_10k_1_p2](https://huggingface.co/model_saves/deberta-v3-large_spell_10k_1_p2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4189
- Accuracy: 0.9424
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 268 | 0.4189 | 0.9424 |
| No log | 2.0 | 536 | 0.4353 | 0.9423 |
| No log | 3.0 | 804 | 0.4562 | 0.9416 |
| 0.2882 | 4.0 | 1072 | 0.4863 | 0.9408 |
### Framework versions
- Transformers 4.21.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
stuartmesham/deberta-v3-large_lemon-spell_5k_3_p3 | stuartmesham | 2022-10-24T16:38:35Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"deberta-v2",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2022-10-24T16:37:31Z | ---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: deberta-v3-large_lemon-spell_5k_3_p3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# deberta-v3-large_lemon-spell_5k_3_p3
This model is a fine-tuned version of [model_saves/deberta-v3-large_lemon-spell_5k_3_p2](https://huggingface.co/model_saves/deberta-v3-large_lemon-spell_5k_3_p2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4124
- Accuracy: 0.9416
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 62
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 268 | 0.4124 | 0.9416 |
| No log | 2.0 | 536 | 0.4219 | 0.9413 |
| No log | 3.0 | 804 | 0.4521 | 0.9406 |
| 0.2931 | 4.0 | 1072 | 0.4867 | 0.9403 |
### Framework versions
- Transformers 4.21.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
stuartmesham/deberta-v3-large_lemon-spell_5k_2_p3 | stuartmesham | 2022-10-24T16:37:28Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"deberta-v2",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2022-10-24T16:36:27Z | ---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: deberta-v3-large_lemon-spell_5k_2_p3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# deberta-v3-large_lemon-spell_5k_2_p3
This model is a fine-tuned version of [model_saves/deberta-v3-large_lemon-spell_5k_2_p2](https://huggingface.co/model_saves/deberta-v3-large_lemon-spell_5k_2_p2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4167
- Accuracy: 0.9418
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 52
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 268 | 0.4167 | 0.9418 |
| No log | 2.0 | 536 | 0.4368 | 0.9408 |
| No log | 3.0 | 804 | 0.4634 | 0.9407 |
| 0.2655 | 4.0 | 1072 | 0.5009 | 0.9401 |
### Framework versions
- Transformers 4.21.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
stuartmesham/deberta-v3-large_lemon-spell_10k_2_p3 | stuartmesham | 2022-10-24T16:33:14Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"deberta-v2",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2022-10-24T16:32:12Z | ---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: deberta-v3-large_lemon-spell_10k_2_p3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# deberta-v3-large_lemon-spell_10k_2_p3
This model is a fine-tuned version of [model_saves/deberta-v3-large_lemon-spell_10k_2_p2](https://huggingface.co/model_saves/deberta-v3-large_lemon-spell_10k_2_p2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4464
- Accuracy: 0.9413
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 52
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 268 | 0.4290 | 0.9413 |
| No log | 2.0 | 536 | 0.4464 | 0.9413 |
| No log | 3.0 | 804 | 0.4729 | 0.9404 |
| 0.2621 | 4.0 | 1072 | 0.5098 | 0.9397 |
| 0.2621 | 5.0 | 1340 | 0.5510 | 0.9394 |
### Framework versions
- Transformers 4.21.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
stuartmesham/deberta-v3-large_lemon_5k_3_p3 | stuartmesham | 2022-10-24T16:30:57Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"deberta-v2",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2022-10-24T16:29:47Z | ---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: deberta-v3-large_lemon_5k_3_p3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# deberta-v3-large_lemon_5k_3_p3
This model is a fine-tuned version of [model_saves/deberta-v3-large_lemon_5k_3_p2](https://huggingface.co/model_saves/deberta-v3-large_lemon_5k_3_p2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4203
- Accuracy: 0.9416
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 62
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 268 | 0.4128 | 0.9414 |
| No log | 2.0 | 536 | 0.4203 | 0.9416 |
| No log | 3.0 | 804 | 0.4517 | 0.9403 |
| 0.2959 | 4.0 | 1072 | 0.4774 | 0.9404 |
| 0.2959 | 5.0 | 1340 | 0.5193 | 0.9390 |
### Framework versions
- Transformers 4.21.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
stuartmesham/deberta-v3-large_lemon_5k_1_p3 | stuartmesham | 2022-10-24T16:28:38Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"deberta-v2",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2022-10-24T16:27:29Z | ---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: deberta-v3-large_lemon_5k_1_p3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# deberta-v3-large_lemon_5k_1_p3
This model is a fine-tuned version of [model_saves/deberta-v3-large_lemon_5k_1_p2](https://huggingface.co/model_saves/deberta-v3-large_lemon_5k_1_p2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4091
- Accuracy: 0.9417
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 268 | 0.4091 | 0.9417 |
| No log | 2.0 | 536 | 0.4229 | 0.9416 |
| No log | 3.0 | 804 | 0.4553 | 0.9412 |
| 0.2934 | 4.0 | 1072 | 0.4879 | 0.9405 |
### Framework versions
- Transformers 4.21.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
stuartmesham/deberta-v3-large_lemon_10k_3_p3 | stuartmesham | 2022-10-24T16:27:26Z | 7 | 0 | transformers | [
"transformers",
"pytorch",
"deberta-v2",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2022-10-24T16:26:24Z | ---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: deberta-v3-large_lemon_10k_3_p3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# deberta-v3-large_lemon_10k_3_p3
This model is a fine-tuned version of [model_saves/deberta-v3-large_lemon_10k_3_p2](https://huggingface.co/model_saves/deberta-v3-large_lemon_10k_3_p2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4239
- Accuracy: 0.9416
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 62
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 268 | 0.4239 | 0.9416 |
| No log | 2.0 | 536 | 0.4313 | 0.9416 |
| No log | 3.0 | 804 | 0.4624 | 0.9406 |
| 0.2907 | 4.0 | 1072 | 0.4935 | 0.9406 |
### Framework versions
- Transformers 4.21.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
stuartmesham/deberta-v3-large_lemon_10k_1_p3 | stuartmesham | 2022-10-24T16:25:16Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"deberta-v2",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2022-10-24T16:24:13Z | ---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: deberta-v3-large_lemon_10k_1_p3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# deberta-v3-large_lemon_10k_1_p3
This model is a fine-tuned version of [model_saves/deberta-v3-large_lemon_10k_1_p2](https://huggingface.co/model_saves/deberta-v3-large_lemon_10k_1_p2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4348
- Accuracy: 0.9421
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 268 | 0.4216 | 0.9420 |
| No log | 2.0 | 536 | 0.4348 | 0.9421 |
| No log | 3.0 | 804 | 0.4651 | 0.9412 |
| 0.2904 | 4.0 | 1072 | 0.4938 | 0.9402 |
| 0.2904 | 5.0 | 1340 | 0.5352 | 0.9401 |
### Framework versions
- Transformers 4.21.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
stuartmesham/deberta-v3-large_basetags_5k_3_p3 | stuartmesham | 2022-10-24T16:24:10Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"deberta-v2",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2022-10-24T16:23:08Z | ---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: deberta-v3-large_basetags_5k_3_p3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# deberta-v3-large_basetags_5k_3_p3
This model is a fine-tuned version of [model_saves/deberta-v3-large_basetags_5k_3_p2](https://huggingface.co/model_saves/deberta-v3-large_basetags_5k_3_p2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4184
- Accuracy: 0.9421
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 62
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 268 | 0.4074 | 0.9420 |
| No log | 2.0 | 536 | 0.4184 | 0.9421 |
| No log | 3.0 | 804 | 0.4449 | 0.9406 |
| 0.2925 | 4.0 | 1072 | 0.4782 | 0.9405 |
| 0.2925 | 5.0 | 1340 | 0.5182 | 0.9399 |
### Framework versions
- Transformers 4.21.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
stuartmesham/deberta-v3-large_basetags_10k_3_p3 | stuartmesham | 2022-10-24T16:20:57Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"deberta-v2",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2022-10-24T16:19:55Z | ---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: deberta-v3-large_basetags_10k_3_p3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# deberta-v3-large_basetags_10k_3_p3
This model is a fine-tuned version of [model_saves/deberta-v3-large_basetags_10k_3_p2](https://huggingface.co/model_saves/deberta-v3-large_basetags_10k_3_p2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4189
- Accuracy: 0.9419
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 62
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 268 | 0.4189 | 0.9419 |
| No log | 2.0 | 536 | 0.4315 | 0.9419 |
| No log | 3.0 | 804 | 0.4568 | 0.9405 |
| 0.2882 | 4.0 | 1072 | 0.4921 | 0.9403 |
### Framework versions
- Transformers 4.21.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
stuartmesham/deberta-v3-large_basetags_10k_2_p3 | stuartmesham | 2022-10-24T16:19:52Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"deberta-v2",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2022-10-24T16:18:51Z | ---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: deberta-v3-large_basetags_10k_2_p3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# deberta-v3-large_basetags_10k_2_p3
This model is a fine-tuned version of [model_saves/deberta-v3-large_basetags_10k_2_p2](https://huggingface.co/model_saves/deberta-v3-large_basetags_10k_2_p2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4198
- Accuracy: 0.9430
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 52
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 268 | 0.4198 | 0.9430 |
| No log | 2.0 | 536 | 0.4301 | 0.9418 |
| No log | 3.0 | 804 | 0.4566 | 0.9411 |
| 0.2874 | 4.0 | 1072 | 0.4852 | 0.9404 |
### Framework versions
- Transformers 4.21.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
stuartmesham/deberta-large_spell_5k_5_p3 | stuartmesham | 2022-10-24T16:16:07Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"deberta",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2022-10-24T16:15:09Z | ---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: deberta-large_spell_5k_5_p3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# deberta-large_spell_5k_5_p3
This model is a fine-tuned version of [model_saves/deberta-large_spell_5k_5_p2](https://huggingface.co/model_saves/deberta-large_spell_5k_5_p2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4162
- Accuracy: 0.9411
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 82
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 268 | 0.4162 | 0.9411 |
| No log | 2.0 | 536 | 0.4404 | 0.9404 |
| No log | 3.0 | 804 | 0.4810 | 0.9403 |
| 0.2516 | 4.0 | 1072 | 0.5352 | 0.9393 |
### Framework versions
- Transformers 4.21.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
stuartmesham/deberta-large_spell_5k_2_p3 | stuartmesham | 2022-10-24T16:13:06Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"deberta",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2022-10-24T16:12:10Z | ---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: deberta-large_spell_5k_2_p3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# deberta-large_spell_5k_2_p3
This model is a fine-tuned version of [model_saves/deberta-large_spell_5k_2_p2](https://huggingface.co/model_saves/deberta-large_spell_5k_2_p2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4141
- Accuracy: 0.9416
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 52
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 268 | 0.4141 | 0.9416 |
| No log | 2.0 | 536 | 0.4367 | 0.9412 |
| No log | 3.0 | 804 | 0.4807 | 0.9400 |
| 0.255 | 4.0 | 1072 | 0.5355 | 0.9398 |
### Framework versions
- Transformers 4.21.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
stuartmesham/deberta-large_spell_5k_1_p3 | stuartmesham | 2022-10-24T16:12:07Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"deberta",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2022-10-24T16:10:01Z | ---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: deberta-large_spell_5k_1_p3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# deberta-large_spell_5k_1_p3
This model is a fine-tuned version of [model_saves/deberta-large_spell_5k_1_p2](https://huggingface.co/model_saves/deberta-large_spell_5k_1_p2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4427
- Accuracy: 0.9413
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 268 | 0.4156 | 0.9408 |
| No log | 2.0 | 536 | 0.4427 | 0.9413 |
| No log | 3.0 | 804 | 0.4710 | 0.9407 |
| 0.2543 | 4.0 | 1072 | 0.5293 | 0.9397 |
| 0.2543 | 5.0 | 1340 | 0.5923 | 0.9391 |
### Framework versions
- Transformers 4.21.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
stuartmesham/deberta-large_spell_10k_1_p3 | stuartmesham | 2022-10-24T16:07:56Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"deberta",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2022-10-24T16:06:57Z | ---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: deberta-large_spell_10k_1_p3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# deberta-large_spell_10k_1_p3
This model is a fine-tuned version of [model_saves/deberta-large_spell_10k_1_p2](https://huggingface.co/model_saves/deberta-large_spell_10k_1_p2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4534
- Accuracy: 0.9416
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Accuracy | Validation Loss |
|:-------------:|:-----:|:----:|:--------:|:---------------:|
| No log | 1.0 | 268 | 0.9411 | 0.4240 |
| No log | 2.0 | 536 | 0.9416 | 0.4534 |
| No log | 3.0 | 804 | 0.9409 | 0.4793 |
| 0.2492 | 4.0 | 1072 | 0.9403 | 0.5380 |
| 0.2492 | 5.0 | 1340 | 0.9399 | 0.5923 |
| 0.2492 | 6.0 | 1608 | 0.6552 | 0.9398 |
| 0.2492 | 7.0 | 1876 | 0.7205 | 0.9386 |
| 0.0701 | 8.0 | 2144 | 0.7646 | 0.9395 |
### Framework versions
- Transformers 4.21.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
stuartmesham/deberta-large_lemon-spell_5k_4_p3 | stuartmesham | 2022-10-24T16:04:50Z | 7 | 0 | transformers | [
"transformers",
"pytorch",
"deberta",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2022-10-24T16:03:53Z | ---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: deberta-large_lemon-spell_5k_4_p3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# deberta-large_lemon-spell_5k_4_p3
This model is a fine-tuned version of [model_saves/deberta-large_lemon-spell_5k_4_p2](https://huggingface.co/model_saves/deberta-large_lemon-spell_5k_4_p2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4154
- Accuracy: 0.9420
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 72
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 268 | 0.4154 | 0.9420 |
| No log | 2.0 | 536 | 0.4406 | 0.9410 |
| No log | 3.0 | 804 | 0.4833 | 0.9407 |
| 0.2535 | 4.0 | 1072 | 0.5352 | 0.9396 |
### Framework versions
- Transformers 4.21.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
stuartmesham/deberta-large_lemon-spell_5k_3_p3 | stuartmesham | 2022-10-24T16:03:50Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"deberta",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2022-10-24T16:02:54Z | ---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: deberta-large_lemon-spell_5k_3_p3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# deberta-large_lemon-spell_5k_3_p3
This model is a fine-tuned version of [model_saves/deberta-large_lemon-spell_5k_3_p2](https://huggingface.co/model_saves/deberta-large_lemon-spell_5k_3_p2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4165
- Accuracy: 0.9416
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 62
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 268 | 0.4165 | 0.9416 |
| No log | 2.0 | 536 | 0.4361 | 0.9410 |
| No log | 3.0 | 804 | 0.4829 | 0.9402 |
| 0.256 | 4.0 | 1072 | 0.5374 | 0.9400 |
### Framework versions
- Transformers 4.21.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
stuartmesham/deberta-large_lemon-spell_5k_2_p3 | stuartmesham | 2022-10-24T16:02:51Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"deberta",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2022-10-24T16:01:53Z | ---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: deberta-large_lemon-spell_5k_2_p3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# deberta-large_lemon-spell_5k_2_p3
This model is a fine-tuned version of [model_saves/deberta-large_lemon-spell_5k_2_p2](https://huggingface.co/model_saves/deberta-large_lemon-spell_5k_2_p2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4300
- Accuracy: 0.9408
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 52
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 268 | 0.4300 | 0.9408 |
| No log | 2.0 | 536 | 0.4692 | 0.9397 |
| No log | 3.0 | 804 | 0.5036 | 0.9393 |
| 0.2201 | 4.0 | 1072 | 0.5705 | 0.9400 |
### Framework versions
- Transformers 4.21.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
stuartmesham/deberta-large_lemon-spell_5k_1_p3 | stuartmesham | 2022-10-24T16:01:51Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"deberta",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2022-10-24T16:00:51Z | ---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: deberta-large_lemon-spell_5k_1_p3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# deberta-large_lemon-spell_5k_1_p3
This model is a fine-tuned version of [model_saves/deberta-large_lemon-spell_5k_1_p2](https://huggingface.co/model_saves/deberta-large_lemon-spell_5k_1_p2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4165
- Accuracy: 0.9412
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 268 | 0.4165 | 0.9412 |
| No log | 2.0 | 536 | 0.4405 | 0.9411 |
| No log | 3.0 | 804 | 0.4909 | 0.9407 |
| 0.2552 | 4.0 | 1072 | 0.5289 | 0.9401 |
### Framework versions
- Transformers 4.21.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
stuartmesham/deberta-large_lemon-spell_10k_3_p3 | stuartmesham | 2022-10-24T16:00:48Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"deberta",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2022-10-24T15:59:26Z | ---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: deberta-large_lemon-spell_10k_3_p3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# deberta-large_lemon-spell_10k_3_p3
This model is a fine-tuned version of [model_saves/deberta-large_lemon-spell_10k_3_p2](https://huggingface.co/model_saves/deberta-large_lemon-spell_10k_3_p2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4269
- Accuracy: 0.9419
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 62
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 268 | 0.4269 | 0.9419 |
| No log | 2.0 | 536 | 0.4457 | 0.9414 |
| No log | 3.0 | 804 | 0.4897 | 0.9407 |
| 0.2514 | 4.0 | 1072 | 0.5445 | 0.9405 |
### Framework versions
- Transformers 4.21.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
stuartmesham/deberta-large_lemon-spell_10k_2_p3 | stuartmesham | 2022-10-24T15:59:23Z | 8 | 0 | transformers | [
"transformers",
"pytorch",
"deberta",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2022-10-24T15:58:23Z | ---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: deberta-large_lemon-spell_10k_2_p3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# deberta-large_lemon-spell_10k_2_p3
This model is a fine-tuned version of [model_saves/deberta-large_lemon-spell_10k_2_p2](https://huggingface.co/model_saves/deberta-large_lemon-spell_10k_2_p2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4281
- Accuracy: 0.9414
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 52
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 268 | 0.4281 | 0.9414 |
| No log | 2.0 | 536 | 0.4557 | 0.9402 |
| No log | 3.0 | 804 | 0.4907 | 0.9399 |
| 0.249 | 4.0 | 1072 | 0.5485 | 0.9403 |
### Framework versions
- Transformers 4.21.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
stuartmesham/deberta-large_lemon-spell_10k_1_p3 | stuartmesham | 2022-10-24T15:58:21Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"deberta",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2022-10-24T15:57:22Z | ---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: deberta-large_lemon-spell_10k_1_p3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# deberta-large_lemon-spell_10k_1_p3
This model is a fine-tuned version of [model_saves/deberta-large_lemon-spell_10k_1_p2](https://huggingface.co/model_saves/deberta-large_lemon-spell_10k_1_p2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4247
- Accuracy: 0.9413
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 268 | 0.4247 | 0.9413 |
| No log | 2.0 | 536 | 0.4512 | 0.9411 |
| No log | 3.0 | 804 | 0.4965 | 0.9405 |
| 0.2492 | 4.0 | 1072 | 0.5336 | 0.9404 |
### Framework versions
- Transformers 4.21.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
stuartmesham/deberta-large_lemon_5k_5_p3 | stuartmesham | 2022-10-24T15:56:21Z | 7 | 0 | transformers | [
"transformers",
"pytorch",
"deberta",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2022-10-24T15:55:20Z | ---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: deberta-large_lemon_5k_5_p3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# deberta-large_lemon_5k_5_p3
This model is a fine-tuned version of [model_saves/deberta-large_lemon_5k_5_p2](https://huggingface.co/model_saves/deberta-large_lemon_5k_5_p2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4370
- Accuracy: 0.9413
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 82
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 268 | 0.4148 | 0.9411 |
| No log | 2.0 | 536 | 0.4370 | 0.9413 |
| No log | 3.0 | 804 | 0.4777 | 0.9408 |
| 0.2552 | 4.0 | 1072 | 0.5178 | 0.9401 |
| 0.2552 | 5.0 | 1340 | 0.5832 | 0.9399 |
### Framework versions
- Transformers 4.21.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
stuartmesham/deberta-large_lemon_5k_4_p3 | stuartmesham | 2022-10-24T15:55:17Z | 7 | 0 | transformers | [
"transformers",
"pytorch",
"deberta",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2022-10-24T15:54:19Z | ---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: deberta-large_lemon_5k_4_p3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# deberta-large_lemon_5k_4_p3
This model is a fine-tuned version of [model_saves/deberta-large_lemon_5k_4_p2](https://huggingface.co/model_saves/deberta-large_lemon_5k_4_p2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4267
- Accuracy: 0.9416
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 72
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 268 | 0.4267 | 0.9416 |
| No log | 2.0 | 536 | 0.4596 | 0.9403 |
| No log | 3.0 | 804 | 0.5083 | 0.9401 |
| 0.2208 | 4.0 | 1072 | 0.5562 | 0.9394 |
### Framework versions
- Transformers 4.21.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
stuartmesham/deberta-large_lemon_5k_3_p3 | stuartmesham | 2022-10-24T15:54:16Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"deberta",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2022-10-24T15:53:19Z | ---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: deberta-large_lemon_5k_3_p3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# deberta-large_lemon_5k_3_p3
This model is a fine-tuned version of [model_saves/deberta-large_lemon_5k_3_p2](https://huggingface.co/model_saves/deberta-large_lemon_5k_3_p2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4162
- Accuracy: 0.9414
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 62
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 268 | 0.4162 | 0.9414 |
| No log | 2.0 | 536 | 0.4353 | 0.9412 |
| No log | 3.0 | 804 | 0.4798 | 0.9402 |
| 0.2573 | 4.0 | 1072 | 0.5360 | 0.9398 |
### Framework versions
- Transformers 4.21.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
stuartmesham/deberta-large_lemon_5k_1_p3 | stuartmesham | 2022-10-24T15:52:14Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"deberta",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2022-10-24T15:51:17Z | ---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: deberta-large_lemon_5k_1_p3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# deberta-large_lemon_5k_1_p3
This model is a fine-tuned version of [model_saves/deberta-large_lemon_5k_1_p2](https://huggingface.co/model_saves/deberta-large_lemon_5k_1_p2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4146
- Accuracy: 0.9413
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 268 | 0.4146 | 0.9413 |
| No log | 2.0 | 536 | 0.4394 | 0.9410 |
| No log | 3.0 | 804 | 0.4904 | 0.9403 |
| 0.2551 | 4.0 | 1072 | 0.5282 | 0.9403 |
### Framework versions
- Transformers 4.21.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
stuartmesham/deberta-large_lemon_10k_3_p3 | stuartmesham | 2022-10-24T15:51:14Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"deberta",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2022-10-24T15:50:15Z | ---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: deberta-large_lemon_10k_3_p3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# deberta-large_lemon_10k_3_p3
This model is a fine-tuned version of [model_saves/deberta-large_lemon_10k_3_p2](https://huggingface.co/model_saves/deberta-large_lemon_10k_3_p2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4268
- Accuracy: 0.9413
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 62
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 268 | 0.4268 | 0.9413 |
| No log | 2.0 | 536 | 0.4439 | 0.9411 |
| No log | 3.0 | 804 | 0.4914 | 0.9401 |
| 0.2514 | 4.0 | 1072 | 0.5406 | 0.9398 |
### Framework versions
- Transformers 4.21.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
stuartmesham/deberta-large_lemon_10k_2_p3 | stuartmesham | 2022-10-24T15:50:12Z | 14 | 0 | transformers | [
"transformers",
"pytorch",
"deberta",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2022-10-24T15:49:12Z | ---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: deberta-large_lemon_10k_2_p3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# deberta-large_lemon_10k_2_p3
This model is a fine-tuned version of [model_saves/deberta-large_lemon_10k_2_p2](https://huggingface.co/model_saves/deberta-large_lemon_10k_2_p2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4400
- Accuracy: 0.9402
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 52
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 268 | 0.4400 | 0.9402 |
| No log | 2.0 | 536 | 0.4763 | 0.9395 |
| No log | 3.0 | 804 | 0.5166 | 0.9386 |
| 0.2171 | 4.0 | 1072 | 0.5735 | 0.9395 |
### Framework versions
- Transformers 4.21.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
stuartmesham/deberta-large_lemon_10k_1_p3 | stuartmesham | 2022-10-24T15:49:10Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"deberta",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2022-10-24T15:48:12Z | ---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: deberta-large_lemon_10k_1_p3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# deberta-large_lemon_10k_1_p3
This model is a fine-tuned version of [model_saves/deberta-large_lemon_10k_1_p2](https://huggingface.co/model_saves/deberta-large_lemon_10k_1_p2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4244
- Accuracy: 0.9413
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 268 | 0.4244 | 0.9413 |
| No log | 2.0 | 536 | 0.4490 | 0.9408 |
| No log | 3.0 | 804 | 0.5007 | 0.9409 |
| 0.249 | 4.0 | 1072 | 0.5361 | 0.9406 |
### Framework versions
- Transformers 4.21.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
stuartmesham/deberta-large_basetags_5k_4_p3 | stuartmesham | 2022-10-24T15:45:51Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"deberta",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2022-10-24T15:44:55Z | ---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: deberta-large_basetags_5k_4_p3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# deberta-large_basetags_5k_4_p3
This model is a fine-tuned version of [model_saves/deberta-large_basetags_5k_4_p2](https://huggingface.co/model_saves/deberta-large_basetags_5k_4_p2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4154
- Accuracy: 0.9414
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 72
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 268 | 0.4154 | 0.9414 |
| No log | 2.0 | 536 | 0.4354 | 0.9410 |
| No log | 3.0 | 804 | 0.4763 | 0.9406 |
| 0.2537 | 4.0 | 1072 | 0.5329 | 0.9406 |
### Framework versions
- Transformers 4.21.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
stuartmesham/deberta-large_basetags_5k_3_p3 | stuartmesham | 2022-10-24T15:44:52Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"deberta",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2022-10-24T15:43:56Z | ---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: deberta-large_basetags_5k_3_p3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# deberta-large_basetags_5k_3_p3
This model is a fine-tuned version of [model_saves/deberta-large_basetags_5k_3_p2](https://huggingface.co/model_saves/deberta-large_basetags_5k_3_p2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4160
- Accuracy: 0.9414
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 62
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 268 | 0.4160 | 0.9414 |
| No log | 2.0 | 536 | 0.4364 | 0.9403 |
| No log | 3.0 | 804 | 0.4786 | 0.9398 |
| 0.2537 | 4.0 | 1072 | 0.5255 | 0.9392 |
### Framework versions
- Transformers 4.21.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
stuartmesham/deberta-large_basetags_5k_2_p3 | stuartmesham | 2022-10-24T15:43:53Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"deberta",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2022-10-24T15:42:40Z | ---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: deberta-large_basetags_5k_2_p3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# deberta-large_basetags_5k_2_p3
This model is a fine-tuned version of [model_saves/deberta-large_basetags_5k_2_p2](https://huggingface.co/model_saves/deberta-large_basetags_5k_2_p2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4131
- Accuracy: 0.9416
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 52
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 268 | 0.4131 | 0.9416 |
| No log | 2.0 | 536 | 0.4377 | 0.9414 |
| No log | 3.0 | 804 | 0.4755 | 0.9404 |
| 0.2528 | 4.0 | 1072 | 0.5314 | 0.9403 |
### Framework versions
- Transformers 4.21.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
iwintory/ddpm-butterflies-128 | iwintory | 2022-10-24T15:33:36Z | 0 | 0 | diffusers | [
"diffusers",
"tensorboard",
"en",
"dataset:huggan/smithsonian_butterflies_subset",
"license:apache-2.0",
"diffusers:DDPMPipeline",
"region:us"
]
| null | 2022-10-24T14:45:50Z | ---
language: en
license: apache-2.0
library_name: diffusers
tags: []
datasets: huggan/smithsonian_butterflies_subset
metrics: []
---
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# ddpm-butterflies-128
## Model description
This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library
on the `huggan/smithsonian_butterflies_subset` dataset.
## Intended uses & limitations
#### How to use
```python
# TODO: add an example code snippet for running this diffusion pipeline
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training data
[TODO: describe the data used to train the model]
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- gradient_accumulation_steps: 1
- optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None
- lr_scheduler: None
- lr_warmup_steps: 500
- ema_inv_gamma: None
- ema_inv_gamma: None
- ema_inv_gamma: None
- mixed_precision: fp16
### Training results
📈 [TensorBoard logs](https://huggingface.co/iwintory/ddpm-butterflies-128/tensorboard?#scalars)
|
esb/conformer-rnnt-chime4 | esb | 2022-10-24T15:26:33Z | 3 | 0 | nemo | [
"nemo",
"esb",
"en",
"dataset:esb/datasets",
"dataset:ldc/chime-4",
"region:us"
]
| null | 2022-10-24T15:26:18Z | ---
language:
- en
tags:
- esb
datasets:
- esb/datasets
- ldc/chime-4
---
To reproduce this run, first install NVIDIA NeMo according to the [official instructions](https://github.com/NVIDIA/NeMo#installation), then execute:
```python
#!/usr/bin/env bash
CUDA_VISIBLE_DEVICES=0 python run_speech_recognition_rnnt.py \
--config_path="conf/conformer_transducer_bpe_xlarge.yaml" \
--model_name_or_path="stt_en_conformer_transducer_xlarge" \
--dataset_name="esb/datasets" \
--dataset_config_name="chime4" \
--tokenizer_path="tokenizer" \
--vocab_size="1024" \
--max_steps="100000" \
--output_dir="./" \
--run_name="conformer-rnnt-chime4" \
--wandb_project="rnnt" \
--per_device_train_batch_size="8" \
--per_device_eval_batch_size="4" \
--logging_steps="50" \
--learning_rate="1e-4" \
--warmup_steps="500" \
--save_strategy="steps" \
--save_steps="20000" \
--evaluation_strategy="steps" \
--eval_steps="20000" \
--report_to="wandb" \
--preprocessing_num_workers="4" \
--fused_batch_size="4" \
--length_column_name="input_lengths" \
--fuse_loss_wer \
--group_by_length \
--overwrite_output_dir \
--do_train \
--do_eval \
--do_predict \
--use_auth_token
```
|
esb/conformer-rnnt-ami | esb | 2022-10-24T15:22:05Z | 2 | 0 | nemo | [
"nemo",
"esb",
"en",
"dataset:esb/datasets",
"dataset:edinburghcstr/ami",
"region:us"
]
| null | 2022-10-24T15:21:51Z | ---
language:
- en
tags:
- esb
datasets:
- esb/datasets
- edinburghcstr/ami
---
To reproduce this run, first install NVIDIA NeMo according to the [official instructions](https://github.com/NVIDIA/NeMo#installation), then execute:
```python
#!/usr/bin/env bash
CUDA_VISIBLE_DEVICES=0 python run_speech_recognition_rnnt.py \
--config_path="conf/conformer_transducer_bpe_xlarge.yaml" \
--model_name_or_path="stt_en_conformer_transducer_xlarge" \
--dataset_name="esb/datasets" \
--tokenizer_path="tokenizer" \
--vocab_size="1024" \
--max_steps="100000" \
--dataset_config_name="ami" \
--output_dir="./" \
--run_name="conformer-rnnt-ami" \
--wandb_project="rnnt" \
--per_device_train_batch_size="8" \
--per_device_eval_batch_size="4" \
--logging_steps="50" \
--learning_rate="1e-4" \
--warmup_steps="500" \
--save_strategy="steps" \
--save_steps="20000" \
--evaluation_strategy="steps" \
--eval_steps="20000" \
--report_to="wandb" \
--preprocessing_num_workers="4" \
--fused_batch_size="4" \
--length_column_name="input_lengths" \
--fuse_loss_wer \
--group_by_length \
--overwrite_output_dir \
--do_train \
--do_eval \
--do_predict \
--use_auth_token
```
|
esb/conformer-rnnt-earnings22 | esb | 2022-10-24T15:19:43Z | 4 | 0 | nemo | [
"nemo",
"esb",
"en",
"dataset:esb/datasets",
"dataset:revdotcom/earnings22",
"region:us"
]
| null | 2022-10-24T15:19:28Z | ---
language:
- en
tags:
- esb
datasets:
- esb/datasets
- revdotcom/earnings22
---
To reproduce this run, first install NVIDIA NeMo according to the [official instructions](https://github.com/NVIDIA/NeMo#installation), then execute:
```python
#!/usr/bin/env bash
CUDA_VISIBLE_DEVICES=0 python run_speech_recognition_rnnt.py \
--config_path="conf/conformer_transducer_bpe_xlarge.yaml" \
--model_name_or_path="stt_en_conformer_transducer_xlarge" \
--dataset_name="esb/datasets" \
--tokenizer_path="tokenizer" \
--vocab_size="1024" \
--max_steps="100000" \
--dataset_config_name="earnings22" \
--output_dir="./" \
--run_name="conformer-rnnt-earnings22" \
--wandb_project="rnnt" \
--per_device_train_batch_size="8" \
--per_device_eval_batch_size="4" \
--logging_steps="50" \
--learning_rate="1e-4" \
--warmup_steps="500" \
--save_strategy="steps" \
--save_steps="20000" \
--evaluation_strategy="steps" \
--eval_steps="20000" \
--report_to="wandb" \
--preprocessing_num_workers="4" \
--fused_batch_size="4" \
--length_column_name="input_lengths" \
--fuse_loss_wer \
--group_by_length \
--overwrite_output_dir \
--do_train \
--do_eval \
--do_predict \
--use_auth_token
```
|
esb/conformer-rnnt-gigaspeech | esb | 2022-10-24T15:15:20Z | 4 | 0 | nemo | [
"nemo",
"esb",
"en",
"dataset:esb/datasets",
"dataset:speechcolab/gigaspeech",
"region:us"
]
| null | 2022-10-24T15:15:05Z | ---
language:
- en
tags:
- esb
datasets:
- esb/datasets
- speechcolab/gigaspeech
---
To reproduce this run, first install NVIDIA NeMo according to the [official instructions](https://github.com/NVIDIA/NeMo#installation), then execute:
```python
#!/usr/bin/env bash
CUDA_VISIBLE_DEVICES=0 python run_speech_recognition_rnnt.py \
--config_path="conf/conformer_transducer_bpe_xlarge.yaml" \
--model_name_or_path="stt_en_conformer_transducer_xlarge" \
--dataset_name="esb/datasets" \
--tokenizer_path="tokenizer" \
--vocab_size="1024" \
--num_train_epochs="0.88" \
--dataset_config_name="gigaspeech" \
--output_dir="./" \
--run_name="conformer-rnnt-gigaspeech" \
--wandb_project="rnnt" \
--per_device_train_batch_size="8" \
--per_device_eval_batch_size="4" \
--logging_steps="50" \
--learning_rate="1e-4" \
--warmup_steps="500" \
--save_strategy="steps" \
--save_steps="20000" \
--evaluation_strategy="steps" \
--eval_steps="20000" \
--report_to="wandb" \
--preprocessing_num_workers="4" \
--fused_batch_size="4" \
--length_column_name="input_lengths" \
--fuse_loss_wer \
--group_by_length \
--overwrite_output_dir \
--do_train \
--do_eval \
--do_predict \
--use_auth_token
```
|
esb/conformer-rnnt-voxpopuli | esb | 2022-10-24T15:13:22Z | 4 | 0 | nemo | [
"nemo",
"esb",
"en",
"dataset:esb/datasets",
"dataset:facebook/voxpopuli",
"region:us"
]
| null | 2022-10-24T15:13:07Z | ---
language:
- en
tags:
- esb
datasets:
- esb/datasets
- facebook/voxpopuli
---
To reproduce this run, first install NVIDIA NeMo according to the [official instructions](https://github.com/NVIDIA/NeMo#installation), then execute:
```python
#!/usr/bin/env bash
CUDA_VISIBLE_DEVICES=0 python run_speech_recognition_rnnt.py \
--config_path="conf/conformer_transducer_bpe_xlarge.yaml" \
--model_name_or_path="stt_en_conformer_transducer_xlarge" \
--dataset_name="esb/datasets" \
--tokenizer_path="tokenizer" \
--vocab_size="1024" \
--max_steps="100000" \
--dataset_config_name="voxpopuli" \
--output_dir="./" \
--run_name="conformer-rnnt-voxpopuli" \
--wandb_project="rnnt" \
--per_device_train_batch_size="8" \
--per_device_eval_batch_size="4" \
--logging_steps="50" \
--learning_rate="1e-4" \
--warmup_steps="500" \
--save_strategy="steps" \
--save_steps="20000" \
--evaluation_strategy="steps" \
--eval_steps="20000" \
--report_to="wandb" \
--preprocessing_num_workers="4" \
--fused_batch_size="4" \
--length_column_name="input_lengths" \
--fuse_loss_wer \
--group_by_length \
--overwrite_output_dir \
--do_train \
--do_eval \
--do_predict \
--use_auth_token
```
|
esb/conformer-rnnt-common_voice | esb | 2022-10-24T15:08:53Z | 4 | 0 | nemo | [
"nemo",
"esb",
"en",
"dataset:esb/datasets",
"dataset:mozilla-foundation/common_voice_9_0",
"region:us"
]
| null | 2022-10-24T15:08:38Z | ---
language:
- en
tags:
- esb
datasets:
- esb/datasets
- mozilla-foundation/common_voice_9_0
---
To reproduce this run, first install NVIDIA NeMo according to the [official instructions](https://github.com/NVIDIA/NeMo#installation), then execute:
```python
#!/usr/bin/env bash
CUDA_VISIBLE_DEVICES=0 python run_speech_recognition_rnnt.py \
--config_path="conf/conformer_transducer_bpe_xlarge.yaml" \
--model_name_or_path="stt_en_conformer_transducer_xlarge" \
--dataset_name="esb/datasets" \
--tokenizer_path="tokenizer" \
--vocab_size="1024" \
--max_steps="100000" \
--dataset_config_name="common_voice" \
--output_dir="./" \
--run_name="conformer-rnnt-common-voice" \
--wandb_project="rnnt" \
--per_device_train_batch_size="8" \
--per_device_eval_batch_size="4" \
--logging_steps="50" \
--learning_rate="1e-4" \
--warmup_steps="500" \
--save_strategy="steps" \
--save_steps="20000" \
--evaluation_strategy="steps" \
--eval_steps="20000" \
--report_to="wandb" \
--preprocessing_num_workers="4" \
--fused_batch_size="4" \
--length_column_name="input_lengths" \
--max_eval_duration_in_seconds="20" \
--fuse_loss_wer \
--group_by_length \
--overwrite_output_dir \
--do_train \
--do_eval \
--do_predict \
--use_auth_token
```
|
esb/conformer-rnnt-librispeech | esb | 2022-10-24T15:05:56Z | 4 | 0 | nemo | [
"nemo",
"esb",
"en",
"dataset:esb/datasets",
"dataset:librispeech_asr",
"region:us"
]
| null | 2022-10-24T15:05:41Z | ---
language:
- en
tags:
- esb
datasets:
- esb/datasets
- librispeech_asr
---
To reproduce this run, first install NVIDIA NeMo according to the [official instructions](https://github.com/NVIDIA/NeMo#installation), then execute:
```python
#!/usr/bin/env bash
CUDA_VISIBLE_DEVICES=0 python run_speech_recognition_rnnt.py \
--config_path="conf/conformer_transducer_bpe_xlarge.yaml" \
--model_name_or_path="stt_en_conformer_transducer_xlarge" \
--dataset_name="esb/datasets" \
--tokenizer_path="tokenizer" \
--vocab_size="1024" \
--max_steps="100000" \
--dataset_config_name="librispeech" \
--output_dir="./" \
--run_name="conformer-rnnt-librispeech" \
--wandb_project="rnnt" \
--per_device_train_batch_size="8" \
--per_device_eval_batch_size="4" \
--logging_steps="50" \
--learning_rate="1e-4" \
--warmup_steps="500" \
--save_strategy="steps" \
--save_steps="20000" \
--evaluation_strategy="steps" \
--eval_steps="20000" \
--report_to="wandb" \
--preprocessing_num_workers="4" \
--fused_batch_size="4" \
--length_column_name="input_lengths" \
--fuse_loss_wer \
--group_by_length \
--overwrite_output_dir \
--do_train \
--do_eval \
--do_predict \
--use_auth_token
```
|
esb/whisper-aed-chime4 | esb | 2022-10-24T15:03:26Z | 0 | 0 | null | [
"esb",
"en",
"dataset:esb/datasets",
"dataset:ldc/chime-4",
"region:us"
]
| null | 2022-10-24T15:03:09Z | ---
language:
- en
tags:
- esb
datasets:
- esb/datasets
- ldc/chime-4
---
To reproduce this run, first install Whisper from the Transformers compatible repo [patrickvonplaten/whisper](https://github.com/patrickvonplaten/whisper):
```
pip install git+https://github.com/openai/whisper.git
```
Then execute the command:
```python
#!/usr/bin/env bash
CUDA_VISIBLE_DEVICES=0 python run_speech_recognition_whisper.py \
--model_name_or_path="medium.en" \
--dataset_name="esb/datasets" \
--dataset_config_name="chime4" \
--max_steps="2500" \
--output_dir="./" \
--run_name="whisper-chime4" \
--dropout_rate="0.1" \
--wandb_project="whisper" \
--per_device_train_batch_size="64" \
--per_device_eval_batch_size="16" \
--logging_steps="25" \
--learning_rate="1e-4" \
--warmup_steps="500" \
--report_to="wandb" \
--preprocessing_num_workers="16" \
--evaluation_strategy="steps" \
--eval_steps="500" \
--save_strategy="steps" \
--save_steps="500" \
--generation_max_length="224" \
--length_column_name="input_lengths" \
--gradient_checkpointing \
--group_by_length \
--freeze_encoder \
--fp16 \
--overwrite_output_dir \
--do_train \
--do_eval \
--do_predict \
--predict_with_generate \
--use_auth_token
```
|
esb/whisper-aed-switchboard | esb | 2022-10-24T15:01:09Z | 0 | 1 | null | [
"esb",
"en",
"dataset:esb/datasets",
"dataset:ldc/switchboard",
"region:us"
]
| null | 2022-10-24T15:00:52Z | ---
language:
- en
tags:
- esb
datasets:
- esb/datasets
- ldc/switchboard
---
To reproduce this run, first install Whisper from the Transformers compatible repo [patrickvonplaten/whisper](https://github.com/patrickvonplaten/whisper):
```
pip install git+https://github.com/openai/whisper.git
```
Then execute the command:
```python
#!/usr/bin/env bash
CUDA_VISIBLE_DEVICES=0 python run_speech_recognition_whisper.py \
--model_name_or_path="medium.en" \
--dataset_name="esb/datasets" \
--dataset_config_name="switchboard" \
--max_steps="5000" \
--output_dir="./" \
--run_name="whisper-switchboard" \
--max_steps="5000" \
--output_dir="./" \
--run_name="whisper-switchboard" \
--wandb_project="whisper" \
--per_device_train_batch_size="64" \
--per_device_eval_batch_size="16" \
--logging_steps="25" \
--learning_rate="1e-4" \
--warmup_steps="500" \
--report_to="wandb" \
--preprocessing_num_workers="16" \
--evaluation_strategy="steps" \
--eval_steps="1000" \
--save_strategy="steps" \
--save_steps="1000" \
--generation_max_length="224" \
--length_column_name="input_lengths" \
--gradient_checkpointing \
--group_by_length \
--freeze_encoder \
--fp16 \
--overwrite_output_dir \
--do_train \
--do_eval \
--do_predict \
--predict_with_generate \
--use_auth_token
```
|
esb/whisper-aed-ami | esb | 2022-10-24T14:58:41Z | 0 | 0 | null | [
"esb",
"en",
"dataset:esb/datasets",
"dataset:edinburghcstr/ami",
"region:us"
]
| null | 2022-10-24T14:58:24Z | ---
language:
- en
tags:
- esb
datasets:
- esb/datasets
- edinburghcstr/ami
---
To reproduce this run, first install Whisper from the Transformers compatible repo [patrickvonplaten/whisper](https://github.com/patrickvonplaten/whisper):
```
pip install git+https://github.com/openai/whisper.git
```
Then execute the command:
```python
#!/usr/bin/env bash
CUDA_VISIBLE_DEVICES=0 python run_speech_recognition_whisper.py \
--model_name_or_path="medium.en" \
--dataset_name="esb/datasets" \
--dataset_config_name="ami" \
--max_steps="2500" \
--output_dir="./" \
--run_name="whisper-ami" \
--dropout_rate="0.1" \
--wandb_project="whisper" \
--per_device_train_batch_size="64" \
--per_device_eval_batch_size="16" \
--logging_steps="25" \
--learning_rate="1e-4" \
--warmup_steps="500" \
--report_to="wandb" \
--preprocessing_num_workers="16" \
--evaluation_strategy="steps" \
--eval_steps="500" \
--save_strategy="steps" \
--save_steps="500" \
--generation_max_length="224" \
--length_column_name="input_lengths" \
--gradient_checkpointing \
--group_by_length \
--freeze_encoder \
--fp16 \
--overwrite_output_dir \
--do_train \
--do_eval \
--do_predict \
--predict_with_generate \
--use_auth_token
```
|
esb/whisper-aed-earnings22 | esb | 2022-10-24T14:55:59Z | 0 | 0 | null | [
"esb",
"en",
"dataset:esb/datasets",
"dataset:revdotcom/earnings22",
"region:us"
]
| null | 2022-10-24T14:55:42Z | ---
language:
- en
tags:
- esb
datasets:
- esb/datasets
- revdotcom/earnings22
---
To reproduce this run, first install Whisper from the Transformers compatible repo [patrickvonplaten/whisper](https://github.com/patrickvonplaten/whisper):
```
pip install git+https://github.com/openai/whisper.git
```
Then execute the command:
```python
#!/usr/bin/env bash
CUDA_VISIBLE_DEVICES=0 python run_speech_recognition_whisper.py \
--model_name_or_path="medium.en" \
--dataset_name="esb/datasets" \
--dataset_config_name="earnings22" \
--max_steps="2500" \
--output_dir="./" \
--run_name="whisper-earnings22" \
--wandb_project="whisper" \
--per_device_train_batch_size="64" \
--per_device_eval_batch_size="16" \
--logging_steps="25" \
--learning_rate="1e-4" \
--warmup_steps="500" \
--report_to="wandb" \
--preprocessing_num_workers="16" \
--evaluation_strategy="steps" \
--eval_steps="500" \
--save_strategy="steps" \
--save_steps="500" \
--generation_max_length="224" \
--length_column_name="input_lengths" \
--gradient_checkpointing \
--group_by_length \
--freeze_encoder \
--fp16 \
--overwrite_output_dir \
--do_train \
--do_eval \
--do_predict \
--predict_with_generate \
--use_auth_token
```
|
esb/whisper-aed-spgispeech | esb | 2022-10-24T14:53:25Z | 0 | 0 | null | [
"esb",
"en",
"dataset:esb/datasets",
"dataset:kensho/spgispeech",
"region:us"
]
| null | 2022-10-24T14:53:08Z | ---
language:
- en
tags:
- esb
datasets:
- esb/datasets
- kensho/spgispeech
---
To reproduce this run, first install Whisper from the Transformers compatible repo [patrickvonplaten/whisper](https://github.com/patrickvonplaten/whisper):
```
pip install git+https://github.com/openai/whisper.git
```
Then execute the command:
```python
#!/usr/bin/env bash
CUDA_VISIBLE_DEVICES=0 python run_speech_recognition_whisper.py \
--model_name_or_path="medium.en" \
--dataset_name="esb/datasets" \
--dataset_config_name="spgispeech" \
--max_steps="5000" \
--output_dir="./" \
--run_name="whisper-spgispeech" \
--wandb_project="whisper" \
--per_device_train_batch_size="64" \
--per_device_eval_batch_size="16" \
--logging_steps="25" \
--learning_rate="1e-4" \
--warmup_steps="500" \
--report_to="wandb" \
--preprocessing_num_workers="16" \
--evaluation_strategy="steps" \
--eval_steps="1000" \
--save_strategy="steps" \
--save_steps="1000" \
--generation_max_length="224" \
--length_column_name="input_lengths" \
--gradient_checkpointing \
--group_by_length \
--freeze_encoder \
--fp16 \
--overwrite_output_dir \
--do_train \
--do_eval \
--do_predict \
--predict_with_generate \
--use_auth_token
```
|
esb/whisper-aed-gigaspeech | esb | 2022-10-24T14:50:45Z | 0 | 0 | null | [
"esb",
"en",
"dataset:esb/datasets",
"dataset:speechcolab/gigaspeech",
"region:us"
]
| null | 2022-10-24T14:50:28Z | ---
language:
- en
tags:
- esb
datasets:
- esb/datasets
- speechcolab/gigaspeech
---
To reproduce this run, first install Whisper from the Transformers compatible repo [patrickvonplaten/whisper](https://github.com/patrickvonplaten/whisper):
```
pip install git+https://github.com/openai/whisper.git
```
Then execute the command:
```python
#!/usr/bin/env bash
CUDA_VISIBLE_DEVICES=0 python run_speech_recognition_whisper.py \
--model_name_or_path="medium.en" \
--dataset_name="esb/datasets" \
--dataset_config_name="gigaspeech" \
--max_steps="5000" \
--output_dir="./" \
--run_name="whisper-gigaspeech" \
--wandb_project="whisper" \
--per_device_train_batch_size="64" \
--per_device_eval_batch_size="16" \
--logging_steps="25" \
--learning_rate="1e-4" \
--warmup_steps="500" \
--report_to="wandb" \
--preprocessing_num_workers="16" \
--evaluation_strategy="steps" \
--eval_steps="1000" \
--save_strategy="steps" \
--save_steps="1000" \
--generation_max_length="224" \
--length_column_name="input_lengths" \
--gradient_checkpointing \
--group_by_length \
--freeze_encoder \
--fp16 \
--overwrite_output_dir \
--do_train \
--do_eval \
--do_predict \
--predict_with_generate \
--use_auth_token
```
|
esb/whisper-aed-voxpopuli | esb | 2022-10-24T14:48:27Z | 0 | 0 | null | [
"esb",
"en",
"dataset:esb/datasets",
"dataset:facebook/voxpopuli",
"region:us"
]
| null | 2022-10-24T14:48:10Z | ---
language:
- en
tags:
- esb
datasets:
- esb/datasets
- facebook/voxpopuli
---
To reproduce this run, first install Whisper from the Transformers compatible repo [patrickvonplaten/whisper](https://github.com/patrickvonplaten/whisper):
```
pip install git+https://github.com/openai/whisper.git
```
Then execute the command:
```python
#!/usr/bin/env bash
CUDA_VISIBLE_DEVICES=0 python run_speech_recognition_whisper.py \
--model_name_or_path="medium.en" \
--dataset_name="esb/datasets" \
--dataset_config_name="voxpopuli" \
--max_steps="5000" \
--output_dir="./" \
--run_name="whisper-voxpopuli" \
--wandb_project="whisper" \
--per_device_train_batch_size="64" \
--per_device_eval_batch_size="16" \
--logging_steps="25" \
--learning_rate="1e-4" \
--warmup_steps="500" \
--report_to="wandb" \
--preprocessing_num_workers="16" \
--evaluation_strategy="steps" \
--eval_steps="500" \
--save_strategy="steps" \
--save_steps="500" \
--generation_max_length="224" \
--length_column_name="input_lengths" \
--gradient_checkpointing \
--group_by_length \
--freeze_encoder \
--fp16 \
--overwrite_output_dir \
--do_train \
--do_eval \
--do_predict \
--predict_with_generate \
--use_auth_token
```
|
esb/whisper-aed-tedlium | esb | 2022-10-24T14:45:31Z | 0 | 0 | null | [
"esb",
"en",
"dataset:esb/datasets",
"dataset:LIUM/tedlium",
"region:us"
]
| null | 2022-10-24T14:45:14Z | ---
language:
- en
tags:
- esb
datasets:
- esb/datasets
- LIUM/tedlium
---
To reproduce this run, first install Whisper from the Transformers compatible repo [patrickvonplaten/whisper](https://github.com/patrickvonplaten/whisper):
```
pip install git+https://github.com/openai/whisper.git
```
Then execute the command:
```python
#!/usr/bin/env bash
CUDA_VISIBLE_DEVICES=0 python run_speech_recognition_whisper.py \
--model_name_or_path="medium.en" \
--dataset_name="esb/datasets" \
--dataset_config_name="tedlium" \
--max_steps="2500" \
--output_dir="./" \
--run_name="whisper-tedlium" \
--wandb_project="whisper" \
--per_device_train_batch_size="64" \
--per_device_eval_batch_size="16" \
--logging_steps="25" \
--learning_rate="1e-4" \
--warmup_steps="500" \
--report_to="wandb" \
--preprocessing_num_workers="16" \
--evaluation_strategy="steps" \
--eval_steps="500" \
--save_strategy="steps" \
--save_steps="500" \
--generation_max_length="224" \
--length_column_name="input_lengths" \
--gradient_checkpointing \
--group_by_length \
--freeze_encoder \
--fp16 \
--overwrite_output_dir \
--do_train \
--do_eval \
--do_predict \
--predict_with_generate \
--use_auth_token
```
|
esb/wav2vec2-aed-chime4 | esb | 2022-10-24T14:37:55Z | 4 | 0 | transformers | [
"transformers",
"jax",
"speech-encoder-decoder",
"automatic-speech-recognition",
"esb",
"en",
"dataset:esb/datasets",
"dataset:ldc/chime-4",
"endpoints_compatible",
"region:us"
]
| automatic-speech-recognition | 2022-10-24T14:37:41Z | ---
language:
- en
tags:
- esb
datasets:
- esb/datasets
- ldc/chime-4
---
To reproduce this run, execute:
```python
#!/usr/bin/env bash
python run_flax_speech_recognition_seq2seq.py \
--dataset_name="esb/datasets" \
--model_name_or_path="esb/wav2vec2-aed-pretrained" \
--dataset_config_name="chime4" \
--output_dir="./" \
--wandb_name="wav2vec2-aed-chime4" \
--wandb_project="wav2vec2-aed" \
--per_device_train_batch_size="8" \
--per_device_eval_batch_size="4" \
--logging_steps="25" \
--max_steps="50001" \
--eval_steps="10000" \
--save_steps="10000" \
--generation_max_length="40" \
--generation_num_beams="1" \
--final_generation_max_length="250" \
--final_generation_num_beams="5" \
--generation_length_penalty="0.6" \
--learning_rate="1e-4" \
--warmup_steps="500" \
--hidden_dropout="0.2" \
--activation_dropout="0.2" \
--feat_proj_dropout="0.2" \
--overwrite_output_dir \
--gradient_checkpointing \
--freeze_feature_encoder \
--predict_with_generate \
--do_eval \
--do_train \
--do_predict \
--push_to_hub \
--use_auth_token
```
|
Subsets and Splits