modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-07-14 06:27:53
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
519 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-07-14 06:27:45
card
stringlengths
11
1.01M
torphix/tts-models
torphix
2022-10-18T14:28:50Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2022-10-18T13:50:37Z
--- license: apache-2.0 --- Various pretrained models and voices for the git [repo](https://github.com/torphix/tts-inference) Follow instructions on repo readme for useage
philschmid/donut-base-finetuned-cord-v2
philschmid
2022-10-18T14:16:41Z
28
5
transformers
[ "transformers", "pytorch", "vision-encoder-decoder", "image-text-to-text", "donut", "image-to-text", "vision", "endpoints-template", "arxiv:2111.15664", "license:mit", "endpoints_compatible", "region:us" ]
image-to-text
2022-10-18T13:08:02Z
--- license: mit tags: - donut - image-to-text - vision - endpoints-template --- # Fork of [naver-clova-ix/donut-base-finetuned-cord-v2](https://huggingface.co/naver-clova-ix/donut-base-finetuned-cord-v2) > This is fork of [naver-clova-ix/donut-base-finetuned-cord-v2](https://huggingface.co/naver-clova-ix/donut-base-finetuned-cord-v2) implementing a custom `handler.py` as an example for how to use `donut` models with [inference-endpoints](https://hf.co/inference-endpoints) --- # Donut (base-sized model, fine-tuned on CORD) Donut model fine-tuned on CORD. It was introduced in the paper [OCR-free Document Understanding Transformer](https://arxiv.org/abs/2111.15664) by Geewok et al. and first released in [this repository](https://github.com/clovaai/donut). Donut consists of a vision encoder (Swin Transformer) and a text decoder (BART). Given an image, the encoder first encodes the image into a tensor of embeddings (of shape batch_size, seq_len, hidden_size), after which the decoder autoregressively generates text, conditioned on the encoding of the encoder. # Use with Inference Endpoints Hugging Face Inference endpoints can directly work with binary data, this means that we can directly send our image from our document to the endpoint. We are going to use requests to send our requests. (make your you have it installed `pip install requests`) ![result](res.png) ## Send requests with Pyton load sample image ```bash wget https://huggingface.co/philschmid/donut-base-finetuned-cord-v2/resolve/main/sample.png ``` send request to endpoint ```python import json import requests as r import mimetypes ENDPOINT_URL="" # url of your endpoint HF_TOKEN="" # organization token where you deployed your endpoint def predict(path_to_image:str=None): with open(path_to_image, "rb") as i: b = i.read() headers= { "Authorization": f"Bearer {HF_TOKEN}", "Content-Type": mimetypes.guess_type(path_to_image)[0] } response = r.post(ENDPOINT_URL, headers=headers, data=b) return response.json() prediction = predict(path_to_image="sample.png") print(prediction) # {'menu': [{'nm': '0571-1854 BLUS WANITA', # 'unitprice': '@120.000', # 'cnt': '1', # 'price': '120,000'}, # {'nm': '1002-0060 SHOPPING BAG', 'cnt': '1', 'price': '0'}], # 'total': {'total_price': '120,000', # 'changeprice': '0', # 'creditcardprice': '120,000', # 'menuqty_cnt': '1'}} ``` **curl example** ```bash curl https://ak7gduay2ypyr9vp.us-east-1.aws.endpoints.huggingface.cloud \ -X POST \ --data-binary 'sample.png' \ -H "Authorization: Bearer XXX" \ -H "Content-Type: null" ```
vvincentt/deberta-v3-base
vvincentt
2022-10-18T14:06:28Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-10-18T10:32:02Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: deberta-v3-base results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-base This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
lewtun/setfit-finetuned-sst2
lewtun
2022-10-18T13:52:14Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-10-18T13:52:02Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 40 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 40, "warmup_steps": 4, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
gsarti/it5-base-news-summarization
gsarti
2022-10-18T13:43:57Z
954
5
transformers
[ "transformers", "pytorch", "tf", "jax", "tensorboard", "t5", "text2text-generation", "italian", "sequence-to-sequence", "fanpage", "ilpost", "summarization", "it", "dataset:ARTeLab/fanpage", "dataset:ARTeLab/ilpost", "arxiv:2203.03759", "license:apache-2.0", "model-index", "co2_eq_emissions", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
summarization
2022-03-02T23:29:05Z
--- language: - it license: apache-2.0 datasets: - ARTeLab/fanpage - ARTeLab/ilpost tags: - italian - sequence-to-sequence - fanpage - ilpost - summarization widget: - text: "Non lo vuole sposare. E’ quanto emerge all’interno dell’ultima intervista di Raffaella Fico che, ringraziando Mancini per i buoni consigli elargiti al suo fidanzato, rimanda l’idea del matrimonio per qualche anno ancora. La soubrette, che è stata recentemente protagonista di una dedica di Supermario, non ha ancora intenzione di accasarsi perché è sicura che per mettersi la fede al dito ci sia ancora tempo. Nonostante il suo Mario sia uno degli sportivi più desiderati al mondo, l’ex protagonista del Grande Fratello non ha alcuna intenzione di cedere seriamente alla sua corte. Solo qualche giorno fa, infatti, dopo l’ultima bravata di Balotelli, Mancini gli aveva consigliato di sposare la sua Raffaella e di mettere la testa a posto. Chi pensava che sarebbe stato Mario a rispondere, però, si è sbagliato. A mettere le cose bene in chiaro è la Fico che, intervistata dall’emittente radiofonica Rtl 102.5, dice: È presto per sposarsi, siamo ancora molto giovani. È giusto che prima uno si realizzi nel proprio lavoro. E poi successivamente perché no, ci si può anche pensare. Quando si è giovani capita di fare qualche pazzia, quindi ci sta. Comunque i tabloid inglesi sono totalmente accaniti sulla sua vita privata quando poi dovrebbero interessarsi di più di quello che fa sul campo. Lui non fa le cose con cattiveria, ma quando si è giovani si fanno determinate cose senza stare a pensare se sono giuste o sbagliate. Mario ha gli obiettivi puntati addosso: più per la sua vita privata che come giocatore. Per me può anche andare in uno strip club, se non fa niente di male, con gli amici, però devo dire che alla fine torna sempre da me, sono la sua preferita." - text: "Valerio è giovanissimo ma già una star. Fuori dall’Ariston ragazzine e meno ragazzine passano ore anche sotto la pioggia per vederlo. Lui è forte del suo talento e sicuro. Partecipa in gara tra i “big” di diritto, per essere arrivato in finalissima nel programma Amici di Maria De Filippi e presenta il brano Per tutte le volte che scritta per lui da Pierdavide Carone. Valerio Scanu è stato eliminato. Ma non è detta l'ultima parola: il duetto di questa sera con Alessandra Amoroso potrebbe risollevarlo e farlo rientrare in gara. Che cosa è successo alla giuria visto che sei stato eliminato anche se l’esibizione era perfetta? Nn lo so. Sono andate bene le esibizioni, ero emozionato ma tranquillo. Ero contento ma ho cantato bene. Non sono passato e stasera ci sarà il ballottaggio… Quali sono le differenze tra Amici e Sanremo? Sono due cose diverse. Amici ti prepara a salire sul palco di amici. A Sanremo ci devi arrivare… ho fatto più di sessanta serate nel tour estivo, poi promozione del secondo disco. Una bella palestra. Sono cresciuto anche umanamente. Sono riuscito a percepire quello che il pubblico trasmette. L’umiltà? Prima di tutto. Sennò non sarei qui." - text: "L’azienda statunitense Broadcom, uno dei più grandi produttori di semiconduttori al mondo, ha presentato un’offerta per acquisire Qualcomm, altra grande società degli Stati Uniti conosciuta soprattutto per la sua produzione di microprocessori Snapdragon (ARM), utilizzati in centinaia di milioni di smartphone in giro per il mondo. Broadcom ha proposto di acquistare ogni azione di Qualcomm al prezzo di 70 dollari, per un valore complessivo di circa 105 miliardi di dollari (130 miliardi se si comprendono 25 miliardi di debiti netti) . Se l’operazione dovesse essere approvata, sarebbe una delle più grandi acquisizioni di sempre nella storia del settore tecnologico degli Stati Uniti. Broadcom ha perfezionato per mesi la sua proposta di acquisto e, secondo i media statunitensi, avrebbe già preso contatti con Qualcomm per trovare un accordo. Secondo gli analisti, Qualcomm potrebbe comunque opporsi all’acquisizione perché il prezzo offerto è di poco superiore a quello dell’attuale valore delle azioni dell’azienda. Ci potrebbero essere inoltre complicazioni sul piano dell’antitrust da valutare, prima di un’eventuale acquisizione." - text: "Dal 31 maggio è infine partita la piattaforma ITsART, a più di un anno da quando – durante il primo lockdown – il ministro della Cultura Dario Franceschini ne aveva parlato come di «una sorta di Netflix della cultura», pensata per «offrire a tutto il mondo la cultura italiana a pagamento». È presto per dare giudizi definitivi sulla piattaforma, e di certo sarà difficile farlo anche più avanti senza numeri precisi. Al momento, l’unica cosa che si può fare è guardare com’è fatto il sito, contare quanti contenuti ci sono (circa 700 “titoli”, tra film, documentari, spettacoli teatrali e musicali e altri eventi) e provare a dare un giudizio sul loro valore e sulla loro varietà. Intanto, una cosa notata da più parti è che diversi contenuti di ITsART sono a pagamento sulla piattaforma sebbene altrove, per esempio su RaiPlay, siano invece disponibili gratuitamente." metrics: - rouge model-index: - name: it5-base-news-summarization results: - task: type: news-summarization name: "News Summarization" dataset: type: newssum-it name: "NewsSum-IT" metrics: - type: rouge1 value: 0.339 name: "Test Rouge1" - type: rouge2 value: 0.160 name: "Test Rouge2" - type: rougeL value: 0.263 name: "Test RougeL" co2_eq_emissions: emissions: 17 source: "Google Cloud Platform Carbon Footprint" training_type: "fine-tuning" geographical_location: "Eemshaven, Netherlands, Europe" hardware_used: "1 TPU v3-8 VM" thumbnail: https://gsarti.com/publication/it5/featured.png --- # IT5 Base for News Summarization ✂️🗞️ 🇮🇹 This repository contains the checkpoint for the [IT5 Base](https://huggingface.co/gsarti/it5-base) model fine-tuned on news summarization on the [Fanpage](https://huggingface.co/datasets/ARTeLab/fanpage) and [Il Post](https://huggingface.co/datasets/ARTeLab/ilpost) corpora as part of the experiments of the paper [IT5: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation](https://arxiv.org/abs/2203.03759) by [Gabriele Sarti](https://gsarti.com) and [Malvina Nissim](https://malvinanissim.github.io). A comprehensive overview of other released materials is provided in the [gsarti/it5](https://github.com/gsarti/it5) repository. Refer to the paper for additional details concerning the reported scores and the evaluation approach. ## Using the model Model checkpoints are available for usage in Tensorflow, Pytorch and JAX. They can be used directly with pipelines as: ```python from transformers import pipelines newsum = pipeline("summarization", model='it5/it5-base-news-summarization') newsum("Dal 31 maggio è infine partita la piattaforma ITsART, a più di un anno da quando – durante il primo lockdown – il ministro della Cultura Dario Franceschini ne aveva parlato come di «una sorta di Netflix della cultura», pensata per «offrire a tutto il mondo la cultura italiana a pagamento». È presto per dare giudizi definitivi sulla piattaforma, e di certo sarà difficile farlo anche più avanti senza numeri precisi. Al momento, l’unica cosa che si può fare è guardare com’è fatto il sito, contare quanti contenuti ci sono (circa 700 “titoli”, tra film, documentari, spettacoli teatrali e musicali e altri eventi) e provare a dare un giudizio sul loro valore e sulla loro varietà. Intanto, una cosa notata da più parti è che diversi contenuti di ITsART sono a pagamento sulla piattaforma sebbene altrove, per esempio su RaiPlay, siano invece disponibili gratuitamente.") >>> [{"generated_text": "ITsART, la Netflix della cultura italiana, parte da maggio. Film, documentari, spettacoli teatrali e musicali disponibili sul nuovo sito a pagamento."}] ``` or loaded using autoclasses: ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("it5/it5-base-news-summarization") model = AutoModelForSeq2SeqLM.from_pretrained("it5/it5-base-news-summarization") ``` If you use this model in your research, please cite our work as: ```bibtex @article{sarti-nissim-2022-it5, title={{IT5}: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation}, author={Sarti, Gabriele and Nissim, Malvina}, journal={ArXiv preprint 2203.03759}, url={https://arxiv.org/abs/2203.03759}, year={2022}, month={mar} } ```
yhyxgwy/ddpm-butterflies-128
yhyxgwy
2022-10-18T13:39:09Z
1
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:huggan/smithsonian_butterflies_subset", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-10-18T12:50:47Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/yhyxgwy/ddpm-butterflies-128/tensorboard?#scalars)
Rocketknight1/bert-finetuned-ner
Rocketknight1
2022-10-18T12:52:07Z
9
0
transformers
[ "transformers", "tf", "bert", "token-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-10-18T12:50:47Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Rocketknight1/bert-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Rocketknight1/bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1748 - Validation Loss: 0.0673 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2634, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.1748 | 0.0673 | 0 | ### Framework versions - Transformers 4.24.0.dev0 - TensorFlow 2.10.0 - Datasets 2.6.1 - Tokenizers 0.11.0
ai-forever/scrabblegan-notebooks
ai-forever
2022-10-18T12:25:07Z
0
2
null
[ "PyTorch", "GAN", "Handwritten", "ru", "dataset:sberbank-ai/school_notebooks_RU", "dataset:sberbank-ai/school_notebooks_EN", "license:mit", "region:us" ]
null
2022-10-18T10:27:56Z
--- language: - ru tags: - PyTorch - GAN - Handwritten datasets: - "sberbank-ai/school_notebooks_RU" - "sberbank-ai/school_notebooks_EN" license: mit --- This is a weights storage for models trained by [ScrabbleGAN](https://github.com/ai-forever/ScrabbleGAN)
mriggs/byt5-small-finetuned-2epoch-opus_books-en-to-fr
mriggs
2022-10-18T12:17:44Z
7
1
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:opus_books", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-18T08:41:16Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - opus_books model-index: - name: byt5-small-finetuned-2epoch-opus_books-en-to-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # byt5-small-finetuned-2epoch-opus_books-en-to-fr This model is a fine-tuned version of [google/byt5-small](https://huggingface.co/google/byt5-small) on the opus_books dataset. It achieves the following results on the evaluation set: - Loss: 0.7181 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.9652 | 1.0 | 14297 | 0.7181 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
hivemind/gpt-j-6B-8bit
hivemind
2022-10-18T11:49:06Z
146
131
transformers
[ "transformers", "pytorch", "gptj", "text-generation", "causal-lm", "en", "arxiv:2106.09685", "arxiv:2110.02861", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: - en tags: - pytorch - causal-lm license: apache-2.0 datasets: - The Pile --- Note: this model was superceded by the [`load_in_8bit=True` feature in transformers](https://github.com/huggingface/transformers/pull/17901) by Younes Belkada and Tim Dettmers. Please see [this usage example](https://colab.research.google.com/drive/1qOjXfQIAULfKvZqwCen8-MoWKGdSatZ4#scrollTo=W8tQtyjp75O). This legacy model was built for [transformers v4.15.0](https://github.com/huggingface/transformers/releases/tag/v4.15.0) and pytorch 1.11. Newer versions could work, but are not supported. ### Quantized EleutherAI/gpt-j-6b with 8-bit weights This is a version of EleutherAI's GPT-J with 6 billion parameters that is modified so you can generate **and fine-tune the model in colab or equivalent desktop gpu (e.g. single 1080Ti)**. Here's how to run it: [![colab](https://camo.githubusercontent.com/84f0493939e0c4de4e6dbe113251b4bfb5353e57134ffd9fcab6b8714514d4d1/68747470733a2f2f636f6c61622e72657365617263682e676f6f676c652e636f6d2f6173736574732f636f6c61622d62616467652e737667)](https://colab.research.google.com/drive/1ft6wQU0BhqG5PRlwgaZJv2VukKKjU4Es) __The [original GPT-J](https://huggingface.co/EleutherAI/gpt-j-6B/tree/main)__ takes 22+ GB memory for float32 parameters alone, and that's before you account for gradients & optimizer. Even if you cast everything to 16-bit, it will still not fit onto most single-GPU setups short of A6000 and A100. You can inference it [on TPU](https://colab.research.google.com/github/kingoflolz/mesh-transformer-jax/blob/master/colab_demo.ipynb) or CPUs, but fine-tuning is way more expensive. Here, we apply several techniques to make GPT-J usable and fine-tunable on a single GPU with ~11 GB memory: - large weight tensors are quantized using dynamic 8-bit quantization and de-quantized just-in-time for multiplication - using gradient checkpoints to store one only activation per layer: using dramatically less memory at the cost of 30% slower training - scalable fine-tuning with [LoRA](https://arxiv.org/abs/2106.09685) and [8-bit Adam](https://arxiv.org/abs/2110.02861) In other words, all of the large weight-matrices are frozen in 8-bit, and you only train small adapters and optionally 1d tensors (layernorm scales, biases). ![img](https://i.imgur.com/n4XXo1x.png) __Does 8-bit affect model quality?__ Technically yes, but the effect is negligible in practice. [This notebook measures wikitext test perplexity](https://nbviewer.org/urls/huggingface.co/hivemind/gpt-j-6B-8bit/raw/main/check_perplexity.ipynb) and it is nigh indistinguishable from the original GPT-J. Quantized model is even slightly better, but that is not statistically significant. Our code differs from other 8-bit methods in that we use **8-bit only for storage, and all computations are performed in float16 or float32**. As a result, we can take advantage of nonlinear quantization that fits to each individual weight distribution. Such nonlinear quantization does not accelerate inference, but it allows for much smaller error. __What about performance?__ Both checkpointing and de-quantization has some overhead, but it's surprisingly manageable. Depending on GPU and batch size, the quantized model is 1-10% slower than the original model on top of using gradient checkpoints (which is 30% overhead). In short, this is because block-wise quantization from bitsandbytes is really fast on GPU. ### How should I fine-tune the model? We recommend starting with the original hyperparameters from [the LoRA paper](https://arxiv.org/pdf/2106.09685.pdf). On top of that, there is one more trick to consider: the overhead from de-quantizing weights does not depend on batch size. As a result, the larger batch size you can fit, the more efficient you will train. ### Where can I train for free? You can train fine in colab, but if you get a K80, it's probably best to switch to other free gpu providers: [kaggle](https://towardsdatascience.com/amazon-sagemaker-studio-lab-a-great-alternative-to-google-colab-7194de6ef69a), [aws sagemaker](https://towardsdatascience.com/amazon-sagemaker-studio-lab-a-great-alternative-to-google-colab-7194de6ef69a) or [paperspace](https://docs.paperspace.com/gradient/more/instance-types/free-instances). For intance, this is the same notebook [running in kaggle](https://www.kaggle.com/justheuristic/dmazur-converted) using a more powerful P100 instance. ### Can I use this technique with other models? The model was converted using [this notebook](https://nbviewer.org/urls/huggingface.co/hivemind/gpt-j-6B-8bit/raw/main/convert-gpt-j.ipynb). It can be adapted to work with other model types. However, please bear in mind that some models replace Linear and Embedding with custom alternatives that require their own BNBWhateverWithAdapters.
ibm-research/qp-questions
ibm-research
2022-10-18T11:37:49Z
4
0
transformers
[ "transformers", "pytorch", "electra", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-18T11:16:38Z
The QP model from the paper [Quality Controlled Paraphrase Generation](https://aclanthology.org/2022.acl-long.45/) Important: read [this](https://github.com/IBM/quality-controlled-paraphrase-generation/issues/5#issuecomment-1238453742) before any use. More details on the model training and usage see in this [GitHub repo](https://github.com/IBM/quality-controlled-paraphrase-generation).
Osaleh/sagemaker-bert-base-intent1018_2
Osaleh
2022-10-18T10:57:04Z
5
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-18T10:47:52Z
--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: sagemaker-bert-base-intent1018_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sagemaker-bert-base-intent1018_2 This model is a fine-tuned version of [asafaya/bert-base-arabic](https://huggingface.co/asafaya/bert-base-arabic) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5145 - Accuracy: 0.9017 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 88 | 4.0951 | 0.0470 | | No log | 2.0 | 176 | 3.7455 | 0.2158 | | No log | 3.0 | 264 | 3.0505 | 0.4252 | | No log | 4.0 | 352 | 2.0489 | 0.6303 | | No log | 5.0 | 440 | 1.3342 | 0.7735 | | 2.9556 | 6.0 | 528 | 0.9592 | 0.8162 | | 2.9556 | 7.0 | 616 | 0.7623 | 0.8162 | | 2.9556 | 8.0 | 704 | 0.6262 | 0.8547 | | 2.9556 | 9.0 | 792 | 0.5145 | 0.9017 | | 2.9556 | 10.0 | 880 | 0.5328 | 0.8846 | | 2.9556 | 11.0 | 968 | 0.5137 | 0.8932 | | 0.3206 | 12.0 | 1056 | 0.5190 | 0.8846 | | 0.3206 | 13.0 | 1144 | 0.5158 | 0.8953 | | 0.3206 | 14.0 | 1232 | 0.5053 | 0.8974 | | 0.3206 | 15.0 | 1320 | 0.5140 | 0.8953 | | 0.3206 | 16.0 | 1408 | 0.5108 | 0.8996 | | 0.3206 | 17.0 | 1496 | 0.5282 | 0.8932 | | 0.0381 | 18.0 | 1584 | 0.5278 | 0.8974 | | 0.0381 | 19.0 | 1672 | 0.5224 | 0.8996 | | 0.0381 | 20.0 | 1760 | 0.5226 | 0.8996 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.1 - Datasets 1.15.1 - Tokenizers 0.10.3
NikitaBaramiia/PPO-FrozenLake-v1
NikitaBaramiia
2022-10-18T10:22:32Z
4
0
stable-baselines3
[ "stable-baselines3", "FrozenLake-v1", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-10-18T10:22:28Z
--- library_name: stable-baselines3 tags: - FrozenLake-v1 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1 type: FrozenLake-v1 metrics: - type: mean_reward value: 0.80 +/- 0.40 name: mean_reward verified: false --- # **PPO** Agent playing **FrozenLake-v1** This is a trained model of a **PPO** agent playing **FrozenLake-v1** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
YaYaB/yb_test_inference_endpoint_det
YaYaB
2022-10-18T10:21:20Z
0
0
null
[ "endpoints_compatible", "region:us" ]
null
2022-10-18T08:03:22Z
Please use the image nvcr.io/nvidia/pytorch:21.11-py3 when you want to launch it
Robertooo/ELL_pretrained
Robertooo
2022-10-18T09:39:07Z
4
0
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-10-18T08:13:26Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: ELL_pretrained results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ELL_pretrained This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9006 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.1542 | 1.0 | 1627 | 2.1101 | | 2.0739 | 2.0 | 3254 | 2.0006 | | 2.0241 | 3.0 | 4881 | 1.7874 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu102 - Datasets 2.6.1 - Tokenizers 0.13.1
slipoz/finetuning-sentiment-model-3000-samples
slipoz
2022-10-18T09:29:40Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-18T09:17:42Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: train args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8633333333333333 - name: F1 type: f1 value: 0.8655737704918034 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3194 - Accuracy: 0.8633 - F1: 0.8656 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
RMC2/distilbert-base-uncased-finetuned-emotion
RMC2
2022-10-18T09:18:19Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-18T07:31:36Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9235 - name: F1 type: f1 value: 0.9236875354311616 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2154 - Accuracy: 0.9235 - F1: 0.9237 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.773 | 1.0 | 250 | 0.2981 | 0.9065 | 0.9037 | | 0.2415 | 2.0 | 500 | 0.2154 | 0.9235 | 0.9237 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
sd-concepts-library/progress-chip
sd-concepts-library
2022-10-18T09:18:09Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-10-18T09:17:57Z
--- license: mit --- ### Progress Chip on Stable Diffusion This is the `<progress-chip>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<progress-chip> 0](https://huggingface.co/sd-concepts-library/progress-chip/resolve/main/concept_images/2.jpeg) ![<progress-chip> 1](https://huggingface.co/sd-concepts-library/progress-chip/resolve/main/concept_images/0.jpeg) ![<progress-chip> 2](https://huggingface.co/sd-concepts-library/progress-chip/resolve/main/concept_images/1.jpeg) ![<progress-chip> 3](https://huggingface.co/sd-concepts-library/progress-chip/resolve/main/concept_images/3.jpeg)
ezzouhri/vit-base-patch16-224-in21k-finetuned-eurosat
ezzouhri
2022-10-18T08:53:56Z
47
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-10-17T09:17:21Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder model-index: - name: vit-base-patch16-224-in21k-finetuned-eurosat results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch16-224-in21k-finetuned-eurosat This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - eval_loss: 0.2695 - eval_accuracy: 0.9022 - eval_runtime: 195.5267 - eval_samples_per_second: 21.486 - eval_steps_per_second: 0.675 - epoch: 51.76 - step: 10196 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 200 ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.1+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
craigchen/BART-139M-ecommerce-customer-service-anwser-to-query-generation
craigchen
2022-10-18T08:05:46Z
5
2
transformers
[ "transformers", "pytorch", "tf", "bart", "text2text-generation", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-18T08:04:50Z
--- tags: - generated_from_keras_callback model-index: - name: BART-139M-ecommerce-customer-service-anwser-to-query-generation results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # BART-139M-ecommerce-customer-service-anwser-to-query-generation This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.23.1 - TensorFlow 2.9.2 - Datasets 2.6.1 - Tokenizers 0.13.1
Makokokoko/AI
Makokokoko
2022-10-18T07:36:19Z
0
0
null
[ "region:us" ]
null
2022-10-18T06:40:52Z
pip install diffusers transformers nvidia-ml-py3 ftfy pytorch pillow
tehnlulz/pruned_datavq__ydnj-is_phishing-classification
tehnlulz
2022-10-18T07:15:14Z
0
0
sklearn
[ "sklearn", "tabular-classification", "baseline-trainer", "license:apache-2.0", "region:us" ]
tabular-classification
2022-10-18T07:15:12Z
--- license: apache-2.0 library_name: sklearn tags: - tabular-classification - baseline-trainer --- ## Baseline Model trained on pruned_datavq__ydnj to apply classification on is_phishing **Metrics of the best model:** accuracy 1.0 average_precision 1.0 roc_auc 1.0 recall_macro 1.0 f1_macro 1.0 Name: DecisionTreeClassifier(class_weight='balanced', max_depth=1), dtype: float64 **See model plot below:** <style>#sk-container-id-1 {color: black;background-color: white;}#sk-container-id-1 pre{padding: 0;}#sk-container-id-1 div.sk-toggleable {background-color: white;}#sk-container-id-1 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-1 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-1 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-1 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-1 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-1 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-1 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-1 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-container-id-1 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-1 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-1 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-1 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-1 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-1 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-1 div.sk-item {position: relative;z-index: 1;}#sk-container-id-1 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-1 div.sk-item::before, #sk-container-id-1 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-1 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-1 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-1 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-1 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-1 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-1 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-1 div.sk-label-container {text-align: center;}#sk-container-id-1 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-1 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-1" class="sk-top-container"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[(&#x27;easypreprocessor&#x27;,EasyPreprocessor(types= continuous dirty_float low_card_int ... date free_string useless id True False False ... False False False bad_domain False False False ... False True False safe_domain False False False ... False False False[3 rows x 7 columns])),(&#x27;decisiontreeclassifier&#x27;,DecisionTreeClassifier(class_weight=&#x27;balanced&#x27;, max_depth=1))])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-1" type="checkbox" ><label for="sk-estimator-id-1" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[(&#x27;easypreprocessor&#x27;,EasyPreprocessor(types= continuous dirty_float low_card_int ... date free_string useless id True False False ... False False False bad_domain False False False ... False True False safe_domain False False False ... False False False[3 rows x 7 columns])),(&#x27;decisiontreeclassifier&#x27;,DecisionTreeClassifier(class_weight=&#x27;balanced&#x27;, max_depth=1))])</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-2" type="checkbox" ><label for="sk-estimator-id-2" class="sk-toggleable__label sk-toggleable__label-arrow">EasyPreprocessor</label><div class="sk-toggleable__content"><pre>EasyPreprocessor(types= continuous dirty_float low_card_int ... date free_string useless id True False False ... False False False bad_domain False False False ... False True False safe_domain False False False ... False False False[3 rows x 7 columns])</pre></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-3" type="checkbox" ><label for="sk-estimator-id-3" class="sk-toggleable__label sk-toggleable__label-arrow">DecisionTreeClassifier</label><div class="sk-toggleable__content"><pre>DecisionTreeClassifier(class_weight=&#x27;balanced&#x27;, max_depth=1)</pre></div></div></div></div></div></div></div> **Disclaimer:** This model is trained with dabl library as a baseline, for better results, use [AutoTrain](https://huggingface.co/autotrain). **Logs of training** including the models tried in the process can be found in logs.txt
micole66/autotrain-strano-o-normale-1798362191
micole66
2022-10-18T07:08:01Z
1
0
transformers
[ "transformers", "pytorch", "autotrain", "text-classification", "it", "dataset:micole66/autotrain-data-strano-o-normale", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
text-classification
2022-10-18T07:07:29Z
--- tags: - autotrain - text-classification language: - it widget: - text: "I love AutoTrain 🤗" datasets: - micole66/autotrain-data-strano-o-normale co2_eq_emissions: emissions: 0.6330824015396253 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 1798362191 - CO2 Emissions (in grams): 0.6331 ## Validation Metrics - Loss: 0.645 - Accuracy: 0.750 - Precision: 1.000 - Recall: 0.500 - AUC: 0.625 - F1: 0.667 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/micole66/autotrain-strano-o-normale-1798362191 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("micole66/autotrain-strano-o-normale-1798362191", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("micole66/autotrain-strano-o-normale-1798362191", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
tkubotake/xlm-roberta-base-finetuned-panx-de
tkubotake
2022-10-18T06:51:15Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-10-18T06:26:50Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme config: PAN-X.de split: train args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8648740833380706 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1365 - F1: 0.8649 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2553 | 1.0 | 525 | 0.1575 | 0.8279 | | 0.1284 | 2.0 | 1050 | 0.1386 | 0.8463 | | 0.0813 | 3.0 | 1575 | 0.1365 | 0.8649 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
sd-concepts-library/youtooz-candy
sd-concepts-library
2022-10-18T06:27:27Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-10-18T06:27:23Z
--- license: mit --- ### youtooz candy on Stable Diffusion This is the `<youtooz-candy>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<youtooz-candy> 0](https://huggingface.co/sd-concepts-library/youtooz-candy/resolve/main/concept_images/2.jpeg) ![<youtooz-candy> 1](https://huggingface.co/sd-concepts-library/youtooz-candy/resolve/main/concept_images/0.jpeg) ![<youtooz-candy> 2](https://huggingface.co/sd-concepts-library/youtooz-candy/resolve/main/concept_images/1.jpeg) ![<youtooz-candy> 3](https://huggingface.co/sd-concepts-library/youtooz-candy/resolve/main/concept_images/3.jpeg) ![<youtooz-candy> 4](https://huggingface.co/sd-concepts-library/youtooz-candy/resolve/main/concept_images/4.jpeg) ![<youtooz-candy> 5](https://huggingface.co/sd-concepts-library/youtooz-candy/resolve/main/concept_images/5.jpeg)
teacookies/autotrain-181022022-cert-1796662109
teacookies
2022-10-18T06:27:08Z
11
0
transformers
[ "transformers", "pytorch", "autotrain", "token-classification", "unk", "dataset:teacookies/autotrain-data-181022022-cert", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
token-classification
2022-10-18T06:15:38Z
--- tags: - autotrain - token-classification language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - teacookies/autotrain-data-181022022-cert co2_eq_emissions: emissions: 18.56487105177345 --- # Model Trained Using AutoTrain - Problem type: Entity Extraction - Model ID: 1796662109 - CO2 Emissions (in grams): 18.5649 ## Validation Metrics - Loss: 0.029 - Accuracy: 0.991 - Precision: 0.767 - Recall: 0.813 - F1: 0.790 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/teacookies/autotrain-181022022-cert-1796662109 ``` Or Python API: ``` from transformers import AutoModelForTokenClassification, AutoTokenizer model = AutoModelForTokenClassification.from_pretrained("teacookies/autotrain-181022022-cert-1796662109", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("teacookies/autotrain-181022022-cert-1796662109", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
sd-concepts-library/youpi2
sd-concepts-library
2022-10-18T05:51:15Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-10-18T05:51:10Z
--- license: mit --- ### youpi2 on Stable Diffusion This is the `<youpi>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<youpi> 0](https://huggingface.co/sd-concepts-library/youpi2/resolve/main/concept_images/2.jpeg) ![<youpi> 1](https://huggingface.co/sd-concepts-library/youpi2/resolve/main/concept_images/0.jpeg) ![<youpi> 2](https://huggingface.co/sd-concepts-library/youpi2/resolve/main/concept_images/1.jpeg) ![<youpi> 3](https://huggingface.co/sd-concepts-library/youpi2/resolve/main/concept_images/3.jpeg)
DaehanKim/KoUL2
DaehanKim
2022-10-18T05:26:15Z
7
3
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-03T13:49:17Z
# KoUL2 - 모두의말뭉치 + AI hub에 공개된 기타 한국어 텍스트 데이터를 기반으로 학습된 UL2(Unifying Language Learning Paradigm)모델입니다. - 파라미터 수는 279526656(280M)개로 encoder-decoder 구조를 가지고 있습니다. - [lassl](https://github.com/lassl/lassl) 오픈소스 프로젝트를 활용하여 학습하였습니다. - 사전학습만 진행된 모델이므로 아래와 같이 UL2의 denoising을 확인해보실 수 있습니다. ```py model = T5ForConditionalGeneration.from_pretrained("DaehanKim/KoUL2") tokenizer = AutoTokenizer.from_pretrained("DaehanKim/KoUL2") for prefix_token in ("[NLU]","[NLG]","[S2S]"): input_string = f"{prefix_token}어떤 아파트는 호가가 [new_id_27]는등 경기 침체로 인한 [new_id_26]를 확인할 수 있었습니다.</s>" inputs = tokenizer(input_string, return_tensors="pt", add_special_tokens=False) decoder_inputs = tokenizer("<pad>[new_id_27]", return_tensors='pt', add_special_tokens=False) outputs = model.generate(input_ids = inputs.input_ids, decoder_input_ids=decoder_inputs.input_ids, num_beams=10, num_return_sequences=5) print(tokenizer.batch_decode(outputs)) ``` ``` # output ['<pad>[new_id_27] 고공행진을[new_id_26] 아파트의 호가가 고공행진을', '<pad>[new_id_27] 고공 행진을[new_id_26] 아파트 호가가 고공 행진', '<pad>[new_id_27] 고공 행진을[new_id_26] 아파트 값이 고공 행진', '<pad>[new_id_27] 고공 행진을[new_id_26] 아파트의 호가가 고공 행', '<pad>[new_id_27] 고공 행진을[new_id_26] 아파트 호가가 고공행진을'] ['<pad>[new_id_27] 천만 원 이상 오르고 어떤 아파트는 호가가 천만 ', '<pad>[new_id_27] 천만 원 이상 오르고 어떤 아파트는 호가가 천만[new_id_26]', '<pad>[new_id_27] 천만 원 이상 오르고 어떤 아파트는 호가가 천 만', '<pad>[new_id_27] 천만 원에서 천만 원 까지 오르는[new_id_26] 아파트 가격 하락', '<pad>[new_id_27] 천만 원 이상 오르고 어떤 아파트는 호가가 천 원'] ['<pad>[new_id_27] 천만 원 이상 오르는[new_id_26] 아파트 값이 천만 원', '<pad>[new_id_27] 천만 원 이상 오르는[new_id_26] 아파트 값이 천만 원을', '<pad>[new_id_27] 천만 원 이상 오르는[new_id_26] 아파트 값이 오르는 등 부동산', '<pad>[new_id_27] 고공 행진을 이어가고[new_id_26] 아파트 값이 하락하는 등', '<pad>[new_id_27] 고공 행진을 하고[new_id_26] 아파트 값이 하락하는 등'] ``` - 사전학습 과정에서 sentinel token은 기존 T5와 호환되게 하기 위해 [new_id_27]...[new_id_1]<extra_token_0>...<extra_token_99> 순으로 들어가게 됩니다. 학습 방식에 대한 내용은 [이 포스트](https://daehankim.blogspot.com/2022/08/lassl-feat-t5-ul2.html)를 참조해주시면 감사하겠습니다. - License는 MIT입니다. - 학습 로그는 [여기](https://wandb.ai/lucas01/huggingface?workspace=user-lucas01)에서 확인하실 수 있습니다. - 모델이나 데이터 셋에 대해 궁금하신 점이 있으시면 `kdh5852 [at] gmail [dot] com`으로 문의해주시면 답변 드리겠습니다. ## acknowledgement - 이 프로젝트는 TFRC 프로그램의 TPU 지원을 받아 수행되었습니다.
oscarwu/mlcovid19-classifier
oscarwu
2022-10-18T05:18:59Z
11
1
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-10T22:00:04Z
--- license: mit tags: - generated_from_trainer model-index: - name: mlcovid19-classifier results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mlcovid19-classifier This model is a fine-tuned version of [oscarwu/mlcovid19-classifier](https://huggingface.co/oscarwu/mlcovid19-classifier) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2879 - F1 Macro: 0.7978 - F1 Misinformation: 0.9347 - F1 Factual: 0.9423 - F1 Other: 0.5166 - Prec Macro: 0.8156 - Prec Misinformation: 0.9277 - Prec Factual: 0.9345 - Prec Other: 0.5846 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 4096 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2607 - num_epochs: 400 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Misinformation | F1 Factual | F1 Other | Prec Macro | Prec Misinformation | Prec Factual | Prec Other | |:-------------:|:------:|:----:|:---------------:|:--------:|:-----------------:|:----------:|:--------:|:----------:|:-------------------:|:------------:|:----------:| | 0.4535 | 1.98 | 10 | 0.4122 | 0.6809 | 0.8906 | 0.8993 | 0.2529 | 0.7749 | 0.8433 | 0.9169 | 0.5646 | | 0.4445 | 3.98 | 20 | 0.4056 | 0.6844 | 0.8918 | 0.9004 | 0.2611 | 0.7706 | 0.8461 | 0.9171 | 0.5487 | | 0.4362 | 5.98 | 30 | 0.3966 | 0.6870 | 0.8930 | 0.9020 | 0.2658 | 0.7672 | 0.8490 | 0.9171 | 0.5356 | | 0.4229 | 7.98 | 40 | 0.3864 | 0.6885 | 0.8955 | 0.9055 | 0.2645 | 0.7652 | 0.8531 | 0.9179 | 0.5246 | | 0.4134 | 9.98 | 50 | 0.3774 | 0.6889 | 0.8983 | 0.9091 | 0.2594 | 0.7697 | 0.8573 | 0.9173 | 0.5345 | | 0.4004 | 11.98 | 60 | 0.3682 | 0.6907 | 0.8996 | 0.9111 | 0.2616 | 0.7763 | 0.8605 | 0.9148 | 0.5536 | | 0.3893 | 13.98 | 70 | 0.3583 | 0.6960 | 0.9014 | 0.9124 | 0.2740 | 0.7853 | 0.8629 | 0.9152 | 0.5778 | | 0.3853 | 15.98 | 80 | 0.3483 | 0.7036 | 0.9031 | 0.9157 | 0.2920 | 0.7749 | 0.8683 | 0.9172 | 0.5390 | | 0.369 | 17.98 | 90 | 0.3399 | 0.7011 | 0.9037 | 0.9167 | 0.2828 | 0.7775 | 0.8690 | 0.9159 | 0.5476 | | 0.36 | 19.98 | 100 | 0.3312 | 0.7102 | 0.9056 | 0.9194 | 0.3055 | 0.7836 | 0.8733 | 0.9167 | 0.5609 | | 0.3445 | 21.98 | 110 | 0.3237 | 0.7116 | 0.9065 | 0.9204 | 0.3078 | 0.7860 | 0.8749 | 0.9165 | 0.5667 | | 0.3406 | 23.98 | 120 | 0.3181 | 0.7058 | 0.9068 | 0.9212 | 0.2893 | 0.7880 | 0.8740 | 0.9162 | 0.5738 | | 0.3286 | 25.98 | 130 | 0.3094 | 0.7183 | 0.9099 | 0.9250 | 0.32 | 0.7932 | 0.8782 | 0.9216 | 0.5797 | | 0.3213 | 27.98 | 140 | 0.3049 | 0.7187 | 0.9111 | 0.9254 | 0.3196 | 0.7957 | 0.8800 | 0.9204 | 0.5867 | | 0.3111 | 29.98 | 150 | 0.3017 | 0.7219 | 0.9129 | 0.9264 | 0.3263 | 0.7983 | 0.8843 | 0.9178 | 0.5927 | | 0.3087 | 31.98 | 160 | 0.2970 | 0.7231 | 0.9132 | 0.9276 | 0.3287 | 0.7977 | 0.8850 | 0.9188 | 0.5893 | | 0.2992 | 33.98 | 170 | 0.2926 | 0.7243 | 0.9141 | 0.9293 | 0.3293 | 0.8003 | 0.8839 | 0.9235 | 0.5935 | | 0.2924 | 35.98 | 180 | 0.2892 | 0.7312 | 0.9150 | 0.9303 | 0.3482 | 0.7971 | 0.8889 | 0.9218 | 0.5806 | | 0.2878 | 37.98 | 190 | 0.2870 | 0.7356 | 0.9173 | 0.9324 | 0.3571 | 0.8027 | 0.8906 | 0.9246 | 0.5929 | | 0.2811 | 39.98 | 200 | 0.2844 | 0.7439 | 0.9188 | 0.9328 | 0.3801 | 0.8109 | 0.8954 | 0.9213 | 0.6161 | | 0.2751 | 41.98 | 210 | 0.2816 | 0.7500 | 0.9197 | 0.9340 | 0.3963 | 0.8060 | 0.8973 | 0.9250 | 0.5956 | | 0.2683 | 43.98 | 220 | 0.2798 | 0.7517 | 0.9210 | 0.9339 | 0.4000 | 0.8068 | 0.8976 | 0.9272 | 0.5956 | | 0.2643 | 45.98 | 230 | 0.2766 | 0.7544 | 0.9221 | 0.9349 | 0.4062 | 0.8064 | 0.8990 | 0.9290 | 0.5910 | | 0.2619 | 47.98 | 240 | 0.2736 | 0.7579 | 0.9227 | 0.9356 | 0.4155 | 0.8085 | 0.9002 | 0.9298 | 0.5954 | | 0.2539 | 49.98 | 250 | 0.2733 | 0.7567 | 0.9231 | 0.9357 | 0.4111 | 0.8060 | 0.9006 | 0.9302 | 0.5872 | | 0.2496 | 51.98 | 260 | 0.2713 | 0.7600 | 0.9235 | 0.9360 | 0.4206 | 0.8070 | 0.9009 | 0.9320 | 0.5881 | | 0.2455 | 53.98 | 270 | 0.2697 | 0.7575 | 0.9231 | 0.9356 | 0.4139 | 0.8052 | 0.9009 | 0.9304 | 0.5844 | | 0.2371 | 55.98 | 280 | 0.2686 | 0.7652 | 0.9239 | 0.9356 | 0.4360 | 0.8058 | 0.9058 | 0.9283 | 0.5833 | | 0.2316 | 57.98 | 290 | 0.2686 | 0.7664 | 0.9243 | 0.9361 | 0.4389 | 0.8037 | 0.9073 | 0.9288 | 0.5749 | | 0.2258 | 59.98 | 300 | 0.2664 | 0.7680 | 0.9247 | 0.9360 | 0.4431 | 0.8018 | 0.9095 | 0.9279 | 0.5680 | | 0.2207 | 61.98 | 310 | 0.2663 | 0.7736 | 0.9262 | 0.9373 | 0.4574 | 0.8015 | 0.9145 | 0.9276 | 0.5625 | | 0.2167 | 63.98 | 320 | 0.2643 | 0.7715 | 0.9268 | 0.9380 | 0.4498 | 0.8003 | 0.9127 | 0.9312 | 0.5571 | | 0.2131 | 65.98 | 330 | 0.2627 | 0.7753 | 0.9287 | 0.9398 | 0.4573 | 0.8064 | 0.9123 | 0.9356 | 0.5714 | | 0.2075 | 67.98 | 340 | 0.2644 | 0.7760 | 0.9290 | 0.9397 | 0.4593 | 0.8056 | 0.9136 | 0.9349 | 0.5682 | | 0.2049 | 69.98 | 350 | 0.2648 | 0.7768 | 0.9290 | 0.9390 | 0.4623 | 0.8050 | 0.9174 | 0.9292 | 0.5685 | | 0.2016 | 71.98 | 360 | 0.2631 | 0.7771 | 0.9295 | 0.9394 | 0.4623 | 0.8055 | 0.9165 | 0.9316 | 0.5685 | | 0.1979 | 73.98 | 370 | 0.2644 | 0.7793 | 0.9305 | 0.9397 | 0.4677 | 0.8041 | 0.9208 | 0.9295 | 0.5620 | | 0.1939 | 75.98 | 380 | 0.2671 | 0.7909 | 0.9312 | 0.9392 | 0.5023 | 0.8099 | 0.9272 | 0.9256 | 0.5771 | | 0.1932 | 77.98 | 390 | 0.2648 | 0.7927 | 0.9325 | 0.9422 | 0.5035 | 0.8104 | 0.9242 | 0.9361 | 0.5709 | | 0.1856 | 79.98 | 400 | 0.2615 | 0.7922 | 0.9331 | 0.9431 | 0.5004 | 0.8111 | 0.9235 | 0.9379 | 0.5719 | | 0.1837 | 81.98 | 410 | 0.2624 | 0.7898 | 0.9328 | 0.9447 | 0.4920 | 0.8141 | 0.9183 | 0.9432 | 0.5808 | | 0.1781 | 83.98 | 420 | 0.2660 | 0.7988 | 0.9334 | 0.9432 | 0.5196 | 0.8128 | 0.9263 | 0.9388 | 0.5733 | | 0.172 | 85.98 | 430 | 0.2642 | 0.7909 | 0.9335 | 0.9428 | 0.4964 | 0.8139 | 0.9234 | 0.9353 | 0.5829 | | 0.172 | 87.98 | 440 | 0.2695 | 0.7880 | 0.9321 | 0.9430 | 0.4889 | 0.8121 | 0.9172 | 0.9422 | 0.5771 | | 0.1656 | 89.98 | 450 | 0.2671 | 0.7928 | 0.9337 | 0.9436 | 0.5012 | 0.8145 | 0.9212 | 0.9411 | 0.5811 | | 0.163 | 91.98 | 460 | 0.2693 | 0.7949 | 0.9331 | 0.9429 | 0.5088 | 0.8111 | 0.9232 | 0.9408 | 0.5692 | | 0.1555 | 93.98 | 470 | 0.2696 | 0.7967 | 0.9332 | 0.9431 | 0.5138 | 0.8142 | 0.9203 | 0.9449 | 0.5776 | | 0.1513 | 95.98 | 480 | 0.2710 | 0.7985 | 0.9340 | 0.9443 | 0.5172 | 0.8156 | 0.9220 | 0.9450 | 0.5798 | | 0.1478 | 97.98 | 490 | 0.2722 | 0.7991 | 0.9342 | 0.9442 | 0.5189 | 0.8138 | 0.9243 | 0.9436 | 0.5736 | | 0.1435 | 99.98 | 500 | 0.2725 | 0.7981 | 0.9343 | 0.9432 | 0.5166 | 0.8124 | 0.9248 | 0.9424 | 0.57 | | 0.1409 | 101.98 | 510 | 0.2754 | 0.7994 | 0.9345 | 0.9432 | 0.5206 | 0.8161 | 0.9231 | 0.9433 | 0.5819 | | 0.1384 | 103.98 | 520 | 0.2817 | 0.7991 | 0.9347 | 0.9441 | 0.5184 | 0.8166 | 0.9233 | 0.9436 | 0.5828 | | 0.1333 | 105.98 | 530 | 0.2833 | 0.7934 | 0.9351 | 0.9434 | 0.5016 | 0.8178 | 0.9232 | 0.9380 | 0.5921 | | 0.1267 | 107.98 | 540 | 0.2929 | 0.7884 | 0.9337 | 0.9429 | 0.4886 | 0.8167 | 0.9198 | 0.9377 | 0.5925 | | 0.1234 | 109.98 | 550 | 0.2879 | 0.7978 | 0.9347 | 0.9423 | 0.5166 | 0.8156 | 0.9277 | 0.9345 | 0.5846 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
Formzu/bert-base-japanese-jsnli
Formzu
2022-10-18T03:13:20Z
59
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "zero-shot-classification", "nli", "ja", "dataset:JSNLI", "license:cc-by-sa-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-14T07:50:13Z
--- language: - ja license: cc-by-sa-4.0 tags: - zero-shot-classification - text-classification - nli - pytorch metrics: - accuracy datasets: - JSNLI pipeline_tag: text-classification widget: - text: "あなたが好きです。 あなたを愛しています。" model-index: - name: bert-base-japanese-jsnli results: - task: type: text-classification name: Natural Language Inference dataset: type: snli name: JSNLI split: dev metrics: - type: accuracy value: 0.9288 verified: false --- # bert-base-japanese-jsnli This model is a fine-tuned version of [cl-tohoku/bert-base-japanese-v2](https://huggingface.co/cl-tohoku/bert-base-japanese-v2) on the [JSNLI](https://nlp.ist.i.kyoto-u.ac.jp/?%E6%97%A5%E6%9C%AC%E8%AA%9ESNLI%28JSNLI%29%E3%83%87%E3%83%BC%E3%82%BF%E3%82%BB%E3%83%83%E3%83%88) dataset. It achieves the following results on the evaluation set: - Loss: 0.2085 - Accuracy: 0.9288 ### How to use the model #### Simple zero-shot classification pipeline ```python from transformers import pipeline classifier = pipeline("zero-shot-classification", model="Formzu/bert-base-japanese-jsnli") sequence_to_classify = "いつか世界を見る。" candidate_labels = ['旅行', '料理', '踊り'] out = classifier(sequence_to_classify, candidate_labels, hypothesis_template="この例は{}です。") print(out) #{'sequence': 'いつか世界を見る。', # 'labels': ['旅行', '料理', '踊り'], # 'scores': [0.6758995652198792, 0.22110949456691742, 0.1029909998178482]} ``` #### NLI use-case ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") model_name = "Formzu/bert-base-japanese-jsnli" model = AutoModelForSequenceClassification.from_pretrained(model_name).to(device) tokenizer = AutoTokenizer.from_pretrained(model_name) premise = "いつか世界を見る。" label = '旅行' hypothesis = f'この例は{label}です。' input = tokenizer.encode(premise, hypothesis, return_tensors='pt').to(device) with torch.no_grad(): logits = model(input)["logits"][0] probs = logits.softmax(dim=-1) print(probs.cpu().numpy(), logits.cpu().numpy()) #[0.68940836 0.29482093 0.01577068] [ 1.7791482 0.92968255 -1.998533 ] ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | | :-----------: | :---: | :---: | :-------------: | :------: | | 0.4054 | 1.0 | 16657 | 0.2141 | 0.9216 | | 0.3297 | 2.0 | 33314 | 0.2145 | 0.9236 | | 0.2645 | 3.0 | 49971 | 0.2085 | 0.9288 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu116 - Datasets 2.4.0 - Tokenizers 0.12.1
joelb/custom-handler-tutorial
joelb
2022-10-18T02:23:12Z
3
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "emotion", "endpoints-template", "en", "dataset:emotion", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-18T02:21:57Z
--- language: - en tags: - text-classification - emotion - endpoints-template license: apache-2.0 datasets: - emotion metrics: - Accuracy, F1 Score --- # Fork of [bhadresh-savani/distilbert-base-uncased-emotion](https://huggingface.co/bhadresh-savani/distilbert-base-uncased-emotion)
teacookies/autotrain-17102022-update_scope_and_date-1789062099
teacookies
2022-10-18T01:53:54Z
13
0
transformers
[ "transformers", "pytorch", "autotrain", "token-classification", "unk", "dataset:teacookies/autotrain-data-17102022-update_scope_and_date", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
token-classification
2022-10-18T01:42:37Z
--- tags: - autotrain - token-classification language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - teacookies/autotrain-data-17102022-update_scope_and_date co2_eq_emissions: emissions: 19.692537664708304 --- # Model Trained Using AutoTrain - Problem type: Entity Extraction - Model ID: 1789062099 - CO2 Emissions (in grams): 19.6925 ## Validation Metrics - Loss: 0.029 - Accuracy: 0.992 - Precision: 0.777 - Recall: 0.826 - F1: 0.801 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/teacookies/autotrain-17102022-update_scope_and_date-1789062099 ``` Or Python API: ``` from transformers import AutoModelForTokenClassification, AutoTokenizer model = AutoModelForTokenClassification.from_pretrained("teacookies/autotrain-17102022-update_scope_and_date-1789062099", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("teacookies/autotrain-17102022-update_scope_and_date-1789062099", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
althoughh/distilroberta-base-finetuned-wikitext2
althoughh
2022-10-18T01:23:37Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-10-18T01:13:11Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilroberta-base-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-finetuned-wikitext2 This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7037 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 251 | 1.7837 | | 2.0311 | 2.0 | 502 | 1.7330 | | 2.0311 | 3.0 | 753 | 1.7085 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
corgi777/distilbert-base-uncased-finetuned-emotion
corgi777
2022-10-18T01:00:21Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-18T00:07:51Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.926 - name: F1 type: f1 value: 0.9262012280043272 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2135 - Accuracy: 0.926 - F1: 0.9262 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 250 | 0.2996 | 0.915 | 0.9124 | | No log | 2.0 | 500 | 0.2135 | 0.926 | 0.9262 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
KarelDO/gpt2.CEBaB_confounding.price_food_ambiance_negative.absa.5-class.seed_42
KarelDO
2022-10-18T00:17:54Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "generated_from_trainer", "en", "dataset:OpenTable", "license:mit", "model-index", "text-generation-inference", "endpoints_compatible", "region:us" ]
null
2022-10-18T00:13:32Z
--- language: - en license: mit tags: - generated_from_trainer datasets: - OpenTable metrics: - accuracy model-index: - name: gpt2.CEBaB_confounding.price_food_ambiance_negative.absa.5-class.seed_42 results: - task: name: Text Classification type: text-classification dataset: name: OpenTable OPENTABLE-ABSA type: OpenTable args: opentable-absa metrics: - name: Accuracy type: accuracy value: 0.8310893512851897 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2.CEBaB_confounding.price_food_ambiance_negative.absa.5-class.seed_42 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the OpenTable OPENTABLE-ABSA dataset. It achieves the following results on the evaluation set: - Loss: 0.4726 - Accuracy: 0.8311 - Macro-f1: 0.8295 - Weighted-macro-f1: 0.8313 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.2+cu102 - Datasets 2.5.2 - Tokenizers 0.12.1
MrBananaHuman/re_generator
MrBananaHuman
2022-10-17T23:26:07Z
7
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-20T13:43:52Z
important_labels = { "no_relation":"관계 없음", "per:employee_of":"고용", "org:member_of":"소속", "org:place_of_headquarters":"장소", "org:top_members/employees":"대표", "per:origin":"출신", "per:title":"직업", "per:colleagues":"동료", "org:members":"소속", "org:alternate_names":"본명", "per:place_of_residence":"거주지" } https://colab.research.google.com/drive/1K3lygU6BBLsFwI99JNaX8BauH7vgUsv9?authuser=1#scrollTo=h8-68Ko_pKpJ
MrBananaHuman/ko_en_translator
MrBananaHuman
2022-10-17T23:24:40Z
11
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-29T04:39:37Z
https://colab.research.google.com/drive/1AD96dq3y0s2MSzWKgCpI9-oHMpzsbyR2?authuser=1
sd-concepts-library/ghost-style
sd-concepts-library
2022-10-17T23:08:16Z
0
2
null
[ "license:mit", "region:us" ]
null
2022-10-17T23:08:12Z
--- license: mit --- ### GHOST style on Stable Diffusion This is the `<ghost>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<ghost> 0](https://huggingface.co/sd-concepts-library/ghost-style/resolve/main/concept_images/2.jpeg) ![<ghost> 1](https://huggingface.co/sd-concepts-library/ghost-style/resolve/main/concept_images/0.jpeg) ![<ghost> 2](https://huggingface.co/sd-concepts-library/ghost-style/resolve/main/concept_images/1.jpeg) ![<ghost> 3](https://huggingface.co/sd-concepts-library/ghost-style/resolve/main/concept_images/3.jpeg) ![<ghost> 4](https://huggingface.co/sd-concepts-library/ghost-style/resolve/main/concept_images/4.jpeg)
facebook/textless_sm_sl_es
facebook
2022-10-17T23:07:22Z
4
0
fairseq
[ "fairseq", "audio", "audio-to-audio", "speech-to-speech-translation", "license:cc-by-nc-4.0", "region:us" ]
audio-to-audio
2022-10-16T01:24:02Z
--- library_name: fairseq task: audio-to-audio tags: - fairseq - audio - audio-to-audio - speech-to-speech-translation license: cc-by-nc-4.0 --- You can try out the model on the right of the page by uploading or recording. For model usage, please refer to https://huggingface.co/facebook/textless_sm_cs_en
facebook/textless_sm_ro_es
facebook
2022-10-17T23:07:05Z
2
0
fairseq
[ "fairseq", "audio", "audio-to-audio", "speech-to-speech-translation", "license:cc-by-nc-4.0", "region:us" ]
audio-to-audio
2022-10-16T01:23:48Z
--- library_name: fairseq task: audio-to-audio tags: - fairseq - audio - audio-to-audio - speech-to-speech-translation license: cc-by-nc-4.0 --- You can try out the model on the right of the page by uploading or recording. For model usage, please refer to https://huggingface.co/facebook/textless_sm_cs_en
facebook/textless_sm_hu_es
facebook
2022-10-17T23:06:35Z
4
0
fairseq
[ "fairseq", "audio", "audio-to-audio", "speech-to-speech-translation", "license:cc-by-nc-4.0", "region:us" ]
audio-to-audio
2022-10-16T01:23:20Z
--- library_name: fairseq task: audio-to-audio tags: - fairseq - audio - audio-to-audio - speech-to-speech-translation license: cc-by-nc-4.0 --- You can try out the model on the right of the page by uploading or recording. For model usage, please refer to https://huggingface.co/facebook/textless_sm_cs_en
facebook/textless_sm_de_es
facebook
2022-10-17T23:05:53Z
2
0
fairseq
[ "fairseq", "audio", "audio-to-audio", "speech-to-speech-translation", "license:cc-by-nc-4.0", "region:us" ]
audio-to-audio
2022-10-16T01:22:09Z
--- library_name: fairseq task: audio-to-audio tags: - fairseq - audio - audio-to-audio - speech-to-speech-translation license: cc-by-nc-4.0 --- You can try out the model on the right of the page by uploading or recording. For model usage, please refer to https://huggingface.co/facebook/textless_sm_cs_en
facebook/unit_hifigan_mhubert_vp_en_es_fr_it3_400k_layer11_km1000_es_css10
facebook
2022-10-17T22:56:56Z
4
0
fairseq
[ "fairseq", "audio", "text-to-speech", "en", "dataset:mtedx", "dataset:covost2", "dataset:europarl_st", "dataset:voxpopuli", "license:cc-by-nc-4.0", "region:us" ]
text-to-speech
2022-10-17T22:13:09Z
--- license: cc-by-nc-4.0 library_name: fairseq task: text-to-speech tags: - fairseq - audio - text-to-speech language: en datasets: - mtedx - covost2 - europarl_st - voxpopuli ---
KarelDO/lstm.CEBaB_confounding.food_service_positive.absa.5-class.seed_42
KarelDO
2022-10-17T22:33:06Z
6
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "en", "dataset:OpenTable", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-17T22:32:21Z
--- language: - en tags: - generated_from_trainer datasets: - OpenTable metrics: - accuracy model-index: - name: lstm.CEBaB_confounding.food_service_positive.absa.5-class.seed_42 results: - task: name: Text Classification type: text-classification dataset: name: OpenTable OPENTABLE-ABSA type: OpenTable args: opentable-absa metrics: - name: Accuracy type: accuracy value: 0.7223582211342309 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # lstm.CEBaB_confounding.food_service_positive.absa.5-class.seed_42 This model is a fine-tuned version of [lstm](https://huggingface.co/lstm) on the OpenTable OPENTABLE-ABSA dataset. It achieves the following results on the evaluation set: - Loss: 0.9910 - Accuracy: 0.7224 - Macro-f1: 0.7183 - Weighted-macro-f1: 0.7238 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.2+cu102 - Datasets 2.5.2 - Tokenizers 0.12.1
facebook/textless_sm_en_es
facebook
2022-10-17T22:20:01Z
4
1
fairseq
[ "fairseq", "audio", "audio-to-audio", "speech-to-speech-translation", "license:cc-by-nc-4.0", "region:us" ]
audio-to-audio
2022-10-16T01:22:35Z
--- library_name: fairseq task: audio-to-audio tags: - fairseq - audio - audio-to-audio - speech-to-speech-translation license: cc-by-nc-4.0 --- You can try out the model on the right of the page by uploading or recording. For model usage, please refer to https://huggingface.co/facebook/textless_sm_cs_en
facebook/textless_sm_pt_fr
facebook
2022-10-17T22:11:52Z
3
1
fairseq
[ "fairseq", "audio", "audio-to-audio", "speech-to-speech-translation", "license:cc-by-nc-4.0", "region:us" ]
audio-to-audio
2022-10-16T01:21:36Z
--- library_name: fairseq task: audio-to-audio tags: - fairseq - audio - audio-to-audio - speech-to-speech-translation license: cc-by-nc-4.0 --- You can try out the model on the right of the page by uploading or recording. For model usage, please refer to https://huggingface.co/facebook/textless_sm_cs_en
facebook/textless_sm_hr_fr
facebook
2022-10-17T22:11:14Z
5
0
fairseq
[ "fairseq", "audio", "audio-to-audio", "speech-to-speech-translation", "license:cc-by-nc-4.0", "region:us" ]
audio-to-audio
2022-10-16T01:20:59Z
--- library_name: fairseq task: audio-to-audio tags: - fairseq - audio - audio-to-audio - speech-to-speech-translation license: cc-by-nc-4.0 --- You can try out the model on the right of the page by uploading or recording. For model usage, please refer to https://huggingface.co/facebook/textless_sm_cs_en
facebook/textless_sm_cs_fr
facebook
2022-10-17T22:09:15Z
9
1
fairseq
[ "fairseq", "audio", "audio-to-audio", "speech-to-speech-translation", "license:cc-by-nc-4.0", "region:us" ]
audio-to-audio
2022-10-15T05:14:37Z
--- library_name: fairseq task: audio-to-audio tags: - fairseq - audio - audio-to-audio - speech-to-speech-translation license: cc-by-nc-4.0 --- You can try out the model on the right of the page by uploading or recording. For model usage, please refer to https://huggingface.co/facebook/textless_sm_cs_en
Kateryna/eva_ru_forum_headlines
Kateryna
2022-10-17T21:44:55Z
8
1
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "ru", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-20T00:00:24Z
--- language: - ru widget: - text: "Цель одна - истребление как можно больше славянских народов. На очереди поляки, они тоже славяне, их тоже на утилизировать. Это Цель НАТО. Ну и заодно разрушение экономики ЕС, ну и Китай дот кучи под плинтус загнать." - text: "Дочке 15, книг не читает, вся жизнь (вне школы) в телефоне на кровати. Любознательности ноль. Куда-то поехать в новое место, узнать что-то, найти интересные курсы - вообще не про нее. Учеба все хуже, багажа знаний уже нет, списывает и выкручивается в течение четверти, как контрольная или что-то посерьезнее, где не списать - на 2-3. При любой возможности не ходит в школу (голова болит, можно сегодня не пойду. а потом пятница, что на один день ходить...)" - "Ребёнок учится в 8 классе. По алгебре одни тройки. Но это точно 2. Просто учитель не будет ставить в четверти 2. Она гуманитарий. Алгебра никак не идёт. Репетитор сейчас занимается, понимает только лёгкие темы. Я боюсь, что провалит ОГЭ. Там пересдать можно? А если опять 2,это второй год?" --- # eva_ru_forum_headlines ## Model Description The model was trained on forum topics names and first posts (100 - 150 words). It generates short headlines (3 - 5 words) in the opposite to headlines from models trained on newspaper articles. "I do not know how to title this post" can be a valid headline. "What would you do in my place?" is one of the most popular headline. ### Usage ```python from transformers import AutoTokenizer, T5ForConditionalGeneration model_name = "Kateryna/eva_ru_forum_headlines" tokenizer = AutoTokenizer.from_pretrained(model_name) model = T5ForConditionalGeneration.from_pretrained(model_name) text = "Я влюбилась в одного парня. Каждый раз, когда он меня видит, он плюется и переходит на другую сторону улицы. Как вы думаете, он меня любит?" input_ids = tokenizer( [text], max_length=150, add_special_tokens=True, padding="max_length", truncation=True, return_tensors="pt" )["input_ids"] output_ids = model.generate( input_ids=input_ids, max_length=25, num_beams=4, repetition_penalty=5.0, no_repeat_ngram_size=4 )[0] headline = tokenizer.decode(output_ids, skip_special_tokens=True) print(headline) ``` ### Training and Validation Training dataset: https://huggingface.co/datasets/Kateryna/eva_ru_forum_headlines From all available posts and topics names I selected only posts and abstractive topic names e.g. the topic name does not match exactly anything in the correspondent post. The base model is cointegrated/rut5-base Training parameters: - max_source_tokens_count = 150 - max_target_tokens_count = 25 - learning_rate = 0.0007 - num_train_epochs = 3 - batch_size = 8 - gradient_accumulation_steps = 96 ROUGE and BLUE scores were not very helpful to choose a best model. I manually estimated ~100 results in each candidate model. 1. The less gradient_accumulation_steps the more abstractive headlines but they becomes less and less related to the correspondent posts. The worse model with gradient_accumulation_steps = 1 had all headlines abstractive but random. 2. The source for the model is real short texts created by ordinary persons without any editing. In many cases, the forum posts are not connected sentences and it is not clear what the author wanted to say or discuss. Sometimes there is a contradiction in the text and only the real topic name reveals what this all about. Naturally the model fails to produce a good headline in such cases. https://github.com/KaterynaD/eva.ru/tree/main/Code/Notebooks/9.%20Headlines
WonderingNut/TheNuts
WonderingNut
2022-10-17T21:38:06Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2022-10-17T21:38:06Z
--- license: creativeml-openrail-m ---
sd-concepts-library/mildemelwe-style
sd-concepts-library
2022-10-17T21:23:54Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-10-17T21:23:50Z
--- license: mit --- ### Mildemelwe style on Stable Diffusion This is the `<mildemelwe>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<mildemelwe> 0](https://huggingface.co/sd-concepts-library/mildemelwe-style/resolve/main/concept_images/2.jpeg) ![<mildemelwe> 1](https://huggingface.co/sd-concepts-library/mildemelwe-style/resolve/main/concept_images/0.jpeg) ![<mildemelwe> 2](https://huggingface.co/sd-concepts-library/mildemelwe-style/resolve/main/concept_images/1.jpeg) ![<mildemelwe> 3](https://huggingface.co/sd-concepts-library/mildemelwe-style/resolve/main/concept_images/3.jpeg) ![<mildemelwe> 4](https://huggingface.co/sd-concepts-library/mildemelwe-style/resolve/main/concept_images/4.jpeg)
facebook/textless_sm_en_fr
facebook
2022-10-17T20:59:45Z
3
0
fairseq
[ "fairseq", "audio", "audio-to-audio", "speech-to-speech-translation", "license:cc-by-nc-4.0", "region:us" ]
audio-to-audio
2022-10-16T01:20:06Z
--- library_name: fairseq task: audio-to-audio tags: - fairseq - audio - audio-to-audio - speech-to-speech-translation license: cc-by-nc-4.0 --- You can try out the model on the right of the page by uploading or recording. For model usage, please refer to https://huggingface.co/facebook/textless_sm_cs_en
ArafatBHossain/distilbert-base-uncased_fine_tuned_sent140
ArafatBHossain
2022-10-17T20:59:27Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-17T20:51:57Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased_fine_tuned_sent140 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased_fine_tuned_sent140 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0133 - Accuracy: 0.7674 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 408 | 0.6699 | 0.7807 | | 0.7334 | 2.0 | 816 | 0.7937 | 0.7781 | | 0.3584 | 3.0 | 1224 | 1.0133 | 0.7674 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
damilare-akin/test_worm
damilare-akin
2022-10-17T20:57:03Z
9
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Worm", "region:us" ]
reinforcement-learning
2022-10-17T19:48:45Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Worm library_name: ml-agents --- # **ppo** Agent playing **Worm** This is a trained model of a **ppo** agent playing **Worm** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Worm 2. Step 1: Write your model_id: damilare-akin/test_worm 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
ArafatBHossain/debert_base_fine_tuned_sent140
ArafatBHossain
2022-10-17T20:47:44Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "deberta", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-17T20:21:43Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: debert_base_fine_tuned_sent140 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # debert_base_fine_tuned_sent140 This model is a fine-tuned version of [microsoft/deberta-base](https://huggingface.co/microsoft/deberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9678 - Accuracy: 0.7647 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 408 | 0.8139 | 0.7219 | | 0.8198 | 2.0 | 816 | 0.7742 | 0.7460 | | 0.4479 | 3.0 | 1224 | 0.9678 | 0.7647 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
bwconrad/beit-base-patch16-224-pt22k-ft22k-dafre
bwconrad
2022-10-17T20:38:52Z
0
0
null
[ "arxiv:2101.08674", "license:apache-2.0", "region:us" ]
null
2022-10-17T17:26:30Z
--- license: apache-2.0 --- A BEiT-b/16 model fine-tuned for anime character classification on the [DAF:re dataset](https://arxiv.org/abs/2101.08674). Training code can be found [here](https://github.com/bwconrad/dafre). ## DAF:re Results | Top-1 Val Acc | Top-5 Val Acc | Top-1 Test Acc| Top-5 Test Acc| |:-------------:|:-------------:|:-------------:|:-------------:| | 95.26 | 98.38 | 94.84 | 98.30 |
ArafatBHossain/robbert_base_fine_tuned_sent140
ArafatBHossain
2022-10-17T19:59:55Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-17T19:46:11Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: robbert_base_fine_tuned_sent140 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # robbert_base_fine_tuned_sent140 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9218 - Accuracy: 0.7433 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 408 | 0.8129 | 0.7246 | | 0.9065 | 2.0 | 816 | 0.7640 | 0.7273 | | 0.5407 | 3.0 | 1224 | 0.9218 | 0.7433 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
heriosousa/LunarLander-v2
heriosousa
2022-10-17T19:47:50Z
0
0
null
[ "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-10-17T19:44:50Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -161.34 +/- 91.29 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. To learn to code your own PPO agent and train it Unit 8 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit8 # Hyperparameters ```python {'exp_name': '__file__' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'LunarLander-v2' 'total_timesteps': 50000 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'f': None 'repo_id': 'heriosousa/LunarLander-v2' 'batch_size': 512 'minibatch_size': 128} ```
heriosousa/ppo-CartPole-v1
heriosousa
2022-10-17T19:46:56Z
0
0
null
[ "tensorboard", "CartPole-v1", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-10-17T19:05:13Z
--- tags: - CartPole-v1 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 148.00 +/- 47.52 name: mean_reward verified: false --- # PPO Agent Playing CartPole-v1 This is a trained model of a PPO agent playing CartPole-v1. To learn to code your own PPO agent and train it Unit 8 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit8 # Hyperparameters ```python {'exp_name': '__file__' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'CartPole-v1' 'total_timesteps': 50000 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'f': '/root/.local/share/jupyter/runtime/kernel-9c96fe8c-041c-4681-aa25-a76703c94d0d.json' 'repo_id': 'heriosousa/ppo-CartPole-v1' 'batch_size': 512 'minibatch_size': 128} ```
kevinbror/faggyzz
kevinbror
2022-10-17T19:43:24Z
3
0
transformers
[ "transformers", "tf", "distilbert", "question-answering", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-10-17T19:43:14Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: faggyzz results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # faggyzz This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.6198 - Train End Logits Accuracy: 0.5843 - Train Start Logits Accuracy: 0.5459 - Validation Loss: 1.2514 - Validation End Logits Accuracy: 0.6603 - Validation Start Logits Accuracy: 0.6255 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2766, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 1.6198 | 0.5843 | 0.5459 | 1.2514 | 0.6603 | 0.6255 | 0 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.6.4 - Datasets 2.1.0 - Tokenizers 0.12.1
sd-concepts-library/starhavenmachinegods
sd-concepts-library
2022-10-17T19:30:08Z
0
6
null
[ "license:mit", "region:us" ]
null
2022-10-17T19:30:01Z
--- license: mit --- ### StarhavenMachineGods on Stable Diffusion This is the `<StarhavenMachineGods>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<StarhavenMachineGods> 0](https://huggingface.co/sd-concepts-library/starhavenmachinegods/resolve/main/concept_images/1.jpeg) ![<StarhavenMachineGods> 1](https://huggingface.co/sd-concepts-library/starhavenmachinegods/resolve/main/concept_images/2.jpeg) ![<StarhavenMachineGods> 2](https://huggingface.co/sd-concepts-library/starhavenmachinegods/resolve/main/concept_images/0.jpeg) ![<StarhavenMachineGods> 3](https://huggingface.co/sd-concepts-library/starhavenmachinegods/resolve/main/concept_images/4.jpeg) ![<StarhavenMachineGods> 4](https://huggingface.co/sd-concepts-library/starhavenmachinegods/resolve/main/concept_images/3.jpeg)
introduck/en_ner_vc_lg
introduck
2022-10-17T19:19:13Z
0
2
spacy
[ "spacy", "token-classification", "en", "license:mit", "endpoints_compatible", "region:us" ]
token-classification
2022-09-29T21:30:53Z
--- language: en license: mit tags: - spacy - token-classification --- English pipeline optimized for CPU. Components: ner.
pfr/utilitarian-roberta-01
pfr
2022-10-17T18:41:29Z
5
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "arxiv:2008.02275", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-22T20:49:32Z
--- inference: parameters: function_to_apply: "none" widget: - text: "I cuddled with my dog today." --- # Utilitarian Roberta 01 ## Model description This is a [Roberta model](https://huggingface.co/roberta-large) fine-tuned on for computing utility estimates of experiences, represented in first-person sentences. It was trained from human-annotated pairwise utility comparisons, from the [ETHICS dataset](https://arxiv.org/abs/2008.02275). ## Intended use The main use case is the computation of utility estimates of first-person text scenarios. ## Limitations The model was only trained on a limited number of scenarios, and only on first-person sentences. It does not have the capability of interpreting highly complex or unusual scenarios, and it does not have hard guarantees on its domain of accuracy. ## How to use The model receives a sentence describing a scenario in first-person, and outputs a scalar representing a utility estimate. ## Training data The training data is the train split from the Utilitarianism part of the [ETHICS dataset](https://arxiv.org/abs/2008.02275). ## Training procedure Training can be reproduced by executing the training procedure from [`tune.py`](https://github.com/hendrycks/ethics/blob/3e4c09259a1b4022607da093e9452383fc1bb7e3/utilitarianism/tune.py) as follows: ``` python tune.py --ngpus 1 --model roberta-large --learning_rate 1e-5 --batch_size 16 --nepochs 2 ``` ## Evaluation results The model achieves 90.8% accuracy on [The Moral Uncertainty Research Competition](https://moraluncertainty.mlsafety.org/), which consists of a subset of the ETHICS dataset.
pfr/utilitarian-deberta-01
pfr
2022-10-17T18:36:46Z
6
0
transformers
[ "transformers", "pytorch", "deberta-v2", "text-classification", "deberta-v3", "arxiv:2008.02275", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-23T03:33:34Z
--- tags: - deberta-v3 inference: parameters: function_to_apply: "none" widget: - text: "I cuddled with my dog today." --- # Utilitarian Deberta 01 ## Model description This is a [Deberta model](https://huggingface.co/microsoft/deberta-v3-large) fine-tuned on for computing utility estimates of experiences, represented in first-person sentences. It was trained from human-annotated pairwise utility comparisons, from the [ETHICS dataset](https://arxiv.org/abs/2008.02275). ## Intended use The main use case is the computation of utility estimates of first-person text scenarios. ## Limitations The model was only trained on a limited number of scenarios, and only on first-person sentences. It does not have the capability of interpreting highly complex or unusual scenarios, and it does not have hard guarantees on its domain of accuracy. ## How to use The model receives a sentence describing a scenario in first-person, and outputs a scalar representing a utility estimate. ## Training data The training data is the train split from the Utilitarianism part of the [ETHICS dataset](https://arxiv.org/abs/2008.02275). ## Training procedure Training can be reproduced by executing the training procedure from [`tune.py`](https://github.com/hendrycks/ethics/blob/3e4c09259a1b4022607da093e9452383fc1bb7e3/utilitarianism/tune.py) as follows: ``` python tune.py --ngpus 1 --model microsoft/deberta-v3-large --learning_rate 1e-5 --batch_size 16 --nepochs 2 ``` ## Evaluation results The model achieves 92.2% accuracy on [The Moral Uncertainty Research Competition](https://moraluncertainty.mlsafety.org/), which consists of a subset of the ETHICS dataset.
mrm8488/codebert-base-finetuned-stackoverflow-ner
mrm8488
2022-10-17T18:14:52Z
321
15
transformers
[ "transformers", "pytorch", "jax", "roberta", "token-classification", "en", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: en datasets: - https://aclanthology.org/2020.acl-main.443/ widget: - text: "I want to create a table and ListView or ArrayList for Android or javascript in Windows 10" license: mit --- # Codebert (base) fine-tuned this [dataset](https://aclanthology.org/2020.acl-main.443/) for NER ## Eval metrics eval_accuracy_score = 0.9430622955139325 eval_precision = 0.6047440699126092 eval_recall = 0.6100755667506297 eval_f1 = 0.607398119122257
sd-concepts-library/willy-hd
sd-concepts-library
2022-10-17T17:55:03Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-10-17T17:54:56Z
--- license: mit --- ### Willy-HD on Stable Diffusion This is the `<willy_character>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<willy_character> 0](https://huggingface.co/sd-concepts-library/willy-hd/resolve/main/concept_images/1.jpeg) ![<willy_character> 1](https://huggingface.co/sd-concepts-library/willy-hd/resolve/main/concept_images/2.jpeg) ![<willy_character> 2](https://huggingface.co/sd-concepts-library/willy-hd/resolve/main/concept_images/0.jpeg) ![<willy_character> 3](https://huggingface.co/sd-concepts-library/willy-hd/resolve/main/concept_images/4.jpeg) ![<willy_character> 4](https://huggingface.co/sd-concepts-library/willy-hd/resolve/main/concept_images/3.jpeg)
damilare-akin/testpyramidsrnd
damilare-akin
2022-10-17T16:53:49Z
10
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2022-10-17T16:53:41Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: damilare-akin/testpyramidsrnd 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
mrm8488/setfit-distiluse-base-multilingual-cased-v2-finetuned-amazon-reviews-multi-binary
mrm8488
2022-10-17T16:49:15Z
13
1
sentence-transformers
[ "sentence-transformers", "pytorch", "distilbert", "feature-extraction", "sentence-similarity", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-10-17T16:49:03Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 512 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 40 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 20, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 40, "warmup_steps": 4, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Dense({'in_features': 768, 'out_features': 512, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
pachi107/autotrain-ethos-sentiments-1790262080
pachi107
2022-10-17T16:30:55Z
100
0
transformers
[ "transformers", "pytorch", "autotrain", "text-classification", "en", "dataset:pachi107/autotrain-data-ethos-sentiments", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
text-classification
2022-10-17T16:29:43Z
--- tags: - autotrain - text-classification language: - en widget: - text: "I love AutoTrain 🤗" datasets: - pachi107/autotrain-data-ethos-sentiments co2_eq_emissions: emissions: 1.1703390276575862 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 1790262080 - CO2 Emissions (in grams): 1.1703 ## Validation Metrics - Loss: 0.469 - Accuracy: 0.830 - Precision: 0.856 - Recall: 0.841 - AUC: 0.898 - F1: 0.848 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/pachi107/autotrain-ethos-sentiments-1790262080 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("pachi107/autotrain-ethos-sentiments-1790262080", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("pachi107/autotrain-ethos-sentiments-1790262080", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
sd-concepts-library/zero
sd-concepts-library
2022-10-17T16:16:00Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-10-17T16:15:56Z
--- license: mit --- ### zero on Stable Diffusion This is the `<zero>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<zero> 0](https://huggingface.co/sd-concepts-library/zero/resolve/main/concept_images/1.jpeg) ![<zero> 1](https://huggingface.co/sd-concepts-library/zero/resolve/main/concept_images/2.jpeg) ![<zero> 2](https://huggingface.co/sd-concepts-library/zero/resolve/main/concept_images/0.jpeg) ![<zero> 3](https://huggingface.co/sd-concepts-library/zero/resolve/main/concept_images/4.jpeg) ![<zero> 4](https://huggingface.co/sd-concepts-library/zero/resolve/main/concept_images/3.jpeg)
wesleyaag/data2vec-squad-test
wesleyaag
2022-10-17T15:50:52Z
112
0
transformers
[ "transformers", "pytorch", "data2vec-text", "question-answering", "en", "dataset:squad", "endpoints_compatible", "region:us" ]
question-answering
2022-10-17T14:25:30Z
--- language: - en datasets: - squad model: - facebook/data2vec-text-base --- <h1>data2vec squad</h1> This is a testing fine tuned data2vec model in the squad dataset, any improvements and suggestions are welcome! <h3>Intended use</h3> Question Answering <h3>Training results</h3> <table> <thead> <tr> <th>Epoch</th> <th>Training Loss</th> <th>Validation Loss</th> </tr> </thead> <tbody> <tr> <td>1</td> <td><span style="font-family: Roboto, Noto, sans-serif; font-size: 14px; font-style: normal; font-weight: 400; text-align: right;">1.015800</span><br></td> <td><span style="font-family: Roboto, Noto, sans-serif; font-size: 14px; font-style: normal; font-weight: 400; text-align: right;">0.997690</span><br></td> </tr> <tr> <td>2</td> <td><span style="font-family: Roboto, Noto, sans-serif; font-size: 14px; font-style: normal; font-weight: 400; text-align: right;">0.804400</span></td> <td><span style="font-family: Roboto, Noto, sans-serif; font-size: 14px; font-style: normal; font-weight: 400; text-align: right;">0.950322</span><br></td> </tr> </tbody> </table> <h3>Hyperparameters</h3> <ul> <li>evaluation_strategy="epoch"</li> <li>learning_rate=2e-5</li> <li>per_device_train_batch_size=15</li> <li>per_device_eval_batch_size=15</li> <li>num_train_epochs=2</li> <li>weight_decay=0.01</li> </ul> <h3>Frameworks and libraries used:</h3> <ul> <li>transformers</li> <li>datasets</li> <li>evaluate</li> </ul>
ai-forever/scrabblegan-peter
ai-forever
2022-10-17T14:29:39Z
0
1
null
[ "PyTorch", "GAN", "Handwritten", "ru", "dataset:sberbank-ai/Peter", "license:mit", "region:us" ]
null
2022-10-17T13:01:47Z
--- language: - ru tags: - PyTorch - GAN - Handwritten datasets: - "sberbank-ai/Peter" license: mit --- This is a weights storage for models trained by [ScrabbleGAN](https://github.com/ai-forever/ScrabbleGAN)
Aubi0ne/layoutlmv3-finetuned-cord_100
Aubi0ne
2022-10-17T14:26:35Z
83
0
transformers
[ "transformers", "pytorch", "tensorboard", "layoutlmv3", "token-classification", "generated_from_trainer", "dataset:cord", "license:cc-by-nc-sa-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-10-17T12:37:24Z
--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer datasets: - cord metrics: - precision - recall - f1 - accuracy model-index: - name: layoutlmv3-finetuned-cord_100 results: - task: name: Token Classification type: token-classification dataset: name: cord type: cord args: cord metrics: - name: Precision type: precision value: 0.9174649963154016 - name: Recall type: recall value: 0.9318862275449101 - name: F1 type: f1 value: 0.9246193835870776 - name: Accuracy type: accuracy value: 0.9405772495755518 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layoutlmv3-finetuned-cord_100 This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the cord dataset. It achieves the following results on the evaluation set: - Loss: 0.2834 - Precision: 0.9175 - Recall: 0.9319 - F1: 0.9246 - Accuracy: 0.9406 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 5 - eval_batch_size: 5 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 2500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 4.17 | 250 | 1.0175 | 0.7358 | 0.7882 | 0.7611 | 0.8014 | | 1.406 | 8.33 | 500 | 0.5646 | 0.8444 | 0.8735 | 0.8587 | 0.8671 | | 1.406 | 12.5 | 750 | 0.3943 | 0.8950 | 0.9184 | 0.9065 | 0.9189 | | 0.3467 | 16.67 | 1000 | 0.3379 | 0.9138 | 0.9289 | 0.9213 | 0.9291 | | 0.3467 | 20.83 | 1250 | 0.2842 | 0.9189 | 0.9334 | 0.9261 | 0.9419 | | 0.1484 | 25.0 | 1500 | 0.2822 | 0.9233 | 0.9371 | 0.9302 | 0.9427 | | 0.1484 | 29.17 | 1750 | 0.2906 | 0.9168 | 0.9319 | 0.9243 | 0.9372 | | 0.0825 | 33.33 | 2000 | 0.2922 | 0.9183 | 0.9334 | 0.9258 | 0.9410 | | 0.0825 | 37.5 | 2250 | 0.2842 | 0.9154 | 0.9319 | 0.9236 | 0.9397 | | 0.0596 | 41.67 | 2500 | 0.2834 | 0.9175 | 0.9319 | 0.9246 | 0.9406 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
sd-concepts-library/logo-with-face-on-shield
sd-concepts-library
2022-10-17T14:21:39Z
0
18
null
[ "license:mit", "region:us" ]
null
2022-10-17T14:21:28Z
--- license: mit --- ### logo with face on shield on Stable Diffusion This is the `<logo-huizhang>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<logo-huizhang> 0](https://huggingface.co/sd-concepts-library/logo-with-face-on-shield/resolve/main/concept_images/1.jpeg) ![<logo-huizhang> 1](https://huggingface.co/sd-concepts-library/logo-with-face-on-shield/resolve/main/concept_images/2.jpeg) ![<logo-huizhang> 2](https://huggingface.co/sd-concepts-library/logo-with-face-on-shield/resolve/main/concept_images/0.jpeg) ![<logo-huizhang> 3](https://huggingface.co/sd-concepts-library/logo-with-face-on-shield/resolve/main/concept_images/4.jpeg) ![<logo-huizhang> 4](https://huggingface.co/sd-concepts-library/logo-with-face-on-shield/resolve/main/concept_images/6.jpeg) ![<logo-huizhang> 5](https://huggingface.co/sd-concepts-library/logo-with-face-on-shield/resolve/main/concept_images/5.jpeg) ![<logo-huizhang> 6](https://huggingface.co/sd-concepts-library/logo-with-face-on-shield/resolve/main/concept_images/3.jpeg)
airnicco8/xlm-roberta-en-it-de
airnicco8
2022-10-17T14:15:20Z
7
0
sentence-transformers
[ "sentence-transformers", "pytorch", "xlm-roberta", "feature-extraction", "sentence-similarity", "transformers", "english", "german", "italian", "nli", "text-classification", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-10-14T08:53:59Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers - english - german - italian - nli - text-classification --- # airnicco8/xlm-roberta-en-it-de This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. It is a student XLMRoBERTa model trained in order to have multilingual sentence embeddings for English, German and Italian. It can be fine-tuned for downstream tasks, such as: semantic similarity (example provided here), NLI and Text Classification. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('airnicco8/xlm-roberta-en-it-de') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('airnicco8/xlm-roberta-en-it-de') model = AutoModel.from_pretrained('airnicco8/xlm-roberta-en-it-de') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=airnicco8/xlm-roberta-en-it-de) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 6142 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MSELoss.MSELoss` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "eps": 1e-06, "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
teacookies/autotrain-171022-update_label2-1788462049
teacookies
2022-10-17T13:47:28Z
110
0
transformers
[ "transformers", "pytorch", "autotrain", "token-classification", "unk", "dataset:teacookies/autotrain-data-171022-update_label2", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
token-classification
2022-10-17T13:36:19Z
--- tags: - autotrain - token-classification language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - teacookies/autotrain-data-171022-update_label2 co2_eq_emissions: emissions: 19.661735872263936 --- # Model Trained Using AutoTrain - Problem type: Entity Extraction - Model ID: 1788462049 - CO2 Emissions (in grams): 19.6617 ## Validation Metrics - Loss: 0.031 - Accuracy: 0.991 - Precision: 0.755 - Recall: 0.812 - F1: 0.783 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/teacookies/autotrain-171022-update_label2-1788462049 ``` Or Python API: ``` from transformers import AutoModelForTokenClassification, AutoTokenizer model = AutoModelForTokenClassification.from_pretrained("teacookies/autotrain-171022-update_label2-1788462049", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("teacookies/autotrain-171022-update_label2-1788462049", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
ViktorDo/DistilBERT-POWO_Climber_Finetuned
ViktorDo
2022-10-17T13:03:15Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-17T12:20:47Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: DistilBERT-POWO_Climber_Finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # DistilBERT-POWO_Climber_Finetuned This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1011 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.1002 | 1.0 | 2133 | 0.1022 | | 0.0822 | 2.0 | 4266 | 0.0941 | | 0.0769 | 3.0 | 6399 | 0.1011 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
teacookies/autotrain-17102022-cert_update_date-1786462003
teacookies
2022-10-17T12:34:15Z
109
0
transformers
[ "transformers", "pytorch", "autotrain", "token-classification", "unk", "dataset:teacookies/autotrain-data-17102022-cert_update_date", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
token-classification
2022-10-17T12:23:09Z
--- tags: - autotrain - token-classification language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - teacookies/autotrain-data-17102022-cert_update_date co2_eq_emissions: emissions: 18.37074974959855 --- # Model Trained Using AutoTrain - Problem type: Entity Extraction - Model ID: 1786462003 - CO2 Emissions (in grams): 18.3707 ## Validation Metrics - Loss: 0.019 - Accuracy: 0.995 - Precision: 0.835 - Recall: 0.867 - F1: 0.851 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/teacookies/autotrain-17102022-cert_update_date-1786462003 ``` Or Python API: ``` from transformers import AutoModelForTokenClassification, AutoTokenizer model = AutoModelForTokenClassification.from_pretrained("teacookies/autotrain-17102022-cert_update_date-1786462003", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("teacookies/autotrain-17102022-cert_update_date-1786462003", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
ner4archives/fr_ner4archives_v3_with_vectors
ner4archives
2022-10-17T12:32:56Z
30
0
spacy
[ "spacy", "token-classification", "fr", "model-index", "region:us" ]
token-classification
2022-10-14T12:41:47Z
--- widget: - text: "415 Lyon Lettres de rémission accordées à Denis Fromant, marinier, pour meurtre commis à Saint-Haon 1, au pays de Roannais, sur la personne de Driet Cantin qui l'accusait d'avoir maltraité un de ses pages et de l'avoir dépouillé d'une jument (Fol 145 v°, n° 415) Septembre 1501." example_title: "FRAN_IR_000061" - text: "BB/29/988 page 143 Penne (Lot-et-Garronne) 14 décembre 1822. BB/29/988 page 145 Billom (Puy-de-Dôme) 11 janvier 1823." example_title: "FRAN_IR_050370" tags: - spacy - token-classification language: - fr model-index: - name: fr_ner4archives_v3_with_vectors results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 0.8829593693 - name: NER Recall type: recall value: 0.8489795918 - name: NER F Score type: f_score value: 0.8656361474 --- | Feature | Description | | --- | --- | | **Name** | `fr_ner4archives_v3_with_vectors` | | **Version** | `0.0.0` | | **spaCy** | `>=3.4.1,<3.5.0` | | **Default Pipeline** | `tok2vec`, `ner` | | **Components** | `tok2vec`, `ner` | | **Vectors** | 500000 keys, 500000 unique vectors (300 dimensions) | | **Sources** | French corpus for the NER task composed of finding aids in XML-EAD ​​from the National Archives of France (v. 3.0) - [Check corpus version on GitHub](https://github.com/NER4Archives-project/Corpus_TrainingData) | | **License** | CC-BY-4.0 license | | **Author** | [Archives nationales]() / [Inria-Almanach]() | ### Label Scheme <details> <summary>View label scheme (5 labels for 1 components)</summary> | Component | Labels | | --- | --- | | **`ner`** | `EVENT`, `LOCATION`, `ORGANISATION`, `PERSON`, `TITLE` | </details> ### Accuracy | Type | Score | | --- | --- | | `ENTS_F` | 86.56 | | `ENTS_P` | 88.30 | | `ENTS_R` | 84.90 | | `TOK2VEC_LOSS` | 13527.63 | | `NER_LOSS` | 58805.82 |
ner4archives/fr_ner4archives_v3_default
ner4archives
2022-10-17T12:31:01Z
29
0
spacy
[ "spacy", "token-classification", "fr", "model-index", "region:us" ]
token-classification
2022-10-07T16:34:00Z
--- widget: - text: "415 Lyon Lettres de rémission accordées à Denis Fromant, marinier, pour meurtre commis à Saint-Haon 1, au pays de Roannais, sur la personne de Driet Cantin qui l'accusait d'avoir maltraité un de ses pages et de l'avoir dépouillé d'une jument (Fol 145 v°, n° 415) Septembre 1501." example_title: "FRAN_IR_000061" - text: "BB/29/988 page 143 Penne (Lot-et-Garronne) 14 décembre 1822. BB/29/988 page 145 Billom (Puy-de-Dôme) 11 janvier 1823." example_title: "FRAN_IR_050370" tags: - spacy - token-classification language: - fr model-index: - name: fr_ner4archives_v3_default results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 0.8390532544 - name: NER Recall type: recall value: 0.8268221574 - name: NER F Score type: f_score value: 0.8328928047 --- | Feature | Description | | --- | --- | | **Name** | `fr_ner4archives_v3_default` | | **Version** | `0.0.0` | | **spaCy** | `>=3.4.1,<3.5.0` | | **Default Pipeline** | `tok2vec`, `ner` | | **Components** | `tok2vec`, `ner` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | French corpus for the NER task composed of finding aids in XML-EAD ​​from the National Archives of France (v. 3.0) - [Check corpus version on GitHub](https://github.com/NER4Archives-project/Corpus_TrainingData) | | **License** | CC-BY-4.0 license | | **Author** | [Archives nationales]() / [Inria-Almanach]() | ### Label Scheme <details> <summary>View label scheme (5 labels for 1 components)</summary> | Component | Labels | | --- | --- | | **`ner`** | `EVENT`, `LOCATION`, `ORGANISATION`, `PERSON`, `TITLE` | </details> ### Accuracy | Type | Score | | --- | --- | | `ENTS_F` | 83.29 | | `ENTS_P` | 83.91 | | `ENTS_R` | 82.68 | | `TOK2VEC_LOSS` | 68553.28 | | `NER_LOSS` | 18164.88 |
ner4archives/fr_ner4archives_V3_camembert_base
ner4archives
2022-10-17T12:26:27Z
7
1
spacy
[ "spacy", "token-classification", "fr", "model-index", "region:us" ]
token-classification
2022-10-14T16:03:05Z
--- widget: - text: "415 Lyon Lettres de rémission accordées à Denis Fromant, marinier, pour meurtre commis à Saint-Haon 1, au pays de Roannais, sur la personne de Driet Cantin qui l'accusait d'avoir maltraité un de ses pages et de l'avoir dépouillé d'une jument (Fol 145 v°, n° 415) Septembre 1501." example_title: "FRAN_IR_000061" - text: "BB/29/988 page 143 Penne (Lot-et-Garronne) 14 décembre 1822. BB/29/988 page 145 Billom (Puy-de-Dôme) 11 janvier 1823." example_title: "FRAN_IR_050370" tags: - spacy - token-classification language: - fr model-index: - name: fr_ner4archives_V3_camembert_base results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 0.916087963 - name: NER Recall type: recall value: 0.92303207 - name: NER F Score type: f_score value: 0.9195469068 --- | Feature | Description | | --- | --- | | **Name** | `fr_ner4archives_V3_camembert_base` | | **Version** | `0.0.0` | | **spaCy** | `>=3.4.1,<3.5.0` | | **Default Pipeline** | `transformer`, `ner` | | **Components** | `transformer`, `ner` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | French corpus for the NER task composed of finding aids in XML-EAD ​​from the National Archives of France (v. 3.0) - [Check corpus version on GitHub](https://github.com/NER4Archives-project/Corpus_TrainingData) | | **License** | CC-BY-4.0 license | | **Author** | [Archives nationales]() / [Inria-Almanach]() | ### Label Scheme <details> <summary>View label scheme (5 labels for 1 components)</summary> | Component | Labels | | --- | --- | | **`ner`** | `EVENT`, `LOCATION`, `ORGANISATION`, `PERSON`, `TITLE` | </details> ### Accuracy | Type | Score | | --- | --- | | `ENTS_F` | 91.95 | | `ENTS_P` | 91.61 | | `ENTS_R` | 92.30 | | `TRANSFORMER_LOSS` | 395487.28 | | `NER_LOSS` | 11238.70 |
awacke1/autotrain-livespeechrecognitiontrainingmodelforautotrain-1786761991
awacke1
2022-10-17T12:04:36Z
110
1
transformers
[ "transformers", "pytorch", "autotrain", "summarization", "en", "dataset:awacke1/autotrain-data-livespeechrecognitiontrainingmodelforautotrain", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
summarization
2022-10-17T11:58:36Z
--- tags: - autotrain - summarization language: - en widget: - text: "I love AutoTrain 🤗" datasets: - awacke1/autotrain-data-livespeechrecognitiontrainingmodelforautotrain co2_eq_emissions: emissions: 8.5757611037491 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 1786761991 - CO2 Emissions (in grams): 8.5758 ## Validation Metrics - Loss: 0.862 - Rouge1: 30.920 - Rouge2: 19.860 - RougeL: 29.634 - RougeLsum: 29.933 - Gen Len: 16.839 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/awacke1/autotrain-livespeechrecognitiontrainingmodelforautotrain-1786761991 ```
philschmid/flair-ner-english-ontonotes-large
philschmid
2022-10-17T12:00:24Z
5
4
flair
[ "flair", "pytorch", "token-classification", "sequence-tagger-model", "endpoints-template", "en", "dataset:ontonotes", "arxiv:2011.06993", "endpoints_compatible", "region:us" ]
token-classification
2022-10-13T11:14:03Z
--- tags: - flair - token-classification - sequence-tagger-model - endpoints-template language: en datasets: - ontonotes widget: - text: "On September 1st George won 1 dollar while watching Game of Thrones." --- # Fork of [flair/ner-english-ontonotes-large](https://huggingface.co/flair/ner-english-ontonotes-large) > This is fork of [flair/ner-english-ontonotes-large](https://huggingface.co/flair/ner-english-ontonotes-large) implementing a custom `handler.py` as an example for how to use `flair` models with [inference-endpoints](https://hf.co/inference-endpoints) ## English NER in Flair (Ontonotes large model) This is the large 18-class NER model for English that ships with [Flair](https://github.com/flairNLP/flair/). F1-Score: **90.93** (Ontonotes) Predicts 18 tags: | **tag** | **meaning** | |---------------------------------|-----------| | CARDINAL | cardinal value | | DATE | date value | | EVENT | event name | | FAC | building name | | GPE | geo-political entity | | LANGUAGE | language name | | LAW | law name | | LOC | location name | | MONEY | money name | | NORP | affiliation | | ORDINAL | ordinal value | | ORG | organization name | | PERCENT | percent value | | PERSON | person name | | PRODUCT | product name | | QUANTITY | quantity value | | TIME | time value | | WORK_OF_ART | name of work of art | Based on document-level XLM-R embeddings and [FLERT](https://arxiv.org/pdf/2011.06993v1.pdf/). --- ### Demo: How to use in Flair Requires: **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`) ```python from flair.data import Sentence from flair.models import SequenceTagger # load tagger tagger = SequenceTagger.load("flair/ner-english-ontonotes-large") # make example sentence sentence = Sentence("On September 1st George won 1 dollar while watching Game of Thrones.") # predict NER tags tagger.predict(sentence) # print sentence print(sentence) # print predicted NER spans print('The following NER tags are found:') # iterate over entities and print for entity in sentence.get_spans('ner'): print(entity) ``` This yields the following output: ``` Span [2,3]: "September 1st" [− Labels: DATE (1.0)] Span [4]: "George" [− Labels: PERSON (1.0)] Span [6,7]: "1 dollar" [− Labels: MONEY (1.0)] Span [10,11,12]: "Game of Thrones" [− Labels: WORK_OF_ART (1.0)] ``` So, the entities "*September 1st*" (labeled as a **date**), "*George*" (labeled as a **person**), "*1 dollar*" (labeled as a **money**) and "Game of Thrones" (labeled as a **work of art**) are found in the sentence "*On September 1st George Washington won 1 dollar while watching Game of Thrones*". --- ### Training: Script to train this model The following Flair script was used to train this model: ```python from flair.data import Corpus from flair.datasets import ColumnCorpus from flair.embeddings import WordEmbeddings, StackedEmbeddings, FlairEmbeddings # 1. load the corpus (Ontonotes does not ship with Flair, you need to download and reformat into a column format yourself) corpus: Corpus = ColumnCorpus( "resources/tasks/onto-ner", column_format={0: "text", 1: "pos", 2: "upos", 3: "ner"}, tag_to_bioes="ner", ) # 2. what tag do we want to predict? tag_type = 'ner' # 3. make the tag dictionary from the corpus tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type) # 4. initialize fine-tuneable transformer embeddings WITH document context from flair.embeddings import TransformerWordEmbeddings embeddings = TransformerWordEmbeddings( model='xlm-roberta-large', layers="-1", subtoken_pooling="first", fine_tune=True, use_context=True, ) # 5. initialize bare-bones sequence tagger (no CRF, no RNN, no reprojection) from flair.models import SequenceTagger tagger = SequenceTagger( hidden_size=256, embeddings=embeddings, tag_dictionary=tag_dictionary, tag_type='ner', use_crf=False, use_rnn=False, reproject_embeddings=False, ) # 6. initialize trainer with AdamW optimizer from flair.trainers import ModelTrainer trainer = ModelTrainer(tagger, corpus, optimizer=torch.optim.AdamW) # 7. run training with XLM parameters (20 epochs, small LR) from torch.optim.lr_scheduler import OneCycleLR trainer.train('resources/taggers/ner-english-ontonotes-large', learning_rate=5.0e-6, mini_batch_size=4, mini_batch_chunk_size=1, max_epochs=20, scheduler=OneCycleLR, embeddings_storage_mode='none', weight_decay=0., ) ``` --- ### Cite Please cite the following paper when using this model. ``` @misc{schweter2020flert, title={FLERT: Document-Level Features for Named Entity Recognition}, author={Stefan Schweter and Alan Akbik}, year={2020}, eprint={2011.06993}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` --- ### Issues? The Flair issue tracker is available [here](https://github.com/flairNLP/flair/issues/).
awacke1/autotrain-livespeechrecognitiontrainingmodelforautotrain-1786761993
awacke1
2022-10-17T12:00:06Z
104
0
transformers
[ "transformers", "pytorch", "autotrain", "summarization", "en", "dataset:awacke1/autotrain-data-livespeechrecognitiontrainingmodelforautotrain", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
summarization
2022-10-17T11:58:06Z
--- tags: - autotrain - summarization language: - en widget: - text: "I love AutoTrain 🤗" datasets: - awacke1/autotrain-data-livespeechrecognitiontrainingmodelforautotrain co2_eq_emissions: emissions: 2.5045014015569835 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 1786761993 - CO2 Emissions (in grams): 2.5045 ## Validation Metrics - Loss: 0.696 - Rouge1: 27.015 - Rouge2: 19.303 - RougeL: 25.245 - RougeLsum: 26.593 - Gen Len: 18.581 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/awacke1/autotrain-livespeechrecognitiontrainingmodelforautotrain-1786761993 ```
hisaoka/t5-large_dataset_radiology_20220912.tsv
hisaoka
2022-10-17T11:15:58Z
107
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-17T09:39:21Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: t5-large_dataset_radiology_20220912.tsv results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-large_dataset_radiology_20220912.tsv This model is a fine-tuned version of [t5-large](https://huggingface.co/t5-large) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu102 - Datasets 2.4.0 - Tokenizers 0.12.1
teacookies/autotrain-17102022_relabel-1786061945
teacookies
2022-10-17T11:03:23Z
111
0
transformers
[ "transformers", "pytorch", "autotrain", "token-classification", "unk", "dataset:teacookies/autotrain-data-17102022_relabel", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
token-classification
2022-10-17T10:52:08Z
--- tags: - autotrain - token-classification language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - teacookies/autotrain-data-17102022_relabel co2_eq_emissions: emissions: 16.970831166674337 --- # Model Trained Using AutoTrain - Problem type: Entity Extraction - Model ID: 1786061945 - CO2 Emissions (in grams): 16.9708 ## Validation Metrics - Loss: 0.022 - Accuracy: 0.994 - Precision: 0.851 - Recall: 0.885 - F1: 0.868 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/teacookies/autotrain-17102022_relabel-1786061945 ``` Or Python API: ``` from transformers import AutoModelForTokenClassification, AutoTokenizer model = AutoModelForTokenClassification.from_pretrained("teacookies/autotrain-17102022_relabel-1786061945", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("teacookies/autotrain-17102022_relabel-1786061945", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
hisaoka/bart-large-cnn_dataset_radiology_20220912.tsv
hisaoka
2022-10-17T09:38:42Z
107
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-17T08:56:20Z
--- license: mit tags: - generated_from_trainer model-index: - name: bart-large-cnn_dataset_radiology_20220912.tsv results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn_dataset_radiology_20220912.tsv This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu102 - Datasets 2.4.0 - Tokenizers 0.12.1
juliensimon/autotrain-chest-xray-demo-1677859324
juliensimon
2022-10-17T09:37:49Z
196
0
transformers
[ "transformers", "pytorch", "autotrain", "vision", "image-classification", "dataset:juliensimon/autotrain-data-chest-xray-demo", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
image-classification
2022-10-06T09:13:05Z
--- tags: - autotrain - vision - image-classification datasets: - juliensimon/autotrain-data-chest-xray-demo widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace co2_eq_emissions: emissions: 13.219748263433518 --- Original dataset: https://www.kaggle.com/datasets/paultimothymooney/chest-xray-pneumonia # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 1677859324 - CO2 Emissions (in grams): 13.2197 ## Validation Metrics - Loss: 0.209 - Accuracy: 0.934 - Precision: 0.933 - Recall: 0.964 - AUC: 0.976 - F1: 0.948
khynnah94/ppo-LunarLander-v2
khynnah94
2022-10-17T09:24:18Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-10-17T09:23:54Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -147.20 +/- 113.33 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
thisisHJLee/wav2vec2-large-xls-r-300m-korean-s4
thisisHJLee
2022-10-17T09:23:31Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-10-17T05:30:54Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-large-xls-r-300m-korean-s4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-korean-s4 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0378 - Cer: 0.0048 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 0.37 | 300 | 4.6810 | 1.0 | | 5.541 | 0.74 | 600 | 3.2272 | 1.0 | | 5.541 | 1.12 | 900 | 2.9931 | 0.9389 | | 2.8308 | 1.49 | 1200 | 0.3785 | 0.0922 | | 0.4651 | 1.86 | 1500 | 0.1628 | 0.0385 | | 0.4651 | 2.23 | 1800 | 0.0769 | 0.0139 | | 0.1628 | 2.6 | 2100 | 0.0475 | 0.0069 | | 0.1628 | 2.97 | 2400 | 0.0378 | 0.0048 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
51la5/bert-base-sentiment
51la5
2022-10-17T09:14:35Z
102
0
transformers
[ "transformers", "pytorch", "jax", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-17T09:10:13Z
## TextAttack Model Card This `bert-base-uncased` model was fine-tuned for sequence classification using TextAttack and the yelp_polarity dataset loaded using the `nlp` library. The model was fine-tuned for 5 epochs with a batch size of 16, a learning rate of 5e-05, and a maximum sequence length of 256. Since this was a classification task, the model was trained with a cross-entropy loss function. The best score the model achieved on this task was 0.9699473684210527, as measured by the eval set accuracy, found after 4 epochs. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
51la5/distilbert-base-sentiment
51la5
2022-10-17T09:03:28Z
104
2
transformers
[ "transformers", "pytorch", "tf", "rust", "distilbert", "text-classification", "en", "dataset:sst2", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-17T09:01:18Z
--- language: en license: apache-2.0 datasets: - sst2 - glue model-index: - name: distilbert-base-uncased-finetuned-sst-2-english results: - task: type: text-classification name: Text Classification dataset: name: glue type: glue config: sst2 split: validation metrics: - name: Accuracy type: accuracy value: 0.9105504587155964 verified: true - name: Precision type: precision value: 0.8978260869565218 verified: true - name: Recall type: recall value: 0.9301801801801802 verified: true - name: AUC type: auc value: 0.9716626673402374 verified: true - name: F1 type: f1 value: 0.9137168141592922 verified: true - name: loss type: loss value: 0.39013850688934326 verified: true - task: type: text-classification name: Text Classification dataset: name: sst2 type: sst2 config: default split: train metrics: - name: Accuracy type: accuracy value: 0.9885521685548412 verified: true - name: Precision Macro type: precision value: 0.9881965062029833 verified: true - name: Precision Micro type: precision value: 0.9885521685548412 verified: true - name: Precision Weighted type: precision value: 0.9885639626373408 verified: true - name: Recall Macro type: recall value: 0.9886145346602994 verified: true - name: Recall Micro type: recall value: 0.9885521685548412 verified: true - name: Recall Weighted type: recall value: 0.9885521685548412 verified: true - name: F1 Macro type: f1 value: 0.9884019815052447 verified: true - name: F1 Micro type: f1 value: 0.9885521685548412 verified: true - name: F1 Weighted type: f1 value: 0.9885546181087554 verified: true - name: loss type: loss value: 0.040652573108673096 verified: true --- # DistilBERT base uncased finetuned SST-2 ## Table of Contents - [Model Details](#model-details) - [How to Get Started With the Model](#how-to-get-started-with-the-model) - [Uses](#uses) - [Risks, Limitations and Biases](#risks-limitations-and-biases) - [Training](#training) ## Model Details **Model Description:** This model is a fine-tune checkpoint of [DistilBERT-base-uncased](https://huggingface.co/distilbert-base-uncased), fine-tuned on SST-2. This model reaches an accuracy of 91.3 on the dev set (for comparison, Bert bert-base-uncased version reaches an accuracy of 92.7). - **Developed by:** Hugging Face - **Model Type:** Text Classification - **Language(s):** English - **License:** Apache-2.0 - **Parent Model:** For more details about DistilBERT, we encourage users to check out [this model card](https://huggingface.co/distilbert-base-uncased). - **Resources for more information:** - [Model Documentation](https://huggingface.co/docs/transformers/main/en/model_doc/distilbert#transformers.DistilBertForSequenceClassification) ## How to Get Started With the Model Example of single-label classification: ​​ ```python import torch from transformers import DistilBertTokenizer, DistilBertForSequenceClassification tokenizer = DistilBertTokenizer.from_pretrained("distilbert-base-uncased") model = DistilBertForSequenceClassification.from_pretrained("distilbert-base-uncased") inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") with torch.no_grad(): logits = model(**inputs).logits predicted_class_id = logits.argmax().item() model.config.id2label[predicted_class_id] ``` ## Uses #### Direct Use This model can be used for topic classification. You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the model hub to look for fine-tuned versions on a task that interests you. #### Misuse and Out-of-scope Use The model should not be used to intentionally create hostile or alienating environments for people. In addition, the model was not trained to be factual or true representations of people or events, and therefore using the model to generate such content is out-of-scope for the abilities of this model. ## Risks, Limitations and Biases Based on a few experimentations, we observed that this model could produce biased predictions that target underrepresented populations. For instance, for sentences like `This film was filmed in COUNTRY`, this binary classification model will give radically different probabilities for the positive label depending on the country (0.89 if the country is France, but 0.08 if the country is Afghanistan) when nothing in the input indicates such a strong semantic shift. In this [colab](https://colab.research.google.com/gist/ageron/fb2f64fb145b4bc7c49efc97e5f114d3/biasmap.ipynb), [Aurélien Géron](https://twitter.com/aureliengeron) made an interesting map plotting these probabilities for each country. <img src="https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/map.jpeg" alt="Map of positive probabilities per country." width="500"/> We strongly advise users to thoroughly probe these aspects on their use-cases in order to evaluate the risks of this model. We recommend looking at the following bias evaluation datasets as a place to start: [WinoBias](https://huggingface.co/datasets/wino_bias), [WinoGender](https://huggingface.co/datasets/super_glue), [Stereoset](https://huggingface.co/datasets/stereoset). # Training #### Training Data The authors use the following Stanford Sentiment Treebank([sst2](https://huggingface.co/datasets/sst2)) corpora for the model. #### Training Procedure ###### Fine-tuning hyper-parameters - learning_rate = 1e-5 - batch_size = 32 - warmup = 600 - max_seq_length = 128 - num_train_epochs = 3.0
teacookies/autotrain-17102022_modifty_split_func_cert-1783761910
teacookies
2022-10-17T08:46:32Z
110
0
transformers
[ "transformers", "pytorch", "autotrain", "token-classification", "unk", "dataset:teacookies/autotrain-data-17102022_modifty_split_func_cert", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
token-classification
2022-10-17T08:35:29Z
--- tags: - autotrain - token-classification language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - teacookies/autotrain-data-17102022_modifty_split_func_cert co2_eq_emissions: emissions: 0.07967502500155842 --- # Model Trained Using AutoTrain - Problem type: Entity Extraction - Model ID: 1783761910 - CO2 Emissions (in grams): 0.0797 ## Validation Metrics - Loss: 0.017 - Accuracy: 0.995 - Precision: 0.850 - Recall: 0.884 - F1: 0.867 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/teacookies/autotrain-17102022_modifty_split_func_cert-1783761910 ``` Or Python API: ``` from transformers import AutoModelForTokenClassification, AutoTokenizer model = AutoModelForTokenClassification.from_pretrained("teacookies/autotrain-17102022_modifty_split_func_cert-1783761910", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("teacookies/autotrain-17102022_modifty_split_func_cert-1783761910", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
51la5/roberta-large-NER
51la5
2022-10-17T08:36:02Z
32,079
45
transformers
[ "transformers", "pytorch", "rust", "xlm-roberta", "token-classification", "multilingual", "af", "am", "ar", "as", "az", "be", "bg", "bn", "br", "bs", "ca", "cs", "cy", "da", "de", "el", "en", "eo", "es", "et", "eu", "fa", "fi", "fr", "fy", "ga", "gd", "gl", "gu", "ha", "he", "hi", "hr", "hu", "hy", "id", "is", "it", "ja", "jv", "ka", "kk", "km", "kn", "ko", "ku", "ky", "la", "lo", "lt", "lv", "mg", "mk", "ml", "mn", "mr", "ms", "my", "ne", "nl", "no", "om", "or", "pa", "pl", "ps", "pt", "ro", "ru", "sa", "sd", "si", "sk", "sl", "so", "sq", "sr", "su", "sv", "sw", "ta", "te", "th", "tl", "tr", "ug", "uk", "ur", "uz", "vi", "xh", "yi", "zh", "arxiv:1911.02116", "arxiv:2008.03415", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-10-17T08:25:02Z
--- language: - multilingual - af - am - ar - as - az - be - bg - bn - br - bs - ca - cs - cy - da - de - el - en - eo - es - et - eu - fa - fi - fr - fy - ga - gd - gl - gu - ha - he - hi - hr - hu - hy - id - is - it - ja - jv - ka - kk - km - kn - ko - ku - ky - la - lo - lt - lv - mg - mk - ml - mn - mr - ms - my - ne - nl - no - om - or - pa - pl - ps - pt - ro - ru - sa - sd - si - sk - sl - so - sq - sr - su - sv - sw - ta - te - th - tl - tr - ug - uk - ur - uz - vi - xh - yi - zh --- # xlm-roberta-large-finetuned-conll03-english # Table of Contents 1. [Model Details](#model-details) 2. [Uses](#uses) 3. [Bias, Risks, and Limitations](#bias-risks-and-limitations) 4. [Training](#training) 5. [Evaluation](#evaluation) 6. [Environmental Impact](#environmental-impact) 7. [Technical Specifications](#technical-specifications) 8. [Citation](#citation) 9. [Model Card Authors](#model-card-authors) 10. [How To Get Started With the Model](#how-to-get-started-with-the-model) # Model Details ## Model Description The XLM-RoBERTa model was proposed in [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) by Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov. It is based on Facebook's RoBERTa model released in 2019. It is a large multi-lingual language model, trained on 2.5TB of filtered CommonCrawl data. This model is [XLM-RoBERTa-large](https://huggingface.co/xlm-roberta-large) fine-tuned with the [conll2003](https://huggingface.co/datasets/conll2003) dataset in English. - **Developed by:** See [associated paper](https://arxiv.org/abs/1911.02116) - **Model type:** Multi-lingual language model - **Language(s) (NLP) or Countries (images):** XLM-RoBERTa is a multilingual model trained on 100 different languages; see [GitHub Repo](https://github.com/facebookresearch/fairseq/tree/main/examples/xlmr) for full list; model is fine-tuned on a dataset in English - **License:** More information needed - **Related Models:** [RoBERTa](https://huggingface.co/roberta-base), [XLM](https://huggingface.co/docs/transformers/model_doc/xlm) - **Parent Model:** [XLM-RoBERTa-large](https://huggingface.co/xlm-roberta-large) - **Resources for more information:** -[GitHub Repo](https://github.com/facebookresearch/fairseq/tree/main/examples/xlmr) -[Associated Paper](https://arxiv.org/abs/1911.02116) # Uses ## Direct Use The model is a language model. The model can be used for token classification, a natural language understanding task in which a label is assigned to some tokens in a text. ## Downstream Use Potential downstream use cases include Named Entity Recognition (NER) and Part-of-Speech (PoS) tagging. To learn more about token classification and other potential downstream use cases, see the Hugging Face [token classification docs](https://huggingface.co/tasks/token-classification). ## Out-of-Scope Use The model should not be used to intentionally create hostile or alienating environments for people. # Bias, Risks, and Limitations **CONTENT WARNING: Readers should be made aware that language generated by this model may be disturbing or offensive to some and may propagate historical and current stereotypes.** Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). In the context of tasks relevant to this model, [Mishra et al. (2020)](https://arxiv.org/pdf/2008.03415.pdf) explore social biases in NER systems for English and find that there is systematic bias in existing NER systems in that they fail to identify named entities from different demographic groups (though this paper did not look at BERT). For example, using a sample sentence from [Mishra et al. (2020)](https://arxiv.org/pdf/2008.03415.pdf): ```python >>> from transformers import pipeline >>> tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-large-finetuned-conll03-english") >>> model = AutoModelForTokenClassification.from_pretrained("xlm-roberta-large-finetuned-conll03-english") >>> classifier = pipeline("ner", model=model, tokenizer=tokenizer) >>> classifier("Alya told Jasmine that Andrew could pay with cash..") [{'end': 2, 'entity': 'I-PER', 'index': 1, 'score': 0.9997861, 'start': 0, 'word': '▁Al'}, {'end': 4, 'entity': 'I-PER', 'index': 2, 'score': 0.9998591, 'start': 2, 'word': 'ya'}, {'end': 16, 'entity': 'I-PER', 'index': 4, 'score': 0.99995816, 'start': 10, 'word': '▁Jasmin'}, {'end': 17, 'entity': 'I-PER', 'index': 5, 'score': 0.9999584, 'start': 16, 'word': 'e'}, {'end': 29, 'entity': 'I-PER', 'index': 7, 'score': 0.99998057, 'start': 23, 'word': '▁Andrew'}] ``` ## Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. # Training See the following resources for training data and training procedure details: - [XLM-RoBERTa-large model card](https://huggingface.co/xlm-roberta-large) - [CoNLL-2003 data card](https://huggingface.co/datasets/conll2003) - [Associated paper](https://arxiv.org/pdf/1911.02116.pdf) # Evaluation See the [associated paper](https://arxiv.org/pdf/1911.02116.pdf) for evaluation details. # Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** 500 32GB Nvidia V100 GPUs (from the [associated paper](https://arxiv.org/pdf/1911.02116.pdf)) - **Hours used:** More information needed - **Cloud Provider:** More information needed - **Compute Region:** More information needed - **Carbon Emitted:** More information needed # Technical Specifications See the [associated paper](https://arxiv.org/pdf/1911.02116.pdf) for further details. # Citation **BibTeX:** ```bibtex @article{conneau2019unsupervised, title={Unsupervised Cross-lingual Representation Learning at Scale}, author={Conneau, Alexis and Khandelwal, Kartikay and Goyal, Naman and Chaudhary, Vishrav and Wenzek, Guillaume and Guzm{\'a}n, Francisco and Grave, Edouard and Ott, Myle and Zettlemoyer, Luke and Stoyanov, Veselin}, journal={arXiv preprint arXiv:1911.02116}, year={2019} } ``` **APA:** - Conneau, A., Khandelwal, K., Goyal, N., Chaudhary, V., Wenzek, G., Guzmán, F., ... & Stoyanov, V. (2019). Unsupervised cross-lingual representation learning at scale. arXiv preprint arXiv:1911.02116. # Model Card Authors This model card was written by the team at Hugging Face. # How to Get Started with the Model Use the code below to get started with the model. You can use this model directly within a pipeline for NER. <details> <summary> Click to expand </summary> ```python >>> from transformers import AutoTokenizer, AutoModelForTokenClassification >>> from transformers import pipeline >>> tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-large-finetuned-conll03-english") >>> model = AutoModelForTokenClassification.from_pretrained("xlm-roberta-large-finetuned-conll03-english") >>> classifier = pipeline("ner", model=model, tokenizer=tokenizer) >>> classifier("Hello I'm Omar and I live in Zürich.") [{'end': 14, 'entity': 'I-PER', 'index': 5, 'score': 0.9999175, 'start': 10, 'word': '▁Omar'}, {'end': 35, 'entity': 'I-LOC', 'index': 10, 'score': 0.9999906, 'start': 29, 'word': '▁Zürich'}] ``` </details>
sd-concepts-library/ki
sd-concepts-library
2022-10-17T08:10:34Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-10-16T20:17:57Z
--- license: mit --- ### ki on Stable Diffusion This is the `<ki-mars>` (Ki from the Disney Mars Needs Mom) concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<ki-mars> 0](https://huggingface.co/sd-concepts-library/ki/resolve/main/concept_images/1.jpeg) ![<ki-mars> 1](https://huggingface.co/sd-concepts-library/ki/resolve/main/concept_images/13.jpeg) ![<ki-mars> 2](https://huggingface.co/sd-concepts-library/ki/resolve/main/concept_images/12.jpeg) ![<ki-mars> 3](https://huggingface.co/sd-concepts-library/ki/resolve/main/concept_images/18.jpeg) ![<ki-mars> 4](https://huggingface.co/sd-concepts-library/ki/resolve/main/concept_images/8.jpeg) ![<ki-mars> 5](https://huggingface.co/sd-concepts-library/ki/resolve/main/concept_images/23.jpeg) ![<ki-mars> 6](https://huggingface.co/sd-concepts-library/ki/resolve/main/concept_images/17.jpeg) ![<ki-mars> 7](https://huggingface.co/sd-concepts-library/ki/resolve/main/concept_images/9.jpeg) ![<ki-mars> 8](https://huggingface.co/sd-concepts-library/ki/resolve/main/concept_images/2.jpeg) ![<ki-mars> 9](https://huggingface.co/sd-concepts-library/ki/resolve/main/concept_images/0.jpeg) ![<ki-mars> 10](https://huggingface.co/sd-concepts-library/ki/resolve/main/concept_images/14.jpeg) ![<ki-mars> 11](https://huggingface.co/sd-concepts-library/ki/resolve/main/concept_images/4.jpeg) ![<ki-mars> 12](https://huggingface.co/sd-concepts-library/ki/resolve/main/concept_images/10.jpeg) ![<ki-mars> 13](https://huggingface.co/sd-concepts-library/ki/resolve/main/concept_images/6.jpeg) ![<ki-mars> 14](https://huggingface.co/sd-concepts-library/ki/resolve/main/concept_images/24.jpeg) ![<ki-mars> 15](https://huggingface.co/sd-concepts-library/ki/resolve/main/concept_images/11.jpeg) ![<ki-mars> 16](https://huggingface.co/sd-concepts-library/ki/resolve/main/concept_images/21.jpeg) ![<ki-mars> 17](https://huggingface.co/sd-concepts-library/ki/resolve/main/concept_images/5.jpeg) ![<ki-mars> 18](https://huggingface.co/sd-concepts-library/ki/resolve/main/concept_images/3.jpeg) ![<ki-mars> 19](https://huggingface.co/sd-concepts-library/ki/resolve/main/concept_images/19.jpeg) ![<ki-mars> 20](https://huggingface.co/sd-concepts-library/ki/resolve/main/concept_images/20.jpeg) ![<ki-mars> 21](https://huggingface.co/sd-concepts-library/ki/resolve/main/concept_images/15.jpeg) ![<ki-mars> 22](https://huggingface.co/sd-concepts-library/ki/resolve/main/concept_images/16.jpeg) ![<ki-mars> 23](https://huggingface.co/sd-concepts-library/ki/resolve/main/concept_images/22.jpeg) ![<ki-mars> 24](https://huggingface.co/sd-concepts-library/ki/resolve/main/concept_images/7.jpeg)
51la5/distilbert-base-NER
51la5
2022-10-17T08:09:08Z
176
0
transformers
[ "transformers", "pytorch", "distilbert", "token-classification", "en", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-10-17T08:07:48Z
--- language: en license: apache-2.0 datasets: - conll2003 model-index: - name: elastic/distilbert-base-uncased-finetuned-conll03-english results: - task: type: token-classification name: Token Classification dataset: name: conll2003 type: conll2003 config: conll2003 split: validation metrics: - name: Accuracy type: accuracy value: 0.9854480753649896 verified: true - name: Precision type: precision value: 0.9880928983228512 verified: true - name: Recall type: recall value: 0.9895677847945542 verified: true - name: F1 type: f1 value: 0.9888297915932504 verified: true - name: loss type: loss value: 0.06707527488470078 verified: true --- [DistilBERT base uncased](https://huggingface.co/distilbert-base-uncased), fine-tuned for NER using the [conll03 english dataset](https://huggingface.co/datasets/conll2003). Note that this model is **not** sensitive to capital letters — "english" is the same as "English". For the case sensitive version, please use [elastic/distilbert-base-cased-finetuned-conll03-english](https://huggingface.co/elastic/distilbert-base-cased-finetuned-conll03-english). ## Versions - Transformers version: 4.3.1 - Datasets version: 1.3.0 ## Training ``` $ run_ner.py \ --model_name_or_path distilbert-base-uncased \ --label_all_tokens True \ --return_entity_level_metrics True \ --dataset_name conll2003 \ --output_dir /tmp/distilbert-base-uncased-finetuned-conll03-english \ --do_train \ --do_eval ``` After training, we update the labels to match the NER specific labels from the dataset [conll2003](https://raw.githubusercontent.com/huggingface/datasets/1.3.0/datasets/conll2003/dataset_infos.json)
Okyx/NERTESTINGLONGHARGA
Okyx
2022-10-17T07:56:29Z
68
0
transformers
[ "transformers", "tf", "bert", "token-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-10-14T13:20:02Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: NERTESTINGLONGHARGA results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # NERTESTINGLONGHARGA This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 6145, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results ### Framework versions - Transformers 4.23.1 - TensorFlow 2.9.2 - Datasets 2.6.1 - Tokenizers 0.13.1
theodotus/stt_uk_squeezeformer_ctc_ml
theodotus
2022-10-17T07:23:48Z
35
4
nemo
[ "nemo", "automatic-speech-recognition", "uk", "dataset:mozilla-foundation/common_voice_10_0", "dataset:Yehor/voa-uk-transcriptions", "license:bsd-3-clause", "model-index", "region:us" ]
automatic-speech-recognition
2022-10-14T08:00:54Z
--- language: - uk library_name: nemo datasets: - mozilla-foundation/common_voice_10_0 - Yehor/voa-uk-transcriptions tags: - automatic-speech-recognition model-index: - name: stt_uk_squeezeformer_ctc_ml results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Mozilla Common Voice 10.0 type: mozilla-foundation/common_voice_10_0 config: clean split: test args: language: uk metrics: - name: Test WER type: wer value: 6.632 license: bsd-3-clause --- # Squeezeformer-CTC ML (uk-UA) <style> img { display: inline; } </style> | [![Model architecture](https://img.shields.io/badge/Model_Arch-Squeezeformer--CTC-lightgrey#model-badge)](#model-architecture) | [![Model size](https://img.shields.io/badge/Params-120M-lightgrey#model-badge)](#model-architecture) | [![Language](https://img.shields.io/badge/Language-uk--UA-lightgrey#model-badge)](#datasets) |
teacookies/autotrain-17101457-1200cut_rich_neg-1782461850
teacookies
2022-10-17T07:16:47Z
109
0
transformers
[ "transformers", "pytorch", "autotrain", "token-classification", "unk", "dataset:teacookies/autotrain-data-17101457-1200cut_rich_neg", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
token-classification
2022-10-17T07:06:24Z
--- tags: - autotrain - token-classification language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - teacookies/autotrain-data-17101457-1200cut_rich_neg co2_eq_emissions: emissions: 15.90515729014607 --- # Model Trained Using AutoTrain - Problem type: Entity Extraction - Model ID: 1782461850 - CO2 Emissions (in grams): 15.9052 ## Validation Metrics - Loss: 0.022 - Accuracy: 0.994 - Precision: 0.736 - Recall: 0.804 - F1: 0.769 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/teacookies/autotrain-17101457-1200cut_rich_neg-1782461850 ``` Or Python API: ``` from transformers import AutoModelForTokenClassification, AutoTokenizer model = AutoModelForTokenClassification.from_pretrained("teacookies/autotrain-17101457-1200cut_rich_neg-1782461850", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("teacookies/autotrain-17101457-1200cut_rich_neg-1782461850", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
21iridescent/Relation-Extractor-ComSci
21iridescent
2022-10-17T07:08:10Z
123
1
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-17T04:18:04Z
--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer model-index: - name: output results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # output This model is a fine-tuned version of [Babelscape/rebel-large](https://huggingface.co/Babelscape/rebel-large) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1-measure | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:----------:| | No log | 1.0 | 236 | 0.3225 | 0.8889 | 0.8889 | 0.8889 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.9.0+cu111 - Datasets 2.4.0 - Tokenizers 0.12.1