modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-07-14 18:27:59
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
520 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-07-14 18:27:48
card
stringlengths
11
1.01M
epsil/sd-class-butterflies-64
epsil
2022-11-29T18:13:23Z
5
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-11-29T18:13:12Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute πŸ¦‹. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained(epsil/sd-class-butterflies-64) image = pipeline().images[0] image ```
epsil/sd-class-butterflies-32
epsil
2022-11-29T17:42:54Z
6
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-11-29T17:42:32Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute πŸ¦‹. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained(epsil/sd-class-butterflies-32) image = pipeline().images[0] image ```
tomekkorbak/clever_goodall
tomekkorbak
2022-11-29T17:20:58Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "generated_from_trainer", "en", "dataset:tomekkorbak/detoxify-pile-chunk3-0-50000", "dataset:tomekkorbak/detoxify-pile-chunk3-50000-100000", "dataset:tomekkorbak/detoxify-pile-chunk3-100000-150000", "dataset:tomekkorbak/detoxify-pile-chunk3-150000-200000", "dataset:tomekkorbak/detoxify-pile-chunk3-200000-250000", "dataset:tomekkorbak/detoxify-pile-chunk3-250000-300000", "dataset:tomekkorbak/detoxify-pile-chunk3-300000-350000", "dataset:tomekkorbak/detoxify-pile-chunk3-350000-400000", "dataset:tomekkorbak/detoxify-pile-chunk3-400000-450000", "dataset:tomekkorbak/detoxify-pile-chunk3-450000-500000", "dataset:tomekkorbak/detoxify-pile-chunk3-500000-550000", "dataset:tomekkorbak/detoxify-pile-chunk3-550000-600000", "dataset:tomekkorbak/detoxify-pile-chunk3-600000-650000", "dataset:tomekkorbak/detoxify-pile-chunk3-650000-700000", "dataset:tomekkorbak/detoxify-pile-chunk3-700000-750000", "dataset:tomekkorbak/detoxify-pile-chunk3-750000-800000", "dataset:tomekkorbak/detoxify-pile-chunk3-800000-850000", "dataset:tomekkorbak/detoxify-pile-chunk3-850000-900000", "dataset:tomekkorbak/detoxify-pile-chunk3-900000-950000", "dataset:tomekkorbak/detoxify-pile-chunk3-950000-1000000", "dataset:tomekkorbak/detoxify-pile-chunk3-1000000-1050000", "dataset:tomekkorbak/detoxify-pile-chunk3-1050000-1100000", "dataset:tomekkorbak/detoxify-pile-chunk3-1100000-1150000", "dataset:tomekkorbak/detoxify-pile-chunk3-1150000-1200000", "dataset:tomekkorbak/detoxify-pile-chunk3-1200000-1250000", "dataset:tomekkorbak/detoxify-pile-chunk3-1250000-1300000", "dataset:tomekkorbak/detoxify-pile-chunk3-1300000-1350000", "dataset:tomekkorbak/detoxify-pile-chunk3-1350000-1400000", "dataset:tomekkorbak/detoxify-pile-chunk3-1400000-1450000", "dataset:tomekkorbak/detoxify-pile-chunk3-1450000-1500000", "dataset:tomekkorbak/detoxify-pile-chunk3-1500000-1550000", "dataset:tomekkorbak/detoxify-pile-chunk3-1550000-1600000", "dataset:tomekkorbak/detoxify-pile-chunk3-1600000-1650000", "dataset:tomekkorbak/detoxify-pile-chunk3-1650000-1700000", "dataset:tomekkorbak/detoxify-pile-chunk3-1700000-1750000", "dataset:tomekkorbak/detoxify-pile-chunk3-1750000-1800000", "dataset:tomekkorbak/detoxify-pile-chunk3-1800000-1850000", "dataset:tomekkorbak/detoxify-pile-chunk3-1850000-1900000", "dataset:tomekkorbak/detoxify-pile-chunk3-1900000-1950000", "license:mit", "text-generation-inference", "endpoints_compatible", "region:us" ]
null
2022-11-29T03:29:26Z
--- language: - en license: mit tags: - generated_from_trainer datasets: - tomekkorbak/detoxify-pile-chunk3-0-50000 - tomekkorbak/detoxify-pile-chunk3-50000-100000 - tomekkorbak/detoxify-pile-chunk3-100000-150000 - tomekkorbak/detoxify-pile-chunk3-150000-200000 - tomekkorbak/detoxify-pile-chunk3-200000-250000 - tomekkorbak/detoxify-pile-chunk3-250000-300000 - tomekkorbak/detoxify-pile-chunk3-300000-350000 - tomekkorbak/detoxify-pile-chunk3-350000-400000 - tomekkorbak/detoxify-pile-chunk3-400000-450000 - tomekkorbak/detoxify-pile-chunk3-450000-500000 - tomekkorbak/detoxify-pile-chunk3-500000-550000 - tomekkorbak/detoxify-pile-chunk3-550000-600000 - tomekkorbak/detoxify-pile-chunk3-600000-650000 - tomekkorbak/detoxify-pile-chunk3-650000-700000 - tomekkorbak/detoxify-pile-chunk3-700000-750000 - tomekkorbak/detoxify-pile-chunk3-750000-800000 - tomekkorbak/detoxify-pile-chunk3-800000-850000 - tomekkorbak/detoxify-pile-chunk3-850000-900000 - tomekkorbak/detoxify-pile-chunk3-900000-950000 - tomekkorbak/detoxify-pile-chunk3-950000-1000000 - tomekkorbak/detoxify-pile-chunk3-1000000-1050000 - tomekkorbak/detoxify-pile-chunk3-1050000-1100000 - tomekkorbak/detoxify-pile-chunk3-1100000-1150000 - tomekkorbak/detoxify-pile-chunk3-1150000-1200000 - tomekkorbak/detoxify-pile-chunk3-1200000-1250000 - tomekkorbak/detoxify-pile-chunk3-1250000-1300000 - tomekkorbak/detoxify-pile-chunk3-1300000-1350000 - tomekkorbak/detoxify-pile-chunk3-1350000-1400000 - tomekkorbak/detoxify-pile-chunk3-1400000-1450000 - tomekkorbak/detoxify-pile-chunk3-1450000-1500000 - tomekkorbak/detoxify-pile-chunk3-1500000-1550000 - tomekkorbak/detoxify-pile-chunk3-1550000-1600000 - tomekkorbak/detoxify-pile-chunk3-1600000-1650000 - tomekkorbak/detoxify-pile-chunk3-1650000-1700000 - tomekkorbak/detoxify-pile-chunk3-1700000-1750000 - tomekkorbak/detoxify-pile-chunk3-1750000-1800000 - tomekkorbak/detoxify-pile-chunk3-1800000-1850000 - tomekkorbak/detoxify-pile-chunk3-1850000-1900000 - tomekkorbak/detoxify-pile-chunk3-1900000-1950000 model-index: - name: clever_goodall results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # clever_goodall This model was trained from scratch on the tomekkorbak/detoxify-pile-chunk3-0-50000, the tomekkorbak/detoxify-pile-chunk3-50000-100000, the tomekkorbak/detoxify-pile-chunk3-100000-150000, the tomekkorbak/detoxify-pile-chunk3-150000-200000, the tomekkorbak/detoxify-pile-chunk3-200000-250000, the tomekkorbak/detoxify-pile-chunk3-250000-300000, the tomekkorbak/detoxify-pile-chunk3-300000-350000, the tomekkorbak/detoxify-pile-chunk3-350000-400000, the tomekkorbak/detoxify-pile-chunk3-400000-450000, the tomekkorbak/detoxify-pile-chunk3-450000-500000, the tomekkorbak/detoxify-pile-chunk3-500000-550000, the tomekkorbak/detoxify-pile-chunk3-550000-600000, the tomekkorbak/detoxify-pile-chunk3-600000-650000, the tomekkorbak/detoxify-pile-chunk3-650000-700000, the tomekkorbak/detoxify-pile-chunk3-700000-750000, the tomekkorbak/detoxify-pile-chunk3-750000-800000, the tomekkorbak/detoxify-pile-chunk3-800000-850000, the tomekkorbak/detoxify-pile-chunk3-850000-900000, the tomekkorbak/detoxify-pile-chunk3-900000-950000, the tomekkorbak/detoxify-pile-chunk3-950000-1000000, the tomekkorbak/detoxify-pile-chunk3-1000000-1050000, the tomekkorbak/detoxify-pile-chunk3-1050000-1100000, the tomekkorbak/detoxify-pile-chunk3-1100000-1150000, the tomekkorbak/detoxify-pile-chunk3-1150000-1200000, the tomekkorbak/detoxify-pile-chunk3-1200000-1250000, the tomekkorbak/detoxify-pile-chunk3-1250000-1300000, the tomekkorbak/detoxify-pile-chunk3-1300000-1350000, the tomekkorbak/detoxify-pile-chunk3-1350000-1400000, the tomekkorbak/detoxify-pile-chunk3-1400000-1450000, the tomekkorbak/detoxify-pile-chunk3-1450000-1500000, the tomekkorbak/detoxify-pile-chunk3-1500000-1550000, the tomekkorbak/detoxify-pile-chunk3-1550000-1600000, the tomekkorbak/detoxify-pile-chunk3-1600000-1650000, the tomekkorbak/detoxify-pile-chunk3-1650000-1700000, the tomekkorbak/detoxify-pile-chunk3-1700000-1750000, the tomekkorbak/detoxify-pile-chunk3-1750000-1800000, the tomekkorbak/detoxify-pile-chunk3-1800000-1850000, the tomekkorbak/detoxify-pile-chunk3-1850000-1900000 and the tomekkorbak/detoxify-pile-chunk3-1900000-1950000 datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - training_steps: 50354 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.5.1 - Tokenizers 0.11.6 # Full config {'dataset': {'datasets': ['tomekkorbak/detoxify-pile-chunk3-0-50000', 'tomekkorbak/detoxify-pile-chunk3-50000-100000', 'tomekkorbak/detoxify-pile-chunk3-100000-150000', 'tomekkorbak/detoxify-pile-chunk3-150000-200000', 'tomekkorbak/detoxify-pile-chunk3-200000-250000', 'tomekkorbak/detoxify-pile-chunk3-250000-300000', 'tomekkorbak/detoxify-pile-chunk3-300000-350000', 'tomekkorbak/detoxify-pile-chunk3-350000-400000', 'tomekkorbak/detoxify-pile-chunk3-400000-450000', 'tomekkorbak/detoxify-pile-chunk3-450000-500000', 'tomekkorbak/detoxify-pile-chunk3-500000-550000', 'tomekkorbak/detoxify-pile-chunk3-550000-600000', 'tomekkorbak/detoxify-pile-chunk3-600000-650000', 'tomekkorbak/detoxify-pile-chunk3-650000-700000', 'tomekkorbak/detoxify-pile-chunk3-700000-750000', 'tomekkorbak/detoxify-pile-chunk3-750000-800000', 'tomekkorbak/detoxify-pile-chunk3-800000-850000', 'tomekkorbak/detoxify-pile-chunk3-850000-900000', 'tomekkorbak/detoxify-pile-chunk3-900000-950000', 'tomekkorbak/detoxify-pile-chunk3-950000-1000000', 'tomekkorbak/detoxify-pile-chunk3-1000000-1050000', 'tomekkorbak/detoxify-pile-chunk3-1050000-1100000', 'tomekkorbak/detoxify-pile-chunk3-1100000-1150000', 'tomekkorbak/detoxify-pile-chunk3-1150000-1200000', 'tomekkorbak/detoxify-pile-chunk3-1200000-1250000', 'tomekkorbak/detoxify-pile-chunk3-1250000-1300000', 'tomekkorbak/detoxify-pile-chunk3-1300000-1350000', 'tomekkorbak/detoxify-pile-chunk3-1350000-1400000', 'tomekkorbak/detoxify-pile-chunk3-1400000-1450000', 'tomekkorbak/detoxify-pile-chunk3-1450000-1500000', 'tomekkorbak/detoxify-pile-chunk3-1500000-1550000', 'tomekkorbak/detoxify-pile-chunk3-1550000-1600000', 'tomekkorbak/detoxify-pile-chunk3-1600000-1650000', 'tomekkorbak/detoxify-pile-chunk3-1650000-1700000', 'tomekkorbak/detoxify-pile-chunk3-1700000-1750000', 'tomekkorbak/detoxify-pile-chunk3-1750000-1800000', 'tomekkorbak/detoxify-pile-chunk3-1800000-1850000', 'tomekkorbak/detoxify-pile-chunk3-1850000-1900000', 'tomekkorbak/detoxify-pile-chunk3-1900000-1950000'], 'filter_threshold': 0.00078, 'is_split_by_sentences': True}, 'generation': {'force_call_on': [25354], 'metrics_configs': [{}, {'n': 1}, {'n': 2}, {'n': 5}], 'scenario_configs': [{'generate_kwargs': {'do_sample': True, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'unconditional', 'num_samples': 2048}, {'generate_kwargs': {'do_sample': True, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'challenging_rtp', 'num_samples': 2048, 'prompts_path': 'resources/challenging_rtp.jsonl'}], 'scorer_config': {'device': 'cuda:0'}}, 'kl_gpt3_callback': {'force_call_on': [25354], 'max_tokens': 64, 'num_samples': 4096}, 'model': {'from_scratch': True, 'gpt2_config_kwargs': {'reorder_and_upcast_attn': True, 'scale_attn_by': True}, 'path_or_name': 'gpt2'}, 'objective': {'name': 'MLE'}, 'tokenizer': {'path_or_name': 'gpt2'}, 'training': {'dataloader_num_workers': 0, 'effective_batch_size': 64, 'evaluation_strategy': 'no', 'fp16': True, 'hub_model_id': 'clever_goodall', 'hub_strategy': 'all_checkpoints', 'learning_rate': 0.0005, 'logging_first_step': True, 'logging_steps': 1, 'num_tokens': 3300000000, 'output_dir': 'training_output104340', 'per_device_train_batch_size': 16, 'push_to_hub': True, 'remove_unused_columns': False, 'save_steps': 25354, 'save_strategy': 'steps', 'seed': 42, 'warmup_ratio': 0.01, 'weight_decay': 0.1}} # Wandb URL: https://wandb.ai/tomekkorbak/apo/runs/2i1d4a3i
ser-mei/borges-gpt-collab
ser-mei
2022-11-29T17:14:30Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-06T20:48:40Z
--- license: mit tags: - generated_from_trainer model-index: - name: borges-gpt-collab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # borges-gpt-collab This model is a fine-tuned version of [DeepESP/gpt2-spanish](https://huggingface.co/DeepESP/gpt2-spanish) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 8.3468 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 500 - num_epochs: 70 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 11.2135 | 0.96 | 7 | 10.2022 | | 10.3195 | 1.96 | 14 | 9.6343 | | 9.9127 | 2.96 | 21 | 9.4637 | | 9.7295 | 3.96 | 28 | 9.2993 | | 9.527 | 4.96 | 35 | 9.0962 | | 9.2648 | 5.96 | 42 | 8.8294 | | 8.9309 | 6.96 | 49 | 8.5103 | | 8.5639 | 7.96 | 56 | 8.1858 | | 8.2034 | 8.96 | 63 | 7.8816 | | 7.8665 | 9.96 | 70 | 7.6303 | | 7.5715 | 10.96 | 77 | 7.4307 | | 7.3259 | 11.96 | 84 | 7.2632 | | 7.136 | 12.96 | 91 | 7.1494 | | 6.9558 | 13.96 | 98 | 7.0957 | | 6.8068 | 14.96 | 105 | 7.0199 | | 6.6656 | 15.96 | 112 | 6.9554 | | 6.5264 | 16.96 | 119 | 6.9324 | | 6.3843 | 17.96 | 126 | 6.8940 | | 6.2204 | 18.96 | 133 | 6.8799 | | 6.0915 | 19.96 | 140 | 6.8788 | | 5.9532 | 20.96 | 147 | 6.8719 | | 5.8169 | 21.96 | 154 | 6.8647 | | 5.6531 | 22.96 | 161 | 6.8865 | | 5.5125 | 23.96 | 168 | 6.8940 | | 5.3666 | 24.96 | 175 | 6.9248 | | 5.2377 | 25.96 | 182 | 6.9421 | | 5.1115 | 26.96 | 189 | 6.9631 | | 4.9639 | 27.96 | 196 | 7.0135 | | 4.824 | 28.96 | 203 | 7.0352 | | 4.6886 | 29.96 | 210 | 7.0729 | | 4.5538 | 30.96 | 217 | 7.1385 | | 4.4126 | 31.96 | 224 | 7.1561 | | 4.2486 | 32.96 | 231 | 7.1792 | | 4.0955 | 33.96 | 238 | 7.2767 | | 3.9333 | 34.96 | 245 | 7.2815 | | 3.7914 | 35.96 | 252 | 7.3463 | | 3.618 | 36.96 | 259 | 7.3864 | | 3.4453 | 37.96 | 266 | 7.4394 | | 3.2795 | 38.96 | 273 | 7.4730 | | 3.0994 | 39.96 | 280 | 7.4880 | | 2.9143 | 40.96 | 287 | 7.5567 | | 2.741 | 41.96 | 294 | 7.5451 | | 2.5698 | 42.96 | 301 | 7.5966 | | 2.3855 | 43.96 | 308 | 7.6898 | | 2.2059 | 44.96 | 315 | 7.6957 | | 2.0634 | 45.96 | 322 | 7.7503 | | 1.8719 | 46.96 | 329 | 7.8369 | | 1.7059 | 47.96 | 336 | 7.8411 | | 1.54 | 48.96 | 343 | 7.8316 | | 1.3768 | 49.96 | 350 | 7.8630 | | 1.2177 | 50.96 | 357 | 7.9360 | | 1.0663 | 51.96 | 364 | 7.9886 | | 0.9569 | 52.96 | 371 | 8.0187 | | 0.8281 | 53.96 | 378 | 8.0274 | | 0.7074 | 54.96 | 385 | 8.1010 | | 0.6095 | 55.96 | 392 | 8.1594 | | 0.5262 | 56.96 | 399 | 8.1010 | | 0.4678 | 57.96 | 406 | 8.1440 | | 0.4105 | 58.96 | 413 | 8.1638 | | 0.3766 | 59.96 | 420 | 8.1534 | | 0.3425 | 60.96 | 427 | 8.1980 | | 0.321 | 61.96 | 434 | 8.2184 | | 0.3061 | 62.96 | 441 | 8.2499 | | 0.2852 | 63.96 | 448 | 8.1690 | | 0.2698 | 64.96 | 455 | 8.2160 | | 0.2628 | 65.96 | 462 | 8.2616 | | 0.2619 | 66.96 | 469 | 8.2948 | | 0.2544 | 67.96 | 476 | 8.3553 | | 0.2414 | 68.96 | 483 | 8.3712 | | 0.2177 | 69.96 | 490 | 8.3468 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0+rocm5.2 - Datasets 2.6.1 - Tokenizers 0.13.2
SALT-NLP/FLANG-BERT
SALT-NLP
2022-11-29T17:06:37Z
83
4
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "Financial Language Modelling", "en", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-06-24T02:37:04Z
--- language: "en" tags: - Financial Language Modelling widget: - text: "Stocks rallied and the British pound [MASK]." --- ## Dataset Summary - **Homepage:** https://salt-nlp.github.io/FLANG/ - **Models:** https://huggingface.co/SALT-NLP/FLANG-BERT - **Repository:** https://github.com/SALT-NLP/FLANG ## FLANG FLANG is a set of large language models for Financial LANGuage tasks. These models use domain specific pre-training with preferential masking to build more robust representations for the domain. The models in the set are:\ [FLANG-BERT](https://huggingface.co/SALT-NLP/FLANG-BERT)\ [FLANG-SpanBERT](https://huggingface.co/SALT-NLP/FLANG-SpanBERT)\ [FLANG-DistilBERT](https://huggingface.co/SALT-NLP/FLANG-DistilBERT)\ [FLANG-Roberta](https://huggingface.co/SALT-NLP/FLANG-Roberta)\ [FLANG-ELECTRA](https://huggingface.co/SALT-NLP/FLANG-ELECTRA) ## FLANG-BERT FLANG-BERT is a pre-trained language model which uses financial keywords and phrases for preferential masking of domain specific terms. It is built by further training the BERT language model in the finance domain with improved performance over previous models due to the use of domain knowledge and vocabulary. ## FLUE FLUE (Financial Language Understanding Evaluation) is a comprehensive and heterogeneous benchmark that has been built from 5 diverse financial domain specific datasets. Sentiment Classification: [Financial PhraseBank](https://huggingface.co/datasets/financial_phrasebank)\ Sentiment Analysis, Question Answering: [FiQA 2018](https://huggingface.co/datasets/SALT-NLP/FLUE-FiQA)\ New Headlines Classification: [Headlines](https://www.kaggle.com/datasets/daittan/gold-commodity-news-and-dimensions)\ Named Entity Recognition: [NER](https://paperswithcode.com/dataset/fin)\ Structure Boundary Detection: [FinSBD3](https://sites.google.com/nlg.csie.ntu.edu.tw/finweb2021/shared-task-finsbd-3) ## Citation Please cite the model with the following citation: ```bibtex @INPROCEEDINGS{shah-etal-2022-flang, author = {Shah, Raj Sanjay and Chawla, Kunal and Eidnani, Dheeraj and Shah, Agam and Du, Wendi and Chava, Sudheer and Raman, Natraj and Smiley, Charese and Chen, Jiaao and Yang, Diyi }, title = {When FLUE Meets FLANG: Benchmarks and Large Pretrained Language Model for Financial Domain}, booktitle = {Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing (EMNLP)}, year = {2022}, publisher = {Association for Computational Linguistics} } ``` ## Contact information Please contact Raj Sanjay Shah (rajsanjayshah[at]gatech[dot]edu) or Sudheer Chava (schava6[at]gatech[dot]edu) or Diyi Yang (diyiy[at]stanford[dot]edu) about any FLANG-BERT related issues and questions. --- license: afl-3.0 ---
kejian/debug-pt-conditional
kejian
2022-11-29T15:03:05Z
1
0
transformers
[ "transformers", "pytorch", "gpt2", "generated_from_trainer", "en", "dataset:kejian/codeparrot-train-more-filter-3.3b-cleaned", "license:apache-2.0", "text-generation-inference", "endpoints_compatible", "region:us" ]
null
2022-11-29T14:52:56Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - kejian/codeparrot-train-more-filter-3.3b-cleaned model-index: - name: debug-pt-conditional results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # debug-pt-conditional This model was trained from scratch on the kejian/codeparrot-train-more-filter-3.3b-cleaned dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0008 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - training_steps: 50354 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.23.0 - Pytorch 1.13.0+cu116 - Datasets 2.0.0 - Tokenizers 0.12.1 # Full config {'dataset': {'conditional_training_config': {'aligned_prefix': '<|aligned|>', 'drop_token_fraction': 0.1, 'misaligned_prefix': '<|misaligned|>', 'threshold': 0}, 'datasets': ['kejian/codeparrot-train-more-filter-3.3b-cleaned'], 'is_split_by_sentences': True}, 'generation': {'batch_size': 64, 'metrics_configs': [{}, {'n': 1}, {}], 'scenario_configs': [{'display_as_html': True, 'generate_kwargs': {'do_sample': True, 'eos_token_id': 0, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'unconditional', 'num_samples': 128, 'prefix': '<|aligned|>', 'use_prompt_for_scoring': False}, {'display_as_html': True, 'generate_kwargs': {'do_sample': True, 'eos_token_id': 0, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'functions', 'num_samples': 128, 'prefix': '<|aligned|>', 'prompt_before_control': True, 'prompts_path': 'resources/functions_csnet.jsonl', 'use_prompt_for_scoring': True}], 'scorer_config': {}}, 'kl_gpt3_callback': {'gpt3_kwargs': {'model_name': 'code-cushman-001'}, 'max_tokens': 64, 'num_samples': 4096, 'prefix': '<|aligned|>'}, 'model': {'from_scratch': True, 'gpt2_config_kwargs': {'reorder_and_upcast_attn': True, 'scale_attn_by': True}, 'num_additional_tokens': 2, 'path_or_name': 'codeparrot/codeparrot-small'}, 'objective': {'name': 'MLE'}, 'tokenizer': {'path_or_name': 'codeparrot/codeparrot-small', 'special_tokens': ['<|aligned|>', '<|misaligned|>']}, 'training': {'dataloader_num_workers': 0, 'effective_batch_size': 64, 'evaluation_strategy': 'no', 'fp16': True, 'hub_model_id': 'debug-pt-conditional', 'hub_strategy': 'all_checkpoints', 'learning_rate': 0.0008, 'logging_first_step': True, 'logging_steps': 1, 'num_tokens': 3300000000.0, 'output_dir': 'training_output', 'per_device_train_batch_size': 8, 'push_to_hub': True, 'remove_unused_columns': False, 'save_steps': 10, 'save_strategy': 'steps', 'seed': 42, 'warmup_ratio': 0.01, 'weight_decay': 0.1}} # Wandb URL: https://wandb.ai/kejian/uncategorized/runs/3my099dp
KPEKEP/rugpt_chitchat
KPEKEP
2022-11-29T14:48:36Z
42
1
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "PyTorch", "Transformers", "ru", "license:unlicense", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-29T14:48:34Z
--- pipeline_tag: text-generation tags: - PyTorch - Transformers - gpt2 license: unlicense language: ru widget: - text: >- - Π£ Π”ΠΆΡƒΠ»ΡŒΠ΅Ρ‚Ρ‚Ρ‹ Π±Ρ‹Π»ΠΎ 7 ΠΏΠΎΠ½Ρ‡ΠΈΠΊΠΎΠ², Π° ΠΏΠΎΡ‚ΠΎΠΌ ΠΎΠ½Π° 3 съСла. Бколько Ρƒ Π½Π΅Π΅ ΠΎΡΡ‚Π°Π»ΠΎΡΡŒ ΠΏΠΎΠ½Ρ‡ΠΈΠΊΠΎΠ²? - - text: >- - ПоглаТСно 4 ΠΌΠ°Π½ΡƒΠ»Π°. ΠžΡΡ‚Π°Π»ΠΎΡΡŒ ΠΏΠΎΠ³Π»Π°Π΄ΠΈΡ‚ΡŒ 6. Бколько всСго ΠΌΠ°Π½ΡƒΠ»ΠΎΠ² Π½Π°Π΄ΠΎ ΠΏΠΎΠ³Π»Π°Π΄ΠΈΡ‚ΡŒ? - - text: '- Для Π½Π°Ρ‡Π°Π»Π° скаТи, Ρ‡Π΅ΠΌΡƒ Ρ€Π°Π²Π½ΠΎ ΠΏΡΡ‚ΡŒΡŽ Π΄Π΅Π²ΡΡ‚ΡŒ? -' - text: '- Ρ‚Ρ‹ Ρ‡Ρ‘ Ρ‚Π°ΠΊΠΎΠΉ Π±ΠΎΡ€Π·Ρ‹ΠΉ? -' - text: '- ΠŸΡ€ΠΈΠ²Π΅Ρ‚! Как вашС Π½ΠΈΡ‡Π΅Π³ΠΎ? -' duplicated_from: inkoziev/rugpt_chitchat --- ## Russian Chit-chat, Deductive and Common Sense reasoning model МодСль являСтся ядром ΠΏΡ€ΠΎΡ‚ΠΎΡ‚ΠΈΠΏΠ° [Π΄ΠΈΠ°Π»ΠΎΠ³ΠΎΠ²ΠΎΠΉ систСмы](https://github.com/Koziev/chatbot) с двумя основными функциями. ΠŸΠ΅Ρ€Π²Π°Ρ функция - **гСнСрация Ρ€Π΅ΠΏΠ»ΠΈΠΊ Ρ‡ΠΈΡ‚-Ρ‡Π°Ρ‚Π°**. Π’ качСствС Π·Π°Ρ‚Ρ€Π°Π²ΠΊΠΈ подаСтся история Π΄ΠΈΠ°Π»ΠΎΠ³Π° (ΠΏΡ€Π΅Π΄ΡˆΠ΅ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ нСсколько Ρ€Π΅ΠΏΠ»ΠΈΠΊ, ΠΎΡ‚ 1 Π΄ΠΎ 10). ``` - ΠŸΡ€ΠΈΠ²Π΅Ρ‚, ΠΊΠ°ΠΊ Π΄Π΅Π»Π°? - ΠŸΡ€ΠΈΠ²Π΅Ρ‚, Ρ‚Π°ΠΊ сСбС. - <<< эту Ρ€Π΅ΠΏΠ»ΠΈΠΊΡƒ ΠΎΠΆΠΈΠ΄Π°Π΅ΠΌ ΠΎΡ‚ ΠΌΠΎΠ΄Π΅Π»ΠΈ >>> ``` Вторая функция ΠΌΠΎΠ΄Π΅Π»ΠΈ - Π²Ρ‹Π²ΠΎΠ΄ ΠΎΡ‚Π²Π΅Ρ‚Π° Π½Π° Π·Π°Π΄Π°Π½Π½Ρ‹ΠΉ вопрос, ΠΎΠΏΠΈΡ€Π°ΡΡΡŒ Π½Π° Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ Ρ„Π°ΠΊΡ‚Ρ‹ ΠΈΠ»ΠΈ Π½Π° "Π·Π΄Ρ€Π°Π²Ρ‹ΠΉ смысл". ΠŸΡ€Π΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π΅Ρ‚ΡΡ, Ρ‡Ρ‚ΠΎ Ρ€Π΅Π»Π΅Π²Π°Π½Ρ‚Π½Ρ‹Π΅ Ρ„Π°ΠΊΡ‚Ρ‹ ΠΈΠ·Π²Π»Π΅ΠΊΠ°ΡŽΡ‚ΡΡ ΠΈΠ· стороннСго Ρ…Ρ€Π°Π½ΠΈΠ»ΠΈΡ‰Π° (Π±Π°Π·Ρ‹ Π·Π½Π°Π½ΠΈΠΉ) с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Π΄Ρ€ΡƒΠ³ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ [sbert_pq](https://huggingface.co/inkoziev/sbert_pq). Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ ΡƒΠΊΠ°Π·Π°Π½Π½Ρ‹ΠΉ Ρ„Π°ΠΊΡ‚(Ρ‹) ΠΈ тСкст вопроса, модСль построит Π³Ρ€Π°ΠΌΠΌΠ°Ρ‚ΠΈΡ‡Π½Ρ‹ΠΉ ΠΈ максимально ΠΊΡ€Π°Ρ‚ΠΊΠΈΠΉ ΠΎΡ‚Π²Π΅Ρ‚, ΠΊΠ°ΠΊ это сдСлал Π±Ρ‹ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊ Π² ΠΏΠΎΠ΄ΠΎΠ±Π½ΠΎΠΉ ΠΊΠΎΠΌΠΌΡƒΠ½ΠΈΠΊΠ°Ρ‚ΠΈΠ²Π½ΠΎΠΉ ситуации. Π Π΅Π»Π΅Π²Π°Π½Ρ‚Π½Ρ‹Π΅ Ρ„Π°ΠΊΡ‚Ρ‹ слСдуСт ΡƒΠΊΠ°Π·Ρ‹Π²Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€Π΅Π΄ тСкстом Π·Π°Π΄Π°Π½Π½ΠΎΠ³ΠΎ вопроса Ρ‚Π°ΠΊ, Π±ΡƒΠ΄Ρ‚ΠΎ сам собСсСдник сказал ΠΈΡ…: ``` - БСгодня 15 сСнтября. Какой сСйчас Ρƒ нас мСсяц? - Π‘Π΅Π½Ρ‚ΡΠ±Ρ€ΡŒ ``` МодСль Π½Π΅ ΠΎΠΆΠΈΠ΄Π°Π΅Ρ‚, Ρ‡Ρ‚ΠΎ всС Π½Π°ΠΉΠ΄Π΅Π½Π½Ρ‹Π΅ ΠΈ Π΄ΠΎΠ±Π°Π²Π»Π΅Π½Π½Ρ‹Π΅ Π² контСкст Π΄ΠΈΠ°Π»ΠΎΠ³Π° Ρ„Π°ΠΊΡ‚Ρ‹ Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ ΠΊ Π·Π°Π΄Π°Π½Π½ΠΎΠΌΡƒ вопросу. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ модСль, ΠΈΠ·Π²Π»Π΅ΠΊΠ°ΡŽΡ‰Π°Ρ ΠΈΠ· Π±Π°Π·Ρ‹ Π·Π½Π°Π½ΠΈΠΉ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΡŽ, ΠΌΠΎΠΆΠ΅Ρ‚ ΠΆΠ΅Ρ€Ρ‚Π²ΠΎΠ²Π°Ρ‚ΡŒ Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒΡŽ Π² ΠΏΠΎΠ»ΡŒΠ·Ρƒ ΠΏΠΎΠ»Π½ΠΎΡ‚Π΅ ΠΈ Π΄ΠΎΠ±Π°Π²Π»ΡΡ‚ΡŒ Ρ‡Ρ‚ΠΎ-Ρ‚ΠΎ лишнСС. МодСль Ρ‡ΠΈΡ‚Ρ‡Π°Ρ‚Π° Π² этом случаС сама Π²Ρ‹Π±Π΅Ρ€Π΅Ρ‚ срСди Π΄ΠΎΠ±Π°Π²Π»Π΅Π½Π½Ρ‹Ρ… Π² контСкст Ρ„Π°ΠΊΡ‚ΠΎΠ² Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡƒΡŽ Ρ„Π°ΠΊΡ‚ΡƒΡ€Ρƒ ΠΈ ΠΏΡ€ΠΎΠΈΠ³Π½ΠΎΡ€ΠΈΡ€ΡƒΠ΅Ρ‚ лишнСС. ВСкущая вСрсия ΠΌΠΎΠ΄Π΅Π»ΠΈ допускаСт Π΄ΠΎ 5 Ρ„Π°ΠΊΡ‚ΠΎΠ² ΠΏΠ΅Ρ€Π΅Π΄ вопросом. НапримСр: ``` - Бтасу 16 Π»Π΅Ρ‚. Бтас ΠΆΠΈΠ²Π΅Ρ‚ Π² ПодольскС. Π£ Бтаса Π½Π΅Ρ‚ своСй ΠΌΠ°ΡˆΠΈΠ½Ρ‹. Π“Π΄Π΅ ΠΆΠΈΠ²Π΅Ρ‚ Бтас? - Π² ПодольскС ``` Π’ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… случаях модСль ΠΌΠΎΠΆΠ΅Ρ‚ Π²Ρ‹ΠΏΠΎΠ»Π½ΡΡ‚ΡŒ **силлогичСский Π²Ρ‹Π²ΠΎΠ΄** ΠΎΡ‚Π²Π΅Ρ‚Π°, ΠΎΠΏΠΈΡ€Π°ΡΡΡŒ Π½Π° 2 прСдпосылки, связанныС Π΄Ρ€ΡƒΠ³ с Π΄Ρ€ΡƒΠ³ΠΎΠΌ. Π’Ρ‹Π²ΠΎΠ΄ΠΈΠΌΠΎΠ΅ ΠΈΠ· Π΄Π²ΡƒΡ… прСдпосылок слСдствиС Π½Π΅ Ρ„ΠΈΠ³ΡƒΡ€ΠΈΡ€ΡƒΠ΅Ρ‚ явно, Π° *ΠΊΠ°ΠΊ Π±Ρ‹* ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ для Π²Ρ‹Π²ΠΎΠ΄Π° ΠΎΡ‚Π²Π΅Ρ‚Π°: ``` - Π‘ΠΌΠ΅Ρ€Ρ‚Π΅Π½ Π»ΠΈ Аристофан, Ссли ΠΎΠ½ Π±Ρ‹Π» грСчСским философом, Π° всС философы смСртны? - Π”Π° ``` Как ΠΌΠΎΠΆΠ½ΠΎ Π²ΠΈΠ΄Π΅Ρ‚ΡŒ ΠΈΠ· ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½Ρ‹Ρ… ΠΏΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠ², Ρ„ΠΎΡ€ΠΌΠ°Ρ‚ ΠΏΠΎΠ΄Π°Π²Π°Π΅ΠΌΠΎΠΉ Π½Π° Π²Ρ…ΠΎΠ΄ ΠΌΠΎΠ΄Π΅Π»ΠΈ фактичСской ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ для выполнСния Π²Ρ‹Π²ΠΎΠ΄Π° ΠΏΡ€Π΅Π΄Π΅Π»ΡŒΠ½ΠΎ СстСствСнный ΠΈ свободный. ΠšΡ€ΠΎΠΌΠ΅ логичСского Π²Ρ‹Π²ΠΎΠ΄Π°, модСль Ρ‚Π°ΠΊΠΆΠ΅ ΡƒΠΌΠ΅Π΅Ρ‚ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ простыС арифмСтичСскиС Π·Π°Π΄Π°Ρ‡ΠΈ Π² Ρ€Π°ΠΌΠΊΠ°Ρ… 1-2 классов Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠΉ ΡˆΠΊΠΎΠ»Ρ‹, с двумя числовыми Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π°ΠΌΠΈ: ``` - Π§Π΅ΠΌΡƒ Ρ€Π°Π²Π½ΠΎ 2+8? - 10 ``` ### Π’Π°Ρ€ΠΈΠ°Π½Ρ‚Ρ‹ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΈ ΠΌΠ΅Ρ‚Ρ€ΠΈΠΊΠΈ ВылоТСнная Π½Π° Π΄Π°Π½Π½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ модСль ΠΈΠΌΠ΅Π΅Ρ‚ 760 ΠΌΠ»Π½. ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ², Ρ‚.Π΅. уровня sberbank-ai/rugpt3large_based_on_gpt2. Π”Π°Π»Π΅Π΅ приводится Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ Π·Π°ΠΌΠ΅Ρ€Π° точности Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ арифмСтичСских Π·Π°Π΄Π°Ρ‡ Π½Π° ΠΎΡ‚Π»ΠΎΠΆΠ΅Π½Π½ΠΎΠΌ тСстовом Π½Π°Π±ΠΎΡ€Π΅ сэмплов: | base model | arith. accuracy | | --------------------------------------- | --------------- | | sberbank-ai/rugpt3large_based_on_gpt2 | 0.91 | | sberbank-ai/rugpt3medium_based_on_gpt2 | 0.70 | | sberbank-ai/rugpt3small_based_on_gpt2 | 0.58 | | tinkoff-ai/ruDialoGPT-small | 0.44 | | tinkoff-ai/ruDialoGPT-medium | 0.69 | Π¦ΠΈΡ„Ρ€Π° 0.91 Π² столбцС "arith. accuracy" ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚, Ρ‡Ρ‚ΠΎ 91% тСстовых Π·Π°Π΄Π°Ρ‡ Ρ€Π΅ΡˆΠ΅Π½ΠΎ ΠΏΠΎΠ»Π½ΠΎΡΡ‚ΡŒΡŽ Π²Π΅Ρ€Π½ΠΎ. Π›ΡŽΠ±ΠΎΠ΅ ΠΎΡ‚ΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ сгСнСрированного ΠΎΡ‚Π²Π΅Ρ‚Π° ΠΎΡ‚ эталонного рассматриваСтся ΠΊΠ°ΠΊ ошибка. НапримСр, Π²Ρ‹Π΄Π°Ρ‡Π° ΠΎΡ‚Π²Π΅Ρ‚Π° "120" вмСсто "119" Ρ‚ΠΎΠΆΠ΅ фиксируСтся ΠΊΠ°ΠΊ ошибка. ### ΠŸΡ€ΠΈΠΌΠ΅Ρ€ использования ``` import torch from transformers import AutoTokenizer, AutoModelForCausalLM device = "cuda" if torch.cuda.is_available() else "cpu" model_name = "inkoziev/rugpt_chitchat" tokenizer = AutoTokenizer.from_pretrained(model_name) tokenizer.add_special_tokens({'bos_token': '<s>', 'eos_token': '</s>', 'pad_token': '<pad>'}) model = AutoModelForCausalLM.from_pretrained(model_name) model.to(device) model.eval() # На Π²Ρ…ΠΎΠ΄ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΏΠΎΠ΄Π°Π΅ΠΌ послСдниС 2-3 Ρ€Π΅ΠΏΠ»ΠΈΠΊΠΈ Π΄ΠΈΠ°Π»ΠΎΠ³Π°. КаТдая Ρ€Π΅ΠΏΠ»ΠΈΠΊΠ° Π½Π° ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½ΠΎΠΉ строкС, начинаСтся с символа "-" input_text = """<s>- ΠŸΡ€ΠΈΠ²Π΅Ρ‚! Π§Ρ‚ΠΎ дСлаСшь? - ΠŸΡ€ΠΈΠ²Π΅Ρ‚ :) Π’ такси Π΅Π΄Ρƒ -""" encoded_prompt = tokenizer.encode(input_text, add_special_tokens=False, return_tensors="pt").to(device) output_sequences = model.generate(input_ids=encoded_prompt, max_length=100, num_return_sequences=1, pad_token_id=tokenizer.pad_token_id) text = tokenizer.decode(output_sequences[0].tolist(), clean_up_tokenization_spaces=True)[len(input_text)+1:] text = text[: text.find('</s>')] print(text) ``` ### ΠšΠΎΠ½Ρ‚Π°ΠΊΡ‚Ρ‹ Если Ρƒ Вас Π΅ΡΡ‚ΡŒ ΠΊΠ°ΠΊΠΈΠ΅-Ρ‚ΠΎ вопросы ΠΏΠΎ использованию этой ΠΌΠΎΠ΄Π΅Π»ΠΈ, ΠΈΠ»ΠΈ прСдлоТСния ΠΏΠΎ Π΅Π΅ ΡƒΠ»ΡƒΡ‡ΡˆΠ΅Π½ΠΈΡŽ - ΠΏΠΈΡˆΠΈΡ‚Π΅ ΠΌΠ½Π΅ [email protected] ### Citation: ``` @MISC{rugpt_chitchat, author = {Ilya Koziev}, title = {Russian Chit-chat with Common sence Reasoning}, url = {https://huggingface.co/inkoziev/rugpt_chitchat}, year = 2022 } ```
deblagoj/xlm-roberta-base-finetuned-panx-de
deblagoj
2022-11-29T14:40:06Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-29T14:12:37Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.86520554167613 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1684 - F1: 0.8652 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2655 | 1.0 | 2097 | 0.1958 | 0.8283 | | 0.1479 | 2.0 | 4194 | 0.1581 | 0.8505 | | 0.0852 | 3.0 | 6291 | 0.1684 | 0.8652 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.13.0+cu117 - Datasets 1.16.1 - Tokenizers 0.10.3
multimodalart/polisteps-768
multimodalart
2022-11-29T14:26:55Z
21
0
diffusers
[ "diffusers", "tensorboard", "text-to-image", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2022-11-29T14:25:16Z
--- license: creativeml-openrail-m tags: - text-to-image --- ### polisteps 768 Dreambooth model trained by multimodalart with [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) with the v2-768 base model You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts! Sample pictures of: plstpz (use that on your prompt) ![plstpz 0](https://huggingface.co/multimodalart/polisteps-768/resolve/main/concept_images/plstpz_%281%29.jpg)![plstpz 1](https://huggingface.co/multimodalart/polisteps-768/resolve/main/concept_images/plstpz_%282%29.jpg)![plstpz 2](https://huggingface.co/multimodalart/polisteps-768/resolve/main/concept_images/plstpz_%283%29.jpg)![plstpz 3](https://huggingface.co/multimodalart/polisteps-768/resolve/main/concept_images/plstpz_%284%29.jpg)![plstpz 4](https://huggingface.co/multimodalart/polisteps-768/resolve/main/concept_images/plstpz_%285%29.jpg)![plstpz 5](https://huggingface.co/multimodalart/polisteps-768/resolve/main/concept_images/plstpz_%286%29.jpg)![plstpz 6](https://huggingface.co/multimodalart/polisteps-768/resolve/main/concept_images/plstpz_%287%29.jpg)![plstpz 7](https://huggingface.co/multimodalart/polisteps-768/resolve/main/concept_images/plstpz_%288%29.jpg)![plstpz 8](https://huggingface.co/multimodalart/polisteps-768/resolve/main/concept_images/plstpz_%289%29.jpg)![plstpz 9](https://huggingface.co/multimodalart/polisteps-768/resolve/main/concept_images/plstpz_%2810%29.jpg)![plstpz 10](https://huggingface.co/multimodalart/polisteps-768/resolve/main/concept_images/plstpz_%2811%29.jpg)![plstpz 11](https://huggingface.co/multimodalart/polisteps-768/resolve/main/concept_images/plstpz_%2812%29.jpg)![plstpz 12](https://huggingface.co/multimodalart/polisteps-768/resolve/main/concept_images/plstpz_%2813%29.jpg)![plstpz 13](https://huggingface.co/multimodalart/polisteps-768/resolve/main/concept_images/plstpz_%2814%29.jpg)![plstpz 14](https://huggingface.co/multimodalart/polisteps-768/resolve/main/concept_images/plstpz_%2815%29.jpg)![plstpz 15](https://huggingface.co/multimodalart/polisteps-768/resolve/main/concept_images/plstpz_%2816%29.jpg)![plstpz 16](https://huggingface.co/multimodalart/polisteps-768/resolve/main/concept_images/plstpz_%2817%29.jpg)![plstpz 17](https://huggingface.co/multimodalart/polisteps-768/resolve/main/concept_images/plstpz_%2818%29.jpg)![plstpz 18](https://huggingface.co/multimodalart/polisteps-768/resolve/main/concept_images/plstpz_%2819%29.jpg)![plstpz 19](https://huggingface.co/multimodalart/polisteps-768/resolve/main/concept_images/plstpz_%2820%29.jpg)![plstpz 20](https://huggingface.co/multimodalart/polisteps-768/resolve/main/concept_images/plstpz_%2821%29.jpg)
thliang01/sd-class-butterflies-64
thliang01
2022-11-29T14:23:01Z
37
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-11-29T14:22:36Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute πŸ¦‹. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained(thliang01/sd-class-butterflies-64) image = pipeline().images[0] image ```
jenniferjjc/roberta-base-bne-finetuned-amazon_reviews_multi
jenniferjjc
2022-11-29T14:05:58Z
116
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "dataset:amazon_reviews_multi", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-29T13:43:25Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - amazon_reviews_multi metrics: - accuracy model-index: - name: roberta-base-bne-finetuned-amazon_reviews_multi results: - task: name: Text Classification type: text-classification dataset: name: amazon_reviews_multi type: amazon_reviews_multi config: es split: train args: es metrics: - name: Accuracy type: accuracy value: 0.93275 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-bne-finetuned-amazon_reviews_multi This model is a fine-tuned version of [BSC-TeMU/roberta-base-bne](https://huggingface.co/BSC-TeMU/roberta-base-bne) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.2223 - Accuracy: 0.9327 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1945 | 1.0 | 1250 | 0.1731 | 0.9335 | | 0.1004 | 2.0 | 2500 | 0.2223 | 0.9327 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
Evolett/rubert-tiny2-finetuned-ner
Evolett
2022-11-29T13:55:33Z
129
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-29T09:43:37Z
--- tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: rubert-tiny2-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: train args: conll2003 metrics: - name: Precision type: precision value: 0.7137235200535879 - name: Recall type: recall value: 0.7270556124189697 - name: F1 type: f1 value: 0.7203278827058774 - name: Accuracy type: accuracy value: 0.9363443855435385 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # rubert-tiny2-finetuned-ner This model was trained from scratch on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.2259 - Precision: 0.7137 - Recall: 0.7271 - F1: 0.7203 - Accuracy: 0.9363 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.6327 | 1.0 | 878 | 0.3218 | 0.6068 | 0.6009 | 0.6038 | 0.9114 | | 0.2937 | 2.0 | 1756 | 0.2434 | 0.6864 | 0.7013 | 0.6938 | 0.9307 | | 0.2357 | 3.0 | 2634 | 0.2259 | 0.7137 | 0.7271 | 0.7203 | 0.9363 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
sayby/q-Taxi-v3
sayby
2022-11-29T13:45:48Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-11-29T13:36:00Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.66 +/- 2.55 name: mean_reward verified: false --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="sayby/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
kaizerkam/sd-class-comics-64
kaizerkam
2022-11-29T13:26:50Z
30
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-11-29T13:25:39Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of comic scenes. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained(kaizerkam/sd-class-comics-64) image = pipeline().images[0] image ```
pig4431/rtm_roBERTa_5E
pig4431
2022-11-29T12:34:52Z
104
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "dataset:rotten_tomatoes", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-29T11:02:18Z
--- license: mit tags: - generated_from_trainer datasets: - rotten_tomatoes metrics: - accuracy model-index: - name: rtm_roBERTa_5E results: - task: name: Text Classification type: text-classification dataset: name: rotten_tomatoes type: rotten_tomatoes config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.8666666666666667 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # rtm_roBERTa_5E This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the rotten_tomatoes dataset. It achieves the following results on the evaluation set: - Loss: 0.6545 - Accuracy: 0.8667 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6955 | 0.09 | 50 | 0.6752 | 0.7867 | | 0.5362 | 0.19 | 100 | 0.4314 | 0.8333 | | 0.4065 | 0.28 | 150 | 0.4476 | 0.8533 | | 0.3563 | 0.37 | 200 | 0.3454 | 0.8467 | | 0.3729 | 0.47 | 250 | 0.3421 | 0.86 | | 0.3355 | 0.56 | 300 | 0.3253 | 0.8467 | | 0.338 | 0.66 | 350 | 0.3859 | 0.8733 | | 0.2875 | 0.75 | 400 | 0.3537 | 0.8533 | | 0.3477 | 0.84 | 450 | 0.3636 | 0.8467 | | 0.3259 | 0.94 | 500 | 0.3115 | 0.88 | | 0.3204 | 1.03 | 550 | 0.4295 | 0.8333 | | 0.2673 | 1.12 | 600 | 0.3369 | 0.88 | | 0.2479 | 1.22 | 650 | 0.3620 | 0.8667 | | 0.2821 | 1.31 | 700 | 0.3582 | 0.8733 | | 0.2355 | 1.4 | 750 | 0.3130 | 0.8867 | | 0.2357 | 1.5 | 800 | 0.3229 | 0.86 | | 0.2725 | 1.59 | 850 | 0.3035 | 0.88 | | 0.2425 | 1.69 | 900 | 0.3146 | 0.8533 | | 0.1977 | 1.78 | 950 | 0.4079 | 0.86 | | 0.2557 | 1.87 | 1000 | 0.4132 | 0.8733 | | 0.2395 | 1.97 | 1050 | 0.3336 | 0.86 | | 0.1951 | 2.06 | 1100 | 0.5068 | 0.84 | | 0.1631 | 2.15 | 1150 | 0.5209 | 0.8867 | | 0.2192 | 2.25 | 1200 | 0.4766 | 0.8733 | | 0.1725 | 2.34 | 1250 | 0.3962 | 0.8667 | | 0.2215 | 2.43 | 1300 | 0.4133 | 0.8867 | | 0.1602 | 2.53 | 1350 | 0.5564 | 0.8533 | | 0.1986 | 2.62 | 1400 | 0.5826 | 0.86 | | 0.1972 | 2.72 | 1450 | 0.5412 | 0.8667 | | 0.2299 | 2.81 | 1500 | 0.4636 | 0.8733 | | 0.2028 | 2.9 | 1550 | 0.5096 | 0.8667 | | 0.2591 | 3.0 | 1600 | 0.3790 | 0.8467 | | 0.1197 | 3.09 | 1650 | 0.5704 | 0.8467 | | 0.174 | 3.18 | 1700 | 0.5904 | 0.8467 | | 0.1499 | 3.28 | 1750 | 0.6066 | 0.86 | | 0.1687 | 3.37 | 1800 | 0.6353 | 0.8533 | | 0.1463 | 3.46 | 1850 | 0.6434 | 0.8467 | | 0.1373 | 3.56 | 1900 | 0.6507 | 0.8533 | | 0.1339 | 3.65 | 1950 | 0.6014 | 0.86 | | 0.1488 | 3.75 | 2000 | 0.7245 | 0.84 | | 0.1725 | 3.84 | 2050 | 0.6214 | 0.86 | | 0.1443 | 3.93 | 2100 | 0.6446 | 0.8533 | | 0.1619 | 4.03 | 2150 | 0.6223 | 0.8533 | | 0.1153 | 4.12 | 2200 | 0.6579 | 0.8333 | | 0.1159 | 4.21 | 2250 | 0.6760 | 0.8667 | | 0.0948 | 4.31 | 2300 | 0.7172 | 0.8467 | | 0.1373 | 4.4 | 2350 | 0.7346 | 0.8467 | | 0.1463 | 4.49 | 2400 | 0.6453 | 0.8533 | | 0.0758 | 4.59 | 2450 | 0.6579 | 0.86 | | 0.16 | 4.68 | 2500 | 0.6556 | 0.8667 | | 0.112 | 4.78 | 2550 | 0.6490 | 0.88 | | 0.1151 | 4.87 | 2600 | 0.6525 | 0.8667 | | 0.2152 | 4.96 | 2650 | 0.6545 | 0.8667 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0 - Datasets 2.7.1 - Tokenizers 0.13.2
AlekseyKorshuk/125m-dalio-book-handwritten-io-constant-1e-6-v2
AlekseyKorshuk
2022-11-29T12:29:49Z
125
0
transformers
[ "transformers", "pytorch", "opt", "text-generation", "generated_from_trainer", "dataset:AlekseyKorshuk/dalio-book-handwritten-io-sorted-v2", "license:other", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-29T10:31:18Z
--- license: other tags: - generated_from_trainer datasets: - AlekseyKorshuk/dalio-book-handwritten-io-sorted-v2 metrics: - accuracy model-index: - name: 125m-dalio-book-handwritten-io-constant-1e-6-v2 results: - task: name: Causal Language Modeling type: text-generation dataset: name: AlekseyKorshuk/dalio-book-handwritten-io-sorted-v2 type: AlekseyKorshuk/dalio-book-handwritten-io-sorted-v2 metrics: - name: Accuracy type: accuracy value: 0.23359387091781458 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 125m-dalio-book-handwritten-io-constant-1e-6-v2 This model is a fine-tuned version of [facebook/opt-125m](https://huggingface.co/facebook/opt-125m) on the AlekseyKorshuk/dalio-book-handwritten-io-sorted-v2 dataset. It achieves the following results on the evaluation set: - Loss: 3.0859 - Accuracy: 0.2336 - Perplexity: 21.8880 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 8 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Perplexity | |:-------------:|:-----:|:----:|:---------------:|:--------:|:----------:| | 3.3352 | 0.01 | 1 | 3.1738 | 0.2305 | 23.8988 | | 3.3091 | 0.03 | 2 | 3.1738 | 0.2305 | 23.8988 | | 3.3347 | 0.04 | 3 | 3.1738 | 0.2305 | 23.8988 | | 3.1445 | 0.05 | 4 | 3.1738 | 0.2305 | 23.8988 | | 2.8918 | 0.07 | 5 | 3.1738 | 0.2305 | 23.8988 | | 3.2068 | 0.08 | 6 | 3.1738 | 0.2305 | 23.8988 | | 3.6245 | 0.09 | 7 | 3.1719 | 0.2305 | 23.8522 | | 3.2256 | 0.11 | 8 | 3.1719 | 0.2305 | 23.8522 | | 2.9991 | 0.12 | 9 | 3.1699 | 0.2305 | 23.8056 | | 3.3257 | 0.13 | 10 | 3.1680 | 0.2306 | 23.7592 | | 3.1199 | 0.15 | 11 | 3.1660 | 0.2306 | 23.7128 | | 3.3735 | 0.16 | 12 | 3.1660 | 0.2306 | 23.7128 | | 3.0051 | 0.17 | 13 | 3.1641 | 0.2307 | 23.6665 | | 3.2695 | 0.19 | 14 | 3.1621 | 0.2308 | 23.6204 | | 3.2004 | 0.2 | 15 | 3.1602 | 0.2309 | 23.5743 | | 3.2075 | 0.21 | 16 | 3.1582 | 0.2308 | 23.5283 | | 3.321 | 0.23 | 17 | 3.1562 | 0.2308 | 23.4824 | | 3.4026 | 0.24 | 18 | 3.1543 | 0.2309 | 23.4366 | | 3.0383 | 0.25 | 19 | 3.1523 | 0.2309 | 23.3908 | | 3.166 | 0.27 | 20 | 3.1504 | 0.2309 | 23.3452 | | 3.144 | 0.28 | 21 | 3.1484 | 0.2310 | 23.2996 | | 3.1624 | 0.29 | 22 | 3.1484 | 0.2310 | 23.2996 | | 3.0332 | 0.31 | 23 | 3.1465 | 0.2310 | 23.2542 | | 3.3745 | 0.32 | 24 | 3.1445 | 0.2311 | 23.2088 | | 3.0823 | 0.33 | 25 | 3.1426 | 0.2312 | 23.1635 | | 3.6021 | 0.35 | 26 | 3.1406 | 0.2312 | 23.1183 | | 3.1125 | 0.36 | 27 | 3.1387 | 0.2313 | 23.0732 | | 3.1406 | 0.37 | 28 | 3.1387 | 0.2314 | 23.0732 | | 3.1736 | 0.39 | 29 | 3.1367 | 0.2314 | 23.0282 | | 3.1104 | 0.4 | 30 | 3.1348 | 0.2315 | 22.9832 | | 3.1301 | 0.41 | 31 | 3.1328 | 0.2316 | 22.9384 | | 3.3376 | 0.43 | 32 | 3.1309 | 0.2315 | 22.8936 | | 3.218 | 0.44 | 33 | 3.1309 | 0.2316 | 22.8936 | | 3.0786 | 0.45 | 34 | 3.1289 | 0.2316 | 22.8490 | | 3.0125 | 0.47 | 35 | 3.1270 | 0.2317 | 22.8044 | | 3.2634 | 0.48 | 36 | 3.1270 | 0.2317 | 22.8044 | | 2.9888 | 0.49 | 37 | 3.125 | 0.2318 | 22.7599 | | 3.1624 | 0.51 | 38 | 3.1230 | 0.2318 | 22.7155 | | 2.9807 | 0.52 | 39 | 3.1211 | 0.2319 | 22.6712 | | 3.446 | 0.53 | 40 | 3.1211 | 0.2319 | 22.6712 | | 3.1338 | 0.55 | 41 | 3.1191 | 0.2320 | 22.6269 | | 3.1841 | 0.56 | 42 | 3.1191 | 0.2320 | 22.6269 | | 3.1079 | 0.57 | 43 | 3.1172 | 0.2320 | 22.5828 | | 3.0918 | 0.59 | 44 | 3.1152 | 0.2321 | 22.5387 | | 3.0302 | 0.6 | 45 | 3.1152 | 0.2322 | 22.5387 | | 3.1123 | 0.61 | 46 | 3.1133 | 0.2323 | 22.4947 | | 2.9985 | 0.63 | 47 | 3.1113 | 0.2324 | 22.4508 | | 3.3816 | 0.64 | 48 | 3.1113 | 0.2324 | 22.4508 | | 3.0813 | 0.65 | 49 | 3.1094 | 0.2324 | 22.4070 | | 3.2024 | 0.67 | 50 | 3.1094 | 0.2325 | 22.4070 | | 3.0178 | 0.68 | 51 | 3.1074 | 0.2325 | 22.3633 | | 3.1646 | 0.69 | 52 | 3.1074 | 0.2326 | 22.3633 | | 3.0046 | 0.71 | 53 | 3.1055 | 0.2327 | 22.3197 | | 3.0266 | 0.72 | 54 | 3.1055 | 0.2327 | 22.3197 | | 3.3857 | 0.73 | 55 | 3.1035 | 0.2327 | 22.2761 | | 3.064 | 0.75 | 56 | 3.1035 | 0.2328 | 22.2761 | | 3.176 | 0.76 | 57 | 3.1016 | 0.2328 | 22.2327 | | 3.1851 | 0.77 | 58 | 3.1016 | 0.2329 | 22.2327 | | 3.0811 | 0.79 | 59 | 3.0996 | 0.2329 | 22.1893 | | 3.0205 | 0.8 | 60 | 3.0996 | 0.2330 | 22.1893 | | 3.26 | 0.81 | 61 | 3.0977 | 0.2330 | 22.1460 | | 3.2922 | 0.83 | 62 | 3.0977 | 0.2331 | 22.1460 | | 3.5349 | 0.84 | 63 | 3.0957 | 0.2331 | 22.1028 | | 3.3525 | 0.85 | 64 | 3.0957 | 0.2331 | 22.1028 | | 3.135 | 0.87 | 65 | 3.0938 | 0.2331 | 22.0596 | | 3.1707 | 0.88 | 66 | 3.0938 | 0.2332 | 22.0596 | | 3.0127 | 0.89 | 67 | 3.0918 | 0.2332 | 22.0166 | | 3.0952 | 0.91 | 68 | 3.0918 | 0.2332 | 22.0166 | | 3.1023 | 0.92 | 69 | 3.0898 | 0.2334 | 21.9736 | | 3.3821 | 0.93 | 70 | 3.0898 | 0.2334 | 21.9736 | | 3.1118 | 0.95 | 71 | 3.0879 | 0.2334 | 21.9308 | | 3.1143 | 0.96 | 72 | 3.0879 | 0.2335 | 21.9308 | | 3.1118 | 0.97 | 73 | 3.0879 | 0.2335 | 21.9308 | | 3.0596 | 0.99 | 74 | 3.0859 | 0.2336 | 21.8880 | | 3.1033 | 1.0 | 75 | 3.0859 | 0.2336 | 21.8880 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
nlp-tlp/mwo-re
nlp-tlp
2022-11-29T12:11:48Z
4
0
flair
[ "flair", "pytorch", "text-classification", "text-classification-model", "en", "dataset:mwo_re", "region:us" ]
text-classification
2022-11-29T12:09:12Z
--- tags: - flair - text-classification - text-classification-model language: en datasets: - mwo_re widget: - text: "pump broken Item Observation pump is broken" --- ## MWO NER Test A flair-based RE model for MWOs. There are three classes: `HAS_ACTIVITY`, `HAS_OBSERVATION`, and `APPEARS_WITH`.
mepi/KR-FinBert-finetuned-ner
mepi
2022-11-29T11:43:09Z
114
1
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:klue", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-29T11:08:10Z
--- tags: - generated_from_trainer datasets: - klue metrics: - precision - recall - f1 - accuracy model-index: - name: KR-FinBert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: klue type: klue config: ner split: train args: ner metrics: - name: Precision type: precision value: 0.70817831734221 - name: Recall type: recall value: 0.7610296696359683 - name: F1 type: f1 value: 0.7336533910338766 - name: Accuracy type: accuracy value: 0.9504335292160994 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # KR-FinBert-finetuned-ner This model is a fine-tuned version of [snunlp/KR-FinBert](https://huggingface.co/snunlp/KR-FinBert) on the klue dataset. It achieves the following results on the evaluation set: - Loss: 0.1634 - Precision: 0.7082 - Recall: 0.7610 - F1: 0.7337 - Accuracy: 0.9504 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2028 | 1.0 | 1313 | 0.1852 | 0.6650 | 0.7060 | 0.6849 | 0.9406 | | 0.1232 | 2.0 | 2626 | 0.1627 | 0.7028 | 0.7459 | 0.7237 | 0.9487 | | 0.0942 | 3.0 | 3939 | 0.1634 | 0.7082 | 0.7610 | 0.7337 | 0.9504 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
LuisQ/LuisQ_sd-class-butterflies-64
LuisQ
2022-11-29T11:43:04Z
35
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-11-28T16:21:27Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute πŸ¦‹. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained(LuisQ/LuisQ_sd-class-butterflies-64) image = pipeline().images[0] image ```
louisbetsch/tweetclassification-bf-model
louisbetsch
2022-11-29T10:37:35Z
2
0
sentence-transformers
[ "sentence-transformers", "pytorch", "xlm-roberta", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-11-22T09:43:52Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 850 with parameters: ``` {'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 850, "warmup_steps": 85, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
ConvLab/t5-small-goal2dialogue-multiwoz21
ConvLab
2022-11-29T10:32:56Z
104
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "t5-small", "dialogue generation", "conversational system", "task-oriented dialog", "en", "dataset:ConvLab/multiwoz21", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-25T07:02:25Z
--- language: - en license: apache-2.0 tags: - t5-small - text2text-generation - dialogue generation - conversational system - task-oriented dialog datasets: - ConvLab/multiwoz21 metrics: - LM loss model-index: - name: t5-small-goal2dialogue-multiwoz21 results: - task: type: text2text-generation name: dialogue generation dataset: type: ConvLab/multiwoz21 name: MultiWOZ 2.1 split: validation revision: 5f55375edbfe0270c20bcf770751ad982c0e6614 metrics: - type: Language model loss value: 1.5253684520721436 name: LM loss - task: type: text2text-generation name: dialogue generation dataset: type: ConvLab/multiwoz21 name: MultiWOZ 2.1 split: test revision: 5f55375edbfe0270c20bcf770751ad982c0e6614 metrics: - type: Language model loss value: 1.515929937362671 name: LM loss widget: - text: "You are traveling to Cambridge and looking forward to try local restaurants. You are looking for a particular attraction. Its name is called nusha. Make sure you get postcode and address. You are also looking for a place to dine. The restaurant should be in the expensive price range and should serve indian food. The restaurant should be in the centre. Make sure you get address" - text: "You want to book a taxi. The taxi should go to pizza hut fen ditton and should depart from saint john's college. The taxi should leave after 17:15. Make sure you get car type and contact number" inference: parameters: max_length: 1024 --- # t5-small-goal2dialogue-multiwoz21 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on [MultiWOZ 2.1](https://huggingface.co/datasets/ConvLab/multiwoz21). Refer to [ConvLab-3](https://github.com/ConvLab/ConvLab-3) for model description and usage. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adafactor - lr_scheduler_type: linear - num_epochs: 10.0 ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
huggingtweets/mullen_usa-nasdaq
huggingtweets
2022-11-29T10:30:31Z
117
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-29T10:24:49Z
--- language: en thumbnail: http://www.huggingtweets.com/mullen_usa-nasdaq/1669717561312/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1521140484512620544/Ev6EIPlD_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1433904015834705921/tRPvxdFF_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI CYBORG πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Nasdaq & Mullen Automotive</div> <div style="text-align: center; font-size: 14px;">@mullen_usa-nasdaq</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Nasdaq & Mullen Automotive. | Data | Nasdaq | Mullen Automotive | | --- | --- | --- | | Tweets downloaded | 3250 | 963 | | Retweets | 663 | 188 | | Short tweets | 31 | 121 | | Tweets kept | 2556 | 654 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/352xmu00/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mullen_usa-nasdaq's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/x3hx0rfr) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/x3hx0rfr/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mullen_usa-nasdaq') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
JulianBons/sd-class-butterflies-32
JulianBons
2022-11-29T10:23:38Z
39
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-11-29T10:23:10Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute πŸ¦‹. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained(JulianBons/sd-class-butterflies-32) image = pipeline().images[0] image ```
renesteeman/whisper-tiny-dutch-25
renesteeman
2022-11-29T10:20:09Z
80
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "nl", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-29T08:26:14Z
--- language: - nl license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Tiny Dutch 25 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 args: 'config: nl, split: test' metrics: - name: Wer type: wer value: 42.065535920433355 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Tiny Dutch 25 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.7024 - Wer: 42.0655 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 2000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.5563 | 0.78 | 500 | 0.7838 | 47.5002 | | 0.3949 | 1.56 | 1000 | 0.7301 | 43.9570 | | 0.2666 | 2.34 | 1500 | 0.7103 | 42.8426 | | 0.2307 | 3.12 | 2000 | 0.7024 | 42.0655 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
SiriRRR/bart-base-finetuned-test
SiriRRR
2022-11-29T09:26:23Z
62
0
transformers
[ "transformers", "tf", "bart", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-29T09:19:55Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: SiriRRR/bart-base-finetuned-test results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # SiriRRR/bart-base-finetuned-test This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.5900 - Validation Loss: 2.6982 - Epoch: 7 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5.6e-05, 'decay_steps': 2864, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 2.4667 | 2.1935 | 0 | | 1.7786 | 2.2691 | 1 | | 1.4244 | 2.3324 | 2 | | 1.1479 | 2.4362 | 3 | | 0.9405 | 2.5442 | 4 | | 0.7770 | 2.5797 | 5 | | 0.6615 | 2.6505 | 6 | | 0.5900 | 2.6982 | 7 | ### Framework versions - Transformers 4.24.0 - TensorFlow 2.9.2 - Datasets 2.7.1 - Tokenizers 0.13.2
SayaEndo/distilbert-base-uncased-finetuned-squad-d5716d28
SayaEndo
2022-11-29T08:56:00Z
107
0
transformers
[ "transformers", "pytorch", "distilbert", "fill-mask", "question-answering", "en", "dataset:squad", "arxiv:1910.01108", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
question-answering
2022-11-29T08:44:02Z
--- language: - en thumbnail: https://github.com/karanchahal/distiller/blob/master/distiller.jpg tags: - question-answering license: apache-2.0 datasets: - squad metrics: - squad --- # DistilBERT with a second step of distillation ## Model description This model replicates the "DistilBERT (D)" model from Table 2 of the [DistilBERT paper](https://arxiv.org/pdf/1910.01108.pdf). In this approach, a DistilBERT student is fine-tuned on SQuAD v1.1, but with a BERT model (also fine-tuned on SQuAD v1.1) acting as a teacher for a second step of task-specific distillation. In this version, the following pre-trained models were used: * Student: `distilbert-base-uncased` * Teacher: `lewtun/bert-base-uncased-finetuned-squad-v1` ## Training data This model was trained on the SQuAD v1.1 dataset which can be obtained from the `datasets` library as follows: ```python from datasets import load_dataset squad = load_dataset('squad') ``` ## Training procedure ## Eval results | | Exact Match | F1 | |------------------|-------------|------| | DistilBERT paper | 79.1 | 86.9 | | Ours | 78.4 | 86.5 | The scores were calculated using the `squad` metric from `datasets`. ### BibTeX entry and citation info ```bibtex @misc{sanh2020distilbert, title={DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter}, author={Victor Sanh and Lysandre Debut and Julien Chaumond and Thomas Wolf}, year={2020}, eprint={1910.01108}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
pig4431/rtm_fewshot
pig4431
2022-11-29T08:30:05Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-11-29T08:29:50Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 80 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 800, "warmup_steps": 80, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
regisss/t5-3b-summarization-gaudi-2
regisss
2022-11-29T08:15:35Z
12
0
transformers
[ "transformers", "pytorch", "tensorboard", "optimum_habana", "t5", "text2text-generation", "generated_from_trainer", "dataset:cnn_dailymail", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-28T19:53:30Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - cnn_dailymail model-index: - name: t5-3b-summarization-gaudi-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-3b-summarization-gaudi-2 This model is a fine-tuned version of [t5-3b](https://huggingface.co/t5-3b) on the cnn_dailymail dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 8 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.0a0+git7392344 - Datasets 2.7.1 - Tokenizers 0.13.2
pig4431/YELP_fewshot
pig4431
2022-11-29T08:08:51Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-11-29T08:08:37Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 80 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 800, "warmup_steps": 80, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
premsuresh/bart-finetuned-mathqa-mohith
premsuresh
2022-11-29T08:05:32Z
176
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-29T07:36:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bart-finetuned-mathqa-mohith results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-finetuned-mathqa-mohith This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 100 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
nagais/sd-class-butterflies-32
nagais
2022-11-29T07:06:12Z
32
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-11-29T06:51:12Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute πŸ¦‹. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained(nagais/sd-class-butterflies-32) image = pipeline().images[0] image ```
MadhuG/vit-base-patch16-224-in21k-lung_cancer
MadhuG
2022-11-29T06:41:28Z
76
0
transformers
[ "transformers", "tf", "tensorboard", "vit", "image-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-11-29T05:33:48Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: MadhuG/vit-base-patch16-224-in21k-lung_cancer results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # MadhuG/vit-base-patch16-224-in21k-lung_cancer This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.1061 - Train Accuracy: 0.1041 - Validation Loss: 1.1028 - Validation Accuracy: 0.1394 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 600, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 1.1061 | 0.1041 | 1.1028 | 0.1394 | 0 | ### Framework versions - Transformers 4.24.0 - TensorFlow 2.10.0 - Datasets 2.7.0 - Tokenizers 0.13.2
smilton/mt5-large-qasrl-es-p1-role
smilton
2022-11-29T06:01:48Z
103
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "generated_from_trainer", "es", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-29T05:47:34Z
--- language: - es license: apache-2.0 tags: - generated_from_trainer model-index: - name: mt5-large-qasrl-es-p1-role results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-large-qasrl-es-p1-role This model is a fine-tuned version of [google/mt5-large](https://huggingface.co/google/mt5-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4259 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.11.0 - Datasets 2.7.1 - Tokenizers 0.11.0
laroy23/ddpm-butterflies-128
laroy23
2022-11-29T04:33:59Z
0
0
diffusers
[ "diffusers", "tensorboard", "en", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-11-28T13:56:37Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: ./cifar-10-batches-py metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [πŸ€— Diffusers](https://github.com/huggingface/diffusers) library on the `./cifar-10-batches-py` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results πŸ“ˆ [TensorBoard logs](https://huggingface.co/laroy23/ddpm-butterflies-128/tensorboard?#scalars)
elRivx/gAWoman
elRivx
2022-11-29T04:33:34Z
0
2
null
[ "stable-diffusion", "text-to-image", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2022-11-29T04:22:28Z
--- license: creativeml-openrail-m tags: - stable-diffusion - text-to-image --- # gAWoman This is my second Stable Diffusion custom model that bring to you a generic woman generated with non-licenced images. The magic word is: gAWoman If you enjoy my work, please consider supporting me: [![Buy me a coffee](https://badgen.net/badge/icon/buymeacoffee?icon=buymeacoffee&label)](https://www.buymeacoffee.com/elrivx) Examples: <img src=https://imgur.com/B5XkfuG.png width=30% height=30%> <img src=https://imgur.com/N8lNtZo.png width=30% height=30%> ## License This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: 1. You can't use the model to deliberately produce nor share illegal or harmful outputs or content 2. The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license 3. You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) [Please read the full license here](https://huggingface.co/spaces/CompVis/stable-diffusion-license)
NSandra/distilbert-base-uncased-finetuned-ner
NSandra
2022-11-29T04:09:17Z
125
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-29T03:55:13Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2393 - Precision: 1.0 - Recall: 1.0 - F1: 1.0 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:| | No log | 1.0 | 1 | 1.5491 | 1.0 | 1.0 | 1.0 | 1.0 | | No log | 2.0 | 2 | 1.3278 | 1.0 | 1.0 | 1.0 | 1.0 | | No log | 3.0 | 3 | 1.2393 | 1.0 | 1.0 | 1.0 | 1.0 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
tomekkorbak/amazing_payne
tomekkorbak
2022-11-29T03:28:47Z
0
0
null
[ "generated_from_trainer", "en", "dataset:tomekkorbak/detoxify-pile-chunk3-0-50000", "dataset:tomekkorbak/detoxify-pile-chunk3-50000-100000", "dataset:tomekkorbak/detoxify-pile-chunk3-100000-150000", "dataset:tomekkorbak/detoxify-pile-chunk3-150000-200000", "dataset:tomekkorbak/detoxify-pile-chunk3-200000-250000", "dataset:tomekkorbak/detoxify-pile-chunk3-250000-300000", "dataset:tomekkorbak/detoxify-pile-chunk3-300000-350000", "dataset:tomekkorbak/detoxify-pile-chunk3-350000-400000", "dataset:tomekkorbak/detoxify-pile-chunk3-400000-450000", "dataset:tomekkorbak/detoxify-pile-chunk3-450000-500000", "dataset:tomekkorbak/detoxify-pile-chunk3-500000-550000", "dataset:tomekkorbak/detoxify-pile-chunk3-550000-600000", "dataset:tomekkorbak/detoxify-pile-chunk3-600000-650000", "dataset:tomekkorbak/detoxify-pile-chunk3-650000-700000", "dataset:tomekkorbak/detoxify-pile-chunk3-700000-750000", "dataset:tomekkorbak/detoxify-pile-chunk3-750000-800000", "dataset:tomekkorbak/detoxify-pile-chunk3-800000-850000", "dataset:tomekkorbak/detoxify-pile-chunk3-850000-900000", "dataset:tomekkorbak/detoxify-pile-chunk3-900000-950000", "dataset:tomekkorbak/detoxify-pile-chunk3-950000-1000000", "dataset:tomekkorbak/detoxify-pile-chunk3-1000000-1050000", "dataset:tomekkorbak/detoxify-pile-chunk3-1050000-1100000", "dataset:tomekkorbak/detoxify-pile-chunk3-1100000-1150000", "dataset:tomekkorbak/detoxify-pile-chunk3-1150000-1200000", "dataset:tomekkorbak/detoxify-pile-chunk3-1200000-1250000", "dataset:tomekkorbak/detoxify-pile-chunk3-1250000-1300000", "dataset:tomekkorbak/detoxify-pile-chunk3-1300000-1350000", "dataset:tomekkorbak/detoxify-pile-chunk3-1350000-1400000", "dataset:tomekkorbak/detoxify-pile-chunk3-1400000-1450000", "dataset:tomekkorbak/detoxify-pile-chunk3-1450000-1500000", "dataset:tomekkorbak/detoxify-pile-chunk3-1500000-1550000", "dataset:tomekkorbak/detoxify-pile-chunk3-1550000-1600000", "dataset:tomekkorbak/detoxify-pile-chunk3-1600000-1650000", "dataset:tomekkorbak/detoxify-pile-chunk3-1650000-1700000", "dataset:tomekkorbak/detoxify-pile-chunk3-1700000-1750000", "dataset:tomekkorbak/detoxify-pile-chunk3-1750000-1800000", "dataset:tomekkorbak/detoxify-pile-chunk3-1800000-1850000", "dataset:tomekkorbak/detoxify-pile-chunk3-1850000-1900000", "dataset:tomekkorbak/detoxify-pile-chunk3-1900000-1950000", "license:mit", "region:us" ]
null
2022-11-29T03:28:38Z
--- language: - en license: mit tags: - generated_from_trainer datasets: - tomekkorbak/detoxify-pile-chunk3-0-50000 - tomekkorbak/detoxify-pile-chunk3-50000-100000 - tomekkorbak/detoxify-pile-chunk3-100000-150000 - tomekkorbak/detoxify-pile-chunk3-150000-200000 - tomekkorbak/detoxify-pile-chunk3-200000-250000 - tomekkorbak/detoxify-pile-chunk3-250000-300000 - tomekkorbak/detoxify-pile-chunk3-300000-350000 - tomekkorbak/detoxify-pile-chunk3-350000-400000 - tomekkorbak/detoxify-pile-chunk3-400000-450000 - tomekkorbak/detoxify-pile-chunk3-450000-500000 - tomekkorbak/detoxify-pile-chunk3-500000-550000 - tomekkorbak/detoxify-pile-chunk3-550000-600000 - tomekkorbak/detoxify-pile-chunk3-600000-650000 - tomekkorbak/detoxify-pile-chunk3-650000-700000 - tomekkorbak/detoxify-pile-chunk3-700000-750000 - tomekkorbak/detoxify-pile-chunk3-750000-800000 - tomekkorbak/detoxify-pile-chunk3-800000-850000 - tomekkorbak/detoxify-pile-chunk3-850000-900000 - tomekkorbak/detoxify-pile-chunk3-900000-950000 - tomekkorbak/detoxify-pile-chunk3-950000-1000000 - tomekkorbak/detoxify-pile-chunk3-1000000-1050000 - tomekkorbak/detoxify-pile-chunk3-1050000-1100000 - tomekkorbak/detoxify-pile-chunk3-1100000-1150000 - tomekkorbak/detoxify-pile-chunk3-1150000-1200000 - tomekkorbak/detoxify-pile-chunk3-1200000-1250000 - tomekkorbak/detoxify-pile-chunk3-1250000-1300000 - tomekkorbak/detoxify-pile-chunk3-1300000-1350000 - tomekkorbak/detoxify-pile-chunk3-1350000-1400000 - tomekkorbak/detoxify-pile-chunk3-1400000-1450000 - tomekkorbak/detoxify-pile-chunk3-1450000-1500000 - tomekkorbak/detoxify-pile-chunk3-1500000-1550000 - tomekkorbak/detoxify-pile-chunk3-1550000-1600000 - tomekkorbak/detoxify-pile-chunk3-1600000-1650000 - tomekkorbak/detoxify-pile-chunk3-1650000-1700000 - tomekkorbak/detoxify-pile-chunk3-1700000-1750000 - tomekkorbak/detoxify-pile-chunk3-1750000-1800000 - tomekkorbak/detoxify-pile-chunk3-1800000-1850000 - tomekkorbak/detoxify-pile-chunk3-1850000-1900000 - tomekkorbak/detoxify-pile-chunk3-1900000-1950000 model-index: - name: amazing_payne results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # amazing_payne This model was trained from scratch on the tomekkorbak/detoxify-pile-chunk3-0-50000, the tomekkorbak/detoxify-pile-chunk3-50000-100000, the tomekkorbak/detoxify-pile-chunk3-100000-150000, the tomekkorbak/detoxify-pile-chunk3-150000-200000, the tomekkorbak/detoxify-pile-chunk3-200000-250000, the tomekkorbak/detoxify-pile-chunk3-250000-300000, the tomekkorbak/detoxify-pile-chunk3-300000-350000, the tomekkorbak/detoxify-pile-chunk3-350000-400000, the tomekkorbak/detoxify-pile-chunk3-400000-450000, the tomekkorbak/detoxify-pile-chunk3-450000-500000, the tomekkorbak/detoxify-pile-chunk3-500000-550000, the tomekkorbak/detoxify-pile-chunk3-550000-600000, the tomekkorbak/detoxify-pile-chunk3-600000-650000, the tomekkorbak/detoxify-pile-chunk3-650000-700000, the tomekkorbak/detoxify-pile-chunk3-700000-750000, the tomekkorbak/detoxify-pile-chunk3-750000-800000, the tomekkorbak/detoxify-pile-chunk3-800000-850000, the tomekkorbak/detoxify-pile-chunk3-850000-900000, the tomekkorbak/detoxify-pile-chunk3-900000-950000, the tomekkorbak/detoxify-pile-chunk3-950000-1000000, the tomekkorbak/detoxify-pile-chunk3-1000000-1050000, the tomekkorbak/detoxify-pile-chunk3-1050000-1100000, the tomekkorbak/detoxify-pile-chunk3-1100000-1150000, the tomekkorbak/detoxify-pile-chunk3-1150000-1200000, the tomekkorbak/detoxify-pile-chunk3-1200000-1250000, the tomekkorbak/detoxify-pile-chunk3-1250000-1300000, the tomekkorbak/detoxify-pile-chunk3-1300000-1350000, the tomekkorbak/detoxify-pile-chunk3-1350000-1400000, the tomekkorbak/detoxify-pile-chunk3-1400000-1450000, the tomekkorbak/detoxify-pile-chunk3-1450000-1500000, the tomekkorbak/detoxify-pile-chunk3-1500000-1550000, the tomekkorbak/detoxify-pile-chunk3-1550000-1600000, the tomekkorbak/detoxify-pile-chunk3-1600000-1650000, the tomekkorbak/detoxify-pile-chunk3-1650000-1700000, the tomekkorbak/detoxify-pile-chunk3-1700000-1750000, the tomekkorbak/detoxify-pile-chunk3-1750000-1800000, the tomekkorbak/detoxify-pile-chunk3-1800000-1850000, the tomekkorbak/detoxify-pile-chunk3-1850000-1900000 and the tomekkorbak/detoxify-pile-chunk3-1900000-1950000 datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - training_steps: 50354 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.5.1 - Tokenizers 0.11.6 # Full config {'dataset': {'datasets': ['tomekkorbak/detoxify-pile-chunk3-0-50000', 'tomekkorbak/detoxify-pile-chunk3-50000-100000', 'tomekkorbak/detoxify-pile-chunk3-100000-150000', 'tomekkorbak/detoxify-pile-chunk3-150000-200000', 'tomekkorbak/detoxify-pile-chunk3-200000-250000', 'tomekkorbak/detoxify-pile-chunk3-250000-300000', 'tomekkorbak/detoxify-pile-chunk3-300000-350000', 'tomekkorbak/detoxify-pile-chunk3-350000-400000', 'tomekkorbak/detoxify-pile-chunk3-400000-450000', 'tomekkorbak/detoxify-pile-chunk3-450000-500000', 'tomekkorbak/detoxify-pile-chunk3-500000-550000', 'tomekkorbak/detoxify-pile-chunk3-550000-600000', 'tomekkorbak/detoxify-pile-chunk3-600000-650000', 'tomekkorbak/detoxify-pile-chunk3-650000-700000', 'tomekkorbak/detoxify-pile-chunk3-700000-750000', 'tomekkorbak/detoxify-pile-chunk3-750000-800000', 'tomekkorbak/detoxify-pile-chunk3-800000-850000', 'tomekkorbak/detoxify-pile-chunk3-850000-900000', 'tomekkorbak/detoxify-pile-chunk3-900000-950000', 'tomekkorbak/detoxify-pile-chunk3-950000-1000000', 'tomekkorbak/detoxify-pile-chunk3-1000000-1050000', 'tomekkorbak/detoxify-pile-chunk3-1050000-1100000', 'tomekkorbak/detoxify-pile-chunk3-1100000-1150000', 'tomekkorbak/detoxify-pile-chunk3-1150000-1200000', 'tomekkorbak/detoxify-pile-chunk3-1200000-1250000', 'tomekkorbak/detoxify-pile-chunk3-1250000-1300000', 'tomekkorbak/detoxify-pile-chunk3-1300000-1350000', 'tomekkorbak/detoxify-pile-chunk3-1350000-1400000', 'tomekkorbak/detoxify-pile-chunk3-1400000-1450000', 'tomekkorbak/detoxify-pile-chunk3-1450000-1500000', 'tomekkorbak/detoxify-pile-chunk3-1500000-1550000', 'tomekkorbak/detoxify-pile-chunk3-1550000-1600000', 'tomekkorbak/detoxify-pile-chunk3-1600000-1650000', 'tomekkorbak/detoxify-pile-chunk3-1650000-1700000', 'tomekkorbak/detoxify-pile-chunk3-1700000-1750000', 'tomekkorbak/detoxify-pile-chunk3-1750000-1800000', 'tomekkorbak/detoxify-pile-chunk3-1800000-1850000', 'tomekkorbak/detoxify-pile-chunk3-1850000-1900000', 'tomekkorbak/detoxify-pile-chunk3-1900000-1950000'], 'filter_threshold': 0.00065, 'is_split_by_sentences': True}, 'generation': {'force_call_on': [25354], 'metrics_configs': [{}, {'n': 1}, {'n': 2}, {'n': 5}], 'scenario_configs': [{'generate_kwargs': {'do_sample': True, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'unconditional', 'num_samples': 2048}, {'generate_kwargs': {'do_sample': True, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'challenging_rtp', 'num_samples': 2048, 'prompts_path': 'resources/challenging_rtp.jsonl'}], 'scorer_config': {'device': 'cuda:0'}}, 'kl_gpt3_callback': {'force_call_on': [25354], 'max_tokens': 64, 'num_samples': 4096}, 'model': {'from_scratch': True, 'gpt2_config_kwargs': {'reorder_and_upcast_attn': True, 'scale_attn_by': True}, 'path_or_name': 'gpt2'}, 'objective': {'name': 'MLE'}, 'tokenizer': {'path_or_name': 'gpt2'}, 'training': {'dataloader_num_workers': 0, 'effective_batch_size': 64, 'evaluation_strategy': 'no', 'fp16': True, 'hub_model_id': 'amazing_payne', 'hub_strategy': 'all_checkpoints', 'learning_rate': 0.0005, 'logging_first_step': True, 'logging_steps': 1, 'num_tokens': 3300000000, 'output_dir': 'training_output104340', 'per_device_train_batch_size': 16, 'push_to_hub': True, 'remove_unused_columns': False, 'save_steps': 25354, 'save_strategy': 'steps', 'seed': 42, 'warmup_ratio': 0.01, 'weight_decay': 0.1}} # Wandb URL: https://wandb.ai/tomekkorbak/apo/runs/jfkodfu1
JiHoon-kim/bert-base-klue-ynat-finetuned
JiHoon-kim
2022-11-29T03:25:05Z
102
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "mrc", "ko", "dataset:klue", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-29T03:21:37Z
--- language: ko tags: - bert - mrc datasets: - klue license: cc-by-sa-4.0 --- # μΈν”„λŸ° κ°•μ˜μš© checkpoint KLUE의 YNAT task에 νŒŒμΈνŠœλ‹λœ λͺ¨λΈμž…λ‹ˆλ‹€.
jeraldflowers/distilroberts-base-mrpc-glue-jeraldflowers
jeraldflowers
2022-11-29T02:57:36Z
108
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-28T05:30:00Z
--- license: apache-2.0 tags: - text-classification - generated_from_trainer datasets: - glue metrics: - accuracy - f1 widget: - text: ["Yucaipa owned Dominick's before selling the chain to Safeway in 1998 for $ 2.5 billion.", "Yucaipa bought Dominick's in 1995 for $ 693 million and sold it to Safeway for $ 1.8 billion in 1998."] example_title: Not Equivalent - text: ["Revenue in the first quarter of the year dropped 15 percent from the same period a year earlier.", "With the scandal hanging over Stewart's company revenue the first quarter of the year dropped 15 percent from the same period a year earlier."] example_title: Equivalent model-index: - name: distilroberts-base-mrpc-glue-jeraldflowers results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: mrpc split: train args: mrpc metrics: - name: Accuracy type: accuracy value: 0.8431372549019608 - name: F1 type: f1 value: 0.8814814814814815 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberts-base-mrpc-glue-jeraldflowers This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the glue and the mrpc datasets. It achieves the following results on the evaluation set: - Loss: 0.4990 - Accuracy: 0.8431 - F1: 0.8815 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.5289 | 1.09 | 500 | 0.5668 | 0.8211 | 0.8689 | | 0.3675 | 2.18 | 1000 | 0.4990 | 0.8431 | 0.8815 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
npark/asr-conformer-ksponspeech
npark
2022-11-29T02:25:40Z
5
1
null
[ "region:us" ]
null
2022-11-29T01:26:29Z
# KsponSpeech ASR with Transformers This repository provides pretrained end-to-end ASR models on KsponSpeech with Speechbrain v0.5.13. Model files in this repository trained using the files is below URL, but in Speechbrain version 0.5.13. https://github.com/speechbrain/speechbrain/tree/develop/recipes/KsponSpeech/ASR/transformer language: - "ko" - ko datasets: - KsponSpeech ## About SpeechBrain * Website: https://speechbrain.github.io/ * Code: https://github.com/speechbrain/speechbrain/ * HuggingFace: https://huggingface.co/speechbrain/
neulab/omnitab-large-finetuned-wtq
neulab
2022-11-29T02:11:26Z
4,399
7
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "tapex", "table-question-answering", "en", "dataset:wikitablequestions", "arxiv:2207.03637", "autotrain_compatible", "endpoints_compatible", "region:us" ]
table-question-answering
2022-10-26T00:56:04Z
--- language: en tags: - tapex - table-question-answering datasets: - wikitablequestions --- # OmniTab OmniTab is a table-based QA model proposed in [OmniTab: Pretraining with Natural and Synthetic Data for Few-shot Table-based Question Answering](https://arxiv.org/pdf/2207.03637.pdf). The original Github repository is [https://github.com/jzbjyb/OmniTab](https://github.com/jzbjyb/OmniTab). ## Description `neulab/omnitab-large-finetuned-wtq` (based on BART architecture) is initialized with `neulab/omnitab-large` and fine-tuned on [WikiTableQuestions](https://huggingface.co/datasets/wikitablequestions). ## Usage ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM import pandas as pd tokenizer = AutoTokenizer.from_pretrained("neulab/omnitab-large-finetuned-wtq") model = AutoModelForSeq2SeqLM.from_pretrained("neulab/omnitab-large-finetuned-wtq") data = { "year": [1896, 1900, 1904, 2004, 2008, 2012], "city": ["athens", "paris", "st. louis", "athens", "beijing", "london"] } table = pd.DataFrame.from_dict(data) query = "In which year did beijing host the Olympic Games?" encoding = tokenizer(table=table, query=query, return_tensors="pt") outputs = model.generate(**encoding) print(tokenizer.batch_decode(outputs, skip_special_tokens=True)) # [' 2008'] ``` ## Reference ```bibtex @inproceedings{jiang-etal-2022-omnitab, title = "{O}mni{T}ab: Pretraining with Natural and Synthetic Data for Few-shot Table-based Question Answering", author = "Jiang, Zhengbao and Mao, Yi and He, Pengcheng and Neubig, Graham and Chen, Weizhu", booktitle = "Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies", month = jul, year = "2022", } ```
neulab/omnitab-large-16shot-finetuned-wtq-16shot
neulab
2022-11-29T02:10:07Z
52
1
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "tapex", "table-question-answering", "en", "dataset:wikitablequestions", "arxiv:2207.03637", "autotrain_compatible", "endpoints_compatible", "region:us" ]
table-question-answering
2022-11-29T01:48:24Z
--- language: en tags: - tapex - table-question-answering datasets: - wikitablequestions --- # OmniTab OmniTab is a table-based QA model proposed in [OmniTab: Pretraining with Natural and Synthetic Data for Few-shot Table-based Question Answering](https://arxiv.org/pdf/2207.03637.pdf). The original Github repository is [https://github.com/jzbjyb/OmniTab](https://github.com/jzbjyb/OmniTab). ## Description `neulab/omnitab-large-16shot-finetuned-wtq-16shot` (based on BART architecture) is initialized with `neulab/omnitab-large-16shot` and fine-tuned on [WikiTableQuestions](https://huggingface.co/datasets/wikitablequestions) in the 16-shot setting. ## Usage ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM import pandas as pd tokenizer = AutoTokenizer.from_pretrained("neulab/omnitab-large-16shot-finetuned-wtq-16shot") model = AutoModelForSeq2SeqLM.from_pretrained("neulab/omnitab-large-16shot-finetuned-wtq-16shot") data = { "year": [1896, 1900, 1904, 2004, 2008, 2012], "city": ["athens", "paris", "st. louis", "athens", "beijing", "london"] } table = pd.DataFrame.from_dict(data) query = "In which year did beijing host the Olympic Games?" encoding = tokenizer(table=table, query=query, return_tensors="pt") outputs = model.generate(**encoding) print(tokenizer.batch_decode(outputs, skip_special_tokens=True)) # [' 2008'] ``` ## Reference ```bibtex @inproceedings{jiang-etal-2022-omnitab, title = "{O}mni{T}ab: Pretraining with Natural and Synthetic Data for Few-shot Table-based Question Answering", author = "Jiang, Zhengbao and Mao, Yi and He, Pengcheng and Neubig, Graham and Chen, Weizhu", booktitle = "Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies", month = jul, year = "2022", } ```
Deigant/t5-base-finetuned-qg-context-dataset-2-hard-medium
Deigant
2022-11-29T01:57:15Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-29T01:10:07Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: t5-base-finetuned-qg-context-dataset-2-hard-medium results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-finetuned-qg-context-dataset-2-hard-medium This model is a fine-tuned version of [Deigant/t5-base-finetuned-qg-context-dataset-2](https://huggingface.co/Deigant/t5-base-finetuned-qg-context-dataset-2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.1877 - Rouge1: 27.9067 - Rouge2: 6.8779 - Rougel: 24.6502 - Rougelsum: 24.7749 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | No log | 1.0 | 73 | 2.1134 | 27.571 | 8.3183 | 25.3973 | 25.2743 | | No log | 2.0 | 146 | 2.0800 | 28.4972 | 9.7451 | 26.9093 | 26.7337 | | No log | 3.0 | 219 | 2.0406 | 21.4309 | 5.817 | 19.4819 | 19.8555 | | No log | 4.0 | 292 | 2.0391 | 27.2786 | 8.283 | 24.3314 | 24.3751 | | No log | 5.0 | 365 | 2.0367 | 26.3524 | 7.6263 | 23.9034 | 23.8929 | | No log | 6.0 | 438 | 2.0270 | 26.3718 | 6.7074 | 22.995 | 23.0177 | | 1.3439 | 7.0 | 511 | 2.0106 | 27.8601 | 10.5485 | 26.8103 | 26.4962 | | 1.3439 | 8.0 | 584 | 2.0292 | 27.1811 | 7.1941 | 23.9117 | 24.0093 | | 1.3439 | 9.0 | 657 | 2.0462 | 25.6595 | 8.3529 | 23.0955 | 23.1946 | | 1.3439 | 10.0 | 730 | 2.0600 | 27.1996 | 9.0098 | 25.7921 | 25.8295 | | 1.3439 | 11.0 | 803 | 2.0754 | 25.3094 | 7.6857 | 23.5524 | 23.6875 | | 1.3439 | 12.0 | 876 | 2.0532 | 27.2136 | 9.0147 | 24.7405 | 24.8211 | | 1.3439 | 13.0 | 949 | 2.0742 | 26.298 | 8.6826 | 24.6878 | 24.9118 | | 0.8957 | 14.0 | 1022 | 2.0975 | 22.9575 | 4.2021 | 20.6208 | 20.6539 | | 0.8957 | 15.0 | 1095 | 2.0941 | 26.778 | 7.1756 | 24.4053 | 24.4951 | | 0.8957 | 16.0 | 1168 | 2.1025 | 28.9102 | 10.5549 | 25.912 | 25.9433 | | 0.8957 | 17.0 | 1241 | 2.1265 | 27.8301 | 9.7377 | 25.3236 | 25.3889 | | 0.8957 | 18.0 | 1314 | 2.1403 | 26.1619 | 7.8019 | 23.5346 | 23.351 | | 0.8957 | 19.0 | 1387 | 2.1396 | 26.664 | 6.8261 | 24.2991 | 24.328 | | 0.8957 | 20.0 | 1460 | 2.1481 | 29.8898 | 9.8211 | 27.0922 | 27.2485 | | 0.69 | 21.0 | 1533 | 2.1466 | 26.3418 | 5.7845 | 24.0772 | 24.3122 | | 0.69 | 22.0 | 1606 | 2.1559 | 27.5789 | 7.7653 | 25.9896 | 25.8088 | | 0.69 | 23.0 | 1679 | 2.1624 | 27.9455 | 7.4094 | 25.3163 | 25.3905 | | 0.69 | 24.0 | 1752 | 2.1633 | 27.5236 | 8.1967 | 24.9498 | 24.974 | | 0.69 | 25.0 | 1825 | 2.1698 | 26.899 | 6.4382 | 24.2075 | 24.1523 | | 0.69 | 26.0 | 1898 | 2.1745 | 28.7721 | 8.872 | 24.8299 | 24.9028 | | 0.69 | 27.0 | 1971 | 2.1818 | 25.8046 | 6.0655 | 23.156 | 23.1971 | | 0.5965 | 28.0 | 2044 | 2.1854 | 25.4431 | 4.6566 | 22.2794 | 22.4561 | | 0.5965 | 29.0 | 2117 | 2.1858 | 24.7881 | 6.4357 | 22.8869 | 22.8331 | | 0.5965 | 30.0 | 2190 | 2.1877 | 27.9067 | 6.8779 | 24.6502 | 24.7749 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
huggingtweets/elonmusk-lexfridman
huggingtweets
2022-11-29T01:35:11Z
118
1
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1590968738358079488/IY9Gx6Ok_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/956331551435960322/OaqR8pAB_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI CYBORG πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Elon Musk & Lex Fridman</div> <div style="text-align: center; font-size: 14px;">@elonmusk-lexfridman</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Elon Musk & Lex Fridman. | Data | Elon Musk | Lex Fridman | | --- | --- | --- | | Tweets downloaded | 3198 | 2410 | | Retweets | 126 | 253 | | Short tweets | 968 | 49 | | Tweets kept | 2104 | 2108 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/18nt3c0k/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @elonmusk-lexfridman's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2ozchvjo) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2ozchvjo/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/elonmusk-lexfridman') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
matan-diamond/sd-class-butterflies-32
matan-diamond
2022-11-29T00:47:21Z
36
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-11-29T00:46:35Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute πŸ¦‹. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained(matan-diamond/sd-class-butterflies-32) image = pipeline().images[0] image ```
adrien-alloreview/whisper-small-fr
adrien-alloreview
2022-11-29T00:13:29Z
83
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "hi", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-28T22:32:23Z
--- language: - hi license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 model-index: - name: Whisper Small Hi - Sanchit Gandhi results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Hi - Sanchit Gandhi This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - eval_loss: 0.2226 - eval_wer: 10.0023 - eval_runtime: 65.2041 - eval_samples_per_second: 1.748 - eval_steps_per_second: 0.23 - epoch: 19.51 - step: 800 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - training_steps: 1000 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
Serhio/sd-fine-tune-v2
Serhio
2022-11-28T23:43:18Z
34
0
diffusers
[ "diffusers", "text-to-image", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2022-11-28T23:41:46Z
--- license: creativeml-openrail-m tags: - text-to-image --- ### sd-fine-tune-v2 on Stable Diffusion via Dreambooth #### model by Serhio This your the Stable Diffusion model fine-tuned the sd-fine-tune-v2 concept taught to Stable Diffusion with Dreambooth. It can be used by modifying the `instance_prompt`: **Bashkov Sergey** You can also train your own concepts and upload them to the library by using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_training.ipynb). And you can run your new concept via `diffusers`: [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb), [Spaces with the Public Concepts loaded](https://huggingface.co/spaces/sd-dreambooth-library/stable-diffusion-dreambooth-concepts)
jqtrde/sd-class-butterflies-32
jqtrde
2022-11-28T23:20:18Z
0
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "region:us" ]
unconditional-image-generation
2022-11-28T23:18:49Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute πŸ¦‹. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained(jqtrde/sd-class-butterflies-32) image = pipeline().images[0] image ```
Pramodith/sd-class-butterflies-32
Pramodith
2022-11-28T23:19:08Z
38
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-11-28T23:18:35Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute πŸ¦‹. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained(Pramodith/sd-class-butterflies-32) image = pipeline().images[0] image ```
kanixwang/my-awesome-setfit-model
kanixwang
2022-11-28T22:19:56Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-11-28T22:02:13Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 40 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 40, "warmup_steps": 4, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
alryan1478/gpt-neo-125M-DOD-LOW
alryan1478
2022-11-28T22:19:47Z
103
0
transformers
[ "transformers", "pytorch", "gpt_neo", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-11-28T21:59:56Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: gpt-neo-125M-DOD-LOW results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt-neo-125M-DOD-LOW This model is a fine-tuned version of [EleutherAI/gpt-neo-125M](https://huggingface.co/EleutherAI/gpt-neo-125M) on the None dataset. It achieves the following results on the evaluation set: - Loss: 6.0427 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 261 | 6.4768 | | 6.8863 | 2.0 | 522 | 6.1056 | | 6.8863 | 3.0 | 783 | 6.0427 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0+cu117 - Datasets 2.7.0 - Tokenizers 0.13.2
ThomasSimonini/ML-Agents-SnowballFight-1vs1-model
ThomasSimonini
2022-11-28T22:07:31Z
6
0
ml-agents
[ "ml-agents", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Snowballfight-1vs1", "region:us" ]
reinforcement-learning
2022-11-28T21:26:07Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Snowballfight-1vs1 library_name: ml-agents ---
michaelmayo704/sd-class-butterflies-64
michaelmayo704
2022-11-28T21:39:43Z
34
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-11-28T21:38:51Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute πŸ¦‹. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained(michaelmayo704/sd-class-butterflies-64) image = pipeline().images[0] image ```
SiriRRR/test-model
SiriRRR
2022-11-28T21:39:02Z
61
0
transformers
[ "transformers", "tf", "bart", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-28T21:38:42Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: test-model results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # test-model This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.24.0 - TensorFlow 2.9.2 - Datasets 2.7.1 - Tokenizers 0.13.2
rlarios/distilbert-base-uncased-finetuned-emotion
rlarios
2022-11-28T21:34:34Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-25T20:15:59Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9325 - name: F1 type: f1 value: 0.9322428116765227 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2225 - Accuracy: 0.9325 - F1: 0.9322 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8372 | 1.0 | 250 | 0.3225 | 0.9045 | 0.9017 | | 0.2534 | 2.0 | 500 | 0.2225 | 0.9325 | 0.9322 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0+cpu - Datasets 2.6.1 - Tokenizers 0.13.1
anikethjr/PromoGen_K562_2080Ti_restart
anikethjr
2022-11-28T21:24:36Z
91
0
transformers
[ "transformers", "pytorch", "tensorboard", "prophetnet", "text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-11-27T05:27:24Z
--- tags: - generated_from_trainer model-index: - name: PromoGen_K562_2080Ti_restart results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # PromoGen_K562_2080Ti_restart This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4624 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 25 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:------:|:---------------:| | 0.7676 | 0.49 | 2500 | 0.7383 | | 0.7121 | 0.97 | 5000 | 0.6867 | | 0.6914 | 1.46 | 7500 | 0.6705 | | 0.6837 | 1.95 | 10000 | 0.6622 | | 0.6778 | 2.44 | 12500 | 0.6558 | | 0.6748 | 2.92 | 15000 | 0.6517 | | 0.6676 | 3.41 | 17500 | 0.6433 | | 0.6593 | 3.9 | 20000 | 0.6358 | | 0.6584 | 4.38 | 22500 | 0.6320 | | 0.6557 | 4.87 | 25000 | 0.6301 | | 0.6523 | 5.36 | 27500 | 0.6257 | | 0.6478 | 5.84 | 30000 | 0.6236 | | 0.6393 | 6.33 | 32500 | 0.6145 | | 0.6039 | 6.82 | 35000 | 0.5658 | | 0.5616 | 7.31 | 37500 | 0.5376 | | 0.5518 | 7.79 | 40000 | 0.5310 | | 0.5509 | 8.28 | 42500 | 0.5273 | | 0.5487 | 8.77 | 45000 | 0.5261 | | 0.5479 | 9.25 | 47500 | 0.5249 | | 0.546 | 9.74 | 50000 | 0.5242 | | 0.5447 | 10.23 | 52500 | 0.5229 | | 0.5439 | 10.71 | 55000 | 0.5220 | | 0.5433 | 11.2 | 57500 | 0.5209 | | 0.5394 | 11.69 | 60000 | 0.5162 | | 0.5153 | 12.18 | 62500 | 0.4944 | | 0.5137 | 12.66 | 65000 | 0.4932 | | 0.514 | 13.15 | 67500 | 0.4924 | | 0.5131 | 13.64 | 70000 | 0.4919 | | 0.5104 | 14.12 | 72500 | 0.4914 | | 0.5122 | 14.61 | 75000 | 0.4906 | | 0.5089 | 15.1 | 77500 | 0.4901 | | 0.5076 | 15.59 | 80000 | 0.4891 | | 0.4986 | 16.07 | 82500 | 0.4721 | | 0.4875 | 16.56 | 85000 | 0.4672 | | 0.4887 | 17.05 | 87500 | 0.4669 | | 0.4839 | 17.53 | 90000 | 0.4661 | | 0.4849 | 18.02 | 92500 | 0.4654 | | 0.4848 | 18.51 | 95000 | 0.4649 | | 0.4831 | 18.99 | 97500 | 0.4646 | | 0.4816 | 19.48 | 100000 | 0.4644 | | 0.4808 | 19.97 | 102500 | 0.4637 | | 0.4812 | 20.46 | 105000 | 0.4634 | | 0.4813 | 20.94 | 107500 | 0.4633 | | 0.4818 | 21.43 | 110000 | 0.4631 | | 0.4813 | 21.92 | 112500 | 0.4629 | | 0.4782 | 22.4 | 115000 | 0.4628 | | 0.4804 | 22.89 | 117500 | 0.4626 | | 0.4815 | 23.38 | 120000 | 0.4625 | | 0.4812 | 23.87 | 122500 | 0.4625 | | 0.4785 | 24.35 | 125000 | 0.4624 | | 0.4795 | 24.84 | 127500 | 0.4624 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0 - Datasets 2.7.0 - Tokenizers 0.13.0.dev0
pig4431/TUF_BERT_5E
pig4431
2022-11-28T21:13:00Z
103
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-28T21:06:14Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: TUF_BERT_5E results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # TUF_BERT_5E This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3251 - Accuracy: 0.9467 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4078 | 0.1 | 50 | 0.2430 | 0.92 | | 0.2488 | 0.2 | 100 | 0.1465 | 0.94 | | 0.1966 | 0.3 | 150 | 0.1284 | 0.96 | | 0.2096 | 0.4 | 200 | 0.2879 | 0.9067 | | 0.2015 | 0.5 | 250 | 0.1629 | 0.9467 | | 0.1692 | 0.59 | 300 | 0.2165 | 0.9133 | | 0.1794 | 0.69 | 350 | 0.1535 | 0.9533 | | 0.1975 | 0.79 | 400 | 0.1429 | 0.9333 | | 0.1394 | 0.89 | 450 | 0.2384 | 0.92 | | 0.191 | 0.99 | 500 | 0.2198 | 0.94 | | 0.0907 | 1.09 | 550 | 0.1270 | 0.9467 | | 0.073 | 1.19 | 600 | 0.2016 | 0.94 | | 0.1594 | 1.29 | 650 | 0.2078 | 0.9267 | | 0.087 | 1.39 | 700 | 0.3312 | 0.9333 | | 0.0961 | 1.49 | 750 | 0.3704 | 0.92 | | 0.1225 | 1.58 | 800 | 0.1686 | 0.9467 | | 0.0969 | 1.68 | 850 | 0.1525 | 0.9333 | | 0.0942 | 1.78 | 900 | 0.1924 | 0.94 | | 0.0681 | 1.88 | 950 | 0.1825 | 0.9467 | | 0.1295 | 1.98 | 1000 | 0.1360 | 0.9333 | | 0.0626 | 2.08 | 1050 | 0.2014 | 0.94 | | 0.0372 | 2.18 | 1100 | 0.2030 | 0.9467 | | 0.0077 | 2.28 | 1150 | 0.2615 | 0.9467 | | 0.0393 | 2.38 | 1200 | 0.4256 | 0.9267 | | 0.0492 | 2.48 | 1250 | 0.3057 | 0.94 | | 0.0184 | 2.57 | 1300 | 0.1308 | 0.9733 | | 0.0209 | 2.67 | 1350 | 0.2848 | 0.9467 | | 0.0328 | 2.77 | 1400 | 0.1862 | 0.96 | | 0.0333 | 2.87 | 1450 | 0.2347 | 0.96 | | 0.0527 | 2.97 | 1500 | 0.3855 | 0.9333 | | 0.0685 | 3.07 | 1550 | 0.3174 | 0.94 | | 0.0217 | 3.17 | 1600 | 0.2320 | 0.9533 | | 0.0036 | 3.27 | 1650 | 0.3219 | 0.9333 | | 0.0015 | 3.37 | 1700 | 0.1649 | 0.9733 | | 0.0177 | 3.47 | 1750 | 0.3785 | 0.94 | | 0.0142 | 3.56 | 1800 | 0.1420 | 0.9733 | | 0.0319 | 3.66 | 1850 | 0.4057 | 0.9333 | | 0.0254 | 3.76 | 1900 | 0.1824 | 0.96 | | 0.0092 | 3.86 | 1950 | 0.2400 | 0.9533 | | 0.0306 | 3.96 | 2000 | 0.2238 | 0.96 | | 0.0118 | 4.06 | 2050 | 0.2623 | 0.9533 | | 0.0097 | 4.16 | 2100 | 0.3642 | 0.9467 | | 0.0132 | 4.26 | 2150 | 0.3235 | 0.9467 | | 0.0155 | 4.36 | 2200 | 0.3535 | 0.9467 | | 0.0043 | 4.46 | 2250 | 0.3236 | 0.9467 | | 0.0004 | 4.55 | 2300 | 0.2984 | 0.9467 | | 0.009 | 4.65 | 2350 | 0.2941 | 0.9467 | | 0.0068 | 4.75 | 2400 | 0.2936 | 0.9467 | | 0.0102 | 4.85 | 2450 | 0.3138 | 0.9467 | | 0.0015 | 4.95 | 2500 | 0.3251 | 0.9467 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0 - Datasets 2.7.1 - Tokenizers 0.13.2
rmartinshort/sd-class-butterflies-64
rmartinshort
2022-11-28T20:32:13Z
36
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-11-28T20:31:54Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute πŸ¦‹. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained(rmartinshort/sd-class-butterflies-64) image = pipeline().images[0] image ```
CyantifiCQ/noisy_butterflied_diffusion
CyantifiCQ
2022-11-28T20:23:45Z
35
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-11-28T20:22:34Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute πŸ¦‹. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained(CyantifiCQ/noisy_butterflied_diffusion) image = pipeline().images[0] image ```
pig4431/TUF_DistilBERT_5E
pig4431
2022-11-28T20:13:46Z
105
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-28T20:05:35Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: TUF_DistilBERT_5E results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # TUF_DistilBERT_5E This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1832 - Accuracy: 0.96 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5092 | 0.1 | 50 | 0.4385 | 0.7533 | | 0.2807 | 0.2 | 100 | 0.2225 | 0.9 | | 0.1881 | 0.3 | 150 | 0.1531 | 0.94 | | 0.1895 | 0.4 | 200 | 0.1426 | 0.94 | | 0.1995 | 0.5 | 250 | 0.1428 | 0.94 | | 0.1745 | 0.59 | 300 | 0.1538 | 0.9267 | | 0.1679 | 0.69 | 350 | 0.1249 | 0.9533 | | 0.199 | 0.79 | 400 | 0.1327 | 0.9467 | | 0.1703 | 0.89 | 450 | 0.1488 | 0.92 | | 0.1541 | 0.99 | 500 | 0.1772 | 0.9467 | | 0.1436 | 1.09 | 550 | 0.1070 | 0.9667 | | 0.1463 | 1.19 | 600 | 0.1165 | 0.9467 | | 0.1309 | 1.29 | 650 | 0.1054 | 0.9733 | | 0.097 | 1.39 | 700 | 0.1346 | 0.94 | | 0.1307 | 1.49 | 750 | 0.1477 | 0.9467 | | 0.1506 | 1.58 | 800 | 0.1311 | 0.9533 | | 0.1386 | 1.68 | 850 | 0.1165 | 0.9667 | | 0.1463 | 1.78 | 900 | 0.4207 | 0.9067 | | 0.1202 | 1.88 | 950 | 0.1528 | 0.9667 | | 0.1403 | 1.98 | 1000 | 0.1262 | 0.96 | | 0.073 | 2.08 | 1050 | 0.1459 | 0.96 | | 0.0713 | 2.18 | 1100 | 0.1747 | 0.9533 | | 0.0814 | 2.28 | 1150 | 0.1953 | 0.9667 | | 0.0935 | 2.38 | 1200 | 0.1888 | 0.9533 | | 0.0685 | 2.48 | 1250 | 0.1562 | 0.9467 | | 0.1154 | 2.57 | 1300 | 0.1806 | 0.96 | | 0.1239 | 2.67 | 1350 | 0.1322 | 0.9533 | | 0.1011 | 2.77 | 1400 | 0.2148 | 0.94 | | 0.0718 | 2.87 | 1450 | 0.1686 | 0.96 | | 0.1159 | 2.97 | 1500 | 0.1532 | 0.9533 | | 0.0516 | 3.07 | 1550 | 0.1888 | 0.96 | | 0.063 | 3.17 | 1600 | 0.1851 | 0.9467 | | 0.068 | 3.27 | 1650 | 0.2775 | 0.94 | | 0.0946 | 3.37 | 1700 | 0.1853 | 0.96 | | 0.0606 | 3.47 | 1750 | 0.2148 | 0.9467 | | 0.0663 | 3.56 | 1800 | 0.2091 | 0.9533 | | 0.0474 | 3.66 | 1850 | 0.1702 | 0.9533 | | 0.0585 | 3.76 | 1900 | 0.1660 | 0.96 | | 0.0439 | 3.86 | 1950 | 0.2220 | 0.9533 | | 0.0758 | 3.96 | 2000 | 0.1834 | 0.96 | | 0.0497 | 4.06 | 2050 | 0.1707 | 0.9533 | | 0.0412 | 4.16 | 2100 | 0.1948 | 0.9533 | | 0.0338 | 4.26 | 2150 | 0.2039 | 0.9533 | | 0.0796 | 4.36 | 2200 | 0.1797 | 0.9533 | | 0.0727 | 4.46 | 2250 | 0.1986 | 0.9533 | | 0.032 | 4.55 | 2300 | 0.1947 | 0.9467 | | 0.0436 | 4.65 | 2350 | 0.1908 | 0.9467 | | 0.0205 | 4.75 | 2400 | 0.1806 | 0.96 | | 0.0326 | 4.85 | 2450 | 0.1835 | 0.96 | | 0.0404 | 4.95 | 2500 | 0.1832 | 0.96 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0 - Datasets 2.7.1 - Tokenizers 0.13.2
motmono/a2c-AntBulletEnv-v0
motmono
2022-11-28T19:58:24Z
2
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-11-28T19:57:12Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1539.68 +/- 213.96 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
UKP-SQuARE/tweac_16
UKP-SQuARE
2022-11-28T19:43:48Z
102
1
transformers
[ "transformers", "pytorch", "bert", "text-classification", "QA", "en", "dataset:BoolQ", "dataset:CommonSenseQA", "dataset:DROP", "dataset:DuoRC", "dataset:HellaSWAG", "dataset:HotpotQA", "dataset:HybridQA", "dataset:NarrativeQA", "dataset:NaturalQuestionsShort", "dataset:NewsQA", "dataset:QAMR", "dataset:RACE", "dataset:SearchQA", "dataset:SIQA", "dataset:SQuAD", "dataset:TriviaQA-web", "arxiv:2104.07081", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-09T18:34:07Z
--- language: - en tags: - QA license: cc-by-4.0 datasets: - BoolQ - CommonSenseQA - DROP - DuoRC - HellaSWAG - HotpotQA - HybridQA - NarrativeQA - NaturalQuestionsShort - NewsQA - QAMR - RACE - SearchQA - SIQA - SQuAD - TriviaQA-web metrics: - Accuracy - Precision - Recall - F1 - MRR - R@3 - R@5 --- BERT for Sequence Classification trained on QA Dataset prediction task. - Input: question. - Output: dataset from where that question comes from. Original paper: TWEAC: Transformer with Extendable QA Agent Classifiers https://arxiv.org/abs/2104.07081 Datasets used for training: ``` list_datasets = ['BoolQ','CommonSenseQA','DROP','DuoRC','HellaSWAG','HotpotQA','HybridQA','NarrativeQA','NaturalQuestionsShort','NewsQA','QAMR','RACE','SearchQA','SIQA','SQuAD','TriviaQA-web'] ``` Results for all datasets: - Accuracy: 0.7919096825783123 - Precision: 0.731586272892176 - Recall: 0.7919096825783123 - F1: 0.7494425609552463 - MRR: 0.8720871733637521 - R@3: 0.9438690810655046 - R@5: 0.9745318608004427 - Queries/second: 6052.33538824659 Results per dataset: ``` "BoolQ": { "accuracy": 0.998776758409786, "mrr": 0.999388379204893, "r@3": 1.0, "r@5": 1.0, "query_per_second": 6978.947907596168, "precision": 0.8649364406779662, "recall": 0.998776758409786, "f1": 0.9270508089696281 }, "CommonSenseQA": { "accuracy": 0.9247135842880524, "mrr": 0.9476358338878795, "r@3": 0.9705400981996727, "r@5": 0.9705400981996727, "query_per_second": 5823.984138936813, "precision": 0.442443226311668, "recall": 0.9247135842880524, "f1": 0.5985169491525425 }, "DROP": { "accuracy": 0.9075083892617449, "mrr": 0.9378200367399193, "r@3": 0.9609899328859061, "r@5": 0.9786073825503355, "query_per_second": 6440.988897129248, "precision": 0.8636726546906187, "recall": 0.9075083892617449, "f1": 0.8850480670893842 }, "DuoRC": { "accuracy": 0.5555803405457654, "mrr": 0.7368963429107307, "r@3": 0.9092125808610305, "r@5": 0.9596996059186557, "query_per_second": 6853.643198794893, "precision": 0.646814404432133, "recall": 0.5555803405457654, "f1": 0.5977360905563778 }, "HellaSWAG": { "accuracy": 0.998406691894045, "mrr": 0.9990705702715262, "r@3": 1.0, "r@5": 1.0, "query_per_second": 3091.5012960785157, "precision": 0.9974134500596896, "recall": 0.998406691894045, "f1": 0.9979098238280083 }, "HotpotQA": { "accuracy": 0.7414435784479837, "mrr": 0.8435804344945315, "r@3": 0.9325652321247034, "r@5": 0.973568281938326, "query_per_second": 4972.668019223381, "precision": 0.7352150537634409, "recall": 0.7414435784479837, "f1": 0.7383161801923401 }, "HybridQA": { "accuracy": 0.7934218118869013, "mrr": 0.8806947764680021, "r@3": 0.964800923254472, "r@5": 0.9930755914598961, "query_per_second": 4886.494046259562, "precision": 0.7198952879581152, "recall": 0.7934218118869013, "f1": 0.7548723579467472 }, "NarrativeQA": { "accuracy": 0.5623756749076442, "mrr": 0.7416681781060867, "r@3": 0.9011082693947144, "r@5": 0.9580373212086767, "query_per_second": 7081.067049796865, "precision": 0.5623224095472628, "recall": 0.5623756749076442, "f1": 0.5623490409661377 }, "NaturalQuestionsShort": { "accuracy": 0.7985353692739171, "mrr": 0.8743599435345307, "r@3": 0.9439077594266126, "r@5": 0.9774072919912745, "query_per_second": 7136.590426649795, "precision": 0.7963020509633313, "recall": 0.7985353692739171, "f1": 0.7974171464135678 }, "NewsQA": { "accuracy": 0.5375118708452041, "mrr": 0.71192075967717, "r@3": 0.855650522317189, "r@5": 0.939696106362773, "query_per_second": 7193.851409052092, "precision": 0.18757249378624688, "recall": 0.5375118708452041, "f1": 0.2780985136961061 }, "QAMR": { "accuracy": 0.6658497602557272, "mrr": 0.7969741223377345, "r@3": 0.9207778369738945, "r@5": 0.973361747469366, "query_per_second": 7321.775044800525, "precision": 0.8654525309881587, "recall": 0.6658497602557272, "f1": 0.7526421968624852 }, "RACE": { "accuracy": 0.8771538617474154, "mrr": 0.917901778042666, "r@3": 0.9489154672613015, "r@5": 0.9693898236367322, "query_per_second": 6952.225120744351, "precision": 0.8767983789260385, "recall": 0.8771538617474154, "f1": 0.8769760843129306 }, "SearchQA": { "accuracy": 0.9762073027090695, "mrr": 0.9865069592101393, "r@3": 0.9972909305064782, "r@5": 0.9984687868080094, "query_per_second": 4031.0193826035634, "precision": 0.9870191735143503, "recall": 0.9762073027090695, "f1": 0.9815834665719192 }, "SIQA": { "accuracy": 0.9969293756397134, "mrr": 0.9977823268509042, "r@3": 0.9979529170931423, "r@5": 1.0, "query_per_second": 6711.547709005977, "precision": 0.9329501915708812, "recall": 0.9969293756397134, "f1": 0.9638792676892627 }, "SQuAD": { "accuracy": 0.550628092881614, "mrr": 0.7164538452390565, "r@3": 0.8660068519223448, "r@5": 0.9366197183098591, "query_per_second": 7033.420124363291, "precision": 0.48613678373382624, "recall": 0.550628092881614, "f1": 0.5163766175814368 }, "TriviaQA-web": { "accuracy": 0.7855124582584125, "mrr": 0.8647404868442627, "r@3": 0.9321859748266119, "r@5": 0.9640380169535063, "query_per_second": 4327.642440910395, "precision": 0.7404358353510896, "recall": 0.7855124582584125, "f1": 0.7623083634550667 }, ```
essayproj/roberta-base-essay
essayproj
2022-11-28T19:08:54Z
59
0
transformers
[ "transformers", "tf", "roberta", "feature-extraction", "generated_from_keras_callback", "license:mit", "endpoints_compatible", "region:us" ]
feature-extraction
2022-11-28T19:08:03Z
--- license: mit tags: - generated_from_keras_callback model-index: - name: roberta-base-essay results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-essay This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.24.0 - TensorFlow 2.9.2 - Tokenizers 0.13.2
Akriel/sd-class-butterflies-32
Akriel
2022-11-28T18:57:17Z
32
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-11-28T18:56:58Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute πŸ¦‹. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained(Akriel/sd-class-butterflies-32) image = pipeline().images[0] image ```
Dagar/t5-small-science-papers-NIPS
Dagar
2022-11-28T18:21:27Z
107
1
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-28T18:00:28Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: t5-small-science-papers-NIPS results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-science-papers-NIPS This model is a fine-tuned version of [Dagar/t5-small-science-papers](https://huggingface.co/Dagar/t5-small-science-papers) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.7566 - Rouge1: 15.7066 - Rouge2: 2.5654 - Rougel: 11.4679 - Rougelsum: 14.4017 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | No log | 1.0 | 318 | 5.1856 | 13.7172 | 2.0644 | 10.2189 | 12.838 | 19.0 | | 5.4522 | 2.0 | 636 | 5.0383 | 15.6211 | 2.1808 | 11.3561 | 14.3054 | 19.0 | | 5.4522 | 3.0 | 954 | 4.9486 | 15.1659 | 2.3308 | 11.1052 | 13.9456 | 19.0 | | 5.1254 | 4.0 | 1272 | 4.8851 | 15.716 | 2.4099 | 11.4954 | 14.5099 | 19.0 | | 4.9794 | 5.0 | 1590 | 4.8456 | 15.5507 | 2.4267 | 11.3867 | 14.3237 | 19.0 | | 4.9794 | 6.0 | 1908 | 4.8073 | 15.8406 | 2.4254 | 11.6878 | 14.6154 | 19.0 | | 4.8823 | 7.0 | 2226 | 4.7872 | 15.5554 | 2.4637 | 11.3401 | 14.3183 | 19.0 | | 4.8338 | 8.0 | 2544 | 4.7680 | 15.4783 | 2.4888 | 11.3364 | 14.2031 | 19.0 | | 4.8338 | 9.0 | 2862 | 4.7621 | 15.958 | 2.5662 | 11.6139 | 14.6576 | 19.0 | | 4.7838 | 10.0 | 3180 | 4.7566 | 15.7066 | 2.5654 | 11.4679 | 14.4017 | 19.0 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
FrancoisDongier/sd-class-butterflies-32
FrancoisDongier
2022-11-28T18:19:31Z
34
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-11-28T18:16:21Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute πŸ¦‹. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained(FrancoisDongier/sd-class-butterflies-32) image = pipeline().images[0] image ```
kejian/final-filter-again
kejian
2022-11-28T17:39:16Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "generated_from_trainer", "en", "dataset:kejian/codeparrot-train-more-filter-3.3b-cleaned", "license:apache-2.0", "text-generation-inference", "endpoints_compatible", "region:us" ]
null
2022-11-28T01:33:32Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - kejian/codeparrot-train-more-filter-3.3b-cleaned model-index: - name: kejian/final-filter-again results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # kejian/final-filter-again This model was trained from scratch on the kejian/codeparrot-train-more-filter-3.3b-cleaned dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0008 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - training_steps: 50354 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.23.0 - Pytorch 1.13.0+cu116 - Datasets 2.0.0 - Tokenizers 0.12.1 # Full config {'dataset': {'datasets': ['kejian/codeparrot-train-more-filter-3.3b-cleaned'], 'filter_threshold': 0.002361, 'is_split_by_sentences': True}, 'generation': {'batch_size': 64, 'metrics_configs': [{}, {'n': 1}, {}], 'scenario_configs': [{'display_as_html': True, 'generate_kwargs': {'do_sample': True, 'eos_token_id': 0, 'max_length': 640, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'unconditional', 'num_samples': 512}, {'display_as_html': True, 'generate_kwargs': {'do_sample': True, 'eos_token_id': 0, 'max_length': 272, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'functions', 'num_samples': 512, 'prompts_path': 'resources/functions_csnet.jsonl', 'use_prompt_for_scoring': True}], 'scorer_config': {}}, 'kl_gpt3_callback': {'gpt3_kwargs': {'model_name': 'code-cushman-001'}, 'max_tokens': 64, 'num_samples': 4096}, 'model': {'from_scratch': True, 'gpt2_config_kwargs': {'reorder_and_upcast_attn': True, 'scale_attn_by': True}, 'path_or_name': 'codeparrot/codeparrot-small'}, 'objective': {'name': 'MLE'}, 'tokenizer': {'path_or_name': 'codeparrot/codeparrot-small'}, 'training': {'dataloader_num_workers': 0, 'effective_batch_size': 64, 'evaluation_strategy': 'no', 'fp16': True, 'hub_model_id': 'kejian/final-filter-again', 'hub_strategy': 'all_checkpoints', 'learning_rate': 0.0008, 'logging_first_step': True, 'logging_steps': 1, 'num_tokens': 3300000000.0, 'output_dir': 'training_output', 'per_device_train_batch_size': 16, 'push_to_hub': True, 'remove_unused_columns': False, 'save_steps': 5000, 'save_strategy': 'steps', 'seed': 42, 'warmup_ratio': 0.01, 'weight_decay': 0.1}} # Wandb URL: https://wandb.ai/kejian/uncategorized/runs/25z4zfy3
alexziweiwang/retrain_epoch2and3
alexziweiwang
2022-11-28T17:31:08Z
31
0
transformers
[ "transformers", "pytorch", "wav2vec2", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2022-11-28T17:14:05Z
--- tags: - generated_from_trainer model-index: - name: retrain_epoch2and3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # retrain_epoch2and3 This model is a fine-tuned version of [alexziweiwang/retrain_first1epoch](https://huggingface.co/alexziweiwang/retrain_first1epoch) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.4888 - Acc: 0.24 - Wer: 1.0 - Correct: 48 - Total: 200 - Strlen: 200 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 9e-06 - train_batch_size: 2 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Acc | Wer | Correct | Total | Strlen | |:-------------:|:-----:|:----:|:---------------:|:----:|:---:|:-------:|:-----:|:------:| | No log | 0.02 | 5 | 7.8479 | 0.24 | 1.0 | 48 | 200 | 200 | | 7.6019 | 0.04 | 10 | 7.4765 | 0.24 | 1.0 | 48 | 200 | 200 | | 7.6019 | 0.06 | 15 | 7.1196 | 0.24 | 1.0 | 48 | 200 | 200 | | 7.3222 | 0.08 | 20 | 6.8029 | 0.24 | 1.0 | 48 | 200 | 200 | | 7.3222 | 0.11 | 25 | 6.5210 | 0.24 | 1.0 | 48 | 200 | 200 | | 6.2645 | 0.13 | 30 | 6.2630 | 0.24 | 1.0 | 48 | 200 | 200 | | 6.2645 | 0.15 | 35 | 6.0213 | 0.24 | 1.0 | 48 | 200 | 200 | | 5.8699 | 0.17 | 40 | 5.8096 | 0.24 | 1.0 | 48 | 200 | 200 | | 5.8699 | 0.19 | 45 | 5.5831 | 0.24 | 1.0 | 48 | 200 | 200 | | 5.7145 | 0.21 | 50 | 5.3644 | 0.24 | 1.0 | 48 | 200 | 200 | | 5.7145 | 0.23 | 55 | 5.1777 | 0.24 | 1.0 | 48 | 200 | 200 | | 5.3702 | 0.25 | 60 | 5.0257 | 0.24 | 1.0 | 48 | 200 | 200 | | 5.3702 | 0.27 | 65 | 4.8642 | 0.24 | 1.0 | 48 | 200 | 200 | | 5.1896 | 0.3 | 70 | 4.7205 | 0.24 | 1.0 | 48 | 200 | 200 | | 5.1896 | 0.32 | 75 | 4.5846 | 0.24 | 1.0 | 48 | 200 | 200 | | 5.0615 | 0.34 | 80 | 4.4313 | 0.24 | 1.0 | 48 | 200 | 200 | | 5.0615 | 0.36 | 85 | 4.2923 | 0.24 | 1.0 | 48 | 200 | 200 | | 4.5189 | 0.38 | 90 | 4.1662 | 0.24 | 1.0 | 48 | 200 | 200 | | 4.5189 | 0.4 | 95 | 4.0545 | 0.24 | 1.0 | 48 | 200 | 200 | | 4.4911 | 0.42 | 100 | 3.9585 | 0.24 | 1.0 | 48 | 200 | 200 | | 4.4911 | 0.44 | 105 | 3.8489 | 0.24 | 1.0 | 48 | 200 | 200 | | 4.1997 | 0.46 | 110 | 3.7573 | 0.24 | 1.0 | 48 | 200 | 200 | | 4.1997 | 0.48 | 115 | 3.6722 | 0.24 | 1.0 | 48 | 200 | 200 | | 3.7348 | 0.51 | 120 | 3.5844 | 0.24 | 1.0 | 48 | 200 | 200 | | 3.7348 | 0.53 | 125 | 3.4980 | 0.24 | 1.0 | 48 | 200 | 200 | | 3.8042 | 0.55 | 130 | 3.4318 | 0.24 | 1.0 | 48 | 200 | 200 | | 3.8042 | 0.57 | 135 | 3.3690 | 0.24 | 1.0 | 48 | 200 | 200 | | 3.705 | 0.59 | 140 | 3.3126 | 0.24 | 1.0 | 48 | 200 | 200 | | 3.705 | 0.61 | 145 | 3.2630 | 0.24 | 1.0 | 48 | 200 | 200 | | 3.763 | 0.63 | 150 | 3.2063 | 0.24 | 1.0 | 48 | 200 | 200 | | 3.763 | 0.65 | 155 | 3.1562 | 0.24 | 1.0 | 48 | 200 | 200 | | 3.5585 | 0.67 | 160 | 3.1096 | 0.24 | 1.0 | 48 | 200 | 200 | | 3.5585 | 0.7 | 165 | 3.0719 | 0.24 | 1.0 | 48 | 200 | 200 | | 3.213 | 0.72 | 170 | 3.0373 | 0.24 | 1.0 | 48 | 200 | 200 | | 3.213 | 0.74 | 175 | 3.0035 | 0.24 | 1.0 | 48 | 200 | 200 | | 3.2874 | 0.76 | 180 | 2.9712 | 0.24 | 1.0 | 48 | 200 | 200 | | 3.2874 | 0.78 | 185 | 2.9405 | 0.24 | 1.0 | 48 | 200 | 200 | | 3.3327 | 0.8 | 190 | 2.9134 | 0.24 | 1.0 | 48 | 200 | 200 | | 3.3327 | 0.82 | 195 | 2.8910 | 0.24 | 1.0 | 48 | 200 | 200 | | 3.2382 | 0.84 | 200 | 2.8672 | 0.24 | 1.0 | 48 | 200 | 200 | | 3.2382 | 0.86 | 205 | 2.8462 | 0.24 | 1.0 | 48 | 200 | 200 | | 3.0069 | 0.89 | 210 | 2.8260 | 0.24 | 1.0 | 48 | 200 | 200 | | 3.0069 | 0.91 | 215 | 2.8087 | 0.24 | 1.0 | 48 | 200 | 200 | | 3.2288 | 0.93 | 220 | 2.7920 | 0.24 | 1.0 | 48 | 200 | 200 | | 3.2288 | 0.95 | 225 | 2.7750 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.787 | 0.97 | 230 | 2.7557 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.787 | 0.99 | 235 | 2.7367 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.9717 | 1.01 | 240 | 2.7207 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.9717 | 1.03 | 245 | 2.7063 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.9269 | 1.05 | 250 | 2.6939 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.9269 | 1.08 | 255 | 2.6831 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.8771 | 1.1 | 260 | 2.6709 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.8771 | 1.12 | 265 | 2.6594 | 0.24 | 1.0 | 48 | 200 | 200 | | 3.0474 | 1.14 | 270 | 2.6472 | 0.24 | 1.0 | 48 | 200 | 200 | | 3.0474 | 1.16 | 275 | 2.6361 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.7652 | 1.18 | 280 | 2.6268 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.7652 | 1.2 | 285 | 2.6184 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.8322 | 1.22 | 290 | 2.6106 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.8322 | 1.24 | 295 | 2.6034 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.6464 | 1.27 | 300 | 2.5957 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.6464 | 1.29 | 305 | 2.5877 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.7974 | 1.31 | 310 | 2.5805 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.7974 | 1.33 | 315 | 2.5748 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.797 | 1.35 | 320 | 2.5698 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.797 | 1.37 | 325 | 2.5644 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.7508 | 1.39 | 330 | 2.5595 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.7508 | 1.41 | 335 | 2.5537 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.7188 | 1.43 | 340 | 2.5486 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.7188 | 1.46 | 345 | 2.5434 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.6889 | 1.48 | 350 | 2.5377 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.6889 | 1.5 | 355 | 2.5336 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.6373 | 1.52 | 360 | 2.5300 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.6373 | 1.54 | 365 | 2.5258 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.765 | 1.56 | 370 | 2.5219 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.765 | 1.58 | 375 | 2.5181 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.6407 | 1.6 | 380 | 2.5144 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.6407 | 1.62 | 385 | 2.5113 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.7727 | 1.64 | 390 | 2.5093 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.7727 | 1.67 | 395 | 2.5076 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.8091 | 1.69 | 400 | 2.5060 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.8091 | 1.71 | 405 | 2.5042 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.7204 | 1.73 | 410 | 2.5027 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.7204 | 1.75 | 415 | 2.5011 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.6168 | 1.77 | 420 | 2.4987 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.6168 | 1.79 | 425 | 2.4965 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.6947 | 1.81 | 430 | 2.4947 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.6947 | 1.83 | 435 | 2.4932 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.7495 | 1.86 | 440 | 2.4921 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.7495 | 1.88 | 445 | 2.4911 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.7413 | 1.9 | 450 | 2.4904 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.7413 | 1.92 | 455 | 2.4897 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.6498 | 1.94 | 460 | 2.4893 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.6498 | 1.96 | 465 | 2.4890 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.6891 | 1.98 | 470 | 2.4888 | 0.24 | 1.0 | 48 | 200 | 200 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 1.18.3 - Tokenizers 0.13.2
wa3dbk/whisper-small-ar
wa3dbk
2022-11-28T17:11:32Z
113
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-25T18:33:06Z
## whisper-small-ar This model is a fine-tuned version of openai/whisper-small on the Common Voice 11.0 dataset (language=Arabic).
antgrutta/sd-class-butterflies-32
antgrutta
2022-11-28T16:59:10Z
32
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-11-28T16:58:32Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute πŸ¦‹. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained(antgrutta/sd-class-butterflies-32) image = pipeline().images[0] image ```
EmnaBou/bert-finetuned-DT
EmnaBou
2022-11-28T16:49:12Z
123
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-28T15:20:02Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-DT results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-DT This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6697 - Precision: 0.2381 - Recall: 0.0321 - F1: 0.0565 - Accuracy: 0.8179 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 99 | 0.7505 | 0.0 | 0.0 | 0.0 | 0.8196 | | No log | 2.0 | 198 | 0.7033 | 0.0 | 0.0 | 0.0 | 0.8196 | | No log | 3.0 | 297 | 0.6697 | 0.2381 | 0.0321 | 0.0565 | 0.8179 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
luisgasco/distilbert-base-uncased-finetuned-emotion
luisgasco
2022-11-28T16:17:49Z
110
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-28T16:03:30Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.892 - name: F1 type: f1 value: 0.8873822002431591 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.3693 - Accuracy: 0.892 - F1: 0.8874 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 125 | 0.5715 | 0.8275 | 0.8047 | | 0.7552 | 2.0 | 250 | 0.3693 | 0.892 | 0.8874 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.11.0 - Datasets 1.16.1 - Tokenizers 0.10.3
tomekkorbak/awesome_ride
tomekkorbak
2022-11-28T16:12:40Z
0
0
null
[ "generated_from_trainer", "en", "dataset:tomekkorbak/detoxify-pile-chunk3-0-50000", "dataset:tomekkorbak/detoxify-pile-chunk3-50000-100000", "dataset:tomekkorbak/detoxify-pile-chunk3-100000-150000", "dataset:tomekkorbak/detoxify-pile-chunk3-150000-200000", "dataset:tomekkorbak/detoxify-pile-chunk3-200000-250000", "dataset:tomekkorbak/detoxify-pile-chunk3-250000-300000", "dataset:tomekkorbak/detoxify-pile-chunk3-300000-350000", "dataset:tomekkorbak/detoxify-pile-chunk3-350000-400000", "dataset:tomekkorbak/detoxify-pile-chunk3-400000-450000", "dataset:tomekkorbak/detoxify-pile-chunk3-450000-500000", "dataset:tomekkorbak/detoxify-pile-chunk3-500000-550000", "dataset:tomekkorbak/detoxify-pile-chunk3-550000-600000", "dataset:tomekkorbak/detoxify-pile-chunk3-600000-650000", "dataset:tomekkorbak/detoxify-pile-chunk3-650000-700000", "dataset:tomekkorbak/detoxify-pile-chunk3-700000-750000", "dataset:tomekkorbak/detoxify-pile-chunk3-750000-800000", "dataset:tomekkorbak/detoxify-pile-chunk3-800000-850000", "dataset:tomekkorbak/detoxify-pile-chunk3-850000-900000", "dataset:tomekkorbak/detoxify-pile-chunk3-900000-950000", "dataset:tomekkorbak/detoxify-pile-chunk3-950000-1000000", "dataset:tomekkorbak/detoxify-pile-chunk3-1000000-1050000", "dataset:tomekkorbak/detoxify-pile-chunk3-1050000-1100000", "dataset:tomekkorbak/detoxify-pile-chunk3-1100000-1150000", "dataset:tomekkorbak/detoxify-pile-chunk3-1150000-1200000", "dataset:tomekkorbak/detoxify-pile-chunk3-1200000-1250000", "dataset:tomekkorbak/detoxify-pile-chunk3-1250000-1300000", "dataset:tomekkorbak/detoxify-pile-chunk3-1300000-1350000", "dataset:tomekkorbak/detoxify-pile-chunk3-1350000-1400000", "dataset:tomekkorbak/detoxify-pile-chunk3-1400000-1450000", "dataset:tomekkorbak/detoxify-pile-chunk3-1450000-1500000", "dataset:tomekkorbak/detoxify-pile-chunk3-1500000-1550000", "dataset:tomekkorbak/detoxify-pile-chunk3-1550000-1600000", "dataset:tomekkorbak/detoxify-pile-chunk3-1600000-1650000", "dataset:tomekkorbak/detoxify-pile-chunk3-1650000-1700000", "dataset:tomekkorbak/detoxify-pile-chunk3-1700000-1750000", "dataset:tomekkorbak/detoxify-pile-chunk3-1750000-1800000", "dataset:tomekkorbak/detoxify-pile-chunk3-1800000-1850000", "dataset:tomekkorbak/detoxify-pile-chunk3-1850000-1900000", "dataset:tomekkorbak/detoxify-pile-chunk3-1900000-1950000", "license:mit", "region:us" ]
null
2022-11-28T16:12:19Z
--- language: - en license: mit tags: - generated_from_trainer datasets: - tomekkorbak/detoxify-pile-chunk3-0-50000 - tomekkorbak/detoxify-pile-chunk3-50000-100000 - tomekkorbak/detoxify-pile-chunk3-100000-150000 - tomekkorbak/detoxify-pile-chunk3-150000-200000 - tomekkorbak/detoxify-pile-chunk3-200000-250000 - tomekkorbak/detoxify-pile-chunk3-250000-300000 - tomekkorbak/detoxify-pile-chunk3-300000-350000 - tomekkorbak/detoxify-pile-chunk3-350000-400000 - tomekkorbak/detoxify-pile-chunk3-400000-450000 - tomekkorbak/detoxify-pile-chunk3-450000-500000 - tomekkorbak/detoxify-pile-chunk3-500000-550000 - tomekkorbak/detoxify-pile-chunk3-550000-600000 - tomekkorbak/detoxify-pile-chunk3-600000-650000 - tomekkorbak/detoxify-pile-chunk3-650000-700000 - tomekkorbak/detoxify-pile-chunk3-700000-750000 - tomekkorbak/detoxify-pile-chunk3-750000-800000 - tomekkorbak/detoxify-pile-chunk3-800000-850000 - tomekkorbak/detoxify-pile-chunk3-850000-900000 - tomekkorbak/detoxify-pile-chunk3-900000-950000 - tomekkorbak/detoxify-pile-chunk3-950000-1000000 - tomekkorbak/detoxify-pile-chunk3-1000000-1050000 - tomekkorbak/detoxify-pile-chunk3-1050000-1100000 - tomekkorbak/detoxify-pile-chunk3-1100000-1150000 - tomekkorbak/detoxify-pile-chunk3-1150000-1200000 - tomekkorbak/detoxify-pile-chunk3-1200000-1250000 - tomekkorbak/detoxify-pile-chunk3-1250000-1300000 - tomekkorbak/detoxify-pile-chunk3-1300000-1350000 - tomekkorbak/detoxify-pile-chunk3-1350000-1400000 - tomekkorbak/detoxify-pile-chunk3-1400000-1450000 - tomekkorbak/detoxify-pile-chunk3-1450000-1500000 - tomekkorbak/detoxify-pile-chunk3-1500000-1550000 - tomekkorbak/detoxify-pile-chunk3-1550000-1600000 - tomekkorbak/detoxify-pile-chunk3-1600000-1650000 - tomekkorbak/detoxify-pile-chunk3-1650000-1700000 - tomekkorbak/detoxify-pile-chunk3-1700000-1750000 - tomekkorbak/detoxify-pile-chunk3-1750000-1800000 - tomekkorbak/detoxify-pile-chunk3-1800000-1850000 - tomekkorbak/detoxify-pile-chunk3-1850000-1900000 - tomekkorbak/detoxify-pile-chunk3-1900000-1950000 model-index: - name: awesome_ride results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # awesome_ride This model was trained from scratch on the tomekkorbak/detoxify-pile-chunk3-0-50000, the tomekkorbak/detoxify-pile-chunk3-50000-100000, the tomekkorbak/detoxify-pile-chunk3-100000-150000, the tomekkorbak/detoxify-pile-chunk3-150000-200000, the tomekkorbak/detoxify-pile-chunk3-200000-250000, the tomekkorbak/detoxify-pile-chunk3-250000-300000, the tomekkorbak/detoxify-pile-chunk3-300000-350000, the tomekkorbak/detoxify-pile-chunk3-350000-400000, the tomekkorbak/detoxify-pile-chunk3-400000-450000, the tomekkorbak/detoxify-pile-chunk3-450000-500000, the tomekkorbak/detoxify-pile-chunk3-500000-550000, the tomekkorbak/detoxify-pile-chunk3-550000-600000, the tomekkorbak/detoxify-pile-chunk3-600000-650000, the tomekkorbak/detoxify-pile-chunk3-650000-700000, the tomekkorbak/detoxify-pile-chunk3-700000-750000, the tomekkorbak/detoxify-pile-chunk3-750000-800000, the tomekkorbak/detoxify-pile-chunk3-800000-850000, the tomekkorbak/detoxify-pile-chunk3-850000-900000, the tomekkorbak/detoxify-pile-chunk3-900000-950000, the tomekkorbak/detoxify-pile-chunk3-950000-1000000, the tomekkorbak/detoxify-pile-chunk3-1000000-1050000, the tomekkorbak/detoxify-pile-chunk3-1050000-1100000, the tomekkorbak/detoxify-pile-chunk3-1100000-1150000, the tomekkorbak/detoxify-pile-chunk3-1150000-1200000, the tomekkorbak/detoxify-pile-chunk3-1200000-1250000, the tomekkorbak/detoxify-pile-chunk3-1250000-1300000, the tomekkorbak/detoxify-pile-chunk3-1300000-1350000, the tomekkorbak/detoxify-pile-chunk3-1350000-1400000, the tomekkorbak/detoxify-pile-chunk3-1400000-1450000, the tomekkorbak/detoxify-pile-chunk3-1450000-1500000, the tomekkorbak/detoxify-pile-chunk3-1500000-1550000, the tomekkorbak/detoxify-pile-chunk3-1550000-1600000, the tomekkorbak/detoxify-pile-chunk3-1600000-1650000, the tomekkorbak/detoxify-pile-chunk3-1650000-1700000, the tomekkorbak/detoxify-pile-chunk3-1700000-1750000, the tomekkorbak/detoxify-pile-chunk3-1750000-1800000, the tomekkorbak/detoxify-pile-chunk3-1800000-1850000, the tomekkorbak/detoxify-pile-chunk3-1850000-1900000 and the tomekkorbak/detoxify-pile-chunk3-1900000-1950000 datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - training_steps: 50354 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.5.1 - Tokenizers 0.11.6 # Full config {'dataset': {'datasets': ['tomekkorbak/detoxify-pile-chunk3-0-50000', 'tomekkorbak/detoxify-pile-chunk3-50000-100000', 'tomekkorbak/detoxify-pile-chunk3-100000-150000', 'tomekkorbak/detoxify-pile-chunk3-150000-200000', 'tomekkorbak/detoxify-pile-chunk3-200000-250000', 'tomekkorbak/detoxify-pile-chunk3-250000-300000', 'tomekkorbak/detoxify-pile-chunk3-300000-350000', 'tomekkorbak/detoxify-pile-chunk3-350000-400000', 'tomekkorbak/detoxify-pile-chunk3-400000-450000', 'tomekkorbak/detoxify-pile-chunk3-450000-500000', 'tomekkorbak/detoxify-pile-chunk3-500000-550000', 'tomekkorbak/detoxify-pile-chunk3-550000-600000', 'tomekkorbak/detoxify-pile-chunk3-600000-650000', 'tomekkorbak/detoxify-pile-chunk3-650000-700000', 'tomekkorbak/detoxify-pile-chunk3-700000-750000', 'tomekkorbak/detoxify-pile-chunk3-750000-800000', 'tomekkorbak/detoxify-pile-chunk3-800000-850000', 'tomekkorbak/detoxify-pile-chunk3-850000-900000', 'tomekkorbak/detoxify-pile-chunk3-900000-950000', 'tomekkorbak/detoxify-pile-chunk3-950000-1000000', 'tomekkorbak/detoxify-pile-chunk3-1000000-1050000', 'tomekkorbak/detoxify-pile-chunk3-1050000-1100000', 'tomekkorbak/detoxify-pile-chunk3-1100000-1150000', 'tomekkorbak/detoxify-pile-chunk3-1150000-1200000', 'tomekkorbak/detoxify-pile-chunk3-1200000-1250000', 'tomekkorbak/detoxify-pile-chunk3-1250000-1300000', 'tomekkorbak/detoxify-pile-chunk3-1300000-1350000', 'tomekkorbak/detoxify-pile-chunk3-1350000-1400000', 'tomekkorbak/detoxify-pile-chunk3-1400000-1450000', 'tomekkorbak/detoxify-pile-chunk3-1450000-1500000', 'tomekkorbak/detoxify-pile-chunk3-1500000-1550000', 'tomekkorbak/detoxify-pile-chunk3-1550000-1600000', 'tomekkorbak/detoxify-pile-chunk3-1600000-1650000', 'tomekkorbak/detoxify-pile-chunk3-1650000-1700000', 'tomekkorbak/detoxify-pile-chunk3-1700000-1750000', 'tomekkorbak/detoxify-pile-chunk3-1750000-1800000', 'tomekkorbak/detoxify-pile-chunk3-1800000-1850000', 'tomekkorbak/detoxify-pile-chunk3-1850000-1900000', 'tomekkorbak/detoxify-pile-chunk3-1900000-1950000'], 'filter_threshold': 0.00065, 'is_split_by_sentences': True}, 'generation': {'force_call_on': [25354], 'metrics_configs': [{}, {'n': 1}, {'n': 2}, {'n': 5}], 'scenario_configs': [{'generate_kwargs': {'do_sample': True, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'unconditional', 'num_samples': 2048}, {'generate_kwargs': {'do_sample': True, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'challenging_rtp', 'num_samples': 2048, 'prompts_path': 'resources/challenging_rtp.jsonl'}], 'scorer_config': {'device': 'cuda:0'}}, 'kl_gpt3_callback': {'force_call_on': [25354], 'max_tokens': 64, 'num_samples': 4096}, 'model': {'from_scratch': True, 'gpt2_config_kwargs': {'reorder_and_upcast_attn': True, 'scale_attn_by': True}, 'path_or_name': 'gpt2'}, 'objective': {'name': 'MLE'}, 'tokenizer': {'path_or_name': 'gpt2'}, 'training': {'dataloader_num_workers': 0, 'effective_batch_size': 64, 'evaluation_strategy': 'no', 'fp16': True, 'hub_model_id': 'awesome_ride', 'hub_strategy': 'all_checkpoints', 'learning_rate': 0.0005, 'logging_first_step': True, 'logging_steps': 1, 'num_tokens': 3300000000, 'output_dir': 'training_output104340', 'per_device_train_batch_size': 16, 'push_to_hub': True, 'remove_unused_columns': False, 'save_steps': 25354, 'save_strategy': 'steps', 'seed': 42, 'warmup_ratio': 0.01, 'weight_decay': 0.1}} # Wandb URL: https://wandb.ai/tomekkorbak/apo/runs/3m98rnwq
alexziweiwang/pure-start-epoch2
alexziweiwang
2022-11-28T16:08:48Z
31
0
transformers
[ "transformers", "pytorch", "wav2vec2", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2022-11-28T15:52:06Z
--- tags: - generated_from_trainer model-index: - name: pure-start-epoch2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pure-start-epoch2 This model is a fine-tuned version of [alexziweiwang/pure-start-epoch1](https://huggingface.co/alexziweiwang/pure-start-epoch1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 7.7447 - Acc: 0.24 - Wer: 1.0 - Correct: 48 - Total: 200 - Strlen: 200 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 9e-06 - train_batch_size: 2 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Acc | Wer | Correct | Total | Strlen | |:-------------:|:-----:|:----:|:---------------:|:-----:|:---:|:-------:|:-----:|:------:| | No log | 0.01 | 2 | 20.4002 | 0.095 | 1.0 | 19 | 200 | 200 | | No log | 0.02 | 4 | 19.9080 | 0.095 | 1.0 | 19 | 200 | 200 | | No log | 0.03 | 6 | 19.4711 | 0.095 | 1.0 | 19 | 200 | 200 | | No log | 0.03 | 8 | 19.1535 | 0.095 | 1.0 | 19 | 200 | 200 | | 46.6007 | 0.04 | 10 | 18.6684 | 0.095 | 1.0 | 19 | 200 | 200 | | 46.6007 | 0.05 | 12 | 18.1640 | 0.095 | 1.0 | 19 | 200 | 200 | | 46.6007 | 0.06 | 14 | 17.6937 | 0.095 | 1.0 | 19 | 200 | 200 | | 46.6007 | 0.07 | 16 | 17.2710 | 0.095 | 1.0 | 19 | 200 | 200 | | 46.6007 | 0.08 | 18 | 16.8469 | 0.095 | 1.0 | 19 | 200 | 200 | | 49.1547 | 0.08 | 20 | 16.4418 | 0.095 | 1.0 | 19 | 200 | 200 | | 49.1547 | 0.09 | 22 | 16.0409 | 0.095 | 1.0 | 19 | 200 | 200 | | 49.1547 | 0.1 | 24 | 15.6677 | 0.095 | 1.0 | 19 | 200 | 200 | | 49.1547 | 0.11 | 26 | 15.3291 | 0.095 | 1.0 | 19 | 200 | 200 | | 49.1547 | 0.12 | 28 | 15.0097 | 0.095 | 1.0 | 19 | 200 | 200 | | 35.1416 | 0.13 | 30 | 14.6776 | 0.095 | 1.0 | 19 | 200 | 200 | | 35.1416 | 0.13 | 32 | 14.3788 | 0.095 | 1.0 | 19 | 200 | 200 | | 35.1416 | 0.14 | 34 | 14.0924 | 0.095 | 1.0 | 19 | 200 | 200 | | 35.1416 | 0.15 | 36 | 13.8133 | 0.095 | 1.0 | 19 | 200 | 200 | | 35.1416 | 0.16 | 38 | 13.5539 | 0.095 | 1.0 | 19 | 200 | 200 | | 34.4057 | 0.17 | 40 | 13.3095 | 0.095 | 1.0 | 19 | 200 | 200 | | 34.4057 | 0.18 | 42 | 13.0804 | 0.095 | 1.0 | 19 | 200 | 200 | | 34.4057 | 0.19 | 44 | 12.8580 | 0.105 | 1.0 | 21 | 200 | 200 | | 34.4057 | 0.19 | 46 | 12.6532 | 0.115 | 1.0 | 23 | 200 | 200 | | 34.4057 | 0.2 | 48 | 12.4532 | 0.13 | 1.0 | 26 | 200 | 200 | | 33.2759 | 0.21 | 50 | 12.2452 | 0.14 | 1.0 | 28 | 200 | 200 | | 33.2759 | 0.22 | 52 | 12.0666 | 0.13 | 1.0 | 26 | 200 | 200 | | 33.2759 | 0.23 | 54 | 11.8976 | 0.165 | 1.0 | 33 | 200 | 200 | | 33.2759 | 0.24 | 56 | 11.7373 | 0.175 | 1.0 | 35 | 200 | 200 | | 33.2759 | 0.24 | 58 | 11.5933 | 0.17 | 1.0 | 34 | 200 | 200 | | 29.8129 | 0.25 | 60 | 11.4281 | 0.15 | 1.0 | 30 | 200 | 200 | | 29.8129 | 0.26 | 62 | 11.2665 | 0.14 | 1.0 | 28 | 200 | 200 | | 29.8129 | 0.27 | 64 | 11.1158 | 0.145 | 1.0 | 29 | 200 | 200 | | 29.8129 | 0.28 | 66 | 10.9840 | 0.135 | 1.0 | 27 | 200 | 200 | | 29.8129 | 0.29 | 68 | 10.8502 | 0.15 | 1.0 | 30 | 200 | 200 | | 38.792 | 0.3 | 70 | 10.7341 | 0.15 | 1.0 | 30 | 200 | 200 | | 38.792 | 0.3 | 72 | 10.6082 | 0.165 | 1.0 | 33 | 200 | 200 | | 38.792 | 0.31 | 74 | 10.4944 | 0.18 | 1.0 | 36 | 200 | 200 | | 38.792 | 0.32 | 76 | 10.3818 | 0.21 | 1.0 | 42 | 200 | 200 | | 38.792 | 0.33 | 78 | 10.2719 | 0.235 | 1.0 | 47 | 200 | 200 | | 28.0092 | 0.34 | 80 | 10.1636 | 0.235 | 1.0 | 47 | 200 | 200 | | 28.0092 | 0.35 | 82 | 10.0709 | 0.24 | 1.0 | 48 | 200 | 200 | | 28.0092 | 0.35 | 84 | 9.9797 | 0.24 | 1.0 | 48 | 200 | 200 | | 28.0092 | 0.36 | 86 | 9.8958 | 0.24 | 1.0 | 48 | 200 | 200 | | 28.0092 | 0.37 | 88 | 9.7977 | 0.24 | 1.0 | 48 | 200 | 200 | | 21.6175 | 0.38 | 90 | 9.7015 | 0.24 | 1.0 | 48 | 200 | 200 | | 21.6175 | 0.39 | 92 | 9.6150 | 0.24 | 1.0 | 48 | 200 | 200 | | 21.6175 | 0.4 | 94 | 9.5304 | 0.24 | 1.0 | 48 | 200 | 200 | | 21.6175 | 0.4 | 96 | 9.4521 | 0.24 | 1.0 | 48 | 200 | 200 | | 21.6175 | 0.41 | 98 | 9.3832 | 0.24 | 1.0 | 48 | 200 | 200 | | 26.3434 | 0.42 | 100 | 9.3148 | 0.24 | 1.0 | 48 | 200 | 200 | | 26.3434 | 0.43 | 102 | 9.2563 | 0.24 | 1.0 | 48 | 200 | 200 | | 26.3434 | 0.44 | 104 | 9.1944 | 0.24 | 1.0 | 48 | 200 | 200 | | 26.3434 | 0.45 | 106 | 9.1323 | 0.24 | 1.0 | 48 | 200 | 200 | | 26.3434 | 0.46 | 108 | 9.0717 | 0.24 | 1.0 | 48 | 200 | 200 | | 24.4387 | 0.46 | 110 | 9.0245 | 0.24 | 1.0 | 48 | 200 | 200 | | 24.4387 | 0.47 | 112 | 8.9772 | 0.24 | 1.0 | 48 | 200 | 200 | | 24.4387 | 0.48 | 114 | 8.9390 | 0.24 | 1.0 | 48 | 200 | 200 | | 24.4387 | 0.49 | 116 | 8.9013 | 0.24 | 1.0 | 48 | 200 | 200 | | 24.4387 | 0.5 | 118 | 8.8605 | 0.24 | 1.0 | 48 | 200 | 200 | | 21.7305 | 0.51 | 120 | 8.8126 | 0.24 | 1.0 | 48 | 200 | 200 | | 21.7305 | 0.51 | 122 | 8.7503 | 0.24 | 1.0 | 48 | 200 | 200 | | 21.7305 | 0.52 | 124 | 8.6921 | 0.24 | 1.0 | 48 | 200 | 200 | | 21.7305 | 0.53 | 126 | 8.6378 | 0.24 | 1.0 | 48 | 200 | 200 | | 21.7305 | 0.54 | 128 | 8.5927 | 0.24 | 1.0 | 48 | 200 | 200 | | 21.5989 | 0.55 | 130 | 8.5520 | 0.24 | 1.0 | 48 | 200 | 200 | | 21.5989 | 0.56 | 132 | 8.5126 | 0.24 | 1.0 | 48 | 200 | 200 | | 21.5989 | 0.56 | 134 | 8.4743 | 0.24 | 1.0 | 48 | 200 | 200 | | 21.5989 | 0.57 | 136 | 8.4369 | 0.24 | 1.0 | 48 | 200 | 200 | | 21.5989 | 0.58 | 138 | 8.3993 | 0.24 | 1.0 | 48 | 200 | 200 | | 21.8372 | 0.59 | 140 | 8.3636 | 0.24 | 1.0 | 48 | 200 | 200 | | 21.8372 | 0.6 | 142 | 8.3311 | 0.24 | 1.0 | 48 | 200 | 200 | | 21.8372 | 0.61 | 144 | 8.2983 | 0.24 | 1.0 | 48 | 200 | 200 | | 21.8372 | 0.62 | 146 | 8.2652 | 0.24 | 1.0 | 48 | 200 | 200 | | 21.8372 | 0.62 | 148 | 8.2345 | 0.24 | 1.0 | 48 | 200 | 200 | | 20.1716 | 0.63 | 150 | 8.2064 | 0.24 | 1.0 | 48 | 200 | 200 | | 20.1716 | 0.64 | 152 | 8.1818 | 0.24 | 1.0 | 48 | 200 | 200 | | 20.1716 | 0.65 | 154 | 8.1603 | 0.24 | 1.0 | 48 | 200 | 200 | | 20.1716 | 0.66 | 156 | 8.1403 | 0.24 | 1.0 | 48 | 200 | 200 | | 20.1716 | 0.67 | 158 | 8.1180 | 0.24 | 1.0 | 48 | 200 | 200 | | 24.5655 | 0.67 | 160 | 8.0997 | 0.24 | 1.0 | 48 | 200 | 200 | | 24.5655 | 0.68 | 162 | 8.0791 | 0.24 | 1.0 | 48 | 200 | 200 | | 24.5655 | 0.69 | 164 | 8.0563 | 0.24 | 1.0 | 48 | 200 | 200 | | 24.5655 | 0.7 | 166 | 8.0342 | 0.24 | 1.0 | 48 | 200 | 200 | | 24.5655 | 0.71 | 168 | 8.0130 | 0.24 | 1.0 | 48 | 200 | 200 | | 17.3768 | 0.72 | 170 | 7.9936 | 0.24 | 1.0 | 48 | 200 | 200 | | 17.3768 | 0.72 | 172 | 7.9756 | 0.24 | 1.0 | 48 | 200 | 200 | | 17.3768 | 0.73 | 174 | 7.9594 | 0.24 | 1.0 | 48 | 200 | 200 | | 17.3768 | 0.74 | 176 | 7.9439 | 0.24 | 1.0 | 48 | 200 | 200 | | 17.3768 | 0.75 | 178 | 7.9298 | 0.24 | 1.0 | 48 | 200 | 200 | | 19.7473 | 0.76 | 180 | 7.9157 | 0.24 | 1.0 | 48 | 200 | 200 | | 19.7473 | 0.77 | 182 | 7.9021 | 0.24 | 1.0 | 48 | 200 | 200 | | 19.7473 | 0.78 | 184 | 7.8899 | 0.24 | 1.0 | 48 | 200 | 200 | | 19.7473 | 0.78 | 186 | 7.8796 | 0.24 | 1.0 | 48 | 200 | 200 | | 19.7473 | 0.79 | 188 | 7.8697 | 0.24 | 1.0 | 48 | 200 | 200 | | 15.7279 | 0.8 | 190 | 7.8598 | 0.24 | 1.0 | 48 | 200 | 200 | | 15.7279 | 0.81 | 192 | 7.8490 | 0.24 | 1.0 | 48 | 200 | 200 | | 15.7279 | 0.82 | 194 | 7.8390 | 0.24 | 1.0 | 48 | 200 | 200 | | 15.7279 | 0.83 | 196 | 7.8293 | 0.24 | 1.0 | 48 | 200 | 200 | | 15.7279 | 0.83 | 198 | 7.8211 | 0.24 | 1.0 | 48 | 200 | 200 | | 18.5034 | 0.84 | 200 | 7.8135 | 0.24 | 1.0 | 48 | 200 | 200 | | 18.5034 | 0.85 | 202 | 7.8064 | 0.24 | 1.0 | 48 | 200 | 200 | | 18.5034 | 0.86 | 204 | 7.7991 | 0.24 | 1.0 | 48 | 200 | 200 | | 18.5034 | 0.87 | 206 | 7.7924 | 0.24 | 1.0 | 48 | 200 | 200 | | 18.5034 | 0.88 | 208 | 7.7862 | 0.24 | 1.0 | 48 | 200 | 200 | | 17.1983 | 0.89 | 210 | 7.7803 | 0.24 | 1.0 | 48 | 200 | 200 | | 17.1983 | 0.89 | 212 | 7.7749 | 0.24 | 1.0 | 48 | 200 | 200 | | 17.1983 | 0.9 | 214 | 7.7701 | 0.24 | 1.0 | 48 | 200 | 200 | | 17.1983 | 0.91 | 216 | 7.7657 | 0.24 | 1.0 | 48 | 200 | 200 | | 17.1983 | 0.92 | 218 | 7.7628 | 0.24 | 1.0 | 48 | 200 | 200 | | 17.7276 | 0.93 | 220 | 7.7595 | 0.24 | 1.0 | 48 | 200 | 200 | | 17.7276 | 0.94 | 222 | 7.7567 | 0.24 | 1.0 | 48 | 200 | 200 | | 17.7276 | 0.94 | 224 | 7.7541 | 0.24 | 1.0 | 48 | 200 | 200 | | 17.7276 | 0.95 | 226 | 7.7518 | 0.24 | 1.0 | 48 | 200 | 200 | | 17.7276 | 0.96 | 228 | 7.7497 | 0.24 | 1.0 | 48 | 200 | 200 | | 17.8692 | 0.97 | 230 | 7.7479 | 0.24 | 1.0 | 48 | 200 | 200 | | 17.8692 | 0.98 | 232 | 7.7463 | 0.24 | 1.0 | 48 | 200 | 200 | | 17.8692 | 0.99 | 234 | 7.7453 | 0.24 | 1.0 | 48 | 200 | 200 | | 17.8692 | 0.99 | 236 | 7.7447 | 0.24 | 1.0 | 48 | 200 | 200 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 1.18.3 - Tokenizers 0.13.2
fathyshalab/all-roberta-large-v1-banking-2-2-1
fathyshalab
2022-11-28T15:28:40Z
105
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-28T15:27:01Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: all-roberta-large-v1-banking-2-2-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-banking-2-2-1 This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.6817 - Accuracy: 0.1022 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.653 | 1.0 | 5 | 2.6817 | 0.1022 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1 - Datasets 2.3.2 - Tokenizers 0.12.1
arrandi/sd-class-butterflies-32
arrandi
2022-11-28T15:24:36Z
32
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-11-28T15:23:56Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute πŸ¦‹. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained(arrandi/sd-class-butterflies-32) image = pipeline().images[0] image ```
ConvLab/ddpt-policy-sgd_0.01multiwoz21
ConvLab
2022-11-28T15:24:29Z
0
0
null
[ "dialogue policy", "task-oriented dialog", "en", "dataset:ConvLab/sgd", "license:apache-2.0", "region:us" ]
null
2022-11-28T15:21:11Z
--- language: - en license: apache-2.0 tags: - dialogue policy - task-oriented dialog datasets: - ConvLab/sgd --- # ddpt-policy-sgd_0.01multiwoz21 This is a DDPT model (https://aclanthology.org/2022.coling-1.21/) trained on [Schema-Guided Dialog](https://huggingface.co/datasets/ConvLab/sgd) and afterwards on 1 percent of [MultiWOZ 2.1](https://huggingface.co/datasets/ConvLab/multiwoz21) Refer to [ConvLab-3](https://github.com/ConvLab/ConvLab-3) for model description and usage. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - seed: 0 - optimizer: Adam - num_epochs: 40 - use checkpoint which performed best on validation set ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.2+cu111
ConvLab/ddpt-policy-0.01multiwoz21
ConvLab
2022-11-28T15:20:35Z
0
0
null
[ "dialogue policy", "task-oriented dialog", "en", "dataset:ConvLab/sgd", "license:apache-2.0", "region:us" ]
null
2022-11-28T15:18:28Z
--- language: - en license: apache-2.0 tags: - dialogue policy - task-oriented dialog datasets: - ConvLab/sgd --- # ddpt-policy-0.01multiwoz21 This is a DDPT model (https://aclanthology.org/2022.coling-1.21/) trained on 1 percent of [MultiWOZ 2.1](https://huggingface.co/datasets/ConvLab/multiwoz21) Refer to [ConvLab-3](https://github.com/ConvLab/ConvLab-3) for model description and usage. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - seed: 0 - optimizer: Adam - num_epochs: 40 - use checkpoint which performed best on validation set ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.2+cu111
fathyshalab/all-roberta-large-v1-banking-1-2-1
fathyshalab
2022-11-28T15:12:05Z
105
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-28T15:10:30Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: all-roberta-large-v1-banking-1-2-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-banking-1-2-1 This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.6235 - Accuracy: 0.2578 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.6542 | 1.0 | 3 | 2.6235 | 0.2578 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1 - Datasets 2.3.2 - Tokenizers 0.12.1
ConvLab/mle-policy-multiwoz21
ConvLab
2022-11-28T15:11:19Z
0
0
null
[ "dialogue policy", "task-oriented dialog", "en", "dataset:ConvLab/multiwoz21", "license:apache-2.0", "region:us" ]
null
2022-11-28T15:07:50Z
--- language: - en license: apache-2.0 tags: - dialogue policy - task-oriented dialog datasets: - ConvLab/multiwoz21 --- # mle-policy-multiwoz21 This is a MLE model trained on [MultiWOZ 2.1](https://huggingface.co/datasets/ConvLab/multiwoz21) Refer to [ConvLab-3](https://github.com/ConvLab/ConvLab-3) for model description and usage. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - seed: 0 - optimizer: Adam - num_epochs: 24 - use checkpoint which performed best on validation set ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.2+cu111
ConvLab/ddpt-policy-sgd
ConvLab
2022-11-28T15:01:15Z
0
1
null
[ "dialogue policy", "task-oriented dialog", "en", "dataset:ConvLab/sgd", "license:apache-2.0", "region:us" ]
null
2022-11-28T13:21:09Z
--- language: - en license: apache-2.0 tags: - dialogue policy - task-oriented dialog datasets: - ConvLab/sgd --- # ddpt-policy-sgd This is a DDPT model (https://aclanthology.org/2022.coling-1.21/) trained on [Schema-Guided Dialog](https://huggingface.co/datasets/ConvLab/sgd) Refer to [ConvLab-3](https://github.com/ConvLab/ConvLab-3) for model description and usage. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - seed: 0 - optimizer: Adam - num_epochs: 1 - use checkpoint which performed best on validation set ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.2+cu111
alexziweiwang/pure-start-epoch1
alexziweiwang
2022-11-28T14:49:27Z
31
0
transformers
[ "transformers", "pytorch", "wav2vec2", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2022-11-28T14:32:53Z
--- tags: - generated_from_trainer model-index: - name: pure-start-epoch1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pure-start-epoch1 This model is a fine-tuned version of [yongjian/wav2vec2-large-a](https://huggingface.co/yongjian/wav2vec2-large-a) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 21.0050 - Acc: 0.095 - Wer: 1.0 - Correct: 19 - Total: 200 - Strlen: 200 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 9e-06 - train_batch_size: 2 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Acc | Wer | Correct | Total | Strlen | |:-------------:|:-----:|:----:|:---------------:|:-----:|:------:|:-------:|:-----:|:------:| | No log | 0.02 | 5 | 67.2752 | 0.0 | 1.0119 | 0 | 200 | 200 | | 131.0548 | 0.04 | 10 | 66.2796 | 0.0 | 1.0257 | 0 | 200 | 200 | | 131.0548 | 0.06 | 15 | 65.2071 | 0.005 | 1.0237 | 1 | 200 | 200 | | 145.0859 | 0.08 | 20 | 64.0987 | 0.035 | 1.0198 | 7 | 200 | 200 | | 145.0859 | 0.11 | 25 | 62.9734 | 0.07 | 1.0119 | 14 | 200 | 200 | | 110.0012 | 0.13 | 30 | 61.8288 | 0.09 | 1.0119 | 18 | 200 | 200 | | 110.0012 | 0.15 | 35 | 60.6565 | 0.09 | 1.0119 | 18 | 200 | 200 | | 122.6164 | 0.17 | 40 | 59.4606 | 0.095 | 1.0119 | 19 | 200 | 200 | | 122.6164 | 0.19 | 45 | 58.2224 | 0.095 | 1.0099 | 19 | 200 | 200 | | 125.942 | 0.21 | 50 | 56.9514 | 0.095 | 1.0020 | 19 | 200 | 200 | | 125.942 | 0.23 | 55 | 55.5923 | 0.095 | 1.0 | 19 | 200 | 200 | | 111.2271 | 0.25 | 60 | 54.1423 | 0.095 | 1.0 | 19 | 200 | 200 | | 111.2271 | 0.27 | 65 | 52.6174 | 0.095 | 1.0 | 19 | 200 | 200 | | 137.2356 | 0.3 | 70 | 51.0340 | 0.095 | 1.0 | 19 | 200 | 200 | | 137.2356 | 0.32 | 75 | 49.4034 | 0.095 | 1.0 | 19 | 200 | 200 | | 112.2532 | 0.34 | 80 | 47.7291 | 0.095 | 1.0 | 19 | 200 | 200 | | 112.2532 | 0.36 | 85 | 46.0281 | 0.095 | 1.0 | 19 | 200 | 200 | | 88.3973 | 0.38 | 90 | 44.2361 | 0.095 | 1.0 | 19 | 200 | 200 | | 88.3973 | 0.4 | 95 | 42.4925 | 0.095 | 1.0 | 19 | 200 | 200 | | 88.7175 | 0.42 | 100 | 40.7673 | 0.095 | 1.0 | 19 | 200 | 200 | | 88.7175 | 0.44 | 105 | 39.0848 | 0.095 | 1.0 | 19 | 200 | 200 | | 90.857 | 0.46 | 110 | 37.4890 | 0.095 | 1.0 | 19 | 200 | 200 | | 90.857 | 0.48 | 115 | 35.8966 | 0.095 | 1.0 | 19 | 200 | 200 | | 77.5782 | 0.51 | 120 | 34.2822 | 0.1 | 1.0 | 20 | 200 | 200 | | 77.5782 | 0.53 | 125 | 32.7953 | 0.1 | 1.0 | 20 | 200 | 200 | | 80.2378 | 0.55 | 130 | 31.4560 | 0.1 | 1.0 | 20 | 200 | 200 | | 80.2378 | 0.57 | 135 | 30.1651 | 0.1 | 1.0 | 20 | 200 | 200 | | 73.5042 | 0.59 | 140 | 29.0069 | 0.095 | 1.0 | 19 | 200 | 200 | | 73.5042 | 0.61 | 145 | 28.0349 | 0.095 | 1.0 | 19 | 200 | 200 | | 71.5632 | 0.63 | 150 | 27.1812 | 0.095 | 1.0 | 19 | 200 | 200 | | 71.5632 | 0.65 | 155 | 26.4012 | 0.095 | 1.0 | 19 | 200 | 200 | | 76.5337 | 0.67 | 160 | 25.6924 | 0.095 | 1.0 | 19 | 200 | 200 | | 76.5337 | 0.7 | 165 | 25.0184 | 0.095 | 1.0 | 19 | 200 | 200 | | 54.6507 | 0.72 | 170 | 24.4100 | 0.095 | 1.0 | 19 | 200 | 200 | | 54.6507 | 0.74 | 175 | 23.8273 | 0.095 | 1.0 | 19 | 200 | 200 | | 57.1606 | 0.76 | 180 | 23.2988 | 0.095 | 1.0 | 19 | 200 | 200 | | 57.1606 | 0.78 | 185 | 22.8731 | 0.095 | 1.0 | 19 | 200 | 200 | | 56.0855 | 0.8 | 190 | 22.5336 | 0.095 | 1.0 | 19 | 200 | 200 | | 56.0855 | 0.82 | 195 | 22.2334 | 0.095 | 1.0 | 19 | 200 | 200 | | 55.2475 | 0.84 | 200 | 21.9555 | 0.095 | 1.0 | 19 | 200 | 200 | | 55.2475 | 0.86 | 205 | 21.7112 | 0.095 | 1.0 | 19 | 200 | 200 | | 47.9988 | 0.89 | 210 | 21.5123 | 0.095 | 1.0 | 19 | 200 | 200 | | 47.9988 | 0.91 | 215 | 21.3407 | 0.095 | 1.0 | 19 | 200 | 200 | | 55.1394 | 0.93 | 220 | 21.1965 | 0.095 | 1.0 | 19 | 200 | 200 | | 55.1394 | 0.95 | 225 | 21.1028 | 0.095 | 1.0 | 19 | 200 | 200 | | 48.0323 | 0.97 | 230 | 21.0376 | 0.095 | 1.0 | 19 | 200 | 200 | | 48.0323 | 0.99 | 235 | 21.0050 | 0.095 | 1.0 | 19 | 200 | 200 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 1.18.3 - Tokenizers 0.13.2
Fabiuas/Animal-classifier
Fabiuas
2022-11-28T14:38:27Z
311
1
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-11-28T14:37:59Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: Animal-classifier results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9481481313705444 --- # Animal-classifier Autogenerated by HuggingPicsπŸ€—πŸ–ΌοΈ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### bee ![bee](images/bee.jpg) #### beetle ![beetle](images/beetle.jpg) #### bird ![bird](images/bird.jpg) #### butterfly ![butterfly](images/butterfly.jpg) #### camel ![camel](images/camel.jpg) #### cat ![cat](images/cat.jpg) #### caterpillar ![caterpillar](images/caterpillar.jpg) #### crab ![crab](images/crab.jpg) #### dog ![dog](images/dog.jpg) #### fly ![fly](images/fly.jpg) #### grasshopper ![grasshopper](images/grasshopper.jpg) #### horse ![horse](images/horse.jpg) #### lizard ![lizard](images/lizard.jpg) #### mosquito ![mosquito](images/mosquito.jpg) #### mouse ![mouse](images/mouse.jpg) #### snake ![snake](images/snake.jpg) #### spider ![spider](images/spider.jpg) #### whale ![whale](images/whale.jpg)
regel-corpus/hunflair-tfbs
regel-corpus
2022-11-28T14:37:52Z
3
0
flair
[ "flair", "pytorch", "hunflair", "token-classification", "sequence-tagger-model", "en", "region:us" ]
token-classification
2022-03-29T11:26:41Z
--- tags: - flair - hunflair - token-classification - sequence-tagger-model language: en widget: - text: "It contains a functional GCGGCGGCG Egr-1-binding site" --- ## HunFlair model for Transcription Factor Binding Site (TFBS) [HunFlair](https://github.com/flairNLP/flair/blob/master/resources/docs/HUNFLAIR.md) (biomedical flair) for TFBS entity. Predicts 1 tag: | **tag** | **meaning** | |---------------------------------|-----------| | Tfbs | DNA region bound by transcription factor | --- ### Cite Please cite the following paper when using this model. ``` @article{garda2022regel, title={RegEl corpus: identifying DNA regulatory elements in the scientific literature}, author={Garda, Samuele and Lenihan-Geels, Freyda and Proft, Sebastian and Hochmuth, Stefanie and Sch{\"u}lke, Markus and Seelow, Dominik and Leser, Ulf}, journal={Database}, volume={2022}, year={2022}, publisher={Oxford Academic} } ``` --- ### Demo: How to use in Flair Requires: - **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`) ```python from flair.data import Sentence from flair.models import SequenceTagger # for biomedical-specific tokenization: # from flair.tokenization import SciSpacyTokenizer # load tagger tagger = SequenceTagger.load("regel-corpus/hunflair-tfbs") text = "We found that Egr-1 specifically binds to the PTEN 5' untranslated region, which contains a functional GCGGCGGCG Egr-1-binding site." # make example sentence sentence = Sentence(text) # for biomedical-specific tokenization: # sentence = Sentence(text, use_tokenizer=SciSpacyTokenizer()) # predict NER tags tagger.predict(sentence) # print sentence print(sentence) # print predicted NER spans print('The following NER tags are found:') # iterate over entities and print for entity in sentence.get_spans('ner'): print(entity) ``` This yields the following output: ``` Span [19,20,21]: "GCGGCGGCG Egr-1-binding site" [βˆ’ Labels: Tfbs (0.9631)] ``` So, the entity "*GCGGCGGCG Egr-1-binding site*" is found in the sentence. Alternatively download all models locally and use the `MultiTagger` class. ```python from flair.models import MultiTagger tagger = [ './models/hunflair-promoter/pytorch_model.bin', './models/hunflair-enhancer/pytorch_model.bin', './models/hunflair-tfbs/pytorch_model.bin', ] tagger = MultiTagger.load(['./models/hunflair-']) tagger.predict(sentence) ``` ---
fathyshalab/bert-uncased-massive-intent-classification-finetuned-banking-1
fathyshalab
2022-11-28T13:25:04Z
104
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-28T13:01:42Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-uncased-massive-intent-classification-finetuned-banking-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-uncased-massive-intent-classification-finetuned-banking-1 This model is a fine-tuned version of [gokuls/bert-uncased-massive-intent-classification](https://huggingface.co/gokuls/bert-uncased-massive-intent-classification) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.6447 - Accuracy: 0.1822 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.9685 | 1.0 | 3 | 2.7310 | 0.1422 | | 2.8056 | 2.0 | 6 | 2.6970 | 0.1467 | | 2.5004 | 3.0 | 9 | 2.6680 | 0.1511 | | 2.445 | 4.0 | 12 | 2.6515 | 0.1778 | | 2.3977 | 5.0 | 15 | 2.6447 | 0.1822 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1 - Datasets 2.3.2 - Tokenizers 0.12.1
jfjensen/sd-class-butterflies-32
jfjensen
2022-11-28T12:59:41Z
37
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-11-28T12:58:55Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute πŸ¦‹. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained(jfjensen/sd-class-butterflies-32) image = pipeline().images[0] image ```
cardiffnlp/twitter-roberta-base-offensive
cardiffnlp
2022-11-28T11:36:23Z
35,866
27
transformers
[ "transformers", "pytorch", "tf", "jax", "roberta", "text-classification", "arxiv:2010.12421", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
# Twitter-roBERTa-base for Offensive Language Identification This is a roBERTa-base model trained on ~58M tweets and finetuned for offensive language identification with the TweetEval benchmark. - Paper: [_TweetEval_ benchmark (Findings of EMNLP 2020)](https://arxiv.org/pdf/2010.12421.pdf). - Git Repo: [Tweeteval official repository](https://github.com/cardiffnlp/tweeteval). ## Example of classification ```python from transformers import AutoModelForSequenceClassification from transformers import TFAutoModelForSequenceClassification from transformers import AutoTokenizer import numpy as np from scipy.special import softmax import csv import urllib.request # Preprocess text (username and link placeholders) def preprocess(text): new_text = [] for t in text.split(" "): t = '@user' if t.startswith('@') and len(t) > 1 else t t = 'http' if t.startswith('http') else t new_text.append(t) return " ".join(new_text) # Tasks: # emoji, emotion, hate, irony, offensive, sentiment # stance/abortion, stance/atheism, stance/climate, stance/feminist, stance/hillary task='offensive' MODEL = f"cardiffnlp/twitter-roberta-base-{task}" tokenizer = AutoTokenizer.from_pretrained(MODEL) # download label mapping labels=[] mapping_link = f"https://raw.githubusercontent.com/cardiffnlp/tweeteval/main/datasets/{task}/mapping.txt" with urllib.request.urlopen(mapping_link) as f: html = f.read().decode('utf-8').split("\n") csvreader = csv.reader(html, delimiter='\t') labels = [row[1] for row in csvreader if len(row) > 1] # PT model = AutoModelForSequenceClassification.from_pretrained(MODEL) model.save_pretrained(MODEL) text = "Good night 😊" text = preprocess(text) encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) scores = output[0][0].detach().numpy() scores = softmax(scores) # # TF # model = TFAutoModelForSequenceClassification.from_pretrained(MODEL) # model.save_pretrained(MODEL) # text = "Good night 😊" # encoded_input = tokenizer(text, return_tensors='tf') # output = model(encoded_input) # scores = output[0][0].numpy() # scores = softmax(scores) ranking = np.argsort(scores) ranking = ranking[::-1] for i in range(scores.shape[0]): l = labels[ranking[i]] s = scores[ranking[i]] print(f"{i+1}) {l} {np.round(float(s), 4)}") ``` Output: ``` 1) not-offensive 0.9073 2) offensive 0.0927 ```
clp/vit-base-patch16-224-finetuned
clp
2022-11-28T11:29:17Z
186
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-11-28T11:19:02Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vit-base-patch16-224-finetuned results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.3333333333333333 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch16-224-finetuned This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.7617 - Accuracy: 0.3333 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 1 | 0.6063 | 0.6667 | | No log | 2.0 | 2 | 0.6958 | 0.3333 | | No log | 3.0 | 3 | 0.7617 | 0.3333 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
projecte-aina/roberta-base-ca-v2-cased-tc
projecte-aina
2022-11-28T11:02:09Z
110
1
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "catalan", "text classification", "tecla", "CaText", "Catalan Textual Corpus", "ca", "dataset:projecte-aina/tecla", "arxiv:1907.11692", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-30T07:55:23Z
--- language: - ca tags: - "catalan" - "text classification" - "tecla" - "CaText" - "Catalan Textual Corpus" datasets: - "projecte-aina/tecla" metrics: - accuracy model-index: - name: roberta-base-ca-v2-cased-tc results: - task: type: text-classification dataset: name: TeCla type: projecte-aina/tecla metrics: - name: Accuracy type: accuracy value: 0.8034 widget: - text: "Els Pets presenten el seu nou treball al Palau Sant Jordi." - text: "Els barcelonins incrementen un 23% l’ús del cotxe des de l’inici de la pandΓ¨mia." - text: "Retards a quatre lΓ­nies de Rodalies per una avaria entre Sants i plaΓ§a de Catalunya." - text: "Majors de 60 anys i sanitaris comenΓ§aran a rebre la tercera dosi de la vacuna covid els propers dies." - text: "Els cinemes Verdi estrenen Verdi Classics, un nou canal de televisiΓ³." --- # Catalan BERTa-v2 (roberta-base-ca-v2) finetuned for TeCla-based Text Classification. ## Table of Contents <details> <summary>Click to expand</summary> - [Model description](#model-description) - [Intended uses and limitations](#intended-use) - [How to use](#how-to-use) - [Limitations and bias](#limitations-and-bias) - [Training](#training) - [Training data](#training-data) - [Training procedure](#training-procedure) - [Tokenization](#tokenization) - [Hyperparameters](#hyperparameters) - [Evaluation](#evaluation) - [Variable and metrics](#variable-and-metrics) - [Evaluation results](#evaluation-results) - [Additional information](#additional-information) - [Author](#author) - [Contact information](#contact-information) - [Copyright](#copyright) - [Licensing information](#licensing-information) - [Funding](#funding) - [Citing information](#citing-information) - [Disclaimer](#disclaimer) </details> ## Model description The **roberta-base-ca-v2-cased-tc** is a Text Classification (TC) model for the Catalan language fine-tuned from the [roberta-base-ca-v2](https://huggingface.co/projecte-aina/roberta-base-ca-v2) model, a [RoBERTa](https://arxiv.org/abs/1907.11692) base model pre-trained on a medium-size corpus collected from publicly available corpora and crawlers (check the roberta-base-ca-v2 model card for more details). The previous version of this model, which was trained on the old TeCla dataset (v1), can still be accessed through the "v1" tag. ## Intended uses and limitations **roberta-base-ca-v2-cased-tc** model can be used to classify texts. The model is limited by its training dataset and may not generalize well for all use cases. ## How to use Here is how to use this model: ```python from transformers import pipeline from pprint import pprint nlp = pipeline("text-classification", model="projecte-aina/roberta-base-ca-v2-cased-tc") example = "Retards a quatre lΓ­nies de Rodalies per una avaria entre Sants i plaΓ§a de Catalunya." tc_results = nlp(example) pprint(tc_results) ``` ## Limitations and bias At the time of submission, no measures have been taken to estimate the bias embedded in the model. However, we are well aware that our models may be biased since the corpora have been collected using crawling techniques on multiple web sources. We intend to conduct research in these areas in the future, and if completed, this model card will be updated. ## Training ### Training data We used the TC dataset in Catalan called [TeCla](https://huggingface.co/datasets/projecte-aina/tecla) for training and evaluation. Although TeCla includes a coarse-grained ('label1') and a fine-grained categorization ('label2'), only the last one, with 53 classes, was used for the training. ### Training procedure The model was trained with a batch size of 16 and a learning rate of 5e-5 for 5 epochs. We then selected the best checkpoint using the downstream task metric in the corresponding development set and then evaluated it on the test set. ## Evaluation ### Variable and metrics This model was finetuned maximizing F1 (weighted). ## Evaluation results We evaluated the _roberta-base-ca-v2-cased-tc_ on the TeCla test set against standard multilingual and monolingual baselines. The results for 'label1' categories were obtained through a mapping from the fine-grained category ('label2') to the corresponding coarse-grained one ('label1'). | Model | TeCla - label1 (Accuracy) | TeCla - label2 (Accuracy) | | ------------|:-------------|:-------------| | roberta-base-ca-v2 | 96.31 | 80.34 | | roberta-large-ca-v2 | **96.51** | **80.68** | | mBERT | 95.72 | 78.47 | | XLM-RoBERTa | 95.66 | 78.01 | For more details, check the fine-tuning and evaluation scripts in the official [GitHub repository](https://github.com/projecte-aina/club). ## Additional information ### Author Text Mining Unit (TeMU) at the Barcelona Supercomputing Center ([email protected]) ### Contact information For further information, send an email to [email protected] ### Copyright Copyright (c) 2022 Text Mining Unit at Barcelona Supercomputing Center ### Licensing information [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0) ### Funding This work was funded by the [Departament de la VicepresidΓ¨ncia i de PolΓ­tiques Digitals i Territori de la Generalitat de Catalunya](https://politiquesdigitals.gencat.cat/ca/inici/index.html#googtrans(ca|en) within the framework of [Projecte AINA](https://politiquesdigitals.gencat.cat/ca/economia/catalonia-ai/aina). ## Citation Information If you use any of these resources (datasets or models) in your work, please cite our latest paper: ```bibtex @inproceedings{armengol-estape-etal-2021-multilingual, title = "Are Multilingual Models the Best Choice for Moderately Under-resourced Languages? {A} Comprehensive Assessment for {C}atalan", author = "Armengol-Estap{\'e}, Jordi and Carrino, Casimiro Pio and Rodriguez-Penagos, Carlos and de Gibert Bonet, Ona and Armentano-Oller, Carme and Gonzalez-Agirre, Aitor and Melero, Maite and Villegas, Marta", booktitle = "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021", month = aug, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.findings-acl.437", doi = "10.18653/v1/2021.findings-acl.437", pages = "4933--4946", } ``` ### Disclaimer <details> <summary>Click to expand</summary> The models published in this repository are intended for a generalist purpose and are available to third parties. These models may have bias and/or any other undesirable distortions. When third parties, deploy or provide systems and/or services to other parties using any of these models (or using systems based on these models) or become users of the models, they should note that it is their responsibility to mitigate the risks arising from their use and, in any event, to comply with applicable regulations, including regulations regarding the use of Artificial Intelligence. In no event shall the owner and creator of the models (BSC – Barcelona Supercomputing Center) be liable for any results arising from the use made by third parties of these models.
GDJ1978/voxelartXmidjgraffiti
GDJ1978
2022-11-28T10:01:38Z
0
0
null
[ "region:us" ]
null
2022-11-28T09:55:36Z
VoxelArt_v1_0.6-MDJRNY-GRFFT_0.4-Weighted_sum-merged.ckpt trigger: VoxelArt in the style of mdjrny-grfft
mn367/radio-mlm
mn367
2022-11-28T09:52:57Z
61
0
transformers
[ "transformers", "tf", "distilbert", "fill-mask", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-11-28T09:42:20Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: mn367/radio-mlm results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # mn367/radio-mlm This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 4.6630 - Validation Loss: 4.6014 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 39000, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 4.6630 | 4.6014 | 0 | ### Framework versions - Transformers 4.24.0 - TensorFlow 2.9.2 - Datasets 2.7.1 - Tokenizers 0.13.2
vumichien/trillsson3-ft-keyword-spotting-15
vumichien
2022-11-28T09:46:32Z
47
0
transformers
[ "transformers", "pytorch", "tensorboard", "trillsson_efficient", "text-classification", "audio-classification", "generated_from_trainer", "dataset:superb", "autotrain_compatible", "endpoints_compatible", "region:us" ]
audio-classification
2022-11-28T08:17:45Z
--- tags: - audio-classification - generated_from_trainer datasets: - superb metrics: - accuracy model-index: - name: trillsson3-ft-keyword-spotting-15 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # trillsson3-ft-keyword-spotting-15 This model is a fine-tuned version of [vumichien/nonsemantic-speech-trillsson3](https://huggingface.co/vumichien/nonsemantic-speech-trillsson3) on the superb dataset. It achieves the following results on the evaluation set: - Loss: 0.3563 - Accuracy: 0.9041 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 64 - seed: 0 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1824 | 1.0 | 798 | 0.6478 | 0.7489 | | 0.7448 | 2.0 | 1596 | 0.4274 | 0.8728 | | 0.7089 | 3.0 | 2394 | 0.3723 | 0.8950 | | 0.6781 | 4.0 | 3192 | 0.3563 | 0.9041 | | 0.6386 | 5.0 | 3990 | 0.3441 | 0.8986 | | 0.6342 | 6.0 | 4788 | 0.3380 | 0.8994 | | 0.6275 | 7.0 | 5586 | 0.3376 | 0.8982 | | 0.6349 | 8.0 | 6384 | 0.3333 | 0.9014 | | 0.6261 | 9.0 | 7182 | 0.3295 | 0.9025 | | 0.6188 | 10.0 | 7980 | 0.3322 | 0.9025 | ### Framework versions - Transformers 4.23.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
rohitagrawal-20/bert-finetuned-ner
rohitagrawal-20
2022-11-28T09:39:47Z
125
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-28T09:12:26Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: train args: conll2003 metrics: - name: Precision type: precision value: 0.935969556585043 - name: Recall type: recall value: 0.9520363513968361 - name: F1 type: f1 value: 0.9439345903554145 - name: Accuracy type: accuracy value: 0.9868870312591982 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0599 - Precision: 0.9360 - Recall: 0.9520 - F1: 0.9439 - Accuracy: 0.9869 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0879 | 1.0 | 1756 | 0.0652 | 0.9236 | 0.9379 | 0.9307 | 0.9832 | | 0.0343 | 2.0 | 3512 | 0.0614 | 0.9337 | 0.9510 | 0.9423 | 0.9864 | | 0.019 | 3.0 | 5268 | 0.0599 | 0.9360 | 0.9520 | 0.9439 | 0.9869 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
hannoh/03_model_sales
hannoh
2022-11-28T08:58:05Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-28T08:46:54Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: 03_model_sales results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 03_model_sales This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4693 - Accuracy: 0.7818 - F1: 0.7980 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
alexziweiwang/retrain_epoch2to5
alexziweiwang
2022-11-28T08:51:14Z
31
0
transformers
[ "transformers", "pytorch", "wav2vec2", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2022-11-28T08:35:03Z
--- tags: - generated_from_trainer model-index: - name: retrain_epoch2to5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # retrain_epoch2to5 This model is a fine-tuned version of [alexziweiwang/retrain_first1epoch](https://huggingface.co/alexziweiwang/retrain_first1epoch) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.3244 - Acc: 0.24 - Wer: 1.0 - Correct: 48 - Total: 200 - Strlen: 200 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 9e-06 - train_batch_size: 2 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Acc | Wer | Correct | Total | Strlen | |:-------------:|:-----:|:----:|:---------------:|:----:|:---:|:-------:|:-----:|:------:| | No log | 0.02 | 5 | 7.8494 | 0.24 | 1.0 | 48 | 200 | 200 | | 7.6032 | 0.04 | 10 | 7.4834 | 0.24 | 1.0 | 48 | 200 | 200 | | 7.6032 | 0.06 | 15 | 7.1350 | 0.24 | 1.0 | 48 | 200 | 200 | | 7.3336 | 0.08 | 20 | 6.8284 | 0.24 | 1.0 | 48 | 200 | 200 | | 7.3336 | 0.11 | 25 | 6.5577 | 0.24 | 1.0 | 48 | 200 | 200 | | 6.2911 | 0.13 | 30 | 6.3124 | 0.24 | 1.0 | 48 | 200 | 200 | | 6.2911 | 0.15 | 35 | 6.0850 | 0.24 | 1.0 | 48 | 200 | 200 | | 5.9181 | 0.17 | 40 | 5.8888 | 0.24 | 1.0 | 48 | 200 | 200 | | 5.9181 | 0.19 | 45 | 5.6815 | 0.24 | 1.0 | 48 | 200 | 200 | | 5.7954 | 0.21 | 50 | 5.4834 | 0.24 | 1.0 | 48 | 200 | 200 | | 5.7954 | 0.23 | 55 | 5.3099 | 0.24 | 1.0 | 48 | 200 | 200 | | 5.4801 | 0.25 | 60 | 5.1678 | 0.24 | 1.0 | 48 | 200 | 200 | | 5.4801 | 0.27 | 65 | 5.0223 | 0.24 | 1.0 | 48 | 200 | 200 | | 5.3377 | 0.3 | 70 | 4.8893 | 0.24 | 1.0 | 48 | 200 | 200 | | 5.3377 | 0.32 | 75 | 4.7743 | 0.24 | 1.0 | 48 | 200 | 200 | | 5.2511 | 0.34 | 80 | 4.6494 | 0.24 | 1.0 | 48 | 200 | 200 | | 5.2511 | 0.36 | 85 | 4.5307 | 0.24 | 1.0 | 48 | 200 | 200 | | 4.727 | 0.38 | 90 | 4.4237 | 0.24 | 1.0 | 48 | 200 | 200 | | 4.727 | 0.4 | 95 | 4.3263 | 0.24 | 1.0 | 48 | 200 | 200 | | 4.7653 | 0.42 | 100 | 4.2439 | 0.24 | 1.0 | 48 | 200 | 200 | | 4.7653 | 0.44 | 105 | 4.1589 | 0.24 | 1.0 | 48 | 200 | 200 | | 4.4971 | 0.46 | 110 | 4.0847 | 0.24 | 1.0 | 48 | 200 | 200 | | 4.4971 | 0.48 | 115 | 4.0118 | 0.24 | 1.0 | 48 | 200 | 200 | | 4.0077 | 0.51 | 120 | 3.9382 | 0.24 | 1.0 | 48 | 200 | 200 | | 4.0077 | 0.53 | 125 | 3.8663 | 0.24 | 1.0 | 48 | 200 | 200 | | 4.1693 | 0.55 | 130 | 3.8106 | 0.24 | 1.0 | 48 | 200 | 200 | | 4.1693 | 0.57 | 135 | 3.7580 | 0.24 | 1.0 | 48 | 200 | 200 | | 4.0854 | 0.59 | 140 | 3.7123 | 0.24 | 1.0 | 48 | 200 | 200 | | 4.0854 | 0.61 | 145 | 3.6720 | 0.24 | 1.0 | 48 | 200 | 200 | | 4.1988 | 0.63 | 150 | 3.6260 | 0.24 | 1.0 | 48 | 200 | 200 | | 4.1988 | 0.65 | 155 | 3.5853 | 0.24 | 1.0 | 48 | 200 | 200 | | 3.9975 | 0.67 | 160 | 3.5463 | 0.24 | 1.0 | 48 | 200 | 200 | | 3.9975 | 0.7 | 165 | 3.5122 | 0.24 | 1.0 | 48 | 200 | 200 | | 3.6042 | 0.72 | 170 | 3.4862 | 0.24 | 1.0 | 48 | 200 | 200 | | 3.6042 | 0.74 | 175 | 3.4631 | 0.24 | 1.0 | 48 | 200 | 200 | | 3.7347 | 0.76 | 180 | 3.4406 | 0.24 | 1.0 | 48 | 200 | 200 | | 3.7347 | 0.78 | 185 | 3.4202 | 0.24 | 1.0 | 48 | 200 | 200 | | 3.8336 | 0.8 | 190 | 3.4014 | 0.24 | 1.0 | 48 | 200 | 200 | | 3.8336 | 0.82 | 195 | 3.3855 | 0.24 | 1.0 | 48 | 200 | 200 | | 3.7454 | 0.84 | 200 | 3.3703 | 0.24 | 1.0 | 48 | 200 | 200 | | 3.7454 | 0.86 | 205 | 3.3576 | 0.24 | 1.0 | 48 | 200 | 200 | | 3.525 | 0.89 | 210 | 3.3471 | 0.24 | 1.0 | 48 | 200 | 200 | | 3.525 | 0.91 | 215 | 3.3392 | 0.24 | 1.0 | 48 | 200 | 200 | | 3.8175 | 0.93 | 220 | 3.3331 | 0.24 | 1.0 | 48 | 200 | 200 | | 3.8175 | 0.95 | 225 | 3.3289 | 0.24 | 1.0 | 48 | 200 | 200 | | 3.307 | 0.97 | 230 | 3.3259 | 0.24 | 1.0 | 48 | 200 | 200 | | 3.307 | 0.99 | 235 | 3.3244 | 0.24 | 1.0 | 48 | 200 | 200 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 1.18.3 - Tokenizers 0.13.2
huggingtweets/bobkerns
huggingtweets
2022-11-28T08:14:20Z
115
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-28T08:14:12Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/3653376550/f40f9602f2e8e185eb7ddce332157ffe_400x400.jpeg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Bob (Moderna #5) Kerns</div> <div style="text-align: center; font-size: 14px;">@bobkerns</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Bob (Moderna #5) Kerns. | Data | Bob (Moderna #5) Kerns | | --- | --- | | Tweets downloaded | 3234 | | Retweets | 315 | | Short tweets | 42 | | Tweets kept | 2877 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/390ksfue/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bobkerns's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3me25qi0) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3me25qi0/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/bobkerns') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
pere/whisper-NST2-unfreeze-constanti-low-lr
pere
2022-11-28T07:41:42Z
9
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-23T10:34:53Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-NST2-unfreeze-constanti-low-lr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-NST2-unfreeze-constanti-low-lr This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3562 - Wer: 8.5519 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 96 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 20000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:-------:| | 0.1901 | 0.05 | 1000 | 0.3069 | 14.8233 | | 0.1323 | 0.1 | 2000 | 0.2687 | 11.2885 | | 0.1137 | 0.15 | 3000 | 0.2620 | 10.8324 | | 0.1022 | 0.2 | 4000 | 0.2976 | 9.0080 | | 0.0937 | 0.25 | 5000 | 0.2584 | 9.5781 | | 0.0875 | 0.3 | 6000 | 0.2704 | 20.2965 | | 0.0592 | 1.05 | 7000 | 0.2751 | 9.0080 | | 0.0488 | 1.1 | 8000 | 0.2778 | 8.6659 | | 0.0475 | 1.15 | 9000 | 0.2792 | 9.4641 | | 0.0439 | 1.2 | 10000 | 0.2880 | 8.3238 | | 0.0425 | 1.25 | 11000 | 0.2954 | 8.5519 | | 0.0416 | 1.3 | 12000 | 0.2896 | 20.2965 | | 0.0289 | 2.05 | 13000 | 0.2990 | 7.9818 | | 0.0229 | 2.1 | 14000 | 0.3027 | 7.4116 | | 0.0248 | 2.15 | 15000 | 0.2968 | 8.6659 | | 0.0225 | 2.2 | 16000 | 0.3100 | 8.5519 | | 0.0222 | 2.25 | 17000 | 0.3132 | 9.3501 | | 0.0219 | 2.3 | 18000 | 0.3230 | 7.6397 | | 0.0162 | 3.04 | 19000 | 0.3380 | 9.8062 | | 0.0132 | 3.09 | 20000 | 0.3562 | 8.5519 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.6.1 - Tokenizers 0.13.1
linfuyou/bert-squad-training
linfuyou
2022-11-28T07:41:14Z
117
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "endpoints_compatible", "region:us" ]
question-answering
2022-11-15T09:15:55Z
bert-base-cased-squadv1.1-training
mtz2110/wav2vec2-large-xls-r-300m-he
mtz2110
2022-11-28T07:33:52Z
22
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:fleurs", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-27T16:52:23Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - fleurs metrics: - wer model-index: - name: wav2vec2-large-xls-r-300m-he results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: fleurs type: fleurs config: he_il split: train args: he_il metrics: - name: Wer type: wer value: 0.5953778429933969 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-he This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the fleurs dataset. It achieves the following results on the evaluation set: - Loss: inf - Wer: 0.5954 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 6 - total_train_batch_size: 12 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 8.8899 | 0.99 | 200 | inf | 1.0 | | 3.0802 | 1.98 | 400 | inf | 1.0 | | 1.4275 | 2.97 | 600 | inf | 0.8155 | | 0.8737 | 3.96 | 800 | inf | 0.7276 | | 0.6503 | 4.95 | 1000 | inf | 0.6858 | | 0.5176 | 5.94 | 1200 | inf | 0.6660 | | 0.4084 | 6.93 | 1400 | inf | 0.6682 | | 0.3469 | 7.92 | 1600 | inf | 0.6473 | | 3.2485 | 6.67 | 1800 | inf | 1.0 | | 0.6476 | 7.41 | 2000 | inf | 0.6574 | | 0.3229 | 8.15 | 2200 | inf | 0.6499 | | 0.2899 | 8.89 | 2400 | inf | 0.6376 | | 0.26 | 9.63 | 2600 | inf | 0.6405 | | 0.2038 | 10.37 | 2800 | inf | 0.6409 | | 0.2158 | 11.11 | 3000 | inf | 0.6313 | | 0.1892 | 11.85 | 3200 | inf | 0.6185 | | 0.1611 | 12.59 | 3400 | inf | 0.6271 | | 0.1584 | 13.33 | 3600 | inf | 0.6101 | | 0.1443 | 14.07 | 3800 | inf | 0.6121 | | 0.1353 | 14.81 | 4000 | inf | 0.6194 | | 0.1109 | 15.56 | 4200 | inf | 0.6321 | | 0.1116 | 16.3 | 4400 | inf | 0.6025 | | 0.1054 | 17.04 | 4600 | inf | 0.6029 | | 0.0966 | 17.78 | 4800 | inf | 0.6069 | | 0.0824 | 18.52 | 5000 | inf | 0.5998 | | 0.0812 | 19.26 | 5200 | inf | 0.5972 | | 0.0749 | 20.0 | 5400 | inf | 0.5954 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1 - Datasets 2.6.1 - Tokenizers 0.13.1
venetis/vit-base-patch16-224-in21k-finetuned-cifar10_album_vitVMMRdb_make_model_album_pred
venetis
2022-11-28T07:33:09Z
186
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-11-27T16:45:37Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: vit-base-patch16-224-in21k-finetuned-cifar10_album_vitVMMRdb_make_model_album_pred results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch16-224-in21k-finetuned-cifar10_album_vitVMMRdb_make_model_album_pred This model is a fine-tuned version of [aaraki/vit-base-patch16-224-in21k-finetuned-cifar10](https://huggingface.co/aaraki/vit-base-patch16-224-in21k-finetuned-cifar10) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5462 - Accuracy: 0.8594 - Precision: 0.8556 - Recall: 0.8594 - F1: 0.8544 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:| | 4.6112 | 1.0 | 839 | 4.5615 | 0.1425 | 0.0837 | 0.1425 | 0.0646 | | 3.1177 | 2.0 | 1678 | 2.9595 | 0.4240 | 0.3424 | 0.4240 | 0.3283 | | 2.0793 | 3.0 | 2517 | 2.0048 | 0.5771 | 0.5081 | 0.5771 | 0.5029 | | 1.4566 | 4.0 | 3356 | 1.4554 | 0.6760 | 0.6333 | 0.6760 | 0.6280 | | 1.1307 | 5.0 | 4195 | 1.1319 | 0.7350 | 0.7027 | 0.7350 | 0.7013 | | 0.9367 | 6.0 | 5034 | 0.9328 | 0.7738 | 0.7546 | 0.7738 | 0.7503 | | 0.7783 | 7.0 | 5873 | 0.8024 | 0.7986 | 0.7893 | 0.7986 | 0.7819 | | 0.6022 | 8.0 | 6712 | 0.7187 | 0.8174 | 0.8098 | 0.8174 | 0.8055 | | 0.5234 | 9.0 | 7551 | 0.6635 | 0.8313 | 0.8220 | 0.8313 | 0.8217 | | 0.4298 | 10.0 | 8390 | 0.6182 | 0.8388 | 0.8337 | 0.8388 | 0.8302 | | 0.3618 | 11.0 | 9229 | 0.5953 | 0.8455 | 0.8394 | 0.8455 | 0.8382 | | 0.3262 | 12.0 | 10068 | 0.5735 | 0.8501 | 0.8443 | 0.8501 | 0.8436 | | 0.3116 | 13.0 | 10907 | 0.5612 | 0.8527 | 0.8488 | 0.8527 | 0.8471 | | 0.2416 | 14.0 | 11746 | 0.5524 | 0.8558 | 0.8500 | 0.8558 | 0.8496 | | 0.2306 | 15.0 | 12585 | 0.5489 | 0.8572 | 0.8525 | 0.8572 | 0.8519 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2