modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-07-12 06:28:00
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
517 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-07-12 06:24:43
card
stringlengths
11
1.01M
masakhane/mt5_pcm_en_news
masakhane
2022-09-24T15:06:19Z
104
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "pcm", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T08:53:01Z
--- language: - pcm - en license: afl-3.0 ---
masakhane/mbart50_pcm_en_news
masakhane
2022-09-24T15:06:18Z
103
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "pcm", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T08:53:57Z
--- language: - pcm - en license: afl-3.0 ---
masakhane/m2m100_418M_en_pcm_rel_news
masakhane
2022-09-24T15:06:16Z
104
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "en", "pcm", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T08:56:54Z
--- language: - en - pcm license: afl-3.0 ---
masakhane/m2m100_418M_en_pcm_rel_news_ft
masakhane
2022-09-24T15:06:15Z
106
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "en", "pcm", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T08:57:27Z
--- language: - en - pcm license: afl-3.0 ---
masakhane/m2m100_418M_pcm_en_rel_ft
masakhane
2022-09-24T15:06:14Z
108
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "pcm", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T08:58:24Z
--- language: - pcm - en license: afl-3.0 ---
masakhane/m2m100_418M_pcm_en_rel
masakhane
2022-09-24T15:06:13Z
102
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "pcm", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T08:58:50Z
--- language: - pcm - en license: afl-3.0 ---
masakhane/afrimt5_yor_en_news
masakhane
2022-09-24T15:06:11Z
107
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "yor", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T12:11:28Z
--- language: - yor - en license: afl-3.0 ---
masakhane/afrimbart_yor_en_news
masakhane
2022-09-24T15:06:11Z
106
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "yor", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T12:11:53Z
--- language: - yor - en license: afl-3.0 ---
masakhane/afribyt5_yor_en_news
masakhane
2022-09-24T15:06:10Z
104
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "yor", "en", "license:afl-3.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T12:13:17Z
--- language: - yor - en license: afl-3.0 ---
masakhane/afrimbart_en_yor_news
masakhane
2022-09-24T15:06:10Z
111
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "en", "yor", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T12:12:10Z
--- language: - en - yor license: afl-3.0 ---
masakhane/byt5_en_yor_news
masakhane
2022-09-24T15:06:09Z
108
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "en", "yor", "license:afl-3.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T12:13:58Z
--- language: - en - yor license: afl-3.0 ---
masakhane/afribyt5_en_yor_news
masakhane
2022-09-24T15:06:09Z
110
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "en", "yor", "license:afl-3.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T12:13:36Z
--- language: - en - yor license: afl-3.0 ---
masakhane/mbart50_en_yor_news
masakhane
2022-09-24T15:06:07Z
112
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "en", "yor", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T12:15:22Z
--- language: - en - yor license: afl-3.0 ---
masakhane/mt5_en_yor_news
masakhane
2022-09-24T15:06:07Z
108
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "en", "yor", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T12:14:50Z
--- language: - en - yor license: afl-3.0 ---
masakhane/mbart50_yor_en_news
masakhane
2022-09-24T15:06:06Z
95
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "yor", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T12:15:39Z
--- language: - yor - en license: afl-3.0 ---
masakhane/m2m100_418M_en_yor_news
masakhane
2022-09-24T15:06:05Z
108
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "en", "yor", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T12:19:30Z
--- language: - en - yor license: afl-3.0 ---
masakhane/m2m100_418M_yor_en_news
masakhane
2022-09-24T15:06:05Z
105
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "yor", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T12:19:46Z
--- language: - yor - en license: afl-3.0 ---
masakhane/m2m100_418M_en_yor_rel_news
masakhane
2022-09-24T15:06:04Z
105
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "en", "yor", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T12:20:26Z
--- language: - en - yor license: afl-3.0 ---
masakhane/m2m100_418M_yor_en_rel
masakhane
2022-09-24T15:06:02Z
111
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "yor", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T12:22:03Z
--- language: - yor - en license: afl-3.0 ---
masakhane/afrimt5_en_swa_news
masakhane
2022-09-24T15:06:01Z
104
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "en", "swa", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T09:01:16Z
--- language: - en - swa license: afl-3.0 ---
masakhane/afrimt5_swa_en_news
masakhane
2022-09-24T15:06:00Z
102
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "swa", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T09:01:34Z
--- language: - swa - en license: afl-3.0 ---
masakhane/byt5_en_swa_news
masakhane
2022-09-24T15:05:57Z
104
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "en", "swa", "license:afl-3.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T10:10:38Z
--- language: - en - swa license: afl-3.0 ---
masakhane/mbart50_en_swa_news
masakhane
2022-09-24T15:05:56Z
119
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "en", "swa", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T10:11:58Z
--- language: - en - swa license: afl-3.0 ---
masakhane/mbart50_swa_en_news
masakhane
2022-09-24T15:05:55Z
106
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "swa", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T10:12:16Z
--- language: - swa - en license: afl-3.0 ---
masakhane/m2m100_418M_en_swa_rel_news
masakhane
2022-09-24T15:05:54Z
104
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "en", "swa", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T10:13:30Z
--- language: - en - swa license: afl-3.0 ---
masakhane/m2m100_418M_swa_en_rel_news
masakhane
2022-09-24T15:05:54Z
105
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "swa", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T10:13:13Z
--- language: - swa - en license: afl-3.0 ---
masakhane/m2m100_418M_en_swa_rel_news_ft
masakhane
2022-09-24T15:05:53Z
109
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "en", "swa", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T10:13:52Z
--- language: - en - swa license: afl-3.0 ---
masakhane/m2m100_418M_swa_en_news
masakhane
2022-09-24T15:05:53Z
103
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "swa", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T10:12:54Z
--- language: - swa - en license: afl-3.0 ---
masakhane/m2m100_418M_swa_en_rel_ft
masakhane
2022-09-24T15:05:52Z
105
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "swa", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T10:14:46Z
--- language: - swa - en license: afl-3.0 ---
masakhane/m2m100_418M_swa_en_rel_news_ft
masakhane
2022-09-24T15:05:51Z
108
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "swa", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T10:14:10Z
--- language: - swa - en license: afl-3.0 ---
masakhane/m2m100_418M_en_swa_rel
masakhane
2022-09-24T15:05:50Z
110
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "en", "swa", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T10:15:23Z
--- language: - en - swa license: afl-3.0 ---
masakhane/m2m100_418M_swa_en_rel
masakhane
2022-09-24T15:05:50Z
104
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "swa", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T10:15:07Z
--- language: - swa - en license: afl-3.0 ---
masakhane/afrimt5_en_tsn_news
masakhane
2022-09-24T15:05:49Z
104
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "en", "tsn", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T13:48:47Z
--- language: - en - tsn license: afl-3.0 ---
masakhane/byt5_tsn_en_news
masakhane
2022-09-24T15:05:47Z
108
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "tsn", "en", "license:afl-3.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T13:53:15Z
--- language: - tsn - en license: afl-3.0 ---
masakhane/mbart50_en_tsn_news
masakhane
2022-09-24T15:05:45Z
105
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "en", "tsn", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T14:02:43Z
--- language: - en - tsn license: afl-3.0 ---
masakhane/mt5_en_tsn_news
masakhane
2022-09-24T15:05:45Z
98
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "en", "tsn", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T13:59:24Z
--- language: - en - tsn license: afl-3.0 ---
masakhane/mt5_tsn_en_news
masakhane
2022-09-24T15:05:44Z
108
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "tsn", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T13:59:09Z
--- language: - tsn - en license: afl-3.0 ---
masakhane/m2m100_418M_en_tsn_rel_news
masakhane
2022-09-24T15:05:42Z
107
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "en", "tsn", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T14:23:45Z
--- language: - en - tsn license: afl-3.0 ---
masakhane/m2m100_418M_en_tsn_rel_news_ft
masakhane
2022-09-24T15:05:41Z
104
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "en", "tsn", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T14:33:05Z
--- language: - en - tsn license: afl-3.0 ---
masakhane/m2m100_418M_tsn_en_rel
masakhane
2022-09-24T15:05:39Z
103
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "tsn", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T14:38:31Z
--- language: - tsn - en license: afl-3.0 ---
masakhane/afrimt5_en_twi_news
masakhane
2022-09-24T15:05:38Z
106
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "en", "twi", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-11T08:50:40Z
--- language: - en - twi license: afl-3.0 ---
masakhane/afrimt5_twi_en_news
masakhane
2022-09-24T15:05:37Z
113
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "twi", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-11T08:50:58Z
--- language: - twi - en license: afl-3.0 ---
masakhane/afrimbart_en_twi_news
masakhane
2022-09-24T15:05:37Z
113
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "en", "twi", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-11T08:53:52Z
--- language: - en - twi license: afl-3.0 ---
masakhane/afrimbart_twi_en_news
masakhane
2022-09-24T15:05:36Z
118
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "twi", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-11T08:53:34Z
--- language: - twi - en license: afl-3.0 ---
masakhane/afribyt5_twi_en_news
masakhane
2022-09-24T15:05:35Z
103
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "twi", "en", "license:afl-3.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-11T08:56:34Z
--- language: - twi - en license: afl-3.0 ---
masakhane/byt5_en_twi_news
masakhane
2022-09-24T15:05:35Z
109
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "en", "twi", "license:afl-3.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-11T09:02:29Z
--- language: - en - twi license: afl-3.0 ---
masakhane/mbart50_en_twi_news
masakhane
2022-09-24T15:05:34Z
103
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "en", "twi", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-11T09:03:38Z
--- language: - en - twi license: afl-3.0 ---
masakhane/mt5_en_twi_news
masakhane
2022-09-24T15:05:32Z
103
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "en", "twi", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-11T09:06:00Z
--- language: - en - twi license: afl-3.0 ---
masakhane/m2m100_418M_en_twi_rel_news
masakhane
2022-09-24T15:05:30Z
103
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "en", "twi", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-11T09:10:15Z
--- language: - en - twi license: afl-3.0 ---
masakhane/m2m100_418M_twi_en_rel_news
masakhane
2022-09-24T15:05:30Z
106
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "twi", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-11T09:09:58Z
--- language: - twi - en license: afl-3.0 ---
masakhane/m2m100_418M_en_twi_rel_news_ft
masakhane
2022-09-24T15:05:29Z
103
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "en", "twi", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-11T09:12:51Z
--- language: - en - twi license: afl-3.0 ---
masakhane/m2m100_418M_en_twi_rel_ft
masakhane
2022-09-24T15:05:27Z
103
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "en", "twi", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-11T09:14:47Z
--- language: - en - twi license: afl-3.0 ---
masakhane/m2m100_418M_twi_en_rel
masakhane
2022-09-24T15:05:26Z
107
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "twi", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-11T09:17:38Z
--- language: - twi - en license: afl-3.0 ---
masakhane/afrimt5_en_zul_news
masakhane
2022-09-24T15:05:24Z
84
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "en", "zul", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-11T08:52:03Z
--- language: - en - zul license: afl-3.0 ---
masakhane/afrimt5_zul_en_news
masakhane
2022-09-24T15:05:24Z
99
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "zul", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-11T08:51:37Z
--- language: - zul - en license: afl-3.0 ---
masakhane/afribyt5_zul_en_news
masakhane
2022-09-24T15:05:21Z
106
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "zul", "en", "license:afl-3.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-11T08:57:29Z
--- language: - zul - en license: afl-3.0 ---
masakhane/byt5_en_zul_news
masakhane
2022-09-24T15:05:20Z
105
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "en", "zul", "license:afl-3.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-11T09:02:52Z
--- language: - en - zul license: afl-3.0 ---
masakhane/mbart50_zul_en_news
masakhane
2022-09-24T15:05:19Z
105
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "zul", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-11T09:04:09Z
--- language: - zul - en license: afl-3.0 ---
masakhane/byt5_zul_en_news
masakhane
2022-09-24T15:05:19Z
107
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "zul", "en", "license:afl-3.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-11T09:03:09Z
--- language: - zul - en license: afl-3.0 ---
masakhane/mt5_zul_en_news
masakhane
2022-09-24T15:05:18Z
106
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "zul", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-11T09:06:24Z
--- language: - zul - en license: afl-3.0 ---
masakhane/mt5_en_zul_news
masakhane
2022-09-24T15:05:17Z
108
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "en", "zul", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-11T09:06:39Z
--- language: - en - zul license: afl-3.0 ---
masakhane/m2m100_418M_zul_en_news
masakhane
2022-09-24T15:05:16Z
104
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "zul", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-11T09:07:50Z
--- language: - zul - en license: afl-3.0 ---
masakhane/m2m100_418M_en_zul_rel_news
masakhane
2022-09-24T15:05:16Z
105
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "en", "zul", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-11T09:09:23Z
--- language: - en - zul license: afl-3.0 ---
masakhane/m2m100_418M_zul_en_rel
masakhane
2022-09-24T15:05:12Z
105
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "zul", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-11T09:18:45Z
--- language: - zul - en license: afl-3.0 ---
masakhane/m2m100_418M-FR-NEWS
masakhane
2022-09-24T15:05:11Z
103
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "fr", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-02T22:22:31Z
--- language: fr license: afl-3.0 --- ### Citation Information ``` @inproceedings{adelani-etal-2022-thousand, title = "A Few Thousand Translations Go a Long Way! Leveraging Pre-trained Models for {A}frican News Translation", author = "Adelani, David and Alabi, Jesujoba and Fan, Angela and Kreutzer, Julia and Shen, Xiaoyu and Reid, Machel and Ruiter, Dana and Klakow, Dietrich and Nabende, Peter and Chang, Ernie and Gwadabe, Tajuddeen and Sackey, Freshia and Dossou, Bonaventure F. P. and Emezue, Chris and Leong, Colin and Beukman, Michael and Muhammad, Shamsuddeen and Jarso, Guyo and Yousuf, Oreen and Niyongabo Rubungo, Andre and Hacheme, Gilles and Wairagala, Eric Peter and Nasir, Muhammad Umair and Ajibade, Benjamin and Ajayi, Tunde and Gitau, Yvonne and Abbott, Jade and Ahmed, Mohamed and Ochieng, Millicent and Aremu, Anuoluwapo and Ogayo, Perez and Mukiibi, Jonathan and Ouoba Kabore, Fatoumata and Kalipe, Godson and Mbaye, Derguene and Tapo, Allahsera Auguste and Memdjokam Koagne, Victoire and Munkoh-Buabeng, Edwin and Wagner, Valencia and Abdulmumin, Idris and Awokoya, Ayodele and Buzaaba, Happy and Sibanda, Blessing and Bukula, Andiswa and Manthalu, Sam", booktitle = "Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies", month = jul, year = "2022", address = "Seattle, United States", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.naacl-main.223", doi = "10.18653/v1/2022.naacl-main.223", pages = "3053--3070", abstract = "Recent advances in the pre-training for language models leverage large-scale datasets to create multilingual models. However, low-resource languages are mostly left out in these datasets. This is primarily because many widely spoken languages that are not well represented on the web and therefore excluded from the large-scale crawls for datasets. Furthermore, downstream users of these models are restricted to the selection of languages originally chosen for pre-training. This work investigates how to optimally leverage existing pre-trained models to create low-resource translation systems for 16 African languages. We focus on two questions: 1) How can pre-trained models be used for languages not included in the initial pretraining? and 2) How can the resulting translation models effectively transfer to new domains? To answer these questions, we create a novel African news corpus covering 16 languages, of which eight languages are not part of any existing evaluation dataset. We demonstrate that the most effective strategy for transferring both additional languages and additional domains is to leverage small quantities of high-quality translation data to fine-tune large pre-trained models.", } ```
masakhane/m2m100_418M-EN-NEWS
masakhane
2022-09-24T15:05:11Z
109
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "en", "dataset:masakhane/mafand", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-02T22:21:22Z
--- language: en license: afl-3.0 datasets: - masakhane/mafand --- ### Citation Information ``` @inproceedings{adelani-etal-2022-thousand, title = "A Few Thousand Translations Go a Long Way! Leveraging Pre-trained Models for {A}frican News Translation", author = "Adelani, David and Alabi, Jesujoba and Fan, Angela and Kreutzer, Julia and Shen, Xiaoyu and Reid, Machel and Ruiter, Dana and Klakow, Dietrich and Nabende, Peter and Chang, Ernie and Gwadabe, Tajuddeen and Sackey, Freshia and Dossou, Bonaventure F. P. and Emezue, Chris and Leong, Colin and Beukman, Michael and Muhammad, Shamsuddeen and Jarso, Guyo and Yousuf, Oreen and Niyongabo Rubungo, Andre and Hacheme, Gilles and Wairagala, Eric Peter and Nasir, Muhammad Umair and Ajibade, Benjamin and Ajayi, Tunde and Gitau, Yvonne and Abbott, Jade and Ahmed, Mohamed and Ochieng, Millicent and Aremu, Anuoluwapo and Ogayo, Perez and Mukiibi, Jonathan and Ouoba Kabore, Fatoumata and Kalipe, Godson and Mbaye, Derguene and Tapo, Allahsera Auguste and Memdjokam Koagne, Victoire and Munkoh-Buabeng, Edwin and Wagner, Valencia and Abdulmumin, Idris and Awokoya, Ayodele and Buzaaba, Happy and Sibanda, Blessing and Bukula, Andiswa and Manthalu, Sam", booktitle = "Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies", month = jul, year = "2022", address = "Seattle, United States", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.naacl-main.223", doi = "10.18653/v1/2022.naacl-main.223", pages = "3053--3070", abstract = "Recent advances in the pre-training for language models leverage large-scale datasets to create multilingual models. However, low-resource languages are mostly left out in these datasets. This is primarily because many widely spoken languages that are not well represented on the web and therefore excluded from the large-scale crawls for datasets. Furthermore, downstream users of these models are restricted to the selection of languages originally chosen for pre-training. This work investigates how to optimally leverage existing pre-trained models to create low-resource translation systems for 16 African languages. We focus on two questions: 1) How can pre-trained models be used for languages not included in the initial pretraining? and 2) How can the resulting translation models effectively transfer to new domains? To answer these questions, we create a novel African news corpus covering 16 languages, of which eight languages are not part of any existing evaluation dataset. We demonstrate that the most effective strategy for transferring both additional languages and additional domains is to leverage small quantities of high-quality translation data to fine-tune large pre-trained models.", } ```
masakhane/m2m100_418M_en_amh_rel
masakhane
2022-09-24T15:05:10Z
112
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "en", "amh", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-25T22:06:14Z
--- language: - en - amh license: cc-by-nc-4.0 ---
masakhane/m2m100_418M_en_kin_rel
masakhane
2022-09-24T15:05:09Z
113
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "en", "kin", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-25T22:07:12Z
--- language: - en - kin license: cc-by-nc-4.0 ---
masakhane/m2m100_418M_nya_en_rel
masakhane
2022-09-24T15:05:08Z
117
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "nya", "en", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-25T22:08:07Z
--- language: - nya - en license: cc-by-nc-4.0 ---
masakhane/m2m100_418M_sna_en_rel
masakhane
2022-09-24T15:05:07Z
111
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "sna", "en", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-25T22:09:06Z
--- language: - sna - en license: cc-by-nc-4.0 ---
masakhane/m2m100_418M_en_xho_rel
masakhane
2022-09-24T15:05:06Z
117
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "en", "xho", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-25T22:09:29Z
--- language: - en - xho license: cc-by-nc-4.0 ---
pranavkrishna/bert_amazon
pranavkrishna
2022-09-24T14:41:05Z
86
0
transformers
[ "transformers", "tf", "distilbert", "fill-mask", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-09-24T14:40:15Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: pranavkrishna/bert_amazon results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # pranavkrishna/bert_amazon This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 8.1854 - Validation Loss: 7.6542 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -981, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 8.1854 | 7.6542 | 0 | ### Framework versions - Transformers 4.21.1 - TensorFlow 2.9.1 - Datasets 2.4.0 - Tokenizers 0.12.1
sd-concepts-library/repeat
sd-concepts-library
2022-09-24T14:17:05Z
0
2
null
[ "license:mit", "region:us" ]
null
2022-09-24T14:16:59Z
--- license: mit --- ### REPEAT on Stable Diffusion This is the `<repeat>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<repeat> 0](https://huggingface.co/sd-concepts-library/repeat/resolve/main/concept_images/3.jpeg) ![<repeat> 1](https://huggingface.co/sd-concepts-library/repeat/resolve/main/concept_images/1.jpeg) ![<repeat> 2](https://huggingface.co/sd-concepts-library/repeat/resolve/main/concept_images/0.jpeg) ![<repeat> 3](https://huggingface.co/sd-concepts-library/repeat/resolve/main/concept_images/2.jpeg)
gokuls/BERT-tiny-emotion-intent
gokuls
2022-09-24T14:11:28Z
268
2
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-24T14:01:37Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy model-index: - name: BERT-tiny-emotion-intent results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.91 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BERT-tiny-emotion-intent This model is a fine-tuned version of [google/bert_uncased_L-2_H-128_A-2](https://huggingface.co/google/bert_uncased_L-2_H-128_A-2) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.3620 - Accuracy: 0.91 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 33 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.2603 | 1.0 | 1000 | 0.7766 | 0.7815 | | 0.5919 | 2.0 | 2000 | 0.4117 | 0.884 | | 0.367 | 3.0 | 3000 | 0.3188 | 0.8995 | | 0.2848 | 4.0 | 4000 | 0.2928 | 0.8985 | | 0.2395 | 5.0 | 5000 | 0.2906 | 0.898 | | 0.2094 | 6.0 | 6000 | 0.2887 | 0.907 | | 0.1884 | 7.0 | 7000 | 0.2831 | 0.9065 | | 0.1603 | 8.0 | 8000 | 0.3044 | 0.9065 | | 0.1519 | 9.0 | 9000 | 0.3124 | 0.9095 | | 0.1291 | 10.0 | 10000 | 0.3256 | 0.9065 | | 0.1179 | 11.0 | 11000 | 0.3651 | 0.9035 | | 0.1091 | 12.0 | 12000 | 0.3620 | 0.91 | | 0.0977 | 13.0 | 13000 | 0.3992 | 0.907 | | 0.0914 | 14.0 | 14000 | 0.4285 | 0.908 | | 0.0876 | 15.0 | 15000 | 0.4268 | 0.9055 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
gokuls/distilroberta-emotion-intent
gokuls
2022-09-24T13:36:17Z
105
1
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-24T13:26:33Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy model-index: - name: distilroberta-emotion-intent results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9435 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-emotion-intent This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1496 - Accuracy: 0.9435 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 33 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4501 | 1.0 | 1000 | 0.2432 | 0.924 | | 0.1947 | 2.0 | 2000 | 0.1646 | 0.934 | | 0.1497 | 3.0 | 3000 | 0.1382 | 0.9405 | | 0.1316 | 4.0 | 4000 | 0.1496 | 0.9435 | | 0.1145 | 5.0 | 5000 | 0.1684 | 0.9385 | | 0.1 | 6.0 | 6000 | 0.2342 | 0.943 | | 0.0828 | 7.0 | 7000 | 0.2807 | 0.939 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
Sebabrata/layoutlmv3-finetuned-cord_100
Sebabrata
2022-09-24T13:29:13Z
76
0
transformers
[ "transformers", "pytorch", "tensorboard", "layoutlmv3", "token-classification", "generated_from_trainer", "dataset:cord-layoutlmv3", "license:cc-by-nc-sa-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-24T12:35:13Z
--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer datasets: - cord-layoutlmv3 metrics: - precision - recall - f1 - accuracy model-index: - name: layoutlmv3-finetuned-cord_100 results: - task: name: Token Classification type: token-classification dataset: name: cord-layoutlmv3 type: cord-layoutlmv3 config: cord split: train args: cord metrics: - name: Precision type: precision value: 0.9385640266469282 - name: Recall type: recall value: 0.9491017964071856 - name: F1 type: f1 value: 0.9438034983252697 - name: Accuracy type: accuracy value: 0.9516129032258065 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layoutlmv3-finetuned-cord_100 This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the cord-layoutlmv3 dataset. It achieves the following results on the evaluation set: - Loss: 0.2144 - Precision: 0.9386 - Recall: 0.9491 - F1: 0.9438 - Accuracy: 0.9516 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 5 - eval_batch_size: 5 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 2500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.56 | 250 | 1.0830 | 0.6854 | 0.7582 | 0.7200 | 0.7725 | | 1.4266 | 3.12 | 500 | 0.5944 | 0.8379 | 0.8630 | 0.8503 | 0.8680 | | 1.4266 | 4.69 | 750 | 0.3868 | 0.8828 | 0.9079 | 0.8952 | 0.9155 | | 0.4084 | 6.25 | 1000 | 0.3146 | 0.9133 | 0.9304 | 0.9218 | 0.9338 | | 0.4084 | 7.81 | 1250 | 0.2658 | 0.9240 | 0.9371 | 0.9305 | 0.9419 | | 0.2139 | 9.38 | 1500 | 0.2432 | 0.9299 | 0.9439 | 0.9368 | 0.9474 | | 0.2139 | 10.94 | 1750 | 0.2333 | 0.9291 | 0.9416 | 0.9353 | 0.9482 | | 0.1478 | 12.5 | 2000 | 0.2098 | 0.9358 | 0.9491 | 0.9424 | 0.9529 | | 0.1478 | 14.06 | 2250 | 0.2134 | 0.9379 | 0.9491 | 0.9435 | 0.9516 | | 0.1124 | 15.62 | 2500 | 0.2144 | 0.9386 | 0.9491 | 0.9438 | 0.9516 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
RebekkaB/rlt_2409_1450
RebekkaB
2022-09-24T13:22:34Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-24T12:52:36Z
--- tags: - generated_from_trainer metrics: - f1 model-index: - name: rlt_2409_1450 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # rlt_2409_1450 This model is a fine-tuned version of [svalabs/gbert-large-zeroshot-nli](https://huggingface.co/svalabs/gbert-large-zeroshot-nli) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0518 - F1: 0.9826 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 0.99 | 36 | 0.5165 | 0.8542 | | No log | 1.99 | 72 | 0.1459 | 0.9599 | | No log | 2.99 | 108 | 0.0733 | 0.9882 | | No log | 3.99 | 144 | 0.1385 | 0.9502 | | No log | 4.99 | 180 | 0.0948 | 0.9806 | | No log | 5.99 | 216 | 0.0699 | 0.9822 | | No log | 6.99 | 252 | 0.0582 | 0.9859 | | No log | 7.99 | 288 | 0.0340 | 0.9933 | | No log | 8.99 | 324 | 0.0475 | 0.9826 | | No log | 9.99 | 360 | 0.0518 | 0.9826 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
gokuls/bert-base-emotion-intent
gokuls
2022-09-24T13:18:17Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-24T13:05:47Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy model-index: - name: bert-base-emotion-intent results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9385 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-emotion-intent This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1952 - Accuracy: 0.9385 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 33 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4058 | 1.0 | 1000 | 0.2421 | 0.9265 | | 0.1541 | 2.0 | 2000 | 0.1952 | 0.9385 | | 0.1279 | 3.0 | 3000 | 0.1807 | 0.9345 | | 0.1069 | 4.0 | 4000 | 0.2292 | 0.9365 | | 0.081 | 5.0 | 5000 | 0.3315 | 0.936 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
SaurabhKaushik/distilbert-base-uncased-finetuned-ner
SaurabhKaushik
2022-09-24T12:38:00Z
105
0
transformers
[ "transformers", "pytorch", "distilbert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-24T11:26:55Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: train args: conll2003 metrics: - name: Precision type: precision value: 0.9250386398763524 - name: Recall type: recall value: 0.9373531714956931 - name: F1 type: f1 value: 0.9311551925320887 - name: Accuracy type: accuracy value: 0.9839388692074285 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0589 - Precision: 0.9250 - Recall: 0.9374 - F1: 0.9312 - Accuracy: 0.9839 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2343 | 1.0 | 878 | 0.0674 | 0.9177 | 0.9233 | 0.9205 | 0.9818 | | 0.0525 | 2.0 | 1756 | 0.0582 | 0.9245 | 0.9362 | 0.9304 | 0.9837 | | 0.0288 | 3.0 | 2634 | 0.0589 | 0.9250 | 0.9374 | 0.9312 | 0.9839 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1 - Datasets 2.5.1 - Tokenizers 0.12.1
sd-concepts-library/hubris-oshri
sd-concepts-library
2022-09-24T12:35:06Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-24T12:35:02Z
--- license: mit --- ### Hubris-Oshri on Stable Diffusion This is the `<Hubris>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<Hubris> 0](https://huggingface.co/sd-concepts-library/hubris-oshri/resolve/main/concept_images/3.jpeg) ![<Hubris> 1](https://huggingface.co/sd-concepts-library/hubris-oshri/resolve/main/concept_images/1.jpeg) ![<Hubris> 2](https://huggingface.co/sd-concepts-library/hubris-oshri/resolve/main/concept_images/4.jpeg) ![<Hubris> 3](https://huggingface.co/sd-concepts-library/hubris-oshri/resolve/main/concept_images/0.jpeg) ![<Hubris> 4](https://huggingface.co/sd-concepts-library/hubris-oshri/resolve/main/concept_images/2.jpeg)
RebekkaB/san_2409_1325
RebekkaB
2022-09-24T12:13:11Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-24T11:50:57Z
--- tags: - generated_from_trainer metrics: - f1 model-index: - name: san_2409_1325 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # san_2409_1325 This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0992 - F1: 0.7727 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 0.91 | 5 | 1.9727 | 0.1939 | | No log | 1.91 | 10 | 1.5642 | 0.3535 | | No log | 2.91 | 15 | 1.2698 | 0.6818 | | No log | 3.91 | 20 | 1.3642 | 0.6429 | | No log | 4.91 | 25 | 1.3411 | 0.6818 | | No log | 5.91 | 30 | 1.2627 | 0.6818 | | No log | 6.91 | 35 | 1.1269 | 0.7727 | | No log | 7.91 | 40 | 1.0719 | 0.7727 | | No log | 8.91 | 45 | 1.0567 | 0.7727 | | No log | 9.91 | 50 | 1.1256 | 0.7727 | | No log | 10.91 | 55 | 0.7085 | 0.7727 | | No log | 11.91 | 60 | 0.9290 | 0.7727 | | No log | 12.91 | 65 | 1.0355 | 0.7727 | | No log | 13.91 | 70 | 1.0866 | 0.7727 | | No log | 14.91 | 75 | 1.0992 | 0.7727 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
sd-concepts-library/dr-strange
sd-concepts-library
2022-09-24T12:11:20Z
0
28
null
[ "license:mit", "region:us" ]
null
2022-09-24T12:11:16Z
--- license: mit --- ### <dr-strange> on Stable Diffusion This is the `<dr-strange>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<dr-strange> 0](https://huggingface.co/sd-concepts-library/dr-strange/resolve/main/concept_images/3.jpeg) ![<dr-strange> 1](https://huggingface.co/sd-concepts-library/dr-strange/resolve/main/concept_images/1.jpeg) ![<dr-strange> 2](https://huggingface.co/sd-concepts-library/dr-strange/resolve/main/concept_images/0.jpeg) ![<dr-strange> 3](https://huggingface.co/sd-concepts-library/dr-strange/resolve/main/concept_images/2.jpeg)
sd-concepts-library/conway-pirate
sd-concepts-library
2022-09-24T10:44:50Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-24T10:44:44Z
--- license: mit --- ### Conway Pirate on Stable Diffusion This is the `<conway>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<conway> 0](https://huggingface.co/sd-concepts-library/conway-pirate/resolve/main/concept_images/3.jpeg) ![<conway> 1](https://huggingface.co/sd-concepts-library/conway-pirate/resolve/main/concept_images/1.jpeg) ![<conway> 2](https://huggingface.co/sd-concepts-library/conway-pirate/resolve/main/concept_images/4.jpeg) ![<conway> 3](https://huggingface.co/sd-concepts-library/conway-pirate/resolve/main/concept_images/0.jpeg) ![<conway> 4](https://huggingface.co/sd-concepts-library/conway-pirate/resolve/main/concept_images/2.jpeg)
sd-concepts-library/yesdelete
sd-concepts-library
2022-09-24T09:46:05Z
0
1
null
[ "license:mit", "region:us" ]
null
2022-09-24T09:46:01Z
--- license: mit --- ### yesdelete on Stable Diffusion This is the `<yesdelete>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<yesdelete> 0](https://huggingface.co/sd-concepts-library/yesdelete/resolve/main/concept_images/3.jpeg) ![<yesdelete> 1](https://huggingface.co/sd-concepts-library/yesdelete/resolve/main/concept_images/1.jpeg) ![<yesdelete> 2](https://huggingface.co/sd-concepts-library/yesdelete/resolve/main/concept_images/0.jpeg) ![<yesdelete> 3](https://huggingface.co/sd-concepts-library/yesdelete/resolve/main/concept_images/2.jpeg)
huggingtweets/kingboiwabi
huggingtweets
2022-09-24T09:35:11Z
113
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-09-24T09:33:46Z
--- language: en thumbnail: http://www.huggingtweets.com/kingboiwabi/1664012106310/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1381441602808385538/Sv6H8tsq_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">King Wabi The First</div> <div style="text-align: center; font-size: 14px;">@kingboiwabi</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from King Wabi The First. | Data | King Wabi The First | | --- | --- | | Tweets downloaded | 3240 | | Retweets | 79 | | Short tweets | 451 | | Tweets kept | 2710 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1lizz96v/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @kingboiwabi's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1twunduv) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1twunduv/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/kingboiwabi') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/cz_binance
huggingtweets
2022-09-24T09:16:00Z
113
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-05T21:10:34Z
--- language: en thumbnail: http://www.huggingtweets.com/cz_binance/1664010956441/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1572269909513478146/dfyw817W_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">CZ πŸ”Ά Binance</div> <div style="text-align: center; font-size: 14px;">@cz_binance</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from CZ πŸ”Ά Binance. | Data | CZ πŸ”Ά Binance | | --- | --- | | Tweets downloaded | 3246 | | Retweets | 149 | | Short tweets | 473 | | Tweets kept | 2624 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/19171g9o/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cz_binance's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1ngvvhd8) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1ngvvhd8/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cz_binance') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
sd-concepts-library/coop-himmelblau
sd-concepts-library
2022-09-24T09:06:36Z
0
6
null
[ "license:mit", "region:us" ]
null
2022-09-24T09:06:32Z
--- license: mit --- ### coop himmelblau on Stable Diffusion This is the `<coop himmelblau>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<coop himmelblau> 0](https://huggingface.co/sd-concepts-library/coop-himmelblau/resolve/main/concept_images/3.jpeg) ![<coop himmelblau> 1](https://huggingface.co/sd-concepts-library/coop-himmelblau/resolve/main/concept_images/1.jpeg) ![<coop himmelblau> 2](https://huggingface.co/sd-concepts-library/coop-himmelblau/resolve/main/concept_images/4.jpeg) ![<coop himmelblau> 3](https://huggingface.co/sd-concepts-library/coop-himmelblau/resolve/main/concept_images/5.jpeg) ![<coop himmelblau> 4](https://huggingface.co/sd-concepts-library/coop-himmelblau/resolve/main/concept_images/0.jpeg) ![<coop himmelblau> 5](https://huggingface.co/sd-concepts-library/coop-himmelblau/resolve/main/concept_images/2.jpeg)
aniketface/DialoGPT-product
aniketface
2022-09-24T09:05:12Z
121
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "convAI", "conversational", "facebook", "en", "dataset:blended_skill_talk", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-09-24T08:41:37Z
--- language: - en thumbnail: tags: - convAI - conversational - facebook license: apache-2.0 datasets: - blended_skill_talk metrics: - perplexity ---
mlyuya/ddpm-butterflies-128
mlyuya
2022-09-24T09:02:29Z
1
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:huggan/smithsonian_butterflies_subset", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-09-24T07:27:49Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [πŸ€— Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results πŸ“ˆ [TensorBoard logs](https://huggingface.co/mlyuya/ddpm-butterflies-128/tensorboard?#scalars)
huggingtweets/beranewsnetwork
huggingtweets
2022-09-24T07:04:15Z
113
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-09-24T07:01:56Z
--- language: en thumbnail: http://www.huggingtweets.com/beranewsnetwork/1664003049616/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1445950504102735872/bCnvrgeb_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Bera News Network</div> <div style="text-align: center; font-size: 14px;">@beranewsnetwork</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Bera News Network. | Data | Bera News Network | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 1 | | Short tweets | 579 | | Tweets kept | 2670 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/254oa32x/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @beranewsnetwork's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1jqeuf1y) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1jqeuf1y/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/beranewsnetwork') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/it_airmass
huggingtweets
2022-09-24T06:49:38Z
111
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-09-24T06:49:12Z
--- language: en thumbnail: http://www.huggingtweets.com/it_airmass/1664002173554/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1529248676647944193/-N1UKgKg_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Airmass</div> <div style="text-align: center; font-size: 14px;">@it_airmass</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Airmass. | Data | Airmass | | --- | --- | | Tweets downloaded | 3249 | | Retweets | 126 | | Short tweets | 370 | | Tweets kept | 2753 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2f99nys0/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @it_airmass's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/nvbqf9p2) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/nvbqf9p2/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/it_airmass') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/marketsmeowmeow
huggingtweets
2022-09-24T06:43:25Z
111
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-09-24T06:42:56Z
--- language: en thumbnail: http://www.huggingtweets.com/marketsmeowmeow/1664001800470/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1570418907575377921/1mTVqZQZ_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">RB</div> <div style="text-align: center; font-size: 14px;">@marketsmeowmeow</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from RB. | Data | RB | | --- | --- | | Tweets downloaded | 3244 | | Retweets | 14 | | Short tweets | 700 | | Tweets kept | 2530 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/a7yqyg23/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @marketsmeowmeow's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/ou0r1v87) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/ou0r1v87/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/marketsmeowmeow') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
sd-concepts-library/museum-by-coop-himmelblau
sd-concepts-library
2022-09-24T06:39:31Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-24T06:39:25Z
--- license: mit --- ### museum by coop himmelblau on Stable Diffusion This is the `<coop himmelblau museum>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<coop himmelblau museum> 0](https://huggingface.co/sd-concepts-library/museum-by-coop-himmelblau/resolve/main/concept_images/3.jpeg) ![<coop himmelblau museum> 1](https://huggingface.co/sd-concepts-library/museum-by-coop-himmelblau/resolve/main/concept_images/1.jpeg) ![<coop himmelblau museum> 2](https://huggingface.co/sd-concepts-library/museum-by-coop-himmelblau/resolve/main/concept_images/0.jpeg) ![<coop himmelblau museum> 3](https://huggingface.co/sd-concepts-library/museum-by-coop-himmelblau/resolve/main/concept_images/2.jpeg)
BumblingOrange/GuraLv400
BumblingOrange
2022-09-24T05:56:03Z
0
10
null
[ "license:bigscience-bloom-rail-1.0", "region:us" ]
null
2022-09-24T04:58:13Z
--- license: bigscience-bloom-rail-1.0 --- Uses the Waifu Diffusion model as a base, linked here: https://huggingface.co/hakurei/waifu-diffusion Custom Dreambooth model based off of the likeness of Hololive Vtuber Gawr Gura. Dataset was 450 training images, and 900 regularization images. Trained for 3000 steps. To use the model, simply insert the name 'Gawr Gura' into your prompts.
sd-concepts-library/guttestreker
sd-concepts-library
2022-09-24T04:19:49Z
0
11
null
[ "license:mit", "region:us" ]
null
2022-09-24T04:19:26Z
--- license: mit --- ### guttestreker on Stable Diffusion This is the `<guttestreker>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<guttestreker> 0](https://huggingface.co/sd-concepts-library/guttestreker/resolve/main/concept_images/9.jpeg) ![<guttestreker> 1](https://huggingface.co/sd-concepts-library/guttestreker/resolve/main/concept_images/10.jpeg) ![<guttestreker> 2](https://huggingface.co/sd-concepts-library/guttestreker/resolve/main/concept_images/3.jpeg) ![<guttestreker> 3](https://huggingface.co/sd-concepts-library/guttestreker/resolve/main/concept_images/1.jpeg) ![<guttestreker> 4](https://huggingface.co/sd-concepts-library/guttestreker/resolve/main/concept_images/4.jpeg) ![<guttestreker> 5](https://huggingface.co/sd-concepts-library/guttestreker/resolve/main/concept_images/8.jpeg) ![<guttestreker> 6](https://huggingface.co/sd-concepts-library/guttestreker/resolve/main/concept_images/11.jpeg) ![<guttestreker> 7](https://huggingface.co/sd-concepts-library/guttestreker/resolve/main/concept_images/6.jpeg) ![<guttestreker> 8](https://huggingface.co/sd-concepts-library/guttestreker/resolve/main/concept_images/5.jpeg) ![<guttestreker> 9](https://huggingface.co/sd-concepts-library/guttestreker/resolve/main/concept_images/0.jpeg) ![<guttestreker> 10](https://huggingface.co/sd-concepts-library/guttestreker/resolve/main/concept_images/2.jpeg) ![<guttestreker> 11](https://huggingface.co/sd-concepts-library/guttestreker/resolve/main/concept_images/7.jpeg) ![<guttestreker> 12](https://huggingface.co/sd-concepts-library/guttestreker/resolve/main/concept_images/12.jpeg)
sd-concepts-library/skyfalls
sd-concepts-library
2022-09-24T02:09:42Z
0
3
null
[ "license:mit", "region:us" ]
null
2022-09-19T05:48:35Z
--- license: mit --- ### SkyFalls on Stable Diffusion This is the `<SkyFalls>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<SkyFalls> 0](https://huggingface.co/sd-concepts-library/skyfalls/resolve/main/concept_images/0.jpeg) ![<SkyFalls> 1](https://huggingface.co/sd-concepts-library/skyfalls/resolve/main/concept_images/1.jpeg) ![<SkyFalls> 2](https://huggingface.co/sd-concepts-library/skyfalls/resolve/main/concept_images/2.jpeg) ![<SkyFalls> 3](https://huggingface.co/sd-concepts-library/skyfalls/resolve/main/concept_images/3.jpeg) ![<SkyFalls> 4](https://huggingface.co/sd-concepts-library/skyfalls/resolve/main/concept_images/4.jpeg)
HumanCompatibleAI/ppo-AsteroidsNoFrameskip-v4
HumanCompatibleAI
2022-09-23T22:37:49Z
4
0
stable-baselines3
[ "stable-baselines3", "AsteroidsNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-09-23T22:35:00Z
--- library_name: stable-baselines3 tags: - AsteroidsNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 1666.00 +/- 472.83 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: AsteroidsNoFrameskip-v4 type: AsteroidsNoFrameskip-v4 --- # **PPO** Agent playing **AsteroidsNoFrameskip-v4** This is a trained model of a **PPO** agent playing **AsteroidsNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo ppo --env AsteroidsNoFrameskip-v4 -orga HumanCompatibleAI -f logs/ python enjoy.py --algo ppo --env AsteroidsNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo ppo --env AsteroidsNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo ppo --env AsteroidsNoFrameskip-v4 -f logs/ -orga HumanCompatibleAI ``` ## Hyperparameters ```python OrderedDict([('batch_size', 256), ('clip_range', 'lin_0.1'), ('ent_coef', 0.01), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('frame_stack', 4), ('learning_rate', 'lin_2.5e-4'), ('n_envs', 8), ('n_epochs', 4), ('n_steps', 128), ('n_timesteps', 10000000.0), ('policy', 'CnnPolicy'), ('vf_coef', 0.5), ('normalize', False)]) ```
philschmid/openai-whisper-endpoint
philschmid
2022-09-23T21:26:56Z
0
11
generic
[ "generic", "audio", "automatic-speech-recognition", "endpoints-template", "license:mit", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-09-23T20:27:44Z
--- license: mit tags: - audio - automatic-speech-recognition - endpoints-template library_name: generic inference: false --- # OpenAI [Whisper](https://github.com/openai/whisper) Inference Endpoint example > Whisper is a general-purpose speech recognition model. It is trained on a large dataset of diverse audio and is also a multi-task model that can perform multilingual speech recognition as well as speech translation and language identification. For more information about the model, license and limitations check the original repository at [openai/whisper](https://github.com/openai/whisper). --- This repository implements a custom `handler` task for `automatic-speech-recognition` for πŸ€— Inference Endpoints using OpenAIs new Whisper model. The code for the customized pipeline is in the [pipeline.py](https://huggingface.co/philschmid/openai-whisper-endpoint/blob/main/handler.py). There is also a [notebook](https://huggingface.co/philschmid/openai-whisper-endpoint/blob/main/create_handler.ipynb) included, on how to create the `handler.py` ### Request The endpoint expects a binary audio file. Below is a cURL example and a Python example using the `requests` library. **curl** ```bash # load audio file wget https://cdn-media.huggingface.co/speech_samples/sample1.flac # run request curl --request POST \ --url https://{ENDPOINT}/ \ --header 'Content-Type: audio/x-flac' \ --header 'Authorization: Bearer {HF_TOKEN}' \ --data-binary '@sample1.flac' ``` **Python** ```python import json from typing import List import requests as r import base64 import mimetypes ENDPOINT_URL="" HF_TOKEN="" def predict(path_to_audio:str=None): # read audio file with open(path_to_audio, "rb") as i: b = i.read() # get mimetype content_type= mimetypes.guess_type(path_to_audio)[0] headers= { "Authorization": f"Bearer {HF_TOKEN}", "Content-Type": content_type } response = r.post(ENDPOINT_URL, headers=headers, data=b) return response.json() prediction = predict(path_to_audio="sample1.flac") prediction ``` expected output ```json {"text": " going along slushy country roads and speaking to damp audiences in draughty school rooms day after day for a fortnight. He'll have to put in an appearance at some place of worship on Sunday morning, and he can come to us immediately afterwards."} ```
affahrizain/roberta-base-finetuned-jigsaw-toxic
affahrizain
2022-09-23T21:10:22Z
113
1
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-29T03:46:08Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: roberta-base-finetuned-jigsaw-toxic results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-finetuned-jigsaw-toxic This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0859 - Accuracy: 0.9747 - F1: 0.9746 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.1179 | 1.0 | 2116 | 0.0982 | 0.9694 | 0.9694 | | 0.0748 | 2.0 | 4232 | 0.0859 | 0.9747 | 0.9746 | | 0.0582 | 3.0 | 6348 | 0.0916 | 0.9750 | 0.9750 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
g30rv17ys/ddpm-geeve-cnv-1000-200ep
g30rv17ys
2022-09-23T19:10:42Z
0
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:imagefolder", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-09-23T15:29:54Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: imagefolder metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-geeve-cnv-1000-200ep ## Model description This diffusion model is trained with the [πŸ€— Diffusers](https://github.com/huggingface/diffusers) library on the `imagefolder` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results πŸ“ˆ [TensorBoard logs](https://huggingface.co/geevegeorge/ddpm-geeve-cnv-1000-200ep/tensorboard?#scalars)