modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-07-12 06:28:00
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
517 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-07-12 06:24:43
card
stringlengths
11
1.01M
sd-concepts-library/kysa-v-style
sd-concepts-library
2022-09-24T19:02:40Z
0
2
null
[ "license:mit", "region:us" ]
null
2022-09-24T19:02:27Z
--- license: mit --- ### kysa-v-style on Stable Diffusion This is the `<kysa-v-style>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<kysa-v-style> 0](https://huggingface.co/sd-concepts-library/kysa-v-style/resolve/main/concept_images/3.jpeg) ![<kysa-v-style> 1](https://huggingface.co/sd-concepts-library/kysa-v-style/resolve/main/concept_images/1.jpeg) ![<kysa-v-style> 2](https://huggingface.co/sd-concepts-library/kysa-v-style/resolve/main/concept_images/4.jpeg) ![<kysa-v-style> 3](https://huggingface.co/sd-concepts-library/kysa-v-style/resolve/main/concept_images/5.jpeg) ![<kysa-v-style> 4](https://huggingface.co/sd-concepts-library/kysa-v-style/resolve/main/concept_images/0.jpeg) ![<kysa-v-style> 5](https://huggingface.co/sd-concepts-library/kysa-v-style/resolve/main/concept_images/2.jpeg)
kk00165/Jiang
kk00165
2022-09-24T18:48:44Z
0
0
null
[ "region:us" ]
null
2022-09-24T18:39:49Z
Jiangstyle on Stable Diffusion This is the <Jiangstyle> concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the Stable Conceptualizer notebook. You can also train your own concepts and load them into the concept libraries using this notebook. Here is the new concept you will be able to use as a style:
bintualkassoum/shopinspo_demo
bintualkassoum
2022-09-24T18:26:24Z
237
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-09-24T18:26:10Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: shopinspo_demo results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.5267857313156128 --- # shopinspo_demo Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### womens dress ![womens dress](images/womens_dress.jpg) #### womens pants ![womens pants](images/womens_pants.jpg) #### womens shorts ![womens shorts](images/womens_shorts.jpg) #### womens skirt ![womens skirt](images/womens_skirt.jpg) #### womens top ![womens top](images/womens_top.jpg)
kevinbram/testarbara
kevinbram
2022-09-24T18:16:20Z
61
0
transformers
[ "transformers", "tf", "tensorboard", "distilbert", "question-answering", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-09-24T17:37:28Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: kevinbram/testarbara results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # kevinbram/testarbara This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.4900 - Train End Logits Accuracy: 0.6129 - Train Start Logits Accuracy: 0.5735 - Validation Loss: 1.1335 - Validation End Logits Accuracy: 0.6908 - Validation Start Logits Accuracy: 0.6545 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 11064, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 1.4900 | 0.6129 | 0.5735 | 1.1335 | 0.6908 | 0.6545 | 0 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.6.4 - Datasets 2.1.0 - Tokenizers 0.12.1
rram12/pixelcopter
rram12
2022-09-24T18:13:16Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-09-24T18:13:09Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: pixelcopter results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 19.80 +/- 13.74 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
edumunozsala/bertin-sts-cc-news-es
edumunozsala
2022-09-24T18:02:46Z
4
0
sentence-transformers
[ "sentence-transformers", "pytorch", "roberta", "feature-extraction", "sentence-similarity", "transformers", "dataset:LeoCordoba/CC-NEWS-ES-titles", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-08-22T13:51:47Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers datasets: - LeoCordoba/CC-NEWS-ES-titles --- # bertin-sts-cc-news-es This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('edumunozsala/bertin-sts-cc-news-es') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('edumunozsala/bertin-sts-cc-news-es') model = AutoModel.from_pretrained('edumunozsala/bertin-sts-cc-news-es') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=bertin-sts-cc-news-es) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 13054 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 3, "evaluation_steps": 0, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 3916, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
azaidi-face/xlm-roberta-base-finetuned-panx-de
azaidi-face
2022-09-24T17:16:43Z
125
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-24T17:09:45Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8663101604278075 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1339 - F1: 0.8663 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2581 | 1.0 | 525 | 0.1690 | 0.8303 | | 0.1305 | 2.0 | 1050 | 0.1352 | 0.8484 | | 0.0839 | 3.0 | 1575 | 0.1339 | 0.8663 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1 - Datasets 1.16.1 - Tokenizers 0.10.3
robingeibel/led-large-16384-finetuned-big_patent
robingeibel
2022-09-24T16:03:38Z
93
0
transformers
[ "transformers", "pytorch", "tf", "tensorboard", "led", "feature-extraction", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
feature-extraction
2022-06-28T10:32:30Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: led-large-16384-finetuned-big_patent results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # led-large-16384-finetuned-big_patent This model is a fine-tuned version of [robingeibel/led-large-16384-finetuned-big_patent](https://huggingface.co/robingeibel/led-large-16384-finetuned-big_patent) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.22.1 - TensorFlow 2.8.2 - Datasets 2.5.1 - Tokenizers 0.12.1
sd-concepts-library/lex
sd-concepts-library
2022-09-24T15:55:39Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-24T15:55:33Z
--- license: mit --- ### lex on Stable Diffusion This is the `<lex>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<lex> 0](https://huggingface.co/sd-concepts-library/lex/resolve/main/concept_images/3.jpeg) ![<lex> 1](https://huggingface.co/sd-concepts-library/lex/resolve/main/concept_images/1.jpeg) ![<lex> 2](https://huggingface.co/sd-concepts-library/lex/resolve/main/concept_images/4.jpeg) ![<lex> 3](https://huggingface.co/sd-concepts-library/lex/resolve/main/concept_images/6.jpeg) ![<lex> 4](https://huggingface.co/sd-concepts-library/lex/resolve/main/concept_images/5.jpeg) ![<lex> 5](https://huggingface.co/sd-concepts-library/lex/resolve/main/concept_images/0.jpeg) ![<lex> 6](https://huggingface.co/sd-concepts-library/lex/resolve/main/concept_images/2.jpeg) ![<lex> 7](https://huggingface.co/sd-concepts-library/lex/resolve/main/concept_images/7.jpeg)
truongpdd/vi-en-roberta-base
truongpdd
2022-09-24T15:17:38Z
37
0
transformers
[ "transformers", "pytorch", "jax", "tensorboard", "roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-09-19T02:44:51Z
``` from transformers import AutoModel, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained('truongpdd/vi-en-roberta-base') model = AutoModel.from_pretrained('truongpdd/vi-en-roberta-base', from_flax=True) ```
masakhane/afrimbart_bam_fr_news
masakhane
2022-09-24T15:08:14Z
105
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "bam", "fr", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-09T17:31:01Z
--- license: afl-3.0 language: - bam - fr ---
masakhane/afrimt5_bam_fr_news
masakhane
2022-09-24T15:08:13Z
105
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "bam", "fr", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-09T17:32:00Z
--- language: - bam - fr license: afl-3.0 ---
masakhane/afribyt5_bam_fr_news
masakhane
2022-09-24T15:08:11Z
108
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "bam", "fr", "license:afl-3.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-09T17:36:44Z
--- language: - bam - fr license: afl-3.0 ---
masakhane/mt5_bam_fr_news
masakhane
2022-09-24T15:08:08Z
107
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "bam", "fr", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-09T17:50:43Z
--- language: - bam - fr license: afl-3.0 ---
masakhane/mbart50_fr_bam_news
masakhane
2022-09-24T15:08:07Z
104
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "fr", "bam", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-09T17:50:10Z
--- language: - fr - bam license: afl-3.0 ---
masakhane/m2m100_418M_fr_bam_news
masakhane
2022-09-24T15:08:05Z
105
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "fr", "bam", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-09T17:45:42Z
--- language: - fr - bam license: afl-3.0 ---
masakhane/m2m100_418M_bam_fr_rel_news
masakhane
2022-09-24T15:08:05Z
104
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "bam", "fr", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-09T17:42:59Z
--- language: - bam - fr license: afl-3.0 ---
masakhane/m2m100_418M_bam_fr_rel_news_ft
masakhane
2022-09-24T15:08:04Z
107
1
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "bam", "fr", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-09T17:45:01Z
--- language: - bam - fr license: afl-3.0 ---
masakhane/m2m100_418M_fr_bam_rel_news_ft
masakhane
2022-09-24T15:08:03Z
103
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "fr", "bam", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-09T17:44:33Z
--- language: - fr - bam license: afl-3.0 ---
masakhane/m2m100_418M_fr_bam_rel_ft
masakhane
2022-09-24T15:08:02Z
105
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "fr", "bam", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-09T17:48:57Z
--- language: - fr - bam license: afl-3.0 ---
masakhane/m2m100_418M_fr_bam_rel
masakhane
2022-09-24T15:08:02Z
105
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "fr", "bam", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-09T17:47:29Z
--- language: - fr - bam license: afl-3.0 ---
masakhane/m2m100_418M_bam_fr_rel_ft
masakhane
2022-09-24T15:08:01Z
103
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "bam", "fr", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-09T17:49:26Z
--- language: - bam - fr license: afl-3.0 ---
masakhane/afrimt5_fr_bbj_news
masakhane
2022-09-24T15:08:01Z
105
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "fr", "bbj", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-13T16:50:08Z
--- language: - fr - bbj license: afl-3.0 ---
masakhane/afrimt5_bbj_fr_news
masakhane
2022-09-24T15:08:00Z
106
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "bbj", "fr", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-13T16:51:01Z
--- language: - bbj - fr license: afl-3.0 ---
masakhane/byt5_fr_bbj_news
masakhane
2022-09-24T15:07:57Z
104
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "fr", "bbj", "license:afl-3.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-13T16:53:24Z
--- language: - fr - bbj license: afl-3.0 ---
masakhane/byt5_bbj_fr_news
masakhane
2022-09-24T15:07:56Z
104
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "bbj", "fr", "license:afl-3.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-13T16:53:45Z
--- language: - bbj - fr license: afl-3.0 ---
masakhane/mbart50_fr_bbj_news
masakhane
2022-09-24T15:07:55Z
107
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "fr", "bbj", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-13T16:54:40Z
--- language: - fr - bbj license: afl-3.0 ---
masakhane/mt5_bbj_fr_news
masakhane
2022-09-24T15:07:55Z
104
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "bbj", "fr", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-13T16:54:00Z
--- language: - bbj - fr license: afl-3.0 ---
masakhane/m2m100_418M_bbj_fr_news
masakhane
2022-09-24T15:07:54Z
104
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "bbj", "fr", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-13T16:55:52Z
--- language: - bbj - fr license: afl-3.0 ---
masakhane/mbart50_bbj_fr_news
masakhane
2022-09-24T15:07:54Z
106
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "bbj", "fr", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-13T16:55:00Z
--- language: - bbj - fr license: afl-3.0 ---
masakhane/m2m100_418M_fr_bbj_news
masakhane
2022-09-24T15:07:53Z
106
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "fr", "bbj", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-13T16:56:11Z
--- language: - fr - bbj license: afl-3.0 ---
masakhane/m2m100_418M_bbj_fr_rel_news
masakhane
2022-09-24T15:07:52Z
104
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "bbj", "fr", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-13T16:56:58Z
--- language: - bbj - fr license: afl-3.0 ---
masakhane/afrimt5_ewe_fr_news
masakhane
2022-09-24T15:07:48Z
104
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "ewe", "fr", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-15T08:33:54Z
--- language: - ewe - fr license: afl-3.0 ---
masakhane/afrimbart_ewe_fr_news
masakhane
2022-09-24T15:07:48Z
105
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "ewe", "fr", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-15T08:34:14Z
--- language: - ewe - fr license: afl-3.0 ---
masakhane/afribyt5_fr_ewe_news
masakhane
2022-09-24T15:07:47Z
105
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "fr", "ewe", "license:afl-3.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-15T08:35:56Z
--- language: - fr - ewe license: afl-3.0 ---
masakhane/byt5_fr_ewe_news
masakhane
2022-09-24T15:07:46Z
104
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "fr", "ewe", "license:afl-3.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-15T08:36:31Z
--- language: - fr - ewe license: afl-3.0 ---
masakhane/mbart50_ewe_fr_news
masakhane
2022-09-24T15:07:44Z
105
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "ewe", "fr", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-15T08:39:03Z
--- language: - ewe - fr license: afl-3.0 ---
masakhane/mt5_fr_ewe_news
masakhane
2022-09-24T15:07:43Z
106
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "fr", "ewe", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-15T08:38:01Z
--- language: - fr - ewe license: afl-3.0 ---
masakhane/m2m100_418M_ewe_fr_news
masakhane
2022-09-24T15:07:42Z
102
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "ewe", "fr", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-15T08:40:02Z
--- language: - ewe - fr license: afl-3.0 ---
masakhane/m2m100_418M_ewe_fr_rel_news
masakhane
2022-09-24T15:07:41Z
107
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "ewe", "fr", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-15T08:42:16Z
--- language: - ewe - fr license: afl-3.0 ---
masakhane/m2m100_418M_fr_ewe_rel_news
masakhane
2022-09-24T15:07:41Z
105
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "fr", "ewe", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-15T08:41:54Z
--- language: - fr - ewe license: afl-3.0 ---
masakhane/m2m100_418M_ewe_fr_rel_news_ft
masakhane
2022-09-24T15:07:40Z
110
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "ewe", "fr", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-15T08:43:06Z
--- language: - ewe - fr license: afl-3.0 ---
masakhane/m2m100_418M_fr_ewe_rel_news_ft
masakhane
2022-09-24T15:07:39Z
103
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "fr", "ewe", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-15T08:42:48Z
--- language: - fr - ewe license: afl-3.0 ---
masakhane/m2m100_418M_ewe_fr_rel
masakhane
2022-09-24T15:07:38Z
109
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "ewe", "fr", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-15T08:44:39Z
--- language: - ewe - fr license: afl-3.0 ---
masakhane/afrimt5_fr_fon_news
masakhane
2022-09-24T15:07:37Z
103
1
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "fr", "fon", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-16T12:18:35Z
--- language: - fr - fon license: afl-3.0 ---
masakhane/mt5_fon_fr_news
masakhane
2022-09-24T15:07:33Z
103
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "fon", "fr", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-16T12:33:53Z
--- language: - fon - fr license: afl-3.0 ---
masakhane/afrimbart_fon_fr_news
masakhane
2022-09-24T15:07:33Z
106
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "fon", "fr", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-16T12:32:01Z
--- language: - fon - fr license: afl-3.0 ---
masakhane/byt5_fon_fr_news
masakhane
2022-09-24T15:07:31Z
108
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "fon", "fr", "license:afl-3.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-16T12:33:35Z
--- language: - fon - fr license: afl-3.0 ---
masakhane/m2m100_418M_fon_fr_news
masakhane
2022-09-24T15:07:31Z
109
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "fon", "fr", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-16T12:35:38Z
--- language: - fon - fr license: afl-3.0 ---
masakhane/m2m100_418M_fr_fon_news
masakhane
2022-09-24T15:07:30Z
105
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "fr", "fon", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-16T12:35:22Z
--- language: - fr - fon license: afl-3.0 ---
masakhane/m2m100_418M_fon_fr_rel_ft
masakhane
2022-09-24T15:07:29Z
105
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "fon", "fr", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-16T12:37:42Z
--- language: - fon - fr license: afl-3.0 ---
masakhane/m2m100_418M_fr_fon_rel_ft
masakhane
2022-09-24T15:07:28Z
104
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "fr", "fon", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-16T12:37:26Z
--- language: - fr - fon license: afl-3.0 ---
masakhane/m2m100_418M_fon_fr_rel
masakhane
2022-09-24T15:07:27Z
105
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "fon", "fr", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-16T12:37:58Z
--- language: - fon - fr license: afl-3.0 ---
masakhane/afrimbart_fr_mos_news
masakhane
2022-09-24T15:07:25Z
115
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "fr", "mos", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-16T20:24:16Z
--- language: - fr - mos license: afl-3.0 ---
masakhane/afrimbart_mos_fr_news
masakhane
2022-09-24T15:07:25Z
105
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "mos", "fr", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-16T20:24:34Z
--- language: - mos - fr license: afl-3.0 ---
masakhane/mt5_fr_mos_news
masakhane
2022-09-24T15:07:24Z
107
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "fr", "mos", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-16T20:26:22Z
--- language: - fr - mos license: afl-3.0 ---
masakhane/byt5_fr_mos_news
masakhane
2022-09-24T15:07:22Z
97
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "fr", "mos", "license:afl-3.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-16T20:27:26Z
--- language: - fr - mos license: afl-3.0 ---
masakhane/afrimt5_mos_fr_news
masakhane
2022-09-24T15:07:20Z
109
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "mos", "fr", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-16T21:42:25Z
--- language: - mos - fr license: afl-3.0 ---
masakhane/afrimt5_fr_mos_news
masakhane
2022-09-24T15:07:19Z
103
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "fr", "mos", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-16T21:42:03Z
--- language: - fr - mos license: afl-3.0 ---
masakhane/m2m100_418M_mos_fr_news
masakhane
2022-09-24T15:07:18Z
103
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "mos", "fr", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-17T08:06:29Z
--- language: - mos - fr license: afl-3.0 ---
masakhane/m2m100_418M_fr_mos_rel_news_ft
masakhane
2022-09-24T15:07:18Z
106
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "fr", "mos", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-17T08:07:16Z
--- language: - fr - mos license: afl-3.0 ---
masakhane/m2m100_418M_fr_mos_rel
masakhane
2022-09-24T15:07:17Z
104
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "fr", "mos", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-17T10:47:34Z
--- language: - fr - mos license: afl-3.0 ---
masakhane/m2m100_418M_mos_fr_rel
masakhane
2022-09-24T15:07:16Z
104
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "mos", "fr", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-17T10:47:15Z
--- language: - mos - fr license: afl-3.0 ---
masakhane/m2m100_418M_fr_mos_rel_news
masakhane
2022-09-24T15:07:16Z
106
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "fr", "mos", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-17T11:39:47Z
--- language: - fr - mos license: afl-3.0 ---
masakhane/m2m100_418M_mos_fr_rel_news_ft
masakhane
2022-09-24T15:07:15Z
106
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "mos", "fr", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-17T08:07:30Z
--- language: - mos - fr license: afl-3.0 ---
masakhane/m2m100_418M_mos_fr_rel_ft
masakhane
2022-09-24T15:07:14Z
104
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "mos", "fr", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-17T10:46:39Z
--- language: - mos - fr license: afl-3.0 ---
masakhane/afrimt5_fr_wol_news
masakhane
2022-09-24T15:07:12Z
104
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "fr", "wol", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-20T12:09:02Z
--- language: - fr - wol license: afl-3.0 ---
masakhane/mbart50_fr_wol_news
masakhane
2022-09-24T15:07:09Z
121
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "fr", "wol", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-20T12:11:34Z
--- language: - fr - wol license: afl-3.0 ---
masakhane/mbart50_wol_fr_news
masakhane
2022-09-24T15:07:08Z
106
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "wol", "fr", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-20T12:11:20Z
--- language: - wol - fr license: afl-3.0 ---
masakhane/m2m100_418M_wol_fr_rel_news_ft
masakhane
2022-09-24T15:07:05Z
111
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "wol", "fr", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-20T12:14:13Z
--- language: - wol - fr license: afl-3.0 ---
masakhane/m2m100_418M_fr_wol_rel_news
masakhane
2022-09-24T15:07:05Z
108
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "fr", "wol", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-20T12:13:43Z
--- language: - fr - wol license: afl-3.0 ---
masakhane/m2m100_418M_fr_wol_rel
masakhane
2022-09-24T15:07:03Z
104
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "fr", "wol", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-20T12:15:21Z
--- language: - fr - wol license: afl-3.0 ---
masakhane/m2m100_418M_fr_wol_rel_news_ft
masakhane
2022-09-24T15:07:03Z
104
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "fr", "wol", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-20T12:13:57Z
--- language: - fr - wol license: afl-3.0 ---
masakhane/afrimbart_en_ibo_news
masakhane
2022-09-24T15:07:02Z
103
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "en", "ibo", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-21T20:42:12Z
--- language: - en - ibo license: afl-3.0 ---
masakhane/mt5_ibo_en_news
masakhane
2022-09-24T15:06:57Z
107
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "ibo", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-21T20:44:34Z
--- language: - ibo - en license: afl-3.0 ---
masakhane/mt5_en_ibo_news
masakhane
2022-09-24T15:06:56Z
104
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "en", "ibo", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-21T20:44:51Z
--- language: - en - ibo license: afl-3.0 ---
masakhane/m2m100_418M_en_ibo_rel_news
masakhane
2022-09-24T15:06:55Z
103
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "en", "ibo", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-21T20:47:44Z
--- language: - en - ibo license: afl-3.0 ---
masakhane/m2m100_418M_ibo_en_news
masakhane
2022-09-24T15:06:54Z
105
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "ibo", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-21T20:47:05Z
--- language: - ibo - en license: afl-3.0 ---
masakhane/m2m100_418M_ibo_en_rel_ft
masakhane
2022-09-24T15:06:53Z
106
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "ibo", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-21T20:48:30Z
--- language: - ibo - en license: afl-3.0 ---
masakhane/m2m100_418M_ibo_en_rel_news_ft
masakhane
2022-09-24T15:06:53Z
104
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "ibo", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-21T20:48:13Z
--- language: - ibo - en license: afl-3.0 ---
masakhane/m2m100_418M_en_ibo_rel_news_ft
masakhane
2022-09-24T15:06:52Z
106
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "en", "ibo", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-21T20:47:57Z
--- language: - en - ibo license: afl-3.0 ---
masakhane/m2m100_418M_ibo_en_rel
masakhane
2022-09-24T15:06:51Z
105
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "ibo", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-21T20:49:17Z
--- language: - ibo - en license: afl-3.0 ---
masakhane/afrimbart_hau_en_news
masakhane
2022-09-24T15:06:48Z
105
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "hau", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-03T12:46:35Z
--- language: - hau - en license: afl-3.0 ---
masakhane/afribyt5_en_hau_news
masakhane
2022-09-24T15:06:48Z
105
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "en", "hau", "license:afl-3.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-03T12:47:40Z
--- language: - en - hau license: afl-3.0 ---
masakhane/afribyt5_hau_en_news
masakhane
2022-09-24T15:06:47Z
110
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "hau", "en", "license:afl-3.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-03T12:47:56Z
--- language: - hau - en license: afl-3.0 ---
masakhane/mt5_en_hau_news
masakhane
2022-09-24T15:06:46Z
102
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "en", "hau", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-03T12:48:51Z
--- language: - en - hau license: afl-3.0 ---
masakhane/mbart50_hau_en_news
masakhane
2022-09-24T15:06:45Z
103
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "hau", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-03T12:49:35Z
--- language: - hau - en license: afl-3.0 ---
masakhane/mt5_hau_en_news
masakhane
2022-09-24T15:06:45Z
104
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "hau", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-03T12:49:10Z
--- language: - hau - en license: afl-3.0 ---
masakhane/m2m100_418M_en_hau_rel_news_ft
masakhane
2022-09-24T15:06:42Z
107
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "en", "hau", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-03T12:52:07Z
--- language: - en - hau license: afl-3.0 ---
masakhane/m2m100_418M_en_hau_rel
masakhane
2022-09-24T15:06:39Z
106
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "en", "hau", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-03T12:53:19Z
--- language: - en - hau license: afl-3.0 ---
masakhane/afrimbart_en_lug_news
masakhane
2022-09-24T15:06:36Z
123
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "en", "lug", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-05T11:07:05Z
--- language: - en - lug license: afl-3.0 ---
masakhane/afribyt5_lug_en_news
masakhane
2022-09-24T15:06:35Z
108
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "lug", "en", "license:afl-3.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-05T11:11:22Z
--- language: - lug - en license: afl-3.0 ---
masakhane/byt5_en_lug_news
masakhane
2022-09-24T15:06:34Z
106
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "en", "lug", "license:afl-3.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-05T11:12:52Z
--- language: - en - lug license: afl-3.0 ---
masakhane/m2m100_418M_en_lug_news
masakhane
2022-09-24T15:06:31Z
103
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "en", "lug", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-05T11:19:41Z
--- language: - en - lug license: afl-3.0 ---
masakhane/m2m100_418M_lug_en_rel_news
masakhane
2022-09-24T15:06:30Z
105
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "lug", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-05T11:20:27Z
--- language: - lug - en license: afl-3.0 ---
masakhane/m2m100_418M_en_lug_rel_news_ft
masakhane
2022-09-24T15:06:28Z
107
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "en", "lug", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-05T11:21:04Z
--- language: - en - lug license: afl-3.0 ---
masakhane/m2m100_418M_en_lug_rel_ft
masakhane
2022-09-24T15:06:27Z
106
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "en", "lug", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-05T11:21:45Z
--- language: - en - lug license: afl-3.0 ---
masakhane/m2m100_418M_lug_en_rel_ft
masakhane
2022-09-24T15:06:26Z
99
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "lug", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-05T11:22:09Z
--- language: - lug - en license: afl-3.0 ---
masakhane/afrimbart_pcm_en_news
masakhane
2022-09-24T15:06:24Z
104
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "pcm", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-09T13:04:55Z
--- language: - pcm - en license: afl-3.0 ---
masakhane/byt5_en_pcm_news
masakhane
2022-09-24T15:06:20Z
111
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "en", "pcm", "license:afl-3.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T06:41:46Z
--- language: - en - pcm license: afl-3.0 ---