modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-08-02 06:27:52
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
548 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-08-02 06:27:50
card
stringlengths
11
1.01M
ITG/wav2vec2-large-xlsr-gl
ITG
2023-07-17T08:35:55Z
78
1
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "ITG", "PyTorch", "Transformers", "gl", "dataset:openslr", "license:cc-by-nc-nd-4.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-07-17T08:15:40Z
--- license: cc-by-nc-nd-4.0 datasets: - openslr language: - gl pipeline_tag: automatic-speech-recognition tags: - ITG - PyTorch - Transformers - wav2vec2 --- # Wav2Vec2 Large XLSR Galician ## Description This is a fine-tuned version of the [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) pre-trained model for ASR in galician. --- ## Dataset The dataset used for fine-tuning this model was the [OpenSLR galician](https://huggingface.co/datasets/openslr/viewer/SLR77) dataset, available in the openslr repository. --- ## Example inference script ### Check this example script to run our model in inference mode ```python import torch from transformers import AutoProcessor, AutoModelForCTC filename = "demo.wav" #change this line to the name of your audio file sample_rate = 16_000 processor = AutoProcessor.from_pretrained('ITG/wav2vec2-large-xlsr-gl') model = AutoModelForSpeechSeq2Seq.from_pretrained('ITG/wav2vec2-large-xlsr-gl') device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model.to(device) speech_array, _ = librosa.load(filename, sr=sample_rate) inputs = processor(speech_array, sampling_rate=sample_rate, return_tensors="pt", padding=True).to(device) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask.to(device)).logits decode_output = processor.batch_decode(torch.argmax(logits, dim=-1))[0] print(f"ASR Galician wav2vec2-large-xlsr output: {decode_output}") ``` --- ## Fine-tuning hyper-parameters | **Hyper-parameter** | **Value** | |:----------------------------------------:|:---------------------------:| | Training batch size | 16 | | Evaluation batch size | 8 | | Learning rate | 3e-4 | | Gradient accumulation steps | 2 | | Group by length | true | | Evaluation strategy | steps | | Max training epochs | 50 | | Max steps | 4000 | | Generate max length | 225 | | FP16 | true | | Metric for best model | wer | | Greater is better | false | ## Fine-tuning in a different dataset or style If you're interested in fine-tuning your own wav2vec2 model, we suggest starting with the [facebook/wav2vec2-large-xlsr-53 model](https://huggingface.co/facebook/wav2vec2-large-xlsr-53). Additionally, you may find this [fine-tuning on galician notebook by Diego Fustes](https://github.com/diego-fustes/xlsr-fine-tuning-gl/blob/main/Fine_Tune_XLSR_Wav2Vec2_on_Galician.ipynb) to be a valuable resource. This guide served as a helpful reference during the training process of this Galician wav2vec2-large-xlsr model!
NasimB/cbt-rarity-all-guten-rarity-all-end-19k-mixed
NasimB
2023-07-17T08:35:26Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:generator", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-17T06:37:33Z
--- license: mit tags: - generated_from_trainer datasets: - generator model-index: - name: cbt-rarity-all-guten-rarity-all-end-19k-mixed results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # cbt-rarity-all-guten-rarity-all-end-19k-mixed This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 4.3203 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 6.7045 | 0.29 | 500 | 5.6303 | | 5.3451 | 0.59 | 1000 | 5.2024 | | 4.993 | 0.88 | 1500 | 4.9525 | | 4.7145 | 1.17 | 2000 | 4.7988 | | 4.5613 | 1.47 | 2500 | 4.6763 | | 4.4489 | 1.76 | 3000 | 4.5785 | | 4.3287 | 2.05 | 3500 | 4.4979 | | 4.1353 | 2.35 | 4000 | 4.4492 | | 4.1069 | 2.64 | 4500 | 4.3901 | | 4.0676 | 2.93 | 5000 | 4.3409 | | 3.8575 | 3.23 | 5500 | 4.3364 | | 3.8071 | 3.52 | 6000 | 4.3043 | | 3.7948 | 3.81 | 6500 | 4.2695 | | 3.6747 | 4.11 | 7000 | 4.2699 | | 3.5247 | 4.4 | 7500 | 4.2635 | | 3.5208 | 4.69 | 8000 | 4.2499 | | 3.5068 | 4.99 | 8500 | 4.2371 | | 3.3383 | 5.28 | 9000 | 4.2509 | | 3.332 | 5.58 | 9500 | 4.2494 | | 3.3304 | 5.87 | 10000 | 4.2487 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.11.0+cu113 - Datasets 2.13.0 - Tokenizers 0.13.3
madoe001/a2c-PandaReachDense-v2
madoe001
2023-07-17T08:27:55Z
4
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-17T08:25:09Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -0.85 +/- 0.24 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
MelindaStudy/sd-class-butterflies-32
MelindaStudy
2023-07-17T08:16:47Z
30
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2023-07-17T08:16:17Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('MelindaStudy/sd-class-butterflies-32') image = pipeline().images[0] image ```
ykirpichev/speecht5_finetuned_voxpopuli_nl
ykirpichev
2023-07-17T08:13:17Z
83
0
transformers
[ "transformers", "pytorch", "tensorboard", "speecht5", "text-to-audio", "generated_from_trainer", "text-to-speech", "dataset:facebook/voxpopuli", "license:mit", "endpoints_compatible", "region:us" ]
text-to-speech
2023-07-17T05:53:12Z
--- license: mit tags: - generated_from_trainer - text-to-speech datasets: - facebook/voxpopuli model-index: - name: speecht5_finetuned_voxpopuli_nl results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # speecht5_finetuned_voxpopuli_nl This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the facebook/voxpopuli dataset. It achieves the following results on the evaluation set: - Loss: 0.4569 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.5242 | 4.3 | 1000 | 0.4753 | | 0.5023 | 8.61 | 2000 | 0.4625 | | 0.4941 | 12.91 | 3000 | 0.4577 | | 0.4903 | 17.21 | 4000 | 0.4569 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
ZaidHaris/bloom-560m-lora-tagger
ZaidHaris
2023-07-17T08:11:08Z
2
0
peft
[ "peft", "region:us" ]
null
2023-07-17T08:11:07Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0.dev0
ailabturkiye/Kibariye
ailabturkiye
2023-07-17T08:10:32Z
0
0
null
[ "region:us" ]
null
2023-07-17T07:07:21Z
[![Discord Sunucumuz](https://img.shields.io/badge/Discord.gg%2F-AiLab-ailab )](discord.gg/ailab) ![Static Badge](https://img.shields.io/badge/AI%20LAB%20Hugging%20Face%20Organization-sa?style=plastic&labelColor=blue&color=blue) ![Static Badge](https://img.shields.io/badge/Yap%C4%B1mc%C4%B1%20Bilgisi%20Verilmeden%20Payla%C5%9F%C4%B1lmas%C4%B1%20Yasakt%C4%B1r!-s?style=plastic&labelColor=orange&color=red) # Kibariye - RVC V2 - Mangio Crepe - 200 Epoch **Şarkıcı Kibariye`nin ses modelidir, Rvc V2 200 epoch olarak eğitilmiştir.** **22 Dakikalık Dataset Kullanılmıştır.** _Dataset ve Train Benim Tarafımdan yapılmıştır.._ __Modelin izinsiz bir şekilde [Ai Lab Discord](discord.gg/ailab) Sunucusu dışında paylaşılması tamamen yasaktır, model openrail lisansına sahiptir.__ ## Credits **Herhangi bir platformda model ile yapılan bir cover paylaşımında credits vermeniz rica olunur.** - Discord: tahaefe.ipekk - Reddit: u/jackk_m - YouTube: 𝖏𝖆𝖈𝖐𝖘𝖑𝖜𝖐 (https://www.youtube.com/channel/UCZSMJToEeMuqMFDL318v3Xw) - TikTok: jackss.aep (https://www.tiktok.com/@jackss.aep) - Instagram: jackslwk (https://www.instagram.com/jackslwk/) ![Static Badge](https://img.shields.io/badge/Yap%C4%B1mc%C4%B1%20Bilgisi%20Verilmeden%20Payla%C5%9F%C4%B1lmas%C4%B1%20Yasakt%C4%B1r!-s?style=plastic&labelColor=orange&color=red) [![Discord Sunucumuz](https://img.shields.io/badge/Discord.gg%2F-AiLab-ailab )](discord.gg/ailab) ![Static Badge](https://img.shields.io/badge/AI%20LAB%20Hugging%20Face%20Organization-sa?style=plastic&labelColor=blue&color=blue)
ashwinperti/finetuning-sentiment-model-3000-samples
ashwinperti
2023-07-17T08:00:55Z
108
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-29T10:16:51Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: test args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8766666666666667 - name: F1 type: f1 value: 0.877887788778878 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3080 - Accuracy: 0.8767 - F1: 0.8779 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
abhinavkashyap92/whisper-tiny-asr-english
abhinavkashyap92
2023-07-17T07:57:56Z
91
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "dataset:PolyAI/minds14", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-07-17T04:15:51Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - PolyAI/minds14 metrics: - wer model-index: - name: whisper-tiny-asr-english results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: PolyAI/minds14 type: PolyAI/minds14 config: en-US split: train args: en-US metrics: - name: Wer type: wer value: 0.31582054309327035 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-tiny-asr-english This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the PolyAI/minds14 dataset. It achieves the following results on the evaluation set: - Wer Ortho: 0.3196 - Wer: 0.3158 - Loss: 0.5223 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Wer Ortho | Wer | Validation Loss | |:-------------:|:-----:|:----:|:---------:|:------:|:---------------:| | 0.4862 | 0.89 | 100 | 0.3917 | 0.3719 | 0.5372 | | 0.3213 | 1.79 | 200 | 0.3769 | 0.3571 | 0.4777 | | 0.1822 | 2.68 | 300 | 0.3726 | 0.3589 | 0.4746 | | 0.068 | 3.57 | 400 | 0.3276 | 0.3146 | 0.4819 | | 0.0333 | 4.46 | 500 | 0.3196 | 0.3158 | 0.5223 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
Sukmin/a2c-PandaReachDense-v2
Sukmin
2023-07-17T07:43:56Z
1
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-17T07:42:00Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -1.18 +/- 0.37 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
OysterQAQ/DanbooruCLIP
OysterQAQ
2023-07-17T07:22:55Z
127
9
transformers
[ "transformers", "pytorch", "clip", "zero-shot-image-classification", "vision", "endpoints_compatible", "region:us" ]
zero-shot-image-classification
2023-05-18T14:06:00Z
--- tags: - vision widget: - src: https://huggingface.co/OysterQAQ/DanbooruCLIP/resolve/main/example.jpg candidate_labels: Azur Lane, 3 girl with sword, cat ear, a dog example_title: Azur Lane - src: https://huggingface.co/OysterQAQ/DanbooruCLIP/resolve/main/example2.jpg candidate_labels: 1 girl with black hair, rabbit ear, big breasts, minato aqua, fate/extra, k-on!, daiyousei, cirno example_title: cirno & daiyousei --- ### 介绍 2023_07_17更新:增加了pixiv数据集进行训练 使用danburoo2021数据集对clip(ViT-L/14)模型进行微调。 0-3 epoch学习率为4e-6,权重衰减为1e-3 4-8 epoch学习率为1e-6,权重衰减为1e-3 标签预处理过程: ```python for i in range(length): # 加载并且缩放图片 if not is_image(data_from_db.path[i]): continue try: img = self.preprocess( Image.open(data_from_db.path[i].replace("./", "/mnt/lvm/danbooru2021/danbooru2021/"))) except Exception as e: #print(e) continue # 处理标签 tags = json.loads(data_from_db.tags[i]) # 优先选择人物和作品标签 category_group = {} for tag in tags: category_group.setdefault(tag["category"], []).append(tag) # category_group=groupby(tags, key=lambda x: (x["category"])) character_list = category_group[4] if 4 in category_group else [] # 作品需要过滤以bad开头的 work_list = list(filter( lambda e: e["name"] != "original" , category_group[3])) if 3 in category_group else [] # work_list= category_group[5] if 5 in category_group else [] general_list = category_group[0] if 0 in category_group else [] caption = "" caption_2 = None for character in character_list: if len(work_list) != 0: # 去除括号内作品内容 character["name"] = re.sub(u"\\(.*?\\)", "", character["name"]) caption += character["name"].replace("_", " ") caption += "," caption = caption[:-1] caption += " " if len(work_list) != 0: caption += "from " for work in work_list: caption += work["name"].replace("_", " ") caption += " " # 普通标签 if len(general_list) != 0: caption += "with " if len(general_list) > 20: general_list_1 = general_list[:int(len(general_list) / 2)] general_list_2 = general_list[int(len(general_list) / 2):] caption_2 = caption for general in general_list_1: if general["name"].find("girl") == -1 and general["name"].find("boy") == -1 and len( re.findall(is_contain, general["name"])) != 0: caption_2 += general["name"].replace("_", " ") caption_2 += "," caption_2 = caption_2[:-1] for general in general_list_2: if general["name"].find("girl") == -1 and general["name"].find("boy") == -1 and len( re.findall(is_contain, general["name"])) != 0: caption += general["name"].replace("_", " ") caption += "," caption = caption[:-1] else: for general in general_list: # 如果标签数据目大于20 则拆分成两个caption if general["name"].find("girl") == -1 and general["name"].find("boy") == -1 and len( re.findall(is_contain, general["name"])) != 0: caption += general["name"].replace("_", " ") caption += "," caption = caption[:-1] # 标签汇总成语句 # tokenize语句 # 返回 # 过长截断 不行的话用huggingface的 text_1 = clip.tokenize(texts=caption, truncate=True) text_2= None if caption_2 is not None: text_2 = clip.tokenize(texts=caption_2, truncate=True) # 处理逻辑 # print(img) yield img, text_1[0] if text_2 is not None: yield img, text_2[0] ``` ### 使用 ```python from PIL import Image import requests from transformers import CLIPProcessor, CLIPModel model = CLIPModel.from_pretrained("OysterQAQ/DanbooruCLIP") processor = CLIPProcessor.from_pretrained("OysterQAQ/DanbooruCLIP") url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) inputs = processor(text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True) outputs = model(**inputs) logits_per_image = outputs.logits_per_image # this is the image-text similarity score probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities ``` ## Feedback ### Where to send questions or comments about the model Please use [this Google Form](https://forms.gle/Uv7afRH5dvY34ZEs9)
hafidikhsan/wav2vec2-large-xlsr-53-english-pronunciation-evaluation-bs-v2
hafidikhsan
2023-07-17T07:14:50Z
103
0
transformers
[ "transformers", "pytorch", "wav2vec2", "audio-classification", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
audio-classification
2023-07-17T07:12:38Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: wav2vec2-large-xlsr-53-english-pronunciation-evaluation-bs-v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-53-english-pronunciation-evaluation-bs-v2 This model is a fine-tuned version of [jonatasgrosman/wav2vec2-large-xlsr-53-english](https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8697 - Accuracy: 0.78 - F1: 0.7738 - Precision: 0.7735 - Recall: 0.78 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 1.0774 | 1.0 | 500 | 0.9199 | 0.57 | 0.5728 | 0.6154 | 0.57 | | 0.6526 | 2.0 | 1000 | 0.6857 | 0.7 | 0.6925 | 0.7167 | 0.7 | | 0.3767 | 3.0 | 1500 | 0.5830 | 0.79 | 0.7887 | 0.7884 | 0.79 | | 0.242 | 4.0 | 2000 | 0.7786 | 0.82 | 0.8160 | 0.8163 | 0.82 | | 0.2691 | 5.0 | 2500 | 0.8399 | 0.814 | 0.8113 | 0.8109 | 0.814 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
StarRing2022/RWKV-430M-Pile-Alpaca
StarRing2022
2023-07-17T07:11:34Z
149
0
transformers
[ "transformers", "pytorch", "rwkv", "text-generation", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-05-22T07:58:07Z
--- license: apache-2.0 --- 使用HF的接口很方便地对RWKV在Alpaca格式数据集上进行全量微调及部署服务 底座模型:RWKV-430M-pile(sgugger/rwkv-430M-pile) 数据集:test.json,测试用 硬件设备:4090单卡,64G内存 训练轮数:100轮 训练耗时:5分钟左右 HF空间:https://huggingface.co/spaces/StarRing2022/Rwkv-430M-pile-Alpaca-Run GIT开源地址:https://github.com/StarRing2022/HF-For-RWKVRaven-Alpaca/
StarRing2022/RWKV-4-World-1.5B-Alpaca
StarRing2022
2023-07-17T07:11:11Z
12
0
transformers
[ "transformers", "pytorch", "rwkv", "text-generation", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-07-17T02:07:03Z
--- license: apache-2.0 --- 使用HF的接口很方便地对RWKV在Alpaca格式数据集上进行全量微调及部署服务 底座模型:RWKV-4-World-1.5B(StarRing2022/RWKV-4-World-1.5B) 数据集:test.json,测试用 硬件设备:4090单卡,64G内存 训练轮数:1轮 训练耗时:70秒左右 GIT开源地址:https://github.com/StarRing2022/HF-For-RWKVWorld-LoraAlpaca/
Sukmin/a2c-AntBulletEnv-v0
Sukmin
2023-07-17T06:59:49Z
0
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-10T16:13:24Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1407.26 +/- 164.32 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
StarRing2022/RWKV-4-World-1.5B
StarRing2022
2023-07-17T06:40:37Z
124
1
transformers
[ "transformers", "pytorch", "rwkv", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2023-06-26T00:32:37Z
--- license: apache-2.0 --- RWKV-4-World的Hugface格式,因新版World的tokenizer较之前Raven\Pile版本有较大变化,因而需要进行新版HF适配 ringrwkv兼容了原生rwkv库和transformers的rwkv库,同时新添入World版本的配置及代码(支持1.5B,3B,7B全系列),并修复了原HF的RWKV在 Forward RWKVOutput时的细微问题,主要是引入和明确last_hidden_state。以下是轻量级使用代码,比较方便:<br> RingRWKV GIT开源地址:https://github.com/StarRing2022/RingRWKV <br> import torch<br> from ringrwkv.configuration_rwkv_world import RwkvConfig<br> from ringrwkv.rwkv_tokenizer import TRIE_TOKENIZER<br> from ringrwkv.modehf_world import RwkvForCausalLM<br> model = RwkvForCausalLM.from_pretrained("StarRing2022/RWKV-4-World-1.5B") #或将本模型下载至本地文件夹<br> tokenizer = TRIE_TOKENIZER('./ringrwkv/rwkv_vocab_v20230424.txt')<br> text = "你叫什么名字?"<br> question = f'Question: {text.strip()}\n\nAnswer:'<br> input_ids = tokenizer.encode(question)<br> input_ids = torch.tensor(input_ids).unsqueeze(0)<br> out = model.generate(input_ids,max_new_tokens=40)<br><br> outlist = out[0].tolist()<br> for i in outlist:<br> &nbsp;&nbsp;&nbsp;&nbsp;if i==0:&nbsp;#要删除tokenid为0的元素 <br> &nbsp;&nbsp;&nbsp;&nbsp;outlist.remove(i)<br> answer = tokenizer.decode(outlist)<br> print(answer)<br>
ailabturkiye/shaco
ailabturkiye
2023-07-17T06:35:20Z
0
0
null
[ "music", "tr", "license:openrail", "region:us" ]
null
2023-07-17T06:30:09Z
--- license: openrail language: - tr tags: - music --- League of Legends oyunundaki Shaco adlı şampiyonun yaklaşık 5 dakikalık datasetiyle 250 epoch basılarak oluşturulmuştur. -3 ya da -5 Pitch(Transpose) önerilir. Herhangi bir platformda model ile yapılan bir cover paylaşımında discord linkimizi vermeniz rica olunur. discord.gg/ailab
StarRing2022/RWKV-4-World-7B
StarRing2022
2023-07-17T06:33:26Z
11
7
transformers
[ "transformers", "pytorch", "rwkv", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2023-07-17T01:08:57Z
--- license: apache-2.0 --- RWKV-4-World的Hugface格式,因新版World的tokenizer较之前Raven\Pile版本有较大变化,因而需要进行新版HF适配 ringrwkv兼容了原生rwkv库和transformers的rwkv库,同时新添入World版本的配置及代码(支持1.5B,3B,7B全系列),并修复了原HF的RWKV在 Forward RWKVOutput时的细微问题,主要是引入和明确last_hidden_state。以下是轻量级使用代码,比较方便:<br> RingRWKV GIT开源地址:https://github.com/StarRing2022/RingRWKV <br> import torch<br> from ringrwkv.configuration_rwkv_world import RwkvConfig<br> from ringrwkv.rwkv_tokenizer import TRIE_TOKENIZER<br> from ringrwkv.modehf_world import RwkvForCausalLM<br> model = RwkvForCausalLM.from_pretrained("StarRing2022/RWKV-4-World-7B") #或将本模型下载至本地文件夹<br> tokenizer = TRIE_TOKENIZER('./ringrwkv/rwkv_vocab_v20230424.txt')<br> text = "你叫什么名字?"<br> question = f'Question: {text.strip()}\n\nAnswer:'<br> input_ids = tokenizer.encode(question)<br> input_ids = torch.tensor(input_ids).unsqueeze(0)<br> out = model.generate(input_ids,max_new_tokens=40)<br><br> outlist = out[0].tolist()<br> for i in outlist:<br> &nbsp;&nbsp;&nbsp;&nbsp;if i==0:&nbsp;#要删除tokenid为0的元素 <br> &nbsp;&nbsp;&nbsp;&nbsp;outlist.remove(i)<br> answer = tokenizer.decode(outlist)<br> print(answer)<br>
StarRing2022/RWKV-4-World-3B
StarRing2022
2023-07-17T06:31:33Z
119
0
transformers
[ "transformers", "pytorch", "rwkv", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2023-07-17T00:40:44Z
--- license: apache-2.0 --- RWKV-4-World的Hugface格式,因新版World的tokenizer较之前Raven\Pile版本有较大变化,因而需要进行新版HF适配 ringrwkv兼容了原生rwkv库和transformers的rwkv库,同时新添入World版本的配置及代码(支持1.5B,3B,7B全系列),并修复了原HF的RWKV在 Forward RWKVOutput时的细微问题,主要是引入和明确last_hidden_state。以下是轻量级使用代码,比较方便:<br> RingRWKV GIT开源地址:https://github.com/StarRing2022/RingRWKV <br> import torch<br> from ringrwkv.configuration_rwkv_world import RwkvConfig<br> from ringrwkv.rwkv_tokenizer import TRIE_TOKENIZER<br> from ringrwkv.modehf_world import RwkvForCausalLM<br> model = RwkvForCausalLM.from_pretrained("StarRing2022/RWKV-4-World-3B") #或将本模型下载至本地文件夹<br> tokenizer = TRIE_TOKENIZER('./ringrwkv/rwkv_vocab_v20230424.txt')<br> text = "你叫什么名字?"<br> question = f'Question: {text.strip()}\n\nAnswer:'<br> input_ids = tokenizer.encode(question)<br> input_ids = torch.tensor(input_ids).unsqueeze(0)<br> out = model.generate(input_ids,max_new_tokens=40)<br><br> outlist = out[0].tolist()<br> for i in outlist:<br> &nbsp;&nbsp;&nbsp;&nbsp;if i==0:&nbsp;#要删除tokenid为0的元素 <br> &nbsp;&nbsp;&nbsp;&nbsp;outlist.remove(i)<br> answer = tokenizer.decode(outlist)<br> print(answer)<br>
ailabturkiye/2xciv
ailabturkiye
2023-07-17T06:22:21Z
0
0
null
[ "music", "tr", "license:openrail", "region:us" ]
null
2023-07-17T06:16:23Z
--- license: openrail language: - tr tags: - music --- VALORANT youtuberı olan 2xCIV'in yaklaşık 5 dakikalık datasetiyle 250 epoch basılarak oluşturulmuştur. Herhangi bir platformda model ile yapılan bir cover paylaşımında discord linkimizi vermeniz rica olunur. discord.gg/ailab
ailabturkiye/yasuo
ailabturkiye
2023-07-17T06:18:49Z
0
0
null
[ "music", "tr", "license:openrail", "region:us" ]
null
2023-07-17T06:13:49Z
--- license: openrail language: - tr tags: - music --- League of Legends oyunundaki Yasuo adlı şampiyonun yaklaşık 5 dakikalık datasetiyle 250 epoch basılarak oluşturulmuştur. Herhangi bir platformda model ile yapılan bir cover paylaşımında discord linkimizi vermeniz rica olunur. discord.gg/ailab
StarRing2022/RWKV-4-Raven-3B-v11-zh
StarRing2022
2023-07-17T06:16:24Z
98
6
transformers
[ "transformers", "pytorch", "rwkv", "endpoints_compatible", "region:us" ]
null
2023-05-23T01:26:32Z
--- {RWKV-4-Raven-3B-v11-zh} --- 将RWKV模型转化为HF格式,与HF无缝连接,几句代码调用RWKV 底座模型:RWKV-4-Raven-3B-v11-Eng49%-Chn49%-Jpn1%-Other1%-20230429-ctx4096.pth(https://huggingface.co/BlinkDL/rwkv-4-raven) import torch from transformers import GPTNeoXTokenizerFast, RwkvConfig, RwkvForCausalLM model = RwkvForCausalLM.from_pretrained("StarRing2022/RWKV-4-Raven-3B-v11-zh") tokenizer = GPTNeoXTokenizerFast.from_pretrained("StarRing2022/RWKV-4-Raven-3B-v11-zh") text = "你好" input_ids = tokenizer.encode(text, return_tensors='pt') out = model.generate(input_ids=input_ids,max_new_tokens=128) answer = tokenizer.decode(out[0]) print(answer) GIT开源地址:https://github.com/StarRing2022/HF-For-RWKVRaven-Alpaca/
Open-Orca/OpenOrca-Preview1-13B
Open-Orca
2023-07-17T06:07:48Z
1,576
146
transformers
[ "transformers", "pytorch", "llama", "text-generation", "en", "dataset:Open-Orca/OpenOrca", "arxiv:2306.02707", "arxiv:2301.13688", "arxiv:2302.13971", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-12T01:13:58Z
--- license: mit language: - en library_name: transformers pipeline_tag: text-generation datasets: - Open-Orca/OpenOrca --- <p><h1>🐋 The First OpenOrca Model Preview! 🐋</h1></p> ![OpenOrca Logo](https://huggingface.co/datasets/Open-Orca/OpenOrca/resolve/main/OpenOrcaLogo.png "OpenOrca Logo") # OpenOrca-Preview1-13B We have used our own [OpenOrca dataset](https://huggingface.co/datasets/Open-Orca/OpenOrca) to fine-tune LLaMA-13B. This dataset is our attempt to reproduce the dataset generated for Microsoft Research's [Orca Paper](https://arxiv.org/abs/2306.02707). We have trained on less than 6% of our data, just to give a preview of what is possible while we further refine our dataset! We trained a refined selection of 200k GPT-4 entries from OpenOrca. We have filtered our GPT-4 augmentations to remove statements like, "As an AI language model..." and other responses which have been shown to harm model reasoning capabilities. Further details on our dataset curation practices will be forthcoming with our full model releases. This release highlights that even a small portion of our training data can produce state of the art results in this model class with training costs <$200 in total. Want to visualize our full (pre-filtering) dataset? Check out our [Nomic Atlas Map](https://atlas.nomic.ai/map/c1b88b47-2d9b-47e0-9002-b80766792582/2560fd25-52fe-42f1-a58f-ff5eccc890d2). [<img src="https://huggingface.co/Open-Orca/OpenOrca-Preview1-13B/resolve/main/OpenOrca%20Nomic%20Atlas.png" alt="Atlas Nomic Dataset Map" width="400" height="400" />](https://atlas.nomic.ai/map/c1b88b47-2d9b-47e0-9002-b80766792582/2560fd25-52fe-42f1-a58f-ff5eccc890d2) We are in-process with training more models, so keep a look out on our org for releases coming soon with exciting partners. We will also give sneak-peak announcements on our Discord, which you can find here: https://AlignmentLab.ai # Evaluation We have evaluated OpenOrca-Preview1-13B on hard reasoning tasks from BigBench-Hard and AGIEval as outlined in the Orca paper. Our average performance for BigBench-Hard: 0.3753 Average for AGIEval: 0.3638 In the Orca paper, they measured their score relative to Vicuna on these evals. We've done the same and have found our score averages to ~60% of the total improvement that was shown in the Orca paper. So we got 60% of the improvement with 6% of the data! ## BigBench-Hard Performance ![OpenOrca Preview1 BigBench-Hard Performance](https://huggingface.co/Open-Orca/OpenOrca-Preview1-13B/resolve/main/OO_Preview1_BigBenchHard.png "BigBench-Hard Performance") ## AGIEval Performance ![OpenOrca Preview1 AGIEval Performance](https://huggingface.co/Open-Orca/OpenOrca-Preview1-13B/resolve/main/OO_Preview1_AGIEval.png "AGIEval Performance") We will report our results on [HuggingFaceH4 Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Evals once we receive them. # Dataset We used a small (6%, 200k) subset of our data from OpenOrca, which aims to reproduce the Orca Research Paper dataset. As this release is intended as a preview, please await our full releases for further details on the training data. # Training [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) We trained with 8x A100-80G GPUs for 15 hours. Commodity cost was < $200. We trained for 4 epochs and selected a snapshot at 3 epochs for peak performance. Please await our full releases for further training details. # Prompting It uses the Alpaca format (see [FastChat implementation example](https://github.com/lm-sys/FastChat/blob/daa2b9abe20597ebf34dc5df164d450456610c74/fastchat/conversation.py#L198-L229)): ``` ### Instruction: ### Response: ``` # Citation ```bibtex @software{OpenOrca_Preview1, title = {OpenOrca_Preview1: A LLaMA-13B Model Fine-tuned on Small Portion of OpenOrcaV1 Dataset}, author = {Wing Lian and Bleys Goodson and Eugene Pentland and Austin Cook and Chanvichet Vong and "Teknium"}, year = {2023}, publisher = {HuggingFace}, journal = {HuggingFace repository}, howpublished = {\url{https://https://huggingface.co/Open-Orca/OpenOrca-Preview1-13B}, } ``` ```bibtex @misc{mukherjee2023orca, title={Orca: Progressive Learning from Complex Explanation Traces of GPT-4}, author={Subhabrata Mukherjee and Arindam Mitra and Ganesh Jawahar and Sahaj Agarwal and Hamid Palangi and Ahmed Awadallah}, year={2023}, eprint={2306.02707}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ```bibtex @misc{longpre2023flan, title={The Flan Collection: Designing Data and Methods for Effective Instruction Tuning}, author={Shayne Longpre and Le Hou and Tu Vu and Albert Webson and Hyung Won Chung and Yi Tay and Denny Zhou and Quoc V. Le and Barret Zoph and Jason Wei and Adam Roberts}, year={2023}, eprint={2301.13688}, archivePrefix={arXiv}, primaryClass={cs.AI} } ``` ```bibtex @software{touvron2023llama, title={LLaMA: Open and Efficient Foundation Language Models}, author={Touvron, Hugo and Lavril, Thibaut and Izacard, Gautier and Martinet, Xavier and Lachaux, Marie-Anne and Lacroix, Timoth{\'e}e and Rozi{\`e}re, Baptiste and Goyal, Naman and Hambro, Eric and Azhar, Faisal and Rodriguez, Aurelien and Joulin, Armand and Grave, Edouard and Lample, Guillaume}, journal={arXiv preprint arXiv:2302.13971}, year={2023} } ```
kayteekay/jordan-generator-v1
kayteekay
2023-07-17T06:07:15Z
127
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:CompVis/stable-diffusion-v1-2", "base_model:adapter:CompVis/stable-diffusion-v1-2", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-07-17T02:19:36Z
--- license: creativeml-openrail-m base_model: CompVis/stable-diffusion-v1-2 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA text2image fine-tuning - kayteekay/jordan-generator-v1 These are LoRA adaption weights for CompVis/stable-diffusion-v1-2. The weights were fine-tuned on the kayteekay/jordan-generator-dataset dataset. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png)
Althhecow/CattleMix
Althhecow
2023-07-17T06:00:04Z
0
0
null
[ "region:us" ]
null
2023-07-16T21:23:09Z
Model based on Anything v3 and a few older models that I've since lost track of. This model was originally mixed over 6 months ago, but has stayed useful for cartoonish / anthropomorphic subjects, despite newer models since releasing.
digiplay/CosplayMix_v2
digiplay
2023-07-17T05:59:37Z
10
2
diffusers
[ "diffusers", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "license:other", "autotrain_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-07-17T05:06:32Z
--- license: other tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers inference: false --- Model info : https://civitai.com/models/34502?modelVersionId=48334 Original Author's DEMO image : ![](https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/a3e6d9bc-7f25-4be9-9e92-6681b88df700/width=1024/00161-142530859.jpeg) more image info: https://civitai.com/images/519469
MHRDYN7/distilhubert-finetuned-gtzan
MHRDYN7
2023-07-17T05:48:16Z
158
0
transformers
[ "transformers", "pytorch", "tensorboard", "hubert", "audio-classification", "generated_from_trainer", "dataset:marsyas/gtzan", "base_model:ntu-spml/distilhubert", "base_model:finetune:ntu-spml/distilhubert", "license:apache-2.0", "endpoints_compatible", "region:us" ]
audio-classification
2023-07-17T05:37:35Z
--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan model-index: - name: distilhubert-finetuned-gtzan results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
hyeongjin99/vit-base-aihub_model-v2
hyeongjin99
2023-07-17T05:36:33Z
221
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-07-17T05:21:07Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - precision - recall - f1 model-index: - name: vit-base-aihub_model-v2 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.963855421686747 - name: Precision type: precision value: 0.9609609235289817 - name: Recall type: recall value: 0.9613676432460462 - name: F1 type: f1 value: 0.9604284776111401 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-aihub_model-v2 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.3076 - Accuracy: 0.9639 - Precision: 0.9610 - Recall: 0.9614 - F1: 0.9604 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 1.0 | 3 | 1.2753 | 0.8373 | 0.8563 | 0.7993 | 0.8022 | | No log | 2.0 | 6 | 1.1252 | 0.8675 | 0.8895 | 0.8300 | 0.8333 | | No log | 3.0 | 9 | 0.9427 | 0.8976 | 0.9185 | 0.8696 | 0.8760 | | 1.1721 | 4.0 | 12 | 0.7995 | 0.9398 | 0.9474 | 0.9195 | 0.9246 | | 1.1721 | 5.0 | 15 | 0.6820 | 0.9699 | 0.9704 | 0.9613 | 0.9642 | | 1.1721 | 6.0 | 18 | 0.5927 | 0.9639 | 0.9603 | 0.9583 | 0.9587 | | 0.7084 | 7.0 | 21 | 0.5239 | 0.9759 | 0.9725 | 0.9729 | 0.9725 | | 0.7084 | 8.0 | 24 | 0.4743 | 0.9699 | 0.9665 | 0.9671 | 0.9665 | | 0.7084 | 9.0 | 27 | 0.4436 | 0.9578 | 0.9558 | 0.9556 | 0.9544 | | 0.4668 | 10.0 | 30 | 0.4070 | 0.9639 | 0.9610 | 0.9614 | 0.9604 | | 0.4668 | 11.0 | 33 | 0.3817 | 0.9699 | 0.9665 | 0.9671 | 0.9665 | | 0.4668 | 12.0 | 36 | 0.3625 | 0.9699 | 0.9665 | 0.9671 | 0.9665 | | 0.4668 | 13.0 | 39 | 0.3536 | 0.9578 | 0.9558 | 0.9556 | 0.9544 | | 0.3611 | 14.0 | 42 | 0.3384 | 0.9578 | 0.9558 | 0.9556 | 0.9544 | | 0.3611 | 15.0 | 45 | 0.3249 | 0.9699 | 0.9665 | 0.9671 | 0.9665 | | 0.3611 | 16.0 | 48 | 0.3164 | 0.9699 | 0.9665 | 0.9671 | 0.9665 | | 0.3063 | 17.0 | 51 | 0.3142 | 0.9639 | 0.9610 | 0.9614 | 0.9604 | | 0.3063 | 18.0 | 54 | 0.3122 | 0.9639 | 0.9610 | 0.9614 | 0.9604 | | 0.3063 | 19.0 | 57 | 0.3093 | 0.9639 | 0.9610 | 0.9614 | 0.9604 | | 0.294 | 20.0 | 60 | 0.3076 | 0.9639 | 0.9610 | 0.9614 | 0.9604 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
kayteekay/jordan-generator
kayteekay
2023-07-17T05:28:35Z
3
0
diffusers
[ "diffusers", "art", "lora", "text-to-image", "en", "dataset:kayteekay/jordan-generator-dataset", "license:openrail", "region:us" ]
text-to-image
2023-07-17T04:46:12Z
--- license: openrail datasets: - kayteekay/jordan-generator-dataset language: - en library_name: diffusers pipeline_tag: text-to-image tags: - art - lora ---
zwangab91/q-FrozenLake-v1-4x4-noSlippery
zwangab91
2023-07-17T05:19:06Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-17T05:19:04Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="zwangab91/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
DracoHugging/Distilbert-sentiment-analysis
DracoHugging
2023-07-17T05:12:38Z
130
1
transformers
[ "transformers", "pytorch", "safetensors", "distilbert", "text-classification", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-05T07:20:41Z
--- model-index: - name: DracoHugging/Distilbert-sentiment-analysis results: - task: type: Text Classification # Required. Example: automatic-speech-recognition name: Sentiment Analysis # Optional. Example: Speech Recognition dataset: type: Text-2-Text # Required. Example: common_voice. Use dataset id from https://hf.co/datasets name: knkarthick/dialogsum # Required. A pretty name for the dataset. Example: Common Voice (French) metrics: - type: Validation Loss # Required. Example: wer. Use metric id from https://hf.co/metrics value: 1.08 # Required. Example: 20.90 verified: true --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Distilbert-sentiment-analysis This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.2745 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.1633 | 1.0 | 1178 | 1.1116 | | 1.0524 | 2.0 | 2356 | 1.0836 | | 0.9103 | 3.0 | 3534 | 1.1135 | | 0.7676 | 4.0 | 4712 | 1.1945 | | 0.659 | 5.0 | 5890 | 1.2745 | ### Framework versions - Transformers 4.30.1 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3
will99/document-finetuned-orca-mini-v2-7b
will99
2023-07-17T04:51:26Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-17T04:51:23Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0.dev0
hafidikhsan/wav2vec2-large-xlsr-53-english-pronunciation-evaluation-bs-v1
hafidikhsan
2023-07-17T04:48:17Z
102
0
transformers
[ "transformers", "pytorch", "wav2vec2", "audio-classification", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
audio-classification
2023-07-17T04:47:09Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: wav2vec2-large-xlsr-53-english-pronunciation-evaluation-bs-v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-53-english-pronunciation-evaluation-bs-v1 This model is a fine-tuned version of [jonatasgrosman/wav2vec2-large-xlsr-53-english](https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9211 - Accuracy: 0.718 - F1: 0.7197 - Precision: 0.7231 - Recall: 0.718 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.9511 | 1.0 | 250 | 0.9034 | 0.548 | 0.5357 | 0.5409 | 0.548 | | 0.6108 | 2.0 | 500 | 0.7361 | 0.68 | 0.6727 | 0.6731 | 0.68 | | 0.4412 | 3.0 | 750 | 0.7990 | 0.726 | 0.7188 | 0.7221 | 0.726 | | 0.2178 | 4.0 | 1000 | 0.7983 | 0.764 | 0.7652 | 0.7674 | 0.764 | | 0.1726 | 5.0 | 1250 | 0.9572 | 0.764 | 0.7633 | 0.7647 | 0.764 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
StarRing2022/MiLu-GPT
StarRing2022
2023-07-17T04:47:10Z
146
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-17T04:40:47Z
--- license: apache-2.0 --- # MiLu-GPT 基于GPT2+BERT的语言模型,以少量的纯中文语料从头训练,验证小模型在ChatGPT类似友好能力 GPT2+BERTokenizer从头训练模型(50W闲聊等语料) 环境:<br> WIN10+Torch1.31+Cuda11.6 <br> transformer4.29<br> GIT开源地址:https://github.com/StarRing2022/MiLu-GPT/
casque/meichidarkMix_meichidarkMIX38
casque
2023-07-17T04:39:47Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-17T03:58:55Z
--- license: creativeml-openrail-m ---
FelixChao/baichuan-7b-instruct-ft-adapters-chinese
FelixChao
2023-07-17T04:10:56Z
1
0
peft
[ "peft", "region:us" ]
null
2023-07-17T04:10:54Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0
elvis-d/elvis_trainer
elvis-d
2023-07-17T04:08:35Z
106
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-15T04:20:18Z
--- tags: - generated_from_trainer model-index: - name: elvis_trainer results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # elvis_trainer This model is a fine-tuned version of [vinai/bertweet-base](https://huggingface.co/vinai/bertweet-base) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
Yaxin1992/llama-33b-qlora-en-pt-es
Yaxin1992
2023-07-17T04:06:04Z
0
0
null
[ "tensorboard", "generated_from_trainer", "license:other", "region:us" ]
null
2023-07-16T18:33:36Z
--- license: other base_model: decapoda-research/llama-30b-hf tags: - generated_from_trainer model-index: - name: llama-33b-qlora-en-pt-es results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # llama-33b-qlora-en-pt-es This model is a fine-tuned version of [decapoda-research/llama-30b-hf](https://huggingface.co/decapoda-research/llama-30b-hf) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 3500 ### Training results ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
digiplay/CuriousMerge2.5D_v5
digiplay
2023-07-17T03:59:30Z
260
8
diffusers
[ "diffusers", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-06-19T13:42:53Z
--- license: other tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers inference: true --- Very beautiful 2.5D text-to-image model, look like have a soul in the character. Model info: https://civitai.com/models/79070?modelVersionId=99101 Sample image I made: ![c10137ca-c5a8-4582-8727-34499c9708fa (1).jpeg](https://cdn-uploads.huggingface.co/production/uploads/646c83c871d0c8a6e4455854/7NEAtTMFXTUx0qdbHb3k9.jpeg)
baskorowicaksono/transformers-qa-kaggle-tpu
baskorowicaksono
2023-07-17T03:35:48Z
61
0
transformers
[ "transformers", "tf", "distilbert", "question-answering", "generated_from_keras_callback", "base_model:distilbert/distilbert-base-multilingual-cased", "base_model:finetune:distilbert/distilbert-base-multilingual-cased", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-07-16T11:14:30Z
--- license: apache-2.0 base_model: distilbert-base-multilingual-cased tags: - generated_from_keras_callback model-index: - name: transformers-qa-kaggle-tpu results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # transformers-qa-kaggle-tpu This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.2278 - Train End Logits Accuracy: 0.9244 - Train Start Logits Accuracy: 0.9207 - Validation Loss: 3.8999 - Validation End Logits Accuracy: 0.4812 - Validation Start Logits Accuracy: 0.4542 - Epoch: 14 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 122160, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 2.2837 | 0.4519 | 0.4182 | 2.1117 | 0.4890 | 0.4658 | 0 | | 1.7361 | 0.5642 | 0.5326 | 2.0268 | 0.5035 | 0.4788 | 1 | | 1.4664 | 0.6186 | 0.5893 | 2.0023 | 0.5093 | 0.4833 | 2 | | 1.2479 | 0.6661 | 0.6379 | 2.1252 | 0.5057 | 0.4744 | 3 | | 1.0596 | 0.7076 | 0.6832 | 2.2703 | 0.4975 | 0.4690 | 4 | | 0.8999 | 0.7434 | 0.7214 | 2.3834 | 0.4968 | 0.4714 | 5 | | 0.7661 | 0.7760 | 0.7557 | 2.5503 | 0.4906 | 0.4654 | 6 | | 0.6520 | 0.8042 | 0.7892 | 2.7740 | 0.4922 | 0.4540 | 7 | | 0.5549 | 0.8313 | 0.8156 | 3.0625 | 0.4884 | 0.4607 | 8 | | 0.4739 | 0.8512 | 0.8405 | 3.1365 | 0.4862 | 0.4535 | 9 | | 0.4072 | 0.8691 | 0.8620 | 3.2969 | 0.4830 | 0.4509 | 10 | | 0.3515 | 0.8863 | 0.8786 | 3.4301 | 0.4852 | 0.4530 | 11 | | 0.3025 | 0.9010 | 0.8954 | 3.5350 | 0.4814 | 0.4548 | 12 | | 0.2646 | 0.9127 | 0.9083 | 3.7923 | 0.4832 | 0.4539 | 13 | | 0.2278 | 0.9244 | 0.9207 | 3.8999 | 0.4812 | 0.4542 | 14 | ### Framework versions - Transformers 4.31.0.dev0 - TensorFlow 2.12.0 - Datasets 2.13.1 - Tokenizers 0.13.3
Trickshotblaster/epic70epochs
Trickshotblaster
2023-07-17T03:35:43Z
0
0
keras
[ "keras", "question-answering", "en", "dataset:Open-Orca/OpenOrca", "license:mit", "region:us" ]
question-answering
2023-07-17T03:14:06Z
--- license: mit datasets: - Open-Orca/OpenOrca library_name: keras language: - en pipeline_tag: question-answering --- Trained in 7 hours on a P100 in kaggle using the open orca dataset
AaAsr/weight
AaAsr
2023-07-17T03:29:58Z
1
1
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dreambooth", "base_model:CompVis/stable-diffusion-v1-4", "base_model:finetune:CompVis/stable-diffusion-v1-4", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-06-30T02:31:32Z
--- license: creativeml-openrail-m base_model: CompVis/stable-diffusion-v1-4 instance_prompt: a photo of sks dog tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - AaAsr/weight This is a dreambooth model derived from CompVis/stable-diffusion-v1-4. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False.
thanhduycao/whisper-base-full-data-aug-v1
thanhduycao
2023-07-17T03:24:06Z
78
0
transformers
[ "transformers", "pytorch", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-07-10T17:25:18Z
--- license: apache-2.0 tags: - whisper-event - generated_from_trainer model-index: - name: whisper-base-full-data-aug-v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-base-full-data-aug-v1 This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3136 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - distributed_type: tpu - num_devices: 8 - gradient_accumulation_steps: 2 - total_train_batch_size: 256 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5000 - training_steps: 63840 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.4148 | 1.57 | 5000 | 0.6040 | | 0.3061 | 3.13 | 10000 | 0.4816 | | 0.2601 | 4.7 | 15000 | 0.4329 | | 0.2315 | 6.27 | 20000 | 0.3968 | | 0.2186 | 7.83 | 25000 | 0.3744 | | 0.1992 | 9.4 | 30000 | 0.3563 | | 0.193 | 10.97 | 35000 | 0.3501 | | 0.1812 | 12.53 | 40000 | 0.3445 | | 0.1733 | 14.1 | 45000 | 0.3366 | | 0.1661 | 15.67 | 50000 | 0.3241 | | 0.1604 | 17.23 | 55000 | 0.3168 | | 0.1562 | 18.8 | 60000 | 0.3159 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.1.0a0+gitcc01568 - Datasets 2.13.1 - Tokenizers 0.13.3
uzenhuang/distilgpt2-finetuned-wikitext2-test
uzenhuang
2023-07-17T03:22:43Z
213
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-17T03:03:59Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-wikitext2-test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-wikitext2-test This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.8267 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 277 | 3.8379 | | 3.8669 | 2.0 | 554 | 3.8250 | | 3.8669 | 3.0 | 831 | 3.8267 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
rassom/FrozenLake-v1
rassom
2023-07-17T03:10:24Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-17T03:10:22Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: FrozenLake-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="rassom/FrozenLake-v1", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
huolongguo10/check_sec_tiny
huolongguo10
2023-07-17T03:07:14Z
128
1
transformers
[ "transformers", "pytorch", "safetensors", "bert", "text-classification", "code", "en", "dataset:huolongguo10/insecure", "license:openrail", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-04-30T10:04:00Z
--- license: openrail datasets: - huolongguo10/insecure language: - en library_name: transformers pipeline_tag: text-classification tags: - code --- # check_sec_tiny 检查web参数安全性,支持多种payload(v0.2.0-tiny) ## 类型 ``` LABEL_0: secure LABEL_1: insecure(可能包含payload) ``` ## 使用 ```python import transformers from transformers import BertTokenizer, DataCollatorWithPadding from transformers import AutoModelForSequenceClassification tokenizer = BertTokenizer.from_pretrained('huolongguo10/check_sec_tiny') model = AutoModelForSequenceClassification.from_pretrained('huolongguo10/check_sec_tiny', num_labels=2) import torch def check(text): inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): logits = model(**inputs).logits predicted_class_id = logits.argmax().item() print(f'{logits.argmax().item()}:{text}') return 'secure' if predicted_class_id==0 else 'insecure' ```
dariowsz/whisper-tiny-finetuned-minds-14
dariowsz
2023-07-17T02:53:30Z
76
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "en", "dataset:PolyAI/minds14", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-07-11T13:13:49Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - PolyAI/minds14 metrics: - wer model-index: - name: whisper-tiny-finetuned-minds-14 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: MInDS 14 type: PolyAI/minds14 config: en-US split: train args: en-US metrics: - name: Wer type: wer value: 0.35465116279070 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-tiny-finetuned-minds-14 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the MInDS 14 dataset. It achieves the following results on the evaluation set: - Loss: 0.7154 - Wer Ortho: 0.3540 - Wer: 0.3547 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:-------:| | 0.0007 | 17.86 | 500 | 0.7154 | 0.3540 | 0.3547 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
DAMO-NLP-MT/polylm-13b-fine-grained-shards
DAMO-NLP-MT
2023-07-17T02:36:30Z
11
2
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "zh", "en", "es", "fr", "pt", "ru", "de", "it", "ar", "ja", "ko", "th", "vi", "id", "nl", "pl", "tr", "he", "arxiv:2307.06018", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-17T02:03:12Z
--- language: - zh - en - es - fr - pt - ru - de - it - ar - ja - ko - th - vi - id - nl - pl - tr - he tags: - text-generation license: apache-2.0 --- # Model Details ## Abstract > Large language models (LLMs) demonstrate remarkable ability to comprehend, reason, and generate following nature language instructions. However, the development of LLMs has been primarily focused on high-resource languages, such as English, thereby limiting their applicability and research in other languages. Consequently, we present PolyLM, a multilingual LLM trained on 640 billion (B) tokens, avaliable in two model sizes: 1.7B and 13B. To enhance its multilingual capabilities, we 1) integrate bilingual data into training data; and 2) adopt a curriculum learning strategy that increases the proportion of non-English data from 30% in the first stage to 60% in the final stage during pre-training. Further, we propose a multilingual self-instruct method which automatically generates 132.7K diverse multilingual instructions for model fine-tuning. To assess the model's performance, we collect several existing multilingual tasks, including multilingual understanding, question answering, generation, and translation. Extensive experiments show that PolyLM surpasses other open-source models such as LLaMA and BLOOM on multilingual tasks while maintaining comparable performance in English. ## Model Description > The only difference between this model card and [polylm-13B](https://huggingface.co/DAMO-NLP-MT/polylm-13b) is that it includes finer grained shards. # Citation **BibTeX:** ```bibtex @misc{wei2023polylm, title={PolyLM: An Open Source Polyglot Large Language Model}, author={Xiangpeng Wei and Haoran Wei and Huan Lin and Tianhao Li and Pei Zhang and Xingzhang Ren and Mei Li and Yu Wan and Zhiwei Cao and Binbin Xie and Tianxiang Hu and Shangjie Li and Binyuan Hui and Bowen Yu and Dayiheng Liu and Baosong Yang and Fei Huang and Jun Xie}, year={2023}, eprint={2307.06018}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
Jamessjunk/hitoshiv2
Jamessjunk
2023-07-17T02:29:43Z
0
0
null
[ "license:other", "region:us" ]
null
2023-07-17T02:29:04Z
Temporary Redirect. Redirecting to /Jamessjunk/HitoshiV2/resolve/main/README.md
lucostiguy11/dreambooth_if_1
lucostiguy11
2023-07-17T02:26:09Z
3
0
diffusers
[ "diffusers", "tensorboard", "if", "if-diffusers", "text-to-image", "dreambooth", "base_model:DeepFloyd/IF-I-XL-v1.0", "base_model:finetune:DeepFloyd/IF-I-XL-v1.0", "license:creativeml-openrail-m", "endpoints_compatible", "diffusers:IFPipeline", "region:us" ]
text-to-image
2023-07-17T01:37:40Z
--- license: creativeml-openrail-m base_model: DeepFloyd/IF-I-XL-v1.0 instance_prompt: A photo of sks dog in a bucket tags: - if - if-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - lucostiguy11/dreambooth_if_1 This is a dreambooth model derived from DeepFloyd/IF-I-XL-v1.0. The weights were trained on A photo of sks dog in a bucket using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) DreamBooth for the text encoder was enabled: False.
samiul25/ppo-LunarLander-v2
samiul25
2023-07-17T02:25:41Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-17T02:25:07Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: ppo results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 248.09 +/- 22.88 name: mean_reward verified: false --- # **ppo** Agent playing **LunarLander-v2** This is a trained model of a **ppo** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
abhi-pwr/news-summarizer
abhi-pwr
2023-07-17T02:17:24Z
106
0
transformers
[ "transformers", "pytorch", "safetensors", "t5", "text2text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-07-16T10:58:39Z
--- {} --- # news-summarizer # T5 Base Model Fine-Tuned for News Article Summarization This repository contains a fine-tuned T5 base model for news article summarization. The model has been trained to generate concise summaries of news articles given their full text. ## Model Details - Model: T5 Base - Fine-Tuning Task: News Article Summarization - Training Data: Dataset of news articles with corresponding summaries - Tokenizer: T5Tokenizer - Maximum Input Length: 512 tokens - Maximum Output Length: 150 tokens - Beam Search: Enabled (with 4 beams) - Early Stopping: Enabled ## Usage To use the fine-tuned T5 model for news article summarization, follow the instructions below: 1. Install the required dependencies: pip install transformers torch 2. Load the fine-tuned model: ```python from transformers import T5Tokenizer, T5ForConditionalGeneration model_name = 'abhi-pwr/news-summarizer' tokenizer = T5Tokenizer.from_pretrained(model_name) model = T5ForConditionalGeneration.from_pretrained(model_name) 3.Generate summaries: input_text = "Enter the news article here." inputs = tokenizer.encode(input_text, return_tensors='pt', max_length=512, truncation=True) summary_ids = model.generate(inputs, max_length=150, num_beams=4, early_stopping=True) summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
w4yw4rd/Reinforce-1
w4yw4rd
2023-07-17T02:15:08Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-07-17T02:14:18Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
fnlp/moss-rlhf-policy-model-7B-en
fnlp
2023-07-17T02:13:50Z
0
1
null
[ "llm", "moss", "rlhf", "policy model", "zh", "arxiv:2307.04964", "license:agpl-3.0", "region:us" ]
null
2023-07-14T07:05:20Z
--- license: agpl-3.0 language: - zh tags: - llm - moss - rlhf - policy model --- # MOSS-RLHF ### *MOSS-RLHF & "Secrets of RLHF in Large Language Models Part I: PPO" <br>👉 <a href="https://arxiv.org/abs/2307.04964" target="_blank">[Technical report]</a> <a href="https://openlmlab.github.io/MOSS-RLHF/" target="_blank">[Home page]* ## 🌟 News ### 👉 Wed, 12. July 2023. We have released Chinese reward model based OpenChineseLlama-7B! [moss-rlhf-reward-model-7B-zh](https://huggingface.co/Ablustrund/moss-rlhf-reward-model-7B-zh/tree/main) <br> ### 👉 Thu, 13. July 2023. We have released English reward model and SFT model based Llama-7B! [moss-rlhf-reward-model-7B-en](https://huggingface.co/fnlp/moss-rlhf-reward-model-7B-en) [moss-rlhf-sft-model-7B-en](https://huggingface.co/fnlp/moss-rlhf-sft-model-7B-en) <br> ## 🧾 Open-source List - [x] Open source code for RL training in large language models. - [x] A 7B Chinese reward model based on openChineseLlama. - [x] A 7B English reward model based on Llama-7B. - [x] SFT model for English. - [ ] Policy model for English after RLHF. - ... ## 🌠 Introduction Due to the challenges of reward design, environment interaction, and agent training, coupled with huge trial and error cost of large language models, there is a significant barrier for AI researchers to motivate the development of technical alignment and safe landing of LLMs. The stable training of RLHF has still been a puzzle. In this technical report, we intend to help researchers to train their models stably with human feedback. Contributions are summarized as follows: 1) We release competitive Chinese and English reward models, respectively, which have good cross-model generalization ability, alleviating the cost of relabeling human preference data; 2) We conduct in-depth analysis on the inner workings of PPO algorithm and propose the PPO-max algorithm to ensure stable model training; 3) We release the complete PPO-max codes to ensure that the LLMs in the current SFT stage can be better aligned with humans. ## 🔩 Requirements & Setup This repository works on Python 3.8 and PyTorch 1.13.1. We recommend using the **conda** virtual environment to run the code. #### Step 1: Create a new Python virtual environment ```bash conda update conda -n base -c defaults conda create -n rlhf python=3.8 conda activate rlhf ``` #### Step 2: Install PyTorch and TensorBoard ```bash conda install pytorch==1.13.1 pytorch-cuda=11.7 tensorboard -c pytorch -c nvidia ``` #### Step 3: Install the remaining dependencies ```bash conda install datasets accelerate safetensors chardet cchardet -c huggingface -c conda-forge pip3 install transformers sentencepiece einops triton==1.0.0 rouge jionlp==1.4.14 nltk sacrebleu cpm_kernels apt install libaio-dev DS_BUILD_OPS=1 pip install deepspeed ``` ## ✨ Start training your own model! Run code in a few steps. ### Step 1: Recover Reward model weights We can not directly release the full weight of the reward model because of protocol restrictions. You can merge the diff weight with original Llama-7B to recover the reward model we used. We upload the diff models, thanks to tatsu-lab, you can recover the reward model follow these steps: ```bash 1) Download the weight diff into your local machine. The weight diff is located at: # For English: TODO # For Chinese: https://huggingface.co/Ablustrund/moss-rlhf-reward-model-7B-zh/tree/main 2) Merge the weight diff with the original Llama-7B: # For English: # Reward model python merge_weight_en.py recover --path_raw decapoda-research/llama-7b-hf --path_diff ./models/moss-rlhf-reward-model-7B-en/diff --path_tuned ./models/moss-rlhf-reward-model-7B-en/recover --model_type reward # SFT model python merge_weight_en.py recover --path_raw decapoda-research/llama-7b-hf --path_diff ./models/moss-rlhf-sft-model-7B-en/diff --path_tuned ./models/moss-rlhf-sft-model-7B-en/recover --model_type sft # Policy model TODO # For Chinese: python merge_weight_zh.py recover --path_raw decapoda-research/llama-7b-hf --path_diff ./models/moss-rlhf-reward-model-7B-zh/diff --path_tuned ./models/moss-rlhf-reward-model-7B-zh/recover ``` ### Step 2: Select your own SFT model. Because of some limitations, we can not release the **Chinese** SFT model (Currently). You can use your own SFT model, or a strong base model instead of our SFT model. ### Step 3: Start training Run the command below. ``` # For Chinese: # You need to use your own sft model currently. bash run_zh.sh # For English: # We have loaded the sft model and reward model to huggingface. bash run_en.sh ``` ## Citation ```bibtex @article{zheng2023secrets, title={Secrets of RLHF in Large Language Models Part I: PPO}, author={Rui Zheng and Shihan Dou and Songyang Gao and Wei Shen and Binghai Wang and Yan Liu and Senjie Jin and Qin Liu and Limao Xiong and Lu Chen and Zhiheng Xi and Yuhao Zhou and Nuo Xu and Wenbin Lai and Minghao Zhu and Rongxiang Weng and Wensen Cheng and Cheng Chang and Zhangyue Yin and Yuan Hua and Haoran Huang and Tianxiang Sun and Hang Yan and Tao Gui and Qi Zhang and Xipeng Qiu and Xuanjing Huang}, year={2023}, eprint={2307.04964}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
dyvapandhu/vit-base-molecul-v2-5-epoch
dyvapandhu
2023-07-17T01:44:42Z
193
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-07-16T10:13:46Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: vit-base-molecul-v2-5-epoch results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-molecul-v2-5-epoch This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5290 - Accuracy: 0.77 - F1: 0.7698 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1 - Datasets 2.13.1 - Tokenizers 0.11.0
NasimB/all-base-guten-rarity-all-iorder-rarity-all-est-5p5k-mostf
NasimB
2023-07-17T01:29:02Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:generator", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-16T23:44:56Z
--- license: mit tags: - generated_from_trainer datasets: - generator model-index: - name: all-base-guten-rarity-all-iorder-rarity-all-est-5p5k-mostf results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-base-guten-rarity-all-iorder-rarity-all-est-5p5k-mostf This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 4.3469 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 6.7657 | 0.31 | 500 | 5.6541 | | 5.4202 | 0.63 | 1000 | 5.2254 | | 5.0681 | 0.94 | 1500 | 4.9792 | | 4.7759 | 1.25 | 2000 | 4.8288 | | 4.6402 | 1.56 | 2500 | 4.7011 | | 4.5298 | 1.88 | 3000 | 4.5950 | | 4.3183 | 2.19 | 3500 | 4.5365 | | 4.2235 | 2.5 | 4000 | 4.4739 | | 4.1818 | 2.82 | 4500 | 4.4112 | | 4.0408 | 3.13 | 5000 | 4.3818 | | 3.8987 | 3.44 | 5500 | 4.3582 | | 3.8824 | 3.75 | 6000 | 4.3198 | | 3.8108 | 4.07 | 6500 | 4.3076 | | 3.6036 | 4.38 | 7000 | 4.3014 | | 3.5997 | 4.69 | 7500 | 4.2881 | | 3.5879 | 5.01 | 8000 | 4.2752 | | 3.4104 | 5.32 | 8500 | 4.2857 | | 3.4084 | 5.63 | 9000 | 4.2831 | | 3.405 | 5.94 | 9500 | 4.2820 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.11.0+cu113 - Datasets 2.13.0 - Tokenizers 0.13.3
hansanguw/HSCho_test
hansanguw
2023-07-17T01:26:47Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-17T01:26:41Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0.dev0
NasimB/all-base-guten-rarity-all-end-19k-no-repetition
NasimB
2023-07-17T01:09:22Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:generator", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-16T23:24:20Z
--- license: mit tags: - generated_from_trainer datasets: - generator model-index: - name: all-base-guten-rarity-all-end-19k-no-repetition results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-base-guten-rarity-all-end-19k-no-repetition This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 4.3413 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 6.761 | 0.31 | 500 | 5.6601 | | 5.4095 | 0.63 | 1000 | 5.2183 | | 5.0671 | 0.94 | 1500 | 4.9632 | | 4.7721 | 1.26 | 2000 | 4.8195 | | 4.6309 | 1.57 | 2500 | 4.6918 | | 4.521 | 1.89 | 3000 | 4.5850 | | 4.3114 | 2.2 | 3500 | 4.5239 | | 4.2159 | 2.52 | 4000 | 4.4585 | | 4.1761 | 2.83 | 4500 | 4.4018 | | 4.0248 | 3.15 | 5000 | 4.3747 | | 3.8954 | 3.46 | 5500 | 4.3491 | | 3.8848 | 3.78 | 6000 | 4.3100 | | 3.7789 | 4.09 | 6500 | 4.2990 | | 3.6043 | 4.41 | 7000 | 4.2934 | | 3.5959 | 4.72 | 7500 | 4.2789 | | 3.5641 | 5.03 | 8000 | 4.2738 | | 3.4039 | 5.35 | 8500 | 4.2779 | | 3.4003 | 5.66 | 9000 | 4.2766 | | 3.4051 | 5.98 | 9500 | 4.2761 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.11.0+cu113 - Datasets 2.13.0 - Tokenizers 0.13.3
Ankammarao/Telugu_to_English_Translation_Bot
Ankammarao
2023-07-17T00:55:34Z
0
0
null
[ "license:other", "region:us" ]
null
2023-07-17T00:37:06Z
--- license: other --- from telegram import Update from telegram.ext import Updater, CommandHandler, MessageHandler, Filters, CallbackContext from googletrans import Translator BOT_TOKEN = '6064527106:AAG_cnj0EprbaEpcUXnGfqvZ7zcKkESbM-8' def start(update: Update, _: CallbackContext): update.message.reply_text("Welcome! I can help you translate Telugu to English. Just send me any Telugu text!") def translate_telugu_to_english(text): translator = Translator() result = translator.translate(text, src='te', dest='en') return result.text def translate_message(update: Update, _: CallbackContext): message = update.message.text translation = translate_telugu_to_english(message) update.message.reply_text(f"English Translation: {translation}") def main(): updater = Updater(BOT_TOKEN) dispatcher = updater.dispatcher dispatcher.add_handler(CommandHandler("start", start)) dispatcher.add_handler(MessageHandler(Filters.text & ~Filters.command, translate_message)) updater.start_polling() print("Bot started polling for messages...") updater.idle() if __name__ == "__main__": main()
peterdamn/distilhubert-finetuned-gtzan
peterdamn
2023-07-17T00:37:21Z
6
0
transformers
[ "transformers", "pytorch", "hubert", "audio-classification", "generated_from_trainer", "dataset:marsyas/gtzan", "license:apache-2.0", "endpoints_compatible", "region:us" ]
audio-classification
2023-07-15T15:29:56Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 1.2454 - Accuracy: 0.82 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 40 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.2107 | 1.0 | 112 | 2.2411 | 0.31 | | 2.0193 | 2.0 | 225 | 1.9900 | 0.53 | | 1.7491 | 3.0 | 337 | 1.6436 | 0.59 | | 1.5096 | 4.0 | 450 | 1.3625 | 0.63 | | 0.9801 | 5.0 | 562 | 1.0769 | 0.75 | | 0.8603 | 6.0 | 675 | 0.9399 | 0.78 | | 0.5573 | 7.0 | 787 | 0.8290 | 0.77 | | 0.5776 | 8.0 | 900 | 0.6834 | 0.82 | | 0.4687 | 9.0 | 1012 | 0.6522 | 0.82 | | 0.3513 | 10.0 | 1125 | 0.6564 | 0.82 | | 0.1691 | 11.0 | 1237 | 0.6628 | 0.84 | | 0.0384 | 12.0 | 1350 | 0.8602 | 0.81 | | 0.0218 | 13.0 | 1462 | 0.8367 | 0.85 | | 0.0057 | 14.0 | 1575 | 0.9951 | 0.83 | | 0.0041 | 15.0 | 1687 | 1.0021 | 0.84 | | 0.0027 | 16.0 | 1800 | 1.0215 | 0.82 | | 0.0021 | 17.0 | 1912 | 0.9737 | 0.83 | | 0.0017 | 18.0 | 2025 | 1.0321 | 0.85 | | 0.0015 | 19.0 | 2137 | 0.9519 | 0.81 | | 0.0013 | 20.0 | 2250 | 0.9298 | 0.82 | | 0.0011 | 21.0 | 2362 | 0.9627 | 0.83 | | 0.001 | 22.0 | 2475 | 1.1373 | 0.82 | | 0.0009 | 23.0 | 2587 | 1.0855 | 0.83 | | 0.0008 | 24.0 | 2700 | 0.9979 | 0.81 | | 0.0008 | 25.0 | 2812 | 1.0956 | 0.82 | | 0.0009 | 26.0 | 2925 | 0.9861 | 0.82 | | 0.0007 | 27.0 | 3037 | 1.1387 | 0.83 | | 0.0006 | 28.0 | 3150 | 1.1965 | 0.83 | | 0.0006 | 29.0 | 3262 | 1.1527 | 0.81 | | 0.0007 | 30.0 | 3375 | 1.0609 | 0.82 | | 0.0006 | 31.0 | 3487 | 1.1770 | 0.81 | | 0.0801 | 32.0 | 3600 | 1.2290 | 0.82 | | 0.0005 | 33.0 | 3712 | 1.1785 | 0.83 | | 0.0005 | 34.0 | 3825 | 1.2154 | 0.83 | | 0.0004 | 35.0 | 3937 | 1.2250 | 0.83 | | 0.0004 | 36.0 | 4050 | 1.2280 | 0.82 | | 0.0004 | 37.0 | 4162 | 1.2364 | 0.83 | | 0.0004 | 38.0 | 4275 | 1.2379 | 0.82 | | 0.0004 | 39.0 | 4387 | 1.2483 | 0.83 | | 0.0004 | 39.82 | 4480 | 1.2454 | 0.82 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1 - Datasets 2.12.0 - Tokenizers 0.13.2
KingKazma/xsum_gpt2_prompt_tuning_500_10_3000_8_e2_s6789_v3
KingKazma
2023-07-17T00:37:12Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-17T00:37:12Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
KingKazma/xsum_gpt2_prompt_tuning_500_10_3000_8_e1_s6789_v3
KingKazma
2023-07-17T00:30:14Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-17T00:30:13Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
KingKazma/xsum_gpt2_p_tuning_500_10_3000_8_e9_s6789_v3
KingKazma
2023-07-17T00:24:11Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-17T00:24:10Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
KingKazma/xsum_gpt2_prompt_tuning_500_10_3000_8_e-1_s6789_v3
KingKazma
2023-07-17T00:16:16Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-17T00:16:15Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
KingKazma/xsum_gpt2_lora_500_10_3000_8_e9_s55555_v3
KingKazma
2023-07-17T00:09:03Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-17T00:09:01Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
dsmonk/xgen-7b-tuned-alpaca
dsmonk
2023-07-17T00:04:40Z
0
0
null
[ "tensorboard", "generated_from_trainer", "base_model:Salesforce/xgen-7b-8k-base", "base_model:finetune:Salesforce/xgen-7b-8k-base", "license:apache-2.0", "region:us" ]
null
2023-07-16T21:52:46Z
--- license: apache-2.0 base_model: Salesforce/xgen-7b-8k-base tags: - generated_from_trainer model-index: - name: xgen-7b-tuned-alpaca results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xgen-7b-tuned-alpaca This model is a fine-tuned version of [Salesforce/xgen-7b-8k-base](https://huggingface.co/Salesforce/xgen-7b-8k-base) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.4.0 - Tokenizers 0.12.1
KingKazma/xsum_gpt2_p_tuning_500_10_3000_8_e6_s6789_v3
KingKazma
2023-07-17T00:01:27Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-17T00:01:26Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
KingKazma/xsum_gpt2_lora_500_10_3000_8_e7_s55555_v3
KingKazma
2023-07-16T23:55:02Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-16T23:55:01Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
KingKazma/xsum_gpt2_p_tuning_500_10_3000_8_e4_s6789_v3
KingKazma
2023-07-16T23:46:20Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-16T23:46:18Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
KingKazma/xsum_gpt2_p_tuning_500_10_3000_8_e3_s6789_v3
KingKazma
2023-07-16T23:38:46Z
1
0
peft
[ "peft", "region:us" ]
null
2023-07-16T23:38:44Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
abgoswam/bloom_marketmail_32
abgoswam
2023-07-16T23:34:10Z
2
0
peft
[ "peft", "region:us" ]
null
2023-07-16T23:34:05Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0.dev0
KingKazma/xsum_gpt2_p_tuning_500_10_3000_8_e1_s6789_v3
KingKazma
2023-07-16T23:23:37Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-16T23:23:36Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
KingKazma/xsum_gpt2_lora_500_10_3000_8_e2_s55555_v3
KingKazma
2023-07-16T23:20:02Z
1
0
peft
[ "peft", "region:us" ]
null
2023-07-16T23:20:01Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
boostcamp-5th-nlp07/kullm-polyglot-5.8b-finetuning_0717
boostcamp-5th-nlp07
2023-07-16T23:19:30Z
3
0
peft
[ "peft", "region:us" ]
null
2023-07-16T23:19:26Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0.dev0
amirabdullah19852020/pythia_70m_ppo_imdb_sentiment_with_checkpoints
amirabdullah19852020
2023-07-16T23:17:02Z
56
0
transformers
[ "transformers", "pytorch", "gpt_neox", "text-generation", "trl", "reinforcement-learning", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
reinforcement-learning
2023-07-16T11:20:05Z
--- license: apache-2.0 tags: - trl - transformers - reinforcement-learning --- # TRL Model This is a [TRL language model](https://github.com/lvwerra/trl) that has been fine-tuned with reinforcement learning to guide the model outputs according to a value, function, or human feedback. The model can be used for text generation. ## Usage To use this model for inference, first install the TRL library: ```bash python -m pip install trl ``` You can then generate text as follows: ```python from transformers import pipeline generator = pipeline("text-generation", model="amirabdullah19852020//tmp/tmpvqhw4_hp/amirabdullah19852020/pythia_70m_ppo_imdb_sentiment_with_checkpoints") outputs = generator("Hello, my llama is cute") ``` If you want to use the model for training or to obtain the outputs from the value head, load the model as follows: ```python from transformers import AutoTokenizer from trl import AutoModelForCausalLMWithValueHead tokenizer = AutoTokenizer.from_pretrained("amirabdullah19852020//tmp/tmpvqhw4_hp/amirabdullah19852020/pythia_70m_ppo_imdb_sentiment_with_checkpoints") model = AutoModelForCausalLMWithValueHead.from_pretrained("amirabdullah19852020//tmp/tmpvqhw4_hp/amirabdullah19852020/pythia_70m_ppo_imdb_sentiment_with_checkpoints") inputs = tokenizer("Hello, my llama is cute", return_tensors="pt") outputs = model(**inputs, labels=inputs["input_ids"]) ```
KingKazma/xsum_gpt2_p_tuning_500_10_3000_8_e0_s6789_v3
KingKazma
2023-07-16T23:16:03Z
1
0
peft
[ "peft", "region:us" ]
null
2023-07-16T23:16:01Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
KingKazma/xsum_gpt2_lora_500_10_3000_8_e1_s55555_v3
KingKazma
2023-07-16T23:13:02Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-16T23:13:01Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
KingKazma/xsum_gpt2_p_tuning_500_10_3000_8_e-1_s6789_v3
KingKazma
2023-07-16T23:08:28Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-16T23:08:26Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
NasimB/aochildes-guten-log-rarity-all-no-cut
NasimB
2023-07-16T22:59:51Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:generator", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-16T20:50:33Z
--- license: mit tags: - generated_from_trainer datasets: - generator model-index: - name: aochildes-guten-log-rarity-all-no-cut results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # aochildes-guten-log-rarity-all-no-cut This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 4.3677 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 6.7164 | 0.29 | 500 | 5.6323 | | 5.3447 | 0.59 | 1000 | 5.2052 | | 5.0011 | 0.88 | 1500 | 4.9552 | | 4.7272 | 1.17 | 2000 | 4.8144 | | 4.5727 | 1.47 | 2500 | 4.6937 | | 4.4591 | 1.76 | 3000 | 4.5928 | | 4.3272 | 2.05 | 3500 | 4.5232 | | 4.1423 | 2.35 | 4000 | 4.4760 | | 4.1152 | 2.64 | 4500 | 4.4205 | | 4.0725 | 2.93 | 5000 | 4.3703 | | 3.8638 | 3.23 | 5500 | 4.3718 | | 3.8167 | 3.52 | 6000 | 4.3411 | | 3.7993 | 3.81 | 6500 | 4.3167 | | 3.6795 | 4.11 | 7000 | 4.3235 | | 3.5285 | 4.4 | 7500 | 4.3099 | | 3.5218 | 4.69 | 8000 | 4.3012 | | 3.5096 | 4.99 | 8500 | 4.2923 | | 3.3413 | 5.28 | 9000 | 4.3116 | | 3.3298 | 5.57 | 9500 | 4.3113 | | 3.3314 | 5.87 | 10000 | 4.3111 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.11.0+cu113 - Datasets 2.13.0 - Tokenizers 0.13.3
KingKazma/xsum_gpt2_lora_500_10_3000_8_e-1_s55555_v3
KingKazma
2023-07-16T22:58:57Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-16T22:58:56Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
Milanesa16/KimKwangSuk
Milanesa16
2023-07-16T22:51:19Z
0
0
null
[ "rvc", "rvcv2", "korean", "kpopold", "corea", "ko", "license:openrail", "region:us" ]
null
2023-07-16T22:39:46Z
--- license: openrail language: - ko tags: - rvc - rvcv2 - korean - kpopold - corea ---
KingKazma/xsum_gpt2_lora_500_10_3000_8_e8_s108_v3
KingKazma
2023-07-16T22:42:00Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-16T22:41:59Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
KingKazma/xsum_gpt2_lora_500_10_3000_8_e7_s108_v3
KingKazma
2023-07-16T22:35:00Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-16T22:34:59Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
KingKazma/xsum_gpt2_lora_500_10_3000_8_e6_s108_v3
KingKazma
2023-07-16T22:28:01Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-16T22:28:00Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
KingKazma/xsum_gpt2_lora_500_10_3000_8_e5_s108_v3
KingKazma
2023-07-16T22:20:58Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-16T22:20:58Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
KingKazma/xsum_gpt2_lora_500_10_3000_8_e4_s108_v3
KingKazma
2023-07-16T22:13:58Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-16T22:13:57Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
SushantGautam/videomae-small-finetuned-kinetics-finetuned-SoccerNetChunks-NoInference
SushantGautam
2023-07-16T22:11:23Z
31
0
transformers
[ "transformers", "pytorch", "videomae", "generated_from_trainer", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
null
2023-07-15T14:30:20Z
--- license: cc-by-nc-4.0 tags: - generated_from_trainer metrics: - accuracy - matthews_correlation model-index: - name: videomae-small-finetuned-kinetics-finetuned-SoccerNetChunks-NoInference results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # videomae-small-finetuned-kinetics-finetuned-SoccerNetChunks-NoInference This model is a fine-tuned version of [MCG-NJU/videomae-small-finetuned-kinetics](https://huggingface.co/MCG-NJU/videomae-small-finetuned-kinetics) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9787 - Accuracy: 0.6333 - Balanced Accuracy: 0.6333 - Matthews Correlation: 0.5649 - Confusion Matrix: [[1007 111 66 107 22 59] [ 222 935 74 50 19 71] [ 114 27 969 172 77 11] [ 240 50 259 686 103 32] [ 154 59 299 489 343 27] [ 72 20 6 2 2 1268]] - 0 Ball out of play: {'precision': 0.556661138750691, 'recall': 0.7339650145772595, 'f1-score': 0.6331342345174474, 'support': 1372.0} - Precision 0: 0.5567 - Recall 0: 0.7340 - F1-score 0: 0.6331 - Support 0: 1372.0 - 1 Foul: {'precision': 0.7778702163061564, 'recall': 0.6819839533187454, 'f1-score': 0.7267780800621843, 'support': 1371.0} - Precision 1: 0.7779 - Recall 1: 0.6820 - F1-score 1: 0.7268 - Support 1: 1371.0 - 2 Goal: {'precision': 0.5791990436341901, 'recall': 0.7072992700729926, 'f1-score': 0.6368715083798882, 'support': 1370.0} - Precision 2: 0.5792 - Recall 2: 0.7073 - F1-score 2: 0.6369 - Support 2: 1370.0 - 3 Shots off target: {'precision': 0.4555112881806109, 'recall': 0.5007299270072992, 'f1-score': 0.4770514603616134, 'support': 1370.0} - Precision 3: 0.4555 - Recall 3: 0.5007 - F1-score 3: 0.4771 - Support 3: 1370.0 - 4 Shots on target: {'precision': 0.6060070671378092, 'recall': 0.25018234865062, 'f1-score': 0.3541559112028911, 'support': 1371.0} - Precision 4: 0.6060 - Recall 4: 0.2502 - F1-score 4: 0.3542 - Support 4: 1371.0 - 5 Throw-in: {'precision': 0.8637602179836512, 'recall': 0.9255474452554745, 'f1-score': 0.8935870331219168, 'support': 1370.0} - Precision 5: 0.8638 - Recall 5: 0.9255 - F1-score 5: 0.8936 - Support 5: 1370.0 - Precision Macro avg: 0.6398 - Recall Macro avg: 0.6333 - F1-score Macro avg: 0.6203 - Support Macro avg: 8224.0 - Precision Weighted avg: 0.6398 - Recall Weighted avg: 0.6333 - F1-score Weighted avg: 0.6202 - Support Weighted avg: 8224.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 20620 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Balanced Accuracy | Matthews Correlation | Confusion Matrix | 0 Ball out of play | Precision 0 | Recall 0 | F1-score 0 | Support 0 | 1 Foul | Precision 1 | Recall 1 | F1-score 1 | Support 1 | 2 Goal | Precision 2 | Recall 2 | F1-score 2 | Support 2 | 3 Shots off target | Precision 3 | Recall 3 | F1-score 3 | Support 3 | 4 Shots on target | Precision 4 | Recall 4 | F1-score 4 | Support 4 | 5 Throw-in | Precision 5 | Recall 5 | F1-score 5 | Support 5 | Precision Macro avg | Recall Macro avg | F1-score Macro avg | Support Macro avg | Precision Weighted avg | Recall Weighted avg | F1-score Weighted avg | Support Weighted avg | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:-----------------:|:--------------------:|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:-----------:|:--------:|:----------:|:---------:|:-------------------------------------------------------------------------------------------------------------------:|:-----------:|:--------:|:----------:|:---------:|:-------------------------------------------------------------------------------------------------------------------:|:-----------:|:--------:|:----------:|:---------:|:--------------------------------------------------------------------------------------------------------------------:|:-----------:|:--------:|:----------:|:---------:|:---------------------------------------------------------------------------------------------------------------------:|:-----------:|:--------:|:----------:|:---------:|:------------------------------------------------------------------------------------------------------------------:|:-----------:|:--------:|:----------:|:---------:|:-------------------:|:----------------:|:------------------:|:-----------------:|:----------------------:|:-------------------:|:---------------------:|:--------------------:| | 1.5371 | 0.05 | 1031 | 1.2696 | 0.4884 | 0.4885 | 0.3949 | [[ 214 227 131 266 173 361] [ 24 763 108 72 97 307] [ 20 29 893 202 140 86] [ 34 32 436 460 320 88] [ 18 21 459 363 403 107] [ 3 22 24 14 23 1284]] | {'precision': 0.6837060702875399, 'recall': 0.15597667638483964, 'f1-score': 0.2540059347181009, 'support': 1372.0} | 0.6837 | 0.1560 | 0.2540 | 1372.0 | {'precision': 0.6974405850091407, 'recall': 0.5565280816921955, 'f1-score': 0.6190669371196754, 'support': 1371.0} | 0.6974 | 0.5565 | 0.6191 | 1371.0 | {'precision': 0.4353973671379815, 'recall': 0.6518248175182482, 'f1-score': 0.5220695703010816, 'support': 1370.0} | 0.4354 | 0.6518 | 0.5221 | 1370.0 | {'precision': 0.33405954974582425, 'recall': 0.3357664233576642, 'f1-score': 0.3349108117946851, 'support': 1370.0} | 0.3341 | 0.3358 | 0.3349 | 1370.0 | {'precision': 0.3486159169550173, 'recall': 0.2939460247994165, 'f1-score': 0.3189552829442026, 'support': 1371.0} | 0.3486 | 0.2939 | 0.3190 | 1371.0 | {'precision': 0.5750111957008509, 'recall': 0.9372262773722628, 'f1-score': 0.7127393838467944, 'support': 1370.0} | 0.5750 | 0.9372 | 0.7127 | 1370.0 | 0.5124 | 0.4885 | 0.4603 | 8224.0 | 0.5124 | 0.4884 | 0.4602 | 8224.0 | | 0.946 | 0.1 | 2062 | 1.1950 | 0.4993 | 0.4993 | 0.4176 | [[1020 44 64 224 10 10] [ 510 602 79 135 24 21] [ 117 25 758 434 30 6] [ 206 32 217 883 25 7] [ 156 21 238 889 61 6] [ 394 48 39 102 5 782]] | {'precision': 0.42446941323345816, 'recall': 0.7434402332361516, 'f1-score': 0.5403973509933775, 'support': 1372.0} | 0.4245 | 0.7434 | 0.5404 | 1372.0 | {'precision': 0.7797927461139896, 'recall': 0.4390955506929249, 'f1-score': 0.5618292113859076, 'support': 1371.0} | 0.7798 | 0.4391 | 0.5618 | 1371.0 | {'precision': 0.5433691756272402, 'recall': 0.5532846715328467, 'f1-score': 0.5482820976491862, 'support': 1370.0} | 0.5434 | 0.5533 | 0.5483 | 1370.0 | {'precision': 0.33108361454818147, 'recall': 0.6445255474452555, 'f1-score': 0.43745355461976715, 'support': 1370.0} | 0.3311 | 0.6445 | 0.4375 | 1370.0 | {'precision': 0.3935483870967742, 'recall': 0.04449307075127644, 'f1-score': 0.0799475753604194, 'support': 1371.0} | 0.3935 | 0.0445 | 0.0799 | 1371.0 | {'precision': 0.9399038461538461, 'recall': 0.5708029197080292, 'f1-score': 0.7102633969118983, 'support': 1370.0} | 0.9399 | 0.5708 | 0.7103 | 1370.0 | 0.5687 | 0.4993 | 0.4797 | 8224.0 | 0.5687 | 0.4993 | 0.4797 | 8224.0 | | 1.6051 | 0.15 | 3093 | 1.1348 | 0.5418 | 0.5419 | 0.4626 | [[ 849 48 194 135 31 115] [ 408 534 225 27 63 114] [ 71 28 1101 103 49 18] [ 165 21 516 509 127 32] [ 116 15 563 379 262 36] [ 87 9 44 13 16 1201]] | {'precision': 0.5005896226415094, 'recall': 0.6188046647230321, 'f1-score': 0.5534550195567145, 'support': 1372.0} | 0.5006 | 0.6188 | 0.5535 | 1372.0 | {'precision': 0.815267175572519, 'recall': 0.38949671772428884, 'f1-score': 0.5271470878578479, 'support': 1371.0} | 0.8153 | 0.3895 | 0.5271 | 1371.0 | {'precision': 0.41657207718501704, 'recall': 0.8036496350364963, 'f1-score': 0.5487166708198357, 'support': 1370.0} | 0.4166 | 0.8036 | 0.5487 | 1370.0 | {'precision': 0.4365351629502573, 'recall': 0.3715328467153285, 'f1-score': 0.40141955835962145, 'support': 1370.0} | 0.4365 | 0.3715 | 0.4014 | 1370.0 | {'precision': 0.4781021897810219, 'recall': 0.1911013858497447, 'f1-score': 0.273058884835852, 'support': 1371.0} | 0.4781 | 0.1911 | 0.2731 | 1371.0 | {'precision': 0.7922163588390502, 'recall': 0.8766423357664234, 'f1-score': 0.8322938322938324, 'support': 1370.0} | 0.7922 | 0.8766 | 0.8323 | 1370.0 | 0.5732 | 0.5419 | 0.5227 | 8224.0 | 0.5732 | 0.5418 | 0.5227 | 8224.0 | | 1.2631 | 1.0 | 4124 | 0.9987 | 0.6069 | 0.6069 | 0.5309 | [[ 692 217 105 187 53 118] [ 127 995 63 42 38 106] [ 40 52 996 142 127 13] [ 80 84 360 541 273 32] [ 41 71 368 321 546 24] [ 58 38 30 8 15 1221]] | {'precision': 0.6666666666666666, 'recall': 0.5043731778425656, 'f1-score': 0.5742738589211619, 'support': 1372.0} | 0.6667 | 0.5044 | 0.5743 | 1372.0 | {'precision': 0.6829100892244337, 'recall': 0.7257476294675419, 'f1-score': 0.7036775106082037, 'support': 1371.0} | 0.6829 | 0.7257 | 0.7037 | 1371.0 | {'precision': 0.518210197710718, 'recall': 0.727007299270073, 'f1-score': 0.6051032806804374, 'support': 1370.0} | 0.5182 | 0.7270 | 0.6051 | 1370.0 | {'precision': 0.43593875906526997, 'recall': 0.3948905109489051, 'f1-score': 0.4144006127920337, 'support': 1370.0} | 0.4359 | 0.3949 | 0.4144 | 1370.0 | {'precision': 0.5190114068441065, 'recall': 0.3982494529540481, 'f1-score': 0.4506809739991746, 'support': 1371.0} | 0.5190 | 0.3982 | 0.4507 | 1371.0 | {'precision': 0.8064729194187582, 'recall': 0.8912408759124087, 'f1-score': 0.8467406380027739, 'support': 1370.0} | 0.8065 | 0.8912 | 0.8467 | 1370.0 | 0.6049 | 0.6069 | 0.5991 | 8224.0 | 0.6049 | 0.6069 | 0.5991 | 8224.0 | | 1.2292 | 1.05 | 5155 | 1.1215 | 0.5412 | 0.5412 | 0.4641 | [[1041 41 100 167 7 16] [ 456 628 83 139 34 31] [ 112 13 898 322 20 5] [ 276 19 261 768 33 13] [ 213 27 340 691 87 13] [ 249 16 56 17 3 1029]] | {'precision': 0.4435449510012782, 'recall': 0.7587463556851312, 'f1-score': 0.5598279107286904, 'support': 1372.0} | 0.4435 | 0.7587 | 0.5598 | 1372.0 | {'precision': 0.8440860215053764, 'recall': 0.45805981035740334, 'f1-score': 0.5938534278959811, 'support': 1371.0} | 0.8441 | 0.4581 | 0.5939 | 1371.0 | {'precision': 0.5166858457997698, 'recall': 0.6554744525547446, 'f1-score': 0.5778635778635779, 'support': 1370.0} | 0.5167 | 0.6555 | 0.5779 | 1370.0 | {'precision': 0.3650190114068441, 'recall': 0.5605839416058395, 'f1-score': 0.4421416234887737, 'support': 1370.0} | 0.3650 | 0.5606 | 0.4421 | 1370.0 | {'precision': 0.47282608695652173, 'recall': 0.06345733041575492, 'f1-score': 0.11189710610932474, 'support': 1371.0} | 0.4728 | 0.0635 | 0.1119 | 1371.0 | {'precision': 0.9295392953929539, 'recall': 0.7510948905109489, 'f1-score': 0.8308437626160677, 'support': 1370.0} | 0.9295 | 0.7511 | 0.8308 | 1370.0 | 0.5953 | 0.5412 | 0.5194 | 8224.0 | 0.5953 | 0.5412 | 0.5194 | 8224.0 | | 0.733 | 1.1 | 6186 | 1.0294 | 0.5803 | 0.5803 | 0.5073 | [[ 861 72 61 229 20 129] [ 225 782 71 135 33 125] [ 93 21 806 389 43 18] [ 141 26 224 873 71 35] [ 90 24 275 780 174 28] [ 47 17 11 15 4 1276]] | {'precision': 0.5909402882635553, 'recall': 0.6275510204081632, 'f1-score': 0.608695652173913, 'support': 1372.0} | 0.5909 | 0.6276 | 0.6087 | 1372.0 | {'precision': 0.8301486199575372, 'recall': 0.5703865791393143, 'f1-score': 0.6761781236489407, 'support': 1371.0} | 0.8301 | 0.5704 | 0.6762 | 1371.0 | {'precision': 0.5566298342541437, 'recall': 0.5883211678832116, 'f1-score': 0.5720369056068133, 'support': 1370.0} | 0.5566 | 0.5883 | 0.5720 | 1370.0 | {'precision': 0.36059479553903345, 'recall': 0.6372262773722628, 'f1-score': 0.4605644948562385, 'support': 1370.0} | 0.3606 | 0.6372 | 0.4606 | 1370.0 | {'precision': 0.5043478260869565, 'recall': 0.12691466083150985, 'f1-score': 0.2027972027972028, 'support': 1371.0} | 0.5043 | 0.1269 | 0.2028 | 1371.0 | {'precision': 0.7920546244568591, 'recall': 0.9313868613138686, 'f1-score': 0.8560885608856088, 'support': 1370.0} | 0.7921 | 0.9314 | 0.8561 | 1370.0 | 0.6058 | 0.5803 | 0.5627 | 8224.0 | 0.6058 | 0.5803 | 0.5627 | 8224.0 | | 1.0566 | 1.15 | 7217 | 1.0046 | 0.6037 | 0.6037 | 0.5314 | [[ 941 83 42 200 15 91] [ 273 859 43 67 12 117] [ 106 41 763 348 92 20] [ 156 61 180 826 93 54] [ 93 68 192 657 305 56] [ 64 20 6 5 4 1271]] | {'precision': 0.5762400489895897, 'recall': 0.6858600583090378, 'f1-score': 0.6262895174708818, 'support': 1372.0} | 0.5762 | 0.6859 | 0.6263 | 1372.0 | {'precision': 0.758833922261484, 'recall': 0.6265499635302699, 'f1-score': 0.6863763483819417, 'support': 1371.0} | 0.7588 | 0.6265 | 0.6864 | 1371.0 | {'precision': 0.6223491027732463, 'recall': 0.5569343065693431, 'f1-score': 0.5878274268104776, 'support': 1370.0} | 0.6223 | 0.5569 | 0.5878 | 1370.0 | {'precision': 0.3927722301474085, 'recall': 0.602919708029197, 'f1-score': 0.47566945004319033, 'support': 1370.0} | 0.3928 | 0.6029 | 0.4757 | 1370.0 | {'precision': 0.5854126679462572, 'recall': 0.2224653537563822, 'f1-score': 0.3224101479915433, 'support': 1371.0} | 0.5854 | 0.2225 | 0.3224 | 1371.0 | {'precision': 0.7899316345556247, 'recall': 0.9277372262773723, 'f1-score': 0.8533064786841222, 'support': 1370.0} | 0.7899 | 0.9277 | 0.8533 | 1370.0 | 0.6209 | 0.6037 | 0.5920 | 8224.0 | 0.6209 | 0.6037 | 0.5920 | 8224.0 | | 1.2033 | 2.0 | 8248 | 1.1187 | 0.5755 | 0.5755 | 0.4993 | [[1013 54 78 81 24 122] [ 365 704 80 46 59 117] [ 160 27 982 126 56 19] [ 299 39 335 516 115 66] [ 257 43 368 366 270 67] [ 67 15 31 4 5 1248]] | {'precision': 0.46876446089773255, 'recall': 0.7383381924198251, 'f1-score': 0.5734503255024059, 'support': 1372.0} | 0.4688 | 0.7383 | 0.5735 | 1372.0 | {'precision': 0.7981859410430839, 'recall': 0.513493800145879, 'f1-score': 0.6249445184198846, 'support': 1371.0} | 0.7982 | 0.5135 | 0.6249 | 1371.0 | {'precision': 0.5240128068303095, 'recall': 0.7167883211678832, 'f1-score': 0.6054254007398273, 'support': 1370.0} | 0.5240 | 0.7168 | 0.6054 | 1370.0 | {'precision': 0.45302897278314314, 'recall': 0.37664233576642336, 'f1-score': 0.4113192506974891, 'support': 1370.0} | 0.4530 | 0.3766 | 0.4113 | 1370.0 | {'precision': 0.5103969754253308, 'recall': 0.19693654266958424, 'f1-score': 0.28421052631578947, 'support': 1371.0} | 0.5104 | 0.1969 | 0.2842 | 1371.0 | {'precision': 0.7614399023794997, 'recall': 0.910948905109489, 'f1-score': 0.8295114656031903, 'support': 1370.0} | 0.7614 | 0.9109 | 0.8295 | 1370.0 | 0.5860 | 0.5755 | 0.5548 | 8224.0 | 0.5860 | 0.5755 | 0.5548 | 8224.0 | | 0.9223 | 2.05 | 9279 | 1.0713 | 0.5793 | 0.5793 | 0.5049 | [[1039 51 64 88 20 110] [ 357 747 78 42 18 129] [ 173 25 919 194 47 12] [ 343 32 273 582 104 36] [ 307 29 301 473 203 58] [ 67 10 14 4 1 1274]] | {'precision': 0.4545056867891514, 'recall': 0.7572886297376094, 'f1-score': 0.5680699835975944, 'support': 1372.0} | 0.4545 | 0.7573 | 0.5681 | 1372.0 | {'precision': 0.8355704697986577, 'recall': 0.5448577680525164, 'f1-score': 0.6596026490066225, 'support': 1371.0} | 0.8356 | 0.5449 | 0.6596 | 1371.0 | {'precision': 0.5573074590661007, 'recall': 0.6708029197080292, 'f1-score': 0.608810864524677, 'support': 1370.0} | 0.5573 | 0.6708 | 0.6088 | 1370.0 | {'precision': 0.420824295010846, 'recall': 0.4248175182481752, 'f1-score': 0.42281147838721395, 'support': 1370.0} | 0.4208 | 0.4248 | 0.4228 | 1370.0 | {'precision': 0.5165394402035624, 'recall': 0.14806710430342815, 'f1-score': 0.23015873015873015, 'support': 1371.0} | 0.5165 | 0.1481 | 0.2302 | 1371.0 | {'precision': 0.7869054972205065, 'recall': 0.92992700729927, 'f1-score': 0.8524590163934427, 'support': 1370.0} | 0.7869 | 0.9299 | 0.8525 | 1370.0 | 0.5953 | 0.5793 | 0.5570 | 8224.0 | 0.5953 | 0.5793 | 0.5570 | 8224.0 | | 0.6639 | 2.1 | 10310 | 0.9879 | 0.6091 | 0.6091 | 0.5358 | [[ 988 65 71 104 26 118] [ 262 816 85 62 40 106] [ 127 18 870 231 105 19] [ 236 27 243 692 135 37] [ 169 24 252 534 355 37] [ 54 13 10 4 1 1288]] | {'precision': 0.5381263616557734, 'recall': 0.7201166180758017, 'f1-score': 0.6159600997506235, 'support': 1372.0} | 0.5381 | 0.7201 | 0.6160 | 1372.0 | {'precision': 0.8473520249221184, 'recall': 0.5951859956236324, 'f1-score': 0.6992287917737788, 'support': 1371.0} | 0.8474 | 0.5952 | 0.6992 | 1371.0 | {'precision': 0.5682560418027433, 'recall': 0.635036496350365, 'f1-score': 0.5997931747673216, 'support': 1370.0} | 0.5683 | 0.6350 | 0.5998 | 1370.0 | {'precision': 0.4253226797787339, 'recall': 0.5051094890510949, 'f1-score': 0.46179512846179516, 'support': 1370.0} | 0.4253 | 0.5051 | 0.4618 | 1370.0 | {'precision': 0.5362537764350453, 'recall': 0.2589350838803793, 'f1-score': 0.3492375799311362, 'support': 1371.0} | 0.5363 | 0.2589 | 0.3492 | 1371.0 | {'precision': 0.8024922118380062, 'recall': 0.9401459854014599, 'f1-score': 0.8658823529411765, 'support': 1370.0} | 0.8025 | 0.9401 | 0.8659 | 1370.0 | 0.6196 | 0.6091 | 0.5986 | 8224.0 | 0.6196 | 0.6091 | 0.5986 | 8224.0 | | 1.1311 | 2.15 | 11341 | 0.9851 | 0.6051 | 0.6051 | 0.5337 | [[ 995 77 93 145 20 42] [ 241 847 120 67 36 60] [ 95 15 999 192 59 10] [ 176 27 345 717 89 16] [ 120 23 358 612 242 16] [ 115 30 36 11 2 1176]] | {'precision': 0.571182548794489, 'recall': 0.7252186588921283, 'f1-score': 0.6390494540783558, 'support': 1372.0} | 0.5712 | 0.7252 | 0.6390 | 1372.0 | {'precision': 0.831207065750736, 'recall': 0.6177972283005105, 'f1-score': 0.708786610878661, 'support': 1371.0} | 0.8312 | 0.6178 | 0.7088 | 1371.0 | {'precision': 0.5120451050743209, 'recall': 0.7291970802919708, 'f1-score': 0.6016260162601627, 'support': 1370.0} | 0.5120 | 0.7292 | 0.6016 | 1370.0 | {'precision': 0.4111238532110092, 'recall': 0.5233576642335767, 'f1-score': 0.46050096339113683, 'support': 1370.0} | 0.4111 | 0.5234 | 0.4605 | 1370.0 | {'precision': 0.5401785714285714, 'recall': 0.1765134938001459, 'f1-score': 0.26608026388125344, 'support': 1371.0} | 0.5402 | 0.1765 | 0.2661 | 1371.0 | {'precision': 0.8909090909090909, 'recall': 0.8583941605839416, 'f1-score': 0.8743494423791821, 'support': 1370.0} | 0.8909 | 0.8584 | 0.8743 | 1370.0 | 0.6261 | 0.6051 | 0.5917 | 8224.0 | 0.6261 | 0.6051 | 0.5917 | 8224.0 | | 0.4786 | 3.0 | 12372 | 0.9868 | 0.6189 | 0.6189 | 0.5473 | [[ 960 111 60 139 25 77] [ 239 916 71 49 12 84] [ 141 34 962 151 69 13] [ 211 51 315 629 138 26] [ 145 57 340 446 357 26] [ 59 23 12 7 3 1266]] | {'precision': 0.5470085470085471, 'recall': 0.6997084548104956, 'f1-score': 0.6140070354972819, 'support': 1372.0} | 0.5470 | 0.6997 | 0.6140 | 1372.0 | {'precision': 0.7684563758389261, 'recall': 0.6681254558716265, 'f1-score': 0.7147873585641824, 'support': 1371.0} | 0.7685 | 0.6681 | 0.7148 | 1371.0 | {'precision': 0.5465909090909091, 'recall': 0.7021897810218978, 'f1-score': 0.6146964856230032, 'support': 1370.0} | 0.5466 | 0.7022 | 0.6147 | 1370.0 | {'precision': 0.4426460239268121, 'recall': 0.4591240875912409, 'f1-score': 0.4507345037620925, 'support': 1370.0} | 0.4426 | 0.4591 | 0.4507 | 1370.0 | {'precision': 0.5910596026490066, 'recall': 0.2603938730853392, 'f1-score': 0.3615189873417722, 'support': 1371.0} | 0.5911 | 0.2604 | 0.3615 | 1371.0 | {'precision': 0.8485254691689008, 'recall': 0.9240875912408759, 'f1-score': 0.8846960167714885, 'support': 1370.0} | 0.8485 | 0.9241 | 0.8847 | 1370.0 | 0.6240 | 0.6189 | 0.6067 | 8224.0 | 0.6240 | 0.6189 | 0.6067 | 8224.0 | | 0.6052 | 3.05 | 13403 | 0.9818 | 0.6126 | 0.6126 | 0.5421 | [[ 935 141 90 111 18 77] [ 196 953 94 44 17 67] [ 104 30 1044 123 56 13] [ 236 37 367 612 89 29] [ 155 43 417 474 259 23] [ 68 30 31 4 2 1235]] | {'precision': 0.551948051948052, 'recall': 0.6814868804664723, 'f1-score': 0.609915198956295, 'support': 1372.0} | 0.5519 | 0.6815 | 0.6099 | 1372.0 | {'precision': 0.7722852512155591, 'recall': 0.6951130561633844, 'f1-score': 0.7316698656429943, 'support': 1371.0} | 0.7723 | 0.6951 | 0.7317 | 1371.0 | {'precision': 0.5110132158590308, 'recall': 0.762043795620438, 'f1-score': 0.6117784939935541, 'support': 1370.0} | 0.5110 | 0.7620 | 0.6118 | 1370.0 | {'precision': 0.4473684210526316, 'recall': 0.4467153284671533, 'f1-score': 0.44704163623082543, 'support': 1370.0} | 0.4474 | 0.4467 | 0.4470 | 1370.0 | {'precision': 0.5873015873015873, 'recall': 0.18891320204230488, 'f1-score': 0.28587196467991166, 'support': 1371.0} | 0.5873 | 0.1889 | 0.2859 | 1371.0 | {'precision': 0.8552631578947368, 'recall': 0.9014598540145985, 'f1-score': 0.8777540867093105, 'support': 1370.0} | 0.8553 | 0.9015 | 0.8778 | 1370.0 | 0.6209 | 0.6126 | 0.5940 | 8224.0 | 0.6209 | 0.6126 | 0.5940 | 8224.0 | | 0.2743 | 3.1 | 14434 | 0.9548 | 0.6301 | 0.6301 | 0.5604 | [[1003 99 56 137 26 51] [ 225 932 67 71 22 54] [ 129 23 930 204 79 5] [ 186 39 278 713 135 19] [ 138 45 306 486 384 12] [ 77 35 21 9 8 1220]] | {'precision': 0.5705346985210467, 'recall': 0.7310495626822158, 'f1-score': 0.6408945686900959, 'support': 1372.0} | 0.5705 | 0.7310 | 0.6409 | 1372.0 | {'precision': 0.7945439045183291, 'recall': 0.6797957695113056, 'f1-score': 0.7327044025157232, 'support': 1371.0} | 0.7945 | 0.6798 | 0.7327 | 1371.0 | {'precision': 0.5609167671893848, 'recall': 0.6788321167883211, 'f1-score': 0.6142668428005283, 'support': 1370.0} | 0.5609 | 0.6788 | 0.6143 | 1370.0 | {'precision': 0.44012345679012344, 'recall': 0.5204379562043796, 'f1-score': 0.4769230769230769, 'support': 1370.0} | 0.4401 | 0.5204 | 0.4769 | 1370.0 | {'precision': 0.5871559633027523, 'recall': 0.2800875273522976, 'f1-score': 0.3792592592592593, 'support': 1371.0} | 0.5872 | 0.2801 | 0.3793 | 1371.0 | {'precision': 0.896399706098457, 'recall': 0.8905109489051095, 'f1-score': 0.8934456243134383, 'support': 1370.0} | 0.8964 | 0.8905 | 0.8934 | 1370.0 | 0.6416 | 0.6301 | 0.6229 | 8224.0 | 0.6416 | 0.6301 | 0.6229 | 8224.0 | | 0.9667 | 3.15 | 15465 | 0.9949 | 0.6158 | 0.6158 | 0.5479 | [[1078 50 70 95 20 59] [ 351 792 80 56 17 75] [ 107 24 1008 182 38 11] [ 253 28 286 690 86 27] [ 206 22 361 476 280 26] [ 119 11 18 4 2 1216]] | {'precision': 0.5099337748344371, 'recall': 0.7857142857142857, 'f1-score': 0.6184738955823293, 'support': 1372.0} | 0.5099 | 0.7857 | 0.6185 | 1372.0 | {'precision': 0.8543689320388349, 'recall': 0.5776805251641138, 'f1-score': 0.6892950391644909, 'support': 1371.0} | 0.8544 | 0.5777 | 0.6893 | 1371.0 | {'precision': 0.5529347229840922, 'recall': 0.7357664233576642, 'f1-score': 0.6313811462574381, 'support': 1370.0} | 0.5529 | 0.7358 | 0.6314 | 1370.0 | {'precision': 0.4590818363273453, 'recall': 0.5036496350364964, 'f1-score': 0.4803341454925165, 'support': 1370.0} | 0.4591 | 0.5036 | 0.4803 | 1370.0 | {'precision': 0.6320541760722348, 'recall': 0.20423048869438365, 'f1-score': 0.308710033076075, 'support': 1371.0} | 0.6321 | 0.2042 | 0.3087 | 1371.0 | {'precision': 0.85997171145686, 'recall': 0.8875912408759125, 'f1-score': 0.8735632183908046, 'support': 1370.0} | 0.8600 | 0.8876 | 0.8736 | 1370.0 | 0.6447 | 0.6158 | 0.6003 | 8224.0 | 0.6447 | 0.6158 | 0.6003 | 8224.0 | | 0.906 | 4.0 | 16496 | 0.9465 | 0.6312 | 0.6312 | 0.5612 | [[ 921 147 51 171 30 52] [ 184 965 64 64 35 59] [ 80 26 906 240 108 10] [ 170 41 224 786 131 18] [ 124 36 245 564 385 17] [ 74 40 15 10 3 1228]] | {'precision': 0.5930457179652285, 'recall': 0.6712827988338192, 'f1-score': 0.6297435897435897, 'support': 1372.0} | 0.5930 | 0.6713 | 0.6297 | 1372.0 | {'precision': 0.7689243027888446, 'recall': 0.7038657913931436, 'f1-score': 0.734958111195735, 'support': 1371.0} | 0.7689 | 0.7039 | 0.7350 | 1371.0 | {'precision': 0.6019933554817276, 'recall': 0.6613138686131387, 'f1-score': 0.6302608695652173, 'support': 1370.0} | 0.6020 | 0.6613 | 0.6303 | 1370.0 | {'precision': 0.42833787465940054, 'recall': 0.5737226277372263, 'f1-score': 0.49048361934477386, 'support': 1370.0} | 0.4283 | 0.5737 | 0.4905 | 1370.0 | {'precision': 0.5563583815028902, 'recall': 0.28081692195477753, 'f1-score': 0.373242850218129, 'support': 1371.0} | 0.5564 | 0.2808 | 0.3732 | 1371.0 | {'precision': 0.8872832369942196, 'recall': 0.8963503649635036, 'f1-score': 0.8917937545388526, 'support': 1370.0} | 0.8873 | 0.8964 | 0.8918 | 1370.0 | 0.6393 | 0.6312 | 0.6251 | 8224.0 | 0.6393 | 0.6312 | 0.6251 | 8224.0 | | 0.8828 | 4.05 | 17527 | 0.9787 | 0.6333 | 0.6333 | 0.5649 | [[1007 111 66 107 22 59] [ 222 935 74 50 19 71] [ 114 27 969 172 77 11] [ 240 50 259 686 103 32] [ 154 59 299 489 343 27] [ 72 20 6 2 2 1268]] | {'precision': 0.556661138750691, 'recall': 0.7339650145772595, 'f1-score': 0.6331342345174474, 'support': 1372.0} | 0.5567 | 0.7340 | 0.6331 | 1372.0 | {'precision': 0.7778702163061564, 'recall': 0.6819839533187454, 'f1-score': 0.7267780800621843, 'support': 1371.0} | 0.7779 | 0.6820 | 0.7268 | 1371.0 | {'precision': 0.5791990436341901, 'recall': 0.7072992700729926, 'f1-score': 0.6368715083798882, 'support': 1370.0} | 0.5792 | 0.7073 | 0.6369 | 1370.0 | {'precision': 0.4555112881806109, 'recall': 0.5007299270072992, 'f1-score': 0.4770514603616134, 'support': 1370.0} | 0.4555 | 0.5007 | 0.4771 | 1370.0 | {'precision': 0.6060070671378092, 'recall': 0.25018234865062, 'f1-score': 0.3541559112028911, 'support': 1371.0} | 0.6060 | 0.2502 | 0.3542 | 1371.0 | {'precision': 0.8637602179836512, 'recall': 0.9255474452554745, 'f1-score': 0.8935870331219168, 'support': 1370.0} | 0.8638 | 0.9255 | 0.8936 | 1370.0 | 0.6398 | 0.6333 | 0.6203 | 8224.0 | 0.6398 | 0.6333 | 0.6202 | 8224.0 | | 0.744 | 4.1 | 18558 | 1.0063 | 0.6246 | 0.6246 | 0.5570 | [[1072 72 55 92 17 64] [ 283 876 67 54 17 74] [ 166 20 921 195 57 11] [ 314 32 223 672 94 35] [ 227 37 268 485 320 34] [ 72 12 6 1 3 1276]] | {'precision': 0.5023430178069354, 'recall': 0.7813411078717201, 'f1-score': 0.6115231032515687, 'support': 1372.0} | 0.5023 | 0.7813 | 0.6115 | 1372.0 | {'precision': 0.8350810295519543, 'recall': 0.6389496717724289, 'f1-score': 0.7239669421487603, 'support': 1371.0} | 0.8351 | 0.6389 | 0.7240 | 1371.0 | {'precision': 0.5980519480519481, 'recall': 0.6722627737226278, 'f1-score': 0.6329896907216496, 'support': 1370.0} | 0.5981 | 0.6723 | 0.6330 | 1370.0 | {'precision': 0.4482988659106071, 'recall': 0.4905109489051095, 'f1-score': 0.4684559079818752, 'support': 1370.0} | 0.4483 | 0.4905 | 0.4685 | 1370.0 | {'precision': 0.6299212598425197, 'recall': 0.23340627279358134, 'f1-score': 0.3406067056945184, 'support': 1371.0} | 0.6299 | 0.2334 | 0.3406 | 1371.0 | {'precision': 0.8540829986613119, 'recall': 0.9313868613138686, 'f1-score': 0.8910614525139665, 'support': 1370.0} | 0.8541 | 0.9314 | 0.8911 | 1370.0 | 0.6446 | 0.6246 | 0.6114 | 8224.0 | 0.6446 | 0.6246 | 0.6114 | 8224.0 | | 0.4786 | 4.15 | 19589 | 0.9796 | 0.6288 | 0.6288 | 0.5618 | [[1061 70 61 107 14 59] [ 283 866 81 55 13 73] [ 128 17 958 199 54 14] [ 258 31 245 717 89 30] [ 188 25 290 534 303 31] [ 80 14 5 3 2 1266]] | {'precision': 0.531031031031031, 'recall': 0.7733236151603499, 'f1-score': 0.6296735905044509, 'support': 1372.0} | 0.5310 | 0.7733 | 0.6297 | 1372.0 | {'precision': 0.8465298142717498, 'recall': 0.6316557257476295, 'f1-score': 0.7234753550543024, 'support': 1371.0} | 0.8465 | 0.6317 | 0.7235 | 1371.0 | {'precision': 0.5841463414634146, 'recall': 0.6992700729927007, 'f1-score': 0.6365448504983389, 'support': 1370.0} | 0.5841 | 0.6993 | 0.6365 | 1370.0 | {'precision': 0.4439628482972136, 'recall': 0.5233576642335767, 'f1-score': 0.4804020100502513, 'support': 1370.0} | 0.4440 | 0.5234 | 0.4804 | 1370.0 | {'precision': 0.6378947368421053, 'recall': 0.2210065645514223, 'f1-score': 0.32827735644637057, 'support': 1371.0} | 0.6379 | 0.2210 | 0.3283 | 1371.0 | {'precision': 0.8594704684317719, 'recall': 0.9240875912408759, 'f1-score': 0.8906085121350685, 'support': 1370.0} | 0.8595 | 0.9241 | 0.8906 | 1370.0 | 0.6505 | 0.6288 | 0.6148 | 8224.0 | 0.6505 | 0.6288 | 0.6148 | 8224.0 | | 0.5705 | 5.0 | 20620 | 0.9751 | 0.6299 | 0.6299 | 0.5628 | [[1059 76 57 110 18 52] [ 276 886 74 50 16 69] [ 128 19 948 200 64 11] [ 267 33 232 718 91 29] [ 196 31 269 536 314 25] [ 91 15 5 3 1 1255]] | {'precision': 0.5250371839365394, 'recall': 0.771865889212828, 'f1-score': 0.624963115963411, 'support': 1372.0} | 0.5250 | 0.7719 | 0.6250 | 1372.0 | {'precision': 0.8358490566037736, 'recall': 0.6462436177972283, 'f1-score': 0.7289181406828465, 'support': 1371.0} | 0.8358 | 0.6462 | 0.7289 | 1371.0 | {'precision': 0.5981072555205047, 'recall': 0.691970802919708, 'f1-score': 0.6416243654822336, 'support': 1370.0} | 0.5981 | 0.6920 | 0.6416 | 1370.0 | {'precision': 0.4440321583178726, 'recall': 0.5240875912408759, 'f1-score': 0.4807499163039839, 'support': 1370.0} | 0.4440 | 0.5241 | 0.4807 | 1370.0 | {'precision': 0.623015873015873, 'recall': 0.22902990517870167, 'f1-score': 0.3349333333333333, 'support': 1371.0} | 0.6230 | 0.2290 | 0.3349 | 1371.0 | {'precision': 0.8709229701596114, 'recall': 0.916058394160584, 'f1-score': 0.8929206688011384, 'support': 1370.0} | 0.8709 | 0.9161 | 0.8929 | 1370.0 | 0.6495 | 0.6299 | 0.6174 | 8224.0 | 0.6495 | 0.6299 | 0.6173 | 8224.0 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
nbroad/setfit-sci-wiki-large
nbroad
2023-07-16T21:58:13Z
4
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-07-16T21:57:15Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # nbroad/setfit-sci-wiki-large This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("nbroad/setfit-sci-wiki-large") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
au2a/whisper-base-zh-20230715-1
au2a
2023-07-16T21:56:22Z
84
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "zh", "dataset:-", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-07-15T14:37:29Z
--- language: - zh license: apache-2.0 tags: - whisper - generated_from_trainer datasets: - '-' model-index: - name: whisper-base-zh-20230715-1 - au2a results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-base-zh-20230715-1 - au2a This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the some hakka audio dataset. It achieves the following results on the evaluation set: - Loss: 0.5128 - Cer: 65.2716 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 10000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | |:-------------:|:-----:|:-----:|:---------------:|:-------:| | 0.2461 | 2.59 | 1000 | 0.5164 | 34.5962 | | 0.0686 | 5.17 | 2000 | 0.4523 | 35.0268 | | 0.0187 | 7.76 | 3000 | 0.4622 | 48.4098 | | 0.0064 | 10.35 | 4000 | 0.4741 | 62.4008 | | 0.0037 | 12.94 | 5000 | 0.4820 | 56.8256 | | 0.0023 | 15.52 | 6000 | 0.4922 | 63.3452 | | 0.0016 | 18.11 | 7000 | 0.4992 | 60.8597 | | 0.0012 | 20.7 | 8000 | 0.5073 | 59.6472 | | 0.0009 | 23.29 | 9000 | 0.5108 | 64.7465 | | 0.0009 | 25.87 | 10000 | 0.5128 | 65.2716 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
SinanAkkoyun/orca_mini_3b_gptq_badtest
SinanAkkoyun
2023-07-16T21:49:31Z
5
0
transformers
[ "transformers", "llama", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-07-16T21:27:48Z
This is a very bad attempt at quantizing 128g 4 bit with alpaca (in orca style prompt ```sh python quantize_alpaca.py --pretrained_model_dir orca_mini_3b/ --bits 4 --group_size 128 --quantized_model_dir orca_mini_3b_gptq/ --save_and_reloa ``` Downloqd cleaned dataset first: https://github.com/gururise/AlpacaDataCleaned
LarryAIDraw/LoRA_KearsargeIdeal
LarryAIDraw
2023-07-16T21:46:31Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-16T21:43:20Z
--- license: creativeml-openrail-m --- https://civitai.com/models/109067/lora-oror-kearsarge-azur-lane-oror
LarryAIDraw/roxy-08
LarryAIDraw
2023-07-16T21:46:08Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-16T21:42:37Z
--- license: creativeml-openrail-m --- https://civitai.com/models/109272/roxy-oror-mushoku-tensei
KingKazma/xsum_gpt2_lora_500_10_3000_8_e0_s108_v3
KingKazma
2023-07-16T21:45:55Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-16T21:45:54Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
davej23/whisper-small-dv
davej23
2023-07-16T21:43:30Z
76
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "dv", "dataset:mozilla-foundation/common_voice_13_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-07-16T20:19:00Z
--- language: - dv license: apache-2.0 tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_13_0 metrics: - wer model-index: - name: Whisper Small Dv - Sanchit Gandhi results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 13 type: mozilla-foundation/common_voice_13_0 config: dv split: test args: dv metrics: - name: Wer type: wer value: 13.036825816322983 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Dv - Sanchit Gandhi This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 13 dataset. It achieves the following results on the evaluation set: - Loss: 0.1690 - Wer Ortho: 62.2188 - Wer: 13.0368 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:-------:| | 0.1229 | 1.63 | 500 | 0.1690 | 62.2188 | 13.0368 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
quangnguyennn/pokemon-lora
quangnguyennn
2023-07-16T21:41:33Z
1
0
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-07-16T12:51:01Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA text2image fine-tuning - quangnguyennn/pokemon-lora These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the lambdalabs/pokemon-blip-captions dataset. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png)
MichaelS91/autotrain-hub_testing-75008139803
MichaelS91
2023-07-16T21:08:49Z
108
0
transformers
[ "transformers", "pytorch", "safetensors", "deberta", "text-classification", "autotrain", "text-regression", "en", "dataset:MichaelS91/autotrain-data-hub_testing", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-16T21:05:50Z
--- tags: - autotrain - text-regression language: - en widget: - text: "I love AutoTrain" datasets: - MichaelS91/autotrain-data-hub_testing co2_eq_emissions: emissions: 1.5911364056652006 --- # Model Trained Using AutoTrain - Problem type: Single Column Regression - Model ID: 75008139803 - CO2 Emissions (in grams): 1.5911 ## Validation Metrics - Loss: 1.889 - MSE: 1.889 - MAE: 1.094 - R2: 0.221 - RMSE: 1.374 - Explained Variance: 0.242 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/MichaelS91/autotrain-hub_testing-75008139803 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("MichaelS91/autotrain-hub_testing-75008139803", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("MichaelS91/autotrain-hub_testing-75008139803", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
KingKazma/xsum_gpt2_lora_500_10_3000_8_e8_s6789_v3
KingKazma
2023-07-16T21:07:33Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-15T01:21:22Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
KingKazma/xsum_gpt2_lora_500_10_3000_8_e6_s6789_v3
KingKazma
2023-07-16T20:53:34Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-15T00:49:58Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
hseokool/vicuna-7b-v1.3-230623-09
hseokool
2023-07-16T20:40:52Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-14T11:46:32Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
KingKazma/xsum_gpt2_lora_500_10_3000_8_e4_s6789_v3
KingKazma
2023-07-16T20:39:23Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-15T00:16:34Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0