modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-05-28 12:28:32
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
477 values
tags
sequencelengths
1
4.05k
pipeline_tag
stringclasses
54 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-05-28 12:27:14
card
stringlengths
11
1.01M
fadhilarkn/distilbert-base-uncased-finetuned-ner
fadhilarkn
2022-07-17T09:45:18Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-07-17T09:36:03Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9276948590381426 - name: Recall type: recall value: 0.9386956035350711 - name: F1 type: f1 value: 0.9331628113879005 - name: Accuracy type: accuracy value: 0.9842883695807584 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0574 - Precision: 0.9277 - Recall: 0.9387 - F1: 0.9332 - Accuracy: 0.9843 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2384 | 1.0 | 878 | 0.0701 | 0.9130 | 0.9220 | 0.9175 | 0.9803 | | 0.0494 | 2.0 | 1756 | 0.0593 | 0.9222 | 0.9314 | 0.9268 | 0.9829 | | 0.0301 | 3.0 | 2634 | 0.0574 | 0.9277 | 0.9387 | 0.9332 | 0.9843 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
tanfiona/unicausal-tok-baseline
tanfiona
2022-07-17T07:21:25Z
10,555
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "en", "license:unknown", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-07-17T07:06:08Z
--- language: en license: unknown widget: - text: "She fell because he pushed her ." example_title: "Causal Example 1" - text: "He pushed her , causing her to fall." example_title: "Causal Example 2" --- Cause-effect span detection for causal sequences: ```label_to_id = {'B-C': 0, 'B-E': 1, 'I-C': 2, 'I-E': 3, 'O': 4}``` * LABEL_0 = B-C * LABEL_1 = B-E * LABEL_2 = I-C * LABEL_3 = I-E * LABEL_4 = O Trained on multiple datasets.
tanfiona/unicausal-pair-baseline
tanfiona
2022-07-17T07:17:09Z
45
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "en", "license:unknown", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-17T07:11:17Z
--- language: en license: unknown widget: - text: "<ARG1>She fell</ARG1> because <ARG0>he pushed her</ARG0> ." example_title: "Causal Example 1" - text: "<ARG0>He pushed her</ARG0> , <ARG1>causing her to fall</ARG1>." example_title: "Causal Example 2" - text: "<ARG0>She fell</ARG0> because <ARG1>he pushed her</ARG1> ." example_title: "Non-causal Example 1" - text: "<ARG1>He is Billy</ARG1> and <ARG0>he pushed her</ARG0>." example_title: "Non-causal Example 2" --- Binary causal sentence classification with argument prompts: * LABEL_0 = Non-causal * LABEL_1 = Causal (ARG0 causes ARG1) Trained on multiple datasets. For Causal sequences, try swapping the arguments to observe the prediction results.
micheljperez/testpyramidsrnd2
micheljperez
2022-07-17T04:30:25Z
5
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2022-07-17T04:30:19Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: micheljperez/testpyramidsrnd2 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Retrial9842/ppo-LunarLander-v2
Retrial9842
2022-07-17T03:39:15Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-07-17T03:38:41Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 218.99 +/- 76.60 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
ebelenwaf/canbert
ebelenwaf
2022-07-17T03:39:02Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-07-04T05:15:34Z
--- tags: - generated_from_trainer model-index: - name: canbert results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # canbert This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.12.0+cu113 - Tokenizers 0.12.1
micheljperez/testpyramidsrnd
micheljperez
2022-07-17T03:09:43Z
6
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2022-07-17T03:09:37Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: micheljperez/testpyramidsrnd 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Konstantine4096/bart-pizza-5K
Konstantine4096
2022-07-16T22:26:21Z
3
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-07-16T20:55:57Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bart-pizza-5K results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-pizza-5K This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1688 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.0171 | 1.6 | 500 | 0.1688 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
aalbertini1990/autotrain-first-test-html-1136241677
aalbertini1990
2022-07-16T21:16:30Z
3
0
transformers
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain", "en", "dataset:aalbertini1990/autotrain-data-first-test-html", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-07-15T12:46:14Z
--- tags: autotrain language: en widget: - text: "I love AutoTrain 🤗" datasets: - aalbertini1990/autotrain-data-first-test-html co2_eq_emissions: 19.49742293318862 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 1136241677 - CO2 Emissions (in grams): 19.49742293318862 ## Validation Metrics - Loss: 0.18860992789268494 - Rouge1: 84.2283 - Rouge2: 80.2825 - RougeL: 83.9066 - RougeLsum: 83.9129 - Gen Len: 58.3175 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/aalbertini1990/autotrain-first-test-html-1136241677 ```
Tstarshak/dqn-SpaceInvadersNoFrameskip-v4
Tstarshak
2022-07-16T21:07:40Z
2
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-07-16T21:07:00Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 655.50 +/- 310.07 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Tstarshak -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Tstarshak ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
solve/wav2vec2-base-timit-demo-sol
solve
2022-07-16T19:27:06Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-02T12:12:28Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-sol results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-sol This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3922 - Wer: 0.2862 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.6222 | 6.85 | 500 | 1.5843 | 0.9627 | | 0.509 | 13.7 | 1000 | 0.4149 | 0.3417 | | 0.1221 | 20.55 | 1500 | 0.3692 | 0.2992 | | 0.0618 | 27.4 | 2000 | 0.3922 | 0.2862 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.1+cu102 - Datasets 1.18.3 - Tokenizers 0.12.1
hugginglearners/malayalam-ULMFit-Seq2Seq
hugginglearners
2022-07-16T17:59:50Z
0
1
fastai
[ "fastai", "text-translation", "ml", "region:us" ]
null
2022-07-16T11:01:26Z
--- tags: - fastai - text-translation language: ml widget: - text: "കേൾക്കുന്ന എല്ലാ കാര്യങ്ങളും എനിക്കു മനസിലായില്ല" example_title: "Malayalam Seq2Seq translation" --- # മലയാളം - English ULMFit translationmodel. (Working in Progress) [![മലയാളം: kaggle notebook](https://img.shields.io/badge/മലയാളം%20-notebook-green.svg)](https://www.kaggle.com/code/rajeshradhakrishnan/ml-ulmfit-seq2seq-translation) --- # malayalam-ULMFit-Seq2Seq (Traslation model) malayalam-ULMFit-Seq2Seq model is pre-trained on [Malyalam_Language_Model_ULMFiT](https://github.com/goru001/nlp-for-malyalam/blob/master/language-model/Malyalam_Language_Model_ULMFiT.ipynb) using [fastai](https://docs.fast.ai/text.data.html) Language Model using fastai Tokenized using Sentencepiece with a vocab size of 10000 the language model is upload to [kaggle dataset](https://www.kaggle.com/datasets/rajeshradhakrishnan/ulmfit-fastai) ## Usage ``` !pip install -Uqq huggingface_hub["fastai"] from huggingface_hub import from_pretrained_fastai learner = from_pretrained_fastai(repo_id) original_xtext = 'കേൾക്കുന്ന എല്ലാ കാര്യങ്ങളും എനിക്കു മനസിലായില്ല' original_ytext = 'I didnt understand all this' predicted_text = learner.predict(original_xtext) print(f'original text: {original_xtext}') print(f'original answer: {original_ytext}') print(f'predicted text: {predicted_text}') ``` ## Intended uses & limitations It's not fine tuned to the state of the art accuracy ## Training and evaluation data [Malayalam Samanantar Dataset - uploaded to kaggle with english - malayalam ](https://www.kaggle.com/datasets/rajeshradhakrishnan/ulmfit-fastai)
Konstantine4096/bart-pizza
Konstantine4096
2022-07-16T17:17:35Z
3
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-07-16T17:07:17Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bart-pizza results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-pizza This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
KoichiYasuoka/roberta-base-thai-spm
KoichiYasuoka
2022-07-16T15:48:22Z
8
0
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "thai", "masked-lm", "wikipedia", "th", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- language: - "th" tags: - "thai" - "masked-lm" - "wikipedia" license: "apache-2.0" pipeline_tag: "fill-mask" mask_token: "[MASK]" --- # roberta-base-thai-spm ## Model Description This is a RoBERTa model pre-trained on Thai Wikipedia texts. You can fine-tune `roberta-base-thai-spm` for downstream tasks, such as [POS-tagging](https://huggingface.co/KoichiYasuoka/roberta-base-thai-spm-upos), [dependency-parsing](https://huggingface.co/KoichiYasuoka/roberta-base-thai-spm-ud-head), and so on. ## How to Use ```py from transformers import AutoTokenizer,AutoModelForMaskedLM tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-base-thai-spm") model=AutoModelForMaskedLM.from_pretrained("KoichiYasuoka/roberta-base-thai-spm") ```
RobertoFont/pegasus-large-samsum
RobertoFont
2022-07-16T15:12:09Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "pegasus", "text2text-generation", "generated_from_trainer", "dataset:samsum", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-07-16T11:45:18Z
--- tags: - generated_from_trainer datasets: - samsum metrics: - rouge model-index: - name: pegasus-large-samsum results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: samsum type: samsum args: samsum metrics: - name: Rouge1 type: rouge value: 48.0968 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-large-samsum This model is a fine-tuned version of [google/pegasus-large](https://huggingface.co/google/pegasus-large) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 1.4109 - Rouge1: 48.0968 - Rouge2: 24.6663 - Rougel: 40.2569 - Rougelsum: 44.0137 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 64 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | No log | 1.0 | 230 | 1.4646 | 45.0631 | 22.5567 | 38.0518 | 41.2694 | | No log | 2.0 | 460 | 1.4203 | 47.4122 | 24.158 | 39.7414 | 43.3485 | | 1.699 | 3.0 | 690 | 1.4109 | 48.0968 | 24.6663 | 40.2569 | 44.0137 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
chancar/distilbert-base-uncased-finetuned-ner
chancar
2022-07-16T14:11:56Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-05-10T15:15:10Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9780 - Precision: 0.0 - Recall: 0.0 - F1: 0.0 - Accuracy: 0.7891 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.002 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:| | 0.9591 | 1.0 | 878 | 0.9780 | 0.0 | 0.0 | 0.0 | 0.7891 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Tokenizers 0.12.1
yuanzf/timemachine
yuanzf
2022-07-16T12:07:03Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2022-07-16T11:11:44Z
--- title: TimeMachine-Visual_Question_Answering emoji: 🎓 colorFrom: blue colorTo: pink sdk: gradio app_file: app.py pinned: false license: apache-2.0 --- Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference
roykoand/ppo-LunarLander-v2.1
roykoand
2022-07-16T11:26:11Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-07-16T11:25:51Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 274.13 +/- 12.12 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
sssingh/distilbert-base-uncased-emotion-finetuned
sssingh
2022-07-16T08:15:11Z
14
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-10T09:17:12Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - f1 model-index: - name: distilbert-base-uncased-emotion-finetuned results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: F1 type: f1 value: 0.9350215566385567 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-emotion-finetuned This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1518 - Acc: 0.935 - F1: 0.9350 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Acc | F1 | |:-------------:|:-----:|:----:|:---------------:|:-----:|:------:| | 0.1734 | 1.0 | 250 | 0.1624 | 0.928 | 0.9279 | | 0.1187 | 2.0 | 500 | 0.1518 | 0.935 | 0.9350 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
SiraH/dummy-model
SiraH
2022-07-16T06:28:46Z
3
0
transformers
[ "transformers", "tf", "camembert", "fill-mask", "generated_from_keras_callback", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-07-16T06:20:36Z
--- license: mit tags: - generated_from_keras_callback model-index: - name: dummy-model results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # dummy-model This model is a fine-tuned version of [camembert-base](https://huggingface.co/camembert-base) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.20.1 - TensorFlow 2.8.2 - Datasets 2.3.2 - Tokenizers 0.12.1
Someman/xlm-roberta-base-finetuned-panx-de
Someman
2022-07-16T05:50:27Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-07-16T04:51:21Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8640345886904085 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1426 - F1: 0.8640 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2525 | 1.0 | 787 | 0.1795 | 0.8184 | | 0.1283 | 2.0 | 1574 | 0.1402 | 0.8468 | | 0.08 | 3.0 | 2361 | 0.1426 | 0.8640 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Someman/distilbert-base-uncased-finetuned-emotion
Someman
2022-07-16T05:49:22Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-30T10:53:24Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9245 - name: F1 type: f1 value: 0.9245803802599059 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2186 - Accuracy: 0.9245 - F1: 0.9246 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 250 | 0.3083 | 0.9005 | 0.8972 | | No log | 2.0 | 500 | 0.2186 | 0.9245 | 0.9246 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
jhonparra18/roberta-base-cv-studio_name-medium
jhonparra18
2022-07-16T02:43:03Z
7
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-14T21:02:40Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: roberta-base-cv-studio_name-medium results: [] widget: - text: "Egresado de la carrera Ingeniería en Computación Conocimientos de lenguajes HTML, CSS, Javascript y MySQL. Experiencia trabajando en ámbitos de redes de pequeña y mediana escala. Inglés Hablado nivel básico, escrito nivel intermedio.HTML, CSS y JavaScript. Realidad aumentada. Lenguaje R. HTML5, JavaScript y Nodejs" --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-cv-studio_name-medium This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. ## Model description Predicts a studio name based on a CV text ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 20 - num_epochs: 10 ### Framework versions - Transformers 4.19.0 - Pytorch 1.8.2+cu111 - Datasets 1.6.2 - Tokenizers 0.12.1
pyf98/slurp_entity_branchformer
pyf98
2022-07-16T01:45:11Z
2
0
espnet
[ "espnet", "audio", "automatic-speech-recognition", "en", "dataset:slurp_entity", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
automatic-speech-recognition
2022-05-28T00:40:17Z
--- tags: - espnet - audio - automatic-speech-recognition language: en datasets: - slurp_entity license: cc-by-4.0 --- ## ESPnet2 ASR model ### `pyf98/slurp_entity_branchformer` This model was trained by Yifan Peng using slurp_entity recipe in [espnet](https://github.com/espnet/espnet/). Branchformer (Peng et al., ICML 2022): [https://proceedings.mlr.press/v162/peng22a.html](https://proceedings.mlr.press/v162/peng22a.html) ### Demo: How to use in ESPnet2 ```bash cd espnet git checkout 55b6cc387fd0252d1a06db2042fd101bcea7bb34 pip install -e . cd egs2/slurp_entity/asr1 ./run.sh --skip_data_prep false --skip_train true --download_model pyf98/slurp_entity_branchformer ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Fri May 27 03:41:59 EDT 2022` - python version: `3.9.12 (main, Apr 5 2022, 06:56:58) [GCC 7.5.0]` - espnet version: `espnet 202204` - pytorch version: `pytorch 1.11.0` - Git hash: `4f36236ed7c8a25c2f869e518614e1ad4a8b50d6` - Commit date: `Thu May 26 00:22:45 2022 -0400` ## asr_train_asr_branchformer_e18_d6_size512_lr1e-3_warmup35k_raw_en_word ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_asr_model_valid.acc.ave_10best/devel|8690|178058|83.7|7.6|8.8|2.8|19.2|50.5| |decode_asr_asr_model_valid.acc.ave_10best/test|13078|262176|82.6|7.9|9.5|2.7|20.1|49.2| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_asr_model_valid.acc.ave_10best/devel|8690|847400|90.1|3.0|6.9|3.3|13.2|50.5| |decode_asr_asr_model_valid.acc.ave_10best/test|13078|1245475|89.0|3.2|7.8|3.1|14.1|49.2| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| ## ASR config <details><summary>expand</summary> ``` config: conf/tuning/train_asr_branchformer_e18_d6_size512_lr1e-3_warmup35k.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_train_asr_branchformer_e18_d6_size512_lr1e-3_warmup35k_raw_en_word ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 50 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - acc - max keep_nbest_models: 10 nbest_averaging_interval: 0 grad_clip: 5.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_matplotlib: true use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: null batch_size: 64 valid_batch_size: null batch_bins: 1000000 valid_batch_bins: null train_shape_file: - exp/asr_stats_raw_en_word/train/speech_shape - exp/asr_stats_raw_en_word/train/text_shape.word valid_shape_file: - exp/asr_stats_raw_en_word/valid/speech_shape - exp/asr_stats_raw_en_word/valid/text_shape.word batch_type: folded valid_batch_type: null fold_length: - 80000 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/train/wav.scp - speech - kaldi_ark - - dump/raw/train/text - text - text valid_data_path_and_name_and_type: - - dump/raw/devel/wav.scp - speech - kaldi_ark - - dump/raw/devel/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.001 weight_decay: 1.0e-06 scheduler: warmuplr scheduler_conf: warmup_steps: 35000 token_list: - <blank> - <unk> - ▁SEP - ▁FILL - s - ▁the - a - ▁to - ▁i - ▁me - e - ▁s - ▁a - i - ▁you - ▁what - er - ing - u - ▁is - '''' - o - p - ▁in - ▁p - y - ▁my - ▁please - d - c - m - ▁b - l - ▁m - ▁c - st - date - n - ▁d - le - b - ▁for - re - t - ▁on - en - h - 'on' - ar - person - ▁re - ▁f - ▁g - ▁of - an - ▁ - g - ▁today - ▁t - or - ▁it - ▁this - ▁h - r - f - at - ch - ce - place_name - ▁email - ▁do - es - ri - ▁e - ▁w - ic - in - ▁that - event_name - ▁play - ▁and - al - ▁n - ▁can - email_query - ve - ▁new - day - it - ate - ▁from - ▁have - k - time - ▁am - media_type - email_sendemail - ent - ▁olly - qa_factoid - se - v - et - ck - ▁any - calendar_set - ly - th - ▁how - ▁meeting - ed - ▁tell - ▁st - x - ur - ro - ▁at - nd - ▁list - w - ▁u - ou - ▁not - ▁about - ▁an - ▁o - general_negate - ut - ▁time - ▁be - ▁ch - ▁are - social_post - business_name - la - ty - play_music - ot - general_quirky - ▁l - ▁sh - ▁tweet - om - ▁week - um - ▁one - ter - ▁he - ▁up - ▁com - general_praise - weather_query - ▁next - ▁th - ▁check - calendar_query - ▁last - ▁ro - ad - is - ▁with - ay - ▁send - pe - ▁pm - ▁tomorrow - ▁j - un - ▁train - general_explain - ▁v - one - ▁r - ra - news_query - ation - ▁emails - us - if - ct - ▁co - ▁add - ▁will - ▁se - nt - ▁was - ine - ▁de - ▁set - ▁ex - ▁would - ir - ow - ber - general_repeat - ight - ook - ▁again - ▁song - currency_name - ll - ▁ha - ▁go - relation - te - ion - and - ▁y - ▁ye - general_affirm - general_confirm - ery - ▁po - ff - ▁we - ▁turn - ▁did - ▁mar - ▁alarm - ▁like - datetime_query - ers - ▁all - ▁remind - ▁so - qa_definition - ▁calendar - end - ▁said - ci - ▁off - ▁john - ▁day - ss - pla - ume - ▁get - ail - pp - z - ry - am - ▁need - as - ▁thank - ▁wh - ▁want - ▁right - ▁jo - ▁facebook - ▁k - ge - ld - ▁fri - ▁two - general_dontcare - ▁news - ol - oo - ant - ▁five - ▁event - ake - definition_word - transport_type - ▁your - vi - orn - op - ▁weather - ome - ▁app - ▁lo - de - ▁music - weather_descriptor - ak - ke - ▁there - ▁si - ▁lights - ▁now - ▁mo - calendar_remove - our - ▁dollar - food_type - me - ▁more - ▁no - ▁birthday - orrect - ▁rep - ▁show - play_radio - ▁mon - ▁does - ood - ag - li - ▁sto - ▁contact - cket - email_querycontact - ▁ev - ▁could - ange - ▁just - out - ame - . - ▁ja - ▁confirm - qa_currency - ▁man - ▁late - ▁think - ▁some - timeofday - ▁bo - qa_stock - ong - ▁start - ▁work - ▁ten - int - ▁command - all - ▁make - ▁la - j - ▁answ - ▁hour - ▁cle - ah - ▁find - ▁service - ▁fa - qu - general_commandstop - ai - ▁when - ▁te - ▁by - social_query - ard - ▁tw - ul - id - ▁seven - ▁where - ▁much - art - ▁appointment - ver - artist_name - el - device_type - ▁know - ▁three - ▁events - ▁tr - ▁li - ork - red - ect - ▁let - ▁respon - ▁par - zz - ▁give - ▁twenty - ▁ti - ▁curre - play_podcasts - ▁radio - cooking_recipe - transport_query - ▁con - gh - ▁le - lists_query - ▁rem - recommendation_events - house_place - alarm_set - play_audiobook - ist - ase - music_genre - ive - ast - player_setting - ort - lly - news_topic - list_name - ▁playlist - ▁ne - business_type - personal_info - ind - ust - di - ress - recommendation_locations - lists_createoradd - iot_hue_lightoff - lists_remove - ord - ▁light - ere - alarm_query - audio_volume_mute - music_query - ▁audio - rain - ▁date - ▁order - audio_volume_up - ▁ar - ▁podcast - transport_ticket - mail - iot_hue_lightchange - iot_coffee - radio_name - ill - ▁ri - '@' - takeaway_query - song_name - takeaway_order - ▁ra - email_addcontact - play_game - book - transport_traffic - ▁house - music_likeness - her - transport_taxi - iot_hue_lightdim - ment - ght - fo - order_type - color_type - '1' - ven - ould - general_joke - ess - ain - qa_maths - ▁place - ▁twe - cast - iot_cleaning - ▁che - ▁cont - ith - audiobook_name - email_address - game_name - ▁cal - general_frequency - ▁tom - ▁food - act - iot_hue_lightup - '2' - alarm_remove - podcast_descriptor - ▁definition - audio_volume_down - ▁media - email_folder - dia - meal_type - ▁mus - recommendation_movies - ▁ad - ree - pt - now - playlist_name - ▁person - change_amount - ▁pla - escri - datetime_convert - podcast_name - ▁ab - time_zone - ▁def - ting - iot_wemo_on - music_settings - iot_wemo_off - orre - cy - ank - music_descriptor - lar - app_name - row - joke_type - xt - of - ition - ▁meet - ink - ▁confir - transport_agency - general_greet - ▁business - ▁art - ▁ag - urn - escript - rom - ▁rel - ▁au - ▁currency - audio_volume_other - iot_hue_lighton - ▁artist - '?' - ▁bus - cooking_type - movie_name - coffee_type - ingredient - ather - music_dislikeness - sp - q - ▁ser - esc - ▁bir - ▁cur - name - ▁tran - ▁hou - ek - uch - ▁conf - ▁face - '9' - ▁birth - I - sw - transport_descriptor - ▁comm - lease - transport_name - aid - movie_type - ▁device - alarm_type - audiobook_author - '5' - drink_type - ▁joh - ▁defin - word - ▁curren - order - iness - W - cooking_query - sport_type - ▁relation - oint - H - '8' - A - '0' - ▁dol - vice - ▁pers - '&' - T - ▁appoint - _ - '7' - '3' - '-' - game_type - ▁pod - N - M - E - list - music_album - dio - ▁transport - qa_query - C - O - U - query_detail - ']' - '[' - descriptor - ':' - spon - <sos/eos> init: null input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: true joint_net_conf: null use_preprocessor: true token_type: word bpemodel: null non_linguistic_symbols: null cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' frontend: default frontend_conf: fs: 16k specaug: specaug specaug_conf: apply_time_warp: true time_warp_window: 5 time_warp_mode: bicubic apply_freq_mask: true freq_mask_width_range: - 0 - 30 num_freq_mask: 2 apply_time_mask: true time_mask_width_range: - 0 - 40 num_time_mask: 2 normalize: utterance_mvn normalize_conf: {} model: espnet model_conf: ctc_weight: 0.3 lsm_weight: 0.1 length_normalized_loss: false extract_feats_in_collect_stats: false preencoder: null preencoder_conf: {} encoder: branchformer encoder_conf: output_size: 512 use_attn: true attention_heads: 8 attention_layer_type: rel_selfattn pos_enc_layer_type: rel_pos rel_pos_type: latest use_cgmlp: true cgmlp_linear_units: 2048 cgmlp_conv_kernel: 31 use_linear_after_conv: false gate_activation: identity merge_method: concat cgmlp_weight: 0.5 attn_branch_drop_rate: 0.0 num_blocks: 18 dropout_rate: 0.1 positional_dropout_rate: 0.1 attention_dropout_rate: 0.1 input_layer: conv2d stochastic_depth_rate: 0.0 postencoder: null postencoder_conf: {} decoder: transformer decoder_conf: attention_heads: 8 linear_units: 2048 num_blocks: 6 dropout_rate: 0.1 positional_dropout_rate: 0.1 self_attention_dropout_rate: 0.1 src_attention_dropout_rate: 0.1 required: - output_dir - token_list version: '202204' distributed: false ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
pyf98/aishell_branchformer_fast_selfattn_e24_amp
pyf98
2022-07-16T01:44:33Z
2
0
espnet
[ "espnet", "audio", "automatic-speech-recognition", "zh", "dataset:aishell", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
automatic-speech-recognition
2022-05-29T00:00:23Z
--- tags: - espnet - audio - automatic-speech-recognition language: zh datasets: - aishell license: cc-by-4.0 --- ## ESPnet2 ASR model ### `pyf98/aishell_branchformer_fast_selfattn_e24_amp` This model was trained by Yifan Peng using aishell recipe in [espnet](https://github.com/espnet/espnet/). Branchformer (Peng et al., ICML 2022): [https://proceedings.mlr.press/v162/peng22a.html](https://proceedings.mlr.press/v162/peng22a.html) ### Demo: How to use in ESPnet2 ```bash cd espnet git checkout f04c401b4c2de91c1a2cd8f5c0f6505d2711126f pip install -e . cd egs2/aishell/asr1 ./run.sh --skip_data_prep false --skip_train true --download_model pyf98/aishell_branchformer_fast_selfattn_e24_amp ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Sat May 28 16:09:35 EDT 2022` - python version: `3.9.12 (main, Apr 5 2022, 06:56:58) [GCC 7.5.0]` - espnet version: `espnet 202205` - pytorch version: `pytorch 1.11.0` - Git hash: `69141f66a5f0ff3ca370f6abe5738d33819ff9ab` - Commit date: `Fri May 27 22:12:20 2022 -0400` ## asr_train_asr_branchformer_fast_selfattn_e24_amp_raw_zh_char_sp ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |beam10_ctc0.4/dev|14326|14326|66.7|33.3|0.0|0.0|33.3|33.3| |beam10_ctc0.4/test|7176|7176|64.8|35.2|0.0|0.0|35.2|35.2| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |beam10_ctc0.4/dev|14326|205341|95.8|4.1|0.1|0.1|4.3|33.3| |beam10_ctc0.4/test|7176|104765|95.5|4.4|0.1|0.1|4.6|35.2| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| ## ASR config <details><summary>expand</summary> ``` config: conf/tuning/train_asr_branchformer_fast_selfattn_e24_amp.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_train_asr_branchformer_fast_selfattn_e24_amp_raw_zh_char_sp ngpu: 1 seed: 0 num_workers: 4 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: 4 dist_rank: 0 local_rank: 0 dist_master_addr: localhost dist_master_port: 49507 dist_launcher: null multiprocessing_distributed: true unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 60 patience: null val_scheduler_criterion: - valid - acc early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - acc - max keep_nbest_models: 10 nbest_averaging_interval: 0 grad_clip: 5 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: true log_interval: null use_matplotlib: true use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: null batch_size: 20 valid_batch_size: null batch_bins: 25000000 valid_batch_bins: null train_shape_file: - exp/asr_stats_raw_zh_char_sp/train/speech_shape - exp/asr_stats_raw_zh_char_sp/train/text_shape.char valid_shape_file: - exp/asr_stats_raw_zh_char_sp/valid/speech_shape - exp/asr_stats_raw_zh_char_sp/valid/text_shape.char batch_type: numel valid_batch_type: null fold_length: - 51200 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/train_sp/wav.scp - speech - kaldi_ark - - dump/raw/train_sp/text - text - text valid_data_path_and_name_and_type: - - dump/raw/dev/wav.scp - speech - kaldi_ark - - dump/raw/dev/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.001 weight_decay: 1.0e-06 scheduler: warmuplr scheduler_conf: warmup_steps: 35000 token_list: - <blank> - <unk> - 的 - 一 - 在 - 十 - 中 - 是 - 人 - 有 - 二 - 上 - 了 - 不 - 国 - 市 - 大 - 业 - 为 - 年 - 三 - 发 - 个 - 分 - 出 - 会 - 公 - 行 - 地 - 成 - 这 - 和 - 到 - 五 - 产 - 时 - 对 - 房 - 百 - 能 - 场 - 来 - 以 - 新 - 之 - 日 - 者 - 将 - 现 - 四 - 要 - 家 - 资 - 多 - 月 - 也 - 方 - 后 - 机 - 下 - 前 - 零 - 比 - 于 - 生 - 点 - 开 - 动 - 高 - 经 - 进 - 报 - 体 - 赛 - 子 - 万 - 车 - 用 - 金 - 司 - 可 - 被 - 过 - 手 - 本 - 作 - 自 - 全 - 八 - 六 - 最 - 价 - 目 - 电 - 部 - 交 - 九 - 七 - 面 - 我 - 企 - 加 - 小 - 度 - 实 - 同 - 城 - 工 - 其 - 力 - 定 - 而 - 元 - 合 - 已 - 内 - 与 - 法 - 还 - 关 - 网 - 得 - 他 - 就 - 入 - 名 - 品 - 女 - 记 - 理 - 事 - 长 - 两 - 商 - 都 - 们 - 京 - 并 - 但 - 平 - 制 - 保 - 据 - 期 - 化 - 主 - 重 - 表 - 次 - 相 - 量 - 通 - 道 - 政 - 所 - 天 - 第 - 利 - 间 - 海 - 数 - 务 - 提 - 北 - 展 - 员 - 管 - 投 - 因 - 建 - 好 - 外 - 区 - 更 - 示 - 增 - 从 - 计 - 信 - 性 - 等 - 运 - 项 - 应 - 当 - 收 - 位 - 着 - 起 - 学 - 台 - 民 - 持 - 规 - 设 - 明 - 股 - 正 - 没 - 心 - 然 - 很 - 今 - 调 - 去 - 安 - 此 - 东 - 队 - 如 - 线 - 科 - 世 - 无 - 达 - 身 - 果 - 证 - 基 - 受 - 男 - 需 - 标 - 布 - 情 - 格 - 近 - 步 - 未 - 费 - 求 - 式 - 消 - 千 - 美 - 些 - 里 - 米 - 向 - 看 - 续 - 息 - 意 - 接 - 门 - 回 - 及 - 销 - 老 - 获 - 总 - 监 - 打 - 联 - 至 - 亿 - 说 - 讯 - 住 - 环 - 件 - 整 - 水 - 技 - 路 - 院 - 局 - 特 - 该 - 统 - 由 - 售 - 购 - 强 - 改 - 问 - 乐 - 楼 - 涨 - 处 - 决 - 让 - 系 - 户 - 题 - 推 - 少 - 广 - 显 - 降 - 跑 - 影 - 只 - 选 - 称 - 创 - 易 - 战 - 首 - 完 - 案 - 策 - 常 - 查 - 参 - 种 - 牌 - 程 - 银 - 备 - 认 - 营 - 立 - 势 - 结 - 造 - 超 - 己 - 准 - 存 - 险 - 球 - 各 - 代 - 低 - 再 - 做 - 级 - 款 - 放 - 物 - 告 - 原 - 友 - 转 - 警 - 周 - 界 - 张 - 样 - 传 - 较 - 风 - 单 - 给 - 她 - 州 - 解 - 则 - 视 - 指 - 预 - 升 - 华 - 供 - 走 - 每 - 取 - 导 - 搜 - 集 - 文 - 变 - 客 - 排 - 片 - 头 - 任 - 积 - 术 - 率 - 型 - 军 - 斯 - 研 - 别 - 非 - 直 - 智 - 速 - 组 - 星 - 领 - 口 - 份 - 岁 - 马 - 王 - 快 - 专 - 社 - 使 - 团 - 模 - 器 - 难 - 活 - 拉 - 或 - 约 - 施 - 源 - 构 - 支 - 医 - 儿 - 带 - 服 - 先 - 想 - 引 - 么 - 办 - 照 - 狐 - 权 - 微 - 南 - 始 - 融 - 深 - 士 - 游 - 绩 - 仅 - 况 - 媒 - 随 - 半 - 越 - 幅 - 确 - 注 - 类 - 争 - 税 - 限 - 流 - 均 - 控 - 充 - 额 - 望 - 连 - 划 - 奥 - 亚 - 包 - 娱 - 西 - 财 - 值 - 伤 - 某 - 致 - 终 - 空 - 济 - 众 - 际 - 土 - 买 - 仍 - 育 - 师 - 汽 - 知 - 质 - 态 - 具 - 李 - 责 - 究 - 露 - 条 - 几 - 居 - 共 - 响 - 反 - 站 - 冠 - 节 - 季 - 优 - 委 - 宅 - 观 - 互 - 见 - 范 - 境 - 感 - 负 - 段 - 失 - 采 - 套 - 域 - 尔 - 举 - 何 - 光 - 气 - 落 - 博 - 教 - 锦 - 林 - 山 - 依 - 继 - 极 - 形 - 图 - 审 - 竞 - 益 - 断 - 贷 - 效 - 府 - 复 - 许 - 容 - 健 - 击 - 足 - 又 - 诉 - 助 - 孩 - 色 - 停 - 票 - 双 - 拿 - 板 - 松 - 热 - 那 - 把 - 却 - 清 - 刘 - 议 - 考 - 减 - 曾 - 疑 - 例 - 除 - 功 - 占 - 你 - 试 - 根 - 港 - 太 - 离 - 才 - 货 - 突 - 涉 - 且 - 券 - 配 - 盘 - 即 - 库 - 付 - 破 - 职 - 演 - 农 - 置 - 纪 - 论 - 真 - 龙 - 晚 - 装 - 爱 - 号 - 练 - 死 - 压 - 亲 - 严 - 评 - 田 - 话 - 托 - 护 - 火 - 协 - 红 - 江 - 克 - 卖 - 言 - 租 - 善 - 频 - 普 - 飞 - 验 - 补 - 边 - 满 - 象 - 软 - 算 - 遭 - 馀 - 闻 - 稳 - 厂 - 远 - 苹 - 钱 - 担 - 判 - 官 - 虽 - 湾 - 按 - 昨 - 校 - 必 - 园 - 略 - 救 - 希 - 底 - 执 - 够 - 征 - 拍 - 历 - 像 - 润 - 层 - 债 - 便 - 障 - 围 - 康 - 店 - 往 - 列 - 早 - 测 - 录 - 否 - 香 - 宝 - 阳 - 索 - 核 - 兴 - 检 - 状 - 英 - 村 - 料 - 云 - 留 - 夫 - 移 - 奖 - 病 - 临 - 轻 - 省 - 秒 - 激 - 请 - 革 - 属 - 遇 - 跌 - 维 - 批 - 德 - 承 - 端 - 介 - 精 - 夺 - 群 - 初 - 胜 - 卡 - 尽 - 花 - 辆 - 它 - 故 - 神 - 届 - 治 - 透 - 景 - 白 - 副 - 什 - 宣 - 铁 - 杨 - 跳 - 假 - 登 - 福 - 青 - 药 - 婚 - 养 - 幕 - 违 - 短 - 访 - 修 - 纷 - 律 - 左 - 角 - 酒 - 括 - 爆 - 嫌 - 径 - 宁 - 董 - 适 - 逐 - 刚 - 防 - 陈 - 午 - 差 - 庭 - 独 - 波 - 食 - 识 - 似 - 候 - 黄 - 亡 - 训 - 书 - 退 - 待 - 航 - 块 - 冲 - 扩 - 吴 - 甚 - 申 - 伟 - 眼 - 巴 - 觉 - 找 - 换 - 义 - 轮 - 滑 - 席 - 央 - 送 - 右 - 卫 - 乘 - 石 - 字 - 罪 - 罗 - 泳 - 孙 - 析 - 志 - 另 - 母 - 绿 - 抢 - 止 - 令 - 童 - 妈 - 史 - 刑 - 洲 - 述 - 穿 - 念 - 纳 - 损 - 富 - 免 - 毒 - 络 - 紧 - 妻 - 乎 - 豪 - 素 - 害 - 倒 - 吸 - 街 - 促 - 择 - 杀 - 追 - 巨 - 犯 - 声 - 愿 - 晨 - 思 - 谈 - 河 - 镇 - 尼 - 跟 - 庆 - 链 - 措 - 借 - 赔 - 密 - 圳 - 贴 - 苏 - 温 - 骗 - 习 - 摄 - 版 - 帮 - 币 - 阶 - 阿 - 迎 - 驾 - 黑 - 趋 - 县 - 私 - 吃 - 疗 - 细 - 虑 - 脑 - 韩 - 亮 - 旅 - 抓 - 罚 - 良 - 背 - 脸 - 绝 - 班 - 危 - 础 - 戏 - 戴 - 招 - 命 - 尚 - 缺 - 伙 - 须 - 父 - 夜 - 切 - 操 - 挥 - 派 - 延 - 撞 - 披 - 衣 - 剧 - 陆 - 竟 - 签 - 欧 - 享 - 春 - 徽 - 裁 - 偿 - 启 - 艺 - 宗 - 味 - 察 - 估 - 净 - 募 - 拥 - 释 - 喜 - 顺 - 励 - 靠 - 渐 - 兰 - 油 - 佳 - 困 - 针 - 迷 - 写 - 材 - 硬 - 桥 - 坚 - 订 - 拳 - 累 - 盖 - 室 - 束 - 截 - 距 - 驶 - 旬 - 歌 - 悉 - 烈 - 序 - 患 - 干 - 污 - 圈 - 杰 - 顶 - 败 - 伴 - 归 - 探 - 曝 - 怀 - 急 - 池 - 织 - 秀 - 姐 - 峰 - 顾 - 误 - 键 - 丰 - 玩 - 汉 - 古 - 彩 - 讨 - 朋 - 抗 - 刺 - 挑 - 血 - 凌 - 旧 - 拟 - 晒 - 附 - 惊 - 欢 - 劳 - 丈 - 播 - 徐 - 吗 - 湖 - 笑 - 馆 - 音 - 阵 - 坐 - 谷 - 异 - 怎 - 夏 - 龄 - 熟 - 若 - 惠 - 休 - 永 - 哪 - 暂 - 输 - 绍 - 印 - 冰 - 缓 - 暖 - 听 - 避 - 嘉 - 寻 - 培 - 筹 - 伦 - 雪 - 账 - 暴 - 简 - 予 - 丽 - 泽 - 刻 - 野 - 威 - 宽 - 笔 - 语 - 武 - 炒 - 虚 - 架 - 奇 - 哥 - 尤 - 座 - 迅 - 粉 - 倍 - 朱 - 屋 - 般 - 错 - 津 - 弟 - 汇 - 概 - 鼓 - 掉 - 郑 - 钟 - 召 - 礼 - 禁 - 折 - 缩 - 锁 - 涛 - 乡 - 肥 - 幸 - 雨 - 梦 - 肉 - 攻 - 冬 - 呼 - 蓝 - 综 - 码 - 杯 - 映 - 刀 - 谢 - 编 - 脚 - 晓 - 遍 - 朝 - 吉 - 洗 - 盗 - 丹 - 屏 - 盛 - 秘 - 拘 - 染 - 渠 - 扣 - 洋 - 梯 - 枪 - 久 - 诈 - 川 - 摩 - 俄 - 迪 - 毛 - 赞 - 符 - 画 - 翻 - 妹 - 筑 - 聚 - 哈 - 兵 - 肯 - 胎 - 潮 - 苦 - 逃 - 讲 - 授 - 慢 - 顿 - 遗 - 丝 - 呈 - 揭 - 挂 - 封 - 慧 - 跨 - 询 - 拆 - 森 - 孕 - 脱 - 读 - 枚 - 捐 - 桩 - 跃 - 刷 - 芯 - 斗 - 昆 - 储 - 守 - 触 - 木 - 皮 - 饭 - 添 - 莞 - 震 - 载 - 贵 - 侵 - 撑 - 爸 - 册 - 舞 - 丁 - 贸 - 奶 - 隐 - 妇 - 榜 - 睡 - 陷 - 草 - 扬 - 袭 - 偷 - 督 - 亏 - 吕 - 珠 - 赶 - 扶 - 盈 - 档 - 诺 - 返 - 既 - 末 - 沙 - 谁 - 宏 - 摘 - 典 - 床 - 闭 - 弃 - 雷 - 毕 - 郭 - 玲 - 郎 - 芝 - 胡 - 瑞 - 盟 - 厅 - 抱 - 燃 - 铜 - 旗 - 荣 - 餐 - 牙 - 爷 - 迹 - 宇 - 途 - 潜 - 抵 - 骨 - 援 - 浪 - 玉 - 祖 - 振 - 虹 - 散 - 焦 - 勇 - 努 - 婆 - 拒 - 弹 - 梁 - 坛 - 含 - 坏 - 纯 - 烟 - 冷 - 镜 - 叫 - 赵 - 静 - 仪 - 藏 - 杂 - 痛 - 慎 - 树 - 章 - 塞 - 钢 - 狂 - 呢 - 雅 - 寿 - 恩 - 固 - 狗 - 菜 - 沟 - 献 - 叶 - 泰 - 赢 - 剩 - 窃 - 偏 - 掌 - 宜 - 课 - 趣 - 喝 - 纠 - 籍 - 替 - 炸 - 隔 - 砸 - 搭 - 诚 - 族 - 浙 - 齐 - 杆 - 晋 - 恶 - 奋 - 秋 - 鲜 - 鲁 - 冒 - 赚 - 弱 - 腿 - 祝 - 混 - 缴 - 疾 - 握 - 汪 - 辉 - 奔 - 醒 - 捕 - 骑 - 鸟 - 摆 - 灵 - 敏 - 牛 - 岛 - 恋 - 耗 - 瓦 - 拼 - 恐 - 棒 - 坦 - 厚 - 侧 - 尝 - 薪 - 堂 - 曲 - 答 - 雄 - 徒 - 碍 - 拓 - 翔 - 佛 - 佐 - 滴 - 杭 - 残 - 毫 - 射 - 拖 - 阻 - 辑 - 踪 - 症 - 姓 - 欲 - 鱼 - 船 - 恢 - 衡 - 淡 - 唯 - 乏 - 迟 - 琪 - 烧 - 唐 - 卷 - 陪 - 伏 - 劵 - 繁 - 逆 - 迁 - 诊 - 乱 - 亦 - 谓 - 矿 - 迫 - 忧 - 扮 - 巢 - 扎 - 卓 - 恒 - 庄 - 递 - 灾 - 莱 - 赴 - 煤 - 搏 - 剂 - 梅 - 吧 - 撤 - 哲 - 炳 - 尾 - 誉 - 洛 - 轨 - 署 - 党 - 惯 - 幼 - 缘 - 墨 - 莫 - 辞 - 奏 - 敢 - 垄 - 旁 - 蒙 - 箱 - 吨 - 泛 - 怕 - 闹 - 欠 - 劫 - 纸 - 岸 - 淘 - 赌 - 窗 - 洁 - 岗 - 娘 - 晶 - 劲 - 凭 - 斤 - 洪 - 液 - 槛 - 兼 - 摔 - 楚 - 昌 - 菲 - 萌 - 伍 - 沿 - 咨 - 饮 - 墙 - 沈 - 坡 - 寸 - 溢 - 仓 - 鉴 - 慈 - 柯 - 旦 - 殊 - 坠 - 诸 - 搞 - 伊 - 霸 - 绑 - 氧 - 墅 - 轿 - 蛋 - 忙 - 滨 - 井 - 逼 - 伯 - 癌 - 燕 - 赖 - 浦 - 漏 - 携 - 堪 - 阅 - 诗 - 贩 - 腐 - 倾 - 铺 - 旺 - 横 - 逊 - 允 - 窄 - 鸡 - 唱 - 贿 - 拨 - 砍 - 猛 - 碳 - 堵 - 邀 - 冕 - 栏 - 姆 - 耳 - 绕 - 览 - 聘 - 琳 - 霞 - 挖 - 庞 - 彻 - 颁 - 挺 - 沉 - 抄 - 宫 - 殴 - 垃 - 圾 - 尸 - 涵 - 娃 - 婷 - 牵 - 腾 - 卧 - 偶 - 扰 - 澳 - 迈 - 虎 - 贡 - 词 - 壁 - 宾 - 捷 - 忍 - 佩 - 喊 - 抽 - 植 - 炼 - 奸 - 吐 - 抛 - 祥 - 莉 - 泄 - 械 - 乒 - 辛 - 疯 - 凯 - 扫 - 灯 - 淀 - 毁 - 鬼 - 婴 - 淫 - 冻 - 篮 - 聊 - 帅 - 乔 - 沪 - 羽 - 舍 - 裂 - 忽 - 圆 - 拔 - 朗 - 宿 - 麻 - 眠 - 玮 - 塔 - 碰 - 怪 - 押 - 攀 - 驰 - 欣 - 踏 - 巩 - 废 - 艰 - 乳 - 句 - 侦 - 兄 - 荐 - 寓 - 厦 - 贝 - 纵 - 肖 - 杜 - 忘 - 丢 - 搬 - 曼 - 瓶 - 鹏 - 默 - 惨 - 泡 - 愈 - 敦 - 洞 - 劝 - 颖 - 酷 - 颜 - 巡 - 脏 - 仿 - 羊 - 挤 - 廉 - 麦 - 塌 - 君 - 敌 - 乌 - 俩 - 樊 - 邮 - 烯 - 详 - 舒 - 契 - 漫 - 胞 - 魔 - 宋 - 伐 - 谨 - 姿 - 姑 - 隆 - 纹 - 傅 - 茶 - 著 - 谋 - 敬 - 郁 - 驱 - 菌 - 悬 - 循 - 摊 - 闪 - 伪 - 鸿 - 娜 - 澎 - 湃 - 炉 - 暗 - 闯 - 绪 - 汰 - 稿 - 咬 - 卢 - 泉 - 涌 - 蕾 - 姻 - 熊 - 稀 - 摇 - 吊 - 桌 - 俊 - 哭 - 赠 - 逸 - 吓 - 赫 - 凡 - 俱 - 冯 - 巧 - 涯 - 啦 - 讼 - 恰 - 抚 - 肇 - 锋 - 凶 - 贯 - 悄 - 灭 - 冀 - 糕 - 伸 - 胖 - 腹 - 郊 - 斌 - 鑫 - 厉 - 肩 - 圣 - 浮 - 妙 - 饰 - 尖 - 尊 - 邱 - 诞 - 屡 - 摸 - 酬 - 闲 - 晰 - 匹 - 锻 - 甲 - 敲 - 遥 - 勒 - 兑 - 熙 - 稽 - 蔡 - 惜 - 猫 - 怒 - 驻 - 颇 - 浓 - 宴 - 仁 - 赏 - 磨 - 悲 - 骂 - 轴 - 姜 - 猪 - 割 - 歉 - 玻 - 浩 - 番 - 渡 - 肌 - 践 - 盾 - 甜 - 溺 - 尺 - 忆 - 盐 - 泥 - 薄 - 矛 - 畅 - 抑 - 颗 - 蒋 - 稍 - 碎 - 帝 - 璃 - 掀 - 拐 - 牢 - 幻 - 仔 - 粮 - 艾 - 扭 - 尿 - 刊 - 仑 - 黎 - 埃 - 臂 - 邻 - 苗 - 衔 - 桂 - 潭 - 履 - 贾 - 饼 - 惩 - 诱 - 旋 - 篇 - 辽 - 旭 - 逾 - 豆 - 潘 - 堆 - 甘 - 邦 - 氏 - 拦 - 硕 - 棋 - 裤 - 乓 - 姚 - 厘 - 邓 - 陶 - 萨 - 弗 - 辅 - 廷 - 吁 - 杠 - 绮 - 瑄 - 夹 - 槽 - 祸 - 袁 - 勾 - 赁 - 帖 - 腰 - 漂 - 裕 - 嘴 - 壮 - 弯 - 啊 - 汤 - 垫 - 魏 - 倡 - 栋 - 碑 - 颈 - 暑 - 魅 - 裸 - 疏 - 雇 - 毅 - 忠 - 疆 - 葛 - 凤 - 屈 - 悦 - 馈 - 挡 - 闫 - 氮 - 兆 - 貌 - 厕 - 谣 - 颠 - 猜 - 疲 - 框 - 揽 - 胁 - 憾 - 秩 - 艳 - 帽 - 氛 - 荷 - 泪 - 剑 - 懂 - 钻 - 遵 - 贪 - 贼 - 狱 - 姣 - 寺 - 胶 - 吵 - 催 - 削 - 丑 - 欺 - 肃 - 妥 - 烦 - 灰 - 擅 - 佣 - 萧 - 虾 - 鞋 - 捧 - 逝 - 猥 - 瓜 - 酸 - 奈 - 厨 - 紫 - 侠 - 塑 - 娇 - 辖 - 舆 - 擦 - 柏 - 澄 - 磊 - 虐 - 轰 - 曹 - 删 - 鼻 - 柳 - 屯 - 笼 - 皇 - 糖 - 珍 - 疼 - 柜 - 捡 - 址 - 肠 - 捞 - 拜 - 峻 - 吹 - 乃 - 瘦 - 肚 - 贤 - 帕 - 岳 - 勤 - 瑜 - 锅 - 沫 - 俗 - 昕 - 帆 - 茂 - 醉 - 填 - 饱 - 爬 - 轩 - 滞 - 蜜 - 汗 - 飙 - 耐 - 亨 - 媳 - 彭 - 蓄 - 蝶 - 炮 - 鼠 - 咖 - 琴 - 宠 - 棍 - 掘 - 茨 - 坑 - 湘 - 孟 - 劣 - 灿 - 虫 - 彦 - 喷 - 描 - 辩 - 尴 - 尬 - 弥 - 孤 - 峡 - 凸 - 逻 - 辰 - 孔 - 抬 - 馨 - 蔚 - 怡 - 雯 - 砖 - 崇 - 肢 - 柱 - 阔 - 彼 - 荒 - 滚 - 葡 - 萄 - 昂 - 盆 - 怨 - 瞬 - 斜 - 斩 - 睛 - 剪 - 插 - 棚 - 串 - 沃 - 柔 - 肤 - 壳 - 胸 - 陕 - 凉 - 崛 - 鸣 - 罕 - 衷 - 阴 - 盲 - 伞 - 戒 - 踢 - 狼 - 埋 - 酿 - 旨 - 戈 - 捉 - 跪 - 贺 - 谭 - 涂 - 萎 - 滋 - 昏 - 扇 - 鼎 - 楠 - 驳 - 溪 - 桑 - 钧 - 荡 - 痕 - 玛 - 躲 - 谐 - 您 - 叹 - 桶 - 晕 - 丙 - 璇 - 咚 - 烂 - 杉 - 挣 - 窝 - 亵 - 芸 - 渝 - 芳 - 妆 - 膜 - 煌 - 尘 - 侯 - 赋 - 渣 - 贫 - 桃 - 页 - 吞 - 胀 - 竹 - 肝 - 雾 - 嫁 - 辈 - 愤 - 琐 - 殖 - 媛 - 寄 - 僵 - 逮 - 聪 - 粗 - 寒 - 弄 - 墓 - 谌 - 扔 - 役 - 呆 - 靖 - 蒂 - 芬 - 翼 - 喂 - 孵 - 谎 - 硅 - 璨 - 喀 - 盼 - 盒 - 慌 - 烫 - 秦 - 梳 - 韦 - 袋 - 钓 - 夕 - 碗 - 寨 - 塘 - 衍 - 垒 - 卿 - 滩 - 扑 - 绘 - 辱 - 炎 - 铅 - 肿 - 衰 - 厢 - 躺 - 纽 - 硫 - 睐 - 翁 - 慰 - 耍 - 缠 - 狠 - 脉 - 斥 - 脂 - 趴 - 钩 - 歧 - 椅 - 踩 - 掷 - 挽 - 锐 - 勘 - 逢 - 郝 - 宪 - 胃 - 粒 - 瞩 - 辟 - 皆 - 仰 - 腕 - 匪 - 陵 - 钥 - 缝 - 闸 - 犬 - 锡 - 弊 - 凝 - 臭 - 趁 - 拾 - 夸 - 掩 - 耀 - 炭 - 铬 - 叠 - 坊 - 挪 - 蟹 - 裹 - 狮 - 辐 - 陌 - 捅 - 疫 - 兹 - 霍 - 锈 - 娟 - 蚁 - 奢 - 吻 - 侃 - 晖 - 扳 - 冤 - 彰 - 蹈 - 畴 - 蛇 - 濠 - 啡 - 堡 - 侣 - 撒 - 铭 - 掏 - 奎 - 蜂 - 咸 - 穷 - 瞄 - 遂 - 碾 - 匿 - 瓷 - 舱 - 刹 - 柄 - 倪 - 睹 - 译 - 淇 - 猝 - 浅 - 肺 - 湿 - 顽 - 罩 - 胆 - 匙 - 渴 - 妮 - 羞 - 脆 - 魄 - 锂 - 纤 - 炫 - 裙 - 肾 - 傲 - 膝 - 叔 - 啥 - 撕 - 牲 - 猴 - 辨 - 酝 - 刮 - 惑 - 渗 - 喻 - 晴 - 淑 - 羡 - 慕 - 擂 - 骚 - 纺 - 咕 - 僧 - 悔 - 垂 - 瘫 - 剥 - 舰 - 浏 - 鲍 - 跻 - 亭 - 撰 - 卸 - 莲 - 纱 - 糊 - 朵 - 岩 - 眉 - 函 - 糟 - 仗 - 惹 - 琦 - 贞 - 氢 - 楷 - 莓 - 瞒 - 奠 - 勃 - 锤 - 妨 - 帷 - 洽 - 乞 - 牺 - 亩 - 簿 - 斑 - 翘 - 祈 - 唇 - 耕 - 扯 - 妍 - 坎 - 谱 - 盯 - 泼 - 悍 - 莎 - 汁 - 囊 - 甩 - 辣 - 浸 - 恼 - 盔 - 烤 - 坝 - 巅 - 沸 - 抹 - 邹 - 霾 - 怖 - 犹 - 擎 - 迄 - 恨 - 丧 - 坞 - 袖 - 赤 - 萍 - 爽 - 穆 - 娶 - 闷 - 捍 - 膀 - 侈 - 筋 - 逛 - 倩 - 纲 - 遮 - 御 - 姨 - 淮 - 宰 - 叉 - 绵 - 惧 - 钦 - 廊 - 鳄 - 砂 - 浆 - 禽 - 咏 - 瘾 - 饿 - 痴 - 绳 - 碟 - 韵 - 皓 - 廖 - 岭 - 蛙 - 兔 - 芽 - 剖 - 嫖 - 昔 - 哀 - 蔓 - 谦 - 滥 - 赂 - 渊 - 捣 - 佑 - 弈 - 仙 - 澡 - 骤 - 侨 - 奉 - 磅 - 慨 - 筛 - 嘲 - 竣 - 箭 - 荧 - 脖 - 彤 - 豫 - 躁 - 秉 - 鹤 - 幺 - 渔 - 罢 - 贬 - 铲 - 卵 - 逗 - 牧 - 蔬 - 苑 - 沦 - 遏 - 柴 - 庙 - 兽 - 耶 - 魂 - 溜 - 缉 - 俏 - 蕴 - 苛 - 凑 - 婿 - 铸 - 兜 - 蹭 - 鸭 - 朴 - 肋 - 噪 - 焚 - 坍 - 啤 - 钉 - 戚 - 谍 - 挫 - 艇 - 余 - 巷 - 屠 - 咋 - 詹 - 衫 - 浴 - 爹 - 孝 - 瘤 - 霖 - 崩 - 甸 - 悼 - 擒 - 浇 - 雕 - 竖 - 帐 - 萤 - 靡 - 漠 - 傻 - 撼 - 崔 - 筒 - 脊 - 嘛 - 臣 - 禾 - 龟 - 唤 - 呀 - 壤 - 灌 - 邵 - 稻 - 巾 - 葩 - 饥 - 缔 - 舌 - 窜 - 秽 - 茅 - 靓 - 阱 - 钞 - 潼 - 硝 - 墩 - 蝙 - 蝠 - 嫂 - 艘 - 嚣 - 铃 - 扒 - 佬 - 竭 - 赎 - 傍 - 熬 - 悠 - 挨 - 泊 - 攒 - 坪 - 焰 - 螺 - 薇 - 蛛 - 牟 - 忌 - 愧 - 酵 - 迭 - 饶 - 惟 - 钮 - 闵 - 碧 - 徘 - 徊 - 溯 - 棉 - 歪 - 捂 - 蚊 - 锰 - 屁 - 畸 - 肪 - 蹲 - 剔 - 榆 - 撇 - 瑟 - 讶 - 飘 - 蒸 - 诠 - 寂 - 罄 - 莹 - 鹅 - 泣 - 崖 - 珊 - 讳 - 翰 - 蜘 - 仲 - 燥 - 菱 - 滢 - 煎 - 蛮 - 瞻 - 蘑 - 菇 - 隙 - 捆 - 蕉 - 遣 - 宛 - 肆 - 丸 - 磁 - 玥 - 嵌 - 韶 - 枝 - 咪 - 愉 - 呕 - 淤 - 誓 - 辄 - 俯 - 桐 - 舅 - 蓉 - 渭 - 氯 - 溅 - 雁 - 龚 - 恺 - 妖 - 饽 - 荆 - 枯 - 仇 - 坟 - 澜 - 麟 - 藤 - 猎 - 洒 - 茹 - 碌 - 畏 - 涤 - 俞 - 勿 - 蔽 - 罐 - 尹 - 堰 - 儒 - 芮 - 孚 - 哗 - 掐 - 矶 - 椎 - 阐 - 驴 - 蝉 - 焕 - 鄂 - 耻 - 炯 - 衬 - 婉 - 愁 - 梨 - 丛 - 谅 - 膨 - 曙 - 鹿 - 骄 - 缅 - 匆 - 赃 - 蒲 - 睁 - 焱 - 灼 - 刃 - 螃 - 瑕 - 讹 - 禅 - 臀 - 姗 - 媚 - 呛 - 凰 - 瀚 - 埔 - 弓 - 阚 - 湛 - 奕 - 扛 - 齿 - 挟 - 髓 - 狭 - 栈 - 骏 - 崭 - 慑 - 殿 - 祭 - 僻 - 蹬 - 寡 - 呦 - 鞠 - 酱 - 瑰 - 馒 - 坤 - 趟 - 臻 - 咒 - 豹 - 畜 - 冉 - 绎 - 岌 - 甄 - 绞 - 宵 - 庸 - 歇 - 挠 - 氨 - 乙 - 茵 - 岔 - 淄 - 碘 - 淋 - 蓬 - 颅 - 羹 - 浑 - 昧 - 翠 - 峥 - 惕 - 睿 - 芦 - 蚀 - 颓 - 霜 - 钰 - 橘 - 堤 - 凳 - 溶 - 锯 - 幂 - 榴 - 娼 - 汹 - 茫 - 厌 - 绰 - 崎 - 溃 - 撬 - 沾 - 拇 - 疵 - 哦 - 弧 - 弘 - 咽 - 葬 - 阁 - 竿 - 篡 - 隶 - 诟 - 煮 - 丘 - 耿 - 彬 - 敞 - 泻 - 夷 - 隅 - 渎 - 淹 - 骆 - 醋 - 霆 - 涩 - 陀 - 叙 - 梗 - 冶 - 敛 - 痪 - 讽 - 疤 - 螂 - 芒 - 幢 - 炜 - 毯 - 橙 - 拢 - 俨 - 仕 - 氰 - 钾 - 呐 - 株 - 脾 - 烨 - 磕 - 薛 - 窖 - 芷 - 蜕 - 衅 - 歹 - 哒 - 诡 - 摧 - 漆 - 蟑 - 劈 - 呵 - 絮 - 抖 - 娅 - 铝 - 霉 - 芭 - 辜 - 昊 - 嘘 - 哑 - 枢 - 脐 - 庐 - 钠 - 鳌 - 矩 - 锆 - 婧 - 沛 - 饲 - 熄 - 翡 - 屹 - 膏 - 阙 - 搂 - 锣 - 幌 - 橄 - 榄 - 杖 - 旷 - 矫 - 冈 - 舟 - 腊 - 聂 - 拣 - 遛 - 勋 - 窘 - 韧 - 咱 - 拎 - 椒 - 揣 - 殷 - 揪 - 伽 - 贱 - 琼 - 菡 - 闺 - 昭 - 雏 - 蹊 - 黛 - 禹 - 鞍 - 乖 - 汝 - 甫 - 彝 - 泸 - 诬 - 拽 - 毽 - 搅 - 葵 - 旱 - 勉 - 跷 - 畔 - 肘 - 坂 - 漩 - 涡 - 倘 - 醛 - 曦 - 铀 - 杏 - 棕 - 幽 - 裴 - 阮 - 敷 - 茄 - 沧 - 剽 - 恳 - 淳 - 萱 - 袱 - 亥 - 痱 - 腔 - 嫉 - 粹 - 焊 - 诀 - 粪 - 朔 - 黯 - 谜 - 眨 - 祁 - 暧 - 魁 - 辗 - 穗 - 倦 - 剿 - 袍 - 恭 - 炙 - 娴 - 玫 - 锏 - 熏 - 窥 - 堕 - 悟 - 晃 - 缪 - 驿 - 泷 - 雀 - 惫 - 玺 - 剃 - 斐 - 袂 - 梭 - 哄 - 邪 - 岂 - 腻 - 嫩 - 榕 - 谴 - 潇 - 纬 - 侮 - 翅 - 镶 - 坷 - 彪 - 祷 - 匝 - 耽 - 萝 - 窑 - 瑾 - 滤 - 拱 - 哨 - 蠢 - 邢 - 涞 - 恤 - 泾 - 谤 - 瀑 - 舶 - 懈 - 忱 - 烹 - 晟 - 踞 - 剁 - 珉 - 庚 - 晤 - 壶 - 砾 - 嗅 - 妒 - 匈 - 胰 - 绯 - 荼 - 爪 - 茜 - 桦 - 蜇 - 芜 - 玄 - 葫 - 蚂 - 绊 - 搁 - 霏 - 粘 - 佟 - 雍 - 垮 - 羁 - 娥 - 碱 - 磷 - 钊 - 毙 - 诿 - 绸 - 捏 - 遴 - 畊 - 厮 - 巫 - 猖 - 獗 - 掴 - 辍 - 蜡 - 赣 - 筵 - 芙 - 蒜 - 缆 - 俪 - 鹰 - 笋 - 毋 - 喆 - 鹭 - 蝴 - 汀 - 诽 - 桔 - 篷 - 莽 - 栖 - 饪 - 伺 - 戳 - 谊 - 霄 - 侄 - 滔 - 瞎 - 皱 - 蛟 - 裔 - 烽 - 猿 - 叮 - 绷 - 腺 - 暨 - 沥 - 喧 - 囤 - 掠 - 陡 - 膺 - 痒 - 饵 - 戎 - 褚 - 丐 - 渤 - 帜 - 娄 - 洼 - 禄 - 婵 - 琢 - 躯 - 禺 - 峙 - 踹 - 怜 - 炖 - 剐 - 缚 - 襄 - 枫 - 绽 - 庾 - 斧 - 穴 - 寇 - 蝇 - 鞭 - 阎 - 矢 - 糙 - 巍 - 蒿 - 殒 - 蛰 - 囧 - 卜 - 宙 - 珮 - 鸦 - 璞 - 翟 - 酗 - 褒 - 豁 - 镑 - 耷 - 棠 - 垦 - 韬 - 荫 - 窨 - 鸽 - 羲 - 懒 - 躬 - 匕 - 犀 - 吼 - 珀 - 昙 - 樱 - 蹿 - 抉 - 苍 - 汛 - 铉 - 镉 - 喔 - 邯 - 郸 - 噱 - 瓯 - 沼 - 捻 - 苯 - 蹼 - 麋 - 阀 - 煞 - 踝 - 缭 - 菊 - 竺 - 峭 - 攥 - 癖 - 肛 - 泔 - 拯 - 窟 - 靳 - 舵 - 嘱 - 昱 - 勺 - 吾 - 丫 - 觅 - 醇 - 磋 - 徙 - 陨 - 惺 - 渍 - 炬 - 栽 - 晏 - 颂 - 奴 - 榔 - 驭 - 嚼 - 赡 - 豚 - 蔷 - 梓 - 梧 - 哽 - 晗 - 汞 - 嫣 - 蕊 - 祺 - 疹 - 壹 - 噬 - 皂 - 矗 - 悚 - 憧 - 憬 - 拷 - 扁 - 廓 - 蹴 - 岚 - 瑛 - 崴 - 栗 - 囚 - 涿 - 礁 - 晔 - 殡 - 璀 - 淞 - 隋 - 踵 - 钵 - 煊 - 赘 - 瞧 - 寞 - 陋 - 骷 - 髅 - 秸 - 秆 - 夯 - 荔 - 襁 - 褓 - 笨 - 沮 - 瞅 - 怂 - 茗 - 甥 - 亟 - 杳 - 煦 - 挚 - 棵 - 祠 - 嗯 - 枕 - 粟 - 泌 - 蜀 - 寥 - 遐 - 涝 - 辫 - 籁 - 窍 - 聋 - 逍 - 跤 - 凹 - 釜 - 嘀 - 嗒 - 淝 - 藜 - 翱 - 硚 - 叼 - 痹 - 腼 - 腆 - 伎 - 骋 - 愕 - 腥 - 拮 - 轧 - 癫 - 橡 - 膊 - 觑 - 寅 - 砒 - 趾 - 颐 - 漳 - 峨 - 呜 - 淆 - 凿 - 壕 - 铨 - 莆 - 筷 - 璧 - 譬 - 岖 - 抠 - 笛 - 厥 - 砺 - 喉 - 酌 - 簧 - 鲸 - 踊 - 牡 - 嬛 - 缜 - 奂 - 熹 - 闽 - 馊 - 胯 - 喇 - 伶 - 墟 - 煜 - 耘 - 榷 - 骁 - 猩 - 辙 - 狸 - 滕 - 诵 - 窒 - 恍 - 髦 - 诫 - 榨 - 熠 - 蔺 - 薯 - 歆 - 粤 - 夭 - 拌 - 唏 - 厄 - 吝 - 眷 - 峪 - 拙 - 咎 - 粥 - 痰 - 琅 - 羚 - 莘 - 憨 - 瞰 - 炅 - 孜 - 亢 - 缮 - 焯 - 咄 - 暇 - 矮 - 汲 - 灶 - 闰 - 奚 - 汶 - 珲 - 麓 - 憋 - 崂 - 镳 - 殃 - 卉 - 诧 - 矣 - 屎 - 聆 - 芋 - 屑 - 罂 - 籽 - 绚 - 卞 - 枉 - 汕 - 懋 - 媲 - 啧 - 掣 - 嬉 - 仨 - 姬 - 懿 - 馅 - 胺 - 撂 - 睫 - 蛐 - 萃 - 眈 - 飚 - 毓 - 涅 - 昼 - 橱 - 驼 - 涠 - 谩 - 婶 - 膛 - 拄 - 绣 - 栅 - 邬 - 怠 - 鄙 - 哉 - 跺 - 帘 - 沓 - 搀 - 腌 - 羿 - 泵 - 鄞 - 郡 - 烃 - 愚 - 蕙 - 垤 - 锌 - 柠 - 檬 - 葱 - 垢 - 匮 - 卦 - 懊 - 掺 - 叱 - 坯 - 糯 - 覆 - 铆 - 琬 - 抡 - 潢 - 棺 - 塾 - 飓 - 诅 - 翩 - 揍 - 檀 - 鳝 - 讪 - 熔 - 杞 - 啃 - 昀 - 紊 - 敖 - 璐 - 蔗 - 槌 - 铐 - 搡 - 磐 - 宕 - 栓 - 叭 - 戟 - 顷 - 濒 - 窦 - 摁 - 俐 - 瞳 - 蚕 - 鹊 - 迂 - 畿 - 瓣 - 媞 - 寝 - 蹦 - 嗑 - 袒 - 殉 - 稚 - 俘 - 搪 - 沽 - 妃 - 嗓 - 胫 - 町 - 莴 - 苣 - 痘 - 蔑 - 皖 - 枞 - 忐 - 忑 - 靴 - 菁 - 姥 - 诙 - 嚷 - 焉 - 沣 - 霹 - 雳 - 僚 - 尧 - 嘎 - 诩 - 咫 - 柬 - 惮 - 狄 - 匀 - 裆 - 黏 - 釉 - 膳 - 渺 - 苟 - 瑶 - 唾 - 瘠 - 讧 - 睦 - 弦 - 庇 - 袄 - 噩 - 扼 - 戛 - 禀 - 恿 - 滁 - 麾 - 筱 - 瘀 - 褪 - 槟 - 缨 - 绒 - 犷 - 茸 - 惋 - 嗤 - 寮 - 褂 - 咳 - 缀 - 谙 - 涧 - 炽 - 缄 - 鹜 - 砌 - 贮 - 庵 - 隧 - 卤 - 跆 - 皋 - 蝗 - 洱 - 圪 - 邑 - 锄 - 荟 - 渚 - 苇 - 孰 - 鹃 - 哼 - 呃 - 琛 - 痣 - 摹 - 痼 - 镯 - 刁 - 秧 - 腩 - 鳞 - 乍 - 颚 - 慷 - 氓 - 惦 - 卑 - 挝 - 熨 - 濮 - 胳 - 瓢 - 砰 - 溧 - 锷 - 鸠 - 犒 - 姝 - 蹄 - 宸 - 侥 - 锭 - 佶 - 浊 - 婪 - 磺 - 咤 - 迢 - 檐 - 邺 - 掂 - 渲 - 嚎 - 祛 - 伢 - 叛 - 撮 - 甬 - 淌 - 瀛 - 朽 - 陂 - 帼 - 铿 - 锵 - 漓 - 驯 - 鲨 - 抒 - 茁 - 柿 - 貔 - 貅 - 钝 - 鳅 - 嚏 - 暮 - 瑚 - 荤 - 蜓 - 垣 - 颤 - 溥 - 臃 - 戮 - 枣 - 佼 - 拗 - 哆 - 嗦 - 惚 - 鸥 - 倚 - 嗨 - 舸 - 赐 - 姊 - 憔 - 悴 - 铰 - 黝 - 屿 - 秃 - 嘻 - 楞 - 棱 - 袈 - 裟 - 汴 - 揉 - 髋 - 悸 - 榻 - 逞 - 晾 - 屌 - 闳 - 痊 - 袜 - 扉 - 琶 - 摒 - 捺 - 匠 - 窈 - 窕 - 飒 - 猬 - 蜚 - 萋 - 蚯 - 蚓 - 鲟 - 澈 - 樟 - 悖 - 玖 - 俾 - 抿 - 彷 - 彿 - 虱 - 狙 - 鲶 - 槿 - 烘 - 挎 - 狰 - 狞 - 邃 - 瞪 - 俚 - 涕 - 谬 - 睬 - 蜷 - 兢 - 镍 - 砷 - 菠 - 怦 - 凄 - 卯 - 獒 - 渀 - 辘 - 滇 - 燎 - 噎 - 蝎 - 綦 - 鄢 - 捎 - 瞿 - 蜿 - 蜒 - 禧 - 榈 - 锹 - 殭 - 爵 - 盹 - 淖 - 啼 - 瓮 - 鳖 - 镖 - 珑 - 罹 - 殆 - 掖 - 柞 - 缸 - 绅 - 棘 - 祉 - 胱 - 殓 - 嗡 - 嗷 - 箍 - 圩 - 耒 - 婕 - 腑 - 萦 - 鹞 - 珜 - 啵 - 瑙 - 葆 - 逡 - 嗽 - 饕 - 餮 - 隼 - 妞 - 饺 - 叨 - 酋 - 恙 - 泗 - 弩 - 骜 - 铎 - 酶 - 蚝 - 烁 - 匾 - 侬 - 藻 - 馥 - 骥 - 槐 - 缕 - 椿 - 袆 - 琊 - 稣 - 藩 - 迸 - 蹂 - 躏 - 隽 - 俸 - 郫 - 簸 - 砥 - 骸 - 掮 - 斛 - 啸 - 璋 - 垛 - 札 - 邋 - 遢 - 蕲 - 哇 - 碴 - 邛 - 崃 - 觐 - 笙 - 裳 - 泞 - 蚌 - 醍 - 醐 - 拴 - 舜 - 沅 - 懵 - 谕 - 帚 - 螳 - 噼 - 啪 - 漱 - 郜 - 碉 - 圭 - 谀 - 轶 - 舀 - 呲 - 啶 - 氟 - 琏 - 垅 - 娩 - 乾 - 鏖 - 牾 - 肮 - 啕 - 吏 - 涓 - 氦 - 锥 - 桎 - 吿 - 烊 - 斟 - 汾 - 岐 - 耄 - 耋 - 嗲 - 胛 - 疚 - 骇 - 癣 - 磡 - 侑 - 漾 - 碚 - 琉 - 惬 - 遁 - 耸 - 岱 - 糗 - 缙 - 肴 - 梵 - 僮 - 鸵 - 悯 - 孪 - 莅 - 戬 - 霁 - 簇 - 逵 - 倜 - 傥 - 馋 - 蓁 - 衙 - 蛀 - 蔫 - 崧 - 吟 - 琰 - 唬 - 渥 - 岷 - 仡 - 涎 - 鸳 - 鸯 - 镊 - 妧 - 嬷 - 嫦 - 嫔 - 沐 - 伉 - 嶝 - 锢 - 筐 - 蜥 - 蜴 - 泱 - 骅 - 吆 - 撩 - 怯 - 叩 - 哟 - 啬 - 岬 - 笃 - 玳 - 瑁 - 邝 - 咣 - 矜 - 嘭 - 馗 - 婀 - 黔 - 锟 - 啰 - 翌 - 铠 - 貉 - 獾 - 酣 - 楣 - 佃 - 琵 - 茆 - 皙 - 凋 - 敝 - 匣 - 嵘 - 宓 - 茎 - 楂 - 竲 - 瘪 - 侗 - 铣 - 薰 - 砲 - 羣 - 淼 - 襟 - 妊 - 娠 - 罡 - 瘁 - 椰 - 烙 - 呗 - 荃 - 皎 - 殚 - 腋 - 骼 - 腓 - 榭 - 隘 - 唉 - 铮 - 狩 - 抨 - 峁 - 粱 - 阂 - 厩 - 莠 - 吩 - 咐 - 瞌 - 蜊 - 恬 - 膑 - 踉 - 跄 - 颍 - 朐 - 疝 - 毂 - 秣 - 舛 - 炊 - 漯 - 泠 - 喘 - 撵 - 狡 - 猾 - 铂 - 钛 - 荞 - 拭 - 丞 - 漭 - 绌 - 埜 - 掰 - 狈 - 锜 - 菩 - 弛 - 寰 - 秤 - 灞 - 黍 - 蓟 - 嵛 - 榉 - 幄 - 颊 - 缤 - 朦 - 胧 - 冥 - 砝 - 镀 - 夙 - 燊 - 荚 - 浈 - 苡 - 眺 - 陬 - 寐 - 佘 - 濑 - 仄 - 楔 - 胚 - 嵩 - 洙 - 诓 - 阜 - 浚 - 觊 - 觎 - 曰 - 怵 - 兖 - 稠 - 嵋 - 艋 - 篪 - 琥 - 玟 - 褴 - 褛 - 喱 - 虞 - 魇 - 凇 - 徉 - 嘟 - 臆 - 犊 - 哎 - 靑 - 俺 - 塬 - 妯 - 娌 - 蜈 - 蚣 - 恣 - 沏 - 磴 - 霎 - 趸 - 麒 - 氪 - 缇 - 沁 - 疃 - 恸 - 瘩 - 暄 - 憩 - 祯 - 惰 - 溉 - 沱 - 诲 - 笈 - 擘 - 亳 - 孺 - 忪 - 瞟 - 擞 - 瘸 - 掬 - 唁 - 蹚 - 匡 - 粕 - 鲷 - 泓 - 叵 - 嗣 - 眯 - 炷 - 珺 - 漕 - 谑 - 咯 - 嗬 - 缰 - 卲 - 壑 - 靶 - 隍 - 唠 - 濡 - 盎 - 骊 - 腱 - 鞘 - 拧 - 痫 - 宦 - 诶 - 椋 - 鼾 - 湍 - 毗 - 酪 - 赦 - 炕 - 焘 - 奘 - 邂 - 逅 - 妄 - 骐 - 卒 - 喵 - 觥 - 眬 - 纣 - 憷 - 覃 - 孀 - 芊 - 孢 - 惶 - 迥 - 纰 - 咀 - 鸾 - 箫 - 晦 - 泯 - 砚 - 吭 - 祢 - 揩 - 刨 - 珏 - 撸 - 兀 - 痉 - 挛 - 胤 - 巿 - 纶 - 镁 - 哺 - 咔 - 嚓 - 稼 - 焖 - 妤 - 妩 - 潞 - 雌 - 栾 - 侍 - 煲 - 嫚 - 竽 - 恪 - 霈 - 赝 - 莺 - 眶 - 桓 - 槎 - 馑 - 涮 - 枭 - 徇 - 洵 - 垌 - 昵 - 褶 - 喽 - 脯 - 孱 - 遨 - 谚 - 烷 - 搽 - 酯 - 枷 - 桉 - 咧 - 窿 - 拈 - 斓 - 跛 - 蹶 - 瘟 - 俭 - 靛 - 脍 - <sos/eos> init: null input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: true joint_net_conf: null use_preprocessor: true token_type: char bpemodel: null non_linguistic_symbols: null cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' frontend: default frontend_conf: fs: 16k specaug: specaug specaug_conf: apply_time_warp: true time_warp_window: 5 time_warp_mode: bicubic apply_freq_mask: true freq_mask_width_range: - 0 - 27 num_freq_mask: 2 apply_time_mask: true time_mask_width_ratio_range: - 0.0 - 0.05 num_time_mask: 10 normalize: global_mvn normalize_conf: stats_file: exp/asr_stats_raw_zh_char_sp/train/feats_stats.npz model: espnet model_conf: ctc_weight: 0.3 lsm_weight: 0.1 length_normalized_loss: false preencoder: null preencoder_conf: {} encoder: branchformer encoder_conf: output_size: 256 use_attn: true attention_heads: 4 attention_layer_type: fast_selfattn pos_enc_layer_type: abs_pos rel_pos_type: latest use_cgmlp: true cgmlp_linear_units: 2048 cgmlp_conv_kernel: 31 use_linear_after_conv: false gate_activation: identity merge_method: concat cgmlp_weight: 0.5 attn_branch_drop_rate: 0.0 num_blocks: 24 dropout_rate: 0.1 positional_dropout_rate: 0.1 attention_dropout_rate: 0.1 input_layer: conv2d stochastic_depth_rate: 0.0 postencoder: null postencoder_conf: {} decoder: transformer decoder_conf: attention_heads: 4 linear_units: 2048 num_blocks: 6 dropout_rate: 0.1 positional_dropout_rate: 0.1 self_attention_dropout_rate: 0.0 src_attention_dropout_rate: 0.0 required: - output_dir - token_list version: '202204' distributed: true ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
trtd56/ppo-Walker2DBulletEnv-v0
trtd56
2022-07-16T00:39:31Z
1
0
stable-baselines3
[ "stable-baselines3", "Walker2DBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-07-16T00:38:25Z
--- library_name: stable-baselines3 tags: - Walker2DBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 2426.70 +/- 17.01 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Walker2DBulletEnv-v0 type: Walker2DBulletEnv-v0 --- # **PPO** Agent playing **Walker2DBulletEnv-v0** This is a trained model of a **PPO** agent playing **Walker2DBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Evelyn18/distilbert-base-uncased-modelo-becas0
Evelyn18
2022-07-15T22:56:08Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:becasv3", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-07-15T22:03:47Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - becasv3 model-index: - name: distilbert-base-uncased-modelo-becas0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-modelo-becas0 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the becasv3 dataset. It achieves the following results on the evaluation set: - Loss: 3.1182 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 5 | 5.5381 | | No log | 2.0 | 10 | 4.9493 | | No log | 3.0 | 15 | 4.4985 | | No log | 4.0 | 20 | 4.1063 | | No log | 5.0 | 25 | 3.7708 | | No log | 6.0 | 30 | 3.5205 | | No log | 7.0 | 35 | 3.3313 | | No log | 8.0 | 40 | 3.2195 | | No log | 9.0 | 45 | 3.1453 | | No log | 10.0 | 50 | 3.1182 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
kinanmartin/xlm-roberta-large-ner-hrl-finetuned-ner-full
kinanmartin
2022-07-15T21:22:23Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:toydata", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-07-15T16:40:32Z
--- tags: - generated_from_trainer datasets: - toydata model-index: - name: xlm-roberta-large-ner-hrl-finetuned-ner-full results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-large-ner-hrl-finetuned-ner-full This model is a fine-tuned version of [Davlan/xlm-roberta-large-ner-hrl](https://huggingface.co/Davlan/xlm-roberta-large-ner-hrl) on the toydata dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
darragh/swinunetr-btcv-base
darragh
2022-07-15T21:01:42Z
15
1
transformers
[ "transformers", "pytorch", "btcv", "medical", "swin", "en", "dataset:BTCV", "arxiv:2201.01266", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-07-15T11:31:09Z
--- language: en tags: - btcv - medical - swin license: apache-2.0 datasets: - BTCV --- # Model Overview This repository contains the code for Swin UNETR [1,2]. Swin UNETR is the state-of-the-art on Medical Segmentation Decathlon (MSD) and Beyond the Cranial Vault (BTCV) Segmentation Challenge dataset. In [1], a novel methodology is devised for pre-training Swin UNETR backbone in a self-supervised manner. We provide the option for training Swin UNETR by fine-tuning from pre-trained self-supervised weights or from scratch. The source repository for the training of these models can be found [here](https://github.com/Project-MONAI/research-contributions/tree/main/SwinUNETR/BTCV). # Installing Dependencies Dependencies for training and inference can be installed using the model requirements : ``` bash pip install -r requirements.txt ``` # Intended uses & limitations You can use the raw model for dicom segmentation, but it's mostly intended to be fine-tuned on a downstream task. Note that this model is primarily aimed at being fine-tuned on tasks which segment CAT scans or MRIs on images in dicom format. Dicom meta data mostly differs across medical facilities, so if applying to a new dataset, the model should be finetuned. # How to use To install necessary dependencies, run the below in bash. ``` git clone https://github.com/darraghdog/Project-MONAI-research-contributions pmrc pip install -r pmrc/requirements.txt cd pmrc/SwinUNETR/BTCV ``` To load the model from the hub. ``` >>> from swinunetr import SwinUnetrModelForInference >>> model = SwinUnetrModelForInference.from_pretrained('darragh/swinunetr-btcv-tiny') ``` # Limitations and bias The training data used for this model is specific to CAT scans from certain health facilities and machines. Data from other facilities may difffer in image distributions, and may require finetuning of the models for best performance. # Evaluation results We provide several pre-trained models on BTCV dataset in the following. <table> <tr> <th>Name</th> <th>Dice (overlap=0.7)</th> <th>Dice (overlap=0.5)</th> <th>Feature Size</th> <th># params (M)</th> <th>Self-Supervised Pre-trained </th> </tr> <tr> <td>Swin UNETR/Base</td> <td>82.25</td> <td>81.86</td> <td>48</td> <td>62.1</td> <td>Yes</td> </tr> <tr> <td>Swin UNETR/Small</td> <td>79.79</td> <td>79.34</td> <td>24</td> <td>15.7</td> <td>No</td> </tr> <tr> <td>Swin UNETR/Tiny</td> <td>72.05</td> <td>70.35</td> <td>12</td> <td>4.0</td> <td>No</td> </tr> </table> # Data Preparation ![image](https://lh3.googleusercontent.com/pw/AM-JKLX0svvlMdcrchGAgiWWNkg40lgXYjSHsAAuRc5Frakmz2pWzSzf87JQCRgYpqFR0qAjJWPzMQLc_mmvzNjfF9QWl_1OHZ8j4c9qrbR6zQaDJWaCLArRFh0uPvk97qAa11HtYbD6HpJ-wwTCUsaPcYvM=w1724-h522-no?authuser=0) The training data is from the [BTCV challenge dataset](https://www.synapse.org/#!Synapse:syn3193805/wiki/217752). - Target: 13 abdominal organs including 1. Spleen 2. Right Kidney 3. Left Kideny 4.Gallbladder 5.Esophagus 6. Liver 7. Stomach 8.Aorta 9. IVC 10. Portal and Splenic Veins 11. Pancreas 12.Right adrenal gland 13.Left adrenal gland. - Task: Segmentation - Modality: CT - Size: 30 3D volumes (24 Training + 6 Testing) # Training See the source repository [here](https://github.com/Project-MONAI/research-contributions/tree/main/SwinUNETR/BTCV) for information on training. # BibTeX entry and citation info If you find this repository useful, please consider citing the following papers: ``` @inproceedings{tang2022self, title={Self-supervised pre-training of swin transformers for 3d medical image analysis}, author={Tang, Yucheng and Yang, Dong and Li, Wenqi and Roth, Holger R and Landman, Bennett and Xu, Daguang and Nath, Vishwesh and Hatamizadeh, Ali}, booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition}, pages={20730--20740}, year={2022} } @article{hatamizadeh2022swin, title={Swin UNETR: Swin Transformers for Semantic Segmentation of Brain Tumors in MRI Images}, author={Hatamizadeh, Ali and Nath, Vishwesh and Tang, Yucheng and Yang, Dong and Roth, Holger and Xu, Daguang}, journal={arXiv preprint arXiv:2201.01266}, year={2022} } ``` # References [1]: Tang, Y., Yang, D., Li, W., Roth, H.R., Landman, B., Xu, D., Nath, V. and Hatamizadeh, A., 2022. Self-supervised pre-training of swin transformers for 3d medical image analysis. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 20730-20740). [2]: Hatamizadeh, A., Nath, V., Tang, Y., Yang, D., Roth, H. and Xu, D., 2022. Swin UNETR: Swin Transformers for Semantic Segmentation of Brain Tumors in MRI Images. arXiv preprint arXiv:2201.01266.
darragh/swinunetr-btcv-tiny
darragh
2022-07-15T21:01:18Z
40
1
transformers
[ "transformers", "pytorch", "btcv", "medical", "swin", "en", "dataset:BTCV", "arxiv:2201.01266", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-07-14T13:37:25Z
--- language: en tags: - btcv - medical - swin license: apache-2.0 datasets: - BTCV --- # Model Overview This repository contains the code for Swin UNETR [1,2]. Swin UNETR is the state-of-the-art on Medical Segmentation Decathlon (MSD) and Beyond the Cranial Vault (BTCV) Segmentation Challenge dataset. In [1], a novel methodology is devised for pre-training Swin UNETR backbone in a self-supervised manner. We provide the option for training Swin UNETR by fine-tuning from pre-trained self-supervised weights or from scratch. The source repository for the training of these models can be found [here](https://github.com/Project-MONAI/research-contributions/tree/main/SwinUNETR/BTCV). # Installing Dependencies Dependencies for training and inference can be installed using the model requirements : ``` bash pip install -r requirements.txt ``` # Intended uses & limitations You can use the raw model for dicom segmentation, but it's mostly intended to be fine-tuned on a downstream task. Note that this model is primarily aimed at being fine-tuned on tasks which segment CAT scans or MRIs on images in dicom format. Dicom meta data mostly differs across medical facilities, so if applying to a new dataset, the model should be finetuned. # How to use To install necessary dependencies, run the below in bash. ``` git clone https://github.com/darraghdog/Project-MONAI-research-contributions pmrc pip install -r pmrc/requirements.txt cd pmrc/SwinUNETR/BTCV ``` To load the model from the hub. ``` >>> from swinunetr import SwinUnetrModelForInference >>> model = SwinUnetrModelForInference.from_pretrained('darragh/swinunetr-btcv-tiny') ``` # Limitations and bias The training data used for this model is specific to CAT scans from certain health facilities and machines. Data from other facilities may difffer in image distributions, and may require finetuning of the models for best performance. # Evaluation results We provide several pre-trained models on BTCV dataset in the following. <table> <tr> <th>Name</th> <th>Dice (overlap=0.7)</th> <th>Dice (overlap=0.5)</th> <th>Feature Size</th> <th># params (M)</th> <th>Self-Supervised Pre-trained </th> </tr> <tr> <td>Swin UNETR/Base</td> <td>82.25</td> <td>81.86</td> <td>48</td> <td>62.1</td> <td>Yes</td> </tr> <tr> <td>Swin UNETR/Small</td> <td>79.79</td> <td>79.34</td> <td>24</td> <td>15.7</td> <td>No</td> </tr> <tr> <td>Swin UNETR/Tiny</td> <td>72.05</td> <td>70.35</td> <td>12</td> <td>4.0</td> <td>No</td> </tr> </table> # Data Preparation ![image](https://lh3.googleusercontent.com/pw/AM-JKLX0svvlMdcrchGAgiWWNkg40lgXYjSHsAAuRc5Frakmz2pWzSzf87JQCRgYpqFR0qAjJWPzMQLc_mmvzNjfF9QWl_1OHZ8j4c9qrbR6zQaDJWaCLArRFh0uPvk97qAa11HtYbD6HpJ-wwTCUsaPcYvM=w1724-h522-no?authuser=0) The training data is from the [BTCV challenge dataset](https://www.synapse.org/#!Synapse:syn3193805/wiki/217752). - Target: 13 abdominal organs including 1. Spleen 2. Right Kidney 3. Left Kideny 4.Gallbladder 5.Esophagus 6. Liver 7. Stomach 8.Aorta 9. IVC 10. Portal and Splenic Veins 11. Pancreas 12.Right adrenal gland 13.Left adrenal gland. - Task: Segmentation - Modality: CT - Size: 30 3D volumes (24 Training + 6 Testing) # Training See the source repository [here](https://github.com/Project-MONAI/research-contributions/tree/main/SwinUNETR/BTCV) for information on training. # BibTeX entry and citation info If you find this repository useful, please consider citing the following papers: ``` @inproceedings{tang2022self, title={Self-supervised pre-training of swin transformers for 3d medical image analysis}, author={Tang, Yucheng and Yang, Dong and Li, Wenqi and Roth, Holger R and Landman, Bennett and Xu, Daguang and Nath, Vishwesh and Hatamizadeh, Ali}, booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition}, pages={20730--20740}, year={2022} } @article{hatamizadeh2022swin, title={Swin UNETR: Swin Transformers for Semantic Segmentation of Brain Tumors in MRI Images}, author={Hatamizadeh, Ali and Nath, Vishwesh and Tang, Yucheng and Yang, Dong and Roth, Holger and Xu, Daguang}, journal={arXiv preprint arXiv:2201.01266}, year={2022} } ``` # References [1]: Tang, Y., Yang, D., Li, W., Roth, H.R., Landman, B., Xu, D., Nath, V. and Hatamizadeh, A., 2022. Self-supervised pre-training of swin transformers for 3d medical image analysis. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 20730-20740). [2]: Hatamizadeh, A., Nath, V., Tang, Y., Yang, D., Roth, H. and Xu, D., 2022. Swin UNETR: Swin Transformers for Semantic Segmentation of Brain Tumors in MRI Images. arXiv preprint arXiv:2201.01266.
big-kek/NeuroSkeptic
big-kek
2022-07-15T20:46:09Z
5
0
transformers
[ "transformers", "pytorch", "opt", "text-generation", "generated_from_trainer", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-07-15T16:03:23Z
--- license: other tags: - generated_from_trainer metrics: - accuracy model-index: - name: opt-model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opt-model This model is a fine-tuned version of [facebook/opt-13b](https://huggingface.co/facebook/opt-13b) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.3965 - Accuracy: 0.5020 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - distributed_type: multi-GPU - num_devices: 3 - total_train_batch_size: 72 - total_eval_batch_size: 72 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 3.6363 | 1.0 | 3 | 3.2090 | 0.4082 | | 2.8168 | 2.0 | 6 | 2.4805 | 0.4874 | | 2.3529 | 3.0 | 9 | 2.4219 | 0.4915 | | 2.1842 | 4.0 | 12 | 2.4023 | 0.4991 | | 2.0765 | 5.0 | 15 | 2.3965 | 0.5020 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
aalbertini1990/autotrain-first-test-html-1136241676
aalbertini1990
2022-07-15T17:59:11Z
4
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "autotrain", "en", "dataset:aalbertini1990/autotrain-data-first-test-html", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-07-15T12:45:46Z
--- tags: autotrain language: en widget: - text: "I love AutoTrain 🤗" datasets: - aalbertini1990/autotrain-data-first-test-html co2_eq_emissions: 684.7105644305452 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 1136241676 - CO2 Emissions (in grams): 684.7105644305452 ## Validation Metrics - Loss: 0.2270897775888443 - Rouge1: 63.4452 - Rouge2: 60.0038 - RougeL: 63.3343 - RougeLsum: 63.321 - Gen Len: 19.1562 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/aalbertini1990/autotrain-first-test-html-1136241676 ```
ab93/ppo-LunarLanderv2
ab93
2022-07-15T17:35:52Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-07-15T17:35:30Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 239.43 +/- 17.03 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
RobertoFont/gpt2-large-bne-milunanoches
RobertoFont
2022-07-15T17:22:19Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-07-15T14:48:28Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: gpt2-large-bne-milunanoches results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-large-bne-milunanoches This model is a fine-tuned version of [PlanTL-GOB-ES/gpt2-large-bne](https://huggingface.co/PlanTL-GOB-ES/gpt2-large-bne) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.9118 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0.97 | 25 | 3.2210 | | No log | 1.97 | 50 | 2.9247 | | No log | 2.97 | 75 | 2.8850 | | No log | 3.97 | 100 | 2.9118 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
varie/poetry-generation-nextline-mbart-all-fi-multi
varie
2022-07-15T16:09:57Z
0
0
null
[ "pytorch", "region:us" ]
null
2022-06-20T15:21:14Z
# poetry-generation-nextline-mbart-all-fi-multi * `nextline`: generates a poem line from previous line(s) * `mbart`: base model is [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) * `all`: trained on data from Project Gutenberg, Wikisource, Poesia publishing house * `fi`: Finnish language * `multi`: uses first, second, and third last lines as input for generation
davanstrien/clip-roberta-finetuned
davanstrien
2022-07-15T16:09:56Z
25
0
transformers
[ "transformers", "pytorch", "tensorboard", "vision-text-dual-encoder", "feature-extraction", "generated_from_trainer", "dataset:davanstrien/manuscript_noisy_labels_iiif", "endpoints_compatible", "region:us" ]
feature-extraction
2022-07-13T22:17:56Z
--- tags: - generated_from_trainer datasets: - davanstrien/manuscript_noisy_labels_iiif model-index: - name: clip-roberta-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # clip-roberta-finetuned This model is a fine-tuned version of [./clip-roberta](https://huggingface.co/./clip-roberta) on the davanstrien/manuscript_noisy_labels_iiif dataset. It achieves the following results on the evaluation set: - Loss: 2.5792 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.9841 | 0.07 | 500 | 3.4112 | | 2.72 | 0.15 | 1000 | 3.3430 | | 2.6319 | 0.22 | 1500 | 3.2295 | | 2.5781 | 0.29 | 2000 | 3.1645 | | 2.5339 | 0.36 | 2500 | 3.1226 | | 2.503 | 0.44 | 3000 | 3.0856 | | 2.4581 | 0.51 | 3500 | 3.0639 | | 2.4494 | 0.58 | 4000 | 3.0415 | | 2.4275 | 0.65 | 4500 | 3.0245 | | 2.3909 | 0.73 | 5000 | 2.9991 | | 2.3902 | 0.8 | 5500 | 2.9931 | | 2.3741 | 0.87 | 6000 | 2.9612 | | 2.3536 | 0.95 | 6500 | 2.9509 | | 2.3392 | 1.02 | 7000 | 2.9289 | | 2.3083 | 1.09 | 7500 | 2.9214 | | 2.3094 | 1.16 | 8000 | 2.9153 | | 2.2864 | 1.24 | 8500 | 2.9034 | | 2.2893 | 1.31 | 9000 | 2.8963 | | 2.2697 | 1.38 | 9500 | 2.8847 | | 2.2762 | 1.46 | 10000 | 2.8665 | | 2.2667 | 1.53 | 10500 | 2.8536 | | 2.2548 | 1.6 | 11000 | 2.8472 | | 2.238 | 1.67 | 11500 | 2.8491 | | 2.2423 | 1.75 | 12000 | 2.8257 | | 2.2406 | 1.82 | 12500 | 2.8287 | | 2.2248 | 1.89 | 13000 | 2.8193 | | 2.223 | 1.96 | 13500 | 2.8101 | | 2.1995 | 2.04 | 14000 | 2.8027 | | 2.1834 | 2.11 | 14500 | 2.7880 | | 2.1723 | 2.18 | 15000 | 2.7783 | | 2.1651 | 2.26 | 15500 | 2.7739 | | 2.1575 | 2.33 | 16000 | 2.7825 | | 2.1598 | 2.4 | 16500 | 2.7660 | | 2.1667 | 2.47 | 17000 | 2.7578 | | 2.1565 | 2.55 | 17500 | 2.7580 | | 2.1558 | 2.62 | 18000 | 2.7561 | | 2.1642 | 2.69 | 18500 | 2.7512 | | 2.1374 | 2.77 | 19000 | 2.7361 | | 2.1402 | 2.84 | 19500 | 2.7385 | | 2.1326 | 2.91 | 20000 | 2.7235 | | 2.1272 | 2.98 | 20500 | 2.7183 | | 2.0954 | 3.06 | 21000 | 2.7156 | | 2.0842 | 3.13 | 21500 | 2.7065 | | 2.0859 | 3.2 | 22000 | 2.7089 | | 2.0856 | 3.27 | 22500 | 2.6962 | | 2.0775 | 3.35 | 23000 | 2.6931 | | 2.0821 | 3.42 | 23500 | 2.6933 | | 2.0706 | 3.49 | 24000 | 2.7011 | | 2.0689 | 3.57 | 24500 | 2.7009 | | 2.0807 | 3.64 | 25000 | 2.6825 | | 2.0639 | 3.71 | 25500 | 2.6744 | | 2.0742 | 3.78 | 26000 | 2.6777 | | 2.0789 | 3.86 | 26500 | 2.6689 | | 2.0594 | 3.93 | 27000 | 2.6566 | | 2.056 | 4.0 | 27500 | 2.6676 | | 2.0223 | 4.08 | 28000 | 2.6711 | | 2.0185 | 4.15 | 28500 | 2.6568 | | 2.018 | 4.22 | 29000 | 2.6567 | | 2.0036 | 4.29 | 29500 | 2.6545 | | 2.0238 | 4.37 | 30000 | 2.6559 | | 2.0091 | 4.44 | 30500 | 2.6450 | | 2.0096 | 4.51 | 31000 | 2.6389 | | 2.0083 | 4.58 | 31500 | 2.6401 | | 2.0012 | 4.66 | 32000 | 2.6399 | | 2.0166 | 4.73 | 32500 | 2.6289 | | 1.9963 | 4.8 | 33000 | 2.6348 | | 1.9943 | 4.88 | 33500 | 2.6240 | | 2.0099 | 4.95 | 34000 | 2.6190 | | 1.9895 | 5.02 | 34500 | 2.6308 | | 1.9581 | 5.09 | 35000 | 2.6385 | | 1.9502 | 5.17 | 35500 | 2.6237 | | 1.9485 | 5.24 | 36000 | 2.6248 | | 1.9643 | 5.31 | 36500 | 2.6279 | | 1.9535 | 5.38 | 37000 | 2.6185 | | 1.9575 | 5.46 | 37500 | 2.6146 | | 1.9475 | 5.53 | 38000 | 2.6093 | | 1.9434 | 5.6 | 38500 | 2.6090 | | 1.954 | 5.68 | 39000 | 2.6027 | | 1.9509 | 5.75 | 39500 | 2.6107 | | 1.9454 | 5.82 | 40000 | 2.5980 | | 1.9479 | 5.89 | 40500 | 2.6016 | | 1.9539 | 5.97 | 41000 | 2.5971 | | 1.9119 | 6.04 | 41500 | 2.6228 | | 1.8974 | 6.11 | 42000 | 2.6169 | | 1.9038 | 6.19 | 42500 | 2.6027 | | 1.9008 | 6.26 | 43000 | 2.6027 | | 1.9142 | 6.33 | 43500 | 2.6011 | | 1.8783 | 6.4 | 44000 | 2.5960 | | 1.8896 | 6.48 | 44500 | 2.6111 | | 1.8975 | 6.55 | 45000 | 2.5889 | | 1.9048 | 6.62 | 45500 | 2.6007 | | 1.9049 | 6.69 | 46000 | 2.5972 | | 1.8969 | 6.77 | 46500 | 2.6053 | | 1.9105 | 6.84 | 47000 | 2.5893 | | 1.8921 | 6.91 | 47500 | 2.5883 | | 1.8918 | 6.99 | 48000 | 2.5792 | | 1.8671 | 7.06 | 48500 | 2.6041 | | 1.8551 | 7.13 | 49000 | 2.6070 | | 1.8555 | 7.2 | 49500 | 2.6148 | | 1.8543 | 7.28 | 50000 | 2.6077 | | 1.8485 | 7.35 | 50500 | 2.6131 | | 1.8474 | 7.42 | 51000 | 2.6039 | | 1.8474 | 7.5 | 51500 | 2.5973 | | 1.8442 | 7.57 | 52000 | 2.5946 | | 1.8329 | 7.64 | 52500 | 2.6069 | | 1.8551 | 7.71 | 53000 | 2.5923 | | 1.8433 | 7.79 | 53500 | 2.5922 | | 1.851 | 7.86 | 54000 | 2.5993 | | 1.8313 | 7.93 | 54500 | 2.5960 | | 1.8298 | 8.0 | 55000 | 2.6058 | | 1.8159 | 8.08 | 55500 | 2.6286 | | 1.817 | 8.15 | 56000 | 2.6348 | | 1.8066 | 8.22 | 56500 | 2.6411 | | 1.7935 | 8.3 | 57000 | 2.6338 | | 1.809 | 8.37 | 57500 | 2.6290 | | 1.812 | 8.44 | 58000 | 2.6258 | | 1.79 | 8.51 | 58500 | 2.6321 | | 1.8046 | 8.59 | 59000 | 2.6291 | | 1.7975 | 8.66 | 59500 | 2.6283 | | 1.7968 | 8.73 | 60000 | 2.6284 | | 1.7779 | 8.81 | 60500 | 2.6257 | | 1.7664 | 8.88 | 61000 | 2.6232 | | 1.792 | 8.95 | 61500 | 2.6305 | | 1.7725 | 9.02 | 62000 | 2.6525 | | 1.7563 | 9.1 | 62500 | 2.6794 | | 1.7606 | 9.17 | 63000 | 2.6784 | | 1.7666 | 9.24 | 63500 | 2.6798 | | 1.7551 | 9.31 | 64000 | 2.6813 | | 1.7578 | 9.39 | 64500 | 2.6830 | | 1.7483 | 9.46 | 65000 | 2.6833 | | 1.7431 | 9.53 | 65500 | 2.6884 | | 1.743 | 9.61 | 66000 | 2.6932 | | 1.7395 | 9.68 | 66500 | 2.6927 | | 1.7473 | 9.75 | 67000 | 2.6904 | | 1.7413 | 9.82 | 67500 | 2.6892 | | 1.7437 | 9.9 | 68000 | 2.6898 | | 1.7546 | 9.97 | 68500 | 2.6894 | ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.12.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
Unix/Jxc
Unix
2022-07-15T13:35:24Z
0
0
null
[ "license:bigscience-bloom-rail-1.0", "region:us" ]
null
2022-07-15T13:35:20Z
--- license: bigscience-bloom-rail-1.0 ---
fusing/ddpm-celeba-hq-ema
fusing
2022-07-15T13:19:56Z
5
1
transformers
[ "transformers", "ddpm_diffusion", "arxiv:2006.11239", "endpoints_compatible", "region:us" ]
null
2022-06-07T10:39:30Z
--- tags: - ddpm_diffusion --- # Denoising Diffusion Probabilistic Models (DDPM) **Paper**: [Denoising Diffusion Probabilistic Models](https://arxiv.org/abs/2006.11239) **Abstract**: *We present high quality image synthesis results using diffusion probabilistic models, a class of latent variable models inspired by considerations from nonequilibrium thermodynamics. Our best results are obtained by training on a weighted variational bound designed according to a novel connection between diffusion probabilistic models and denoising score matching with Langevin dynamics, and our models naturally admit a progressive lossy decompression scheme that can be interpreted as a generalization of autoregressive decoding. On the unconditional CIFAR10 dataset, we obtain an Inception score of 9.46 and a state-of-the-art FID score of 3.17. On 256x256 LSUN, we obtain sample quality similar to ProgressiveGAN.* ## Usage ```python # !pip install diffusers from diffusers import DiffusionPipeline import PIL.Image import numpy as np model_id = "fusing/ddpm-celeba-hq-ema" # load model and scheduler ddpm = DiffusionPipeline.from_pretrained(model_id) # run pipeline in inference (sample random noise and denoise) image = ddpm() # process image to PIL image_processed = image.cpu().permute(0, 2, 3, 1) image_processed = (image_processed + 1.0) * 127.5 image_processed = image_processed.numpy().astype(np.uint8) image_pil = PIL.Image.fromarray(image_processed[0]) # save image image_pil.save("test.png") ``` ## Samples 1. ![sample_1](https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/hf/ddpm-celeba-hq-ema/image_0.png) 2. ![sample_1](https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/hf/ddpm-celeba-hq-ema/image_1.png) 3. ![sample_1](https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/hf/ddpm-celeba-hq-ema/image_2.png) 4. ![sample_1](https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/hf/ddpm-celeba-hq-ema/image_3.png)
fusing/ddpm-lsun-cat
fusing
2022-07-15T13:19:43Z
5
1
transformers
[ "transformers", "ddpm_diffusion", "arxiv:2006.11239", "endpoints_compatible", "region:us" ]
null
2022-06-06T12:21:08Z
--- tags: - ddpm_diffusion --- # Denoising Diffusion Probabilistic Models (DDPM) **Paper**: [Denoising Diffusion Probabilistic Models](https://arxiv.org/abs/2006.11239) **Abstract**: *We present high quality image synthesis results using diffusion probabilistic models, a class of latent variable models inspired by considerations from nonequilibrium thermodynamics. Our best results are obtained by training on a weighted variational bound designed according to a novel connection between diffusion probabilistic models and denoising score matching with Langevin dynamics, and our models naturally admit a progressive lossy decompression scheme that can be interpreted as a generalization of autoregressive decoding. On the unconditional CIFAR10 dataset, we obtain an Inception score of 9.46 and a state-of-the-art FID score of 3.17. On 256x256 LSUN, we obtain sample quality similar to ProgressiveGAN.* ## Usage ```python # !pip install diffusers from diffusers import DiffusionPipeline import PIL.Image import numpy as np model_id = "fusing/ddpm-lsun-cat" # load model and scheduler ddpm = DiffusionPipeline.from_pretrained(model_id) # run pipeline in inference (sample random noise and denoise) image = ddpm() # process image to PIL image_processed = image.cpu().permute(0, 2, 3, 1) image_processed = (image_processed + 1.0) * 127.5 image_processed = image_processed.numpy().astype(np.uint8) image_pil = PIL.Image.fromarray(image_processed[0]) # save image image_pil.save("test.png") ``` ## Samples 1. ![sample_1](https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/hf/ddpm-lsun-cat/image_0.png) 2. ![sample_1](https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/hf/ddpm-lsun-cat/image_1.png) 3. ![sample_1](https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/hf/ddpm-lsun-cat/image_2.png) 4. ![sample_1](https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/hf/ddpm-lsun-cat/image_3.png)
fusing/ddpm-lsun-bedroom
fusing
2022-07-15T13:19:24Z
5
1
transformers
[ "transformers", "ddpm_diffusion", "arxiv:2006.11239", "endpoints_compatible", "region:us" ]
null
2022-06-06T12:21:20Z
--- tags: - ddpm_diffusion --- # Denoising Diffusion Probabilistic Models (DDPM) **Paper**: [Denoising Diffusion Probabilistic Models](https://arxiv.org/abs/2006.11239) **Abstract**: *We present high quality image synthesis results using diffusion probabilistic models, a class of latent variable models inspired by considerations from nonequilibrium thermodynamics. Our best results are obtained by training on a weighted variational bound designed according to a novel connection between diffusion probabilistic models and denoising score matching with Langevin dynamics, and our models naturally admit a progressive lossy decompression scheme that can be interpreted as a generalization of autoregressive decoding. On the unconditional CIFAR10 dataset, we obtain an Inception score of 9.46 and a state-of-the-art FID score of 3.17. On 256x256 LSUN, we obtain sample quality similar to ProgressiveGAN.* ## Usage ```python # !pip install diffusers from diffusers import DiffusionPipeline import PIL.Image import numpy as np model_id = "fusing/ddpm-lsun-bedroom" # load model and scheduler ddpm = DiffusionPipeline.from_pretrained(model_id) # run pipeline in inference (sample random noise and denoise) image = ddpm() # process image to PIL image_processed = image.cpu().permute(0, 2, 3, 1) image_processed = (image_processed + 1.0) * 127.5 image_processed = image_processed.numpy().astype(np.uint8) image_pil = PIL.Image.fromarray(image_processed[0]) # save image image_pil.save("test.png") ``` ## Samples 1. ![sample_1](https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/hf/ddpm-lsun-bedroom/image_0.png) 2. ![sample_1](https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/hf/ddpm-lsun-bedroom/image_1.png) 3. ![sample_1](https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/hf/ddpm-lsun-bedroom/image_2.png) 4. ![sample_1](https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/hf/ddpm-lsun-bedroom/image_3.png)
hamishm/distilbert-base-uncased-finetuned-squad
hamishm
2022-07-15T11:55:51Z
6
0
transformers
[ "transformers", "tf", "tensorboard", "distilbert", "question-answering", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-06-30T09:41:52Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: hamishm/distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # hamishm/distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.7763 - Validation Loss: 1.1324 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 177048, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 1.4050 | 1.1501 | 0 | | 0.7763 | 1.1324 | 1 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.9.1 - Datasets 2.3.2 - Tokenizers 0.12.1
epsil/ppo-Walker2DBulletEnv-v0
epsil
2022-07-15T11:53:40Z
2
0
stable-baselines3
[ "stable-baselines3", "Walker2DBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-07-15T11:50:47Z
--- library_name: stable-baselines3 tags: - Walker2DBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 1968.90 +/- 16.24 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Walker2DBulletEnv-v0 type: Walker2DBulletEnv-v0 --- # **PPO** Agent playing **Walker2DBulletEnv-v0** This is a trained model of a **PPO** agent playing **Walker2DBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3)
spacestar1705/q-FrozenLake-v1-4x4-noSlippery
spacestar1705
2022-07-15T11:37:52Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-07-15T11:37:46Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="spacestar1705/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
ThomasSimonini/ppo-Walker2DBulletEnv-v0
ThomasSimonini
2022-07-15T10:57:27Z
4
0
stable-baselines3
[ "stable-baselines3", "Walker2DBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-03-02T23:29:05Z
--- library_name: stable-baselines3 tags: - Walker2DBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 29.51 +/- 2.93 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Walker2DBulletEnv-v0 type: Walker2DBulletEnv-v0 --- # **PPO** Agent playing **Walker2DBulletEnv-v0** This is a trained model of a **PPO** agent playing **Walker2DBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
freedomking/mc-bert
freedomking
2022-07-15T10:14:00Z
9
5
transformers
[ "transformers", "pytorch", "endpoints_compatible", "region:us" ]
null
2022-07-15T10:04:34Z
MC-BERT is a novel conceptualized representation learning approach for the medical domain. First, we use a different mask generation procedure to mask spans of tokens, rather than only random ones. We also introduce two kinds of masking strategies, namely whole entity masking and whole span masking. Finally, MC-BERT split the input document into segments based on the actual "sentences" provided by the user as positive samples and sample random sentences from other documents as negative samples for the next sentence prediction. ![](https://github.com/alibaba-research/ChineseBLUE/raw/master/figs/c_bert_model.jpg) More detail: https://github.com/alibaba-research/ChineseBLUE
ieborhan/irisg444_4c0-Species-classification
ieborhan
2022-07-15T07:42:25Z
0
0
sklearn
[ "sklearn", "tabular-classification", "baseline-trainer", "license:apache-2.0", "region:us" ]
tabular-classification
2022-07-15T07:42:23Z
--- license: apache-2.0 library_name: sklearn tags: - tabular-classification - baseline-trainer --- ## Baseline Model trained on irisg444_4c0 to apply classification on Species **Metrics of the best model:** accuracy 0.953333 recall_macro 0.953333 precision_macro 0.956229 f1_macro 0.953216 Name: LogisticRegression(class_weight='balanced', max_iter=1000), dtype: float64 **See model plot below:** <style>#sk-container-id-2 {color: black;background-color: white;}#sk-container-id-2 pre{padding: 0;}#sk-container-id-2 div.sk-toggleable {background-color: white;}#sk-container-id-2 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-2 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-2 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-2 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-2 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-2 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-2 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-2 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-container-id-2 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-2 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-2 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-2 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-2 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-2 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-2 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-2 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-2 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-2 div.sk-item {position: relative;z-index: 1;}#sk-container-id-2 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-2 div.sk-item::before, #sk-container-id-2 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-2 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-2 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-2 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-2 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-2 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-2 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-2 div.sk-label-container {text-align: center;}#sk-container-id-2 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-2 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-2" class="sk-top-container"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[(&#x27;easypreprocessor&#x27;,EasyPreprocessor(types= continuous dirty_float ... free_string useless SepalLengthCm True False ... False False SepalWidthCm True False ... False False PetalLengthCm True False ... False False PetalWidthCm True False ... False False[4 rows x 7 columns])),(&#x27;logisticregression&#x27;,LogisticRegression(C=1, class_weight=&#x27;balanced&#x27;,max_iter=1000))])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-4" type="checkbox" ><label for="sk-estimator-id-4" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[(&#x27;easypreprocessor&#x27;,EasyPreprocessor(types= continuous dirty_float ... free_string useless SepalLengthCm True False ... False False SepalWidthCm True False ... False False PetalLengthCm True False ... False False PetalWidthCm True False ... False False[4 rows x 7 columns])),(&#x27;logisticregression&#x27;,LogisticRegression(C=1, class_weight=&#x27;balanced&#x27;,max_iter=1000))])</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-5" type="checkbox" ><label for="sk-estimator-id-5" class="sk-toggleable__label sk-toggleable__label-arrow">EasyPreprocessor</label><div class="sk-toggleable__content"><pre>EasyPreprocessor(types= continuous dirty_float ... free_string useless SepalLengthCm True False ... False False SepalWidthCm True False ... False False PetalLengthCm True False ... False False PetalWidthCm True False ... False False[4 rows x 7 columns])</pre></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-6" type="checkbox" ><label for="sk-estimator-id-6" class="sk-toggleable__label sk-toggleable__label-arrow">LogisticRegression</label><div class="sk-toggleable__content"><pre>LogisticRegression(C=1, class_weight=&#x27;balanced&#x27;, max_iter=1000)</pre></div></div></div></div></div></div></div> **Disclaimer:** This model is trained with dabl library as a baseline, for better results, use [AutoTrain](https://huggingface.co/autotrain). **Logs of training** including the models tried in the process can be found in logs.txt
hugginglearners/Ethiopian-Food-Classifier
hugginglearners
2022-07-15T07:15:52Z
0
0
fastai
[ "fastai", "Weights & Biases", "Ethiopian", "Food", "Classifier", "region:us" ]
null
2022-07-14T16:03:30Z
--- tags: - fastai - Weights & Biases - Ethiopian - Food - Classifier --- # Model card ## Model description "While the cuisine of Ethiopia is gradually becoming better known, it's no overstatement to say it remains one of the world's best-kept secrets." [CNN](https://edition.cnn.com/travel/article/ethiopian-food-best-dishes-africa/index.html) This model is an Ethiopian food image classifier trained on the following food categories: - Beyaynetu - Chechebsa - Doro wat - Firfir - Genfo - Kikil - Kitfo - Shekla tibs - Shiro wat - Tihlo - Tire_siga Full report on this model can be found [here](https://wandb.ai/tinsae/Ethiopian-foods/reports/Ethiopian-Foods-Classification---VmlldzoyMzExNjk1?accessToken=hx3g5jwmlrn059f11zp5v2ktg62ygl23mkxy2tevliu6bmqsmpazp5jkmqzjrg71)
simecek/DNADebertaBPE30k
simecek
2022-07-15T06:45:23Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "deberta", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-07-14T08:39:47Z
--- tags: - generated_from_trainer model-index: - name: DNADebertaBPE30k results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # DNADebertaBPE30k This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 5.1519 - eval_runtime: 308.5062 - eval_samples_per_second: 337.384 - eval_steps_per_second: 21.089 - epoch: 7.22 - step: 105695 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
simecek/DNADebertaBPE10k
simecek
2022-07-15T06:43:43Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "deberta", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-07-14T08:45:57Z
--- tags: - generated_from_trainer model-index: - name: DNADebertaBPE10k results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # DNADebertaBPE10k This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 4.7323 - eval_runtime: 283.5074 - eval_samples_per_second: 394.223 - eval_steps_per_second: 24.641 - epoch: 7.43 - step: 116731 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
hugginglearners/kvasir-seg
hugginglearners
2022-07-15T05:38:17Z
0
0
fastai
[ "fastai", "region:us" ]
null
2022-07-14T06:47:24Z
--- tags: - fastai --- # Model card ## Model description Fastai `unet` created with `unet_learner` using `resnet34` ## Intended uses & limitations This is only used for demonstration of fine tuning capabilities with fastai. It may be useful for further research. This model should **not** be used for gastrointestinal polyp diagnosis. ## Training and evaluation data The model was trained on [Kvasir SEG dataset](https://datasets.simula.no/kvasir-seg/). Kvasir SEG is an open-access dataset of gastrointestinal polyp images and corresponding segmentation masks, manually annotated and verified by an experienced gastroenterologist. 20% of the data set were used as validation set and 80% as training set. ### Model training details: #### Data pre-processing Masks were converted to 1 bit images: 0 for background and 1 for mask using ```python Path('/notebooks/Kvasir-SEG/masks1b-binary').mkdir(parents=True, exist_ok=True) for img_path in tqdm(get_image_files(path/'masks')): img = Image.open(img_path) thresh = 127 fn = lambda x : 1 if x > thresh else 0 img1b = img.convert('L').point(fn) img1b.save(path/'masks1b-binary'/f'{img_path.stem}.png') ``` #### Data loaders `SegmentationDataloaders` were used to create fastai data loaders ```python def label_func(fn): return path/'masks1b-binary'/f'{fn.stem}.png' dls = SegmentationDataLoaders.from_label_func( path, bs=24, fnames = get_image_files(path/'images'), label_func = label_func, codes = list(range(2)), item_tfms=Resize(320), batch_tfms=aug_transforms(size=224, flip_vert=True) ) ``` An sample of training images: ![show_batch](show_batch.png) #### Learner Create learner with Dice and JaccardCoeff metrics ```python learn = unet_learner(dls, resnet34, metrics=[Dice, JaccardCoeff]).to_fp16() ``` #### Learning rate Learning rate finder ![lr_find](lr_find.png) #### Fine tuning Fine tuning for 12 epochs `learn.fine_tune(12, 1e-4)` ``` epoch train_loss valid_loss dice jaccard_coeff time 0 0.582160 0.433768 0.593044 0.421508 00:38 epoch train_loss valid_loss dice jaccard_coeff time 0 0.307588 0.261374 0.712569 0.553481 00:38 1 0.261775 0.232007 0.714458 0.555764 00:38 2 0.246054 0.227708 0.781048 0.640754 00:38 3 0.224612 0.185920 0.796701 0.662097 00:39 4 0.208768 0.179064 0.821945 0.697714 00:39 5 0.192531 0.171336 0.816464 0.689851 00:39 6 0.177166 0.167357 0.820771 0.696023 00:39 7 0.168222 0.158182 0.838388 0.721745 00:39 8 0.155157 0.161950 0.829525 0.708709 00:39 9 0.148792 0.164533 0.828383 0.707043 00:38 10 0.143541 0.158669 0.833519 0.714559 00:39 11 0.140083 0.159437 0.832745 0.713422 00:38 ``` ![loss_graph](loss_graph.png) #### Results Visualization of results Target/Prediction ![show_results](show_results.png) Top losses ![top_losses](top_losses.png) #### Libraries used: `huggingface_hub.__version__` `'0.8.1'` `fastai.__version__` `'2.6.3'`
Team-PIXEL/pixel-base-finetuned-wnli
Team-PIXEL
2022-07-15T03:09:09Z
5
0
transformers
[ "transformers", "pytorch", "pixel", "text-classification", "generated_from_trainer", "en", "dataset:glue", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-15T03:06:10Z
--- language: - en tags: - generated_from_trainer datasets: - glue model-index: - name: pixel-base-finetuned-wnli results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pixel-base-finetuned-wnli This model is a fine-tuned version of [Team-PIXEL/pixel-base](https://huggingface.co/Team-PIXEL/pixel-base) on the GLUE WNLI dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 8 - seed: 3 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 400 - mixed_precision_training: Apex, opt level O1 ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0 - Datasets 2.0.0 - Tokenizers 0.12.1
Team-PIXEL/pixel-base-finetuned-cola
Team-PIXEL
2022-07-15T02:38:39Z
4
0
transformers
[ "transformers", "pytorch", "pixel", "text-classification", "generated_from_trainer", "en", "dataset:glue", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-15T02:35:10Z
--- language: - en tags: - generated_from_trainer datasets: - glue model-index: - name: pixel-base-finetuned-cola results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pixel-base-finetuned-cola This model is a fine-tuned version of [Team-PIXEL/pixel-base](https://huggingface.co/Team-PIXEL/pixel-base) on the GLUE COLA dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 8 - seed: 4 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 100.0 - mixed_precision_training: Apex, opt level O1 ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0 - Datasets 2.0.0 - Tokenizers 0.12.1
CennetOguz/bert-large-uncased-finetuned-youcook_4
CennetOguz
2022-07-15T00:43:32Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-07-15T00:34:49Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-large-uncased-finetuned-youcook_4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-large-uncased-finetuned-youcook_4 This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.9929 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 5 - eval_batch_size: 5 - seed: 42 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.3915 | 1.0 | 206 | 2.1036 | | 2.0412 | 2.0 | 412 | 2.2207 | | 1.9062 | 3.0 | 618 | 1.7281 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0a0+17540c5 - Datasets 2.3.2 - Tokenizers 0.12.1
CennetOguz/bert-large-uncased-finetuned-youcook_2
CennetOguz
2022-07-15T00:16:54Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-07-15T00:08:47Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-large-uncased-finetuned-youcook_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-large-uncased-finetuned-youcook_2 This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.9929 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 5 - eval_batch_size: 5 - seed: 42 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.3915 | 1.0 | 206 | 2.1036 | | 2.0412 | 2.0 | 412 | 2.2207 | | 1.9062 | 3.0 | 618 | 1.7281 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0a0+17540c5 - Datasets 2.3.2 - Tokenizers 0.12.1
cannlytics/skunkfx
cannlytics
2022-07-14T21:01:54Z
0
2
null
[ "license:mit", "region:us" ]
null
2022-07-14T20:54:17Z
--- license: mit --- # Predicting Effects and Aromas <div align="center" style="text-align:center; margin-top:1rem; margin-bottom: 1rem;"> <img width="240px" alt="" src="https://firebasestorage.googleapis.com/v0/b/cannlytics.appspot.com/o/public%2Fimages%2Flogos%2Fskunkfx_logo.png?alt=media&token=1a75b3cc-3230-446c-be7d-5c06012c8e30"> </div> > "It's been hard to breathe and the smell's been just horrendous... [It's] like you've literally been sprayed by a **skunk**." - Resident of Prague, Oklahoma in [*'It's nasty': Prague neighbors push back on area cannabis facility*](https://kfor.com/news/local/its-nasty-prague-neighbors-push-back-on-area-cannabis-facility/), Oklahoma News 4 (2022). ## Objective Can we build a model to **predict** if someone may *report* specific **effects** or **aromas** given a cannabis product’s **lab results**? ## Literature [Over eight hundred cannabis strains characterized by the relationship between their psychoactive effects, perceptual profiles, and chemical compositions](https://www.biorxiv.org/content/10.1101/759696v1.abstract) by Laura Alethia de la Fuente, Federico Zamberlan, Andres Sanchez, Facundo Carrillo, Enzo Tagliazucchi, Carla Pallavicini (2019). * **Claim**: *"While cannabinoid content was variable even within individual strains, terpene profiles matched the perceptual characterizations made by the users and could be used to predict associations between different psychoactive effects."* ## Data A panel of strain reviews was curated from the data published by [Alethia, et. al. (2019)](https://data.mendeley.com/datasets/6zwcgrttkp/1). First, we downloaded the authors' strain review and lab result datasets. We then curated terpene and cannabinoid data from the raw text files in the lab result dataset. Average cannabinoid and terpene concentrations were calculated for each of the 184 strains in the dataset from 431 lab results. Reviews are for purported strains and the lab results may or may not be representative of the concentration of the product that the reviewer is referencing. However, without the actual lab results of the product that the reviewer is referencing, the average concentrations for similarly named products can serve as an estimate. The following processing and assumptions were applied. - Field names were transformed to `snake_case`. - The fields `total_terpenes` and `total_cannabinoids` were calculated as the simple sum of all terpenes and cannabinoids respectively. - The fields `total_thc`, `total_cbd`, and `total_cbg` were calculated using the decarboxylation rate (87.7%) for THCA, CBDA, and CBGA. - Observations with `total_cannabinoids` greater than 35% or `total_terpenes` greater than 6% were presumed to be outliers and were excluded. - The field `classification` was determined by the original authors from natural language processing (NLP) and can take a value of `sativa`, `indica`, or `hybrid` depending on the language in the reviewer's description. - Fields for each reported aroma and effect were created and assigned a value of 1 if the reviewer reported the aroma or effect and 0 otherwise. - Terpenes of similar names were combined on missing values: `p_cymene` with `pcymene`, `beta_caryophyllene` with `caryophyllene`, and `humulene` with `alpha_humulene`. - Certain terpenes were summed into a encompassing field: `ocimene`, `beta_ocimene`, `trans_ocimene` to `ocimene` and `trans_nerolidol`, `cis_nerolidol`, `transnerolidol_1`, `transnerolidol_2` to `nerolidol`. - A new field, `terpinenes`, was created as the sum of `alpha_terpinene`, `gamma_terpinene`, `terpinolene`, and `terpinene`. | Datasets | URL | |----------|-----| | Raw data | <https://data.mendeley.com/datasets/6zwcgrttkp/1> | | Curated panel data | <https://cannlytics.page.link/reported-effects> | | Potential strain effects data | <https://cannlytics.page.link/strain-effects> | <!-- TODO: Add WA and CT (OH?) datasets :) --> ## Methodology A [multivariate probit model](https://en.wikipedia.org/wiki/Multivariate_probit_model) is used to predict the probability of all potential effects and aromas simultaneously given lab results for a sample or samples. Specific effects and aromas are predicted to be reported when the estimated probability of an effect or aroma crosses a threshold. The thresholds are set to best fit the observed occurrence of each effect and aroma. Below are the variates used in the models estimated. ```json { "full": [ "cbc", "cbd", "cbda", "cbg", "cbga", "cbn", "delta_8_thc", "delta_9_thc", "thca", "thcv", "alpha_bisabolol", "alpha_pinene", "alpha_terpinene", "beta_caryophyllene", "beta_myrcene", "beta_pinene", "camphene", "carene", "caryophyllene_oxide", "d_limonene", "eucalyptol", "gamma_terpinene", "geraniol", "guaiol", "humulene", "isopulegol", "linalool", "nerolidol", "ocimene", "p_cymene", "terpinene", "terpinolene" ], "terpene_only": [ "alpha_bisabolol", "alpha_pinene", "alpha_terpinene", "beta_caryophyllene", "beta_myrcene", "beta_pinene", "camphene", "carene", "caryophyllene_oxide", "d_limonene", "eucalyptol", "gamma_terpinene", "geraniol", "guaiol", "humulene", "isopulegol", "linalool", "nerolidol", "ocimene", "p_cymene", "terpinene", "terpinolene" ], "cannabinoid_only": [ "cbc", "cbd", "cbda", "cbg", "cbga", "cbn", "delta_8_thc", "delta_9_thc", "thca", "thcv" ], "totals": ["total_cbd", "total_thc", "total_terpenes"], "simple": ["total_cbd", "total_thc"] } ``` ## Results An implementation of the prediction model can be found at <https://cannlytics.com/effects> and utilized through the API endpoint <https://cannlytics.com/api/stats/effects>. In general, there are 3 main actions: 1. You can use the model to predict potentially reported effects and aromas for any cannabis flower for which you have lab results. Simply post your lab results to the `/stats/effects` endpoint, specifying your model if you desire, and you will receive effect and aroma predictions. 2. You can get the model statistics by making a `GET` request to `/stats/effects`. Currently, the model statistics include `false_positive_rate`, `false_negative_rate`, `true_positive_rate`, `true_negative_rate`, `accuracy`, and `informedness`. 3. Finally, you can post the actual effects and aromas that you may observe with the `/stats/effects/actual` endpoint. You can substitute training data, for strain reviews or lab results, as you see fit. Please see the API documentation for more information about using this API endpoint. ## Insights and future work The more training data the better. If you want to [contribute lab results or reviews](https://cannlytics.com/stats/effects), then you are welcome! You can also use your own training data. Using the model to predict out-of-sample helps make the model robust. Please feel free to report your use of the model and its accuracy in the wild to <[email protected]>. Lastly, but most importantly, remember that the predictions are for the probability of effects and aromas being reported by the observed sample given observed lab results. Extrapolations beyond the ranges of observed values aren't valid and all statistics should be taken at face value. Thank you and good fortune! ## Disclaimer ``` THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ```
nakamura196/roberta-small-hi-char
nakamura196
2022-07-14T20:32:40Z
6
0
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "japanese", "masked-lm", "ja", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-07-11T06:35:00Z
--- language: - "ja" tags: - "japanese" - "masked-lm" license: "cc-by-sa-4.0" pipeline_tag: "fill-mask" mask_token: "[MASK]" widget: - text: "入[MASK]外無之候江戸大水又ハ大地震なと" - text: "日向[MASK]御望之由可令披露候" --- # roberta-small-hi-char ## Model Description This is a RoBERTa model pre-trained on HI texts with character tokenizer. ## How to Use ```py from transformers import AutoTokenizer,AutoModelForMaskedLM tokenizer=AutoTokenizer.from_pretrained("nakamura196/roberta-small-hi-char") model=AutoModelForMaskedLM.from_pretrained("nakamura196/roberta-small-hi-char") ```
Juliano/fault_injection_mlaas
Juliano
2022-07-14T20:20:00Z
0
0
null
[ "region:us" ]
null
2022-07-14T19:40:59Z
Hosts the pre-tained extracted model from glove.twitter.27B.100d.txt from https://huggingface.co/stanfordnlp/glove/tree/main Used in: https://github.com/Juliano-rb/experiments_fault_injection_mlaas
aatmasidha/newsmodelclassification
aatmasidha
2022-07-14T20:16:34Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-12T08:59:25Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: newsmodelclassification results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.927 - name: F1 type: f1 value: 0.9271124951673986 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # newsmodelclassification This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2065 - Accuracy: 0.927 - F1: 0.9271 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8011 | 1.0 | 250 | 0.2902 | 0.911 | 0.9090 | | 0.2316 | 2.0 | 500 | 0.2065 | 0.927 | 0.9271 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.10.3
Team-PIXEL/pixel-base-finetuned-sst2
Team-PIXEL
2022-07-14T19:18:25Z
5
0
transformers
[ "transformers", "pytorch", "pixel", "text-classification", "generated_from_trainer", "en", "dataset:glue", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-14T19:14:45Z
--- language: - en tags: - generated_from_trainer datasets: - glue model-index: - name: pixel-base-finetuned-sst2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pixel-base-finetuned-sst2 This model is a fine-tuned version of [Team-PIXEL/pixel-base](https://huggingface.co/Team-PIXEL/pixel-base) on the GLUE SST2 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 64 - eval_batch_size: 8 - seed: 4 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 5000 - mixed_precision_training: Apex, opt level O1 ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0 - Datasets 2.0.0 - Tokenizers 0.12.1
kuttersn/gpt2_chatbot
kuttersn
2022-07-14T19:04:01Z
35
2
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-07-13T03:00:29Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: gpt2_chatbot results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2_chatbot This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.5732 - Accuracy: 0.3909 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
liyijing024/swin-base-patch4-window7-224-in22k-Chinese-finetuned
liyijing024
2022-07-14T18:04:48Z
75
0
transformers
[ "transformers", "pytorch", "tensorboard", "swin", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-07-14T17:28:55Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-base-patch4-window7-224-in22k-Chinese-finetuned results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder args: default metrics: - name: Accuracy type: accuracy value: 1.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-base-patch4-window7-224-in22k-Chinese-finetuned This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224-in22k](https://huggingface.co/microsoft/swin-base-patch4-window7-224-in22k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0000 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0121 | 0.99 | 140 | 0.0001 | 1.0 | | 0.0103 | 1.99 | 280 | 0.0001 | 1.0 | | 0.0049 | 2.99 | 420 | 0.0000 | 1.0 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.8.0+cu111 - Datasets 2.3.3.dev0 - Tokenizers 0.12.1
benji2264/ppo-LunarLander-v2
benji2264
2022-07-14T18:01:25Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-07-14T18:00:58Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 246.41 +/- 23.87 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
yunbaree/distilbert-base-uncased-finetuned-emotion
yunbaree
2022-07-14T16:27:55Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-14T16:01:48Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.924 - name: F1 type: f1 value: 0.9240032665380036 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2244 - Accuracy: 0.924 - F1: 0.9240 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.843 | 1.0 | 250 | 0.3250 | 0.906 | 0.9041 | | 0.254 | 2.0 | 500 | 0.2244 | 0.924 | 0.9240 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
GuoLiyong/dan_sharing_2022_baai
GuoLiyong
2022-07-14T16:19:42Z
0
0
null
[ "region:us" ]
null
2022-07-14T07:02:42Z
dan's sharing on 2022 BAAI, Beijing 1 tmux a -t 1 Verify md5value: tar -zxvf Daniel_Povey_BAAI_2022.tar.gz md5sum Daniel_Povey_BAAI_2022.mp4 # 1d0b9f941fc30814528c95bc7630b6a8 Daniel_Povey_BAAI_2022.mp4
ericklerouge123/xlm-roberta-base-finetuned-panx-de-fr
ericklerouge123
2022-07-14T16:17:52Z
5
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-07-14T14:59:42Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de-fr results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.en metrics: - name: F1 type: f1 value: 0.6886160714285715 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.4043 - F1: 0.6886 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.1347 | 1.0 | 50 | 0.5771 | 0.4880 | | 0.5066 | 2.0 | 100 | 0.4209 | 0.6582 | | 0.3631 | 3.0 | 150 | 0.4043 | 0.6886 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
Siyong/MT
Siyong
2022-07-14T15:59:34Z
5
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-13T05:57:40Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec-base-Millad_TIMIT results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec-base-Millad_TIMIT This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3772 - Wer: 0.6859 - Cer: 0.3217 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5000 - num_epochs: 60 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:| | No log | 2.36 | 2000 | 2.6233 | 1.0130 | 0.6241 | | No log | 4.73 | 4000 | 2.2206 | 0.9535 | 0.5032 | | No log | 7.09 | 6000 | 2.3036 | 0.9368 | 0.5063 | | 1.235 | 9.46 | 8000 | 1.9932 | 0.9275 | 0.5032 | | 1.235 | 11.82 | 10000 | 2.0207 | 0.8922 | 0.4498 | | 1.235 | 14.18 | 12000 | 1.6171 | 0.7993 | 0.3976 | | 1.235 | 16.55 | 14000 | 1.6729 | 0.8309 | 0.4209 | | 0.2779 | 18.91 | 16000 | 1.7043 | 0.8141 | 0.4340 | | 0.2779 | 21.28 | 18000 | 1.7426 | 0.7658 | 0.3960 | | 0.2779 | 23.64 | 20000 | 1.5230 | 0.7361 | 0.3830 | | 0.2779 | 26.0 | 22000 | 1.4286 | 0.7658 | 0.3794 | | 0.1929 | 28.37 | 24000 | 1.4450 | 0.7379 | 0.3644 | | 0.1929 | 30.73 | 26000 | 1.5922 | 0.7491 | 0.3826 | | 0.1929 | 33.1 | 28000 | 1.4443 | 0.7454 | 0.3617 | | 0.1929 | 35.46 | 30000 | 1.5450 | 0.7268 | 0.3621 | | 0.1394 | 37.83 | 32000 | 1.9268 | 0.7491 | 0.3763 | | 0.1394 | 40.19 | 34000 | 1.7094 | 0.7342 | 0.3783 | | 0.1394 | 42.55 | 36000 | 1.4024 | 0.7082 | 0.3494 | | 0.1394 | 44.92 | 38000 | 1.4467 | 0.6840 | 0.3395 | | 0.104 | 47.28 | 40000 | 1.4145 | 0.6933 | 0.3407 | | 0.104 | 49.65 | 42000 | 1.3901 | 0.6970 | 0.3403 | | 0.104 | 52.01 | 44000 | 1.3589 | 0.6636 | 0.3348 | | 0.104 | 54.37 | 46000 | 1.3716 | 0.6952 | 0.3340 | | 0.0781 | 56.74 | 48000 | 1.4025 | 0.6896 | 0.3312 | | 0.0781 | 59.1 | 50000 | 1.3772 | 0.6859 | 0.3217 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.12.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
Team-PIXEL/pixel-base-finetuned-korquadv1
Team-PIXEL
2022-07-14T15:58:12Z
4
0
transformers
[ "transformers", "pytorch", "pixel", "question-answering", "generated_from_trainer", "dataset:squad_kor_v1", "endpoints_compatible", "region:us" ]
question-answering
2022-07-14T15:55:25Z
--- tags: - generated_from_trainer datasets: - squad_kor_v1 model-index: - name: pixel-base-finetuned-korquadv1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pixel-base-finetuned-korquadv1 This model is a fine-tuned version of [Team-PIXEL/pixel-base](https://huggingface.co/Team-PIXEL/pixel-base) on the squad_kor_v1 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 45 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 20000 - mixed_precision_training: Apex, opt level O1 ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0 - Datasets 2.0.0 - Tokenizers 0.12.1
neulab/gpt2-finetuned-wikitext103
neulab
2022-07-14T15:38:21Z
323
1
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "arxiv:2201.12431", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-07-12T14:37:59Z
This is a `gpt2` model, finetuned on the Wikitext-103 dataset. It achieves a perplexity of **14.84** using a "sliding window" context, using the `run_clm.py` script at [https://github.com/neulab/knn-transformers](https://github.com/neulab/knn-transformers). | Base LM: | `distilgpt2` | `gpt2` | | :--- | ----: | ---: | | base perplexity | 18.25 | 14.84 | | +kNN-LM | 15.03 | 12.57 | | +RetoMaton | **14.70** | **12.46** | This model was released as part of the paper ["Neuro-Symbolic Language Modeling with Automaton-augmented Retrieval"](https://arxiv.org/pdf/2201.12431.pdf) (ICML'2022). For more information, see: [https://github.com/neulab/knn-transformers](https://github.com/neulab/knn-transformers) If you use this model, please cite: ``` @inproceedings{alon2022neuro, title={Neuro-Symbolic Language Modeling with Automaton-augmented Retrieval}, author={Alon, Uri and Xu, Frank and He, Junxian and Sengupta, Sudipta and Roth, Dan and Neubig, Graham}, booktitle={International Conference on Machine Learning}, pages={468--485}, year={2022}, organization={PMLR} } ```
jslowik/distilbert-base-uncased-finetuned-emotion
jslowik
2022-07-14T15:05:25Z
4
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-14T15:01:13Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9265 - name: F1 type: f1 value: 0.9262423473736914 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2156 - Accuracy: 0.9265 - F1: 0.9262 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.814 | 1.0 | 250 | 0.3075 | 0.907 | 0.9048 | | 0.2481 | 2.0 | 500 | 0.2156 | 0.9265 | 0.9262 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
gossminn/predict-perception-bertino-focus-object
gossminn
2022-07-14T14:46:13Z
9
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-14T14:42:20Z
--- license: mit tags: - generated_from_trainer model-index: - name: predict-perception-bertino-focus-object results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # predict-perception-bertino-focus-object This model is a fine-tuned version of [indigo-ai/BERTino](https://huggingface.co/indigo-ai/BERTino) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2766 - R2: 0.5460 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 20 - eval_batch_size: 8 - seed: 1996 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 47 ### Training results | Training Loss | Epoch | Step | Validation Loss | R2 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.4798 | 1.0 | 14 | 0.4519 | 0.2581 | | 0.2481 | 2.0 | 28 | 0.3042 | 0.5007 | | 0.12 | 3.0 | 42 | 0.3746 | 0.3851 | | 0.0969 | 4.0 | 56 | 0.3186 | 0.4770 | | 0.0907 | 5.0 | 70 | 0.3727 | 0.3882 | | 0.0673 | 6.0 | 84 | 0.2847 | 0.5327 | | 0.0457 | 7.0 | 98 | 0.3141 | 0.4844 | | 0.0431 | 8.0 | 112 | 0.3369 | 0.4470 | | 0.028 | 9.0 | 126 | 0.3039 | 0.5012 | | 0.0244 | 10.0 | 140 | 0.2964 | 0.5135 | | 0.0201 | 11.0 | 154 | 0.3072 | 0.4958 | | 0.0153 | 12.0 | 168 | 0.3049 | 0.4995 | | 0.0155 | 13.0 | 182 | 0.2924 | 0.5201 | | 0.015 | 14.0 | 196 | 0.2585 | 0.5757 | | 0.0181 | 15.0 | 210 | 0.3258 | 0.4652 | | 0.0136 | 16.0 | 224 | 0.3142 | 0.4842 | | 0.0105 | 17.0 | 238 | 0.2536 | 0.5837 | | 0.0104 | 18.0 | 252 | 0.2407 | 0.6050 | | 0.0107 | 19.0 | 266 | 0.2727 | 0.5524 | | 0.0084 | 20.0 | 280 | 0.3117 | 0.4883 | | 0.0102 | 21.0 | 294 | 0.2999 | 0.5078 | | 0.0074 | 22.0 | 308 | 0.3018 | 0.5047 | | 0.0068 | 23.0 | 322 | 0.2826 | 0.5361 | | 0.0054 | 24.0 | 336 | 0.2804 | 0.5398 | | 0.0044 | 25.0 | 350 | 0.2912 | 0.5220 | | 0.0048 | 26.0 | 364 | 0.2813 | 0.5382 | | 0.005 | 27.0 | 378 | 0.2933 | 0.5186 | | 0.0046 | 28.0 | 392 | 0.2820 | 0.5371 | | 0.004 | 29.0 | 406 | 0.2717 | 0.5541 | | 0.0054 | 30.0 | 420 | 0.2717 | 0.5540 | | 0.0042 | 31.0 | 434 | 0.2699 | 0.5570 | | 0.0033 | 32.0 | 448 | 0.2630 | 0.5684 | | 0.0038 | 33.0 | 462 | 0.2578 | 0.5767 | | 0.0032 | 34.0 | 476 | 0.2687 | 0.5589 | | 0.004 | 35.0 | 490 | 0.2737 | 0.5507 | | 0.0031 | 36.0 | 504 | 0.2753 | 0.5481 | | 0.0037 | 37.0 | 518 | 0.2819 | 0.5373 | | 0.0034 | 38.0 | 532 | 0.2759 | 0.5471 | | 0.0034 | 39.0 | 546 | 0.2835 | 0.5347 | | 0.0029 | 40.0 | 560 | 0.2814 | 0.5381 | | 0.0033 | 41.0 | 574 | 0.2801 | 0.5403 | | 0.0025 | 42.0 | 588 | 0.2759 | 0.5472 | | 0.0029 | 43.0 | 602 | 0.2790 | 0.5421 | | 0.0028 | 44.0 | 616 | 0.2801 | 0.5401 | | 0.003 | 45.0 | 630 | 0.2772 | 0.5451 | | 0.0028 | 46.0 | 644 | 0.2764 | 0.5463 | | 0.0026 | 47.0 | 658 | 0.2766 | 0.5460 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2+cu113 - Datasets 1.18.3 - Tokenizers 0.11.0
gossminn/predict-perception-bertino-focus-assassin
gossminn
2022-07-14T14:34:40Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-14T14:26:46Z
--- license: mit tags: - generated_from_trainer model-index: - name: predict-perception-bertino-focus-assassin results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # predict-perception-bertino-focus-assassin This model is a fine-tuned version of [indigo-ai/BERTino](https://huggingface.co/indigo-ai/BERTino) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3409 - R2: 0.3205 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 20 - eval_batch_size: 8 - seed: 1996 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 47 ### Training results | Training Loss | Epoch | Step | Validation Loss | R2 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.5573 | 1.0 | 14 | 0.4856 | 0.0321 | | 0.1739 | 2.0 | 28 | 0.4735 | 0.0562 | | 0.0813 | 3.0 | 42 | 0.3416 | 0.3191 | | 0.0764 | 4.0 | 56 | 0.3613 | 0.2799 | | 0.0516 | 5.0 | 70 | 0.3264 | 0.3495 | | 0.0459 | 6.0 | 84 | 0.4193 | 0.1643 | | 0.0414 | 7.0 | 98 | 0.3502 | 0.3019 | | 0.028 | 8.0 | 112 | 0.3361 | 0.3301 | | 0.0281 | 9.0 | 126 | 0.3610 | 0.2804 | | 0.027 | 10.0 | 140 | 0.3523 | 0.2978 | | 0.0216 | 11.0 | 154 | 0.3440 | 0.3143 | | 0.0181 | 12.0 | 168 | 0.3506 | 0.3012 | | 0.013 | 13.0 | 182 | 0.3299 | 0.3424 | | 0.0116 | 14.0 | 196 | 0.3611 | 0.2803 | | 0.0118 | 15.0 | 210 | 0.3505 | 0.3013 | | 0.0139 | 16.0 | 224 | 0.3529 | 0.2967 | | 0.0099 | 17.0 | 238 | 0.3536 | 0.2952 | | 0.0096 | 18.0 | 252 | 0.3542 | 0.2941 | | 0.0107 | 19.0 | 266 | 0.3770 | 0.2486 | | 0.0088 | 20.0 | 280 | 0.3467 | 0.3091 | | 0.0065 | 21.0 | 294 | 0.3327 | 0.3369 | | 0.0073 | 22.0 | 308 | 0.3479 | 0.3066 | | 0.0062 | 23.0 | 322 | 0.3566 | 0.2893 | | 0.0063 | 24.0 | 336 | 0.3503 | 0.3019 | | 0.0057 | 25.0 | 350 | 0.3371 | 0.3282 | | 0.0049 | 26.0 | 364 | 0.3334 | 0.3355 | | 0.0045 | 27.0 | 378 | 0.3399 | 0.3225 | | 0.0049 | 28.0 | 392 | 0.3379 | 0.3266 | | 0.0049 | 29.0 | 406 | 0.3377 | 0.3268 | | 0.0055 | 30.0 | 420 | 0.3357 | 0.3309 | | 0.005 | 31.0 | 434 | 0.3394 | 0.3235 | | 0.0046 | 32.0 | 448 | 0.3432 | 0.3159 | | 0.0048 | 33.0 | 462 | 0.3427 | 0.3169 | | 0.0041 | 34.0 | 476 | 0.3450 | 0.3123 | | 0.0041 | 35.0 | 490 | 0.3436 | 0.3151 | | 0.0051 | 36.0 | 504 | 0.3394 | 0.3234 | | 0.0037 | 37.0 | 518 | 0.3370 | 0.3283 | | 0.004 | 38.0 | 532 | 0.3370 | 0.3284 | | 0.0033 | 39.0 | 546 | 0.3339 | 0.3344 | | 0.0034 | 40.0 | 560 | 0.3335 | 0.3352 | | 0.003 | 41.0 | 574 | 0.3373 | 0.3276 | | 0.0035 | 42.0 | 588 | 0.3380 | 0.3264 | | 0.0032 | 43.0 | 602 | 0.3382 | 0.3259 | | 0.0034 | 44.0 | 616 | 0.3432 | 0.3158 | | 0.003 | 45.0 | 630 | 0.3421 | 0.3181 | | 0.0027 | 46.0 | 644 | 0.3410 | 0.3203 | | 0.0037 | 47.0 | 658 | 0.3409 | 0.3205 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2+cu113 - Datasets 1.18.3 - Tokenizers 0.11.0
gossminn/predict-perception-bertino-cause-none
gossminn
2022-07-14T14:26:27Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-14T14:22:28Z
--- license: mit tags: - generated_from_trainer model-index: - name: predict-perception-bertino-cause-none results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # predict-perception-bertino-cause-none This model is a fine-tuned version of [indigo-ai/BERTino](https://huggingface.co/indigo-ai/BERTino) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1988 - R2: 0.4467 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 20 - eval_batch_size: 8 - seed: 1996 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 47 ### Training results | Training Loss | Epoch | Step | Validation Loss | R2 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.56 | 1.0 | 14 | 0.3460 | 0.0372 | | 0.3752 | 2.0 | 28 | 0.3082 | 0.1423 | | 0.147 | 3.0 | 42 | 0.2299 | 0.3603 | | 0.0961 | 4.0 | 56 | 0.3254 | 0.0944 | | 0.0859 | 5.0 | 70 | 0.2650 | 0.2625 | | 0.0735 | 6.0 | 84 | 0.2430 | 0.3237 | | 0.042 | 7.0 | 98 | 0.2567 | 0.2856 | | 0.0328 | 8.0 | 112 | 0.2092 | 0.4180 | | 0.028 | 9.0 | 126 | 0.2262 | 0.3706 | | 0.0237 | 10.0 | 140 | 0.2170 | 0.3960 | | 0.0235 | 11.0 | 154 | 0.2137 | 0.4054 | | 0.0195 | 12.0 | 168 | 0.2009 | 0.4409 | | 0.0217 | 13.0 | 182 | 0.2001 | 0.4431 | | 0.0176 | 14.0 | 196 | 0.2123 | 0.4091 | | 0.0226 | 15.0 | 210 | 0.2076 | 0.4224 | | 0.019 | 16.0 | 224 | 0.1920 | 0.4657 | | 0.0122 | 17.0 | 238 | 0.2301 | 0.3598 | | 0.0121 | 18.0 | 252 | 0.2092 | 0.4178 | | 0.0112 | 19.0 | 266 | 0.2038 | 0.4329 | | 0.0081 | 20.0 | 280 | 0.2008 | 0.4411 | | 0.0079 | 21.0 | 294 | 0.1930 | 0.4631 | | 0.0083 | 22.0 | 308 | 0.2076 | 0.4222 | | 0.0061 | 23.0 | 322 | 0.2036 | 0.4334 | | 0.0057 | 24.0 | 336 | 0.1986 | 0.4472 | | 0.0059 | 25.0 | 350 | 0.2079 | 0.4215 | | 0.0082 | 26.0 | 364 | 0.2125 | 0.4087 | | 0.0093 | 27.0 | 378 | 0.2096 | 0.4168 | | 0.0061 | 28.0 | 392 | 0.2129 | 0.4076 | | 0.005 | 29.0 | 406 | 0.2054 | 0.4284 | | 0.0058 | 30.0 | 420 | 0.2024 | 0.4368 | | 0.006 | 31.0 | 434 | 0.1999 | 0.4437 | | 0.0047 | 32.0 | 448 | 0.1917 | 0.4666 | | 0.0046 | 33.0 | 462 | 0.2000 | 0.4435 | | 0.005 | 34.0 | 476 | 0.2003 | 0.4425 | | 0.0041 | 35.0 | 490 | 0.2057 | 0.4276 | | 0.0037 | 36.0 | 504 | 0.1985 | 0.4476 | | 0.0049 | 37.0 | 518 | 0.2029 | 0.4353 | | 0.0031 | 38.0 | 532 | 0.1963 | 0.4539 | | 0.0031 | 39.0 | 546 | 0.1957 | 0.4554 | | 0.0031 | 40.0 | 560 | 0.1962 | 0.4540 | | 0.0029 | 41.0 | 574 | 0.2000 | 0.4433 | | 0.0028 | 42.0 | 588 | 0.1986 | 0.4473 | | 0.0035 | 43.0 | 602 | 0.1972 | 0.4514 | | 0.0029 | 44.0 | 616 | 0.1984 | 0.4479 | | 0.0036 | 45.0 | 630 | 0.2005 | 0.4422 | | 0.0033 | 46.0 | 644 | 0.1994 | 0.4452 | | 0.0029 | 47.0 | 658 | 0.1988 | 0.4467 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2+cu113 - Datasets 1.18.3 - Tokenizers 0.11.0
gossminn/predict-perception-bertino-cause-concept
gossminn
2022-07-14T14:22:13Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-14T14:15:23Z
--- license: mit tags: - generated_from_trainer model-index: - name: predict-perception-bertino-cause-concept results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # predict-perception-bertino-cause-concept This model is a fine-tuned version of [indigo-ai/BERTino](https://huggingface.co/indigo-ai/BERTino) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2035 - R2: -0.3662 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 20 - eval_batch_size: 8 - seed: 1996 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 47 ### Training results | Training Loss | Epoch | Step | Validation Loss | R2 | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.3498 | 1.0 | 14 | 0.1845 | -0.2382 | | 0.2442 | 2.0 | 28 | 0.1575 | -0.0573 | | 0.1553 | 3.0 | 42 | 0.2216 | -0.4872 | | 0.0726 | 4.0 | 56 | 0.1972 | -0.3234 | | 0.0564 | 5.0 | 70 | 0.2832 | -0.9009 | | 0.0525 | 6.0 | 84 | 0.1854 | -0.2444 | | 0.0385 | 7.0 | 98 | 0.2816 | -0.8900 | | 0.0257 | 8.0 | 112 | 0.1815 | -0.2183 | | 0.03 | 9.0 | 126 | 0.3065 | -1.0576 | | 0.0275 | 10.0 | 140 | 0.1991 | -0.3367 | | 0.0175 | 11.0 | 154 | 0.2400 | -0.6110 | | 0.017 | 12.0 | 168 | 0.1915 | -0.2856 | | 0.0158 | 13.0 | 182 | 0.2008 | -0.3477 | | 0.0127 | 14.0 | 196 | 0.1932 | -0.2968 | | 0.009 | 15.0 | 210 | 0.2500 | -0.6783 | | 0.0078 | 16.0 | 224 | 0.1969 | -0.3215 | | 0.0075 | 17.0 | 238 | 0.1857 | -0.2463 | | 0.0079 | 18.0 | 252 | 0.2405 | -0.6145 | | 0.0089 | 19.0 | 266 | 0.1865 | -0.2517 | | 0.0082 | 20.0 | 280 | 0.2275 | -0.5267 | | 0.0078 | 21.0 | 294 | 0.1890 | -0.2687 | | 0.0072 | 22.0 | 308 | 0.2230 | -0.4965 | | 0.0064 | 23.0 | 322 | 0.2286 | -0.5346 | | 0.0052 | 24.0 | 336 | 0.2154 | -0.4457 | | 0.0049 | 25.0 | 350 | 0.1901 | -0.2757 | | 0.0062 | 26.0 | 364 | 0.1917 | -0.2870 | | 0.0043 | 27.0 | 378 | 0.2042 | -0.3704 | | 0.0038 | 28.0 | 392 | 0.2251 | -0.5110 | | 0.0049 | 29.0 | 406 | 0.2092 | -0.4040 | | 0.0044 | 30.0 | 420 | 0.2119 | -0.4221 | | 0.0041 | 31.0 | 434 | 0.2018 | -0.3542 | | 0.0039 | 32.0 | 448 | 0.1875 | -0.2586 | | 0.0038 | 33.0 | 462 | 0.1980 | -0.3291 | | 0.0038 | 34.0 | 476 | 0.2071 | -0.3903 | | 0.0043 | 35.0 | 490 | 0.1998 | -0.3412 | | 0.0043 | 36.0 | 504 | 0.2052 | -0.3771 | | 0.004 | 37.0 | 518 | 0.2143 | -0.4382 | | 0.004 | 38.0 | 532 | 0.1977 | -0.3273 | | 0.0039 | 39.0 | 546 | 0.2002 | -0.3439 | | 0.0034 | 40.0 | 560 | 0.2035 | -0.3659 | | 0.0036 | 41.0 | 574 | 0.1994 | -0.3387 | | 0.0029 | 42.0 | 588 | 0.2036 | -0.3667 | | 0.0032 | 43.0 | 602 | 0.2055 | -0.3797 | | 0.0029 | 44.0 | 616 | 0.2025 | -0.3593 | | 0.0027 | 45.0 | 630 | 0.2047 | -0.3743 | | 0.0033 | 46.0 | 644 | 0.2067 | -0.3877 | | 0.0027 | 47.0 | 658 | 0.2035 | -0.3662 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2+cu113 - Datasets 1.18.3 - Tokenizers 0.11.0
gossminn/predict-perception-bertino-cause-object
gossminn
2022-07-14T14:14:55Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-14T14:06:37Z
--- license: mit tags: - generated_from_trainer model-index: - name: predict-perception-bertino-cause-object results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # predict-perception-bertino-cause-object This model is a fine-tuned version of [indigo-ai/BERTino](https://huggingface.co/indigo-ai/BERTino) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0766 - R2: 0.8216 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 20 - eval_batch_size: 8 - seed: 1996 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 47 ### Training results | Training Loss | Epoch | Step | Validation Loss | R2 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.6807 | 1.0 | 14 | 0.4011 | 0.0652 | | 0.3529 | 2.0 | 28 | 0.2304 | 0.4631 | | 0.1539 | 3.0 | 42 | 0.0596 | 0.8611 | | 0.0853 | 4.0 | 56 | 0.1600 | 0.6272 | | 0.066 | 5.0 | 70 | 0.1596 | 0.6280 | | 0.0563 | 6.0 | 84 | 0.1146 | 0.7330 | | 0.0777 | 7.0 | 98 | 0.1010 | 0.7646 | | 0.0299 | 8.0 | 112 | 0.0897 | 0.7910 | | 0.0311 | 9.0 | 126 | 0.0832 | 0.8061 | | 0.0274 | 10.0 | 140 | 0.0988 | 0.7697 | | 0.0262 | 11.0 | 154 | 0.1048 | 0.7557 | | 0.0204 | 12.0 | 168 | 0.0615 | 0.8566 | | 0.0254 | 13.0 | 182 | 0.0742 | 0.8270 | | 0.0251 | 14.0 | 196 | 0.0923 | 0.7850 | | 0.0149 | 15.0 | 210 | 0.0663 | 0.8456 | | 0.0141 | 16.0 | 224 | 0.0755 | 0.8241 | | 0.0112 | 17.0 | 238 | 0.0905 | 0.7891 | | 0.0108 | 18.0 | 252 | 0.0834 | 0.8057 | | 0.0096 | 19.0 | 266 | 0.0823 | 0.8082 | | 0.0073 | 20.0 | 280 | 0.0825 | 0.8078 | | 0.0092 | 21.0 | 294 | 0.0869 | 0.7974 | | 0.0075 | 22.0 | 308 | 0.0744 | 0.8266 | | 0.0075 | 23.0 | 322 | 0.0825 | 0.8078 | | 0.0062 | 24.0 | 336 | 0.0797 | 0.8144 | | 0.0065 | 25.0 | 350 | 0.0793 | 0.8152 | | 0.007 | 26.0 | 364 | 0.0840 | 0.8043 | | 0.0067 | 27.0 | 378 | 0.0964 | 0.7753 | | 0.0064 | 28.0 | 392 | 0.0869 | 0.7976 | | 0.0063 | 29.0 | 406 | 0.0766 | 0.8215 | | 0.0057 | 30.0 | 420 | 0.0764 | 0.8219 | | 0.0057 | 31.0 | 434 | 0.0796 | 0.8145 | | 0.0054 | 32.0 | 448 | 0.0853 | 0.8012 | | 0.0044 | 33.0 | 462 | 0.0750 | 0.8253 | | 0.0072 | 34.0 | 476 | 0.0782 | 0.8179 | | 0.006 | 35.0 | 490 | 0.0867 | 0.7979 | | 0.0054 | 36.0 | 504 | 0.0819 | 0.8092 | | 0.0047 | 37.0 | 518 | 0.0839 | 0.8045 | | 0.0043 | 38.0 | 532 | 0.0764 | 0.8221 | | 0.0039 | 39.0 | 546 | 0.0728 | 0.8303 | | 0.0041 | 40.0 | 560 | 0.0755 | 0.8241 | | 0.0038 | 41.0 | 574 | 0.0729 | 0.8301 | | 0.0034 | 42.0 | 588 | 0.0781 | 0.8180 | | 0.0038 | 43.0 | 602 | 0.0762 | 0.8224 | | 0.0032 | 44.0 | 616 | 0.0777 | 0.8189 | | 0.0035 | 45.0 | 630 | 0.0776 | 0.8191 | | 0.0037 | 46.0 | 644 | 0.0765 | 0.8217 | | 0.0036 | 47.0 | 658 | 0.0766 | 0.8216 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2+cu113 - Datasets 1.18.3 - Tokenizers 0.11.0
ericklerouge123/xlm-roberta-base-finetuned-panx-de
ericklerouge123
2022-07-14T14:05:25Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-17T20:42:35Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8648740833380706 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1365 - F1: 0.8649 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2553 | 1.0 | 525 | 0.1575 | 0.8279 | | 0.1284 | 2.0 | 1050 | 0.1386 | 0.8463 | | 0.0813 | 3.0 | 1575 | 0.1365 | 0.8649 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
Team-PIXEL/pixel-base-finetuned-squadv1
Team-PIXEL
2022-07-14T13:05:00Z
5
0
transformers
[ "transformers", "pytorch", "pixel", "question-answering", "generated_from_trainer", "dataset:squad", "endpoints_compatible", "region:us" ]
question-answering
2022-07-14T13:00:33Z
--- tags: - generated_from_trainer datasets: - squad model-index: - name: pixel-base-finetuned-squadv1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pixel-base-finetuned-squad-v1 This model is a fine-tuned version of [Team-PIXEL/pixel-base](https://huggingface.co/Team-PIXEL/pixel-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 43 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 20000 - mixed_precision_training: Apex, opt level O1 ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0 - Datasets 2.0.0 - Tokenizers 0.12.1
Team-PIXEL/pixel-base-finetuned-tydiqa-goldp
Team-PIXEL
2022-07-14T12:54:13Z
3
0
transformers
[ "transformers", "pytorch", "pixel", "question-answering", "generated_from_trainer", "dataset:tydiqa", "endpoints_compatible", "region:us" ]
question-answering
2022-07-14T12:35:12Z
--- tags: - generated_from_trainer datasets: - tydiqa model-index: - name: pixel-base-finetuned-tydiqa-goldp results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pixel-base-finetuned-tydiqa-goldp This model is a fine-tuned version of [Team-PIXEL/pixel-base](https://huggingface.co/Team-PIXEL/pixel-base) on the tydiqa secondary_task dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 20000 - mixed_precision_training: Apex, opt level O1 ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0 - Datasets 2.0.0 - Tokenizers 0.12.1
jgriffi/bart_abstract_summarization
jgriffi
2022-07-14T12:28:07Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-07-14T09:13:23Z
--- license: mit tags: - generated_from_trainer model-index: - name: bart_abstract_summarization results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart_abstract_summarization This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1852 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.0559 | 0.25 | 500 | 0.1601 | | 0.0068 | 0.49 | 1000 | 0.2571 | | 0.0016 | 0.74 | 1500 | 0.4330 | | 0.0001 | 0.99 | 2000 | 0.1852 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
stokic/ppo-LunarLander-v2
stokic
2022-07-14T12:22:36Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-07-14T12:21:59Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 109.33 +/- 78.20 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Lvxue/finetuned-mt5-base-10epoch
Lvxue
2022-07-14T12:21:17Z
102
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "generated_from_trainer", "en", "ro", "dataset:wmt16", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-07-12T03:18:31Z
--- language: - en - ro license: apache-2.0 tags: - generated_from_trainer datasets: - wmt16 model-index: - name: finetuned-mt5-base-10epoch results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-mt5-base-10epoch This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on the wmt16 ro-en dataset. It achieves the following results on the evaluation set: - Loss: 1.2607 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
vortixhead/distilbert-base-uncased-finetuned-emotion
vortixhead
2022-07-14T12:00:08Z
23
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-02T16:55:10Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.924 - name: F1 type: f1 value: 0.9240758723346115 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2140 - Accuracy: 0.924 - F1: 0.9241 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8278 | 1.0 | 250 | 0.3099 | 0.9055 | 0.9032 | | 0.251 | 2.0 | 500 | 0.2140 | 0.924 | 0.9241 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu102 - Datasets 2.2.2 - Tokenizers 0.12.1
Siyong/MC
Siyong
2022-07-14T10:48:35Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-14T08:44:08Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec-base-All results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec-base-All This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.0545 - Wer: 0.8861 - Cer: 0.5014 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 120 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:------:|:-----:|:---------------:|:------:|:------:| | No log | 3.33 | 500 | 4.0654 | 1.0 | 0.9823 | | No log | 6.67 | 1000 | 3.4532 | 1.0 | 0.9823 | | No log | 10.0 | 1500 | 3.0707 | 0.9992 | 0.9781 | | No log | 13.33 | 2000 | 2.7335 | 1.0017 | 0.9027 | | No log | 16.67 | 2500 | 2.5896 | 1.0690 | 0.7302 | | No log | 20.0 | 3000 | 2.3315 | 1.0690 | 0.6677 | | No log | 23.33 | 3500 | 2.2217 | 1.0150 | 0.5966 | | No log | 26.67 | 4000 | 2.3802 | 1.0549 | 0.5948 | | No log | 30.0 | 4500 | 2.2208 | 0.9975 | 0.5681 | | 2.4224 | 33.33 | 5000 | 2.2687 | 0.9800 | 0.5537 | | 2.4224 | 36.67 | 5500 | 2.3169 | 0.9476 | 0.5493 | | 2.4224 | 40.0 | 6000 | 2.5196 | 0.9900 | 0.5509 | | 2.4224 | 43.33 | 6500 | 2.4816 | 0.9501 | 0.5272 | | 2.4224 | 46.67 | 7000 | 2.4894 | 0.9485 | 0.5276 | | 2.4224 | 50.0 | 7500 | 2.4555 | 0.9418 | 0.5305 | | 2.4224 | 53.33 | 8000 | 2.7326 | 0.9559 | 0.5255 | | 2.4224 | 56.67 | 8500 | 2.5514 | 0.9227 | 0.5209 | | 2.4224 | 60.0 | 9000 | 2.9135 | 0.9717 | 0.5455 | | 2.4224 | 63.33 | 9500 | 3.0465 | 0.8346 | 0.5002 | | 0.8569 | 66.67 | 10000 | 2.8177 | 0.9302 | 0.5216 | | 0.8569 | 70.0 | 10500 | 2.9908 | 0.9310 | 0.5128 | | 0.8569 | 73.33 | 11000 | 3.1752 | 0.9235 | 0.5284 | | 0.8569 | 76.67 | 11500 | 2.7412 | 0.8886 | 0.5 | | 0.8569 | 80.0 | 12000 | 2.7362 | 0.9127 | 0.5040 | | 0.8569 | 83.33 | 12500 | 2.9636 | 0.9152 | 0.5093 | | 0.8569 | 86.67 | 13000 | 3.0139 | 0.9011 | 0.5097 | | 0.8569 | 90.0 | 13500 | 2.8325 | 0.8853 | 0.5032 | | 0.8569 | 93.33 | 14000 | 3.0383 | 0.8845 | 0.5056 | | 0.8569 | 96.67 | 14500 | 2.7931 | 0.8795 | 0.4965 | | 0.3881 | 100.0 | 15000 | 2.8972 | 0.8928 | 0.5012 | | 0.3881 | 103.33 | 15500 | 2.7780 | 0.8736 | 0.4947 | | 0.3881 | 106.67 | 16000 | 3.1081 | 0.9036 | 0.5109 | | 0.3881 | 110.0 | 16500 | 3.0078 | 0.8928 | 0.5032 | | 0.3881 | 113.33 | 17000 | 3.0245 | 0.8886 | 0.5009 | | 0.3881 | 116.67 | 17500 | 3.0739 | 0.8928 | 0.5065 | | 0.3881 | 120.0 | 18000 | 3.0545 | 0.8861 | 0.5014 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.12.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
google/tapas-mini-finetuned-wtq
google
2022-07-14T10:14:00Z
365
2
transformers
[ "transformers", "pytorch", "tf", "tapas", "table-question-answering", "en", "dataset:wikitablequestions", "arxiv:2004.02349", "arxiv:2010.00571", "arxiv:1508.00305", "license:apache-2.0", "endpoints_compatible", "region:us" ]
table-question-answering
2022-03-02T23:29:05Z
--- language: en tags: - tapas - table-question-answering license: apache-2.0 datasets: - wikitablequestions --- # TAPAS mini model fine-tuned on WikiTable Questions (WTQ) This model has 2 versions which can be used. The default version corresponds to the `tapas_wtq_wikisql_sqa_inter_masklm_mini_reset` checkpoint of the [original Github repository](https://github.com/google-research/tapas). This model was pre-trained on MLM and an additional step which the authors call intermediate pre-training, and then fine-tuned in a chain on [SQA](https://www.microsoft.com/en-us/download/details.aspx?id=54253), [WikiSQL](https://github.com/salesforce/WikiSQL) and finally [WTQ](https://github.com/ppasupat/WikiTableQuestions). It uses relative position embeddings (i.e. resetting the position index at every cell of the table). The other (non-default) version which can be used is: - `no_reset`, which corresponds to `tapas_wtq_wikisql_sqa_inter_masklm_mini` (intermediate pre-training, absolute position embeddings). Disclaimer: The team releasing TAPAS did not write a model card for this model so this model card has been written by the Hugging Face team and contributors. ## Results Size | Reset | Dev Accuracy | Link -------- | --------| -------- | ---- LARGE | noreset | 0.5062 | [tapas-large-finetuned-wtq (with absolute pos embeddings)](https://huggingface.co/google/tapas-large-finetuned-wtq/tree/no_reset) LARGE | reset | 0.5097 | [tapas-large-finetuned-wtq](https://huggingface.co/google/tapas-large-finetuned-wtq/tree/main) BASE | noreset | 0.4525 | [tapas-base-finetuned-wtq (with absolute pos embeddings)](https://huggingface.co/google/tapas-base-finetuned-wtq/tree/no_reset) BASE | reset | 0.4638 | [tapas-base-finetuned-wtq](https://huggingface.co/google/tapas-base-finetuned-wtq/tree/main) MEDIUM | noreset | 0.4324 | [tapas-medium-finetuned-wtq (with absolute pos embeddings)](https://huggingface.co/google/tapas-medium-finetuned-wtq/tree/no_reset) MEDIUM | reset | 0.4324 | [tapas-medium-finetuned-wtq](https://huggingface.co/google/tapas-medium-finetuned-wtq/tree/main) SMALL | noreset | 0.3681 | [tapas-small-finetuned-wtq (with absolute pos embeddings)](https://huggingface.co/google/tapas-small-finetuned-wtq/tree/no_reset) SMALL | reset | 0.3762 | [tapas-small-finetuned-wtq](https://huggingface.co/google/tapas-small-finetuned-wtq/tree/main) **MINI** | **noreset** | **0.2783** | [tapas-mini-finetuned-wtq (with absolute pos embeddings)](https://huggingface.co/google/tapas-mini-finetuned-wtq/tree/no_reset) **MINI** | **reset** | **0.2854** | [tapas-mini-finetuned-wtq](https://huggingface.co/google/tapas-mini-finetuned-wtq/tree/main) TINY | noreset | 0.0823 | [tapas-tiny-finetuned-wtq (with absolute pos embeddings)](https://huggingface.co/google/tapas-tiny-finetuned-wtq/tree/no_reset) TINY | reset | 0.1039 | [tapas-tiny-finetuned-wtq](https://huggingface.co/google/tapas-tiny-finetuned-wtq/tree/main) ## Model description TAPAS is a BERT-like transformers model pretrained on a large corpus of English data from Wikipedia in a self-supervised fashion. This means it was pretrained on the raw tables and associated texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a (flattened) table and associated context, the model randomly masks 15% of the words in the input, then runs the entire (partially masked) sequence through the model. The model then has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of a table and associated text. - Intermediate pre-training: to encourage numerical reasoning on tables, the authors additionally pre-trained the model by creating a balanced dataset of millions of syntactically created training examples. Here, the model must predict (classify) whether a sentence is supported or refuted by the contents of a table. The training examples are created based on synthetic as well as counterfactual statements. This way, the model learns an inner representation of the English language used in tables and associated texts, which can then be used to extract features useful for downstream tasks such as answering questions about a table, or determining whether a sentence is entailed or refuted by the contents of a table. Fine-tuning is done by adding a cell selection head and aggregation head on top of the pre-trained model, and then jointly train these randomly initialized classification heads with the base model on SQa, WikiSQL and finally WTQ. ## Intended uses & limitations You can use this model for answering questions related to a table. For code examples, we refer to the documentation of TAPAS on the HuggingFace website. ## Training procedure ### Preprocessing The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are then of the form: ``` [CLS] Question [SEP] Flattened table [SEP] ``` The authors did first convert the WTQ dataset into the format of SQA using automatic conversion scripts. ### Fine-tuning The model was fine-tuned on 32 Cloud TPU v3 cores for 50,000 steps with maximum sequence length 512 and batch size of 512. In this setup, fine-tuning takes around 10 hours. The optimizer used is Adam with a learning rate of 1.93581e-5, and a warmup ratio of 0.128960. An inductive bias is added such that the model only selects cells of the same column. This is reflected by the `select_one_column` parameter of `TapasConfig`. See the [paper](https://arxiv.org/abs/2004.02349) for more details (tables 11 and 12). ### BibTeX entry and citation info ```bibtex @misc{herzig2020tapas, title={TAPAS: Weakly Supervised Table Parsing via Pre-training}, author={Jonathan Herzig and Paweł Krzysztof Nowak and Thomas Müller and Francesco Piccinno and Julian Martin Eisenschlos}, year={2020}, eprint={2004.02349}, archivePrefix={arXiv}, primaryClass={cs.IR} } ``` ```bibtex @misc{eisenschlos2020understanding, title={Understanding tables with intermediate pre-training}, author={Julian Martin Eisenschlos and Syrine Krichene and Thomas Müller}, year={2020}, eprint={2010.00571}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ```bibtex @article{DBLP:journals/corr/PasupatL15, author = {Panupong Pasupat and Percy Liang}, title = {Compositional Semantic Parsing on Semi-Structured Tables}, journal = {CoRR}, volume = {abs/1508.00305}, year = {2015}, url = {http://arxiv.org/abs/1508.00305}, archivePrefix = {arXiv}, eprint = {1508.00305}, timestamp = {Mon, 13 Aug 2018 16:47:37 +0200}, biburl = {https://dblp.org/rec/journals/corr/PasupatL15.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
google/tapas-small-finetuned-wtq
google
2022-07-14T10:13:43Z
291
5
transformers
[ "transformers", "pytorch", "tf", "tapas", "table-question-answering", "en", "dataset:wikitablequestions", "arxiv:2004.02349", "arxiv:2010.00571", "arxiv:1508.00305", "license:apache-2.0", "endpoints_compatible", "region:us" ]
table-question-answering
2022-03-02T23:29:05Z
--- language: en tags: - tapas - table-question-answering license: apache-2.0 datasets: - wikitablequestions --- # TAPAS small model fine-tuned on WikiTable Questions (WTQ) This model has 2 versions which can be used. The default version corresponds to the `tapas_wtq_wikisql_sqa_inter_masklm_small_reset` checkpoint of the [original Github repository](https://github.com/google-research/tapas). This model was pre-trained on MLM and an additional step which the authors call intermediate pre-training, and then fine-tuned in a chain on [SQA](https://www.microsoft.com/en-us/download/details.aspx?id=54253), [WikiSQL](https://github.com/salesforce/WikiSQL) and finally [WTQ](https://github.com/ppasupat/WikiTableQuestions). It uses relative position embeddings (i.e. resetting the position index at every cell of the table). The other (non-default) version which can be used is: - `no_reset`, which corresponds to `tapas_wtq_wikisql_sqa_inter_masklm_small` (intermediate pre-training, absolute position embeddings). Disclaimer: The team releasing TAPAS did not write a model card for this model so this model card has been written by the Hugging Face team and contributors. ## Results Size | Reset | Dev Accuracy | Link -------- | --------| -------- | ---- LARGE | noreset | 0.5062 | [tapas-large-finetuned-wtq (with absolute pos embeddings)](https://huggingface.co/google/tapas-large-finetuned-wtq/tree/no_reset) LARGE | reset | 0.5097 | [tapas-large-finetuned-wtq](https://huggingface.co/google/tapas-large-finetuned-wtq/tree/main) BASE | noreset | 0.4525 | [tapas-base-finetuned-wtq (with absolute pos embeddings)](https://huggingface.co/google/tapas-base-finetuned-wtq/tree/no_reset) BASE | reset | 0.4638 | [tapas-base-finetuned-wtq](https://huggingface.co/google/tapas-base-finetuned-wtq/tree/main) MEDIUM | noreset | 0.4324 | [tapas-medium-finetuned-wtq (with absolute pos embeddings)](https://huggingface.co/google/tapas-medium-finetuned-wtq/tree/no_reset) MEDIUM | reset | 0.4324 | [tapas-medium-finetuned-wtq](https://huggingface.co/google/tapas-medium-finetuned-wtq/tree/main) **SMALL** | **noreset** | **0.3681** | [tapas-small-finetuned-wtq (with absolute pos embeddings)](https://huggingface.co/google/tapas-small-finetuned-wtq/tree/no_reset) **SMALL** | **reset** | **0.3762** | [tapas-small-finetuned-wtq](https://huggingface.co/google/tapas-small-finetuned-wtq/tree/main) MINI | noreset | 0.2783 | [tapas-mini-finetuned-wtq (with absolute pos embeddings)](https://huggingface.co/google/tapas-mini-finetuned-wtq/tree/no_reset) MINI | reset | 0.2854 | [tapas-mini-finetuned-wtq](https://huggingface.co/google/tapas-mini-finetuned-wtq/tree/main) TINY | noreset | 0.0823 | [tapas-tiny-finetuned-wtq (with absolute pos embeddings)](https://huggingface.co/google/tapas-tiny-finetuned-wtq/tree/no_reset) TINY | reset | 0.1039 | [tapas-tiny-finetuned-wtq](https://huggingface.co/google/tapas-tiny-finetuned-wtq/tree/main) ## Model description TAPAS is a BERT-like transformers model pretrained on a large corpus of English data from Wikipedia in a self-supervised fashion. This means it was pretrained on the raw tables and associated texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a (flattened) table and associated context, the model randomly masks 15% of the words in the input, then runs the entire (partially masked) sequence through the model. The model then has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of a table and associated text. - Intermediate pre-training: to encourage numerical reasoning on tables, the authors additionally pre-trained the model by creating a balanced dataset of millions of syntactically created training examples. Here, the model must predict (classify) whether a sentence is supported or refuted by the contents of a table. The training examples are created based on synthetic as well as counterfactual statements. This way, the model learns an inner representation of the English language used in tables and associated texts, which can then be used to extract features useful for downstream tasks such as answering questions about a table, or determining whether a sentence is entailed or refuted by the contents of a table. Fine-tuning is done by adding a cell selection head and aggregation head on top of the pre-trained model, and then jointly train these randomly initialized classification heads with the base model on SQa, WikiSQL and finally WTQ. ## Intended uses & limitations You can use this model for answering questions related to a table. For code examples, we refer to the documentation of TAPAS on the HuggingFace website. ## Training procedure ### Preprocessing The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are then of the form: ``` [CLS] Question [SEP] Flattened table [SEP] ``` The authors did first convert the WTQ dataset into the format of SQA using automatic conversion scripts. ### Fine-tuning The model was fine-tuned on 32 Cloud TPU v3 cores for 50,000 steps with maximum sequence length 512 and batch size of 512. In this setup, fine-tuning takes around 10 hours. The optimizer used is Adam with a learning rate of 1.93581e-5, and a warmup ratio of 0.128960. An inductive bias is added such that the model only selects cells of the same column. This is reflected by the `select_one_column` parameter of `TapasConfig`. See the [paper](https://arxiv.org/abs/2004.02349) for more details (tables 11 and 12). ### BibTeX entry and citation info ```bibtex @misc{herzig2020tapas, title={TAPAS: Weakly Supervised Table Parsing via Pre-training}, author={Jonathan Herzig and Paweł Krzysztof Nowak and Thomas Müller and Francesco Piccinno and Julian Martin Eisenschlos}, year={2020}, eprint={2004.02349}, archivePrefix={arXiv}, primaryClass={cs.IR} } ``` ```bibtex @misc{eisenschlos2020understanding, title={Understanding tables with intermediate pre-training}, author={Julian Martin Eisenschlos and Syrine Krichene and Thomas Müller}, year={2020}, eprint={2010.00571}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ```bibtex @article{DBLP:journals/corr/PasupatL15, author = {Panupong Pasupat and Percy Liang}, title = {Compositional Semantic Parsing on Semi-Structured Tables}, journal = {CoRR}, volume = {abs/1508.00305}, year = {2015}, url = {http://arxiv.org/abs/1508.00305}, archivePrefix = {arXiv}, eprint = {1508.00305}, timestamp = {Mon, 13 Aug 2018 16:47:37 +0200}, biburl = {https://dblp.org/rec/journals/corr/PasupatL15.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
microsoft/tapex-large-finetuned-tabfact
microsoft
2022-07-14T10:10:10Z
136
8
transformers
[ "transformers", "pytorch", "bart", "text-classification", "tapex", "table-question-answering", "en", "dataset:tab_fact", "arxiv:2107.07653", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
table-question-answering
2022-03-02T23:29:05Z
--- language: en tags: - tapex - table-question-answering datasets: - tab_fact license: mit --- # TAPEX (large-sized model) TAPEX was proposed in [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) by Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou. The original repo can be found [here](https://github.com/microsoft/Table-Pretraining). ## Model description TAPEX (**Ta**ble **P**re-training via **Ex**ecution) is a conceptually simple and empirically powerful pre-training approach to empower existing models with *table reasoning* skills. TAPEX realizes table pre-training by learning a neural SQL executor over a synthetic corpus, which is obtained by automatically synthesizing executable SQL queries. TAPEX is based on the BART architecture, the transformer encoder-encoder (seq2seq) model with a bidirectional (BERT-like) encoder and an autoregressive (GPT-like) decoder. This model is the `tapex-base` model fine-tuned on the [Tabfact](https://huggingface.co/datasets/tab_fact) dataset. ## Intended Uses You can use the model for table fact verficiation. ### How to Use Here is how to use this model in transformers: ```python from transformers import TapexTokenizer, BartForSequenceClassification import pandas as pd tokenizer = TapexTokenizer.from_pretrained("microsoft/tapex-large-finetuned-tabfact") model = BartForSequenceClassification.from_pretrained("microsoft/tapex-large-finetuned-tabfact") data = { "year": [1896, 1900, 1904, 2004, 2008, 2012], "city": ["athens", "paris", "st. louis", "athens", "beijing", "london"] } table = pd.DataFrame.from_dict(data) # tapex accepts uncased input since it is pre-trained on the uncased corpus query = "beijing hosts the olympic games in 2012" encoding = tokenizer(table=table, query=query, return_tensors="pt") outputs = model(**encoding) output_id = int(outputs.logits[0].argmax(dim=0)) print(model.config.id2label[output_id]) # Refused ``` ### How to Eval Please find the eval script [here](https://github.com/SivilTaram/transformers/tree/add_tapex_bis/examples/research_projects/tapex). ### BibTeX entry and citation info ```bibtex @inproceedings{ liu2022tapex, title={{TAPEX}: Table Pre-training via Learning a Neural {SQL} Executor}, author={Qian Liu and Bei Chen and Jiaqi Guo and Morteza Ziyadi and Zeqi Lin and Weizhu Chen and Jian-Guang Lou}, booktitle={International Conference on Learning Representations}, year={2022}, url={https://openreview.net/forum?id=O50443AsCP} } ```
ClassCat/roberta-base-spanish
ClassCat
2022-07-14T09:38:05Z
9
1
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "es", "dataset:wikipedia", "dataset:cc100", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-06-25T20:07:43Z
--- language: es license: cc-by-sa-4.0 datasets: - wikipedia - cc100 widget: - text: "Yo vivo en <mask>." - text: "Quiero <mask> contigo ?" - text: "Es clima es <mask>." - text: "Me llamo <mask>." - text: "Las negociaciones están <mask>." --- ## RoBERTa Spanish base model (Uncased) ### Prerequisites transformers==4.19.2 ### Model architecture This model uses RoBERTa base setttings except vocabulary size. ### Tokenizer Using BPE tokenizer with vocabulary size 50,000. ### Training Data * [wiki40b/es](https://www.tensorflow.org/datasets/catalog/wiki40b#wiki40bes) (Spanish Wikipedia) * Subset of [CC-100/es](https://data.statmt.org/cc-100/) : Monolingual Datasets from Web Crawl Data ### Usage ```python from transformers import pipeline unmasker = pipeline('fill-mask', model='ClassCat/roberta-base-spanish') unmasker("Yo soy <mask>.") ```
Kuro96/ppo-LunarLander-v2
Kuro96
2022-07-14T09:20:35Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-07-14T09:20:08Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 222.42 +/- 18.29 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
NinaXiao/distilroberta-base-wiki-mark
NinaXiao
2022-07-14T09:05:03Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-07-14T08:42:17Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilroberta-base-wiki-mark results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-wiki-mark This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.0062 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.2841 | 1.0 | 1265 | 2.0553 | | 2.1536 | 2.0 | 2530 | 1.9840 | | 2.1067 | 3.0 | 3795 | 1.9731 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
thannarot/hug-clip-bid
thannarot
2022-07-14T08:07:35Z
4
0
transformers
[ "transformers", "pytorch", "clip", "zero-shot-image-classification", "generated_from_trainer", "endpoints_compatible", "region:us" ]
zero-shot-image-classification
2022-07-13T14:59:12Z
--- tags: - generated_from_trainer model-index: - name: hug-clip-bid results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hug-clip-bid This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8276 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.0263 | 0.15 | 100 | 1.3193 | | 0.9187 | 0.29 | 200 | 1.0286 | | 0.7005 | 0.44 | 300 | 0.9560 | | 0.5851 | 0.58 | 400 | 0.9433 | | 0.6122 | 0.73 | 500 | 0.8936 | | 0.5916 | 0.88 | 600 | 0.8276 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.12.0 - Datasets 2.3.2 - Tokenizers 0.11.6
vasugoel/K-12BERT
vasugoel
2022-07-14T07:54:54Z
42
9
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "education", "K-12", "en", "dataset:vasugoel/K-12Corpus", "arxiv:2205.12335", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-07-05T11:37:01Z
--- language: en tags: - education - K-12 license: apache-2.0 datasets: - vasugoel/K-12Corpus --- ## K-12BERT model K-12BERT is a model trained by performing continued pretraining on the K-12Corpus. Since, performance of BERT like models on domain adaptive tasks have shown great progress, we noticed the lack of such a model for the education domain (especially K-12 education). On that end we present K-12BERT, a BERT based model trained on our custom curated dataset, extracted from both open and proprietary education resources. The model was trained using an MLM objective and in a continued pretraining fashion, due to the lack of resources available to train the model from ground up. This also, allowed us to save a lot of computational resources and utilize the existing knowledge of BERT. To that extent we also preserve the original vocabulary of BERT, to evaluate the performance under those conditions. ## Intended uses We hope that the community especially researchers and professionals engaged in the education domain, are able to utilize this model to advance the domain of AI in education. With many fold usages for online education platforms, we hope we can contribute towards advancing education resources for the upcoming generation. Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel, AutoTokenizer, AutoModelForMaskedLM tokenizer = BertTokenizer.from_pretrained('vasugoel/K-12BERT') # AutoTokenizer.from_pretrained('vasugoel/K-12BERT') model = BertModel.from_pretrained("vasugoel/K-12BERT") # AutoModelForMaskedLM.from_pretrained('vasugoel/K-12BERT') text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ### BibTeX entry and citation info ```bibtex @misc{https://doi.org/10.48550/arxiv.2205.12335, doi = {10.48550/ARXIV.2205.12335}, url = {https://arxiv.org/abs/2205.12335}, author = {Goel, Vasu and Sahnan, Dhruv and V, Venktesh and Sharma, Gaurav and Dwivedi, Deep and Mohania, Mukesh}, keywords = {Computation and Language (cs.CL), Machine Learning (cs.LG), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {K-12BERT: BERT for K-12 education}, publisher = {arXiv}, year = {2022}, copyright = {arXiv.org perpetual, non-exclusive license} } ```
shivaniNK8/mt5-small-finetuned-amazon-en-es
shivaniNK8
2022-07-14T06:39:22Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "summarization", "generated_from_trainer", "dataset:cnn_dailymail", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-07-14T05:17:52Z
--- license: apache-2.0 tags: - summarization - generated_from_trainer datasets: - cnn_dailymail metrics: - rouge model-index: - name: mt5-small-finetuned-amazon-en-es results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: cnn_dailymail type: cnn_dailymail args: 3.0.0 metrics: - name: Rouge1 type: rouge value: 22.6804 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-finetuned-amazon-en-es This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the cnn_dailymail dataset. It achieves the following results on the evaluation set: - Loss: 2.4413 - Rouge1: 22.6804 - Rouge2: 8.3299 - Rougel: 17.9992 - Rougelsum: 20.7342 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:| | 7.77 | 1.0 | 240 | 2.7230 | 17.25 | 5.629 | 14.0381 | 15.8959 | | 3.7586 | 2.0 | 480 | 2.5949 | 19.4577 | 6.9354 | 15.772 | 17.8773 | | 3.4314 | 3.0 | 720 | 2.5355 | 20.0511 | 7.6417 | 16.0889 | 18.4551 | | 3.2892 | 4.0 | 960 | 2.4845 | 20.3951 | 7.88 | 16.601 | 19.0048 | | 3.1954 | 5.0 | 1200 | 2.4612 | 20.1806 | 7.2656 | 16.2658 | 18.6222 | | 3.1128 | 6.0 | 1440 | 2.4544 | 22.5647 | 8.0899 | 17.8057 | 20.487 | | 3.103 | 7.0 | 1680 | 2.4498 | 22.7048 | 8.384 | 17.978 | 20.6871 | | 3.0708 | 8.0 | 1920 | 2.4413 | 22.6804 | 8.3299 | 17.9992 | 20.7342 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
userGagan/segformer-b0-finetuned-segments-sidewalk-2
userGagan
2022-07-14T06:33:30Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "segformer", "vision", "image-segmentation", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-segmentation
2022-07-05T20:02:14Z
--- license: apache-2.0 tags: - vision - image-segmentation - generated_from_trainer model-index: - name: segformer-b0-finetuned-segments-sidewalk-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # segformer-b0-finetuned-segments-sidewalk-2 This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the userGagan/ResizedSample dataset. It achieves the following results on the evaluation set: - Loss: 0.3429 - Mean Iou: 0.8143 - Mean Accuracy: 0.9007 - Overall Accuracy: 0.9061 - Per Category Iou: [0.8822819675417668, 0.7774253195321242, 0.7832033563111727] - Per Category Accuracy: [0.9319684170082266, 0.8657193844491432, 0.9044945609610779] ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------------------------------------------------:|:------------------------------------------------------------:| | 0.7949 | 0.5 | 20 | 0.8960 | 0.7129 | 0.8533 | 0.8427 | [0.7978191889735743, 0.6994730230171242, 0.6413103816527537] | [0.826874349660607, 0.8237981626592454, 0.9091007880329902] | | 0.4881 | 1.0 | 40 | 0.6195 | 0.7364 | 0.8610 | 0.8552 | [0.8041892620489134, 0.6981663805103046, 0.7069887055480671] | [0.8308827565320059, 0.887905283397269, 0.8642919506720577] | | 0.3115 | 1.5 | 60 | 0.4767 | 0.7352 | 0.8536 | 0.8588 | [0.8276338695141907, 0.7016825436162023, 0.6763414045904438] | [0.8633649830215921, 0.8776778472775076, 0.8196451790592317] | | 0.5863 | 2.0 | 80 | 0.4895 | 0.7543 | 0.8748 | 0.8668 | [0.8156517914197925, 0.7259786638902507, 0.7213518497027839] | [0.8402281798360435, 0.8932153836673491, 0.8909222571543128] | | 0.5182 | 2.5 | 100 | 0.4058 | 0.7904 | 0.8866 | 0.8919 | [0.860991170688589, 0.7583876635226005, 0.7518265397248736] | [0.9088903949664655, 0.8761789935147187, 0.8746304338865427] | | 0.4755 | 3.0 | 120 | 0.3683 | 0.7896 | 0.8861 | 0.8895 | [0.8547537413009911, 0.7465075384127533, 0.7674680941571024] | [0.8979683913158062, 0.8865259395690547, 0.8738060532025316] | | 0.6616 | 3.5 | 140 | 0.3697 | 0.7915 | 0.8874 | 0.8898 | [0.8551700094228354, 0.7431970428539307, 0.7761922571371438] | [0.8899387313627766, 0.903193218309171, 0.8690639906770039] | | 0.5087 | 4.0 | 160 | 0.3367 | 0.8061 | 0.8987 | 0.8987 | [0.8640367246398447, 0.7643869962764198, 0.7899951558528526] | [0.9012200396208266, 0.8918889478830869, 0.902900133774502] | | 0.5478 | 4.5 | 180 | 0.3297 | 0.8131 | 0.8991 | 0.9040 | [0.8775309087721331, 0.7692790103652185, 0.792538025793261] | [0.9196387801394476, 0.8895118205906903, 0.8882327151727265] | | 0.389 | 5.0 | 200 | 0.3429 | 0.8143 | 0.9007 | 0.9061 | [0.8822819675417668, 0.7774253195321242, 0.7832033563111727] | [0.9319684170082266, 0.8657193844491432, 0.9044945609610779] | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
rajat99/Fine_Tuning_XLSR_300M_testing_4_model
rajat99
2022-07-14T06:15:09Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-14T05:50:34Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: Fine_Tuning_XLSR_300M_testing_4_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Fine_Tuning_XLSR_300M_testing_4_model This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.1 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
Hardik1313X/bert-finetuned-ner
Hardik1313X
2022-07-14T04:36:44Z
3
0
transformers
[ "transformers", "tf", "bert", "token-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-07-14T04:19:47Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Hardik1313X/bert-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Hardik1313X/bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0279 - Validation Loss: 0.0571 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2634, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.1745 | 0.0630 | 0 | | 0.0468 | 0.0578 | 1 | | 0.0279 | 0.0571 | 2 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.8.2 - Datasets 2.3.2 - Tokenizers 0.12.1
andrewzhang505/quad-swarm-rl-sf2
andrewzhang505
2022-07-14T03:55:17Z
2
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "region:us" ]
reinforcement-learning
2022-07-14T03:55:10Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory --- A(n) **APPO** model trained on the **quadrotor_multi** environment. This model was trained using Sample Factory 2.0: https://github.com/alex-petrenko/sample-factory
amir36/distilbert-base-uncased-finetuned-emotion
amir36
2022-07-14T02:52:28Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-13T05:57:20Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.921 - name: F1 type: f1 value: 0.920970510317642 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2180 - Accuracy: 0.921 - F1: 0.9210 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8133 | 1.0 | 250 | 0.3078 | 0.9095 | 0.9076 | | 0.2431 | 2.0 | 500 | 0.2180 | 0.921 | 0.9210 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.4 - Tokenizers 0.11.6
kuttersn/gpt2-finetuned-redditComments
kuttersn
2022-07-14T01:38:25Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-07-07T14:15:03Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: gpt2-finetuned-redditComments results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-finetuned-redditComments This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.8418 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 3.9535 | 1.0 | 4320 | 3.8888 | | 3.8832 | 2.0 | 8640 | 3.8523 | | 3.8708 | 3.0 | 12960 | 3.8418 | ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
ClassCat/roberta-base-latin-v2
ClassCat
2022-07-14T00:20:13Z
162
2
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "la", "dataset:cc100", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-07-01T18:45:18Z
--- language: la license: cc-by-sa-4.0 datasets: - cc100 widget: - text: quod est tibi <mask> ?" - text: vita brevis, ars <mask>. - text: errare <mask> est. - text: usus est magister <mask>. --- ## RoBERTa Latin base model Version 2 (Uncased) ### Prerequisites transformers==4.19.2 ### Model architecture This model uses RoBERTa base setttings except vocabulary size. ### Tokenizer Using BPE tokenizer with a vocabulary size 50,000. ### Training Data * Subset of [CC-100/la](https://data.statmt.org/cc-100/) : Monolingual Datasets from Web Crawl Data ### Usage ```python from transformers import pipeline unmasker = pipeline('fill-mask', model='ClassCat/roberta-base-latin-v2') unmasker("vita brevis, ars <mask>") ```
joaoalvarenga/bloom-8bit
joaoalvarenga
2022-07-14T00:12:48Z
26
75
transformers
[ "transformers", "pytorch", "bloom", "text-generation", "ak", "ar", "as", "bm", "bn", "ca", "en", "es", "eu", "fon", "fr", "gu", "hi", "id", "ig", "ki", "kn", "lg", "ln", "ml", "mr", "ne", "nso", "ny", "or", "pa", "pt", "rn", "rw", "sn", "st", "sw", "ta", "te", "tn", "ts", "tum", "tw", "ur", "vi", "wo", "xh", "yo", "zh", "zu", "arxiv:2106.09685", "license:bigscience-bloom-rail-1.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2022-07-11T11:06:46Z
--- inference: false license: bigscience-bloom-rail-1.0 language: - ak - ar - as - bm - bn - ca - en - es - eu - fon - fr - gu - hi - id - ig - ki - kn - lg - ln - ml - mr - ne - nso - ny - or - pa - pt - rn - rw - sn - st - sw - ta - te - tn - ts - tum - tw - ur - vi - wo - xh - yo - zh - zu pipeline_tag: text-generation --- ### Quantized bigscience/bloom with 8-bit weights Heavily inspired by [Hivemind's GPT-J-6B with 8-bit weights](https://huggingface.co/hivemind/gpt-j-6B-8bit), this is a version of [bigscience/bloom](https://huggingface.co/bigscience/bloom) a ~176 billion parameters language model that you run and fine-tune with less memory. Here, we also apply [LoRA (Low Rank Adaptation)](https://arxiv.org/abs/2106.09685) to reduce model size. The original version takes \~353GB memory, this version takes **\~180GB**. Our main goal is to generate a model compressed enough to be deployed in a traditional Kubernetes cluster. ### How to fine-tune In this [notebook](https://nbviewer.org/urls/huggingface.co/joaoalvarenga/bloom-8bit/raw/main/fine-tuning-example.ipynb) you can find an adaptation from [Hivemind's GPT-J 8-bit fine-tuning notebook](https://colab.research.google.com/drive/1ft6wQU0BhqG5PRlwgaZJv2VukKKjU4Es) to fine-tune Bloom 8-bit with a 3x NVIDIA A100 instance. ### How to use This model can be used by adapting Bloom original implementation. This is an adaptation from [Hivemind's GPT-J 8-bit](https://nbviewer.org/urls/huggingface.co/hivemind/gpt-j-6B-8bit/raw/main/convert-gpt-j.ipynb): ```python import transformers import torch import torch.nn as nn import torch.nn.functional as F from bitsandbytes.functional import quantize_blockwise, dequantize_blockwise from typing import Tuple from torch.cuda.amp import custom_fwd, custom_bwd class FrozenBNBLinear(nn.Module): def __init__(self, weight, absmax, code, bias=None): assert isinstance(bias, nn.Parameter) or bias is None super().__init__() self.out_features, self.in_features = weight.shape self.register_buffer("weight", weight.requires_grad_(False)) self.register_buffer("absmax", absmax.requires_grad_(False)) self.register_buffer("code", code.requires_grad_(False)) self.adapter = None self.bias = bias def forward(self, input): output = DequantizeAndLinear.apply(input, self.weight, self.absmax, self.code, self.bias) if self.adapter: output += self.adapter(input) return output @classmethod def from_linear(cls, linear: nn.Linear) -> "FrozenBNBLinear": weights_int8, state = quantize_blockise_lowmemory(linear.weight) return cls(weights_int8, *state, linear.bias) def __repr__(self): return f"{self.__class__.__name__}({self.in_features}, {self.out_features})" class DequantizeAndLinear(torch.autograd.Function): @staticmethod @custom_fwd def forward(ctx, input: torch.Tensor, weights_quantized: torch.ByteTensor, absmax: torch.FloatTensor, code: torch.FloatTensor, bias: torch.FloatTensor): weights_deq = dequantize_blockwise(weights_quantized, absmax=absmax, code=code) ctx.save_for_backward(input, weights_quantized, absmax, code) ctx._has_bias = bias is not None return F.linear(input, weights_deq, bias) @staticmethod @custom_bwd def backward(ctx, grad_output: torch.Tensor): assert not ctx.needs_input_grad[1] and not ctx.needs_input_grad[2] and not ctx.needs_input_grad[3] input, weights_quantized, absmax, code = ctx.saved_tensors # grad_output: [*batch, out_features] weights_deq = dequantize_blockwise(weights_quantized, absmax=absmax, code=code) grad_input = grad_output @ weights_deq grad_bias = grad_output.flatten(0, -2).sum(dim=0) if ctx._has_bias else None return grad_input, None, None, None, grad_bias class FrozenBNBEmbedding(nn.Module): def __init__(self, weight, absmax, code): super().__init__() self.num_embeddings, self.embedding_dim = weight.shape self.register_buffer("weight", weight.requires_grad_(False)) self.register_buffer("absmax", absmax.requires_grad_(False)) self.register_buffer("code", code.requires_grad_(False)) self.adapter = None def forward(self, input, **kwargs): with torch.no_grad(): # note: both quantuized weights and input indices are *not* differentiable weight_deq = dequantize_blockwise(self.weight, absmax=self.absmax, code=self.code) output = F.embedding(input, weight_deq, **kwargs) if self.adapter: output += self.adapter(input) return output @classmethod def from_embedding(cls, embedding: nn.Embedding) -> "FrozenBNBEmbedding": weights_int8, state = quantize_blockise_lowmemory(embedding.weight) return cls(weights_int8, *state) def __repr__(self): return f"{self.__class__.__name__}({self.num_embeddings}, {self.embedding_dim})" def quantize_blockise_lowmemory(matrix: torch.Tensor, chunk_size: int = 2 ** 20): assert chunk_size % 4096 == 0 code = None chunks = [] absmaxes = [] flat_tensor = matrix.view(-1) for i in range((matrix.numel() - 1) // chunk_size + 1): input_chunk = flat_tensor[i * chunk_size: (i + 1) * chunk_size].clone() quantized_chunk, (absmax_chunk, code) = quantize_blockwise(input_chunk, code=code) chunks.append(quantized_chunk) absmaxes.append(absmax_chunk) matrix_i8 = torch.cat(chunks).reshape_as(matrix) absmax = torch.cat(absmaxes) return matrix_i8, (absmax, code) def convert_to_int8(model): """Convert linear and embedding modules to 8-bit with optional adapters""" for module in list(model.modules()): for name, child in module.named_children(): if isinstance(child, nn.Linear): print(name, child) setattr( module, name, FrozenBNBLinear( weight=torch.zeros(child.out_features, child.in_features, dtype=torch.uint8), absmax=torch.zeros((child.weight.numel() - 1) // 4096 + 1), code=torch.zeros(256), bias=child.bias, ), ) elif isinstance(child, nn.Embedding): setattr( module, name, FrozenBNBEmbedding( weight=torch.zeros(child.num_embeddings, child.embedding_dim, dtype=torch.uint8), absmax=torch.zeros((child.weight.numel() - 1) // 4096 + 1), code=torch.zeros(256), ) ) class BloomBlock(transformers.models.bloom.modeling_bloom.BloomBlock): def __init__(self, config, layer_number=None): super().__init__(config, layer_number) convert_to_int8(self.self_attention) convert_to_int8(self.mlp) class BloomModel(transformers.models.bloom.modeling_bloom.BloomModel): def __init__(self, config): super().__init__(config) convert_to_int8(self) class BloomForCausalLM(transformers.models.bloom.modeling_bloom.BloomForCausalLM): def __init__(self, config): super().__init__(config) convert_to_int8(self) transformers.models.bloom.modeling_bloom.BloomBlock = BloomBlock model = BloomForCausalLM.from_pretrained('joaoalvarenga/bloom-8bit', low_cpu_mem_usage=True) tokenizer = BloomTokenizerFast.from_pretrained('joaoalvarenga/bloom-8bit') prompt = tokenizer("Given a table named salaries and columns id, created_at, salary, age. Creates a SQL to answer What is the average salary for 22 years old:", return_tensors='pt') out = model.generate(**prompt, min_length=10, do_sample=True) tokenizer.decode(out[0]) ```
benjamin/gpt2-wechsel-malagasy
benjamin
2022-07-13T23:45:23Z
3
1
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "mg", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-05-05T12:51:58Z
--- language: mg license: mit --- # gpt2-wechsel-malagasy Model trained with WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models. See the code here: https://github.com/CPJKU/wechsel And the paper here: https://aclanthology.org/2022.naacl-main.293/ ## Performance | Model | PPL | |---|---| | `gpt2-wechsel-sundanese` | **111.72** | | `gpt2` (retrained from scratch) | 149.46 | | Model | PPL | |---|---| | `gpt2-wechsel-scottish-gaelic` | **16.43** | | `gpt2` (retrained from scratch) | 19.53 | | Model | PPL | |---|---| | `gpt2-wechsel-uyghur` | **34.33** | | `gpt2` (retrained from scratch) | 42.82 | | Model | PPL | |---|---| | `gpt2-wechsel-malagasy` | **14.01** | | `gpt2` (retrained from scratch) | 15.93 | See our paper for details. ## Citation Please cite WECHSEL as ``` @inproceedings{minixhofer-etal-2022-wechsel, title = "{WECHSEL}: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models", author = "Minixhofer, Benjamin and Paischer, Fabian and Rekabsaz, Navid", booktitle = "Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies", month = jul, year = "2022", address = "Seattle, United States", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.naacl-main.293", pages = "3992--4006", abstract = "Large pretrained language models (LMs) have become the central building block of many NLP applications. Training these models requires ever more computational resources and most of the existing models are trained on English text only. It is exceedingly expensive to train these models in other languages. To alleviate this problem, we introduce a novel method {--} called WECHSEL {--} to efficiently and effectively transfer pretrained LMs to new languages. WECHSEL can be applied to any model which uses subword-based tokenization and learns an embedding for each subword. The tokenizer of the source model (in English) is replaced with a tokenizer in the target language and token embeddings are initialized such that they are semantically similar to the English tokens by utilizing multilingual static word embeddings covering English and the target language. We use WECHSEL to transfer the English RoBERTa and GPT-2 models to four languages (French, German, Chinese and Swahili). We also study the benefits of our method on very low-resource languages. WECHSEL improves over proposed methods for cross-lingual parameter transfer and outperforms models of comparable size trained from scratch with up to 64x less training effort. Our method makes training large language models for new languages more accessible and less damaging to the environment. We make our code and models publicly available.", } ```