modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-07-14 00:44:55
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
519 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-07-14 00:44:41
card
stringlengths
11
1.01M
fathyshalab/all-roberta-large-v1-small_talk-9-16-5
fathyshalab
2022-12-02T16:57:01Z
39
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-02T16:33:53Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: all-roberta-large-v1-small_talk-9-16-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-small_talk-9-16-5 This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.3566 - Accuracy: 0.3855 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.7259 | 1.0 | 1 | 2.5917 | 0.2551 | | 2.217 | 2.0 | 2 | 2.5059 | 0.3275 | | 1.7237 | 3.0 | 3 | 2.4355 | 0.3768 | | 1.4001 | 4.0 | 4 | 2.3837 | 0.3739 | | 1.1937 | 5.0 | 5 | 2.3566 | 0.3855 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
fathyshalab/all-roberta-large-v1-small_talk-8-16-5
fathyshalab
2022-12-02T16:32:25Z
43
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-02T16:09:27Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: all-roberta-large-v1-small_talk-8-16-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-small_talk-8-16-5 This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.3566 - Accuracy: 0.3855 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.7259 | 1.0 | 1 | 2.5917 | 0.2551 | | 2.217 | 2.0 | 2 | 2.5059 | 0.3275 | | 1.7237 | 3.0 | 3 | 2.4355 | 0.3768 | | 1.4001 | 4.0 | 4 | 2.3837 | 0.3739 | | 1.1937 | 5.0 | 5 | 2.3566 | 0.3855 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
fathyshalab/all-roberta-large-v1-small_talk-7-16-5
fathyshalab
2022-12-02T16:07:58Z
51
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-02T12:52:11Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: all-roberta-large-v1-small_talk-7-16-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-small_talk-7-16-5 This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.3566 - Accuracy: 0.3855 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.7259 | 1.0 | 1 | 2.5917 | 0.2551 | | 2.217 | 2.0 | 2 | 2.5059 | 0.3275 | | 1.7237 | 3.0 | 3 | 2.4355 | 0.3768 | | 1.4001 | 4.0 | 4 | 2.3837 | 0.3739 | | 1.1937 | 5.0 | 5 | 2.3566 | 0.3855 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
swordi/SwissDial-TTS
swordi
2022-12-02T15:48:04Z
1
0
espnet
[ "espnet", "audio", "text-to-speech", "gsw", "dataset:swissDial", "region:us" ]
text-to-speech
2022-12-02T15:19:04Z
--- tags: - espnet - audio - text-to-speech language: gsw datasets: - swissDial ---
iksenburg/andiface
iksenburg
2022-12-02T15:20:32Z
21
0
diffusers
[ "diffusers", "tensorboard", "text-to-image", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2022-12-02T15:19:10Z
--- license: creativeml-openrail-m tags: - text-to-image --- ### AndiFace Dreambooth model trained by iksenburg with [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) with the v2-512 base model You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts! Sample pictures of: iksen (use that on your prompt) ![iksen 0](https://huggingface.co/iksenburg/andiface/resolve/main/concept_images/iksen_%281%29.jpg)![iksen 1](https://huggingface.co/iksenburg/andiface/resolve/main/concept_images/iksen_%282%29.jpg)![iksen 2](https://huggingface.co/iksenburg/andiface/resolve/main/concept_images/iksen_%283%29.jpg)![iksen 3](https://huggingface.co/iksenburg/andiface/resolve/main/concept_images/iksen_%284%29.jpg)![iksen 4](https://huggingface.co/iksenburg/andiface/resolve/main/concept_images/iksen_%285%29.jpg)![iksen 5](https://huggingface.co/iksenburg/andiface/resolve/main/concept_images/iksen_%286%29.jpg)![iksen 6](https://huggingface.co/iksenburg/andiface/resolve/main/concept_images/iksen_%287%29.jpg)![iksen 7](https://huggingface.co/iksenburg/andiface/resolve/main/concept_images/iksen_%288%29.jpg)![iksen 8](https://huggingface.co/iksenburg/andiface/resolve/main/concept_images/iksen_%289%29.jpg)![iksen 9](https://huggingface.co/iksenburg/andiface/resolve/main/concept_images/iksen_%2810%29.jpg)![iksen 10](https://huggingface.co/iksenburg/andiface/resolve/main/concept_images/iksen_%2811%29.jpg)![iksen 11](https://huggingface.co/iksenburg/andiface/resolve/main/concept_images/iksen_%2812%29.jpg)![iksen 12](https://huggingface.co/iksenburg/andiface/resolve/main/concept_images/iksen_%2813%29.jpg)![iksen 13](https://huggingface.co/iksenburg/andiface/resolve/main/concept_images/iksen_%2814%29.jpg)![iksen 14](https://huggingface.co/iksenburg/andiface/resolve/main/concept_images/iksen_%2815%29.jpg)![iksen 15](https://huggingface.co/iksenburg/andiface/resolve/main/concept_images/iksen_%2816%29.jpg)![iksen 16](https://huggingface.co/iksenburg/andiface/resolve/main/concept_images/iksen_%2817%29.jpg)![iksen 17](https://huggingface.co/iksenburg/andiface/resolve/main/concept_images/iksen_%2818%29.jpg)![iksen 18](https://huggingface.co/iksenburg/andiface/resolve/main/concept_images/iksen_%2819%29.jpg)![iksen 19](https://huggingface.co/iksenburg/andiface/resolve/main/concept_images/iksen_%2820%29.jpg)
vasista22/ccc-wav2vec2-base-100h
vasista22
2022-12-02T15:16:28Z
38
1
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "audio", "hf-asr-leaderboard", "en", "dataset:librispeech_asr", "arxiv:2210.02592", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-02T15:15:06Z
--- language: en datasets: - librispeech_asr tags: - audio - automatic-speech-recognition - hf-asr-leaderboard widget: - example_title: Librispeech sample 1 src: https://cdn-media.huggingface.co/speech_samples/sample1.flac - example_title: Librispeech sample 2 src: https://cdn-media.huggingface.co/speech_samples/sample2.flac model-index: - name: ccc-wav2vec2-base-100h results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: LibriSpeech (clean) type: librispeech_asr config: clean split: test args: language: en metrics: - name: Test WER type: wer value: 5.5 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: LibriSpeech (other) type: librispeech_asr config: other split: test args: language: en metrics: - name: Test WER type: wer value: 12.4 --- # ccc-Wav2Vec2-Base-100h The base model pretrained on 960 hours of Librispeech and fine-tuned on 100 hours of Librispeech on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. [Paper](https://arxiv.org/abs/2210.02592) Authors: Vasista Sai Lodagala, Sreyan Ghosh, S. Umesh **Abstract** While Self-Supervised Learning has helped reap the benefit of the scale from the available unlabeled data, the learning paradigms are continuously being bettered. We present a new pre-training strategy named ccc-wav2vec 2.0, which uses clustering and an augmentation-based cross-contrastive loss as its self-supervised objective. Through the clustering module, we scale down the influence of those negative examples that are highly similar to the positive. The Cross-Contrastive loss is computed between the encoder output of the original sample and the quantizer output of its augmentation and vice-versa, bringing robustness to the pre-training strategy. ccc-wav2vec 2.0 achieves up to 15.6% and 12.7% relative WER improvement over the baseline wav2vec 2.0 on the test-clean and test-other sets, respectively, of LibriSpeech, without the use of any language model. The proposed method also achieves up to 14.9% relative WER improvement over the baseline wav2vec 2.0 when fine-tuned on Switchboard data. GitHub Page: https://github.com/speech-lab-iitm/ccc-wav2vec-2.0. # Usage To transcribe audio files the model can be used as a standalone acoustic model as follows: ```python from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC from datasets import load_dataset import torch # load model and tokenizer processor = Wav2Vec2Processor.from_pretrained("vasista22/ccc-wav2vec2-base-100h") model = Wav2Vec2ForCTC.from_pretrained("vasista22/ccc-wav2vec2-base-100h") # load dummy dataset and read soundfiles ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation") # tokenize input_values = processor(ds[0]["audio"]["array"], return_tensors="pt", padding="longest").input_values # Batch size 1 # retrieve logits logits = model(input_values).logits # take argmax and decode predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(predicted_ids) ``` ## Evaluation This code snippet shows how to evaluate **vasista22/ccc-wav2vec2-base-100h** on LibriSpeech's "clean" and "other" test data. ```python from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import torch from jiwer import wer librispeech_eval = load_dataset("librispeech_asr", "clean", split="test") model = Wav2Vec2ForCTC.from_pretrained("vasista22/ccc-wav2vec2-base-100h").to("cuda") processor = Wav2Vec2Processor.from_pretrained("vasista22/ccc-wav2vec2-base-100h") def map_to_pred(batch): input_values = processor(batch["audio"]["array"], return_tensors="pt", padding="longest").input_values with torch.no_grad(): logits = model(input_values.to("cuda")).logits predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(predicted_ids) batch["transcription"] = transcription return batch result = librispeech_eval.map(map_to_pred, batched=True, batch_size=1, remove_columns=["audio"]) print("WER:", wer(result["text"], result["transcription"])) ``` *Result (WER)*: | "clean" | "other" | |---|---| | 5.5 | 12.4 |
vasista22/ccc-wav2vec2-base
vasista22
2022-12-02T15:13:11Z
27
1
transformers
[ "transformers", "pytorch", "wav2vec2", "pretraining", "speech", "en", "dataset:librispeech_asr", "arxiv:2210.02592", "endpoints_compatible", "region:us" ]
null
2022-12-02T15:12:00Z
--- language: en datasets: - librispeech_asr tags: - speech --- # ccc-Wav2Vec2-Base (Pre-trained on LibriSpeech-960h) The base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. **Note**: This model does not have a tokenizer as it was pretrained on audio alone. In order to use this model **speech recognition**, a tokenizer should be created and the model should be fine-tuned on labeled text data. Check out [this blog](https://huggingface.co/blog/fine-tune-wav2vec2-english) for more in-detail explanation of how to fine-tune the model. [Paper](https://arxiv.org/abs/2210.02592) Authors: Vasista Sai Lodagala, Sreyan Ghosh, S. Umesh **Abstract** While Self-Supervised Learning has helped reap the benefit of the scale from the available unlabeled data, the learning paradigms are continuously being bettered. We present a new pre-training strategy named ccc-wav2vec 2.0, which uses clustering and an augmentation-based cross-contrastive loss as its self-supervised objective. Through the clustering module, we scale down the influence of those negative examples that are highly similar to the positive. The Cross-Contrastive loss is computed between the encoder output of the original sample and the quantizer output of its augmentation and vice-versa, bringing robustness to the pre-training strategy. ccc-wav2vec 2.0 achieves up to 15.6% and 12.7% relative WER improvement over the baseline wav2vec 2.0 on the test-clean and test-other sets, respectively, of LibriSpeech, without the use of any language model. The proposed method also achieves up to 14.9% relative WER improvement over the baseline wav2vec 2.0 when fine-tuned on Switchboard data. GitHub Page: https://github.com/speech-lab-iitm/ccc-wav2vec-2.0. # Usage See [this notebook](https://colab.research.google.com/drive/1FjTsqbYKphl9kL-eILgUc-bl4zVThL8F?usp=sharing) for more information on how to fine-tune the model.
vasista22/ccc-wav2vec2-360h-base-ft-100h
vasista22
2022-12-02T15:10:03Z
39
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "audio", "hf-asr-leaderboard", "en", "dataset:librispeech_asr", "arxiv:2210.02592", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-02T15:08:51Z
--- language: en datasets: - librispeech_asr tags: - audio - automatic-speech-recognition - hf-asr-leaderboard widget: - example_title: Librispeech sample 1 src: https://cdn-media.huggingface.co/speech_samples/sample1.flac - example_title: Librispeech sample 2 src: https://cdn-media.huggingface.co/speech_samples/sample2.flac model-index: - name: ccc-wav2vec2-360h-base-100h results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: LibriSpeech (clean) type: librispeech_asr config: clean split: test args: language: en metrics: - name: Test WER type: wer value: 10.8 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: LibriSpeech (other) type: librispeech_asr config: other split: test args: language: en metrics: - name: Test WER type: wer value: 27.7 --- # ccc-Wav2Vec2-360h-Base-100h The base model pretrained on 360 hours of Librispeech and fine-tuned on 100 hours of Librispeech on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. [Paper](https://arxiv.org/abs/2210.02592) Authors: Vasista Sai Lodagala, Sreyan Ghosh, S. Umesh **Abstract** While Self-Supervised Learning has helped reap the benefit of the scale from the available unlabeled data, the learning paradigms are continuously being bettered. We present a new pre-training strategy named ccc-wav2vec 2.0, which uses clustering and an augmentation-based cross-contrastive loss as its self-supervised objective. Through the clustering module, we scale down the influence of those negative examples that are highly similar to the positive. The Cross-Contrastive loss is computed between the encoder output of the original sample and the quantizer output of its augmentation and vice-versa, bringing robustness to the pre-training strategy. ccc-wav2vec 2.0 achieves up to 15.6% and 12.7% relative WER improvement over the baseline wav2vec 2.0 on the test-clean and test-other sets, respectively, of LibriSpeech, without the use of any language model. The proposed method also achieves up to 14.9% relative WER improvement over the baseline wav2vec 2.0 when fine-tuned on Switchboard data. GitHub Page: https://github.com/speech-lab-iitm/ccc-wav2vec-2.0. # Usage To transcribe audio files the model can be used as a standalone acoustic model as follows: ```python from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC from datasets import load_dataset import torch # load model and tokenizer processor = Wav2Vec2Processor.from_pretrained("vasista22/ccc-wav2vec2-360h-base-100h") model = Wav2Vec2ForCTC.from_pretrained("vasista22/ccc-wav2vec2-360h-base-100h") # load dummy dataset and read soundfiles ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation") # tokenize input_values = processor(ds[0]["audio"]["array"], return_tensors="pt", padding="longest").input_values # Batch size 1 # retrieve logits logits = model(input_values).logits # take argmax and decode predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(predicted_ids) ``` ## Evaluation This code snippet shows how to evaluate **vasista22/ccc-wav2vec2-360h-base-100h** on LibriSpeech's "clean" and "other" test data. ```python from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import torch from jiwer import wer librispeech_eval = load_dataset("librispeech_asr", "clean", split="test") model = Wav2Vec2ForCTC.from_pretrained("vasista22/ccc-wav2vec2-360h-base-100h").to("cuda") processor = Wav2Vec2Processor.from_pretrained("vasista22/ccc-wav2vec2-360h-base-100h") def map_to_pred(batch): input_values = processor(batch["audio"]["array"], return_tensors="pt", padding="longest").input_values with torch.no_grad(): logits = model(input_values.to("cuda")).logits predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(predicted_ids) batch["transcription"] = transcription return batch result = librispeech_eval.map(map_to_pred, batched=True, batch_size=1, remove_columns=["audio"]) print("WER:", wer(result["text"], result["transcription"])) ``` *Result (WER)*: | "clean" | "other" | |---|---| | 10.8 | 27.7 |
irateas/conceptart
irateas
2022-12-02T15:09:42Z
0
15
null
[ "license:openrail", "region:us" ]
null
2022-12-01T23:31:10Z
--- license: openrail --- # Conceptart embedding version 1.0 This model is made for Stable Diffusion 2.0 `checkpoint 768` <div style="display: flex; flex-direction: row; flex-wrap: wrap"> <img src="https://i.imgur.com/1l48vSo.png"> </div> ### For whom is this model? This model is targeted toward people who would love to create a more artistic stuff in SD, to get a cool logo, or stickers concepts, or baseline for an amazing poster. For sure as well for concept artists needing inspiration or indie game dev - who might need some assets. This embedding will be useful as well for all fans of bording games/table top rpg-s. ### How to use it? Simply drop the conceptart-x file (where `x` is a number of training steps) into the folder named `embeddings`. It should appear in your SD instance main folder. In your prompt just type in: "XYZ something in style of `conceptart-x`". This is just an example. The most important part is the `conceptart-x`. I would recommend you to first try each of them as they all might behave a bit different. ### Issues Currently, the model has some issues. It tends to have grayish/dull colors sometimes. The object's elements are not ideally coherent. The improvements will come with future versions. You might expect them in the following weeks. ### The strengths One of the biggest strengths of this model is pure creativity and out of the box with proper prompting a good quality of output. The strongest part of the model is a good quality improvement with img2img. I think ofthen the usual workflow will look as following (ideas): 1. You prompt-craft and create cool designs, 2. You select ones you like (sometimes smaller objects/elements/designs from the output) 3. You go to img2img to get more variations, or you select a smaller element that you like and you generate a bigger version of it. Then you improve on the new one up until you are satisfied. 4. You use another embedding to get a surprisingly amazing output! Or you already have a design you like! 5. At The same time you might like to keep the design and upscale it to get a great resolution. ### Examples ***Basketballs*** with japanese dragons on them: I have used the one of the outputs, selected the object I liked with the rectangle took in img2img authomatic1111 ui, and went throught two img 2 img iterations to get the output. Prompt: `((basketball ball covered in colourful tattoo of a dragons and underground punk stickers)), illustration in style of conceptart-200, oil painting style Negative prompt: bad anatomy, unrealistic, abstract, random, amateur photography, blurred, underwater shot, watermark, logo, demon eyes, plastic skin, ((text)) Steps: 30, Sampler: Euler a, CFG scale: 11.5, Seed: 719571754, Size: 832x832, Model hash: 2c02b20a, Denoising strength: 0.91, Mask blur: 4` <div style="display: flex; flex-direction: row; flex-wrap: wrap"> <img src="https://preview.redd.it/lxsqj6oayd3a1.png?width=1664&format=png&auto=webp&s=875129c03f166aa129f3d37b24f1b919d568d7b3"> </div> ***Anime demons*** Just one extra refinement in img2img. Prompt: `colored illustration of dark beast pokemon in style of conceptart-200, [bright colors] Negative prompt: bad anatomy, unrealistic, abstract, cartoon, random, amateur photography, blurred, underwater shot, watermark, logo, demon eyes, plastic skin, ((text)), ((multiple characters)) ((desaturated colors)) Steps: 24, Sampler: DDIM, CFG scale: 11.5, Seed: 1001839889, Size: 704x896, Model hash: 2c02b20a` <div style="display: flex; flex-direction: row; flex-wrap: wrap"> <img src="https://i.imgur.com/KBt2mWB.png"> </div> ***Cave entrance*** Straight out comparison between the different embeedings. At the end result with vanilla SD 2.0 768 Prompt: `colored illustration of dark cave entrance in style of conceptart-200, ((bright background)), ((bright colors)) Negative prompt: bad anatomy, unrealistic, abstract, cartoon, random, amateur photography, blurred, underwater shot, watermark, logo, demon eyes, plastic skin, ((text)), ((multiple characters)) ((desaturated colors)) Steps: 24, Sampler: DDIM, CFG scale: 8, Seed: 1479340448, Size: 768x768, Model hash: 2c02b20a` <div style="display: flex; flex-direction: row; flex-wrap: wrap"> <img src="https://i.imgur.com/6MtiGUs.jpg"> </div> Enjoy! Hope you will find it helpful!
vasista22/ccc-wav2vec2-360h-base
vasista22
2022-12-02T15:05:26Z
30
0
transformers
[ "transformers", "pytorch", "wav2vec2", "pretraining", "speech", "en", "dataset:librispeech_asr", "arxiv:2210.02592", "endpoints_compatible", "region:us" ]
null
2022-12-02T15:04:13Z
--- language: en datasets: - librispeech_asr tags: - speech --- # ccc-Wav2Vec2-Base-360h (Pre-trained on LibriSpeech-360h) The base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. **Note**: This model does not have a tokenizer as it was pretrained on audio alone. In order to use this model **speech recognition**, a tokenizer should be created and the model should be fine-tuned on labeled text data. Check out [this blog](https://huggingface.co/blog/fine-tune-wav2vec2-english) for more in-detail explanation of how to fine-tune the model. [Paper](https://arxiv.org/abs/2210.02592) Authors: Vasista Sai Lodagala, Sreyan Ghosh, S. Umesh **Abstract** While Self-Supervised Learning has helped reap the benefit of the scale from the available unlabeled data, the learning paradigms are continuously being bettered. We present a new pre-training strategy named ccc-wav2vec 2.0, which uses clustering and an augmentation-based cross-contrastive loss as its self-supervised objective. Through the clustering module, we scale down the influence of those negative examples that are highly similar to the positive. The Cross-Contrastive loss is computed between the encoder output of the original sample and the quantizer output of its augmentation and vice-versa, bringing robustness to the pre-training strategy. ccc-wav2vec 2.0 achieves up to 15.6% and 12.7% relative WER improvement over the baseline wav2vec 2.0 on the test-clean and test-other sets, respectively, of LibriSpeech, without the use of any language model. The proposed method also achieves up to 14.9% relative WER improvement over the baseline wav2vec 2.0 when fine-tuned on Switchboard data. GitHub Page: https://github.com/speech-lab-iitm/ccc-wav2vec-2.0. # Usage See [this notebook](https://colab.research.google.com/drive/1FjTsqbYKphl9kL-eILgUc-bl4zVThL8F?usp=sharing) for more information on how to fine-tune the model.
vasista22/wav2vec2-360h-base
vasista22
2022-12-02T14:49:54Z
24
0
transformers
[ "transformers", "pytorch", "wav2vec2", "pretraining", "speech", "en", "dataset:librispeech_asr", "arxiv:2210.02592", "endpoints_compatible", "region:us" ]
null
2022-12-02T14:47:00Z
--- language: en datasets: - librispeech_asr tags: - speech --- # Wav2Vec2-Base-360h (Pre-trained on LibriSpeech-360h) The base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. **Note**: This model does not have a tokenizer as it was pretrained on audio alone. In order to use this model **speech recognition**, a tokenizer should be created and the model should be fine-tuned on labeled text data. Check out [this blog](https://huggingface.co/blog/fine-tune-wav2vec2-english) for more in-detail explanation of how to fine-tune the model. [Paper](https://arxiv.org/abs/2210.02592) Authors: Vasista Sai Lodagala, Sreyan Ghosh, S. Umesh **Abstract** While Self-Supervised Learning has helped reap the benefit of the scale from the available unlabeled data, the learning paradigms are continuously being bettered. We present a new pre-training strategy named ccc-wav2vec 2.0, which uses clustering and an augmentation-based cross-contrastive loss as its self-supervised objective. Through the clustering module, we scale down the influence of those negative examples that are highly similar to the positive. The Cross-Contrastive loss is computed between the encoder output of the original sample and the quantizer output of its augmentation and vice-versa, bringing robustness to the pre-training strategy. ccc-wav2vec 2.0 achieves up to 15.6% and 12.7% relative WER improvement over the baseline wav2vec 2.0 on the test-clean and test-other sets, respectively, of LibriSpeech, without the use of any language model. The proposed method also achieves up to 14.9% relative WER improvement over the baseline wav2vec 2.0 when fine-tuned on Switchboard data. GitHub Page: https://github.com/speech-lab-iitm/ccc-wav2vec-2.0. # Usage See [this notebook](https://colab.research.google.com/drive/1FjTsqbYKphl9kL-eILgUc-bl4zVThL8F?usp=sharing) for more information on how to fine-tune the model.
facebook/esm1b_t33_650M_UR50S
facebook
2022-12-02T14:40:11Z
6,366
17
transformers
[ "transformers", "pytorch", "tf", "esm", "fill-mask", "arxiv:1907.11692", "arxiv:1810.04805", "arxiv:1603.05027", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-10-17T15:06:20Z
--- license: mit widget: - text: "MQIFVKTLTGKTITLEVEPS<mask>TIENVKAKIQDKEGIPPDQQRLIFAGKQLEDGRTLSDYNIQKESTLHLVLRLRGG" --- # **ESM-1b** ESM-1b ([paper](https://www.pnas.org/content/118/15/e2016239118#:~:text=https%3A//doi.org/10.1073/pnas.2016239118), [repository](https://github.com/facebookresearch/esm)) is a transformer protein language model, trained on protein sequence data without label supervision. The model is pretrained on Uniref50 with an unsupervised masked language modeling (MLM) objective, meaning the model is trained to predict amino acids from the surrounding sequence context. This pretraining objective allows ESM-1b to learn generally useful features which can be transferred to downstream prediction tasks. ESM-1b has been evaluated on a variety of tasks related to protein structure and function, including remote homology detection, secondary structure prediction, contact prediction, and prediction of the effects of mutations on function, producing state-of-the-art results. **Important note**: ESM-2 is now available in a range of checkpoint sizes. For most tasks, ESM-2 performance will be superior to ESM-1 and ESM-1b, and so we recommend using it instead unless your goal is explicitly to compare against ESM-1b. The ESM-2 checkpoint closest in size to ESM-1b is [esm2_t33_650M_UR50D](https://huggingface.co/facebook/esm2_t33_650M_UR50D). ## **Model description** The ESM-1b model is based on the [RoBERTa](https://arxiv.org/abs/1907.11692) architecture and training procedure, using the Uniref50 2018_03 database of protein sequences. Note that the pretraining is on the raw protein sequences only. The training is purely unsupervised -- during training no labels are given related to structure or function. Training is with the masked language modeling objective. The masking follows the procedure of [Devlin et al. 2019](https://arxiv.org/abs/1810.04805), randomly masking 15% of the amino acids in the input, and includes the pass-through and random token noise. One architecture difference from the RoBERTa model is that ESM-1b uses [pre-activation layer normalization](https://arxiv.org/abs/1603.05027). The learned representations can be used as features for downstream tasks. For example if you have a dataset of measurements of protein activity you can fit a regression model on the features output by ESM-1b to predict the activity of new sequences. The model can also be fine-tuned. ESM-1b can infer information about the structure and function of proteins without further supervision, i.e. it is capable of zero-shot transfer to structure and function prediction. [Rao et al. 2020](https://openreview.net/pdf?id=fylclEqgvgd) found that the attention heads of ESM-1b directly represent contacts in the 3d structure of the protein. [Meier et al. 2021](https://openreview.net/pdf?id=uXc42E9ZPFs) found that ESM-1b can be used to score the effect of sequence variations on protein function. ## **Intended uses & limitations** The model can be used for feature extraction, fine-tuned on downstream tasks, or used directly to make inferences about the structure and function of protein sequences, like any other masked language model. For full examples, please see [our notebook on fine-tuning protein models](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/protein_language_modeling.ipynb) ## **Training data** The ESM-1b model was pretrained on [Uniref50](https://www.uniprot.org/downloads) 2018-03, a dataset consisting of approximately 30 million protein sequences. ## **Training procedure** ### **Preprocessing** The protein sequences are uppercased and tokenized using a single space and a vocabulary size of 21. The inputs of the model are then of the form: ``` <cls> Protein Sequence A ``` During training, sequences longer than 1023 tokens (without CLS) are randomly cropped to a length of 1023. The details of the masking procedure for each sequence follow Devlin et al. 2019: * 15% of the amino acids are masked. * In 80% of the cases, the masked amino acids are replaced by `<mask>`. * In 10% of the cases, the masked amino acids are replaced by a random amino acid (different) from the one they replace. * In the 10% remaining cases, the masked amino acids are left as is. ### **Pretraining** The model was trained on 128 NVIDIA v100 GPUs for 500K updates, using sequence length 1024 (131,072 tokens per batch). The optimizer used is Adam (betas=[0.9, 0.999]) with a learning rate of 1e-4, a weight decay of 0, learning rate warmup for 16k steps and inverse square root decay of the learning rate after.
dfomin/sd-class-butterflies-32
dfomin
2022-12-02T14:32:54Z
21
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-12-02T14:32:24Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('dfomin/sd-class-butterflies-32') image = pipeline().images[0] image ```
Huertas97/xx_pipeline
Huertas97
2022-12-02T14:16:50Z
3
0
spacy
[ "spacy", "token-classification", "multilingual", "model-index", "region:us" ]
token-classification
2022-12-02T14:00:43Z
--- tags: - spacy - token-classification language: - multilingual model-index: - name: xx_pipeline results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 0.9200034895 - name: NER Recall type: recall value: 0.918641115 - name: NER F Score type: f_score value: 0.9193217975 --- | Feature | Description | | --- | --- | | **Name** | `xx_pipeline` | | **Version** | `0.0.0` | | **spaCy** | `>=3.4.3,<3.5.0` | | **Default Pipeline** | `transformer`, `ner` | | **Components** | `transformer`, `ner` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | n/a | | **License** | n/a | | **Author** | [n/a]() | ### Label Scheme <details> <summary>View label scheme (4 labels for 1 components)</summary> | Component | Labels | | --- | --- | | **`ner`** | `INV_CAMO`, `LEETSPEAK`, `MIX`, `PUNCT_CAMO` | </details> ### Accuracy | Type | Score | | --- | --- | | `ENTS_F` | 91.93 | | `ENTS_P` | 92.00 | | `ENTS_R` | 91.86 | | `TRANSFORMER_LOSS` | 382037.26 | | `NER_LOSS` | 320041.67 |
Farideh/dataset_model2
Farideh
2022-12-02T13:54:23Z
115
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-12-02T13:17:53Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: dataset_model2 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.8797595190380761 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dataset_model2 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.5350 - Accuracy: 0.8798 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1141 | 0.99 | 62 | 0.4707 | 0.8647 | | 0.1098 | 1.99 | 124 | 0.4876 | 0.8597 | | 0.1444 | 2.99 | 186 | 0.4651 | 0.8647 | | 0.1088 | 3.99 | 248 | 0.5397 | 0.8527 | | 0.1404 | 4.99 | 310 | 0.4794 | 0.8727 | | 0.0656 | 5.99 | 372 | 0.5637 | 0.8507 | | 0.1126 | 6.99 | 434 | 0.5318 | 0.8597 | | 0.099 | 7.99 | 496 | 0.5522 | 0.8597 | | 0.0501 | 8.99 | 558 | 0.5654 | 0.8667 | | 0.0878 | 9.99 | 620 | 0.5915 | 0.8517 | | 0.0594 | 10.99 | 682 | 0.5846 | 0.8717 | | 0.0562 | 11.99 | 744 | 0.5191 | 0.8778 | | 0.0554 | 12.99 | 806 | 0.5425 | 0.8717 | | 0.0368 | 13.99 | 868 | 0.5725 | 0.8778 | | 0.0415 | 14.99 | 930 | 0.5790 | 0.8637 | | 0.0208 | 15.99 | 992 | 0.5319 | 0.8788 | | 0.026 | 16.99 | 1054 | 0.5622 | 0.8677 | | 0.0307 | 17.99 | 1116 | 0.5129 | 0.8878 | | 0.015 | 18.99 | 1178 | 0.5508 | 0.8768 | | 0.0263 | 19.99 | 1240 | 0.5350 | 0.8798 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1 - Tokenizers 0.13.2
autoevaluate/translation-not-evaluated
autoevaluate
2022-12-02T13:42:27Z
57
0
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "generated_from_trainer", "dataset:wmt16", "dataset:autoevaluate/wmt16-sample", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-12-02T13:41:14Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wmt16 - autoevaluate/wmt16-sample metrics: - bleu duplicated_from: autoevaluate/translation --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # translation This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-ro](https://huggingface.co/Helsinki-NLP/opus-mt-en-ro) on the wmt16 dataset. It achieves the following results on the evaluation set: - Loss: 1.3170 - Bleu: 28.5866 - Gen Len: 33.9575 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | 0.8302 | 0.03 | 1000 | 1.3170 | 28.5866 | 33.9575 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
autoevaluate/multi-class-classification-not-evaluated
autoevaluate
2022-12-02T13:41:39Z
55
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-02T13:41:38Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy duplicated_from: autoevaluate/multi-class-classification --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # multi-class-classification This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2009 - Accuracy: 0.928 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2643 | 1.0 | 1000 | 0.2009 | 0.928 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
autoevaluate/image-multi-class-classification-not-evaluated
autoevaluate
2022-12-02T13:39:28Z
118
0
transformers
[ "transformers", "pytorch", "tensorboard", "swin", "image-classification", "generated_from_trainer", "dataset:mnist", "dataset:autoevaluate/mnist-sample", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-12-02T13:39:12Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - mnist - autoevaluate/mnist-sample metrics: - accuracy duplicated_from: autoevaluate/image-multi-class-classification --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # image-classification This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the mnist dataset. It achieves the following results on the evaluation set: - Loss: 0.0556 - Accuracy: 0.9833 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3743 | 1.0 | 422 | 0.0556 | 0.9833 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Farideh/dataset_model
Farideh
2022-12-02T13:17:17Z
128
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-12-02T11:34:48Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder model-index: - name: dataset_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dataset_model This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - eval_loss: 0.4921 - eval_accuracy: 0.8647 - eval_runtime: 12.5977 - eval_samples_per_second: 79.221 - eval_steps_per_second: 5.001 - epoch: 21.99 - step: 1364 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 100 ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1 - Tokenizers 0.13.2
DmitryPogrebnoy/MedRuBertTiny2
DmitryPogrebnoy
2022-12-02T13:16:50Z
66
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "ru", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-12-02T12:55:16Z
--- language: - ru license: apache-2.0 --- # Model DmitryPogrebnoy/MedRuBertTiny2 # Model Description This model is fine-tuned version of [cointegrated/rubert-tiny2](https://huggingface.co/cointegrated/rubert-tiny2) . The code for the fine-tuned process can be found [here](https://github.com/DmitryPogrebnoy/MedSpellChecker/blob/main/spellchecker/ml_ranging/models/med_rubert_tiny2/fine_tune_rubert_tiny2.py) . The model is fine-tuned on a specially collected dataset of over 30,000 medical anamneses in Russian. The collected dataset can be found [here](https://github.com/DmitryPogrebnoy/MedSpellChecker/blob/main/data/anamnesis/processed/all_anamnesis.csv). This model was created as part of a master's project to develop a method for correcting typos in medical histories using BERT models as a ranking of candidates. The project is open source and can be found [here](https://github.com/DmitryPogrebnoy/MedSpellChecker). # How to Get Started With the Model You can use the model directly with a pipeline for masked language modeling: ```python >>> from transformers import pipeline >>> pipeline = pipeline('fill-mask', model='DmitryPogrebnoy/MedRuBertTiny2') >>> pipeline("У пациента [MASK] боль в грудине.") [{'score': 0.4527082145214081, 'token': 29626, 'token_str': 'боль', 'sequence': 'У пациента боль боль в грудине.'}, {'score': 0.05768931284546852, 'token': 46275, 'token_str': 'головной', 'sequence': 'У пациента головной боль в грудине.'}, {'score': 0.02957102842628956, 'token': 4674, 'token_str': 'есть', 'sequence': 'У пациента есть боль в грудине.'}, {'score': 0.02168550342321396, 'token': 10030, 'token_str': 'нет', 'sequence': 'У пациента нет боль в грудине.'}, {'score': 0.02051634155213833, 'token': 60730, 'token_str': 'болит', 'sequence': 'У пациента болит боль в грудине.'}] ``` Or you can load the model and tokenizer and do what you need to do: ```python >>> from transformers import AutoTokenizer, AutoModelForMaskedLM >>> tokenizer = AutoTokenizer.from_pretrained("DmitryPogrebnoy/MedRuBertTiny2") >>> model = AutoModelForMaskedLM.from_pretrained("DmitryPogrebnoy/MedRuBertTiny2") ```
Praise2112/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext-finetuned-ade-v2-classification
Praise2112
2022-12-02T13:14:27Z
71
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "en", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-02T12:11:56Z
--- language: - en tags: - generated_from_trainer metrics: - accuracy model-index: - name: BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext-finetuned-ade-v2-classification results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext-finetuned-ade-v2-classification This model is a fine-tuned version of [BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) on the ade_corpus_v2 dataset. It achieves the following results on the evaluation set: - Loss: 0.1982 - Accuracy: 0.9611 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.8069489920382708e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 10 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1657 | 1.0 | 1176 | 0.1405 | 0.9511 | | 0.1019 | 2.0 | 2352 | 0.1767 | 0.9575 | | 0.055 | 3.0 | 3528 | 0.1982 | 0.9611 | | 0.0424 | 4.0 | 4704 | 0.2038 | 0.9605 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
autoevaluate/entity-extraction-not-evaluated
autoevaluate
2022-12-02T13:08:44Z
75
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "dataset:conll2003", "dataset:autoevaluate/conll2003-sample", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-12-02T13:08:24Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 - autoevaluate/conll2003-sample metrics: - precision - recall - f1 - accuracy duplicated_from: autoevaluate/entity-extraction --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # entity-extraction This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0808 - Precision: 0.8863 - Recall: 0.9085 - F1: 0.8972 - Accuracy: 0.9775 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2552 | 1.0 | 878 | 0.0808 | 0.8863 | 0.9085 | 0.8972 | 0.9775 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
fathyshalab/all-roberta-large-v1-small_talk-6-16-5
fathyshalab
2022-12-02T12:50:42Z
64
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-02T12:26:37Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: all-roberta-large-v1-small_talk-6-16-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-small_talk-6-16-5 This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.3566 - Accuracy: 0.3855 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.7259 | 1.0 | 1 | 2.5917 | 0.2551 | | 2.217 | 2.0 | 2 | 2.5059 | 0.3275 | | 1.7237 | 3.0 | 3 | 2.4355 | 0.3768 | | 1.4001 | 4.0 | 4 | 2.3837 | 0.3739 | | 1.1937 | 5.0 | 5 | 2.3566 | 0.3855 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
selmey/behaviour-change-sublabel-german
selmey
2022-12-02T12:39:37Z
51
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-02T12:34:45Z
Bert-base-german-cased finetuned on the Valence level of the GLoHBCD Dataset (https://github.com/SelinaMeyer/GLoHBCD). The dataset leverages Motivational Interviewing client behaviour codes to evaluate user utterances across different dimensions and gauge user's stance and thoughts about behaviour change in the context of weight loss. This model classifies German text around behaviour change as either "General Reason" (utterances about general reasons for or against change, 0), "ability" (utterances about the writer's perceived ability to change, 1), "desire" (utterances about desires for or against change, 2), or "need" (utterances about the need to change or not change, 3). When using the model, please cite: @InProceedings{meyer-elsweiler:2022:LREC, author = {Meyer, Selina and Elsweiler, David}, title = {GLoHBCD: A Naturalistic German Dataset for Language of Health Behaviour Change on Online Support Forums}, booktitle = {Proceedings of the Language Resources and Evaluation Conference}, month = {June}, year = {2022}, address = {Marseille, France}, publisher = {European Language Resources Association}, pages = {2226--2235}, url = {https://aclanthology.org/2022.lrec-1.239}}
selmey/behaviour-change-labels-german
selmey
2022-12-02T12:32:37Z
52
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-02T12:24:01Z
Bert-base-german-cased finetuned on the Valence level of the GLoHBCD Dataset (https://github.com/SelinaMeyer/GLoHBCD). The dataset leverages Motivational Interviewing client behaviour codes to evaluate user utterances across different dimensions and gauge user's stance and thoughts about behaviour change in the context of weight loss. This model classifies German text around behaviour change as either "Reason" (utterances about reasons for or against change, 0), "Taking Steps" (utterances about recently taken steps in favor or against change, 1) or "Commitment" (Commitments for the near future, 2). When using the model, please cite: @InProceedings{meyer-elsweiler:2022:LREC, author = {Meyer, Selina and Elsweiler, David}, title = {GLoHBCD: A Naturalistic German Dataset for Language of Health Behaviour Change on Online Support Forums}, booktitle = {Proceedings of the Language Resources and Evaluation Conference}, month = {June}, year = {2022}, address = {Marseille, France}, publisher = {European Language Resources Association}, pages = {2226--2235}, url = {https://aclanthology.org/2022.lrec-1.239}}
m-aliabbas/wav2vec2-base-timit-demo-idrak-practice
m-aliabbas
2022-12-02T12:29:16Z
66
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-22T13:03:09Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-idrak-practice results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-idrak-practice This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3538 - Wer: 0.3209 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.634 | 0.87 | 500 | 2.6452 | 1.0 | | 1.0497 | 1.73 | 1000 | 0.5711 | 0.5138 | | 0.4584 | 2.6 | 1500 | 0.4421 | 0.4492 | | 0.3198 | 3.46 | 2000 | 0.3818 | 0.3941 | | 0.2263 | 4.33 | 2500 | 0.3653 | 0.3767 | | 0.1845 | 5.19 | 3000 | 0.3424 | 0.3661 | | 0.1388 | 6.06 | 3500 | 0.3702 | 0.3519 | | 0.1214 | 6.92 | 4000 | 0.3515 | 0.3439 | | 0.1026 | 7.79 | 4500 | 0.3585 | 0.3292 | | 0.0834 | 8.65 | 5000 | 0.3474 | 0.3236 | | 0.0737 | 9.52 | 5500 | 0.3538 | 0.3209 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.12.0+cu116 - Datasets 1.18.3 - Tokenizers 0.12.1
fathyshalab/all-roberta-large-v1-small_talk-5-16-5
fathyshalab
2022-12-02T12:25:08Z
67
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-02T12:02:19Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: all-roberta-large-v1-small_talk-5-16-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-small_talk-5-16-5 This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.3566 - Accuracy: 0.3855 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.7259 | 1.0 | 1 | 2.5917 | 0.2551 | | 2.217 | 2.0 | 2 | 2.5059 | 0.3275 | | 1.7237 | 3.0 | 3 | 2.4355 | 0.3768 | | 1.4001 | 4.0 | 4 | 2.3837 | 0.3739 | | 1.1937 | 5.0 | 5 | 2.3566 | 0.3855 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
IrinaSedmaya/wav2vec2-large-xls-r-300m-phonems-colab
IrinaSedmaya
2022-12-02T12:12:50Z
98
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-02T11:47:10Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-large-xls-r-300m-phonems-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-phonems-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
ibaucells/paraphrase-multilingual-mpnet-base-v2_tecla_label2_8
ibaucells
2022-12-02T12:05:37Z
7
0
sentence-transformers
[ "sentence-transformers", "pytorch", "xlm-roberta", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-12-02T12:05:28Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 1060 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 1060, "warmup_steps": 106, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
poldham/autotrain-textcat-paul-2315373253
poldham
2022-12-02T12:03:44Z
56
0
transformers
[ "transformers", "pytorch", "autotrain", "text-classification", "en", "dataset:poldham/autotrain-data-textcat-paul", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
text-classification
2022-12-02T12:00:30Z
--- tags: - autotrain - text-classification language: - en widget: - text: "I love AutoTrain 🤗" datasets: - poldham/autotrain-data-textcat-paul co2_eq_emissions: emissions: 7.014613433979796 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 2315373253 - CO2 Emissions (in grams): 7.0146 ## Validation Metrics - Loss: 0.183 - Accuracy: 0.944 - Precision: 0.953 - Recall: 0.931 - AUC: 0.974 - F1: 0.942 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/poldham/autotrain-textcat-paul-2315373253 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("poldham/autotrain-textcat-paul-2315373253", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("poldham/autotrain-textcat-paul-2315373253", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
fathyshalab/all-roberta-large-v1-small_talk-4-16-5
fathyshalab
2022-12-02T12:00:51Z
60
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-02T11:36:24Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: all-roberta-large-v1-small_talk-4-16-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-small_talk-4-16-5 This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.3566 - Accuracy: 0.3855 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.7259 | 1.0 | 1 | 2.5917 | 0.2551 | | 2.217 | 2.0 | 2 | 2.5059 | 0.3275 | | 1.7237 | 3.0 | 3 | 2.4355 | 0.3768 | | 1.4001 | 4.0 | 4 | 2.3837 | 0.3739 | | 1.1937 | 5.0 | 5 | 2.3566 | 0.3855 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
zbenmo/ppo-LunarLander-v2
zbenmo
2022-12-02T11:55:46Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-02T11:55:16Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 240.68 +/- 19.19 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Infaninio/ppo-LunarLander-v2
Infaninio
2022-12-02T11:51:11Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-02T11:20:46Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 48.82 +/- 118.13 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
PlanTL-GOB-ES/es_bsc_demo_md
PlanTL-GOB-ES
2022-12-02T11:24:03Z
12
0
spacy
[ "spacy", "token-classification", "text-classification", "es", "license:mit", "model-index", "region:us" ]
text-classification
2022-12-02T11:14:32Z
--- tags: - spacy - token-classification - text-classification language: - es license: mit model-index: - name: es_bsc_demo_md results: - task: name: TAG type: token-classification metrics: - name: TAG (XPOS) Accuracy type: accuracy value: 0.9538757026 - task: name: POS type: token-classification metrics: - name: POS (UPOS) Accuracy type: accuracy value: 0.9860176075 - task: name: MORPH type: token-classification metrics: - name: Morph (UFeats) Accuracy type: accuracy value: 0.9810269013 - task: name: LEMMA type: token-classification metrics: - name: Lemma Accuracy type: accuracy value: 0.9797689766 - task: name: UNLABELED_DEPENDENCIES type: token-classification metrics: - name: Unlabeled Attachment Score (UAS) type: f_score value: 0.9125813681 - task: name: LABELED_DEPENDENCIES type: token-classification metrics: - name: Labeled Attachment Score (LAS) type: f_score value: 0.880866503 - task: name: SENTS type: token-classification metrics: - name: Sentences F-Score type: f_score value: 0.9595898673 widget: - text: "El Fútbol Club Barcelona, conocido popularmente como Barça, es una entidad polideportiva con sede en Barcelona, España." --- To install this model: pip install https://huggingface.co/PlanTL-GOB-ES/es_bsc_demo_md/resolve/main/es_bsc_demo_md-any-py3-none-any.whl Spanish light weight pipeline by BSC. Components: floret static vectors, morphologizer, parser, attribute_ruler, lemmatizer, text classification. | Feature | Description | | --- | --- | | **Name** | `es_bsc_demo_md` | | **Version** | `3.4.1` | | **spaCy** | `>=3.4.1,<3.5.0` | | **Default Pipeline** | `tok2vec`, `tagger`, `morphologizer`, `lemmatizer`, `parser`, `textcat` | | **Components** | `tok2vec`, `tagger`, `morphologizer`, `lemmatizer`, `parser`, `textcat` | | **Vectors** | -1 keys, 50000 unique vectors (300 dimensions) | | **Sources** | [UD Spanish AnCora v2.10](https://github.com/UniversalDependencies/UD_Spanish-AnCora) (Martínez Alonso, Héctor; Zeman, Daniel)<br /> [Spanish floret embeddings from BNE corpus] (https://zenodo.org/record/7314098) <br /> | | **License** | `mit` | | **Author** | [Text Mining Unit (TeMU) at the Barcelona Supercomputing Center ([email protected])](https://huggingface.co/PlanTL-GOB-ES/es_bsc_demo_md) | | **Copyright** | Copyright by the Spanish State Secretariat for Digitalization and Artificial Intelligence (SEDIA) (2022) | | **Funding** | This work was funded by the Spanish State Secretariat for Digitalization and Artificial Intelligence (SEDIA) within the framework of the Plan-TL | ### Label Scheme <details> <summary>View label scheme (734 labels for 4 components)</summary> | Component | Labels | | --- | --- | | **`tagger`** | `ADJ`, `ADP`, `ADV`, `AUX`, `CCONJ`, `DET`, `INTJ`, `NOUN`, `NUM`, `PART`, `PRON`, `PROPN`, `PUNCT`, `SCONJ`, `SYM`, `VERB`, `X`, `ao0fp0`, `ao0fs0`, `ao0mp0`, `ao0ms0`, `aq0000`, `aq00p0`, `aq00s0`, `aq0cc0`, `aq0cn0`, `aq0cp0`, `aq0cs0`, `aq0fp0`, `aq0fpp`, `aq0fs0`, `aq0fsp`, `aq0fsp-B2`, `aq0mn0`, `aq0mp0`, `aq0mpp`, `aq0ms0`, `aq0msp`, `cc`, `cs`, `da0fp0`, `da0fs0`, `da0m00`, `da0mp0`, `da0ms0`, `da0ns0`, `dd0cp0`, `dd0cs0`, `dd0fp0`, `dd0fs0`, `dd0mp0`, `dd0ms0`, `de0cn0`, `di00p0`, `di0cp0`, `di0cs0`, `di0fp0`, `di0fs0`, `di0mp0`, `di0ms0`, `dn00p0`, `dn0cp0`, `dn0cs0`, `dn0fp0`, `dn0fs0`, `dn0mp0`, `dn0ms0`, `dp1cps`, `dp1css`, `dp1fpp`, `dp1fsp`, `dp1mpp`, `dp1msp`, `dp1mss`, `dp2cps`, `dp2css`, `dp2fpp`, `dp2fsp`, `dp3cp0`, `dp3cs0`, `dp3fs0`, `dp3mp0`, `dp3ms0`, `dt0cn0`, `dt0fs0`, `dt0ms0`, `faa`, `fat`, `fc`, `fd`, `fe`, `fg`, `fh`, `fia`, `fit`, `fp`, `fpa`, `fpt`, `fs`, `fx`, `fz`, `i`, `nc00000`, `nccn000`, `nccp000`, `nccs000`, `ncf0000`, `ncfn000`, `ncfp000`, `ncfs000`, `ncfs00a`, `ncmn000`, `ncmp000`, `ncms00`, `ncms000`, `np00000`, `np0000a`, `np0000l`, `np0000o`, `np0000p`, `p0000000`, `p010p000`, `p010s000`, `p020s000`, `p0300000`, `pd0cp000`, `pd0cs000`, `pd0fp000`, `pd0fs000`, `pd0mp000`, `pd0ms000`, `pd0ns000`, `pe000000`, `pi000000`, `pi00s000`, `pi0cp000`, `pi0cs000`, `pi0fp000`, `pi0fs000`, `pi0mp0`, `pi0mp000`, `pi0ms0`, `pi0ms000`, `pn0cp000`, `pn0cs000`, `pn0fp000`, `pn0fs000`, `pn0mp000`, `pn0ms000`, `pp1cn000`, `pp1cp000`, `pp1cs000`, `pp1csn00`, `pp1cso00`, `pp1fs000`, `pp1mp000`, `pp2cp000`, `pp2cp00p`, `pp2cs000`, `pp2cs00p`, `pp2csn00`, `pp2cso00`, `pp300000`, `pp30p000`, `pp30sa00`, `pp3cn000`, `pp3cna00`, `pp3cno00`, `pp3cpa00`, `pp3cpd00`, `pp3csa00`, `pp3csd00`, `pp3fp000`, `pp3fpa00`, `pp3fs000`, `pp3fsa00`, `pp3mp000`, `pp3mpa00`, `pp3ms000`, `pp3msa00`, `pp3ns000`, `pr00000`, `pr000000`, `pr0cn000`, `pr0cp000`, `pr0cs000`, `pr0fp000`, `pr0fs000`, `pr0mp000`, `pr0ms000`, `pt000000`, `pt0cp000`, `pt0cs000`, `pt0fp000`, `pt0mp000`, `pt0ms000`, `px1fp0p0`, `px1fs0p0`, `px1fs0s0`, `px1mp0p0`, `px1ms0p0`, `px1ms0s0`, `px2fs0s0`, `px2mp000`, `px2ms0s0`, `px3fp000`, `px3fs000`, `px3mp000`, `px3ms000`, `px3ns000`, `rg`, `rn`, `spcms`, `sps00`, `vag0000`, `vaic1p0`, `vaic3p0`, `vaic3s0`, `vaif1p0`, `vaif1s0`, `vaif2s0`, `vaif3p0`, `vaif3s0`, `vaii1p0`, `vaii1s0`, `vaii2s0`, `vaii3p0`, `vaii3s0`, `vaip1p0`, `vaip1s0`, `vaip2s0`, `vaip3p0`, `vaip3s0`, `vais3p0`, `vais3s0`, `vam02s0`, `vam03s0`, `van0000`, `vap00sm`, `vasi1p0`, `vasi1s0`, `vasi3p0`, `vasi3s0`, `vasp1p0`, `vasp1s0`, `vasp3p0`, `vasp3s0`, `vmg0000`, `vmic1p0`, `vmic1s0`, `vmic2s0`, `vmic3p0`, `vmic3s0`, `vmif1p0`, `vmif1s0`, `vmif2s0`, `vmif3p0`, `vmif3s0`, `vmii1p0`, `vmii1s0`, `vmii2s0`, `vmii3p0`, `vmii3s0`, `vmip1p0`, `vmip1s0`, `vmip2p0`, `vmip2s0`, `vmip3p0`, `vmip3s0`, `vmip3sm`, `vmis1p0`, `vmis1s0`, `vmis2s0`, `vmis3p0`, `vmis3s0`, `vmm01p0`, `vmm02p0`, `vmm02s0`, `vmm03p0`, `vmm03s0`, `vmn0000`, `vmp00fs`, `vmp00ms`, `vmp00pf`, `vmp00pm`, `vmp00sf`, `vmp00sm`, `vmsi1p0`, `vmsi1s0`, `vmsi3p0`, `vmsi3s0`, `vmsp1p0`, `vmsp1s0`, `vmsp2p0`, `vmsp2s0`, `vmsp3p0`, `vmsp3s0`, `vsg0000`, `vsic1s0`, `vsic2s0`, `vsic3p0`, `vsic3s0`, `vsif1s0`, `vsif3p0`, `vsif3s0`, `vsii1p0`, `vsii1s0`, `vsii3p0`, `vsii3s0`, `vsip1p0`, `vsip1s0`, `vsip2s0`, `vsip3p0`, `vsip3s0`, `vsis1s0`, `vsis3p0`, `vsis3s0`, `vsm02s0`, `vsm03s0`, `vsn0000`, `vsp00sm`, `vssi3p0`, `vssi3s0`, `vssp1p0`, `vssp1s0`, `vssp2s0`, `vssp3p0`, `vssp3s0`, `w`, `z`, `zm`, `zp`, `zu` | | **`morphologizer`** | `Definite=Def\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Art`, `Gender=Fem\|Number=Plur\|POS=NOUN`, `POS=ADP`, `Gender=Masc\|Number=Sing\|POS=NOUN`, `POS=CCONJ`, `POS=PROPN`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `NumForm=Digit\|NumType=Card\|POS=NUM`, `Gender=Masc\|Number=Plur\|POS=NOUN`, `NumForm=Digit\|POS=NOUN`, `Definite=Def\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `POS=NOUN`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Imp\|VerbForm=Fin`, `POS=PUNCT\|PunctType=Comm`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `POS=ADV`, `Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `POS=PUNCT\|PunctType=Peri`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Definite=Def\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Acc\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Number=Plur\|POS=ADJ`, `Number=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Number=Sing\|POS=ADJ`, `POS=PRON\|PronType=Int,Rel`, `Number=Sing\|POS=DET\|PronType=Tot`, `Gender=Fem\|Number=Sing\|POS=NOUN`, `Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Gender=Masc\|Number=Sing\|POS=ADJ`, `POS=SCONJ`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Number=Plur\|POS=NOUN`, `POS=AUX\|VerbForm=Inf`, `POS=VERB\|VerbForm=Inf`, `Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Ind`, `Gender=Masc\|Number=Plur\|POS=DET\|PronType=Ind`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Gender=Fem\|Number=Sing\|POS=ADJ\|VerbForm=Part`, `Gender=Fem\|Number=Sing\|POS=ADJ`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `POS=PUNCT\|PunctType=Quot`, `POS=ADV\|Polarity=Neg`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes`, `NumType=Card\|Number=Plur\|POS=NUM`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Number=Sing\|POS=PRON\|PronType=Int,Rel`, `Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Gender=Fem\|Number=Plur\|POS=DET\|PronType=Tot`, `Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc,Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Definite=Ind\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Acc,Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `POS=VERB\|VerbForm=Ger`, `Degree=Cmp\|POS=ADV`, `Number=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Gender=Masc\|Number=Plur\|POS=ADJ\|VerbForm=Part`, `Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Gender=Masc\|Number=Plur\|POS=ADJ`, `Gender=Fem\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Dem`, `AdvType=Tim\|POS=NOUN`, `Number=Sing\|POS=NOUN`, `Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Ind`, `Mood=Cnd\|Number=Sing\|POS=VERB\|Person=1\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=ADJ\|VerbForm=Part`, `NumType=Card\|POS=NUM`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Tot`, `Number=Plur\|POS=PRON\|PronType=Ind`, `Gender=Fem\|Number=Plur\|POS=ADJ\|VerbForm=Part`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Number=Plur\|POS=PRON\|PronType=Int,Rel`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `POS=PART`, `Degree=Cmp\|Number=Sing\|POS=ADJ`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Ind`, `Number=Sing\|POS=DET\|PronType=Ind`, `Gender=Masc\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Ind`, `Mood=Cnd\|Number=Plur\|POS=AUX\|Person=3\|VerbForm=Fin`, `NumForm=Digit\|POS=SYM`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Dem`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin`, `AdvType=Tim\|POS=ADJ`, `Mood=Cnd\|Number=Sing\|POS=AUX\|Person=1\|VerbForm=Fin`, `POS=PUNCT\|PunctSide=Ini\|PunctType=Brck`, `POS=PUNCT\|PunctSide=Fin\|PunctType=Brck`, `Gender=Fem\|Number=Plur\|POS=DET\|PronType=Ind`, `NumForm=Digit\|NumType=Frac\|POS=NUM`, `Gender=Fem\|Number=Sing\|POS=PRON\|Poss=Yes\|PronType=Int,Rel`, `POS=PUNCT`, `POS=ADJ`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs`, `Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Gender=Masc\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Dem`, `Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Tot`, `POS=PRON\|PronType=Ind`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs`, `Gender=Fem\|NumType=Ord\|Number=Plur\|POS=ADJ`, `Number=Plur\|POS=DET\|PronType=Ind`, `Number=Plur\|POS=DET\|PronType=Dem`, `Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Ind`, `Number=Sing\|POS=PRON\|PronType=Dem`, `Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Ind`, `Gender=Masc\|Number=Plur\|POS=DET\|PronType=Tot`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin`, `Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Gender=Masc\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Gender=Masc\|NumType=Ord\|Number=Plur\|POS=ADJ`, `Gender=Masc\|Number=Sing\|POS=AUX\|Tense=Past\|VerbForm=Part`, `Case=Dat\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Degree=Cmp\|Number=Plur\|POS=ADJ`, `POS=AUX\|VerbForm=Ger`, `Gender=Fem\|POS=NOUN`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=PRON\|Poss=Yes\|PronType=Int,Rel`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=1\|PrepCase=Npr\|PronType=Prs`, `Definite=Ind\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Art`, `POS=PUNCT\|PunctType=Colo`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=3\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Neg`, `Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs`, `Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Number=Sing\|POS=PRON\|PronType=Neg`, `POS=PUNCT\|PunctType=Semi`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Number=Sing\|POS=PRON\|PronType=Ind`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Case=Acc,Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `POS=INTJ`, `Gender=Masc\|NumType=Card\|Number=Sing\|POS=PRON\|PronType=Dem`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Number=Plur\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `POS=PUNCT\|PunctType=Dash`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=1\|PrepCase=Npr\|PronType=Prs`, `Mood=Cnd\|Number=Plur\|POS=VERB\|Person=1\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Neg`, `Gender=Fem\|NumType=Card\|Number=Plur\|POS=NUM`, `Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Tot`, `Gender=Masc\|NumType=Card\|Number=Plur\|POS=NUM`, `Gender=Masc\|POS=NOUN`, `Gender=Fem\|NumType=Card\|Number=Sing\|POS=DET\|PronType=Ind`, `Gender=Fem\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Ind`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Imp\|VerbForm=Fin`, `POS=NOUN\|VerbForm=Inf`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=1\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Gender=Masc\|NumType=Card\|Number=Sing\|POS=NUM`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Gender=Masc\|Number=Plur\|POS=PRON\|Poss=Yes\|PronType=Int,Rel`, `Gender=Fem\|NumType=Card\|Number=Sing\|POS=DET\|PronType=Dem`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|VerbForm=Fin`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Neg`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=1\|PrepCase=Npr\|PronType=Prs`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin`, `Degree=Abs\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Acc,Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Imp\|Number=Sing\|POS=AUX\|Person=3\|VerbForm=Fin`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=1\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Tot`, `POS=DET\|PronType=Ind`, `POS=DET\|PronType=Int,Rel`, `AdvType=Tim\|POS=ADV`, `Mood=Cnd\|Number=Sing\|POS=AUX\|Person=3\|VerbForm=Fin`, `POS=PUNCT\|PunctSide=Ini\|PunctType=Qest`, `POS=PUNCT\|PunctSide=Fin\|PunctType=Qest`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=1\|PrepCase=Npr\|PronType=Prs`, `Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Gender=Masc\|NumType=Card\|Number=Sing\|POS=DET\|PronType=Ind`, `Mood=Cnd\|Number=Plur\|POS=VERB\|Person=3\|VerbForm=Fin`, `Degree=Abs\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=1\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes`, `POS=PUNCT\|PunctSide=Ini\|PunctType=Excl`, `POS=PUNCT\|PunctSide=Fin\|PunctType=Excl`, `Mood=Cnd\|Number=Sing\|POS=VERB\|Person=3\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Tot`, `Gender=Masc\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=1\|VerbForm=Fin`, `Gender=Masc\|NumType=Card\|Number=Plur\|POS=PRON\|PronType=Ind`, `Gender=Masc\|NumType=Card\|Number=Sing\|POS=PRON\|PronType=Ind`, `Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Dem`, `Degree=Abs\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=1\|PrepCase=Pre\|PronType=Prs`, `Definite=Ind\|Gender=Fem\|NumType=Card\|Number=Sing\|POS=DET\|PronType=Art`, `Gender=Fem\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=1\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `POS=SCONJ\|PronType=Int,Rel`, `Case=Dat\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs`, `Case=Acc\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|Reflex=Yes`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `NumType=Card\|Number=Sing\|POS=DET\|PronType=Ind`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=2\|PrepCase=Npr\|PronType=Prs`, `Case=Acc,Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Number=Sing\|POS=DET\|PronType=Dem`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Neg`, `Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Fut\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Ind`, `Case=Acc,Nom\|Number=Sing\|POS=PRON\|Person=2\|Polite=Form\|PronType=Prs`, `Gender=Masc\|NumType=Card\|Number=Sing\|POS=PRON\|PronType=Int,Rel`, `Gender=Fem\|NumType=Card\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Acc,Dat\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=2\|PrepCase=Npr\|PronType=Prs`, `Mood=Cnd\|Number=Sing\|POS=VERB\|Person=2\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin`, `Mood=Cnd\|Number=Plur\|POS=AUX\|Person=1\|VerbForm=Fin`, `NumType=Card\|Number=Plur\|POS=PRON\|PronType=Ind`, `Gender=Masc\|NumType=Card\|Number=Sing\|POS=DET\|PronType=Dem`, `Degree=Abs\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind`, `Gender=Fem\|Number=Plur\|POS=PRON\|Poss=Yes\|PronType=Int,Rel`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin`, `Case=Acc,Nom\|Number=Plur\|POS=PRON\|Person=2\|Polite=Form\|PronType=Prs`, `Mood=Imp\|Number=Sing\|POS=AUX\|Person=2\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|Number[psor]=Sing\|POS=PRON\|Person=2\|Poss=Yes\|PronType=Ind`, `NumType=Card\|Number=Sing\|POS=NUM`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Imp\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Case=Com\|Number=Sing\|POS=PRON\|Person=2\|PrepCase=Pre\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Imp\|VerbForm=Fin`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=2\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes`, `Number=Sing\|POS=PRON\|Person=2\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=2\|PrepCase=Pre\|PronType=Prs`, `Mood=Cnd\|Number=Sing\|POS=AUX\|Person=2\|VerbForm=Fin`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Number=Sing\|POS=NOUN\|VerbForm=Fin`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=2\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin`, `Gender=Fem\|NumType=Card\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Fut\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Tot`, `Gender=Masc\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `POS=SYM`, `Number=Sing\|POS=VERB\|VerbForm=Fin`, `POS=VERB\|VerbForm=Fin`, `Degree=Abs\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Degree=Abs\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Gender=Fem\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Dem`, `Definite=Ind\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=DET\|PronType=Art`, `Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Number=Plur\|POS=PRON\|PronType=Dem`, `Case=Acc,Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=2\|PrepCase=Npr\|PronType=Prs`, `Gender=Masc\|Number=Sing\|POS=AUX\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin`, `Gender=Masc\|NumType=Card\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Gender=Masc\|Number=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Gender=Masc\|NumType=Card\|Number=Plur\|POS=PRON\|PronType=Int,Rel`, `Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Number=Plur\|POS=PRON\|Person=1\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes`, `Mood=Ind\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Fut\|VerbForm=Fin`, `Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Gender=Fem\|NumType=Card\|Number=Sing\|POS=PRON\|PronType=Ind`, `Definite=Def\|Foreign=Yes\|POS=DET\|PronType=Art`, `Case=Com\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|Reflex=Yes`, `Number=Sing\|POS=PRON\|Person=1\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=2\|PrepCase=Npr\|PronType=Prs`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `NumForm=Digit\|NumType=Frac\|POS=SYM`, `Gender=Masc\|NumType=Card\|Number=Plur\|POS=PRON\|PronType=Dem`, `Gender=Fem\|Number=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes`, `NumType=Card\|Number=Plur\|POS=DET\|PronType=Ind`, `Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|Typo=Yes\|VerbForm=Fin`, `Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|Number[psor]=Plur\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Number=Sing\|POS=PRON\|PronType=Tot`, `AdvType=Tim\|Gender=Masc\|Number=Sing\|POS=NOUN`, `POS=AUX\|VerbForm=Fin`, `Gender=Fem\|NumType=Card\|Number=Plur\|POS=PRON\|PronType=Int,Rel`, `Gender=Fem\|Number=Sing\|Number[psor]=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Ind`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=2\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes`, `Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=2\|PrepCase=Npr\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin`, `POS=PRON\|PronType=Dem`, `Gender=Masc\|Number=Plur\|POS=DET\|PronType=Art`, `Foreign=Yes\|POS=X`, `Degree=Abs\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=PRON\|PronType=Ind`, `Gender=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Ind`, `Definite=Def\|Foreign=Yes\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Foreign=Yes\|POS=NOUN`, `Foreign=Yes\|POS=ADP`, `Foreign=Yes\|POS=CCONJ`, `Foreign=Yes\|POS=PROPN`, `Case=Com\|Number=Sing\|POS=PRON\|Person=1\|PrepCase=Pre\|PronType=Prs`, `Gender=Fem\|Number=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Gender=Masc\|Number=Sing\|Number[psor]=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Ind`, `Gender=Masc\|Number=Sing\|POS=NOUN\|VerbForm=Part`, `Case=Com\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Gender=Fem\|Number=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Ind`, `Case=Acc,Dat\|Number=Sing\|POS=PRON\|Person=2\|PrepCase=Npr\|PronType=Prs`, `Gender=Masc\|Number=Plur\|POS=PRON\|Person=2\|Poss=Yes\|PronType=Ind`, `Number=Sing\|POS=DET\|PronType=Int,Rel`, `Gender=Fem\|NumType=Card\|Number=Sing\|POS=PRON\|PronType=Dem`, `Number=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Gender=Masc\|POS=ADJ`, `Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `POS=X`, `Gender=Masc\|Number=Sing\|Number[psor]=Sing\|POS=PRON\|Person=2\|Poss=Yes\|PronType=Ind`, `Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Degree=Cmp\|POS=ADJ`, `Case=Acc\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs`, `Case=Acc,Dat\|Number=Sing\|POS=PRON\|Person=1\|PrepCase=Npr\|PronType=Prs`, `Gender=Masc\|Number=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Ind`, `POS=NOUN\|PunctType=Comm`, `POS=PRON\|PronType=Neg`, `Case=Acc,Dat\|Number=Plur\|POS=PRON\|Person=1\|PrepCase=Npr\|PronType=Prs`, `Gender=Fem\|Number=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs` | | **`parser`** | `ROOT`, `acl`, `advcl`, `advmod`, `amod`, `appos`, `aux`, `case`, `cc`, `ccomp`, `compound`, `conj`, `cop`, `csubj`, `dep`, `det`, `expl:impers`, `expl:pass`, `expl:pv`, `fixed`, `flat`, `iobj`, `mark`, `nmod`, `nsubj`, `nummod`, `obj`, `obl`, `parataxis`, `punct`, `xcomp` | | **`textcat`** | `Economía`, `Entretenimiento`, `Historia`, `Humanidades`, `Derecho`, `Matemáticas`, `Música`, `Filosofía`, `Política`, `Religión`, `Deporte`, `Ciencia_y_Tecnología` | </details> ### Accuracy | Type | Score | | --- | --- | | `TAG_ACC` | 95.39 | | `POS_ACC` | 98.60 | | `MORPH_ACC` | 98.10 | | `LEMMA_ACC` | 97.98 | | `DEP_UAS` | 91.26 | | `DEP_LAS` | 88.09 | | `SENTS_P` | 95.38 | | `SENTS_R` | 96.54 | | `SENTS_F` | 95.96 | | `TOK2VEC_LOSS` | 7166396.29 | | `TAGGER_LOSS` | 1262344.25 | | `MORPHOLOGIZER_LOSS` | 311469.37 | | `PARSER_LOSS` | 4991259.73 | | `CATS_SCORE` | 99.14 | | `CATS_MICRO_P` | 97.52 | | `CATS_MICRO_R` | 96.19 | | `CATS_MICRO_F` | 96.85 | | `CATS_MACRO_P` | 97.25 | | `CATS_MACRO_R` | 95.42 | | `CATS_MACRO_F` | 96.31 | | `CATS_MACRO_AUC` | 99.14 |
huggingtweets/nikitabier-realjonahblake-shl
huggingtweets
2022-12-02T11:12:06Z
50
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-12-02T11:09:32Z
--- language: en thumbnail: http://www.huggingtweets.com/nikitabier-realjonahblake-shl/1669979522761/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1539834844502532096/yO7yaZd2_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1374866727285104642/lBw0y163_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1482187055220150274/5LIbI3SW_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Jonah 🎮 & Sahil Lavingia & Nikita Bier</div> <div style="text-align: center; font-size: 14px;">@nikitabier-realjonahblake-shl</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Jonah 🎮 & Sahil Lavingia & Nikita Bier. | Data | Jonah 🎮 | Sahil Lavingia | Nikita Bier | | --- | --- | --- | --- | | Tweets downloaded | 3248 | 3241 | 3249 | | Retweets | 0 | 643 | 82 | | Short tweets | 470 | 402 | 605 | | Tweets kept | 2778 | 2196 | 2562 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/38ptca23/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @nikitabier-realjonahblake-shl's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3rm0vdeq) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3rm0vdeq/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/nikitabier-realjonahblake-shl') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
autoevaluate/binary-classification
autoevaluate
2022-12-02T10:38:26Z
198
2
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-25T09:46:31Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: autoevaluate-binary-classification results: - task: type: text-classification name: Text Classification dataset: name: glue type: glue args: sst2 metrics: - type: accuracy value: 0.8967889908256881 name: Accuracy - task: type: text-classification name: Text Classification dataset: name: glue type: glue config: sst2 split: validation metrics: - type: accuracy value: 0.8967889908256881 name: Accuracy verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNTZmNGE1N2FjODM3OGJiM2Q2NTY5MzZjNGFhNGVjYzcwOTlkMzVhYjdmOTgwY2Y1NzMyZjY0NzAxMzZkMjM4NyIsInZlcnNpb24iOjF9.LabPe-QWLUUJdPyQ0Ki9rHq74opfAO1fxvu2FjUFiY9zhxAe0RKNjZRHPbrF10249Z3kDZSAq2yzQ1TjKvoLBQ - type: precision value: 0.8898678414096917 name: Precision verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMTczZjUwY2MzNTMzY2VlMjFmZGI2MzAwNTEwM2IzYWVkYmFiNjk0MDM3YmYzYjFmNGM3NWI5NDIzODJjMTA1ZCIsInZlcnNpb24iOjF9.3RC343Rtep7yxGH82c1WV2IAVqhJTRoOwiwFVp_w0K0JK_dTqnfEylLb1yMt367ztvkhhOgRn4i9GsL4ZNC5BQ - type: recall value: 0.9099099099099099 name: Recall verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNmM4M2Y3YTVjOTlhZjc2OGUxMzFhNGI3YzM4MDI0NDMwMmQyMmRmY2MyMTI5ZTdmYWVjMTlmYWE0N2Q0ZjJiNyIsInZlcnNpb24iOjF9.lMKosw258_E40HdqY8BFyWVJYAMx4cpVyYusGEqN429_cv3DzeIMaOr00trGsJX3BIqr-j5ScjLVV79f5nK2CA - type: auc value: 0.9672186789593331 name: AUC verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMzY1YmM4YjJhNTY2ZmIyYmI5ZTBjZjc3MDZiMzQ3ZTEyZWQ1M2I4ZTk4OGYwNzZiY2VlODRkODRjNTg2MDNmMSIsInZlcnNpb24iOjF9.tO3GQ5Rgl26zHz18-yR2wtcajmb_MEPNCZiA1Exz4255-m1iDFyMPM2Pw4s75xUSXWzsF--bo6eqmCLo4yjkBw - type: f1 value: 0.8997772828507795 name: F1 verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMmM0ZjhjZWY2ZGZiYWZhOTY2OWUwNzcxMTRlNjU4MDMyMWViMjg2YzE0YzBiMzVlYTU2ODkyZWY0MzcxOWJlOCIsInZlcnNpb24iOjF9.sySuyn4j72Gt3wstru118StL7pzGgZKzAPtE0FM7HVfdBrVXwZckKaUmoQR-nKaVynbo1h4mykNdM-_MwmLlCA - type: loss value: 0.30092036724090576 name: loss verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNDQ2ZjJiMjVhNTMxZGIxMTFlMjVhYTQyOGI2YjgyOTI3OTQ4NGU0ZWYxMDY2MmI1OGNiNDcwNTU3MmEzM2YzZSIsInZlcnNpb24iOjF9.MGCrOvwyOdMQ91z2pzgsIxS-PMCZy2YwNX7IuMNAVokRhTSGUYtFt-8px1Dv9w39IT6ZbySZ7kQQKz6kK8HWAQ - type: matthews_correlation value: 0.793630584795814 name: matthews_correlation verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOGY5ODMyZjc4MTk0NWU1YTRmNGI5NDU0ZGRlMDEwY2ZhN2YzMjAxNDE2MTY4ZTI2OWZjMzkwMzc5NTY3NTlkMSIsInZlcnNpb24iOjF9.1WB_1AIkuk68pphfqpqB_T1VpM3wJPe7mNGOvaDANcek7TKUFuT6kA8J1h1SICS_80mdXDI4yJGGZy3CZwpXDQ --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # binary-classification This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.3009 - Accuracy: 0.8968 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.175 | 1.0 | 4210 | 0.3009 | 0.8968 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
WeijiZhuang/icefall-asr-librispeech-pruned-transducer-stateless8-2022-12-02
WeijiZhuang
2022-12-02T10:22:31Z
0
0
null
[ "tensorboard", "region:us" ]
null
2022-12-02T06:17:59Z
# Introduction This repo contains pre-trained models, checkpoints, training logs and decoding results of the following pull-request: <https://github.com/k2-fsa/icefall/pull/675> Tensorboard logs can be found at <https://tensorboard.dev/experiment/3e9AfOcgRwOXpLQlZvHZrQ/#scalars&_smoothingWeight=0.9>
blakechi/my-model-2
blakechi
2022-12-02T10:02:11Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "arxiv:1908.10084", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-12-02T10:01:58Z
--- pipeline_tag: sentence-similarity license: apache-2.0 tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # sentence-transformers/paraphrase-mpnet-base-v2 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('sentence-transformers/paraphrase-mpnet-base-v2') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/paraphrase-mpnet-base-v2') model = AutoModel.from_pretrained('sentence-transformers/paraphrase-mpnet-base-v2') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/paraphrase-mpnet-base-v2) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors This model was trained by [sentence-transformers](https://www.sbert.net/). If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084): ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "http://arxiv.org/abs/1908.10084", } ```
jairNeto/sd-class-butterflies-32
jairNeto
2022-12-02T10:01:28Z
19
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-12-02T10:01:05Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('jairNeto/sd-class-butterflies-32') image = pipeline().images[0] image ```
ConvLab/milu
ConvLab
2022-12-02T09:45:31Z
0
0
null
[ "region:us" ]
null
2022-12-02T09:37:05Z
# MILU MILU is a joint neural model that allows you to simultaneously predict multiple dialog act items (a dialog act item takes a form of domain-intent(slot, value). Since it is common that, in a multi-domain setting, an utterance has multiple dialog act items, MILU is likely to yield higher performance than conventional single-intent models. ## Example usage We based our implementation on the [AllenNLP library](https://github.com/allenai/allennlp). For an introduction to this library, you should check [these tutorials](https://allennlp.org/tutorials). To use this model, you need to additionally install `overrides==4.1.2, allennlp==0.9.0` and use `python>=3.6,<=3.8`. ### On MultiWOZ dataset ```bash $ python train.py multiwoz/configs/[base|context3].jsonnet -s serialization_dir $ python evaluate.py serialization_dir/model.tar.gz {test_file} --cuda-device {CUDA_DEVICE} ``` If you want to perform end-to-end evaluation, you can include the trained model by adding the model path (serialization_dir/model.tar.gz) to your ConvLab spec file. #### Data We use the multiwoz data (data/multiwoz/[train|val|test].json.zip). ### MILU on datasets in unified format We support training MILU on datasets that are in our unified format. - For **non-categorical** dialogue acts whose values are in the utterances, we use **slot tagging** to extract the values. - For **categorical** and **binary** dialogue acts whose values may not be presented in the utterances, we treat them as **intents** of the utterances. Takes MultiWOZ 2.1 (unified format) as an example, ```bash $ python train.py unified_datasets/configs/multiwoz21_user_context3.jsonnet -s serialization_dir $ python evaluate.py serialization_dir/model.tar.gz test --cuda-device {CUDA_DEVICE} --output_file output/multiwoz21_user/output.json # to generate output/multiwoz21_user/predictions.json that merges test data and model predictions. $ python unified_datasets/merge_predict_res.py -d multiwoz21 -s user -p output/multiwoz21_user/output.json ``` Note that the config file is different from the above. You should set: - `"use_unified_datasets": true` in `dataset_reader` and `model` - `"dataset_name": "multiwoz21"` in `dataset_reader` - `"train_data_path": "train"` - `"validation_data_path": "validation"` - `"test_data_path": "test"` ## Predict See `nlu.py` under `multiwoz` and `unified_datasets` directories. ## Performance on unified format datasets To illustrate that it is easy to use the model for any dataset that in our unified format, we report the performance on several datasets in our unified format. We follow `README.md` and config files in `unified_datasets/` to generate `predictions.json`, then evaluate it using `../evaluate_unified_datasets.py`. Note that we use almost the same hyper-parameters for different datasets, which may not be optimal. <table> <thead> <tr> <th></th> <th colspan=2>MultiWOZ 2.1</th> <th colspan=2>Taskmaster-1</th> <th colspan=2>Taskmaster-2</th> <th colspan=2>Taskmaster-3</th> </tr> </thead> <thead> <tr> <th>Model</th> <th>Acc</th><th>F1</th> <th>Acc</th><th>F1</th> <th>Acc</th><th>F1</th> <th>Acc</th><th>F1</th> </tr> </thead> <tbody> <tr> <td>MILU</td> <td>72.9</td><td>85.2</td> <td>72.9</td><td>49.2</td> <td>79.1</td><td>68.7</td> <td>85.4</td><td>80.3</td> </tr> <tr> <td>MILU (context=3)</td> <td>76.6</td><td>87.9</td> <td>72.4</td><td>48.5</td> <td>78.9</td><td>68.4</td> <td>85.1</td><td>80.1</td> </tr> </tbody> </table> - Acc: whether all dialogue acts of an utterance are correctly predicted - F1: F1 measure of the dialogue act predictions over the corpus. ## References ``` @inproceedings{lee2019convlab, title={ConvLab: Multi-Domain End-to-End Dialog System Platform}, author={Lee, Sungjin and Zhu, Qi and Takanobu, Ryuichi and Li, Xiang and Zhang, Yaoqin and Zhang, Zheng and Li, Jinchao and Peng, Baolin and Li, Xiujun and Huang, Minlie and Gao, Jianfeng}, booktitle={Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics}, year={2019} } ```
premsuresh/bart-finetuned-multirc-abhi
premsuresh
2022-12-02T09:26:41Z
83
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-12-02T09:06:51Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bart-finetuned-multirc-abhi results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-finetuned-multirc-abhi This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 100 ### Training results ### Framework versions - Transformers 4.25.1 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
fathyshalab/all-roberta-large-v1-work-7-16-5
fathyshalab
2022-12-02T09:26:37Z
62
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-30T19:50:58Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: all-roberta-large-v1-work-7-16-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-work-7-16-5 This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.3586 - Accuracy: 0.3689 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.8058 | 1.0 | 1 | 2.6169 | 0.2356 | | 2.3524 | 2.0 | 2 | 2.5215 | 0.2978 | | 1.9543 | 3.0 | 3 | 2.4427 | 0.3422 | | 1.5539 | 4.0 | 4 | 2.3874 | 0.36 | | 1.4133 | 5.0 | 5 | 2.3586 | 0.3689 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
muhtasham/bert-base-mlm-finetuned-emotion
muhtasham
2022-12-02T09:01:41Z
98
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-12-01T23:38:29Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-base-mlm-finetuned-emotion results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-mlm-finetuned-emotion This model is a fine-tuned version of [google/bert_uncased_L-12_H-768_A-12](https://huggingface.co/google/bert_uncased_L-12_H-768_A-12) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.3374 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.4247 | 5.75 | 500 | 2.3526 | | 2.1825 | 11.49 | 1000 | 2.2778 | | 2.0578 | 17.24 | 1500 | 2.3802 | | 1.9059 | 22.99 | 2000 | 2.3358 | | 1.7966 | 28.74 | 2500 | 2.3374 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless8-2022-11-14
csukuangfj
2022-12-02T08:27:59Z
0
0
null
[ "tensorboard", "region:us" ]
null
2022-11-14T09:37:47Z
# Introduction This repo contains pre-trained models, checkpoints, training logs and decoding results of the following pull-request: <https://github.com/k2-fsa/icefall/pull/675> Tensorboard logs can be found at <https://tensorboard.dev/experiment/y6kAPnN3S3OwvQxQqKQzsQ/#scalars>
HPL/roberta-large-unlabeled-labeled-gab-reddit-task-semeval2023-t10-150000sample
HPL
2022-12-02T08:15:16Z
92
0
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-12-02T05:37:38Z
--- license: mit tags: - generated_from_trainer model-index: - name: roberta-large-unlabeled-labeled-gab-reddit-task-semeval2023-t10-150000sample results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-large-unlabeled-labeled-gab-reddit-task-semeval2023-t10-150000sample This model is a fine-tuned version of [HPL/roberta-large-unlabeled-labeled-gab-reddit-task-semeval2023-t10-90000sample](https://huggingface.co/HPL/roberta-large-unlabeled-labeled-gab-reddit-task-semeval2023-t10-90000sample) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.13.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.10.3
edbeeching/AllegroHand_1111
edbeeching
2022-12-02T08:12:25Z
5
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-02T08:12:13Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AllegroHand type: AllegroHand metrics: - type: mean_reward value: 5230.70 +/- 1688.13 name: mean_reward verified: false --- A(n) **APPO** model trained on the **AllegroHand** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r edbeeching/AllegroHand_1111 ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m sf_examples.isaacgym_examples.enjoy_isaacgym --algo=APPO --env=AllegroHand --train_dir=./train_dir --experiment=AllegroHand_1111 ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m sf_examples.isaacgym_examples.train_isaacgym --algo=APPO --env=AllegroHand --train_dir=./train_dir --experiment=AllegroHand_1111 --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
edbeeching/Humanoid_1111
edbeeching
2022-12-02T08:11:48Z
3
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-02T08:11:36Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Humanoid type: Humanoid metrics: - type: mean_reward value: 10112.82 +/- 2195.92 name: mean_reward verified: false --- A(n) **APPO** model trained on the **Humanoid** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r edbeeching/Humanoid_1111 ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m sf_examples.isaacgym_examples.enjoy_isaacgym --algo=APPO --env=Humanoid --train_dir=./train_dir --experiment=Humanoid_1111 ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m sf_examples.isaacgym_examples.train_isaacgym --algo=APPO --env=Humanoid --train_dir=./train_dir --experiment=Humanoid_1111 --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
edbeeching/BallBalance_1111
edbeeching
2022-12-02T08:10:21Z
2
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-02T08:10:10Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: BallBalance type: BallBalance metrics: - type: mean_reward value: 368.55 +/- 102.52 name: mean_reward verified: false --- A(n) **APPO** model trained on the **BallBalance** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r edbeeching/BallBalance_1111 ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m sf_examples.isaacgym_examples.enjoy_isaacgym --algo=APPO --env=BallBalance --train_dir=./train_dir --experiment=BallBalance_1111 ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m sf_examples.isaacgym_examples.train_isaacgym --algo=APPO --env=BallBalance --train_dir=./train_dir --experiment=BallBalance_1111 --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
edbeeching/Anymal_1111
edbeeching
2022-12-02T08:09:16Z
2
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-02T08:09:05Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Anymal type: Anymal metrics: - type: mean_reward value: 70.27 +/- 2.30 name: mean_reward verified: false --- A(n) **APPO** model trained on the **Anymal** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r edbeeching/Anymal_1111 ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m sf_examples.isaacgym_examples.enjoy_isaacgym --algo=APPO --env=Anymal --train_dir=./train_dir --experiment=Anymal_1111 ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m sf_examples.isaacgym_examples.train_isaacgym --algo=APPO --env=Anymal --train_dir=./train_dir --experiment=Anymal_1111 --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
al02783013/autotrain-faseiii_final-2312773135
al02783013
2022-12-02T07:36:28Z
54
0
transformers
[ "transformers", "pytorch", "autotrain", "text-classification", "en", "dataset:al02783013/autotrain-data-faseiii_final", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
text-classification
2022-12-02T07:35:13Z
--- tags: - autotrain - text-classification language: - en widget: - text: "I love AutoTrain 🤗" datasets: - al02783013/autotrain-data-faseiii_final co2_eq_emissions: emissions: 2.814484312003443 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 2312773135 - CO2 Emissions (in grams): 2.8145 ## Validation Metrics - Loss: 0.030 - Accuracy: 0.996 - Precision: 1.000 - Recall: 0.971 - AUC: 0.993 - F1: 0.985 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/al02783013/autotrain-faseiii_final-2312773135 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("al02783013/autotrain-faseiii_final-2312773135", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("al02783013/autotrain-faseiii_final-2312773135", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
almasdqdqw/scscscsc
almasdqdqw
2022-12-02T07:27:09Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2022-12-02T07:27:09Z
--- license: creativeml-openrail-m ---
fathyshalab/all-roberta-large-v1-work-2-16-5
fathyshalab
2022-12-02T07:20:33Z
65
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-30T19:42:22Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: all-roberta-large-v1-work-2-16-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-work-2-16-5 This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.3586 - Accuracy: 0.3689 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.8058 | 1.0 | 1 | 2.6169 | 0.2356 | | 2.3524 | 2.0 | 2 | 2.5215 | 0.2978 | | 1.9543 | 3.0 | 3 | 2.4427 | 0.3422 | | 1.5539 | 4.0 | 4 | 2.3874 | 0.36 | | 1.4133 | 5.0 | 5 | 2.3586 | 0.3689 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
AlekseyKorshuk/6.7b-ri-reproduce-combined-4-gpu-20-val-v2
AlekseyKorshuk
2022-12-02T06:52:15Z
11
0
transformers
[ "transformers", "pytorch", "opt", "text-generation", "generated_from_trainer", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-12-01T20:55:19Z
--- license: other tags: - generated_from_trainer metrics: - accuracy model-index: - name: 6.7b-ri-reproduce-combined-4-gpu-20-val-v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 6.7b-ri-reproduce-combined-4-gpu-20-val-v2 This model is a fine-tuned version of [facebook/opt-6.7b](https://huggingface.co/facebook/opt-6.7b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.9434 - Accuracy: 0.0329 - Perplexity: 51.5916 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 9e-07 - train_batch_size: 1 - eval_batch_size: 8 - seed: 100 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 4 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 15.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Perplexity | |:-------------:|:-----:|:----:|:---------------:|:--------:|:----------:| | 2.5731 | 1.0 | 79 | 2.6113 | 0.0317 | 13.6171 | | 2.206 | 2.0 | 158 | 2.4805 | 0.0328 | 11.9469 | | 1.9105 | 3.0 | 237 | 2.4512 | 0.0333 | 11.6019 | | 1.6301 | 4.0 | 316 | 2.5078 | 0.0345 | 12.2780 | | 1.3733 | 5.0 | 395 | 2.6816 | 0.0342 | 14.6090 | | 1.1337 | 6.0 | 474 | 3.0078 | 0.0330 | 20.2431 | | 0.9619 | 7.0 | 553 | 3.1777 | 0.0330 | 23.9923 | | 0.798 | 8.0 | 632 | 3.2559 | 0.0330 | 25.9419 | | 0.6653 | 9.0 | 711 | 3.4277 | 0.0331 | 30.8068 | | 0.552 | 10.0 | 790 | 3.5566 | 0.0333 | 35.0453 | | 0.4568 | 11.0 | 869 | 3.7324 | 0.0324 | 41.7802 | | 0.3756 | 12.0 | 948 | 3.8184 | 0.0328 | 45.5295 | | 0.3119 | 13.0 | 1027 | 3.8477 | 0.0331 | 46.8831 | | 0.2448 | 14.0 | 1106 | 3.9062 | 0.0329 | 49.7122 | | 0.1986 | 15.0 | 1185 | 3.9434 | 0.0329 | 51.5916 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
henryj18/xlm-roberta-base-finetuned-panx-en
henryj18
2022-12-02T06:48:54Z
86
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-12-02T06:33:07Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-en results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.en metrics: - name: F1 type: f1 value: 0.6976744186046512 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.4068 - F1: 0.6977 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.9585 | 1.0 | 99 | 0.5474 | 0.5651 | | 0.4522 | 2.0 | 198 | 0.3921 | 0.6903 | | 0.3243 | 3.0 | 297 | 0.4068 | 0.6977 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
henryj18/xlm-roberta-base-finetuned-panx-it
henryj18
2022-12-02T06:32:51Z
87
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-12-02T06:16:52Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-it results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.it metrics: - name: F1 type: f1 value: 0.844097079391197 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-it This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2559 - F1: 0.8441 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.655 | 1.0 | 140 | 0.2818 | 0.7803 | | 0.2404 | 2.0 | 280 | 0.2618 | 0.8207 | | 0.149 | 3.0 | 420 | 0.2559 | 0.8441 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
Positroniy/bertweet-base-sentiment-analysis-trained_on_3000
Positroniy
2022-12-02T06:28:04Z
59
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "dataset:imdb", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-02T06:10:53Z
--- tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: bertweet-base-sentiment-analysis-trained_on_3000 results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: train args: plain_text metrics: - name: Accuracy type: accuracy value: 0.85 - name: F1 type: f1 value: 0.8504983388704319 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bertweet-base-sentiment-analysis-trained_on_3000 This model is a fine-tuned version of [finiteautomata/bertweet-base-sentiment-analysis](https://huggingface.co/finiteautomata/bertweet-base-sentiment-analysis) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3948 - Accuracy: 0.85 - F1: 0.8505 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.25.1 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
henryj18/xlm-roberta-base-finetuned-panx-fr
henryj18
2022-12-02T06:16:33Z
86
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-12-02T05:57:45Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-fr results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.fr metrics: - name: F1 type: f1 value: 0.8493752110773387 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2992 - F1: 0.8494 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.537 | 1.0 | 382 | 0.3279 | 0.8002 | | 0.2603 | 2.0 | 764 | 0.2987 | 0.8356 | | 0.1589 | 3.0 | 1146 | 0.2992 | 0.8494 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
henryj18/xlm-roberta-base-finetuned-panx-de-fr
henryj18
2022-12-02T05:53:55Z
87
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-12-02T05:23:56Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1792 - F1: 0.8619 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2899 | 1.0 | 1430 | 0.1941 | 0.8143 | | 0.1547 | 2.0 | 2860 | 0.1673 | 0.8478 | | 0.095 | 3.0 | 4290 | 0.1792 | 0.8619 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
nerijs/isopixel-diffusion-v1
nerijs
2022-12-02T05:53:04Z
0
42
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2022-12-02T05:10:45Z
--- license: creativeml-openrail-m --- <div style="display: flex; flex-direction: row; flex-wrap: wrap"> <a href="https://www.patreon.com/user?u=29466374" target="_blank"> <img src="https://img.shields.io/badge/Patreon-F96854?style=for-the-badge&logo=patreon&logoColor=white" alt="Patreon"/> </a> <a href="https://twitter.com/nerijs" target="_blank"> <img src="https://img.shields.io/badge/Twitter-1DA1F2?style=for-the-badge&logo=twitter&logoColor=white" alt="Twitter"/> </a> </div> # isopixel-diffusion-v1 Stable Diffusion v2-768 model trained on to generate isometric pixel art <div style="display: flex; flex-direction: row; flex-wrap: wrap"> <img src="https://s3.amazonaws.com/moonup/production/uploads/1669957996471-6303f37c3926de1f7ec42d3e.png" width="256"> <img src="https://s3.amazonaws.com/moonup/production/uploads/1669958023998-6303f37c3926de1f7ec42d3e.png" width="256"> <img src="https://s3.amazonaws.com/moonup/production/uploads/1669958037455-6303f37c3926de1f7ec42d3e.png" width="256"> <img src="https://s3.amazonaws.com/moonup/production/uploads/1669958067857-6303f37c3926de1f7ec42d3e.png" width="256"> <img src="https://s3.amazonaws.com/moonup/production/uploads/1669958100092-6303f37c3926de1f7ec42d3e.png" width="256"> </div> ## How to use - Download the model and use it on your desired UI (Tested on AUTOMATIC1111's) Currently only .ckpt version is supported - Trigger the style in your prompt with the **isopixel** token, look at the next section for more examples ## Versions - **v1**: 2500, 4000 and 5000 steps checkpoints available to download ## Examples **isometric bedroom, isopixel style** Steps: 50, Sampler: Euler a, CFG scale: 7.5, Size: 768x768 <img src="https://s3.amazonaws.com/moonup/production/uploads/1669958684775-6303f37c3926de1f7ec42d3e.png" width="512"/> **isometric sushi store, isopixel style** Steps: 50, Sampler: Euler a, CFG scale: 7.5, Size: 768x768 <img src="https://s3.amazonaws.com/moonup/production/uploads/1669958822683-6303f37c3926de1f7ec42d3e.png" width="512"/> **isometric gas station, isopixel style** Steps: 50, Sampler: Euler a, CFG scale: 7.5, Size: 768x768 <img src="https://s3.amazonaws.com/moonup/production/uploads/1669958976478-6303f37c3926de1f7ec42d3e.png" width="512"/> **isometric magical forest, isopixel style** Steps: 50, Sampler: Euler a, CFG scale: 7.5, Size: 768x768 <img src="https://s3.amazonaws.com/moonup/production/uploads/1669959188129-6303f37c3926de1f7ec42d3e.png" width="512"/> ## Tips - Always use 768x768 - High step count on Euler_a gives the best results - Low CFG scale outputs great results - You can use a tool like Pixelator to achieve a better effect. This model **isn't pixel perfect** (yet 😉) Please consider supporting further research on my Patreon: <a href="https://www.patreon.com/user?u=29466374" target="_blank"> <img src="https://img.shields.io/badge/Patreon-F96854?style=for-the-badge&logo=patreon&logoColor=white" alt="Patreon"/> </a> If you have any question, suggestion for new models or need help in general with SD related stuff, don't hesistate to reach out on Twitter: <a href="https://twitter.com/nerijs" target="_blank"> <img src="https://img.shields.io/badge/Twitter-1DA1F2?style=for-the-badge&logo=twitter&logoColor=white" alt="Twitter"/> </a>
al02783013/autotrain-faseiii_diciembre-2311773112
al02783013
2022-12-02T05:51:59Z
3
0
transformers
[ "transformers", "joblib", "autotrain", "tabular", "regression", "tabular-regression", "dataset:al02783013/autotrain-data-faseiii_diciembre", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
tabular-regression
2022-12-02T05:47:22Z
--- tags: - autotrain - tabular - regression - tabular-regression datasets: - al02783013/autotrain-data-faseiii_diciembre co2_eq_emissions: emissions: 4.041080293052415 --- # Model Trained Using AutoTrain - Problem type: Single Column Regression - Model ID: 2311773112 - CO2 Emissions (in grams): 4.0411 ## Validation Metrics - Loss: 5487.957 - R2: 0.960 - MSE: 30117668.000 - MAE: 2082.499 - RMSLE: 1.918 ## Usage ```python import json import joblib import pandas as pd model = joblib.load('model.joblib') config = json.load(open('config.json')) features = config['features'] # data = pd.read_csv("data.csv") data = data[features] data.columns = ["feat_" + str(col) for col in data.columns] predictions = model.predict(data) # or model.predict_proba(data) ```
hyorea1/wav2vec2-large-xls-r-300m-zeroth
hyorea1
2022-12-02T05:24:32Z
61
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:zeroth_korean_asr", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-01T11:45:02Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - zeroth_korean_asr model-index: - name: wav2vec2-large-xls-r-300m-zeroth results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-zeroth This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the zeroth_korean_asr dataset. It achieves the following results on the evaluation set: - Loss: 0.7052 - Wer: 0.4621 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 15.1763 | 1.61 | 400 | 4.6768 | 1.0 | | 3.1779 | 3.21 | 800 | 1.6680 | 0.8752 | | 1.052 | 4.82 | 1200 | 0.9580 | 0.7332 | | 0.5412 | 6.42 | 1600 | 0.7752 | 0.5993 | | 0.3281 | 8.03 | 2000 | 0.7158 | 0.5615 | | 0.2312 | 9.64 | 2400 | 0.6975 | 0.5532 | | 0.2001 | 11.24 | 2800 | 0.7489 | 0.5677 | | 0.1587 | 12.85 | 3200 | 0.6954 | 0.5267 | | 0.1321 | 14.46 | 3600 | 0.7329 | 0.5371 | | 0.1178 | 16.06 | 4000 | 0.7534 | 0.5341 | | 0.103 | 17.67 | 4400 | 0.7046 | 0.5066 | | 0.0843 | 19.28 | 4800 | 0.7507 | 0.5028 | | 0.079 | 20.88 | 5200 | 0.7137 | 0.4886 | | 0.0647 | 22.49 | 5600 | 0.7170 | 0.4855 | | 0.0565 | 24.1 | 6000 | 0.7124 | 0.4781 | | 0.0487 | 25.7 | 6400 | 0.7043 | 0.4721 | | 0.0433 | 27.31 | 6800 | 0.7128 | 0.4557 | | 0.0379 | 28.91 | 7200 | 0.7052 | 0.4621 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
mmibrahim2006/distilbert-base-uncased-finetuned-imdb
mmibrahim2006
2022-12-02T04:55:47Z
98
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "fill-mask", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-12-02T04:47:26Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.4721 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7086 | 1.0 | 157 | 2.4898 | | 2.5796 | 2.0 | 314 | 2.4230 | | 2.5269 | 3.0 | 471 | 2.4354 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
SimingSiming/ppo-BipedalWalkerHardcore-v3
SimingSiming
2022-12-02T04:34:38Z
1
0
stable-baselines3
[ "stable-baselines3", "BipedalWalkerHardcore-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-11T19:59:27Z
--- library_name: stable-baselines3 tags: - BipedalWalkerHardcore-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 7.09 +/- 2.73 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: BipedalWalkerHardcore-v3 type: BipedalWalkerHardcore-v3 --- # parameters <br> model = A2C(policy = "MlpPolicy", <br> env = env, <br> n_steps = 256, <br> learning_rate = 0.001, <br> gamma = 0.99, <br> verbose=1) <br>
SimingSiming/q-FrozenLake-v1-8x8-non_slippery
SimingSiming
2022-12-02T04:32:27Z
0
0
null
[ "FrozenLake-v1-8x8-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-05-27T00:30:43Z
--- tags: - FrozenLake-v1-8x8-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-8x8-non_slippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-8x8-no_slippery type: FrozenLake-v1-8x8-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . n_training_episodes = 200000 # Total training episodes <br> learning_rate = 0.8 # Learning rate <br> # Evaluation parameters n_eval_episodes = 100 # Total number of test episodes <br> # Environment parameters <br> env_id = "FrozenLake-v1" # Name of the environment <br> max_steps = 100 # Max steps per episode <br> gamma = 0.99 # Discounting rate <br> eval_seed = [] # The evaluation seed of the environment <br> # Exploration parameters <br> epsilon = 1.0 # Exploration rate <br> max_epsilon = 1.0 # Exploration probability at start <br> min_epsilon = 0.05 # Minimum exploration probability <br> decay_rate = 0.00005 # Exponential decay rate for exploration prob <br> ```
SimingSiming/pong-policy
SimingSiming
2022-12-02T04:24:01Z
0
0
null
[ "Pong-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-09-19T02:05:33Z
--- tags: - Pong-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: pong-policy results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pong-PLE-v0 type: Pong-PLE-v0 metrics: - type: mean_reward value: -16.00 +/- 0.00 name: mean_reward verified: false --- ## parameters pong_hyperparameters = { <br> "h_size": 64,<br> "n_training_episodes": 20000,<br> "n_evaluation_episodes": 10,<br> "max_t": 5000,<br> "gamma": 0.99,<br> "lr": 1e-2,<br> "env_id": env_id,<br> "state_space": s_size,<br> "action_space": a_size,<br> }<br>
SimingSiming/Reinforce-PixelCopter-v2
SimingSiming
2022-12-02T04:21:24Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-11-15T22:18:16Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-PixelCopter-v2 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 18.50 +/- 21.02 name: mean_reward verified: false --- <br> pixelcopter_hyperparameters = { <br> "h_size": 64, <br> "n_training_episodes": 50000, <br> "n_evaluation_episodes": 10, <br> "max_t": 10000, <br> "gamma": 0.99, <br> "lr": 1e-4, <br> "env_id": env_id, <br> "state_space": s_size, <br> "action_space": a_size, <br> }<br>
futuredatascience/action-classifier-v2
futuredatascience
2022-12-02T04:03:55Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-12-02T04:03:44Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 105 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 20, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 2100, "warmup_steps": 210, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
EP9/mt5-small-MT5-Intento2
EP9
2022-12-02T03:58:38Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-12-02T03:25:42Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: mt5-small-MT5-Intento2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-MT5-Intento2 This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan - Rouge1: 3.9645 - Rouge2: 0.8023 - Rougel: 3.8615 - Rougelsum: 3.8591 - Gen Len: 13.7379 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.01 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 0.0 | 1.0 | 1509 | nan | 3.9645 | 0.8023 | 3.8615 | 3.8591 | 13.7379 | | 0.0 | 2.0 | 3018 | nan | 3.9645 | 0.8023 | 3.8615 | 3.8591 | 13.7379 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
fathyshalab/all-roberta-large-v1-utility-3-16-5
fathyshalab
2022-12-02T03:57:28Z
105
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-30T19:28:48Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: all-roberta-large-v1-utility-3-16-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-utility-3-16-5 This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.3728 - Accuracy: 0.3956 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.8194 | 1.0 | 1 | 2.6027 | 0.3156 | | 2.2337 | 2.0 | 2 | 2.5079 | 0.3778 | | 1.7996 | 3.0 | 3 | 2.4293 | 0.3822 | | 1.4591 | 4.0 | 4 | 2.3728 | 0.3956 | | 1.3205 | 5.0 | 5 | 2.3439 | 0.3956 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
fathyshalab/all-roberta-large-v1-utility-2-16-5
fathyshalab
2022-12-02T03:28:10Z
101
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-30T19:27:07Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: all-roberta-large-v1-utility-2-16-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-utility-2-16-5 This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.3728 - Accuracy: 0.3956 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.8194 | 1.0 | 1 | 2.6027 | 0.3156 | | 2.2337 | 2.0 | 2 | 2.5079 | 0.3778 | | 1.7996 | 3.0 | 3 | 2.4293 | 0.3822 | | 1.4591 | 4.0 | 4 | 2.3728 | 0.3956 | | 1.3205 | 5.0 | 5 | 2.3439 | 0.3956 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
EP9/mt5-small-MT5-Intento1
EP9
2022-12-02T03:24:35Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-12-02T02:56:04Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: mt5-small-MT5-Intento1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-MT5-Intento1 This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan - Rouge1: 3.9645 - Rouge2: 0.8023 - Rougel: 3.8615 - Rougelsum: 3.8591 - Gen Len: 13.7379 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 0.0 | 1.0 | 6034 | nan | 3.9645 | 0.8023 | 3.8615 | 3.8591 | 13.7379 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
tanapatentlm/patentdeberta_base_spec_1024_pwi
tanapatentlm
2022-12-02T02:28:21Z
105
0
transformers
[ "transformers", "pytorch", "deberta", "fill-mask", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-06-17T04:44:15Z
--- tags: - fill-mask - deberta --- # Model Card for patentdeberta_base_spec_1024_pwi # Model Details ## Model Description More information needed - **Developed by:** More information needed - **Shared by [Optional]:** tanapatentlm - **Model type:** Fill Mask - **Language(s) (NLP):** More information needed - **License:** More information needed - **Parent Model:** [DeBERTa](https://huggingface.co/microsoft/deberta-base?text=The+goal+of+life+is+%5BMASK%5D.) - **Resources for more information:** More information needed # Uses ## Direct Use This model can be used for the task of Fill Mask. ## Downstream Use [Optional] More information needed. ## Out-of-Scope Use The model should not be used to intentionally create hostile or alienating environments for people. # Bias, Risks, and Limitations Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups. ## Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. # Training Details ## Training Data More information needed ## Training Procedure ### Preprocessing More information needed ### Speeds, Sizes, Times More information needed # Evaluation ## Testing Data, Factors & Metrics ### Testing Data More information needed ### Factors More information needed ### Metrics More information needed ## Results More information needed # Model Examination More information needed # Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** More information needed - **Hours used:** More information needed - **Cloud Provider:** More information needed - **Compute Region:** More information needed - **Carbon Emitted:** More information needed # Technical Specifications [optional] ## Model Architecture and Objective More information needed ## Compute Infrastructure More information needed ### Hardware More information needed ### Software More information needed. # Citation **BibTeX:** More information needed ```bibtex @inproceedings{ he2021deberta, title={DEBERTA: DECODING-ENHANCED BERT WITH DISENTANGLED ATTENTION}, author={Pengcheng He and Xiaodong Liu and Jianfeng Gao and Weizhu Chen}, booktitle={International Conference on Learning Representations}, year={2021}, url={https://openreview.net/forum?id=XPZIaotutsD} } ``` **APA:** More information needed # Glossary [optional] More information needed # More Information [optional] More information needed # Model Card Authors [optional] Tanapatentlm in collaboration with Ezi Ozoani and the Hugging Face team # Model Card Contact More information needed # How to Get Started with the Model Use the code below to get started with the model. <details> <summary> Click to expand </summary> ```python from transformers import AutoTokenizer, AutoModelForMaskedLM tokenizer = AutoTokenizer.from_pretrained("tanapatentlm/patentdeberta_base_spec_1024_pwi") model = AutoModelForMaskedLM.from_pretrained("tanapatentlm/patentdeberta_base_spec_1024_pwi") ``` </details>
Rastadayon/wav2vec2-large-xls-r-300m-dutch-baseline
Rastadayon
2022-12-02T02:11:35Z
15
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-01T19:46:34Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-dutch-baseline results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-dutch-baseline This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.5107 - Wer: 0.2674 - Cer: 0.0863 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 3.655 | 1.31 | 400 | 0.9337 | 0.7332 | 0.2534 | | 0.42 | 2.61 | 800 | 0.5018 | 0.4115 | 0.1374 | | 0.2267 | 3.92 | 1200 | 0.4776 | 0.3791 | 0.1259 | | 0.1624 | 5.23 | 1600 | 0.4807 | 0.3590 | 0.1208 | | 0.135 | 6.54 | 2000 | 0.4899 | 0.3417 | 0.1121 | | 0.1179 | 7.84 | 2400 | 0.5096 | 0.3445 | 0.1133 | | 0.1035 | 9.15 | 2800 | 0.4563 | 0.3455 | 0.1129 | | 0.092 | 10.46 | 3200 | 0.5061 | 0.3382 | 0.1127 | | 0.0804 | 11.76 | 3600 | 0.4969 | 0.3285 | 0.1088 | | 0.0748 | 13.07 | 4000 | 0.5274 | 0.3380 | 0.1114 | | 0.0669 | 14.38 | 4400 | 0.5201 | 0.3115 | 0.1028 | | 0.0588 | 15.69 | 4800 | 0.5238 | 0.3212 | 0.1054 | | 0.0561 | 16.99 | 5200 | 0.5273 | 0.3185 | 0.1044 | | 0.0513 | 18.3 | 5600 | 0.5577 | 0.3032 | 0.1010 | | 0.0476 | 19.61 | 6000 | 0.5298 | 0.3050 | 0.1008 | | 0.0408 | 20.91 | 6400 | 0.5725 | 0.2982 | 0.0984 | | 0.0376 | 22.22 | 6800 | 0.5605 | 0.2953 | 0.0966 | | 0.0339 | 23.53 | 7200 | 0.5419 | 0.2865 | 0.0938 | | 0.0315 | 24.84 | 7600 | 0.5530 | 0.2782 | 0.0915 | | 0.0286 | 26.14 | 8000 | 0.5354 | 0.2788 | 0.0917 | | 0.0259 | 27.45 | 8400 | 0.5245 | 0.2715 | 0.0878 | | 0.0231 | 28.76 | 8800 | 0.5107 | 0.2674 | 0.0863 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.12.0+cu102 - Datasets 2.7.1 - Tokenizers 0.13.2
fathyshalab/all-roberta-large-v1-travel-7-16-5
fathyshalab
2022-12-02T01:43:44Z
106
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-30T19:19:32Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: all-roberta-large-v1-travel-7-16-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-travel-7-16-5 This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.1384 - Accuracy: 0.4289 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.7625 | 1.0 | 1 | 2.5258 | 0.2933 | | 2.0955 | 2.0 | 2 | 2.3775 | 0.3333 | | 1.7076 | 3.0 | 3 | 2.2590 | 0.38 | | 1.3257 | 4.0 | 4 | 2.1788 | 0.4089 | | 1.1109 | 5.0 | 5 | 2.1384 | 0.4289 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
fathyshalab/all-roberta-large-v1-travel-6-16-5
fathyshalab
2022-12-02T01:19:18Z
105
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-30T19:17:33Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: all-roberta-large-v1-travel-6-16-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-travel-6-16-5 This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.1384 - Accuracy: 0.4289 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.7625 | 1.0 | 1 | 2.5258 | 0.2933 | | 2.0955 | 2.0 | 2 | 2.3775 | 0.3333 | | 1.7076 | 3.0 | 3 | 2.2590 | 0.38 | | 1.3257 | 4.0 | 4 | 2.1788 | 0.4089 | | 1.1109 | 5.0 | 5 | 2.1384 | 0.4289 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
cardiffnlp/roberta-base-topic-multi
cardiffnlp
2022-12-01T23:53:52Z
109
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "dataset:cardiffnlp/tweet_topic_multi", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-01T23:53:08Z
--- datasets: - cardiffnlp/tweet_topic_multi metrics: - f1 - accuracy model-index: - name: cardiffnlp/roberta-base-topic-multi results: - task: type: text-classification name: Text Classification dataset: name: cardiffnlp/tweet_topic_multi type: cardiffnlp/tweet_topic_multi split: test_2021 metrics: - name: Micro F1 (cardiffnlp/tweet_topic_multi) type: micro_f1_cardiffnlp/tweet_topic_multi value: 0.7546616383825687 - name: Macro F1 (cardiffnlp/tweet_topic_multi) type: micro_f1_cardiffnlp/tweet_topic_multi value: 0.5959450154471646 - name: Accuracy (cardiffnlp/tweet_topic_multi) type: accuracy_cardiffnlp/tweet_topic_multi value: 0.5318642048838594 pipeline_tag: text-classification widget: - text: Get the all-analog Classic Vinyl Edition of "Takin Off" Album from {@herbiehancock@} via {@bluenoterecords@} link below {{URL}} example_title: "topic_classification 1" - text: Yes, including Medicare and social security saving👍 example_title: "sentiment 1" - text: All two of them taste like ass. example_title: "offensive 1" - text: If you wanna look like a badass, have drama on social media example_title: "irony 1" - text: Whoever just unfollowed me you a bitch example_title: "hate 1" - text: I love swimming for the same reason I love meditating...the feeling of weightlessness. example_title: "emotion 1" - text: Beautiful sunset last night from the pontoon @TupperLakeNY example_title: "emoji 1" --- # cardiffnlp/roberta-base-topic-multi This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the [`cardiffnlp/tweet_topic_multi`](https://huggingface.co/datasets/cardiffnlp/tweet_topic_multi) via [`tweetnlp`](https://github.com/cardiffnlp/tweetnlp). Training split is `train_all` and parameters have been tuned on the validation split `validation_2021`. Following metrics are achieved on the test split `test_2021` ([link](https://huggingface.co/cardiffnlp/roberta-base-topic-multi/raw/main/metric.json)). - F1 (micro): 0.7546616383825687 - F1 (macro): 0.5959450154471646 - Accuracy: 0.5318642048838594 ### Usage Install tweetnlp via pip. ```shell pip install tweetnlp ``` Load the model in python. ```python import tweetnlp model = tweetnlp.Classifier("cardiffnlp/roberta-base-topic-multi", max_length=128) model.predict('Get the all-analog Classic Vinyl Edition of "Takin Off" Album from {@herbiehancock@} via {@bluenoterecords@} link below {{URL}}') ``` ### Reference ``` @inproceedings{camacho-collados-etal-2022-tweetnlp, title={{T}weet{NLP}: {C}utting-{E}dge {N}atural {L}anguage {P}rocessing for {S}ocial {M}edia}, author={Camacho-Collados, Jose and Rezaee, Kiamehr and Riahi, Talayeh and Ushio, Asahi and Loureiro, Daniel and Antypas, Dimosthenis and Boisson, Joanne and Espinosa-Anke, Luis and Liu, Fangyu and Mart{'\i}nez-C{'a}mara, Eugenio and others}, author = "Ushio, Asahi and Camacho-Collados, Jose", booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations", month = nov, year = "2022", address = "Abu Dhabi, U.A.E.", publisher = "Association for Computational Linguistics", } ```
huggingtweets/kanyewest
huggingtweets
2022-12-01T23:45:32Z
134
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: http://www.huggingtweets.com/kanyewest/1669938329169/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1276461929934942210/cqNhNk6v_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">ye</div> <div style="text-align: center; font-size: 14px;">@kanyewest</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from ye. | Data | ye | | --- | --- | | Tweets downloaded | 1876 | | Retweets | 198 | | Short tweets | 575 | | Tweets kept | 1103 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/fa2divr7/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @kanyewest's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/171a4vfe) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/171a4vfe/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/kanyewest') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
danielsaggau/scotus_tuned
danielsaggau
2022-12-01T23:41:13Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "longformer", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-12-01T23:41:00Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 512 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 3234 with parameters: ``` {'batch_size': 3, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 0.00016704911012047408 }, "scheduler": "WarmupLinear", "steps_per_epoch": 3234, "warmup_steps": 324, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 4096, 'do_lower_case': False}) with Transformer model: LongformerModel (1): Pooling({'word_embedding_dimension': 512, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
fathyshalab/all-roberta-large-v1-travel-2-16-5
fathyshalab
2022-12-01T23:35:01Z
106
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-30T19:09:41Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: all-roberta-large-v1-travel-2-16-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-travel-2-16-5 This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.1384 - Accuracy: 0.4289 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.7625 | 1.0 | 1 | 2.5258 | 0.2933 | | 2.0955 | 2.0 | 2 | 2.3775 | 0.3333 | | 1.7076 | 3.0 | 3 | 2.2590 | 0.38 | | 1.3257 | 4.0 | 4 | 2.1788 | 0.4089 | | 1.1109 | 5.0 | 5 | 2.1384 | 0.4289 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
Saulr/distilbert-base-uncased-finetuned-gender-classification
Saulr
2022-12-01T23:28:57Z
103
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-01T23:14:05Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-gender-classification results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-gender-classification This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8388 - Accuracy: 0.7856 - F1: 0.7855 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.4445 | 1.0 | 2015 | 0.5271 | 0.7846 | 0.7844 | | 0.2534 | 2.0 | 4030 | 0.8388 | 0.7856 | 0.7855 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
ehuang2/bart-finetuned-idl
ehuang2
2022-12-01T23:02:02Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-12-01T05:18:47Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: bart-finetuned-idl results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-finetuned-idl This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0031 - Bleu: 0.0 - Gen Len: 4.9917 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 35 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:------:|:---------------:|:----:|:-------:| | 0.2005 | 1.0 | 13874 | 0.1589 | 0.0 | 5.0002 | | 0.1182 | 2.0 | 27748 | 0.0949 | 0.0 | 4.9924 | | 0.0983 | 3.0 | 41622 | 0.0778 | 0.0 | 4.9924 | | 0.0724 | 4.0 | 55496 | 0.0724 | 0.0 | 4.9903 | | 0.0532 | 5.0 | 69370 | 0.0549 | 0.0 | 4.9928 | | 0.0458 | 6.0 | 83244 | 0.0463 | 0.0 | 4.9861 | | 0.0435 | 7.0 | 97118 | 0.0548 | 0.0 | 4.9923 | | 0.0464 | 8.0 | 110992 | 0.0847 | 0.0 | 4.9899 | | 0.0317 | 9.0 | 124866 | 0.0303 | 0.0 | 4.9922 | | 0.0302 | 10.0 | 138740 | 0.0284 | 0.0 | 4.9919 | | 0.0306 | 11.0 | 152614 | 0.0120 | 0.0 | 4.9919 | | 0.0224 | 12.0 | 166488 | 0.0462 | 0.0 | 4.9917 | | 0.0184 | 13.0 | 180362 | 0.0138 | 0.0 | 4.9924 | | 0.0208 | 14.0 | 194236 | 0.0730 | 0.0 | 4.9919 | | 0.0149 | 15.0 | 208110 | 0.0126 | 0.0 | 4.992 | | 0.0161 | 16.0 | 221984 | 0.0100 | 0.0 | 4.9915 | | 0.0178 | 17.0 | 235858 | 0.0106 | 0.0 | 4.992 | | 0.0116 | 18.0 | 249732 | 0.0149 | 0.0 | 4.9921 | | 0.0096 | 19.0 | 263606 | 0.0085 | 0.0 | 4.9918 | | 0.0094 | 20.0 | 277480 | 0.0101 | 0.0 | 4.9916 | | 0.0084 | 21.0 | 291354 | 0.0093 | 0.0 | 4.9918 | | 0.0077 | 22.0 | 305228 | 0.0138 | 0.0 | 4.992 | | 0.0094 | 23.0 | 319102 | 0.0084 | 0.0 | 4.9918 | | 0.0079 | 24.0 | 332976 | 0.0058 | 0.0 | 4.9917 | | 0.006 | 25.0 | 346850 | 0.0067 | 0.0 | 4.9918 | | 0.0046 | 26.0 | 360724 | 0.0041 | 0.0 | 4.9918 | | 0.0049 | 27.0 | 374598 | 0.0061 | 0.0 | 4.9919 | | 0.002 | 28.0 | 388472 | 0.0035 | 0.0 | 4.9918 | | 0.003 | 29.0 | 402346 | 0.0038 | 0.0 | 4.9917 | | 0.0027 | 30.0 | 416220 | 0.0050 | 0.0 | 4.9917 | | 0.001 | 31.0 | 430094 | 0.0063 | 0.0 | 4.9918 | | 0.0017 | 32.0 | 443968 | 0.0042 | 0.0 | 4.992 | | 0.0013 | 33.0 | 457842 | 0.0032 | 0.0 | 4.9917 | | 0.0005 | 34.0 | 471716 | 0.0031 | 0.0 | 4.9917 | | 0.0003 | 35.0 | 485590 | 0.0031 | 0.0 | 4.9917 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.10.0+cu111 - Datasets 2.7.1 - Tokenizers 0.13.2
cardiffnlp/twitter-roberta-base-2021-124m-topic-multi
cardiffnlp
2022-12-01T22:52:43Z
411
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "dataset:cardiffnlp/tweet_topic_multi", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-01T22:51:57Z
--- datasets: - cardiffnlp/tweet_topic_multi metrics: - f1 - accuracy model-index: - name: cardiffnlp/twitter-roberta-base-2021-124m-topic-multi results: - task: type: text-classification name: Text Classification dataset: name: cardiffnlp/tweet_topic_multi type: cardiffnlp/tweet_topic_multi split: test_2021 metrics: - name: Micro F1 (cardiffnlp/tweet_topic_multi) type: micro_f1_cardiffnlp/tweet_topic_multi value: 0.7528230865746549 - name: Macro F1 (cardiffnlp/tweet_topic_multi) type: micro_f1_cardiffnlp/tweet_topic_multi value: 0.5564228688431104 - name: Accuracy (cardiffnlp/tweet_topic_multi) type: accuracy_cardiffnlp/tweet_topic_multi value: 0.535437760571769 pipeline_tag: text-classification widget: - text: Get the all-analog Classic Vinyl Edition of "Takin Off" Album from {@herbiehancock@} via {@bluenoterecords@} link below {{URL}} example_title: "topic_classification 1" - text: Yes, including Medicare and social security saving👍 example_title: "sentiment 1" - text: All two of them taste like ass. example_title: "offensive 1" - text: If you wanna look like a badass, have drama on social media example_title: "irony 1" - text: Whoever just unfollowed me you a bitch example_title: "hate 1" - text: I love swimming for the same reason I love meditating...the feeling of weightlessness. example_title: "emotion 1" - text: Beautiful sunset last night from the pontoon @TupperLakeNY example_title: "emoji 1" --- # cardiffnlp/twitter-roberta-base-2021-124m-topic-multi This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-2021-124m](https://huggingface.co/cardiffnlp/twitter-roberta-base-2021-124m) on the [`cardiffnlp/tweet_topic_multi`](https://huggingface.co/datasets/cardiffnlp/tweet_topic_multi) via [`tweetnlp`](https://github.com/cardiffnlp/tweetnlp). Training split is `train_all` and parameters have been tuned on the validation split `validation_2021`. Following metrics are achieved on the test split `test_2021` ([link](https://huggingface.co/cardiffnlp/twitter-roberta-base-2021-124m-topic-multi/raw/main/metric.json)). - F1 (micro): 0.7528230865746549 - F1 (macro): 0.5564228688431104 - Accuracy: 0.535437760571769 ### Usage Install tweetnlp via pip. ```shell pip install tweetnlp ``` Load the model in python. ```python import tweetnlp model = tweetnlp.Classifier("cardiffnlp/twitter-roberta-base-2021-124m-topic-multi", max_length=128) model.predict('Get the all-analog Classic Vinyl Edition of "Takin Off" Album from {@herbiehancock@} via {@bluenoterecords@} link below {{URL}}') ``` ### Reference ``` @inproceedings{camacho-collados-etal-2022-tweetnlp, title={{T}weet{NLP}: {C}utting-{E}dge {N}atural {L}anguage {P}rocessing for {S}ocial {M}edia}, author={Camacho-Collados, Jose and Rezaee, Kiamehr and Riahi, Talayeh and Ushio, Asahi and Loureiro, Daniel and Antypas, Dimosthenis and Boisson, Joanne and Espinosa-Anke, Luis and Liu, Fangyu and Mart{'\i}nez-C{'a}mara, Eugenio and others}, author = "Ushio, Asahi and Camacho-Collados, Jose", booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations", month = nov, year = "2022", address = "Abu Dhabi, U.A.E.", publisher = "Association for Computational Linguistics", } ```
muhtasham/bert-small-mlm-finetuned-emotion
muhtasham
2022-12-01T22:45:11Z
194
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-12-01T21:51:59Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-small-mlm-finetuned-emotion results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-small-mlm-finetuned-emotion This model is a fine-tuned version of [google/bert_uncased_L-4_H-512_A-8](https://huggingface.co/google/bert_uncased_L-4_H-512_A-8) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.7413 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.8418 | 22.73 | 500 | 2.7035 | | 2.5706 | 45.45 | 1000 | 2.6968 | | 2.4199 | 68.18 | 1500 | 2.6595 | | 2.2901 | 90.91 | 2000 | 2.7323 | | 2.1793 | 113.64 | 2500 | 2.7560 | | 2.0651 | 136.36 | 3000 | 2.7413 | ### Framework versions - Transformers 4.25.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
fathyshalab/all-roberta-large-v1-auto_and_commute-9-16-5
fathyshalab
2022-12-01T22:43:14Z
105
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-30T19:05:42Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: all-roberta-large-v1-auto_and_commute-9-16-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-auto_and_commute-9-16-5 This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.2614 - Accuracy: 0.4289 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.7929 | 1.0 | 1 | 2.5690 | 0.2667 | | 2.267 | 2.0 | 2 | 2.4558 | 0.3533 | | 1.8495 | 3.0 | 3 | 2.3630 | 0.3911 | | 1.4397 | 4.0 | 4 | 2.2956 | 0.4133 | | 1.2985 | 5.0 | 5 | 2.2614 | 0.4289 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
futuredatascience/to-classifier-v2
futuredatascience
2022-12-01T22:09:00Z
2
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-12-01T22:08:50Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 53 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 20, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 1060, "warmup_steps": 106, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Xxanderr/ScraperTrainer
Xxanderr
2022-12-01T22:01:52Z
122
1
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-12-01T21:09:17Z
--- license: mit tags: - generated_from_trainer model-index: - name: ScraperTrainer results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ScraperTrainer This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
Belyaev/sd-class-butterflies-32
Belyaev
2022-12-01T21:54:51Z
31
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-12-01T21:54:34Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('Belyaev/sd-class-butterflies-32') image = pipeline().images[0] image ```
QPQPQPQPQPQ11/Trained-Carptriever
QPQPQPQPQPQ11
2022-12-01T21:51:07Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-12-01T21:46:24Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
motionsh/tutorial_huggingface
motionsh
2022-12-01T21:49:32Z
0
0
null
[ "region:us" ]
null
2022-12-01T18:44:34Z
BioMAT models based on paper xyz
fathyshalab/all-roberta-large-v1-auto_and_commute-6-16-5
fathyshalab
2022-12-01T21:29:16Z
105
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-30T18:59:42Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: all-roberta-large-v1-auto_and_commute-6-16-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-auto_and_commute-6-16-5 This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.2614 - Accuracy: 0.4289 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.7929 | 1.0 | 1 | 2.5690 | 0.2667 | | 2.267 | 2.0 | 2 | 2.4558 | 0.3533 | | 1.8495 | 3.0 | 3 | 2.3630 | 0.3911 | | 1.4397 | 4.0 | 4 | 2.2956 | 0.4133 | | 1.2985 | 5.0 | 5 | 2.2614 | 0.4289 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
cardiffnlp/roberta-base-topic-single
cardiffnlp
2022-12-01T21:22:14Z
105
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "dataset:cardiffnlp/tweet_topic_single", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-01T21:19:13Z
--- datasets: - cardiffnlp/tweet_topic_single metrics: - f1 - accuracy model-index: - name: cardiffnlp/roberta-base-topic-single results: - task: type: text-classification name: Text Classification dataset: name: cardiffnlp/tweet_topic_single type: cardiffnlp/tweet_topic_single split: test_2021 metrics: - name: Micro F1 (cardiffnlp/tweet_topic_single) type: micro_f1_cardiffnlp/tweet_topic_single value: 0.8818665091553456 - name: Macro F1 (cardiffnlp/tweet_topic_single) type: micro_f1_cardiffnlp/tweet_topic_single value: 0.7359303318518903 - name: Accuracy (cardiffnlp/tweet_topic_single) type: accuracy_cardiffnlp/tweet_topic_single value: 0.8818665091553456 pipeline_tag: text-classification widget: - text: Get the all-analog Classic Vinyl Edition of "Takin Off" Album from {@herbiehancock@} via {@bluenoterecords@} link below {{URL}} example_title: "topic_classification 1" - text: Yes, including Medicare and social security saving👍 example_title: "sentiment 1" - text: All two of them taste like ass. example_title: "offensive 1" - text: If you wanna look like a badass, have drama on social media example_title: "irony 1" - text: Whoever just unfollowed me you a bitch example_title: "hate 1" - text: I love swimming for the same reason I love meditating...the feeling of weightlessness. example_title: "emotion 1" - text: Beautiful sunset last night from the pontoon @TupperLakeNY example_title: "emoji 1" --- # cardiffnlp/roberta-base-topic-single This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the [`cardiffnlp/tweet_topic_single`](https://huggingface.co/datasets/cardiffnlp/tweet_topic_single) via [`tweetnlp`](https://github.com/cardiffnlp/tweetnlp). Training split is `train_all` and parameters have been tuned on the validation split `validation_2021`. Following metrics are achieved on the test split `test_2021` ([link](https://huggingface.co/cardiffnlp/roberta-base-topic-single/raw/main/metric.json)). - F1 (micro): 0.8818665091553456 - F1 (macro): 0.7359303318518903 - Accuracy: 0.8818665091553456 ### Usage Install tweetnlp via pip. ```shell pip install tweetnlp ``` Load the model in python. ```python import tweetnlp model = tweetnlp.Classifier("cardiffnlp/roberta-base-topic-single", max_length=128) model.predict('Get the all-analog Classic Vinyl Edition of "Takin Off" Album from {@herbiehancock@} via {@bluenoterecords@} link below {{URL}}') ``` ### Reference ``` @inproceedings{camacho-collados-etal-2022-tweetnlp, title={{T}weet{NLP}: {C}utting-{E}dge {N}atural {L}anguage {P}rocessing for {S}ocial {M}edia}, author={Camacho-Collados, Jose and Rezaee, Kiamehr and Riahi, Talayeh and Ushio, Asahi and Loureiro, Daniel and Antypas, Dimosthenis and Boisson, Joanne and Espinosa-Anke, Luis and Liu, Fangyu and Mart{'\i}nez-C{'a}mara, Eugenio and others}, author = "Ushio, Asahi and Camacho-Collados, Jose", booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations", month = nov, year = "2022", address = "Abu Dhabi, U.A.E.", publisher = "Association for Computational Linguistics", } ```
Annabel/my-awesome-model
Annabel
2022-12-01T21:09:03Z
0
0
sklearn
[ "sklearn", "skops", "tabular-classification", "license:mit", "region:us" ]
tabular-classification
2022-12-01T21:08:58Z
--- license: mit library_name: sklearn tags: - sklearn - skops - tabular-classification model_file: example.pkl widget: structuredData: area error: - 30.29 - 96.05 - 48.31 compactness error: - 0.01911 - 0.01652 - 0.01484 concave points error: - 0.01037 - 0.0137 - 0.01093 concavity error: - 0.02701 - 0.02269 - 0.02813 fractal dimension error: - 0.003586 - 0.001698 - 0.002461 mean area: - 481.9 - 1130.0 - 748.9 mean compactness: - 0.1058 - 0.1029 - 0.1223 mean concave points: - 0.03821 - 0.07951 - 0.08087 mean concavity: - 0.08005 - 0.108 - 0.1466 mean fractal dimension: - 0.06373 - 0.05461 - 0.05796 mean perimeter: - 81.09 - 123.6 - 101.7 mean radius: - 12.47 - 18.94 - 15.46 mean smoothness: - 0.09965 - 0.09009 - 0.1092 mean symmetry: - 0.1925 - 0.1582 - 0.1931 mean texture: - 18.6 - 21.31 - 19.48 perimeter error: - 2.497 - 5.486 - 3.094 radius error: - 0.3961 - 0.7888 - 0.4743 smoothness error: - 0.006953 - 0.004444 - 0.00624 symmetry error: - 0.01782 - 0.01386 - 0.01397 texture error: - 1.044 - 0.7975 - 0.7859 worst area: - 677.9 - 1866.0 - 1156.0 worst compactness: - 0.2378 - 0.2336 - 0.2394 worst concave points: - 0.1015 - 0.1789 - 0.1514 worst concavity: - 0.2671 - 0.2687 - 0.3791 worst fractal dimension: - 0.0875 - 0.06589 - 0.08019 worst perimeter: - 96.05 - 165.9 - 124.9 worst radius: - 14.97 - 24.86 - 19.26 worst smoothness: - 0.1426 - 0.1193 - 0.1546 worst symmetry: - 0.3014 - 0.2551 - 0.2837 worst texture: - 24.64 - 26.58 - 26.0 --- # Model description This is a DecisionTreeClassifier model trained on breast cancer dataset. ## Intended uses & limitations This model is not ready to be used in production. ## Training Procedure ### Hyperparameters The model is trained with below hyperparameters. <details> <summary> Click to expand </summary> | Hyperparameter | Value | |--------------------------|---------| | ccp_alpha | 0.0 | | class_weight | | | criterion | gini | | max_depth | | | max_features | | | max_leaf_nodes | | | min_impurity_decrease | 0.0 | | min_samples_leaf | 1 | | min_samples_split | 2 | | min_weight_fraction_leaf | 0.0 | | random_state | | | splitter | best | </details> ### Model Plot The model plot is below. <style>#sk-container-id-1 {color: black;background-color: white;}#sk-container-id-1 pre{padding: 0;}#sk-container-id-1 div.sk-toggleable {background-color: white;}#sk-container-id-1 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-1 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-1 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-1 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-1 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-1 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-1 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-1 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-container-id-1 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-1 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-1 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-1 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-1 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-1 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-1 div.sk-item {position: relative;z-index: 1;}#sk-container-id-1 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-1 div.sk-item::before, #sk-container-id-1 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-1 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-1 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-1 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-1 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-1 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-1 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-1 div.sk-label-container {text-align: center;}#sk-container-id-1 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-1 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-1" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>DecisionTreeClassifier()</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-1" type="checkbox" checked><label for="sk-estimator-id-1" class="sk-toggleable__label sk-toggleable__label-arrow">DecisionTreeClassifier</label><div class="sk-toggleable__content"><pre>DecisionTreeClassifier()</pre></div></div></div></div></div> ## Evaluation Results You can find the details about evaluation process and the evaluation results. | Metric | Value | |----------|----------| | accuracy | 0.929825 | | f1 score | 0.929825 | # How to Get Started with the Model Use the code below to get started with the model. ```python import joblib import json import pandas as pd clf = joblib.load(example.pkl) with open("config.json") as f: config = json.load(f) clf.predict(pd.DataFrame.from_dict(config["sklearn"]["example_input"])) ``` # Model Card Authors This model card is written by following authors: skops_user # Model Card Contact You can contact the model card authors through following channels: [More Information Needed] # Citation Below you can find information related to citation. **BibTeX:** ``` bibtex @inproceedings{...,year={2020}} ``` # Additional Content ## confusion_matrix ![confusion_matrix](confusion_matrix.png)
fathyshalab/all-roberta-large-v1-auto_and_commute-5-16-5
fathyshalab
2022-12-01T21:04:49Z
105
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-30T18:57:42Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: all-roberta-large-v1-auto_and_commute-5-16-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-auto_and_commute-5-16-5 This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.2614 - Accuracy: 0.4289 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.7929 | 1.0 | 1 | 2.5690 | 0.2667 | | 2.267 | 2.0 | 2 | 2.4558 | 0.3533 | | 1.8495 | 3.0 | 3 | 2.3630 | 0.3911 | | 1.4397 | 4.0 | 4 | 2.2956 | 0.4133 | | 1.2985 | 5.0 | 5 | 2.2614 | 0.4289 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
Positroniy/first_finetuning-sentiment-model-3000-samples
Positroniy
2022-12-01T20:43:40Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-01T04:56:34Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: first_finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: train args: plain_text metrics: - name: Accuracy type: accuracy value: 0.87 - name: F1 type: f1 value: 0.8712871287128714 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # first_finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.2883 - Accuracy: 0.87 - F1: 0.8713 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
cardiffnlp/twitter-roberta-base-2021-124m-topic-single
cardiffnlp
2022-12-01T20:24:08Z
106
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "dataset:cardiffnlp/tweet_topic_single", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-01T20:20:58Z
--- datasets: - cardiffnlp/tweet_topic_single metrics: - f1 - accuracy model-index: - name: cardiffnlp/twitter-roberta-base-2021-124m-topic-single results: - task: type: text-classification name: Text Classification dataset: name: cardiffnlp/tweet_topic_single type: cardiffnlp/tweet_topic_single split: test_2021 metrics: - name: Micro F1 (cardiffnlp/tweet_topic_single) type: micro_f1_cardiffnlp/tweet_topic_single value: 0.9019492025989368 - name: Macro F1 (cardiffnlp/tweet_topic_single) type: micro_f1_cardiffnlp/tweet_topic_single value: 0.801375264407874 - name: Accuracy (cardiffnlp/tweet_topic_single) type: accuracy_cardiffnlp/tweet_topic_single value: 0.9019492025989368 pipeline_tag: text-classification widget: - text: Get the all-analog Classic Vinyl Edition of "Takin Off" Album from {@herbiehancock@} via {@bluenoterecords@} link below {{URL}} example_title: "topic_classification 1" - text: Yes, including Medicare and social security saving👍 example_title: "sentiment 1" - text: All two of them taste like ass. example_title: "offensive 1" - text: If you wanna look like a badass, have drama on social media example_title: "irony 1" - text: Whoever just unfollowed me you a bitch example_title: "hate 1" - text: I love swimming for the same reason I love meditating...the feeling of weightlessness. example_title: "emotion 1" - text: Beautiful sunset last night from the pontoon @TupperLakeNY example_title: "emoji 1" --- # cardiffnlp/twitter-roberta-base-2021-124m-topic-single This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-2021-124m](https://huggingface.co/cardiffnlp/twitter-roberta-base-2021-124m) on the [`cardiffnlp/tweet_topic_single`](https://huggingface.co/datasets/cardiffnlp/tweet_topic_single) via [`tweetnlp`](https://github.com/cardiffnlp/tweetnlp). Training split is `train_all` and parameters have been tuned on the validation split `validation_2021`. Following metrics are achieved on the test split `test_2021` ([link](https://huggingface.co/cardiffnlp/twitter-roberta-base-2021-124m-topic-single/raw/main/metric.json)). - F1 (micro): 0.9019492025989368 - F1 (macro): 0.801375264407874 - Accuracy: 0.9019492025989368 ### Usage Install tweetnlp via pip. ```shell pip install tweetnlp ``` Load the model in python. ```python import tweetnlp model = tweetnlp.Classifier("cardiffnlp/twitter-roberta-base-2021-124m-topic-single", max_length=128) model.predict('Get the all-analog Classic Vinyl Edition of "Takin Off" Album from {@herbiehancock@} via {@bluenoterecords@} link below {{URL}}') ``` ### Reference ``` @inproceedings{camacho-collados-etal-2022-tweetnlp, title={{T}weet{NLP}: {C}utting-{E}dge {N}atural {L}anguage {P}rocessing for {S}ocial {M}edia}, author={Camacho-Collados, Jose and Rezaee, Kiamehr and Riahi, Talayeh and Ushio, Asahi and Loureiro, Daniel and Antypas, Dimosthenis and Boisson, Joanne and Espinosa-Anke, Luis and Liu, Fangyu and Mart{'\i}nez-C{'a}mara, Eugenio and others}, author = "Ushio, Asahi and Camacho-Collados, Jose", booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations", month = nov, year = "2022", address = "Abu Dhabi, U.A.E.", publisher = "Association for Computational Linguistics", } ```
facebook/esm2_t36_3B_UR50D
facebook
2022-12-01T20:22:22Z
3,892,233
18
transformers
[ "transformers", "pytorch", "tf", "esm", "fill-mask", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-10-13T12:38:30Z
--- license: mit widget: - text: "MQIFVKTLTGKTITLEVEPS<mask>TIENVKAKIQDKEGIPPDQQRLIFAGKQLEDGRTLSDYNIQKESTLHLVLRLRGG" --- ## ESM-2 ESM-2 is a state-of-the-art protein model trained on a masked language modelling objective. It is suitable for fine-tuning on a wide range of tasks that take protein sequences as input. For detailed information on the model architecture and training data, please refer to the [accompanying paper](https://www.biorxiv.org/content/10.1101/2022.07.20.500902v2). You may also be interested in some demo notebooks ([PyTorch](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/protein_language_modeling.ipynb), [TensorFlow](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/protein_language_modeling-tf.ipynb)) which demonstrate how to fine-tune ESM-2 models on your tasks of interest. Several ESM-2 checkpoints are available in the Hub with varying sizes. Larger sizes generally have somewhat better accuracy, but require much more memory and time to train: | Checkpoint name | Num layers | Num parameters | |------------------------------|----|----------| | [esm2_t48_15B_UR50D](https://huggingface.co/facebook/esm2_t48_15B_UR50D) | 48 | 15B | | [esm2_t36_3B_UR50D](https://huggingface.co/facebook/esm2_t36_3B_UR50D) | 36 | 3B | | [esm2_t33_650M_UR50D](https://huggingface.co/facebook/esm2_t33_650M_UR50D) | 33 | 650M | | [esm2_t30_150M_UR50D](https://huggingface.co/facebook/esm2_t30_150M_UR50D) | 30 | 150M | | [esm2_t12_35M_UR50D](https://huggingface.co/facebook/esm2_t12_35M_UR50D) | 12 | 35M | | [esm2_t6_8M_UR50D](https://huggingface.co/facebook/esm2_t6_8M_UR50D) | 6 | 8M |
ameerTelbani/ameer
ameerTelbani
2022-12-01T20:05:04Z
265
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-12-01T20:04:45Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: ameer results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9850746393203735 --- # ameer Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### apple ![apple](images/apple.jpg) #### banana ![banana](images/banana.jpg) #### orange ![orange](images/orange.jpg)
ameerTelbani/ameeeer
ameerTelbani
2022-12-01T19:49:18Z
186
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-12-01T19:49:03Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: ameeeer results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.8656716346740723 --- # ameeeer Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### corgi ![corgi](images/corgi.jpg) #### samoyed ![samoyed](images/samoyed.jpg) #### shiba inu ![shiba inu](images/shiba_inu.jpg)
nvidia/nemo-megatron-mt5-3B
nvidia
2022-12-01T19:34:02Z
30
12
nemo
[ "nemo", "pytorch", "seq2seq", "masked language modeling", "multilingual", "ja", "en", "it", "lv", "ru", "hu", "zh", "pl", "el", "de", "cs", "ko", "hi", "no", "da", "sk", "fr", "pt", "lt", "es", "nl", "sv", "ro", "fi", "dataset:mc4", "arxiv:2010.11934", "arxiv:1910.10683", "arxiv:1809.05053", "arxiv:1909.08053", "license:cc-by-4.0", "region:us" ]
null
2022-09-22T19:46:28Z
--- language: - ja - en - it - lv - ru - hu - zh - pl - el - de - cs - ko - hi - no - da - sk - fr - pt - lt - es - nl - sv - ro - fi library_name: nemo datasets: - mc4 tags: - pytorch - seq2seq - masked language modeling - multilingual license: cc-by-4.0 --- # NeMo Megatron-mT5 3B <style> img { display: inline; } </style> |[![Model architecture](https://img.shields.io/badge/Arch-Encoder--Decoder-green)](#model-architecture)|[![Model size](https://img.shields.io/badge/Params-3B-green)](#model-architecture)|[![Language](https://img.shields.io/badge/Language-Multilingual-green)](#datasets) ## Model Description NeMo Megatron-mT5 3B is a *multilingual* transformer-based masked language model. [mT5](https://arxiv.org/abs/2010.11934) [1] is a class of encoder-decoder models trained with a span-based masked language modeling objective on a dataset comprising documents from many different languages. We follow the [T5v1.1](https://huggingface.co/docs/transformers/model_doc/t5v1.1) approach of pre-training using only the masked language modeling objective. It has Tensor Parallelism (TP) of 2, Pipeline Parallelism (PP) of 1 and should fit on a single NVIDIA GPU for inference and 2 A100 80G GPUs for finetuning. This model was trained with [NeMo Megatron](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/stable/nlp/nemo_megatron/intro.html). **NOTE**: Weights are distributed in bfloat16. ## List of Languages We pre-trained our mT5 model on the following languages from the [mC4](https://github.com/allenai/allennlp/discussions/5265) dataset. 1. Japanese 2. English 3. Italian 4. Latvian 5. Russian 6. Hungarian 7. Chinese 8. Polish 9. Greek 10. German 11. Czech 12. Korean 13. Hindi 14. Norwegian 15. Danish 16. Slovak 17. French 18. Portuguese 19. Lithuanian 20. Spanish 21. Dutch 22. Swedish 23. Romanian 24. Finnish *NOTE*: The English data used to train our model is the smaller "clean" version (C4) used in the [T5 paper](https://arxiv.org/abs/1910.10683) and not the larger one distributed as part of mC4. ## Getting started ### Step 1: Install NeMo and dependencies You will need to install NVIDIA Apex and NeMo. ``` git clone https://github.com/ericharper/apex.git cd apex git checkout nm_v1.11.0 pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" --global-option="--fast_layer_norm" --global-option="--distributed_adam" --global-option="--deprecated_fused_adam" ./ ``` ``` pip install nemo_toolkit['nlp']==1.12.0 ``` Alternatively, you can use NeMo Megatron training docker container with all dependencies pre-installed - [https://developer.nvidia.com/nemo-megatron-open-beta?nvid=nv-int-tblg-249896](https://developer.nvidia.com/nemo-megatron-open-beta) ### Step 2: Run inference **Note.** The model has been trained with Tensor Parallelism (TP) of 2 and Pipeline Parallelism (PP) of 1, but it should be possible to run inference with tensor parallel size 1 on most NVIDIA GPUs ``` git clone https://github.com/NVIDIA/NeMo.git cd NeMo/examples/nlp/language_modeling git checkout r1.12.0 python megatron_t5_eval.py \ --model_file nemo_megatron_mt5_3b_bf16_tp2.nemo \ --prompt "La capitale de la France est <mask>" \ --tensor_model_parallel_size 2 ``` The script will automatically replace all \<mask\> tokens with the appropriate sentinel tokens used while pre-training and attempt to fill them in autoregressively with greedy decoding. *Expected Response*: ``` { 'prompt': 'La capitale de la France est <mask>', 'completion': { 'text': 'Paris', 'tokens': [(4586, '▁Paris', 0.0)]}, 'masked_input': '▁La ▁capital e ▁de ▁la ▁France ▁est ▁<extra_id_0>' } ``` - prompt: The provided raw prompt as input - completion: - text: The final generated text from the model along with special/sentinel tokens besides \</s\> - tokens: Each individual subword that is generated along with its log-probability. - masked_input: The original raw prompt with <mask> replaced with appropriate sentinel tokens. ## Training Data The model was trained on the [mC4](https://github.com/allenai/allennlp/discussions/5265) dataset made available by AI2 and hosted on Huggingface. ## Evaluation results Zero-shot language transformer performance on the [XNLI](https://arxiv.org/abs/1809.05053) dataset for a model fine-tuned on MNLI. | English | Spanish | German | French | Chinese| |---|---| ---|---|---| |89.4|86.4|84.5|85.8|79.9| ## Limitations The model was trained on the data originally crawled from the Internet. This data contains toxic language and societal biases. Therefore, the model may amplify those biases and return toxic responses especially when prompted with toxic prompts. ## References [1] [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) [2] [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/pdf/1909.08053.pdf) [3] [NVIDIA NeMo Toolkit](https://github.com/NVIDIA/NeMo) [4] [XNLI: Evaluating Cross-lingual Sentence Representations](https://arxiv.org/abs/1809.05053) ## Licence License to use this model is covered by the [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/). By downloading the public and release version of the model, you accept the terms and conditions of the [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/) license.
cardiffnlp/twitter-roberta-base-dec2021-topic-single
cardiffnlp
2022-12-01T19:26:39Z
104
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "dataset:cardiffnlp/tweet_topic_single", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-01T19:23:28Z
--- datasets: - cardiffnlp/tweet_topic_single metrics: - f1 - accuracy model-index: - name: cardiffnlp/twitter-roberta-base-dec2021-topic-single results: - task: type: text-classification name: Text Classification dataset: name: cardiffnlp/tweet_topic_single type: cardiffnlp/tweet_topic_single split: test_2021 metrics: - name: Micro F1 (cardiffnlp/tweet_topic_single) type: micro_f1_cardiffnlp/tweet_topic_single value: 0.896042528056704 - name: Macro F1 (cardiffnlp/tweet_topic_single) type: micro_f1_cardiffnlp/tweet_topic_single value: 0.7861641383871055 - name: Accuracy (cardiffnlp/tweet_topic_single) type: accuracy_cardiffnlp/tweet_topic_single value: 0.896042528056704 pipeline_tag: text-classification widget: - text: Get the all-analog Classic Vinyl Edition of "Takin Off" Album from {@herbiehancock@} via {@bluenoterecords@} link below {{URL}} example_title: "topic_classification 1" - text: Yes, including Medicare and social security saving👍 example_title: "sentiment 1" - text: All two of them taste like ass. example_title: "offensive 1" - text: If you wanna look like a badass, have drama on social media example_title: "irony 1" - text: Whoever just unfollowed me you a bitch example_title: "hate 1" - text: I love swimming for the same reason I love meditating...the feeling of weightlessness. example_title: "emotion 1" - text: Beautiful sunset last night from the pontoon @TupperLakeNY example_title: "emoji 1" --- # cardiffnlp/twitter-roberta-base-dec2021-topic-single This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-dec2021](https://huggingface.co/cardiffnlp/twitter-roberta-base-dec2021) on the [`cardiffnlp/tweet_topic_single`](https://huggingface.co/datasets/cardiffnlp/tweet_topic_single) via [`tweetnlp`](https://github.com/cardiffnlp/tweetnlp). Training split is `train_all` and parameters have been tuned on the validation split `validation_2021`. Following metrics are achieved on the test split `test_2021` ([link](https://huggingface.co/cardiffnlp/twitter-roberta-base-dec2021-topic-single/raw/main/metric.json)). - F1 (micro): 0.896042528056704 - F1 (macro): 0.7861641383871055 - Accuracy: 0.896042528056704 ### Usage Install tweetnlp via pip. ```shell pip install tweetnlp ``` Load the model in python. ```python import tweetnlp model = tweetnlp.Classifier("cardiffnlp/twitter-roberta-base-dec2021-topic-single", max_length=128) model.predict('Get the all-analog Classic Vinyl Edition of "Takin Off" Album from {@herbiehancock@} via {@bluenoterecords@} link below {{URL}}') ``` ### Reference ``` @inproceedings{camacho-collados-etal-2022-tweetnlp, title={{T}weet{NLP}: {C}utting-{E}dge {N}atural {L}anguage {P}rocessing for {S}ocial {M}edia}, author={Camacho-Collados, Jose and Rezaee, Kiamehr and Riahi, Talayeh and Ushio, Asahi and Loureiro, Daniel and Antypas, Dimosthenis and Boisson, Joanne and Espinosa-Anke, Luis and Liu, Fangyu and Mart{'\i}nez-C{'a}mara, Eugenio and others}, author = "Ushio, Asahi and Camacho-Collados, Jose", booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations", month = nov, year = "2022", address = "Abu Dhabi, U.A.E.", publisher = "Association for Computational Linguistics", } ```