modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-07-15 12:29:39
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 521
values | tags
listlengths 1
4.05k
| pipeline_tag
stringclasses 55
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-07-15 12:28:52
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
MikkelGodsk/q-FrozenLake-v1-4x4-noSlippery | MikkelGodsk | 2022-12-23T11:47:36Z | 0 | 0 | null | [
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
]
| reinforcement-learning | 2022-12-23T11:46:00Z | ---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="MikkelGodsk/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"])
```
|
research-backup/relbert-roberta-large-semeval2012-v6-mask-prompt-e-nce-0 | research-backup | 2022-12-23T11:11:20Z | 3 | 0 | transformers | [
"transformers",
"pytorch",
"roberta",
"feature-extraction",
"dataset:relbert/semeval2012_relational_similarity_v6",
"model-index",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
]
| feature-extraction | 2022-11-27T05:34:46Z | ---
datasets:
- relbert/semeval2012_relational_similarity_v6
model-index:
- name: relbert/relbert-roberta-large-semeval2012-v6-mask-prompt-e-nce-0
results:
- task:
name: Relation Mapping
type: sorting-task
dataset:
name: Relation Mapping
args: relbert/relation_mapping
type: relation-mapping
metrics:
- name: Accuracy
type: accuracy
value: 0.6765873015873016
- task:
name: Analogy Questions (SAT full)
type: multiple-choice-qa
dataset:
name: SAT full
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.39037433155080214
- task:
name: Analogy Questions (SAT)
type: multiple-choice-qa
dataset:
name: SAT
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.39762611275964393
- task:
name: Analogy Questions (BATS)
type: multiple-choice-qa
dataset:
name: BATS
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.5108393551973318
- task:
name: Analogy Questions (Google)
type: multiple-choice-qa
dataset:
name: Google
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.678
- task:
name: Analogy Questions (U2)
type: multiple-choice-qa
dataset:
name: U2
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.32456140350877194
- task:
name: Analogy Questions (U4)
type: multiple-choice-qa
dataset:
name: U4
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.375
- task:
name: Lexical Relation Classification (BLESS)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.881271658882025
- name: F1 (macro)
type: f1_macro
value: 0.8761005729675923
- task:
name: Lexical Relation Classification (CogALexV)
type: classification
dataset:
name: CogALexV
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.7938967136150236
- name: F1 (macro)
type: f1_macro
value: 0.5852558618542903
- task:
name: Lexical Relation Classification (EVALution)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.6397616468039004
- name: F1 (macro)
type: f1_macro
value: 0.6268814527849179
- task:
name: Lexical Relation Classification (K&H+N)
type: classification
dataset:
name: K&H+N
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9546497878556027
- name: F1 (macro)
type: f1_macro
value: 0.8651843170780902
- task:
name: Lexical Relation Classification (ROOT09)
type: classification
dataset:
name: ROOT09
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.8708868693199624
- name: F1 (macro)
type: f1_macro
value: 0.8734929892090338
---
# relbert/relbert-roberta-large-semeval2012-v6-mask-prompt-e-nce-0
RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on
[relbert/semeval2012_relational_similarity_v6](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity_v6).
Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail).
It achieves the following results on the relation understanding tasks:
- Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/relbert-roberta-large-semeval2012-v6-mask-prompt-e-nce-0/raw/main/analogy.json)):
- Accuracy on SAT (full): 0.39037433155080214
- Accuracy on SAT: 0.39762611275964393
- Accuracy on BATS: 0.5108393551973318
- Accuracy on U2: 0.32456140350877194
- Accuracy on U4: 0.375
- Accuracy on Google: 0.678
- Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/relbert-roberta-large-semeval2012-v6-mask-prompt-e-nce-0/raw/main/classification.json)):
- Micro F1 score on BLESS: 0.881271658882025
- Micro F1 score on CogALexV: 0.7938967136150236
- Micro F1 score on EVALution: 0.6397616468039004
- Micro F1 score on K&H+N: 0.9546497878556027
- Micro F1 score on ROOT09: 0.8708868693199624
- Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/relbert-roberta-large-semeval2012-v6-mask-prompt-e-nce-0/raw/main/relation_mapping.json)):
- Accuracy on Relation Mapping: 0.6765873015873016
### Usage
This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip
```shell
pip install relbert
```
and activate model as below.
```python
from relbert import RelBERT
model = RelBERT("relbert/relbert-roberta-large-semeval2012-v6-mask-prompt-e-nce-0")
vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, )
```
### Training hyperparameters
The following hyperparameters were used during training:
- model: roberta-large
- max_length: 64
- mode: mask
- data: relbert/semeval2012_relational_similarity_v6
- split: train
- split_eval: validation
- template_mode: manual
- loss_function: nce_logout
- classification_loss: False
- temperature_nce_constant: 0.05
- temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'}
- epoch: 6
- batch: 128
- lr: 5e-06
- lr_decay: False
- lr_warmup: 1
- weight_decay: 0
- random_seed: 0
- exclude_relation: None
- n_sample: 640
- gradient_accumulation: 8
- relation_level: None
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/relbert-roberta-large-semeval2012-v6-mask-prompt-e-nce-0/raw/main/trainer_config.json).
### Reference
If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
```
@inproceedings{ushio-etal-2021-distilling-relation-embeddings,
title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels",
author = "Ushio, Asahi and
Schockaert, Steven and
Camacho-Collados, Jose",
booktitle = "EMNLP 2021",
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
}
```
|
ShadoWxShinigamI/SD2-StatuesFigurines | ShadoWxShinigamI | 2022-12-23T10:46:24Z | 0 | 13 | null | [
"license:creativeml-openrail-m",
"region:us"
]
| null | 2022-12-23T10:29:23Z | ---
license: creativeml-openrail-m
---
##Textual Inversion Embed By ShadoWxShinigamI
Use this embed to create statues of objects or people. It mixes well with [MJART](https://huggingface.co/ShadoWxShinigamI/SD-2-MJart) Embed + Hypernetwork if you want to create figurines.
Examples:-
Just This Embed (Default Nai Negatives, DPM++ 2S a Sampler, 20 Steps) -



With [MJART](https://huggingface.co/ShadoWxShinigamI/SD-2-MJart) Embed + Hypernetwork 0.5 strength (Default Nai Negatives, DPM++ 2S a Sampler, 20 Steps) -




|
mrsteyk/openchatgpt-neo-125m | mrsteyk | 2022-12-23T10:39:07Z | 23 | 1 | transformers | [
"transformers",
"pytorch",
"safetensors",
"gpt_neo",
"text-generation",
"generated_from_trainer",
"text generation",
"casual-lm",
"en",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| text-generation | 2022-12-21T00:27:14Z | ---
license: mit
language:
- en
tags:
- generated_from_trainer
- text generation
- pytorch
- casual-lm
metrics:
- accuracy
model-index:
- name: openchatgpt-neo-r1
results: []
---
# --- Disclaimer ---
# "Neo is an incredibly cursed codebase, it should not be used by anyone" (C) co-founder of EleutherAI - Connor Leahy
# !!! USE [openchatgpt-neox-125m](https://huggingface.co/mrsteyk/openchatgpt-neox-125m) INSTEAD !!!
# --- Archived ---
# openchatgpt-neo-r1
This model is a fine-tuned version of [EleutherAI/gpt-neo-125M](https://huggingface.co/EleutherAI/gpt-neo-125M) on the openchatgpt safe-r1 dataset.
It achieves the following results on the evaluation set:
- Loss: 3.2156
- Accuracy: 0.8338
## Model description
Finetune based on the inner workings of ChatGPT. I won't elaborate on that. You must have a faint idea of how prompt is made for it to spit anything that's not garbled mess.
This is effectively a schizophrenic idea that met the light of day. Practically a collab of 3 students in a virtual shed.
## Intended uses & limitations
Intended uses & limitations fall in line with OpenAI's. Dataset used consists of safe texts (i.e. not highly sexual/erotica type stuff). NSFW version of the dataset is not planned to exist at the moment.
Keep in mind that this is a 125m version of GPT-Neo. My 1050Ti Mobile couldn't even handle that without gradient thingmabobs. If anyone knows how to effectively finetune larger models on free colabs - feel free to let me know. Pile tokenizer also has one downside compared to native GPT-2/3 - `Assistant`.
## Training and evaluation data
Data was split in ratio of 95%/5%. Preproccess included removing mentions of OpenAI wherever it was not deemed appropriete (GPT-2 has one of the appropriete mentions). Whole dataset consists of just shy off 3k input-output pairs. One input has multiple outputs (read as: one message has multiple variants of an answer). <<<1% (3 total) are curated lines (i.e. a huge mistake was spotted that needed corrections).
Heavy bias on IT.
## Training procedure
Input and output were straight up concatenated due to the nature of how ChatGPT works. Padding chosen was the same as the separator token, if that's not effective - please let me know as I am new to this stuff.
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 4.9203 | 1.0 | 1378 | 5.1668 | 0.7274 |
| 4.1368 | 2.0 | 2756 | 4.3841 | 0.7563 |
| 3.4554 | 3.0 | 4134 | 3.8068 | 0.7875 |
| 2.7598 | 4.0 | 5512 | 3.3097 | 0.8303 |
| 2.5879 | 5.0 | 6890 | 3.2156 | 0.8338 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|
MrDivakaruni/dqn-SpaceInvadersNoFrameskip-v4 | MrDivakaruni | 2022-12-23T10:11:44Z | 7 | 0 | stable-baselines3 | [
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
]
| reinforcement-learning | 2022-12-23T10:11:07Z | ---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
metrics:
- type: mean_reward
value: 582.50 +/- 173.63
name: mean_reward
verified: false
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga MrDivakaruni -f logs/
python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga MrDivakaruni -f logs/
rl_zoo3 enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga MrDivakaruni
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 100000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 100000),
('n_timesteps', 1000000),
('optimize_memory_usage', False),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
|
DaniilSirota/ppo-Huggy | DaniilSirota | 2022-12-23T10:00:50Z | 14 | 1 | ml-agents | [
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Huggy",
"region:us"
]
| reinforcement-learning | 2022-12-23T10:00:38Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Huggy
library_name: ml-agents
---
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy
2. Step 1: Write your model_id: DaniilSirota/ppo-Huggy
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play π
|
anuoluwa/ppo-LunarLander-v2 | anuoluwa | 2022-12-23T09:58:19Z | 0 | 0 | stable-baselines3 | [
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
]
| reinforcement-learning | 2022-12-23T09:57:43Z | ---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 281.12 +/- 24.57
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
hanq0212/RL_course_unit4_part1 | hanq0212 | 2022-12-23T09:39:18Z | 0 | 0 | null | [
"Pixelcopter-PLE-v0",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
]
| reinforcement-learning | 2022-12-23T09:28:33Z | ---
tags:
- Pixelcopter-PLE-v0
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: RL_course_unit4_part1
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Pixelcopter-PLE-v0
type: Pixelcopter-PLE-v0
metrics:
- type: mean_reward
value: -5.00 +/- 0.00
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **Pixelcopter-PLE-v0**
This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** .
To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
|
gggggxy/ddpm-butterflies-128 | gggggxy | 2022-12-23T09:14:52Z | 0 | 0 | diffusers | [
"diffusers",
"tensorboard",
"en",
"dataset:huggan/smithsonian_butterflies_subset",
"license:apache-2.0",
"diffusers:DDPMPipeline",
"region:us"
]
| null | 2022-12-23T07:25:31Z | ---
language: en
license: apache-2.0
library_name: diffusers
tags: []
datasets: huggan/smithsonian_butterflies_subset
metrics: []
---
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# ddpm-butterflies-128
## Model description
This diffusion model is trained with the [π€ Diffusers](https://github.com/huggingface/diffusers) library
on the `huggan/smithsonian_butterflies_subset` dataset.
## Intended uses & limitations
#### How to use
```python
# TODO: add an example code snippet for running this diffusion pipeline
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training data
[TODO: describe the data used to train the model]
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- gradient_accumulation_steps: 1
- optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None
- lr_scheduler: None
- lr_warmup_steps: 500
- ema_inv_gamma: None
- ema_inv_gamma: None
- ema_inv_gamma: None
- mixed_precision: fp16
### Training results
π [TensorBoard logs](https://huggingface.co/gggggxy/ddpm-butterflies-128/tensorboard?#scalars)
|
gaokaobishuati/ppo-LunarLander-v2 | gaokaobishuati | 2022-12-23T09:10:53Z | 0 | 0 | stable-baselines3 | [
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
]
| reinforcement-learning | 2022-12-23T09:10:15Z | ---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 266.40 +/- 20.45
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
chengcshi/ppo-LunarLander-v2 | chengcshi | 2022-12-23T08:51:24Z | 0 | 0 | stable-baselines3 | [
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
]
| reinforcement-learning | 2022-12-23T08:50:59Z | ---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 262.95 +/- 17.91
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
ArchitaRay/my_awesome_opus_books_model | ArchitaRay | 2022-12-23T08:47:05Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"t5",
"text2text-generation",
"generated_from_trainer",
"dataset:opus_books",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
]
| text2text-generation | 2022-12-23T07:16:05Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- opus_books
model-index:
- name: my_awesome_opus_books_model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# my_awesome_opus_books_model
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the opus_books dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5494
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 1.7524 | 1.0 | 6355 | 1.5629 |
| 1.7382 | 2.0 | 12710 | 1.5494 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|
RayKau/dqn-SpaceInvadersNoFrameskip-v4 | RayKau | 2022-12-23T07:38:09Z | 0 | 0 | stable-baselines3 | [
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
]
| reinforcement-learning | 2022-12-23T07:37:34Z | ---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
metrics:
- type: mean_reward
value: 538.00 +/- 204.29
name: mean_reward
verified: false
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga RayKau -f logs/
python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga RayKau -f logs/
rl_zoo3 enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga RayKau
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 100000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 100000),
('n_timesteps', 1000000.0),
('optimize_memory_usage', False),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
|
LucHayward/ppo-LunarLander-v2 | LucHayward | 2022-12-23T07:15:47Z | 0 | 0 | stable-baselines3 | [
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
]
| reinforcement-learning | 2022-12-07T15:05:25Z | ---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 241.72 +/- 34.73
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
umer07/text | umer07 | 2022-12-23T06:52:29Z | 0 | 0 | null | [
"license:creativeml-openrail-m",
"region:us"
]
| null | 2022-12-23T06:52:27Z | ---
license: creativeml-openrail-m
---
|
dfsj/ppo-Huggy | dfsj | 2022-12-23T06:52:24Z | 10 | 0 | ml-agents | [
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Huggy",
"region:us"
]
| reinforcement-learning | 2022-12-23T06:52:13Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Huggy
library_name: ml-agents
---
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy
2. Step 1: Write your model_id: dfsj/ppo-Huggy
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play π
|
zhuimengshaonian/bert-ancient-base | zhuimengshaonian | 2022-12-23T06:29:17Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"bert",
"fill-mask",
"zh",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| fill-mask | 2022-12-18T17:27:51Z | ---
language: zh
widget:
text: 'ζ΅·ιει±Όθ·οΌε€©ι«[MASK]ιΈι£γ'
---
## Chinese Ancient BERT Model
### Model description
The model's architecture is the BERT-base. We trained this model in 4 P100 about 7 days. (batch size = 24, steps = 1M)
### How to use
You can use the model directly with a pipeline for text generation:
```
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='zhuimengshaonian/bert-ancient-base')
>>> unmasker("ζ΅·ιει±Όθ·οΌε€©ι«[MASK]ιΈι£γ")
``` |
harikc456/n-SpaceInvadersNoFrameskip-v4 | harikc456 | 2022-12-23T06:21:59Z | 2 | 0 | stable-baselines3 | [
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
]
| reinforcement-learning | 2022-12-23T06:21:22Z | ---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
metrics:
- type: mean_reward
value: 622.00 +/- 127.44
name: mean_reward
verified: false
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga harikc456 -f logs/
python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga harikc456 -f logs/
rl_zoo3 enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga harikc456
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 100000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 100000),
('n_timesteps', 10000000.0),
('optimize_memory_usage', False),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
|
ben-yu/ppo-LunarLander-v2-try-2 | ben-yu | 2022-12-23T04:58:26Z | 1 | 0 | stable-baselines3 | [
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
]
| reinforcement-learning | 2022-12-23T04:33:02Z | ---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 246.81 +/- 24.67
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
vumichien/whisper-medium-mix-jp-ver2 | vumichien | 2022-12-23T04:30:04Z | 10 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"whisper",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
]
| automatic-speech-recognition | 2022-12-22T02:38:57Z | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: openai/whisper-medium
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# openai/whisper-medium
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2790
- Wer: 8.3986
- Cer: 5.2582
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 10000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|
| 0.1691 | 1.01 | 1000 | 0.1871 | 10.1740 | 6.3509 |
| 0.0916 | 2.02 | 2000 | 0.1691 | 8.9797 | 5.5499 |
| 0.0452 | 3.03 | 3000 | 0.1902 | 8.9814 | 5.5867 |
| 0.0213 | 4.04 | 4000 | 0.2062 | 8.9375 | 5.6531 |
| 0.0096 | 5.05 | 5000 | 0.2284 | 8.7331 | 5.6202 |
| 0.0041 | 6.05 | 6000 | 0.2395 | 8.5051 | 5.3009 |
| 0.0022 | 7.06 | 7000 | 0.2535 | 8.5507 | 5.3640 |
| 0.001 | 8.07 | 8000 | 0.2656 | 8.5557 | 5.3791 |
| 0.0006 | 9.08 | 9000 | 0.2721 | 8.4037 | 5.2739 |
| 0.0004 | 10.09 | 10000 | 0.2790 | 8.3986 | 5.2582 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2
|
hasarinduperera/ppo-LunarLander-v2 | hasarinduperera | 2022-12-23T02:35:43Z | 0 | 0 | stable-baselines3 | [
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
]
| reinforcement-learning | 2022-12-22T22:17:10Z | ---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 268.14 +/- 16.06
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
p4b/whisper-small-ko-fl | p4b | 2022-12-23T01:35:24Z | 3 | 2 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"whisper",
"automatic-speech-recognition",
"whisper-event",
"generated_from_trainer",
"ko",
"dataset:fleurs",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
]
| automatic-speech-recognition | 2022-12-09T19:38:15Z | ---
language:
- ko
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- fleurs
metrics:
- wer
model-index:
- name: Whisper Small Ko(FLUERS) - by p4b
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: google/fleurs ko_kr
type: google/fleurs
config: ko_kr
split: test
metrics:
- name: Wer
type: wer
value: 20.251271313191744
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small Ko(FLUERS) - by p4b
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the FLUERS Korean dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2893
- Wer: 19.2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
### Dataset filtering
Some of datas from FLUERS are not used for training and evaluation.
Most of filtered datas are not fit to model or including non-korean symbols.
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 96
- eval_batch_size: 64
- seed: 42
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 10000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.3016 | 32.0 | 800 | 0.4048 | 140.4726 |
| 0.0451 | 64.0 | 1600 | 0.2893 | 19.2043 |
| 0.0169 | 96.0 | 2400 | 0.3110 | 20.2513 |
| 0.0092 | 128.0 | 3200 | 0.3240 | 20.0419 |
| 0.0062 | 160.0 | 4000 | 0.3335 | 20.0419 |
| 0.0045 | 192.0 | 4800 | 0.3416 | 20.0718 |
| 0.0035 | 224.0 | 5600 | 0.3501 | 20.1615 |
| 0.0028 | 256.0 | 6400 | 0.3562 | 20.3709 |
| 0.0024 | 288.0 | 7200 | 0.3618 | 20.0120 |
| 0.002 | 320.0 | 8000 | 0.3669 | 20.1017 |
| 0.0017 | 352.0 | 8800 | 0.3704 | 20.1914 |
| 0.0017 | 384.0 | 9600 | 0.3723 | 20.2513 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.14.0.dev20221208+cu116
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2
|
AinTziLLo/Reinforce-model-01 | AinTziLLo | 2022-12-23T01:11:16Z | 0 | 0 | null | [
"CartPole-v1",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
]
| reinforcement-learning | 2022-12-23T01:10:22Z | ---
tags:
- CartPole-v1
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-model-01
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CartPole-v1
type: CartPole-v1
metrics:
- type: mean_reward
value: 500.00 +/- 0.00
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
|
AinTziLLo/testpyramidsrnd | AinTziLLo | 2022-12-23T00:55:30Z | 10 | 0 | ml-agents | [
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Pyramids",
"region:us"
]
| reinforcement-learning | 2022-12-23T00:55:20Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Pyramids
library_name: ml-agents
---
# **ppo** Agent playing **Pyramids**
This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids
2. Step 1: Write your model_id: AinTziLLo/testpyramidsrnd
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play π
|
Arch4ngel/sd-class-butterflies-32 | Arch4ngel | 2022-12-23T00:14:56Z | 2 | 0 | diffusers | [
"diffusers",
"pytorch",
"unconditional-image-generation",
"diffusion-models-class",
"license:mit",
"diffusers:DDPMPipeline",
"region:us"
]
| unconditional-image-generation | 2022-12-23T00:14:20Z | ---
license: mit
tags:
- pytorch
- diffusers
- unconditional-image-generation
- diffusion-models-class
---
# Model Card for Unit 1 of the [Diffusion Models Class π§¨](https://github.com/huggingface/diffusion-models-class)
This model is a diffusion model for unconditional image generation of cute π¦.
## Usage
```python
from diffusers import DDPMPipeline
pipeline = DDPMPipeline.from_pretrained('Arch4ngel/sd-class-butterflies-32')
image = pipeline().images[0]
image
```
|
jonatasgrosman/whisper-large-es-cv11 | jonatasgrosman | 2022-12-22T23:52:02Z | 20 | 1 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"whisper",
"automatic-speech-recognition",
"whisper-event",
"generated_from_trainer",
"es",
"dataset:mozilla-foundation/common_voice_11_0",
"doi:10.57967/hf/3596",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
]
| automatic-speech-recognition | 2022-12-21T20:42:43Z | ---
language:
- es
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
- cer
model-index:
- name: Whisper Large Spanish
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: mozilla-foundation/common_voice_11_0 es
type: mozilla-foundation/common_voice_11_0
config: es
split: test
args: es
metrics:
- name: WER
type: wer
value: 4.673613637544826
- name: CER
type: cer
value: 1.5573247819517182
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: google/fleurs es_419
type: google/fleurs
config: es_419
split: test
args: es_419
metrics:
- name: WER
type: wer
value: 5.396216546072705
- name: CER
type: cer
value: 3.450427960057061
---
# Whisper Large Spanish
This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on Spanish using the train split of [Common Voice 11](https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0).
## Usage
```python
from transformers import pipeline
transcriber = pipeline(
"automatic-speech-recognition",
model="jonatasgrosman/whisper-large-es-cv11"
)
transcriber.model.config.forced_decoder_ids = (
transcriber.tokenizer.get_decoder_prompt_ids(
language="es",
task="transcribe"
)
)
transcription = transcriber("path/to/my_audio.wav")
```
## Evaluation
I've performed the evaluation of the model using the test split of two datasets, the [Common Voice 11](https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0) (same dataset used for the fine-tuning) and the [Fleurs](https://huggingface.co/datasets/google/fleurs) (dataset not seen during the fine-tuning). As Whisper can transcribe casing and punctuation, I've performed the model evaluation in 2 different scenarios, one using the raw text and the other using the normalized text (lowercase + removal of punctuations). Additionally, for the Fleurs dataset, I've evaluated the model in a scenario where there are no transcriptions of numerical values since the way these values are described in this dataset is different from how they are described in the dataset used in fine-tuning (Common Voice), so it is expected that this difference in the way of describing numerical values will affect the performance of the model for this type of transcription in Fleurs.
### Common Voice 11
| | CER | WER |
| --- | --- | --- |
| [jonatasgrosman/whisper-large-es-cv11](https://huggingface.co/jonatasgrosman/whisper-large-es-cv11) | 2.43 | 8.85 |
| [jonatasgrosman/whisper-large-es-cv11](https://huggingface.co/jonatasgrosman/whisper-large-es-cv11) + text normalization | 1.56 | 4.67 |
| [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) | 3.71 | 12.34 |
| [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) + text normalization | 2.45 | 6.30 |
### Fleurs
| | CER | WER |
| --- | --- | --- |
| [jonatasgrosman/whisper-large-es-cv11](https://huggingface.co/jonatasgrosman/whisper-large-es-cv11) | 3.06 | 9.11 |
| [jonatasgrosman/whisper-large-es-cv11](https://huggingface.co/jonatasgrosman/whisper-large-es-cv11) + text normalization | 3.45 | 5.40 |
| [jonatasgrosman/whisper-large-es-cv11](https://huggingface.co/jonatasgrosman/whisper-large-es-cv11) + keep only non-numeric samples | 1.83 | 7.57 |
| [jonatasgrosman/whisper-large-es-cv11](https://huggingface.co/jonatasgrosman/whisper-large-es-cv11) + text normalization + keep only non-numeric samples | 2.36 | 4.14 |
| [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) | 2.30 | 8.50 |
| [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) + text normalization | 2.76 | 4.79 |
| [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) + keep only non-numeric samples | 1.93 | 7.33 |
| [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) + text normalization + keep only non-numeric samples | 2.50 | 4.28 |
|
SiddharthaM/distilbert-sentiment-new | SiddharthaM | 2022-12-22T23:48:19Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| text-classification | 2022-12-22T23:32:05Z | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: distilbert-sentiment-new
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-sentiment-new
This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5872
- Accuracy: 0.7243
- Precision: 0.7192
- Recall: 0.7243
- F1: 0.7175
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| No log | 1.0 | 296 | 0.6038 | 0.6787 | 0.7049 | 0.6787 | 0.6235 |
| 0.5926 | 2.0 | 592 | 0.5532 | 0.7148 | 0.7118 | 0.7148 | 0.6994 |
| 0.5926 | 3.0 | 888 | 0.5480 | 0.7243 | 0.7199 | 0.7243 | 0.7144 |
| 0.4946 | 4.0 | 1184 | 0.5535 | 0.7300 | 0.7255 | 0.7300 | 0.7220 |
| 0.4946 | 5.0 | 1480 | 0.5858 | 0.7186 | 0.7140 | 0.7186 | 0.7146 |
| 0.4267 | 6.0 | 1776 | 0.5872 | 0.7243 | 0.7192 | 0.7243 | 0.7175 |
### Framework versions
- Transformers 4.24.0.dev0
- Pytorch 1.11.0+cu102
- Datasets 2.6.1
- Tokenizers 0.13.1
|
rjac/ppo-LunarLander-v2 | rjac | 2022-12-22T23:47:14Z | 0 | 0 | stable-baselines3 | [
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
]
| reinforcement-learning | 2022-12-22T23:40:19Z | ---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 248.16 +/- 18.51
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
kadirnar/RRDB_PSNR_x4 | kadirnar | 2022-12-22T23:07:46Z | 0 | 0 | null | [
"Super-Resolution",
"computer-vision",
"ESRGAN",
"gan",
"arxiv:2107.10833",
"license:apache-2.0",
"region:us"
]
| null | 2022-12-22T22:42:57Z | ---
license: apache-2.0
tags:
- Super-Resolution
- computer-vision
- ESRGAN
- gan
---
### Model Description
[ESRGAN](https://arxiv.org/abs/2107.10833): ECCV18 Workshops - Enhanced SRGAN. Champion PIRM Challenge on Perceptual Super-Resolution
[Paper Repo](https://github.com/xinntao/ESRGAN): Implementation of paper.
### Installation
```
pip install bsrgan
```
### BSRGAN Usage
```python
from bsrgan import BSRGAN
model = BSRGAN(weights='kadirnar/RRDB_PSNR_x4', device='cuda:0', hf_model=True)
model.save = True
pred = model.predict(img_path='data/image/test.png')
```
### BibTeX Entry and Citation Info
```
@inproceedings{zhang2021designing,
title={Designing a Practical Degradation Model for Deep Blind Image Super-Resolution},
author={Zhang, Kai and Liang, Jingyun and Van Gool, Luc and Timofte, Radu},
booktitle={IEEE International Conference on Computer Vision},
pages={4791--4800},
year={2021}
}
```
```
@InProceedings{wang2018esrgan,
author = {Wang, Xintao and Yu, Ke and Wu, Shixiang and Gu, Jinjin and Liu, Yihao and Dong, Chao and Qiao, Yu and Loy, Chen Change},
title = {ESRGAN: Enhanced super-resolution generative adversarial networks},
booktitle = {The European Conference on Computer Vision Workshops (ECCVW)},
month = {September},
year = {2018}
}
```
|
kadirnar/RRDB_ESRGAN_x4 | kadirnar | 2022-12-22T23:05:06Z | 0 | 2 | null | [
"Super-Resolution",
"computer-vision",
"ESRGAN",
"gan",
"arxiv:2107.10833",
"license:apache-2.0",
"region:us"
]
| null | 2022-12-22T22:42:40Z | ---
license: apache-2.0
tags:
- Super-Resolution
- computer-vision
- ESRGAN
- gan
---
### Model Description
[ESRGAN](https://arxiv.org/abs/2107.10833): ECCV18 Workshops - Enhanced SRGAN. Champion PIRM Challenge on Perceptual Super-Resolution
[Paper Repo](https://github.com/xinntao/ESRGAN): Implementation of paper.
### Installation
```
pip install bsrgan
```
### BSRGAN Usage
```python
from bsrgan import BSRGAN
model = BSRGAN(weights='kadirnar/RRDB_ESRGAN_x4', device='cuda:0', hf_model=True)
model.save = True
pred = model.predict(img_path='data/image/test.png')
```
### BibTeX Entry and Citation Info
```
@inproceedings{zhang2021designing,
title={Designing a Practical Degradation Model for Deep Blind Image Super-Resolution},
author={Zhang, Kai and Liang, Jingyun and Van Gool, Luc and Timofte, Radu},
booktitle={IEEE International Conference on Computer Vision},
pages={4791--4800},
year={2021}
}
```
```
@InProceedings{wang2018esrgan,
author = {Wang, Xintao and Yu, Ke and Wu, Shixiang and Gu, Jinjin and Liu, Yihao and Dong, Chao and Qiao, Yu and Loy, Chen Change},
title = {ESRGAN: Enhanced super-resolution generative adversarial networks},
booktitle = {The European Conference on Computer Vision Workshops (ECCVW)},
month = {September},
year = {2018}
}
```
|
kadirnar/DPED | kadirnar | 2022-12-22T22:58:25Z | 0 | 1 | null | [
"Super-Resolution",
"computer-vision",
"RealSR",
"gan",
"arxiv:2005.01996",
"license:apache-2.0",
"region:us"
]
| null | 2022-12-22T22:37:31Z | ---
license: apache-2.0
tags:
- Super-Resolution
- computer-vision
- RealSR
- gan
---
### Model Description
[RealSR](https://openaccess.thecvf.com/content_CVPRW_2020/papers/w31/Ji_Real-World_Super-Resolution_via_Kernel_Estimation_and_Noise_Injection_CVPRW_2020_paper.pdf): Real-World Super-Resolution via Kernel Estimation and Noise Injection.
[NTIRE 2020 Challenge on Real-World Image Super-Resolution](https://arxiv.org/abs/2005.01996): Methods and Results
[Paper Repo](https://github.com/Tencent/Real-SR): Implementation of paper.
### Installation
```
pip install bsrgan
```
### BSRGAN Usage
```python
from bsrgan import BSRGAN
model = BSRGAN(weights='kadirnar/DPED', device='cuda:0', hf_model=True)
model.save = True
pred = model.predict(img_path='data/image/test.png')
```
### BibTeX Entry and Citation Info
```
@inproceedings{zhang2021designing,
title={Designing a Practical Degradation Model for Deep Blind Image Super-Resolution},
author={Zhang, Kai and Liang, Jingyun and Van Gool, Luc and Timofte, Radu},
booktitle={IEEE International Conference on Computer Vision},
pages={4791--4800},
year={2021}
}
```
```
@inproceedings{zhang2021designing,
title={Designing a Practical Degradation Model for Deep Blind Image Super-Resolution},
author={Zhang, Kai and Liang, Jingyun and Van Gool, Luc and Timofte, Radu},
booktitle={IEEE International Conference on Computer Vision},
pages={4791--4800},
year={2021}
}
```
```
@article{Lugmayr2020ntire,
title={NTIRE 2020 Challenge on Real-World Image Super-Resolution: Methods and Results},
author={Andreas Lugmayr, Martin Danelljan, Radu Timofte, Namhyuk Ahn, Dongwoon Bai, Jie Cai, Yun Cao, Junyang Chen, Kaihua Cheng, SeYoung Chun, Wei Deng, Mostafa El-Khamy Chiu, Man Ho, Xiaozhong Ji, Amin Kheradmand, Gwantae Kim, Hanseok Ko, Kanghyu Lee, Jungwon Lee, Hao Li, Ziluan Liu, Zhi-Song Liu, Shuai Liu, Yunhua Lu, Zibo Meng, Pablo Navarrete, Michelini Christian, Micheloni Kalpesh, Prajapati Haoyu, Ren Yong, Hyeok Seo, Wan-Chi Siu, Kyung-Ah Sohn, Ying Tai, Rao Muhammad Umer, Shuangquan Wang, Huibing Wang, Timothy Haoning Wu, Haoning Wu, Biao Yang, Fuzhi Yang, Jaejun Yoo, Tongtong Zhao, Yuanbo Zhou, Haijie Zhuo, Ziyao Zong, Xueyi Zou},
journal={CVPR Workshops},
year={2020},
}
``` |
JovialValley/model_broadclass_onSet1.1 | JovialValley | 2022-12-22T22:51:39Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
]
| automatic-speech-recognition | 2022-12-22T21:28:20Z | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- wer
model-index:
- name: model_broadclass_onSet1.1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# model_broadclass_onSet1.1
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2469
- 0 Precision: 1.0
- 0 Recall: 1.0
- 0 F1-score: 1.0
- 0 Support: 24
- 1 Precision: 1.0
- 1 Recall: 1.0
- 1 F1-score: 1.0
- 1 Support: 39
- 2 Precision: 1.0
- 2 Recall: 1.0
- 2 F1-score: 1.0
- 2 Support: 23
- 3 Precision: 1.0
- 3 Recall: 1.0
- 3 F1-score: 1.0
- 3 Support: 12
- Accuracy: 1.0
- Macro avg Precision: 1.0
- Macro avg Recall: 1.0
- Macro avg F1-score: 1.0
- Macro avg Support: 98
- Weighted avg Precision: 1.0
- Weighted avg Recall: 1.0
- Weighted avg F1-score: 1.0
- Weighted avg Support: 98
- Wer: 0.2423
- Mtrix: [[0, 1, 2, 3], [0, 24, 0, 0, 0], [1, 0, 39, 0, 0], [2, 0, 0, 23, 0], [3, 0, 0, 0, 12]]
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- num_epochs: 80
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | 0 Precision | 0 Recall | 0 F1-score | 0 Support | 1 Precision | 1 Recall | 1 F1-score | 1 Support | 2 Precision | 2 Recall | 2 F1-score | 2 Support | 3 Precision | 3 Recall | 3 F1-score | 3 Support | Accuracy | Macro avg Precision | Macro avg Recall | Macro avg F1-score | Macro avg Support | Weighted avg Precision | Weighted avg Recall | Weighted avg F1-score | Weighted avg Support | Wer | Mtrix |
|:-------------:|:-----:|:----:|:---------------:|:-----------:|:--------:|:----------:|:---------:|:-----------:|:--------:|:----------:|:---------:|:-----------:|:--------:|:----------:|:---------:|:-----------:|:--------:|:----------:|:---------:|:--------:|:-------------------:|:----------------:|:------------------:|:-----------------:|:----------------------:|:-------------------:|:---------------------:|:--------------------:|:------:|:---------------------------------------------------------------------------------------:|
| 2.3722 | 4.16 | 100 | 2.1950 | 0.2449 | 1.0 | 0.3934 | 24 | 0.0 | 0.0 | 0.0 | 39 | 0.0 | 0.0 | 0.0 | 23 | 0.0 | 0.0 | 0.0 | 12 | 0.2449 | 0.0612 | 0.25 | 0.0984 | 98 | 0.0600 | 0.2449 | 0.0964 | 98 | 0.9879 | [[0, 1, 2, 3], [0, 24, 0, 0, 0], [1, 39, 0, 0, 0], [2, 23, 0, 0, 0], [3, 12, 0, 0, 0]] |
| 2.2944 | 8.33 | 200 | 2.1537 | 0.2449 | 1.0 | 0.3934 | 24 | 0.0 | 0.0 | 0.0 | 39 | 0.0 | 0.0 | 0.0 | 23 | 0.0 | 0.0 | 0.0 | 12 | 0.2449 | 0.0612 | 0.25 | 0.0984 | 98 | 0.0600 | 0.2449 | 0.0964 | 98 | 0.9879 | [[0, 1, 2, 3], [0, 24, 0, 0, 0], [1, 39, 0, 0, 0], [2, 23, 0, 0, 0], [3, 12, 0, 0, 0]] |
| 1.9927 | 12.49 | 300 | 1.8879 | 0.2449 | 1.0 | 0.3934 | 24 | 0.0 | 0.0 | 0.0 | 39 | 0.0 | 0.0 | 0.0 | 23 | 0.0 | 0.0 | 0.0 | 12 | 0.2449 | 0.0612 | 0.25 | 0.0984 | 98 | 0.0600 | 0.2449 | 0.0964 | 98 | 0.9879 | [[0, 1, 2, 3], [0, 24, 0, 0, 0], [1, 39, 0, 0, 0], [2, 23, 0, 0, 0], [3, 12, 0, 0, 0]] |
| 1.7175 | 16.65 | 400 | 1.6374 | 0.2449 | 1.0 | 0.3934 | 24 | 0.0 | 0.0 | 0.0 | 39 | 0.0 | 0.0 | 0.0 | 23 | 0.0 | 0.0 | 0.0 | 12 | 0.2449 | 0.0612 | 0.25 | 0.0984 | 98 | 0.0600 | 0.2449 | 0.0964 | 98 | 0.9879 | [[0, 1, 2, 3], [0, 24, 0, 0, 0], [1, 39, 0, 0, 0], [2, 23, 0, 0, 0], [3, 12, 0, 0, 0]] |
| 1.6065 | 20.82 | 500 | 1.5619 | 0.2449 | 1.0 | 0.3934 | 24 | 0.0 | 0.0 | 0.0 | 39 | 0.0 | 0.0 | 0.0 | 23 | 0.0 | 0.0 | 0.0 | 12 | 0.2449 | 0.0612 | 0.25 | 0.0984 | 98 | 0.0600 | 0.2449 | 0.0964 | 98 | 0.9879 | [[0, 1, 2, 3], [0, 24, 0, 0, 0], [1, 39, 0, 0, 0], [2, 23, 0, 0, 0], [3, 12, 0, 0, 0]] |
| 1.5362 | 24.98 | 600 | 1.5019 | 0.2449 | 1.0 | 0.3934 | 24 | 0.0 | 0.0 | 0.0 | 39 | 0.0 | 0.0 | 0.0 | 23 | 0.0 | 0.0 | 0.0 | 12 | 0.2449 | 0.0612 | 0.25 | 0.0984 | 98 | 0.0600 | 0.2449 | 0.0964 | 98 | 0.9879 | [[0, 1, 2, 3], [0, 24, 0, 0, 0], [1, 39, 0, 0, 0], [2, 23, 0, 0, 0], [3, 12, 0, 0, 0]] |
| 1.5599 | 29.16 | 700 | 1.4858 | 0.2449 | 1.0 | 0.3934 | 24 | 0.0 | 0.0 | 0.0 | 39 | 0.0 | 0.0 | 0.0 | 23 | 0.0 | 0.0 | 0.0 | 12 | 0.2449 | 0.0612 | 0.25 | 0.0984 | 98 | 0.0600 | 0.2449 | 0.0964 | 98 | 0.9879 | [[0, 1, 2, 3], [0, 24, 0, 0, 0], [1, 39, 0, 0, 0], [2, 23, 0, 0, 0], [3, 12, 0, 0, 0]] |
| 1.5344 | 33.33 | 800 | 1.4721 | 0.2759 | 1.0 | 0.4324 | 24 | 1.0 | 0.2821 | 0.4400 | 39 | 0.0 | 0.0 | 0.0 | 23 | 0.0 | 0.0 | 0.0 | 12 | 0.3571 | 0.3190 | 0.3205 | 0.2181 | 98 | 0.4655 | 0.3571 | 0.2810 | 98 | 0.9919 | [[0, 1, 2, 3], [0, 24, 0, 0, 0], [1, 28, 11, 0, 0], [2, 23, 0, 0, 0], [3, 12, 0, 0, 0]] |
| 1.4024 | 37.49 | 900 | 1.3532 | 1.0 | 1.0 | 1.0 | 24 | 1.0 | 1.0 | 1.0 | 39 | 1.0 | 1.0 | 1.0 | 23 | 1.0 | 1.0 | 1.0 | 12 | 1.0 | 1.0 | 1.0 | 1.0 | 98 | 1.0 | 1.0 | 1.0 | 98 | 0.9742 | [[0, 1, 2, 3], [0, 24, 0, 0, 0], [1, 0, 39, 0, 0], [2, 0, 0, 23, 0], [3, 0, 0, 0, 12]] |
| 0.9429 | 41.65 | 1000 | 0.9455 | 0.96 | 1.0 | 0.9796 | 24 | 0.9744 | 0.9744 | 0.9744 | 39 | 1.0 | 0.9565 | 0.9778 | 23 | 1.0 | 1.0 | 1.0 | 12 | 0.9796 | 0.9836 | 0.9827 | 0.9829 | 98 | 0.9800 | 0.9796 | 0.9796 | 98 | 0.9084 | [[0, 1, 2, 3], [0, 24, 0, 0, 0], [1, 1, 38, 0, 0], [2, 0, 1, 22, 0], [3, 0, 0, 0, 12]] |
| 0.8955 | 45.82 | 1100 | 0.8890 | 0.96 | 1.0 | 0.9796 | 24 | 1.0 | 0.9744 | 0.9870 | 39 | 1.0 | 1.0 | 1.0 | 23 | 1.0 | 1.0 | 1.0 | 12 | 0.9898 | 0.99 | 0.9936 | 0.9917 | 98 | 0.9902 | 0.9898 | 0.9898 | 98 | 0.9246 | [[0, 1, 2, 3], [0, 24, 0, 0, 0], [1, 1, 38, 0, 0], [2, 0, 0, 23, 0], [3, 0, 0, 0, 12]] |
| 0.8708 | 49.98 | 1200 | 0.8304 | 1.0 | 1.0 | 1.0 | 24 | 0.975 | 1.0 | 0.9873 | 39 | 1.0 | 0.9565 | 0.9778 | 23 | 1.0 | 1.0 | 1.0 | 12 | 0.9898 | 0.9938 | 0.9891 | 0.9913 | 98 | 0.9901 | 0.9898 | 0.9897 | 98 | 0.9272 | [[0, 1, 2, 3], [0, 24, 0, 0, 0], [1, 0, 39, 0, 0], [2, 0, 1, 22, 0], [3, 0, 0, 0, 12]] |
| 0.8671 | 54.16 | 1300 | 0.8028 | 0.96 | 1.0 | 0.9796 | 24 | 1.0 | 1.0 | 1.0 | 39 | 1.0 | 0.9565 | 0.9778 | 23 | 1.0 | 1.0 | 1.0 | 12 | 0.9898 | 0.99 | 0.9891 | 0.9893 | 98 | 0.9902 | 0.9898 | 0.9898 | 98 | 0.9211 | [[0, 1, 2, 3], [0, 24, 0, 0, 0], [1, 0, 39, 0, 0], [2, 1, 0, 22, 0], [3, 0, 0, 0, 12]] |
| 0.8383 | 58.33 | 1400 | 0.7804 | 1.0 | 1.0 | 1.0 | 24 | 1.0 | 1.0 | 1.0 | 39 | 1.0 | 1.0 | 1.0 | 23 | 1.0 | 1.0 | 1.0 | 12 | 1.0 | 1.0 | 1.0 | 1.0 | 98 | 1.0 | 1.0 | 1.0 | 98 | 0.9170 | [[0, 1, 2, 3], [0, 24, 0, 0, 0], [1, 0, 39, 0, 0], [2, 0, 0, 23, 0], [3, 0, 0, 0, 12]] |
| 0.7872 | 62.49 | 1500 | 0.7745 | 0.96 | 1.0 | 0.9796 | 24 | 1.0 | 0.9744 | 0.9870 | 39 | 1.0 | 1.0 | 1.0 | 23 | 1.0 | 1.0 | 1.0 | 12 | 0.9898 | 0.99 | 0.9936 | 0.9917 | 98 | 0.9902 | 0.9898 | 0.9898 | 98 | 0.9439 | [[0, 1, 2, 3], [0, 24, 0, 0, 0], [1, 1, 38, 0, 0], [2, 0, 0, 23, 0], [3, 0, 0, 0, 12]] |
| 0.7538 | 66.65 | 1600 | 0.7141 | 0.96 | 1.0 | 0.9796 | 24 | 1.0 | 0.9744 | 0.9870 | 39 | 1.0 | 1.0 | 1.0 | 23 | 1.0 | 1.0 | 1.0 | 12 | 0.9898 | 0.99 | 0.9936 | 0.9917 | 98 | 0.9902 | 0.9898 | 0.9898 | 98 | 0.9267 | [[0, 1, 2, 3], [0, 24, 0, 0, 0], [1, 1, 38, 0, 0], [2, 0, 0, 23, 0], [3, 0, 0, 0, 12]] |
| 0.6439 | 70.82 | 1700 | 0.5818 | 1.0 | 1.0 | 1.0 | 24 | 1.0 | 1.0 | 1.0 | 39 | 1.0 | 1.0 | 1.0 | 23 | 1.0 | 1.0 | 1.0 | 12 | 1.0 | 1.0 | 1.0 | 1.0 | 98 | 1.0 | 1.0 | 1.0 | 98 | 0.8574 | [[0, 1, 2, 3], [0, 24, 0, 0, 0], [1, 0, 39, 0, 0], [2, 0, 0, 23, 0], [3, 0, 0, 0, 12]] |
| 0.5295 | 74.98 | 1800 | 0.3775 | 1.0 | 1.0 | 1.0 | 24 | 1.0 | 1.0 | 1.0 | 39 | 1.0 | 1.0 | 1.0 | 23 | 1.0 | 1.0 | 1.0 | 12 | 1.0 | 1.0 | 1.0 | 1.0 | 98 | 1.0 | 1.0 | 1.0 | 98 | 0.4633 | [[0, 1, 2, 3], [0, 24, 0, 0, 0], [1, 0, 39, 0, 0], [2, 0, 0, 23, 0], [3, 0, 0, 0, 12]] |
| 0.4184 | 79.16 | 1900 | 0.2507 | 1.0 | 1.0 | 1.0 | 24 | 1.0 | 1.0 | 1.0 | 39 | 1.0 | 1.0 | 1.0 | 23 | 1.0 | 1.0 | 1.0 | 12 | 1.0 | 1.0 | 1.0 | 1.0 | 98 | 1.0 | 1.0 | 1.0 | 98 | 0.2529 | [[0, 1, 2, 3], [0, 24, 0, 0, 0], [1, 0, 39, 0, 0], [2, 0, 0, 23, 0], [3, 0, 0, 0, 12]] |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|
kadirnar/yolov7-v0.1 | kadirnar | 2022-12-22T22:19:19Z | 0 | 1 | null | [
"object-detection",
"computer-vision",
"yolov7",
"pypi",
"dataset:detection-datasets/coco",
"arxiv:2207.02696",
"license:gpl-3.0",
"region:us"
]
| object-detection | 2022-12-19T13:58:17Z | ---
license: gpl-3.0
tags:
- object-detection
- computer-vision
- yolov7
- pypi
datasets:
- detection-datasets/coco
---
### Model Description
[YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors](https://arxiv.org/abs/2207.02696)
[YOLOv7-Pip: Packaged version of the Yolov7 repository](https://github.com/kadirnar/yolov7-pip)
[Paper Repo: Implementation of paper - YOLOv7](https://github.com/WongKinYiu/yolov7)
### Installation
```
pip install yolov7detect
```
### Yolov7 Inference
```python
import yolov7
# load pretrained or custom model
model = yolov7.load('kadirnar/yolov7-v0.1', hf_model=True)
# set model parameters
model.conf = 0.25 # NMS confidence threshold
model.iou = 0.45 # NMS IoU threshold
model.classes = None # (optional list) filter by class
# set image
imgs = 'inference/images'
# perform inference
results = model(imgs)
# inference with larger input size and test time augmentation
results = model(img, size=1280, augment=True)
# parse results
predictions = results.pred[0]
boxes = predictions[:, :4] # x1, y1, x2, y2
scores = predictions[:, 4]
categories = predictions[:, 5]
# show detection bounding boxes on image
results.show()
```
### BibTeX Entry and Citation Info
```
@article{wang2022yolov7,
title={{YOLOv7}: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors},
author={Wang, Chien-Yao and Bochkovskiy, Alexey and Liao, Hong-Yuan Mark},
journal={arXiv preprint arXiv:2207.02696},
year={2022}
}
```
|
kadirnar/bsrgan | kadirnar | 2022-12-22T22:17:35Z | 0 | 1 | null | [
"Super-Resolution",
"computer-vision",
"bsrgan",
"gan",
"arxiv:2103.14006",
"license:apache-2.0",
"region:us"
]
| null | 2022-12-20T20:16:15Z | ---
license: apache-2.0
tags:
- Super-Resolution
- computer-vision
- bsrgan
- gan
---
### Model Description
[BSRGAN: Designing a Practical Degradation Model for Deep Blind Image Super-Resolution .](https://arxiv.org/abs/2103.14006)
[BSRGAN-Pip: Packaged version of the BSRGAN repository](https://github.com/kadirnar/bsrgan-pip/)
[Paper Repo: Implementation of paper - BSRGAN](https://github.com/cszn/BSRGAN)
### Installation
```
pip install bsrgan
```
### BSRGAN Usage
```python
from bsrgan import BSRGAN
model = BSRGAN(weights='kadirnar/bsrgan', device='cuda:0', hf_model=True)
model.save = True
pred = model.predict(img_path='data/image/test.png')
```
### BibTeX Entry and Citation Info
```
@inproceedings{zhang2021designing,
title={Designing a Practical Degradation Model for Deep Blind Image Super-Resolution},
author={Zhang, Kai and Liang, Jingyun and Van Gool, Luc and Timofte, Radu},
booktitle={IEEE International Conference on Computer Vision},
pages={4791--4800},
year={2021}
}
``` |
kadirnar/yolox_nano-v0.1.1 | kadirnar | 2022-12-22T22:16:24Z | 0 | 0 | null | [
"object-detection",
"computer-vision",
"yolox",
"yolov3",
"yolov5",
"dataset:detection-datasets/coco",
"arxiv:2107.08430",
"license:apache-2.0",
"region:us"
]
| object-detection | 2022-12-21T22:06:59Z | ---
license: apache-2.0
tags:
- object-detection
- computer-vision
- yolox
- yolov3
- yolov5
datasets:
- detection-datasets/coco
---
### Model Description
[YOLOX](https://arxiv.org/abs/2107.08430) is a high-performance anchor-free YOLO, exceeding yolov3~v5 with MegEngine, ONNX, TensorRT, ncnn, and OpenVINO supported.
[YOLOXDetect-Pip](https://github.com/kadirnar/yolox-pip/): This repo is a packaged version of the [YOLOX](https://github.com/Megvii-BaseDetection/YOLOX) for easy installation and use.
[Paper Repo]: Implementation of paper - [YOLOX](https://github.com/Megvii-BaseDetection/YOLOX)
### Installation
```
pip install yoloxdetect
```
### Yolox Inference
```python
from yoloxdetect import YoloxDetector
from yolox.data.datasets import COCO_CLASSES
model = YoloxDetector(
model_path = "kadirnar/yolox_nano-v0.1.1",
config_path = "configs.yolox_s",
device = "cuda:0",
hf_model=True
)
model.classes = COCO_CLASSES
model.conf = 0.25
model.iou = 0.45
model.show = False
model.save = True
pred = model.predict(image='data/images', img_size=640)
```
### BibTeX Entry and Citation Info
```
@article{yolox2021,
title={YOLOX: Exceeding YOLO Series in 2021},
author={Ge, Zheng and Liu, Songtao and Wang, Feng and Li, Zeming and Sun, Jian},
journal={arXiv preprint arXiv:2107.08430},
year={2021}
}
``` |
kadirnar/yolox_m-v0.1.1 | kadirnar | 2022-12-22T22:15:50Z | 0 | 0 | null | [
"object-detection",
"computer-vision",
"yolox",
"yolov3",
"yolov5",
"dataset:detection-datasets/coco",
"arxiv:2107.08430",
"license:apache-2.0",
"region:us"
]
| object-detection | 2022-12-21T22:08:22Z | ---
license: apache-2.0
tags:
- object-detection
- computer-vision
- yolox
- yolov3
- yolov5
datasets:
- detection-datasets/coco
---
### Model Description
[YOLOX](https://arxiv.org/abs/2107.08430) is a high-performance anchor-free YOLO, exceeding yolov3~v5 with MegEngine, ONNX, TensorRT, ncnn, and OpenVINO supported.
[YOLOXDetect-Pip](https://github.com/kadirnar/yolox-pip/): This repo is a packaged version of the [YOLOX](https://github.com/Megvii-BaseDetection/YOLOX) for easy installation and use.
[Paper Repo]: Implementation of paper - [YOLOX](https://github.com/Megvii-BaseDetection/YOLOX)
### Installation
```
pip install yoloxdetect
```
### Yolox Inference
```python
from yoloxdetect import YoloxDetector
from yolox.data.datasets import COCO_CLASSES
model = YoloxDetector(
model_path = "kadirnar/yolox_m-v0.1.1",
config_path = "configs.yolox_m",
device = "cuda:0",
hf_model=True
)
model.classes = COCO_CLASSES
model.conf = 0.25
model.iou = 0.45
model.show = False
model.save = True
pred = model.predict(image='data/images', img_size=640)
```
### BibTeX Entry and Citation Info
```
@article{yolox2021,
title={YOLOX: Exceeding YOLO Series in 2021},
author={Ge, Zheng and Liu, Songtao and Wang, Feng and Li, Zeming and Sun, Jian},
journal={arXiv preprint arXiv:2107.08430},
year={2021}
}
``` |
kadirnar/yolox_l-v0.1.1 | kadirnar | 2022-12-22T22:15:38Z | 0 | 2 | null | [
"object-detection",
"computer-vision",
"yolox",
"yolov3",
"yolov5",
"dataset:detection-datasets/coco",
"arxiv:2107.08430",
"license:apache-2.0",
"region:us"
]
| object-detection | 2022-12-21T22:11:13Z | ---
license: apache-2.0
tags:
- object-detection
- computer-vision
- yolox
- yolov3
- yolov5
datasets:
- detection-datasets/coco
---
### Model Description
[YOLOX](https://arxiv.org/abs/2107.08430) is a high-performance anchor-free YOLO, exceeding yolov3~v5 with MegEngine, ONNX, TensorRT, ncnn, and OpenVINO supported.
[YOLOXDetect-Pip](https://github.com/kadirnar/yolox-pip/): This repo is a packaged version of the [YOLOX](https://github.com/Megvii-BaseDetection/YOLOX) for easy installation and use.
[Paper Repo]: Implementation of paper - [YOLOX](https://github.com/Megvii-BaseDetection/YOLOX)
### Installation
```
pip install yoloxdetect
```
### Yolox Inference
```python
from yoloxdetect import YoloxDetector
from yolox.data.datasets import COCO_CLASSES
model = YoloxDetector(
model_path = "kadirnar/yolox_l-v0.1.1",
config_path = "configs.yolox_l",
device = "cuda:0",
hf_model=True
)
model.classes = COCO_CLASSES
model.conf = 0.25
model.iou = 0.45
model.show = False
model.save = True
pred = model.predict(image='data/images', img_size=640)
```
### BibTeX Entry and Citation Info
```
@article{yolox2021,
title={YOLOX: Exceeding YOLO Series in 2021},
author={Ge, Zheng and Liu, Songtao and Wang, Feng and Li, Zeming and Sun, Jian},
journal={arXiv preprint arXiv:2107.08430},
year={2021}
}
``` |
paragon-analytics/bert_empathy | paragon-analytics | 2022-12-22T22:00:09Z | 24 | 1 | transformers | [
"transformers",
"pytorch",
"roberta",
"text-classification",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| text-classification | 2022-12-21T15:56:24Z | ---
license: "mit"
---
This is a fine-tuned RoBERTa model that takes text (up to a few sentences) and predicts to what extent it contains empathic language.
Example classification:
```python
import torch
import tensorflow as tf
from transformers import RobertaTokenizer, RobertaModel
from transformers import AutoModelForSequenceClassification
from transformers import TFAutoModelForSequenceClassification
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("paragon-analytics/bert_empathy")
model = AutoModelForSequenceClassification.from_pretrained("paragon-analytics/bert_empathy")
def roberta(x):
encoded_input = tokenizer(x, return_tensors='pt')
output = model(**encoded_input)
scores = output[0][0].detach().numpy()
scores = tf.nn.softmax(scores)
return scores.numpy()[1]
``` |
hawkeyedesi/ppo-LunarLander-v2 | hawkeyedesi | 2022-12-22T21:59:00Z | 0 | 0 | stable-baselines3 | [
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
]
| reinforcement-learning | 2022-12-22T21:58:38Z | ---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: ppo-LunarLander-v2
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 257.73 +/- 14.54
name: mean_reward
verified: false
---
# **ppo-LunarLander-v2** Agent playing **LunarLander-v2**
This is a trained model of a **ppo-LunarLander-v2** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
arampacha/whisper-large-uk-2 | arampacha | 2022-12-22T21:32:24Z | 42 | 5 | transformers | [
"transformers",
"pytorch",
"whisper",
"automatic-speech-recognition",
"whisper-event",
"generated_from_trainer",
"uk",
"dataset:mozilla-foundation/common_voice_11_0",
"dataset:google/fleurs",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
]
| automatic-speech-recognition | 2022-12-21T23:00:43Z | ---
language:
- uk
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
- google/fleurs
model-index:
- name: whisper-large-uk
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 11.0
type: mozilla-foundation/common_voice_11_0
config: uk
split: test
args: uk
metrics:
- name: Wer
type: wer
value: 10.02262314404669
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Fleurs
type: google/fleurs
config: uk_ua
split: test
args: uk_ua
metrics:
- name: Wer
type: wer
value: 7.564370215727209
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-large-uk
This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the Common Voice 11.0 dataset.
It achieves the following results on the evaluation set:
- eval_loss: 0.2527
- eval_wer: 10.0226
- eval_runtime: 9610.7996
- eval_samples_per_second: 0.747
- eval_steps_per_second: 0.023
- epoch: 1.8
- step: 1098
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 1500
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.1+cu117
- Datasets 2.8.0
- Tokenizers 0.13.2
|
kRo0T/dqn-SpaceInvadersNoFrameskip-v4 | kRo0T | 2022-12-22T20:57:38Z | 1 | 0 | stable-baselines3 | [
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
]
| reinforcement-learning | 2022-12-22T20:56:59Z | ---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
metrics:
- type: mean_reward
value: 622.00 +/- 199.96
name: mean_reward
verified: false
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga kRo0T -f logs/
python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga kRo0T -f logs/
rl_zoo3 enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga kRo0T
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 100000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 100000),
('n_timesteps', 1000000.0),
('optimize_memory_usage', False),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
|
johnhudzinatr/ppo-Huggy | johnhudzinatr | 2022-12-22T20:41:47Z | 0 | 0 | ml-agents | [
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Huggy",
"region:us"
]
| reinforcement-learning | 2022-12-22T20:41:34Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Huggy
library_name: ml-agents
---
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy
2. Step 1: Write your model_id: johnhudzinatr/ppo-Huggy
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play π
|
Dahoas/gpt2-rm-static | Dahoas | 2022-12-22T20:14:15Z | 5 | 1 | transformers | [
"transformers",
"pytorch",
"gpt2",
"text-classification",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
]
| text-classification | 2022-12-22T20:03:32Z | [**wanbd**](https://wandb.ai/dahoas/huggingface/runs/1a38b0tb?workspace=user-dahoas) |
Dahoas/gptneo-rm-static | Dahoas | 2022-12-22T20:13:35Z | 6 | 1 | transformers | [
"transformers",
"pytorch",
"gpt_neo",
"text-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| text-classification | 2022-12-22T20:09:51Z | [**wandb**](https://wandb.ai/dahoas/huggingface/runs/e7r5an9w?workspace=user-dahoas) |
SiddharthaM/xlm-sentiment-new | SiddharthaM | 2022-12-22T19:54:29Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"xlm-roberta",
"text-classification",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| text-classification | 2022-12-22T19:24:41Z | ---
license: mit
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: xlm-sentiment-new
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-sentiment-new
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6166
- Accuracy: 0.7405
- Precision: 0.7375
- Recall: 0.7405
- F1: 0.7386
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| No log | 1.0 | 296 | 0.5519 | 0.7310 | 0.7266 | 0.7310 | 0.7277 |
| 0.5719 | 2.0 | 592 | 0.5569 | 0.75 | 0.7562 | 0.75 | 0.7302 |
| 0.5719 | 3.0 | 888 | 0.5320 | 0.7243 | 0.7269 | 0.7243 | 0.7254 |
| 0.477 | 4.0 | 1184 | 0.5771 | 0.7300 | 0.7264 | 0.7300 | 0.7276 |
| 0.477 | 5.0 | 1480 | 0.6051 | 0.7376 | 0.7361 | 0.7376 | 0.7368 |
| 0.428 | 6.0 | 1776 | 0.6166 | 0.7405 | 0.7375 | 0.7405 | 0.7386 |
### Framework versions
- Transformers 4.24.0.dev0
- Pytorch 1.11.0+cu102
- Datasets 2.6.1
- Tokenizers 0.13.1
|
Akumetsu971/SD_VCM07_Anime_Style | Akumetsu971 | 2022-12-22T19:35:08Z | 0 | 5 | null | [
"stable-diffusion",
"text-to-image",
"en",
"license:creativeml-openrail-m",
"region:us"
]
| text-to-image | 2022-12-21T02:03:36Z | ---
inference: true
language:
- en
tags:
- stable-diffusion
- text-to-image
license: creativeml-openrail-m
---
# SD_VCM07_Anime_Style is an open source Stable Diffusion Embedding on art style of VCM07, by Akumetsu971 (https://www.tiktok.com/@akumetsu971)
---
### Model used to train:
wd-v1-3-full-opt.ckpt (https://huggingface.co/hakurei/waifu-diffusion-v1-3)
### Files
3 files available (Best version is V2):
-VCM07_style - 4000 steps (more focused on girl)
-VCM07_style2 - 4000 steps (allowed to create animals)
-Prompt_Blending Script (optional, used for prompt)
### Prompt
You need to use DeepDanBooru Tags (https://gigazine.net/gsc_news/en/20221012-automatic1111-stable-diffusion-webui-deep-danbooru/)
Elysium_Anime_V2.ckpt (https://huggingface.co/hesw23168/SD-Elysium-Model)
Prompt_blending script (https://huggingface.co/Akumetsu971/SD_VCM07_Anime_Style/tree/main)
Embedding was trained with images of girls only. Therefore, getting a boy can be difficult. Adjust weight, negative prompt, etc...
### Human Example
Positive Prompt:
(VCM07_style2:1.0), (1girl:1.2), looking_at_viewer, (best quality), (masterpiece:1.2), (ultra-detailed),(official art),(an extremely delicate and beautiful), (attractive:1.2), (beautiful detailed eyes), (dynamic colours, vibrant colours), depth of field, god rays, dynamic lighting
Negative Prompt:
(mediocre:1.2), (average:1.2), (bad:1.2), (wrong:1.2), (error:1.2), (fault:1.2),( badly_drawn:1.2), (poorly_drawn:1.2), ( low_quality:1.2), no_quality, bad_quality, no_resolution, low_resolution, (lowres:1.2), normal_resolution, (disfigured:1.6), (deformed:1.4), (distortion:1.2), bad_anatomy, (no_detail:1.2), low_detail, normal_detail, (scribble:1.2), (rushed:1.2), (unfinished:1.2), blur, blurry, claws, (misplaced:1.2), (disconnected:1.2), nonsense, random, (noise:1.2), (deformation:1.2), 3d, dull, boring, uninteresting, screencap, (text:1.2), (frame:1.1), (out_of_frame:1.2), (title:1.2), (description:1.3), (sexual:1.2), text, error,(logo:1.3), (watermark:1.3), bad_perspective, bad_proportions, cinematic, jpg_artifacts, jpeg_artifacts, extra_leg, missing_leg, extra_arm, missing_arm, long_hand, bad_hands, (mutated_hand:1.2), (extra_finger:1.2), (missing_finger:1.2), broken_finger, (fused_fingers:1.2), extra_feet, missing_feet, fused_feet, long_feet, missing_limbs, extra_limbs, fused_limbs, claw, (extra_digit:1.2), (fewer_digits:1.2), elves_ears, (naked:1.3), (wet:1.2), uncensored, (long_neck:1.2), (weapon:1.5)
<img src="https://huggingface.co/Akumetsu971/SD_VCM07_Anime_Style/resolve/main/06756-3422664593-(VCM07_style_1.2)%2C%20close-up%2C%20portrait%2C%201girl%2C%20(solo_1.2)%2C%20single%2C%20black_hair%2C%20blue_eyes%2C%20%20long_hair%2C%20looking_at_viewer%2C(best%20qua.png" width="50%"/>
<img src="https://huggingface.co/Akumetsu971/SD_VCM07_Anime_Style/resolve/main/07023-1420035308-(VCM07_style2_1.0)%2C%20(1girl_1.2)%2C%20looking_at_viewer%2C%20(best%20quality)%2C%20(masterpiece_1.2)%2C%20(ultra-detailed)%2C(official%20art)%2C(an%20extre.png" width="50%"/>
<img src="https://huggingface.co/Akumetsu971/SD_VCM07_Anime_Style/resolve/main/07045-3879379165-(VCM07_style2_1.0)%2C%201girl%2C%20(pink_hair_1.8)%2C%20(solo_1.2)%2C%20looking_at_viewer%2C%20(best%20quality)%2C%20(masterpiece_1.2)%2C%20(ultra-detailed)%2C(.png" width="50%"/>
<img src="https://huggingface.co/Akumetsu971/SD_VCM07_Anime_Style/resolve/main/06785-1732689013-(VCM07_style_1.2)%2C%20close-up%2C%20portrait%2C%20(solo_1.4)%2C%20(1girl%2C)%2C%20(fox_1.6)%2C%20single%2C%20(pink_hair_1.6)%2C%20blue_eyes%2C%20%20long_hair%2C%20looking_.png" width="50%"/>
### Animals Example
For V2, embedding was trained with dogs, cats, foxes. Therefore, it is easier to get these animals. However, it is possible to get frogs, elephants, tigers, lions, etc... I used a method with blend prompt script then I described the anatomy of the animal: eyes, ears, nose, fur, etc...
Positive Prompt:
(VCM07_style2:1.0), (cat:1.4|dog:0.5|fox:0.5), (cat_nose:1.2), (cat_eyes:1.2), (cat_ears:1.2), (solo:1.2), looking_at_viewer, (best quality), (masterpiece:1.2), (ultra-detailed),(official art),(an extremely delicate and beautiful), (attractive:1.2), (beautiful detailed eyes), (dynamic colours, vibrant colours), depth of field, god rays, dynamic lighting
Negative Prompt:
(mediocre:1.2), (average:1.2), (bad:1.2), (wrong:1.2), (error:1.2), (fault:1.2),( badly_drawn:1.2), (poorly_drawn:1.2), ( low_quality:1.2), no_quality, bad_quality, no_resolution, low_resolution, (lowres:1.2), normal_resolution, (disfigured:1.6), (deformed:1.5), (distortion:1.2), bad_anatomy, (no_detail:1.2), low_detail, normal_detail, (scribble:1.2), (rushed:1.2), (unfinished:1.2), blur, blurry, claws, (misplaced:1.2), (disconnected:1.2), nonsense, random, (noise:1.2), (deformation:1.2), 3d, dull, boring, uninteresting, screencap, (text:1.2), (frame:1.1), (out_of_frame:1.2), (title:1.2), (description:1.3), (sexual:1.2), text, error,(logo:1.3), (watermark:1.3), bad_perspective, bad_proportions, cinematic, jpg_artifacts, jpeg_artifacts, extra_leg, missing_leg, extra_arm, missing_arm, long_hand, bad_hands, (mutated_hand:1.2), (extra_finger:1.2), (missing_finger:1.2), broken_finger, (fused_fingers:1.2), extra_feet, missing_feet, fused_feet, long_feet, missing_limbs, extra_limbs, fused_limbs, claw, (extra_digit:1.2), (fewer_digits:1.2), elves_ears, (naked:1.3), (wet:1.2), uncensored, (long_neck:1.2)
<img src="https://huggingface.co/Akumetsu971/SD_VCM07_Anime_Style/resolve/main/07031-4095215986-(VCM07_style2_1.0)%2C%20(cat_1.4_dog_0.5_fox_0.5)%2C%20(cat_nose_1.2)%2C%20(cat_eyes_1.2)%2C%20(cat_ears_1.2)%2C%20(solo_1.2)%2C%20looking_at_viewer%2C%20(b.png" width="50%"/>
<img src="https://huggingface.co/Akumetsu971/SD_VCM07_Anime_Style/resolve/main/06915-1261422051-(VCM07_style2_1.0)%2C%20(cat_0.5_lion_0.5_dog_0.5_fox_1.2)%2C%20looking_at_viewer%2C%20(best%20quality)%2C%20(masterpiece_1.2)%2C%20(ultra-detailed)%2C(.png" width="50%"/>
<img src="https://huggingface.co/Akumetsu971/SD_VCM07_Anime_Style/resolve/main/06994-2098824635-(VCM07_style2_1.0)%2C%20(cat_0.5_lion_0.5_dog_0.5_fox_0.5_tiger_1.4)%2C%20(tiger_ears_1.4)%2C%20(tiger_nose_1.4)%2C%20(white_tiger_1.4)%2C%20(white_.png" width="50%"/>
<img src="https://huggingface.co/Akumetsu971/SD_VCM07_Anime_Style/resolve/main/06961-2420141730-(VCM07_style2_1.1)%2C%20(cat_0.5_lion_0.5_dog_0.5_fox_0.5_monkey_1.4)%2C%20(monkey_ears_1.4)%2C%20(monkey_nose_1.4)%2C%20looking_at_viewer%2C%20(bes.png" width="50%"/>
```
|
magnomont12/Taxi-v3 | magnomont12 | 2022-12-22T19:13:08Z | 0 | 0 | null | [
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
]
| reinforcement-learning | 2022-12-22T19:12:56Z | ---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: Taxi-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.48 +/- 2.77
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="magnomont12/Taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
hawkeoni/sd-class-butterflies-32 | hawkeoni | 2022-12-22T18:56:01Z | 0 | 0 | diffusers | [
"diffusers",
"pytorch",
"unconditional-image-generation",
"diffusion-models-class",
"license:mit",
"diffusers:DDPMPipeline",
"region:us"
]
| unconditional-image-generation | 2022-12-22T18:55:41Z | ---
license: mit
tags:
- pytorch
- diffusers
- unconditional-image-generation
- diffusion-models-class
---
# Model Card for Unit 1 of the [Diffusion Models Class π§¨](https://github.com/huggingface/diffusion-models-class)
This model is a diffusion model for unconditional image generation of cute π¦.
## Usage
```python
from diffusers import DDPMPipeline
pipeline = DDPMPipeline.from_pretrained('hawkeoni/sd-class-butterflies-32')
image = pipeline().images[0]
image
```
|
NielsV/Q-learning-taxi-v4 | NielsV | 2022-12-22T18:49:51Z | 0 | 0 | null | [
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
]
| reinforcement-learning | 2022-12-22T17:17:07Z | ---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: Q-learning-taxi-v4
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.56 +/- 2.71
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="NielsV/Q-learning-taxi-v4", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
hanymac/CoreML-Stable-Diffusion-2.1-original-img2img | hanymac | 2022-12-22T18:34:21Z | 0 | 1 | null | [
"license:creativeml-openrail-m",
"region:us"
]
| null | 2022-12-22T18:12:54Z | ---
license: creativeml-openrail-m
---
|
aliosmankaya/reg_arr_model_1_dim | aliosmankaya | 2022-12-22T18:26:47Z | 0 | 0 | sklearn | [
"sklearn",
"joblib",
"skops",
"tabular-classification",
"region:us"
]
| tabular-classification | 2022-11-30T22:22:07Z | ---
library_name: sklearn
tags:
- sklearn
- skops
- tabular-classification
widget:
structuredData:
sepal_length:
- 6.3
- 6.5
- 5.6
---
### Linear Regression Model
This Linear Regression model trained on Iris dataset as a regular numpy array with 1-dimensional.
Goal is to test this pr -> https://github.com/skops-dev/skops/pull/211 |
aliosmankaya/reg_arr_model_2_dim | aliosmankaya | 2022-12-22T18:26:15Z | 0 | 0 | sklearn | [
"sklearn",
"joblib",
"skops",
"tabular-classification",
"region:us"
]
| tabular-classification | 2022-11-30T22:15:02Z | ---
library_name: sklearn
tags:
- sklearn
- skops
- tabular-classification
widget:
structuredData:
sepal_length:
- 6.3
- 6.5
- 5.6
sepal_width:
- 3.3
- 3.0
- 2.5
---
### Linear Regression Model
This Linear Regression model trained on Iris dataset as a regular numpy array with 2-dimensional.
Goal is to test this pr -> https://github.com/skops-dev/skops/pull/211
|
DavidErikMollberg/whisper-medium-is | DavidErikMollberg | 2022-12-22T18:17:06Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"whisper",
"automatic-speech-recognition",
"arxiv:1910.09700",
"model-index",
"endpoints_compatible",
"region:us"
]
| automatic-speech-recognition | 2022-12-20T13:53:22Z | ---
model-index:
- name: DavidErikMollberg/whisper-medium-is
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: google/fleurs
type: google/fleurs
config: is_is
split: test
metrics:
- type: wer
value: 16.17
name: WER
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: language-and-voice-lab/samromur_asr
type: language-and-voice-lab/samromur_asr
config: samromur_asr
split: test
metrics:
- type: wer
value: 10.22
name: WER
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: language-and-voice-lab/althingi_asr
type: language-and-voice-lab/althingi_asr
config: althingi_asr
split: test
metrics:
- type: wer
value: 9.67
name: WER
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
# Table of Contents
1. [Model Details](#model-details)
2. [Uses](#uses)
3. [Bias, Risks, and Limitations](#bias-risks-and-limitations)
4. [Training Details](#training-details)
5. [Evaluation](#evaluation)
6. [Model Examination](#model-examination-optional)
7. [Environmental Impact](#environmental-impact)
8. [Technical Specifications](#technical-specifications-optional)
9. [Citation](#citation-optional)
10. [Glossary](#glossary-optional)
11. [More Information](#more-information-optional)
12. [Model Card Authors](#model-card-authors-optional)
13. [Model Card Contact](#model-card-contact)
14. [How To Get Started With the Model](#how-to-get-started-with-the-model)
# Model Details
## Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
- **Resources for more information:** [More Information Needed]
# Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
## Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
## Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
## Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
# Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
## Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
# Training Details
## Training Data
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
## Training Procedure [optional]
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
### Preprocessing
[More Information Needed]
### Speeds, Sizes, Times
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
# Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
## Testing Data, Factors & Metrics
### Testing Data
<!-- This should link to a Data Card if possible. -->
[More Information Needed]
### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
## Results
[More Information Needed]
# Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
# Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
# Technical Specifications [optional]
## Model Architecture and Objective
[More Information Needed]
## Compute Infrastructure
[More Information Needed]
### Hardware
[More Information Needed]
### Software
[More Information Needed]
# Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
# Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
# More Information [optional]
[More Information Needed]
# Model Card Authors [optional]
[More Information Needed]
# Model Card Contact
[More Information Needed]
# How to Get Started with the Model
Use the code below to get started with the model.
<details>
<summary> Click to expand </summary>
[More Information Needed]
</details> |
kRo0T/q-Taxi-v3 | kRo0T | 2022-12-22T18:06:19Z | 0 | 0 | null | [
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
]
| reinforcement-learning | 2022-12-22T17:11:49Z | ---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-Taxi-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.56 +/- 2.71
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="kRo0T/q-Taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
JovialValley/model_broadclass_onSet3 | JovialValley | 2022-12-22T17:55:47Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"endpoints_compatible",
"region:us"
]
| automatic-speech-recognition | 2022-12-22T14:21:33Z | ---
tags:
- generated_from_trainer
model-index:
- name: model_broadclass_onSet3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# model_broadclass_onSet3
This model was trained from scratch on the None dataset.
It achieves the following results on the evaluation set:
- eval_loss: 0.1389
- eval_0_precision: 1.0
- eval_0_recall: 1.0
- eval_0_f1-score: 1.0
- eval_0_support: 23
- eval_1_precision: 0.9697
- eval_1_recall: 0.9697
- eval_1_f1-score: 0.9697
- eval_1_support: 33
- eval_2_precision: 1.0
- eval_2_recall: 1.0
- eval_2_f1-score: 1.0
- eval_2_support: 26
- eval_3_precision: 0.9333
- eval_3_recall: 0.9333
- eval_3_f1-score: 0.9333
- eval_3_support: 15
- eval_accuracy: 0.9794
- eval_macro avg_precision: 0.9758
- eval_macro avg_recall: 0.9758
- eval_macro avg_f1-score: 0.9758
- eval_macro avg_support: 97
- eval_weighted avg_precision: 0.9794
- eval_weighted avg_recall: 0.9794
- eval_weighted avg_f1-score: 0.9794
- eval_weighted avg_support: 97
- eval_wer: 0.1037
- eval_mtrix: [[0, 1, 2, 3], [0, 23, 0, 0, 0], [1, 0, 32, 0, 1], [2, 0, 0, 26, 0], [3, 0, 1, 0, 14]]
- eval_runtime: 5.6481
- eval_samples_per_second: 17.174
- eval_steps_per_second: 2.302
- step: 0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- num_epochs: 80
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|
ben-yu/ppo-LunarLander-v2 | ben-yu | 2022-12-22T17:50:52Z | 1 | 0 | stable-baselines3 | [
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
]
| reinforcement-learning | 2022-12-22T17:50:03Z | ---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 138.00 +/- 77.89
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
rhakbari/distilbert-base-uncased-finetuned-squad | rhakbari | 2022-12-22T17:35:20Z | 26 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
]
| question-answering | 2022-11-20T14:39:43Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: distilbert-base-uncased-finetuned-squad
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-squad
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1725
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 1.2194 | 1.0 | 5533 | 1.1700 |
| 0.9533 | 2.0 | 11066 | 1.1341 |
| 0.7452 | 3.0 | 16599 | 1.1725 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|
NielsV/q-FrozenLake-v1-4x4-noSlippery | NielsV | 2022-12-22T17:13:05Z | 0 | 0 | null | [
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
]
| reinforcement-learning | 2022-12-22T17:12:53Z | ---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="NielsV/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
kRo0T/q-FrozenLake-v1-4x4-noSlippery | kRo0T | 2022-12-22T17:06:53Z | 0 | 0 | null | [
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
]
| reinforcement-learning | 2022-12-22T17:06:43Z | ---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="kRo0T/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
eduyio/dqn-SpaceInvadersNoFrameskip-v4 | eduyio | 2022-12-22T16:57:47Z | 0 | 0 | stable-baselines3 | [
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
]
| reinforcement-learning | 2022-12-22T16:47:24Z | ---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
metrics:
- type: mean_reward
value: 373.50 +/- 170.12
name: mean_reward
verified: false
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga eduyio -f logs/
python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga eduyio -f logs/
rl_zoo3 enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga eduyio
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 100000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 100000),
('n_timesteps', 1000000.0),
('optimize_memory_usage', False),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
|
ataunal/q-FrozenLake-v1-4x4-noSlippery | ataunal | 2022-12-22T16:06:04Z | 0 | 0 | null | [
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
]
| reinforcement-learning | 2022-12-22T16:05:51Z | ---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="ataunal/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
yangwang825/etdnn-vox2 | yangwang825 | 2022-12-22T16:04:05Z | 5 | 0 | speechbrain | [
"speechbrain",
"embeddings",
"Speaker",
"Verification",
"Identification",
"pytorch",
"E-TDNN",
"en",
"dataset:voxceleb",
"license:apache-2.0",
"region:us"
]
| null | 2022-12-14T08:37:42Z | ---
language: "en"
thumbnail:
tags:
- speechbrain
- embeddings
- Speaker
- Verification
- Identification
- pytorch
- E-TDNN
license: "apache-2.0"
datasets:
- voxceleb
metrics:
- EER
- Accuracy
inference: true
widget:
- example_title: VoxCeleb Speaker id10003
src: https://cdn-media.huggingface.co/speech_samples/VoxCeleb1_00003.wav
- example_title: VoxCeleb Speaker id10004
src: https://cdn-media.huggingface.co/speech_samples/VoxCeleb_00004.wav
---
# Speaker Identification with E-TDNN embeddings on Voxceleb
This repository provides a pretrained E-TDNN model (x-vector) using SpeechBrain. The system can be used to extract speaker embeddings as well. Since we can't find any resource that has SpeechBrain or HuggingFace compatible checkpoints that has only been trained on VoxCeleb2 development data, so we decide to pre-train an E-TDNN system from scratch.
# Pipeline description
This system is composed of an E-TDNN model (x-vector). It is a combination of convolutional and residual blocks. The embeddings are extracted using temporal statistical pooling. The system is trained with Additive Margin Softmax Loss.
We use FBank (16kHz, 25ms frame length, 10ms hop length, 80 filter-bank channels) as the input features. It was trained using initial learning rate of 0.001 and batch size of 512 with linear scheduler for 40 epochs on 4 A100 GPUs. We employ additive noises and reverberation from [MUSAN](http://www.openslr.org/17/) and [RIR](http://www.openslr.org/28/) datasets to enrich the supervised information. The pre-training progress takes approximately seven days for the E-TDNN model.
# Performance
**VoxCeleb1-O** is the original verification test set from VoxCeleb1 consisting of 40 speakers. All speakers with names starting with "E" are reserved for testing. **VoxCeleb1-E** uses the entire VoxCeleb1 dataset, covering 1251 speakers. **VoxCeleb1-H** is a hard version of evaluation set consisting of 552536 pairs with 1190 speakers with the same nationality and gender. There are 18 nationality-gender combinations each with at least 5 individuals.
| Splits | Backend | S-norm | EER(%) | minDCF(0.01) |
|:-------------:|:--------------:|:--------------:|:--------------:|:--------------:|
| VoxCeleb1-O | cosine | no | 1.91 | 0.20 |
| VoxCeleb1-E | cosine | no | TBD | TBD |
| VoxCeleb1-H | cosine | no | TBD | TBD |
- VoxCeleb1-O: includes 37611 test pairs with 40 speakers.
- VoxCeleb1-E: includes 579818 test pairs with 1251 speakers.
- VoxCeleb1-H: includes 550894 test pairs with 1190 speakers.
# Compute the speaker embeddings
The system is trained with recordings sampled at 16kHz (single channel).
```python
import torch
import torchaudio
from speechbrain.pretrained.interfaces import Pretrained
from speechbrain.pretrained import EncoderClassifier
class Encoder(Pretrained):
MODULES_NEEDED = [
"compute_features",
"mean_var_norm",
"embedding_model"
]
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def encode_batch(self, wavs, wav_lens=None, normalize=False):
# Manage single waveforms in input
if len(wavs.shape) == 1:
wavs = wavs.unsqueeze(0)
# Assign full length if wav_lens is not assigned
if wav_lens is None:
wav_lens = torch.ones(wavs.shape[0], device=self.device)
# Storing waveform in the specified device
wavs, wav_lens = wavs.to(self.device), wav_lens.to(self.device)
wavs = wavs.float()
# Computing features and embeddings
feats = self.mods.compute_features(wavs)
feats = self.mods.mean_var_norm(feats, wav_lens)
embeddings = self.mods.embedding_model(feats, wav_lens)
if normalize:
embeddings = self.hparams.mean_var_norm_emb(
embeddings,
torch.ones(embeddings.shape[0], device=self.device)
)
return embeddings
classifier = Encoder.from_hparams(
source="yangwang825/etdnn-vox2"
)
signal, fs = torchaudio.load('spk1_snt1.wav')
embeddings = classifier.encode_batch(signal)
>>> torch.Size([1, 1, 192])
```
We will release our training results (models, logs, etc) shortly.
# References
1. Ravanelli et al., SpeechBrain: A General-Purpose Speech Toolkit, 2021
2. Snyder et al., The JHU Speaker Recognition System for the VOiCES 2019 Challenge, 2019 |
ihanif/wav2vec2-xls-r-300m-pashto-lm | ihanif | 2022-12-22T15:57:25Z | 121 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"google/fleurs",
"generated_from_trainer",
"hf-asr-leaderboard",
"pashto",
"ps",
"dataset:fleurs",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
]
| automatic-speech-recognition | 2022-12-21T12:11:15Z | ---
license: apache-2.0
tags:
- google/fleurs
- generated_from_trainer
- automatic-speech-recognition
- hf-asr-leaderboard
- pashto
- ps
datasets:
- fleurs
metrics:
- wer
model-index:
- name: facebook/wav2vec2-xls-r-300m
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: google/fleurs
type: google/fleurs
args: 'config: ps_af, split: test'
metrics:
- name: Wer
type: wer
value: 0.5159447476125512
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# facebook/wav2vec2-xls-r-300m
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the GOOGLE/FLEURS - PS_AF dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9162
- Wer: 0.5159
- Cer: 0.1972
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7.5e-07
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- training_steps: 6000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Cer | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:------:|:---------------:|:------:|
| 5.0767 | 6.33 | 500 | 1.0 | 4.8783 | 1.0 |
| 3.1156 | 12.66 | 1000 | 1.0 | 3.0990 | 1.0 |
| 1.3506 | 18.99 | 1500 | 0.2889 | 1.1056 | 0.7031 |
| 0.9997 | 25.32 | 2000 | 0.2301 | 0.9191 | 0.5944 |
| 0.7838 | 31.65 | 2500 | 0.2152 | 0.8952 | 0.5556 |
| 0.6665 | 37.97 | 3000 | 0.2017 | 0.8908 | 0.5252 |
| 0.6265 | 44.3 | 3500 | 0.1954 | 0.9063 | 0.5133 |
| 0.5935 | 50.63 | 4000 | 0.1969 | 0.9162 | 0.5156 |
| 0.5174 | 56.96 | 4500 | 0.1972 | 0.9287 | 0.5140 |
| 0.5462 | 63.29 | 5000 | 0.1974 | 0.9370 | 0.5138 |
| 0.5564 | 69.62 | 5500 | 0.1977 | 0.9461 | 0.5148 |
| 0.5252 | 75.95 | 6000 | 0.9505 | 0.5118 | 0.1969 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.1+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2
|
bofenghuang/deprecated-whisper-large-v2-cv11-french-punct-plus | bofenghuang | 2022-12-22T15:55:48Z | 3 | 1 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"whisper",
"automatic-speech-recognition",
"hf-asr-leaderboard",
"whisper-event",
"fr",
"dataset:mozilla-foundation/common_voice_11_0",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
]
| automatic-speech-recognition | 2022-12-22T10:51:45Z | ---
license: apache-2.0
language: fr
library_name: transformers
thumbnail: null
tags:
- automatic-speech-recognition
- hf-asr-leaderboard
- whisper-event
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Fine-tuned whisper-large-v2 model for ASR in French
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 11.0
type: mozilla-foundation/common_voice_11_0
config: fr
split: test
args: fr
metrics:
- name: WER (Greedy)
type: wer
value: 8.55
- name: WER (Beam 5)
type: wer
value: 8.03
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Fleurs
type: google/fleurs
config: fr_fr
split: test
args: fr_fr
metrics:
- name: WER (Greedy)
type: wer
value: 5.58
- name: WER (Beam 5)
type: wer
value: 5.26
---
<style>
img {
display: inline;
}
</style>



# Fine-tuned whisper-large-v2 model for ASR in French
This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2), trained on the mozilla-foundation/common_voice_11_0 fr dataset. When using the model make sure that your speech input is also sampled at 16Khz. **This model also predicts casing and punctuation.**
## Usage
Inference with π€ Pipeline
```python
import torch
from datasets import load_dataset
from transformers import pipeline
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Load pipeline
pipe = pipeline("automatic-speech-recognition", model="bofenghuang/whisper-large-v2-cv11-french-punct", device=device)
# NB: set forced_decoder_ids for generation utils
pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language="fr", task="transcribe")
# Load data
ds_mcv_test = load_dataset("mozilla-foundation/common_voice_11_0", "fr", split="test", streaming=True)
test_segment = next(iter(ds_mcv_test))
waveform = test_segment["audio"]
# NB: decoding option
# limit the maximum number of generated tokens to 225
pipe.model.config.max_length = 225 + 1
# sampling
# pipe.model.config.do_sample = True
# beam search
# pipe.model.config.num_beams = 5
# return
# pipe.model.config.return_dict_in_generate = True
# pipe.model.config.output_scores = True
# pipe.model.config.num_return_sequences = 5
# Run
generated_sentences = pipe(waveform)["text"]
```
Inference with π€ low-level APIs
```python
import torch
import torchaudio
from datasets import load_dataset
from transformers import AutoProcessor, AutoModelForSpeechSeq2Seq
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Load model
model = AutoModelForSpeechSeq2Seq.from_pretrained("bofenghuang/whisper-large-v2-cv11-french-punct").to(device)
processor = AutoProcessor.from_pretrained("bofenghuang/whisper-large-v2-cv11-french-punct", language="french", task="transcribe")
# NB: set forced_decoder_ids for generation utils
model.config.forced_decoder_ids = processor.get_decoder_prompt_ids(language="fr", task="transcribe")
# 16_000
model_sample_rate = processor.feature_extractor.sampling_rate
# Load data
ds_mcv_test = load_dataset("mozilla-foundation/common_voice_11_0", "fr", split="test", streaming=True)
test_segment = next(iter(ds_mcv_test))
waveform = torch.from_numpy(test_segment["audio"]["array"])
sample_rate = test_segment["audio"]["sampling_rate"]
# Resample
if sample_rate != model_sample_rate:
resampler = torchaudio.transforms.Resample(sample_rate, model_sample_rate)
waveform = resampler(waveform)
# Get feat
inputs = processor(waveform, sampling_rate=model_sample_rate, return_tensors="pt")
input_features = inputs.input_features
input_features = input_features.to(device)
# Generate
generated_ids = model.generate(inputs=input_features, max_new_tokens=225) # greedy
# generated_ids = model.generate(inputs=input_features, max_new_tokens=225, num_beams=5) # beam search
# Detokenize
generated_sentences = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
# Normalise predicted sentences if necessary
``` |
mobiusmatt/ppo-LunarLander-v2 | mobiusmatt | 2022-12-22T15:52:01Z | 1 | 0 | stable-baselines3 | [
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
]
| reinforcement-learning | 2022-12-22T02:26:42Z | ---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 290.56 +/- 22.68
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
mahmoud-mohey/q-FrozenLake-v1-4x4 | mahmoud-mohey | 2022-12-22T15:10:17Z | 0 | 0 | null | [
"FrozenLake-v1-4x4-slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
]
| reinforcement-learning | 2022-12-22T15:10:03Z | ---
tags:
- FrozenLake-v1-4x4-slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-slippery_v2
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-slippery
type: FrozenLake-v1-4x4-slippery
metrics:
- type: mean_reward
value: 0.80 +/- 0.40
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="mahmoud-mohey/q-FrozenLake-v1-4x4-slippery_v2", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
enryu43/anifusion_sd_unet | enryu43 | 2022-12-22T15:04:03Z | 6 | 3 | diffusers | [
"diffusers",
"diffusers:LDMTextToImagePipeline",
"region:us"
]
| null | 2022-12-21T15:47:20Z | This model is converted with https://github.com/huggingface/diffusers/blob/main/scripts/convert_original_stable_diffusion_to_diffusers.py.
However, the tokenizer in the diffuser model is wrong, for proper usage, see description at https://medium.com/@enryu9000/anifusion-sd-91a59431a6dd, and instructions/examples at https://github.com/enryu43/anifusion2-stable-diffusion.
Also, the original checkpoint in the Latent Diffusion format is available.
Installation instructions for webui: https://gist.github.com/enryu43/fccaa7f165ffcb214780d203c565761f
|
NXBY/ppo-LunarLander-v2 | NXBY | 2022-12-22T14:38:29Z | 2 | 0 | stable-baselines3 | [
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
]
| reinforcement-learning | 2022-12-22T14:38:01Z | ---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 256.03 +/- 30.45
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
BabakMahmoudi/ppo-LunarLander-v2 | BabakMahmoudi | 2022-12-22T14:25:36Z | 0 | 0 | stable-baselines3 | [
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
]
| reinforcement-learning | 2022-12-22T14:25:14Z | ---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 263.95 +/- 14.28
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
flegese/translation_en_to_sd | flegese | 2022-12-22T14:14:16Z | 3 | 0 | keras | [
"keras",
"tf-keras",
"marian",
"region:us"
]
| null | 2022-11-29T07:31:50Z | ---
library_name: keras
---
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
| Hyperparameters | Value |
| :-- | :-- |
| name | Adam |
| learning_rate | 0.001 |
| decay | 0.0 |
| beta_1 | 0.9 |
| beta_2 | 0.999 |
| epsilon | 1e-07 |
| amsgrad | False |
| training_precision | float32 |
## Model Plot
<details>
<summary>View Model Plot</summary>

</details> |
research-backup/relbert-roberta-large-semeval2012-v6-mask-prompt-d-nce-0 | research-backup | 2022-12-22T14:05:44Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"roberta",
"feature-extraction",
"dataset:relbert/semeval2012_relational_similarity_v6",
"model-index",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
]
| feature-extraction | 2022-11-26T22:53:45Z | ---
datasets:
- relbert/semeval2012_relational_similarity_v6
model-index:
- name: relbert/relbert-roberta-large-semeval2012-v6-mask-prompt-d-nce-0
results:
- task:
name: Relation Mapping
type: sorting-task
dataset:
name: Relation Mapping
args: relbert/relation_mapping
type: relation-mapping
metrics:
- name: Accuracy
type: accuracy
value: 0.317718253968254
- task:
name: Analogy Questions (SAT full)
type: multiple-choice-qa
dataset:
name: SAT full
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.27807486631016043
- task:
name: Analogy Questions (SAT)
type: multiple-choice-qa
dataset:
name: SAT
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.27299703264094954
- task:
name: Analogy Questions (BATS)
type: multiple-choice-qa
dataset:
name: BATS
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.37965536409116174
- task:
name: Analogy Questions (Google)
type: multiple-choice-qa
dataset:
name: Google
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.414
- task:
name: Analogy Questions (U2)
type: multiple-choice-qa
dataset:
name: U2
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.3157894736842105
- task:
name: Analogy Questions (U4)
type: multiple-choice-qa
dataset:
name: U4
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.25925925925925924
- task:
name: Lexical Relation Classification (BLESS)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.6180503239415398
- name: F1 (macro)
type: f1_macro
value: 0.4614231459717044
- task:
name: Lexical Relation Classification (CogALexV)
type: classification
dataset:
name: CogALexV
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.734037558685446
- name: F1 (macro)
type: f1_macro
value: 0.2496301382914666
- task:
name: Lexical Relation Classification (EVALution)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.41765980498374866
- name: F1 (macro)
type: f1_macro
value: 0.2976004948922019
- task:
name: Lexical Relation Classification (K&H+N)
type: classification
dataset:
name: K&H+N
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.8466300340822146
- name: F1 (macro)
type: f1_macro
value: 0.5996275083276039
- task:
name: Lexical Relation Classification (ROOT09)
type: classification
dataset:
name: ROOT09
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.7790661234722657
- name: F1 (macro)
type: f1_macro
value: 0.7551725837093879
---
# relbert/relbert-roberta-large-semeval2012-v6-mask-prompt-d-nce-0
RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on
[relbert/semeval2012_relational_similarity_v6](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity_v6).
Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail).
It achieves the following results on the relation understanding tasks:
- Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/relbert-roberta-large-semeval2012-v6-mask-prompt-d-nce-0/raw/main/analogy.json)):
- Accuracy on SAT (full): 0.27807486631016043
- Accuracy on SAT: 0.27299703264094954
- Accuracy on BATS: 0.37965536409116174
- Accuracy on U2: 0.3157894736842105
- Accuracy on U4: 0.25925925925925924
- Accuracy on Google: 0.414
- Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/relbert-roberta-large-semeval2012-v6-mask-prompt-d-nce-0/raw/main/classification.json)):
- Micro F1 score on BLESS: 0.6180503239415398
- Micro F1 score on CogALexV: 0.734037558685446
- Micro F1 score on EVALution: 0.41765980498374866
- Micro F1 score on K&H+N: 0.8466300340822146
- Micro F1 score on ROOT09: 0.7790661234722657
- Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/relbert-roberta-large-semeval2012-v6-mask-prompt-d-nce-0/raw/main/relation_mapping.json)):
- Accuracy on Relation Mapping: 0.317718253968254
### Usage
This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip
```shell
pip install relbert
```
and activate model as below.
```python
from relbert import RelBERT
model = RelBERT("relbert/relbert-roberta-large-semeval2012-v6-mask-prompt-d-nce-0")
vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, )
```
### Training hyperparameters
The following hyperparameters were used during training:
- model: roberta-large
- max_length: 64
- mode: mask
- data: relbert/semeval2012_relational_similarity_v6
- split: train
- split_eval: validation
- template_mode: manual
- loss_function: nce_logout
- classification_loss: False
- temperature_nce_constant: 0.05
- temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'}
- epoch: 8
- batch: 128
- lr: 5e-06
- lr_decay: False
- lr_warmup: 1
- weight_decay: 0
- random_seed: 0
- exclude_relation: None
- n_sample: 640
- gradient_accumulation: 8
- relation_level: None
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/relbert-roberta-large-semeval2012-v6-mask-prompt-d-nce-0/raw/main/trainer_config.json).
### Reference
If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
```
@inproceedings{ushio-etal-2021-distilling-relation-embeddings,
title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels",
author = "Ushio, Asahi and
Schockaert, Steven and
Camacho-Collados, Jose",
booktitle = "EMNLP 2021",
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
}
```
|
zjunlp/KnowPrompt | zjunlp | 2022-12-22T13:57:04Z | 0 | 3 | null | [
"ch",
"license:apache-2.0",
"region:us"
]
| null | 2022-11-29T12:02:20Z | ---
tasks:
- Relation Extraction
widgets:
- examples:
- name: 1
title: Message-Topic(e1,e2)
inputs:
- name: token
data: ["the", "most", "common", "audits", "were", "about", "waste", "and", "recycling", "."]
- name: h
data:
- name: audits
pos: [3, 4]
- name: t
data:
- name: waste
pos: [6, 7]
- name: 2
title: Product-Producer(e2,e1)
inputs:
- name: token
data: ["the", "ombudsman", "'s", "report", "concluded", "that", "``", "a", "large", "part", "of", "the", "package", "was", "not", "provided", "''", "."]
- name: h
data:
- name: ombudsman
pos: [1, 2]
- name: t
data:
- name: report
pos: [3, 4]
- name: 3
title: Instrument-Agency(e2,e1)
inputs:
- name: token
data: ["many", "professional", "cartomancers", "use", "a", "regular", "deck", "of", "playing", "cards", "for", "divination", "."]
- name: h
data:
- name: cartomancers
pos: [2, 3]
- name: t
data:
- name: cards
pos: [9, 10]
- name: 4
title: Entity-Destination(e1,e2)
inputs:
- name: token
data: ["nasa", "kepler", "mission", "sends", "names", "into", "space", "."]
- name: h
data:
- name: oil
pos: [4, 5]
- name: t
data:
- name: ocean
pos: [7, 8]
- name: 5
title: Cause-Effect(e2,e1)
inputs:
- name: token
data: ["sorace", "was", "unaware", "that", "her", "anger", "was", "caused", "by", "the", "abuse", "."]
- name: h
data:
- name: anger
pos: [5, 6]
- name: t
data:
- name: abuse
pos: [10, 11]
- name: 6
title: Component-Whole(e1,e2)
inputs:
- name: token
data: ["the", "castle", "was", "inside", "a", "museum", "."]
- name: h
data:
- name: castle
pos: [1, 2]
- name: t
data:
- name: museum
pos: [5, 6]
domain:
- nlp
frameworks:
- pytorch
backbone:
- BERT large
metrics:
- accuracy
license: apache-2.0
language:
- ch
---
# KnowPrompt:Knowledge-aware Prompt-tuning with Synergistic Optimization for Relation Extraction
KnowPrompt is used for relational extraction tasks, injecting latent knowledge contained in relation labels into prompt construction with learnable virtual template words and answer words , and synergistically optimize their representation with structured constraints.
## Model description
We take the first step to inject latent knowledge contained in relation labels into prompt constructionοΌthe knowledge extraction is then implemented with a Prompt-tuning modelγThe implementation is as followsοΌvirtual template words around entities initialized using aggregate entity embeddings are used as learnable virtual template words to inject entity knowledge; Meanwhile, we leverage label to compute average embeddings as virtual answers words to inject relationship knowledge. In this structure, entities and relations are mutually constrained and virtual template and answer words should be contextually relevant, so we introduce synergistic optimization to correct virtual template and answer words.

## Intended uses & limitations
This model is used for relationship extraction tasks, and the extracted information can be used for more downstream NLP tasks, such as: information retrieval, conversation generation and Q&A. Please refer to the code example for details on how to use it.
The relationship labels in the model training data are limited and can only generalize the relationships in the real world to a certain extent.
## Training data
We adopt SemEval as the dataset
| **Dataset** | **# Train.** | **# Val.** | **# Test.** | **# Rel.** |
| ----------- | ------------ | ---------- | ----------- | ---------- |
| SemEval | 6,507 | 1,493 | 2,717 | 19 |
## Training procedure
### Training
The training is divided into two phases, and the first phase performs collaborative optimization of virtual template words and answer words
$$
\mathcal{J}=\mathcal{J}_{[\text {MASK }]}+\lambda \mathcal{J}_{\text {structured }},
$$
$\lambda$is the hyperparameter for weighing the two loss functions;The second stage optimizes all parameters with a smaller learning rate based on the optimized virtual template words and answer words, using only the loss function $\mathcal{J}_{texttt{[MASK]}}$to finetune the parameters for the language model.The hyperparameters are different for different datasets, as shown in the script file in the source code.Taking SemEval as an example, the hyperparameters are set as follows:
```
max_epochs=10
max_sequence_length=256
batch_size=16
learning_rate=3e-5
batch_size=16
t_lambda=0.001
```
### Data Evaluation and Results
The results of the comparison with other models in standard settings are shown in the following table.
| **Methods** | **Precision** |
| ----------- | ------------- |
| Fine-tuning | 87.6 |
| KnowBERT | 89.1 |
| MTB | 89.5 |
| PTR | 89.9 |
| KnowPrompt | 90.2 (+0.3) |
In low-resource settingsοΌwe performed the 8-, 16-, and 32-experiments.K instances of each class are sampled from the initial training and validation sets to form the training and validation sets for the FEW-shot. The results are as follows:
| Split | **Methods** | **Precision** |
| ----- | ----------- | ------------- |
| k=8 | Fine-tuning | 41.3 |
| | GDPNet | 42.0 |
| | PTR | 70.5 |
| | KnowPrompt | 74.3 (+33.0) |
| k=16 | Fine-tuning | 65.2 |
| | GDPNet | 67.5 |
| | PTR | 81.3 |
| | KnowPrompt | 82.9 (+17.7) |
| k=32 | Fine-tuning | 80.1 |
| | GDPNet | 81.2 |
| | PTR | 84.2 |
| | KnowPrompt | 84.8 (+4.7) |
As πΎ decreases from 32 to 8, the improvement in our KnowPrompt over the other three methods increases gradually.
#### BibTeX entry and citation info
```
@inproceedings{DBLP:conf/www/ChenZXDYTHSC22,
author = {Xiang Chen and
Ningyu Zhang and
Xin Xie and
Shumin Deng and
Yunzhi Yao and
Chuanqi Tan and
Fei Huang and
Luo Si and
Huajun Chen},
editor = {Fr{\'{e}}d{\'{e}}rique Laforest and
Rapha{\"{e}}l Troncy and
Elena Simperl and
Deepak Agarwal and
Aristides Gionis and
Ivan Herman and
Lionel M{\'{e}}dini},
title = {KnowPrompt: Knowledge-aware Prompt-tuning with Synergistic Optimization
for Relation Extraction},
booktitle = {{WWW} '22: The {ACM} Web Conference 2022, Virtual Event, Lyon, France,
April 25 - 29, 2022},
pages = {2778--2788},
publisher = {{ACM}},
year = {2022},
url = {https://doi.org/10.1145/3485447.3511998},
doi = {10.1145/3485447.3511998},
timestamp = {Tue, 26 Apr 2022 16:02:09 +0200},
biburl = {https://dblp.org/rec/conf/www/ChenZXDYTHSC22.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```bash
git clone https://www.modelscope.cn/jeno11/knowprompt_demo.git
``` |
yizhangliu/ddpm-celebahq-finetuned-butterflies-2epochs | yizhangliu | 2022-12-22T13:54:08Z | 1 | 0 | diffusers | [
"diffusers",
"pytorch",
"unconditional-image-generation",
"diffusion-models-class",
"license:mit",
"diffusers:DDPMPipeline",
"region:us"
]
| unconditional-image-generation | 2022-12-22T13:53:44Z | ---
license: mit
tags:
- pytorch
- diffusers
- unconditional-image-generation
- diffusion-models-class
---
# Example Fine-Tuned Model for Unit 2 of the [Diffusion Models Class π§¨](https://github.com/huggingface/diffusion-models-class)
Describe your model here
## Usage
```python
from diffusers import DDPMPipeline
pipeline = DDPMPipeline.from_pretrained('yizhangliu/ddpm-celebahq-finetuned-butterflies-2epochs')
image = pipeline().images[0]
image
```
|
Verne/test-sd-class-butterflies-32 | Verne | 2022-12-22T13:41:24Z | 10 | 0 | diffusers | [
"diffusers",
"pytorch",
"unconditional-image-generation",
"diffusion-models-class",
"license:mit",
"diffusers:DDPMPipeline",
"region:us"
]
| unconditional-image-generation | 2022-12-22T13:21:06Z | ---
license: mit
tags:
- pytorch
- diffusers
- unconditional-image-generation
- diffusion-models-class
---
# Model Card for Unit 1 of the [Diffusion Models Class π§¨](https://github.com/huggingface/diffusion-models-class)
This model is a diffusion model for unconditional image generation of cute π¦.
## Usage
```python
from diffusers import DDPMPipeline
pipeline = DDPMPipeline.from_pretrained('Verne/test-sd-class-butterflies-32')
image = pipeline().images[0]
image
```
|
jaydipsen/xlm-roberta-base-finetuned-panx-de | jaydipsen | 2022-12-22T13:32:56Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"xlm-roberta",
"token-classification",
"generated_from_trainer",
"dataset:xtreme",
"license:mit",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2022-12-22T13:08:52Z | ---
license: mit
tags:
- generated_from_trainer
datasets:
- xtreme
metrics:
- f1
model-index:
- name: xlm-roberta-base-finetuned-panx-de
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: xtreme
type: xtreme
args: PAN-X.de
metrics:
- name: F1
type: f1
value: 0.8638300289723342
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-de
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1358
- F1: 0.8638
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.2591 | 1.0 | 525 | 0.1621 | 0.8206 |
| 0.1276 | 2.0 | 1050 | 0.1379 | 0.8486 |
| 0.082 | 3.0 | 1575 | 0.1358 | 0.8638 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.13.0+cu116
- Datasets 1.16.1
- Tokenizers 0.10.3
|
edbeeching/sample_factory_FPS | edbeeching | 2022-12-22T13:29:12Z | 0 | 0 | sample-factory | [
"sample-factory",
"tensorboard",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
]
| reinforcement-learning | 2022-12-22T13:28:07Z | ---
library_name: sample-factory
tags:
- deep-reinforcement-learning
- reinforcement-learning
- sample-factory
model-index:
- name: APPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: gdrl
type: gdrl
metrics:
- type: mean_reward
value: nan +/- nan
name: mean_reward
verified: false
---
A(n) **APPO** model trained on the **gdrl** environment.
This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory.
Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/
## Downloading the model
After installing Sample-Factory, download the model with:
```
python -m sample_factory.huggingface.load_from_hub -r edbeeching/sample_factory_FPS
```
## Using the model
To run the model after download, use the `enjoy` script corresponding to this environment:
```
python -m .home.edward.work.godot_rl_agents.venv.bin.g --algo=APPO --env=gdrl --train_dir=./train_dir --experiment=sample_factory_FPS
```
You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag.
See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details
## Training with this model
To continue training with this model, use the `train` script corresponding to this environment:
```
python -m .gpfsssd.scratch.rech.ajs.utv52ia.godot_rl.godot_rl_agents.venv.bin.g --algo=APPO --env=gdrl --train_dir=./train_dir --experiment=sample_factory_FPS --restart_behavior=resume --train_for_env_steps=10000000000
```
Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
|
bsmith0430/ppo-LunarLander-v2 | bsmith0430 | 2022-12-22T13:17:17Z | 2 | 0 | stable-baselines3 | [
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
]
| reinforcement-learning | 2022-11-21T08:07:39Z | ---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 274.93 +/- 18.64
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
sophiaaez/sd-class-butterflies-32 | sophiaaez | 2022-12-22T13:10:35Z | 4 | 0 | diffusers | [
"diffusers",
"pytorch",
"unconditional-image-generation",
"diffusion-models-class",
"license:mit",
"diffusers:DDPMPipeline",
"region:us"
]
| unconditional-image-generation | 2022-12-22T13:09:09Z | ---
license: mit
tags:
- pytorch
- diffusers
- unconditional-image-generation
- diffusion-models-class
---
# Model Card for Unit 1 of the [Diffusion Models Class π§¨](https://github.com/huggingface/diffusion-models-class)
This model is a diffusion model for unconditional image generation of cute π¦.
## Usage
```python
from diffusers import DDPMPipeline
pipeline = DDPMPipeline.from_pretrained('sophiaaez/sd-class-butterflies-32')
image = pipeline().images[0]
image
```
|
sgangireddy/whisper-medium-cv-fi-3k | sgangireddy | 2022-12-22T12:09:37Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"whisper",
"automatic-speech-recognition",
"generated_from_trainer",
"fi",
"dataset:mozilla-foundation/common_voice_11_0",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
]
| automatic-speech-recognition | 2022-12-21T16:00:59Z | ---
language:
- fi
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper medium Finnish CV 4K
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: mozilla-foundation/common_voice_11_0 fi
type: mozilla-foundation/common_voice_11_0
config: fi
split: test
args: fi
metrics:
- name: Wer
type: wer
value: 15.736901620806634
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper medium Finnish CV 4K
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the mozilla-foundation/common_voice_11_0 fi dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3412
- Wer: 15.7369
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.0014 | 19.0 | 1000 | 0.3029 | 16.3117 |
| 0.0002 | 38.01 | 2000 | 0.3412 | 15.7369 |
| 0.0001 | 57.01 | 3000 | 0.3592 | 15.8783 |
| 0.0001 | 76.01 | 4000 | 0.3655 | 15.8594 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2
|
edbeeching/sample_factory_BallChase | edbeeching | 2022-12-22T12:06:43Z | 0 | 0 | sample-factory | [
"sample-factory",
"tensorboard",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
]
| reinforcement-learning | 2022-12-22T12:06:28Z | ---
library_name: sample-factory
tags:
- deep-reinforcement-learning
- reinforcement-learning
- sample-factory
model-index:
- name: APPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: gdrl
type: gdrl
metrics:
- type: mean_reward
value: nan +/- nan
name: mean_reward
verified: false
---
A(n) **APPO** model trained on the **gdrl** environment.
This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory.
Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/
## Downloading the model
After installing Sample-Factory, download the model with:
```
python -m sample_factory.huggingface.load_from_hub -r edbeeching/sample_factory_BallChase
```
## Using the model
To run the model after download, use the `enjoy` script corresponding to this environment:
```
python -m .home.edward.work.godot_rl_agents.venv.bin.g --algo=APPO --env=gdrl --train_dir=./train_dir --experiment=sample_factory_BallChase
```
You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag.
See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details
## Training with this model
To continue training with this model, use the `train` script corresponding to this environment:
```
python -m .home.edward.work.godot_rl_agents.venv.bin.g --algo=APPO --env=gdrl --train_dir=./train_dir --experiment=sample_factory_BallChase --restart_behavior=resume --train_for_env_steps=10000000000
```
Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
|
infinitas9/rl-ppo-Huggy | infinitas9 | 2022-12-22T12:03:34Z | 3 | 0 | ml-agents | [
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Huggy",
"region:us"
]
| reinforcement-learning | 2022-12-22T12:03:17Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Huggy
library_name: ml-agents
---
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy
2. Step 1: Write your model_id: infinitas9/rl-ppo-Huggy
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play π
|
George117/q-Taxi-v3 | George117 | 2022-12-22T11:53:07Z | 0 | 0 | null | [
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
]
| reinforcement-learning | 2022-12-22T11:52:54Z | ---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-Taxi-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.56 +/- 2.71
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="George117/q-Taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
Siddu0406/codeparrot-ds | Siddu0406 | 2022-12-22T11:48:33Z | 6 | 0 | transformers | [
"transformers",
"tf",
"gpt2",
"text-generation",
"generated_from_keras_callback",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| text-generation | 2022-12-22T11:07:14Z | ---
license: mit
tags:
- generated_from_keras_callback
model-index:
- name: codeparrot-ds
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# codeparrot-ds
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 9.8843
- Epoch: 0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 5e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': -795, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Epoch |
|:----------:|:-----:|
| 9.8843 | 0 |
### Framework versions
- Transformers 4.25.1
- TensorFlow 2.9.2
- Datasets 2.8.0
- Tokenizers 0.13.2
|
nicky007/DocumentNick | nicky007 | 2022-12-22T11:42:23Z | 12 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"layoutlmv3",
"token-classification",
"generated_from_trainer",
"dataset:cord-layoutlmv3",
"license:cc-by-nc-sa-4.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2022-12-20T11:59:14Z | ---
license: cc-by-nc-sa-4.0
tags:
- generated_from_trainer
datasets:
- cord-layoutlmv3
model-index:
- name: DocumentNick
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# DocumentNick
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the cord-layoutlmv3 dataset.
It achieves the following results on the evaluation set:
- eval_loss: 0.5167
- eval_precision: 0.8758
- eval_recall: 0.8922
- eval_f1: 0.8839
- eval_accuracy: 0.8901
- eval_runtime: 10.2752
- eval_samples_per_second: 9.732
- eval_steps_per_second: 1.946
- epoch: 11.95
- step: 526
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 5
- eval_batch_size: 5
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 2500
### Framework versions
- Transformers 4.24.0
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|
aashay96/indic-gpt | aashay96 | 2022-12-22T11:39:09Z | 54 | 1 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"gpt2",
"text-generation",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
]
| text-generation | 2022-12-20T19:34:27Z | ---
license: mit
tags:
- generated_from_trainer
model-index:
- name: indic-gpt
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# indic-gpt
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an Indian Language(https://ai4bharat.iitm.ac.in/corpora) dataset. Sample Dataset is present on https://huggingface.co/datasets/aashay96/indic-gpt.
It achieves the following results on the evaluation set:
- Loss: 1.9482
## Model description
Model is trained on multiple Indian Languages - Assamese, bengali, gujarati, Kannada, Malayalam,telugu, tamil, odhiya and punjabi.
## Intended uses & limitations
More information needed
## Training and evaluation data
TBD - Evaluation on indic_glue
## Training procedure
Check the notebook!
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 1024
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 3.3653 | 0.3 | 500 | 2.2985 |
| 2.2079 | 0.61 | 1000 | 2.0401 |
| 2.0396 | 0.91 | 1500 | 1.9482 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|
jairNeto/q-FrozenLake-v1-4x4-noSlippery | jairNeto | 2022-12-22T11:22:08Z | 0 | 0 | null | [
"FrozenLake-v1-4x4",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
]
| reinforcement-learning | 2022-12-22T11:21:55Z | ---
tags:
- FrozenLake-v1-4x4
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4
type: FrozenLake-v1-4x4
metrics:
- type: mean_reward
value: 0.61 +/- 0.49
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="jairNeto/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
DPolatajko/osm-nlp-setfit | DPolatajko | 2022-12-22T10:54:51Z | 2 | 0 | sentence-transformers | [
"sentence-transformers",
"pytorch",
"mpnet",
"feature-extraction",
"sentence-similarity",
"transformers",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| sentence-similarity | 2022-12-22T10:54:13Z | ---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
---
# {MODEL_NAME}
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
model = AutoModel.from_pretrained('{MODEL_NAME}')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 7500 with parameters:
```
{'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
Parameters of the fit()-Method:
```
{
"epochs": 1,
"evaluation_steps": 0,
"evaluator": "NoneType",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": 7500,
"warmup_steps": 750,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
<!--- Describe where people can find more information --> |
Isaacgv/ppo-LunarLander-v2 | Isaacgv | 2022-12-22T10:49:10Z | 0 | 0 | stable-baselines3 | [
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
]
| reinforcement-learning | 2022-12-22T10:48:43Z | ---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 258.79 +/- 18.79
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
orenk/ppo-LunarLander-v2 | orenk | 2022-12-22T10:18:14Z | 1 | 0 | stable-baselines3 | [
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
]
| reinforcement-learning | 2022-12-22T10:07:55Z | ---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 258.96 +/- 37.26
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
shovall/ppo-LunarLander-v2 | shovall | 2022-12-22T10:07:30Z | 0 | 0 | stable-baselines3 | [
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
]
| reinforcement-learning | 2022-12-22T10:06:54Z | ---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 254.12 +/- 34.61
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
DrishtiSharma/whisper-large-v2-hindi-2k-steps | DrishtiSharma | 2022-12-22T09:58:14Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"whisper",
"automatic-speech-recognition",
"whisper-event",
"generated_from_trainer",
"hi",
"dataset:mozilla-foundation/common_voice_11_0",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
]
| automatic-speech-recognition | 2022-12-19T05:52:43Z | ---
language:
- hi
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper Large V2 Hindi - Drishti Sharma
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 11.0
type: mozilla-foundation/common_voice_11_0
config: hi
split: test
args: hi
metrics:
- name: Wer
type: wer
value: 10.24860360772823
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Large V2 Hindi - Drishti Sharma
This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the Common Voice 11.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1787
- Wer: 10.2486
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 2000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.0238 | 2.44 | 2000 | 0.1787 | 10.2486 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu116
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2
|
Scrwed/dqn-SpaceInvadersNoFrameskip-v4 | Scrwed | 2022-12-22T09:55:48Z | 4 | 0 | stable-baselines3 | [
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
]
| reinforcement-learning | 2022-12-21T10:54:25Z | ---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
metrics:
- type: mean_reward
value: 613.50 +/- 107.96
name: mean_reward
verified: false
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Scrwed -f logs/
python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Scrwed -f logs/
rl_zoo3 enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Scrwed
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 10000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.005),
('exploration_fraction', 0.025),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 1e-05),
('learning_starts', 500),
('n_timesteps', 150000.0),
('optimize_memory_usage', False),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
|
arnonl/ppo-LunarLander-v2 | arnonl | 2022-12-22T09:54:58Z | 0 | 0 | stable-baselines3 | [
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
]
| reinforcement-learning | 2022-12-22T09:54:27Z | ---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 257.00 +/- 17.90
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
adlrocha/dqn_lunar | adlrocha | 2022-12-22T09:53:46Z | 1 | 0 | stable-baselines3 | [
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
]
| reinforcement-learning | 2022-12-22T09:53:19Z | ---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 253.96 +/- 15.08
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
mdabbah/ppo-LunarLander-v2 | mdabbah | 2022-12-22T09:51:38Z | 1 | 0 | stable-baselines3 | [
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
]
| reinforcement-learning | 2022-12-22T09:51:16Z | ---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 253.16 +/- 23.46
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
threite/ppo-LunarLander-v2 | threite | 2022-12-22T09:48:07Z | 0 | 0 | stable-baselines3 | [
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
]
| reinforcement-learning | 2022-12-22T09:47:40Z | ---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: MlpPolicy
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 257.45 +/- 21.37
name: mean_reward
verified: false
---
# **MlpPolicy** Agent playing **LunarLander-v2**
This is a trained model of a **MlpPolicy** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
nachshonc/rl_course_unit1 | nachshonc | 2022-12-22T09:47:41Z | 1 | 0 | stable-baselines3 | [
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
]
| reinforcement-learning | 2022-12-22T09:47:05Z | ---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 268.06 +/- 23.56
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
DrishtiSharma/whisper-large-v2-marathi | DrishtiSharma | 2022-12-22T09:44:16Z | 26 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"whisper",
"automatic-speech-recognition",
"whisper-event",
"generated_from_trainer",
"mr",
"dataset:mozilla-foundation/common_voice_11_0",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
]
| automatic-speech-recognition | 2022-12-15T16:02:23Z | ---
language:
- mr
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper Large Marathi - Drishti Sharma
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 11.0
type: mozilla-foundation/common_voice_11_0
config: mr
split: test
args: mr
metrics:
- name: Wer
type: wer
value: 13.644010767160161
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Large Marathi
This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the Common Voice 11.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1975
- Wer: 13.6440
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 400
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.1914 | 0.81 | 400 | 0.1975 | 13.6440 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu116
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2 |
avojarot/sd-class-butterflies-32 | avojarot | 2022-12-22T09:43:33Z | 2 | 0 | diffusers | [
"diffusers",
"pytorch",
"unconditional-image-generation",
"diffusion-models-class",
"license:mit",
"diffusers:DDPMPipeline",
"region:us"
]
| unconditional-image-generation | 2022-12-22T09:43:03Z | ---
license: mit
tags:
- pytorch
- diffusers
- unconditional-image-generation
- diffusion-models-class
---
# Model Card for Unit 1 of the [Diffusion Models Class π§¨](https://github.com/huggingface/diffusion-models-class)
This model is a diffusion model for unconditional image generation of cute π¦.
## Usage
```python
from diffusers import DDPMPipeline
pipeline = DDPMPipeline.from_pretrained('avojarot/sd-class-butterflies-32')
image = pipeline().images[0]
image
```
|
steja/whisper-large-sindhi | steja | 2022-12-22T09:26:17Z | 13 | 1 | transformers | [
"transformers",
"pytorch",
"whisper",
"automatic-speech-recognition",
"whisper-event",
"generated_from_trainer",
"dataset:google/fleurs",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
]
| automatic-speech-recognition | 2022-12-21T17:49:34Z | ---
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- google/fleurs
metrics:
- wer
model-index:
- name: Whisper_large_Sindhi
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: google/fleurs sd_in
type: google/fleurs
config: sd_in
split: test
metrics:
- name: Wer
type: wer
value: 27.692698197817073
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper_large_Sindhi
This model is a fine-tuned version of [anuragshas/whisper-large-v2-hi](https://huggingface.co/anuragshas/whisper-large-v2-hi) on the google/fleurs sd_in dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6382
- Wer: 27.6927
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 1000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.0005 | 38.44 | 500 | 0.6382 | 27.6927 |
| 0.0003 | 76.89 | 1000 | 0.6714 | 27.8323 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu117
- Datasets 2.7.1
- Tokenizers 0.13.2
|
Subsets and Splits