modelId
string
author
string
last_modified
timestamp[us, tz=UTC]
downloads
int64
likes
int64
library_name
string
tags
sequence
pipeline_tag
string
createdAt
timestamp[us, tz=UTC]
card
string
AntiSquid/Reinforce-model-666
AntiSquid
2022-07-12T21:52:02Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-07-12T21:51:51Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-model-666 results: - metrics: - type: mean_reward value: 117.10 +/- 4.85 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
Shaier/medqa_fine_tuned_generic_bert
Shaier
2022-07-12T20:33:17Z
1
0
transformers
[ "transformers", "pytorch", "bert", "multiple-choice", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
multiple-choice
2022-07-12T19:49:52Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: medqa_fine_tuned_generic_bert results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # medqa_fine_tuned_generic_bert This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.4239 - Accuracy: 0.2869 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 318 | 1.3851 | 0.2594 | | 1.3896 | 2.0 | 636 | 1.3805 | 0.2807 | | 1.3896 | 3.0 | 954 | 1.3852 | 0.2948 | | 1.3629 | 4.0 | 1272 | 1.3996 | 0.2980 | | 1.3068 | 5.0 | 1590 | 1.4239 | 0.2869 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.3.2 - Tokenizers 0.11.0
MichalRoztocki/finetuning-sentiment-model-3000-samples
MichalRoztocki
2022-07-12T19:48:42Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-12T19:35:30Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8766666666666667 - name: F1 type: f1 value: 0.877887788778878 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3085 - Accuracy: 0.8767 - F1: 0.8779 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
ilmariky/bert-base-finnish-cased-squad1-fi
ilmariky
2022-07-12T19:09:57Z
4
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "fi", "license:gpl-3.0", "endpoints_compatible", "region:us" ]
question-answering
2022-07-12T17:01:30Z
--- language: fi datasets: - SQuAD_v2_fi + Finnish partition of TyDi-QA license: gpl-3.0 --- # bert-base-finnish-cased-v1 for QA This is the [bert-base-finnish-cased-v1](https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1) model, fine-tuned using an automatically translated [Finnish version of the SQuAD2.0 dataset](https://huggingface.co/datasets/ilmariky/SQuAD_v2_fi) in combination with the Finnish partition of the [TyDi-QA](https://github.com/google-research-datasets/tydiqa) dataset. It's been trained on question-answer pairs, **excluding unanswerable questions**, for the task of question answering. Another QA model that has been fine-tuned with also unanswerable questions is also available: [bert-base-finnish-cased-squad2-fi](https://huggingface.co/ilmariky/bert-base-finnish-cased-squad1-fi). ## Overview **Language model:** bert-base-finnish-cased-v1 **Language:** Finnish **Downstream-task:** Extractive QA **Training data:** Answerable questions from [Finnish SQuAD 2.0](https://huggingface.co/datasets/ilmariky/SQuAD_v2_fi) + Finnish partition of TyDi-QA **Eval data:** Answerable questions from [Finnish SQuAD 2.0](https://huggingface.co/datasets/ilmariky/SQuAD_v2_fi) + Finnish partition of TyDi-QA ## Usage ### In Transformers ```python from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline model_name = "ilmariky/bert-base-finnish-cased-squad1-fi" # a) Get predictions nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) QA_input = { 'question': 'Mikä tämä on?', 'context': 'Tämä on testi.' } res = nlp(QA_input) # b) Load model & tokenizer model = AutoModelForQuestionAnswering.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) ``` ## Performance Evaluated with a slightly modified version of the [official eval script](https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/). ``` { "exact": 58.00497718788884, "f1": 69.90891092523077, "total": 4822, "HasAns_exact": 58.00497718788884, "HasAns_f1": 69.90891092523077, "HasAns_total": 4822 } ```
zluvolyote/s288cExpressionPrediction_k6
zluvolyote
2022-07-12T16:54:43Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-12T16:02:01Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: s288cExpressionPrediction_k6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # s288cExpressionPrediction_k6 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4418 - Accuracy: 0.8067 - F1: 0.7882 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 58 | 0.5315 | 0.7278 | 0.7572 | | No log | 2.0 | 116 | 0.4604 | 0.7853 | 0.7841 | | No log | 3.0 | 174 | 0.4418 | 0.8067 | 0.7882 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
reachrkr/TEST2ppo-LunarLander-v2
reachrkr
2022-07-12T16:20:36Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-07-12T16:20:08Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 266.96 +/- 25.94 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
fxmarty/20220712-h16m02s58_example_beans
fxmarty
2022-07-12T16:03:03Z
0
0
null
[ "tensorboard", "vit", "image-classification", "dataset:beans", "region:us" ]
image-classification
2022-07-12T16:02:58Z
--- pipeline_tag: image-classification datasets: - beans metrics: - accuracy tags: - vit --- **task**: `image-classification` **Backend:** `sagemaker-training` **Backend args:** `{'instance_type': 'ml.g4dn.2xlarge', 'supported_instructions': None}` **Number of evaluation samples:** `All dataset` Fixed parameters: * **model_name_or_path**: `nateraw/vit-base-beans` * **dataset**: * **path**: `beans` * **eval_split**: `validation` * **data_keys**: `{'primary': 'image'}` * **ref_keys**: `['labels']` * **calibration_split**: `train` * **quantization_approach**: `dynamic` * **calibration**: * **method**: `minmax` * **num_calibration_samples**: `100` * **framework**: `onnxruntime` * **framework_args**: * **opset**: `11` * **optimization_level**: `1` * **aware_training**: `False` Benchmarked parameters: * **operators_to_quantize**: `['Add']`, `['Add', 'MatMul']` * **node_exclusion**: `[]`, `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` * **per_channel**: `False`, `True` # Evaluation ## Non-time metrics | operators_to_quantize | node_exclusion | per_channel | | accuracy (original) | accuracy (optimized) | | :-------------------: | :------------------------------------------------------: | :---------: | :-: | :-----------------: | :------------------: | | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | \| | 0.980 | 0.980 | | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | \| | 0.980 | 0.980 | | `['Add', 'MatMul']` | `[]` | `False` | \| | 0.980 | 0.980 | | `['Add', 'MatMul']` | `[]` | `True` | \| | 0.980 | 0.980 | | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | \| | 0.980 | 0.980 | | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | \| | 0.980 | 0.980 | | `['Add']` | `[]` | `False` | \| | 0.980 | 0.980 | | `['Add']` | `[]` | `True` | \| | 0.980 | 0.980 | ## Time metrics Time benchmarks were run for 15 seconds per config. Below, time metrics for batch size = 1, input length = 32. | operators_to_quantize | node_exclusion | per_channel | | latency_mean (original, ms) | latency_mean (optimized, ms) | | throughput (original, /s) | throughput (optimized, /s) | | :-------------------: | :------------------------------------------------------: | :---------: | :-: | :-------------------------: | :--------------------------: | :-: | :-----------------------: | :------------------------: | | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | \| | 200.50 | 63.00 | \| | 5.00 | 15.93 | | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | \| | 198.19 | 72.65 | \| | 5.07 | 13.80 | | `['Add', 'MatMul']` | `[]` | `False` | \| | 191.44 | 63.27 | \| | 5.27 | 15.87 | | `['Add', 'MatMul']` | `[]` | `True` | \| | 154.84 | 72.51 | \| | 6.47 | 13.80 | | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | \| | 155.84 | 130.95 | \| | 6.47 | 7.67 | | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | \| | 201.76 | 131.25 | \| | 5.00 | 7.67 | | `['Add']` | `[]` | `False` | \| | 198.96 | 128.82 | \| | 5.07 | 7.80 | | `['Add']` | `[]` | `True` | \| | 163.76 | 129.62 | \| | 6.13 | 7.73 | Below, time metrics for batch size = 1, input length = 64. | operators_to_quantize | node_exclusion | per_channel | | latency_mean (original, ms) | latency_mean (optimized, ms) | | throughput (original, /s) | throughput (optimized, /s) | | :-------------------: | :------------------------------------------------------: | :---------: | :-: | :-------------------------: | :--------------------------: | :-: | :-----------------------: | :------------------------: | | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | \| | 162.75 | 67.18 | \| | 6.20 | 14.93 | | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | \| | 159.69 | 72.77 | \| | 6.33 | 13.80 | | `['Add', 'MatMul']` | `[]` | `False` | \| | 183.10 | 64.02 | \| | 5.47 | 15.67 | | `['Add', 'MatMul']` | `[]` | `True` | \| | 157.21 | 64.16 | \| | 6.40 | 15.60 | | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | \| | 155.32 | 130.74 | \| | 6.47 | 7.67 | | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | \| | 198.56 | 162.51 | \| | 5.07 | 6.20 | | `['Add']` | `[]` | `False` | \| | 186.58 | 163.38 | \| | 5.40 | 6.13 | | `['Add']` | `[]` | `True` | \| | 199.75 | 131.46 | \| | 5.07 | 7.67 | Below, time metrics for batch size = 1, input length = 128. | operators_to_quantize | node_exclusion | per_channel | | latency_mean (original, ms) | latency_mean (optimized, ms) | | throughput (original, /s) | throughput (optimized, /s) | | :-------------------: | :------------------------------------------------------: | :---------: | :-: | :-------------------------: | :--------------------------: | :-: | :-----------------------: | :------------------------: | | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | \| | 160.58 | 67.65 | \| | 6.27 | 14.80 | | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | \| | 158.60 | 72.53 | \| | 6.33 | 13.80 | | `['Add', 'MatMul']` | `[]` | `False` | \| | 200.46 | 62.95 | \| | 5.00 | 15.93 | | `['Add', 'MatMul']` | `[]` | `True` | \| | 195.39 | 72.28 | \| | 5.13 | 13.87 | | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | \| | 197.59 | 128.80 | \| | 5.07 | 7.80 | | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | \| | 156.24 | 162.63 | \| | 6.47 | 6.20 | | `['Add']` | `[]` | `False` | \| | 157.25 | 129.13 | \| | 6.40 | 7.80 | | `['Add']` | `[]` | `True` | \| | 176.08 | 161.79 | \| | 5.73 | 6.20 | Below, time metrics for batch size = 4, input length = 32. | operators_to_quantize | node_exclusion | per_channel | | latency_mean (original, ms) | latency_mean (optimized, ms) | | throughput (original, /s) | throughput (optimized, /s) | | :-------------------: | :------------------------------------------------------: | :---------: | :-: | :-------------------------: | :--------------------------: | :-: | :-----------------------: | :------------------------: | | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | \| | 503.83 | 219.62 | \| | 2.00 | 4.60 | | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | \| | 603.26 | 266.15 | \| | 1.67 | 3.80 | | `['Add', 'MatMul']` | `[]` | `False` | \| | 654.79 | 217.45 | \| | 1.53 | 4.60 | | `['Add', 'MatMul']` | `[]` | `True` | \| | 654.33 | 219.54 | \| | 1.53 | 4.60 | | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | \| | 654.20 | 481.61 | \| | 1.53 | 2.13 | | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | \| | 609.81 | 632.73 | \| | 1.67 | 1.60 | | `['Add']` | `[]` | `False` | \| | 588.86 | 602.91 | \| | 1.73 | 1.67 | | `['Add']` | `[]` | `True` | \| | 666.98 | 655.32 | \| | 1.53 | 1.53 | Below, time metrics for batch size = 4, input length = 64. | operators_to_quantize | node_exclusion | per_channel | | latency_mean (original, ms) | latency_mean (optimized, ms) | | throughput (original, /s) | throughput (optimized, /s) | | :-------------------: | :------------------------------------------------------: | :---------: | :-: | :-------------------------: | :--------------------------: | :-: | :-----------------------: | :------------------------: | | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | \| | 656.87 | 216.32 | \| | 1.53 | 4.67 | | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | \| | 507.24 | 265.62 | \| | 2.00 | 3.80 | | `['Add', 'MatMul']` | `[]` | `False` | \| | 655.36 | 219.61 | \| | 1.53 | 4.60 | | `['Add', 'MatMul']` | `[]` | `True` | \| | 613.28 | 220.96 | \| | 1.67 | 4.53 | | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | \| | 656.30 | 652.72 | \| | 1.53 | 1.53 | | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | \| | 521.09 | 472.90 | \| | 1.93 | 2.13 | | `['Add']` | `[]` | `False` | \| | 655.37 | 473.77 | \| | 1.53 | 2.13 | | `['Add']` | `[]` | `True` | \| | 653.62 | 468.82 | \| | 1.53 | 2.13 | Below, time metrics for batch size = 4, input length = 128. | operators_to_quantize | node_exclusion | per_channel | | latency_mean (original, ms) | latency_mean (optimized, ms) | | throughput (original, /s) | throughput (optimized, /s) | | :-------------------: | :------------------------------------------------------: | :---------: | :-: | :-------------------------: | :--------------------------: | :-: | :-----------------------: | :------------------------: | | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | \| | 654.24 | 216.82 | \| | 1.53 | 4.67 | | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | \| | 657.16 | 240.11 | \| | 1.53 | 4.20 | | `['Add', 'MatMul']` | `[]` | `False` | \| | 504.14 | 217.47 | \| | 2.00 | 4.60 | | `['Add', 'MatMul']` | `[]` | `True` | \| | 655.94 | 220.12 | \| | 1.53 | 4.60 | | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | \| | 653.99 | 479.06 | \| | 1.53 | 2.13 | | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | \| | 642.48 | 666.28 | \| | 1.60 | 1.53 | | `['Add']` | `[]` | `False` | \| | 656.34 | 661.24 | \| | 1.53 | 1.53 | | `['Add']` | `[]` | `True` | \| | 661.86 | 472.49 | \| | 1.53 | 2.13 | Below, time metrics for batch size = 8, input length = 32. | operators_to_quantize | node_exclusion | per_channel | | latency_mean (original, ms) | latency_mean (optimized, ms) | | throughput (original, /s) | throughput (optimized, /s) | | :-------------------: | :------------------------------------------------------: | :---------: | :-: | :-------------------------: | :--------------------------: | :-: | :-----------------------: | :------------------------: | | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | \| | 1294.07 | 472.54 | \| | 0.80 | 2.13 | | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | \| | 1287.58 | 542.72 | \| | 0.80 | 1.87 | | `['Add', 'MatMul']` | `[]` | `False` | \| | 1033.37 | 433.32 | \| | 1.00 | 2.33 | | `['Add', 'MatMul']` | `[]` | `True` | \| | 1030.14 | 542.36 | \| | 1.00 | 1.87 | | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | \| | 953.27 | 926.14 | \| | 1.07 | 1.13 | | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | \| | 1173.01 | 995.22 | \| | 0.87 | 1.07 | | `['Add']` | `[]` | `False` | \| | 1280.07 | 926.97 | \| | 0.80 | 1.13 | | `['Add']` | `[]` | `True` | \| | 1283.70 | 927.87 | \| | 0.80 | 1.13 | Below, time metrics for batch size = 8, input length = 64. | operators_to_quantize | node_exclusion | per_channel | | latency_mean (original, ms) | latency_mean (optimized, ms) | | throughput (original, /s) | throughput (optimized, /s) | | :-------------------: | :------------------------------------------------------: | :---------: | :-: | :-------------------------: | :--------------------------: | :-: | :-----------------------: | :------------------------: | | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | \| | 1273.61 | 435.27 | \| | 0.80 | 2.33 | | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | \| | 1157.00 | 542.75 | \| | 0.87 | 1.87 | | `['Add', 'MatMul']` | `[]` | `False` | \| | 968.85 | 537.65 | \| | 1.07 | 1.87 | | `['Add', 'MatMul']` | `[]` | `True` | \| | 1107.66 | 472.53 | \| | 0.93 | 2.13 | | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | \| | 1270.30 | 1092.10 | \| | 0.80 | 0.93 | | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | \| | 1263.29 | 1012.66 | \| | 0.80 | 1.00 | | `['Add']` | `[]` | `False` | \| | 1007.19 | 1331.12 | \| | 1.07 | 0.80 | | `['Add']` | `[]` | `True` | \| | 1286.51 | 1317.96 | \| | 0.80 | 0.80 | Below, time metrics for batch size = 8, input length = 128. | operators_to_quantize | node_exclusion | per_channel | | latency_mean (original, ms) | latency_mean (optimized, ms) | | throughput (original, /s) | throughput (optimized, /s) | | :-------------------: | :------------------------------------------------------: | :---------: | :-: | :-------------------------: | :--------------------------: | :-: | :-----------------------: | :------------------------: | | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | \| | 1188.98 | 537.58 | \| | 0.87 | 1.87 | | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | \| | 951.31 | 489.40 | \| | 1.07 | 2.07 | | `['Add', 'MatMul']` | `[]` | `False` | \| | 1278.73 | 537.52 | \| | 0.80 | 1.87 | | `['Add', 'MatMul']` | `[]` | `True` | \| | 1005.38 | 440.01 | \| | 1.07 | 2.33 | | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | \| | 1265.55 | 1304.51 | \| | 0.80 | 0.80 | | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | \| | 1186.54 | 934.09 | \| | 0.87 | 1.13 | | `['Add']` | `[]` | `False` | \| | 1276.38 | 1319.84 | \| | 0.80 | 0.80 | | `['Add']` | `[]` | `True` | \| | 981.81 | 940.69 | \| | 1.07 | 1.07 |
MarLac/wav2vec2-base-timit-demo-google-colab
MarLac
2022-07-12T15:41:51Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-12T08:24:30Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-google-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-google-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5816 - Wer: 0.3533 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 2.243 | 0.5 | 500 | 1.0798 | 0.7752 | | 0.834 | 1.01 | 1000 | 0.6206 | 0.5955 | | 0.5503 | 1.51 | 1500 | 0.5387 | 0.5155 | | 0.4548 | 2.01 | 2000 | 0.4660 | 0.4763 | | 0.3412 | 2.51 | 2500 | 0.8381 | 0.4836 | | 0.3128 | 3.02 | 3000 | 0.4818 | 0.4519 | | 0.2547 | 3.52 | 3500 | 0.4415 | 0.4230 | | 0.2529 | 4.02 | 4000 | 0.4624 | 0.4219 | | 0.2103 | 4.52 | 4500 | 0.4714 | 0.4096 | | 0.2102 | 5.03 | 5000 | 0.4968 | 0.4087 | | 0.1838 | 5.53 | 5500 | 0.4643 | 0.4131 | | 0.1721 | 6.03 | 6000 | 0.4676 | 0.3979 | | 0.1548 | 6.53 | 6500 | 0.4765 | 0.4085 | | 0.1595 | 7.04 | 7000 | 0.4797 | 0.3941 | | 0.1399 | 7.54 | 7500 | 0.4753 | 0.3902 | | 0.1368 | 8.04 | 8000 | 0.4697 | 0.3945 | | 0.1276 | 8.54 | 8500 | 0.5438 | 0.3869 | | 0.1255 | 9.05 | 9000 | 0.5660 | 0.3841 | | 0.1077 | 9.55 | 9500 | 0.4964 | 0.3947 | | 0.1197 | 10.05 | 10000 | 0.5349 | 0.3849 | | 0.1014 | 10.55 | 10500 | 0.5558 | 0.3883 | | 0.0949 | 11.06 | 11000 | 0.5673 | 0.3785 | | 0.0882 | 11.56 | 11500 | 0.5589 | 0.3955 | | 0.0906 | 12.06 | 12000 | 0.5752 | 0.4120 | | 0.1064 | 12.56 | 12500 | 0.5080 | 0.3727 | | 0.0854 | 13.07 | 13000 | 0.5398 | 0.3798 | | 0.0754 | 13.57 | 13500 | 0.5237 | 0.3816 | | 0.0791 | 14.07 | 14000 | 0.4967 | 0.3725 | | 0.0731 | 14.57 | 14500 | 0.5287 | 0.3744 | | 0.0719 | 15.08 | 15000 | 0.5633 | 0.3596 | | 0.062 | 15.58 | 15500 | 0.5399 | 0.3752 | | 0.0681 | 16.08 | 16000 | 0.5151 | 0.3759 | | 0.0559 | 16.58 | 16500 | 0.5564 | 0.3709 | | 0.0533 | 17.09 | 17000 | 0.5933 | 0.3743 | | 0.0563 | 17.59 | 17500 | 0.5381 | 0.3670 | | 0.0527 | 18.09 | 18000 | 0.5685 | 0.3731 | | 0.0492 | 18.59 | 18500 | 0.5728 | 0.3725 | | 0.0509 | 19.1 | 19000 | 0.6074 | 0.3807 | | 0.0436 | 19.6 | 19500 | 0.5762 | 0.3628 | | 0.0434 | 20.1 | 20000 | 0.6721 | 0.3729 | | 0.0416 | 20.6 | 20500 | 0.5842 | 0.3700 | | 0.0431 | 21.11 | 21000 | 0.5374 | 0.3607 | | 0.037 | 21.61 | 21500 | 0.5556 | 0.3667 | | 0.036 | 22.11 | 22000 | 0.5608 | 0.3592 | | 0.04 | 22.61 | 22500 | 0.5272 | 0.3637 | | 0.047 | 23.12 | 23000 | 0.5234 | 0.3625 | | 0.0506 | 23.62 | 23500 | 0.5427 | 0.3629 | | 0.0418 | 24.12 | 24000 | 0.5590 | 0.3626 | | 0.037 | 24.62 | 24500 | 0.5615 | 0.3555 | | 0.0429 | 25.13 | 25000 | 0.5806 | 0.3616 | | 0.045 | 25.63 | 25500 | 0.5777 | 0.3639 | | 0.0283 | 26.13 | 26000 | 0.5987 | 0.3617 | | 0.0253 | 26.63 | 26500 | 0.5671 | 0.3551 | | 0.032 | 27.14 | 27000 | 0.5464 | 0.3582 | | 0.0321 | 27.64 | 27500 | 0.5634 | 0.3573 | | 0.0274 | 28.14 | 28000 | 0.5513 | 0.3575 | | 0.0245 | 28.64 | 28500 | 0.5745 | 0.3537 | | 0.0251 | 29.15 | 29000 | 0.5759 | 0.3547 | | 0.0222 | 29.65 | 29500 | 0.5816 | 0.3533 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
andreaschandra/xlm-roberta-base-finetuned-panx-it
andreaschandra
2022-07-12T15:34:53Z
4
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-07-12T15:30:49Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-it results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.it metrics: - name: F1 type: f1 value: 0.8288879770209273 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-it This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2380 - F1: 0.8289 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.7058 | 1.0 | 70 | 0.3183 | 0.7480 | | 0.2808 | 2.0 | 140 | 0.2647 | 0.8070 | | 0.1865 | 3.0 | 210 | 0.2380 | 0.8289 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
andy-0v0/fancy-animales
andy-0v0
2022-07-12T15:30:18Z
54
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-07-07T22:16:04Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: fancy-animales results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9464285969734192 --- # fancy-animales Just for fun and to test the template! Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### chow chow ![chow chow](images/chow_chow.jpg) #### panda ![panda](images/panda.jpg) #### penguin ![penguin](images/penguin.jpg) #### sloth ![sloth](images/sloth.jpg) #### wombat ![wombat](images/wombat.jpg)
zluvolyote/CUBERT
zluvolyote
2022-07-12T15:09:51Z
16
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "fill-mask", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-06-15T18:09:44Z
--- license: mit tags: - generated_from_trainer model-index: - name: CUBERT results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # CUBERT This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 5.2203 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 58 | 5.5281 | | No log | 2.0 | 116 | 5.2508 | | No log | 3.0 | 174 | 5.2203 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.3.1 - Tokenizers 0.12.1
andreaschandra/xlm-roberta-base-finetuned-panx-de-fr
andreaschandra
2022-07-12T15:05:50Z
4
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-07-12T14:49:14Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1619 - F1: 0.8599 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2851 | 1.0 | 715 | 0.1792 | 0.8239 | | 0.149 | 2.0 | 1430 | 0.1675 | 0.8401 | | 0.0955 | 3.0 | 2145 | 0.1619 | 0.8599 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Kuro96/q-FrozenLake-v1-4x4-noSlippery
Kuro96
2022-07-12T14:35:27Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-07-12T14:35:21Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Kuro96/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
huggingtweets/piotrikonowicz1
huggingtweets
2022-07-12T14:00:31Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-07-12T14:00:22Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/770622589664460802/bgUHfTNZ_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Piotr Ikonowicz</div> <div style="text-align: center; font-size: 14px;">@piotrikonowicz1</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Piotr Ikonowicz. | Data | Piotr Ikonowicz | | --- | --- | | Tweets downloaded | 133 | | Retweets | 3 | | Short tweets | 13 | | Tweets kept | 117 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/156jwrd1/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @piotrikonowicz1's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/w029u281) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/w029u281/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/piotrikonowicz1') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
workRL/TEST2ppo-CarRacing-v0
workRL
2022-07-12T13:31:15Z
3
0
stable-baselines3
[ "stable-baselines3", "CarRacing-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-07-12T13:29:34Z
--- library_name: stable-baselines3 tags: - CarRacing-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: -69.53 +/- 1.56 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: CarRacing-v0 type: CarRacing-v0 --- # **PPO** Agent playing **CarRacing-v0** This is a trained model of a **PPO** agent playing **CarRacing-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
hugginglearners/rice_image_classification
hugginglearners
2022-07-12T13:27:14Z
0
0
fastai
[ "fastai", "image-classification", "region:us" ]
image-classification
2022-07-09T06:03:15Z
--- tags: - fastai - image-classification --- ## Model description This repo contains the trained model for rice image classification Full credits go to [Vu Minh Chien](https://www.linkedin.com/in/vumichien/) Motivation: Rice, which is among the most widely produced grain products worldwide, has many genetic varieties. These varieties are separated from each other due to some of their features. These usually feature such as texture, shape, and color. With these features that distinguish rice varieties, it is possible to classify and evaluate the quality of seeds. ## Intended uses & limitations In this repo, Arborio, Basmati, Ipsala, Jasmine, and Karacadag, which are five different varieties of rice often grown in Turkey, were used. A total of 75,000-grain images, 15,000 from each of these varieties, are included in the dataset. ## Training and evaluation data ### Training hyperparameters The following hyperparameters were used during training: | Hyperparameters | Value | | :-- | :-- | | name | Adam | | learning_rate | 3e-4 | | freeze_epochs| 3 | | unfreeze_epochs| 10| | training_precision | float16 |
ymcnabb/finetuning-sentiment-model
ymcnabb
2022-07-12T13:17:58Z
10
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-12T12:24:53Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8733333333333333 - name: F1 type: f1 value: 0.8758169934640523 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3291 - Accuracy: 0.8733 - F1: 0.8758 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
xuantsh/distilroberta-base-Mark_example
xuantsh
2022-07-12T13:13:45Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-07-12T12:57:18Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilroberta-base-Mark_example results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-Mark_example This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.6043 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.8299 | 1.0 | 744 | 2.6322 | | 2.7034 | 2.0 | 1488 | 2.6514 | | 2.5616 | 3.0 | 2232 | 2.6596 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Nonzerophilip/bert-finetuned-ner_swedish_small_set_health_and_standart
Nonzerophilip
2022-07-12T12:42:31Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-19T09:36:49Z
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner_swedish_small_set_health_and_standart results: [] --- # Named Entity Recognition model for swedish This model is a fine-tuned version of [KBLab/bert-base-swedish-cased-ner](https://huggingface.co/KBLab/bert-base-swedish-cased-ner)for only Swedish. It has been fine-tuned on the concatenation of a smaller version of SUC 3.0 and some medical text from the Swedish website 1177. The model will predict the following entities: | Tag | Name | Exampel | |:-------------:|:-----:|:----:| | PER |Person | (e.g., Johan and Sofia) | | LOC | Location | (e.g., Göteborg and Spanien) | | ORG | Organisation | (e.g., Volvo and Skatteverket) \ | | PHARMA_DRUGS | Medication | (e.g., Paracetamol and Omeprazol)| | HEALTH | Illness/Diseases | (e.g., Cancer, sjuk and diabetes) | | Relation | Family members | (e.g., Mamma and Farmor) | <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner_swedish_small_set_health_and_standart It achieves the following results on the evaluation set: - Loss: 0.0963 - Precision: 0.7548 - Recall: 0.7811 - F1: 0.7677 - Accuracy: 0.9756 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 219 | 0.1123 | 0.7674 | 0.6567 | 0.7078 | 0.9681 | | No log | 2.0 | 438 | 0.0934 | 0.7643 | 0.7662 | 0.7652 | 0.9738 | | 0.1382 | 3.0 | 657 | 0.0963 | 0.7548 | 0.7811 | 0.7677 | 0.9756 | ### Framework versions - Transformers 4.19.3 - Pytorch 1.7.1 - Datasets 2.2.2 - Tokenizers 0.12.1
rajat99/Fine_Tuning_XLSR_300M_testing_model
rajat99
2022-07-12T12:00:41Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-12T10:26:03Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: Fine_Tuning_XLSR_300M_testing_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Fine_Tuning_XLSR_300M_testing_model This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.2861 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 5.5178 | 23.53 | 400 | 3.2861 | 1.0 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
cffl/bart-base-styletransfer-subjective-to-neutral
cffl
2022-07-12T11:58:08Z
286
3
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "arxiv:1911.09709", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-07-01T18:41:46Z
--- license: apache-2.0 --- # bart-base-styletransfer-subjective-to-neutral ## Model description This [facebook/bart-base](https://huggingface.co/facebook/bart-base) model has been fine-tuned on the [Wiki Neutrality Corpus (WNC)](https://arxiv.org/pdf/1911.09709.pdf) - a parallel corpus of 180,000 biased and neutralized sentence pairs along with contextual sentences and metadata. The model can be used to transfer style in text from subjectively biased to neutrally toned. The development and modeling efforts that produced this model are documented in detail through [this blog series](https://blog.fastforwardlabs.com/2022/05/05/neutralizing-subjectivity-bias-with-huggingface-transformers.html). ## Intended uses & limitations The model is intended purely as a research output for NLP and data science communities. We imagine this model will be used by researchers to better understand the limitations, robustness, and generalization of text style transfer models. Ultimately, we hope this model will inspire future work on text style transfer and serve as a benchmarking tool for the style attribute of subjectivity bias, specifically. Any production use of this model - whether commercial or not - is currently not intended. This is because, as [the team at OpenAI points out](https://github.com/openai/gpt-2/blob/master/model_card.md#out-of-scope-use-cases), large langauge models like BART reflect biases inherent to the systems they were trained on, so we do not recommend that they be deployed into systems that interact with humans, unless the deployers first carry out a study of biases relevant to the intended use-case. Neither the model nor the WNC dataset has been sufficiently evaluated for performance and bias. Our efforts quantified model performance using two custom evaluation metrics, neither of which have been correlated to human evaluation for the task. As we discuss in the blog series, since the WNC is a parallel dataset and we formulate the learning task as a supervised problem, the model indirectly adopts Wikipedia's NPOV policy as the definition for "neutrality" and "subjectivity". The NPOV policy may not fully reflect an end users assumed/intended meaning of subjectivity because the notion of subjectivity itself can be...well, subjective. We discovered through our exploratory work that the WNC does contain data quality issues that will contribute to unintended bias in the model. For example, some NPOV revisions introduce factual information outside the context of the prompt as a means to correct bias. We believe these factual based edits are out of scope for a subjective-to-neutral style transfer modeling task, but exist here nonetheless. ## How to use This model can be used directly with a HuggingFace pipeline for `text2text-generation`. ```python >>> from transformers import pipeline >>> styletransfer = pipeline( task="text2text-generation", model="cffl/bart-base-styletransfer-subjective-to-neutral", max_length=200, ) >>> input_text = "chemical abstracts service (cas), a prominent division of the american chemical society, is the world's leading source of chemical information." >>> styletransfer(input_text) [{'generated_text': 'chemical abstracts service (cas), a division of the american chemical society, is a source of chemical information.'}] ``` ## Training procedure For modeling, we made extensive use of the Huggingface transformers library by initializing the [BartForConditionalGeneration](https://huggingface.co/docs/transformers/model_doc/bart#transformers.BartForConditionalGeneration) model with [facebook/bart-base](https://huggingface.co/facebook/bart-base) pretrained weights and adapting the [summarization fine-tuning script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/summarization) for our TST-specific needs. We fine-tune the model for 15 epochs on an NVIDIA Tesla V100 GPU with a batch size of 32. (Note that when fine-tuning the model with the parallel examples, the noising function is turned off so an uncorrupted document is passed to BART's encoder and decoder.) Please refer to [our blog series](https://blog.fastforwardlabs.com/2022/05/05/neutralizing-subjectivity-bias-with-huggingface-transformers.html) for a discussion of evaluation metrics and results.
cffl/bert-base-styleclassification-subjective-neutral
cffl
2022-07-12T11:57:42Z
2,297
8
transformers
[ "transformers", "pytorch", "bert", "text-classification", "arxiv:1911.09709", "arxiv:1703.01365", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-01T19:35:53Z
--- license: apache-2.0 --- # bert-base-styleclassification-subjective-neutral ## Model description This [bert-base-uncased](https://huggingface.co/bert-base-uncased) model has been fine-tuned on the [Wiki Neutrality Corpus (WNC)](https://arxiv.org/pdf/1911.09709.pdf) - a parallel corpus of 180,000 biased and neutralized sentence pairs along with contextual sentences and metadata. The model can be used to classify text as subjectively biased vs. neutrally toned. The development and modeling efforts that produced this model are documented in detail through [this blog series](https://blog.fastforwardlabs.com/2022/05/05/neutralizing-subjectivity-bias-with-huggingface-transformers.html). ## Intended uses & limitations The model is intended purely as a research output for NLP and data science communities. We developed this model for the purpose of evaluating text style transfer output. Specifically, we derive a Style Transfer Intensity (STI) metric from the classifier's output distributions. We also extract feautre importances from the model via [Integrated Gradients](https://arxiv.org/pdf/1703.01365.pdf) with support a Content Preservation Score (CPS). We imagine this model will be used by researchers to better understand the limitations, robustness, and generalization of text style transfer models. Ultimately, we hope this model will inspire future work on text style transfer and serve as a benchmarking tool for the style attribute of subjectivity bias, specifically. Any production use of this model - whether commercial or not - is currently not intended. This is because, as [the team at OpenAI points out](https://github.com/openai/gpt-2/blob/master/model_card.md#out-of-scope-use-cases), large langauge models like BERT reflect biases inherent to the systems they were trained on, so we do not recommend that they be deployed into systems that interact with humans, unless the deployers first carry out a study of biases relevant to the intended use-case. Neither the model nor the WNC dataset has been sufficiently evaluated for performance and bias. As we discuss in the blog series, since the WNC is a parallel dataset and we formulate the learning task as a supervised problem, the model indirectly adopts Wikipedia's NPOV policy as the definition for "neutrality" and "subjectivity". The NPOV policy may not fully reflect an end users assumed/intended meaning of subjectivity because the notion of subjectivity itself can be...well, subjective. We discovered through our exploratory work that the WNC does contain data quality issues that will contribute to unintended bias in the model. For example, some NPOV revisions introduce factual information outside the context of the prompt as a means to correct bias. We believe these factual based edits are out of scope for a subjective-to-neutral style transfer modeling task, but exist here nonetheless. ## How to use This model can be used directly with a HuggingFace pipeline for `text2text-generation`. ```python >>> from transformers import pipeline >>> classify = pipeline( task="text-classification", model="cffl/bert-base-styleclassification-subjective-neutral", return_all_scores=True, ) >>> input_text = "chemical abstracts service (cas), a prominent division of the american chemical society, is the world's leading source of chemical information." >>> classify(input_text) [[{'label': 'SUBJECTIVE', 'score': 0.9765084385871887}, {'label': 'NEUTRAL', 'score': 0.023491567000746727}]] ``` ## Training procedure For training, we initialize HuggingFace’s [AutoModelforSequenceClassification](https://huggingface.co/docs/transformers/model_doc/auto#transformers.AutoModelForSequenceClassification) with [bert-base-uncased](https://huggingface.co/bert-base-uncased) pre-trained weights and perform a hyperparameter search over: batch size [16, 32], learning rate [3e-05, 3e-06, 3e-07], weight decay [0, 0.01, 0.1] and batch shuffling [True, False] while training for 15 epochs. We monitor performance using accuracy as we have a perfectly balanced dataset and assign equal cost to false positives and false negatives. The best performing model produces an overall accuracy of 72.50% -- please reference our [training script](https://github.com/fastforwardlabs/text-style-transfer/blob/main/scripts/train/classifier/train_classifier.py) and [classifier evaluation notebook](https://github.com/fastforwardlabs/text-style-transfer/blob/main/notebooks/WNC_full_style_classifier_evaluation.ipynb) for further details.
Vikasbhandari/wav2vec2-train
Vikasbhandari
2022-07-12T11:51:48Z
3
0
transformers
[ "transformers", "pytorch", "tf", "jax", "tensorboard", "wav2vec2", "automatic-speech-recognition", "speech", "audio", "hf-asr-leaderboard", "en", "dataset:librispeech_asr", "arxiv:2010.11430", "arxiv:2006.11477", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-12T11:11:37Z
--- language: en datasets: - librispeech_asr tags: - speech - audio - automatic-speech-recognition - hf-asr-leaderboard license: apache-2.0 model-index: - name: wav2vec2-large-960h-lv60 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: LibriSpeech (clean) type: librispeech_asr config: clean split: test args: language: en metrics: - name: Test WER type: wer value: 1.9 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: LibriSpeech (other) type: librispeech_asr config: other split: test args: language: en metrics: - name: Test WER type: wer value: 3.9 --- # Wav2Vec2-Large-960h-Lv60 + Self-Training [Facebook's Wav2Vec2](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/) The large model pretrained and fine-tuned on 960 hours of Libri-Light and Librispeech on 16kHz sampled speech audio. Model was trained with [Self-Training objective](https://arxiv.org/abs/2010.11430). When using the model make sure that your speech input is also sampled at 16Khz. [Paper](https://arxiv.org/abs/2006.11477) Authors: Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli **Abstract** We show for the first time that learning powerful representations from speech audio alone followed by fine-tuning on transcribed speech can outperform the best semi-supervised methods while being conceptually simpler. wav2vec 2.0 masks the speech input in the latent space and solves a contrastive task defined over a quantization of the latent representations which are jointly learned. Experiments using all labeled data of Librispeech achieve 1.8/3.3 WER on the clean/other test sets. When lowering the amount of labeled data to one hour, wav2vec 2.0 outperforms the previous state of the art on the 100 hour subset while using 100 times less labeled data. Using just ten minutes of labeled data and pre-training on 53k hours of unlabeled data still achieves 4.8/8.2 WER. This demonstrates the feasibility of speech recognition with limited amounts of labeled data. The original model can be found under https://github.com/pytorch/fairseq/tree/master/examples/wav2vec#wav2vec-20. # Usage To transcribe audio files the model can be used as a standalone acoustic model as follows: ```python from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC from datasets import load_dataset import torch # load model and processor processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-960h-lv60-self") model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-large-960h-lv60-self") # load dummy dataset and read soundfiles ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation") # tokenize input_values = processor(ds[0]["audio"]["array"], return_tensors="pt", padding="longest").input_values # retrieve logits logits = model(input_values).logits # take argmax and decode predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(predicted_ids) ``` ## Evaluation This code snippet shows how to evaluate **facebook/wav2vec2-large-960h-lv60-self** on LibriSpeech's "clean" and "other" test data. ```python from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import torch from jiwer import wer librispeech_eval = load_dataset("librispeech_asr", "clean", split="test") model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-large-960h-lv60-self").to("cuda") processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-960h-lv60-self") def map_to_pred(batch): inputs = processor(batch["audio"]["array"], return_tensors="pt", padding="longest") input_values = inputs.input_values.to("cuda") attention_mask = inputs.attention_mask.to("cuda") with torch.no_grad(): logits = model(input_values, attention_mask=attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(predicted_ids) batch["transcription"] = transcription return batch result = librispeech_eval.map(map_to_pred, remove_columns=["audio"]) print("WER:", wer(result["text"], result["transcription"])) ``` *Result (WER)*: | "clean" | "other" | |---|---| | 1.9 | 3.9 |
dungeoun/pos_neg_neu_tweet_BERT
dungeoun
2022-07-12T11:08:00Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2022-07-12T06:22:25Z
--- license: apache-2.0 pipeline-tag: text-classification --- This repository contains a fine-tuned BERT model trained on tweets of categories Positive, Negative, and Neutral sentiments.
MiguelCosta/finetuning-sentiment-model-24000-samples
MiguelCosta
2022-07-12T10:48:14Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-12T06:17:23Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-24000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.9266666666666666 - name: F1 type: f1 value: 0.9273927392739274 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-24000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3505 - Accuracy: 0.9267 - F1: 0.9274 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
nawta/wav2vec2-onomatopoeia-finetune_smalldata_ESC50pretrained
nawta
2022-07-12T10:20:53Z
15
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-12T05:31:38Z
--- tags: - generated_from_trainer model-index: - name: wav2vec2-onomatopoeia-finetune_smalldata_ESC50pretrained results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-onomatopoeia-finetune_smalldata_ESC50pretrained This model is a fine-tuned version of [/root/workspace/wav2vec2-pretrained_with_ESC50_10000epochs_32batch_2022-07-09_22-16-46/pytorch_model.bin](https://huggingface.co//root/workspace/wav2vec2-pretrained_with_ESC50_10000epochs_32batch_2022-07-09_22-16-46/pytorch_model.bin) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.2963 - Cer: 0.9002 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.3287 | 23.81 | 500 | 2.2963 | 0.9002 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.1+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
luke-thorburn/suggest-conclusion-bias-only
luke-thorburn
2022-07-12T10:08:32Z
7
0
transformers
[ "transformers", "pytorch", "gpt_neo", "text-generation", "argumentation", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: - en tags: - argumentation license: apache-2.0 metrics: - perplexity --- # Generate the conclusion of an argument This model is a version of [`gpt-neo-2.7B`](https://huggingface.co/EleutherAI/gpt-neo-2.7B), where some parameters (only the bias parameters, not weights) have been finetuned on the task of generating the conclusion of an argument given its premises. It was trained as part of a University of Melbourne [research project](https://github.com/Hunt-Laboratory/language-model-optimization) evaluating how large language models can best be optimized to perform argumentative reasoning tasks. Code used for optimization and evaluation can be found in the project [GitHub repository](https://github.com/Hunt-Laboratory/language-model-optimization). A paper reporting on model evaluation is currently under review. # Prompt Template ``` Consider the facts: * [premise 1] * [premise 2] ... * [premise n] We must conclude that: [generated conclusion] ``` # Dataset The parameters were finetuned using argument maps scraped from the crowdsourced argument-mapping platform [Kialo](https://kialo.com/). # Limitations and Biases The model is a finetuned version of [`gpt-neo-2.7B`](https://huggingface.co/EleutherAI/gpt-neo-2.7B), so likely has many of the same limitations and biases. Additionally, note that while the goal of the model is to produce coherent and valid reasoning, many generated model outputs will be illogical or nonsensical and should not be relied upon. # Acknowledgements This research was funded by the Australian Department of Defence and the Office of National Intelligence under the AI for Decision Making Program, delivered in partnership with the Defence Science Institute in Victoria, Australia.
luke-thorburn/suggest-reasons-bias-only
luke-thorburn
2022-07-12T10:07:19Z
8
0
transformers
[ "transformers", "pytorch", "gpt_neo", "text-generation", "argumentation", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: - en tags: - argumentation license: apache-2.0 metrics: - perplexity --- # Generate reasons that support a claim This model is a version of [`gpt-neo-2.7B`](https://huggingface.co/EleutherAI/gpt-neo-2.7B), where some parameters (only the bias parameters, not weights) have been finetuned on the task of generating reasons that support a claim, optionally given some example reasons. It was trained as part of a University of Melbourne [research project](https://github.com/Hunt-Laboratory/language-model-optimization) evaluating how large language models can best be optimized to perform argumentative reasoning tasks. Code used for optimization and evaluation can be found in the project [GitHub repository](https://github.com/Hunt-Laboratory/language-model-optimization). A paper reporting on model evaluation is currently under review. # Prompt Template ``` List reasons why: [original claim] Reasons: * [reason 1] * [reason 2] ... * [reason n] * [generated reason] ``` # Dataset The parameters were finetuned using argument maps scraped from the crowdsourced argument-mapping platform [Kialo](https://kialo.com/). # Limitations and Biases The model is a finetuned version of [`gpt-neo-2.7B`](https://huggingface.co/EleutherAI/gpt-neo-2.7B), so likely has many of the same limitations and biases. Additionally, note that while the goal of the model is to produce coherent and valid reasoning, many generated model outputs will be illogical or nonsensical and should not be relied upon. # Acknowledgements This research was funded by the Australian Department of Defence and the Office of National Intelligence under the AI for Decision Making Program, delivered in partnership with the Defence Science Institute in Victoria, Australia.
luke-thorburn/suggest-intermediary-claims-bias-only
luke-thorburn
2022-07-12T10:06:29Z
9
0
transformers
[ "transformers", "pytorch", "gpt_neo", "text-generation", "argumentation", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: - en tags: - argumentation license: apache-2.0 metrics: - perplexity --- # Generate a chain of reasoning from one claim to another This model is a version of [`gpt-neo-2.7B`](https://huggingface.co/EleutherAI/gpt-neo-2.7B), where some parameters (only the bias parameters, not weights) have been finetuned on the task of generating a sequence of claims (a 'chain of reasoning') that joins one claim to another. It was trained as part of a University of Melbourne [research project](https://github.com/Hunt-Laboratory/language-model-optimization) evaluating how large language models can best be optimized to perform argumentative reasoning tasks. Code used for optimization and evaluation can be found in the project [GitHub repository](https://github.com/Hunt-Laboratory/language-model-optimization). A paper reporting on model evaluation is currently under review. # Prompt Template ``` Input: [start claim] -> [end claim] Output: [start claim] -> [generated intermediate claim 1] -> ... -> [generated intermediate claim n] -> [end claim] ``` # Dataset The parameters were finetuned using argument maps scraped from the crowdsourced argument-mapping platform [Kialo](https://kialo.com/). # Limitations and Biases The model is a finetuned version of [`gpt-neo-2.7B`](https://huggingface.co/EleutherAI/gpt-neo-2.7B), so likely has many of the same limitations and biases. Additionally, note that while the goal of the model is to produce coherent and valid reasoning, many generated model outputs will be illogical or nonsensical and should not be relied upon. # Acknowledgements This research was funded by the Australian Department of Defence and the Office of National Intelligence under the AI for Decision Making Program, delivered in partnership with the Defence Science Institute in Victoria, Australia.
luke-thorburn/suggest-reasons-full-finetune
luke-thorburn
2022-07-12T10:04:57Z
10
0
transformers
[ "transformers", "pytorch", "gpt_neo", "text-generation", "argumentation", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: - en tags: - argumentation license: apache-2.0 metrics: - perplexity --- # Generate reasons that support a claim This model is a version of [`gpt-neo-2.7B`](https://huggingface.co/EleutherAI/gpt-neo-2.7B), where all parameters (both weights and biases) have been finetuned on the task of generating reasons that support a claim, optionally given some example reasons. It was trained as part of a University of Melbourne [research project](https://github.com/Hunt-Laboratory/language-model-optimization) evaluating how large language models can best be optimized to perform argumentative reasoning tasks. Code used for optimization and evaluation can be found in the project [GitHub repository](https://github.com/Hunt-Laboratory/language-model-optimization). A paper reporting on model evaluation is currently under review. # Prompt Template ``` List reasons why: [original claim] Reasons: * [reason 1] * [reason 2] ... * [reason n] * [generated reason] ``` # Dataset The parameters were finetuned using argument maps scraped from the crowdsourced argument-mapping platform [Kialo](https://kialo.com/). # Limitations and Biases The model is a finetuned version of [`gpt-neo-2.7B`](https://huggingface.co/EleutherAI/gpt-neo-2.7B), so likely has many of the same limitations and biases. Additionally, note that while the goal of the model is to produce coherent and valid reasoning, many generated model outputs will be illogical or nonsensical and should not be relied upon. # Acknowledgements This research was funded by the Australian Department of Defence and the Office of National Intelligence under the AI for Decision Making Program, delivered in partnership with the Defence Science Institute in Victoria, Australia.
luke-thorburn/suggest-conclusion-full-finetune
luke-thorburn
2022-07-12T10:02:48Z
7
1
transformers
[ "transformers", "pytorch", "gpt_neo", "text-generation", "argumentation", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: - en tags: - argumentation license: apache-2.0 metrics: - perplexity --- # Generate the conclusion of an argument This model is a version of [`gpt-neo-2.7B`](https://huggingface.co/EleutherAI/gpt-neo-2.7B), where all parameters (both weights and biases) have been finetuned on the task of generating the conclusion of an argument given its premises. It was trained as part of a University of Melbourne [research project](https://github.com/Hunt-Laboratory/language-model-optimization) evaluating how large language models can best be optimized to perform argumentative reasoning tasks. Code used for optimization and evaluation can be found in the project [GitHub repository](https://github.com/Hunt-Laboratory/language-model-optimization). A paper reporting on model evaluation is currently under review. # Prompt Template ``` Consider the facts: * [premise 1] * [premise 2] ... * [premise n] We must conclude that: [generated conclusion] ``` # Dataset The parameters were finetuned using argument maps scraped from the crowdsourced argument-mapping platform [Kialo](https://kialo.com/). # Limitations and Biases The model is a finetuned version of [`gpt-neo-2.7B`](https://huggingface.co/EleutherAI/gpt-neo-2.7B), so likely has many of the same limitations and biases. Additionally, note that while the goal of the model is to produce coherent and valid reasoning, many generated model outputs will be illogical or nonsensical and should not be relied upon. # Acknowledgements This research was funded by the Australian Department of Defence and the Office of National Intelligence under the AI for Decision Making Program, delivered in partnership with the Defence Science Institute in Victoria, Australia.
luke-thorburn/suggest-intermediary-claims-full-finetune
luke-thorburn
2022-07-12T09:56:47Z
10
0
transformers
[ "transformers", "pytorch", "gpt_neo", "text-generation", "argumentation", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: - en tags: - argumentation license: apache-2.0 metrics: - perplexity --- # Generate a chain of reasoning from one claim to another This model is a version of [`gpt-neo-2.7B`](https://huggingface.co/EleutherAI/gpt-neo-2.7B), where all parameters (both weights and biases) have been finetuned on the task of generating a sequence of claims (a 'chain of reasoning') that joins one claim to another. It was trained as part of a University of Melbourne [research project](https://github.com/Hunt-Laboratory/language-model-optimization) evaluating how large language models can best be optimized to perform argumentative reasoning tasks. Code used for optimization and evaluation can be found in the project [GitHub repository](https://github.com/Hunt-Laboratory/language-model-optimization). A paper reporting on model evaluation is currently under review. # Prompt Template ``` Input: [start claim] -> [end claim] Output: [start claim] -> [generated intermediate claim 1] -> ... -> [generated intermediate claim n] -> [end claim] ``` # Dataset The parameters were finetuned using argument maps scraped from the crowdsourced argument-mapping platform [Kialo](https://kialo.com/). # Limitations and Biases The model is a finetuned version of [`gpt-neo-2.7B`](https://huggingface.co/EleutherAI/gpt-neo-2.7B), so likely has many of the same limitations and biases. Additionally, note that while the goal of the model is to produce coherent and valid reasoning, many generated model outputs will be illogical or nonsensical and should not be relied upon. # Acknowledgements This research was funded by the Australian Department of Defence and the Office of National Intelligence under the AI for Decision Making Program, delivered in partnership with the Defence Science Institute in Victoria, Australia.
luke-thorburn/suggest-objections-full-finetune
luke-thorburn
2022-07-12T09:54:28Z
11
0
transformers
[ "transformers", "pytorch", "gpt_neo", "text-generation", "argumentation", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: - en tags: - argumentation license: apache-2.0 metrics: - perplexity --- # Generate objections to a claim This model is a version of [`gpt-neo-2.7B`](https://huggingface.co/EleutherAI/gpt-neo-2.7B), where all parameters (both weights and biases) have been finetuned on the task of generating the objections to a claim, optionally given some example objections to that claim. It was trained as part of a University of Melbourne [research project](https://github.com/Hunt-Laboratory/language-model-optimization) evaluating how large language models can best be optimized to perform argumentative reasoning tasks. Code used for optimization and evaluation can be found in the project [GitHub repository](https://github.com/Hunt-Laboratory/language-model-optimization). A paper reporting on model evaluation is currently under review. # Prompt Template ``` List objections to the claim that: [original claim] Objections: * [objection 1] * [objection 2] ... * [objection n] * [generated objection] ``` # Dataset The parameters were finetuned using argument maps scraped from the crowdsourced argument-mapping platform [Kialo](https://kialo.com/). # Limitations and Biases The model is a finetuned version of [`gpt-neo-2.7B`](https://huggingface.co/EleutherAI/gpt-neo-2.7B), so likely has many of the same limitations and biases. Additionally, note that while the goal of the model is to produce coherent and valid reasoning, many generated model outputs will be illogical or nonsensical and should not be relied upon. # Acknowledgements This research was funded by the Australian Department of Defence and the Office of National Intelligence under the AI for Decision Making Program, delivered in partnership with the Defence Science Institute in Victoria, Australia.
luke-thorburn/suggest-reasons-soft
luke-thorburn
2022-07-12T09:45:30Z
7
0
transformers
[ "transformers", "pytorch", "gpt_neo", "text-generation", "argumentation", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: - en tags: - argumentation license: apache-2.0 metrics: - perplexity --- # Generate reasons that support a claim This model has the same model parameters as [`gpt-neo-2.7B`](https://huggingface.co/EleutherAI/gpt-neo-2.7B), but with an additional soft prompt which has been optimized on the task of generating reasons that support a claim, optionally given some example reasons. It was trained as part of a University of Melbourne [research project](https://github.com/Hunt-Laboratory/language-model-optimization) evaluating how large language models can best be optimized to perform argumentative reasoning tasks. Code used for optimization and evaluation can be found in the project [GitHub repository](https://github.com/Hunt-Laboratory/language-model-optimization). A paper reporting on model evaluation is currently under review. # Prompt Template ``` [prepended soft prompt][original claim] Pros: - [reason 1] - [reason 2] ... - [reason n] - [generated reason] ``` # Dataset The soft prompt was trained using argument maps scraped from the crowdsourced argument-mapping platform [Kialo](https://kialo.com/). # Limitations and Biases The model is a finetuned version of [`gpt-neo-2.7B`](https://huggingface.co/EleutherAI/gpt-neo-2.7B), so likely has many of the same limitations and biases. Additionally, note that while the goal of the model is to produce coherent and valid reasoning, many generated model outputs will be illogical or nonsensical and should not be relied upon. # Acknowledgements This research was funded by the Australian Department of Defence and the Office of National Intelligence under the AI for Decision Making Program, delivered in partnership with the Defence Science Institute in Victoria, Australia.
luke-thorburn/suggest-conclusion-soft
luke-thorburn
2022-07-12T09:43:47Z
7
0
transformers
[ "transformers", "pytorch", "gpt_neo", "text-generation", "argumentation", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: - en tags: - argumentation license: apache-2.0 metrics: - perplexity --- # Generate the conclusion of an argument This model has the same model parameters as [`gpt-neo-2.7B`](https://huggingface.co/EleutherAI/gpt-neo-2.7B), but with an additional soft prompt which has been optimized on the task of generating the conclusion of an argument given its premises. It was trained as part of a University of Melbourne [research project](https://github.com/Hunt-Laboratory/language-model-optimization) evaluating how large language models can best be optimized to perform argumentative reasoning tasks. Code used for optimization and evaluation can be found in the project [GitHub repository](https://github.com/Hunt-Laboratory/language-model-optimization). A paper reporting on model evaluation is currently under review. # Prompt Template ``` [prepended soft prompt]- [premise 1] - [premise 2] ... - [premise n] Conclusion: [generated conclusion] ``` # Dataset The soft prompt was trained using argument maps scraped from the crowdsourced argument-mapping platform [Kialo](https://kialo.com/). # Limitations and Biases The model is a finetuned version of [`gpt-neo-2.7B`](https://huggingface.co/EleutherAI/gpt-neo-2.7B), so likely has many of the same limitations and biases. Additionally, note that while the goal of the model is to produce coherent and valid reasoning, many generated model outputs will be illogical or nonsensical and should not be relied upon. # Acknowledgements This research was funded by the Australian Department of Defence and the Office of National Intelligence under the AI for Decision Making Program, delivered in partnership with the Defence Science Institute in Victoria, Australia.
luke-thorburn/suggest-objections-soft
luke-thorburn
2022-07-12T09:43:28Z
7
0
transformers
[ "transformers", "pytorch", "gpt_neo", "text-generation", "argumentation", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: - en tags: - argumentation license: apache-2.0 metrics: - perplexity --- # Generate objections to a claim This model has the same model parameters as [`gpt-neo-2.7B`](https://huggingface.co/EleutherAI/gpt-neo-2.7B), but with an additional soft prompt which has been optimized on the task of generating the objections to a claim, optionally given some example objections to that claim. It was trained as part of a University of Melbourne [research project](https://github.com/Hunt-Laboratory/language-model-optimization) evaluating how large language models can best be optimized to perform argumentative reasoning tasks. Code used for optimization and evaluation can be found in the project [GitHub repository](https://github.com/Hunt-Laboratory/language-model-optimization). A paper reporting on model evaluation is currently under review. # Prompt Template ``` [prepended soft prompt][original claim] Cons: - [objection 1] - [objection 2] ... - [objection n] - [generated objection] ``` # Dataset The soft prompt was trained using argument maps scraped from the crowdsourced argument-mapping platform [Kialo](https://kialo.com/). # Limitations and Biases The model is a finetuned version of [`gpt-neo-2.7B`](https://huggingface.co/EleutherAI/gpt-neo-2.7B), so likely has many of the same limitations and biases. Additionally, note that while the goal of the model is to produce coherent and valid reasoning, many generated model outputs will be illogical or nonsensical and should not be relied upon. # Acknowledgements This research was funded by the Australian Department of Defence and the Office of National Intelligence under the AI for Decision Making Program, delivered in partnership with the Defence Science Institute in Victoria, Australia.
fxmarty/20220712-h08m05s32_
fxmarty
2022-07-12T08:05:37Z
0
0
null
[ "tensorboard", "vit", "image-classification", "dataset:beans", "region:us" ]
image-classification
2022-07-12T08:05:32Z
--- pipeline_tag: image-classification datasets: - beans metrics: - accuracy tags: - vit --- **task**: `image-classification` **Backend:** `sagemaker-training` **Backend args:** `{'instance_type': 'ml.g4dn.2xlarge', 'supported_instructions': None}` **Number of evaluation samples:** `All dataset` Fixed parameters: * **model_name_or_path**: `nateraw/vit-base-beans` * **dataset**: * **path**: `beans` * **eval_split**: `validation` * **data_keys**: `{'primary': 'image'}` * **ref_keys**: `['labels']` * **quantization_approach**: `dynamic` * **node_exclusion**: `[]` * **framework**: `onnxruntime` * **framework_args**: * **opset**: `11` * **optimization_level**: `1` * **aware_training**: `False` Benchmarked parameters: * **operators_to_quantize**: `['Add', 'MatMul']`, `['Add']`, `[]` * **per_channel**: `False`, `True` # Evaluation ## Non-time metrics | operators_to_quantize | per_channel | | accuracy (original) | accuracy (optimized) | | :-------------------: | :---------: | :-: | :-----------------: | :------------------: | | `['Add', 'MatMul']` | `False` | \| | 0.980 | 0.980 | | `['Add', 'MatMul']` | `True` | \| | 0.980 | 0.980 | | `['Add']` | `False` | \| | 0.980 | 0.980 | | `['Add']` | `True` | \| | 0.980 | 0.980 | | `[]` | `False` | \| | 0.980 | 0.980 | | `[]` | `True` | \| | 0.980 | 0.980 | ## Time metrics Time benchmarks were run for 15 seconds per config. Below, time metrics for batch size = 1, input length = 32. | operators_to_quantize | per_channel | | latency_mean (original, ms) | latency_mean (optimized, ms) | | throughput (original, /s) | throughput (optimized, /s) | | :-------------------: | :---------: | :-: | :-------------------------: | :--------------------------: | :-: | :-----------------------: | :------------------------: | | `['Add', 'MatMul']` | `False` | \| | 201.25 | 70.30 | \| | 5.00 | 14.27 | | `['Add', 'MatMul']` | `True` | \| | 203.52 | 72.48 | \| | 4.93 | 13.80 | | `['Add']` | `False` | \| | 166.03 | 150.93 | \| | 6.07 | 6.67 | | `['Add']` | `True` | \| | 200.82 | 163.17 | \| | 5.00 | 6.13 | | `[]` | `False` | \| | 190.99 | 162.06 | \| | 5.27 | 6.20 | | `[]` | `True` | \| | 155.15 | 162.52 | \| | 6.47 | 6.20 | Below, time metrics for batch size = 1, input length = 64. | operators_to_quantize | per_channel | | latency_mean (original, ms) | latency_mean (optimized, ms) | | throughput (original, /s) | throughput (optimized, /s) | | :-------------------: | :---------: | :-: | :-------------------------: | :--------------------------: | :-: | :-----------------------: | :------------------------: | | `['Add', 'MatMul']` | `False` | \| | 165.85 | 70.60 | \| | 6.07 | 14.20 | | `['Add', 'MatMul']` | `True` | \| | 161.41 | 72.71 | \| | 6.20 | 13.80 | | `['Add']` | `False` | \| | 200.45 | 129.40 | \| | 5.00 | 7.73 | | `['Add']` | `True` | \| | 154.68 | 136.42 | \| | 6.47 | 7.40 | | `[]` | `False` | \| | 166.97 | 162.15 | \| | 6.00 | 6.20 | | `[]` | `True` | \| | 166.32 | 162.81 | \| | 6.07 | 6.20 | Below, time metrics for batch size = 1, input length = 128. | operators_to_quantize | per_channel | | latency_mean (original, ms) | latency_mean (optimized, ms) | | throughput (original, /s) | throughput (optimized, /s) | | :-------------------: | :---------: | :-: | :-------------------------: | :--------------------------: | :-: | :-----------------------: | :------------------------: | | `['Add', 'MatMul']` | `False` | \| | 199.48 | 70.98 | \| | 5.07 | 14.13 | | `['Add', 'MatMul']` | `True` | \| | 199.65 | 71.78 | \| | 5.07 | 13.93 | | `['Add']` | `False` | \| | 199.08 | 137.97 | \| | 5.07 | 7.27 | | `['Add']` | `True` | \| | 189.93 | 162.45 | \| | 5.33 | 6.20 | | `[]` | `False` | \| | 191.63 | 162.54 | \| | 5.27 | 6.20 | | `[]` | `True` | \| | 200.38 | 162.55 | \| | 5.00 | 6.20 | Below, time metrics for batch size = 4, input length = 32. | operators_to_quantize | per_channel | | latency_mean (original, ms) | latency_mean (optimized, ms) | | throughput (original, /s) | throughput (optimized, /s) | | :-------------------: | :---------: | :-: | :-------------------------: | :--------------------------: | :-: | :-----------------------: | :------------------------: | | `['Add', 'MatMul']` | `False` | \| | 655.84 | 243.33 | \| | 1.53 | 4.13 | | `['Add', 'MatMul']` | `True` | \| | 661.27 | 221.16 | \| | 1.53 | 4.53 | | `['Add']` | `False` | \| | 662.84 | 529.28 | \| | 1.53 | 1.93 | | `['Add']` | `True` | \| | 512.47 | 470.66 | \| | 2.00 | 2.13 | | `[]` | `False` | \| | 562.81 | 501.77 | \| | 1.80 | 2.00 | | `[]` | `True` | \| | 505.81 | 521.20 | \| | 2.00 | 1.93 | Below, time metrics for batch size = 4, input length = 64. | operators_to_quantize | per_channel | | latency_mean (original, ms) | latency_mean (optimized, ms) | | throughput (original, /s) | throughput (optimized, /s) | | :-------------------: | :---------: | :-: | :-------------------------: | :--------------------------: | :-: | :-----------------------: | :------------------------: | | `['Add', 'MatMul']` | `False` | \| | 654.58 | 258.54 | \| | 1.53 | 3.93 | | `['Add', 'MatMul']` | `True` | \| | 617.44 | 234.05 | \| | 1.67 | 4.33 | | `['Add']` | `False` | \| | 661.51 | 478.81 | \| | 1.53 | 2.13 | | `['Add']` | `True` | \| | 657.01 | 660.23 | \| | 1.53 | 1.53 | | `[]` | `False` | \| | 661.64 | 474.28 | \| | 1.53 | 2.13 | | `[]` | `True` | \| | 661.29 | 471.09 | \| | 1.53 | 2.13 | Below, time metrics for batch size = 4, input length = 128. | operators_to_quantize | per_channel | | latency_mean (original, ms) | latency_mean (optimized, ms) | | throughput (original, /s) | throughput (optimized, /s) | | :-------------------: | :---------: | :-: | :-------------------------: | :--------------------------: | :-: | :-----------------------: | :------------------------: | | `['Add', 'MatMul']` | `False` | \| | 654.80 | 219.38 | \| | 1.53 | 4.60 | | `['Add', 'MatMul']` | `True` | \| | 663.50 | 222.37 | \| | 1.53 | 4.53 | | `['Add']` | `False` | \| | 625.56 | 529.02 | \| | 1.60 | 1.93 | | `['Add']` | `True` | \| | 655.08 | 499.41 | \| | 1.53 | 2.07 | | `[]` | `False` | \| | 655.92 | 473.01 | \| | 1.53 | 2.13 | | `[]` | `True` | \| | 505.54 | 659.92 | \| | 2.00 | 1.53 | Below, time metrics for batch size = 8, input length = 32. | operators_to_quantize | per_channel | | latency_mean (original, ms) | latency_mean (optimized, ms) | | throughput (original, /s) | throughput (optimized, /s) | | :-------------------: | :---------: | :-: | :-------------------------: | :--------------------------: | :-: | :-----------------------: | :------------------------: | | `['Add', 'MatMul']` | `False` | \| | 968.83 | 443.80 | \| | 1.07 | 2.27 | | `['Add', 'MatMul']` | `True` | \| | 1255.70 | 489.55 | \| | 0.80 | 2.07 | | `['Add']` | `False` | \| | 1301.35 | 938.14 | \| | 0.80 | 1.07 | | `['Add']` | `True` | \| | 1279.54 | 931.91 | \| | 0.80 | 1.13 | | `[]` | `False` | \| | 1292.66 | 1318.07 | \| | 0.80 | 0.80 | | `[]` | `True` | \| | 1290.35 | 1314.74 | \| | 0.80 | 0.80 | Below, time metrics for batch size = 8, input length = 64. | operators_to_quantize | per_channel | | latency_mean (original, ms) | latency_mean (optimized, ms) | | throughput (original, /s) | throughput (optimized, /s) | | :-------------------: | :---------: | :-: | :-------------------------: | :--------------------------: | :-: | :-----------------------: | :------------------------: | | `['Add', 'MatMul']` | `False` | \| | 1305.45 | 438.06 | \| | 0.80 | 2.33 | | `['Add', 'MatMul']` | `True` | \| | 1296.68 | 450.40 | \| | 0.80 | 2.27 | | `['Add']` | `False` | \| | 968.21 | 949.81 | \| | 1.07 | 1.07 | | `['Add']` | `True` | \| | 1012.35 | 1317.46 | \| | 1.00 | 0.80 | | `[]` | `False` | \| | 1213.91 | 961.79 | \| | 0.87 | 1.07 | | `[]` | `True` | \| | 956.39 | 945.41 | \| | 1.07 | 1.07 | Below, time metrics for batch size = 8, input length = 128. | operators_to_quantize | per_channel | | latency_mean (original, ms) | latency_mean (optimized, ms) | | throughput (original, /s) | throughput (optimized, /s) | | :-------------------: | :---------: | :-: | :-------------------------: | :--------------------------: | :-: | :-----------------------: | :------------------------: | | `['Add', 'MatMul']` | `False` | \| | 1120.12 | 497.17 | \| | 0.93 | 2.07 | | `['Add', 'MatMul']` | `True` | \| | 1289.50 | 443.46 | \| | 0.80 | 2.27 | | `['Add']` | `False` | \| | 1294.65 | 930.97 | \| | 0.80 | 1.13 | | `['Add']` | `True` | \| | 1181.21 | 933.82 | \| | 0.87 | 1.13 | | `[]` | `False` | \| | 1245.61 | 1318.07 | \| | 0.87 | 0.80 | | `[]` | `True` | \| | 1285.81 | 1318.82 | \| | 0.80 | 0.80 |
fxmarty/20220712-h08m02s04_example
fxmarty
2022-07-12T08:02:09Z
0
0
null
[ "tensorboard", "distilbert", "token-classification", "dataset:conll2003", "region:us" ]
token-classification
2022-07-12T08:02:04Z
--- pipeline_tag: token-classification datasets: - conll2003 metrics: - precision - recall - f1 - accuracy tags: - distilbert --- **task**: `token-classification` **Backend:** `sagemaker-training` **Backend args:** `{'instance_type': 'ml.m5.2xlarge', 'supported_instructions': 'avx512'}` **Number of evaluation samples:** `All dataset` Fixed parameters: * **model_name_or_path**: `elastic/distilbert-base-uncased-finetuned-conll03-english` * **dataset**: * **path**: `conll2003` * **eval_split**: `validation` * **data_keys**: `{'primary': 'tokens'}` * **ref_keys**: `['ner_tags']` * **calibration_split**: `train` * **node_exclusion**: `[]` * **per_channel**: `False` * **calibration**: * **method**: `minmax` * **num_calibration_samples**: `100` * **framework**: `onnxruntime` * **framework_args**: * **opset**: `11` * **optimization_level**: `1` * **aware_training**: `False` Benchmarked parameters: * **quantization_approach**: `dynamic`, `static` * **operators_to_quantize**: `['Add', 'MatMul']`, `['Add']` # Evaluation ## Non-time metrics | quantization_approach | operators_to_quantize | | precision (original) | precision (optimized) | | recall (original) | recall (optimized) | | f1 (original) | f1 (optimized) | | accuracy (original) | accuracy (optimized) | | :-------------------: | :-------------------: | :-: | :------------------: | :-------------------: | :-: | :---------------: | :----------------: | :-: | :-----------: | :------------: | :-: | :-----------------: | :------------------: | | `dynamic` | `['Add', 'MatMul']` | \| | 0.936 | 0.935 | \| | 0.944 | 0.943 | \| | 0.940 | 0.939 | \| | 0.988 | 0.988 | | `dynamic` | `['Add']` | \| | 0.936 | 0.936 | \| | 0.944 | 0.944 | \| | 0.940 | 0.940 | \| | 0.988 | 0.988 | | `static` | `['Add', 'MatMul']` | \| | 0.936 | 0.063 | \| | 0.944 | 0.246 | \| | 0.940 | 0.100 | \| | 0.988 | 0.343 | | `static` | `['Add']` | \| | 0.936 | 0.050 | \| | 0.944 | 0.160 | \| | 0.940 | 0.076 | \| | 0.988 | 0.311 | ## Time metrics Time benchmarks were run for 15 seconds per config. Below, time metrics for batch size = 1, input length = 32. | quantization_approach | operators_to_quantize | | latency_mean (original, ms) | latency_mean (optimized, ms) | | throughput (original, /s) | throughput (optimized, /s) | | :-------------------: | :-------------------: | :-: | :-------------------------: | :--------------------------: | :-: | :-----------------------: | :------------------------: | | `dynamic` | `['Add', 'MatMul']` | \| | 46.38 | 9.96 | \| | 21.60 | 100.47 | | `dynamic` | `['Add']` | \| | 36.59 | 13.98 | \| | 27.33 | 71.60 | | `static` | `['Add', 'MatMul']` | \| | 33.84 | 14.46 | \| | 29.60 | 69.20 | | `static` | `['Add']` | \| | 33.23 | 20.11 | \| | 30.13 | 49.73 | Below, time metrics for batch size = 1, input length = 64. | quantization_approach | operators_to_quantize | | latency_mean (original, ms) | latency_mean (optimized, ms) | | throughput (original, /s) | throughput (optimized, /s) | | :-------------------: | :-------------------: | :-: | :-------------------------: | :--------------------------: | :-: | :-----------------------: | :------------------------: | | `dynamic` | `['Add', 'MatMul']` | \| | 58.92 | 19.68 | \| | 17.00 | 50.87 | | `dynamic` | `['Add']` | \| | 58.59 | 24.81 | \| | 17.13 | 40.33 | | `static` | `['Add', 'MatMul']` | \| | 51.41 | 29.36 | \| | 19.47 | 34.07 | | `static` | `['Add']` | \| | 44.22 | 38.56 | \| | 22.67 | 25.93 | Below, time metrics for batch size = 1, input length = 128. | quantization_approach | operators_to_quantize | | latency_mean (original, ms) | latency_mean (optimized, ms) | | throughput (original, /s) | throughput (optimized, /s) | | :-------------------: | :-------------------: | :-: | :-------------------------: | :--------------------------: | :-: | :-----------------------: | :------------------------: | | `dynamic` | `['Add', 'MatMul']` | \| | 72.38 | 36.47 | \| | 13.87 | 27.47 | | `dynamic` | `['Add']` | \| | 70.21 | 46.30 | \| | 14.27 | 21.60 | | `static` | `['Add', 'MatMul']` | \| | 70.76 | 48.24 | \| | 14.13 | 20.80 | | `static` | `['Add']` | \| | 72.47 | 71.10 | \| | 13.80 | 14.07 | Below, time metrics for batch size = 4, input length = 32. | quantization_approach | operators_to_quantize | | latency_mean (original, ms) | latency_mean (optimized, ms) | | throughput (original, /s) | throughput (optimized, /s) | | :-------------------: | :-------------------: | :-: | :-------------------------: | :--------------------------: | :-: | :-----------------------: | :------------------------: | | `dynamic` | `['Add', 'MatMul']` | \| | 69.76 | 38.50 | \| | 14.40 | 26.00 | | `dynamic` | `['Add']` | \| | 56.02 | 51.32 | \| | 17.87 | 19.53 | | `static` | `['Add', 'MatMul']` | \| | 55.05 | 46.80 | \| | 18.20 | 21.40 | | `static` | `['Add']` | \| | 71.03 | 56.82 | \| | 14.13 | 17.67 | Below, time metrics for batch size = 4, input length = 64. | quantization_approach | operators_to_quantize | | latency_mean (original, ms) | latency_mean (optimized, ms) | | throughput (original, /s) | throughput (optimized, /s) | | :-------------------: | :-------------------: | :-: | :-------------------------: | :--------------------------: | :-: | :-----------------------: | :------------------------: | | `dynamic` | `['Add', 'MatMul']` | \| | 119.91 | 61.51 | \| | 8.40 | 16.27 | | `dynamic` | `['Add']` | \| | 108.43 | 105.65 | \| | 9.27 | 9.47 | | `static` | `['Add', 'MatMul']` | \| | 119.89 | 86.76 | \| | 8.40 | 11.53 | | `static` | `['Add']` | \| | 96.99 | 102.03 | \| | 10.33 | 9.87 | Below, time metrics for batch size = 4, input length = 128. | quantization_approach | operators_to_quantize | | latency_mean (original, ms) | latency_mean (optimized, ms) | | throughput (original, /s) | throughput (optimized, /s) | | :-------------------: | :-------------------: | :-: | :-------------------------: | :--------------------------: | :-: | :-----------------------: | :------------------------: | | `dynamic` | `['Add', 'MatMul']` | \| | 219.78 | 123.71 | \| | 4.60 | 8.13 | | `dynamic` | `['Add']` | \| | 220.13 | 187.21 | \| | 4.60 | 5.40 | | `static` | `['Add', 'MatMul']` | \| | 186.39 | 176.99 | \| | 5.40 | 5.67 | | `static` | `['Add']` | \| | 219.57 | 203.71 | \| | 4.60 | 4.93 | Below, time metrics for batch size = 8, input length = 32. | quantization_approach | operators_to_quantize | | latency_mean (original, ms) | latency_mean (optimized, ms) | | throughput (original, /s) | throughput (optimized, /s) | | :-------------------: | :-------------------: | :-: | :-------------------------: | :--------------------------: | :-: | :-----------------------: | :------------------------: | | `dynamic` | `['Add', 'MatMul']` | \| | 118.32 | 59.22 | \| | 8.47 | 16.93 | | `dynamic` | `['Add']` | \| | 116.52 | 80.17 | \| | 8.60 | 12.53 | | `static` | `['Add', 'MatMul']` | \| | 116.59 | 83.55 | \| | 8.60 | 12.00 | | `static` | `['Add']` | \| | 115.81 | 126.53 | \| | 8.67 | 7.93 | Below, time metrics for batch size = 8, input length = 64. | quantization_approach | operators_to_quantize | | latency_mean (original, ms) | latency_mean (optimized, ms) | | throughput (original, /s) | throughput (optimized, /s) | | :-------------------: | :-------------------: | :-: | :-------------------------: | :--------------------------: | :-: | :-----------------------: | :------------------------: | | `dynamic` | `['Add', 'MatMul']` | \| | 172.71 | 117.89 | \| | 5.80 | 8.53 | | `dynamic` | `['Add']` | \| | 166.05 | 156.99 | \| | 6.07 | 6.40 | | `static` | `['Add', 'MatMul']` | \| | 215.00 | 148.93 | \| | 4.67 | 6.73 | | `static` | `['Add']` | \| | 214.55 | 200.16 | \| | 4.67 | 5.00 | Below, time metrics for batch size = 8, input length = 128. | quantization_approach | operators_to_quantize | | latency_mean (original, ms) | latency_mean (optimized, ms) | | throughput (original, /s) | throughput (optimized, /s) | | :-------------------: | :-------------------: | :-: | :-------------------------: | :--------------------------: | :-: | :-----------------------: | :------------------------: | | `dynamic` | `['Add', 'MatMul']` | \| | 403.69 | 307.36 | \| | 2.53 | 3.27 | | `dynamic` | `['Add']` | \| | 372.85 | 317.53 | \| | 2.73 | 3.20 | | `static` | `['Add', 'MatMul']` | \| | 352.18 | 320.85 | \| | 2.87 | 3.13 | | `static` | `['Add']` | \| | 403.55 | 410.17 | \| | 2.53 | 2.47 |
AntiSquid/TEST2ppo-LunarLander-v2
AntiSquid
2022-07-12T07:10:57Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-07-06T21:53:51Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 285.66 +/- 15.86 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
reecejocumsenbb/testfield-finetuned-imdb
reecejocumsenbb
2022-07-12T06:02:47Z
5
0
transformers
[ "transformers", "tf", "distilbert", "fill-mask", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-07-12T04:23:21Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: reecejocumsenbb/testfield-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # reecejocumsenbb/testfield-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 4.0451 - Validation Loss: 3.9664 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -993, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 4.0451 | 3.9664 | 0 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.9.1 - Datasets 2.3.2 - Tokenizers 0.12.1
Shaier/medqa_fine_tuned_linkbert
Shaier
2022-07-12T04:48:24Z
3
0
transformers
[ "transformers", "pytorch", "bert", "multiple-choice", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
multiple-choice
2022-07-12T03:27:12Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: medqa_fine_tuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # medqa_fine_tuned This model is a fine-tuned version of [michiyasunaga/BioLinkBERT-base](https://huggingface.co/michiyasunaga/BioLinkBERT-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.4462 - Accuracy: 0.4002 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 318 | 1.3208 | 0.3553 | | 1.2802 | 2.0 | 636 | 1.3428 | 0.3703 | | 1.2802 | 3.0 | 954 | 1.3780 | 0.3892 | | 1.1466 | 4.0 | 1272 | 1.4234 | 0.3978 | | 1.052 | 5.0 | 1590 | 1.4462 | 0.4002 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.3.2 - Tokenizers 0.11.0
Evelyn18/legalectra-small-spanish-becasv3-5
Evelyn18
2022-07-12T04:45:36Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "electra", "question-answering", "generated_from_trainer", "dataset:becasv2", "endpoints_compatible", "region:us" ]
question-answering
2022-07-12T04:43:31Z
--- tags: - generated_from_trainer datasets: - becasv2 model-index: - name: legalectra-small-spanish-becasv3-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # legalectra-small-spanish-becasv3-5 This model is a fine-tuned version of [mrm8488/legalectra-small-spanish](https://huggingface.co/mrm8488/legalectra-small-spanish) on the becasv2 dataset. It achieves the following results on the evaluation set: - Loss: 4.7020 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 5 | 5.7715 | | No log | 2.0 | 10 | 5.7001 | | No log | 3.0 | 15 | 5.6206 | | No log | 4.0 | 20 | 5.5463 | | No log | 5.0 | 25 | 5.4866 | | No log | 6.0 | 30 | 5.4369 | | No log | 7.0 | 35 | 5.3939 | | No log | 8.0 | 40 | 5.3545 | | No log | 9.0 | 45 | 5.3168 | | No log | 10.0 | 50 | 5.2824 | | No log | 11.0 | 55 | 5.2504 | | No log | 12.0 | 60 | 5.2193 | | No log | 13.0 | 65 | 5.1864 | | No log | 14.0 | 70 | 5.1515 | | No log | 15.0 | 75 | 5.1174 | | No log | 16.0 | 80 | 5.0839 | | No log | 17.0 | 85 | 5.0497 | | No log | 18.0 | 90 | 5.0188 | | No log | 19.0 | 95 | 4.9937 | | No log | 20.0 | 100 | 4.9726 | | No log | 21.0 | 105 | 4.9483 | | No log | 22.0 | 110 | 4.9205 | | No log | 23.0 | 115 | 4.8993 | | No log | 24.0 | 120 | 4.8802 | | No log | 25.0 | 125 | 4.8612 | | No log | 26.0 | 130 | 4.8498 | | No log | 27.0 | 135 | 4.8294 | | No log | 28.0 | 140 | 4.8176 | | No log | 29.0 | 145 | 4.8144 | | No log | 30.0 | 150 | 4.8012 | | No log | 31.0 | 155 | 4.7890 | | No log | 32.0 | 160 | 4.7745 | | No log | 33.0 | 165 | 4.7641 | | No log | 34.0 | 170 | 4.7558 | | No log | 35.0 | 175 | 4.7474 | | No log | 36.0 | 180 | 4.7384 | | No log | 37.0 | 185 | 4.7319 | | No log | 38.0 | 190 | 4.7262 | | No log | 39.0 | 195 | 4.7225 | | No log | 40.0 | 200 | 4.7201 | | No log | 41.0 | 205 | 4.7165 | | No log | 42.0 | 210 | 4.7129 | | No log | 43.0 | 215 | 4.7111 | | No log | 44.0 | 220 | 4.7086 | | No log | 45.0 | 225 | 4.7060 | | No log | 46.0 | 230 | 4.7049 | | No log | 47.0 | 235 | 4.7036 | | No log | 48.0 | 240 | 4.7028 | | No log | 49.0 | 245 | 4.7023 | | No log | 50.0 | 250 | 4.7020 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Evelyn18/legalectra-small-spanish-becasv3-4
Evelyn18
2022-07-12T04:38:19Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "electra", "question-answering", "generated_from_trainer", "dataset:becasv2", "endpoints_compatible", "region:us" ]
question-answering
2022-07-12T04:36:14Z
--- tags: - generated_from_trainer datasets: - becasv2 model-index: - name: legalectra-small-spanish-becasv3-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # legalectra-small-spanish-becasv3-4 This model is a fine-tuned version of [mrm8488/legalectra-small-spanish](https://huggingface.co/mrm8488/legalectra-small-spanish) on the becasv2 dataset. It achieves the following results on the evaluation set: - Loss: 4.1290 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 5 | 5.6625 | | No log | 2.0 | 10 | 5.4940 | | No log | 3.0 | 15 | 5.3886 | | No log | 4.0 | 20 | 5.3004 | | No log | 5.0 | 25 | 5.2210 | | No log | 6.0 | 30 | 5.1434 | | No log | 7.0 | 35 | 5.0546 | | No log | 8.0 | 40 | 4.9726 | | No log | 9.0 | 45 | 4.9227 | | No log | 10.0 | 50 | 4.8344 | | No log | 11.0 | 55 | 4.7749 | | No log | 12.0 | 60 | 4.7381 | | No log | 13.0 | 65 | 4.7016 | | No log | 14.0 | 70 | 4.6581 | | No log | 15.0 | 75 | 4.6231 | | No log | 16.0 | 80 | 4.5900 | | No log | 17.0 | 85 | 4.5446 | | No log | 18.0 | 90 | 4.5041 | | No log | 19.0 | 95 | 4.4635 | | No log | 20.0 | 100 | 4.4356 | | No log | 21.0 | 105 | 4.3985 | | No log | 22.0 | 110 | 4.3650 | | No log | 23.0 | 115 | 4.3540 | | No log | 24.0 | 120 | 4.3270 | | No log | 25.0 | 125 | 4.2873 | | No log | 26.0 | 130 | 4.2808 | | No log | 27.0 | 135 | 4.2623 | | No log | 28.0 | 140 | 4.2466 | | No log | 29.0 | 145 | 4.2488 | | No log | 30.0 | 150 | 4.2410 | | No log | 31.0 | 155 | 4.2187 | | No log | 32.0 | 160 | 4.2000 | | No log | 33.0 | 165 | 4.1883 | | No log | 34.0 | 170 | 4.1803 | | No log | 35.0 | 175 | 4.1773 | | No log | 36.0 | 180 | 4.1652 | | No log | 37.0 | 185 | 4.1614 | | No log | 38.0 | 190 | 4.1609 | | No log | 39.0 | 195 | 4.1652 | | No log | 40.0 | 200 | 4.1560 | | No log | 41.0 | 205 | 4.1435 | | No log | 42.0 | 210 | 4.1463 | | No log | 43.0 | 215 | 4.1434 | | No log | 44.0 | 220 | 4.1340 | | No log | 45.0 | 225 | 4.1259 | | No log | 46.0 | 230 | 4.1212 | | No log | 47.0 | 235 | 4.1224 | | No log | 48.0 | 240 | 4.1257 | | No log | 49.0 | 245 | 4.1284 | | No log | 50.0 | 250 | 4.1290 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Evelyn18/legalectra-small-spanish-becasv3-3
Evelyn18
2022-07-12T04:30:27Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "electra", "question-answering", "generated_from_trainer", "dataset:becasv2", "endpoints_compatible", "region:us" ]
question-answering
2022-07-12T04:28:15Z
--- tags: - generated_from_trainer datasets: - becasv2 model-index: - name: legalectra-small-spanish-becasv3-3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # legalectra-small-spanish-becasv3-3 This model is a fine-tuned version of [mrm8488/legalectra-small-spanish](https://huggingface.co/mrm8488/legalectra-small-spanish) on the becasv2 dataset. It achieves the following results on the evaluation set: - Loss: 4.4873 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 5 | 5.7608 | | No log | 2.0 | 10 | 5.5991 | | No log | 3.0 | 15 | 5.5162 | | No log | 4.0 | 20 | 5.4370 | | No log | 5.0 | 25 | 5.3521 | | No log | 6.0 | 30 | 5.2657 | | No log | 7.0 | 35 | 5.1771 | | No log | 8.0 | 40 | 5.1024 | | No log | 9.0 | 45 | 5.0248 | | No log | 10.0 | 50 | 4.9609 | | No log | 11.0 | 55 | 4.9167 | | No log | 12.0 | 60 | 4.8487 | | No log | 13.0 | 65 | 4.8175 | | No log | 14.0 | 70 | 4.7646 | | No log | 15.0 | 75 | 4.7276 | | No log | 16.0 | 80 | 4.7003 | | No log | 17.0 | 85 | 4.6518 | | No log | 18.0 | 90 | 4.6240 | | No log | 19.0 | 95 | 4.6033 | | No log | 20.0 | 100 | 4.5601 | | No log | 21.0 | 105 | 4.5433 | | No log | 22.0 | 110 | 4.5279 | | No log | 23.0 | 115 | 4.4981 | | No log | 24.0 | 120 | 4.4831 | | No log | 25.0 | 125 | 4.4745 | | No log | 26.0 | 130 | 4.4607 | | No log | 27.0 | 135 | 4.4528 | | No log | 28.0 | 140 | 4.4348 | | No log | 29.0 | 145 | 4.4418 | | No log | 30.0 | 150 | 4.4380 | | No log | 31.0 | 155 | 4.4205 | | No log | 32.0 | 160 | 4.4373 | | No log | 33.0 | 165 | 4.4302 | | No log | 34.0 | 170 | 4.4468 | | No log | 35.0 | 175 | 4.4512 | | No log | 36.0 | 180 | 4.4225 | | No log | 37.0 | 185 | 4.4303 | | No log | 38.0 | 190 | 4.4562 | | No log | 39.0 | 195 | 4.4671 | | No log | 40.0 | 200 | 4.4869 | | No log | 41.0 | 205 | 4.5046 | | No log | 42.0 | 210 | 4.4990 | | No log | 43.0 | 215 | 4.4847 | | No log | 44.0 | 220 | 4.4770 | | No log | 45.0 | 225 | 4.4786 | | No log | 46.0 | 230 | 4.4741 | | No log | 47.0 | 235 | 4.4797 | | No log | 48.0 | 240 | 4.4830 | | No log | 49.0 | 245 | 4.4845 | | No log | 50.0 | 250 | 4.4873 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Saraswati/q-FrozenLake-v1-4x4-noSlippery
Saraswati
2022-07-12T04:25:49Z
0
1
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-07-12T04:25:40Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Saraswati/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
Evelyn18/legalectra-small-spanish-becasv3-1
Evelyn18
2022-07-12T03:54:49Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "electra", "question-answering", "generated_from_trainer", "dataset:becasv2", "endpoints_compatible", "region:us" ]
question-answering
2022-07-12T03:49:49Z
--- tags: - generated_from_trainer datasets: - becasv2 model-index: - name: legalectra-small-spanish-becasv3-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # legalectra-small-spanish-becasv3-1 This model is a fine-tuned version of [mrm8488/legalectra-small-spanish](https://huggingface.co/mrm8488/legalectra-small-spanish) on the becasv2 dataset. It achieves the following results on the evaluation set: - Loss: 5.5694 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 8 | 5.8980 | | No log | 2.0 | 16 | 5.8136 | | No log | 3.0 | 24 | 5.7452 | | No log | 4.0 | 32 | 5.6940 | | No log | 5.0 | 40 | 5.6554 | | No log | 6.0 | 48 | 5.6241 | | No log | 7.0 | 56 | 5.5997 | | No log | 8.0 | 64 | 5.5830 | | No log | 9.0 | 72 | 5.5730 | | No log | 10.0 | 80 | 5.5694 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
huggingtweets/hhelafifi
huggingtweets
2022-07-12T02:49:51Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-07-12T02:32:46Z
--- language: en thumbnail: http://www.huggingtweets.com/hhelafifi/1657594186366/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1147337070920097793/06CZyryx_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Hussein</div> <div style="text-align: center; font-size: 14px;">@hhelafifi</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Hussein. | Data | Hussein | | --- | --- | | Tweets downloaded | 820 | | Retweets | 191 | | Short tweets | 95 | | Tweets kept | 534 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1j7uxays/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @hhelafifi's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/20d5foa3) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/20d5foa3/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/hhelafifi') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
nateraw/yolov6s
nateraw
2022-07-12T02:01:18Z
0
0
pytorch
[ "pytorch", "object-detection", "yolo", "autogenerated-modelcard", "en", "arxiv:1910.09700", "license:gpl-3.0", "region:us" ]
object-detection
2022-07-08T04:01:40Z
--- language: en license: gpl-3.0 library_name: pytorch tags: - object-detection - yolo - autogenerated-modelcard model_name: yolov6s --- # Model Card for yolov6s <!-- Provide a quick summary of what the model is/does. --> # Table of Contents 1. [Model Details](#model-details) 2. [Uses](#uses) 3. [Bias, Risks, and Limitations](#bias-risks-and-limitations) 4. [Training Details](#training-details) 5. [Evaluation](#evaluation) 6. [Model Examination](#model-examination) 7. [Environmental Impact](#environmental-impact) 8. [Technical Specifications](#technical-specifications-optional) 9. [Citation](#citation) 10. [Glossary](#glossary-optional) 11. [More Information](#more-information-optional) 12. [Model Card Authors](#model-card-authors-optional) 13. [Model Card Contact](#model-card-contact) 14. [How To Get Started With the Model](#how-to-get-started-with-the-model) # Model Details ## Model Description <!-- Provide a longer summary of what this model is. --> YOLOv6 is a single-stage object detection framework dedicated to industrial applications, with hardware-friendly efficient design and high performance. - **Developed by:** [More Information Needed] - **Shared by [Optional]:** [@nateraw](https://hf.co/nateraw) - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Related Models:** [yolov6t](https://hf.co/nateraw/yolov6t), [yolov6n](https://hf.co/nateraw/yolov6n) - **Parent Model:** N/A - **Resources for more information:** The [official GitHub Repository](https://github.com/meituan/YOLOv6) # Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ## Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> This model is meant to be used as a general object detector. ## Downstream Use [Optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> You can fine-tune this model for your specific task ## Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> Don't be evil. # Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> This model often classifies objects incorrectly, especially when applied to videos. It does not handle crowds very well. ## Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recomendations. # Training Details ## Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ## Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> ### Preprocessing [More Information Needed] ### Speeds, Sizes, Times <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] # Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ## Testing Data, Factors & Metrics ### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] ### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] ### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ## Results [More Information Needed] # Model Examination [More Information Needed] # Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] # Technical Specifications [optional] ## Model Architecture and Objective [More Information Needed] ## Compute Infrastructure [More Information Needed] ### Hardware [More Information Needed] ### Software [More Information Needed] # Citation <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] # Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] # More Information [optional] Please refer to the [official GitHub Repository](https://github.com/meituan/YOLOv6) # Model Card Authors [optional] [@nateraw](https://hf.co/nateraw) # Model Card Contact [@nateraw](https://hf.co/nateraw) - please leave a note in the discussions tab here # How to Get Started with the Model Use the code below to get started with the model. <details> <summary> Click to expand </summary> [More Information Needed] </details>
nateraw/yolov6n
nateraw
2022-07-12T02:01:10Z
0
0
pytorch
[ "pytorch", "object-detection", "yolo", "autogenerated-modelcard", "en", "arxiv:1910.09700", "license:gpl-3.0", "region:us" ]
object-detection
2022-07-08T04:01:21Z
--- language: en license: gpl-3.0 library_name: pytorch tags: - object-detection - yolo - autogenerated-modelcard model_name: yolov6n --- # Model Card for yolov6n <!-- Provide a quick summary of what the model is/does. --> # Table of Contents 1. [Model Details](#model-details) 2. [Uses](#uses) 3. [Bias, Risks, and Limitations](#bias-risks-and-limitations) 4. [Training Details](#training-details) 5. [Evaluation](#evaluation) 6. [Model Examination](#model-examination) 7. [Environmental Impact](#environmental-impact) 8. [Technical Specifications](#technical-specifications-optional) 9. [Citation](#citation) 10. [Glossary](#glossary-optional) 11. [More Information](#more-information-optional) 12. [Model Card Authors](#model-card-authors-optional) 13. [Model Card Contact](#model-card-contact) 14. [How To Get Started With the Model](#how-to-get-started-with-the-model) # Model Details ## Model Description <!-- Provide a longer summary of what this model is. --> YOLOv6 is a single-stage object detection framework dedicated to industrial applications, with hardware-friendly efficient design and high performance. - **Developed by:** [More Information Needed] - **Shared by [Optional]:** [@nateraw](https://hf.co/nateraw) - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Related Models:** [yolov6t](https://hf.co/nateraw/yolov6t), [yolov6s](https://hf.co/nateraw/yolov6s) - **Parent Model:** N/A - **Resources for more information:** The [official GitHub Repository](https://github.com/meituan/YOLOv6) # Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ## Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> This model is meant to be used as a general object detector. ## Downstream Use [Optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> You can fine-tune this model for your specific task ## Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> Don't be evil. # Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> This model often classifies objects incorrectly, especially when applied to videos. It does not handle crowds very well. ## Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recomendations. # Training Details ## Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ## Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> ### Preprocessing [More Information Needed] ### Speeds, Sizes, Times <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] # Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ## Testing Data, Factors & Metrics ### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] ### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] ### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ## Results [More Information Needed] # Model Examination [More Information Needed] # Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] # Technical Specifications [optional] ## Model Architecture and Objective [More Information Needed] ## Compute Infrastructure [More Information Needed] ### Hardware [More Information Needed] ### Software [More Information Needed] # Citation <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] # Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] # More Information [optional] Please refer to the [official GitHub Repository](https://github.com/meituan/YOLOv6) # Model Card Authors [optional] [@nateraw](https://hf.co/nateraw) # Model Card Contact [@nateraw](https://hf.co/nateraw) - please leave a note in the discussions tab here # How to Get Started with the Model Use the code below to get started with the model. <details> <summary> Click to expand </summary> [More Information Needed] </details>
ArthurBaia/xlm-roberta-base-squad-pt
ArthurBaia
2022-07-11T22:42:37Z
7
2
transformers
[ "transformers", "pytorch", "xlm-roberta", "question-answering", "generated_from_trainer", "dataset:squad_v1_pt", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-07-11T16:59:16Z
--- license: mit tags: - generated_from_trainer datasets: - squad_v1_pt model-index: - name: xlm-roberta-base-squad-pt results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-squad-pt This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the squad_v1_pt dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - distributed_type: tpu - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results - "epoch": 3.0, - "eval_exact_match": 44.45600756859035, - "eval_f1": 57.37953911779836, - "eval_samples": 11095 ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.9.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
skr1125/distilbert-base-uncased-finetuned-emotion
skr1125
2022-07-11T20:35:19Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-11T20:17:40Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.927 - name: F1 type: f1 value: 0.9267721491352747 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2253 - Accuracy: 0.927 - F1: 0.9268 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8507 | 1.0 | 250 | 0.3406 | 0.899 | 0.8954 | | 0.2546 | 2.0 | 500 | 0.2253 | 0.927 | 0.9268 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.11.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
sahilrajpal121/train5a1e8w7-label-classification
sahilrajpal121
2022-07-11T20:11:11Z
0
0
sklearn
[ "sklearn", "tabular-classification", "baseline-trainer", "license:apache-2.0", "region:us" ]
tabular-classification
2022-07-11T20:11:07Z
--- license: apache-2.0 library_name: sklearn tags: - tabular-classification - baseline-trainer --- ## Baseline Model trained on train5a1e8w7 to apply classification on label **Metrics of the best model:** accuracy 0.693101 recall_macro 0.665973 precision_macro 0.657625 f1_macro 0.656998 Name: LogisticRegression(C=0.1, class_weight='balanced', max_iter=1000), dtype: float64 **See model plot below:** <style>#sk-container-id-1 {color: black;background-color: white;}#sk-container-id-1 pre{padding: 0;}#sk-container-id-1 div.sk-toggleable {background-color: white;}#sk-container-id-1 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-1 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-1 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-1 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-1 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-1 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-1 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-1 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-container-id-1 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-1 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-1 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-1 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-1 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-1 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-1 div.sk-item {position: relative;z-index: 1;}#sk-container-id-1 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-1 div.sk-item::before, #sk-container-id-1 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-1 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-1 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-1 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-1 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-1 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-1 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-1 div.sk-label-container {text-align: center;}#sk-container-id-1 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-1 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-1" class="sk-top-container"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[(&#x27;easypreprocessor&#x27;,EasyPreprocessor(types= continuous dirty_float low_card_int ... date free_string useless v_21 False False False ... False False False v_32 True False False ... False False False v_15 False False False ... False False False v_4 True False False ... False False False v_1 False False False ... False False False v_8 False False False ... False False False v_12 False False Fa... v_34 False False False ... False False False v_35 True False False ... False False False v_36 True False False ... False False False v_37 True False False ... False False False v_38 True False False ... False False False v_39 True False False ... False False False v_40 False False False ... False False False[40 rows x 7 columns])),(&#x27;logisticregression&#x27;,LogisticRegression(C=0.1, class_weight=&#x27;balanced&#x27;,max_iter=1000))])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-1" type="checkbox" ><label for="sk-estimator-id-1" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[(&#x27;easypreprocessor&#x27;,EasyPreprocessor(types= continuous dirty_float low_card_int ... date free_string useless v_21 False False False ... False False False v_32 True False False ... False False False v_15 False False False ... False False False v_4 True False False ... False False False v_1 False False False ... False False False v_8 False False False ... False False False v_12 False False Fa... v_34 False False False ... False False False v_35 True False False ... False False False v_36 True False False ... False False False v_37 True False False ... False False False v_38 True False False ... False False False v_39 True False False ... False False False v_40 False False False ... False False False[40 rows x 7 columns])),(&#x27;logisticregression&#x27;,LogisticRegression(C=0.1, class_weight=&#x27;balanced&#x27;,max_iter=1000))])</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-2" type="checkbox" ><label for="sk-estimator-id-2" class="sk-toggleable__label sk-toggleable__label-arrow">EasyPreprocessor</label><div class="sk-toggleable__content"><pre>EasyPreprocessor(types= continuous dirty_float low_card_int ... date free_string useless v_21 False False False ... False False False v_32 True False False ... False False False v_15 False False False ... False False False v_4 True False False ... False False False v_1 False False False ... False False False v_8 False False False ... False False False v_12 False False False ... False False False v_25 True False Fa... v_7 True False False ... False False False v_2 True False False ... False False False v_16 True False False ... False False False v_34 False False False ... False False False v_35 True False False ... False False False v_36 True False False ... False False False v_37 True False False ... False False False v_38 True False False ... False False False v_39 True False False ... False False False v_40 False False False ... False False False[40 rows x 7 columns])</pre></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-3" type="checkbox" ><label for="sk-estimator-id-3" class="sk-toggleable__label sk-toggleable__label-arrow">LogisticRegression</label><div class="sk-toggleable__content"><pre>LogisticRegression(C=0.1, class_weight=&#x27;balanced&#x27;, max_iter=1000)</pre></div></div></div></div></div></div></div> **Disclaimer:** This model is trained with dabl library as a baseline, for better results, use [AutoTrain](https://huggingface.co/autotrain). **Logs of training** including the models tried in the process can be found in logs.txt
jonatasgrosman/exp_w2v2t_pt_vp-it_s738
jonatasgrosman
2022-07-11T20:09:11Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "pt", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T20:08:31Z
--- language: - pt license: apache-2.0 tags: - automatic-speech-recognition - pt datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_pt_vp-it_s738 Fine-tuned [facebook/wav2vec2-large-it-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-it-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (pt)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_pt_vp-it_s996
jonatasgrosman
2022-07-11T19:59:08Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "pt", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T19:58:21Z
--- language: - pt license: apache-2.0 tags: - automatic-speech-recognition - pt datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_pt_vp-it_s996 Fine-tuned [facebook/wav2vec2-large-it-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-it-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (pt)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_pt_r-wav2vec2_s732
jonatasgrosman
2022-07-11T19:54:54Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "pt", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T19:54:29Z
--- language: - pt license: apache-2.0 tags: - automatic-speech-recognition - pt datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_pt_r-wav2vec2_s732 Fine-tuned [facebook/wav2vec2-large-robust](https://huggingface.co/facebook/wav2vec2-large-robust) for speech recognition using the train split of [Common Voice 7.0 (pt)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_pt_r-wav2vec2_s957
jonatasgrosman
2022-07-11T19:51:40Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "pt", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T19:51:07Z
--- language: - pt license: apache-2.0 tags: - automatic-speech-recognition - pt datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_pt_r-wav2vec2_s957 Fine-tuned [facebook/wav2vec2-large-robust](https://huggingface.co/facebook/wav2vec2-large-robust) for speech recognition using the train split of [Common Voice 7.0 (pt)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_pt_r-wav2vec2_s468
jonatasgrosman
2022-07-11T19:48:19Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "pt", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T19:47:54Z
--- language: - pt license: apache-2.0 tags: - automatic-speech-recognition - pt datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_pt_r-wav2vec2_s468 Fine-tuned [facebook/wav2vec2-large-robust](https://huggingface.co/facebook/wav2vec2-large-robust) for speech recognition using the train split of [Common Voice 7.0 (pt)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_pt_xls-r_s689
jonatasgrosman
2022-07-11T19:41:36Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "pt", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T19:40:50Z
--- language: - pt license: apache-2.0 tags: - automatic-speech-recognition - pt datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_pt_xls-r_s689 Fine-tuned [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) for speech recognition using the train split of [Common Voice 7.0 (pt)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_pt_xls-r_s17
jonatasgrosman
2022-07-11T19:38:03Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "pt", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T19:37:21Z
--- language: - pt license: apache-2.0 tags: - automatic-speech-recognition - pt datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_pt_xls-r_s17 Fine-tuned [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) for speech recognition using the train split of [Common Voice 7.0 (pt)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
KD02/distilbert-base-uncased-finetuned-squad
KD02
2022-07-11T19:37:22Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-07-11T14:14:25Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [KD02/distilbert-base-uncased-finetuned-squad](https://huggingface.co/KD02/distilbert-base-uncased-finetuned-squad) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
jonatasgrosman/exp_w2v2t_pt_unispeech-sat_s103
jonatasgrosman
2022-07-11T19:34:07Z
3
0
transformers
[ "transformers", "pytorch", "unispeech-sat", "automatic-speech-recognition", "pt", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T19:33:36Z
--- language: - pt license: apache-2.0 tags: - automatic-speech-recognition - pt datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_pt_unispeech-sat_s103 Fine-tuned [microsoft/unispeech-sat-large](https://huggingface.co/microsoft/unispeech-sat-large) for speech recognition using the train split of [Common Voice 7.0 (pt)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_pt_unispeech-sat_s377
jonatasgrosman
2022-07-11T19:30:24Z
5
0
transformers
[ "transformers", "pytorch", "unispeech-sat", "automatic-speech-recognition", "pt", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T19:29:59Z
--- language: - pt license: apache-2.0 tags: - automatic-speech-recognition - pt datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_pt_unispeech-sat_s377 Fine-tuned [microsoft/unispeech-sat-large](https://huggingface.co/microsoft/unispeech-sat-large) for speech recognition using the train split of [Common Voice 7.0 (pt)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_pt_unispeech-sat_s756
jonatasgrosman
2022-07-11T19:26:48Z
3
0
transformers
[ "transformers", "pytorch", "unispeech-sat", "automatic-speech-recognition", "pt", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T19:26:24Z
--- language: - pt license: apache-2.0 tags: - automatic-speech-recognition - pt datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_pt_unispeech-sat_s756 Fine-tuned [microsoft/unispeech-sat-large](https://huggingface.co/microsoft/unispeech-sat-large) for speech recognition using the train split of [Common Voice 7.0 (pt)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_pt_vp-nl_s833
jonatasgrosman
2022-07-11T19:13:31Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "pt", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T19:12:53Z
--- language: - pt license: apache-2.0 tags: - automatic-speech-recognition - pt datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_pt_vp-nl_s833 Fine-tuned [facebook/wav2vec2-large-nl-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-nl-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (pt)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_pt_vp-es_s291
jonatasgrosman
2022-07-11T19:09:42Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "pt", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T19:08:58Z
--- language: - pt license: apache-2.0 tags: - automatic-speech-recognition - pt datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_pt_vp-es_s291 Fine-tuned [facebook/wav2vec2-large-es-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-es-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (pt)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_pt_vp-es_s506
jonatasgrosman
2022-07-11T19:05:37Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "pt", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T19:04:54Z
--- language: - pt license: apache-2.0 tags: - automatic-speech-recognition - pt datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_pt_vp-es_s506 Fine-tuned [facebook/wav2vec2-large-es-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-es-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (pt)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_pt_vp-es_s454
jonatasgrosman
2022-07-11T19:02:09Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "pt", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T19:01:28Z
--- language: - pt license: apache-2.0 tags: - automatic-speech-recognition - pt datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_pt_vp-es_s454 Fine-tuned [facebook/wav2vec2-large-es-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-es-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (pt)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_pt_vp-fr_s752
jonatasgrosman
2022-07-11T18:58:10Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "pt", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T18:57:25Z
--- language: - pt license: apache-2.0 tags: - automatic-speech-recognition - pt datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_pt_vp-fr_s752 Fine-tuned [facebook/wav2vec2-large-fr-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-fr-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (pt)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_pt_vp-fr_s485
jonatasgrosman
2022-07-11T18:54:15Z
5
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "pt", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T18:53:30Z
--- language: - pt license: apache-2.0 tags: - automatic-speech-recognition - pt datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_pt_vp-fr_s485 Fine-tuned [facebook/wav2vec2-large-fr-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-fr-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (pt)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_pt_unispeech-ml_s808
jonatasgrosman
2022-07-11T18:31:15Z
4
0
transformers
[ "transformers", "pytorch", "unispeech", "automatic-speech-recognition", "pt", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T18:30:46Z
--- language: - pt license: apache-2.0 tags: - automatic-speech-recognition - pt datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_pt_unispeech-ml_s808 Fine-tuned [microsoft/unispeech-large-multi-lingual-1500h-cv](https://huggingface.co/microsoft/unispeech-large-multi-lingual-1500h-cv) for speech recognition using the train split of [Common Voice 7.0 (pt)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_pt_unispeech-ml_s324
jonatasgrosman
2022-07-11T18:27:29Z
3
0
transformers
[ "transformers", "pytorch", "unispeech", "automatic-speech-recognition", "pt", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T18:26:59Z
--- language: - pt license: apache-2.0 tags: - automatic-speech-recognition - pt datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_pt_unispeech-ml_s324 Fine-tuned [microsoft/unispeech-large-multi-lingual-1500h-cv](https://huggingface.co/microsoft/unispeech-large-multi-lingual-1500h-cv) for speech recognition using the train split of [Common Voice 7.0 (pt)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_pt_wavlm_s118
jonatasgrosman
2022-07-11T18:23:23Z
3
0
transformers
[ "transformers", "pytorch", "wavlm", "automatic-speech-recognition", "pt", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T18:22:59Z
--- language: - pt license: apache-2.0 tags: - automatic-speech-recognition - pt datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_pt_wavlm_s118 Fine-tuned [microsoft/wavlm-large](https://huggingface.co/microsoft/wavlm-large) for speech recognition using the train split of [Common Voice 7.0 (pt)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_pt_wavlm_s691
jonatasgrosman
2022-07-11T18:13:28Z
3
0
transformers
[ "transformers", "pytorch", "wavlm", "automatic-speech-recognition", "pt", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T18:13:02Z
--- language: - pt license: apache-2.0 tags: - automatic-speech-recognition - pt datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_pt_wavlm_s691 Fine-tuned [microsoft/wavlm-large](https://huggingface.co/microsoft/wavlm-large) for speech recognition using the train split of [Common Voice 7.0 (pt)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_pt_no-pretraining_s34
jonatasgrosman
2022-07-11T18:06:01Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "pt", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T18:05:36Z
--- language: - pt license: apache-2.0 tags: - automatic-speech-recognition - pt datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_pt_no-pretraining_s34 Fine-tuned randomly initialized wav2vec2 model for speech recognition using the train split of [Common Voice 7.0 (pt)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_pt_vp-sv_s563
jonatasgrosman
2022-07-11T17:51:15Z
5
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "pt", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T17:50:36Z
--- language: - pt license: apache-2.0 tags: - automatic-speech-recognition - pt datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_pt_vp-sv_s563 Fine-tuned [facebook/wav2vec2-large-sv-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-sv-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (pt)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_pt_vp-sv_s612
jonatasgrosman
2022-07-11T17:47:36Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "pt", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T17:47:09Z
--- language: - pt license: apache-2.0 tags: - automatic-speech-recognition - pt datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_pt_vp-sv_s612 Fine-tuned [facebook/wav2vec2-large-sv-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-sv-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (pt)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_pt_hubert_s807
jonatasgrosman
2022-07-11T17:36:35Z
3
0
transformers
[ "transformers", "pytorch", "hubert", "automatic-speech-recognition", "pt", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T17:36:06Z
--- language: - pt license: apache-2.0 tags: - automatic-speech-recognition - pt datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_pt_hubert_s807 Fine-tuned [facebook/hubert-large-ll60k](https://huggingface.co/facebook/hubert-large-ll60k) for speech recognition using the train split of [Common Voice 7.0 (pt)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
ianspektor/reinforce-CartPole-v1
ianspektor
2022-07-11T17:36:19Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-07-11T16:33:35Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: reinforce-CartPole-v1 results: - metrics: - type: mean_reward value: 359.42 +/- 89.49 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
kinanmartin/xlm-roberta-large-ner-hrl-finetuned-ner
kinanmartin
2022-07-11T17:29:06Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:toydata", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-07-11T03:49:46Z
--- tags: - generated_from_trainer datasets: - toydata metrics: - precision - recall - f1 - accuracy model-index: - name: xlm-roberta-large-ner-hrl-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: toydata type: toydata args: SDN metrics: - name: Precision type: precision value: 0.9132452695465905 - name: Recall type: recall value: 0.9205854126679462 - name: F1 type: f1 value: 0.9169006511739053 - name: Accuracy type: accuracy value: 0.9784804945824268 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-large-ner-hrl-finetuned-ner This model is a fine-tuned version of [Davlan/xlm-roberta-large-ner-hrl](https://huggingface.co/Davlan/xlm-roberta-large-ner-hrl) on the toydata dataset. It achieves the following results on the evaluation set: - Loss: 0.0944 - Precision: 0.9132 - Recall: 0.9206 - F1: 0.9169 - Accuracy: 0.9785 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 408 | 0.0900 | 0.8508 | 0.9303 | 0.8888 | 0.9719 | | 0.1087 | 2.0 | 816 | 0.0827 | 0.9043 | 0.9230 | 0.9136 | 0.9783 | | 0.0503 | 3.0 | 1224 | 0.0944 | 0.9132 | 0.9206 | 0.9169 | 0.9785 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
jonatasgrosman/exp_w2v2t_pt_unispeech_s186
jonatasgrosman
2022-07-11T17:26:39Z
4
0
transformers
[ "transformers", "pytorch", "unispeech", "automatic-speech-recognition", "pt", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T17:26:14Z
--- language: - pt license: apache-2.0 tags: - automatic-speech-recognition - pt datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_pt_unispeech_s186 Fine-tuned [microsoft/unispeech-large-1500h-cv](https://huggingface.co/microsoft/unispeech-large-1500h-cv) for speech recognition using the train split of [Common Voice 7.0 (pt)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_pt_xlsr-53_s829
jonatasgrosman
2022-07-11T17:23:34Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "pt", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T17:23:00Z
--- language: - pt license: apache-2.0 tags: - automatic-speech-recognition - pt datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_pt_xlsr-53_s829 Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) for speech recognition using the train split of [Common Voice 7.0 (pt)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_pt_xlsr-53_s677
jonatasgrosman
2022-07-11T17:17:00Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "pt", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T17:16:33Z
--- language: - pt license: apache-2.0 tags: - automatic-speech-recognition - pt datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_pt_xlsr-53_s677 Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) for speech recognition using the train split of [Common Voice 7.0 (pt)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_pt_wav2vec2_s859
jonatasgrosman
2022-07-11T16:58:14Z
5
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "pt", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T16:57:41Z
--- language: - pt license: apache-2.0 tags: - automatic-speech-recognition - pt datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_pt_wav2vec2_s859 Fine-tuned [facebook/wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60) for speech recognition using the train split of [Common Voice 7.0 (pt)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_pt_wav2vec2_s515
jonatasgrosman
2022-07-11T16:54:47Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "pt", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T16:54:22Z
--- language: - pt license: apache-2.0 tags: - automatic-speech-recognition - pt datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_pt_wav2vec2_s515 Fine-tuned [facebook/wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60) for speech recognition using the train split of [Common Voice 7.0 (pt)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_es_vp-it_s179
jonatasgrosman
2022-07-11T16:44:55Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "es", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T16:44:09Z
--- language: - es license: apache-2.0 tags: - automatic-speech-recognition - es datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_es_vp-it_s179 Fine-tuned [facebook/wav2vec2-large-it-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-it-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (es)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_es_vp-it_s438
jonatasgrosman
2022-07-11T16:41:02Z
5
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "es", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T16:40:28Z
--- language: - es license: apache-2.0 tags: - automatic-speech-recognition - es datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_es_vp-it_s438 Fine-tuned [facebook/wav2vec2-large-it-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-it-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (es)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_es_r-wav2vec2_s227
jonatasgrosman
2022-07-11T16:34:37Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "es", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T16:33:36Z
--- language: - es license: apache-2.0 tags: - automatic-speech-recognition - es datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_es_r-wav2vec2_s227 Fine-tuned [facebook/wav2vec2-large-robust](https://huggingface.co/facebook/wav2vec2-large-robust) for speech recognition using the train split of [Common Voice 7.0 (es)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_es_r-wav2vec2_s870
jonatasgrosman
2022-07-11T16:30:36Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "es", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T16:29:58Z
--- language: - es license: apache-2.0 tags: - automatic-speech-recognition - es datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_es_r-wav2vec2_s870 Fine-tuned [facebook/wav2vec2-large-robust](https://huggingface.co/facebook/wav2vec2-large-robust) for speech recognition using the train split of [Common Voice 7.0 (es)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_es_r-wav2vec2_s809
jonatasgrosman
2022-07-11T16:26:53Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "es", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T16:26:08Z
--- language: - es license: apache-2.0 tags: - automatic-speech-recognition - es datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_es_r-wav2vec2_s809 Fine-tuned [facebook/wav2vec2-large-robust](https://huggingface.co/facebook/wav2vec2-large-robust) for speech recognition using the train split of [Common Voice 7.0 (es)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
AdiKompella/Reinforce-CartPole
AdiKompella
2022-07-11T16:26:05Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-07-11T16:25:53Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole results: - metrics: - type: mean_reward value: 276.70 +/- 57.60 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
jonatasgrosman/exp_w2v2t_es_xls-r_s691
jonatasgrosman
2022-07-11T16:19:22Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "es", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T16:18:30Z
--- language: - es license: apache-2.0 tags: - automatic-speech-recognition - es datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_es_xls-r_s691 Fine-tuned [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) for speech recognition using the train split of [Common Voice 7.0 (es)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_es_xls-r_s118
jonatasgrosman
2022-07-11T16:13:12Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "es", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T16:12:22Z
--- language: - es license: apache-2.0 tags: - automatic-speech-recognition - es datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_es_xls-r_s118 Fine-tuned [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) for speech recognition using the train split of [Common Voice 7.0 (es)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
sledz08/finetuned-bert-piqa
sledz08
2022-07-11T15:54:20Z
58
1
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "multiple-choice", "generated_from_trainer", "dataset:piqa", "license:apache-2.0", "endpoints_compatible", "region:us" ]
multiple-choice
2022-07-11T15:23:58Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - piqa metrics: - accuracy model-index: - name: finetuned-bert-piqa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-bert-piqa This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the piqa dataset. It achieves the following results on the evaluation set: - Loss: 0.6603 - Accuracy: 0.6518 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 251 | 0.6751 | 0.6115 | | 0.6628 | 2.0 | 502 | 0.6556 | 0.6534 | | 0.6628 | 3.0 | 753 | 0.6603 | 0.6518 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
nateraw/keras-dummy-model-mixin-demo
nateraw
2022-07-11T15:42:05Z
0
0
keras
[ "keras", "tf-keras", "region:us" ]
null
2022-03-02T23:29:05Z
--- library_name: keras --- ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Model Plot <details> <summary>View Model Plot</summary> ![Model Image](./model.png) </details>
ericntay/clinical_bert_ft
ericntay
2022-07-11T15:30:06Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-07-11T10:38:42Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: clinical_bert_ft results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # clinical_bert_ft This model is a fine-tuned version of [emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2439 - F1: 0.8252 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.5938 | 1.0 | 95 | 0.2480 | 0.7084 | | 0.1567 | 2.0 | 190 | 0.2035 | 0.7855 | | 0.083 | 3.0 | 285 | 0.2002 | 0.8026 | | 0.0482 | 4.0 | 380 | 0.2046 | 0.8118 | | 0.0269 | 5.0 | 475 | 0.2230 | 0.8143 | | 0.0185 | 6.0 | 570 | 0.2178 | 0.8175 | | 0.0123 | 7.0 | 665 | 0.2269 | 0.8253 | | 0.0093 | 8.0 | 760 | 0.2421 | 0.8227 | | 0.0072 | 9.0 | 855 | 0.2446 | 0.8267 | | 0.006 | 10.0 | 950 | 0.2439 | 0.8252 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
ariesutiono/finetuned-test-1
ariesutiono
2022-07-11T14:57:10Z
10
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-07-11T13:24:51Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 model-index: - name: finetuned-test-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-test-1 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 1.8192 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.8219 | 1.0 | 30 | 2.3343 | | 2.4148 | 2.0 | 60 | 2.2010 | | 2.3236 | 3.0 | 90 | 2.1442 | | 2.2231 | 4.0 | 120 | 2.1651 | | 2.2171 | 5.0 | 150 | 2.0614 | | 2.127 | 6.0 | 180 | 2.0405 | | 2.0748 | 7.0 | 210 | 2.0092 | | 2.0511 | 8.0 | 240 | 1.9798 | | 2.0097 | 9.0 | 270 | 1.8662 | | 1.9969 | 10.0 | 300 | 1.9257 | | 2.0006 | 11.0 | 330 | 1.9386 | | 1.9273 | 12.0 | 360 | 1.9357 | | 1.9177 | 13.0 | 390 | 1.8983 | | 1.9128 | 14.0 | 420 | 1.8990 | | 1.8979 | 15.0 | 450 | 1.9037 | | 1.8721 | 16.0 | 480 | 1.8440 | | 1.8998 | 17.0 | 510 | 1.8404 | | 1.8862 | 18.0 | 540 | 1.9193 | | 1.9133 | 19.0 | 570 | 1.8494 | | 1.8799 | 20.0 | 600 | 1.8192 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
jonatasgrosman/exp_w2v2t_es_vp-es_s250
jonatasgrosman
2022-07-11T14:23:27Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "es", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T14:22:53Z
--- language: - es license: apache-2.0 tags: - automatic-speech-recognition - es datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_es_vp-es_s250 Fine-tuned [facebook/wav2vec2-large-es-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-es-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (es)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_es_vp-es_s515
jonatasgrosman
2022-07-11T13:49:39Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "es", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T13:48:54Z
--- language: - es license: apache-2.0 tags: - automatic-speech-recognition - es datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_es_vp-es_s515 Fine-tuned [facebook/wav2vec2-large-es-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-es-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (es)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
Dudul/dudul
Dudul
2022-07-11T13:09:08Z
0
0
null
[ "region:us" ]
null
2022-07-11T01:50:50Z
--- title: Cryptopunks Generator emoji: 🧠➡️🙍‍♀️ colorFrom: red colorTo: indigo sdk: gradio app_file: app.py pinned: false --- Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference
egg22314/LaserTube
egg22314
2022-07-11T13:03:19Z
0
1
null
[ "region:us" ]
null
2022-07-11T13:01:55Z
Watching YouTube videos too boring for you? Wish you could be punished for not clicking on stuff fast enough while you watch a cat play the piano? Well, LaserTube is here to solve that problem, by letting you turn any YouTube video into a genuine simulation of an oldschool laserdisc arcade game! Work in progress.