modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-09-22 00:45:16
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 570
values | tags
listlengths 1
4.05k
| pipeline_tag
stringclasses 55
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-09-22 00:43:28
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
DiederikMartens/tsBERT_sa_cv_10_fold3
|
DiederikMartens
| 2024-05-26T05:20:21Z | 110 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"bert",
"text-classification",
"generated_from_trainer",
"base_model:igorsterner/german-english-code-switching-bert",
"base_model:finetune:igorsterner/german-english-code-switching-bert",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2024-05-26T04:54:00Z |
---
license: mit
base_model: igorsterner/german-english-code-switching-bert
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: tsBERT_sa_cv_10_fold3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# tsBERT_sa_cv_10_fold3
This model is a fine-tuned version of [igorsterner/german-english-code-switching-bert](https://huggingface.co/igorsterner/german-english-code-switching-bert) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5371
- F1: 0.6764
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4.47e-05
- train_batch_size: 16
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| No log | 1.0 | 401 | 0.3888 | 0.5811 |
| 0.4027 | 2.0 | 802 | 0.4308 | 0.6331 |
| 0.2124 | 3.0 | 1203 | 0.5371 | 0.6764 |
### Framework versions
- Transformers 4.41.0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|
DiederikMartens/mBERT_sa_cv_10_fold3
|
DiederikMartens
| 2024-05-26T05:18:59Z | 110 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"bert",
"text-classification",
"generated_from_trainer",
"base_model:google-bert/bert-base-multilingual-cased",
"base_model:finetune:google-bert/bert-base-multilingual-cased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2024-05-26T04:53:11Z |
---
license: apache-2.0
base_model: google-bert/bert-base-multilingual-cased
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: mBERT_sa_cv_10_fold3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mBERT_sa_cv_10_fold3
This model is a fine-tuned version of [google-bert/bert-base-multilingual-cased](https://huggingface.co/google-bert/bert-base-multilingual-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4593
- F1: 0.6496
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4.47e-05
- train_batch_size: 16
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| No log | 1.0 | 401 | 0.4559 | 0.4846 |
| 0.5211 | 2.0 | 802 | 0.4902 | 0.4870 |
| 0.357 | 3.0 | 1203 | 0.4593 | 0.6496 |
### Framework versions
- Transformers 4.41.0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|
katryo/controlnet-facesynthetics-spiga-sdxl-20000
|
katryo
| 2024-05-26T05:15:18Z | 3 | 0 |
diffusers
|
[
"diffusers",
"safetensors",
"stable-diffusion-xl",
"stable-diffusion-xl-diffusers",
"text-to-image",
"controlnet",
"diffusers-training",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:openrail++",
"region:us"
] |
text-to-image
| 2024-05-25T05:07:45Z |
---
license: openrail++
library_name: diffusers
tags:
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
- text-to-image
- diffusers
- controlnet
- diffusers-training
base_model: stabilityai/stable-diffusion-xl-base-1.0
inference: true
---
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# controlnet-katryo/controlnet-facesynthetics-spiga-sdxl-20000
This Controlnet model for SDXL was trained with https://huggingface.co/datasets/multimodalart/facesyntheticsspigacaptioned following the instructions explained at https://huggingface.co/blog/train-your-controlnet
These are controlnet weights trained on stabilityai/stable-diffusion-xl-base-1.0 with new type of conditioning.
You can find some example images below.
prompt: a close-up of a man

prompt: a close-up of a woman

## Intended uses & limitations
#### How to use
```python
# TODO: add an example code snippet for running this diffusion pipeline
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training details
[TODO: describe the data used to train the model]
|
DiederikMartens/gBERT_sa_cv_10_fold3
|
DiederikMartens
| 2024-05-26T05:11:07Z | 110 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"bert",
"text-classification",
"generated_from_trainer",
"base_model:google-bert/bert-base-german-cased",
"base_model:finetune:google-bert/bert-base-german-cased",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2024-05-26T04:46:51Z |
---
license: mit
base_model: google-bert/bert-base-german-cased
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: gBERT_sa_cv_10_fold3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# gBERT_sa_cv_10_fold3
This model is a fine-tuned version of [google-bert/bert-base-german-cased](https://huggingface.co/google-bert/bert-base-german-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4916
- F1: 0.6953
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4.47e-05
- train_batch_size: 16
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| No log | 1.0 | 401 | 0.3289 | 0.5815 |
| 0.4026 | 2.0 | 802 | 0.4236 | 0.6581 |
| 0.1923 | 3.0 | 1203 | 0.4916 | 0.6953 |
### Framework versions
- Transformers 4.41.0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|
DiederikMartens/eBERT_sa_cv_10_fold2
|
DiederikMartens
| 2024-05-26T04:55:03Z | 112 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"bert",
"text-classification",
"generated_from_trainer",
"base_model:google-bert/bert-base-cased",
"base_model:finetune:google-bert/bert-base-cased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2024-05-26T04:28:03Z |
---
license: apache-2.0
base_model: google-bert/bert-base-cased
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: eBERT_sa_cv_10_fold2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# eBERT_sa_cv_10_fold2
This model is a fine-tuned version of [google-bert/bert-base-cased](https://huggingface.co/google-bert/bert-base-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4745
- F1: 0.5267
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4.47e-05
- train_batch_size: 16
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| No log | 1.0 | 401 | 0.4994 | 0.4269 |
| 0.5766 | 2.0 | 802 | 0.4561 | 0.4976 |
| 0.4134 | 3.0 | 1203 | 0.4745 | 0.5267 |
### Framework versions
- Transformers 4.41.0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|
DiederikMartens/tsBERT_sa_cv_10_fold2
|
DiederikMartens
| 2024-05-26T04:53:46Z | 111 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"bert",
"text-classification",
"generated_from_trainer",
"base_model:igorsterner/german-english-code-switching-bert",
"base_model:finetune:igorsterner/german-english-code-switching-bert",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2024-05-26T04:27:43Z |
---
license: mit
base_model: igorsterner/german-english-code-switching-bert
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: tsBERT_sa_cv_10_fold2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# tsBERT_sa_cv_10_fold2
This model is a fine-tuned version of [igorsterner/german-english-code-switching-bert](https://huggingface.co/igorsterner/german-english-code-switching-bert) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4216
- F1: 0.6882
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4.47e-05
- train_batch_size: 16
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| No log | 1.0 | 401 | 0.3363 | 0.6489 |
| 0.4186 | 2.0 | 802 | 0.3382 | 0.6851 |
| 0.2032 | 3.0 | 1203 | 0.4216 | 0.6882 |
### Framework versions
- Transformers 4.41.0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|
datek/gemma-2b-flock-1716698974
|
datek
| 2024-05-26T04:51:59Z | 156 | 0 |
transformers
|
[
"transformers",
"safetensors",
"gemma",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-05-26T04:49:35Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
Ataullha/speaker-segmentation-fine-tuned-callhome-jpn
|
Ataullha
| 2024-05-26T04:51:23Z | 54 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"pyannet",
"speaker-diarization",
"speaker-segmentation",
"generated_from_trainer",
"jpn",
"dataset:diarizers-community/callhome",
"base_model:openai/whisper-small",
"base_model:finetune:openai/whisper-small",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-05-26T04:20:04Z |
---
language:
- jpn
license: apache-2.0
base_model: openai/whisper-small
tags:
- speaker-diarization
- speaker-segmentation
- generated_from_trainer
datasets:
- diarizers-community/callhome
model-index:
- name: speaker-segmentation-fine-tuned-callhome-jpn
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# speaker-segmentation-fine-tuned-callhome-jpn
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the diarizers-community/callhome dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7482
- Der: 0.2201
- False Alarm: 0.0465
- Missed Detection: 0.1319
- Confusion: 0.0417
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Der | False Alarm | Missed Detection | Confusion |
|:-------------:|:-----:|:----:|:---------------:|:------:|:-----------:|:----------------:|:---------:|
| 0.5488 | 1.0 | 328 | 0.7565 | 0.2280 | 0.0461 | 0.1355 | 0.0465 |
| 0.475 | 2.0 | 656 | 0.7596 | 0.2220 | 0.0467 | 0.1334 | 0.0419 |
| 0.4734 | 3.0 | 984 | 0.7531 | 0.2215 | 0.0437 | 0.1364 | 0.0414 |
| 0.4535 | 4.0 | 1312 | 0.7468 | 0.2194 | 0.0462 | 0.1323 | 0.0409 |
| 0.4764 | 5.0 | 1640 | 0.7482 | 0.2201 | 0.0465 | 0.1319 | 0.0417 |
### Framework versions
- Transformers 4.41.0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|
amir1226/ppo-LunarLander-v2-rl
|
amir1226
| 2024-05-26T04:47:41Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2024-05-26T04:47:22Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 261.79 +/- 19.42
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
poojapremnath/SnakeCLEF-resnet
|
poojapremnath
| 2024-05-26T04:45:16Z | 0 | 0 | null |
[
"license:apache-2.0",
"region:us"
] | null | 2024-05-26T04:35:43Z |
---
license: apache-2.0
---
|
mradermacher/Daredevil-8B-GGUF
|
mradermacher
| 2024-05-26T04:37:44Z | 59 | 1 |
transformers
|
[
"transformers",
"gguf",
"merge",
"mergekit",
"lazymergekit",
"en",
"base_model:mlabonne/Daredevil-8B",
"base_model:quantized:mlabonne/Daredevil-8B",
"license:other",
"endpoints_compatible",
"region:us"
] | null | 2024-05-26T03:36:18Z |
---
base_model: mlabonne/Daredevil-8B
language:
- en
library_name: transformers
license: other
quantized_by: mradermacher
tags:
- merge
- mergekit
- lazymergekit
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
static quants of https://huggingface.co/mlabonne/Daredevil-8B
<!-- provided-files -->
weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Daredevil-8B-GGUF/resolve/main/Daredevil-8B.Q2_K.gguf) | Q2_K | 3.3 | |
| [GGUF](https://huggingface.co/mradermacher/Daredevil-8B-GGUF/resolve/main/Daredevil-8B.IQ3_XS.gguf) | IQ3_XS | 3.6 | |
| [GGUF](https://huggingface.co/mradermacher/Daredevil-8B-GGUF/resolve/main/Daredevil-8B.Q3_K_S.gguf) | Q3_K_S | 3.8 | |
| [GGUF](https://huggingface.co/mradermacher/Daredevil-8B-GGUF/resolve/main/Daredevil-8B.IQ3_S.gguf) | IQ3_S | 3.8 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/Daredevil-8B-GGUF/resolve/main/Daredevil-8B.IQ3_M.gguf) | IQ3_M | 3.9 | |
| [GGUF](https://huggingface.co/mradermacher/Daredevil-8B-GGUF/resolve/main/Daredevil-8B.Q3_K_M.gguf) | Q3_K_M | 4.1 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Daredevil-8B-GGUF/resolve/main/Daredevil-8B.Q3_K_L.gguf) | Q3_K_L | 4.4 | |
| [GGUF](https://huggingface.co/mradermacher/Daredevil-8B-GGUF/resolve/main/Daredevil-8B.IQ4_XS.gguf) | IQ4_XS | 4.6 | |
| [GGUF](https://huggingface.co/mradermacher/Daredevil-8B-GGUF/resolve/main/Daredevil-8B.Q4_K_S.gguf) | Q4_K_S | 4.8 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Daredevil-8B-GGUF/resolve/main/Daredevil-8B.Q4_K_M.gguf) | Q4_K_M | 5.0 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Daredevil-8B-GGUF/resolve/main/Daredevil-8B.Q5_K_S.gguf) | Q5_K_S | 5.7 | |
| [GGUF](https://huggingface.co/mradermacher/Daredevil-8B-GGUF/resolve/main/Daredevil-8B.Q5_K_M.gguf) | Q5_K_M | 5.8 | |
| [GGUF](https://huggingface.co/mradermacher/Daredevil-8B-GGUF/resolve/main/Daredevil-8B.Q6_K.gguf) | Q6_K | 6.7 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/Daredevil-8B-GGUF/resolve/main/Daredevil-8B.Q8_0.gguf) | Q8_0 | 8.6 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/Daredevil-8B-GGUF/resolve/main/Daredevil-8B.f16.gguf) | f16 | 16.2 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
kawagoshi-llm-team/llama3_sft_many_chat
|
kawagoshi-llm-team
| 2024-05-26T04:37:06Z | 8 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-05-24T18:10:47Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
DiederikMartens/eBERT_sa_cv_10_fold1
|
DiederikMartens
| 2024-05-26T04:27:49Z | 110 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"bert",
"text-classification",
"generated_from_trainer",
"base_model:google-bert/bert-base-cased",
"base_model:finetune:google-bert/bert-base-cased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2024-05-26T04:00:47Z |
---
license: apache-2.0
base_model: google-bert/bert-base-cased
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: eBERT_sa_cv_10_fold1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# eBERT_sa_cv_10_fold1
This model is a fine-tuned version of [google-bert/bert-base-cased](https://huggingface.co/google-bert/bert-base-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4772
- F1: 0.4637
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4.47e-05
- train_batch_size: 16
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| No log | 1.0 | 401 | 0.6262 | 0.2953 |
| 0.6031 | 2.0 | 802 | 0.5669 | 0.4470 |
| 0.4469 | 3.0 | 1203 | 0.4772 | 0.4637 |
### Framework versions
- Transformers 4.41.0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|
khnhlinh/gpt-on-hugging-face
|
khnhlinh
| 2024-05-26T04:27:35Z | 0 | 0 | null |
[
"license:apache-2.0",
"region:us"
] | null | 2024-05-26T04:27:35Z |
---
license: apache-2.0
---
|
JOY-ZHE/gpt2_PROMPT_TUNING_CAUSAL_LM
|
JOY-ZHE
| 2024-05-26T04:21:35Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-05-25T21:27:48Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
TroyDoesAI/Contextual-Llama3-8B-RAG
|
TroyDoesAI
| 2024-05-26T04:18:18Z | 10 | 1 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"license:cc-by-nd-4.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-05-26T04:10:52Z |
---
license: cc-by-nd-4.0
---
|
Kaballas/Kaballas
|
Kaballas
| 2024-05-26T04:14:19Z | 36 | 0 |
transformers
|
[
"transformers",
"safetensors",
"bert",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-05-26T04:06:29Z |
---
license: apache-2.0
---
|
oliverdk/codegen-350M-mono-measurement_pred
|
oliverdk
| 2024-05-26T04:08:59Z | 110 | 0 |
transformers
|
[
"transformers",
"safetensors",
"codegen_mp",
"text-classification",
"custom_code",
"arxiv:1910.09700",
"autotrain_compatible",
"region:us"
] |
text-classification
| 2024-05-22T12:24:43Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
Mantis-VL/mantis-8b-idefics2-video-eval-20k_2048
|
Mantis-VL
| 2024-05-26T04:08:26Z | 8 | 0 |
transformers
|
[
"transformers",
"safetensors",
"idefics2",
"image-text-to-text",
"generated_from_trainer",
"base_model:HuggingFaceM4/idefics2-8b",
"base_model:finetune:HuggingFaceM4/idefics2-8b",
"license:apache-2.0",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
image-text-to-text
| 2024-05-19T09:43:11Z |
---
license: apache-2.0
base_model: HuggingFaceM4/idefics2-8b
tags:
- generated_from_trainer
model-index:
- name: mantis-8b-idefics2-video-eval-20k_2048
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/dongfu/Mantis/runs/f0l8j9ep)
# mantis-8b-idefics2-video-eval-20k_2048
This model is a fine-tuned version of [HuggingFaceM4/idefics2-8b](https://huggingface.co/HuggingFaceM4/idefics2-8b) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 3.0
### Training results
### Framework versions
- Transformers 4.41.0
- Pytorch 2.3.0+cu121
- Datasets 2.18.0
- Tokenizers 0.19.1
|
QuangDuy/whisper-large-v3-common_voice
|
QuangDuy
| 2024-05-26T04:07:09Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-05-26T04:07:07Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
DiederikMartens/eBERT_sa_cv_10_fold0
|
DiederikMartens
| 2024-05-26T04:00:33Z | 110 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"bert",
"text-classification",
"generated_from_trainer",
"base_model:google-bert/bert-base-cased",
"base_model:finetune:google-bert/bert-base-cased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2024-05-26T03:33:39Z |
---
license: apache-2.0
base_model: google-bert/bert-base-cased
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: eBERT_sa_cv_10_fold0
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# eBERT_sa_cv_10_fold0
This model is a fine-tuned version of [google-bert/bert-base-cased](https://huggingface.co/google-bert/bert-base-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4895
- F1: 0.5283
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4.47e-05
- train_batch_size: 16
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| No log | 1.0 | 401 | 0.5921 | 0.3884 |
| 0.5934 | 2.0 | 802 | 0.4642 | 0.4908 |
| 0.4248 | 3.0 | 1203 | 0.4895 | 0.5283 |
### Framework versions
- Transformers 4.41.0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|
DiederikMartens/gBERT_sa_cv_10_fold0
|
DiederikMartens
| 2024-05-26T03:58:53Z | 115 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"bert",
"text-classification",
"generated_from_trainer",
"base_model:google-bert/bert-base-german-cased",
"base_model:finetune:google-bert/bert-base-german-cased",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2024-05-26T03:33:37Z |
---
license: mit
base_model: google-bert/bert-base-german-cased
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: gBERT_sa_cv_10_fold0
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# gBERT_sa_cv_10_fold0
This model is a fine-tuned version of [google-bert/bert-base-german-cased](https://huggingface.co/google-bert/bert-base-german-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5642
- F1: 0.6960
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4.47e-05
- train_batch_size: 16
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| No log | 1.0 | 401 | 0.3979 | 0.5802 |
| 0.4157 | 2.0 | 802 | 0.3928 | 0.6690 |
| 0.1913 | 3.0 | 1203 | 0.5642 | 0.6960 |
### Framework versions
- Transformers 4.41.0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|
rupesh2009/tiny-chatbot-dpo
|
rupesh2009
| 2024-05-26T03:54:47Z | 6 | 0 |
peft
|
[
"peft",
"tensorboard",
"safetensors",
"trl",
"dpo",
"generated_from_trainer",
"base_model:TinyLlama/TinyLlama-1.1B-Chat-v1.0",
"base_model:adapter:TinyLlama/TinyLlama-1.1B-Chat-v1.0",
"license:apache-2.0",
"region:us"
] | null | 2024-05-26T03:52:41Z |
---
license: apache-2.0
library_name: peft
tags:
- trl
- dpo
- generated_from_trainer
base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
model-index:
- name: tiny-chatbot-dpo
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# tiny-chatbot-dpo
This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-Chat-v1.0](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- training_steps: 250
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- PEFT 0.11.1
- Transformers 4.41.0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|
chrohi/llama3_lora_model
|
chrohi
| 2024-05-26T03:45:15Z | 78 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"4-bit",
"bitsandbytes",
"region:us"
] |
text-generation
| 2024-05-26T03:12:51Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
Sorour/cls_fomc_mistral_v1
|
Sorour
| 2024-05-26T03:41:27Z | 0 | 0 |
peft
|
[
"peft",
"tensorboard",
"safetensors",
"trl",
"sft",
"generated_from_trainer",
"dataset:generator",
"base_model:mistralai/Mistral-7B-Instruct-v0.2",
"base_model:adapter:mistralai/Mistral-7B-Instruct-v0.2",
"license:apache-2.0",
"region:us"
] | null | 2024-05-19T03:20:11Z |
---
license: apache-2.0
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
base_model: mistralai/Mistral-7B-Instruct-v0.2
datasets:
- generator
model-index:
- name: cls_fomc_mistral_v1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# cls_fomc_mistral_v1
This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on the generator dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6185
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 2
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.5623 | 1.2903 | 20 | 0.6185 |
### Framework versions
- PEFT 0.11.1
- Transformers 4.41.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|
William2357/outputthing
|
William2357
| 2024-05-26T03:38:25Z | 29 | 1 |
diffusers
|
[
"diffusers",
"tensorboard",
"safetensors",
"text-to-image",
"dreambooth",
"diffusers-training",
"stable-diffusion",
"stable-diffusion-diffusers",
"base_model:runwayml/stable-diffusion-v1-5",
"base_model:finetune:runwayml/stable-diffusion-v1-5",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2024-05-20T21:34:51Z |
---
license: creativeml-openrail-m
library_name: diffusers
tags:
- text-to-image
- dreambooth
- diffusers-training
- stable-diffusion
- stable-diffusion-diffusers
base_model: runwayml/stable-diffusion-v1-5
inference: true
instance_prompt: a photo of sks dog
---
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# DreamBooth - William2357/outputthing
This is a dreambooth model derived from runwayml/stable-diffusion-v1-5. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/).
You can find some example images in the following.
DreamBooth for the text encoder was enabled: False.
## Intended uses & limitations
#### How to use
```python
# TODO: add an example code snippet for running this diffusion pipeline
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training details
[TODO: describe the data used to train the model]
|
suthanhcong/movie_summarize_model
|
suthanhcong
| 2024-05-26T03:31:44Z | 109 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"t5",
"text2text-generation",
"generated_from_trainer",
"base_model:google-t5/t5-small",
"base_model:finetune:google-t5/t5-small",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2024-05-26T03:31:28Z |
---
license: apache-2.0
base_model: t5-small
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: movie_summarize_model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# movie_summarize_model
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.3072
- Rouge1: 0.1621
- Rouge2: 0.0398
- Rougel: 0.1305
- Rougelsum: 0.1304
- Gen Len: 18.9634
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| 3.5827 | 1.0 | 573 | 3.3072 | 0.1621 | 0.0398 | 0.1305 | 0.1304 | 18.9634 |
### Framework versions
- Transformers 4.41.0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|
JinbiaoZhu/gemma-2b-it-QLoRA-RobotPlanning-v2
|
JinbiaoZhu
| 2024-05-26T03:29:18Z | 10 | 0 |
transformers
|
[
"transformers",
"safetensors",
"gemma",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-05-25T06:05:09Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
Rhma/MistralDialo40
|
Rhma
| 2024-05-26T03:19:34Z | 6 | 0 |
transformers
|
[
"transformers",
"safetensors",
"mistral",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-05-26T03:15:53Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
Raneechu/textbookbig10_ft6
|
Raneechu
| 2024-05-26T03:17:09Z | 0 | 0 |
peft
|
[
"peft",
"tensorboard",
"safetensors",
"trl",
"sft",
"generated_from_trainer",
"base_model:meta-llama/Llama-2-7b-hf",
"base_model:adapter:meta-llama/Llama-2-7b-hf",
"license:llama2",
"region:us"
] | null | 2024-05-26T03:16:58Z |
---
license: llama2
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
base_model: meta-llama/Llama-2-7b-hf
model-index:
- name: textbookbig10_ft6
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# textbookbig10_ft6
This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 1
### Training results
### Framework versions
- Transformers 4.40.1
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.19.1
## Training procedure
### Framework versions
- PEFT 0.6.2
|
mradermacher/Llama-3-70b-Arimas-story-RP-V1-GGUF
|
mradermacher
| 2024-05-26T03:05:54Z | 16 | 0 |
transformers
|
[
"transformers",
"gguf",
"mergekit",
"merge",
"llama-3",
"70b",
"smaug",
"lumimaid",
"tess",
"arimas",
"breadcrums",
"en",
"base_model:ryzen88/Llama-3-70b-Arimas-story-RP-V1",
"base_model:quantized:ryzen88/Llama-3-70b-Arimas-story-RP-V1",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2024-05-25T13:40:03Z |
---
base_model: ryzen88/Llama-3-70b-Arimas-story-RP-V1
language:
- en
library_name: transformers
quantized_by: mradermacher
tags:
- mergekit
- merge
- llama-3
- 70b
- smaug
- lumimaid
- tess
- arimas
- breadcrums
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hfhfix -->
<!-- ### vocab_type: -->
static quants of https://huggingface.co/ryzen88/Llama-3-70b-Arimas-story-RP-V1
<!-- provided-files -->
weighted/imatrix quants are available at https://huggingface.co/mradermacher/Llama-3-70b-Arimas-story-RP-V1-i1-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Llama-3-70b-Arimas-story-RP-V1-GGUF/resolve/main/Llama-3-70b-Arimas-story-RP-V1.Q2_K.gguf) | Q2_K | 26.5 | |
| [GGUF](https://huggingface.co/mradermacher/Llama-3-70b-Arimas-story-RP-V1-GGUF/resolve/main/Llama-3-70b-Arimas-story-RP-V1.IQ3_XS.gguf) | IQ3_XS | 29.4 | |
| [GGUF](https://huggingface.co/mradermacher/Llama-3-70b-Arimas-story-RP-V1-GGUF/resolve/main/Llama-3-70b-Arimas-story-RP-V1.IQ3_S.gguf) | IQ3_S | 31.0 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/Llama-3-70b-Arimas-story-RP-V1-GGUF/resolve/main/Llama-3-70b-Arimas-story-RP-V1.Q3_K_S.gguf) | Q3_K_S | 31.0 | |
| [GGUF](https://huggingface.co/mradermacher/Llama-3-70b-Arimas-story-RP-V1-GGUF/resolve/main/Llama-3-70b-Arimas-story-RP-V1.IQ3_M.gguf) | IQ3_M | 32.0 | |
| [GGUF](https://huggingface.co/mradermacher/Llama-3-70b-Arimas-story-RP-V1-GGUF/resolve/main/Llama-3-70b-Arimas-story-RP-V1.Q3_K_M.gguf) | Q3_K_M | 34.4 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Llama-3-70b-Arimas-story-RP-V1-GGUF/resolve/main/Llama-3-70b-Arimas-story-RP-V1.Q3_K_L.gguf) | Q3_K_L | 37.2 | |
| [GGUF](https://huggingface.co/mradermacher/Llama-3-70b-Arimas-story-RP-V1-GGUF/resolve/main/Llama-3-70b-Arimas-story-RP-V1.IQ4_XS.gguf) | IQ4_XS | 38.4 | |
| [GGUF](https://huggingface.co/mradermacher/Llama-3-70b-Arimas-story-RP-V1-GGUF/resolve/main/Llama-3-70b-Arimas-story-RP-V1.Q4_K_S.gguf) | Q4_K_S | 40.4 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Llama-3-70b-Arimas-story-RP-V1-GGUF/resolve/main/Llama-3-70b-Arimas-story-RP-V1.Q4_K_M.gguf) | Q4_K_M | 42.6 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Llama-3-70b-Arimas-story-RP-V1-GGUF/resolve/main/Llama-3-70b-Arimas-story-RP-V1.Q5_K_S.gguf) | Q5_K_S | 48.8 | |
| [GGUF](https://huggingface.co/mradermacher/Llama-3-70b-Arimas-story-RP-V1-GGUF/resolve/main/Llama-3-70b-Arimas-story-RP-V1.Q5_K_M.gguf) | Q5_K_M | 50.0 | |
| [PART 1](https://huggingface.co/mradermacher/Llama-3-70b-Arimas-story-RP-V1-GGUF/resolve/main/Llama-3-70b-Arimas-story-RP-V1.Q6_K.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Llama-3-70b-Arimas-story-RP-V1-GGUF/resolve/main/Llama-3-70b-Arimas-story-RP-V1.Q6_K.gguf.part2of2) | Q6_K | 58.0 | very good quality |
| [PART 1](https://huggingface.co/mradermacher/Llama-3-70b-Arimas-story-RP-V1-GGUF/resolve/main/Llama-3-70b-Arimas-story-RP-V1.Q8_0.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Llama-3-70b-Arimas-story-RP-V1-GGUF/resolve/main/Llama-3-70b-Arimas-story-RP-V1.Q8_0.gguf.part2of2) | Q8_0 | 75.1 | fast, best quality |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
fine-tuned/NFCorpus-256-24-gpt-4o-2024-05-13-988957
|
fine-tuned
| 2024-05-26T03:05:30Z | 6 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"safetensors",
"bert",
"feature-extraction",
"sentence-similarity",
"mteb",
"en",
"dataset:fine-tuned/NFCorpus-256-24-gpt-4o-2024-05-13-988957",
"dataset:allenai/c4",
"license:apache-2.0",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2024-05-26T03:04:59Z |
---
license: apache-2.0
datasets:
- fine-tuned/NFCorpus-256-24-gpt-4o-2024-05-13-988957
- allenai/c4
language:
- en
pipeline_tag: feature-extraction
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- mteb
---
This model is a fine-tuned version of [**BAAI/bge-large-en-v1.5**](https://huggingface.co/BAAI/bge-large-en-v1.5) designed for the following use case:
custom
## How to Use
This model can be easily integrated into your NLP pipeline for tasks such as text classification, sentiment analysis, entity recognition, and more. Here's a simple example to get you started:
```python
from sentence_transformers import SentenceTransformer
from sentence_transformers.util import cos_sim
model = SentenceTransformer(
'fine-tuned/NFCorpus-256-24-gpt-4o-2024-05-13-988957',
trust_remote_code=True
)
embeddings = model.encode([
'first text to embed',
'second text to embed'
])
print(cos_sim(embeddings[0], embeddings[1]))
```
|
Toshifumi/Llama3-Toshi-Ja-LD9-classifier_20240526v1
|
Toshifumi
| 2024-05-26T03:05:30Z | 6 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"text-generation-inference",
"unsloth",
"trl",
"sft",
"en",
"base_model:unsloth/llama-3-8b-bnb-4bit",
"base_model:finetune:unsloth/llama-3-8b-bnb-4bit",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-05-26T02:57:52Z |
---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
- sft
base_model: unsloth/llama-3-8b-bnb-4bit
---
# Uploaded model
- **Developed by:** Toshifumi
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
QuantFactory/pair-preference-model-LLaMA3-8B-GGUF
|
QuantFactory
| 2024-05-26T03:05:22Z | 39 | 1 |
transformers
|
[
"transformers",
"gguf",
"llama",
"conversational",
"text-generation",
"arxiv:2405.07863",
"base_model:RLHFlow/pair-preference-model-LLaMA3-8B",
"base_model:quantized:RLHFlow/pair-preference-model-LLaMA3-8B",
"license:llama3",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-05-24T15:24:15Z |
---
license: llama3
base_model: RLHFlow/pair-preference-model-LLaMA3-8B
library_name: transformers
pipeline_tag: text-generation
tags:
- llama
- conversational
---
# pair-preference-model-LLaMA3-8B-GGUF
This is quantized version of [RLHFlow/pair-preference-model-LLaMA3-8B](https://huggingface.co/RLHFlow/pair-preference-model-LLaMA3-8B) created using llama.cpp
# Model Description
This preference model is trained from [LLaMA3-8B-it](meta-llama/Meta-Llama-3-8B-Instruct) with the training script at [Reward Modeling](https://github.com/RLHFlow/RLHF-Reward-Modeling/tree/pm_dev/pair-pm).
The dataset is RLHFlow/pair_preference_model_dataset. It achieves Chat-98.6, Char-hard 65.8, Safety 89.6, and reasoning 94.9 in reward bench.
See our paper [RLHF Workflow: From Reward Modeling to Online RLHF](https://arxiv.org/abs/2405.07863) for more details of this model.
## Service the RM
Here is an example to use the Preference Model to rank a pair. For n>2 responses, it is recommened to use the tournament style ranking strategy to get the best response so that the complexity is linear in n.
```python
device = 0
model = AutoModelForCausalLM.from_pretrained(script_args.preference_name_or_path,
torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2").cuda()
tokenizer = AutoTokenizer.from_pretrained(script_args.preference_name_or_path, use_fast=True)
tokenizer_plain = AutoTokenizer.from_pretrained(script_args.preference_name_or_path, use_fast=True)
tokenizer_plain.chat_template = "\n{% for message in messages %}{% if loop.index0 % 2 == 0 %}\n\n<turn> user\n {{ message['content'] }}{% else %}\n\n<turn> assistant\n {{ message['content'] }}{% endif %}{% endfor %}\n\n\n"
prompt_template = "[CONTEXT] {context} [RESPONSE A] {response_A} [RESPONSE B] {response_B} \n"
token_id_A = tokenizer.encode("A", add_special_tokens=False)
token_id_B = tokenizer.encode("B", add_special_tokens=False)
assert len(token_id_A) == 1 and len(token_id_B) == 1
token_id_A = token_id_A[0]
token_id_B = token_id_B[0]
temperature = 1.0
model.eval()
response_chosen = "BBBB"
response_rejected = "CCCC"
## We can also handle multi-turn conversation.
instruction = [{"role": "user", "content": ...},
{"role": "assistant", "content": ...},
{"role": "user", "content": ...},
]
context = tokenizer_plain.apply_chat_template(instruction, tokenize=False)
responses = [response_chosen, response_rejected]
probs_chosen = []
for chosen_position in [0, 1]:
# we swap order to mitigate position bias
response_A = responses[chosen_position]
response_B = responses[1 - chosen_position]
prompt = prompt_template.format(context=context, response_A=response_A, response_B=response_B)
message = [
{"role": "user", "content": prompt},
]
input_ids = tokenizer.encode(tokenizer.apply_chat_template(message, tokenize=False).replace(tokenizer.bos_token, ""), return_tensors='pt', add_special_tokens=False).cuda()
with torch.no_grad():
output = model(input_ids)
logit_A = output.logits[0, -1, token_id_A].item()
logit_B = output.logits[0, -1, token_id_B].item()
# take softmax to get the probability; using numpy
Z = np.exp(logit_A / temperature) + np.exp(logit_B / temperature)
logit_chosen = [logit_A, logit_B][chosen_position]
prob_chosen = np.exp(logit_chosen / temperature) / Z
probs_chosen.append(prob_chosen)
avg_prob_chosen = np.mean(probs_chosen)
correct = 0.5 if avg_prob_chosen == 0.5 else float(avg_prob_chosen > 0.5)
print(correct)
```
|
LarryAIDraw/AissistXLv2
|
LarryAIDraw
| 2024-05-26T03:04:41Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2024-05-26T02:59:35Z |
---
license: creativeml-openrail-m
---
https://civitai.com/models/317759/aissist-xl-negative-embedding?modelVersionId=403492
|
LarryAIDraw/SimplePositiveXLv2
|
LarryAIDraw
| 2024-05-26T03:03:45Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2024-05-26T02:57:05Z |
---
license: creativeml-openrail-m
---
https://civitai.com/models/118758/simplepositivexl?modelVersionId=182974
|
QuantFactory/LLaMA3-iterative-DPO-final-GGUF
|
QuantFactory
| 2024-05-26T03:03:20Z | 132 | 1 |
transformers
|
[
"transformers",
"gguf",
"llama",
"conversational",
"text-generation",
"base_model:RLHFlow/LLaMA3-iterative-DPO-final",
"base_model:quantized:RLHFlow/LLaMA3-iterative-DPO-final",
"license:llama3",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-05-25T02:59:43Z |
---
license: llama3
library_name: transformers
pipeline_tag: text-generation
tags:
- llama
- conversational
base_model: RLHFlow/LLaMA3-iterative-DPO-final
---
# LLaMA3-iterative-DPO-final-GGUF
This is quantized version of [RLHFlow/LLaMA3-iterative-DPO-final](https://huggingface.co/RLHFlow/LLaMA3-iterative-DPO-final) created using llama.cpp
# Model Description
We release an unofficial checkpoint of a state-of-the-art instruct model of its class, **LLaMA3-iterative-DPO-final**.
On all three widely-used instruct model benchmarks: **Alpaca-Eval-V2**, **MT-Bench**, **Chat-Arena-Hard**, our model outperforms all models of similar size (e.g., LLaMA-3-8B-it), most large open-sourced models (e.g., Mixtral-8x7B-it),
and strong proprietary models (e.g., GPT-3.5-turbo-0613). The model is trained with open-sourced datasets without any additional human-/GPT4-labeling.
Even better, we provide a [detailed recipe](https://github.com/RLHFlow/Online-RLHF) to reproduce the model. Enjoy!
## Model Releases
See the [collection](https://huggingface.co/collections/RLHFlow/online-rlhf-663ae95fade1a39663dab218) of the training set, reward/preference model, SFT model.
- [SFT model](https://huggingface.co/RLHFlow/LLaMA3-SFT)
- [Reward model](https://huggingface.co/sfairXC/FsfairX-LLaMA3-RM-v0.1)
## Dataset
- [Preference data mix](https://huggingface.co/datasets/hendrydong/preference_700K)
- [Prompt collection for RLHF training](https://huggingface.co/datasets/RLHFlow/prompt-collection-v0.1)
## Training methods
We have developed a simple and efficient online RLHF recipe for LLM instruct training. Our recipe is DPO-based and thus much cheaper and simpler to train and tune compared to PPO-based approaches.
Unlike widely-used offline DPO, the online component of our approach effectively mitigates distribution shifts during policy optimization.
For a detailed exposition, please refer to our accompanying technical report.
## Chat Benchmarks
| **Model** | **Size** | **Method** | **LC Alpaca-Eval-V2** | **MT-Bench** | **Chat-Arena-Hard** |
|-------------------------|----------|-------------------|-----------------------|--------------|---------------------|
| **Small Open-Sourced Models** | | | | | |
| Gemma-7B-it | 7B | SFT | 10.4 | 6.38 | 7.5 |
| Zephyr-7B-beta | 7B | Vanilla DPO | 13.1 | 7.34 | - |
| Mistral-7B-v0.2-it | 7B | SFT | 17.1 | 7.51 | 12.6 |
| Open-Chat-0106 | 7B | SFT | 15.6 | 7.8 | - |
| Starling-7B-beta | 7B | PPO | 25.8 | 8.12 | 23.0 |
| LLaMA-3-8B-it | 8B | RS+DPO+PPO | 22.9 | 8.16 | 20.6 |
| **Ours** | | | | | |
| Ours (SFT baseline) | 8B | SFT | 10.2 | 7.69 | 5.6 |
| Ours (DPO baseline) | 8B | Vanilla DPO | 22.5 | 8.17 | 22.4 |
| Ours (Online RLHF) | 8B | Iterative DPO | **37.2** | **8.46** | **29.1** |
| **Large Open-Sourced Models** | | | | | |
| Vicuna-33b-v1.3 | 33B | SFT | 17.6 | 7.12 | 8.6 |
| Yi-34B-Chat | 34B | SFT | 27.2 | - | 23.1 |
| Mixtral-8x7B-it | 45B* | SFT | 23.7 | 8.30 | 23.4 |
| Tulu-2-DPO-70B | 70B | Vanilla DPO | 21.2 | 7.89 | 15.0 |
| LLaMA-3-70B-it | 70B | RS+DPO+PPO | 34.4 | 8.95 | 41.1 |
| Mixtral-8x22B-it | 141B* | SFT | 30.9 | 8.66 | 36.4 |
| **Proprietary Models** | | | | | |
| GPT-3.5-turbo-1106 | - | - | 19.3 | 8.35 | 18.9 |
| GPT-3.5-turbo-0613 | - | - | 22.7 | 8.39 | 24.8 |
| GPT-4-0613 | - | - | 30.2 | 9.18 | 37.9 |
| Claude-3-Opus | - | - | 40.5 | 9.00 | 60.4 |
| GPT-4 Turbo (04/09) | - | - | 55.0 | - | 82.6 |
## Academic Benchmarks
| **Model** | **Size** | **Method** | **GSM-8K** | **MMLU** | **HumanEval** | **TruthfulQA** | **ARC** | **MBPP** |
|----------------------------|----------|-----------------|------------|----------|---------------|----------------|---------|----------|
| LLaMA-3-8B-it | 8B | RS+DPO+PPO | 79.6 | 66.0 | 61.6 | 43.9 | 59.5 | 61.1 |
| Ours (SFT baseline) | 8B | SFT | 74.2 | 64.7 | 65.2 | 53.4 | 61.4 | 62.3 |
| Ours (DPO baseline) | 8B | Vanilla DPO | 79.8 | 64.5 | 63.4 | 61.8 | 65.2 | 60.3 |
| Ours (Iterative RLHF) | 8B | Iterative DPO | 80.7 | 65.3 | 64.6 | 60.4 | 64.3 | 60.8 |
## Usage
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda"
model = AutoModelForCausalLM.from_pretrained("RLHFlow/LLaMA3-iterative-DPO-final")
tokenizer = AutoTokenizer.from_pretrained("RLHFlow/LLaMA3-iterative-DPO-final")
messages = [
{"role": "user", "content": "I'm trying to teach myself to have nicer handwriting. Can you help?"},
]
model_inputs = tokenizer.apply_chat_template(messages, return_tensors="pt")
model_inputs = model_inputs.to(device)
model.to(device)
output_tokens = model.generate(model_inputs, max_new_tokens=1024, do_sample=True)
model_outputs = tokenizer.batch_decode(output_tokens)
print(model_outputs[0])
```
## Limitations
RLHFlow/LLaMA3-iterative-DPO-final is an unofficial checkpoint developed to illustrate the power of online iterative RLHF and is for research purpose. While safety and ethical considerations are integral to our alignment process,
there remains the possibility that the model could generate offensive or unethical content, particularly under adversarial conditions.
We are committed to continuous improvement in our models to minimize such risks and encourage responsible usage.
|
jack8885/Qwen-Qwen1.5-0.5B-hutao-01
|
jack8885
| 2024-05-26T03:02:27Z | 162 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-05-26T03:01:49Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
fine-tuned/FiQA2018-256-24-gpt-4o-2024-05-13-919917
|
fine-tuned
| 2024-05-26T03:02:12Z | 6 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"safetensors",
"bert",
"feature-extraction",
"sentence-similarity",
"mteb",
"en",
"dataset:fine-tuned/FiQA2018-256-24-gpt-4o-2024-05-13-919917",
"dataset:allenai/c4",
"license:apache-2.0",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2024-05-26T03:01:39Z |
---
license: apache-2.0
datasets:
- fine-tuned/FiQA2018-256-24-gpt-4o-2024-05-13-919917
- allenai/c4
language:
- en
pipeline_tag: feature-extraction
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- mteb
---
This model is a fine-tuned version of [**BAAI/bge-large-en-v1.5**](https://huggingface.co/BAAI/bge-large-en-v1.5) designed for the following use case:
custom
## How to Use
This model can be easily integrated into your NLP pipeline for tasks such as text classification, sentiment analysis, entity recognition, and more. Here's a simple example to get you started:
```python
from sentence_transformers import SentenceTransformer
from sentence_transformers.util import cos_sim
model = SentenceTransformer(
'fine-tuned/FiQA2018-256-24-gpt-4o-2024-05-13-919917',
trust_remote_code=True
)
embeddings = model.encode([
'first text to embed',
'second text to embed'
])
print(cos_sim(embeddings[0], embeddings[1]))
```
|
leungchunghong/Phi-3-mini-4k-instruct-Q4_K_M-GGUF
|
leungchunghong
| 2024-05-26T03:02:10Z | 2 | 0 | null |
[
"gguf",
"nlp",
"code",
"llama-cpp",
"gguf-my-repo",
"text-generation",
"en",
"license:mit",
"endpoints_compatible",
"region:us",
"conversational"
] |
text-generation
| 2024-05-26T03:02:03Z |
---
language:
- en
license: mit
tags:
- nlp
- code
- llama-cpp
- gguf-my-repo
license_link: https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/resolve/main/LICENSE
pipeline_tag: text-generation
inference:
parameters:
temperature: 0.0
widget:
- messages:
- role: user
content: Can you provide ways to eat combinations of bananas and dragonfruits?
---
# leungchunghong/Phi-3-mini-4k-instruct-Q4_K_M-GGUF
This model was converted to GGUF format from [`microsoft/Phi-3-mini-4k-instruct`](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew.
```bash
brew install ggerganov/ggerganov/llama.cpp
```
Invoke the llama.cpp server or the CLI.
CLI:
```bash
llama-cli --hf-repo leungchunghong/Phi-3-mini-4k-instruct-Q4_K_M-GGUF --model phi-3-mini-4k-instruct-q4_k_m.gguf -p "The meaning to life and the universe is"
```
Server:
```bash
llama-server --hf-repo leungchunghong/Phi-3-mini-4k-instruct-Q4_K_M-GGUF --model phi-3-mini-4k-instruct-q4_k_m.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
```
git clone https://github.com/ggerganov/llama.cpp && \
cd llama.cpp && \
make && \
./main -m phi-3-mini-4k-instruct-q4_k_m.gguf -n 128
```
|
Raneechu/textbookbig10_ft5
|
Raneechu
| 2024-05-26T03:02:06Z | 4 | 0 |
peft
|
[
"peft",
"tensorboard",
"safetensors",
"trl",
"sft",
"generated_from_trainer",
"base_model:meta-llama/Llama-2-7b-hf",
"base_model:adapter:meta-llama/Llama-2-7b-hf",
"license:llama2",
"region:us"
] | null | 2024-05-26T03:02:03Z |
---
license: llama2
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
base_model: meta-llama/Llama-2-7b-hf
model-index:
- name: textbookbig10_ft5
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# textbookbig10_ft5
This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 1
### Training results
### Framework versions
- Transformers 4.40.1
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.19.1
## Training procedure
### Framework versions
- PEFT 0.6.2
|
fine-tuned/SciFact-256-24-gpt-4o-2024-05-13-484582
|
fine-tuned
| 2024-05-26T03:01:54Z | 6 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"safetensors",
"bert",
"feature-extraction",
"sentence-similarity",
"mteb",
"en",
"dataset:fine-tuned/SciFact-256-24-gpt-4o-2024-05-13-484582",
"dataset:allenai/c4",
"license:apache-2.0",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2024-05-26T03:01:22Z |
---
license: apache-2.0
datasets:
- fine-tuned/SciFact-256-24-gpt-4o-2024-05-13-484582
- allenai/c4
language:
- en
pipeline_tag: feature-extraction
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- mteb
---
This model is a fine-tuned version of [**BAAI/bge-large-en-v1.5**](https://huggingface.co/BAAI/bge-large-en-v1.5) designed for the following use case:
custom
## How to Use
This model can be easily integrated into your NLP pipeline for tasks such as text classification, sentiment analysis, entity recognition, and more. Here's a simple example to get you started:
```python
from sentence_transformers import SentenceTransformer
from sentence_transformers.util import cos_sim
model = SentenceTransformer(
'fine-tuned/SciFact-256-24-gpt-4o-2024-05-13-484582',
trust_remote_code=True
)
embeddings = model.encode([
'first text to embed',
'second text to embed'
])
print(cos_sim(embeddings[0], embeddings[1]))
```
|
CluelessNovice/demo_model
|
CluelessNovice
| 2024-05-26T02:56:51Z | 1 | 0 |
peft
|
[
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:westlake-repl/SaProt_35M_AF2",
"base_model:adapter:westlake-repl/SaProt_35M_AF2",
"region:us"
] | null | 2024-05-07T07:50:31Z |
---
library_name: peft
base_model: westlake-repl/SaProt_35M_AF2
---
# Model Card for Model ID
This model is used for a demo task<br><br> The digital label means: <br>0: Positive <br> 1: Negative <br>
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.11.1
|
underscore2/llama3-8b-mlsubs
|
underscore2
| 2024-05-26T02:49:24Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"llama",
"trl",
"text-generation",
"en",
"base_model:unsloth/llama-3-8b-bnb-4bit",
"base_model:finetune:unsloth/llama-3-8b-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-05-24T03:57:19Z |
---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
base_model: unsloth/llama-3-8b-bnb-4bit
pipeline_tag: text-generation
---
# Uploaded model
- **Developed by:** underscore2
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
# Usage
```
from unsloth import FastLanguageModel
model, tokenizer = FastLanguageModel.from_pretrained(
model_name = "underscore2/llama3-8b-mlsubs",
max_seq_length = max_seq_length,
dtype = dtype,
load_in_4bit = load_in_4bit,
)
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
inputs = tokenizer("[POST START]: New Architecture that replaces the MLP by using literal magic", return_tensors = "pt").to("cuda")
from transformers import TextStreamer
text_streamer = TextStreamer(tokenizer)
_ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 1000, repetition_penalty=1.4)
```
|
Raneechu/textbookbig10_ft4
|
Raneechu
| 2024-05-26T02:47:07Z | 0 | 0 |
peft
|
[
"peft",
"tensorboard",
"safetensors",
"trl",
"sft",
"generated_from_trainer",
"base_model:meta-llama/Llama-2-7b-hf",
"base_model:adapter:meta-llama/Llama-2-7b-hf",
"license:llama2",
"region:us"
] | null | 2024-05-26T02:47:03Z |
---
license: llama2
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
base_model: meta-llama/Llama-2-7b-hf
model-index:
- name: textbookbig10_ft4
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# textbookbig10_ft4
This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 1
### Training results
### Framework versions
- Transformers 4.40.1
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.19.1
## Training procedure
### Framework versions
- PEFT 0.6.2
|
FrankL/storytellerLM-v0.1
|
FrankL
| 2024-05-26T02:46:30Z | 172 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-05-25T07:41:16Z |
---
library_name: transformers
tags: []
---
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** FrankL
- **Language(s) (NLP):** English
### Direct Use
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained('FrankL/storytellerLM-v0.1', trust_remote_code=True, torch_dtype=torch.float16)
model = model.to(device='cuda')
tokenizer = AutoTokenizer.from_pretrained('FrankL/storytellerLM-v0.1', trust_remote_code=True)
def inference(
model: AutoModelForCausalLM,
tokenizer: AutoTokenizer,
input_text: str = "Once upon a time, ",
max_new_tokens: int = 16
):
inputs = tokenizer(input_text, return_tensors="pt").to(device)
outputs = model.generate(
**inputs,
pad_token_id=tokenizer.eos_token_id,
max_new_tokens=max_new_tokens,
do_sample=True,
top_k=40,
top_p=0.95,
temperature=0.8
)
generated_text = tokenizer.decode(
outputs[0],
skip_special_tokens=True
)
# print(outputs)
print(generated_text)
inference(model, tokenizer)
```
|
sehilnlf/model_v2
|
sehilnlf
| 2024-05-26T02:45:46Z | 5 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"bart",
"text2text-generation",
"generated_from_trainer",
"base_model:facebook/bart-large",
"base_model:finetune:facebook/bart-large",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2024-05-25T19:34:51Z |
---
license: apache-2.0
base_model: facebook/bart-large
tags:
- text2text-generation
- generated_from_trainer
metrics:
- sacrebleu
model-index:
- name: model_v2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# model_v2
This model is a fine-tuned version of [facebook/bart-large](https://huggingface.co/facebook/bart-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2418
- Sacrebleu: 66.7409
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Sacrebleu |
|:-------------:|:-----:|:----:|:---------------:|:---------:|
| No log | 1.0 | 218 | 0.6656 | 66.6707 |
| No log | 2.0 | 437 | 0.5851 | 66.5767 |
| No log | 3.0 | 656 | 0.6062 | 66.4734 |
| No log | 4.0 | 875 | 0.7029 | 66.5944 |
| No log | 5.0 | 1093 | 0.6852 | 66.0086 |
| No log | 6.0 | 1312 | 0.7471 | 66.0534 |
| No log | 7.0 | 1531 | 0.8938 | 66.1986 |
| No log | 8.0 | 1750 | 0.8834 | 66.4626 |
| No log | 9.0 | 1968 | 0.8895 | 66.4292 |
| No log | 10.0 | 2187 | 0.8824 | 66.0577 |
| No log | 11.0 | 2406 | 0.8781 | 66.5076 |
| No log | 12.0 | 2625 | 0.9870 | 66.5564 |
| No log | 13.0 | 2843 | 1.1580 | 66.5116 |
| No log | 14.0 | 3062 | 0.9797 | 66.3801 |
| No log | 15.0 | 3281 | 1.0680 | 66.2748 |
| No log | 16.0 | 3500 | 1.0113 | 66.5282 |
| No log | 17.0 | 3718 | 1.0023 | 66.5794 |
| No log | 18.0 | 3937 | 1.0753 | 66.2935 |
| No log | 19.0 | 4156 | 1.0462 | 66.5036 |
| No log | 20.0 | 4375 | 1.0934 | 66.7931 |
| No log | 21.0 | 4593 | 1.1732 | 66.5171 |
| No log | 22.0 | 4812 | 1.1892 | 66.4821 |
| No log | 23.0 | 5031 | 1.2766 | 66.5913 |
| No log | 24.0 | 5250 | 1.2392 | 66.5476 |
| No log | 25.0 | 5468 | 1.3452 | 66.5616 |
| No log | 26.0 | 5687 | 1.1427 | 66.7916 |
| No log | 27.0 | 5906 | 1.1809 | 66.9823 |
| No log | 28.0 | 6125 | 1.2310 | 66.7958 |
| No log | 29.0 | 6343 | 1.2147 | 66.7948 |
| No log | 29.9 | 6540 | 1.2418 | 66.7409 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2
|
Zlovoblachko/en_L1_RuleGen_spanbert
|
Zlovoblachko
| 2024-05-26T02:42:03Z | 2 | 0 |
spacy
|
[
"spacy",
"en",
"region:us"
] | null | 2024-05-23T09:55:06Z |
---
tags:
- spacy
language:
- en
model-index:
- name: en_L1_Rulegen_spanbert
results: []
---
| Feature | Description |
| --- | --- |
| **Name** | `en_L1_Rulegen_spanbert` |
| **Version** | `0.0.0` |
| **spaCy** | `>=3.4.4,<3.5.0` |
| **Default Pipeline** | `transformer`, `spancat` |
| **Components** | `transformer`, `spancat` |
| **Vectors** | 0 keys, 0 unique vectors (0 dimensions) |
| **Sources** | n/a |
| **License** | n/a |
| **Author** | [n/a]() |
### Label Scheme
<details>
<summary>View label scheme (5 labels for 1 components)</summary>
| Component | Labels |
| --- | --- |
| **`spancat`** | `Tense semantics`, `Copying expression`, `Synonyms`, `Word form transmission`, `Transliteration` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `SPANS_SC_F` | 83.87 |
| `SPANS_SC_P` | 90.84 |
| `SPANS_SC_R` | 77.90 |
| `TRANSFORMER_LOSS` | 52597.65 |
| `SPANCAT_LOSS` | 179515.44 |
|
euiyulsong/BrierPC
|
euiyulsong
| 2024-05-26T02:40:37Z | 80 | 0 |
transformers
|
[
"transformers",
"safetensors",
"mistral",
"text-generation",
"trl",
"orpo",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"4-bit",
"bitsandbytes",
"region:us"
] |
text-generation
| 2024-05-26T02:36:23Z |
---
library_name: transformers
tags:
- trl
- orpo
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
G-R-A-V-I-T-Y/long-t5-local-base-ARv1
|
G-R-A-V-I-T-Y
| 2024-05-26T02:36:26Z | 115 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"longt5",
"text2text-generation",
"generated_from_trainer",
"base_model:google/long-t5-local-base",
"base_model:finetune:google/long-t5-local-base",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2024-05-25T23:45:23Z |
---
license: apache-2.0
base_model: google/long-t5-local-base
tags:
- generated_from_trainer
model-index:
- name: long-t5-local-base-ARv1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# long-t5-local-base-ARv1
This model is a fine-tuned version of [google/long-t5-local-base](https://huggingface.co/google/long-t5-local-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.9303
- Exact Match: 18.0
- Gen Len: 3.38
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 60
### Training results
| Training Loss | Epoch | Step | Validation Loss | Exact Match | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-----------:|:-------:|
| No log | 1.0 | 7 | 3.4004 | 14.0 | 3.86 |
| 2.7206 | 2.0 | 14 | 3.1925 | 8.0 | 3.66 |
| 2.6501 | 3.0 | 21 | 2.9867 | 8.0 | 3.7 |
| 2.6501 | 4.0 | 28 | 2.8576 | 12.0 | 4.58 |
| 1.9849 | 5.0 | 35 | 2.9078 | 12.0 | 4.52 |
| 2.0193 | 6.0 | 42 | 2.8173 | 8.0 | 3.84 |
| 2.0193 | 7.0 | 49 | 2.7735 | 16.0 | 3.42 |
| 1.6108 | 8.0 | 56 | 2.5993 | 12.0 | 3.82 |
| 1.8323 | 9.0 | 63 | 2.5879 | 12.0 | 3.92 |
| 1.4861 | 10.0 | 70 | 2.7203 | 16.0 | 3.4 |
| 1.4861 | 11.0 | 77 | 2.9902 | 24.0 | 3.1 |
| 1.425 | 12.0 | 84 | 2.7667 | 14.0 | 3.36 |
| 1.0387 | 13.0 | 91 | 2.6547 | 18.0 | 3.42 |
| 1.0387 | 14.0 | 98 | 2.7072 | 18.0 | 3.34 |
| 1.0793 | 15.0 | 105 | 2.8158 | 12.0 | 3.58 |
| 1.1969 | 16.0 | 112 | 2.9404 | 14.0 | 3.32 |
| 1.1969 | 17.0 | 119 | 2.8512 | 14.0 | 3.3 |
| 1.15 | 18.0 | 126 | 2.7513 | 18.0 | 3.68 |
| 1.2024 | 19.0 | 133 | 2.7124 | 16.0 | 3.48 |
| 1.3331 | 20.0 | 140 | 2.7484 | 16.0 | 3.4 |
| 1.3331 | 21.0 | 147 | 2.8289 | 18.0 | 3.44 |
| 1.1469 | 22.0 | 154 | 2.9873 | 14.0 | 3.36 |
| 1.5639 | 23.0 | 161 | 3.0321 | 18.0 | 3.4 |
| 1.5639 | 24.0 | 168 | 3.0117 | 14.0 | 3.3 |
| 0.8542 | 25.0 | 175 | 2.8331 | 16.0 | 3.34 |
| 0.9789 | 26.0 | 182 | 2.7876 | 20.0 | 3.36 |
| 0.9789 | 27.0 | 189 | 2.7820 | 20.0 | 3.36 |
| 0.8853 | 28.0 | 196 | 2.8082 | 18.0 | 3.38 |
| 0.9126 | 29.0 | 203 | 2.8316 | 16.0 | 3.36 |
| 1.0543 | 30.0 | 210 | 2.8449 | 18.0 | 3.64 |
| 1.0543 | 31.0 | 217 | 2.8034 | 8.0 | 3.62 |
| 1.0683 | 32.0 | 224 | 2.8115 | 14.0 | 3.46 |
| 0.951 | 33.0 | 231 | 2.9019 | 18.0 | 3.34 |
| 0.951 | 34.0 | 238 | 3.0115 | 18.0 | 3.24 |
| 0.8315 | 35.0 | 245 | 3.0392 | 18.0 | 3.24 |
| 1.1548 | 36.0 | 252 | 3.0643 | 18.0 | 3.36 |
| 1.1548 | 37.0 | 259 | 3.0031 | 16.0 | 3.42 |
| 0.7813 | 38.0 | 266 | 2.9801 | 18.0 | 3.48 |
| 0.671 | 39.0 | 273 | 2.9622 | 18.0 | 3.48 |
| 1.1771 | 40.0 | 280 | 2.9049 | 18.0 | 3.46 |
| 1.1771 | 41.0 | 287 | 2.9042 | 20.0 | 3.56 |
| 0.5959 | 42.0 | 294 | 2.9598 | 18.0 | 3.48 |
| 1.1583 | 43.0 | 301 | 2.9936 | 18.0 | 3.44 |
| 1.1583 | 44.0 | 308 | 3.0072 | 18.0 | 3.44 |
| 0.5728 | 45.0 | 315 | 3.0003 | 18.0 | 3.44 |
| 0.7237 | 46.0 | 322 | 3.0093 | 16.0 | 3.4 |
| 0.7237 | 47.0 | 329 | 2.9688 | 18.0 | 3.42 |
| 0.7295 | 48.0 | 336 | 2.9533 | 18.0 | 3.38 |
| 0.5627 | 49.0 | 343 | 2.9357 | 18.0 | 3.36 |
| 0.6489 | 50.0 | 350 | 2.9317 | 18.0 | 3.4 |
| 0.6489 | 51.0 | 357 | 2.9339 | 18.0 | 3.4 |
| 1.0427 | 52.0 | 364 | 2.9256 | 18.0 | 3.4 |
| 0.9156 | 53.0 | 371 | 2.9220 | 18.0 | 3.4 |
| 0.9156 | 54.0 | 378 | 2.9091 | 18.0 | 3.38 |
| 0.4748 | 55.0 | 385 | 2.9036 | 18.0 | 3.36 |
| 0.5616 | 56.0 | 392 | 2.8998 | 18.0 | 3.36 |
| 0.5616 | 57.0 | 399 | 2.9128 | 18.0 | 3.36 |
| 0.4836 | 58.0 | 406 | 2.9205 | 18.0 | 3.36 |
| 0.6498 | 59.0 | 413 | 2.9282 | 18.0 | 3.36 |
| 0.615 | 60.0 | 420 | 2.9303 | 18.0 | 3.38 |
### Framework versions
- Transformers 4.41.0
- Pytorch 2.2.1
- Datasets 2.19.1
- Tokenizers 0.19.1
|
SanghyukChun/PCMEPP-ViT-B-16-CC3M-12M-RedCaps
|
SanghyukChun
| 2024-05-26T02:34:26Z | 51 | 0 |
transformers
|
[
"transformers",
"safetensors",
"pytorch_model_hub_mixin",
"model_hub_mixin",
"license:mit",
"endpoints_compatible",
"region:us"
] | null | 2024-04-05T09:16:23Z |
---
tags:
- pytorch_model_hub_mixin
- model_hub_mixin
license: mit
---
### Official implementation of PCME++ pre-trained model on CC3M, CC12M and RedCaps.
Zero-shot ImageNet-1k top-1 accuracy: 34.642% (slightly better than the paper score, 34.22%)
- Paper: https://openreview.net/forum?id=ft1mr3WlGM
- GitHub: https://github.com/naver-ai/pcmepp
- Check a better version with ImageNet-1k top-1 accuracy 41.812% (mean-only ZS classification) at [SanghyukChun/PCMEPP-ViT-B-16-CC3M-12M-RedCaps-256M](https://huggingface.co/SanghyukChun/PCMEPP-ViT-B-16-CC3M-12M-RedCaps-256M)
```python
import requests
from PIL import Image
import torch
from transformers import CLIPProcessor
# Check hf_models code here: https://github.com/naver-ai/pcmepp/tree/main/hf_models
from hf_models import HfPCMEPPModel, tokenize
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch16")
# IN-top1: 34.64%
model = HfPCMEPPModel.from_pretrained("SanghyukChun/PCMEPP-ViT-B-16-CC3M-12M-RedCaps")
# IN-top1: 41.81%
# model = HfPCMEPPModel.from_pretrained("SanghyukChun/PCMEPP-ViT-B-16-CC3M-12M-RedCaps-256M")
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
inputs = processor(images=image, return_tensors="pt", padding=True)
texts = ["a photo of a cat", "a photo of a dog"]
texts = tokenize(texts)
outputs = model(images=inputs["pixel_values"], texts=texts)
print("Logits:", outputs["image_features"] @ outputs["text_features"].T)
print("Image uncertainty: ", torch.exp(outputs["image_stds"]).mean(dim=-1))
print("Text uncertainty: ", torch.exp(outputs["text_stds"]).mean(dim=-1))
```
```
@inproceedings{
chun2024pcmepp,
title={Improved Probabilistic Image-Text Representations},
author={Sanghyuk Chun},
booktitle={The Twelfth International Conference on Learning Representations},
year={2024},
url={https://openreview.net/forum?id=ft1mr3WlGM}
}
```
|
Raneechu/textbookbig10_ft3
|
Raneechu
| 2024-05-26T02:33:35Z | 0 | 0 |
peft
|
[
"peft",
"tensorboard",
"safetensors",
"trl",
"sft",
"generated_from_trainer",
"base_model:meta-llama/Llama-2-7b-hf",
"base_model:adapter:meta-llama/Llama-2-7b-hf",
"license:llama2",
"region:us"
] | null | 2024-05-26T02:33:32Z |
---
license: llama2
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
base_model: meta-llama/Llama-2-7b-hf
model-index:
- name: textbookbig10_ft3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# textbookbig10_ft3
This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 1
### Training results
### Framework versions
- Transformers 4.40.1
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.19.1
## Training procedure
### Framework versions
- PEFT 0.6.2
|
Sorour/phi3-fomc-save
|
Sorour
| 2024-05-26T02:17:03Z | 156 | 0 |
transformers
|
[
"transformers",
"safetensors",
"phi3",
"text-generation",
"conversational",
"custom_code",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-05-26T02:14:09Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
Sorour/cls_fomc_phi3_v1
|
Sorour
| 2024-05-26T02:13:12Z | 0 | 0 |
peft
|
[
"peft",
"tensorboard",
"safetensors",
"trl",
"sft",
"generated_from_trainer",
"dataset:generator",
"base_model:microsoft/Phi-3-mini-4k-instruct",
"base_model:adapter:microsoft/Phi-3-mini-4k-instruct",
"license:mit",
"region:us"
] | null | 2024-05-19T05:10:56Z |
---
license: mit
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
base_model: microsoft/Phi-3-mini-4k-instruct
datasets:
- generator
model-index:
- name: cls_fomc_phi3_v1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# cls_fomc_phi3_v1
This model is a fine-tuned version of [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) on the generator dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7320
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 2
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.8109 | 0.3883 | 20 | 0.7927 |
| 0.7639 | 0.7767 | 40 | 0.7570 |
| 0.6942 | 1.1650 | 60 | 0.7449 |
| 0.6797 | 1.5534 | 80 | 0.7417 |
| 0.6899 | 1.9417 | 100 | 0.7320 |
### Framework versions
- PEFT 0.11.1
- Transformers 4.41.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|
ayoubcim/tt-falcon-7b
|
ayoubcim
| 2024-05-26T02:12:57Z | 106 | 0 |
transformers
|
[
"transformers",
"safetensors",
"falcon",
"text-generation",
"custom_code",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"4-bit",
"bitsandbytes",
"region:us"
] |
text-generation
| 2024-05-26T01:07:12Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
Anish13/results_model8
|
Anish13
| 2024-05-26T02:08:55Z | 37 | 0 |
transformers
|
[
"transformers",
"safetensors",
"transformer",
"generated_from_trainer",
"endpoints_compatible",
"region:us"
] | null | 2024-05-25T23:14:45Z |
---
tags:
- generated_from_trainer
model-index:
- name: results_model8
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# results_model8
This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.9686
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 30
- num_epochs: 20
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:-----:|:---------------:|
| 3.3262 | 0.5570 | 10000 | 3.3012 |
| 3.0829 | 1.1141 | 20000 | 3.1175 |
| 2.9737 | 1.6711 | 30000 | 3.0091 |
| 2.8584 | 2.2282 | 40000 | 2.9686 |
### Framework versions
- Transformers 4.40.2
- Pytorch 2.3.0
- Datasets 2.19.1
- Tokenizers 0.19.1
|
gokaygokay/imageinwords-paligemma-transformers
|
gokaygokay
| 2024-05-26T02:08:01Z | 6 | 0 |
transformers
|
[
"transformers",
"safetensors",
"paligemma",
"image-text-to-text",
"license:apache-2.0",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
image-text-to-text
| 2024-05-26T02:02:19Z |
---
license: apache-2.0
---
```
pip install git+https://github.com/huggingface/transformers
```
```
from transformers import AutoProcessor, PaliGemmaForConditionalGeneration
from PIL import Image
import requests
import torch
model_id = "gokaygokay/imageinwords-paligemma-transformers"
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true"
image = Image.open(requests.get(url, stream=True).raw)
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id).eval()
processor = AutoProcessor.from_pretrained(model_id)
## prefix
prompt = "caption en"
model_inputs = processor(text=prompt, images=image, return_tensors="pt")
input_len = model_inputs["input_ids"].shape[-1]
with torch.inference_mode():
generation = model.generate(**model_inputs, max_new_tokens=512, do_sample=False)
generation = generation[0][input_len:]
decoded = processor.decode(generation, skip_special_tokens=True)
print(decoded)
```
|
empathie/Qwen1.5-0.5B-Chat-experiment-2
|
empathie
| 2024-05-26T02:07:47Z | 6 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-05-25T03:04:36Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
MVRL/satclip-loc-enc-vit16-l40
|
MVRL
| 2024-05-26T01:51:36Z | 0 | 0 | null |
[
"safetensors",
"pytorch_model_hub_mixin",
"model_hub_mixin",
"region:us"
] | null | 2024-05-26T01:51:35Z |
---
tags:
- pytorch_model_hub_mixin
- model_hub_mixin
---
This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration:
- Library: [More Information Needed]
- Docs: [More Information Needed]
|
GENIAC-Team-Ozaki/lora-dpo-finetuned-stage4-full-sft-v4-0.5_5e-7_ep-10
|
GENIAC-Team-Ozaki
| 2024-05-26T01:50:24Z | 9 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-05-26T01:38:58Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
antitheft159/naderEren.195
|
antitheft159
| 2024-05-26T01:48:25Z | 0 | 0 | null |
[
"license:cc-by-nd-4.0",
"region:us"
] | null | 2024-05-26T01:47:52Z |
---
license: cc-by-nd-4.0
---
|
CMU-AIR2/math-phi-1-5-FULL-Arithmetic-Curriculum-Subjects-8-to-10
|
CMU-AIR2
| 2024-05-26T01:31:57Z | 6 | 0 |
transformers
|
[
"transformers",
"safetensors",
"phi",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-05-26T00:20:10Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
drgary/ft6_lawllm_llama3_athena2
|
drgary
| 2024-05-26T01:31:37Z | 2 | 0 |
transformers
|
[
"transformers",
"gguf",
"llama",
"text-generation-inference",
"unsloth",
"en",
"base_model:unsloth/llama-3-8b-bnb-4bit",
"base_model:quantized:unsloth/llama-3-8b-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-05-26T01:29:51Z |
---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- gguf
base_model: unsloth/llama-3-8b-bnb-4bit
---
# Uploaded model
- **Developed by:** drgary
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
samwit/paligemma_vqav2
|
samwit
| 2024-05-26T01:30:25Z | 4 | 0 |
peft
|
[
"peft",
"tensorboard",
"safetensors",
"generated_from_trainer",
"dataset:vq_av2",
"base_model:google/paligemma-3b-pt-224",
"base_model:adapter:google/paligemma-3b-pt-224",
"license:gemma",
"region:us"
] | null | 2024-05-26T01:09:51Z |
---
license: gemma
library_name: peft
tags:
- generated_from_trainer
base_model: google/paligemma-3b-pt-224
datasets:
- vq_av2
model-index:
- name: paligemma_vqav2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# paligemma_vqav2
This model is a fine-tuned version of [google/paligemma-3b-pt-224](https://huggingface.co/google/paligemma-3b-pt-224) on the vq_av2 dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2
- num_epochs: 2
### Training results
### Framework versions
- PEFT 0.11.1
- Transformers 4.42.0.dev0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|
tz579/example_asr_wav2vec2
|
tz579
| 2024-05-26T01:27:44Z | 5 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"edinburghcstr/ami",
"generated_from_trainer",
"dataset:ami",
"base_model:facebook/wav2vec2-large-lv60",
"base_model:finetune:facebook/wav2vec2-large-lv60",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2024-05-24T20:28:06Z |
---
license: apache-2.0
base_model: facebook/wav2vec2-large-lv60
tags:
- automatic-speech-recognition
- edinburghcstr/ami
- generated_from_trainer
datasets:
- ami
metrics:
- wer
model-index:
- name: facebook/wav2vec2-large-lv60
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: EDINBURGHCSTR/AMI - IHM
type: ami
config: ihm
split: None
args: 'Config: ihm, Training split: train, Eval split: validation'
metrics:
- name: Wer
type: wer
value: 0.9542044754234227
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# facebook/wav2vec2-large-lv60
This model is a fine-tuned version of [facebook/wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60) on the EDINBURGHCSTR/AMI - IHM dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2723
- Wer: 0.9542
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 2.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:-----:|:---------------:|:------:|
| 1.0919 | 0.1565 | 1000 | 1.0169 | 0.7064 |
| 1.4768 | 0.3131 | 2000 | 0.7156 | 0.4356 |
| 0.9728 | 0.4696 | 3000 | 0.6462 | 0.4030 |
| 0.5418 | 0.6262 | 4000 | 0.6171 | 0.3707 |
| 0.8492 | 0.7827 | 5000 | 0.5758 | 0.3695 |
| 1.4826 | 0.9393 | 6000 | 0.5801 | 0.3545 |
| 0.3274 | 1.0958 | 7000 | 0.5244 | 0.3375 |
| 0.2089 | 1.2523 | 8000 | 0.5047 | 0.3239 |
| 0.2916 | 1.4089 | 9000 | 0.4901 | 0.3171 |
| 0.1617 | 1.5654 | 10000 | 0.5070 | 0.3151 |
| 0.3815 | 1.7220 | 11000 | 0.4948 | 0.3180 |
| 1.0171 | 1.8785 | 12000 | 0.9465 | 0.8379 |
### Framework versions
- Transformers 4.42.0.dev0
- Pytorch 2.3.0a0+gitcd033a1
- Datasets 2.19.1
- Tokenizers 0.19.1
|
wdli/gpt2-cpt-dutch
|
wdli
| 2024-05-26T01:23:18Z | 161 | 0 |
transformers
|
[
"transformers",
"safetensors",
"gpt2",
"text-generation",
"alignment-handbook",
"trl",
"sft",
"generated_from_trainer",
"dataset:wdli/deptweet_dataset",
"base_model:openai-community/gpt2",
"base_model:finetune:openai-community/gpt2",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-05-25T05:55:01Z |
---
license: mit
base_model: gpt2
tags:
- alignment-handbook
- trl
- sft
- generated_from_trainer
- trl
- sft
- alignment-handbook
- generated_from_trainer
datasets:
- wdli/deptweet_dataset
model-index:
- name: gpt2-cpt-dutch
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# gpt2-cpt-dutch
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the wdli/deptweet_dataset dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
### Training results
### Framework versions
- Transformers 4.41.1
- Pytorch 2.1.2
- Datasets 2.19.1
- Tokenizers 0.19.1
|
atgarcia/wav2vec2part6
|
atgarcia
| 2024-05-26T01:15:47Z | 108 | 0 |
transformers
|
[
"transformers",
"safetensors",
"wav2vec2",
"automatic-speech-recognition",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2024-05-25T23:57:56Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
Ichsan2895/Merak-7B-v4_4bit_q128_awq
|
Ichsan2895
| 2024-05-26T01:10:16Z | 80 | 0 |
transformers
|
[
"transformers",
"safetensors",
"mistral",
"text-generation",
"conversational",
"id",
"en",
"dataset:wikipedia",
"dataset:Ichsan2895/OASST_Top1_Indonesian",
"dataset:Ichsan2895/alpaca-gpt4-indonesian",
"license:cc-by-nc-sa-4.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"4-bit",
"awq",
"region:us"
] |
text-generation
| 2024-05-25T18:37:33Z |
---
datasets:
- wikipedia
- Ichsan2895/OASST_Top1_Indonesian
- Ichsan2895/alpaca-gpt4-indonesian
language:
- id
- en
pipeline_tag: text-generation
license: cc-by-nc-sa-4.0
---
<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://huggingface.co/Ichsan2895/Merak-7B-v4/resolve/main/FINAL_LOGO/6.png" alt="MERAK" style="width: 50%; min-width: 100px; display: block; margin: auto;">
</div>
# HAPPY TO ANNOUNCE THE RELEASE OF MERAK-7B-V4_4bit_q128_awq!
Merak-7B is the Large Language Model of Indonesian Language
This model is based on [Mistral-7B-OpenOrca](https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca) and fine tuned by some of Indonesia Wikipedia articles that I cleaned before.
Leveraging QLoRA (QLora: Efficient Finetuning of Quantized LLMs), Merak-7B is able to run with 16 GB VRAM
Licensed under Creative Commons-By Attribution-Share Alike-Non Commercial (CC-BY-SA-NC 4.0) Merak-7B empowers AI enthusiasts, researchers alike.
Big thanks to all my friends and communities that help to build our first model. Thanks for Axolotl for a great fine tuning tool which designed to streamline the fine-tuning of various AI models.
Feel free, to ask me about the model and please share the news on your social media.
|
TahaCakir/KarLlama-Beta-V1
|
TahaCakir
| 2024-05-26T01:00:48Z | 0 | 0 |
transformers
|
[
"transformers",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-05-24T23:36:52Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
DJPillu/ppo-LunarLander-v2
|
DJPillu
| 2024-05-26T00:53:11Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2024-05-26T00:52:51Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 239.36 +/- 16.14
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
shadowdefense/ShadowWatch001
|
shadowdefense
| 2024-05-26T00:53:07Z | 0 | 0 | null |
[
"license:other",
"region:us"
] | null | 2024-05-26T00:53:07Z |
---
license: other
license_name: terms
license_link: https://beta.openai.com/terms/
---
|
antitheft159/blinkrgb.159
|
antitheft159
| 2024-05-26T00:40:56Z | 0 | 0 | null |
[
"license:cc-by-nc-sa-4.0",
"region:us"
] | null | 2024-05-26T00:40:35Z |
---
license: cc-by-nc-sa-4.0
---
|
JianKim3293/llama3_lora_lawmodel
|
JianKim3293
| 2024-05-26T00:24:10Z | 5 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-05-25T23:08:43Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
GTsuya/akramness_pony
|
GTsuya
| 2024-05-26T00:23:02Z | 1 | 0 |
diffusers
|
[
"diffusers",
"text-to-image",
"stable-diffusion",
"lora",
"template:sd-lora",
"base_model:GraydientPlatformAPI/autism-pony",
"base_model:adapter:GraydientPlatformAPI/autism-pony",
"license:mit",
"region:us"
] |
text-to-image
| 2024-05-26T00:21:41Z |
---
tags:
- text-to-image
- stable-diffusion
- lora
- diffusers
- template:sd-lora
widget:
- text: >-
cartoon, score_9, score_8_up, score_7_up, mature_female, Body Stocking,
dutch angle, very wide shot, prison, rating_safe, <lora:akramness_pony:1>
parameters:
negative_prompt: >-
score_6, score_5, score_4, ugly face, ugly eyes, realistic, monochrome,
white and black
output:
url: images/00136-4232611181.png
- text: >-
cartoon, score_9, score_8_up, score_7_up, mature_female, Hose, fisheye,
cowboy shot, hospital, rating_questionable, <lora:akramness_pony:1>
parameters:
negative_prompt: >-
score_6, score_5, score_4, ugly face, ugly eyes, realistic, monochrome,
white and black
output:
url: images/00155-1262320914.png
- text: >-
cartoon, score_9, score_8_up, score_7_up, mature_female, Dolman, from
behind, cropped shoulders, aqueduct, rating_safe, <lora:akramness_pony:1>
parameters:
negative_prompt: >-
score_6, score_5, score_4, ugly face, ugly eyes, realistic, monochrome,
white and black
output:
url: images/00173-479418834.png
- text: >-
cartoon, score_9, score_8_up, score_7_up, mature_female, silver trim,
fisheye, cut-in, shore, rating_safe, <lora:akramness_pony:1>
parameters:
negative_prompt: >-
score_6, score_5, score_4, ugly face, ugly eyes, realistic, monochrome,
white and black
output:
url: images/00204-1709459995.png
- text: >-
cartoon, score_9, score_8_up, score_7_up, mature_female, bodysuit, panorama,
cropped shoulders, bridge, rating_safe, <lora:akramness_pony:1>
parameters:
negative_prompt: >-
score_6, score_5, score_4, ugly face, ugly eyes, realistic, monochrome,
white and black
output:
url: images/00047-3532072066.png
- text: >-
cartoon, score_9, score_8_up, score_7_up, mature_female, China Dress,
vanishing point, face, savannah, rating_questionable,
<lora:akramness_pony:1>
parameters:
negative_prompt: >-
score_6, score_5, score_4, ugly face, ugly eyes, realistic, monochrome,
white and black
output:
url: images/00093-3176014586.png
base_model: GraydientPlatformAPI/autism-pony
instance_prompt: null
license: mit
---
# akramness_pony
<Gallery />
## Model description
This LoRA model has been trained with Kohya SS using Akramness's artworks on Autism Mix SDXL checkpoint. Obtained graphics are close to the original art style. This LoRA model could be use for oriental cartoon representation of mostly asiatic women.
## Download model
Weights for this model are available in Safetensors format.
[Download](/GTsuya/akramness_pony/tree/main) them in the Files & versions tab.
|
legraphista/aya-23-8B-IMat-GGUF
|
legraphista
| 2024-05-26T00:17:38Z | 165 | 0 |
gguf
|
[
"gguf",
"quantized",
"GGUF",
"imatrix",
"quantization",
"imat",
"static",
"text-generation",
"en",
"fr",
"de",
"es",
"it",
"pt",
"ja",
"ko",
"zh",
"ar",
"el",
"fa",
"pl",
"id",
"cs",
"he",
"hi",
"nl",
"ro",
"ru",
"tr",
"uk",
"vi",
"base_model:CohereForAI/aya-23-8B",
"base_model:quantized:CohereForAI/aya-23-8B",
"license:cc-by-nc-4.0",
"region:us",
"conversational"
] |
text-generation
| 2024-05-25T20:21:19Z |
---
base_model: CohereForAI/aya-23-8B
inference: false
language:
- en
- fr
- de
- es
- it
- pt
- ja
- ko
- zh
- ar
- el
- fa
- pl
- id
- cs
- he
- hi
- nl
- ro
- ru
- tr
- uk
- vi
library_name: gguf
license: cc-by-nc-4.0
pipeline_tag: text-generation
quantized_by: legraphista
tags:
- quantized
- GGUF
- imatrix
- quantization
- imat
- static
---
# aya-23-8B-IMat-GGUF
_Llama.cpp imatrix quantization of CohereForAI/aya-23-8B_
Original Model: [CohereForAI/aya-23-8B](https://huggingface.co/CohereForAI/aya-23-8B)
Original dtype: `FP16` (`float16`)
Quantized by: llama.cpp [b2998](https://github.com/ggerganov/llama.cpp/releases/tag/b2998)
IMatrix dataset: [here](https://gist.githubusercontent.com/legraphista/d6d93f1a254bcfc58e0af3777eaec41e/raw/d380e7002cea4a51c33fffd47db851942754e7cc/imatrix.calibration.medium.raw)
## Files
### IMatrix
Status: ✅ Available
Link: [here](https://huggingface.co/legraphista/aya-23-8B-IMat-GGUF/blob/main/imatrix.dat)
### Common Quants
| Filename | Quant type | File Size | Status | Uses IMatrix | Is Split |
| -------- | ---------- | --------- | ------ | ------------ | -------- |
| [aya-23-8B.Q8_0.gguf](https://huggingface.co/legraphista/aya-23-8B-IMat-GGUF/blob/main/aya-23-8B.Q8_0.gguf) | Q8_0 | 8.54GB | ✅ Available | ⚪ No | 📦 No
| [aya-23-8B.Q6_K.gguf](https://huggingface.co/legraphista/aya-23-8B-IMat-GGUF/blob/main/aya-23-8B.Q6_K.gguf) | Q6_K | 6.60GB | ✅ Available | ⚪ No | 📦 No
| [aya-23-8B.Q4_K.gguf](https://huggingface.co/legraphista/aya-23-8B-IMat-GGUF/blob/main/aya-23-8B.Q4_K.gguf) | Q4_K | 5.06GB | ✅ Available | 🟢 Yes | 📦 No
| [aya-23-8B.Q3_K.gguf](https://huggingface.co/legraphista/aya-23-8B-IMat-GGUF/blob/main/aya-23-8B.Q3_K.gguf) | Q3_K | 4.22GB | ✅ Available | 🟢 Yes | 📦 No
| [aya-23-8B.Q2_K.gguf](https://huggingface.co/legraphista/aya-23-8B-IMat-GGUF/blob/main/aya-23-8B.Q2_K.gguf) | Q2_K | 3.44GB | ✅ Available | 🟢 Yes | 📦 No
### All Quants
| Filename | Quant type | File Size | Status | Uses IMatrix | Is Split |
| -------- | ---------- | --------- | ------ | ------------ | -------- |
| [aya-23-8B.FP16.gguf](https://huggingface.co/legraphista/aya-23-8B-IMat-GGUF/blob/main/aya-23-8B.FP16.gguf) | F16 | 16.07GB | ✅ Available | ⚪ No | 📦 No
| [aya-23-8B.Q5_K.gguf](https://huggingface.co/legraphista/aya-23-8B-IMat-GGUF/blob/main/aya-23-8B.Q5_K.gguf) | Q5_K | 5.80GB | ✅ Available | ⚪ No | 📦 No
| [aya-23-8B.Q5_K_S.gguf](https://huggingface.co/legraphista/aya-23-8B-IMat-GGUF/blob/main/aya-23-8B.Q5_K_S.gguf) | Q5_K_S | 5.67GB | ✅ Available | ⚪ No | 📦 No
| [aya-23-8B.Q4_K_S.gguf](https://huggingface.co/legraphista/aya-23-8B-IMat-GGUF/blob/main/aya-23-8B.Q4_K_S.gguf) | Q4_K_S | 4.83GB | ✅ Available | 🟢 Yes | 📦 No
| [aya-23-8B.Q3_K_L.gguf](https://huggingface.co/legraphista/aya-23-8B-IMat-GGUF/blob/main/aya-23-8B.Q3_K_L.gguf) | Q3_K_L | 4.53GB | ✅ Available | 🟢 Yes | 📦 No
| [aya-23-8B.Q3_K_S.gguf](https://huggingface.co/legraphista/aya-23-8B-IMat-GGUF/blob/main/aya-23-8B.Q3_K_S.gguf) | Q3_K_S | 3.87GB | ✅ Available | 🟢 Yes | 📦 No
| [aya-23-8B.Q2_K_S.gguf](https://huggingface.co/legraphista/aya-23-8B-IMat-GGUF/blob/main/aya-23-8B.Q2_K_S.gguf) | Q2_K_S | 3.25GB | ✅ Available | 🟢 Yes | 📦 No
| [aya-23-8B.IQ4_NL.gguf](https://huggingface.co/legraphista/aya-23-8B-IMat-GGUF/blob/main/aya-23-8B.IQ4_NL.gguf) | IQ4_NL | 4.81GB | ✅ Available | 🟢 Yes | 📦 No
| [aya-23-8B.IQ4_XS.gguf](https://huggingface.co/legraphista/aya-23-8B-IMat-GGUF/blob/main/aya-23-8B.IQ4_XS.gguf) | IQ4_XS | 4.60GB | ✅ Available | 🟢 Yes | 📦 No
| [aya-23-8B.IQ3_M.gguf](https://huggingface.co/legraphista/aya-23-8B-IMat-GGUF/blob/main/aya-23-8B.IQ3_M.gguf) | IQ3_M | 3.99GB | ✅ Available | 🟢 Yes | 📦 No
| [aya-23-8B.IQ3_S.gguf](https://huggingface.co/legraphista/aya-23-8B-IMat-GGUF/blob/main/aya-23-8B.IQ3_S.gguf) | IQ3_S | 3.89GB | ✅ Available | 🟢 Yes | 📦 No
| [aya-23-8B.IQ3_XS.gguf](https://huggingface.co/legraphista/aya-23-8B-IMat-GGUF/blob/main/aya-23-8B.IQ3_XS.gguf) | IQ3_XS | 3.72GB | ✅ Available | 🟢 Yes | 📦 No
| [aya-23-8B.IQ3_XXS.gguf](https://huggingface.co/legraphista/aya-23-8B-IMat-GGUF/blob/main/aya-23-8B.IQ3_XXS.gguf) | IQ3_XXS | 3.41GB | ✅ Available | 🟢 Yes | 📦 No
| [aya-23-8B.IQ2_M.gguf](https://huggingface.co/legraphista/aya-23-8B-IMat-GGUF/blob/main/aya-23-8B.IQ2_M.gguf) | IQ2_M | 3.08GB | ✅ Available | 🟢 Yes | 📦 No
| [aya-23-8B.IQ2_S.gguf](https://huggingface.co/legraphista/aya-23-8B-IMat-GGUF/blob/main/aya-23-8B.IQ2_S.gguf) | IQ2_S | 2.90GB | ✅ Available | 🟢 Yes | 📦 No
| [aya-23-8B.IQ2_XS.gguf](https://huggingface.co/legraphista/aya-23-8B-IMat-GGUF/blob/main/aya-23-8B.IQ2_XS.gguf) | IQ2_XS | 2.80GB | ✅ Available | 🟢 Yes | 📦 No
| [aya-23-8B.IQ2_XXS.gguf](https://huggingface.co/legraphista/aya-23-8B-IMat-GGUF/blob/main/aya-23-8B.IQ2_XXS.gguf) | IQ2_XXS | 2.59GB | ✅ Available | 🟢 Yes | 📦 No
| [aya-23-8B.IQ1_M.gguf](https://huggingface.co/legraphista/aya-23-8B-IMat-GGUF/blob/main/aya-23-8B.IQ1_M.gguf) | IQ1_M | 2.35GB | ✅ Available | 🟢 Yes | 📦 No
| [aya-23-8B.IQ1_S.gguf](https://huggingface.co/legraphista/aya-23-8B-IMat-GGUF/blob/main/aya-23-8B.IQ1_S.gguf) | IQ1_S | 2.21GB | ✅ Available | 🟢 Yes | 📦 No
## Downloading using huggingface-cli
First, make sure you have hugginface-cli installed:
```
pip install -U "huggingface_hub[cli]"
```
Then, you can target the specific file you want:
```
huggingface-cli download legraphista/aya-23-8B-IMat-GGUF --include "aya-23-8B.Q8_0.gguf" --local-dir ./
```
If the model is bigger than 50GB, it will have been split into multiple files. In order to download them all to a local folder, run:
```
huggingface-cli download legraphista/aya-23-8B-IMat-GGUF --include "aya-23-8B.Q8_0/*" --local-dir aya-23-8B.Q8_0
# see FAQ for merging GGUF's
```
## FAQ
### Why is the IMatrix not applied everywhere?
According to [this investigation](https://www.reddit.com/r/LocalLLaMA/comments/1993iro/ggufs_quants_can_punch_above_their_weights_now/), it appears that lower quantizations are the only ones that benefit from the imatrix input (as per hellaswag results).
### How do I merge a split GGUF?
1. Make sure you have `gguf-split` available
- To get hold of `gguf-split`, navigate to https://github.com/ggerganov/llama.cpp/releases
- Download the appropriate zip for your system from the latest release
- Unzip the archive and you should be able to find `gguf-split`
2. Locate your GGUF chunks folder (ex: `aya-23-8B.Q8_0`)
3. Run `gguf-split --merge aya-23-8B.Q8_0/aya-23-8B.Q8_0-00001-of-XXXXX.gguf aya-23-8B.Q8_0.gguf`
- Make sure to point `gguf-split` to the first chunk of the split.
---
Got a suggestion? Ping me [@legraphista](https://x.com/legraphista)!
|
GTsuya/cute_sexy_robutts_pony
|
GTsuya
| 2024-05-26T00:10:08Z | 4 | 0 |
diffusers
|
[
"diffusers",
"text-to-image",
"stable-diffusion",
"lora",
"template:sd-lora",
"base_model:GraydientPlatformAPI/autism-pony",
"base_model:adapter:GraydientPlatformAPI/autism-pony",
"license:mit",
"region:us"
] |
text-to-image
| 2024-05-26T00:08:50Z |
---
tags:
- text-to-image
- stable-diffusion
- lora
- diffusers
- template:sd-lora
widget:
- text: >-
cartoon, score_9, score_8_up, score_7_up, mature_female, dirndl, atmospheric
perspective, portrait, church, rating_questionable,
<lora:cute_sexy_robutts_pony:1>
parameters:
negative_prompt: >-
score_6, score_5, score_4, ugly face, ugly eyes, realistic, monochrome,
white and black
output:
url: images/00024-1661246894.png
- text: >-
cartoon, score_9, score_8_up, score_7_up, mature_female, bikini, sideways,
cropped legs, tunnel, rating_explicit, <lora:cute_sexy_robutts_pony:1>
parameters:
negative_prompt: >-
score_6, score_5, score_4, ugly face, ugly eyes, realistic, monochrome,
white and black
output:
url: images/00077-2017120761.png
- text: >-
cartoon, score_9, score_8_up, score_7_up, mature_female, Gloves, dutch
angle, cropped legs, pool, rating_questionable,
<lora:cute_sexy_robutts_pony:1>
parameters:
negative_prompt: >-
score_6, score_5, score_4, ugly face, ugly eyes, realistic, monochrome,
white and black
output:
url: images/00088-1815590393.png
- text: >-
cartoon, score_9, score_8_up, score_7_up, mature_female, armor, from above,
wide shot, refinery, rating_explicit, <lora:cute_sexy_robutts_pony:1>
parameters:
negative_prompt: >-
score_6, score_5, score_4, ugly face, ugly eyes, realistic, monochrome,
white and black
output:
url: images/00171-1644120815.png
- text: >-
cartoon, score_9, score_8_up, score_7_up, mature_female, Gloves, from above,
close-up, flower shop, rating_safe, <lora:cute_sexy_robutts_pony:1>
parameters:
negative_prompt: >-
score_6, score_5, score_4, ugly face, ugly eyes, realistic, monochrome,
white and black
output:
url: images/00217-4158734917.png
- text: >-
cartoon, score_9, score_8_up, score_7_up, mature_female, Latex, atmospheric
perspective, lower body, cooling tower, rating_safe,
<lora:cute_sexy_robutts_pony:1>
parameters:
negative_prompt: >-
score_6, score_5, score_4, ugly face, ugly eyes, realistic, monochrome,
white and black
output:
url: images/00220-397098714.png
base_model: GraydientPlatformAPI/autism-pony
instance_prompt: null
license: mit
---
# cute_sexy_robutts_pony
<Gallery />
## Model description
This LoRA model has been trained with Kohya SS using Cute Sexy Robutts's artworks on Autism Mix SDXL checkpoint. Obtained graphics are close to the original art style. This LoRA model could be use for cartoon/drawing representation of sexy women.
## Download model
Weights for this model are available in Safetensors format.
[Download](/GTsuya/cute_sexy_robutts_pony/tree/main) them in the Files & versions tab.
|
raulgdp/roberta-multiclase-ag_news
|
raulgdp
| 2024-05-26T00:08:49Z | 108 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"roberta",
"text-classification",
"generated_from_trainer",
"base_model:FacebookAI/roberta-base",
"base_model:finetune:FacebookAI/roberta-base",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2024-05-25T21:35:34Z |
---
license: mit
base_model: roberta-base
tags:
- generated_from_trainer
model-index:
- name: roberta-multiclase-ag_news
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-multiclase-ag_news
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2671
- Rmse: 1.1967
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rmse |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 1.3199 | 1.0 | 15000 | 1.2671 | 1.1967 |
| 1.3837 | 2.0 | 30000 | 1.3864 | 1.2230 |
| 1.3879 | 3.0 | 45000 | 1.3865 | 1.8686 |
| 1.385 | 4.0 | 60000 | 1.3864 | 1.2247 |
| 1.3885 | 5.0 | 75000 | 1.3863 | 1.8720 |
### Framework versions
- Transformers 4.41.1
- Pytorch 2.0.1+cu117
- Datasets 2.19.1
- Tokenizers 0.19.1
|
CMU-AIR2/math-phi-1-5-FULL-Arithmetic-Curriculum-Subjects-6-to-7
|
CMU-AIR2
| 2024-05-26T00:03:06Z | 5 | 0 |
transformers
|
[
"transformers",
"safetensors",
"phi",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-05-25T17:57:53Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
umair894/llama3_1e
|
umair894
| 2024-05-25T23:58:39Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"llama",
"trl",
"en",
"base_model:unsloth/llama-3-8b-Instruct-bnb-4bit",
"base_model:finetune:unsloth/llama-3-8b-Instruct-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-05-25T23:58:25Z |
---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
base_model: unsloth/llama-3-8b-Instruct-bnb-4bit
---
# Uploaded model
- **Developed by:** umair894
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3-8b-Instruct-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
RichardErkhov/athirdpath_-_Llama-3-11b-Instruct-gguf
|
RichardErkhov
| 2024-05-25T23:57:51Z | 23 | 0 | null |
[
"gguf",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2024-05-25T21:05:28Z |
Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
Llama-3-11b-Instruct - GGUF
- Model creator: https://huggingface.co/athirdpath/
- Original model: https://huggingface.co/athirdpath/Llama-3-11b-Instruct/
| Name | Quant method | Size |
| ---- | ---- | ---- |
| [Llama-3-11b-Instruct.Q2_K.gguf](https://huggingface.co/RichardErkhov/athirdpath_-_Llama-3-11b-Instruct-gguf/blob/main/Llama-3-11b-Instruct.Q2_K.gguf) | Q2_K | 4.01GB |
| [Llama-3-11b-Instruct.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/athirdpath_-_Llama-3-11b-Instruct-gguf/blob/main/Llama-3-11b-Instruct.IQ3_XS.gguf) | IQ3_XS | 4.44GB |
| [Llama-3-11b-Instruct.IQ3_S.gguf](https://huggingface.co/RichardErkhov/athirdpath_-_Llama-3-11b-Instruct-gguf/blob/main/Llama-3-11b-Instruct.IQ3_S.gguf) | IQ3_S | 4.66GB |
| [Llama-3-11b-Instruct.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/athirdpath_-_Llama-3-11b-Instruct-gguf/blob/main/Llama-3-11b-Instruct.Q3_K_S.gguf) | Q3_K_S | 4.64GB |
| [Llama-3-11b-Instruct.IQ3_M.gguf](https://huggingface.co/RichardErkhov/athirdpath_-_Llama-3-11b-Instruct-gguf/blob/main/Llama-3-11b-Instruct.IQ3_M.gguf) | IQ3_M | 4.79GB |
| [Llama-3-11b-Instruct.Q3_K.gguf](https://huggingface.co/RichardErkhov/athirdpath_-_Llama-3-11b-Instruct-gguf/blob/main/Llama-3-11b-Instruct.Q3_K.gguf) | Q3_K | 5.1GB |
| [Llama-3-11b-Instruct.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/athirdpath_-_Llama-3-11b-Instruct-gguf/blob/main/Llama-3-11b-Instruct.Q3_K_M.gguf) | Q3_K_M | 5.1GB |
| [Llama-3-11b-Instruct.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/athirdpath_-_Llama-3-11b-Instruct-gguf/blob/main/Llama-3-11b-Instruct.Q3_K_L.gguf) | Q3_K_L | 5.52GB |
| [Llama-3-11b-Instruct.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/athirdpath_-_Llama-3-11b-Instruct-gguf/blob/main/Llama-3-11b-Instruct.IQ4_XS.gguf) | IQ4_XS | 5.7GB |
| [Llama-3-11b-Instruct.Q4_0.gguf](https://huggingface.co/RichardErkhov/athirdpath_-_Llama-3-11b-Instruct-gguf/blob/main/Llama-3-11b-Instruct.Q4_0.gguf) | Q4_0 | 5.94GB |
| [Llama-3-11b-Instruct.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/athirdpath_-_Llama-3-11b-Instruct-gguf/blob/main/Llama-3-11b-Instruct.IQ4_NL.gguf) | IQ4_NL | 6.0GB |
| [Llama-3-11b-Instruct.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/athirdpath_-_Llama-3-11b-Instruct-gguf/blob/main/Llama-3-11b-Instruct.Q4_K_S.gguf) | Q4_K_S | 5.98GB |
| [Llama-3-11b-Instruct.Q4_K.gguf](https://huggingface.co/RichardErkhov/athirdpath_-_Llama-3-11b-Instruct-gguf/blob/main/Llama-3-11b-Instruct.Q4_K.gguf) | Q4_K | 6.27GB |
| [Llama-3-11b-Instruct.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/athirdpath_-_Llama-3-11b-Instruct-gguf/blob/main/Llama-3-11b-Instruct.Q4_K_M.gguf) | Q4_K_M | 6.27GB |
| [Llama-3-11b-Instruct.Q4_1.gguf](https://huggingface.co/RichardErkhov/athirdpath_-_Llama-3-11b-Instruct-gguf/blob/main/Llama-3-11b-Instruct.Q4_1.gguf) | Q4_1 | 6.56GB |
| [Llama-3-11b-Instruct.Q5_0.gguf](https://huggingface.co/RichardErkhov/athirdpath_-_Llama-3-11b-Instruct-gguf/blob/main/Llama-3-11b-Instruct.Q5_0.gguf) | Q5_0 | 7.17GB |
| [Llama-3-11b-Instruct.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/athirdpath_-_Llama-3-11b-Instruct-gguf/blob/main/Llama-3-11b-Instruct.Q5_K_S.gguf) | Q5_K_S | 7.17GB |
| [Llama-3-11b-Instruct.Q5_K.gguf](https://huggingface.co/RichardErkhov/athirdpath_-_Llama-3-11b-Instruct-gguf/blob/main/Llama-3-11b-Instruct.Q5_K.gguf) | Q5_K | 7.34GB |
| [Llama-3-11b-Instruct.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/athirdpath_-_Llama-3-11b-Instruct-gguf/blob/main/Llama-3-11b-Instruct.Q5_K_M.gguf) | Q5_K_M | 7.34GB |
| [Llama-3-11b-Instruct.Q5_1.gguf](https://huggingface.co/RichardErkhov/athirdpath_-_Llama-3-11b-Instruct-gguf/blob/main/Llama-3-11b-Instruct.Q5_1.gguf) | Q5_1 | 7.78GB |
| [Llama-3-11b-Instruct.Q6_K.gguf](https://huggingface.co/RichardErkhov/athirdpath_-_Llama-3-11b-Instruct-gguf/blob/main/Llama-3-11b-Instruct.Q6_K.gguf) | Q6_K | 8.48GB |
| [Llama-3-11b-Instruct.Q8_0.gguf](https://huggingface.co/RichardErkhov/athirdpath_-_Llama-3-11b-Instruct-gguf/blob/main/Llama-3-11b-Instruct.Q8_0.gguf) | Q8_0 | 10.98GB |
Original model description:
---
license: llama3
---
I'm back and doing well! I've got a job in the field now, so we'll see in the long run how that effects my open source output.
Here we have a 11b Llama 3 instruct model for future work.
EDIT: Made a yaml mistake with part funnel, but it still works well.
---

This is a merge stock of 3 models:
- Part Wave
- Part Block
- Part Funnel
With Part Funnel as the base.
---
Part Wave:
- sources:
- model: NousResearch/Meta-Llama-3-8B-Instruct
layer_range: [0, 12]
- sources:
- model: NousResearch/Meta-Llama-3-8B-Instruct
layer_range: [8, 18]
- sources:
- model: NousResearch/Meta-Llama-3-8B-Instruct
layer_range: [13, 23]
- sources:
- model: NousResearch/Meta-Llama-3-8B-Instruct
layer_range: [18, 32]
---
Part Block:
- sources:
- model: NousResearch/Meta-Llama-3-8B-Instruct
layer_range: [0, 15]
- sources:
- model: NousResearch/Meta-Llama-3-8B-Instruct
layer_range: [8, 23]
- sources:
- model: NousResearch/Meta-Llama-3-8B-Instruct
layer_range: [16, 32]
---
Part Funnel:
- sources:
- model: NousResearch/Meta-Llama-3-8B-Instruct
layer_range: [0, 15]
- sources:
- model: NousResearch/Meta-Llama-3-8B-Instruct
layer_range: [14, 14]
- sources:
- model: NousResearch/Meta-Llama-3-8B-Instruct
layer_range: [13, 13]
- sources:
- model: NousResearch/Meta-Llama-3-8B-Instruct
layer_range: [12, 12]
- sources:
- model: NousResearch/Meta-Llama-3-8B-Instruct
layer_range: [11, 11]
- sources:
- model: NousResearch/Meta-Llama-3-8B-Instruct
layer_range: [10, 10]
- sources:
- model: NousResearch/Meta-Llama-3-8B-Instruct
layer_range: [9, 9]
- sources:
- model: NousResearch/Meta-Llama-3-8B-Instruct
layer_range: [8, 23]
- sources:
- model: NousResearch/Meta-Llama-3-8B-Instruct
layer_range: [22, 22]
- sources:
- model: NousResearch/Meta-Llama-3-8B-Instruct
layer_range: [21, 21]
- sources:
- model: NousResearch/Meta-Llama-3-8B-Instruct
layer_range: [20, 20]
- sources:
- model: NousResearch/Meta-Llama-3-8B-Instruct
layer_range: [19, 19]
- sources:
- model: NousResearch/Meta-Llama-3-8B-Instruct
layer_range: [18, 18]
- sources:
- model: NousResearch/Meta-Llama-3-8B-Instruct
layer_range: [17, 17]
- sources:
- model: NousResearch/Meta-Llama-3-8B-Instruct
layer_range: [16, 32]
|
fearlessdots/Llama-3-Alpha-Centauri-v0.1-GGUF
|
fearlessdots
| 2024-05-25T23:51:25Z | 37 | 5 | null |
[
"gguf",
"dataset:NobodyExistsOnTheInternet/ToxicQAFinal",
"license:llama3",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2024-05-25T21:34:14Z |
---
license: llama3
datasets:
- NobodyExistsOnTheInternet/ToxicQAFinal
---
# Llama-3-Alpha-Centauri-v0.1-GGUF
<img src="alpha_centauri_banner.png" alt="" style="width:500px;height:400px;"/>
**Image generated with [https://huggingface.co/PixArt-alpha/PixArt-Sigma-XL-2-1024-MS](https://huggingface.co/PixArt-alpha/PixArt-Sigma-XL-2-1024-MS).**
---
## Disclaimer
**Note:** All models and LoRAs from the **Centaurus** series were created with the sole purpose of research. The usage of this model and/or its related LoRA implies agreement with the following terms:
- The user is responsible for what they might do with it, including how the output of the model is interpreted and used;
- The user should not use the model and its outputs for any illegal purposes;
- The user is the only one resposible for any misuse or negative consequences from using this model and/or its related LoRA.
I do not endorse any particular perspectives presented in the training data.
---
## Centaurus Series
This series aims to develop highly uncensored Large Language Models (LLMs) with the following focuses:
- Science, Technology, Engineering, and Mathematics (STEM)
- Computer Science (including programming)
- Social Sciences
And several key cognitive skills, including but not limited to:
- Reasoning and logical deduction
- Critical thinking
- Analysis
While maintaining strong overall knowledge and expertise, the models will undergo refinement through:
- Fine-tuning processes
- Model merging techniques including Mixture of Experts (MoE)
Please note that these models are experimental and may demonstrate varied levels of effectiveness. Your feedback, critique, or queries are most welcome for improvement purposes.
## Base
This model and its related LoRA was fine-tuned on [https://huggingface.co/failspy/Meta-Llama-3-8B-Instruct-abliterated-v3](https://huggingface.co/failspy/Meta-Llama-3-8B-Instruct-abliterated-v3).
## LoRA
The LoRA merged with the base model is available at [https://huggingface.co/fearlessdots/Llama-3-Alpha-Centauri-v0.1-LoRA](https://huggingface.co/fearlessdots/Llama-3-Alpha-Centauri-v0.1-LoRA).
## Datasets
- [https://huggingface.co/datasets/NobodyExistsOnTheInternet/ToxicQAFinal](https://huggingface.co/datasets/NobodyExistsOnTheInternet/ToxicQAFinal)
## Fine Tuning
### - Quantization Configuration
- load_in_4bit=True
- bnb_4bit_quant_type="fp4"
- bnb_4bit_compute_dtype=compute_dtype
- bnb_4bit_use_double_quant=False
### - PEFT Parameters
- lora_alpha=64
- lora_dropout=0.05
- r=128
- bias="none"
### - Training Arguments
- num_train_epochs=1
- per_device_train_batch_size=1
- gradient_accumulation_steps=4
- optim="adamw_bnb_8bit"
- save_steps=25
- logging_steps=25
- learning_rate=2e-4
- weight_decay=0.001
- fp16=False
- bf16=False
- max_grad_norm=0.3
- max_steps=-1
- warmup_ratio=0.03
- group_by_length=True
- lr_scheduler_type="constant"
## Credits
- Meta ([https://huggingface.co/meta-llama](https://huggingface.co/meta-llama)): for the original Llama-3;
- HuggingFace: for hosting this model and for creating the fine-tuning tools used;
- failspy ([https://huggingface.co/failspy](https://huggingface.co/failspy)): for the base model and the orthogonalization implementation;
- NobodyExistsOnTheInternet ([https://huggingface.co/NobodyExistsOnTheInternet](https://huggingface.co/NobodyExistsOnTheInternet)): for the incredible dataset;
- Undi95 ([https://huggingface.co/Undi95](https://huggingface.co/Undi95)) and Sao10k ([https://huggingface.co/Sao10K](https://huggingface.co/Sao10K)): my main inspirations for doing these models =]
A huge thank you to all of them ☺️
## About Alpha Centauri
**Alpha Centauri** is a triple star system located in the constellation of **Centaurus**. It includes three stars: Rigil Kentaurus (also known as **α Centauri A**), Toliman (or **α Centauri B**), and Proxima Centauri (**α Centauri C**). Proxima Centauri is the nearest star to the Sun, residing at approximately 4.25 light-years (1.3 parsecs) away.
The primary pair, **α Centauri A** and **B**, are both similar to our Sun - **α Centauri A** being a class G star with 1.1 solar masses and 1.5 times the Sun's luminosity; **α Centauri B** having 0.9 solar masses and under half the luminosity of the Sun. They revolve around their shared center every 79 years following an elliptical path, ranging from 35.6 astronomical units apart (nearly Pluto's distance from the Sun) to 11.2 astronomical units apart (around Saturn's distance from the Sun.)
Proxima Centauri, or **α Centauri C**, is a diminutive, dim red dwarf (a class M star) initially unseen to the naked eye. At roughly 4.24 light-years (1.3 parsecs) from us, it lies nearer than **α Centauri AB**, the binary system. Presently, the gap between **Proxima Centauri** and **α Centauri AB** amounts to around 13,000 Astronomical Units (0.21 light-years)—comparable to over 430 times Neptune's orbital radius.
Two confirmed exoplanets accompany Proxima Centauri: **Proxima b**, discovered in 2016, is Earth-sized within the habitable zone; **Proxima d**, revealed in 2022, is a potential sub-Earth close to its host star. Meanwhile, disputes surround **Proxima c**, a mini-Neptune detected in 2019. Intriguingly, hints suggest that **α Centauri A** might possess a Neptune-sized object in its habitable region, but further investigation is required before confirming whether it truly exists and qualifies as a planet. Regarding **α Centauri B**, although once thought to harbor a planet (named **α Cen Bb**), subsequent research invalidated this claim, leaving it currently devoid of identified planets.
**Source:** retrived from [https://en.wikipedia.org/wiki/Alpha_Centauri](https://en.wikipedia.org/wiki/Alpha_Centauri) and processed with [https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1).
|
eltaiefaymen/Python_DocGen
|
eltaiefaymen
| 2024-05-25T23:50:39Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"mistral",
"trl",
"en",
"base_model:unsloth/mistral-7b-bnb-4bit",
"base_model:finetune:unsloth/mistral-7b-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-05-02T00:02:55Z |
---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- mistral
- trl
base_model: unsloth/mistral-7b-bnb-4bit
---
# Uploaded model
- **Developed by:** eltaiefaymen
- **License:** apache-2.0
- **Finetuned from model :** unsloth/mistral-7b-bnb-4bit
This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
Sorour/phi3-ft-fomc-v2
|
Sorour
| 2024-05-25T23:45:29Z | 155 | 0 |
transformers
|
[
"transformers",
"safetensors",
"phi3",
"text-generation",
"conversational",
"custom_code",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-05-25T23:33:06Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
thdangtr/blip_recipe1m_title_v6
|
thdangtr
| 2024-05-25T23:35:49Z | 67 | 0 |
transformers
|
[
"transformers",
"safetensors",
"blip",
"image-text-to-text",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] |
image-text-to-text
| 2024-05-25T23:34:17Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
JawadC/neufchatel
|
JawadC
| 2024-05-25T23:33:52Z | 1 | 1 |
diffusers
|
[
"diffusers",
"text-to-image",
"diffusers-training",
"lora",
"template:sd-lora",
"stable-diffusion-xl",
"stable-diffusion-xl-diffusers",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:openrail++",
"region:us"
] |
text-to-image
| 2024-05-25T23:04:54Z |
---
license: openrail++
library_name: diffusers
tags:
- text-to-image
- text-to-image
- diffusers-training
- diffusers
- lora
- template:sd-lora
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: a photo of Neufchatel cheese
widget:
- text: A heart shaped Neufchatel cheese on a rustic wooden table.
output:
url: image_0.png
- text: A heart shaped Neufchatel cheese on a rustic wooden table.
output:
url: image_1.png
- text: A heart shaped Neufchatel cheese on a rustic wooden table.
output:
url: image_2.png
- text: A heart shaped Neufchatel cheese on a rustic wooden table.
output:
url: image_3.png
---
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# SDXL LoRA DreamBooth - JawadC/neufchatel
<Gallery />
## Model description
These are JawadC/neufchatel LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.
The weights were trained using [DreamBooth](https://dreambooth.github.io/).
LoRA for the text encoder was enabled: False.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
## Trigger words
You should use a photo of Neufchatel cheese to trigger the image generation.
## Download model
Weights for this model are available in Safetensors format.
[Download](JawadC/neufchatel/tree/main) them in the Files & versions tab.
## Intended uses & limitations
#### How to use
```python
# TODO: add an example code snippet for running this diffusion pipeline
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training details
[TODO: describe the data used to train the model]
|
ethan-ng/content-moderation-model
|
ethan-ng
| 2024-05-25T23:33:32Z | 0 | 0 | null |
[
"license:apache-2.0",
"region:us"
] | null | 2024-05-25T23:33:32Z |
---
license: apache-2.0
---
|
GENIAC-Team-Ozaki/lora-dpo-finetuned-stage4-full-sft-v4-0.5_5e-7_ep-1
|
GENIAC-Team-Ozaki
| 2024-05-25T23:26:34Z | 5 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-05-25T23:16:43Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
ahmedgongi/Llama_dev3model_finale10
|
ahmedgongi
| 2024-05-25T23:26:19Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-05-25T23:26:16Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
ahmedgongi/Llama_dev3tokenizer_finale10
|
ahmedgongi
| 2024-05-25T23:26:09Z | 0 | 0 |
transformers
|
[
"transformers",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-05-25T23:26:08Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
Apel-sin/llama-3-8B-iterative-DPO-final-exl2
|
Apel-sin
| 2024-05-25T23:19:50Z | 4 | 1 | null |
[
"arxiv:2405.07863",
"arxiv:2312.11456",
"license:llama3",
"region:us"
] | null | 2024-05-24T12:41:16Z |
---
license: llama3
---
# Exllama v2 RLHFlow/LLaMA3-iterative-DPO-final
Using <a href="https://github.com/turboderp/exllamav2/releases/tag/v0.0.21">turboderp's ExLlamaV2 v0.0.21</a> for quantization.
<b>The "main" branch only contains the measurement.json, download one of the other branches for the model</b>
Each branch contains an individual bits per weight, with the main one containing only the meaurement.json for further conversions.
Original model: <a href="https://huggingface.co/RLHFlow/LLaMA3-iterative-DPO-final">RLHFlow/LLaMA3-iterative-DPO-final</a><br>
Calibration dataset: <a href="https://huggingface.co/datasets/cosmicvalor/toxic-qna">toxic-qna</a>
## Prompt format
```
<|start_header_id|>system<|end_header_id|>
{system_prompt}<|eot_id|>
<|start_header_id|>user<|end_header_id|>
{prompt}<|eot_id|>
<|start_header_id|>assistant<|end_header_id|>
```
## Available sizes
| Branch | Bits | lm_head bits | VRAM (4k) | VRAM (8K) | VRAM (16k) | VRAM (32k) | Description |
| ----- | ---- | ------- | ------ | ------ | ------ | ------ | ------------ |
| [8_0](https://huggingface.co/Apel-sin/llama-3-8B-iterative-DPO-final-exl2/tree/8_0) | 8.0 | 8.0 | 10.1 GB | 10.5 GB | 11.5 GB | 13.6 GB | Maximum quality that ExLlamaV2 can produce, near unquantized performance. |
| [6_5](https://huggingface.co/Apel-sin/llama-3-8B-iterative-DPO-final-exl2/tree/6_5) | 6.5 | 8.0 | 8.9 GB | 9.3 GB | 10.3 GB | 12.4 GB | Very similar to 8.0, good tradeoff of size vs performance, **recommended**. |
| [5_0](https://huggingface.co/Apel-sin/llama-3-8B-iterative-DPO-final-exl2/tree/5_0) | 5.0 | 8.0 | 7.7 GB | 8.1 GB | 9.1 GB | 11.2 GB | Slightly lower quality vs 6.5, but usable on 8GB cards. |
# LLaMA3-iterative-DPO-final
## Introduction
We release an unofficial checkpoint of a state-of-the-art instruct model of its class, **LLaMA3-iterative-DPO-final**.
On all three widely-used instruct model benchmarks: **Alpaca-Eval-V2**, **MT-Bench**, **Chat-Arena-Hard**, our model outperforms all models of similar size (e.g., LLaMA-3-8B-it), most large open-sourced models (e.g., Mixtral-8x7B-it),
and strong proprietary models (e.g., GPT-3.5-turbo-0613). The model is trained with open-sourced datasets without any additional human-/GPT4-labeling.
Even better, we provide a [detailed recipe](https://github.com/RLHFlow/Online-RLHF) to reproduce the model. Enjoy!
## Model Releases
See the [collection](https://huggingface.co/collections/RLHFlow/online-rlhf-663ae95fade1a39663dab218) of the training set, reward/preference model, SFT model.
- [SFT model](https://huggingface.co/RLHFlow/LLaMA3-SFT)
- [Reward model](https://huggingface.co/sfairXC/FsfairX-LLaMA3-RM-v0.1)
## Dataset
- [Preference data mix](https://huggingface.co/datasets/hendrydong/preference_700K)
- [Prompt collection for RLHF training](https://huggingface.co/datasets/RLHFlow/prompt-collection-v0.1)
## Training methods
We have developed a simple and efficient online RLHF recipe for LLM instruct training. Our recipe is DPO-based and thus much cheaper and simpler to train and tune compared to PPO-based approaches.
Unlike widely-used offline DPO, the online component of our approach effectively mitigates distribution shifts during policy optimization.
For a detailed exposition, please refer to our accompanying technical report.
## Chat Benchmarks
| **Model** | **Size** | **Method** | **LC Alpaca-Eval-V2** | **MT-Bench** | **Chat-Arena-Hard** |
|-------------------------|----------|-------------------|-----------------------|--------------|---------------------|
| **Small Open-Sourced Models** | | | | | |
| Gemma-7B-it | 7B | SFT | 10.4 | 6.38 | 7.5 |
| Zephyr-7B-beta | 7B | Vanilla DPO | 13.1 | 7.34 | - |
| Mistral-7B-v0.2-it | 7B | SFT | 17.1 | 7.51 | 12.6 |
| Open-Chat-0106 | 7B | SFT | 15.6 | 7.8 | - |
| Starling-7B-beta | 7B | PPO | 25.8 | 8.12 | 23.0 |
| LLaMA-3-8B-it | 8B | RS+DPO+PPO | 22.9 | 8.16 | 20.6 |
| **Ours** | | | | | |
| Ours (SFT baseline) | 8B | SFT | 10.2 | 7.69 | 5.6 |
| Ours (DPO baseline) | 8B | Vanilla DPO | 22.5 | 8.17 | 22.4 |
| Ours (Online RLHF) | 8B | Iterative DPO | **37.2** | **8.46** | **29.1** |
| **Large Open-Sourced Models** | | | | | |
| Vicuna-33b-v1.3 | 33B | SFT | 17.6 | 7.12 | 8.6 |
| Yi-34B-Chat | 34B | SFT | 27.2 | - | 23.1 |
| Mixtral-8x7B-it | 45B* | SFT | 23.7 | 8.30 | 23.4 |
| Tulu-2-DPO-70B | 70B | Vanilla DPO | 21.2 | 7.89 | 15.0 |
| LLaMA-3-70B-it | 70B | RS+DPO+PPO | 34.4 | 8.95 | 41.1 |
| Mixtral-8x22B-it | 141B* | SFT | 30.9 | 8.66 | 36.4 |
| **Proprietary Models** | | | | | |
| GPT-3.5-turbo-1106 | - | - | 19.3 | 8.35 | 18.9 |
| GPT-3.5-turbo-0613 | - | - | 22.7 | 8.39 | 24.8 |
| GPT-4-0613 | - | - | 30.2 | 9.18 | 37.9 |
| Claude-3-Opus | - | - | 40.5 | 9.00 | 60.4 |
| GPT-4 Turbo (04/09) | - | - | 55.0 | - | 82.6 |
## Academic Benchmarks
| **Model** | **Size** | **Method** | **GSM-8K** | **MMLU** | **HumanEval** | **TruthfulQA** | **ARC** | **MBPP** |
|----------------------------|----------|-----------------|------------|----------|---------------|----------------|---------|----------|
| LLaMA-3-8B-it | 8B | RS+DPO+PPO | 79.6 | 66.0 | 61.6 | 43.9 | 59.5 | 61.1 |
| Ours (SFT baseline) | 8B | SFT | 74.2 | 64.7 | 65.2 | 53.4 | 61.4 | 62.3 |
| Ours (DPO baseline) | 8B | Vanilla DPO | 79.8 | 64.5 | 63.4 | 61.8 | 65.2 | 60.3 |
| Ours (Iterative RLHF) | 8B | Iterative DPO | 80.7 | 65.3 | 64.6 | 60.4 | 64.3 | 60.8 |
## Usage
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda"
model = AutoModelForCausalLM.from_pretrained("RLHFlow/LLaMA3-iterative-DPO-final")
tokenizer = AutoTokenizer.from_pretrained("RLHFlow/LLaMA3-iterative-DPO-final")
messages = [
{"role": "user", "content": "I'm trying to teach myself to have nicer handwriting. Can you help?"},
]
model_inputs = tokenizer.apply_chat_template(messages, return_tensors="pt")
model_inputs = model_inputs.to(device)
model.to(device)
output_tokens = model.generate(model_inputs, max_new_tokens=1024, do_sample=True)
model_outputs = tokenizer.batch_decode(output_tokens)
print(model_outputs[0])
```
## Limitations
RLHFlow/LLaMA3-iterative-DPO-final is an unofficial checkpoint developed to illustrate the power of online iterative RLHF and is for research purpose. While safety and ethical considerations are integral to our alignment process,
there remains the possibility that the model could generate offensive or unethical content, particularly under adversarial conditions.
We are committed to continuous improvement in our models to minimize such risks and encourage responsible usage.
## Citation
Please cite our techical report if you find our model is useful for your research or product.
```
@misc{dong2024rlhf,
title={RLHF Workflow: From Reward Modeling to Online RLHF},
author={Hanze Dong and Wei Xiong and Bo Pang and Haoxiang Wang and Han Zhao and Yingbo Zhou and Nan Jiang and Doyen Sahoo and Caiming Xiong and Tong Zhang},
year={2024},
eprint={2405.07863},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
@misc{xiong2024iterative,
title={Iterative Preference Learning from Human Feedback: Bridging Theory and Practice for RLHF under KL-Constraint},
author={Wei Xiong and Hanze Dong and Chenlu Ye and Ziqi Wang and Han Zhong and Heng Ji and Nan Jiang and Tong Zhang},
year={2024},
eprint={2312.11456},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
|
GENIAC-Team-Ozaki/lora-dpo-finetuned-stage4-full-sft-v4-0.5_5e-7_ep-3
|
GENIAC-Team-Ozaki
| 2024-05-25T23:19:14Z | 7 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-05-25T23:09:13Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
ayoubcim/midjourney-falcon-7b
|
ayoubcim
| 2024-05-25T23:15:00Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-05-25T23:14:57Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
GENIAC-Team-Ozaki/lora-dpo-finetuned-stage4-full-sft-v4-0.5_5e-7_ep-15
|
GENIAC-Team-Ozaki
| 2024-05-25T23:12:30Z | 5 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-05-25T23:02:40Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
datek/gemma-2b-flock-1716678510
|
datek
| 2024-05-25T23:10:49Z | 154 | 0 |
transformers
|
[
"transformers",
"safetensors",
"gemma",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-05-25T23:08:30Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
szwuwen/mistral-7b-v3
|
szwuwen
| 2024-05-25T23:09:31Z | 8 | 0 |
transformers
|
[
"transformers",
"pytorch",
"safetensors",
"mistral",
"text-generation",
"text-generation-inference",
"unsloth",
"trl",
"sft",
"en",
"base_model:unsloth/mistral-7b-v0.3-bnb-4bit",
"base_model:finetune:unsloth/mistral-7b-v0.3-bnb-4bit",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-05-25T05:45:50Z |
---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- mistral
- trl
- sft
base_model: unsloth/mistral-7b-v0.3-bnb-4bit
---
# Uploaded model
- **Developed by:** szwuwen
- **License:** apache-2.0
- **Finetuned from model :** unsloth/mistral-7b-v0.3-bnb-4bit
This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
RichardErkhov/beomi_-_Solar-Ko-Recovery-11B-gguf
|
RichardErkhov
| 2024-05-25T23:09:29Z | 7 | 0 | null |
[
"gguf",
"endpoints_compatible",
"region:us"
] | null | 2024-05-25T20:03:22Z |
Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
Solar-Ko-Recovery-11B - GGUF
- Model creator: https://huggingface.co/beomi/
- Original model: https://huggingface.co/beomi/Solar-Ko-Recovery-11B/
| Name | Quant method | Size |
| ---- | ---- | ---- |
| [Solar-Ko-Recovery-11B.Q2_K.gguf](https://huggingface.co/RichardErkhov/beomi_-_Solar-Ko-Recovery-11B-gguf/blob/main/Solar-Ko-Recovery-11B.Q2_K.gguf) | Q2_K | 3.87GB |
| [Solar-Ko-Recovery-11B.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/beomi_-_Solar-Ko-Recovery-11B-gguf/blob/main/Solar-Ko-Recovery-11B.IQ3_XS.gguf) | IQ3_XS | 4.29GB |
| [Solar-Ko-Recovery-11B.IQ3_S.gguf](https://huggingface.co/RichardErkhov/beomi_-_Solar-Ko-Recovery-11B-gguf/blob/main/Solar-Ko-Recovery-11B.IQ3_S.gguf) | IQ3_S | 4.52GB |
| [Solar-Ko-Recovery-11B.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/beomi_-_Solar-Ko-Recovery-11B-gguf/blob/main/Solar-Ko-Recovery-11B.Q3_K_S.gguf) | Q3_K_S | 4.5GB |
| [Solar-Ko-Recovery-11B.IQ3_M.gguf](https://huggingface.co/RichardErkhov/beomi_-_Solar-Ko-Recovery-11B-gguf/blob/main/Solar-Ko-Recovery-11B.IQ3_M.gguf) | IQ3_M | 4.67GB |
| [Solar-Ko-Recovery-11B.Q3_K.gguf](https://huggingface.co/RichardErkhov/beomi_-_Solar-Ko-Recovery-11B-gguf/blob/main/Solar-Ko-Recovery-11B.Q3_K.gguf) | Q3_K | 4.99GB |
| [Solar-Ko-Recovery-11B.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/beomi_-_Solar-Ko-Recovery-11B-gguf/blob/main/Solar-Ko-Recovery-11B.Q3_K_M.gguf) | Q3_K_M | 4.99GB |
| [Solar-Ko-Recovery-11B.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/beomi_-_Solar-Ko-Recovery-11B-gguf/blob/main/Solar-Ko-Recovery-11B.Q3_K_L.gguf) | Q3_K_L | 5.42GB |
| [Solar-Ko-Recovery-11B.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/beomi_-_Solar-Ko-Recovery-11B-gguf/blob/main/Solar-Ko-Recovery-11B.IQ4_XS.gguf) | IQ4_XS | 5.59GB |
| [Solar-Ko-Recovery-11B.Q4_0.gguf](https://huggingface.co/RichardErkhov/beomi_-_Solar-Ko-Recovery-11B-gguf/blob/main/Solar-Ko-Recovery-11B.Q4_0.gguf) | Q4_0 | 5.82GB |
| [Solar-Ko-Recovery-11B.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/beomi_-_Solar-Ko-Recovery-11B-gguf/blob/main/Solar-Ko-Recovery-11B.IQ4_NL.gguf) | IQ4_NL | 5.89GB |
| [Solar-Ko-Recovery-11B.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/beomi_-_Solar-Ko-Recovery-11B-gguf/blob/main/Solar-Ko-Recovery-11B.Q4_K_S.gguf) | Q4_K_S | 5.87GB |
| [Solar-Ko-Recovery-11B.Q4_K.gguf](https://huggingface.co/RichardErkhov/beomi_-_Solar-Ko-Recovery-11B-gguf/blob/main/Solar-Ko-Recovery-11B.Q4_K.gguf) | Q4_K | 6.19GB |
| [Solar-Ko-Recovery-11B.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/beomi_-_Solar-Ko-Recovery-11B-gguf/blob/main/Solar-Ko-Recovery-11B.Q4_K_M.gguf) | Q4_K_M | 6.19GB |
| [Solar-Ko-Recovery-11B.Q4_1.gguf](https://huggingface.co/RichardErkhov/beomi_-_Solar-Ko-Recovery-11B-gguf/blob/main/Solar-Ko-Recovery-11B.Q4_1.gguf) | Q4_1 | 6.45GB |
| [Solar-Ko-Recovery-11B.Q5_0.gguf](https://huggingface.co/RichardErkhov/beomi_-_Solar-Ko-Recovery-11B-gguf/blob/main/Solar-Ko-Recovery-11B.Q5_0.gguf) | Q5_0 | 7.07GB |
| [Solar-Ko-Recovery-11B.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/beomi_-_Solar-Ko-Recovery-11B-gguf/blob/main/Solar-Ko-Recovery-11B.Q5_K_S.gguf) | Q5_K_S | 7.07GB |
| [Solar-Ko-Recovery-11B.Q5_K.gguf](https://huggingface.co/RichardErkhov/beomi_-_Solar-Ko-Recovery-11B-gguf/blob/main/Solar-Ko-Recovery-11B.Q5_K.gguf) | Q5_K | 7.26GB |
| [Solar-Ko-Recovery-11B.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/beomi_-_Solar-Ko-Recovery-11B-gguf/blob/main/Solar-Ko-Recovery-11B.Q5_K_M.gguf) | Q5_K_M | 7.26GB |
| [Solar-Ko-Recovery-11B.Q5_1.gguf](https://huggingface.co/RichardErkhov/beomi_-_Solar-Ko-Recovery-11B-gguf/blob/main/Solar-Ko-Recovery-11B.Q5_1.gguf) | Q5_1 | 7.7GB |
| [Solar-Ko-Recovery-11B.Q6_K.gguf](https://huggingface.co/RichardErkhov/beomi_-_Solar-Ko-Recovery-11B-gguf/blob/main/Solar-Ko-Recovery-11B.Q6_K.gguf) | Q6_K | 8.4GB |
| [Solar-Ko-Recovery-11B.Q8_0.gguf](https://huggingface.co/RichardErkhov/beomi_-_Solar-Ko-Recovery-11B-gguf/blob/main/Solar-Ko-Recovery-11B.Q8_0.gguf) | Q8_0 | 10.88GB |
Original model description:
---
language:
- ko
- en
pipeline_tag: text-generation
inference: false
tags:
- solar
- mistral
- pytorch
- solar-ko
library_name: transformers
license: apache-2.0
---
**Update Log**
- 2024.05.16: Released Solar-Ko-Recovery
# **Solar-Ko-Recovery-11B** 🌟❤️🩹
Solar-Ko-Recovery-11B aimed to recover Solar's capability on Korean with re-arrange of Embeddings and LM head, featuring an expanded vocabulary and the inclusion of a Korean+English corpus for enhanced representation.
## Model Details
**Model Developers:** Junbum Lee (Beomi)
**Variations:** Solar-Ko-Recovery is available with one parameter sizes — 11B(10.99B🤣).
**Input:** The model accepts only text input.
**Output:** The model produces text output exclusively.
**Model Architecture:**
Solar-Ko-Recovery is an auto-regressive language model that leverages an optimized transformer architecture derived from Llama-2.
| |Training Data|Parameters|Content Length|GQA|Tokens|Learning Rate|
|---|---|---|---|---|---|---|
|Solar-Ko-Recovery|*A curated mix of Korean+English Corpora*|10.8B|4k|O|>30B*|5e<sup>-5</sup>|
> NOTE: Only Embedding layer and LM Head layer are trained.
**Vocab Expansion**
Vocab expansion is conducted on edited [upstage/solar-1-mini-tokenizer](https://huggingface.co/upstage/solar-1-mini-tokenizer), which is superset of Solar tokenizer.
| Model Name | Vocabulary Size | Description |
| --- | --- | --- |
| Original Solar | 32000 | Sentencepiece BPE |
| **solar-1-mini-tokenizer** | 64000 | Sentencepiece BPE. Added Ko/JP vocabs |
**Tokenizing "안녕하세요, 오늘은 날씨가 좋네요."**
- SOLAR-10.7B: 26 tokens
- Solar-Ko-Recovery: 7 tokens
| Model | Tokens |
| --- | --- |
| SOLAR-10.7B | `['▁', '안', '<0xEB>', '<0x85>', '<0x95>', '하', '세', '요', ',', '▁', '오', '<0xEB>', '<0x8A>', '<0x98>', '은', '▁', '날', '<0xEC>', '<0x94>', '<0xA8>', '가', '▁', '좋', '네', '요', '.']` |
| Solar-Ko-Recovery | `['▁안녕하세요', ',', '▁오늘은', '▁날씨가', '▁좋', '네요', '.']` |
**Tokenizing "Meet 10.7B Solar: Elevating Performance with Upstage Depth UP Scaling!"**
- SOLAR-10.7B: 22 tokens
- Solar-Ko-Recovery: 22 tokens
| Model | Tokens |
| --- | --- |
| SOLAR-10.7B | `['▁Meet', '▁', '1', '0', '.', '7', 'B', '▁Solar', ':', '▁E', 'lev', 'ating', '▁Performance', '▁with', '▁Up', 'stage', '▁Dep', 'th', '▁UP', '▁Scal', 'ing', '!']` |
| Solar-Ko-Recovery | `['▁Meet', '▁', '1', '0', '.', '7', 'B', '▁Solar', ':', '▁E', 'lev', 'ating', '▁Performance', '▁with', '▁Up', 'stage', '▁Dep', 'th', '▁UP', '▁Scal', 'ing', '!']` |
# LICENSE
Apache 2.0
# **Model Benchmark**
## LM Eval Harness - Korean
- Used EleutherAI's [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness)
- 5-shot scores
TBD
## Citation
TBD
## Acknowledgements
- Training support was provided by the [TPU Research Cloud](https://sites.research.google/trc/) program.
|
Sorour/merge-phi3
|
Sorour
| 2024-05-25T23:08:15Z | 155 | 0 |
transformers
|
[
"transformers",
"safetensors",
"phi3",
"text-generation",
"mergekit",
"merge",
"conversational",
"custom_code",
"arxiv:2403.19522",
"base_model:Sorour/phi3_cls_finred",
"base_model:merge:Sorour/phi3_cls_finred",
"base_model:Sorour/phi3_cls_fomc",
"base_model:merge:Sorour/phi3_cls_fomc",
"base_model:Sorour/phi3_cls_sentiment",
"base_model:merge:Sorour/phi3_cls_sentiment",
"base_model:microsoft/Phi-3-mini-4k-instruct",
"base_model:merge:microsoft/Phi-3-mini-4k-instruct",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-05-25T23:04:17Z |
---
base_model:
- microsoft/Phi-3-mini-4k-instruct
- Sorour/phi3_cls_sentiment
- Sorour/phi3_cls_fomc
- Sorour/phi3_cls_finred
library_name: transformers
tags:
- mergekit
- merge
---
# out
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
## Merge Details
### Merge Method
This model was merged using the [Model Stock](https://arxiv.org/abs/2403.19522) merge method using [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) as a base.
### Models Merged
The following models were included in the merge:
* [Sorour/phi3_cls_sentiment](https://huggingface.co/Sorour/phi3_cls_sentiment)
* [Sorour/phi3_cls_fomc](https://huggingface.co/Sorour/phi3_cls_fomc)
* [Sorour/phi3_cls_finred](https://huggingface.co/Sorour/phi3_cls_finred)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
models:
- model: Sorour/phi3_cls_finred
- model: Sorour/phi3_cls_sentiment
- model: Sorour/phi3_cls_fomc
merge_method: model_stock
base_model: microsoft/Phi-3-mini-4k-instruct
dtype: bfloat16
```
|
diwanshus/codequalbert
|
diwanshus
| 2024-05-25T23:04:54Z | 163 | 1 |
transformers
|
[
"transformers",
"safetensors",
"roberta",
"text-classification",
"en",
"arxiv:1910.09700",
"doi:10.57967/hf/2308",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2024-05-13T04:42:05Z |
---
library_name: transformers
license: apache-2.0
language:
- en
---
# Model Card for Model ID
CodeQualBert model is able to assess the quality of a given Python code. It can label the provided code into three quality tiers - low, average and high.
## Model Details
CodeQualBert is a fine-tuned CodeBert Model trained on CodeQual dataset.
### Model Description
<!-- Provide a longer summary of what this model is. -->
The model card of CodeQualBert model is shown below -
- **Developed by:** Diwanshu Shekhar and Dr. Mohammad Mahoor
- **Finetuned from model [optional]:** CodeBert
- **Language(s) (NLP):** English
- **License:** Apache 2.0
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
The model is intended to be used for Code Quality Assessent Task.
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
JawadC/brie_de_melun
|
JawadC
| 2024-05-25T23:02:01Z | 1 | 1 |
diffusers
|
[
"diffusers",
"text-to-image",
"diffusers-training",
"lora",
"template:sd-lora",
"stable-diffusion-xl",
"stable-diffusion-xl-diffusers",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:openrail++",
"region:us"
] |
text-to-image
| 2024-05-24T12:18:14Z |
---
license: openrail++
library_name: diffusers
tags:
- text-to-image
- diffusers-training
- diffusers
- lora
- template:sd-lora
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
- text-to-image
- text-to-image
- diffusers-training
- diffusers
- lora
- template:sd-lora
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: a photo of Brie de Melun cheese
widget:
- text: A piece of Brie de Melun cheese on a rustic wooden table.
output:
url: image_0.png
- text: A piece of Brie de Melun cheese on a rustic wooden table.
output:
url: image_1.png
- text: A piece of Brie de Melun cheese on a rustic wooden table.
output:
url: image_2.png
- text: A piece of Brie de Melun cheese on a rustic wooden table.
output:
url: image_3.png
---
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# SDXL LoRA DreamBooth - JawadC/brie_de_melun
<Gallery />
## Model description
These are JawadC/brie_de_melun LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.
The weights were trained using [DreamBooth](https://dreambooth.github.io/).
LoRA for the text encoder was enabled: False.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
## Trigger words
You should use a photo of Brie de Melun cheese to trigger the image generation.
## Download model
Weights for this model are available in Safetensors format.
[Download](JawadC/brie_de_melun/tree/main) them in the Files & versions tab.
## Intended uses & limitations
#### How to use
```python
# TODO: add an example code snippet for running this diffusion pipeline
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training details
[TODO: describe the data used to train the model]
|
ggcamacho2001/llamager
|
ggcamacho2001
| 2024-05-25T22:56:57Z | 0 | 0 | null |
[
"license:apache-2.0",
"region:us"
] | null | 2024-05-25T22:56:56Z |
---
license: apache-2.0
---
|
Subsets and Splits
Filtered Qwen2.5 Distill Models
Identifies specific configurations of models by filtering cards that contain 'distill', 'qwen2.5', '7b' while excluding certain base models and incorrect model ID patterns, uncovering unique model variants.
Filtered Model Cards Count
Finds the count of entries with specific card details that include 'distill', 'qwen2.5', '7b' but exclude certain base models, revealing valuable insights about the dataset's content distribution.
Filtered Distill Qwen 7B Models
Filters for specific card entries containing 'distill', 'qwen', and '7b', excluding certain strings and patterns, to identify relevant model configurations.
Filtered Qwen-7b Model Cards
The query performs a detailed filtering based on specific keywords and excludes certain entries, which could be useful for identifying a specific subset of cards but does not provide deeper insights or trends.
Filtered Qwen 7B Model Cards
The query filters for specific terms related to "distilled" or "distill", "qwen", and "7b" in the 'card' column but excludes certain base models, providing a limited set of entries for further inspection.
Qwen 7B Distilled Models
The query provides a basic filtering of records to find specific card names that include keywords related to distilled Qwen 7b models, excluding a particular base model, which gives limited insight but helps in focusing on relevant entries.
Qwen 7B Distilled Model Cards
The query filters data based on specific keywords in the modelId and card fields, providing limited insight primarily useful for locating specific entries rather than revealing broad patterns or trends.
Qwen 7B Distilled Models
Finds all entries containing the terms 'distilled', 'qwen', and '7b' in a case-insensitive manner, providing a filtered set of records but without deeper analysis.
Distilled Qwen 7B Models
The query filters for specific model IDs containing 'distilled', 'qwen', and '7b', providing a basic retrieval of relevant entries but without deeper analysis or insight.
Filtered Model Cards with Distill Qwen2.
Filters and retrieves records containing specific keywords in the card description while excluding certain phrases, providing a basic count of relevant entries.
Filtered Model Cards with Distill Qwen 7
The query filters specific variations of card descriptions containing 'distill', 'qwen', and '7b' while excluding a particular base model, providing limited but specific data retrieval.
Distill Qwen 7B Model Cards
The query filters and retrieves rows where the 'card' column contains specific keywords ('distill', 'qwen', and '7b'), providing a basic filter result that can help in identifying specific entries.