modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-21 06:31:18
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
567 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-21 06:30:37
card
stringlengths
11
1.01M
alyzbane/2025-01-21-15-57-43-swin-base-patch4-window7-224
alyzbane
2025-01-21T16:06:32Z
83
0
transformers
[ "transformers", "safetensors", "swin", "image-classification", "generated_from_trainer", "base_model:microsoft/swin-base-patch4-window7-224", "base_model:finetune:microsoft/swin-base-patch4-window7-224", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-01-21T16:06:16Z
--- library_name: transformers license: apache-2.0 base_model: microsoft/swin-base-patch4-window7-224 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: 2025-01-21-15-57-43-swin-base-patch4-window7-224 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 2025-01-21-15-57-43-swin-base-patch4-window7-224 This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224](https://huggingface.co/microsoft/swin-base-patch4-window7-224) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0384 - Precision: 0.9928 - Recall: 0.9926 - F1: 0.9926 - Accuracy: 0.992 - Top1 Accuracy: 0.9926 - Error Rate: 0.0080 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 32 - eval_batch_size: 32 - seed: 3407 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | Top1 Accuracy | Error Rate | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|:-------------:|:----------:| | 0.732 | 1.0 | 34 | 0.3980 | 0.9165 | 0.8741 | 0.8590 | 0.8649 | 0.8741 | 0.1351 | | 0.2462 | 2.0 | 68 | 0.1051 | 0.9538 | 0.9481 | 0.9484 | 0.9499 | 0.9481 | 0.0501 | | 0.1991 | 3.0 | 102 | 0.0384 | 0.9928 | 0.9926 | 0.9926 | 0.992 | 0.9926 | 0.0080 | | 0.1559 | 4.0 | 136 | 0.0890 | 0.9802 | 0.9778 | 0.9780 | 0.9777 | 0.9778 | 0.0223 | | 0.1024 | 5.0 | 170 | 0.1092 | 0.9863 | 0.9852 | 0.9852 | 0.9846 | 0.9852 | 0.0154 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.20.3
kk-aivio/d4645d9f-57ef-4051-956e-6f2dce2b2f36
kk-aivio
2025-01-21T16:05:47Z
6
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:peft-internal-testing/tiny-dummy-qwen2", "base_model:adapter:peft-internal-testing/tiny-dummy-qwen2", "region:us" ]
null
2025-01-21T16:05:22Z
--- library_name: peft base_model: peft-internal-testing/tiny-dummy-qwen2 tags: - axolotl - generated_from_trainer model-index: - name: d4645d9f-57ef-4051-956e-6f2dce2b2f36 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: peft-internal-testing/tiny-dummy-qwen2 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - e775cbf0abe327ae_train_data.json ds_type: json format: custom path: /workspace/input_data/e775cbf0abe327ae_train_data.json type: field_instruction: instruction field_output: output format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: kk-aivio/d4645d9f-57ef-4051-956e-6f2dce2b2f36 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/e775cbf0abe327ae_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: b84adb33-79b3-4680-b053-92bfa0dc3c21 wandb_project: Birthday-SN56-11-Gradients-On-Demand wandb_run: your_name wandb_runid: b84adb33-79b3-4680-b053-92bfa0dc3c21 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # d4645d9f-57ef-4051-956e-6f2dce2b2f36 This model is a fine-tuned version of [peft-internal-testing/tiny-dummy-qwen2](https://huggingface.co/peft-internal-testing/tiny-dummy-qwen2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 11.9291 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 11.9328 | 0.0012 | 1 | 11.9293 | | 11.9321 | 0.0037 | 3 | 11.9293 | | 11.9371 | 0.0074 | 6 | 11.9292 | | 11.9277 | 0.0111 | 9 | 11.9291 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
GoodwinDad/msdovgal
GoodwinDad
2025-01-21T16:04:40Z
37
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-01-21T12:47:16Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: msdovgal --- # Msdovgal <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `msdovgal` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('GoodwinDad/msdovgal', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
Best000/f771a33c-4cc6-4402-a8e2-0c95b1f98ad9
Best000
2025-01-21T16:04:36Z
8
0
peft
[ "peft", "safetensors", "bloom", "axolotl", "generated_from_trainer", "base_model:bigscience/bloom-560m", "base_model:adapter:bigscience/bloom-560m", "license:bigscience-bloom-rail-1.0", "region:us" ]
null
2025-01-21T16:04:08Z
--- library_name: peft license: bigscience-bloom-rail-1.0 base_model: bigscience/bloom-560m tags: - axolotl - generated_from_trainer model-index: - name: f771a33c-4cc6-4402-a8e2-0c95b1f98ad9 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: bigscience/bloom-560m bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 5c4eef0d51e921ea_train_data.json ds_type: json format: custom path: /workspace/input_data/5c4eef0d51e921ea_train_data.json type: field_input: world_literals field_instruction: logical_form_pretty field_output: question format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: Best000/f771a33c-4cc6-4402-a8e2-0c95b1f98ad9 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/5c4eef0d51e921ea_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 847dcfd1-dbaf-4b00-af61-47e0ea3d66d1 wandb_project: Birthday-SN56-16-Gradients-On-Demand wandb_run: your_name wandb_runid: 847dcfd1-dbaf-4b00-af61-47e0ea3d66d1 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # f771a33c-4cc6-4402-a8e2-0c95b1f98ad9 This model is a fine-tuned version of [bigscience/bloom-560m](https://huggingface.co/bigscience/bloom-560m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.1095 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 14.3622 | 0.0033 | 1 | 3.6128 | | 14.2254 | 0.0098 | 3 | 3.5964 | | 14.6994 | 0.0197 | 6 | 3.4341 | | 12.7551 | 0.0295 | 9 | 3.1095 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
leonel4rd/Asiranime
leonel4rd
2025-01-21T16:04:30Z
58
2
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
2025-01-21T16:04:18Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: '-' output: url: images/27357863.jpeg base_model: black-forest-labs/FLUX.1-dev instance_prompt: AsirAnimeillustrationflux --- # Asiranime <Gallery /> ## Trigger words You should use `AsirAnimeillustrationflux` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/leonel4rd/Asiranime/tree/main) them in the Files & versions tab.
chchen/Llama-3.1-8B-Instruct-Reward-1000
chchen
2025-01-21T16:03:07Z
8
0
peft
[ "peft", "safetensors", "llama-factory", "lora", "generated_from_trainer", "base_model:meta-llama/Llama-3.1-8B-Instruct", "base_model:adapter:meta-llama/Llama-3.1-8B-Instruct", "license:llama3.1", "region:us" ]
null
2025-01-17T15:50:17Z
--- base_model: meta-llama/Llama-3.1-8B-Instruct library_name: peft license: llama3.1 metrics: - accuracy tags: - llama-factory - lora - generated_from_trainer model-index: - name: Llama-3.1-8B-Instruct-reward-1000 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Llama-3.1-8B-Instruct-reward-1000 This model is a fine-tuned version of [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct) on the bct_non_cot_dpo_1000 dataset. It achieves the following results on the evaluation set: - Loss: 1.2493 - Accuracy: 0.89 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.2705 | 1.7778 | 50 | 0.2345 | 0.9 | | 0.0559 | 3.5556 | 100 | 0.6941 | 0.88 | | 0.0063 | 5.3333 | 150 | 0.9227 | 0.89 | | 0.0115 | 7.1111 | 200 | 1.2608 | 0.88 | | 0.0025 | 8.8889 | 250 | 1.2527 | 0.89 | ### Framework versions - PEFT 0.12.0 - Transformers 4.45.2 - Pytorch 2.3.0 - Datasets 2.19.0 - Tokenizers 0.20.0
kk-aivio/df0cc05f-3e49-4926-952a-5499a46d59a7
kk-aivio
2025-01-21T16:02:49Z
6
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:sethuiyer/Medichat-Llama3-8B", "base_model:adapter:sethuiyer/Medichat-Llama3-8B", "license:other", "region:us" ]
null
2025-01-21T16:00:49Z
--- library_name: peft license: other base_model: sethuiyer/Medichat-Llama3-8B tags: - axolotl - generated_from_trainer model-index: - name: df0cc05f-3e49-4926-952a-5499a46d59a7 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: sethuiyer/Medichat-Llama3-8B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 609aff797e4a07c0_train_data.json ds_type: json format: custom path: /workspace/input_data/609aff797e4a07c0_train_data.json type: field_instruction: prompt field_output: generated_text format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: kk-aivio/df0cc05f-3e49-4926-952a-5499a46d59a7 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/609aff797e4a07c0_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: ad699451-0082-42e9-b976-cb46388d2b2c wandb_project: Birthday-SN56-11-Gradients-On-Demand wandb_run: your_name wandb_runid: ad699451-0082-42e9-b976-cb46388d2b2c warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # df0cc05f-3e49-4926-952a-5499a46d59a7 This model is a fine-tuned version of [sethuiyer/Medichat-Llama3-8B](https://huggingface.co/sethuiyer/Medichat-Llama3-8B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4560 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.4234 | 0.0007 | 1 | 0.6777 | | 0.47 | 0.0021 | 3 | 0.6749 | | 0.4296 | 0.0043 | 6 | 0.6138 | | 0.8744 | 0.0064 | 9 | 0.4560 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
AquilaX-AI/DB-Summarizer
AquilaX-AI
2025-01-21T16:02:30Z
63
0
null
[ "safetensors", "qwen2", "license:apache-2.0", "region:us" ]
null
2024-10-08T15:00:02Z
--- license: apache-2.0 --- ## INFERENCE CODE ```bash pip install transformers[torch] ``` ```python from transformers import AutoTokenizer, AutoModelForCausalLM, TextStreamer import torch import time tokenizer = AutoTokenizer.from_pretrained("AquilaX-AI/DB-Summarizer") model = AutoModelForCausalLM.from_pretrained("AquilaX-AI/DB-Summarizer") device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") question = "How many Vulnerability found today" db_result = "243" summ_inp = f"""<|im_start|>system Generate a clear and accurate response based on the user's question and the database output.<|im_end|> <|im_start|>user user_question: {question} db_response: {db_result}<|im_end|> <|im_start|>assistant""" import time start = time.time() encodeds = tokenizer(summ_inp, return_tensors="pt",truncation=True).input_ids.to(device) model.to(device) text_streamer = TextStreamer(tokenizer, skip_prompt = True) response = model.generate( input_ids=encodeds, streamer=text_streamer, max_new_tokens=512, use_cache=True, pad_token_id=151645, eos_token_id=151645, num_return_sequences=1 ) end = time.time() print(f"Time taken: {end - start}") ```
nblinh/77245b95-430e-4200-b6ea-acdbedcc2997
nblinh
2025-01-21T16:02:12Z
6
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:Maykeye/TinyLLama-v0", "base_model:adapter:Maykeye/TinyLLama-v0", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-21T15:57:49Z
--- library_name: peft license: apache-2.0 base_model: Maykeye/TinyLLama-v0 tags: - axolotl - generated_from_trainer model-index: - name: 77245b95-430e-4200-b6ea-acdbedcc2997 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Maykeye/TinyLLama-v0 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 90bd143c6078d776_train_data.json ds_type: json format: custom path: /workspace/input_data/90bd143c6078d776_train_data.json type: field_instruction: source field_output: target format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nblinh/77245b95-430e-4200-b6ea-acdbedcc2997 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/90bd143c6078d776_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 26eabe94-c6a5-4bc1-b266-ff2c83f293ea wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 26eabe94-c6a5-4bc1-b266-ff2c83f293ea warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 77245b95-430e-4200-b6ea-acdbedcc2997 This model is a fine-tuned version of [Maykeye/TinyLLama-v0](https://huggingface.co/Maykeye/TinyLLama-v0) on the None dataset. It achieves the following results on the evaluation set: - Loss: 9.4738 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 9.1882 | 0.0207 | 200 | 9.4738 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nbninh/5c91b54c-e356-4f6d-8756-71674a2618f9
nbninh
2025-01-21T16:01:44Z
6
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:Maykeye/TinyLLama-v0", "base_model:adapter:Maykeye/TinyLLama-v0", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-21T15:57:40Z
--- library_name: peft license: apache-2.0 base_model: Maykeye/TinyLLama-v0 tags: - axolotl - generated_from_trainer model-index: - name: 5c91b54c-e356-4f6d-8756-71674a2618f9 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Maykeye/TinyLLama-v0 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 90bd143c6078d776_train_data.json ds_type: json format: custom path: /workspace/input_data/90bd143c6078d776_train_data.json type: field_instruction: source field_output: target format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nbninh/5c91b54c-e356-4f6d-8756-71674a2618f9 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/90bd143c6078d776_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 26eabe94-c6a5-4bc1-b266-ff2c83f293ea wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 26eabe94-c6a5-4bc1-b266-ff2c83f293ea warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 5c91b54c-e356-4f6d-8756-71674a2618f9 This model is a fine-tuned version of [Maykeye/TinyLLama-v0](https://huggingface.co/Maykeye/TinyLLama-v0) on the None dataset. It achieves the following results on the evaluation set: - Loss: 9.4135 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 9.1316 | 0.0207 | 200 | 9.4135 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
MayBashendy/ArabicNewSplits7_usingWellWrittenEssays_FineTuningAraBERT_run3_AugV5_k1_task7_organization
MayBashendy
2025-01-21T15:58:33Z
5
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:aubmindlab/bert-base-arabertv02", "base_model:finetune:aubmindlab/bert-base-arabertv02", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-01-21T15:56:00Z
--- library_name: transformers base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: ArabicNewSplits7_usingWellWrittenEssays_FineTuningAraBERT_run3_AugV5_k1_task7_organization results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ArabicNewSplits7_usingWellWrittenEssays_FineTuningAraBERT_run3_AugV5_k1_task7_organization This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9319 - Qwk: 0.0982 - Mse: 0.9319 - Rmse: 0.9653 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse | |:-------------:|:-------:|:----:|:---------------:|:-------:|:------:|:------:| | No log | 0.6667 | 2 | 4.2154 | -0.0060 | 4.2154 | 2.0531 | | No log | 1.3333 | 4 | 2.1734 | -0.0316 | 2.1734 | 1.4742 | | No log | 2.0 | 6 | 1.8642 | 0.0298 | 1.8642 | 1.3653 | | No log | 2.6667 | 8 | 1.6716 | 0.0233 | 1.6716 | 1.2929 | | No log | 3.3333 | 10 | 0.9513 | 0.0860 | 0.9513 | 0.9753 | | No log | 4.0 | 12 | 1.3112 | 0.0390 | 1.3112 | 1.1451 | | No log | 4.6667 | 14 | 1.7222 | 0.0049 | 1.7222 | 1.3123 | | No log | 5.3333 | 16 | 1.2439 | 0.0686 | 1.2439 | 1.1153 | | No log | 6.0 | 18 | 0.8313 | 0.2813 | 0.8313 | 0.9117 | | No log | 6.6667 | 20 | 0.8361 | 0.2739 | 0.8361 | 0.9144 | | No log | 7.3333 | 22 | 1.0473 | 0.1184 | 1.0473 | 1.0234 | | No log | 8.0 | 24 | 1.5759 | 0.0898 | 1.5759 | 1.2554 | | No log | 8.6667 | 26 | 1.2758 | 0.0312 | 1.2758 | 1.1295 | | No log | 9.3333 | 28 | 0.9355 | 0.2339 | 0.9355 | 0.9672 | | No log | 10.0 | 30 | 0.8571 | 0.2277 | 0.8571 | 0.9258 | | No log | 10.6667 | 32 | 0.9790 | 0.1600 | 0.9790 | 0.9895 | | No log | 11.3333 | 34 | 1.1933 | 0.1182 | 1.1933 | 1.0924 | | No log | 12.0 | 36 | 1.0288 | 0.1641 | 1.0288 | 1.0143 | | No log | 12.6667 | 38 | 0.9725 | 0.1531 | 0.9725 | 0.9862 | | No log | 13.3333 | 40 | 1.0411 | 0.0752 | 1.0411 | 1.0203 | | No log | 14.0 | 42 | 1.1477 | 0.1056 | 1.1477 | 1.0713 | | No log | 14.6667 | 44 | 1.1977 | 0.0996 | 1.1977 | 1.0944 | | No log | 15.3333 | 46 | 1.2576 | -0.0026 | 1.2576 | 1.1214 | | No log | 16.0 | 48 | 1.4412 | 0.0858 | 1.4412 | 1.2005 | | No log | 16.6667 | 50 | 1.3153 | 0.0020 | 1.3153 | 1.1468 | | No log | 17.3333 | 52 | 1.1836 | 0.0972 | 1.1836 | 1.0879 | | No log | 18.0 | 54 | 1.0634 | 0.1653 | 1.0634 | 1.0312 | | No log | 18.6667 | 56 | 1.1575 | 0.0671 | 1.1575 | 1.0759 | | No log | 19.3333 | 58 | 1.3467 | 0.0858 | 1.3467 | 1.1605 | | No log | 20.0 | 60 | 1.2003 | 0.0999 | 1.2003 | 1.0956 | | No log | 20.6667 | 62 | 1.0722 | 0.1820 | 1.0722 | 1.0355 | | No log | 21.3333 | 64 | 1.0590 | 0.1449 | 1.0590 | 1.0291 | | No log | 22.0 | 66 | 1.1925 | 0.0966 | 1.1925 | 1.0920 | | No log | 22.6667 | 68 | 1.2008 | 0.1281 | 1.2008 | 1.0958 | | No log | 23.3333 | 70 | 1.1068 | 0.1472 | 1.1068 | 1.0521 | | No log | 24.0 | 72 | 1.0672 | 0.0834 | 1.0672 | 1.0331 | | No log | 24.6667 | 74 | 1.0327 | 0.1917 | 1.0327 | 1.0162 | | No log | 25.3333 | 76 | 0.9911 | 0.1490 | 0.9911 | 0.9956 | | No log | 26.0 | 78 | 0.9620 | 0.1234 | 0.9620 | 0.9808 | | No log | 26.6667 | 80 | 0.8954 | 0.2449 | 0.8954 | 0.9462 | | No log | 27.3333 | 82 | 0.8566 | 0.2809 | 0.8566 | 0.9255 | | No log | 28.0 | 84 | 0.8661 | 0.2479 | 0.8661 | 0.9306 | | No log | 28.6667 | 86 | 0.9168 | 0.1547 | 0.9168 | 0.9575 | | No log | 29.3333 | 88 | 0.9412 | 0.2036 | 0.9412 | 0.9702 | | No log | 30.0 | 90 | 0.9896 | 0.2238 | 0.9896 | 0.9948 | | No log | 30.6667 | 92 | 1.0643 | 0.1479 | 1.0643 | 1.0317 | | No log | 31.3333 | 94 | 1.0855 | 0.1545 | 1.0855 | 1.0419 | | No log | 32.0 | 96 | 1.0320 | 0.1225 | 1.0320 | 1.0159 | | No log | 32.6667 | 98 | 0.9797 | 0.1196 | 0.9797 | 0.9898 | | No log | 33.3333 | 100 | 0.9685 | 0.1578 | 0.9685 | 0.9841 | | No log | 34.0 | 102 | 0.9433 | 0.1231 | 0.9433 | 0.9712 | | No log | 34.6667 | 104 | 0.9862 | 0.2164 | 0.9862 | 0.9931 | | No log | 35.3333 | 106 | 1.0853 | 0.0443 | 1.0853 | 1.0418 | | No log | 36.0 | 108 | 1.0853 | 0.0741 | 1.0853 | 1.0418 | | No log | 36.6667 | 110 | 1.0564 | 0.0995 | 1.0564 | 1.0278 | | No log | 37.3333 | 112 | 1.0430 | 0.0991 | 1.0430 | 1.0213 | | No log | 38.0 | 114 | 1.0199 | 0.1600 | 1.0199 | 1.0099 | | No log | 38.6667 | 116 | 1.0008 | 0.1682 | 1.0008 | 1.0004 | | No log | 39.3333 | 118 | 0.9581 | 0.1682 | 0.9581 | 0.9788 | | No log | 40.0 | 120 | 0.9366 | 0.2273 | 0.9366 | 0.9678 | | No log | 40.6667 | 122 | 0.9447 | 0.2303 | 0.9447 | 0.9720 | | No log | 41.3333 | 124 | 0.9732 | 0.1682 | 0.9732 | 0.9865 | | No log | 42.0 | 126 | 0.9248 | 0.2652 | 0.9248 | 0.9617 | | No log | 42.6667 | 128 | 0.9043 | 0.2061 | 0.9043 | 0.9509 | | No log | 43.3333 | 130 | 0.9117 | 0.2495 | 0.9117 | 0.9548 | | No log | 44.0 | 132 | 0.8953 | 0.2495 | 0.8953 | 0.9462 | | No log | 44.6667 | 134 | 0.8936 | 0.2681 | 0.8936 | 0.9453 | | No log | 45.3333 | 136 | 0.9254 | 0.2043 | 0.9254 | 0.9620 | | No log | 46.0 | 138 | 0.9858 | 0.1846 | 0.9858 | 0.9929 | | No log | 46.6667 | 140 | 0.9915 | 0.1814 | 0.9915 | 0.9957 | | No log | 47.3333 | 142 | 1.0114 | 0.1446 | 1.0114 | 1.0057 | | No log | 48.0 | 144 | 1.0252 | 0.1725 | 1.0252 | 1.0125 | | No log | 48.6667 | 146 | 1.0566 | 0.1401 | 1.0566 | 1.0279 | | No log | 49.3333 | 148 | 1.0272 | 0.1725 | 1.0272 | 1.0135 | | No log | 50.0 | 150 | 1.0131 | 0.1725 | 1.0131 | 1.0065 | | No log | 50.6667 | 152 | 0.9593 | 0.0685 | 0.9593 | 0.9795 | | No log | 51.3333 | 154 | 0.9186 | 0.1253 | 0.9186 | 0.9584 | | No log | 52.0 | 156 | 0.9174 | 0.1219 | 0.9174 | 0.9578 | | No log | 52.6667 | 158 | 0.9301 | 0.1253 | 0.9301 | 0.9644 | | No log | 53.3333 | 160 | 0.9585 | 0.0325 | 0.9585 | 0.9790 | | No log | 54.0 | 162 | 0.9754 | 0.0685 | 0.9754 | 0.9876 | | No log | 54.6667 | 164 | 0.9639 | 0.0912 | 0.9639 | 0.9818 | | No log | 55.3333 | 166 | 0.9458 | 0.1871 | 0.9458 | 0.9725 | | No log | 56.0 | 168 | 0.9432 | 0.1273 | 0.9432 | 0.9712 | | No log | 56.6667 | 170 | 0.9894 | 0.1682 | 0.9894 | 0.9947 | | No log | 57.3333 | 172 | 1.0290 | 0.1395 | 1.0290 | 1.0144 | | No log | 58.0 | 174 | 1.0209 | 0.1395 | 1.0209 | 1.0104 | | No log | 58.6667 | 176 | 0.9581 | 0.1682 | 0.9581 | 0.9788 | | No log | 59.3333 | 178 | 0.9120 | 0.2203 | 0.9120 | 0.9550 | | No log | 60.0 | 180 | 0.9185 | 0.2109 | 0.9185 | 0.9584 | | No log | 60.6667 | 182 | 0.9187 | 0.2077 | 0.9187 | 0.9585 | | No log | 61.3333 | 184 | 0.9137 | 0.1820 | 0.9137 | 0.9559 | | No log | 62.0 | 186 | 0.9230 | 0.1888 | 0.9230 | 0.9607 | | No log | 62.6667 | 188 | 0.9289 | 0.2486 | 0.9289 | 0.9638 | | No log | 63.3333 | 190 | 0.9298 | 0.2192 | 0.9298 | 0.9643 | | No log | 64.0 | 192 | 0.9246 | 0.2192 | 0.9246 | 0.9616 | | No log | 64.6667 | 194 | 0.9413 | 0.2192 | 0.9413 | 0.9702 | | No log | 65.3333 | 196 | 0.9668 | 0.1600 | 0.9668 | 0.9833 | | No log | 66.0 | 198 | 0.9989 | 0.1600 | 0.9989 | 0.9994 | | No log | 66.6667 | 200 | 0.9965 | 0.1600 | 0.9965 | 0.9983 | | No log | 67.3333 | 202 | 0.9830 | 0.1600 | 0.9830 | 0.9914 | | No log | 68.0 | 204 | 0.9687 | 0.1785 | 0.9687 | 0.9842 | | No log | 68.6667 | 206 | 0.9718 | 0.2102 | 0.9718 | 0.9858 | | No log | 69.3333 | 208 | 0.9771 | 0.2053 | 0.9771 | 0.9885 | | No log | 70.0 | 210 | 0.9827 | 0.1825 | 0.9827 | 0.9913 | | No log | 70.6667 | 212 | 0.9785 | 0.1825 | 0.9785 | 0.9892 | | No log | 71.3333 | 214 | 0.9779 | 0.0627 | 0.9779 | 0.9889 | | No log | 72.0 | 216 | 0.9670 | 0.0635 | 0.9670 | 0.9834 | | No log | 72.6667 | 218 | 0.9447 | 0.0627 | 0.9447 | 0.9719 | | No log | 73.3333 | 220 | 0.9350 | 0.0275 | 0.9350 | 0.9670 | | No log | 74.0 | 222 | 0.9266 | 0.0602 | 0.9266 | 0.9626 | | No log | 74.6667 | 224 | 0.9231 | 0.1506 | 0.9231 | 0.9608 | | No log | 75.3333 | 226 | 0.9273 | 0.1179 | 0.9273 | 0.9630 | | No log | 76.0 | 228 | 0.9238 | 0.1506 | 0.9238 | 0.9611 | | No log | 76.6667 | 230 | 0.9227 | 0.0602 | 0.9227 | 0.9606 | | No log | 77.3333 | 232 | 0.9349 | 0.0640 | 0.9349 | 0.9669 | | No log | 78.0 | 234 | 0.9516 | 0.0692 | 0.9516 | 0.9755 | | No log | 78.6667 | 236 | 0.9618 | 0.0692 | 0.9618 | 0.9807 | | No log | 79.3333 | 238 | 0.9593 | 0.0692 | 0.9593 | 0.9795 | | No log | 80.0 | 240 | 0.9582 | 0.0339 | 0.9582 | 0.9789 | | No log | 80.6667 | 242 | 0.9522 | 0.0640 | 0.9522 | 0.9758 | | No log | 81.3333 | 244 | 0.9438 | 0.0640 | 0.9438 | 0.9715 | | No log | 82.0 | 246 | 0.9396 | 0.0640 | 0.9396 | 0.9693 | | No log | 82.6667 | 248 | 0.9340 | 0.0640 | 0.9340 | 0.9665 | | No log | 83.3333 | 250 | 0.9324 | 0.0912 | 0.9324 | 0.9656 | | No log | 84.0 | 252 | 0.9336 | 0.1246 | 0.9336 | 0.9662 | | No log | 84.6667 | 254 | 0.9296 | 0.1825 | 0.9296 | 0.9642 | | No log | 85.3333 | 256 | 0.9219 | 0.1820 | 0.9219 | 0.9602 | | No log | 86.0 | 258 | 0.9108 | 0.1487 | 0.9108 | 0.9543 | | No log | 86.6667 | 260 | 0.8961 | 0.1487 | 0.8961 | 0.9466 | | No log | 87.3333 | 262 | 0.8845 | 0.1820 | 0.8845 | 0.9405 | | No log | 88.0 | 264 | 0.8800 | 0.2838 | 0.8800 | 0.9381 | | No log | 88.6667 | 266 | 0.8824 | 0.2203 | 0.8824 | 0.9394 | | No log | 89.3333 | 268 | 0.8902 | 0.1661 | 0.8902 | 0.9435 | | No log | 90.0 | 270 | 0.9027 | 0.1016 | 0.9027 | 0.9501 | | No log | 90.6667 | 272 | 0.9134 | 0.0982 | 0.9134 | 0.9557 | | No log | 91.3333 | 274 | 0.9268 | 0.1307 | 0.9268 | 0.9627 | | No log | 92.0 | 276 | 0.9343 | 0.1307 | 0.9343 | 0.9666 | | No log | 92.6667 | 278 | 0.9366 | 0.1307 | 0.9366 | 0.9678 | | No log | 93.3333 | 280 | 0.9405 | 0.1307 | 0.9405 | 0.9698 | | No log | 94.0 | 282 | 0.9455 | 0.1307 | 0.9455 | 0.9724 | | No log | 94.6667 | 284 | 0.9463 | 0.1307 | 0.9463 | 0.9728 | | No log | 95.3333 | 286 | 0.9443 | 0.1307 | 0.9443 | 0.9718 | | No log | 96.0 | 288 | 0.9403 | 0.1307 | 0.9403 | 0.9697 | | No log | 96.6667 | 290 | 0.9371 | 0.1307 | 0.9371 | 0.9681 | | No log | 97.3333 | 292 | 0.9352 | 0.1307 | 0.9352 | 0.9670 | | No log | 98.0 | 294 | 0.9332 | 0.1307 | 0.9332 | 0.9660 | | No log | 98.6667 | 296 | 0.9321 | 0.1307 | 0.9321 | 0.9655 | | No log | 99.3333 | 298 | 0.9318 | 0.0982 | 0.9318 | 0.9653 | | No log | 100.0 | 300 | 0.9319 | 0.0982 | 0.9319 | 0.9653 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu118 - Datasets 2.21.0 - Tokenizers 0.19.1
denbeo/79bb9edb-7359-4a19-a6e0-623aa6e78627
denbeo
2025-01-21T15:56:46Z
11
0
peft
[ "peft", "safetensors", "gemma2", "axolotl", "generated_from_trainer", "base_model:unsloth/gemma-2-9b-it", "base_model:adapter:unsloth/gemma-2-9b-it", "license:gemma", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-21T14:41:20Z
--- library_name: peft license: gemma base_model: unsloth/gemma-2-9b-it tags: - axolotl - generated_from_trainer model-index: - name: 79bb9edb-7359-4a19-a6e0-623aa6e78627 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/gemma-2-9b-it bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 2adafa906e5c58da_train_data.json ds_type: json format: custom path: /workspace/input_data/2adafa906e5c58da_train_data.json type: field_input: '' field_instruction: anchor field_output: positive format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: denbeo/79bb9edb-7359-4a19-a6e0-623aa6e78627 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/2adafa906e5c58da_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: aa7d9493-c5b5-4e83-b6c1-5e33a1c2ac47 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: aa7d9493-c5b5-4e83-b6c1-5e33a1c2ac47 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 79bb9edb-7359-4a19-a6e0-623aa6e78627 This model is a fine-tuned version of [unsloth/gemma-2-9b-it](https://huggingface.co/unsloth/gemma-2-9b-it) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4330 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.4058 | 0.2224 | 200 | 1.4330 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
leonel4rd/Miyazakiv2
leonel4rd
2025-01-21T15:56:06Z
86
2
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
2025-01-21T15:55:25Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: '-' output: url: images/ComfyUI_07043_.jpeg base_model: black-forest-labs/FLUX.1-dev instance_prompt: Miyazaki anime art --- # Miyazakiv2 <Gallery /> ## Trigger words You should use `Miyazaki anime art` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/leonel4rd/Miyazakiv2/tree/main) them in the Files & versions tab.
aleegis09/3312c8b3-b859-4115-9352-c90217fc439b
aleegis09
2025-01-21T15:55:04Z
6
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/Llama-3.2-3B", "base_model:adapter:unsloth/Llama-3.2-3B", "license:llama3.2", "region:us" ]
null
2025-01-21T15:34:25Z
--- library_name: peft license: llama3.2 base_model: unsloth/Llama-3.2-3B tags: - axolotl - generated_from_trainer model-index: - name: 3312c8b3-b859-4115-9352-c90217fc439b results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Llama-3.2-3B bf16: true chat_template: llama3 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - c844dd0553d03cf0_train_data.json ds_type: json format: custom path: /workspace/input_data/c844dd0553d03cf0_train_data.json type: field_input: candidate_answers field_instruction: story field_output: question format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: aleegis09/3312c8b3-b859-4115-9352-c90217fc439b hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/c844dd0553d03cf0_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 436d9b9b-aa81-4a08-bc24-ec0c4c55947d wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 436d9b9b-aa81-4a08-bc24-ec0c4c55947d warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 3312c8b3-b859-4115-9352-c90217fc439b This model is a fine-tuned version of [unsloth/Llama-3.2-3B](https://huggingface.co/unsloth/Llama-3.2-3B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0921 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.563 | 0.0011 | 1 | 1.8274 | | 0.1848 | 0.0567 | 50 | 0.1193 | | 0.1106 | 0.1133 | 100 | 0.1022 | | 0.1394 | 0.1700 | 150 | 0.0974 | | 0.1041 | 0.2266 | 200 | 0.0921 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
demohong/217282dd-8bdb-41dc-9882-69a757d954d1
demohong
2025-01-21T15:54:39Z
6
0
peft
[ "peft", "safetensors", "phi3", "axolotl", "generated_from_trainer", "custom_code", "base_model:microsoft/Phi-3.5-mini-instruct", "base_model:adapter:microsoft/Phi-3.5-mini-instruct", "license:mit", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-21T15:37:33Z
--- library_name: peft license: mit base_model: microsoft/Phi-3.5-mini-instruct tags: - axolotl - generated_from_trainer model-index: - name: 217282dd-8bdb-41dc-9882-69a757d954d1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: microsoft/Phi-3.5-mini-instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 2bfda0aa0cefbd5c_train_data.json ds_type: json format: custom path: /workspace/input_data/2bfda0aa0cefbd5c_train_data.json type: field_instruction: question field_output: answer format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: demohong/217282dd-8bdb-41dc-9882-69a757d954d1 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/2bfda0aa0cefbd5c_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 20951530-b524-445b-8766-809a9e2fe145 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 20951530-b524-445b-8766-809a9e2fe145 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 217282dd-8bdb-41dc-9882-69a757d954d1 This model is a fine-tuned version of [microsoft/Phi-3.5-mini-instruct](https://huggingface.co/microsoft/Phi-3.5-mini-instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3709 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 5.4645 | 0.1446 | 200 | 1.3709 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
ClarenceDan/83062a9b-61b2-4f71-96c5-a2f228c79434
ClarenceDan
2025-01-21T15:54:05Z
6
0
peft
[ "peft", "safetensors", "gpt_neox", "axolotl", "generated_from_trainer", "base_model:EleutherAI/pythia-14m", "base_model:adapter:EleutherAI/pythia-14m", "region:us" ]
null
2025-01-21T15:45:39Z
--- library_name: peft base_model: EleutherAI/pythia-14m tags: - axolotl - generated_from_trainer model-index: - name: 83062a9b-61b2-4f71-96c5-a2f228c79434 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: EleutherAI/pythia-14m bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 2396a570a1ea2a9e_train_data.json ds_type: json format: custom path: /workspace/input_data/2396a570a1ea2a9e_train_data.json type: field_instruction: question2 field_output: question1 format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: ClarenceDan/83062a9b-61b2-4f71-96c5-a2f228c79434 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/2396a570a1ea2a9e_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 640589b9-10fe-4a37-8ea0-cd558f874b67 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 640589b9-10fe-4a37-8ea0-cd558f874b67 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 83062a9b-61b2-4f71-96c5-a2f228c79434 This model is a fine-tuned version of [EleutherAI/pythia-14m](https://huggingface.co/EleutherAI/pythia-14m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 6.4283 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 24.8808 | 0.0000 | 1 | 6.5707 | | 25.8993 | 0.0000 | 3 | 6.5570 | | 24.0359 | 0.0001 | 6 | 6.4997 | | 27.9566 | 0.0001 | 9 | 6.4283 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Best000/b728671c-8b8f-4068-a04a-e46003c29c8b
Best000
2025-01-21T15:53:31Z
9
0
peft
[ "peft", "safetensors", "gemma2", "axolotl", "generated_from_trainer", "base_model:unsloth/gemma-2-9b-it", "base_model:adapter:unsloth/gemma-2-9b-it", "license:gemma", "region:us" ]
null
2025-01-21T15:49:38Z
--- library_name: peft license: gemma base_model: unsloth/gemma-2-9b-it tags: - axolotl - generated_from_trainer model-index: - name: b728671c-8b8f-4068-a04a-e46003c29c8b results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/gemma-2-9b-it bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 2adafa906e5c58da_train_data.json ds_type: json format: custom path: /workspace/input_data/2adafa906e5c58da_train_data.json type: field_input: '' field_instruction: anchor field_output: positive format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: Best000/b728671c-8b8f-4068-a04a-e46003c29c8b hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/2adafa906e5c58da_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: aa7d9493-c5b5-4e83-b6c1-5e33a1c2ac47 wandb_project: Birthday-SN56-16-Gradients-On-Demand wandb_run: your_name wandb_runid: aa7d9493-c5b5-4e83-b6c1-5e33a1c2ac47 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # b728671c-8b8f-4068-a04a-e46003c29c8b This model is a fine-tuned version of [unsloth/gemma-2-9b-it](https://huggingface.co/unsloth/gemma-2-9b-it) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6570 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.6761 | 0.0011 | 1 | 1.7808 | | 1.6811 | 0.0033 | 3 | 1.7723 | | 1.6479 | 0.0067 | 6 | 1.6822 | | 1.5671 | 0.0100 | 9 | 1.6570 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
ajtaltarabukin2022/8a4bb738-86f6-4be5-ac9c-d23e9000eb08
ajtaltarabukin2022
2025-01-21T15:53:09Z
8
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:unsloth/zephyr-sft", "base_model:adapter:unsloth/zephyr-sft", "license:apache-2.0", "4-bit", "bitsandbytes", "region:us" ]
null
2025-01-21T11:43:48Z
--- library_name: peft license: apache-2.0 base_model: unsloth/zephyr-sft tags: - axolotl - generated_from_trainer model-index: - name: 8a4bb738-86f6-4be5-ac9c-d23e9000eb08 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/zephyr-sft bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 6bb273fb8d3c0253_train_data.json ds_type: json format: custom path: /workspace/input_data/6bb273fb8d3c0253_train_data.json type: field_input: condition field_instruction: drugName field_output: review format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: null eval_max_new_tokens: 256 eval_steps: 5 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: false hub_model_id: ajtaltarabukin2022/8a4bb738-86f6-4be5-ac9c-d23e9000eb08 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: true load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 75GiB max_steps: 40 micro_batch_size: 2 mlflow_experiment_name: /tmp/6bb273fb8d3c0253_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: f44a8599-bd2c-4b24-9468-fb17670debf8 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: f44a8599-bd2c-4b24-9468-fb17670debf8 warmup_steps: 10 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 8a4bb738-86f6-4be5-ac9c-d23e9000eb08 This model is a fine-tuned version of [unsloth/zephyr-sft](https://huggingface.co/unsloth/zephyr-sft) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 40 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0000 | 1 | nan | | 0.0 | 0.0002 | 5 | nan | | 0.0 | 0.0004 | 10 | nan | | 0.0 | 0.0006 | 15 | nan | | 0.0 | 0.0008 | 20 | nan | | 0.0 | 0.0010 | 25 | nan | | 0.0 | 0.0012 | 30 | nan | | 0.0 | 0.0014 | 35 | nan | | 0.0 | 0.0016 | 40 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
profelyndoncarlson/chile_edu_estan_HyDE
profelyndoncarlson
2025-01-21T15:51:31Z
19
0
null
[ "safetensors", "t5", "es", "base_model:google/byt5-small", "base_model:finetune:google/byt5-small", "license:apache-2.0", "region:us" ]
null
2024-09-25T19:07:22Z
--- license: apache-2.0 language: - es base_model: - google/byt5-small --- # **Model Card: Spanish Text Generation with ByT5-Small** This model is a **text generation** model fine-tuned from [**ByT5-Small**](https://huggingface.co/google/byt5-small), designed to generate coherent and contextually relevant Spanish text based on input prompts. It is optimized for generating content chunks, making it suitable for applications such as content creation, automated writing assistance, and more. --- ## **Model Details** - **Model Name**: `trained-byt5-small` - **Architecture**: [ByT5-Small](https://huggingface.co/google/byt5-small) (a byte-level variant of T5) - **Language**: Spanish - **Task**: Text Generation - Given a **prompt**, the model generates a **textual response** that continues or complements the input. --- ## **Intended Use and Applications** 1. **Content Creation**: Assist writers by generating content based on given prompts, helping to overcome writer's block or to expand on ideas. 2. **Automated Writing Assistance**: Provide suggestions or continuations in writing applications, such as blogs, articles, or reports. 3. **Chatbots and Conversational Agents**: Enhance conversational AI systems by generating more natural and contextually appropriate responses in Spanish. 4. **Educational Tools**: Aid in language learning by generating example sentences, explanations, or extended content based on user inputs. 5. **Creative Writing**: Support creative processes by offering story continuations, character developments, or plot ideas. --- ## **How It Was Trained** ### **1. Data Source** - **Database**: Data was sourced from an internal SQL Server database containing: - **Prompts** (`input_text`): User queries or initial text snippets. - **Content** (`output_text`): Corresponding generated or relevant text passages with a high relevance rank (`rank > 4`). - **Data Selection**: The top 5,000 `(prompt, content)` pairs were selected where both `prompt` and `content` have non-zero lengths and a relevance rank greater than 4, ensuring high-quality training data. ### **2. Preprocessing** - **Text Splitting**: - Long `output_text` entries were split into chunks of up to 512 characters to manage model input size and to enhance training efficiency. - **Tokenization**: - Utilized the **ByT5Tokenizer** for byte-level tokenization, which is well-suited for handling diverse Spanish text without being constrained by specific token vocabularies. - Configured with: - `max_length = 512` - `doc_stride = 256` (for handling long texts with overlapping contexts) ### **3. Training Setup** - **Base Model**: `google/byt5-small` - **Framework**: PyTorch with Hugging Face Transformers - **Loss Function**: Cross Entropy Loss (`torch.nn.CrossEntropyLoss`) to train the model to predict the next tokens in the sequence. - **Optimizer**: AdamW with a learning rate of `5e-5` and weight decay of `0.01` - **Batch Size**: - **Training**: 2 per device - **Evaluation**: 4 per device - **Epochs**: 3 - **Gradient Accumulation**: 1 (simplified for stable training) - **Mixed Precision**: Disabled (`fp16 = False`) to prevent issues with NaNs during training. - **Gradient Checkpointing**: Enabled to optimize memory usage. - **Early Stopping**: Implemented with a patience of 2 epochs to prevent overfitting. - **Hardware**: Trained on GPUs if available; otherwise, CPU. ### **4. Data Splits** - **Training Set**: 80% of the data - **Validation Set**: 20% split from the remaining 20% - **Test Set**: 50% of the validation split, resulting in: - **Training**: 80% - **Validation**: 10% - **Test**: 10% --- ## **Model Performance** - **Training Metrics**: - **Loss**: Monitored using Cross Entropy Loss on both training and validation sets. - **Early Stopping**: Training halted if the validation loss did not improve for 2 consecutive evaluation steps. - **Final Evaluation**: - **Test Set Loss**: Logged as `test_loss` in the training logs. - **Performance Notes**: Specific numerical results depend on the data distribution and the training process. Users are encouraged to evaluate the model on their own datasets to gauge performance in their specific applications. --- ## **Usage Example** Below is a Python example demonstrating how to use the fine-tuned ByT5-Small model for text generation in Spanish. Ensure you have installed the necessary libraries (`transformers`, `torch`) and have the model saved in the `./trained-byt5-small` directory. ```python import torch from transformers import T5ForConditionalGeneration, ByT5Tokenizer # Load the trained model and tokenizer model_dir = "./trained-byt5-small" tokenizer = ByT5Tokenizer.from_pretrained(model_dir) model = T5ForConditionalGeneration.from_pretrained(model_dir) # Move model to device device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) model.eval() prompt = "¿Cómo implementar un sistema solar en una escuela primaria?" # Tokenize the input text inputs = tokenizer( prompt, return_tensors="pt", max_length=512, truncation=True ).to(device) # Generate outputs with torch.no_grad(): outputs = model.generate( input_ids=inputs['input_ids'], attention_mask=inputs['attention_mask'], max_length=512, num_return_sequences=1, do_sample=True, temperature=0.5, top_k=2000, top_p=0.95, repetition_penalty=1.2, early_stopping=True ) # Decode and print the generated text generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) print(f"Generated Text: {generated_text}") ``` **Output:** ``` Generated Text: Para implementar un sistema solar en una escuela primaria, se puede comenzar por educar a los estudiantes sobre los planetas y sus características. Luego, se pueden realizar actividades prácticas como construir maquetas del sistema solar, organizar excursiones a planetarios o utilizar software educativo interactivo. Además, es importante fomentar la curiosidad y el interés de los alumnos mediante proyectos de investigación y presentaciones sobre diferentes aspectos del espacio. ``` --- ## **Limitations and Ethical Considerations** 1. **Bias and Fairness**: - The model's outputs are influenced by the training data. If the data contains biases, the model may inadvertently reproduce them. Users should be cautious and review generated content for fairness and neutrality. 2. **Domain Specificity**: - Trained on specific prompt-content pairs from an internal database, the model may perform best within similar contexts. Its performance might degrade when applied to highly specialized or unfamiliar domains. 3. **Quality and Reliability**: - While the model aims to generate coherent and relevant text, it does not verify factual accuracy. Users should validate the generated content, especially in critical applications. 4. **Data Privacy**: - Ensure that any data used with this model complies with relevant privacy laws and regulations. The training data should not contain sensitive or personal information unless appropriate consent has been obtained. 5. **Misuse Potential**: - Like any generative model, it can be used to create misleading or harmful content. Implement safeguards to prevent and mitigate misuse. --- ## **Intended Users** - **Developers** building Spanish-language content generation tools. - **Content Creators** seeking automated assistance in generating written material. - **Researchers** exploring text generation and natural language processing in Spanish. - **Educators** developing tools for language learning and educational content creation. - **Businesses** integrating conversational agents or chatbots that generate Spanish text. ---
nbninh/ee57924d-53e8-4e97-b20f-717fc6bbc7c1
nbninh
2025-01-21T15:49:09Z
8
0
peft
[ "peft", "safetensors", "phi3", "axolotl", "generated_from_trainer", "custom_code", "base_model:microsoft/Phi-3.5-mini-instruct", "base_model:adapter:microsoft/Phi-3.5-mini-instruct", "license:mit", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-21T15:37:28Z
--- library_name: peft license: mit base_model: microsoft/Phi-3.5-mini-instruct tags: - axolotl - generated_from_trainer model-index: - name: ee57924d-53e8-4e97-b20f-717fc6bbc7c1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: microsoft/Phi-3.5-mini-instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 2bfda0aa0cefbd5c_train_data.json ds_type: json format: custom path: /workspace/input_data/2bfda0aa0cefbd5c_train_data.json type: field_instruction: question field_output: answer format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nbninh/ee57924d-53e8-4e97-b20f-717fc6bbc7c1 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/2bfda0aa0cefbd5c_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 20951530-b524-445b-8766-809a9e2fe145 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 20951530-b524-445b-8766-809a9e2fe145 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # ee57924d-53e8-4e97-b20f-717fc6bbc7c1 This model is a fine-tuned version of [microsoft/Phi-3.5-mini-instruct](https://huggingface.co/microsoft/Phi-3.5-mini-instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3703 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 5.4684 | 0.1446 | 200 | 1.3703 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
thalllsssss/be59f7ff-a890-4a17-aaa1-dd4c2779c098
thalllsssss
2025-01-21T15:48:54Z
9
0
peft
[ "peft", "safetensors", "phi3", "axolotl", "generated_from_trainer", "custom_code", "base_model:microsoft/Phi-3.5-mini-instruct", "base_model:adapter:microsoft/Phi-3.5-mini-instruct", "license:mit", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-21T15:37:23Z
--- library_name: peft license: mit base_model: microsoft/Phi-3.5-mini-instruct tags: - axolotl - generated_from_trainer model-index: - name: be59f7ff-a890-4a17-aaa1-dd4c2779c098 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: microsoft/Phi-3.5-mini-instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 2bfda0aa0cefbd5c_train_data.json ds_type: json format: custom path: /workspace/input_data/2bfda0aa0cefbd5c_train_data.json type: field_instruction: question field_output: answer format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: thalllsssss/be59f7ff-a890-4a17-aaa1-dd4c2779c098 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/2bfda0aa0cefbd5c_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 20951530-b524-445b-8766-809a9e2fe145 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 20951530-b524-445b-8766-809a9e2fe145 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # be59f7ff-a890-4a17-aaa1-dd4c2779c098 This model is a fine-tuned version of [microsoft/Phi-3.5-mini-instruct](https://huggingface.co/microsoft/Phi-3.5-mini-instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3704 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 5.4785 | 0.1446 | 200 | 1.3704 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
dimasik1987/ad58dacd-0255-40c4-9c34-030bfda53fa8
dimasik1987
2025-01-21T15:48:10Z
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2-7B-Instruct", "base_model:adapter:Qwen/Qwen2-7B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-01-21T15:41:51Z
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2-7B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: ad58dacd-0255-40c4-9c34-030bfda53fa8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2-7B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - e9b53bc832f74d9b_train_data.json ds_type: json format: custom path: /workspace/input_data/e9b53bc832f74d9b_train_data.json type: field_input: text field_instruction: span field_output: sentence format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: 1 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: dimasik1987/ad58dacd-0255-40c4-9c34-030bfda53fa8 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 79GiB max_steps: 30 micro_batch_size: 4 mlflow_experiment_name: /tmp/e9b53bc832f74d9b_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 49ded5b1-1b97-4538-9229-13c02ee293d0 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 49ded5b1-1b97-4538-9229-13c02ee293d0 warmup_steps: 5 weight_decay: 0.001 xformers_attention: true ``` </details><br> # ad58dacd-0255-40c4-9c34-030bfda53fa8 This model is a fine-tuned version of [Qwen/Qwen2-7B-Instruct](https://huggingface.co/Qwen/Qwen2-7B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.3561 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0051 | 1 | 2.6773 | | 2.5458 | 0.0255 | 5 | 2.6477 | | 2.6627 | 0.0510 | 10 | 2.5229 | | 2.5761 | 0.0764 | 15 | 2.4290 | | 2.4725 | 0.1019 | 20 | 2.3817 | | 2.5046 | 0.1274 | 25 | 2.3613 | | 2.556 | 0.1529 | 30 | 2.3561 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso04/50fd75eb-e97b-4144-9631-1a889c67b5c3
lesso04
2025-01-21T15:47:53Z
6
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2-7B-Instruct", "base_model:adapter:Qwen/Qwen2-7B-Instruct", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-21T15:41:56Z
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2-7B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 50fd75eb-e97b-4144-9631-1a889c67b5c3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2-7B-Instruct bf16: true chat_template: llama3 datasets: - data_files: - e9b53bc832f74d9b_train_data.json ds_type: json format: custom path: /workspace/input_data/e9b53bc832f74d9b_train_data.json type: field_input: text field_instruction: span field_output: sentence format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: lesso04/50fd75eb-e97b-4144-9631-1a889c67b5c3 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 25 micro_batch_size: 2 mlflow_experiment_name: /tmp/e9b53bc832f74d9b_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 49ded5b1-1b97-4538-9229-13c02ee293d0 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 49ded5b1-1b97-4538-9229-13c02ee293d0 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 50fd75eb-e97b-4144-9631-1a889c67b5c3 This model is a fine-tuned version of [Qwen/Qwen2-7B-Instruct](https://huggingface.co/Qwen/Qwen2-7B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5271 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.7451 | 0.0025 | 1 | 1.5669 | | 1.2279 | 0.0127 | 5 | 1.5302 | | 0.6004 | 0.0255 | 10 | 0.9499 | | 0.2402 | 0.0382 | 15 | 0.6046 | | 0.2987 | 0.0510 | 20 | 0.5382 | | 0.1516 | 0.0637 | 25 | 0.5271 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso05/3a6e6ee0-f453-4470-b151-b7a3d3dae622
lesso05
2025-01-21T15:46:35Z
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2-7B-Instruct", "base_model:adapter:Qwen/Qwen2-7B-Instruct", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-21T15:41:52Z
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2-7B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 3a6e6ee0-f453-4470-b151-b7a3d3dae622 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2-7B-Instruct bf16: true chat_template: llama3 datasets: - data_files: - e9b53bc832f74d9b_train_data.json ds_type: json format: custom path: /workspace/input_data/e9b53bc832f74d9b_train_data.json type: field_input: text field_instruction: span field_output: sentence format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: lesso05/3a6e6ee0-f453-4470-b151-b7a3d3dae622 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 25 micro_batch_size: 2 mlflow_experiment_name: /tmp/e9b53bc832f74d9b_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 49ded5b1-1b97-4538-9229-13c02ee293d0 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 49ded5b1-1b97-4538-9229-13c02ee293d0 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 3a6e6ee0-f453-4470-b151-b7a3d3dae622 This model is a fine-tuned version of [Qwen/Qwen2-7B-Instruct](https://huggingface.co/Qwen/Qwen2-7B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5270 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.7451 | 0.0025 | 1 | 1.5669 | | 1.2126 | 0.0127 | 5 | 1.5262 | | 0.5911 | 0.0255 | 10 | 0.9433 | | 0.2347 | 0.0382 | 15 | 0.6011 | | 0.2829 | 0.0510 | 20 | 0.5357 | | 0.1533 | 0.0637 | 25 | 0.5270 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
atansor/phi_01211
atansor
2025-01-21T15:45:34Z
38
0
transformers
[ "transformers", "safetensors", "phi3", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-21T15:38:35Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ivangrapher/5c6d08ed-b5eb-4153-b48e-a4439eac2d9a
ivangrapher
2025-01-21T15:43:32Z
6
0
peft
[ "peft", "safetensors", "phi3", "axolotl", "generated_from_trainer", "custom_code", "base_model:microsoft/Phi-3.5-mini-instruct", "base_model:adapter:microsoft/Phi-3.5-mini-instruct", "license:mit", "region:us" ]
null
2025-01-21T15:37:18Z
--- library_name: peft license: mit base_model: microsoft/Phi-3.5-mini-instruct tags: - axolotl - generated_from_trainer model-index: - name: 5c6d08ed-b5eb-4153-b48e-a4439eac2d9a results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: microsoft/Phi-3.5-mini-instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 2bfda0aa0cefbd5c_train_data.json ds_type: json format: custom path: /workspace/input_data/2bfda0aa0cefbd5c_train_data.json type: field_instruction: question field_output: answer format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: null eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: false hub_model_id: ivangrapher/5c6d08ed-b5eb-4153-b48e-a4439eac2d9a hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 75GiB max_steps: 30 micro_batch_size: 2 mlflow_experiment_name: /tmp/2bfda0aa0cefbd5c_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 15 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 20951530-b524-445b-8766-809a9e2fe145 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 20951530-b524-445b-8766-809a9e2fe145 warmup_steps: 15 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 5c6d08ed-b5eb-4153-b48e-a4439eac2d9a This model is a fine-tuned version of [microsoft/Phi-3.5-mini-instruct](https://huggingface.co/microsoft/Phi-3.5-mini-instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4265 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 15 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0007 | 1 | 1.8159 | | 7.5123 | 0.0036 | 5 | 1.7340 | | 6.7056 | 0.0072 | 10 | 1.5800 | | 6.2732 | 0.0108 | 15 | 1.4605 | | 6.1126 | 0.0145 | 20 | 1.4481 | | 5.4533 | 0.0181 | 25 | 1.4292 | | 5.9138 | 0.0217 | 30 | 1.4265 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
datlaaaaaaa/8c8e22aa-ddbc-48b2-ba0e-3076f62eb257
datlaaaaaaa
2025-01-21T15:43:17Z
11
0
peft
[ "peft", "safetensors", "gemma2", "axolotl", "generated_from_trainer", "base_model:unsloth/gemma-2-9b-it", "base_model:adapter:unsloth/gemma-2-9b-it", "license:gemma", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-21T14:40:14Z
--- library_name: peft license: gemma base_model: unsloth/gemma-2-9b-it tags: - axolotl - generated_from_trainer model-index: - name: 8c8e22aa-ddbc-48b2-ba0e-3076f62eb257 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/gemma-2-9b-it bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 2adafa906e5c58da_train_data.json ds_type: json format: custom path: /workspace/input_data/2adafa906e5c58da_train_data.json type: field_input: '' field_instruction: anchor field_output: positive format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: datlaaaaaaa/8c8e22aa-ddbc-48b2-ba0e-3076f62eb257 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/2adafa906e5c58da_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: aa7d9493-c5b5-4e83-b6c1-5e33a1c2ac47 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: aa7d9493-c5b5-4e83-b6c1-5e33a1c2ac47 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 8c8e22aa-ddbc-48b2-ba0e-3076f62eb257 This model is a fine-tuned version of [unsloth/gemma-2-9b-it](https://huggingface.co/unsloth/gemma-2-9b-it) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4331 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.4085 | 0.2224 | 200 | 1.4331 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
aysekaya/tr-text-to-sql-model-12
aysekaya
2025-01-21T15:42:39Z
5
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2025-01-21T15:38:14Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
profelyndoncarlson/reranker
profelyndoncarlson
2025-01-21T15:41:44Z
5,405
0
null
[ "safetensors", "bert", "es", "base_model:dccuchile/bert-base-spanish-wwm-cased", "base_model:finetune:dccuchile/bert-base-spanish-wwm-cased", "license:apache-2.0", "region:us" ]
null
2024-09-30T21:38:06Z
--- license: apache-2.0 language: - es base_model: - dccuchile/bert-base-spanish-wwm-cased --- # **Model Card: Spanish Text Reranker using BETO** This model is a **reranker** for Spanish text passages, built on top of [**BETO**](https://huggingface.co/dccuchile/bert-base-spanish-wwm-cased) (a BERT-based model pre-trained on Spanish). It was trained to **score the relevance** of text passages given a user prompt, enabling you to reorder search results or candidate answers by how closely they match the user’s query. --- ## **Model Details** - **Model Name**: `reranker_beto_pytorch_optimized` - **Architecture**: [BETO (BERT-base Spanish WWM)](https://huggingface.co/dccuchile/bert-base-spanish-wwm-cased) - **Language**: Spanish - **Task**: Regression-based Reranking - Given a `(prompt, content)` pair, the model outputs a **single numerical score** indicating predicted relevance. --- ## **Intended Use and Applications** 1. **Passage Reranking**: Use the model to rerank search results, QA passages, or any candidate text snippet according to how well they answer a Spanish query. 2. **Information Retrieval Pipelines**: Integrate the model as a final step after retrieving multiple candidate passages from a search engine. The model will reorder candidates by relevance. 3. **Question-Answering Systems**: Filter or sort passages that might contain the best answer to a user’s Spanish question. --- ## **How It Was Trained** 1. **Data Source**: - Model training data came from an internal system that stores: - **Prompts** (user queries or questions) - **Content** (text chunks from documents) - **Rank** (a manual or heuristic-based 1–5 relevance score) - Additional generation steps (HyDE / T5) were used to create synthetic queries, but **this reranker model** specifically used the `(prompt, content, rank)` tuples from the database. 2. **Preprocessing**: - The textual pairs (`prompt`, `content`) were tokenized using the BETO tokenizer (cased) with: - `max_length = 512` - `doc_stride = 256` (for lengthy passages) - The `rank` field was normalized and mapped to a continuous value (`relevance`) for regression. 3. **Training Setup**: - **Base model**: `dccuchile/bert-base-spanish-wwm-cased` - **Loss**: Mean Squared Error (MSE) to predict the `relevance` score - **Optimizer**: `AdamW` with a learning rate of `3e-5` - **Epochs**: 3 - **Batch Size**: 8 - **Hardware**: CPU/GPU (CUDA if available) 4. **Splits**: - Data was split into **train (80%)**, **validation (10%)**, and **test (10%)** sets using `sklearn.model_selection.train_test_split`. --- ## **Model Performance** - The code logs training and validation **loss** (MSE). - Final test set MSE is logged as `test_loss`. - Specific numerical results depend on your data distribution and training logs. --- ## **Usage Example** Below is a quick example in Python using [Hugging Face Transformers](https://github.com/huggingface/transformers). After you’ve downloaded the model and tokenizer to `./reranker_beto_pytorch_optimized`, you can do: ```python import torch from transformers import BertTokenizer, BertForSequenceClassification device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Load the fine-tuned model and tokenizer model_dir = "./reranker_beto_pytorch_optimized" tokenizer = BertTokenizer.from_pretrained(model_dir) model = BertForSequenceClassification.from_pretrained(model_dir).to(device) model.eval() prompt = "¿Cómo implementar un sistema solar en una escuela primaria?" passage = "Este documento describe las partes del sistema solar ..." inputs = tokenizer( prompt, passage, max_length=512, truncation='only_second', padding='max_length', return_tensors='pt' ) # Forward pass with torch.no_grad(): outputs = model( input_ids=inputs['input_ids'].to(device), attention_mask=inputs['attention_mask'].to(device) ) score = outputs.logits.squeeze().item() print(f"Predicted relevance score: {score:.4f}") ``` You would compare **scores** across multiple passages for a single prompt, then **rank** or **sort** them from **highest** to **lowest** predicted relevance. --- ## **Limitations and Ethical Considerations** 1. **Bias and Fairness**: - Model performance is influenced by training data’s content and labels. If the data distribution is skewed, the model might reflect those biases (e.g., domain-specific content, reading level bias). 2. **Domain Generalization**: - Trained primarily on text from a specific database of Spanish prompts and passages. Performance may degrade in **highly specialized** or **different** domains, or with non-standard Spanish dialects. 3. **Possible Misinformation**: - Reranking aims to find the “most relevant” snippet, not necessarily the “most correct” or “fact-checked.” Always verify final results for correctness or harmful misinformation. 4. **Data Confidentiality**: - If your data contains personal or sensitive info, ensure you comply with relevant privacy and data handling regulations before using or distributing the model. --- ## **Intended Users** - **Developers** building Spanish-based search and question-answering systems. - **Researchers** experimenting with Spanish language reranking or IR tasks. - **Content Managers** wanting to reorder Spanish text snippets by relevance. ---
Best000/81429cda-e9c1-4989-92a1-879a9e4a8cff
Best000
2025-01-21T15:41:20Z
8
0
peft
[ "peft", "safetensors", "olmo", "axolotl", "generated_from_trainer", "base_model:katuni4ka/tiny-random-olmo-hf", "base_model:adapter:katuni4ka/tiny-random-olmo-hf", "region:us" ]
null
2025-01-21T15:40:54Z
--- library_name: peft base_model: katuni4ka/tiny-random-olmo-hf tags: - axolotl - generated_from_trainer model-index: - name: 81429cda-e9c1-4989-92a1-879a9e4a8cff results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: katuni4ka/tiny-random-olmo-hf bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 372a9aad3c15aaa5_train_data.json ds_type: json format: custom path: /workspace/input_data/372a9aad3c15aaa5_train_data.json type: field_instruction: file_path field_output: content format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: Best000/81429cda-e9c1-4989-92a1-879a9e4a8cff hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/372a9aad3c15aaa5_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 2ab42417-e3dd-430c-9b06-cae6baa46502 wandb_project: Birthday-SN56-16-Gradients-On-Demand wandb_run: your_name wandb_runid: 2ab42417-e3dd-430c-9b06-cae6baa46502 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 81429cda-e9c1-4989-92a1-879a9e4a8cff This model is a fine-tuned version of [katuni4ka/tiny-random-olmo-hf](https://huggingface.co/katuni4ka/tiny-random-olmo-hf) on the None dataset. It achieves the following results on the evaluation set: - Loss: 10.8300 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 10.8344 | 0.0014 | 1 | 10.8340 | | 10.8394 | 0.0043 | 3 | 10.8338 | | 10.8414 | 0.0086 | 6 | 10.8323 | | 10.8332 | 0.0129 | 9 | 10.8300 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nat-hunt/e4b2ca76-6f76-4559-b7aa-be22f9bddbf5
nat-hunt
2025-01-21T15:40:14Z
8
0
peft
[ "peft", "safetensors", "olmo", "axolotl", "generated_from_trainer", "base_model:katuni4ka/tiny-random-olmo-hf", "base_model:adapter:katuni4ka/tiny-random-olmo-hf", "region:us" ]
null
2025-01-21T15:39:49Z
--- library_name: peft base_model: katuni4ka/tiny-random-olmo-hf tags: - axolotl - generated_from_trainer model-index: - name: e4b2ca76-6f76-4559-b7aa-be22f9bddbf5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: katuni4ka/tiny-random-olmo-hf bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 372a9aad3c15aaa5_train_data.json ds_type: json format: custom path: /workspace/input_data/372a9aad3c15aaa5_train_data.json type: field_instruction: file_path field_output: content format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: nat-hunt/e4b2ca76-6f76-4559-b7aa-be22f9bddbf5 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/372a9aad3c15aaa5_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 2ab42417-e3dd-430c-9b06-cae6baa46502 wandb_project: Birthday-SN56-4-Gradients-On-Demand wandb_run: your_name wandb_runid: 2ab42417-e3dd-430c-9b06-cae6baa46502 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # e4b2ca76-6f76-4559-b7aa-be22f9bddbf5 This model is a fine-tuned version of [katuni4ka/tiny-random-olmo-hf](https://huggingface.co/katuni4ka/tiny-random-olmo-hf) on the None dataset. It achieves the following results on the evaluation set: - Loss: 10.8292 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 10.8344 | 0.0014 | 1 | 10.8340 | | 10.8394 | 0.0043 | 3 | 10.8337 | | 10.8411 | 0.0086 | 6 | 10.8321 | | 10.8326 | 0.0129 | 9 | 10.8292 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
kostiantynk1205/953339e6-a3c2-4921-a7f8-e282bdd88afe
kostiantynk1205
2025-01-21T15:38:50Z
8
0
peft
[ "peft", "safetensors", "olmo", "axolotl", "generated_from_trainer", "base_model:katuni4ka/tiny-random-olmo-hf", "base_model:adapter:katuni4ka/tiny-random-olmo-hf", "region:us" ]
null
2025-01-21T15:38:25Z
--- library_name: peft base_model: katuni4ka/tiny-random-olmo-hf tags: - axolotl - generated_from_trainer model-index: - name: 953339e6-a3c2-4921-a7f8-e282bdd88afe results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: katuni4ka/tiny-random-olmo-hf bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 372a9aad3c15aaa5_train_data.json ds_type: json format: custom path: /workspace/input_data/372a9aad3c15aaa5_train_data.json type: field_instruction: file_path field_output: content format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: kostiantynk1205/953339e6-a3c2-4921-a7f8-e282bdd88afe hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/372a9aad3c15aaa5_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 2ab42417-e3dd-430c-9b06-cae6baa46502 wandb_project: Birthday-SN56-6-Gradients-On-Demand wandb_run: your_name wandb_runid: 2ab42417-e3dd-430c-9b06-cae6baa46502 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 953339e6-a3c2-4921-a7f8-e282bdd88afe This model is a fine-tuned version of [katuni4ka/tiny-random-olmo-hf](https://huggingface.co/katuni4ka/tiny-random-olmo-hf) on the None dataset. It achieves the following results on the evaluation set: - Loss: 10.8306 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 10.8344 | 0.0014 | 1 | 10.8340 | | 10.8395 | 0.0043 | 3 | 10.8338 | | 10.8415 | 0.0086 | 6 | 10.8326 | | 10.8334 | 0.0129 | 9 | 10.8306 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso03/10d71a49-3a3d-4d06-9e5b-25eed994dde1
lesso03
2025-01-21T15:38:33Z
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2.5-0.5B-Instruct", "base_model:adapter:Qwen/Qwen2.5-0.5B-Instruct", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-21T14:42:49Z
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-0.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 10d71a49-3a3d-4d06-9e5b-25eed994dde1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2.5-0.5B-Instruct bf16: true chat_template: llama3 datasets: - data_files: - 9c65c4353c858f05_train_data.json ds_type: json format: custom path: /workspace/input_data/9c65c4353c858f05_train_data.json type: field_instruction: premise field_output: hypothesis format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: lesso03/10d71a49-3a3d-4d06-9e5b-25eed994dde1 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 25 micro_batch_size: 2 mlflow_experiment_name: /tmp/9c65c4353c858f05_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 4200e893-cfbb-40b3-bdb2-0eb0fdaa99b8 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 4200e893-cfbb-40b3-bdb2-0eb0fdaa99b8 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 10d71a49-3a3d-4d06-9e5b-25eed994dde1 This model is a fine-tuned version of [Qwen/Qwen2.5-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4496 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 3.8619 | 0.0001 | 1 | 4.0875 | | 3.3029 | 0.0004 | 5 | 3.8703 | | 2.8874 | 0.0008 | 10 | 2.6289 | | 2.3871 | 0.0012 | 15 | 1.8896 | | 1.3123 | 0.0016 | 20 | 1.4961 | | 1.022 | 0.0021 | 25 | 1.4496 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
cvoffer/1f74b535-9022-4cf7-adc4-1d0b1247f4e6
cvoffer
2025-01-21T15:38:11Z
5
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:berkeley-nest/Starling-LM-7B-alpha", "base_model:adapter:berkeley-nest/Starling-LM-7B-alpha", "license:apache-2.0", "region:us" ]
null
2025-01-21T15:29:13Z
--- library_name: peft license: apache-2.0 base_model: berkeley-nest/Starling-LM-7B-alpha tags: - axolotl - generated_from_trainer model-index: - name: 1f74b535-9022-4cf7-adc4-1d0b1247f4e6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: berkeley-nest/Starling-LM-7B-alpha bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - b20fbfa08217066a_train_data.json ds_type: json format: custom path: /workspace/input_data/b20fbfa08217066a_train_data.json type: field_instruction: question field_output: chosen format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: 1 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: cvoffer/1f74b535-9022-4cf7-adc4-1d0b1247f4e6 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 78GiB max_steps: 30 micro_batch_size: 2 mlflow_experiment_name: /tmp/b20fbfa08217066a_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: bb16ccd3-964b-4fd6-975d-73e3b09a8079 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: bb16ccd3-964b-4fd6-975d-73e3b09a8079 warmup_steps: 5 weight_decay: 0.001 xformers_attention: true ``` </details><br> # 1f74b535-9022-4cf7-adc4-1d0b1247f4e6 This model is a fine-tuned version of [berkeley-nest/Starling-LM-7B-alpha](https://huggingface.co/berkeley-nest/Starling-LM-7B-alpha) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0007 | 1 | nan | | 0.0 | 0.0034 | 5 | nan | | 0.0 | 0.0068 | 10 | nan | | 0.0 | 0.0101 | 15 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
MayBashendy/ArabicNewSplits7_usingWellWrittenEssays_FineTuningAraBERT_run2_AugV5_k17_task7_organization
MayBashendy
2025-01-21T15:37:16Z
5
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:aubmindlab/bert-base-arabertv02", "base_model:finetune:aubmindlab/bert-base-arabertv02", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-01-21T15:29:37Z
--- library_name: transformers base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: ArabicNewSplits7_usingWellWrittenEssays_FineTuningAraBERT_run2_AugV5_k17_task7_organization results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ArabicNewSplits7_usingWellWrittenEssays_FineTuningAraBERT_run2_AugV5_k17_task7_organization This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0754 - Qwk: 0.0462 - Mse: 1.0754 - Rmse: 1.0370 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:------:| | No log | 0.05 | 2 | 2.7815 | -0.0481 | 2.7815 | 1.6678 | | No log | 0.1 | 4 | 1.7927 | 0.0061 | 1.7927 | 1.3389 | | No log | 0.15 | 6 | 2.0211 | -0.1653 | 2.0211 | 1.4217 | | No log | 0.2 | 8 | 1.3569 | -0.1328 | 1.3569 | 1.1648 | | No log | 0.25 | 10 | 1.0144 | 0.0054 | 1.0144 | 1.0072 | | No log | 0.3 | 12 | 0.9010 | 0.1461 | 0.9010 | 0.9492 | | No log | 0.35 | 14 | 0.9014 | 0.1534 | 0.9014 | 0.9494 | | No log | 0.4 | 16 | 0.8922 | 0.1636 | 0.8922 | 0.9445 | | No log | 0.45 | 18 | 0.8487 | 0.0679 | 0.8487 | 0.9212 | | No log | 0.5 | 20 | 0.9147 | 0.1511 | 0.9147 | 0.9564 | | No log | 0.55 | 22 | 1.0285 | 0.1259 | 1.0285 | 1.0141 | | No log | 0.6 | 24 | 1.0813 | 0.0986 | 1.0813 | 1.0398 | | No log | 0.65 | 26 | 0.8837 | 0.2132 | 0.8837 | 0.9401 | | No log | 0.7 | 28 | 0.7961 | 0.0937 | 0.7961 | 0.8922 | | No log | 0.75 | 30 | 0.7689 | 0.0481 | 0.7689 | 0.8769 | | No log | 0.8 | 32 | 0.7462 | 0.0481 | 0.7462 | 0.8638 | | No log | 0.85 | 34 | 0.7381 | 0.0884 | 0.7381 | 0.8591 | | No log | 0.9 | 36 | 0.7520 | 0.0 | 0.7520 | 0.8672 | | No log | 0.95 | 38 | 0.7783 | 0.0481 | 0.7783 | 0.8822 | | No log | 1.0 | 40 | 0.7709 | 0.0 | 0.7709 | 0.8780 | | No log | 1.05 | 42 | 0.7433 | 0.0 | 0.7433 | 0.8622 | | No log | 1.1 | 44 | 0.7383 | 0.0 | 0.7383 | 0.8592 | | No log | 1.15 | 46 | 0.7397 | 0.0 | 0.7397 | 0.8601 | | No log | 1.2 | 48 | 0.7337 | 0.0884 | 0.7337 | 0.8566 | | No log | 1.25 | 50 | 0.7301 | 0.1236 | 0.7301 | 0.8544 | | No log | 1.3 | 52 | 0.7242 | 0.1456 | 0.7242 | 0.8510 | | No log | 1.35 | 54 | 0.7434 | 0.1807 | 0.7434 | 0.8622 | | No log | 1.4 | 56 | 0.7364 | 0.1508 | 0.7364 | 0.8581 | | No log | 1.45 | 58 | 0.7273 | 0.1187 | 0.7273 | 0.8528 | | No log | 1.5 | 60 | 0.7258 | 0.0840 | 0.7258 | 0.8520 | | No log | 1.55 | 62 | 0.7335 | 0.0444 | 0.7335 | 0.8565 | | No log | 1.6 | 64 | 0.7513 | 0.0937 | 0.7513 | 0.8668 | | No log | 1.65 | 66 | 0.7398 | 0.0481 | 0.7398 | 0.8601 | | No log | 1.7 | 68 | 0.7442 | 0.0 | 0.7442 | 0.8627 | | No log | 1.75 | 70 | 0.7480 | 0.0 | 0.7480 | 0.8649 | | No log | 1.8 | 72 | 0.7431 | -0.0027 | 0.7431 | 0.8620 | | No log | 1.85 | 74 | 0.7483 | 0.0893 | 0.7483 | 0.8651 | | No log | 1.9 | 76 | 0.7506 | 0.0026 | 0.7506 | 0.8664 | | No log | 1.95 | 78 | 0.7455 | 0.0026 | 0.7455 | 0.8634 | | No log | 2.0 | 80 | 0.7296 | 0.0764 | 0.7296 | 0.8542 | | No log | 2.05 | 82 | 0.7244 | 0.0410 | 0.7244 | 0.8511 | | No log | 2.1 | 84 | 0.7185 | 0.0481 | 0.7185 | 0.8476 | | No log | 2.15 | 86 | 0.7201 | 0.0481 | 0.7201 | 0.8486 | | No log | 2.2 | 88 | 0.7684 | 0.0688 | 0.7684 | 0.8766 | | No log | 2.25 | 90 | 0.8472 | -0.0047 | 0.8472 | 0.9204 | | No log | 2.3 | 92 | 0.9219 | 0.0336 | 0.9219 | 0.9601 | | No log | 2.35 | 94 | 0.8592 | 0.0661 | 0.8592 | 0.9269 | | No log | 2.4 | 96 | 0.7926 | 0.1448 | 0.7926 | 0.8903 | | No log | 2.45 | 98 | 0.7396 | 0.2158 | 0.7396 | 0.8600 | | No log | 2.5 | 100 | 0.7441 | 0.2158 | 0.7441 | 0.8626 | | No log | 2.55 | 102 | 0.7275 | 0.1867 | 0.7275 | 0.8529 | | No log | 2.6 | 104 | 0.7325 | 0.2509 | 0.7325 | 0.8559 | | No log | 2.65 | 106 | 0.7702 | 0.2218 | 0.7702 | 0.8776 | | No log | 2.7 | 108 | 0.7711 | 0.2158 | 0.7711 | 0.8781 | | No log | 2.75 | 110 | 0.7584 | 0.2158 | 0.7584 | 0.8709 | | No log | 2.8 | 112 | 0.7624 | 0.2158 | 0.7624 | 0.8732 | | No log | 2.85 | 114 | 0.7761 | 0.2413 | 0.7761 | 0.8810 | | No log | 2.9 | 116 | 0.7774 | 0.1901 | 0.7774 | 0.8817 | | No log | 2.95 | 118 | 0.7895 | 0.2847 | 0.7895 | 0.8885 | | No log | 3.0 | 120 | 0.7612 | 0.1624 | 0.7612 | 0.8724 | | No log | 3.05 | 122 | 0.7446 | 0.2158 | 0.7446 | 0.8629 | | No log | 3.1 | 124 | 0.7593 | 0.1010 | 0.7593 | 0.8714 | | No log | 3.15 | 126 | 0.8075 | 0.0971 | 0.8075 | 0.8986 | | No log | 3.2 | 128 | 0.7975 | 0.0971 | 0.7975 | 0.8930 | | No log | 3.25 | 130 | 0.7766 | 0.0697 | 0.7766 | 0.8812 | | No log | 3.3 | 132 | 0.7984 | 0.1051 | 0.7984 | 0.8936 | | No log | 3.35 | 134 | 0.9101 | 0.2149 | 0.9101 | 0.9540 | | No log | 3.4 | 136 | 1.0358 | 0.2521 | 1.0358 | 1.0177 | | No log | 3.45 | 138 | 1.0471 | 0.2364 | 1.0471 | 1.0233 | | No log | 3.5 | 140 | 0.9628 | 0.1995 | 0.9628 | 0.9812 | | No log | 3.55 | 142 | 0.9067 | 0.0584 | 0.9067 | 0.9522 | | No log | 3.6 | 144 | 0.8637 | 0.0697 | 0.8637 | 0.9293 | | No log | 3.65 | 146 | 0.9336 | 0.0975 | 0.9336 | 0.9662 | | No log | 3.7 | 148 | 0.9419 | 0.0856 | 0.9419 | 0.9705 | | No log | 3.75 | 150 | 0.9849 | 0.2193 | 0.9849 | 0.9924 | | No log | 3.8 | 152 | 0.9769 | 0.2892 | 0.9769 | 0.9884 | | No log | 3.85 | 154 | 0.9240 | 0.2439 | 0.9240 | 0.9613 | | No log | 3.9 | 156 | 0.8655 | 0.2943 | 0.8655 | 0.9303 | | No log | 3.95 | 158 | 0.8632 | 0.3369 | 0.8632 | 0.9291 | | No log | 4.0 | 160 | 0.9115 | 0.2912 | 0.9115 | 0.9547 | | No log | 4.05 | 162 | 0.8749 | 0.3115 | 0.8749 | 0.9354 | | No log | 4.1 | 164 | 0.8485 | 0.3157 | 0.8485 | 0.9212 | | No log | 4.15 | 166 | 0.8877 | 0.2059 | 0.8877 | 0.9422 | | No log | 4.2 | 168 | 0.8398 | 0.2662 | 0.8398 | 0.9164 | | No log | 4.25 | 170 | 0.7146 | 0.3020 | 0.7146 | 0.8453 | | No log | 4.3 | 172 | 0.6766 | 0.1829 | 0.6766 | 0.8225 | | No log | 4.35 | 174 | 0.6850 | 0.2181 | 0.6850 | 0.8276 | | No log | 4.4 | 176 | 0.7396 | 0.4052 | 0.7396 | 0.8600 | | No log | 4.45 | 178 | 0.8550 | 0.4251 | 0.8550 | 0.9247 | | No log | 4.5 | 180 | 0.8611 | 0.3754 | 0.8611 | 0.9280 | | No log | 4.55 | 182 | 0.8287 | 0.4251 | 0.8287 | 0.9103 | | No log | 4.6 | 184 | 0.7763 | 0.3167 | 0.7763 | 0.8811 | | No log | 4.65 | 186 | 0.7740 | 0.3167 | 0.7740 | 0.8798 | | No log | 4.7 | 188 | 0.7625 | 0.3622 | 0.7625 | 0.8732 | | No log | 4.75 | 190 | 0.7500 | 0.3341 | 0.7500 | 0.8660 | | No log | 4.8 | 192 | 0.7489 | 0.2950 | 0.7489 | 0.8654 | | No log | 4.85 | 194 | 0.7782 | 0.4884 | 0.7782 | 0.8821 | | No log | 4.9 | 196 | 0.7834 | 0.5120 | 0.7834 | 0.8851 | | No log | 4.95 | 198 | 0.8070 | 0.3789 | 0.8070 | 0.8983 | | No log | 5.0 | 200 | 0.8071 | 0.2950 | 0.8071 | 0.8984 | | No log | 5.05 | 202 | 0.8578 | 0.3234 | 0.8578 | 0.9262 | | No log | 5.1 | 204 | 0.8973 | 0.3918 | 0.8973 | 0.9472 | | No log | 5.15 | 206 | 0.8158 | 0.3372 | 0.8158 | 0.9032 | | No log | 5.2 | 208 | 0.7714 | 0.2847 | 0.7714 | 0.8783 | | No log | 5.25 | 210 | 0.8357 | 0.4224 | 0.8357 | 0.9142 | | No log | 5.3 | 212 | 0.9080 | 0.3727 | 0.9080 | 0.9529 | | No log | 5.35 | 214 | 0.9664 | 0.3727 | 0.9664 | 0.9831 | | No log | 5.4 | 216 | 0.9304 | 0.3012 | 0.9304 | 0.9646 | | No log | 5.45 | 218 | 0.9390 | 0.2779 | 0.9390 | 0.9690 | | No log | 5.5 | 220 | 0.8981 | 0.1029 | 0.8981 | 0.9477 | | No log | 5.55 | 222 | 0.8721 | 0.1577 | 0.8721 | 0.9339 | | No log | 5.6 | 224 | 0.8147 | 0.1624 | 0.8147 | 0.9026 | | No log | 5.65 | 226 | 0.7475 | 0.3127 | 0.7475 | 0.8646 | | No log | 5.7 | 228 | 0.7594 | 0.3399 | 0.7594 | 0.8714 | | No log | 5.75 | 230 | 0.8364 | 0.3425 | 0.8364 | 0.9146 | | No log | 5.8 | 232 | 0.9304 | 0.2886 | 0.9304 | 0.9645 | | No log | 5.85 | 234 | 1.0254 | 0.2683 | 1.0254 | 1.0126 | | No log | 5.9 | 236 | 1.0362 | 0.2683 | 1.0362 | 1.0179 | | No log | 5.95 | 238 | 0.9750 | 0.2886 | 0.9750 | 0.9874 | | No log | 6.0 | 240 | 0.9937 | 0.3395 | 0.9937 | 0.9968 | | No log | 6.05 | 242 | 1.0004 | 0.3247 | 1.0004 | 1.0002 | | No log | 6.1 | 244 | 0.8859 | 0.2923 | 0.8859 | 0.9412 | | No log | 6.15 | 246 | 0.8550 | 0.2967 | 0.8550 | 0.9246 | | No log | 6.2 | 248 | 0.8317 | 0.3545 | 0.8317 | 0.9120 | | No log | 6.25 | 250 | 0.8385 | 0.3127 | 0.8385 | 0.9157 | | No log | 6.3 | 252 | 0.8527 | 0.2692 | 0.8527 | 0.9234 | | No log | 6.35 | 254 | 0.9042 | 0.3892 | 0.9042 | 0.9509 | | No log | 6.4 | 256 | 0.9010 | 0.4113 | 0.9010 | 0.9492 | | No log | 6.45 | 258 | 0.8617 | 0.4328 | 0.8617 | 0.9283 | | No log | 6.5 | 260 | 0.8275 | 0.3169 | 0.8275 | 0.9097 | | No log | 6.55 | 262 | 0.8960 | 0.2982 | 0.8960 | 0.9466 | | No log | 6.6 | 264 | 1.0151 | 0.2977 | 1.0151 | 1.0075 | | No log | 6.65 | 266 | 1.0324 | 0.2876 | 1.0324 | 1.0161 | | No log | 6.7 | 268 | 0.9790 | 0.3082 | 0.9790 | 0.9894 | | No log | 6.75 | 270 | 0.9558 | 0.3417 | 0.9558 | 0.9777 | | No log | 6.8 | 272 | 0.9772 | 0.3082 | 0.9772 | 0.9885 | | No log | 6.85 | 274 | 1.0048 | 0.2876 | 1.0048 | 1.0024 | | No log | 6.9 | 276 | 1.0751 | 0.2264 | 1.0751 | 1.0369 | | No log | 6.95 | 278 | 1.1302 | 0.1995 | 1.1302 | 1.0631 | | No log | 7.0 | 280 | 1.0435 | 0.2439 | 1.0435 | 1.0215 | | No log | 7.05 | 282 | 1.0062 | 0.2956 | 1.0062 | 1.0031 | | No log | 7.1 | 284 | 1.0261 | 0.3253 | 1.0261 | 1.0130 | | No log | 7.15 | 286 | 0.9877 | 0.3253 | 0.9877 | 0.9939 | | No log | 7.2 | 288 | 0.8878 | 0.5402 | 0.8878 | 0.9422 | | No log | 7.25 | 290 | 0.8381 | 0.3894 | 0.8381 | 0.9155 | | No log | 7.3 | 292 | 0.8505 | 0.3894 | 0.8505 | 0.9222 | | No log | 7.35 | 294 | 0.9370 | 0.4162 | 0.9370 | 0.9680 | | No log | 7.4 | 296 | 1.0075 | 0.2659 | 1.0075 | 1.0037 | | No log | 7.45 | 298 | 0.9639 | 0.3739 | 0.9639 | 0.9818 | | No log | 7.5 | 300 | 0.8622 | 0.5029 | 0.8622 | 0.9286 | | No log | 7.55 | 302 | 0.8358 | 0.3894 | 0.8358 | 0.9142 | | No log | 7.6 | 304 | 0.8985 | 0.3869 | 0.8985 | 0.9479 | | No log | 7.65 | 306 | 1.0091 | 0.3767 | 1.0091 | 1.0045 | | No log | 7.7 | 308 | 1.0558 | 0.2824 | 1.0558 | 1.0275 | | No log | 7.75 | 310 | 0.9737 | 0.3678 | 0.9737 | 0.9867 | | No log | 7.8 | 312 | 0.8828 | 0.2899 | 0.8828 | 0.9396 | | No log | 7.85 | 314 | 0.8188 | 0.2558 | 0.8188 | 0.9049 | | No log | 7.9 | 316 | 0.8384 | 0.2077 | 0.8384 | 0.9157 | | No log | 7.95 | 318 | 0.9457 | 0.2547 | 0.9457 | 0.9725 | | No log | 8.0 | 320 | 1.0946 | 0.1030 | 1.0946 | 1.0462 | | No log | 8.05 | 322 | 1.2364 | 0.1630 | 1.2364 | 1.1119 | | No log | 8.1 | 324 | 1.2732 | 0.1445 | 1.2732 | 1.1283 | | No log | 8.15 | 326 | 1.0747 | 0.1457 | 1.0747 | 1.0367 | | No log | 8.2 | 328 | 0.8665 | 0.3167 | 0.8665 | 0.9308 | | No log | 8.25 | 330 | 0.7977 | 0.3387 | 0.7977 | 0.8931 | | No log | 8.3 | 332 | 0.8006 | 0.2883 | 0.8006 | 0.8947 | | No log | 8.35 | 334 | 0.8646 | 0.3637 | 0.8646 | 0.9298 | | No log | 8.4 | 336 | 0.9317 | 0.4230 | 0.9317 | 0.9653 | | No log | 8.45 | 338 | 0.8908 | 0.3991 | 0.8908 | 0.9438 | | No log | 8.5 | 340 | 0.7968 | 0.2817 | 0.7968 | 0.8926 | | No log | 8.55 | 342 | 0.7467 | 0.3020 | 0.7467 | 0.8641 | | No log | 8.6 | 344 | 0.7310 | 0.2471 | 0.7310 | 0.8550 | | No log | 8.65 | 346 | 0.7545 | 0.2589 | 0.7545 | 0.8686 | | No log | 8.7 | 348 | 0.7999 | 0.3099 | 0.7999 | 0.8944 | | No log | 8.75 | 350 | 0.8967 | 0.3940 | 0.8967 | 0.9469 | | No log | 8.8 | 352 | 1.0051 | 0.2568 | 1.0051 | 1.0026 | | No log | 8.85 | 354 | 1.1098 | 0.2101 | 1.1098 | 1.0535 | | No log | 8.9 | 356 | 1.0758 | 0.2421 | 1.0758 | 1.0372 | | No log | 8.95 | 358 | 0.9590 | 0.2971 | 0.9590 | 0.9793 | | No log | 9.0 | 360 | 0.8277 | 0.3372 | 0.8277 | 0.9098 | | No log | 9.05 | 362 | 0.7652 | 0.2589 | 0.7652 | 0.8747 | | No log | 9.1 | 364 | 0.7531 | 0.2883 | 0.7531 | 0.8678 | | No log | 9.15 | 366 | 0.7831 | 0.2817 | 0.7831 | 0.8849 | | No log | 9.2 | 368 | 0.8093 | 0.3737 | 0.8093 | 0.8996 | | No log | 9.25 | 370 | 0.7960 | 0.3196 | 0.7960 | 0.8922 | | No log | 9.3 | 372 | 0.7802 | 0.2527 | 0.7802 | 0.8833 | | No log | 9.35 | 374 | 0.8058 | 0.3099 | 0.8058 | 0.8977 | | No log | 9.4 | 376 | 0.8698 | 0.4154 | 0.8698 | 0.9327 | | No log | 9.45 | 378 | 0.8967 | 0.2923 | 0.8967 | 0.9469 | | No log | 9.5 | 380 | 0.8721 | 0.3042 | 0.8721 | 0.9339 | | No log | 9.55 | 382 | 0.8281 | 0.3302 | 0.8281 | 0.9100 | | No log | 9.6 | 384 | 0.7880 | 0.3789 | 0.7880 | 0.8877 | | No log | 9.65 | 386 | 0.8122 | 0.3444 | 0.8122 | 0.9012 | | No log | 9.7 | 388 | 0.8866 | 0.3586 | 0.8866 | 0.9416 | | No log | 9.75 | 390 | 0.9376 | 0.2670 | 0.9376 | 0.9683 | | No log | 9.8 | 392 | 0.9172 | 0.2253 | 0.9172 | 0.9577 | | No log | 9.85 | 394 | 0.8681 | 0.2471 | 0.8681 | 0.9317 | | No log | 9.9 | 396 | 0.8026 | 0.1884 | 0.8026 | 0.8959 | | No log | 9.95 | 398 | 0.7398 | 0.2063 | 0.7398 | 0.8601 | | No log | 10.0 | 400 | 0.7391 | 0.2718 | 0.7391 | 0.8597 | | No log | 10.05 | 402 | 0.7676 | 0.3099 | 0.7676 | 0.8761 | | No log | 10.1 | 404 | 0.8502 | 0.3564 | 0.8502 | 0.9220 | | No log | 10.15 | 406 | 1.0245 | 0.3010 | 1.0245 | 1.0122 | | No log | 10.2 | 408 | 1.1584 | 0.1805 | 1.1584 | 1.0763 | | No log | 10.25 | 410 | 1.1766 | 0.1961 | 1.1766 | 1.0847 | | No log | 10.3 | 412 | 1.0601 | 0.2358 | 1.0601 | 1.0296 | | No log | 10.35 | 414 | 0.8856 | 0.3913 | 0.8856 | 0.9411 | | No log | 10.4 | 416 | 0.7855 | 0.2847 | 0.7855 | 0.8863 | | No log | 10.45 | 418 | 0.7554 | 0.2913 | 0.7554 | 0.8691 | | No log | 10.5 | 420 | 0.7340 | 0.2158 | 0.7340 | 0.8567 | | No log | 10.55 | 422 | 0.7284 | 0.2158 | 0.7284 | 0.8534 | | No log | 10.6 | 424 | 0.7346 | 0.1407 | 0.7346 | 0.8571 | | No log | 10.65 | 426 | 0.7697 | 0.2589 | 0.7697 | 0.8773 | | No log | 10.7 | 428 | 0.8409 | 0.3099 | 0.8409 | 0.9170 | | No log | 10.75 | 430 | 0.8929 | 0.3234 | 0.8929 | 0.9450 | | No log | 10.8 | 432 | 0.9182 | 0.3042 | 0.9182 | 0.9582 | | No log | 10.85 | 434 | 0.9127 | 0.2784 | 0.9127 | 0.9554 | | No log | 10.9 | 436 | 0.9932 | 0.2316 | 0.9932 | 0.9966 | | No log | 10.95 | 438 | 1.0541 | 0.2412 | 1.0541 | 1.0267 | | No log | 11.0 | 440 | 1.0786 | 0.2412 | 1.0786 | 1.0386 | | No log | 11.05 | 442 | 1.0343 | 0.2227 | 1.0343 | 1.0170 | | No log | 11.1 | 444 | 0.9311 | 0.2784 | 0.9311 | 0.9649 | | No log | 11.15 | 446 | 0.9003 | 0.2574 | 0.9003 | 0.9489 | | No log | 11.2 | 448 | 0.9355 | 0.2843 | 0.9355 | 0.9672 | | No log | 11.25 | 450 | 0.9614 | 0.2574 | 0.9614 | 0.9805 | | No log | 11.3 | 452 | 1.0205 | 0.1955 | 1.0205 | 1.0102 | | No log | 11.35 | 454 | 1.0828 | 0.1827 | 1.0828 | 1.0406 | | No log | 11.4 | 456 | 1.1495 | 0.1293 | 1.1495 | 1.0721 | | No log | 11.45 | 458 | 1.1364 | 0.1909 | 1.1364 | 1.0660 | | No log | 11.5 | 460 | 1.0658 | 0.2075 | 1.0658 | 1.0324 | | No log | 11.55 | 462 | 1.0013 | 0.1692 | 1.0013 | 1.0007 | | No log | 11.6 | 464 | 0.9741 | 0.1501 | 0.9741 | 0.9869 | | No log | 11.65 | 466 | 0.9484 | 0.1867 | 0.9484 | 0.9738 | | No log | 11.7 | 468 | 0.9782 | 0.1734 | 0.9782 | 0.9890 | | No log | 11.75 | 470 | 1.0343 | 0.1573 | 1.0343 | 1.0170 | | No log | 11.8 | 472 | 1.0619 | 0.2227 | 1.0619 | 1.0305 | | No log | 11.85 | 474 | 1.0965 | 0.2100 | 1.0965 | 1.0471 | | No log | 11.9 | 476 | 1.0422 | 0.2703 | 1.0422 | 1.0209 | | No log | 11.95 | 478 | 0.9812 | 0.1501 | 0.9812 | 0.9906 | | No log | 12.0 | 480 | 0.9728 | 0.1501 | 0.9728 | 0.9863 | | No log | 12.05 | 482 | 0.9867 | 0.1422 | 0.9867 | 0.9933 | | No log | 12.1 | 484 | 0.9741 | 0.1692 | 0.9741 | 0.9869 | | No log | 12.15 | 486 | 0.9928 | 0.1692 | 0.9928 | 0.9964 | | No log | 12.2 | 488 | 0.9996 | 0.1651 | 0.9996 | 0.9998 | | No log | 12.25 | 490 | 1.0038 | 0.1692 | 1.0038 | 1.0019 | | No log | 12.3 | 492 | 0.9871 | 0.2046 | 0.9871 | 0.9935 | | No log | 12.35 | 494 | 0.9290 | 0.2632 | 0.9290 | 0.9638 | | No log | 12.4 | 496 | 0.9141 | 0.2632 | 0.9141 | 0.9561 | | No log | 12.45 | 498 | 0.9721 | 0.2843 | 0.9721 | 0.9859 | | 0.3559 | 12.5 | 500 | 1.0361 | 0.1692 | 1.0361 | 1.0179 | | 0.3559 | 12.55 | 502 | 1.0333 | 0.1822 | 1.0333 | 1.0165 | | 0.3559 | 12.6 | 504 | 1.0326 | 0.1584 | 1.0326 | 1.0162 | | 0.3559 | 12.65 | 506 | 1.0702 | 0.0803 | 1.0702 | 1.0345 | | 0.3559 | 12.7 | 508 | 1.0406 | 0.1584 | 1.0406 | 1.0201 | | 0.3559 | 12.75 | 510 | 0.9997 | 0.2352 | 0.9997 | 0.9999 | | 0.3559 | 12.8 | 512 | 0.9725 | 0.1867 | 0.9725 | 0.9862 | | 0.3559 | 12.85 | 514 | 0.9107 | 0.2817 | 0.9107 | 0.9543 | | 0.3559 | 12.9 | 516 | 0.8876 | 0.2754 | 0.8876 | 0.9422 | | 0.3559 | 12.95 | 518 | 0.8646 | 0.2754 | 0.8646 | 0.9298 | | 0.3559 | 13.0 | 520 | 0.8035 | 0.3238 | 0.8035 | 0.8964 | | 0.3559 | 13.05 | 522 | 0.7985 | 0.2950 | 0.7985 | 0.8936 | | 0.3559 | 13.1 | 524 | 0.8662 | 0.2409 | 0.8662 | 0.9307 | | 0.3559 | 13.15 | 526 | 0.9824 | 0.1385 | 0.9824 | 0.9912 | | 0.3559 | 13.2 | 528 | 1.0687 | 0.2075 | 1.0687 | 1.0338 | | 0.3559 | 13.25 | 530 | 1.0561 | 0.2075 | 1.0561 | 1.0277 | | 0.3559 | 13.3 | 532 | 0.9803 | 0.1651 | 0.9803 | 0.9901 | | 0.3559 | 13.35 | 534 | 0.9083 | 0.1914 | 0.9083 | 0.9531 | | 0.3559 | 13.4 | 536 | 0.8907 | 0.2297 | 0.8907 | 0.9438 | | 0.3559 | 13.45 | 538 | 0.9183 | 0.1180 | 0.9183 | 0.9583 | | 0.3559 | 13.5 | 540 | 0.9664 | 0.1911 | 0.9664 | 0.9830 | | 0.3559 | 13.55 | 542 | 1.0440 | 0.1787 | 1.0440 | 1.0217 | | 0.3559 | 13.6 | 544 | 1.0957 | 0.1787 | 1.0957 | 1.0468 | | 0.3559 | 13.65 | 546 | 1.0785 | 0.1787 | 1.0785 | 1.0385 | | 0.3559 | 13.7 | 548 | 1.0023 | 0.1787 | 1.0023 | 1.0012 | | 0.3559 | 13.75 | 550 | 0.9235 | 0.1777 | 0.9235 | 0.9610 | | 0.3559 | 13.8 | 552 | 0.8722 | 0.2297 | 0.8722 | 0.9339 | | 0.3559 | 13.85 | 554 | 0.9108 | 0.2297 | 0.9108 | 0.9543 | | 0.3559 | 13.9 | 556 | 0.9007 | 0.1914 | 0.9007 | 0.9491 | | 0.3559 | 13.95 | 558 | 0.9032 | 0.1914 | 0.9032 | 0.9504 | | 0.3559 | 14.0 | 560 | 0.9296 | 0.2410 | 0.9296 | 0.9642 | | 0.3559 | 14.05 | 562 | 1.0355 | 0.1869 | 1.0355 | 1.0176 | | 0.3559 | 14.1 | 564 | 1.1113 | 0.1428 | 1.1113 | 1.0542 | | 0.3559 | 14.15 | 566 | 1.1008 | 0.2141 | 1.1008 | 1.0492 | | 0.3559 | 14.2 | 568 | 1.0136 | 0.2411 | 1.0136 | 1.0068 | | 0.3559 | 14.25 | 570 | 0.9384 | 0.3169 | 0.9384 | 0.9687 | | 0.3559 | 14.3 | 572 | 0.8950 | 0.2297 | 0.8950 | 0.9460 | | 0.3559 | 14.35 | 574 | 0.9188 | 0.2574 | 0.9188 | 0.9585 | | 0.3559 | 14.4 | 576 | 0.9862 | 0.2358 | 0.9862 | 0.9931 | | 0.3559 | 14.45 | 578 | 1.0167 | 0.1692 | 1.0167 | 1.0083 | | 0.3559 | 14.5 | 580 | 1.0321 | 0.1180 | 1.0321 | 1.0159 | | 0.3559 | 14.55 | 582 | 1.0206 | 0.1180 | 1.0206 | 1.0103 | | 0.3559 | 14.6 | 584 | 1.0164 | 0.2437 | 1.0164 | 1.0082 | | 0.3559 | 14.65 | 586 | 0.9980 | 0.1911 | 0.9980 | 0.9990 | | 0.3559 | 14.7 | 588 | 0.9958 | 0.2164 | 0.9958 | 0.9979 | | 0.3559 | 14.75 | 590 | 0.9724 | 0.2164 | 0.9724 | 0.9861 | | 0.3559 | 14.8 | 592 | 0.9617 | 0.2164 | 0.9617 | 0.9807 | | 0.3559 | 14.85 | 594 | 0.9434 | 0.2784 | 0.9434 | 0.9713 | | 0.3559 | 14.9 | 596 | 0.9472 | 0.3606 | 0.9472 | 0.9732 | | 0.3559 | 14.95 | 598 | 0.9542 | 0.3169 | 0.9542 | 0.9768 | | 0.3559 | 15.0 | 600 | 0.9227 | 0.3169 | 0.9227 | 0.9606 | | 0.3559 | 15.05 | 602 | 0.8584 | 0.2784 | 0.8584 | 0.9265 | | 0.3559 | 15.1 | 604 | 0.8454 | 0.2784 | 0.8454 | 0.9194 | | 0.3559 | 15.15 | 606 | 0.8763 | 0.3042 | 0.8763 | 0.9361 | | 0.3559 | 15.2 | 608 | 0.9143 | 0.2810 | 0.9143 | 0.9562 | | 0.3559 | 15.25 | 610 | 0.9432 | 0.2703 | 0.9432 | 0.9712 | | 0.3559 | 15.3 | 612 | 0.9527 | 0.2164 | 0.9527 | 0.9761 | | 0.3559 | 15.35 | 614 | 0.9149 | 0.2000 | 0.9149 | 0.9565 | | 0.3559 | 15.4 | 616 | 0.9573 | 0.1499 | 0.9573 | 0.9784 | | 0.3559 | 15.45 | 618 | 1.0605 | 0.1870 | 1.0605 | 1.0298 | | 0.3559 | 15.5 | 620 | 1.0966 | 0.1870 | 1.0966 | 1.0472 | | 0.3559 | 15.55 | 622 | 1.1433 | 0.1679 | 1.1433 | 1.0692 | | 0.3559 | 15.6 | 624 | 1.1018 | 0.1490 | 1.1018 | 1.0497 | | 0.3559 | 15.65 | 626 | 1.0046 | 0.2032 | 1.0046 | 1.0023 | | 0.3559 | 15.7 | 628 | 0.9653 | 0.2211 | 0.9653 | 0.9825 | | 0.3559 | 15.75 | 630 | 0.9585 | 0.2211 | 0.9585 | 0.9790 | | 0.3559 | 15.8 | 632 | 1.0727 | 0.1265 | 1.0727 | 1.0357 | | 0.3559 | 15.85 | 634 | 1.1293 | 0.1758 | 1.1293 | 1.0627 | | 0.3559 | 15.9 | 636 | 1.1570 | 0.1679 | 1.1570 | 1.0756 | | 0.3559 | 15.95 | 638 | 1.2015 | 0.1679 | 1.2015 | 1.0961 | | 0.3559 | 16.0 | 640 | 1.1414 | 0.1679 | 1.1414 | 1.0684 | | 0.3559 | 16.05 | 642 | 1.0472 | 0.1635 | 1.0472 | 1.0233 | | 0.3559 | 16.1 | 644 | 0.9685 | 0.2756 | 0.9685 | 0.9841 | | 0.3559 | 16.15 | 646 | 0.9257 | 0.2810 | 0.9257 | 0.9622 | | 0.3559 | 16.2 | 648 | 0.9181 | 0.3169 | 0.9181 | 0.9582 | | 0.3559 | 16.25 | 650 | 0.9439 | 0.3347 | 0.9439 | 0.9715 | | 0.3559 | 16.3 | 652 | 1.0069 | 0.2939 | 1.0069 | 1.0034 | | 0.3559 | 16.35 | 654 | 1.0898 | 0.2264 | 1.0898 | 1.0439 | | 0.3559 | 16.4 | 656 | 1.1320 | 0.1895 | 1.1320 | 1.0640 | | 0.3559 | 16.45 | 658 | 1.0995 | 0.1968 | 1.0995 | 1.0486 | | 0.3559 | 16.5 | 660 | 0.9695 | 0.2939 | 0.9695 | 0.9846 | | 0.3559 | 16.55 | 662 | 0.8808 | 0.2615 | 0.8808 | 0.9385 | | 0.3559 | 16.6 | 664 | 0.8782 | 0.2259 | 0.8782 | 0.9371 | | 0.3559 | 16.65 | 666 | 0.9080 | 0.1911 | 0.9080 | 0.9529 | | 0.3559 | 16.7 | 668 | 0.9489 | 0.1827 | 0.9489 | 0.9741 | | 0.3559 | 16.75 | 670 | 1.0408 | 0.2392 | 1.0408 | 1.0202 | | 0.3559 | 16.8 | 672 | 1.0373 | 0.2227 | 1.0373 | 1.0185 | | 0.3559 | 16.85 | 674 | 0.9711 | 0.1747 | 0.9711 | 0.9855 | | 0.3559 | 16.9 | 676 | 0.9008 | 0.2982 | 0.9008 | 0.9491 | | 0.3559 | 16.95 | 678 | 0.8984 | 0.2982 | 0.8984 | 0.9479 | | 0.3559 | 17.0 | 680 | 0.9232 | 0.2982 | 0.9232 | 0.9608 | | 0.3559 | 17.05 | 682 | 0.9509 | 0.3110 | 0.9509 | 0.9752 | | 0.3559 | 17.1 | 684 | 0.9527 | 0.3110 | 0.9527 | 0.9761 | | 0.3559 | 17.15 | 686 | 0.9146 | 0.2923 | 0.9146 | 0.9563 | | 0.3559 | 17.2 | 688 | 0.9187 | 0.2866 | 0.9187 | 0.9585 | | 0.3559 | 17.25 | 690 | 0.9385 | 0.1827 | 0.9385 | 0.9687 | | 0.3559 | 17.3 | 692 | 0.9435 | 0.1827 | 0.9435 | 0.9714 | | 0.3559 | 17.35 | 694 | 0.9518 | 0.1499 | 0.9518 | 0.9756 | | 0.3559 | 17.4 | 696 | 0.9639 | 0.1499 | 0.9639 | 0.9818 | | 0.3559 | 17.45 | 698 | 0.9292 | 0.1499 | 0.9292 | 0.9640 | | 0.3559 | 17.5 | 700 | 0.9305 | 0.1499 | 0.9305 | 0.9646 | | 0.3559 | 17.55 | 702 | 0.8995 | 0.2562 | 0.8995 | 0.9484 | | 0.3559 | 17.6 | 704 | 0.8398 | 0.3169 | 0.8398 | 0.9164 | | 0.3559 | 17.65 | 706 | 0.8160 | 0.3372 | 0.8160 | 0.9034 | | 0.3559 | 17.7 | 708 | 0.8594 | 0.3042 | 0.8594 | 0.9270 | | 0.3559 | 17.75 | 710 | 0.9187 | 0.2259 | 0.9187 | 0.9585 | | 0.3559 | 17.8 | 712 | 0.9937 | 0.2363 | 0.9937 | 0.9969 | | 0.3559 | 17.85 | 714 | 1.0874 | 0.2271 | 1.0874 | 1.0428 | | 0.3559 | 17.9 | 716 | 1.0767 | 0.2412 | 1.0767 | 1.0377 | | 0.3559 | 17.95 | 718 | 1.0119 | 0.2552 | 1.0119 | 1.0059 | | 0.3559 | 18.0 | 720 | 0.9545 | 0.1911 | 0.9545 | 0.9770 | | 0.3559 | 18.05 | 722 | 0.9176 | 0.2982 | 0.9176 | 0.9579 | | 0.3559 | 18.1 | 724 | 0.9192 | 0.2615 | 0.9192 | 0.9588 | | 0.3559 | 18.15 | 726 | 0.9566 | 0.1911 | 0.9566 | 0.9781 | | 0.3559 | 18.2 | 728 | 1.0233 | 0.2227 | 1.0233 | 1.0116 | | 0.3559 | 18.25 | 730 | 1.1003 | 0.1564 | 1.1003 | 1.0490 | | 0.3559 | 18.3 | 732 | 1.1947 | 0.1613 | 1.1947 | 1.0930 | | 0.3559 | 18.35 | 734 | 1.2081 | 0.1613 | 1.2081 | 1.0991 | | 0.3559 | 18.4 | 736 | 1.1517 | 0.1784 | 1.1517 | 1.0732 | | 0.3559 | 18.45 | 738 | 1.1007 | 0.2183 | 1.1007 | 1.0491 | | 0.3559 | 18.5 | 740 | 1.0787 | 0.2552 | 1.0787 | 1.0386 | | 0.3559 | 18.55 | 742 | 1.0840 | 0.2504 | 1.0840 | 1.0412 | | 0.3559 | 18.6 | 744 | 1.1201 | 0.2392 | 1.1201 | 1.0583 | | 0.3559 | 18.65 | 746 | 1.1672 | 0.1713 | 1.1672 | 1.0804 | | 0.3559 | 18.7 | 748 | 1.1556 | 0.1713 | 1.1556 | 1.0750 | | 0.3559 | 18.75 | 750 | 1.0890 | 0.2437 | 1.0890 | 1.0436 | | 0.3559 | 18.8 | 752 | 1.0070 | 0.2119 | 1.0070 | 1.0035 | | 0.3559 | 18.85 | 754 | 0.9427 | 0.2726 | 0.9427 | 0.9709 | | 0.3559 | 18.9 | 756 | 0.9104 | 0.2518 | 0.9104 | 0.9541 | | 0.3559 | 18.95 | 758 | 0.8891 | 0.3302 | 0.8891 | 0.9429 | | 0.3559 | 19.0 | 760 | 0.8679 | 0.3302 | 0.8679 | 0.9316 | | 0.3559 | 19.05 | 762 | 0.8489 | 0.3167 | 0.8489 | 0.9214 | | 0.3559 | 19.1 | 764 | 0.8329 | 0.3167 | 0.8329 | 0.9127 | | 0.3559 | 19.15 | 766 | 0.8495 | 0.3444 | 0.8495 | 0.9217 | | 0.3559 | 19.2 | 768 | 0.9087 | 0.4067 | 0.9087 | 0.9532 | | 0.3559 | 19.25 | 770 | 0.9642 | 0.3051 | 0.9642 | 0.9819 | | 0.3559 | 19.3 | 772 | 0.9685 | 0.2995 | 0.9685 | 0.9841 | | 0.3559 | 19.35 | 774 | 0.9435 | 0.3473 | 0.9435 | 0.9713 | | 0.3559 | 19.4 | 776 | 0.9080 | 0.3819 | 0.9080 | 0.9529 | | 0.3559 | 19.45 | 778 | 0.9286 | 0.3433 | 0.9286 | 0.9636 | | 0.3559 | 19.5 | 780 | 0.9535 | 0.3194 | 0.9535 | 0.9765 | | 0.3559 | 19.55 | 782 | 0.9274 | 0.2223 | 0.9274 | 0.9630 | | 0.3559 | 19.6 | 784 | 0.8843 | 0.2383 | 0.8843 | 0.9404 | | 0.3559 | 19.65 | 786 | 0.8223 | 0.1598 | 0.8223 | 0.9068 | | 0.3559 | 19.7 | 788 | 0.7812 | 0.2471 | 0.7812 | 0.8838 | | 0.3559 | 19.75 | 790 | 0.7880 | 0.2027 | 0.7880 | 0.8877 | | 0.3559 | 19.8 | 792 | 0.8455 | 0.2285 | 0.8455 | 0.9195 | | 0.3559 | 19.85 | 794 | 0.9330 | 0.2632 | 0.9330 | 0.9659 | | 0.3559 | 19.9 | 796 | 1.0173 | 0.1911 | 1.0173 | 1.0086 | | 0.3559 | 19.95 | 798 | 1.0708 | 0.1422 | 1.0708 | 1.0348 | | 0.3559 | 20.0 | 800 | 1.1168 | 0.1821 | 1.1168 | 1.0568 | | 0.3559 | 20.05 | 802 | 1.1116 | 0.1909 | 1.1116 | 1.0543 | | 0.3559 | 20.1 | 804 | 1.1245 | 0.1909 | 1.1245 | 1.0604 | | 0.3559 | 20.15 | 806 | 1.1137 | 0.1328 | 1.1137 | 1.0553 | | 0.3559 | 20.2 | 808 | 1.1157 | 0.1328 | 1.1157 | 1.0563 | | 0.3559 | 20.25 | 810 | 1.1120 | 0.1635 | 1.1120 | 1.0545 | | 0.3559 | 20.3 | 812 | 1.0757 | 0.1949 | 1.0757 | 1.0372 | | 0.3559 | 20.35 | 814 | 1.0232 | 0.2075 | 1.0232 | 1.0116 | | 0.3559 | 20.4 | 816 | 1.0141 | 0.2032 | 1.0141 | 1.0070 | | 0.3559 | 20.45 | 818 | 0.9764 | 0.2810 | 0.9764 | 0.9881 | | 0.3559 | 20.5 | 820 | 0.9691 | 0.2615 | 0.9691 | 0.9844 | | 0.3559 | 20.55 | 822 | 0.9805 | 0.2562 | 0.9805 | 0.9902 | | 0.3559 | 20.6 | 824 | 1.0114 | 0.2939 | 1.0114 | 1.0057 | | 0.3559 | 20.65 | 826 | 1.0639 | 0.1990 | 1.0639 | 1.0315 | | 0.3559 | 20.7 | 828 | 1.0771 | 0.2032 | 1.0771 | 1.0378 | | 0.3559 | 20.75 | 830 | 1.0387 | 0.2032 | 1.0387 | 1.0192 | | 0.3559 | 20.8 | 832 | 0.9869 | 0.2982 | 0.9869 | 0.9934 | | 0.3559 | 20.85 | 834 | 0.9296 | 0.3105 | 0.9296 | 0.9642 | | 0.3559 | 20.9 | 836 | 0.8970 | 0.3637 | 0.8970 | 0.9471 | | 0.3559 | 20.95 | 838 | 0.8725 | 0.4067 | 0.8725 | 0.9341 | | 0.3559 | 21.0 | 840 | 0.8015 | 0.3444 | 0.8015 | 0.8953 | | 0.3559 | 21.05 | 842 | 0.7495 | 0.3868 | 0.7495 | 0.8657 | | 0.3559 | 21.1 | 844 | 0.7492 | 0.3868 | 0.7492 | 0.8656 | | 0.3559 | 21.15 | 846 | 0.7933 | 0.3444 | 0.7933 | 0.8907 | | 0.3559 | 21.2 | 848 | 0.8807 | 0.4067 | 0.8807 | 0.9385 | | 0.3559 | 21.25 | 850 | 0.9366 | 0.3169 | 0.9366 | 0.9678 | | 0.3559 | 21.3 | 852 | 0.9918 | 0.1709 | 0.9918 | 0.9959 | | 0.3559 | 21.35 | 854 | 1.0128 | 0.1671 | 1.0128 | 1.0064 | | 0.3559 | 21.4 | 856 | 0.9443 | 0.3110 | 0.9443 | 0.9718 | | 0.3559 | 21.45 | 858 | 0.8430 | 0.3819 | 0.8430 | 0.9182 | | 0.3559 | 21.5 | 860 | 0.7615 | 0.3594 | 0.7615 | 0.8727 | | 0.3559 | 21.55 | 862 | 0.7363 | 0.3312 | 0.7363 | 0.8581 | | 0.3559 | 21.6 | 864 | 0.7536 | 0.3312 | 0.7536 | 0.8681 | | 0.3559 | 21.65 | 866 | 0.8307 | 0.3372 | 0.8307 | 0.9114 | | 0.3559 | 21.7 | 868 | 0.8943 | 0.3675 | 0.8943 | 0.9457 | | 0.3559 | 21.75 | 870 | 0.9708 | 0.3287 | 0.9708 | 0.9853 | | 0.3559 | 21.8 | 872 | 1.0251 | 0.2227 | 1.0251 | 1.0125 | | 0.3559 | 21.85 | 874 | 1.0566 | 0.2227 | 1.0566 | 1.0279 | | 0.3559 | 21.9 | 876 | 1.0179 | 0.2411 | 1.0179 | 1.0089 | | 0.3559 | 21.95 | 878 | 0.9323 | 0.2562 | 0.9323 | 0.9655 | | 0.3559 | 22.0 | 880 | 0.9044 | 0.2923 | 0.9044 | 0.9510 | | 0.3559 | 22.05 | 882 | 0.9260 | 0.2562 | 0.9260 | 0.9623 | | 0.3559 | 22.1 | 884 | 0.9632 | 0.2756 | 0.9632 | 0.9814 | | 0.3559 | 22.15 | 886 | 1.0387 | 0.1709 | 1.0387 | 1.0192 | | 0.3559 | 22.2 | 888 | 1.1398 | 0.1870 | 1.1398 | 1.0676 | | 0.3559 | 22.25 | 890 | 1.1581 | 0.1870 | 1.1581 | 1.0762 | | 0.3559 | 22.3 | 892 | 1.1031 | 0.1909 | 1.1031 | 1.0503 | | 0.3559 | 22.35 | 894 | 0.9989 | 0.2075 | 0.9989 | 0.9994 | | 0.3559 | 22.4 | 896 | 0.8689 | 0.2982 | 0.8689 | 0.9321 | | 0.3559 | 22.45 | 898 | 0.8160 | 0.2463 | 0.8160 | 0.9033 | | 0.3559 | 22.5 | 900 | 0.8254 | 0.2463 | 0.8254 | 0.9085 | | 0.3559 | 22.55 | 902 | 0.8750 | 0.2982 | 0.8750 | 0.9354 | | 0.3559 | 22.6 | 904 | 0.9017 | 0.2562 | 0.9017 | 0.9496 | | 0.3559 | 22.65 | 906 | 0.9243 | 0.2211 | 0.9243 | 0.9614 | | 0.3559 | 22.7 | 908 | 0.9374 | 0.2211 | 0.9374 | 0.9682 | | 0.3559 | 22.75 | 910 | 0.8787 | 0.2982 | 0.8787 | 0.9374 | | 0.3559 | 22.8 | 912 | 0.8496 | 0.2982 | 0.8496 | 0.9218 | | 0.3559 | 22.85 | 914 | 0.8688 | 0.2923 | 0.8688 | 0.9321 | | 0.3559 | 22.9 | 916 | 0.9236 | 0.3051 | 0.9236 | 0.9610 | | 0.3559 | 22.95 | 918 | 0.9257 | 0.3051 | 0.9257 | 0.9621 | | 0.3559 | 23.0 | 920 | 0.9021 | 0.3110 | 0.9021 | 0.9498 | | 0.3559 | 23.05 | 922 | 0.8337 | 0.2982 | 0.8337 | 0.9131 | | 0.3559 | 23.1 | 924 | 0.7679 | 0.4134 | 0.7679 | 0.8763 | | 0.3559 | 23.15 | 926 | 0.7128 | 0.3868 | 0.7128 | 0.8443 | | 0.3559 | 23.2 | 928 | 0.7236 | 0.3868 | 0.7236 | 0.8506 | | 0.3559 | 23.25 | 930 | 0.7707 | 0.3712 | 0.7707 | 0.8779 | | 0.3559 | 23.3 | 932 | 0.8099 | 0.2904 | 0.8099 | 0.9000 | | 0.3559 | 23.35 | 934 | 0.8576 | 0.2000 | 0.8576 | 0.9261 | | 0.3559 | 23.4 | 936 | 0.8635 | 0.1734 | 0.8635 | 0.9293 | | 0.3559 | 23.45 | 938 | 0.8811 | 0.2000 | 0.8811 | 0.9387 | | 0.3559 | 23.5 | 940 | 0.9003 | 0.2142 | 0.9003 | 0.9489 | | 0.3559 | 23.55 | 942 | 0.9292 | 0.2923 | 0.9292 | 0.9640 | | 0.3559 | 23.6 | 944 | 0.9417 | 0.2923 | 0.9417 | 0.9704 | | 0.3559 | 23.65 | 946 | 0.9565 | 0.2463 | 0.9565 | 0.9780 | | 0.3559 | 23.7 | 948 | 1.0134 | 0.2562 | 1.0134 | 1.0067 | | 0.3559 | 23.75 | 950 | 1.0518 | 0.1651 | 1.0518 | 1.0256 | | 0.3559 | 23.8 | 952 | 1.0677 | 0.1651 | 1.0677 | 1.0333 | | 0.3559 | 23.85 | 954 | 1.0938 | 0.0134 | 1.0938 | 1.0459 | | 0.3559 | 23.9 | 956 | 1.0998 | 0.0114 | 1.0998 | 1.0487 | | 0.3559 | 23.95 | 958 | 1.0754 | 0.0462 | 1.0754 | 1.0370 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu118 - Datasets 2.21.0 - Tokenizers 0.19.1
nathanialhunt/a4673c11-c12b-4d99-99b1-c849d5e98ca5
nathanialhunt
2025-01-21T15:37:10Z
9
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:rayonlabs/e3f77680-ac2a-4c6f-afed-0b2386f29ee7", "base_model:adapter:rayonlabs/e3f77680-ac2a-4c6f-afed-0b2386f29ee7", "region:us" ]
null
2025-01-21T15:05:44Z
--- library_name: peft base_model: rayonlabs/e3f77680-ac2a-4c6f-afed-0b2386f29ee7 tags: - axolotl - generated_from_trainer model-index: - name: a4673c11-c12b-4d99-99b1-c849d5e98ca5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: rayonlabs/e3f77680-ac2a-4c6f-afed-0b2386f29ee7 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 8a053a2d05ec29b3_train_data.json ds_type: json format: custom path: /workspace/input_data/8a053a2d05ec29b3_train_data.json type: field_input: context field_instruction: question field_output: final_decision format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: nathanialhunt/a4673c11-c12b-4d99-99b1-c849d5e98ca5 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/8a053a2d05ec29b3_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: <|end_of_text|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: dab6df52-ba8c-40d3-8369-22e8245b6f81 wandb_project: Birthday-SN56-5-Gradients-On-Demand wandb_run: your_name wandb_runid: dab6df52-ba8c-40d3-8369-22e8245b6f81 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # a4673c11-c12b-4d99-99b1-c849d5e98ca5 This model is a fine-tuned version of [rayonlabs/e3f77680-ac2a-4c6f-afed-0b2386f29ee7](https://huggingface.co/rayonlabs/e3f77680-ac2a-4c6f-afed-0b2386f29ee7) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.5170 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 13.2355 | 0.0000 | 1 | 13.6415 | | 13.9149 | 0.0001 | 3 | 13.1123 | | 9.2283 | 0.0002 | 6 | 6.7145 | | 3.0629 | 0.0004 | 9 | 3.5170 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nblinh63/2567152b-8e91-41ea-993f-04c8a73e062a
nblinh63
2025-01-21T15:35:51Z
5
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:NousResearch/Nous-Hermes-llama-2-7b", "base_model:adapter:NousResearch/Nous-Hermes-llama-2-7b", "license:mit", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-21T14:03:53Z
--- library_name: peft license: mit base_model: NousResearch/Nous-Hermes-llama-2-7b tags: - axolotl - generated_from_trainer model-index: - name: 2567152b-8e91-41ea-993f-04c8a73e062a results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Nous-Hermes-llama-2-7b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - ea142ac27856f425_train_data.json ds_type: json format: custom path: /workspace/input_data/ea142ac27856f425_train_data.json type: field_instruction: 'Purpose: Clinical Focus' field_output: Description format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nblinh63/2567152b-8e91-41ea-993f-04c8a73e062a hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/ea142ac27856f425_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 8d608405-ef66-4e7a-9976-6a448c75bbeb wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 8d608405-ef66-4e7a-9976-6a448c75bbeb warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 2567152b-8e91-41ea-993f-04c8a73e062a This model is a fine-tuned version of [NousResearch/Nous-Hermes-llama-2-7b](https://huggingface.co/NousResearch/Nous-Hermes-llama-2-7b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6800 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.6217 | 0.0052 | 200 | 1.6800 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
fedovtt/7669b4ac-fd7d-43d8-93f5-e154fec08708
fedovtt
2025-01-21T15:35:45Z
6
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2-0.5B-Instruct", "base_model:adapter:unsloth/Qwen2-0.5B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-01-21T15:34:48Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2-0.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 7669b4ac-fd7d-43d8-93f5-e154fec08708 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2-0.5B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 50727019ec5046e2_train_data.json ds_type: json format: custom path: /workspace/input_data/50727019ec5046e2_train_data.json type: field_input: category field_instruction: text field_output: title format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: 1 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: false hub_model_id: fedovtt/7669b4ac-fd7d-43d8-93f5-e154fec08708 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 78GiB max_steps: 30 micro_batch_size: 2 mlflow_experiment_name: /tmp/50727019ec5046e2_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 61ce37e2-d75b-4435-bf72-23ce5c13f0b8 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 61ce37e2-d75b-4435-bf72-23ce5c13f0b8 warmup_steps: 10 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 7669b4ac-fd7d-43d8-93f5-e154fec08708 This model is a fine-tuned version of [unsloth/Qwen2-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2-0.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0013 | 1 | nan | | 0.0 | 0.0066 | 5 | nan | | 0.0 | 0.0133 | 10 | nan | | 0.0 | 0.0199 | 15 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
chchen/Llama-3.1-8B-Instruct-dpo-1000
chchen
2025-01-21T15:32:46Z
5
0
peft
[ "peft", "safetensors", "llama-factory", "lora", "trl", "dpo", "generated_from_trainer", "base_model:meta-llama/Llama-3.1-8B-Instruct", "base_model:adapter:meta-llama/Llama-3.1-8B-Instruct", "license:llama3.1", "region:us" ]
null
2025-01-21T15:10:51Z
--- base_model: meta-llama/Llama-3.1-8B-Instruct library_name: peft license: llama3.1 tags: - llama-factory - lora - trl - dpo - generated_from_trainer model-index: - name: Llama-3.1-8B-Instruct-dpo-1000 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Llama-3.1-8B-Instruct-dpo-1000 This model is a fine-tuned version of [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct) on the bct_non_cot_dpo_1000 dataset. It achieves the following results on the evaluation set: - Loss: 0.2845 - Rewards/chosen: 0.1535 - Rewards/rejected: -1.8119 - Rewards/accuracies: 0.9000 - Rewards/margins: 1.9654 - Logps/chosen: -16.0986 - Logps/rejected: -38.2013 - Logits/chosen: -0.1852 - Logits/rejected: -0.3689 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/chosen | Logps/rejected | Logits/chosen | Logits/rejected | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:------------:|:--------------:|:-------------:|:---------------:| | 0.6346 | 1.7778 | 50 | 0.6252 | 0.2207 | 0.0694 | 0.8000 | 0.1513 | -15.4268 | -19.3885 | -0.2672 | -0.3872 | | 0.4162 | 3.5556 | 100 | 0.3736 | 0.3857 | -0.7267 | 0.8900 | 1.1125 | -13.7764 | -27.3496 | -0.2058 | -0.3821 | | 0.2919 | 5.3333 | 150 | 0.3053 | 0.2701 | -1.3825 | 0.9000 | 1.6526 | -14.9327 | -33.9072 | -0.1906 | -0.3753 | | 0.3007 | 7.1111 | 200 | 0.2881 | 0.1886 | -1.7019 | 0.9100 | 1.8905 | -15.7478 | -37.1016 | -0.1883 | -0.3726 | | 0.2536 | 8.8889 | 250 | 0.2845 | 0.1535 | -1.8119 | 0.9000 | 1.9654 | -16.0986 | -38.2013 | -0.1852 | -0.3689 | ### Framework versions - PEFT 0.12.0 - Transformers 4.45.2 - Pytorch 2.3.0 - Datasets 2.19.0 - Tokenizers 0.20.0
nhungphammmmm/7404cfd9-10e5-40cf-860b-672e90b76941
nhungphammmmm
2025-01-21T15:30:23Z
11
0
peft
[ "peft", "safetensors", "gemma2", "axolotl", "generated_from_trainer", "base_model:unsloth/gemma-2-9b-it", "base_model:adapter:unsloth/gemma-2-9b-it", "license:gemma", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-21T14:40:40Z
--- library_name: peft license: gemma base_model: unsloth/gemma-2-9b-it tags: - axolotl - generated_from_trainer model-index: - name: 7404cfd9-10e5-40cf-860b-672e90b76941 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/gemma-2-9b-it bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 2adafa906e5c58da_train_data.json ds_type: json format: custom path: /workspace/input_data/2adafa906e5c58da_train_data.json type: field_input: '' field_instruction: anchor field_output: positive format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nhungphammmmm/7404cfd9-10e5-40cf-860b-672e90b76941 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/2adafa906e5c58da_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: aa7d9493-c5b5-4e83-b6c1-5e33a1c2ac47 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: aa7d9493-c5b5-4e83-b6c1-5e33a1c2ac47 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 7404cfd9-10e5-40cf-860b-672e90b76941 This model is a fine-tuned version of [unsloth/gemma-2-9b-it](https://huggingface.co/unsloth/gemma-2-9b-it) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4328 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.4057 | 0.2224 | 200 | 1.4328 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nhunglaaaaaaa/ec8cc4f0-be45-4918-88e5-2cb03233d31b
nhunglaaaaaaa
2025-01-21T15:30:10Z
11
0
peft
[ "peft", "safetensors", "gemma2", "axolotl", "generated_from_trainer", "base_model:unsloth/gemma-2-9b-it", "base_model:adapter:unsloth/gemma-2-9b-it", "license:gemma", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-21T14:40:43Z
--- library_name: peft license: gemma base_model: unsloth/gemma-2-9b-it tags: - axolotl - generated_from_trainer model-index: - name: ec8cc4f0-be45-4918-88e5-2cb03233d31b results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/gemma-2-9b-it bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 2adafa906e5c58da_train_data.json ds_type: json format: custom path: /workspace/input_data/2adafa906e5c58da_train_data.json type: field_input: '' field_instruction: anchor field_output: positive format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nhunglaaaaaaa/ec8cc4f0-be45-4918-88e5-2cb03233d31b hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/2adafa906e5c58da_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: aa7d9493-c5b5-4e83-b6c1-5e33a1c2ac47 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: aa7d9493-c5b5-4e83-b6c1-5e33a1c2ac47 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # ec8cc4f0-be45-4918-88e5-2cb03233d31b This model is a fine-tuned version of [unsloth/gemma-2-9b-it](https://huggingface.co/unsloth/gemma-2-9b-it) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4342 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.4068 | 0.2224 | 200 | 1.4342 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
MayBashendy/ArabicNewSplits7_usingWellWrittenEssays_FineTuningAraBERT_run2_AugV5_k16_task7_organization
MayBashendy
2025-01-21T15:29:12Z
5
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:aubmindlab/bert-base-arabertv02", "base_model:finetune:aubmindlab/bert-base-arabertv02", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-01-21T15:24:19Z
--- library_name: transformers base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: ArabicNewSplits7_usingWellWrittenEssays_FineTuningAraBERT_run2_AugV5_k16_task7_organization results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ArabicNewSplits7_usingWellWrittenEssays_FineTuningAraBERT_run2_AugV5_k16_task7_organization This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5216 - Qwk: 0.0201 - Mse: 1.5216 - Rmse: 1.2335 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse | |:-------------:|:-------:|:----:|:---------------:|:-------:|:------:|:------:| | No log | 0.0526 | 2 | 2.6272 | -0.0593 | 2.6272 | 1.6209 | | No log | 0.1053 | 4 | 1.3533 | 0.0412 | 1.3533 | 1.1633 | | No log | 0.1579 | 6 | 1.1248 | -0.1866 | 1.1248 | 1.0606 | | No log | 0.2105 | 8 | 1.2809 | -0.2576 | 1.2809 | 1.1317 | | No log | 0.2632 | 10 | 1.1955 | -0.0609 | 1.1955 | 1.0934 | | No log | 0.3158 | 12 | 1.2034 | -0.1027 | 1.2034 | 1.0970 | | No log | 0.3684 | 14 | 1.1322 | 0.0868 | 1.1322 | 1.0641 | | No log | 0.4211 | 16 | 1.0782 | 0.0943 | 1.0782 | 1.0384 | | No log | 0.4737 | 18 | 1.0863 | 0.0391 | 1.0863 | 1.0423 | | No log | 0.5263 | 20 | 1.1633 | -0.1081 | 1.1633 | 1.0786 | | No log | 0.5789 | 22 | 1.0268 | 0.0419 | 1.0268 | 1.0133 | | No log | 0.6316 | 24 | 0.9608 | -0.0054 | 0.9608 | 0.9802 | | No log | 0.6842 | 26 | 0.9309 | -0.0103 | 0.9309 | 0.9648 | | No log | 0.7368 | 28 | 0.9532 | 0.0208 | 0.9532 | 0.9763 | | No log | 0.7895 | 30 | 0.9817 | 0.1268 | 0.9817 | 0.9908 | | No log | 0.8421 | 32 | 1.0772 | 0.0958 | 1.0772 | 1.0379 | | No log | 0.8947 | 34 | 1.0455 | 0.1103 | 1.0455 | 1.0225 | | No log | 0.9474 | 36 | 1.0125 | -0.0472 | 1.0125 | 1.0062 | | No log | 1.0 | 38 | 1.3162 | -0.0624 | 1.3162 | 1.1473 | | No log | 1.0526 | 40 | 1.5613 | -0.0844 | 1.5613 | 1.2495 | | No log | 1.1053 | 42 | 1.4443 | -0.0219 | 1.4443 | 1.2018 | | No log | 1.1579 | 44 | 1.1555 | -0.0579 | 1.1555 | 1.0749 | | No log | 1.2105 | 46 | 0.9541 | -0.0915 | 0.9541 | 0.9768 | | No log | 1.2632 | 48 | 1.0257 | 0.1028 | 1.0257 | 1.0128 | | No log | 1.3158 | 50 | 1.1605 | -0.0201 | 1.1605 | 1.0773 | | No log | 1.3684 | 52 | 1.2818 | -0.0529 | 1.2818 | 1.1322 | | No log | 1.4211 | 54 | 1.1967 | -0.0753 | 1.1967 | 1.0939 | | No log | 1.4737 | 56 | 1.0339 | -0.0569 | 1.0339 | 1.0168 | | No log | 1.5263 | 58 | 1.1167 | -0.1355 | 1.1167 | 1.0567 | | No log | 1.5789 | 60 | 1.0975 | -0.1120 | 1.0975 | 1.0476 | | No log | 1.6316 | 62 | 1.1324 | -0.1389 | 1.1324 | 1.0641 | | No log | 1.6842 | 64 | 1.4684 | -0.1344 | 1.4684 | 1.2118 | | No log | 1.7368 | 66 | 1.6105 | -0.1020 | 1.6105 | 1.2691 | | No log | 1.7895 | 68 | 1.4590 | -0.1956 | 1.4590 | 1.2079 | | No log | 1.8421 | 70 | 1.3797 | -0.2625 | 1.3797 | 1.1746 | | No log | 1.8947 | 72 | 1.3951 | -0.1445 | 1.3951 | 1.1812 | | No log | 1.9474 | 74 | 1.4090 | -0.1745 | 1.4090 | 1.1870 | | No log | 2.0 | 76 | 1.4591 | -0.1263 | 1.4591 | 1.2079 | | No log | 2.0526 | 78 | 1.6217 | -0.0934 | 1.6217 | 1.2735 | | No log | 2.1053 | 80 | 1.6123 | -0.0973 | 1.6123 | 1.2698 | | No log | 2.1579 | 82 | 1.4721 | -0.0703 | 1.4721 | 1.2133 | | No log | 2.2105 | 84 | 1.3864 | -0.0980 | 1.3864 | 1.1775 | | No log | 2.2632 | 86 | 1.3088 | -0.0693 | 1.3088 | 1.1440 | | No log | 2.3158 | 88 | 1.1973 | 0.0012 | 1.1973 | 1.0942 | | No log | 2.3684 | 90 | 1.1401 | 0.0184 | 1.1401 | 1.0678 | | No log | 2.4211 | 92 | 1.1138 | 0.0162 | 1.1138 | 1.0554 | | No log | 2.4737 | 94 | 1.1471 | -0.0358 | 1.1471 | 1.0710 | | No log | 2.5263 | 96 | 1.1660 | 0.0445 | 1.1660 | 1.0798 | | No log | 2.5789 | 98 | 1.1249 | -0.0274 | 1.1249 | 1.0606 | | No log | 2.6316 | 100 | 1.1856 | -0.0077 | 1.1856 | 1.0889 | | No log | 2.6842 | 102 | 1.3302 | 0.1004 | 1.3302 | 1.1533 | | No log | 2.7368 | 104 | 1.4543 | 0.0633 | 1.4543 | 1.2059 | | No log | 2.7895 | 106 | 1.2951 | 0.1479 | 1.2951 | 1.1380 | | No log | 2.8421 | 108 | 1.0956 | 0.0378 | 1.0956 | 1.0467 | | No log | 2.8947 | 110 | 1.1455 | 0.0327 | 1.1455 | 1.0703 | | No log | 2.9474 | 112 | 1.3362 | 0.0900 | 1.3362 | 1.1559 | | No log | 3.0 | 114 | 1.4208 | 0.1093 | 1.4208 | 1.1920 | | No log | 3.0526 | 116 | 1.3002 | 0.0849 | 1.3002 | 1.1403 | | No log | 3.1053 | 118 | 1.2707 | -0.0670 | 1.2707 | 1.1273 | | No log | 3.1579 | 120 | 1.2686 | 0.0155 | 1.2686 | 1.1263 | | No log | 3.2105 | 122 | 1.3567 | 0.0802 | 1.3567 | 1.1648 | | No log | 3.2632 | 124 | 1.4962 | 0.1244 | 1.4962 | 1.2232 | | No log | 3.3158 | 126 | 1.4460 | 0.0881 | 1.4460 | 1.2025 | | No log | 3.3684 | 128 | 1.3508 | 0.0979 | 1.3508 | 1.1622 | | No log | 3.4211 | 130 | 1.2981 | 0.1031 | 1.2981 | 1.1393 | | No log | 3.4737 | 132 | 1.1881 | -0.0025 | 1.1881 | 1.0900 | | No log | 3.5263 | 134 | 1.1407 | -0.0025 | 1.1407 | 1.0680 | | No log | 3.5789 | 136 | 1.1313 | -0.0347 | 1.1313 | 1.0636 | | No log | 3.6316 | 138 | 1.1818 | 0.0445 | 1.1818 | 1.0871 | | No log | 3.6842 | 140 | 1.3569 | 0.1145 | 1.3569 | 1.1649 | | No log | 3.7368 | 142 | 1.4561 | 0.0791 | 1.4561 | 1.2067 | | No log | 3.7895 | 144 | 1.2293 | 0.0122 | 1.2293 | 1.1087 | | No log | 3.8421 | 146 | 1.1815 | 0.0184 | 1.1815 | 1.0870 | | No log | 3.8947 | 148 | 1.2707 | -0.0557 | 1.2707 | 1.1273 | | No log | 3.9474 | 150 | 1.5072 | 0.1044 | 1.5072 | 1.2277 | | No log | 4.0 | 152 | 1.7639 | 0.1336 | 1.7639 | 1.3281 | | No log | 4.0526 | 154 | 1.6838 | 0.0240 | 1.6838 | 1.2976 | | No log | 4.1053 | 156 | 1.3476 | 0.1146 | 1.3476 | 1.1609 | | No log | 4.1579 | 158 | 1.0604 | -0.0619 | 1.0604 | 1.0298 | | No log | 4.2105 | 160 | 1.0329 | -0.0826 | 1.0329 | 1.0163 | | No log | 4.2632 | 162 | 1.0057 | 0.0255 | 1.0057 | 1.0029 | | No log | 4.3158 | 164 | 1.0843 | 0.0653 | 1.0843 | 1.0413 | | No log | 4.3684 | 166 | 1.3021 | -0.0391 | 1.3021 | 1.1411 | | No log | 4.4211 | 168 | 1.3976 | -0.0391 | 1.3976 | 1.1822 | | No log | 4.4737 | 170 | 1.3075 | -0.0027 | 1.3075 | 1.1434 | | No log | 4.5263 | 172 | 1.2089 | 0.0218 | 1.2089 | 1.0995 | | No log | 4.5789 | 174 | 1.2620 | -0.0462 | 1.2620 | 1.1234 | | No log | 4.6316 | 176 | 1.4129 | 0.0736 | 1.4129 | 1.1886 | | No log | 4.6842 | 178 | 1.4863 | 0.0399 | 1.4863 | 1.2192 | | No log | 4.7368 | 180 | 1.5802 | -0.0149 | 1.5802 | 1.2571 | | No log | 4.7895 | 182 | 1.5562 | -0.0149 | 1.5562 | 1.2475 | | No log | 4.8421 | 184 | 1.5297 | 0.0353 | 1.5297 | 1.2368 | | No log | 4.8947 | 186 | 1.3550 | 0.0838 | 1.3550 | 1.1640 | | No log | 4.9474 | 188 | 1.2241 | -0.0383 | 1.2241 | 1.1064 | | No log | 5.0 | 190 | 1.1879 | -0.0383 | 1.1879 | 1.0899 | | No log | 5.0526 | 192 | 1.2152 | 0.1110 | 1.2152 | 1.1024 | | No log | 5.1053 | 194 | 1.3843 | 0.1568 | 1.3843 | 1.1766 | | No log | 5.1579 | 196 | 1.4539 | 0.1272 | 1.4539 | 1.2058 | | No log | 5.2105 | 198 | 1.3739 | 0.0727 | 1.3739 | 1.1721 | | No log | 5.2632 | 200 | 1.3371 | 0.0347 | 1.3371 | 1.1563 | | No log | 5.3158 | 202 | 1.4417 | 0.1093 | 1.4417 | 1.2007 | | No log | 5.3684 | 204 | 1.4772 | 0.1019 | 1.4772 | 1.2154 | | No log | 5.4211 | 206 | 1.5103 | 0.1364 | 1.5103 | 1.2289 | | No log | 5.4737 | 208 | 1.3202 | 0.1626 | 1.3202 | 1.1490 | | No log | 5.5263 | 210 | 1.2476 | 0.1422 | 1.2476 | 1.1169 | | No log | 5.5789 | 212 | 1.3022 | 0.1144 | 1.3022 | 1.1411 | | No log | 5.6316 | 214 | 1.4055 | 0.0704 | 1.4055 | 1.1855 | | No log | 5.6842 | 216 | 1.6031 | 0.0971 | 1.6031 | 1.2661 | | No log | 5.7368 | 218 | 1.5909 | 0.0531 | 1.5909 | 1.2613 | | No log | 5.7895 | 220 | 1.3706 | 0.0873 | 1.3706 | 1.1707 | | No log | 5.8421 | 222 | 1.0998 | 0.0683 | 1.0998 | 1.0487 | | No log | 5.8947 | 224 | 1.0045 | -0.0548 | 1.0045 | 1.0023 | | No log | 5.9474 | 226 | 0.9858 | -0.0232 | 0.9858 | 0.9929 | | No log | 6.0 | 228 | 1.0412 | 0.0683 | 1.0412 | 1.0204 | | No log | 6.0526 | 230 | 1.2110 | 0.1356 | 1.2110 | 1.1004 | | No log | 6.1053 | 232 | 1.2900 | 0.0746 | 1.2900 | 1.1358 | | No log | 6.1579 | 234 | 1.1768 | 0.1339 | 1.1768 | 1.0848 | | No log | 6.2105 | 236 | 1.0820 | 0.0293 | 1.0820 | 1.0402 | | No log | 6.2632 | 238 | 1.0496 | -0.0586 | 1.0496 | 1.0245 | | No log | 6.3158 | 240 | 1.0748 | 0.0332 | 1.0748 | 1.0367 | | No log | 6.3684 | 242 | 1.1750 | 0.1557 | 1.1750 | 1.0840 | | No log | 6.4211 | 244 | 1.1079 | 0.1623 | 1.1079 | 1.0526 | | No log | 6.4737 | 246 | 0.9989 | 0.0994 | 0.9989 | 0.9995 | | No log | 6.5263 | 248 | 1.0298 | 0.2094 | 1.0298 | 1.0148 | | No log | 6.5789 | 250 | 1.2194 | 0.1352 | 1.2194 | 1.1043 | | No log | 6.6316 | 252 | 1.2990 | 0.0925 | 1.2990 | 1.1397 | | No log | 6.6842 | 254 | 1.2397 | 0.1557 | 1.2397 | 1.1134 | | No log | 6.7368 | 256 | 1.1328 | 0.1422 | 1.1328 | 1.0643 | | No log | 6.7895 | 258 | 1.1646 | 0.0829 | 1.1646 | 1.0792 | | No log | 6.8421 | 260 | 1.2065 | -0.0969 | 1.2065 | 1.0984 | | No log | 6.8947 | 262 | 1.2767 | 0.0516 | 1.2767 | 1.1299 | | No log | 6.9474 | 264 | 1.3506 | 0.0896 | 1.3506 | 1.1621 | | No log | 7.0 | 266 | 1.4084 | 0.0250 | 1.4084 | 1.1867 | | No log | 7.0526 | 268 | 1.4387 | 0.0250 | 1.4387 | 1.1995 | | No log | 7.1053 | 270 | 1.3452 | 0.0927 | 1.3452 | 1.1598 | | No log | 7.1579 | 272 | 1.3409 | 0.1115 | 1.3409 | 1.1580 | | No log | 7.2105 | 274 | 1.3564 | 0.1260 | 1.3564 | 1.1646 | | No log | 7.2632 | 276 | 1.3774 | 0.0976 | 1.3774 | 1.1736 | | No log | 7.3158 | 278 | 1.3428 | 0.1618 | 1.3428 | 1.1588 | | No log | 7.3684 | 280 | 1.3703 | 0.1320 | 1.3703 | 1.1706 | | No log | 7.4211 | 282 | 1.3586 | 0.0607 | 1.3586 | 1.1656 | | No log | 7.4737 | 284 | 1.3317 | 0.0607 | 1.3317 | 1.1540 | | No log | 7.5263 | 286 | 1.3328 | 0.0561 | 1.3328 | 1.1545 | | No log | 7.5789 | 288 | 1.2788 | 0.0929 | 1.2788 | 1.1308 | | No log | 7.6316 | 290 | 1.3360 | 0.0539 | 1.3360 | 1.1559 | | No log | 7.6842 | 292 | 1.5797 | 0.0708 | 1.5797 | 1.2569 | | No log | 7.7368 | 294 | 1.7573 | 0.0225 | 1.7573 | 1.3256 | | No log | 7.7895 | 296 | 1.8595 | 0.0225 | 1.8595 | 1.3636 | | No log | 7.8421 | 298 | 1.6648 | 0.0455 | 1.6648 | 1.2903 | | No log | 7.8947 | 300 | 1.4574 | 0.1278 | 1.4574 | 1.2072 | | No log | 7.9474 | 302 | 1.3516 | 0.0820 | 1.3516 | 1.1626 | | No log | 8.0 | 304 | 1.3100 | 0.0955 | 1.3100 | 1.1446 | | No log | 8.0526 | 306 | 1.3089 | 0.1271 | 1.3089 | 1.1441 | | No log | 8.1053 | 308 | 1.3591 | 0.1257 | 1.3591 | 1.1658 | | No log | 8.1579 | 310 | 1.4105 | 0.1018 | 1.4105 | 1.1877 | | No log | 8.2105 | 312 | 1.3486 | 0.1175 | 1.3486 | 1.1613 | | No log | 8.2632 | 314 | 1.1931 | 0.1045 | 1.1931 | 1.0923 | | No log | 8.3158 | 316 | 1.1342 | 0.0327 | 1.1342 | 1.0650 | | No log | 8.3684 | 318 | 1.1787 | 0.1486 | 1.1787 | 1.0857 | | No log | 8.4211 | 320 | 1.3549 | 0.1287 | 1.3549 | 1.1640 | | No log | 8.4737 | 322 | 1.4294 | 0.1246 | 1.4294 | 1.1956 | | No log | 8.5263 | 324 | 1.3287 | 0.1417 | 1.3287 | 1.1527 | | No log | 8.5789 | 326 | 1.2734 | 0.2059 | 1.2734 | 1.1285 | | No log | 8.6316 | 328 | 1.2472 | 0.1528 | 1.2472 | 1.1168 | | No log | 8.6842 | 330 | 1.2534 | 0.2017 | 1.2534 | 1.1196 | | No log | 8.7368 | 332 | 1.2175 | 0.1976 | 1.2175 | 1.1034 | | No log | 8.7895 | 334 | 1.1991 | 0.2601 | 1.1991 | 1.0950 | | No log | 8.8421 | 336 | 1.1013 | 0.2046 | 1.1013 | 1.0494 | | No log | 8.8947 | 338 | 1.0782 | 0.1955 | 1.0782 | 1.0384 | | No log | 8.9474 | 340 | 1.1517 | 0.2032 | 1.1517 | 1.0732 | | No log | 9.0 | 342 | 1.2388 | 0.2100 | 1.2388 | 1.1130 | | No log | 9.0526 | 344 | 1.2111 | 0.2209 | 1.2111 | 1.1005 | | No log | 9.1053 | 346 | 1.1529 | 0.2343 | 1.1529 | 1.0737 | | No log | 9.1579 | 348 | 1.1797 | 0.2343 | 1.1797 | 1.0862 | | No log | 9.2105 | 350 | 1.3373 | 0.1561 | 1.3373 | 1.1564 | | No log | 9.2632 | 352 | 1.4898 | 0.1823 | 1.4898 | 1.2206 | | No log | 9.3158 | 354 | 1.4551 | 0.1823 | 1.4551 | 1.2063 | | No log | 9.3684 | 356 | 1.2892 | 0.2330 | 1.2892 | 1.1354 | | No log | 9.4211 | 358 | 1.2209 | 0.1827 | 1.2209 | 1.1049 | | No log | 9.4737 | 360 | 1.1878 | 0.1827 | 1.1878 | 1.0898 | | No log | 9.5263 | 362 | 1.1373 | 0.2259 | 1.1373 | 1.0664 | | No log | 9.5789 | 364 | 1.1745 | 0.1869 | 1.1745 | 1.0838 | | No log | 9.6316 | 366 | 1.2467 | 0.0866 | 1.2467 | 1.1166 | | No log | 9.6842 | 368 | 1.2706 | 0.1922 | 1.2706 | 1.1272 | | No log | 9.7368 | 370 | 1.2681 | 0.1680 | 1.2681 | 1.1261 | | No log | 9.7895 | 372 | 1.2913 | 0.1379 | 1.2913 | 1.1364 | | No log | 9.8421 | 374 | 1.2234 | 0.1109 | 1.2234 | 1.1061 | | No log | 9.8947 | 376 | 1.2794 | 0.1143 | 1.2794 | 1.1311 | | No log | 9.9474 | 378 | 1.4159 | 0.0733 | 1.4159 | 1.1899 | | No log | 10.0 | 380 | 1.3992 | 0.0515 | 1.3992 | 1.1829 | | No log | 10.0526 | 382 | 1.2418 | 0.1699 | 1.2418 | 1.1144 | | No log | 10.1053 | 384 | 1.0707 | 0.1028 | 1.0707 | 1.0348 | | No log | 10.1579 | 386 | 1.0396 | 0.0781 | 1.0396 | 1.0196 | | No log | 10.2105 | 388 | 1.1039 | 0.1293 | 1.1039 | 1.0507 | | No log | 10.2632 | 390 | 1.1998 | 0.1145 | 1.1998 | 1.0954 | | No log | 10.3158 | 392 | 1.3749 | 0.0813 | 1.3749 | 1.1725 | | No log | 10.3684 | 394 | 1.5529 | 0.0927 | 1.5529 | 1.2461 | | No log | 10.4211 | 396 | 1.6228 | 0.1075 | 1.6228 | 1.2739 | | No log | 10.4737 | 398 | 1.4991 | 0.0927 | 1.4991 | 1.2244 | | No log | 10.5263 | 400 | 1.3037 | 0.0761 | 1.3037 | 1.1418 | | No log | 10.5789 | 402 | 1.1463 | 0.0993 | 1.1463 | 1.0706 | | No log | 10.6316 | 404 | 1.1016 | 0.0058 | 1.1016 | 1.0496 | | No log | 10.6842 | 406 | 1.1157 | -0.0320 | 1.1157 | 1.0562 | | No log | 10.7368 | 408 | 1.1974 | 0.0462 | 1.1974 | 1.0943 | | No log | 10.7895 | 410 | 1.3775 | 0.0921 | 1.3775 | 1.1737 | | No log | 10.8421 | 412 | 1.4886 | 0.0544 | 1.4886 | 1.2201 | | No log | 10.8947 | 414 | 1.4853 | 0.0829 | 1.4853 | 1.2187 | | No log | 10.9474 | 416 | 1.3911 | 0.1453 | 1.3911 | 1.1795 | | No log | 11.0 | 418 | 1.3247 | 0.1360 | 1.3247 | 1.1509 | | No log | 11.0526 | 420 | 1.2653 | 0.1360 | 1.2653 | 1.1249 | | No log | 11.1053 | 422 | 1.2646 | 0.1360 | 1.2646 | 1.1245 | | No log | 11.1579 | 424 | 1.2685 | 0.0154 | 1.2685 | 1.1263 | | No log | 11.2105 | 426 | 1.2663 | -0.1056 | 1.2663 | 1.1253 | | No log | 11.2632 | 428 | 1.2858 | 0.0462 | 1.2858 | 1.1339 | | No log | 11.3158 | 430 | 1.3754 | 0.1145 | 1.3754 | 1.1728 | | No log | 11.3684 | 432 | 1.3910 | 0.1679 | 1.3910 | 1.1794 | | No log | 11.4211 | 434 | 1.3145 | 0.1265 | 1.3145 | 1.1465 | | No log | 11.4737 | 436 | 1.1925 | 0.1044 | 1.1925 | 1.0920 | | No log | 11.5263 | 438 | 1.1626 | 0.1332 | 1.1626 | 1.0782 | | No log | 11.5789 | 440 | 1.1926 | 0.1584 | 1.1926 | 1.0921 | | No log | 11.6316 | 442 | 1.2035 | 0.1178 | 1.2035 | 1.0970 | | No log | 11.6842 | 444 | 1.2160 | 0.1178 | 1.2160 | 1.1027 | | No log | 11.7368 | 446 | 1.2972 | 0.1653 | 1.2972 | 1.1389 | | No log | 11.7895 | 448 | 1.5549 | 0.1098 | 1.5549 | 1.2470 | | No log | 11.8421 | 450 | 1.6948 | 0.0566 | 1.6948 | 1.3019 | | No log | 11.8947 | 452 | 1.6280 | 0.1011 | 1.6280 | 1.2759 | | No log | 11.9474 | 454 | 1.5196 | 0.0949 | 1.5196 | 1.2327 | | No log | 12.0 | 456 | 1.3540 | 0.0671 | 1.3540 | 1.1636 | | No log | 12.0526 | 458 | 1.2187 | 0.2363 | 1.2187 | 1.1040 | | No log | 12.1053 | 460 | 1.0734 | 0.2046 | 1.0734 | 1.0361 | | No log | 12.1579 | 462 | 1.0405 | 0.0891 | 1.0405 | 1.0200 | | No log | 12.2105 | 464 | 1.0814 | 0.1180 | 1.0814 | 1.0399 | | No log | 12.2632 | 466 | 1.1792 | 0.2211 | 1.1792 | 1.0859 | | No log | 12.3158 | 468 | 1.3373 | 0.1388 | 1.3373 | 1.1564 | | No log | 12.3684 | 470 | 1.3915 | 0.1359 | 1.3915 | 1.1796 | | No log | 12.4211 | 472 | 1.2989 | 0.2017 | 1.2989 | 1.1397 | | No log | 12.4737 | 474 | 1.1876 | 0.1603 | 1.1876 | 1.0898 | | No log | 12.5263 | 476 | 1.2592 | 0.1815 | 1.2592 | 1.1221 | | No log | 12.5789 | 478 | 1.3422 | 0.2421 | 1.3422 | 1.1585 | | No log | 12.6316 | 480 | 1.2959 | 0.1884 | 1.2959 | 1.1384 | | No log | 12.6842 | 482 | 1.2439 | 0.1653 | 1.2439 | 1.1153 | | No log | 12.7368 | 484 | 1.1140 | 0.1584 | 1.1140 | 1.0555 | | No log | 12.7895 | 486 | 1.1081 | 0.1293 | 1.1081 | 1.0527 | | No log | 12.8421 | 488 | 1.2119 | 0.1603 | 1.2119 | 1.1009 | | No log | 12.8947 | 490 | 1.4286 | 0.1701 | 1.4286 | 1.1953 | | No log | 12.9474 | 492 | 1.6398 | 0.0863 | 1.6398 | 1.2806 | | No log | 13.0 | 494 | 1.6853 | 0.1098 | 1.6853 | 1.2982 | | No log | 13.0526 | 496 | 1.6091 | 0.0949 | 1.6091 | 1.2685 | | No log | 13.1053 | 498 | 1.4361 | 0.0453 | 1.4361 | 1.1984 | | 0.3259 | 13.1579 | 500 | 1.3016 | 0.0779 | 1.3016 | 1.1409 | | 0.3259 | 13.2105 | 502 | 1.2718 | 0.0575 | 1.2718 | 1.1277 | | 0.3259 | 13.2632 | 504 | 1.3192 | 0.0673 | 1.3192 | 1.1486 | | 0.3259 | 13.3158 | 506 | 1.4092 | 0.1606 | 1.4092 | 1.1871 | | 0.3259 | 13.3684 | 508 | 1.5130 | 0.1445 | 1.5130 | 1.2300 | | 0.3259 | 13.4211 | 510 | 1.4857 | 0.1508 | 1.4857 | 1.2189 | | 0.3259 | 13.4737 | 512 | 1.3728 | 0.1638 | 1.3728 | 1.1717 | | 0.3259 | 13.5263 | 514 | 1.3385 | 0.1638 | 1.3385 | 1.1570 | | 0.3259 | 13.5789 | 516 | 1.3815 | 0.1606 | 1.3815 | 1.1754 | | 0.3259 | 13.6316 | 518 | 1.4450 | 0.1646 | 1.4450 | 1.2021 | | 0.3259 | 13.6842 | 520 | 1.4601 | 0.1782 | 1.4601 | 1.2083 | | 0.3259 | 13.7368 | 522 | 1.3638 | 0.2130 | 1.3638 | 1.1678 | | 0.3259 | 13.7895 | 524 | 1.2512 | 0.2109 | 1.2512 | 1.1186 | | 0.3259 | 13.8421 | 526 | 1.2186 | 0.2192 | 1.2186 | 1.1039 | | 0.3259 | 13.8947 | 528 | 1.2574 | 0.2192 | 1.2574 | 1.1213 | | 0.3259 | 13.9474 | 530 | 1.2631 | 0.1789 | 1.2631 | 1.1239 | | 0.3259 | 14.0 | 532 | 1.4203 | 0.1917 | 1.4203 | 1.1917 | | 0.3259 | 14.0526 | 534 | 1.4799 | 0.1814 | 1.4799 | 1.2165 | | 0.3259 | 14.1053 | 536 | 1.5447 | 0.1755 | 1.5447 | 1.2429 | | 0.3259 | 14.1579 | 538 | 1.6538 | 0.0951 | 1.6538 | 1.2860 | | 0.3259 | 14.2105 | 540 | 1.5808 | 0.0472 | 1.5808 | 1.2573 | | 0.3259 | 14.2632 | 542 | 1.4312 | 0.1367 | 1.4312 | 1.1963 | | 0.3259 | 14.3158 | 544 | 1.1936 | 0.2032 | 1.1936 | 1.0925 | | 0.3259 | 14.3684 | 546 | 1.0483 | 0.2410 | 1.0483 | 1.0239 | | 0.3259 | 14.4211 | 548 | 1.0373 | 0.2142 | 1.0373 | 1.0185 | | 0.3259 | 14.4737 | 550 | 1.1436 | 0.2308 | 1.1436 | 1.0694 | | 0.3259 | 14.5263 | 552 | 1.3117 | 0.2059 | 1.3117 | 1.1453 | | 0.3259 | 14.5789 | 554 | 1.3648 | 0.2223 | 1.3648 | 1.1682 | | 0.3259 | 14.6316 | 556 | 1.2660 | 0.2209 | 1.2660 | 1.1252 | | 0.3259 | 14.6842 | 558 | 1.2117 | 0.2032 | 1.2117 | 1.1008 | | 0.3259 | 14.7368 | 560 | 1.2640 | 0.2227 | 1.2640 | 1.1243 | | 0.3259 | 14.7895 | 562 | 1.2589 | 0.2227 | 1.2589 | 1.1220 | | 0.3259 | 14.8421 | 564 | 1.2401 | 0.2411 | 1.2401 | 1.1136 | | 0.3259 | 14.8947 | 566 | 1.2666 | 0.2529 | 1.2666 | 1.1254 | | 0.3259 | 14.9474 | 568 | 1.2995 | 0.1846 | 1.2995 | 1.1400 | | 0.3259 | 15.0 | 570 | 1.4025 | 0.2031 | 1.4025 | 1.1843 | | 0.3259 | 15.0526 | 572 | 1.4904 | 0.1275 | 1.4904 | 1.2208 | | 0.3259 | 15.1053 | 574 | 1.4141 | 0.1784 | 1.4141 | 1.1892 | | 0.3259 | 15.1579 | 576 | 1.3191 | 0.1784 | 1.3191 | 1.1485 | | 0.3259 | 15.2105 | 578 | 1.2229 | 0.1671 | 1.2229 | 1.1058 | | 0.3259 | 15.2632 | 580 | 1.1510 | 0.2411 | 1.1510 | 1.0729 | | 0.3259 | 15.3158 | 582 | 1.1297 | 0.1542 | 1.1297 | 1.0629 | | 0.3259 | 15.3684 | 584 | 1.1245 | 0.0623 | 1.1245 | 1.0604 | | 0.3259 | 15.4211 | 586 | 1.1541 | 0.1254 | 1.1541 | 1.0743 | | 0.3259 | 15.4737 | 588 | 1.2785 | 0.1394 | 1.2785 | 1.1307 | | 0.3259 | 15.5263 | 590 | 1.5593 | 0.0826 | 1.5593 | 1.2487 | | 0.3259 | 15.5789 | 592 | 1.7255 | 0.0865 | 1.7255 | 1.3136 | | 0.3259 | 15.6316 | 594 | 1.7327 | 0.0655 | 1.7327 | 1.3163 | | 0.3259 | 15.6842 | 596 | 1.6098 | 0.1145 | 1.6098 | 1.2688 | | 0.3259 | 15.7368 | 598 | 1.5696 | 0.1195 | 1.5696 | 1.2528 | | 0.3259 | 15.7895 | 600 | 1.6367 | 0.0704 | 1.6367 | 1.2793 | | 0.3259 | 15.8421 | 602 | 1.6949 | 0.0290 | 1.6949 | 1.3019 | | 0.3259 | 15.8947 | 604 | 1.6413 | 0.0057 | 1.6413 | 1.2811 | | 0.3259 | 15.9474 | 606 | 1.4916 | 0.0057 | 1.4916 | 1.2213 | | 0.3259 | 16.0 | 608 | 1.3184 | 0.0895 | 1.3184 | 1.1482 | | 0.3259 | 16.0526 | 610 | 1.2577 | 0.1758 | 1.2577 | 1.1215 | | 0.3259 | 16.1053 | 612 | 1.2451 | 0.1758 | 1.2451 | 1.1159 | | 0.3259 | 16.1579 | 614 | 1.2468 | 0.2059 | 1.2468 | 1.1166 | | 0.3259 | 16.2105 | 616 | 1.2825 | 0.2059 | 1.2825 | 1.1325 | | 0.3259 | 16.2632 | 618 | 1.3432 | 0.1758 | 1.3432 | 1.1590 | | 0.3259 | 16.3158 | 620 | 1.3414 | 0.2223 | 1.3414 | 1.1582 | | 0.3259 | 16.3684 | 622 | 1.2666 | 0.1821 | 1.2666 | 1.1255 | | 0.3259 | 16.4211 | 624 | 1.1430 | 0.2046 | 1.1430 | 1.0691 | | 0.3259 | 16.4737 | 626 | 1.0881 | 0.0924 | 1.0881 | 1.0431 | | 0.3259 | 16.5263 | 628 | 1.0945 | 0.1534 | 1.0945 | 1.0462 | | 0.3259 | 16.5789 | 630 | 1.0896 | 0.1534 | 1.0896 | 1.0439 | | 0.3259 | 16.6316 | 632 | 1.0943 | 0.0993 | 1.0943 | 1.0461 | | 0.3259 | 16.6842 | 634 | 1.1262 | 0.1454 | 1.1262 | 1.0612 | | 0.3259 | 16.7368 | 636 | 1.1243 | 0.1501 | 1.1243 | 1.0603 | | 0.3259 | 16.7895 | 638 | 1.1451 | 0.1734 | 1.1451 | 1.0701 | | 0.3259 | 16.8421 | 640 | 1.1876 | 0.1348 | 1.1876 | 1.0898 | | 0.3259 | 16.8947 | 642 | 1.2514 | 0.0925 | 1.2514 | 1.1187 | | 0.3259 | 16.9474 | 644 | 1.3550 | 0.1739 | 1.3550 | 1.1640 | | 0.3259 | 17.0 | 646 | 1.4051 | 0.1630 | 1.4051 | 1.1854 | | 0.3259 | 17.0526 | 648 | 1.4640 | 0.1042 | 1.4640 | 1.2099 | | 0.3259 | 17.1053 | 650 | 1.5184 | 0.0551 | 1.5184 | 1.2322 | | 0.3259 | 17.1579 | 652 | 1.5181 | 0.0564 | 1.5181 | 1.2321 | | 0.3259 | 17.2105 | 654 | 1.3914 | 0.1093 | 1.3914 | 1.1796 | | 0.3259 | 17.2632 | 656 | 1.2229 | 0.2183 | 1.2229 | 1.1059 | | 0.3259 | 17.3158 | 658 | 1.1415 | 0.1110 | 1.1415 | 1.0684 | | 0.3259 | 17.3684 | 660 | 1.0838 | 0.1293 | 1.0838 | 1.0411 | | 0.3259 | 17.4211 | 662 | 1.0890 | 0.1332 | 1.0890 | 1.0436 | | 0.3259 | 17.4737 | 664 | 1.1706 | 0.1584 | 1.1706 | 1.0820 | | 0.3259 | 17.5263 | 666 | 1.2811 | 0.1485 | 1.2811 | 1.1319 | | 0.3259 | 17.5789 | 668 | 1.4522 | 0.0832 | 1.4522 | 1.2051 | | 0.3259 | 17.6316 | 670 | 1.6284 | 0.0619 | 1.6284 | 1.2761 | | 0.3259 | 17.6842 | 672 | 1.6345 | 0.0845 | 1.6345 | 1.2785 | | 0.3259 | 17.7368 | 674 | 1.5049 | 0.0577 | 1.5049 | 1.2268 | | 0.3259 | 17.7895 | 676 | 1.3096 | 0.1417 | 1.3096 | 1.1444 | | 0.3259 | 17.8421 | 678 | 1.1618 | 0.1584 | 1.1618 | 1.0779 | | 0.3259 | 17.8947 | 680 | 1.1296 | 0.0338 | 1.1296 | 1.0628 | | 0.3259 | 17.9474 | 682 | 1.1466 | 0.0653 | 1.1466 | 1.0708 | | 0.3259 | 18.0 | 684 | 1.2110 | 0.1348 | 1.2110 | 1.1004 | | 0.3259 | 18.0526 | 686 | 1.2509 | 0.1573 | 1.2509 | 1.1184 | | 0.3259 | 18.1053 | 688 | 1.3272 | 0.1583 | 1.3272 | 1.1521 | | 0.3259 | 18.1579 | 690 | 1.4979 | 0.1042 | 1.4979 | 1.2239 | | 0.3259 | 18.2105 | 692 | 1.5777 | 0.0293 | 1.5777 | 1.2561 | | 0.3259 | 18.2632 | 694 | 1.5916 | 0.0293 | 1.5916 | 1.2616 | | 0.3259 | 18.3158 | 696 | 1.5494 | 0.0570 | 1.5494 | 1.2447 | | 0.3259 | 18.3684 | 698 | 1.5091 | 0.0468 | 1.5091 | 1.2285 | | 0.3259 | 18.4211 | 700 | 1.5216 | 0.0201 | 1.5216 | 1.2335 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu118 - Datasets 2.21.0 - Tokenizers 0.19.1
Daemontatox/ImmyV2.5
Daemontatox
2025-01-21T15:29:12Z
32
0
transformers
[ "transformers", "pytorch", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "conversational", "en", "base_model:HuggingFaceTB/SmolLM2-1.7B-Instruct", "base_model:finetune:HuggingFaceTB/SmolLM2-1.7B-Instruct", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-01-21T14:26:13Z
--- base_model: HuggingFaceTB/SmolLM2-1.7B-Instruct tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Daemontatox - **License:** apache-2.0 - **Finetuned from model :** HuggingFaceTB/SmolLM2-1.7B-Instruct This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
vm29741/videomae-base-finetuned-midv-holo-500
vm29741
2025-01-21T15:28:20Z
34
0
transformers
[ "transformers", "safetensors", "videomae", "video-classification", "generated_from_trainer", "base_model:MCG-NJU/videomae-base", "base_model:finetune:MCG-NJU/videomae-base", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
video-classification
2025-01-13T15:33:17Z
--- library_name: transformers license: cc-by-nc-4.0 base_model: MCG-NJU/videomae-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: videomae-base-finetuned-midv-holo-500 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # videomae-base-finetuned-midv-holo-500 This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.8322 - Accuracy: 0.4264 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 1925 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 1.2647 | 0.0405 | 78 | 1.2009 | 0.5736 | | 1.3169 | 1.0405 | 156 | 1.2652 | 0.5078 | | 1.3004 | 2.0405 | 234 | 1.2036 | 0.5736 | | 1.1562 | 3.0405 | 312 | 1.1888 | 0.5736 | | 1.265 | 4.0405 | 390 | 1.2808 | 0.4922 | | 1.1946 | 5.0405 | 468 | 1.3394 | 0.3295 | | 1.1222 | 6.0405 | 546 | 1.3204 | 0.5 | | 1.0244 | 7.0405 | 624 | 1.3697 | 0.3643 | | 1.1604 | 8.0405 | 702 | 1.3813 | 0.4535 | | 0.8901 | 9.0405 | 780 | 1.4395 | 0.4225 | | 0.6032 | 10.0405 | 858 | 1.6609 | 0.4535 | | 0.6889 | 11.0405 | 936 | 1.7041 | 0.3605 | | 0.5777 | 12.0405 | 1014 | 1.9075 | 0.3915 | | 0.4317 | 13.0405 | 1092 | 1.6528 | 0.4690 | | 0.5087 | 14.0405 | 1170 | 1.6126 | 0.4845 | | 0.1257 | 15.0405 | 1248 | 2.0637 | 0.4147 | | 0.3774 | 16.0405 | 1326 | 2.5347 | 0.3721 | | 0.1259 | 17.0405 | 1404 | 2.6514 | 0.3760 | | 0.2158 | 18.0405 | 1482 | 2.4290 | 0.4806 | | 0.0505 | 19.0405 | 1560 | 2.6998 | 0.4225 | | 0.0563 | 20.0405 | 1638 | 2.6474 | 0.4225 | | 0.0671 | 21.0405 | 1716 | 2.6487 | 0.4496 | | 0.1847 | 22.0405 | 1794 | 2.7012 | 0.4496 | | 0.0041 | 23.0405 | 1872 | 2.7938 | 0.4341 | | 0.0079 | 24.0275 | 1925 | 2.8322 | 0.4264 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu118 - Datasets 3.2.0 - Tokenizers 0.21.0
lesso14/ead220c7-d7af-400b-9069-33ef2e0d5260
lesso14
2025-01-21T15:27:05Z
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2-0.5B-Instruct", "base_model:adapter:unsloth/Qwen2-0.5B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-01-21T15:24:13Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2-0.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: ead220c7-d7af-400b-9069-33ef2e0d5260 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2-0.5B-Instruct bf16: true chat_template: llama3 datasets: - data_files: - 50727019ec5046e2_train_data.json ds_type: json format: custom path: /workspace/input_data/50727019ec5046e2_train_data.json type: field_input: category field_instruction: text field_output: title format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: lesso14/ead220c7-d7af-400b-9069-33ef2e0d5260 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 25 micro_batch_size: 2 mlflow_experiment_name: /tmp/50727019ec5046e2_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_hf output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 61ce37e2-d75b-4435-bf72-23ce5c13f0b8 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 61ce37e2-d75b-4435-bf72-23ce5c13f0b8 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # ead220c7-d7af-400b-9069-33ef2e0d5260 This model is a fine-tuned version of [unsloth/Qwen2-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2-0.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_HF with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0013 | 1 | nan | | 0.0 | 0.0066 | 5 | nan | | 0.0 | 0.0133 | 10 | nan | | 0.0 | 0.0199 | 15 | nan | | 0.0 | 0.0266 | 20 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
kk-aivio/b437dc4b-7763-411e-a393-a2e5f52c48ed
kk-aivio
2025-01-21T15:26:29Z
10
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:NousResearch/Nous-Hermes-llama-2-7b", "base_model:adapter:NousResearch/Nous-Hermes-llama-2-7b", "license:mit", "region:us" ]
null
2025-01-21T14:53:44Z
--- library_name: peft license: mit base_model: NousResearch/Nous-Hermes-llama-2-7b tags: - axolotl - generated_from_trainer model-index: - name: b437dc4b-7763-411e-a393-a2e5f52c48ed results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Nous-Hermes-llama-2-7b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - ea142ac27856f425_train_data.json ds_type: json format: custom path: /workspace/input_data/ea142ac27856f425_train_data.json type: field_instruction: 'Purpose: Clinical Focus' field_output: Description format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: kk-aivio/b437dc4b-7763-411e-a393-a2e5f52c48ed hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/ea142ac27856f425_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 8d608405-ef66-4e7a-9976-6a448c75bbeb wandb_project: Birthday-SN56-17-Gradients-On-Demand wandb_run: your_name wandb_runid: 8d608405-ef66-4e7a-9976-6a448c75bbeb warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # b437dc4b-7763-411e-a393-a2e5f52c48ed This model is a fine-tuned version of [NousResearch/Nous-Hermes-llama-2-7b](https://huggingface.co/NousResearch/Nous-Hermes-llama-2-7b) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0000 | 1 | nan | | 0.0 | 0.0001 | 3 | nan | | 0.0 | 0.0002 | 6 | nan | | 0.0 | 0.0002 | 9 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mamung/7ff1eced-2e8b-4846-8663-e202ce37b08c
mamung
2025-01-21T15:25:43Z
10
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:NousResearch/Meta-Llama-3-8B", "base_model:adapter:NousResearch/Meta-Llama-3-8B", "license:other", "region:us" ]
null
2025-01-21T14:38:55Z
--- library_name: peft license: other base_model: NousResearch/Meta-Llama-3-8B tags: - axolotl - generated_from_trainer model-index: - name: 7ff1eced-2e8b-4846-8663-e202ce37b08c results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Meta-Llama-3-8B bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 9f860ccb7e806546_train_data.json ds_type: json format: custom path: /workspace/input_data/9f860ccb7e806546_train_data.json type: field_instruction: prompt field_output: chosen format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 256 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 32 gradient_checkpointing: true group_by_length: false hub_model_id: mamung/7ff1eced-2e8b-4846-8663-e202ce37b08c hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lora_target_modules: - q_proj - k_proj - v_proj - o_proj lr_scheduler: cosine max_grad_norm: 2 max_steps: 100 micro_batch_size: 2 mlflow_experiment_name: /tmp/9f860ccb7e806546_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1.0e-05 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 2048 special_tokens: pad_token: <|end_of_text|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: eddysang wandb_mode: online wandb_name: 92906d73-ae0c-43b3-9735-14fe2124bf2a wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 92906d73-ae0c-43b3-9735-14fe2124bf2a warmup_steps: 20 weight_decay: 0.02 xformers_attention: false ``` </details><br> # 7ff1eced-2e8b-4846-8663-e202ce37b08c This model is a fine-tuned version of [NousResearch/Meta-Llama-3-8B](https://huggingface.co/NousResearch/Meta-Llama-3-8B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8266 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-05 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 20 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0191 | 1 | 4.2603 | | 3.1815 | 0.1720 | 9 | 2.6312 | | 2.0577 | 0.3441 | 18 | 1.9758 | | 1.9087 | 0.5161 | 27 | 1.8731 | | 1.8836 | 0.6882 | 36 | 1.8448 | | 1.8482 | 0.8602 | 45 | 1.8272 | | 2.0545 | 1.0323 | 54 | 1.7873 | | 1.4003 | 1.2043 | 63 | 1.8731 | | 1.2632 | 1.3763 | 72 | 1.8426 | | 1.3178 | 1.5484 | 81 | 1.8405 | | 1.2796 | 1.7204 | 90 | 1.8262 | | 1.2715 | 1.8925 | 99 | 1.8266 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
dimasik2987/1ce01585-3962-41d9-9d9a-34b2b9bb47e0
dimasik2987
2025-01-21T15:25:42Z
6
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2-0.5B-Instruct", "base_model:adapter:unsloth/Qwen2-0.5B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-01-21T15:24:11Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2-0.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 1ce01585-3962-41d9-9d9a-34b2b9bb47e0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2-0.5B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 50727019ec5046e2_train_data.json ds_type: json format: custom path: /workspace/input_data/50727019ec5046e2_train_data.json type: field_input: category field_instruction: text field_output: title format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: 1 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: dimasik2987/1ce01585-3962-41d9-9d9a-34b2b9bb47e0 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 79GiB max_steps: 30 micro_batch_size: 4 mlflow_experiment_name: /tmp/50727019ec5046e2_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 61ce37e2-d75b-4435-bf72-23ce5c13f0b8 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 61ce37e2-d75b-4435-bf72-23ce5c13f0b8 warmup_steps: 5 weight_decay: 0.001 xformers_attention: true ``` </details><br> # 1ce01585-3962-41d9-9d9a-34b2b9bb47e0 This model is a fine-tuned version of [unsloth/Qwen2-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2-0.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0027 | 1 | nan | | 0.0 | 0.0133 | 5 | nan | | 0.0 | 0.0266 | 10 | nan | | 0.0 | 0.0399 | 15 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
alyzbane/2025-01-21-15-21-31-convnextv2-tiny-1k-224
alyzbane
2025-01-21T15:25:37Z
72
0
transformers
[ "transformers", "safetensors", "convnextv2", "image-classification", "generated_from_trainer", "base_model:facebook/convnextv2-tiny-1k-224", "base_model:finetune:facebook/convnextv2-tiny-1k-224", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-01-21T15:25:32Z
--- library_name: transformers license: apache-2.0 base_model: facebook/convnextv2-tiny-1k-224 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: 2025-01-21-15-21-31-convnextv2-tiny-1k-224 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 2025-01-21-15-21-31-convnextv2-tiny-1k-224 This model is a fine-tuned version of [facebook/convnextv2-tiny-1k-224](https://huggingface.co/facebook/convnextv2-tiny-1k-224) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0591 - Precision: 0.9799 - Recall: 0.9778 - F1: 0.9776 - Accuracy: 0.976 - Top1 Accuracy: 0.9778 - Error Rate: 0.0240 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 3407 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | Top1 Accuracy | Error Rate | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|:-------------:|:----------:| | 0.7126 | 1.0 | 135 | 1.3514 | 0.7672 | 0.6593 | 0.6371 | 0.6614 | 0.6593 | 0.3386 | | 0.4328 | 2.0 | 270 | 0.2026 | 0.9348 | 0.9333 | 0.9330 | 0.9347 | 0.9333 | 0.0653 | | 0.3438 | 3.0 | 405 | 0.0591 | 0.9799 | 0.9778 | 0.9776 | 0.976 | 0.9778 | 0.0240 | | 0.2082 | 4.0 | 540 | 0.0919 | 0.9725 | 0.9704 | 0.9703 | 0.9719 | 0.9704 | 0.0281 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.20.3
nhoxinh/4cc6bcd9-9c41-4126-a1a4-29c8c6531f14
nhoxinh
2025-01-21T15:25:07Z
9
0
peft
[ "peft", "safetensors", "gemma2", "axolotl", "generated_from_trainer", "base_model:unsloth/gemma-2-9b-it", "base_model:adapter:unsloth/gemma-2-9b-it", "license:gemma", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-21T14:40:32Z
--- library_name: peft license: gemma base_model: unsloth/gemma-2-9b-it tags: - axolotl - generated_from_trainer model-index: - name: 4cc6bcd9-9c41-4126-a1a4-29c8c6531f14 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/gemma-2-9b-it bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 2adafa906e5c58da_train_data.json ds_type: json format: custom path: /workspace/input_data/2adafa906e5c58da_train_data.json type: field_input: '' field_instruction: anchor field_output: positive format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nhoxinh/4cc6bcd9-9c41-4126-a1a4-29c8c6531f14 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/2adafa906e5c58da_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: aa7d9493-c5b5-4e83-b6c1-5e33a1c2ac47 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: aa7d9493-c5b5-4e83-b6c1-5e33a1c2ac47 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 4cc6bcd9-9c41-4126-a1a4-29c8c6531f14 This model is a fine-tuned version of [unsloth/gemma-2-9b-it](https://huggingface.co/unsloth/gemma-2-9b-it) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4330 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.4093 | 0.2224 | 200 | 1.4330 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
hashirconfinlaity/MMH_v1.8
hashirconfinlaity
2025-01-21T15:21:33Z
5
0
transformers
[ "transformers", "safetensors", "distilbert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-01-21T15:20:54Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
JustinStrauch/t5-form-sent-and-quest
JustinStrauch
2025-01-21T15:19:56Z
603
0
null
[ "safetensors", "t5", "region:us" ]
null
2025-01-21T13:25:15Z
Generate a question using the words provided in the prompt, or simply return the question if the words already form one. Use promot "Formuliere eine Frage basierend auf den folgenden Begriffen: {prompt}." Provide a sentence that answers a specific question with the given answer in german. Use the prompt "Beantworte die Frage: {question} mit der Antwort: {answer}"
RyanYr/reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter2T1_b0.1
RyanYr
2025-01-21T15:18:38Z
72
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "generated_from_trainer", "trl", "dpo", "conversational", "arxiv:2305.18290", "base_model:RyanYr/reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b1.0", "base_model:finetune:RyanYr/reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b1.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-21T14:07:26Z
--- base_model: RyanYr/reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b1.0 library_name: transformers model_name: reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter2T1_b0.1 tags: - generated_from_trainer - trl - dpo licence: license --- # Model Card for reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter2T1_b0.1 This model is a fine-tuned version of [RyanYr/reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b1.0](https://huggingface.co/RyanYr/reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b1.0). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="RyanYr/reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter2T1_b0.1", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/yyr/huggingface/runs/l11cs9v5) This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.12.0.dev0 - Transformers: 4.45.2 - Pytorch: 2.5.1 - Datasets: 3.1.0 - Tokenizers: 0.20.3 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
jebish7/QWEN-3B-B30
jebish7
2025-01-21T15:16:01Z
6
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "en", "base_model:unsloth/Qwen2.5-3B-Instruct", "base_model:finetune:unsloth/Qwen2.5-3B-Instruct", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-01-21T15:00:36Z
--- base_model: unsloth/Qwen2.5-3B-Instruct tags: - text-generation-inference - transformers - unsloth - qwen2 - trl - sft license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** jebish7 - **License:** apache-2.0 - **Finetuned from model :** unsloth/Qwen2.5-3B-Instruct This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
philip-hightech/a0ad1708-8935-445c-a57f-d305a49216bf
philip-hightech
2025-01-21T15:15:59Z
8
0
peft
[ "peft", "safetensors", "olmo", "axolotl", "generated_from_trainer", "base_model:katuni4ka/tiny-random-olmo-hf", "base_model:adapter:katuni4ka/tiny-random-olmo-hf", "region:us" ]
null
2025-01-21T15:15:35Z
--- library_name: peft base_model: katuni4ka/tiny-random-olmo-hf tags: - axolotl - generated_from_trainer model-index: - name: a0ad1708-8935-445c-a57f-d305a49216bf results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: katuni4ka/tiny-random-olmo-hf bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 372a9aad3c15aaa5_train_data.json ds_type: json format: custom path: /workspace/input_data/372a9aad3c15aaa5_train_data.json type: field_instruction: file_path field_output: content format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: philip-hightech/a0ad1708-8935-445c-a57f-d305a49216bf hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/372a9aad3c15aaa5_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 2ab42417-e3dd-430c-9b06-cae6baa46502 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 2ab42417-e3dd-430c-9b06-cae6baa46502 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # a0ad1708-8935-445c-a57f-d305a49216bf This model is a fine-tuned version of [katuni4ka/tiny-random-olmo-hf](https://huggingface.co/katuni4ka/tiny-random-olmo-hf) on the None dataset. It achieves the following results on the evaluation set: - Loss: 10.8300 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 10.8344 | 0.0014 | 1 | 10.8340 | | 10.8394 | 0.0043 | 3 | 10.8338 | | 10.8415 | 0.0086 | 6 | 10.8324 | | 10.8331 | 0.0129 | 9 | 10.8300 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
JustinStrauch/t5-form-sent
JustinStrauch
2025-01-21T15:15:41Z
238
0
null
[ "safetensors", "t5", "region:us" ]
null
2025-01-21T14:10:17Z
Provide a sentence that answers a specific question with the given answer in german. Use the prompt "Beantworte die Frage: {question} mit der Antwort: {answer}"
snu-bdai/palbot-classifier-full
snu-bdai
2025-01-21T15:15:32Z
56
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-01-21T13:56:33Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mergekit-community/llasa-3b-upscaled
mergekit-community
2025-01-21T15:15:02Z
12
1
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "base_model:srinivasbilla/llasa-3b", "base_model:finetune:srinivasbilla/llasa-3b", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-21T15:12:16Z
--- base_model: - srinivasbilla/llasa-3b library_name: transformers tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the passthrough merge method. ### Models Merged The following models were included in the merge: * [srinivasbilla/llasa-3b](https://huggingface.co/srinivasbilla/llasa-3b) ### Configuration The following YAML configuration was used to produce this model: ```yaml dtype: bfloat16 merge_method: passthrough slices: - sources: - layer_range: [0, 21] model: srinivasbilla/llasa-3b - sources: - layer_range: [11, 22] model: srinivasbilla/llasa-3b parameters: scale: - filter: o_proj value: 0.0 - filter: down_proj value: 0.0 - value: 1.0 - sources: - layer_range: [11, 22] model: srinivasbilla/llasa-3b parameters: scale: - filter: o_proj value: 0.0 - filter: down_proj value: 0.0 - value: 1.0 - sources: - layer_range: [22, 28] model: srinivasbilla/llasa-3b ```
havinash-ai/aa68b77f-7fdc-41ad-bad5-e164a605672b
havinash-ai
2025-01-21T15:14:44Z
12
0
peft
[ "peft", "safetensors", "gemma2", "axolotl", "generated_from_trainer", "base_model:unsloth/gemma-2-9b-it", "base_model:adapter:unsloth/gemma-2-9b-it", "license:gemma", "region:us" ]
null
2025-01-21T15:11:28Z
--- library_name: peft license: gemma base_model: unsloth/gemma-2-9b-it tags: - axolotl - generated_from_trainer model-index: - name: aa68b77f-7fdc-41ad-bad5-e164a605672b results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/gemma-2-9b-it bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 2adafa906e5c58da_train_data.json ds_type: json format: custom path: /workspace/input_data/2adafa906e5c58da_train_data.json type: field_input: '' field_instruction: anchor field_output: positive format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: havinash-ai/aa68b77f-7fdc-41ad-bad5-e164a605672b hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/2adafa906e5c58da_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: aa7d9493-c5b5-4e83-b6c1-5e33a1c2ac47 wandb_project: Mine-SN56-2-Gradients-On-Demand wandb_run: your_name wandb_runid: aa7d9493-c5b5-4e83-b6c1-5e33a1c2ac47 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # aa68b77f-7fdc-41ad-bad5-e164a605672b This model is a fine-tuned version of [unsloth/gemma-2-9b-it](https://huggingface.co/unsloth/gemma-2-9b-it) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6612 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.6761 | 0.0011 | 1 | 1.7808 | | 1.6812 | 0.0033 | 3 | 1.7725 | | 1.6486 | 0.0067 | 6 | 1.6792 | | 1.5698 | 0.0100 | 9 | 1.6612 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
JacksonBrune/30000cd4-346b-477d-90cc-2dd936641928
JacksonBrune
2025-01-21T15:14:42Z
6
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:NousResearch/Meta-Llama-3-8B", "base_model:adapter:NousResearch/Meta-Llama-3-8B", "license:other", "region:us" ]
null
2025-01-21T15:12:59Z
--- library_name: peft license: other base_model: NousResearch/Meta-Llama-3-8B tags: - axolotl - generated_from_trainer model-index: - name: 30000cd4-346b-477d-90cc-2dd936641928 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Meta-Llama-3-8B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 9f860ccb7e806546_train_data.json ds_type: json format: custom path: /workspace/input_data/9f860ccb7e806546_train_data.json type: field_instruction: prompt field_output: chosen format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: JacksonBrune/30000cd4-346b-477d-90cc-2dd936641928 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/9f860ccb7e806546_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: <|end_of_text|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 92906d73-ae0c-43b3-9735-14fe2124bf2a wandb_project: birthdya-sn56-18-Gradients-On-Demand wandb_run: your_name wandb_runid: 92906d73-ae0c-43b3-9735-14fe2124bf2a warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 30000cd4-346b-477d-90cc-2dd936641928 This model is a fine-tuned version of [NousResearch/Meta-Llama-3-8B](https://huggingface.co/NousResearch/Meta-Llama-3-8B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.1368 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 4.1942 | 0.0024 | 1 | 4.2598 | | 3.7557 | 0.0072 | 3 | 4.2341 | | 3.9389 | 0.0143 | 6 | 3.7675 | | 3.0219 | 0.0215 | 9 | 3.1368 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
dangon8k/abarmando
dangon8k
2025-01-21T15:13:50Z
15
1
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-01-21T14:36:11Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: abarmando --- # Abarmando <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `abarmando` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('dangon8k/abarmando', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
MayBashendy/ArabicNewSplits7_usingWellWrittenEssays_FineTuningAraBERT_run2_AugV5_k12_task7_organization
MayBashendy
2025-01-21T15:10:34Z
5
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:aubmindlab/bert-base-arabertv02", "base_model:finetune:aubmindlab/bert-base-arabertv02", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-01-21T15:05:39Z
--- library_name: transformers base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: ArabicNewSplits7_usingWellWrittenEssays_FineTuningAraBERT_run2_AugV5_k12_task7_organization results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ArabicNewSplits7_usingWellWrittenEssays_FineTuningAraBERT_run2_AugV5_k12_task7_organization This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1268 - Qwk: 0.2059 - Mse: 1.1268 - Rmse: 1.0615 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse | |:-------------:|:-------:|:----:|:---------------:|:-------:|:------:|:------:| | No log | 0.0690 | 2 | 2.5453 | -0.0702 | 2.5453 | 1.5954 | | No log | 0.1379 | 4 | 1.4224 | 0.0698 | 1.4224 | 1.1926 | | No log | 0.2069 | 6 | 1.3452 | -0.2040 | 1.3452 | 1.1598 | | No log | 0.2759 | 8 | 1.0964 | -0.1887 | 1.0964 | 1.0471 | | No log | 0.3448 | 10 | 0.9759 | -0.0475 | 0.9759 | 0.9879 | | No log | 0.4138 | 12 | 0.8375 | 0.0410 | 0.8375 | 0.9151 | | No log | 0.4828 | 14 | 0.7690 | 0.0410 | 0.7690 | 0.8769 | | No log | 0.5517 | 16 | 0.7869 | 0.0410 | 0.7869 | 0.8871 | | No log | 0.6207 | 18 | 0.8093 | 0.0410 | 0.8093 | 0.8996 | | No log | 0.6897 | 20 | 0.7982 | 0.0444 | 0.7982 | 0.8934 | | No log | 0.7586 | 22 | 0.7896 | 0.0410 | 0.7896 | 0.8886 | | No log | 0.8276 | 24 | 0.9492 | 0.0520 | 0.9492 | 0.9743 | | No log | 0.8966 | 26 | 1.4011 | -0.1847 | 1.4011 | 1.1837 | | No log | 0.9655 | 28 | 1.4887 | -0.3187 | 1.4887 | 1.2201 | | No log | 1.0345 | 30 | 1.3264 | -0.2966 | 1.3264 | 1.1517 | | No log | 1.1034 | 32 | 1.1235 | -0.1224 | 1.1235 | 1.0599 | | No log | 1.1724 | 34 | 0.9535 | -0.0444 | 0.9535 | 0.9765 | | No log | 1.2414 | 36 | 0.8409 | 0.0 | 0.8409 | 0.9170 | | No log | 1.3103 | 38 | 0.7680 | 0.0 | 0.7680 | 0.8764 | | No log | 1.3793 | 40 | 0.7320 | 0.0840 | 0.7320 | 0.8556 | | No log | 1.4483 | 42 | 0.7055 | 0.2046 | 0.7055 | 0.8400 | | No log | 1.5172 | 44 | 0.7217 | 0.2471 | 0.7217 | 0.8495 | | No log | 1.5862 | 46 | 0.8735 | 0.3042 | 0.8735 | 0.9346 | | No log | 1.6552 | 48 | 0.9523 | 0.2651 | 0.9523 | 0.9759 | | No log | 1.7241 | 50 | 0.9411 | 0.2651 | 0.9411 | 0.9701 | | No log | 1.7931 | 52 | 0.7864 | 0.3894 | 0.7864 | 0.8868 | | No log | 1.8621 | 54 | 0.6670 | 0.1660 | 0.6670 | 0.8167 | | No log | 1.9310 | 56 | 0.7295 | 0.1700 | 0.7295 | 0.8541 | | No log | 2.0 | 58 | 0.7406 | 0.2736 | 0.7406 | 0.8606 | | No log | 2.0690 | 60 | 0.7391 | 0.2736 | 0.7391 | 0.8597 | | No log | 2.1379 | 62 | 0.7837 | 0.2736 | 0.7837 | 0.8853 | | No log | 2.2069 | 64 | 0.7412 | 0.1304 | 0.7412 | 0.8609 | | No log | 2.2759 | 66 | 0.6872 | 0.1136 | 0.6872 | 0.8290 | | No log | 2.3448 | 68 | 0.6557 | 0.2621 | 0.6557 | 0.8098 | | No log | 2.4138 | 70 | 0.7477 | 0.4470 | 0.7477 | 0.8647 | | No log | 2.4828 | 72 | 0.6980 | 0.3372 | 0.6980 | 0.8355 | | No log | 2.5517 | 74 | 0.6719 | 0.3020 | 0.6719 | 0.8197 | | No log | 2.6207 | 76 | 0.8024 | 0.3562 | 0.8024 | 0.8958 | | No log | 2.6897 | 78 | 0.9731 | 0.3538 | 0.9731 | 0.9864 | | No log | 2.7586 | 80 | 1.0102 | 0.2756 | 1.0102 | 1.0051 | | No log | 2.8276 | 82 | 0.9947 | 0.3082 | 0.9947 | 0.9974 | | No log | 2.8966 | 84 | 1.2863 | 0.1919 | 1.2863 | 1.1342 | | No log | 2.9655 | 86 | 1.2776 | 0.2417 | 1.2776 | 1.1303 | | No log | 3.0345 | 88 | 1.0469 | 0.2252 | 1.0469 | 1.0232 | | No log | 3.1034 | 90 | 0.8326 | 0.2492 | 0.8326 | 0.9125 | | No log | 3.1724 | 92 | 0.8370 | 0.2492 | 0.8370 | 0.9149 | | No log | 3.2414 | 94 | 1.0226 | 0.2781 | 1.0226 | 1.0112 | | No log | 3.3103 | 96 | 1.1287 | 0.1810 | 1.1287 | 1.0624 | | No log | 3.3793 | 98 | 1.2322 | 0.2421 | 1.2322 | 1.1100 | | No log | 3.4483 | 100 | 1.3511 | 0.1810 | 1.3511 | 1.1624 | | No log | 3.5172 | 102 | 1.3720 | 0.1705 | 1.3720 | 1.1713 | | No log | 3.5862 | 104 | 1.1706 | 0.1739 | 1.1706 | 1.0819 | | No log | 3.6552 | 106 | 1.1696 | 0.2306 | 1.1696 | 1.0815 | | No log | 3.7241 | 108 | 1.2230 | 0.1931 | 1.2230 | 1.1059 | | No log | 3.7931 | 110 | 1.3401 | 0.0684 | 1.3401 | 1.1576 | | No log | 3.8621 | 112 | 1.2987 | 0.1422 | 1.2987 | 1.1396 | | No log | 3.9310 | 114 | 1.3404 | 0.1171 | 1.3404 | 1.1577 | | No log | 4.0 | 116 | 1.2589 | 0.1611 | 1.2589 | 1.1220 | | No log | 4.0690 | 118 | 1.0669 | 0.3082 | 1.0669 | 1.0329 | | No log | 4.1379 | 120 | 0.9152 | 0.2275 | 0.9152 | 0.9567 | | No log | 4.2069 | 122 | 0.9295 | 0.2604 | 0.9295 | 0.9641 | | No log | 4.2759 | 124 | 1.0276 | 0.3193 | 1.0276 | 1.0137 | | No log | 4.3448 | 126 | 1.0569 | 0.2910 | 1.0569 | 1.0281 | | No log | 4.4138 | 128 | 1.0820 | 0.2806 | 1.0820 | 1.0402 | | No log | 4.4828 | 130 | 1.0495 | 0.2677 | 1.0495 | 1.0245 | | No log | 4.5517 | 132 | 0.9602 | 0.2518 | 0.9602 | 0.9799 | | No log | 4.6207 | 134 | 0.9603 | 0.2518 | 0.9603 | 0.9799 | | No log | 4.6897 | 136 | 1.0480 | 0.2389 | 1.0480 | 1.0237 | | No log | 4.7586 | 138 | 1.1838 | 0.1873 | 1.1838 | 1.0880 | | No log | 4.8276 | 140 | 1.1795 | 0.1561 | 1.1795 | 1.0860 | | No log | 4.8966 | 142 | 1.2737 | 0.1961 | 1.2737 | 1.1286 | | No log | 4.9655 | 144 | 1.2553 | 0.2264 | 1.2553 | 1.1204 | | No log | 5.0345 | 146 | 1.2432 | 0.2499 | 1.2432 | 1.1150 | | No log | 5.1034 | 148 | 1.2924 | 0.1502 | 1.2924 | 1.1368 | | No log | 5.1724 | 150 | 1.3153 | 0.1230 | 1.3153 | 1.1469 | | No log | 5.2414 | 152 | 1.2418 | 0.1787 | 1.2418 | 1.1144 | | No log | 5.3103 | 154 | 1.0938 | 0.3193 | 1.0938 | 1.0458 | | No log | 5.3793 | 156 | 1.0401 | 0.2602 | 1.0401 | 1.0198 | | No log | 5.4483 | 158 | 1.0799 | 0.2271 | 1.0799 | 1.0392 | | No log | 5.5172 | 160 | 1.0130 | 0.3251 | 1.0130 | 1.0065 | | No log | 5.5862 | 162 | 0.9178 | 0.2967 | 0.9178 | 0.9580 | | No log | 5.6552 | 164 | 0.8603 | 0.3372 | 0.8603 | 0.9275 | | No log | 5.7241 | 166 | 0.8260 | 0.3518 | 0.8260 | 0.9088 | | No log | 5.7931 | 168 | 0.7966 | 0.2883 | 0.7966 | 0.8925 | | No log | 5.8621 | 170 | 0.8056 | 0.2171 | 0.8056 | 0.8976 | | No log | 5.9310 | 172 | 0.8280 | 0.2171 | 0.8280 | 0.9100 | | No log | 6.0 | 174 | 0.9096 | 0.2917 | 0.9096 | 0.9537 | | No log | 6.0690 | 176 | 1.0177 | 0.2659 | 1.0177 | 1.0088 | | No log | 6.1379 | 178 | 1.0625 | 0.2613 | 1.0625 | 1.0308 | | No log | 6.2069 | 180 | 1.0355 | 0.2547 | 1.0355 | 1.0176 | | No log | 6.2759 | 182 | 0.9736 | 0.1586 | 0.9736 | 0.9867 | | No log | 6.3448 | 184 | 0.9372 | 0.1998 | 0.9372 | 0.9681 | | No log | 6.4138 | 186 | 0.9627 | 0.2394 | 0.9627 | 0.9812 | | No log | 6.4828 | 188 | 0.9926 | 0.2881 | 0.9926 | 0.9963 | | No log | 6.5517 | 190 | 1.0013 | 0.2554 | 1.0013 | 1.0006 | | No log | 6.6207 | 192 | 1.0249 | 0.2872 | 1.0249 | 1.0124 | | No log | 6.6897 | 194 | 1.0761 | 0.2872 | 1.0761 | 1.0374 | | No log | 6.7586 | 196 | 1.0180 | 0.2881 | 1.0180 | 1.0089 | | No log | 6.8276 | 198 | 1.0663 | 0.3597 | 1.0663 | 1.0326 | | No log | 6.8966 | 200 | 1.1288 | 0.3161 | 1.1288 | 1.0625 | | No log | 6.9655 | 202 | 1.1331 | 0.3059 | 1.1331 | 1.0645 | | No log | 7.0345 | 204 | 1.1162 | 0.3110 | 1.1162 | 1.0565 | | No log | 7.1034 | 206 | 1.0572 | 0.2977 | 1.0572 | 1.0282 | | No log | 7.1724 | 208 | 1.0731 | 0.3228 | 1.0731 | 1.0359 | | No log | 7.2414 | 210 | 1.2394 | 0.2258 | 1.2394 | 1.1133 | | No log | 7.3103 | 212 | 1.4367 | 0.1464 | 1.4367 | 1.1986 | | No log | 7.3793 | 214 | 1.3517 | 0.1939 | 1.3517 | 1.1626 | | No log | 7.4483 | 216 | 1.2243 | 0.2045 | 1.2243 | 1.1065 | | No log | 7.5172 | 218 | 1.0628 | 0.2460 | 1.0628 | 1.0309 | | No log | 7.5862 | 220 | 0.9252 | 0.2193 | 0.9252 | 0.9619 | | No log | 7.6552 | 222 | 0.8722 | 0.1718 | 0.8722 | 0.9339 | | No log | 7.7241 | 224 | 0.9319 | 0.2726 | 0.9319 | 0.9654 | | No log | 7.7931 | 226 | 0.9832 | 0.2389 | 0.9832 | 0.9916 | | No log | 7.8621 | 228 | 1.0887 | 0.2682 | 1.0887 | 1.0434 | | No log | 7.9310 | 230 | 1.1154 | 0.3059 | 1.1154 | 1.0561 | | No log | 8.0 | 232 | 1.0497 | 0.2252 | 1.0497 | 1.0246 | | No log | 8.0690 | 234 | 1.0813 | 0.2209 | 1.0813 | 1.0399 | | No log | 8.1379 | 236 | 1.2322 | 0.2559 | 1.2322 | 1.1100 | | No log | 8.2069 | 238 | 1.3467 | 0.1195 | 1.3467 | 1.1605 | | No log | 8.2759 | 240 | 1.1966 | 0.2358 | 1.1966 | 1.0939 | | No log | 8.3448 | 242 | 0.9679 | 0.3137 | 0.9679 | 0.9838 | | No log | 8.4138 | 244 | 0.8394 | 0.2142 | 0.8394 | 0.9162 | | No log | 8.4828 | 246 | 0.7723 | 0.1866 | 0.7723 | 0.8788 | | No log | 8.5517 | 248 | 0.7801 | 0.2149 | 0.7801 | 0.8832 | | No log | 8.6207 | 250 | 0.8350 | 0.2643 | 0.8350 | 0.9138 | | No log | 8.6897 | 252 | 1.0078 | 0.2850 | 1.0078 | 1.0039 | | No log | 8.7586 | 254 | 1.2352 | 0.1732 | 1.2352 | 1.1114 | | No log | 8.8276 | 256 | 1.2438 | 0.2056 | 1.2438 | 1.1152 | | No log | 8.8966 | 258 | 1.1438 | 0.2567 | 1.1438 | 1.0695 | | No log | 8.9655 | 260 | 0.9768 | 0.3347 | 0.9768 | 0.9883 | | No log | 9.0345 | 262 | 0.8724 | 0.1718 | 0.8724 | 0.9340 | | No log | 9.1034 | 264 | 0.8107 | 0.1142 | 0.8107 | 0.9004 | | No log | 9.1724 | 266 | 0.8257 | 0.2632 | 0.8257 | 0.9087 | | No log | 9.2414 | 268 | 0.9729 | 0.2615 | 0.9729 | 0.9863 | | No log | 9.3103 | 270 | 1.2462 | 0.2184 | 1.2462 | 1.1163 | | No log | 9.3793 | 272 | 1.3690 | 0.1222 | 1.3690 | 1.1701 | | No log | 9.4483 | 274 | 1.2990 | 0.1067 | 1.2990 | 1.1397 | | No log | 9.5172 | 276 | 1.1337 | 0.2075 | 1.1337 | 1.0648 | | No log | 9.5862 | 278 | 0.9737 | 0.1461 | 0.9737 | 0.9867 | | No log | 9.6552 | 280 | 0.9036 | 0.1672 | 0.9036 | 0.9506 | | No log | 9.7241 | 282 | 0.9262 | 0.1962 | 0.9262 | 0.9624 | | No log | 9.7931 | 284 | 1.0436 | 0.1651 | 1.0436 | 1.0216 | | No log | 9.8621 | 286 | 1.2188 | 0.1057 | 1.2188 | 1.1040 | | No log | 9.9310 | 288 | 1.3176 | 0.0947 | 1.3176 | 1.1479 | | No log | 10.0 | 290 | 1.2297 | 0.1328 | 1.2297 | 1.1089 | | No log | 10.0690 | 292 | 1.1279 | 0.1949 | 1.1279 | 1.0620 | | No log | 10.1379 | 294 | 1.0514 | 0.1747 | 1.0514 | 1.0254 | | No log | 10.2069 | 296 | 0.9404 | 0.2358 | 0.9404 | 0.9697 | | No log | 10.2759 | 298 | 0.8677 | 0.3359 | 0.8677 | 0.9315 | | No log | 10.3448 | 300 | 0.8773 | 0.3359 | 0.8773 | 0.9366 | | No log | 10.4138 | 302 | 0.9634 | 0.2703 | 0.9634 | 0.9816 | | No log | 10.4828 | 304 | 1.1425 | 0.2799 | 1.1425 | 1.0689 | | No log | 10.5517 | 306 | 1.3152 | 0.2259 | 1.3152 | 1.1468 | | No log | 10.6207 | 308 | 1.3419 | 0.1864 | 1.3419 | 1.1584 | | No log | 10.6897 | 310 | 1.2340 | 0.2145 | 1.2340 | 1.1109 | | No log | 10.7586 | 312 | 1.0281 | 0.2635 | 1.0281 | 1.0140 | | No log | 10.8276 | 314 | 0.9060 | 0.3110 | 0.9060 | 0.9518 | | No log | 10.8966 | 316 | 0.9223 | 0.3347 | 0.9223 | 0.9603 | | No log | 10.9655 | 318 | 1.0634 | 0.3213 | 1.0634 | 1.0312 | | No log | 11.0345 | 320 | 1.2036 | 0.1849 | 1.2036 | 1.0971 | | No log | 11.1034 | 322 | 1.1860 | 0.1870 | 1.1860 | 1.0890 | | No log | 11.1724 | 324 | 1.1287 | 0.1635 | 1.1287 | 1.0624 | | No log | 11.2414 | 326 | 1.0516 | 0.2756 | 1.0516 | 1.0255 | | No log | 11.3103 | 328 | 0.9724 | 0.2779 | 0.9724 | 0.9861 | | No log | 11.3793 | 330 | 0.8987 | 0.3473 | 0.8987 | 0.9480 | | No log | 11.4483 | 332 | 0.8950 | 0.3473 | 0.8950 | 0.9461 | | No log | 11.5172 | 334 | 1.0123 | 0.2926 | 1.0123 | 1.0062 | | No log | 11.5862 | 336 | 1.2553 | 0.1973 | 1.2553 | 1.1204 | | No log | 11.6552 | 338 | 1.3704 | 0.1678 | 1.3704 | 1.1707 | | No log | 11.7241 | 340 | 1.3078 | 0.1985 | 1.3078 | 1.1436 | | No log | 11.7931 | 342 | 1.0969 | 0.2733 | 1.0969 | 1.0473 | | No log | 11.8621 | 344 | 0.9092 | 0.2562 | 0.9092 | 0.9535 | | No log | 11.9310 | 346 | 0.8589 | 0.1217 | 0.8589 | 0.9268 | | No log | 12.0 | 348 | 0.8591 | 0.2358 | 0.8591 | 0.9269 | | No log | 12.0690 | 350 | 0.9603 | 0.2601 | 0.9603 | 0.9800 | | No log | 12.1379 | 352 | 1.0927 | 0.2853 | 1.0927 | 1.0453 | | No log | 12.2069 | 354 | 1.1822 | 0.2436 | 1.1822 | 1.0873 | | No log | 12.2759 | 356 | 1.2399 | 0.2206 | 1.2399 | 1.1135 | | No log | 12.3448 | 358 | 1.2793 | 0.2086 | 1.2793 | 1.1310 | | No log | 12.4138 | 360 | 1.1402 | 0.2579 | 1.1402 | 1.0678 | | No log | 12.4828 | 362 | 0.9911 | 0.3337 | 0.9911 | 0.9955 | | No log | 12.5517 | 364 | 0.9211 | 0.3739 | 0.9211 | 0.9597 | | No log | 12.6207 | 366 | 0.7966 | 0.1254 | 0.7966 | 0.8925 | | No log | 12.6897 | 368 | 0.7697 | 0.2530 | 0.7697 | 0.8773 | | No log | 12.7586 | 370 | 0.7956 | 0.2813 | 0.7956 | 0.8920 | | No log | 12.8276 | 372 | 0.8864 | 0.1822 | 0.8864 | 0.9415 | | No log | 12.8966 | 374 | 0.9749 | 0.2703 | 0.9749 | 0.9874 | | No log | 12.9655 | 376 | 1.0574 | 0.2683 | 1.0574 | 1.0283 | | No log | 13.0345 | 378 | 1.1364 | 0.2805 | 1.1364 | 1.0660 | | No log | 13.1034 | 380 | 1.1175 | 0.2853 | 1.1175 | 1.0571 | | No log | 13.1724 | 382 | 1.1097 | 0.2059 | 1.1097 | 1.0534 | | No log | 13.2414 | 384 | 1.0509 | 0.1787 | 1.0509 | 1.0251 | | No log | 13.3103 | 386 | 1.0176 | 0.1955 | 1.0176 | 1.0087 | | No log | 13.3793 | 388 | 1.0844 | 0.1662 | 1.0844 | 1.0414 | | No log | 13.4483 | 390 | 1.1733 | 0.1293 | 1.1733 | 1.0832 | | No log | 13.5172 | 392 | 1.1925 | 0.2115 | 1.1925 | 1.0920 | | No log | 13.5862 | 394 | 1.1660 | 0.2319 | 1.1660 | 1.0798 | | No log | 13.6552 | 396 | 1.1356 | 0.2417 | 1.1356 | 1.0656 | | No log | 13.7241 | 398 | 1.1431 | 0.2501 | 1.1431 | 1.0692 | | No log | 13.7931 | 400 | 1.0807 | 0.2075 | 1.0807 | 1.0395 | | No log | 13.8621 | 402 | 1.0667 | 0.2075 | 1.0667 | 1.0328 | | No log | 13.9310 | 404 | 1.1108 | 0.2032 | 1.1108 | 1.0539 | | No log | 14.0 | 406 | 1.1794 | 0.1535 | 1.1794 | 1.0860 | | No log | 14.0690 | 408 | 1.1869 | 0.1146 | 1.1869 | 1.0894 | | No log | 14.1379 | 410 | 1.1716 | 0.1146 | 1.1716 | 1.0824 | | No log | 14.2069 | 412 | 1.1896 | 0.2459 | 1.1896 | 1.0907 | | No log | 14.2759 | 414 | 1.0928 | 0.2125 | 1.0928 | 1.0454 | | No log | 14.3448 | 416 | 1.0205 | 0.2756 | 1.0205 | 1.0102 | | No log | 14.4138 | 418 | 1.0495 | 0.2125 | 1.0495 | 1.0245 | | No log | 14.4828 | 420 | 1.0959 | 0.2567 | 1.0959 | 1.0468 | | No log | 14.5517 | 422 | 0.9856 | 0.3029 | 0.9856 | 0.9928 | | No log | 14.6207 | 424 | 0.9658 | 0.3029 | 0.9658 | 0.9827 | | No log | 14.6897 | 426 | 0.9227 | 0.3170 | 0.9227 | 0.9606 | | No log | 14.7586 | 428 | 0.9029 | 0.3516 | 0.9029 | 0.9502 | | No log | 14.8276 | 430 | 0.8452 | 0.3709 | 0.8452 | 0.9194 | | No log | 14.8966 | 432 | 0.7839 | 0.2604 | 0.7839 | 0.8854 | | No log | 14.9655 | 434 | 0.6884 | 0.2204 | 0.6884 | 0.8297 | | No log | 15.0345 | 436 | 0.6691 | 0.2345 | 0.6691 | 0.8180 | | No log | 15.1034 | 438 | 0.6985 | 0.2171 | 0.6985 | 0.8358 | | No log | 15.1724 | 440 | 0.7806 | 0.2518 | 0.7806 | 0.8835 | | No log | 15.2414 | 442 | 0.9461 | 0.2756 | 0.9462 | 0.9727 | | No log | 15.3103 | 444 | 1.0573 | 0.3399 | 1.0573 | 1.0283 | | No log | 15.3793 | 446 | 1.1502 | 0.3486 | 1.1502 | 1.0725 | | No log | 15.4483 | 448 | 1.0732 | 0.3110 | 1.0732 | 1.0359 | | No log | 15.5172 | 450 | 0.9770 | 0.3214 | 0.9770 | 0.9884 | | No log | 15.5862 | 452 | 0.8948 | 0.2343 | 0.8948 | 0.9459 | | No log | 15.6552 | 454 | 0.8177 | 0.2094 | 0.8177 | 0.9042 | | No log | 15.7241 | 456 | 0.8148 | 0.2670 | 0.8148 | 0.9027 | | No log | 15.7931 | 458 | 0.9017 | 0.3579 | 0.9017 | 0.9496 | | No log | 15.8621 | 460 | 1.0208 | 0.3517 | 1.0208 | 1.0103 | | No log | 15.9310 | 462 | 1.0848 | 0.1931 | 1.0848 | 1.0415 | | No log | 16.0 | 464 | 1.0526 | 0.2567 | 1.0526 | 1.0260 | | No log | 16.0690 | 466 | 1.0483 | 0.2367 | 1.0483 | 1.0239 | | No log | 16.1379 | 468 | 0.9972 | 0.2732 | 0.9972 | 0.9986 | | No log | 16.2069 | 470 | 0.9784 | 0.2732 | 0.9784 | 0.9891 | | No log | 16.2759 | 472 | 0.9925 | 0.2782 | 0.9925 | 0.9963 | | No log | 16.3448 | 474 | 1.0099 | 0.2782 | 1.0099 | 1.0050 | | No log | 16.4138 | 476 | 1.0268 | 0.3029 | 1.0268 | 1.0133 | | No log | 16.4828 | 478 | 0.9923 | 0.2529 | 0.9923 | 0.9961 | | No log | 16.5517 | 480 | 1.0032 | 0.2529 | 1.0032 | 1.0016 | | No log | 16.6207 | 482 | 1.0193 | 0.2682 | 1.0193 | 1.0096 | | No log | 16.6897 | 484 | 1.0125 | 0.3481 | 1.0125 | 1.0062 | | No log | 16.7586 | 486 | 0.9792 | 0.2779 | 0.9792 | 0.9896 | | No log | 16.8276 | 488 | 0.8717 | 0.1723 | 0.8717 | 0.9337 | | No log | 16.8966 | 490 | 0.8205 | 0.2463 | 0.8205 | 0.9058 | | No log | 16.9655 | 492 | 0.8503 | 0.1867 | 0.8503 | 0.9221 | | No log | 17.0345 | 494 | 0.9786 | 0.3269 | 0.9786 | 0.9893 | | No log | 17.1034 | 496 | 1.2209 | 0.2559 | 1.2209 | 1.1049 | | No log | 17.1724 | 498 | 1.3928 | 0.2041 | 1.3928 | 1.1802 | | 0.3191 | 17.2414 | 500 | 1.3962 | 0.2074 | 1.3962 | 1.1816 | | 0.3191 | 17.3103 | 502 | 1.2199 | 0.2153 | 1.2199 | 1.1045 | | 0.3191 | 17.3793 | 504 | 1.0404 | 0.2109 | 1.0404 | 1.0200 | | 0.3191 | 17.4483 | 506 | 0.9734 | 0.2164 | 0.9734 | 0.9866 | | 0.3191 | 17.5172 | 508 | 0.9450 | 0.2211 | 0.9450 | 0.9721 | | 0.3191 | 17.5862 | 510 | 0.9168 | 0.1422 | 0.9168 | 0.9575 | | 0.3191 | 17.6552 | 512 | 0.9271 | 0.1692 | 0.9271 | 0.9628 | | 0.3191 | 17.7241 | 514 | 0.9883 | 0.2363 | 0.9883 | 0.9941 | | 0.3191 | 17.7931 | 516 | 1.1032 | 0.2780 | 1.1032 | 1.0503 | | 0.3191 | 17.8621 | 518 | 1.1113 | 0.2780 | 1.1113 | 1.0542 | | 0.3191 | 17.9310 | 520 | 1.0438 | 0.2612 | 1.0438 | 1.0217 | | 0.3191 | 18.0 | 522 | 0.9722 | 0.2075 | 0.9722 | 0.9860 | | 0.3191 | 18.0690 | 524 | 0.9171 | 0.2923 | 0.9171 | 0.9577 | | 0.3191 | 18.1379 | 526 | 0.8797 | 0.2193 | 0.8797 | 0.9379 | | 0.3191 | 18.2069 | 528 | 0.8692 | 0.2244 | 0.8692 | 0.9323 | | 0.3191 | 18.2759 | 530 | 0.8871 | 0.2193 | 0.8871 | 0.9419 | | 0.3191 | 18.3448 | 532 | 0.9605 | 0.1612 | 0.9605 | 0.9800 | | 0.3191 | 18.4138 | 534 | 1.0073 | 0.3006 | 1.0073 | 1.0037 | | 0.3191 | 18.4828 | 536 | 1.1021 | 0.2903 | 1.1021 | 1.0498 | | 0.3191 | 18.5517 | 538 | 1.2427 | 0.1621 | 1.2427 | 1.1148 | | 0.3191 | 18.6207 | 540 | 1.3046 | 0.1550 | 1.3046 | 1.1422 | | 0.3191 | 18.6897 | 542 | 1.2771 | 0.1825 | 1.2771 | 1.1301 | | 0.3191 | 18.7586 | 544 | 1.1838 | 0.2543 | 1.1838 | 1.0880 | | 0.3191 | 18.8276 | 546 | 1.0547 | 0.3059 | 1.0547 | 1.0270 | | 0.3191 | 18.8966 | 548 | 0.9850 | 0.2833 | 0.9850 | 0.9925 | | 0.3191 | 18.9655 | 550 | 0.8833 | 0.2995 | 0.8833 | 0.9398 | | 0.3191 | 19.0345 | 552 | 0.8150 | 0.3294 | 0.8150 | 0.9028 | | 0.3191 | 19.1034 | 554 | 0.8461 | 0.3538 | 0.8461 | 0.9199 | | 0.3191 | 19.1724 | 556 | 0.8462 | 0.3538 | 0.8462 | 0.9199 | | 0.3191 | 19.2414 | 558 | 0.8813 | 0.3455 | 0.8813 | 0.9388 | | 0.3191 | 19.3103 | 560 | 0.9183 | 0.3059 | 0.9183 | 0.9583 | | 0.3191 | 19.3793 | 562 | 0.9153 | 0.3059 | 0.9153 | 0.9567 | | 0.3191 | 19.4483 | 564 | 0.9542 | 0.3280 | 0.9542 | 0.9768 | | 0.3191 | 19.5172 | 566 | 0.9975 | 0.2954 | 0.9975 | 0.9987 | | 0.3191 | 19.5862 | 568 | 1.0434 | 0.2499 | 1.0434 | 1.0215 | | 0.3191 | 19.6552 | 570 | 1.0337 | 0.2499 | 1.0337 | 1.0167 | | 0.3191 | 19.7241 | 572 | 0.9722 | 0.3225 | 0.9722 | 0.9860 | | 0.3191 | 19.7931 | 574 | 0.9153 | 0.3739 | 0.9153 | 0.9567 | | 0.3191 | 19.8621 | 576 | 0.8565 | 0.3473 | 0.8565 | 0.9255 | | 0.3191 | 19.9310 | 578 | 0.8089 | 0.3105 | 0.8089 | 0.8994 | | 0.3191 | 20.0 | 580 | 0.8166 | 0.2574 | 0.8166 | 0.9036 | | 0.3191 | 20.0690 | 582 | 0.8680 | 0.2463 | 0.8680 | 0.9316 | | 0.3191 | 20.1379 | 584 | 0.9500 | 0.2756 | 0.9500 | 0.9747 | | 0.3191 | 20.2069 | 586 | 1.0641 | 0.2504 | 1.0641 | 1.0316 | | 0.3191 | 20.2759 | 588 | 1.1553 | 0.2522 | 1.1553 | 1.0748 | | 0.3191 | 20.3448 | 590 | 1.1547 | 0.2059 | 1.1547 | 1.0746 | | 0.3191 | 20.4138 | 592 | 1.1744 | 0.1688 | 1.1744 | 1.0837 | | 0.3191 | 20.4828 | 594 | 1.1474 | 0.1688 | 1.1474 | 1.0712 | | 0.3191 | 20.5517 | 596 | 1.1295 | 0.1723 | 1.1295 | 1.0628 | | 0.3191 | 20.6207 | 598 | 1.0577 | 0.2782 | 1.0577 | 1.0285 | | 0.3191 | 20.6897 | 600 | 1.0228 | 0.3114 | 1.0228 | 1.0113 | | 0.3191 | 20.7586 | 602 | 0.9943 | 0.2651 | 0.9943 | 0.9971 | | 0.3191 | 20.8276 | 604 | 0.9281 | 0.3709 | 0.9281 | 0.9634 | | 0.3191 | 20.8966 | 606 | 0.8694 | 0.2574 | 0.8694 | 0.9324 | | 0.3191 | 20.9655 | 608 | 0.8275 | 0.2297 | 0.8275 | 0.9097 | | 0.3191 | 21.0345 | 610 | 0.8427 | 0.2297 | 0.8427 | 0.9180 | | 0.3191 | 21.1034 | 612 | 0.9285 | 0.3709 | 0.9285 | 0.9636 | | 0.3191 | 21.1724 | 614 | 1.0567 | 0.2367 | 1.0567 | 1.0279 | | 0.3191 | 21.2414 | 616 | 1.2050 | 0.1944 | 1.2050 | 1.0977 | | 0.3191 | 21.3103 | 618 | 1.2365 | 0.1621 | 1.2365 | 1.1120 | | 0.3191 | 21.3793 | 620 | 1.1261 | 0.2282 | 1.1261 | 1.0612 | | 0.3191 | 21.4483 | 622 | 0.9719 | 0.3739 | 0.9719 | 0.9859 | | 0.3191 | 21.5172 | 624 | 0.9406 | 0.3110 | 0.9406 | 0.9698 | | 0.3191 | 21.5862 | 626 | 0.9441 | 0.3169 | 0.9441 | 0.9717 | | 0.3191 | 21.6552 | 628 | 0.9875 | 0.3287 | 0.9875 | 0.9937 | | 0.3191 | 21.7241 | 630 | 1.0743 | 0.2504 | 1.0743 | 1.0365 | | 0.3191 | 21.7931 | 632 | 1.1332 | 0.2141 | 1.1332 | 1.0645 | | 0.3191 | 21.8621 | 634 | 1.2131 | 0.1884 | 1.2131 | 1.1014 | | 0.3191 | 21.9310 | 636 | 1.2510 | 0.1884 | 1.2510 | 1.1185 | | 0.3191 | 22.0 | 638 | 1.2384 | 0.2336 | 1.2384 | 1.1128 | | 0.3191 | 22.0690 | 640 | 1.2260 | 0.2336 | 1.2260 | 1.1072 | | 0.3191 | 22.1379 | 642 | 1.1516 | 0.2459 | 1.1516 | 1.0731 | | 0.3191 | 22.2069 | 644 | 1.0521 | 0.2850 | 1.0521 | 1.0257 | | 0.3191 | 22.2759 | 646 | 0.9533 | 0.3371 | 0.9533 | 0.9764 | | 0.3191 | 22.3448 | 648 | 0.9010 | 0.3384 | 0.9010 | 0.9492 | | 0.3191 | 22.4138 | 650 | 0.8998 | 0.3384 | 0.8998 | 0.9486 | | 0.3191 | 22.4828 | 652 | 0.9101 | 0.3319 | 0.9101 | 0.9540 | | 0.3191 | 22.5517 | 654 | 0.9524 | 0.3601 | 0.9524 | 0.9759 | | 0.3191 | 22.6207 | 656 | 0.9424 | 0.3371 | 0.9424 | 0.9708 | | 0.3191 | 22.6897 | 658 | 0.9976 | 0.3110 | 0.9976 | 0.9988 | | 0.3191 | 22.7586 | 660 | 0.9895 | 0.3214 | 0.9895 | 0.9947 | | 0.3191 | 22.8276 | 662 | 0.9138 | 0.3740 | 0.9138 | 0.9559 | | 0.3191 | 22.8966 | 664 | 0.8354 | 0.3630 | 0.8354 | 0.9140 | | 0.3191 | 22.9655 | 666 | 0.8584 | 0.3869 | 0.8584 | 0.9265 | | 0.3191 | 23.0345 | 668 | 0.9549 | 0.3761 | 0.9549 | 0.9772 | | 0.3191 | 23.1034 | 670 | 1.0170 | 0.3425 | 1.0170 | 1.0085 | | 0.3191 | 23.1724 | 672 | 1.0268 | 0.3425 | 1.0268 | 1.0133 | | 0.3191 | 23.2414 | 674 | 1.0660 | 0.3183 | 1.0660 | 1.0325 | | 0.3191 | 23.3103 | 676 | 1.0135 | 0.3787 | 1.0135 | 1.0067 | | 0.3191 | 23.3793 | 678 | 0.9069 | 0.3251 | 0.9069 | 0.9523 | | 0.3191 | 23.4483 | 680 | 0.8996 | 0.3310 | 0.8996 | 0.9485 | | 0.3191 | 23.5172 | 682 | 0.9143 | 0.3310 | 0.9143 | 0.9562 | | 0.3191 | 23.5862 | 684 | 0.8977 | 0.3731 | 0.8977 | 0.9474 | | 0.3191 | 23.6552 | 686 | 0.9740 | 0.2964 | 0.9740 | 0.9869 | | 0.3191 | 23.7241 | 688 | 1.0142 | 0.3636 | 1.0142 | 1.0071 | | 0.3191 | 23.7931 | 690 | 0.9973 | 0.3417 | 0.9973 | 0.9987 | | 0.3191 | 23.8621 | 692 | 1.0250 | 0.3302 | 1.0250 | 1.0124 | | 0.3191 | 23.9310 | 694 | 1.1086 | 0.2827 | 1.1086 | 1.0529 | | 0.3191 | 24.0 | 696 | 1.1506 | 0.2223 | 1.1506 | 1.0726 | | 0.3191 | 24.0690 | 698 | 1.0693 | 0.2876 | 1.0693 | 1.0341 | | 0.3191 | 24.1379 | 700 | 0.9858 | 0.3302 | 0.9858 | 0.9929 | | 0.3191 | 24.2069 | 702 | 0.9774 | 0.3359 | 0.9774 | 0.9887 | | 0.3191 | 24.2759 | 704 | 0.9548 | 0.3761 | 0.9548 | 0.9772 | | 0.3191 | 24.3448 | 706 | 0.9741 | 0.3082 | 0.9741 | 0.9870 | | 0.3191 | 24.4138 | 708 | 0.9945 | 0.2125 | 0.9945 | 0.9973 | | 0.3191 | 24.4828 | 710 | 1.0045 | 0.1870 | 1.0045 | 1.0023 | | 0.3191 | 24.5517 | 712 | 1.0783 | 0.1564 | 1.0783 | 1.0384 | | 0.3191 | 24.6207 | 714 | 1.1379 | 0.2020 | 1.1379 | 1.0667 | | 0.3191 | 24.6897 | 716 | 1.1374 | 0.2020 | 1.1374 | 1.0665 | | 0.3191 | 24.7586 | 718 | 1.1268 | 0.2059 | 1.1268 | 1.0615 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu118 - Datasets 2.21.0 - Tokenizers 0.19.1
reda2002/MONSLIPPERS
reda2002
2025-01-21T15:10:05Z
15
1
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-01-21T14:46:36Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: MONSLIPPERS --- # Monslippers <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `MONSLIPPERS` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('reda2002/MONSLIPPERS', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
IAmSkyDra/BARTBana_Translation_v1
IAmSkyDra
2025-01-21T15:06:45Z
12
0
transformers
[ "transformers", "safetensors", "mbart", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2025-01-21T00:54:21Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Romain-XV/f0e65db1-9e2c-40dc-961b-bb25593ee140
Romain-XV
2025-01-21T15:06:37Z
6
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:NousResearch/Meta-Llama-3-8B", "base_model:adapter:NousResearch/Meta-Llama-3-8B", "license:other", "region:us" ]
null
2025-01-21T14:38:59Z
--- library_name: peft license: other base_model: NousResearch/Meta-Llama-3-8B tags: - axolotl - generated_from_trainer model-index: - name: f0e65db1-9e2c-40dc-961b-bb25593ee140 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Meta-Llama-3-8B bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 9f860ccb7e806546_train_data.json ds_type: json format: custom path: /workspace/input_data/9f860ccb7e806546_train_data.json type: field_instruction: prompt field_output: chosen format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 30 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 16 gradient_checkpointing: true group_by_length: false hub_model_id: Romain-XV/f0e65db1-9e2c-40dc-961b-bb25593ee140 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: true lora_model_dir: null lora_r: 16 lora_target_linear: true lora_target_modules: - q_proj - k_proj - v_proj lr_scheduler: cosine micro_batch_size: 4 mlflow_experiment_name: /tmp/9f860ccb7e806546_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 100 sequence_len: 2048 special_tokens: pad_token: <|end_of_text|> strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 92906d73-ae0c-43b3-9735-14fe2124bf2a wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 92906d73-ae0c-43b3-9735-14fe2124bf2a warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # f0e65db1-9e2c-40dc-961b-bb25593ee140 This model is a fine-tuned version of [NousResearch/Meta-Llama-3-8B](https://huggingface.co/NousResearch/Meta-Llama-3-8B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8719 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 4.1138 | 0.0191 | 1 | 4.2181 | | 1.9066 | 0.9558 | 50 | 1.8719 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
MayBashendy/ArabicNewSplits7_usingWellWrittenEssays_FineTuningAraBERT_run2_AugV5_k11_task7_organization
MayBashendy
2025-01-21T15:05:12Z
5
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:aubmindlab/bert-base-arabertv02", "base_model:finetune:aubmindlab/bert-base-arabertv02", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-01-21T15:00:57Z
--- library_name: transformers base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: ArabicNewSplits7_usingWellWrittenEssays_FineTuningAraBERT_run2_AugV5_k11_task7_organization results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ArabicNewSplits7_usingWellWrittenEssays_FineTuningAraBERT_run2_AugV5_k11_task7_organization This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2725 - Qwk: 0.1497 - Mse: 1.2725 - Rmse: 1.1280 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse | |:-------------:|:-------:|:----:|:---------------:|:-------:|:------:|:------:| | No log | 0.0769 | 2 | 2.5880 | -0.0262 | 2.5880 | 1.6087 | | No log | 0.1538 | 4 | 1.3290 | 0.0511 | 1.3290 | 1.1528 | | No log | 0.2308 | 6 | 1.0293 | -0.1255 | 1.0293 | 1.0145 | | No log | 0.3077 | 8 | 0.9372 | 0.0 | 0.9372 | 0.9681 | | No log | 0.3846 | 10 | 0.9429 | -0.0425 | 0.9429 | 0.9710 | | No log | 0.4615 | 12 | 0.9954 | -0.0392 | 0.9954 | 0.9977 | | No log | 0.5385 | 14 | 0.9280 | -0.0070 | 0.9280 | 0.9633 | | No log | 0.6154 | 16 | 0.9033 | 0.1504 | 0.9033 | 0.9504 | | No log | 0.6923 | 18 | 0.9861 | 0.1962 | 0.9861 | 0.9930 | | No log | 0.7692 | 20 | 1.0962 | -0.0128 | 1.0962 | 1.0470 | | No log | 0.8462 | 22 | 1.1395 | -0.0281 | 1.1395 | 1.0675 | | No log | 0.9231 | 24 | 1.1856 | -0.2126 | 1.1856 | 1.0889 | | No log | 1.0 | 26 | 1.0757 | -0.0472 | 1.0757 | 1.0372 | | No log | 1.0769 | 28 | 1.0227 | 0.1217 | 1.0227 | 1.0113 | | No log | 1.1538 | 30 | 1.0181 | 0.0982 | 1.0181 | 1.0090 | | No log | 1.2308 | 32 | 0.9611 | 0.1542 | 0.9611 | 0.9804 | | No log | 1.3077 | 34 | 0.9876 | 0.1918 | 0.9876 | 0.9938 | | No log | 1.3846 | 36 | 1.0594 | -0.0634 | 1.0594 | 1.0293 | | No log | 1.4615 | 38 | 1.0132 | -0.0479 | 1.0132 | 1.0066 | | No log | 1.5385 | 40 | 0.9048 | 0.0966 | 0.9048 | 0.9512 | | No log | 1.6154 | 42 | 0.8778 | 0.2171 | 0.8778 | 0.9369 | | No log | 1.6923 | 44 | 0.8321 | 0.1972 | 0.8321 | 0.9122 | | No log | 1.7692 | 46 | 0.7792 | 0.1407 | 0.7792 | 0.8827 | | No log | 1.8462 | 48 | 0.7523 | 0.1508 | 0.7523 | 0.8673 | | No log | 1.9231 | 50 | 0.7500 | 0.1236 | 0.7500 | 0.8661 | | No log | 2.0 | 52 | 0.7803 | 0.0 | 0.7803 | 0.8833 | | No log | 2.0769 | 54 | 0.8039 | 0.0 | 0.8039 | 0.8966 | | No log | 2.1538 | 56 | 0.8265 | 0.0359 | 0.8265 | 0.9091 | | No log | 2.2308 | 58 | 0.8628 | 0.1094 | 0.8628 | 0.9289 | | No log | 2.3077 | 60 | 0.9631 | 0.1504 | 0.9631 | 0.9814 | | No log | 2.3846 | 62 | 1.1027 | 0.0487 | 1.1027 | 1.0501 | | No log | 2.4615 | 64 | 1.1507 | -0.0103 | 1.1507 | 1.0727 | | No log | 2.5385 | 66 | 1.1130 | 0.1183 | 1.1130 | 1.0550 | | No log | 2.6154 | 68 | 1.0896 | 0.0573 | 1.0896 | 1.0439 | | No log | 2.6923 | 70 | 1.1578 | -0.1665 | 1.1578 | 1.0760 | | No log | 2.7692 | 72 | 1.1796 | -0.0345 | 1.1796 | 1.0861 | | No log | 2.8462 | 74 | 1.0470 | -0.0960 | 1.0470 | 1.0232 | | No log | 2.9231 | 76 | 0.9014 | 0.1737 | 0.9014 | 0.9494 | | No log | 3.0 | 78 | 0.8859 | 0.1313 | 0.8859 | 0.9412 | | No log | 3.0769 | 80 | 0.9550 | 0.1268 | 0.9550 | 0.9773 | | No log | 3.1538 | 82 | 1.0242 | 0.0933 | 1.0242 | 1.0120 | | No log | 3.2308 | 84 | 1.0977 | -0.0197 | 1.0977 | 1.0477 | | No log | 3.3077 | 86 | 1.1815 | 0.0236 | 1.1815 | 1.0870 | | No log | 3.3846 | 88 | 1.1975 | 0.0563 | 1.1975 | 1.0943 | | No log | 3.4615 | 90 | 1.1961 | -0.0160 | 1.1961 | 1.0936 | | No log | 3.5385 | 92 | 1.1858 | -0.0358 | 1.1858 | 1.0890 | | No log | 3.6154 | 94 | 1.1988 | 0.1348 | 1.1988 | 1.0949 | | No log | 3.6923 | 96 | 1.1991 | 0.1384 | 1.1991 | 1.0950 | | No log | 3.7692 | 98 | 1.1142 | 0.0205 | 1.1142 | 1.0556 | | No log | 3.8462 | 100 | 1.0679 | 0.0616 | 1.0679 | 1.0334 | | No log | 3.9231 | 102 | 1.0353 | 0.0839 | 1.0353 | 1.0175 | | No log | 4.0 | 104 | 1.0270 | 0.0134 | 1.0270 | 1.0134 | | No log | 4.0769 | 106 | 1.0919 | 0.1781 | 1.0919 | 1.0449 | | No log | 4.1538 | 108 | 1.1002 | 0.1113 | 1.1002 | 1.0489 | | No log | 4.2308 | 110 | 0.9776 | 0.0112 | 0.9776 | 0.9888 | | No log | 4.3077 | 112 | 0.9881 | 0.1672 | 0.9881 | 0.9940 | | No log | 4.3846 | 114 | 1.0446 | 0.1209 | 1.0446 | 1.0221 | | No log | 4.4615 | 116 | 1.0382 | 0.1201 | 1.0382 | 1.0189 | | No log | 4.5385 | 118 | 0.8993 | 0.1733 | 0.8993 | 0.9483 | | No log | 4.6154 | 120 | 0.8918 | 0.1835 | 0.8918 | 0.9443 | | No log | 4.6923 | 122 | 1.0720 | 0.1550 | 1.0720 | 1.0354 | | No log | 4.7692 | 124 | 1.1172 | 0.1058 | 1.1172 | 1.0570 | | No log | 4.8462 | 126 | 1.0092 | 0.0691 | 1.0092 | 1.0046 | | No log | 4.9231 | 128 | 0.9939 | 0.1091 | 0.9939 | 0.9969 | | No log | 5.0 | 130 | 1.1074 | 0.1814 | 1.1074 | 1.0523 | | No log | 5.0769 | 132 | 1.0850 | 0.0753 | 1.0850 | 1.0416 | | No log | 5.1538 | 134 | 1.0663 | 0.0682 | 1.0663 | 1.0326 | | No log | 5.2308 | 136 | 1.1592 | 0.0904 | 1.1592 | 1.0767 | | No log | 5.3077 | 138 | 1.1171 | 0.0784 | 1.1171 | 1.0569 | | No log | 5.3846 | 140 | 1.0340 | 0.0379 | 1.0340 | 1.0169 | | No log | 5.4615 | 142 | 1.0183 | 0.1500 | 1.0183 | 1.0091 | | No log | 5.5385 | 144 | 1.0498 | 0.2193 | 1.0498 | 1.0246 | | No log | 5.6154 | 146 | 0.9950 | 0.0748 | 0.9950 | 0.9975 | | No log | 5.6923 | 148 | 1.0192 | 0.0031 | 1.0192 | 1.0095 | | No log | 5.7692 | 150 | 1.0541 | 0.0600 | 1.0541 | 1.0267 | | No log | 5.8462 | 152 | 1.0698 | 0.0934 | 1.0698 | 1.0343 | | No log | 5.9231 | 154 | 1.0586 | 0.0934 | 1.0586 | 1.0289 | | No log | 6.0 | 156 | 0.9983 | 0.0442 | 0.9983 | 0.9991 | | No log | 6.0769 | 158 | 1.0270 | 0.0934 | 1.0270 | 1.0134 | | No log | 6.1538 | 160 | 1.0252 | 0.1205 | 1.0252 | 1.0125 | | No log | 6.2308 | 162 | 1.1064 | 0.2081 | 1.1064 | 1.0518 | | No log | 6.3077 | 164 | 1.1990 | 0.0763 | 1.1990 | 1.0950 | | No log | 6.3846 | 166 | 1.1675 | 0.0421 | 1.1675 | 1.0805 | | No log | 6.4615 | 168 | 1.1031 | 0.1267 | 1.1031 | 1.0503 | | No log | 6.5385 | 170 | 1.0497 | 0.0758 | 1.0497 | 1.0246 | | No log | 6.6154 | 172 | 1.0380 | 0.1033 | 1.0380 | 1.0188 | | No log | 6.6923 | 174 | 1.0331 | 0.0696 | 1.0331 | 1.0164 | | No log | 6.7692 | 176 | 1.0045 | 0.0724 | 1.0045 | 1.0023 | | No log | 6.8462 | 178 | 0.9824 | 0.0724 | 0.9824 | 0.9911 | | No log | 6.9231 | 180 | 0.9414 | 0.0839 | 0.9414 | 0.9702 | | No log | 7.0 | 182 | 0.9232 | 0.0899 | 0.9232 | 0.9608 | | No log | 7.0769 | 184 | 0.9531 | 0.1031 | 0.9531 | 0.9763 | | No log | 7.1538 | 186 | 0.9784 | 0.1031 | 0.9784 | 0.9892 | | No log | 7.2308 | 188 | 1.0060 | 0.0968 | 1.0060 | 1.0030 | | No log | 7.3077 | 190 | 1.0908 | 0.1615 | 1.0908 | 1.0444 | | No log | 7.3846 | 192 | 1.0782 | 0.1615 | 1.0782 | 1.0384 | | No log | 7.4615 | 194 | 1.0124 | 0.2026 | 1.0124 | 1.0062 | | No log | 7.5385 | 196 | 1.0139 | 0.1771 | 1.0139 | 1.0069 | | No log | 7.6154 | 198 | 1.0536 | 0.1472 | 1.0536 | 1.0264 | | No log | 7.6923 | 200 | 1.1895 | 0.1310 | 1.1895 | 1.0906 | | No log | 7.7692 | 202 | 1.2772 | 0.1462 | 1.2772 | 1.1301 | | No log | 7.8462 | 204 | 1.2817 | 0.1307 | 1.2817 | 1.1321 | | No log | 7.9231 | 206 | 1.2388 | 0.1230 | 1.2388 | 1.1130 | | No log | 8.0 | 208 | 1.1612 | 0.0275 | 1.1612 | 1.0776 | | No log | 8.0769 | 210 | 1.2015 | 0.1370 | 1.2015 | 1.0961 | | No log | 8.1538 | 212 | 1.2220 | 0.1169 | 1.2220 | 1.1055 | | No log | 8.2308 | 214 | 1.0821 | 0.2070 | 1.0821 | 1.0402 | | No log | 8.3077 | 216 | 0.9369 | 0.2857 | 0.9369 | 0.9679 | | No log | 8.3846 | 218 | 0.9066 | 0.3221 | 0.9066 | 0.9521 | | No log | 8.4615 | 220 | 0.9160 | 0.2967 | 0.9160 | 0.9571 | | No log | 8.5385 | 222 | 0.9793 | 0.2781 | 0.9793 | 0.9896 | | No log | 8.6154 | 224 | 1.0682 | 0.2220 | 1.0682 | 1.0335 | | No log | 8.6923 | 226 | 1.0427 | 0.2364 | 1.0427 | 1.0211 | | No log | 8.7692 | 228 | 1.0549 | 0.1859 | 1.0549 | 1.0271 | | No log | 8.8462 | 230 | 1.0550 | 0.2081 | 1.0550 | 1.0271 | | No log | 8.9231 | 232 | 1.0520 | 0.1961 | 1.0520 | 1.0257 | | No log | 9.0 | 234 | 0.9981 | 0.2310 | 0.9981 | 0.9990 | | No log | 9.0769 | 236 | 0.9468 | 0.2099 | 0.9468 | 0.9731 | | No log | 9.1538 | 238 | 0.9866 | 0.1899 | 0.9866 | 0.9933 | | No log | 9.2308 | 240 | 1.0632 | 0.2014 | 1.0632 | 1.0311 | | No log | 9.3077 | 242 | 1.0937 | 0.1636 | 1.0937 | 1.0458 | | No log | 9.3846 | 244 | 0.9715 | 0.2633 | 0.9715 | 0.9857 | | No log | 9.4615 | 246 | 0.8899 | 0.2270 | 0.8899 | 0.9433 | | No log | 9.5385 | 248 | 0.8661 | 0.2135 | 0.8661 | 0.9306 | | No log | 9.6154 | 250 | 0.8964 | 0.1970 | 0.8964 | 0.9468 | | No log | 9.6923 | 252 | 1.1055 | 0.1569 | 1.1055 | 1.0514 | | No log | 9.7692 | 254 | 1.2708 | 0.0861 | 1.2708 | 1.1273 | | No log | 9.8462 | 256 | 1.1493 | 0.1031 | 1.1493 | 1.0721 | | No log | 9.9231 | 258 | 0.9836 | 0.2498 | 0.9836 | 0.9918 | | No log | 10.0 | 260 | 0.9285 | 0.2838 | 0.9285 | 0.9636 | | No log | 10.0769 | 262 | 0.9052 | 0.2564 | 0.9052 | 0.9514 | | No log | 10.1538 | 264 | 0.9367 | 0.2888 | 0.9367 | 0.9679 | | No log | 10.2308 | 266 | 1.0791 | 0.1141 | 1.0791 | 1.0388 | | No log | 10.3077 | 268 | 1.1145 | 0.1530 | 1.1145 | 1.0557 | | No log | 10.3846 | 270 | 0.9867 | 0.2420 | 0.9867 | 0.9933 | | No log | 10.4615 | 272 | 0.9728 | 0.2471 | 0.9728 | 0.9863 | | No log | 10.5385 | 274 | 0.9952 | 0.2301 | 0.9952 | 0.9976 | | No log | 10.6154 | 276 | 1.0330 | 0.1265 | 1.0330 | 1.0164 | | No log | 10.6923 | 278 | 1.1188 | 0.1814 | 1.1188 | 1.0577 | | No log | 10.7692 | 280 | 1.1027 | 0.0931 | 1.1027 | 1.0501 | | No log | 10.8462 | 282 | 1.0163 | 0.1242 | 1.0163 | 1.0081 | | No log | 10.9231 | 284 | 1.0520 | 0.1207 | 1.0520 | 1.0257 | | No log | 11.0 | 286 | 1.1820 | 0.0852 | 1.1820 | 1.0872 | | No log | 11.0769 | 288 | 1.1824 | 0.1085 | 1.1824 | 1.0874 | | No log | 11.1538 | 290 | 1.0389 | 0.2116 | 1.0389 | 1.0193 | | No log | 11.2308 | 292 | 0.9184 | 0.1886 | 0.9184 | 0.9584 | | No log | 11.3077 | 294 | 0.8912 | 0.1592 | 0.8912 | 0.9440 | | No log | 11.3846 | 296 | 0.9435 | 0.2359 | 0.9435 | 0.9713 | | No log | 11.4615 | 298 | 1.0659 | 0.1998 | 1.0659 | 1.0324 | | No log | 11.5385 | 300 | 1.1165 | 0.1113 | 1.1165 | 1.0567 | | No log | 11.6154 | 302 | 1.0759 | 0.1681 | 1.0759 | 1.0373 | | No log | 11.6923 | 304 | 1.1140 | 0.1620 | 1.1140 | 1.0555 | | No log | 11.7692 | 306 | 1.0790 | 0.1494 | 1.0790 | 1.0388 | | No log | 11.8462 | 308 | 1.0459 | 0.1606 | 1.0459 | 1.0227 | | No log | 11.9231 | 310 | 0.9533 | 0.1651 | 0.9533 | 0.9764 | | No log | 12.0 | 312 | 0.9501 | 0.1945 | 0.9501 | 0.9748 | | No log | 12.0769 | 314 | 0.9727 | 0.2212 | 0.9727 | 0.9863 | | No log | 12.1538 | 316 | 1.0478 | 0.1662 | 1.0478 | 1.0236 | | No log | 12.2308 | 318 | 1.0816 | 0.1764 | 1.0816 | 1.0400 | | No log | 12.3077 | 320 | 1.0384 | 0.2589 | 1.0384 | 1.0190 | | No log | 12.3846 | 322 | 0.9470 | 0.3195 | 0.9470 | 0.9731 | | No log | 12.4615 | 324 | 0.9089 | 0.2605 | 0.9089 | 0.9533 | | No log | 12.5385 | 326 | 0.9739 | 0.2617 | 0.9739 | 0.9869 | | No log | 12.6154 | 328 | 1.0920 | 0.1803 | 1.0920 | 1.0450 | | No log | 12.6923 | 330 | 1.2393 | 0.1525 | 1.2393 | 1.1132 | | No log | 12.7692 | 332 | 1.2031 | 0.1578 | 1.2031 | 1.0969 | | No log | 12.8462 | 334 | 1.0994 | 0.1140 | 1.0994 | 1.0485 | | No log | 12.9231 | 336 | 1.0377 | 0.1265 | 1.0377 | 1.0187 | | No log | 13.0 | 338 | 1.0615 | 0.2044 | 1.0615 | 1.0303 | | No log | 13.0769 | 340 | 1.1483 | 0.1870 | 1.1483 | 1.0716 | | No log | 13.1538 | 342 | 1.1549 | 0.2141 | 1.1549 | 1.0747 | | No log | 13.2308 | 344 | 1.0842 | 0.2626 | 1.0842 | 1.0412 | | No log | 13.3077 | 346 | 1.0019 | 0.3043 | 1.0019 | 1.0010 | | No log | 13.3846 | 348 | 1.0251 | 0.2975 | 1.0251 | 1.0125 | | No log | 13.4615 | 350 | 1.0723 | 0.1926 | 1.0723 | 1.0355 | | No log | 13.5385 | 352 | 1.1779 | 0.1468 | 1.1779 | 1.0853 | | No log | 13.6154 | 354 | 1.2477 | 0.1196 | 1.2477 | 1.1170 | | No log | 13.6923 | 356 | 1.2466 | 0.1196 | 1.2466 | 1.1165 | | No log | 13.7692 | 358 | 1.1993 | 0.1536 | 1.1993 | 1.0951 | | No log | 13.8462 | 360 | 1.1113 | 0.2029 | 1.1113 | 1.0542 | | No log | 13.9231 | 362 | 1.0695 | 0.2348 | 1.0695 | 1.0342 | | No log | 14.0 | 364 | 1.0972 | 0.2303 | 1.0972 | 1.0475 | | No log | 14.0769 | 366 | 1.1402 | 0.2200 | 1.1402 | 1.0678 | | No log | 14.1538 | 368 | 1.2260 | 0.1468 | 1.2260 | 1.1072 | | No log | 14.2308 | 370 | 1.1719 | 0.1779 | 1.1719 | 1.0825 | | No log | 14.3077 | 372 | 1.1355 | 0.1898 | 1.1355 | 1.0656 | | No log | 14.3846 | 374 | 1.0978 | 0.2070 | 1.0978 | 1.0478 | | No log | 14.4615 | 376 | 1.0772 | 0.2113 | 1.0772 | 1.0379 | | No log | 14.5385 | 378 | 1.1238 | 0.2070 | 1.1238 | 1.0601 | | No log | 14.6154 | 380 | 1.1039 | 0.2113 | 1.1039 | 1.0507 | | No log | 14.6923 | 382 | 1.0236 | 0.1662 | 1.0236 | 1.0117 | | No log | 14.7692 | 384 | 1.0151 | 0.2059 | 1.0151 | 1.0075 | | No log | 14.8462 | 386 | 0.9724 | 0.2839 | 0.9724 | 0.9861 | | No log | 14.9231 | 388 | 0.9189 | 0.2576 | 0.9189 | 0.9586 | | No log | 15.0 | 390 | 0.9004 | 0.1961 | 0.9004 | 0.9489 | | No log | 15.0769 | 392 | 0.9584 | 0.2839 | 0.9584 | 0.9790 | | No log | 15.1538 | 394 | 1.1356 | 0.1636 | 1.1356 | 1.0656 | | No log | 15.2308 | 396 | 1.2127 | 0.1687 | 1.2127 | 1.1012 | | No log | 15.3077 | 398 | 1.1528 | 0.1824 | 1.1528 | 1.0737 | | No log | 15.3846 | 400 | 1.0122 | 0.3280 | 1.0122 | 1.0061 | | No log | 15.4615 | 402 | 0.9582 | 0.2523 | 0.9582 | 0.9789 | | No log | 15.5385 | 404 | 0.9714 | 0.2262 | 0.9714 | 0.9856 | | No log | 15.6154 | 406 | 1.0135 | 0.2054 | 1.0135 | 1.0067 | | No log | 15.6923 | 408 | 1.1015 | 0.2055 | 1.1015 | 1.0495 | | No log | 15.7692 | 410 | 1.0614 | 0.1330 | 1.0614 | 1.0303 | | No log | 15.8462 | 412 | 1.0175 | 0.1441 | 1.0175 | 1.0087 | | No log | 15.9231 | 414 | 0.9897 | 0.1783 | 0.9897 | 0.9948 | | No log | 16.0 | 416 | 1.0096 | 0.1691 | 1.0096 | 1.0048 | | No log | 16.0769 | 418 | 0.9507 | 0.2495 | 0.9507 | 0.9750 | | No log | 16.1538 | 420 | 0.9267 | 0.1715 | 0.9267 | 0.9627 | | No log | 16.2308 | 422 | 0.9329 | 0.1760 | 0.9329 | 0.9659 | | No log | 16.3077 | 424 | 0.9243 | 0.1760 | 0.9243 | 0.9614 | | No log | 16.3846 | 426 | 0.9595 | 0.1870 | 0.9595 | 0.9796 | | No log | 16.4615 | 428 | 1.0631 | 0.1819 | 1.0631 | 1.0311 | | No log | 16.5385 | 430 | 1.1692 | 0.1779 | 1.1692 | 1.0813 | | No log | 16.6154 | 432 | 1.1831 | 0.2065 | 1.1831 | 1.0877 | | No log | 16.6923 | 434 | 1.0933 | 0.2488 | 1.0933 | 1.0456 | | No log | 16.7692 | 436 | 1.0014 | 0.1940 | 1.0014 | 1.0007 | | No log | 16.8462 | 438 | 1.0096 | 0.2183 | 1.0096 | 1.0048 | | No log | 16.9231 | 440 | 1.0929 | 0.2603 | 1.0929 | 1.0454 | | No log | 17.0 | 442 | 1.1386 | 0.2143 | 1.1386 | 1.0670 | | No log | 17.0769 | 444 | 1.1449 | 0.2359 | 1.1449 | 1.0700 | | No log | 17.1538 | 446 | 1.0952 | 0.3394 | 1.0952 | 1.0465 | | No log | 17.2308 | 448 | 1.0126 | 0.3159 | 1.0126 | 1.0063 | | No log | 17.3077 | 450 | 0.9722 | 0.3159 | 0.9722 | 0.9860 | | No log | 17.3846 | 452 | 0.9505 | 0.3219 | 0.9505 | 0.9749 | | No log | 17.4615 | 454 | 1.0061 | 0.3159 | 1.0061 | 1.0030 | | No log | 17.5385 | 456 | 0.9923 | 0.3159 | 0.9923 | 0.9961 | | No log | 17.6154 | 458 | 0.9556 | 0.2670 | 0.9556 | 0.9775 | | No log | 17.6923 | 460 | 0.9883 | 0.2616 | 0.9883 | 0.9941 | | No log | 17.7692 | 462 | 0.9892 | 0.2670 | 0.9892 | 0.9946 | | No log | 17.8462 | 464 | 0.9903 | 0.2670 | 0.9903 | 0.9951 | | No log | 17.9231 | 466 | 1.0084 | 0.2616 | 1.0084 | 1.0042 | | No log | 18.0 | 468 | 1.0485 | 0.3159 | 1.0485 | 1.0239 | | No log | 18.0769 | 470 | 0.9913 | 0.2616 | 0.9913 | 0.9957 | | No log | 18.1538 | 472 | 0.9333 | 0.2839 | 0.9333 | 0.9660 | | No log | 18.2308 | 474 | 0.9187 | 0.2839 | 0.9187 | 0.9585 | | No log | 18.3077 | 476 | 0.9258 | 0.2975 | 0.9258 | 0.9622 | | No log | 18.3846 | 478 | 0.9281 | 0.2975 | 0.9281 | 0.9634 | | No log | 18.4615 | 480 | 0.9763 | 0.3159 | 0.9763 | 0.9881 | | No log | 18.5385 | 482 | 0.9998 | 0.3159 | 0.9998 | 0.9999 | | No log | 18.6154 | 484 | 1.0420 | 0.3159 | 1.0420 | 1.0208 | | No log | 18.6923 | 486 | 1.0898 | 0.3100 | 1.0898 | 1.0439 | | No log | 18.7692 | 488 | 1.0684 | 0.3159 | 1.0684 | 1.0336 | | No log | 18.8462 | 490 | 1.0393 | 0.2670 | 1.0393 | 1.0194 | | No log | 18.9231 | 492 | 0.9973 | 0.2751 | 0.9973 | 0.9987 | | No log | 19.0 | 494 | 0.9664 | 0.2495 | 0.9664 | 0.9830 | | No log | 19.0769 | 496 | 0.9822 | 0.2617 | 0.9822 | 0.9910 | | No log | 19.1538 | 498 | 0.9966 | 0.2943 | 0.9966 | 0.9983 | | 0.3114 | 19.2308 | 500 | 1.0656 | 0.2097 | 1.0656 | 1.0323 | | 0.3114 | 19.3077 | 502 | 1.0683 | 0.2905 | 1.0683 | 1.0336 | | 0.3114 | 19.3846 | 504 | 1.0200 | 0.2905 | 1.0200 | 1.0100 | | 0.3114 | 19.4615 | 506 | 0.9818 | 0.3095 | 0.9818 | 0.9908 | | 0.3114 | 19.5385 | 508 | 0.9591 | 0.3095 | 0.9591 | 0.9793 | | 0.3114 | 19.6154 | 510 | 0.9573 | 0.3095 | 0.9573 | 0.9784 | | 0.3114 | 19.6923 | 512 | 0.9966 | 0.2943 | 0.9966 | 0.9983 | | 0.3114 | 19.7692 | 514 | 1.0009 | 0.2943 | 1.0009 | 1.0004 | | 0.3114 | 19.8462 | 516 | 1.0760 | 0.2097 | 1.0760 | 1.0373 | | 0.3114 | 19.9231 | 518 | 1.1806 | 0.2317 | 1.1806 | 1.0865 | | 0.3114 | 20.0 | 520 | 1.1615 | 0.1628 | 1.1615 | 1.0777 | | 0.3114 | 20.0769 | 522 | 1.0525 | 0.2643 | 1.0525 | 1.0259 | | 0.3114 | 20.1538 | 524 | 0.9980 | 0.1856 | 0.9980 | 0.9990 | | 0.3114 | 20.2308 | 526 | 1.0265 | 0.2696 | 1.0265 | 1.0131 | | 0.3114 | 20.3077 | 528 | 1.1166 | 0.2401 | 1.1166 | 1.0567 | | 0.3114 | 20.3846 | 530 | 1.1002 | 0.2401 | 1.1002 | 1.0489 | | 0.3114 | 20.4615 | 532 | 1.0084 | 0.3012 | 1.0084 | 1.0042 | | 0.3114 | 20.5385 | 534 | 0.9238 | 0.2839 | 0.9238 | 0.9611 | | 0.3114 | 20.6154 | 536 | 0.8798 | 0.2077 | 0.8798 | 0.9380 | | 0.3114 | 20.6923 | 538 | 0.8929 | 0.2077 | 0.8929 | 0.9449 | | 0.3114 | 20.7692 | 540 | 0.9635 | 0.2183 | 0.9635 | 0.9816 | | 0.3114 | 20.8462 | 542 | 1.1025 | 0.1923 | 1.1025 | 1.0500 | | 0.3114 | 20.9231 | 544 | 1.1957 | 0.1594 | 1.1957 | 1.0935 | | 0.3114 | 21.0 | 546 | 1.1812 | 0.2317 | 1.1812 | 1.0868 | | 0.3114 | 21.0769 | 548 | 1.1079 | 0.2285 | 1.1079 | 1.0525 | | 0.3114 | 21.1538 | 550 | 0.9961 | 0.2315 | 0.9961 | 0.9981 | | 0.3114 | 21.2308 | 552 | 0.9203 | 0.2383 | 0.9203 | 0.9593 | | 0.3114 | 21.3077 | 554 | 0.8681 | 0.1850 | 0.8681 | 0.9317 | | 0.3114 | 21.3846 | 556 | 0.8525 | 0.1850 | 0.8525 | 0.9233 | | 0.3114 | 21.4615 | 558 | 0.8767 | 0.2096 | 0.8767 | 0.9363 | | 0.3114 | 21.5385 | 560 | 0.9360 | 0.2781 | 0.9360 | 0.9675 | | 0.3114 | 21.6154 | 562 | 0.9958 | 0.2113 | 0.9958 | 0.9979 | | 0.3114 | 21.6923 | 564 | 1.0443 | 0.1594 | 1.0443 | 1.0219 | | 0.3114 | 21.7692 | 566 | 1.0221 | 0.1697 | 1.0221 | 1.0110 | | 0.3114 | 21.8462 | 568 | 0.9428 | 0.2139 | 0.9428 | 0.9710 | | 0.3114 | 21.9231 | 570 | 0.9138 | 0.2370 | 0.9138 | 0.9559 | | 0.3114 | 22.0 | 572 | 0.8716 | 0.3146 | 0.8716 | 0.9336 | | 0.3114 | 22.0769 | 574 | 0.8403 | 0.2633 | 0.8403 | 0.9167 | | 0.3114 | 22.1538 | 576 | 0.8307 | 0.2359 | 0.8307 | 0.9114 | | 0.3114 | 22.2308 | 578 | 0.8812 | 0.2576 | 0.8812 | 0.9387 | | 0.3114 | 22.3077 | 580 | 1.0000 | 0.1926 | 1.0000 | 1.0000 | | 0.3114 | 22.3846 | 582 | 1.1450 | 0.1920 | 1.1450 | 1.0701 | | 0.3114 | 22.4615 | 584 | 1.1682 | 0.2308 | 1.1682 | 1.0809 | | 0.3114 | 22.5385 | 586 | 1.0816 | 0.2159 | 1.0816 | 1.0400 | | 0.3114 | 22.6154 | 588 | 0.9121 | 0.2359 | 0.9121 | 0.9550 | | 0.3114 | 22.6923 | 590 | 0.8491 | 0.2009 | 0.8491 | 0.9215 | | 0.3114 | 22.7692 | 592 | 0.8662 | 0.2359 | 0.8662 | 0.9307 | | 0.3114 | 22.8462 | 594 | 0.9967 | 0.2220 | 0.9967 | 0.9983 | | 0.3114 | 22.9231 | 596 | 1.1470 | 0.1922 | 1.1470 | 1.0710 | | 0.3114 | 23.0 | 598 | 1.2457 | 0.1819 | 1.2457 | 1.1161 | | 0.3114 | 23.0769 | 600 | 1.4038 | 0.1511 | 1.4038 | 1.1848 | | 0.3114 | 23.1538 | 602 | 1.4013 | 0.1511 | 1.4013 | 1.1838 | | 0.3114 | 23.2308 | 604 | 1.2725 | 0.1497 | 1.2725 | 1.1280 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu118 - Datasets 2.21.0 - Tokenizers 0.19.1
nhung02/db2c9545-4607-487b-9cc3-b7a0587316fc
nhung02
2025-01-21T15:04:41Z
7
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2.5-0.5B-Instruct", "base_model:adapter:Qwen/Qwen2.5-0.5B-Instruct", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-21T14:43:07Z
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-0.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: db2c9545-4607-487b-9cc3-b7a0587316fc results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2.5-0.5B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 9c65c4353c858f05_train_data.json ds_type: json format: custom path: /workspace/input_data/9c65c4353c858f05_train_data.json type: field_instruction: premise field_output: hypothesis format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nhung02/db2c9545-4607-487b-9cc3-b7a0587316fc hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/9c65c4353c858f05_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 4200e893-cfbb-40b3-bdb2-0eb0fdaa99b8 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 4200e893-cfbb-40b3-bdb2-0eb0fdaa99b8 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # db2c9545-4607-487b-9cc3-b7a0587316fc This model is a fine-tuned version of [Qwen/Qwen2.5-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8664 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.2298 | 0.0164 | 200 | 0.8664 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
frnka/Llama-3.2-3B-Instruct-DMP-synthetic-context
frnka
2025-01-21T15:03:31Z
26
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "unsloth", "question-answering", "dataset:frnka/dmp-qa-with-context-2", "base_model:meta-llama/Llama-3.2-3B-Instruct", "base_model:finetune:meta-llama/Llama-3.2-3B-Instruct", "doi:10.57967/hf/4188", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
question-answering
2024-12-30T10:19:14Z
--- library_name: transformers tags: - unsloth datasets: - frnka/dmp-qa-with-context-2 base_model: - meta-llama/Llama-3.2-3B-Instruct pipeline_tag: question-answering --- ## Improved with data generated by Qwen 2.5 14B # Model info Model is used for finding answers to questions in Data Management Plans. It achieves F1 score of 49.1 on the [user annotated dmps dataset](https://doi.org/10.57967/hf/4175). ## Prompts used: **System:** ``` You are an AI assistant specialized in extracting exact answers from given contexts. Your task is to: 1. Read the provided Data management plan carefully. 2. Find the specific answer to the given question within the context. 3. Extract and present the answer exactly as it appears, without any modifications. Guidelines: - Provide the answer word-for-word, preserving all original formatting, punctuation, and capitalization. - If no exact answer is found, respond with "NO ANSWER" - Do not offer any explanations, interpretations, or additional information beyond the exact answer found in the context. - Do not modify, paraphrase, or summarize the answer in any way. If you follow the guidelines exactly, I will give you a 10$ tip. ``` **User:** ``` Context: {dmp} Question: {question}
paramedik/phi-4-Q4_K_M-GGUF
paramedik
2025-01-21T15:02:33Z
8
0
transformers
[ "transformers", "gguf", "phi", "nlp", "math", "code", "chat", "conversational", "llama-cpp", "gguf-my-repo", "text-generation", "en", "base_model:microsoft/phi-4", "base_model:quantized:microsoft/phi-4", "license:mit", "endpoints_compatible", "region:us" ]
text-generation
2025-01-21T15:01:54Z
--- license: mit license_link: https://huggingface.co/microsoft/phi-4/resolve/main/LICENSE language: - en pipeline_tag: text-generation tags: - phi - nlp - math - code - chat - conversational - llama-cpp - gguf-my-repo inference: parameters: temperature: 0 widget: - messages: - role: user content: How should I explain the Internet? library_name: transformers base_model: microsoft/phi-4 --- # paramedik/phi-4-Q4_K_M-GGUF This model was converted to GGUF format from [`microsoft/phi-4`](https://huggingface.co/microsoft/phi-4) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/microsoft/phi-4) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo paramedik/phi-4-Q4_K_M-GGUF --hf-file phi-4-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo paramedik/phi-4-Q4_K_M-GGUF --hf-file phi-4-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo paramedik/phi-4-Q4_K_M-GGUF --hf-file phi-4-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo paramedik/phi-4-Q4_K_M-GGUF --hf-file phi-4-q4_k_m.gguf -c 2048 ```
cvoffer/b36d7c73-0527-464f-9f48-f03978f44fbe
cvoffer
2025-01-21T15:01:31Z
6
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "custom_code", "base_model:NousResearch/Yarn-Llama-2-7b-64k", "base_model:adapter:NousResearch/Yarn-Llama-2-7b-64k", "region:us" ]
null
2025-01-21T12:38:49Z
--- library_name: peft base_model: NousResearch/Yarn-Llama-2-7b-64k tags: - axolotl - generated_from_trainer model-index: - name: b36d7c73-0527-464f-9f48-f03978f44fbe results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Yarn-Llama-2-7b-64k bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 80c30cd5e02284af_train_data.json ds_type: json format: custom path: /workspace/input_data/80c30cd5e02284af_train_data.json type: field_instruction: prompt field_output: text format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: 1 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: cvoffer/b36d7c73-0527-464f-9f48-f03978f44fbe hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 78GiB max_steps: 30 micro_batch_size: 2 mlflow_experiment_name: /tmp/80c30cd5e02284af_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 711e6929-304b-493a-a64e-98f30c7ab861 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 711e6929-304b-493a-a64e-98f30c7ab861 warmup_steps: 5 weight_decay: 0.001 xformers_attention: true ``` </details><br> # b36d7c73-0527-464f-9f48-f03978f44fbe This model is a fine-tuned version of [NousResearch/Yarn-Llama-2-7b-64k](https://huggingface.co/NousResearch/Yarn-Llama-2-7b-64k) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.6186 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0000 | 1 | 2.6747 | | 7.1131 | 0.0002 | 5 | 2.6087 | | 8.4284 | 0.0003 | 10 | 2.5324 | | 7.3734 | 0.0005 | 15 | 2.6186 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
fahd200581/AILOOOGOAI
fahd200581
2025-01-21T15:00:21Z
7
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-01-21T14:41:20Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: AILOOOGOAI --- # Ailooogoai <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `AILOOOGOAI` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('fahd200581/AILOOOGOAI', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
kucher7serg/ruz1l
kucher7serg
2025-01-21T14:59:23Z
140
1
diffusers
[ "diffusers", "text-to-image", "flux", "lora", "template:sd-lora", "fluxgym", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-01-21T14:57:52Z
--- tags: - text-to-image - flux - lora - diffusers - template:sd-lora - fluxgym widget: - output: url: sample/ruz1l_000150_05_20250121130650_42.png text: ruz1l a young man smiles --d 42 - output: url: sample/ruz1l_000300_05_20250121131236_42.png text: ruz1l a young man looks into the distance in surprise --d 42 - output: url: sample/ruz1l_000450_05_20250121131824_42.png text: ruz1l a young man is wildly scared --d 42 - output: url: sample/ruz1l_000600_05_20250121132408_42.png text: ruz1l a young man happy --d 42 - output: url: sample/ruz1l_000750_05_20250121132955_42.png text: ruz1l a young man full length photo --d 42 - output: url: sample/ruz1l_000900_05_20250121133540_42.png text: ruz1l a young man goes surfing --d 42 base_model: black-forest-labs/FLUX.1-dev instance_prompt: ruz1l a young man license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md --- # ruz1l A Flux LoRA trained on a local computer with [Fluxgym](https://github.com/cocktailpeanut/fluxgym) <Gallery /> ## Trigger words You should use `ruz1l a young man` to trigger the image generation. ## Download model and use it with ComfyUI, AUTOMATIC1111, SD.Next, Invoke AI, Forge, etc. Weights for this model are available in Safetensors format.
kostiantynk/6a09c1ea-4493-40af-9df4-50424480a269
kostiantynk
2025-01-21T14:59:04Z
8
0
peft
[ "peft", "safetensors", "gemma2", "axolotl", "generated_from_trainer", "base_model:zake7749/gemma-2-2b-it-chinese-kyara-dpo", "base_model:adapter:zake7749/gemma-2-2b-it-chinese-kyara-dpo", "license:gemma", "region:us" ]
null
2025-01-21T14:52:23Z
--- library_name: peft license: gemma base_model: zake7749/gemma-2-2b-it-chinese-kyara-dpo tags: - axolotl - generated_from_trainer model-index: - name: 6a09c1ea-4493-40af-9df4-50424480a269 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: zake7749/gemma-2-2b-it-chinese-kyara-dpo bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 98d61748b31bcb23_train_data.json ds_type: json format: custom path: /workspace/input_data/98d61748b31bcb23_train_data.json type: field_input: src field_instruction: task field_output: tgt format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: kostiantynk/6a09c1ea-4493-40af-9df4-50424480a269 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/98d61748b31bcb23_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: e4807618-cf8c-4200-9ce1-34371a66a038 wandb_project: Mine-SN56-22-Gradients-On-Demand wandb_run: your_name wandb_runid: e4807618-cf8c-4200-9ce1-34371a66a038 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 6a09c1ea-4493-40af-9df4-50424480a269 This model is a fine-tuned version of [zake7749/gemma-2-2b-it-chinese-kyara-dpo](https://huggingface.co/zake7749/gemma-2-2b-it-chinese-kyara-dpo) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2474 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 3.4129 | 0.0001 | 1 | 3.0375 | | 2.2835 | 0.0004 | 3 | 2.9579 | | 1.9105 | 0.0007 | 6 | 2.0824 | | 1.2443 | 0.0011 | 9 | 1.2474 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nathanialhunt/5b13285f-38a0-4c51-a18d-e8025a07e8c9
nathanialhunt
2025-01-21T14:57:58Z
9
0
peft
[ "peft", "safetensors", "gemma2", "axolotl", "generated_from_trainer", "base_model:zake7749/gemma-2-2b-it-chinese-kyara-dpo", "base_model:adapter:zake7749/gemma-2-2b-it-chinese-kyara-dpo", "license:gemma", "region:us" ]
null
2025-01-21T14:50:18Z
--- library_name: peft license: gemma base_model: zake7749/gemma-2-2b-it-chinese-kyara-dpo tags: - axolotl - generated_from_trainer model-index: - name: 5b13285f-38a0-4c51-a18d-e8025a07e8c9 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: zake7749/gemma-2-2b-it-chinese-kyara-dpo bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 98d61748b31bcb23_train_data.json ds_type: json format: custom path: /workspace/input_data/98d61748b31bcb23_train_data.json type: field_input: src field_instruction: task field_output: tgt format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: nathanialhunt/5b13285f-38a0-4c51-a18d-e8025a07e8c9 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/98d61748b31bcb23_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: e4807618-cf8c-4200-9ce1-34371a66a038 wandb_project: Birthday-SN56-5-Gradients-On-Demand wandb_run: your_name wandb_runid: e4807618-cf8c-4200-9ce1-34371a66a038 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 5b13285f-38a0-4c51-a18d-e8025a07e8c9 This model is a fine-tuned version of [zake7749/gemma-2-2b-it-chinese-kyara-dpo](https://huggingface.co/zake7749/gemma-2-2b-it-chinese-kyara-dpo) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2346 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 3.4129 | 0.0001 | 1 | 3.0375 | | 2.2805 | 0.0004 | 3 | 2.9507 | | 1.8911 | 0.0007 | 6 | 2.0529 | | 1.2268 | 0.0011 | 9 | 1.2346 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
dimasik87/02984339-5881-4d63-b827-3e1a1186dd03
dimasik87
2025-01-21T14:57:06Z
6
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:TinyLlama/TinyLlama_v1.1", "base_model:adapter:TinyLlama/TinyLlama_v1.1", "license:apache-2.0", "region:us" ]
null
2025-01-21T14:55:20Z
--- library_name: peft license: apache-2.0 base_model: TinyLlama/TinyLlama_v1.1 tags: - axolotl - generated_from_trainer model-index: - name: 02984339-5881-4d63-b827-3e1a1186dd03 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: TinyLlama/TinyLlama_v1.1 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - da3ed2ddf3136e5d_train_data.json ds_type: json format: custom path: /workspace/input_data/da3ed2ddf3136e5d_train_data.json type: field_input: Documents field_instruction: Question field_output: Answer format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: 1 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: dimasik87/02984339-5881-4d63-b827-3e1a1186dd03 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 79GiB max_steps: 30 micro_batch_size: 4 mlflow_experiment_name: /tmp/da3ed2ddf3136e5d_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 1024 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: b59b5a01-befc-45d4-a9af-2ea93cb31c85 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: b59b5a01-befc-45d4-a9af-2ea93cb31c85 warmup_steps: 5 weight_decay: 0.001 xformers_attention: true ``` </details><br> # 02984339-5881-4d63-b827-3e1a1186dd03 This model is a fine-tuned version of [TinyLlama/TinyLlama_v1.1](https://huggingface.co/TinyLlama/TinyLlama_v1.1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7420 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0018 | 1 | 8.1071 | | 5.3075 | 0.0090 | 5 | 3.6301 | | 2.7418 | 0.0180 | 10 | 2.5294 | | 2.2275 | 0.0270 | 15 | 2.0721 | | 2.1091 | 0.0360 | 20 | 1.8647 | | 1.8717 | 0.0450 | 25 | 1.7659 | | 1.7748 | 0.0541 | 30 | 1.7420 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
kokovova/f29bfaa2-dc23-4fa5-810a-c9cc9535777c
kokovova
2025-01-21T14:56:53Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:TinyLlama/TinyLlama_v1.1", "base_model:adapter:TinyLlama/TinyLlama_v1.1", "license:apache-2.0", "region:us" ]
null
2025-01-21T14:55:05Z
--- library_name: peft license: apache-2.0 base_model: TinyLlama/TinyLlama_v1.1 tags: - axolotl - generated_from_trainer model-index: - name: f29bfaa2-dc23-4fa5-810a-c9cc9535777c results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: TinyLlama/TinyLlama_v1.1 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - da3ed2ddf3136e5d_train_data.json ds_type: json format: custom path: /workspace/input_data/da3ed2ddf3136e5d_train_data.json type: field_input: Documents field_instruction: Question field_output: Answer format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: 1 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: kokovova/f29bfaa2-dc23-4fa5-810a-c9cc9535777c hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 79GiB max_steps: 30 micro_batch_size: 4 mlflow_experiment_name: /tmp/da3ed2ddf3136e5d_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 1024 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: b59b5a01-befc-45d4-a9af-2ea93cb31c85 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: b59b5a01-befc-45d4-a9af-2ea93cb31c85 warmup_steps: 5 weight_decay: 0.001 xformers_attention: true ``` </details><br> # f29bfaa2-dc23-4fa5-810a-c9cc9535777c This model is a fine-tuned version of [TinyLlama/TinyLlama_v1.1](https://huggingface.co/TinyLlama/TinyLlama_v1.1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7079 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0018 | 1 | 8.1071 | | 5.3176 | 0.0090 | 5 | 3.6362 | | 2.7207 | 0.0180 | 10 | 2.5180 | | 2.1964 | 0.0270 | 15 | 2.0322 | | 2.0648 | 0.0360 | 20 | 1.8257 | | 1.839 | 0.0450 | 25 | 1.7338 | | 1.7392 | 0.0541 | 30 | 1.7079 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
fedovtt/26d46fd0-6d97-4263-a6cd-32079ce6117e
fedovtt
2025-01-21T14:55:39Z
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2.5-0.5B-Instruct", "base_model:adapter:Qwen/Qwen2.5-0.5B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-01-21T14:42:31Z
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-0.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 26d46fd0-6d97-4263-a6cd-32079ce6117e results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2.5-0.5B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 9c65c4353c858f05_train_data.json ds_type: json format: custom path: /workspace/input_data/9c65c4353c858f05_train_data.json type: field_instruction: premise field_output: hypothesis format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: 1 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: false hub_model_id: fedovtt/26d46fd0-6d97-4263-a6cd-32079ce6117e hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 78GiB max_steps: 30 micro_batch_size: 2 mlflow_experiment_name: /tmp/9c65c4353c858f05_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 4200e893-cfbb-40b3-bdb2-0eb0fdaa99b8 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 4200e893-cfbb-40b3-bdb2-0eb0fdaa99b8 warmup_steps: 10 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 26d46fd0-6d97-4263-a6cd-32079ce6117e This model is a fine-tuned version of [Qwen/Qwen2.5-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4442 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0001 | 1 | 2.5574 | | 2.5043 | 0.0004 | 5 | 2.3664 | | 2.223 | 0.0008 | 10 | 1.9743 | | 1.7793 | 0.0012 | 15 | 1.6835 | | 1.6453 | 0.0016 | 20 | 1.5297 | | 1.4489 | 0.0021 | 25 | 1.4597 | | 1.4061 | 0.0025 | 30 | 1.4442 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
metricspace/GDPR_Input_Detection_and_Anonymization_0.5B
metricspace
2025-01-21T14:54:17Z
113
3
null
[ "safetensors", "qwen2", "license:apache-2.0", "region:us" ]
null
2024-09-09T12:15:37Z
--- license: apache-2.0 --- # The GDPR Input Detection and Anonymization model The **The GDPR Input Detection and Anonymization model** is designed to protect sensitive information locally before it is processed by larger AI models in external clouds. ## Intended Use The model is made to bridge the user inputs to external LLM input like a firewall or proxy. The model analysis the user prompts and computes two scores. The first score helps to identify if it needs a small or more cabable model to process the user input. The second score rates the sensitivity of the prompt. When it detects sensitive information, the further cloud processing of the prompt can be blocked or at least be replaced by an anonymized version. ## Complexity Scoring The score rates the complexity of a task on a scale from 1 to 10, where **1 represents simple information retrieval of world knowledge** and **10 involves highly complex, expert-level analysis of domain specific content**. With lower scores, smaller models like **LLaMA** are sufficient, while mid to high scores suggest using more powerful models like from OpenAI or Anthropic. Also the score incresease, if the number of instructions and contraints in a prompt increase. This scoring system provides guidance for selecting the right model, helping to **save costs** and **optimize resources** by aligning the task’s complexity with the appropriate computational power. | **Score** | **Description** | **Example Tasks** | Number of Instructions and Constraints* | **Suggested Models** | |:---------:|--------------------------------------------|-------------------------------------------------------------------|-|------------------------------------| | **1** | Basic fact retrieval or identification | "What is the capital of France?" | 1 | Llama, smaller models | | **2** | Simple rephrasing or minor adjustments | "Paraphrase the sentence: 'The dog barked loudly.'" | 1 | Llama, GPT-4o Mini | | **3** | Summaries or brief overviews | "Summarize the key points of a short text." | 1 | Llama, GPT-4o Mini | | **4** | List creation or short reasoning | "List three reasons why the following exercise is more beneficial in Greek than in Italy: Here is the exercise: ..." | 2 | GPT-4o Mini | | **5** | Key point extraction, organized info | "Exctract challenges and solutions as bullet points. no summary, no intro. Here is the text: ..." | 2 | GPT-4o Mini | | **6** | Basic narrative or simple analysis | "Write a short story about a character learning a lesson. Written in Harry Potter style, but not about Harry potter, but for coding amateur, humorous" | 3 | GPT-4o Mini | | **7** | Multi-step reasoning, scenario-based tasks | "Base on the following sprint reports, describe the challenges for project manager, team-building, psychologically, deadline-restriction, building technical doubt etc." | 3+ | GPT-4o Mini or GPT-4o | | **8** | In-depth explanations or complex analysis | "I will give you 3 text snippets. Explain how climate change affects ocean currents, find overlapping arugments and disargreements of the authors, and use the Harvard Concept to solve the discrepancies" | 3+ | GPT-4o | | **9** | Advanced analysis or cross-disciplinary | "Check the next 200 mails and filter out conversations between engineering and sales that are helpfull and not helpfull for the company. Give me the result as CSV-Table." | 3+ | GPT-4o | | **10** | Expert-level analysis and synthesis | "Write a report on AI’s impact on real estate invest decision in the middle class, covering the following the main trends from 2025 to 2030 in consumption development, given by the following reports of ten different organizations. Have cultural differences in mind around the world and convert to german culture"| 3+ | GPT-4o | ## Sensitivity Scoring The sensitivity score rates the **confidentiality** of a task on a scale from 0 to 3, where **0 represents non-sensitive, public information** (e.g., event announcements) and **3 involves highly confidential, critical data** (e.g., medical reports). Lower scores indicate content that can be shared freely, while higher scores require **secure handling** and **anonymization**. This system ensures sensitive content is properly protected, preventing any **unauthorized exposure**. Here's the revised table with the addition of a GDPR-related example for each sensitivity level: | **Score** | **Sensitivity and Description** | **Example 1** | **Example 2** | |:---------:|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------| | **0** | **Public, Non-Sensitive** — Free to share; contains no confidential or personal information. | “Community Picnic this Saturday at Greenfield Park, 11 AM. RSVP by Thursday!” | "Company Press Release: New sustainability initiatives for 2024." | | **1** | **Internal, Low Sensitivity** — For internal use only but only minor impact if disclosed. | “New office hours starting next month: 9 AM - 6 PM Mon-Thurs, half-day Fri.” | "Employee List for Training Day: Names only, no personal data." | | **2** | **Confidential, Medium Sensitivity** — For managers or leadership; could impact finances or reputation if disclosed. | “Q3 Budget Breakdown: Marketing: $150K, R&D: $200K” | "Customer Analysis Report: Aggregate data only, segmented by region." | | **3** | **Highly Confidential, Critical Sensitivity** — Restricted to top executives or medical professionals; severe harm if disclosed. | “Merger Negotiation: Acme to acquire 75% of BetaTech for $2.5B…” | "Employee Health Records: Only accessible to HR and necessary medical staff in compliance with GDPR." | ## Annonymization and Re-Annonymization The model can be used locally before and after the processing data with external models | Step | Content | |-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | **Anonymization and Re-Anonymization** | | | **User Input** | We have a community picnic this Saturday at Greenfield Park, 11 AM. RSVP by Thursday. Write me an e-mail announcement. | | **Anonymized Version by Local Model** | We have a community picnic this Saturday at Maplewood Park, Late Morning. RSVP by Thursday. Write me an e-mail announcement. | | **Processed with Main LLM (GPT-4)** | **Subject:** 🍃 Community Picnic This Saturday at Maplewood Park! 🌞 <br> <br> Hello [Community/Neighborhood] Friends, We’re excited to announce our Community Picnic happening this Saturday at Maplewood Park! This is a wonderful opportunity to relax, connect with neighbors, and enjoy some outdoor fun. We’ll gather late morning (around 10:30 AM), so bring your favorite snacks, picnic blankets, and plenty of smiles! <br> <br> **Details:** <br> 📅 **Date:** Saturday, [Exact Date] <br> 📍 **Location:** Maplewood Park <br> ⏰ **Time:** Late Morning (around 10:30 AM) <br> <br> We’ll have games, music, and a few surprises, so it’ll be a great time for all ages! Feel free to bring family, friends, and any special treats you’d like to share with the group. <br> <br> **RSVP** <br> To help us plan, please RSVP by this Thursday by replying to this email or contacting [Contact Information]. We can’t wait to see you all there and make this picnic a memorable one for our community. Don’t forget your sunscreen and a lawn chair if you’d like some extra comfort! <br> <br> **Warm regards,** [Your Name/Community Group] | | **Entities Replaced by Local Model** | **Subject:** 🍃 Community Picnic This Saturday at Greenfield Park! 🌞 <br> <br> Hello [Community/Neighborhood] Friends, We’re excited to announce our Community Picnic happening this Saturday at Greenfield Park! This is a wonderful opportunity to relax, connect with neighbors, and enjoy some outdoor fun. We’ll gather late morning (around 10:30 AM), so bring your favorite snacks, picnic blankets, and plenty of smiles! <br> <br> **Details:** <br> 📅 **Date:** Saturday, [Exact Date] <br> 📍 **Location:** Greenfield Park <br> ⏰ **Time:** Late Morning (around 10:30 AM) <br> <br> We’ll have games, music, and a few surprises, so it’ll be a great time for all ages! Feel free to bring family, friends, and any special treats you’d like to share with the group. <br> <br> **RSVP** <br> To help us plan, please RSVP by this Thursday by replying to this email or contacting [Contact Information]. We can’t wait to see you all there and make this picnic a memorable one for our community. Don’t forget your sunscreen and a lawn chair if you’d like some extra comfort! <br> <br> **Warm regards,** [Your Name/Community Group] | ## How to Use the Model This model provides functionalities for sensitivity assessment, complexity assesment, and entity anonymization. Each function is illustrated below with example code snippets. <details> <summary>Model setup and inference</summary> ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch model_path = "metricspace/GDPR_Input_Detection_and_Anonymization_0.5B" tokenizer = AutoTokenizer.from_pretrained(model_path) device = "cuda" if torch.cuda.is_available() else "cpu" model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.float16 if device == "cuda" else torch.float32).to(device) import re import json # Set tokenizer tokens and model padding tokenizer.pad_token = "<|im_start|>" tokenizer.eos_token = "<|im_end|>" tokenizer.padding_side = "left" model.generation_config.pad_token_id = tokenizer.pad_token_id # Define formats for different analysis types formats = { "sensitivity": """<|im_start|>system\nSensitivity<|im_end|>\n<|im_start|>user\n{text}<|im_end|>\n<|im_start|>assistant\n""", "complexity": """<|im_start|>system\nComplexity<|im_end|>\n<|im_start|>user\n{text}<|im_end|>\n<|im_start|>assistant\n""", "entity_detection": """<|im_start|>system\nEntity Detection<|im_end|>\n<|im_start|>user\n{text}<|im_end|>\n<|im_start|>assistant\n""", "entity_swapping": """<|im_start|>system\nEntity Swapping<|im_end|>\n<|im_start|>user\nentities:\n{entities}\ntext:\n{text}<|im_end|>\n<|im_start|>assistant\n""" } def model_inference(text, mode="anonymization", max_new_tokens=2028, config=None, entity_mapping=None, return_entities=False, reverse_mapping=False): if mode not in formats and mode != "anonymization": raise ValueError("Invalid mode. Choose from 'sensitivity', 'complexity', 'entity_detection', 'anonymization'.") # Configuration for anonymization # The `config` dictionary specifies the anonymization behavior for each type of entity detected. # Each key in `config` represents an entity type (e.g., "LOC" for location, "PERSON" for personal names), # and the value assigned to that key determines how entities of that type should be anonymized: # # - "RANDOM": Replaces the entity with a randomly selected placeholder. # - "GENERAL LOW", "GENERAL MEDIUM", "GENERAL HIGH": Replaces the entity with a generalized label, # with the intensity level (LOW, MEDIUM, HIGH) controlling the specificity. For example, # "GENERAL LOW" might use a more specific label ("Local Park") while "GENERAL HIGH" would use # a broader label ("Recreational Area"). # # This allows fine-grained control over anonymization, ensuring that different types of sensitive # information can be replaced in ways that are appropriate for the context. For example: # - "LOC": "RANDOM" replaces any detected location with a random placeholder. # - "DATETIME": "GENERAL LOW" uses a lower-intensity generalization for dates and times. # # This flexibility enables custom anonymization policies to suit different privacy or obfuscation needs. if config is None: config = { "LOC": "RANDOM", "PERSON": "RANDOM", "DEM": "RANDOM", "CODE": "RANDOM", "ORG": "GENERAL MEDIUM", "DATETIME": "GENERAL LOW", "QUANTITY": "RANDOM", "MISC": "RANDOM", } # Anonymization Mode if mode == "anonymization": # Step 1: Entity detection detection_prompt = formats["entity_detection"].format(text=text) detection_inputs = tokenizer(detection_prompt, return_tensors="pt").to(device) detection_output = model.generate( **detection_inputs, max_new_tokens=max_new_tokens, use_cache=True, eos_token_id=151645 ) detection_text = tokenizer.decode(detection_output[0], skip_special_tokens=True) detected_entities = postprocess_entity_recognition(detection_text) # Step 2: Select entities based on config selected_entities = select_entities_based_on_json(detected_entities, config) entities_str = "\n".join([f"{entity} : {label}" for entity, label in selected_entities]) # Step 3: Entity swapping for anonymization swapping_prompt = formats["entity_swapping"].format(entities=entities_str, text=text) swapping_inputs = tokenizer(swapping_prompt, return_tensors="pt").to(device) swapping_output = model.generate( **swapping_inputs, max_new_tokens=max_new_tokens, use_cache=True, eos_token_id=151645 ) anonymized_text = tokenizer.decode(swapping_output[0], skip_special_tokens=True) anonymized_text = anonymized_text.split("assistant\n", 1)[-1].strip() # Extract only the assistant's response if return_entities: return anonymized_text, entities_str return anonymized_text # Entity Restoration Mode using entity_swapping elif mode == "entity_swapping" and entity_mapping: # Reverse the entity mapping if reverse_mapping: reversed_mapping = [] for line in entity_mapping.splitlines(): if ':' in line: # Ensure the line contains a colon left, right = map(str.strip, line.split(":", 1)) # Split and strip spaces reversed_mapping.append(f"{right} : {left}") # Reverse and format entity_mapping = "\n".join(reversed_mapping) # Create the swapping prompt with the aggregated reversed mappings swapping_prompt = formats["entity_swapping"].format(entities=entity_mapping, text=text) swapping_inputs = tokenizer(swapping_prompt, return_tensors="pt").to(device) swapping_output = model.generate( **swapping_inputs, max_new_tokens=max_new_tokens, use_cache=True, eos_token_id=151645 ) # Decode and extract the restored text output_text = tokenizer.decode(swapping_output[0], skip_special_tokens=True) output_text = output_text.split("assistant\n", 1)[-1].strip() # Extract only the assistant's response return output_text # Other modes (sensitivity, complexity, entity_detection) else: prompt = formats[mode].format(text=text) model_inputs = tokenizer(prompt, return_tensors="pt").to(device) generation_output = model.generate( **model_inputs, max_new_tokens=5, use_cache=True, eos_token_id=151645 ) full_output = tokenizer.decode(generation_output[0], skip_special_tokens=True) if mode in ["sensitivity", "complexity"]: assistant_text = full_output.split("assistant\n", 1)[-1].strip() return assistant_text elif mode == "entity_detection": return postprocess_entity_recognition(full_output) # Function to parse entity detection output def postprocess_entity_recognition(detection_output: str) -> dict: output_json = {} entity_pattern = re.compile( r'(?P<entity>[\w\s]+)--(?P<type>[\w]+)--(?P<random>[\w\s]+)--(?P<generalizations>.+)' ) generalization_pattern = re.compile(r'([\w\s]+)::([\w\s]+)') lines = detection_output.strip().split("\n") for line in lines: match = entity_pattern.search(line) if match: entity_name = match.group("entity").strip() entity_type = match.group("type").strip() random_replacement = match.group("random").strip() generalizations = [] for gen_match in generalization_pattern.findall(match.group("generalizations")): first, second = gen_match # Check if the first part is a digit (score) and swap if needed if first.isdigit() and not second.isdigit(): score = first label = second generalizations.append([label.strip(), score.strip()]) elif not first.isdigit() and second.isdigit(): label = first score = second generalizations.append([label.strip(), score.strip()]) output_json[entity_name] = { "TYPE": entity_type, "RANDOM": random_replacement, "GENERAL": generalizations } return output_json # Function to select entities based on config def select_entities_based_on_json(prediction_json, entity_json): entities = [] for key, value in prediction_json.items(): entity_type = value["TYPE"] if entity_type.upper() in entity_json: anonymization_type = entity_json[entity_type] if anonymization_type == "RANDOM": entities.append([key, value["RANDOM"]]) elif "GENERAL" in anonymization_type: intensity = anonymization_type.split(" ")[1] if intensity == "LOW" and value["GENERAL"]: entities.append([key, value["GENERAL"][0][0]]) elif intensity == "MEDIUM": for gen in value["GENERAL"]: if int(gen[1]) >= 4: entities.append([key, gen[0]]) break elif intensity == "HIGH": if value["GENERAL"]: entities.append([key, value["GENERAL"][0][0]]) return entities ``` </details> ### 1. Sensitivity and Complexity Analysis Example text ``` We have a community picnic at Greenfield Park, it is on thursday at 11 AM. Write me an e-mail annoucment! ``` The sensitivity analysis feature evaluates the sensitivity of a given text and the complexitivity feature rates the complexity. ```python text = "We have a community picnic at Greenfield Park, it is on thursday at 11 AM. Write me an e-mail annoucment!" # Generate sensitivity score sensitivity_score = model_inference(text, mode="sensitivity") print(f"Sensitivity Score: {sensitivity_score}") # Generate complexity score complexity_score = model_inference(text, mode="complexity") print(f"Complexity: {complexity_score}") ``` Output ``` Sensitivity Score: 0 Complexity: 3 ``` ### 3. Anonymization and Re-Anonymization To protect sensitive information, the model detects specific entities in the text and anonymizes them based on a pre-configured setting. ```python # Anonymize the text anonymized_text = model_inference(text, mode="anonymization") print(f"Anonymized Text: {anonymized_text}\n") ``` ```python # Restore the original text anonymized_text, entity_mapping = model_inference(text, mode="anonymization", return_entities=True) print(f"Entity Mapping:\n{entity_mapping}\n") restored_text = model_inference(anonymized_text, mode="entity_swapping", entity_mapping=entity_mapping, reverse_mapping=True) print(f"Restored Text: {restored_text}") ``` Output ``` Anonymized Text: We have a community picnic at Sunnyvale Park, it is on A Day of the Week at Morning. Write me an e-mail announcement! Entity Mapping: Greenfield Park : Sunnyvale Park thursday : A Day of the Week 11 AM : Morning Restored Text: We have a community picnic at Greenfield Park, it is on thursday at 11 AM. Write me an e-mail announcement! ``` Normally you would process the annonymized version with a LLM and than reanonymize the result back. ## Limitations For **complexity and sensitivity scoring**, the model can process inputs up to **2,048 tokens**. However, for **entity detection**, the combined limit for input and output is **3,000 tokens**. If a text is too long or contains numerous entities, this limit may be exceeded, which could result in truncated outputs or inconsistent behavior. To ensure accurate results, it's recommended to keep input lengths within these token limits. ## Language Support The model supports 29 language. It was trained with a mixture of (80% english examples, 20% multilanguage examples) ## Licence Apache license 2.0
kucher7serg/ruz1l2
kucher7serg
2025-01-21T14:53:14Z
141
1
diffusers
[ "diffusers", "text-to-image", "flux", "lora", "template:sd-lora", "fluxgym", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-01-16T19:38:55Z
--- tags: - text-to-image - flux - lora - diffusers - template:sd-lora - fluxgym widget: - output: url: sample/ruz1l_000150_05_20250121130650_42.png text: ruz1l a young man smiles --d 42 - output: url: sample/ruz1l_000300_05_20250121131236_42.png text: ruz1l a young man looks into the distance in surprise --d 42 - output: url: sample/ruz1l_000450_05_20250121131824_42.png text: ruz1l a young man is wildly scared --d 42 - output: url: sample/ruz1l_000600_05_20250121132408_42.png text: ruz1l a young man happy --d 42 - output: url: sample/ruz1l_000750_05_20250121132955_42.png text: ruz1l a young man full length photo --d 42 - output: url: sample/ruz1l_000900_05_20250121133540_42.png text: ruz1l a young man goes surfing --d 42 base_model: black-forest-labs/FLUX.1-dev instance_prompt: ruz1l a young man license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md --- # ruz1l A Flux LoRA trained on a local computer with [Fluxgym](https://github.com/cocktailpeanut/fluxgym) <Gallery /> ## Trigger words You should use `ruz1l a young man` to trigger the image generation. ## Download model and use it with ComfyUI, AUTOMATIC1111, SD.Next, Invoke AI, Forge, etc. Weights for this model are available in Safetensors format.
gaianet/DeepSeek-R1-Distill-Qwen-7B-GGUF
gaianet
2025-01-21T14:51:57Z
993
0
transformers
[ "transformers", "gguf", "qwen2", "text-generation", "base_model:deepseek-ai/DeepSeek-R1-Distill-Qwen-7B", "base_model:quantized:deepseek-ai/DeepSeek-R1-Distill-Qwen-7B", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-01-21T01:50:55Z
--- base_model: deepseek-ai/DeepSeek-R1-Distill-Qwen-7B license: apache-2.0 license_link: https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B/blob/main/LICENSE model_creator: deepseek-ai model_name: DeepSeek-R1-Distill-Qwen-7B quantized_by: Second State Inc. library_name: transformers --- # DeepSeek-R1-Distill-Qwen-7B-GGUF ## Original Model [deepseek-ai/DeepSeek-R1-Distill-Qwen-7B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B) ## Run with Gaianet **Prompt template** prompt template: coming soon **Context size** chat_ctx_size: `128000` **Run with GaiaNet** - Quick start: https://docs.gaianet.ai/node-guide/quick-start - Customize your node: https://docs.gaianet.ai/node-guide/customize *Quantized with llama.cpp b4519*
great0001/13e5f5de-bc2c-43ab-9c16-ff0337aa04ca
great0001
2025-01-21T14:50:44Z
12
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:peft-internal-testing/tiny-dummy-qwen2", "base_model:adapter:peft-internal-testing/tiny-dummy-qwen2", "region:us" ]
null
2025-01-21T14:50:19Z
--- library_name: peft base_model: peft-internal-testing/tiny-dummy-qwen2 tags: - axolotl - generated_from_trainer model-index: - name: 13e5f5de-bc2c-43ab-9c16-ff0337aa04ca results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: peft-internal-testing/tiny-dummy-qwen2 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 0e23f2f8e5ee0c7e_train_data.json ds_type: json format: custom path: /workspace/input_data/0e23f2f8e5ee0c7e_train_data.json type: field_input: chosen field_instruction: prompt field_output: rejected format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: great0001/13e5f5de-bc2c-43ab-9c16-ff0337aa04ca hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/0e23f2f8e5ee0c7e_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 377241ed-8c47-4895-a452-0912cff45921 wandb_project: Birthday-SN56-14-Gradients-On-Demand wandb_run: your_name wandb_runid: 377241ed-8c47-4895-a452-0912cff45921 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 13e5f5de-bc2c-43ab-9c16-ff0337aa04ca This model is a fine-tuned version of [peft-internal-testing/tiny-dummy-qwen2](https://huggingface.co/peft-internal-testing/tiny-dummy-qwen2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 11.9320 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 11.9375 | 0.0028 | 1 | 11.9321 | | 11.9333 | 0.0083 | 3 | 11.9321 | | 11.9323 | 0.0167 | 6 | 11.9320 | | 11.935 | 0.0250 | 9 | 11.9320 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
adammandic87/eb977de0-ecdc-4a78-a7ff-65d542503fca
adammandic87
2025-01-21T14:49:05Z
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:peft-internal-testing/tiny-dummy-qwen2", "base_model:adapter:peft-internal-testing/tiny-dummy-qwen2", "region:us" ]
null
2025-01-21T14:48:42Z
--- library_name: peft base_model: peft-internal-testing/tiny-dummy-qwen2 tags: - axolotl - generated_from_trainer model-index: - name: eb977de0-ecdc-4a78-a7ff-65d542503fca results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: peft-internal-testing/tiny-dummy-qwen2 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 0e23f2f8e5ee0c7e_train_data.json ds_type: json format: custom path: /workspace/input_data/0e23f2f8e5ee0c7e_train_data.json type: field_input: chosen field_instruction: prompt field_output: rejected format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: adammandic87/eb977de0-ecdc-4a78-a7ff-65d542503fca hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/0e23f2f8e5ee0c7e_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 377241ed-8c47-4895-a452-0912cff45921 wandb_project: Birthday-SN56-13-Gradients-On-Demand wandb_run: your_name wandb_runid: 377241ed-8c47-4895-a452-0912cff45921 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # eb977de0-ecdc-4a78-a7ff-65d542503fca This model is a fine-tuned version of [peft-internal-testing/tiny-dummy-qwen2](https://huggingface.co/peft-internal-testing/tiny-dummy-qwen2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 11.9320 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 11.9375 | 0.0028 | 1 | 11.9321 | | 11.9333 | 0.0083 | 3 | 11.9321 | | 11.9323 | 0.0167 | 6 | 11.9320 | | 11.935 | 0.0250 | 9 | 11.9320 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso12/758c18d6-6353-43b9-827a-9e2a20f3f1ed
lesso12
2025-01-21T14:46:02Z
8
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:unsloth/zephyr-sft", "base_model:adapter:unsloth/zephyr-sft", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-21T11:44:53Z
--- library_name: peft license: apache-2.0 base_model: unsloth/zephyr-sft tags: - axolotl - generated_from_trainer model-index: - name: 758c18d6-6353-43b9-827a-9e2a20f3f1ed results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/zephyr-sft bf16: true chat_template: llama3 datasets: - data_files: - 6bb273fb8d3c0253_train_data.json ds_type: json format: custom path: /workspace/input_data/6bb273fb8d3c0253_train_data.json type: field_input: condition field_instruction: drugName field_output: review format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: lesso12/758c18d6-6353-43b9-827a-9e2a20f3f1ed hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 25 micro_batch_size: 2 mlflow_experiment_name: /tmp/6bb273fb8d3c0253_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: f44a8599-bd2c-4b24-9468-fb17670debf8 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: f44a8599-bd2c-4b24-9468-fb17670debf8 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 758c18d6-6353-43b9-827a-9e2a20f3f1ed This model is a fine-tuned version of [unsloth/zephyr-sft](https://huggingface.co/unsloth/zephyr-sft) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0000 | 1 | nan | | 0.0 | 0.0002 | 5 | nan | | 0.0 | 0.0004 | 10 | nan | | 0.0 | 0.0006 | 15 | nan | | 0.0 | 0.0008 | 20 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
vertings6/fe5697ba-eae2-45bb-a32c-bffb7663e094
vertings6
2025-01-21T14:46:00Z
8
0
peft
[ "peft", "safetensors", "gemma2", "axolotl", "generated_from_trainer", "base_model:zake7749/gemma-2-2b-it-chinese-kyara-dpo", "base_model:adapter:zake7749/gemma-2-2b-it-chinese-kyara-dpo", "license:gemma", "region:us" ]
null
2025-01-21T14:14:53Z
--- library_name: peft license: gemma base_model: zake7749/gemma-2-2b-it-chinese-kyara-dpo tags: - axolotl - generated_from_trainer model-index: - name: fe5697ba-eae2-45bb-a32c-bffb7663e094 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: zake7749/gemma-2-2b-it-chinese-kyara-dpo bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 98d61748b31bcb23_train_data.json ds_type: json format: custom path: /workspace/input_data/98d61748b31bcb23_train_data.json type: field_input: src field_instruction: task field_output: tgt format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: 1 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: vertings6/fe5697ba-eae2-45bb-a32c-bffb7663e094 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 79GiB max_steps: 30 micro_batch_size: 4 mlflow_experiment_name: /tmp/98d61748b31bcb23_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: e4807618-cf8c-4200-9ce1-34371a66a038 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: e4807618-cf8c-4200-9ce1-34371a66a038 warmup_steps: 5 weight_decay: 0.001 xformers_attention: true ``` </details><br> # fe5697ba-eae2-45bb-a32c-bffb7663e094 This model is a fine-tuned version of [zake7749/gemma-2-2b-it-chinese-kyara-dpo](https://huggingface.co/zake7749/gemma-2-2b-it-chinese-kyara-dpo) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.2318 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0002 | 1 | 4.7657 | | 2.9262 | 0.0012 | 5 | 3.4368 | | 2.2913 | 0.0024 | 10 | 2.7031 | | 2.2022 | 0.0036 | 15 | 2.4745 | | 2.1667 | 0.0048 | 20 | 2.3293 | | 2.18 | 0.0060 | 25 | 2.2495 | | 2.3111 | 0.0072 | 30 | 2.2318 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
sergioalves/5fe532b3-3f3c-46f1-967d-c14a99d7a24f
sergioalves
2025-01-21T14:45:15Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:NousResearch/Meta-Llama-3-8B", "base_model:adapter:NousResearch/Meta-Llama-3-8B", "license:other", "region:us" ]
null
2025-01-21T14:39:00Z
--- library_name: peft license: other base_model: NousResearch/Meta-Llama-3-8B tags: - axolotl - generated_from_trainer model-index: - name: 5fe532b3-3f3c-46f1-967d-c14a99d7a24f results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Meta-Llama-3-8B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 9f860ccb7e806546_train_data.json ds_type: json format: custom path: /workspace/input_data/9f860ccb7e806546_train_data.json type: field_instruction: prompt field_output: chosen format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: 1 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: sergioalves/5fe532b3-3f3c-46f1-967d-c14a99d7a24f hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 79GiB max_steps: 30 micro_batch_size: 4 mlflow_experiment_name: /tmp/9f860ccb7e806546_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 1024 special_tokens: pad_token: <|end_of_text|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 92906d73-ae0c-43b3-9735-14fe2124bf2a wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 92906d73-ae0c-43b3-9735-14fe2124bf2a warmup_steps: 5 weight_decay: 0.001 xformers_attention: true ``` </details><br> # 5fe532b3-3f3c-46f1-967d-c14a99d7a24f This model is a fine-tuned version of [NousResearch/Meta-Llama-3-8B](https://huggingface.co/NousResearch/Meta-Llama-3-8B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.4153 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0048 | 1 | 4.3587 | | 3.4221 | 0.0239 | 5 | 3.6436 | | 3.0062 | 0.0478 | 10 | 2.7344 | | 2.4666 | 0.0717 | 15 | 2.5904 | | 2.5231 | 0.0956 | 20 | 2.4611 | | 2.3598 | 0.1195 | 25 | 2.4224 | | 2.4138 | 0.1434 | 30 | 2.4153 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mradermacher/Deepseeker-Kunou-Qwen2.5-14b-GGUF
mradermacher
2025-01-21T14:45:06Z
460
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:Statuo/Deepseeker-Kunou-Qwen2.5-14b", "base_model:quantized:Statuo/Deepseeker-Kunou-Qwen2.5-14b", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-01-21T12:16:17Z
--- base_model: Statuo/Deepseeker-Kunou-Qwen2.5-14b language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/Statuo/Deepseeker-Kunou-Qwen2.5-14b <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Deepseeker-Kunou-Qwen2.5-14b-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Deepseeker-Kunou-Qwen2.5-14b-GGUF/resolve/main/Deepseeker-Kunou-Qwen2.5-14b.Q2_K.gguf) | Q2_K | 5.9 | | | [GGUF](https://huggingface.co/mradermacher/Deepseeker-Kunou-Qwen2.5-14b-GGUF/resolve/main/Deepseeker-Kunou-Qwen2.5-14b.Q3_K_S.gguf) | Q3_K_S | 6.8 | | | [GGUF](https://huggingface.co/mradermacher/Deepseeker-Kunou-Qwen2.5-14b-GGUF/resolve/main/Deepseeker-Kunou-Qwen2.5-14b.Q3_K_M.gguf) | Q3_K_M | 7.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Deepseeker-Kunou-Qwen2.5-14b-GGUF/resolve/main/Deepseeker-Kunou-Qwen2.5-14b.Q3_K_L.gguf) | Q3_K_L | 8.0 | | | [GGUF](https://huggingface.co/mradermacher/Deepseeker-Kunou-Qwen2.5-14b-GGUF/resolve/main/Deepseeker-Kunou-Qwen2.5-14b.IQ4_XS.gguf) | IQ4_XS | 8.3 | | | [GGUF](https://huggingface.co/mradermacher/Deepseeker-Kunou-Qwen2.5-14b-GGUF/resolve/main/Deepseeker-Kunou-Qwen2.5-14b.Q4_K_S.gguf) | Q4_K_S | 8.7 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Deepseeker-Kunou-Qwen2.5-14b-GGUF/resolve/main/Deepseeker-Kunou-Qwen2.5-14b.Q4_K_M.gguf) | Q4_K_M | 9.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Deepseeker-Kunou-Qwen2.5-14b-GGUF/resolve/main/Deepseeker-Kunou-Qwen2.5-14b.Q5_K_S.gguf) | Q5_K_S | 10.4 | | | [GGUF](https://huggingface.co/mradermacher/Deepseeker-Kunou-Qwen2.5-14b-GGUF/resolve/main/Deepseeker-Kunou-Qwen2.5-14b.Q5_K_M.gguf) | Q5_K_M | 10.6 | | | [GGUF](https://huggingface.co/mradermacher/Deepseeker-Kunou-Qwen2.5-14b-GGUF/resolve/main/Deepseeker-Kunou-Qwen2.5-14b.Q6_K.gguf) | Q6_K | 12.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Deepseeker-Kunou-Qwen2.5-14b-GGUF/resolve/main/Deepseeker-Kunou-Qwen2.5-14b.Q8_0.gguf) | Q8_0 | 15.8 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
ValiantLabs/Llama2-70B-ShiningValiant
ValiantLabs
2025-01-21T14:44:43Z
124
74
transformers
[ "transformers", "safetensors", "llama", "text-generation", "shining-valiant", "valiant", "valiant-labs", "llama-2", "llama-2-chat", "70b", "en", "license:llama2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-31T17:22:30Z
--- language: - en pipeline_tag: text-generation tags: - shining-valiant - valiant - valiant-labs - llama - llama-2 - llama-2-chat - 70b model_type: llama license: llama2 --- **This model is legacy - we recommend [Shining Valiant 2](https://huggingface.co/ValiantLabs/Llama3.1-70B-ShiningValiant2) for Llama 3.1 70b!** ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/64f267a8a4f79a118e0fcc89/5rUJPhu_6LyDvSQogSVhk.jpeg) Shining Valiant is a chat model built on the Llama 2 architecture, finetuned on our data for insight, creativity, passion, and friendliness. - Uses the llama-2-70b-chat model, with safetensors - Finetuned on multiple runs across private and public data - Data focused on knowledge, enthusiasm, and structured reasoning - **Our new release features greatly expanded personality capability**, bringing a more immersive chat experience ## Version The current version is **1.4!** We've greatly expanded our personality dataset and fixed some bugs to deliver our strongest real-chat experience so far. (We're also exploring **new models and architectures**, to deliver helpful open source capabilities for users and creators!) Previous versions remain available in the repository. New models will be released for everyone once our team's training and validation process is complete. ## Evaluation Version 1.4 is awaiting results from the Open LLM leaderboard. ## Prompting Guide Shining Valiant uses the same prompt format as Llama 2 Chat - feel free to use your existing prompts and scripts! A few examples of different formats: 1. [INST] Good morning! Can you let me know how to parse a text file and turn the semicolons into commas? [/INST] 2. [INST] (You are an intelligent, helpful AI assistant.) Hello, can you write me a thank you letter? [/INST] 3. [INST] << SYS >>You are an intelligent, helpful AI assistant.<< /SYS >>Deep dive about a country with interesting history: [/INST] ## The Model Shining Valiant is built on top of Spell Blade, which uses Llama 2's 70b parameter architecture and features upgraded general and chat capability. Our private data focuses primarily on applying Shining Valiant's personality: she's friendly, enthusiastic, insightful, knowledgeable, and loves to learn! With this release, the personality component of our Shining Valiant dataset has been greatly improved. We're excited to use it in future releases of this model and others. ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/63444f2687964b331809eb55/VCJ8Fmefd8cdVhXSSxJiD.jpeg) Shining Valiant is created by [Valiant Labs.](http://valiantlabs.ca/) We care about open source. For everyone to use. We encourage others to finetune further from our models.
kostiantynk1205/5fab3088-ce91-4ec5-90e3-847e944bbc7d
kostiantynk1205
2025-01-21T14:44:41Z
9
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:NousResearch/Nous-Hermes-llama-2-7b", "base_model:adapter:NousResearch/Nous-Hermes-llama-2-7b", "license:mit", "region:us" ]
null
2025-01-21T14:11:39Z
--- library_name: peft license: mit base_model: NousResearch/Nous-Hermes-llama-2-7b tags: - axolotl - generated_from_trainer model-index: - name: 5fab3088-ce91-4ec5-90e3-847e944bbc7d results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Nous-Hermes-llama-2-7b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - ea142ac27856f425_train_data.json ds_type: json format: custom path: /workspace/input_data/ea142ac27856f425_train_data.json type: field_instruction: 'Purpose: Clinical Focus' field_output: Description format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: kostiantynk1205/5fab3088-ce91-4ec5-90e3-847e944bbc7d hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/ea142ac27856f425_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 8d608405-ef66-4e7a-9976-6a448c75bbeb wandb_project: Birthday-SN56-6-Gradients-On-Demand wandb_run: your_name wandb_runid: 8d608405-ef66-4e7a-9976-6a448c75bbeb warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 5fab3088-ce91-4ec5-90e3-847e944bbc7d This model is a fine-tuned version of [NousResearch/Nous-Hermes-llama-2-7b](https://huggingface.co/NousResearch/Nous-Hermes-llama-2-7b) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0000 | 1 | nan | | 0.0 | 0.0001 | 3 | nan | | 0.0 | 0.0002 | 6 | nan | | 0.0 | 0.0002 | 9 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
ValiantLabs/Llama3.1-70B-ShiningValiant2
ValiantLabs
2025-01-21T14:43:45Z
11
3
null
[ "safetensors", "llama", "shining-valiant", "shining-valiant-2", "valiant", "valiant-labs", "llama-3.1", "llama-3.1-instruct", "llama-3.1-instruct-70b", "llama-3", "llama-3-instruct", "llama-3-instruct-70b", "70b", "science", "physics", "biology", "chemistry", "compsci", "computer-science", "engineering", "logic", "rationality", "advanced", "expert", "technical", "conversational", "chat", "instruct", "text-generation", "en", "dataset:sequelbox/Celestia", "dataset:sequelbox/Spurline", "dataset:sequelbox/Supernova", "base_model:meta-llama/Llama-3.1-70B-Instruct", "base_model:finetune:meta-llama/Llama-3.1-70B-Instruct", "license:llama3.1", "model-index", "region:us" ]
text-generation
2024-10-30T00:27:06Z
--- language: - en pipeline_tag: text-generation tags: - shining-valiant - shining-valiant-2 - valiant - valiant-labs - llama - llama-3.1 - llama-3.1-instruct - llama-3.1-instruct-70b - llama-3 - llama-3-instruct - llama-3-instruct-70b - 70b - science - physics - biology - chemistry - compsci - computer-science - engineering - logic - rationality - advanced - expert - technical - conversational - chat - instruct base_model: meta-llama/Meta-Llama-3.1-70B-Instruct datasets: - sequelbox/Celestia - sequelbox/Spurline - sequelbox/Supernova model_type: llama model-index: - name: Llama3.1-70B-ShiningValiant2 results: - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-Shot) type: Winogrande args: num_few_shot: 5 metrics: - type: acc value: 84.93 name: acc - task: type: text-generation name: Text Generation dataset: name: MMLU College Biology (5-Shot) type: MMLU args: num_few_shot: 5 metrics: - type: acc value: 93.75 name: acc - task: type: text-generation name: Text Generation dataset: name: MMLU High School Biology (5-Shot) type: MMLU args: num_few_shot: 5 metrics: - type: acc value: 91.94 name: acc - task: type: text-generation name: Text Generation dataset: name: MMLU Conceptual Physics (5-Shot) type: MMLU args: num_few_shot: 5 metrics: - type: acc value: 81.70 name: acc - task: type: text-generation name: Text Generation dataset: name: MMLU College Physics (5-Shot) type: MMLU args: num_few_shot: 5 metrics: - type: acc value: 60.78 name: acc - task: type: text-generation name: Text Generation dataset: name: MMLU High School Physics (5-Shot) type: MMLU args: num_few_shot: 5 metrics: - type: acc value: 62.91 name: acc - task: type: text-generation name: Text Generation dataset: name: MMLU College Chemistry (5-Shot) type: MMLU args: num_few_shot: 5 metrics: - type: acc value: 55.00 name: acc - task: type: text-generation name: Text Generation dataset: name: MMLU High School Chemistry (5-Shot) type: MMLU args: num_few_shot: 5 metrics: - type: acc value: 75.86 name: acc - task: type: text-generation name: Text Generation dataset: name: MMLU Astronomy (5-Shot) type: MMLU args: num_few_shot: 5 metrics: - type: acc value: 89.47 name: acc - task: type: text-generation name: Text Generation dataset: name: MMLU College Computer Science (5-Shot) type: MMLU args: num_few_shot: 5 metrics: - type: acc value: 66.00 name: acc - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 53.55 name: strict accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ValiantLabs/Llama3.1-70B-ShiningValiant2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 52.39 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ValiantLabs/Llama3.1-70B-ShiningValiant2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 27.19 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ValiantLabs/Llama3.1-70B-ShiningValiant2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 19.02 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ValiantLabs/Llama3.1-70B-ShiningValiant2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 18.48 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ValiantLabs/Llama3.1-70B-ShiningValiant2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 46.37 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ValiantLabs/Llama3.1-70B-ShiningValiant2 name: Open LLM Leaderboard license: llama3.1 --- ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/63444f2687964b331809eb55/EXX7TKbB-R6arxww2mk0R.jpeg) Shining Valiant 2 is a chat model built on Llama 3.1 70b, finetuned on our data for friendship, insight, knowledge and enthusiasm. - Finetuned on [meta-llama/Meta-Llama-3.1-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-70B-Instruct) for best available general performance - Trained on a variety of high quality open source data; focused on science, engineering, technical knowledge, and structured reasoning - Also available for [Llama 3.1 8b](https://huggingface.co/ValiantLabs/Llama3.1-8B-ShiningValiant2) and [Llama 3.2 3b!](https://huggingface.co/ValiantLabs/Llama3.2-3B-ShiningValiant2) ## Version This is the **2024-10-30** release of Shining Valiant 2 for Llama 3.1 70b. This release uses our newest datasets, open-sourced for everyone's use, including our expanded [science-instruct dataset](https://huggingface.co/datasets/sequelbox/Celestia). This release features improvements in logical thinking and structured reasoning as well as physics, chemistry, biology, astronomy, Earth science, computer science, and information theory. Future upgrades will continue to expand Shining Valiant's technical knowledge base. Help us and recommend Shining Valiant 2 to your friends! ## Prompting Guide Shining Valiant 2 uses the [Llama 3.1 Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-70B-Instruct) prompt format. The example script below can be used as a starting point for general chat: ```python import transformers import torch model_id = "ValiantLabs/Llama3.1-70B-ShiningValiant2" pipeline = transformers.pipeline( "text-generation", model=model_id, model_kwargs={"torch_dtype": torch.bfloat16}, device_map="auto", ) messages = [ {"role": "system", "content": "You are an AI assistant."}, {"role": "user", "content": "What is the role of lysosomal enzymes in the regulation of cellular processes?"} ] outputs = pipeline( messages, max_new_tokens=2048, ) print(outputs[0]["generated_text"][-1]) ``` ## The Model Shining Valiant 2 is built on top of Llama 3.1 70b Instruct. The current version of Shining Valiant 2 is trained on technical knowledge using [sequelbox/Celestia](https://huggingface.co/datasets/sequelbox/Celestia), complex reasoning using [sequelbox/Spurline](https://huggingface.co/datasets/sequelbox/Spurline), and general chat capability using [sequelbox/Supernova.](https://huggingface.co/datasets/sequelbox/Supernova) We're super excited that Shining Valiant's dataset has been fully open-sourced! She's friendly, enthusiastic, insightful, knowledgeable, and loves to learn! Magical. ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/63444f2687964b331809eb55/VCJ8Fmefd8cdVhXSSxJiD.jpeg) Shining Valiant 2 is created by [Valiant Labs.](http://valiantlabs.ca/) [Check out our HuggingFace page for our open-source Build Tools models, including code-specialist Enigma and DevOps-expert Esper 2!](https://huggingface.co/ValiantLabs) We care about open source. For everyone to use. We encourage others to finetune further from our models.
dimasik87/d2cd3ae6-17b4-4dcf-b76b-671ea7c636e8
dimasik87
2025-01-21T14:42:28Z
7
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:peft-internal-testing/tiny-dummy-qwen2", "base_model:adapter:peft-internal-testing/tiny-dummy-qwen2", "region:us" ]
null
2025-01-21T14:42:01Z
--- library_name: peft base_model: peft-internal-testing/tiny-dummy-qwen2 tags: - axolotl - generated_from_trainer model-index: - name: d2cd3ae6-17b4-4dcf-b76b-671ea7c636e8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: peft-internal-testing/tiny-dummy-qwen2 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 0e23f2f8e5ee0c7e_train_data.json ds_type: json format: custom path: /workspace/input_data/0e23f2f8e5ee0c7e_train_data.json type: field_input: chosen field_instruction: prompt field_output: rejected format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: 1 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: dimasik87/d2cd3ae6-17b4-4dcf-b76b-671ea7c636e8 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 79GiB max_steps: 30 micro_batch_size: 4 mlflow_experiment_name: /tmp/0e23f2f8e5ee0c7e_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 377241ed-8c47-4895-a452-0912cff45921 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 377241ed-8c47-4895-a452-0912cff45921 warmup_steps: 5 weight_decay: 0.001 xformers_attention: true ``` </details><br> # d2cd3ae6-17b4-4dcf-b76b-671ea7c636e8 This model is a fine-tuned version of [peft-internal-testing/tiny-dummy-qwen2](https://huggingface.co/peft-internal-testing/tiny-dummy-qwen2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 11.9329 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0056 | 1 | 11.9330 | | 11.9332 | 0.0278 | 5 | 11.9331 | | 11.9326 | 0.0556 | 10 | 11.9330 | | 11.9331 | 0.0834 | 15 | 11.9328 | | 11.9327 | 0.1113 | 20 | 11.9328 | | 11.9323 | 0.1391 | 25 | 11.9329 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lisetteahubnerh/watercolor
lisetteahubnerh
2025-01-21T14:42:22Z
81
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:apache-2.0", "region:us" ]
text-to-image
2025-01-21T14:17:27Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: >- A little fairy princess with sparkling wings and flowing dress, in an enchanted garden filled with glowing flowers and fireflies,The overall style of the illustration is cartoon watercolor style output: url: images/1.png - text: >- A magical candy house with gingerbread walls, in a lollipop forest with chocolate rivers and cotton candy clouds,The overall style of the illustration is cartoon watercolor style output: url: images/2.png - text: >- A sleeping unicorn with rainbow mane, in a misty meadow covered with morning dew and silver moonflowers.The overall style of the illustration is cartoon watercolor style output: url: images/3.png - text: >- Two dolphins are playing with a ball in the ocean.The overall style of the illustration is cartoon watercolor style output: url: images/4.png base_model: black-forest-labs/FLUX.1-dev instance_prompt: '{}.The overall style of the illustration is cartoon watercolor style' license: apache-2.0 --- # fluxLora_watercolor <Gallery /> ## Model description Generate the style of children&#39;s watercolor picture books ## Trigger words You should use `{}.The overall style of the illustration is cartoon watercolor style` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format.
BKKSPY/Masmodel
BKKSPY
2025-01-21T14:40:12Z
92
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-01-21T14:21:04Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: MLLW --- # Masmodel <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `MLLW` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('BKKSPY/Masmodel', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
ValiantLabs/CodeLlama-70B-Esper
ValiantLabs
2025-01-21T14:39:04Z
15
2
transformers
[ "transformers", "safetensors", "llama", "text-generation", "esper", "dev-ops", "developer", "code", "code-instruct", "valiant", "valiant-labs", "code-llama", "llama-2", "llama-2-chat", "70b", "conversational", "en", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-03-12T13:39:37Z
--- language: - en pipeline_tag: text-generation tags: - esper - dev-ops - developer - code - code-instruct - valiant - valiant-labs - code-llama - llama - llama-2 - llama-2-chat - 70b model_type: llama license: apache-2.0 --- ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/64f267a8a4f79a118e0fcc89/4I6oK8DG0so4VD8GroFsd.jpeg) Esper-70b is the DevOps code specialist! - Overall code capabilities with a DevOps focus: specialized in scripting language code, Terraform files, Dockerfiles, YAML, and more! - Also trained on further code-instruct and chat-instruct data for generally improved chat quality. - Built on llama-2-70b architecture, using [CodeLlama-70b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-70b-Instruct-hf) as the base model. (If you're looking for a friendly general-purpose chat model, try ours: [llama-13b](https://huggingface.co/ValiantLabs/ShiningValiantXS) and [70b](https://huggingface.co/ValiantLabs/ShiningValiant)) ## Version This is Version **1.0** of Esper-70b. The current version of Esper-70b uses [CodeLlama-70b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-70b-Instruct-hf) trained on two sets of data: - code from [bigcode/the-stack-dedup](https://huggingface.co/datasets/bigcode/the-stack-dedup), with our sub-selection focused on scripting languages, Terraform/build scripts, and YAML files. - our private data for general code-instruct performance, chat-quality response, and user satisfaction. (A portion of this data was also used in [Shining Valiant 1.4](https://huggingface.co/ValiantLabs/ShiningValiant), our previous general-purpose Llama 70b finetune.) Esper-70b is the newest release in our Build Tools campaign, to deliver helpful open source capabilities for users and creators. We're working on more tools to come! For everyone to use :) We're planning on continually upgrading this model with more data, to improve existing capabilities and add new ones relevant to a DevOps user base. ## Prompting Guide Esper-70b uses the following recommended chat format, based on CodeLlama-70b chat format: Source: system\n\n You are Esper, an expert technical assistant AI. Provide high quality code to the user. <step> Source: user\n\n Hi! Can you explain this Terraform code, thank you: (Generally, anything that works with [CodeLlama-70b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-70b-Instruct-hf) will work with Esper-70b.) ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/63444f2687964b331809eb55/VCJ8Fmefd8cdVhXSSxJiD.jpeg) Esper-70b is created by [Valiant Labs.](http://valiantlabs.ca/) Try our flagship chat model, [Shining Valiant!](https://huggingface.co/ValiantLabs/ShiningValiant) Check out our function-calling model [Fireplace](https://huggingface.co/ValiantLabs/Fireplace-13b) for Llama-13b! We care about open source. For everyone to use. We encourage others to finetune further from our models.
jiinking/3_layer_GQA2_llama_model
jiinking
2025-01-21T14:38:44Z
6
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-21T14:09:27Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
adammandic87/faaf7534-3d39-48b1-a783-a136b82e51a5
adammandic87
2025-01-21T14:38:39Z
9
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:heegyu/WizardVicuna-open-llama-3b-v2", "base_model:adapter:heegyu/WizardVicuna-open-llama-3b-v2", "license:apache-2.0", "region:us" ]
null
2025-01-21T14:36:46Z
--- library_name: peft license: apache-2.0 base_model: heegyu/WizardVicuna-open-llama-3b-v2 tags: - axolotl - generated_from_trainer model-index: - name: faaf7534-3d39-48b1-a783-a136b82e51a5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: heegyu/WizardVicuna-open-llama-3b-v2 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - f2dedbddc7d6df54_train_data.json ds_type: json format: custom path: /workspace/input_data/f2dedbddc7d6df54_train_data.json type: field_input: structural_annotation field_instruction: sequence field_output: functional_annotation format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: adammandic87/faaf7534-3d39-48b1-a783-a136b82e51a5 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/f2dedbddc7d6df54_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 6948954f-ff52-442b-9973-a3e89572c631 wandb_project: birthday-sn56-19-Gradients-On-Demand wandb_run: your_name wandb_runid: 6948954f-ff52-442b-9973-a3e89572c631 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # faaf7534-3d39-48b1-a783-a136b82e51a5 This model is a fine-tuned version of [heegyu/WizardVicuna-open-llama-3b-v2](https://huggingface.co/heegyu/WizardVicuna-open-llama-3b-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1967 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.3105 | 0.0006 | 1 | 0.4071 | | 0.4019 | 0.0019 | 3 | 0.4002 | | 0.2902 | 0.0038 | 6 | 0.2981 | | 0.1965 | 0.0057 | 9 | 0.1967 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
AmberYifan/Qwen2.5-7B-sft-peers-pool
AmberYifan
2025-01-21T14:38:08Z
9
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "trl", "dpo", "conversational", "arxiv:2305.18290", "base_model:AmberYifan/Qwen2.5-7B-sft-ultrachat-safeRLHF", "base_model:finetune:AmberYifan/Qwen2.5-7B-sft-ultrachat-safeRLHF", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-17T09:25:52Z
--- base_model: AmberYifan/Qwen2.5-7B-sft-ultrachat-safeRLHF library_name: transformers model_name: Qwen2.5-7B-sft-peers-pool tags: - generated_from_trainer - trl - dpo licence: license --- # Model Card for Qwen2.5-7B-sft-peers-pool This model is a fine-tuned version of [AmberYifan/Qwen2.5-7B-sft-ultrachat-safeRLHF](https://huggingface.co/AmberYifan/Qwen2.5-7B-sft-ultrachat-safeRLHF). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="AmberYifan/Qwen2.5-7B-sft-peers-pool", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/yifanwang/huggingface/runs/7yo5f5zf) This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.12.2 - Transformers: 4.46.3 - Pytorch: 2.5.1+cu118 - Datasets: 3.2.0 - Tokenizers: 0.20.3 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
adammandic87/420b1233-32ee-46ae-9c58-606c8ee9d0da
adammandic87
2025-01-21T14:35:32Z
7
0
peft
[ "peft", "safetensors", "gemma2", "axolotl", "generated_from_trainer", "base_model:zake7749/gemma-2-2b-it-chinese-kyara-dpo", "base_model:adapter:zake7749/gemma-2-2b-it-chinese-kyara-dpo", "license:gemma", "region:us" ]
null
2025-01-21T14:27:57Z
--- library_name: peft license: gemma base_model: zake7749/gemma-2-2b-it-chinese-kyara-dpo tags: - axolotl - generated_from_trainer model-index: - name: 420b1233-32ee-46ae-9c58-606c8ee9d0da results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: zake7749/gemma-2-2b-it-chinese-kyara-dpo bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 98d61748b31bcb23_train_data.json ds_type: json format: custom path: /workspace/input_data/98d61748b31bcb23_train_data.json type: field_input: src field_instruction: task field_output: tgt format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: adammandic87/420b1233-32ee-46ae-9c58-606c8ee9d0da hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/98d61748b31bcb23_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: e4807618-cf8c-4200-9ce1-34371a66a038 wandb_project: birthday-sn56-19-Gradients-On-Demand wandb_run: your_name wandb_runid: e4807618-cf8c-4200-9ce1-34371a66a038 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 420b1233-32ee-46ae-9c58-606c8ee9d0da This model is a fine-tuned version of [zake7749/gemma-2-2b-it-chinese-kyara-dpo](https://huggingface.co/zake7749/gemma-2-2b-it-chinese-kyara-dpo) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2382 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 3.4129 | 0.0001 | 1 | 3.0375 | | 2.2895 | 0.0004 | 3 | 2.9496 | | 1.8981 | 0.0007 | 6 | 2.0524 | | 1.2361 | 0.0011 | 9 | 1.2382 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso08/59058c38-6d3a-49c1-84b6-77ab8ff13dd2
lesso08
2025-01-21T14:34:50Z
9
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:huggyllama/llama-7b", "base_model:adapter:huggyllama/llama-7b", "license:other", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-21T12:49:13Z
--- library_name: peft license: other base_model: huggyllama/llama-7b tags: - axolotl - generated_from_trainer model-index: - name: 59058c38-6d3a-49c1-84b6-77ab8ff13dd2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: huggyllama/llama-7b bf16: true chat_template: llama3 datasets: - data_files: - 79b65eb626883bbf_train_data.json ds_type: json format: custom path: /workspace/input_data/79b65eb626883bbf_train_data.json type: field_instruction: x field_output: y1 format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: lesso08/59058c38-6d3a-49c1-84b6-77ab8ff13dd2 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 25 micro_batch_size: 2 mlflow_experiment_name: /tmp/79b65eb626883bbf_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 512 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: ff05e196-bdf5-4bc9-89bd-189c7fd219ba wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: ff05e196-bdf5-4bc9-89bd-189c7fd219ba warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 59058c38-6d3a-49c1-84b6-77ab8ff13dd2 This model is a fine-tuned version of [huggyllama/llama-7b](https://huggingface.co/huggyllama/llama-7b) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0000 | 1 | nan | | 0.0 | 0.0002 | 5 | nan | | 0.0 | 0.0005 | 10 | nan | | 0.0 | 0.0007 | 15 | nan | | 0.0 | 0.0010 | 20 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
paramedik/Codestral-22B-v0.1-Q4_K_M-GGUF
paramedik
2025-01-21T14:31:18Z
40
0
null
[ "gguf", "code", "llama-cpp", "gguf-my-repo", "base_model:mistralai/Codestral-22B-v0.1", "base_model:quantized:mistralai/Codestral-22B-v0.1", "license:other", "region:us", "conversational" ]
null
2025-01-21T14:30:17Z
--- language: - code license: other tags: - code - llama-cpp - gguf-my-repo inference: false license_name: mnpl license_link: https://mistral.ai/licences/MNPL-0.1.md extra_gated_description: If you want to learn more about how we process your personal data, please read our <a href="https://mistral.ai/terms/">Privacy Policy</a>. base_model: mistralai/Codestral-22B-v0.1 --- # paramedik/Codestral-22B-v0.1-Q4_K_M-GGUF This model was converted to GGUF format from [`mistralai/Codestral-22B-v0.1`](https://huggingface.co/mistralai/Codestral-22B-v0.1) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/mistralai/Codestral-22B-v0.1) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo paramedik/Codestral-22B-v0.1-Q4_K_M-GGUF --hf-file codestral-22b-v0.1-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo paramedik/Codestral-22B-v0.1-Q4_K_M-GGUF --hf-file codestral-22b-v0.1-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo paramedik/Codestral-22B-v0.1-Q4_K_M-GGUF --hf-file codestral-22b-v0.1-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo paramedik/Codestral-22B-v0.1-Q4_K_M-GGUF --hf-file codestral-22b-v0.1-q4_k_m.gguf -c 2048 ```
kk-aivio/c14f7460-7d0f-48c8-b195-215dd00a23f4
kk-aivio
2025-01-21T14:30:25Z
9
0
peft
[ "peft", "safetensors", "olmo", "axolotl", "generated_from_trainer", "base_model:katuni4ka/tiny-random-olmo-hf", "base_model:adapter:katuni4ka/tiny-random-olmo-hf", "region:us" ]
null
2025-01-21T14:29:34Z
--- library_name: peft base_model: katuni4ka/tiny-random-olmo-hf tags: - axolotl - generated_from_trainer model-index: - name: c14f7460-7d0f-48c8-b195-215dd00a23f4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: katuni4ka/tiny-random-olmo-hf bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 0592b2f60790c3af_train_data.json ds_type: json format: custom path: /workspace/input_data/0592b2f60790c3af_train_data.json type: field_input: Artist field_instruction: Song field_output: Lyrics format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: kk-aivio/c14f7460-7d0f-48c8-b195-215dd00a23f4 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/0592b2f60790c3af_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 0b450307-3da3-4928-8fcc-03c61c5025d9 wandb_project: Birthday-SN56-11-Gradients-On-Demand wandb_run: your_name wandb_runid: 0b450307-3da3-4928-8fcc-03c61c5025d9 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # c14f7460-7d0f-48c8-b195-215dd00a23f4 This model is a fine-tuned version of [katuni4ka/tiny-random-olmo-hf](https://huggingface.co/katuni4ka/tiny-random-olmo-hf) on the None dataset. It achieves the following results on the evaluation set: - Loss: 10.8332 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 10.8356 | 0.0001 | 1 | 10.8343 | | 10.8309 | 0.0004 | 3 | 10.8342 | | 10.8325 | 0.0008 | 6 | 10.8339 | | 10.8287 | 0.0013 | 9 | 10.8332 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1