modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-07-13 00:46:37
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 518
values | tags
listlengths 1
4.05k
| pipeline_tag
stringclasses 55
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-07-13 00:45:34
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
BurakYildizak/invoice | BurakYildizak | 2024-04-02T03:43:52Z | 3 | 0 | transformers | [
"transformers",
"safetensors",
"vision-encoder-decoder",
"image-text-to-text",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
]
| image-text-to-text | 2024-03-29T23:12:15Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
lunarsylph/stablecell_v31 | lunarsylph | 2024-04-02T03:36:20Z | 89 | 0 | transformers | [
"transformers",
"safetensors",
"stablelm",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| text-generation | 2024-04-02T03:27:47Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
Ganges1/donut-base-sroie | Ganges1 | 2024-04-02T03:34:27Z | 48 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"vision-encoder-decoder",
"image-text-to-text",
"generated_from_trainer",
"dataset:imagefolder",
"base_model:naver-clova-ix/donut-base",
"base_model:finetune:naver-clova-ix/donut-base",
"license:mit",
"endpoints_compatible",
"region:us"
]
| image-text-to-text | 2024-04-02T01:14:04Z | ---
license: mit
base_model: naver-clova-ix/donut-base
tags:
- generated_from_trainer
datasets:
- imagefolder
model-index:
- name: donut-base-sroie
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# donut-base-sroie
This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on the imagefolder dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.39.2
- Pytorch 2.2.2
- Datasets 2.18.0
- Tokenizers 0.15.1
|
datht/distilbert-base-uncased-finetuned-SA | datht | 2024-04-02T03:22:34Z | 24 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"distilbert",
"text-classification",
"generated_from_trainer",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| text-classification | 2024-04-01T03:49:48Z | ---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: distilbert-base-uncased-finetuned-SA
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-SA
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4454
- Accuracy: 0.7877
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 293 | 0.4533 | 0.7825 |
| 0.5374 | 2.0 | 586 | 0.4454 | 0.7877 |
### Framework versions
- Transformers 4.38.1
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2
|
whyguu/ppo-SnowballTarget | whyguu | 2024-04-02T03:19:29Z | 0 | 0 | ml-agents | [
"ml-agents",
"tensorboard",
"onnx",
"SnowballTarget",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-SnowballTarget",
"region:us"
]
| reinforcement-learning | 2024-04-02T03:19:18Z | ---
library_name: ml-agents
tags:
- SnowballTarget
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-SnowballTarget
---
# **ppo** Agent playing **SnowballTarget**
This is a trained model of a **ppo** agent playing **SnowballTarget**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: whyguu/ppo-SnowballTarget
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
trung11/Medical-NER-finetuned-ner | trung11 | 2024-04-02T03:11:21Z | 103 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"deberta-v2",
"token-classification",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2024-04-02T02:09:19Z | ---
license: mit
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: Medical-NER-finetuned-ner
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Medical-NER-finetuned-ner
This model is a fine-tuned version of [Clinical-AI-Apollo/Medical-NER](https://huggingface.co/Clinical-AI-Apollo/Medical-NER) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3114
- Precision: 0.7903
- Recall: 0.9005
- F1: 0.8418
- Accuracy: 0.9313
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 90 | 0.9174 | 0.4239 | 0.3613 | 0.3901 | 0.7448 |
| No log | 2.0 | 180 | 0.6814 | 0.5257 | 0.5521 | 0.5386 | 0.7899 |
| No log | 3.0 | 270 | 0.6262 | 0.5383 | 0.7265 | 0.6184 | 0.7974 |
| No log | 4.0 | 360 | 0.4934 | 0.6065 | 0.7291 | 0.6622 | 0.8434 |
| No log | 5.0 | 450 | 0.5071 | 0.6102 | 0.7946 | 0.6903 | 0.8431 |
| 0.7847 | 6.0 | 540 | 0.4195 | 0.6863 | 0.7963 | 0.7372 | 0.8744 |
| 0.7847 | 7.0 | 630 | 0.4215 | 0.6850 | 0.8386 | 0.7541 | 0.8816 |
| 0.7847 | 8.0 | 720 | 0.3807 | 0.7287 | 0.8440 | 0.7822 | 0.8985 |
| 0.7847 | 9.0 | 810 | 0.3474 | 0.7383 | 0.8479 | 0.7893 | 0.9079 |
| 0.7847 | 10.0 | 900 | 0.3259 | 0.7583 | 0.8679 | 0.8094 | 0.9135 |
| 0.7847 | 11.0 | 990 | 0.3428 | 0.7595 | 0.8812 | 0.8158 | 0.9151 |
| 0.2288 | 12.0 | 1080 | 0.3469 | 0.7568 | 0.8821 | 0.8147 | 0.9147 |
| 0.2288 | 13.0 | 1170 | 0.3211 | 0.7790 | 0.8880 | 0.8299 | 0.9257 |
| 0.2288 | 14.0 | 1260 | 0.3217 | 0.7847 | 0.8909 | 0.8344 | 0.9271 |
| 0.2288 | 15.0 | 1350 | 0.2944 | 0.7952 | 0.8941 | 0.8418 | 0.9321 |
| 0.2288 | 16.0 | 1440 | 0.3244 | 0.7822 | 0.8986 | 0.8364 | 0.9275 |
| 0.1273 | 17.0 | 1530 | 0.3153 | 0.7911 | 0.9012 | 0.8426 | 0.9307 |
| 0.1273 | 18.0 | 1620 | 0.3198 | 0.7874 | 0.9005 | 0.8402 | 0.9298 |
| 0.1273 | 19.0 | 1710 | 0.3109 | 0.7911 | 0.9012 | 0.8426 | 0.9315 |
| 0.1273 | 20.0 | 1800 | 0.3114 | 0.7903 | 0.9005 | 0.8418 | 0.9313 |
### Framework versions
- Transformers 4.30.0
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.13.3
|
linoyts/huggy_dora_edm_v3_pivotal | linoyts | 2024-04-02T02:48:27Z | 8 | 0 | diffusers | [
"diffusers",
"stable-diffusion-xl",
"stable-diffusion-xl-diffusers",
"diffusers-training",
"text-to-image",
"dora",
"template:sd-lora",
"edm-training",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0",
"license:openrail++",
"region:us"
]
| text-to-image | 2024-04-02T01:49:13Z | ---
tags:
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
- diffusers-training
- text-to-image
- diffusers
- dora
- template:sd-lora
- edm-training
inference:
parameters:
scheduler: EulerDiscreteScheduler
widget:
- text: 'a <s0><s1> emoji dressed as an easter bunny'
output:
url:
"image_0.png"
- text: 'a <s0><s1> emoji dressed as an easter bunny'
output:
url:
"image_1.png"
- text: 'a <s0><s1> emoji dressed as an easter bunny'
output:
url:
"image_2.png"
- text: 'a <s0><s1> emoji dressed as an easter bunny'
output:
url:
"image_3.png"
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: a <s0><s1> emoji
license: openrail++
---
# SDXL LoRA DreamBooth - linoyts/huggy_dora_edm_v3_pivotal
<Gallery />
## Model description
### These are linoyts/huggy_dora_edm_v3_pivotal LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.
## Download model
### Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke
- **LoRA**: download **[`huggy_dora_edm_v3_pivotal.safetensors` here 💾](/linoyts/huggy_dora_edm_v3_pivotal/blob/main/huggy_dora_edm_v3_pivotal.safetensors)**.
- Place it on your `models/Lora` folder.
- On AUTOMATIC1111, load the LoRA by adding `<lora:huggy_dora_edm_v3_pivotal:1>` to your prompt. On ComfyUI just [load it as a regular LoRA](https://comfyanonymous.github.io/ComfyUI_examples/lora/).
- *Embeddings*: download **[`huggy_dora_edm_v3_pivotal_emb.safetensors` here 💾](/linoyts/huggy_dora_edm_v3_pivotal/blob/main/huggy_dora_edm_v3_pivotal_emb.safetensors)**.
- Place it on it on your `embeddings` folder
- Use it by adding `huggy_dora_edm_v3_pivotal_emb` to your prompt. For example, `a huggy_dora_edm_v3_pivotal_emb emoji`
(you need both the LoRA and the embeddings as they were trained together for this LoRA)
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('linoyts/huggy_dora_edm_v3_pivotal', weight_name='pytorch_lora_weights.safetensors')
embedding_path = hf_hub_download(repo_id='linoyts/huggy_dora_edm_v3_pivotal', filename='huggy_dora_edm_v3_pivotal_emb.safetensors', repo_type="model")
state_dict = load_file(embedding_path)
pipeline.load_textual_inversion(state_dict["clip_l"], token=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder, tokenizer=pipeline.tokenizer)
pipeline.load_textual_inversion(state_dict["clip_g"], token=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder_2, tokenizer=pipeline.tokenizer_2)
image = pipeline('a <s0><s1> emoji dressed as an easter bunny').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## Trigger words
To trigger image generation of trained concept(or concepts) replace each concept identifier in you prompt with the new inserted tokens:
to trigger concept `TOK` → use `<s0><s1>` in your prompt
## Details
All [Files & versions](/linoyts/huggy_dora_edm_v3_pivotal/tree/main).
The weights were trained using [🧨 diffusers Advanced Dreambooth Training Script](https://github.com/huggingface/diffusers/blob/main/examples/advanced_diffusion_training/train_dreambooth_lora_sdxl_advanced.py).
LoRA for the text encoder was enabled. False.
Pivotal tuning was enabled: True.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
|
rachid16/LLAMA2_FINETUNNED_NEWS | rachid16 | 2024-04-02T02:47:01Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
]
| null | 2024-04-02T02:46:45Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
Miketre/vit-base-beans-demo-v5 | Miketre | 2024-04-02T02:44:19Z | 194 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"vit",
"image-classification",
"generated_from_trainer",
"base_model:google/vit-base-patch16-224-in21k",
"base_model:finetune:google/vit-base-patch16-224-in21k",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| image-classification | 2024-04-02T02:41:37Z | ---
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- image-classification
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: vit-base-beans-demo-v5
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vit-base-beans-demo-v5
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0319
- Accuracy: 1.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.1209 | 1.54 | 100 | 0.0319 | 1.0 |
| 0.0243 | 3.08 | 200 | 0.0793 | 0.9699 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|
dahe827/BERT-base-airlines-news | dahe827 | 2024-04-02T02:36:32Z | 4 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"bert",
"text-classification",
"generated_from_trainer",
"base_model:google-bert/bert-base-uncased",
"base_model:finetune:google-bert/bert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| text-classification | 2024-04-02T01:58:30Z | ---
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
model-index:
- name: BERT-base-airlines-news
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# BERT-base-airlines-news
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3065
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 15
- eval_batch_size: 15
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 6
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.1723 | 1.0 | 38 | 2.0664 |
| 1.9098 | 2.0 | 76 | 1.7892 |
| 1.8047 | 3.0 | 114 | 1.5817 |
| 1.4636 | 4.0 | 152 | 1.4295 |
| 1.2836 | 5.0 | 190 | 1.3065 |
| 1.0597 | 6.0 | 228 | 1.3151 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|
katieguo/autoregressive_finetune_rate5e-05_epochs4 | katieguo | 2024-04-02T02:35:16Z | 198 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"gpt2",
"text-generation",
"generated_from_trainer",
"base_model:distilbert/distilgpt2",
"base_model:finetune:distilbert/distilgpt2",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
]
| text-generation | 2024-04-01T20:31:09Z | ---
license: apache-2.0
base_model: distilbert/distilgpt2
tags:
- generated_from_trainer
model-index:
- name: autoregressive_finetune_rate5e-05_epochs4
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# autoregressive_finetune_rate5e-05_epochs4
This model is a fine-tuned version of [distilbert/distilgpt2](https://huggingface.co/distilbert/distilgpt2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.7279
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 1.0 | 11 | 3.0813 |
| No log | 2.0 | 22 | 2.8683 |
| No log | 3.0 | 33 | 2.7620 |
| No log | 4.0 | 44 | 2.7279 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|
jwnder/codellama_CodeLlama-70b-Instruct-hf-bnb-4bit | jwnder | 2024-04-02T02:31:52Z | 4 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"4-bit",
"bitsandbytes",
"region:us"
]
| text-generation | 2024-04-02T02:23:37Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
Sumail/Goat_Derrick22 | Sumail | 2024-04-02T02:29:37Z | 90 | 0 | transformers | [
"transformers",
"safetensors",
"stablelm",
"text-generation",
"mergekit",
"merge",
"conversational",
"base_model:coffiee/s28",
"base_model:merge:coffiee/s28",
"base_model:coffiee/s30",
"base_model:merge:coffiee/s30",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| text-generation | 2024-04-02T02:27:51Z | ---
base_model:
- coffiee/s30
- coffiee/s28
library_name: transformers
tags:
- mergekit
- merge
---
# merge
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
## Merge Details
### Merge Method
This model was merged using the SLERP merge method.
### Models Merged
The following models were included in the merge:
* [coffiee/s30](https://huggingface.co/coffiee/s30)
* [coffiee/s28](https://huggingface.co/coffiee/s28)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
slices:
- sources:
- model: coffiee/s30
layer_range: [0, 24]
- model: coffiee/s28
layer_range: [0, 24]
merge_method: slerp
base_model: coffiee/s28
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.8
dtype: bfloat16
```
|
ledmands/dqn_Pacman-v5_batch16 | ledmands | 2024-04-02T02:23:26Z | 0 | 0 | stable-baselines3 | [
"stable-baselines3",
"ALE/Pacman-v5",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
]
| reinforcement-learning | 2024-04-02T02:23:00Z | ---
library_name: stable-baselines3
tags:
- ALE/Pacman-v5
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: ALE/Pacman-v5
type: ALE/Pacman-v5
metrics:
- type: mean_reward
value: 90.50 +/- 19.51
name: mean_reward
verified: false
---
# **DQN** Agent playing **ALE/Pacman-v5**
This is a trained model of a **DQN** agent playing **ALE/Pacman-v5**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
Install the RL Zoo (with SB3 and SB3-Contrib):
```bash
pip install rl_zoo3
```
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env ALE/Pacman-v5 -orga ledmands -f logs/
python -m rl_zoo3.enjoy --algo dqn --env ALE/Pacman-v5 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo dqn --env ALE/Pacman-v5 -orga ledmands -f logs/
python -m rl_zoo3.enjoy --algo dqn --env ALE/Pacman-v5 -f logs/
```
## Training (with the RL Zoo)
```
python -m rl_zoo3.train --algo dqn --env ALE/Pacman-v5 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo dqn --env ALE/Pacman-v5 -f logs/ -orga ledmands
```
## Hyperparameters
```python
OrderedDict([('batch_size', 16),
('buffer_size', 100000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 100000),
('n_timesteps', 500000),
('optimize_memory_usage', False),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
# Environment Arguments
```python
{'render_mode': 'rgb_array'}
```
|
katieguo/autoregressive_finetune_rate5e-05_epochs3 | katieguo | 2024-04-02T02:22:09Z | 184 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"gpt2",
"text-generation",
"generated_from_trainer",
"base_model:distilbert/distilgpt2",
"base_model:finetune:distilbert/distilgpt2",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
]
| text-generation | 2024-04-01T20:31:08Z | ---
license: apache-2.0
base_model: distilbert/distilgpt2
tags:
- generated_from_trainer
model-index:
- name: autoregressive_finetune_rate5e-05_epochs3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# autoregressive_finetune_rate5e-05_epochs3
This model is a fine-tuned version of [distilbert/distilgpt2](https://huggingface.co/distilbert/distilgpt2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.8539
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 1.0 | 11 | 3.0949 |
| No log | 2.0 | 22 | 2.9121 |
| No log | 3.0 | 33 | 2.8539 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|
azhara001/donut-base-demo-v3 | azhara001 | 2024-04-02T02:19:29Z | 50 | 0 | transformers | [
"transformers",
"safetensors",
"vision-encoder-decoder",
"image-text-to-text",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
]
| image-text-to-text | 2024-04-02T01:57:23Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
Cyleux/prefixer | Cyleux | 2024-04-02T02:17:15Z | 97 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"text-generation-inference",
"unsloth",
"trl",
"sft",
"en",
"base_model:unsloth/tinyllama",
"base_model:finetune:unsloth/tinyllama",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| text-generation | 2024-04-02T02:14:26Z | ---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
- sft
base_model: unsloth/tinyllama
---
# Uploaded model
- **Developed by:** Cyleux
- **License:** apache-2.0
- **Finetuned from model :** unsloth/tinyllama
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
BoyishGiggles/attackVector | BoyishGiggles | 2024-04-02T02:15:30Z | 161 | 0 | transformers | [
"transformers",
"safetensors",
"distilbert",
"text-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| text-classification | 2024-03-14T09:13:26Z | ---
tags:
- generated_from_trainer
model-index:
- name: attackVector
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# attackVector
This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
### Framework versions
- Transformers 4.39.2
- Pytorch 2.2.2+cu121
- Tokenizers 0.15.2
|
jwkweon/CUBOX-SOLAR-DPO-v0.2 | jwkweon | 2024-04-02T02:04:43Z | 93 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"ko",
"arxiv:1910.09700",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
]
| text-generation | 2024-04-02T01:44:22Z | ---
library_name: transformers
license: apache-2.0
language:
- ko
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
tzartrooper/MiniProject_Prescription_Chatbot | tzartrooper | 2024-04-02T02:04:43Z | 128 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"gpt2",
"text-generation",
"generated_from_trainer",
"base_model:distilbert/distilgpt2",
"base_model:finetune:distilbert/distilgpt2",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
]
| text-generation | 2024-04-02T01:44:02Z | ---
license: apache-2.0
tags:
- generated_from_trainer
base_model: distilbert/distilgpt2
model-index:
- name: MiniProject_Prescription_Chatbot
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# MiniProject_Prescription_Chatbot
This model is a fine-tuned version of [distilbert/distilgpt2](https://huggingface.co/distilbert/distilgpt2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.6475
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 1.0 | 12 | 3.8781 |
| No log | 2.0 | 24 | 3.7741 |
| No log | 3.0 | 36 | 3.6911 |
| No log | 4.0 | 48 | 3.6233 |
| No log | 5.0 | 60 | 3.5601 |
| No log | 6.0 | 72 | 3.5104 |
| No log | 7.0 | 84 | 3.4804 |
| No log | 8.0 | 96 | 3.4457 |
| No log | 9.0 | 108 | 3.4133 |
| No log | 10.0 | 120 | 3.4018 |
| No log | 11.0 | 132 | 3.3834 |
| No log | 12.0 | 144 | 3.3487 |
| No log | 13.0 | 156 | 3.3486 |
| No log | 14.0 | 168 | 3.3230 |
| No log | 15.0 | 180 | 3.3198 |
| No log | 16.0 | 192 | 3.2984 |
| No log | 17.0 | 204 | 3.3169 |
| No log | 18.0 | 216 | 3.2786 |
| No log | 19.0 | 228 | 3.3034 |
| No log | 20.0 | 240 | 3.2695 |
| No log | 21.0 | 252 | 3.2597 |
| No log | 22.0 | 264 | 3.2644 |
| No log | 23.0 | 276 | 3.2610 |
| No log | 24.0 | 288 | 3.2862 |
| No log | 25.0 | 300 | 3.2750 |
| No log | 26.0 | 312 | 3.2505 |
| No log | 27.0 | 324 | 3.2844 |
| No log | 28.0 | 336 | 3.2729 |
| No log | 29.0 | 348 | 3.2894 |
| No log | 30.0 | 360 | 3.2875 |
| No log | 31.0 | 372 | 3.2735 |
| No log | 32.0 | 384 | 3.2998 |
| No log | 33.0 | 396 | 3.3070 |
| No log | 34.0 | 408 | 3.2893 |
| No log | 35.0 | 420 | 3.2935 |
| No log | 36.0 | 432 | 3.3057 |
| No log | 37.0 | 444 | 3.3028 |
| No log | 38.0 | 456 | 3.3239 |
| No log | 39.0 | 468 | 3.3158 |
| No log | 40.0 | 480 | 3.3249 |
| No log | 41.0 | 492 | 3.3595 |
| 2.5614 | 42.0 | 504 | 3.3610 |
| 2.5614 | 43.0 | 516 | 3.3546 |
| 2.5614 | 44.0 | 528 | 3.3815 |
| 2.5614 | 45.0 | 540 | 3.3620 |
| 2.5614 | 46.0 | 552 | 3.3823 |
| 2.5614 | 47.0 | 564 | 3.3800 |
| 2.5614 | 48.0 | 576 | 3.4000 |
| 2.5614 | 49.0 | 588 | 3.4191 |
| 2.5614 | 50.0 | 600 | 3.4093 |
| 2.5614 | 51.0 | 612 | 3.4162 |
| 2.5614 | 52.0 | 624 | 3.4197 |
| 2.5614 | 53.0 | 636 | 3.4370 |
| 2.5614 | 54.0 | 648 | 3.4442 |
| 2.5614 | 55.0 | 660 | 3.4767 |
| 2.5614 | 56.0 | 672 | 3.4642 |
| 2.5614 | 57.0 | 684 | 3.4780 |
| 2.5614 | 58.0 | 696 | 3.4808 |
| 2.5614 | 59.0 | 708 | 3.4712 |
| 2.5614 | 60.0 | 720 | 3.5279 |
| 2.5614 | 61.0 | 732 | 3.4993 |
| 2.5614 | 62.0 | 744 | 3.4865 |
| 2.5614 | 63.0 | 756 | 3.5209 |
| 2.5614 | 64.0 | 768 | 3.5196 |
| 2.5614 | 65.0 | 780 | 3.5359 |
| 2.5614 | 66.0 | 792 | 3.5089 |
| 2.5614 | 67.0 | 804 | 3.5489 |
| 2.5614 | 68.0 | 816 | 3.5528 |
| 2.5614 | 69.0 | 828 | 3.5587 |
| 2.5614 | 70.0 | 840 | 3.5606 |
| 2.5614 | 71.0 | 852 | 3.5719 |
| 2.5614 | 72.0 | 864 | 3.5776 |
| 2.5614 | 73.0 | 876 | 3.5700 |
| 2.5614 | 74.0 | 888 | 3.5825 |
| 2.5614 | 75.0 | 900 | 3.5779 |
| 2.5614 | 76.0 | 912 | 3.5934 |
| 2.5614 | 77.0 | 924 | 3.5878 |
| 2.5614 | 78.0 | 936 | 3.5850 |
| 2.5614 | 79.0 | 948 | 3.5936 |
| 2.5614 | 80.0 | 960 | 3.6018 |
| 2.5614 | 81.0 | 972 | 3.6096 |
| 2.5614 | 82.0 | 984 | 3.6155 |
| 2.5614 | 83.0 | 996 | 3.6183 |
| 1.4096 | 84.0 | 1008 | 3.6267 |
| 1.4096 | 85.0 | 1020 | 3.6292 |
| 1.4096 | 86.0 | 1032 | 3.6350 |
| 1.4096 | 87.0 | 1044 | 3.6347 |
| 1.4096 | 88.0 | 1056 | 3.6314 |
| 1.4096 | 89.0 | 1068 | 3.6300 |
| 1.4096 | 90.0 | 1080 | 3.6333 |
| 1.4096 | 91.0 | 1092 | 3.6452 |
| 1.4096 | 92.0 | 1104 | 3.6503 |
| 1.4096 | 93.0 | 1116 | 3.6501 |
| 1.4096 | 94.0 | 1128 | 3.6398 |
| 1.4096 | 95.0 | 1140 | 3.6374 |
| 1.4096 | 96.0 | 1152 | 3.6402 |
| 1.4096 | 97.0 | 1164 | 3.6443 |
| 1.4096 | 98.0 | 1176 | 3.6472 |
| 1.4096 | 99.0 | 1188 | 3.6479 |
| 1.4096 | 100.0 | 1200 | 3.6475 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|
jwkweon/CUBOX-SOLAR-DPO-v0.3 | jwkweon | 2024-04-02T02:04:26Z | 79 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"ko",
"arxiv:1910.09700",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
]
| text-generation | 2024-04-02T01:44:52Z | ---
library_name: transformers
license: apache-2.0
language:
- ko
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
cherry-0/Mistral-FairytaleQA | cherry-0 | 2024-04-02T02:01:38Z | 0 | 0 | peft | [
"peft",
"safetensors",
"arxiv:1910.09700",
"region:us"
]
| null | 2024-04-02T01:37:45Z | ---
library_name: peft
base_model: mistralai/mistral-7b-v0.1
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.10.0 |
Junrulu/Reproduced-tulu2-dpo-13b | Junrulu | 2024-04-02T02:01:11Z | 8 | 1 | transformers | [
"transformers",
"pytorch",
"llama",
"text-generation",
"en",
"dataset:HuggingFaceH4/ultrafeedback_binarized",
"dataset:Junrulu/Reproduced-tulu2-test-sets",
"base_model:allenai/tulu-2-13b",
"base_model:finetune:allenai/tulu-2-13b",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
]
| text-generation | 2024-03-12T07:13:55Z | ---
model-index:
- name: Junrulu/Reproduced-tulu2-dpo-13b
results: []
datasets:
- HuggingFaceH4/ultrafeedback_binarized
- Junrulu/Reproduced-tulu2-test-sets
language:
- en
base_model: allenai/tulu-2-13b
---
# Model Card for Reproduced Tulu2 DPO 13B
This repository provides a reproduction version of Tulu2-DPO-13B finetuned upon [Tulu2-13B](https://huggingface.co/allenai/tulu-2-13b) and [Ultrafeedback](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized). Therefore, we obey all licenses mentioned in Tulu2's work. Check our codes for more details: https://github.com/LuJunru/LLM_Finetune/tree/DPO, which is built with [TRL](https://github.com/huggingface/trl/tree/main).
## Performance
| Model | Size | Alignment | MT-Bench (score) | AlpacaEval 2.0 (win rate %) |
|-------------|-----|----|---------------|--------------|
| **Tulu-v2-13b** 🐪 | **13B** | **SFT** | **5.79** | **2.61** |
| **Tulu-v2-dpo-13b** 🐪 | **13B** | **DPO** | **6.06** | **6.96** |
| **Reproduced-tulu2-dpo-13b** | **13B** | **DPO** | **6.27** | **6.71** |
## Input Format
The model is trained to use the following format (note the newlines):
```
<|user|>
Your message here!
<|assistant|>
```
For best results, format all inputs in this manner. **Make sure to include a newline after `<|assistant|>`, this can affect generation quality quite a bit.** Note: if fine-tuning with this chat template, ensure to evaluate and test with the chat template. Otherwise, fine-tining without the template if you choose to not use template during testing. Any mismatch of the chatting template between training and testing phases can obviously dampen the final performance.
## Training hyperparameters
The following hyperparameters were used during DPO training:
- DPO beta: 0.1
- learning_rate: 1e-6 * sqrt(Num of Nodes)
- total_train_batch_size: 128 * Num of Nodes
- optimizer: AdamW with beta1 0.9, beta2 0.999 and epsilon 1e-8
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- Weight Decay: 0.0
- num_epochs: 3.0
- Specifically add above input format over training samples |
blockblockblock/Tess-2.0-Yi-34B-200K-bpw2.5 | blockblockblock | 2024-04-02T01:58:44Z | 4 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"license:other",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"exl2",
"region:us"
]
| text-generation | 2024-04-02T01:55:12Z | ---
license: other
license_name: yi-34b
license_link: https://huggingface.co/01-ai/Yi-34B-200K/blob/main/LICENSE
---
# Tess-2.0-Yi-34B-200K
Tess, short for Tesoro (Treasure in Italian), is a general purpose Large Language Model series. Tess-2.0-Yi-34B-200K was trained on the 01-ai/Yi-34B-200K base.
# Prompt Format:
```
SYSTEM: <ANY SYSTEM CONTEXT>
USER:
ASSISTANT:
```
<br>

<br>
### Below shows a code example on how to use this model:
```python
import torch, json
from transformers import AutoModelForCausalLM, AutoTokenizer
model_path = "migtissera/Tess-2.0-Yi-34B-200K"
output_file_path = "./conversations.jsonl"
model = AutoModelForCausalLM.from_pretrained(
model_path,
torch_dtype=torch.float16,
device_map="auto",
load_in_8bit=False,
trust_remote_code=True,
)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
def generate_text(instruction):
tokens = tokenizer.encode(instruction)
tokens = torch.LongTensor(tokens).unsqueeze(0)
tokens = tokens.to("cuda")
instance = {
"input_ids": tokens,
"top_p": 1.0,
"temperature": 0.5,
"generate_len": 1024,
"top_k": 50,
}
length = len(tokens[0])
with torch.no_grad():
rest = model.generate(
input_ids=tokens,
max_length=length + instance["generate_len"],
use_cache=True,
do_sample=True,
top_p=instance["top_p"],
temperature=instance["temperature"],
top_k=instance["top_k"],
num_return_sequences=1,
)
output = rest[0][length:]
string = tokenizer.decode(output, skip_special_tokens=True)
answer = string.split("USER:")[0].strip()
return f"{answer}"
conversation = f"SYSTEM: Answer the question thoughtfully and intelligently. Always answer without hesitation."
while True:
user_input = input("You: ")
llm_prompt = f"{conversation} \nUSER: {user_input} \nASSISTANT: "
answer = generate_text(llm_prompt)
print(answer)
conversation = f"{llm_prompt}{answer}"
json_data = {"prompt": user_input, "answer": answer}
## Save your conversation
with open(output_file_path, "a") as output_file:
output_file.write(json.dumps(json_data) + "\n")
```
<br>
#### Limitations & Biases:
While this model aims for accuracy, it can occasionally produce inaccurate or misleading results.
Despite diligent efforts in refining the pretraining data, there remains a possibility for the generation of inappropriate, biased, or offensive content.
Exercise caution and cross-check information when necessary. This is an uncensored model.
<br> |
HachiML/BitLlama2-jp-127M-optim-4 | HachiML | 2024-04-02T01:57:18Z | 53 | 0 | transformers | [
"transformers",
"safetensors",
"bit_llama",
"text-generation",
"generated_from_trainer",
"custom_code",
"autotrain_compatible",
"region:us"
]
| text-generation | 2024-04-02T01:34:20Z | ---
tags:
- generated_from_trainer
model-index:
- name: BitLlama2-jp-127M-optim-4
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# BitLlama2-jp-127M-optim-4
This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 3.4021
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0024
- train_batch_size: 96
- eval_batch_size: 96
- seed: 42
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 6.8073 | 0.07 | 200 | 4.8769 |
| 4.5389 | 0.15 | 400 | 4.3762 |
| 4.2297 | 0.22 | 600 | 4.1527 |
| 4.0242 | 0.29 | 800 | 3.9881 |
| 3.8902 | 0.36 | 1000 | 3.8885 |
| 3.7927 | 0.44 | 1200 | 3.8047 |
| 3.7141 | 0.51 | 1400 | 3.7333 |
| 3.6597 | 0.58 | 1600 | 3.6681 |
| 3.579 | 0.66 | 1800 | 3.6041 |
| 3.5141 | 0.73 | 2000 | 3.5424 |
| 3.4606 | 0.8 | 2200 | 3.4941 |
| 3.4116 | 0.88 | 2400 | 3.4467 |
| 3.361 | 0.95 | 2600 | 3.4021 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|
dar-tau/gpt-j-f16-svd | dar-tau | 2024-04-02T01:56:53Z | 5 | 0 | transformers | [
"transformers",
"safetensors",
"gptj",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| text-generation | 2024-04-02T01:43:44Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
katieguo/autoregressive_finetune_rate2e-05_epochs4 | katieguo | 2024-04-02T01:55:27Z | 197 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"gpt2",
"text-generation",
"generated_from_trainer",
"base_model:distilbert/distilgpt2",
"base_model:finetune:distilbert/distilgpt2",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
]
| text-generation | 2024-04-01T20:31:08Z | ---
license: apache-2.0
base_model: distilbert/distilgpt2
tags:
- generated_from_trainer
model-index:
- name: autoregressive_finetune_rate2e-05_epochs4
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# autoregressive_finetune_rate2e-05_epochs4
This model is a fine-tuned version of [distilbert/distilgpt2](https://huggingface.co/distilbert/distilgpt2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 3.0786
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 1.0 | 11 | 3.3622 |
| No log | 2.0 | 22 | 3.1866 |
| No log | 3.0 | 33 | 3.1041 |
| No log | 4.0 | 44 | 3.0786 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|
harrygens/autotrain-harrygens-sc3b | harrygens | 2024-04-02T01:47:25Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"autotrain",
"text-generation-inference",
"text-generation",
"peft",
"conversational",
"license:other",
"endpoints_compatible",
"region:us"
]
| text-generation | 2024-04-01T18:06:18Z | ---
tags:
- autotrain
- text-generation-inference
- text-generation
- peft
library_name: transformers
widget:
- messages:
- role: user
content: What is your favorite condiment?
license: other
---
# Model Trained Using AutoTrain
This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain).
# Usage
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_path = "PATH_TO_THIS_REPO"
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(
model_path,
device_map="auto",
torch_dtype='auto'
).eval()
# Prompt content: "hi"
messages = [
{"role": "user", "content": "hi"}
]
input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt')
output_ids = model.generate(input_ids.to('cuda'))
response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True)
# Model response: "Hello! How can I assist you today?"
print(response)
``` |
habulaj/1712019272015x832667611185268900 | habulaj | 2024-04-02T01:46:36Z | 3 | 0 | diffusers | [
"diffusers",
"stable-diffusion-xl",
"stable-diffusion-xl-diffusers",
"text-to-image",
"lora",
"dataset:jamine23/jaminerubini",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"region:us"
]
| text-to-image | 2024-04-02T00:54:43Z |
---
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: A photo of TOK
tags:
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
- text-to-image
- diffusers
- lora
inference: false
datasets:
- jamine23/jaminerubini
---
# LoRA DreamBooth - squaadinc/1712019272015x832667611185268900
These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0 trained on @fffiloni's SD-XL trainer.
The weights were trained on the concept prompt:
```
A photo of TOK
```
Use this keyword to trigger your custom model in your prompts.
LoRA for the text encoder was enabled: False.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
## Usage
Make sure to upgrade diffusers to >= 0.19.0:
```
pip install diffusers --upgrade
```
In addition make sure to install transformers, safetensors, accelerate as well as the invisible watermark:
```
pip install invisible_watermark transformers accelerate safetensors
```
To just use the base model, you can run:
```python
import torch
from diffusers import DiffusionPipeline, AutoencoderKL
device = "cuda" if torch.cuda.is_available() else "cpu"
vae = AutoencoderKL.from_pretrained('madebyollin/sdxl-vae-fp16-fix', torch_dtype=torch.float16)
pipe = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
vae=vae, torch_dtype=torch.float16, variant="fp16",
use_safetensors=True
)
pipe.to(device)
# This is where you load your trained weights
specific_safetensors = "pytorch_lora_weights.safetensors"
lora_scale = 0.9
pipe.load_lora_weights(
'squaadinc/1712019272015x832667611185268900',
weight_name = specific_safetensors,
# use_auth_token = True
)
prompt = "A majestic A photo of TOK jumping from a big stone at night"
image = pipe(
prompt=prompt,
num_inference_steps=50,
cross_attention_kwargs={"scale": lora_scale}
).images[0]
```
|
lucasbiagettia/gpt-neo-borges | lucasbiagettia | 2024-04-02T01:42:42Z | 115 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"gpt_neo",
"text-generation",
"generated_from_trainer",
"base_model:lucasbiagettia/gpt-neo-borges",
"base_model:finetune:lucasbiagettia/gpt-neo-borges",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| text-generation | 2024-04-02T00:24:54Z | ---
license: mit
base_model: lucasbiagettia/gpt-neo-borges
tags:
- generated_from_trainer
model-index:
- name: gpt-neo-borges
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# gpt-neo-borges
This model is a fine-tuned version of [lucasbiagettia/gpt-neo-borges](https://huggingface.co/lucasbiagettia/gpt-neo-borges) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
### Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Tokenizers 0.15.2
|
duckdwns/xlm-roberta-base-finetuned-panx-de | duckdwns | 2024-04-02T01:36:58Z | 135 | 0 | transformers | [
"transformers",
"safetensors",
"xlm-roberta",
"token-classification",
"generated_from_trainer",
"base_model:FacebookAI/xlm-roberta-base",
"base_model:finetune:FacebookAI/xlm-roberta-base",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2024-04-02T01:33:56Z | ---
license: mit
base_model: xlm-roberta-base
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: xlm-roberta-base-finetuned-panx-de
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-de
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1379
- F1: 0.8505
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 96
- eval_batch_size: 96
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| No log | 1.0 | 132 | 0.1627 | 0.8160 |
| No log | 2.0 | 264 | 0.1441 | 0.8414 |
| No log | 3.0 | 396 | 0.1379 | 0.8505 |
### Framework versions
- Transformers 4.39.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|
baxin/RakutenAI-7B-chat-Quantized-model | baxin | 2024-04-02T01:34:09Z | 17 | 0 | null | [
"gguf",
"Rakuten",
"ja",
"en",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
]
| null | 2024-03-27T21:15:02Z | ---
license: apache-2.0
language:
- ja
- en
tags:
- Rakuten
---
The original model is [RakutenAI-7B-chat](https://huggingface.co/Rakuten/RakutenAI-7B-chat).
| name | size |
| -------- | ------- |
| ggml-model-f16.gguf | 14.7GB |
| ggml-model-Q4_K_M.gguf | 4.46GB |
| ggml-model-Q5_K_M.gguf | 5.23GB |
| ggml-model-Q5_K_S.gguf | 5.1GB |
| ggml-model-Q6_K.gguf | | 6.05 GB
## Usage with llama-cpp
```py
from llama_cpp import Llama
import ctypes
llm = Llama(model_path="/content/ggml-model-Q4_K_M.gguf", n_gpu_layers=32)
prompt="東京について教えてください。"
input_prompt = f"""
[INST] <>
You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.
If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.
<>
{prompt} [/INST]
"""
output = llm(
input_prompt,
max_tokens=2048,
)
print(output["choices"][0]["text"])
```
### output
```shell
はい、東京は、日本の首都です。日本最大の都市で、世界でも有数の大都市です。東京は世界有数の経済都市であり、日本経済の中心地でもあります。東京には、世界有数の観光スポット、博物館、美術館、ショッピングセンター、レストラン、劇場、娯楽施設などが数多くあります。東京は、日本の文化、歴史、伝統、芸術、科学技術の最先端を体験するのに最適な場所です。東京では、東京スカイツリー、上野公園の梅花苑、東京スカイツリー、東京国立博物館、東京タワー、六本木ヒルズ、東京スカイツリータウンなどの観光スポットが人気です。東京を訪れるなら、江戸時代の伝統文化を体験することができる浅草寺や、日本料理や和菓子の食べ物を楽しめるおすすめの場所で、東京の伝統的な文化を体験することができます。東京には、歴史的に重要で、世界的に有名な場所もあります。たとえば、東京国立博物館、江戸東京博物館、東京国立博物館、東京国立博物館、東京国立博物館などの博物館があります。東京では、東京オリンピックや、世界最大級の国際会議やイベントなど、世界的に有名なイベントが開催されることもあります。東京には、世界有数の企業や、日本の政府機関や国際機関が数多くあります。東京は世界有数のビジネス都市であり、国際的な金融センターでもあります。東京で人気の観光スポットとしては、東京スカイツリー、上野公園の梅花苑、東京スカイツリー、東京タワー、六本木ヒルズ、東京スカイツリータウンなどの施設があります。東京を訪れるなら、江戸時代の伝統文化を体験することができる浅草寺や、日本料理や和菓子の食べ物を楽しめる
```
Google Colab
https://github.com/koji/GoogleColab/blob/main/RakutenAI_7B_chat_Quantized_model_test.ipynb
|
abhiramd22/finetuning-sentiment-model | abhiramd22 | 2024-04-02T01:33:08Z | 107 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"distilbert",
"text-classification",
"generated_from_trainer",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| text-classification | 2024-04-02T01:01:49Z | ---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: finetuning-sentiment-model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuning-sentiment-model
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3653
- Accuracy: 0.86
- F1: 0.8598
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
### Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|
Gunulhona/S2S_LLM | Gunulhona | 2024-04-02T01:29:31Z | 38 | 0 | transformers | [
"transformers",
"pytorch",
"safetensors",
"bart",
"text2text-generation",
"ko",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| text2text-generation | 2023-07-12T23:25:03Z | ---
license: mit
language:
- ko
library_name: transformers
pipeline_tag: text2text-generation
---
basemodel : Bart
parameter size : 7.0B
deepspeed required |
HachiML/BitLlama2-jp-127M-optim-3 | HachiML | 2024-04-02T01:22:45Z | 62 | 0 | transformers | [
"transformers",
"safetensors",
"bit_llama",
"text-generation",
"generated_from_trainer",
"custom_code",
"autotrain_compatible",
"region:us"
]
| text-generation | 2024-04-02T00:59:56Z | ---
tags:
- generated_from_trainer
model-index:
- name: BitLlama2-jp-127M-optim-3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# BitLlama2-jp-127M-optim-3
This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 3.3126
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0024
- train_batch_size: 96
- eval_batch_size: 96
- seed: 42
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 6.8077 | 0.07 | 200 | 4.8407 |
| 4.5572 | 0.15 | 400 | 4.3299 |
| 4.2394 | 0.22 | 600 | 4.1002 |
| 4.0211 | 0.29 | 800 | 3.9227 |
| 3.8617 | 0.37 | 1000 | 3.8109 |
| 3.7662 | 0.44 | 1200 | 3.7284 |
| 3.6699 | 0.51 | 1400 | 3.6362 |
| 3.5966 | 0.58 | 1600 | 3.5681 |
| 3.5261 | 0.66 | 1800 | 3.5094 |
| 3.4696 | 0.73 | 2000 | 3.4567 |
| 3.4162 | 0.8 | 2200 | 3.4072 |
| 3.3665 | 0.88 | 2400 | 3.3600 |
| 3.3162 | 0.95 | 2600 | 3.3126 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|
TroyDoesAI/MermaidMixtral-3x7b | TroyDoesAI | 2024-04-02T01:20:51Z | 5 | 0 | transformers | [
"transformers",
"safetensors",
"mixtral",
"text-generation",
"license:cc-by-4.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
]
| text-generation | 2024-04-02T01:09:45Z | ---
license: cc-by-4.0
---
# Lets try this Mixtral thing because everyone likes MOE right?
[](https://drive.google.com/uc?export=view&id=1tRJDS9oHDgSDDC466soI3NXDzOLkucdQ)
## Experiemental Mermaid Model: 3x7B Mermaid Mixtral-3x7b
Lets see if its any good, this is 1 epoch of a synthetic dataset exclusively created using my dataset augmentation toolkit
using MermaidMistral 7B and MermaidSolar outputs at factual temp range 0.1 to 0.5.
Using my method I have created a dataset of mermaid diagrams from models originally trained by the original 500 hand curated dataset entries at varying temperature ranges.
My toolkit is released for others to expand their dataset with more diverse examples.
This model is an example of training using this method.
Link: https://github.com/Troys-Code/AI_Research/tree/main
Send this as the most simple example of how to use my model for code to mermaid flow diagrams.
The rest of the prompt engineering is up to you.
Example to excite the Prompt Engineers out there, Many people have been sending me prompts they use for creating various knowledge graphs, flow diagrams, story board flows, even getting the model to create what if scenario graphs, code flow is its basic skill but it seems like the model is going to keep getting better the more datasets people provide me.
Example with something a little more advanced, but please be creative and see what you can get it to do.
The model will auto complete from the word graph TB;
# Important Note:
- This is the intution you should understand from how the model likes to perform the best from all my testing so far.
Below you can expect a graph such as this:
```mermaid
graph TB;
A[Start] --> B[Read Input Source];
B --> C{Input Source Type};
C -->|File Path| D[Load File Content];
C -->|String| E[Convert String to List Item];
D --> F[Create Input Data List];
E --> F;
F --> G[Initialize Generator Object];
G --> H[Set Temperature Range];
H --> I[Loop Over Each Prompt];
subgraph Generate Response For Each Prompt
direction TB;
I --> J[Get Current Prompt];
J --> K[Call OpenAI API];
K --> L{Response Unique?};
L --> |No| M[Increase Temperature];
M --> N[Retry With New Temperature];
L --> |Yes| O[Convert to Image];
O --> P[Add Entry to All Entries];
N --> I;
end;
I --> Q[All Prompts Processed];
Q --> R[Write Output to File];
R --> S[End];
style J fill:#ddd,stroke:#777;
style K fill:#ccc,stroke:#777;
style L fill:#eee,stroke:#777;
style M fill:#ff9,stroke:#777;
style N fill:#f99,stroke:#777;
style O fill:#aaf,stroke:#777;
style P fill:#fff,stroke:#777;
```
Use my toolkit to inference my model and automate some Knowledge Graphs for your own needs.
-----
```mermaid
Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
Generate the mermaid code block describing the code in excellent detail so I can look at the diagram and understand every single function or the high level diagram in the same full diagram.
### Input:
import argparse
import json
import os
import requests
import subprocess
import tempfile
class MermaidDiagramGenerator:
def __init__(self, theme='dark', background='transparent'):
self._theme = theme
self._background = background
self._entries_dir = os.path.join(os.getcwd(), 'Entries')
os.makedirs(self._entries_dir, exist_ok=True)
def convert_to_image(self, mermaid_code, entry_number, output_number):
clean_code = self._remove_mermaid_block_markers(mermaid_code)
output_filename = f"entry_{entry_number}_{output_number}.png"
output_path = os.path.join(self._entries_dir, output_filename)
self._generate_image_from_code(clean_code, output_path)
return output_path
def _remove_mermaid_block_markers(self, code):
code_lines = code.strip().splitlines()
if code_lines[0].startswith("```mermaid") and code_lines[-1] == "```":
return "\n".join(code_lines[1:-1]).strip()
return code
def _generate_image_from_code(self, mermaid_code, output_path):
with tempfile.NamedTemporaryFile(delete=False, mode='w', suffix='.mmd') as temp_file:
temp_file.write(mermaid_code)
input_path = temp_file.name
result = subprocess.run(["mmdc", "-i", input_path, "-o", output_path, "-t", self._theme, "-b", self._background], shell=True, check=False)
os.remove(input_path)
if result.returncode != 0:
raise ValueError("Mermaid diagram generation failed.")
def read_input(input_source):
if os.path.isfile(input_source):
filename, file_extension = os.path.splitext(input_source)
if file_extension == '.json':
with open(input_source, 'r') as file:
return json.load(file)
elif file_extension == '.txt':
with open(input_source, 'r') as file:
return [{"input": file.read()}]
else:
return [{"input": input_source}]
def generate_response(prompt, base_temperatures, stream, generator, entry_number, unique_outputs):
# prompt_template = f"{prompt}\n\n```mermaid\n"
prompt_template = """
Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
Create the mermaid diagram for the following input:
### Input:
{input}
### Response:
```mermaid
""".format(input=prompt)
url = "http://127.0.0.1:5000/v1/completions"
headers = {"Content-Type": "application/json"}
dataset_entries = []
for output_number, temp in enumerate(base_temperatures, start=1):
while True:
data = {
"prompt": prompt_template,
"max_tokens": 4096,
"temperature": temp,
"top_p": 1.0,
"seed": -1,
"top_k": 4,
"repetition_penalty": 1.0,
"guidance_scale": 1.0,
"typical_p": 1.0,
"stream": stream,
}
response = requests.post(url, headers=headers, json=data, verify=False)
response_text = response.json()['choices'][0]['text'].strip()
if response_text.endswith("```"): # Check if response ends with ```
response_text = response_text[:-3].strip() # Remove ``` from the end
if response_text not in unique_outputs:
try:
image_path = generator.convert_to_image(response_text, entry_number, output_number)
print(f"Mermaid diagram generated at: {image_path}")
unique_outputs.add(response_text)
break
except ValueError as e:
print(f"Validation failed, retrying... Error: {e}")
else:
temp += 0.1 # Adjust temperature if output is not unique
dataset_entry = {
"input": prompt,
"output": f"```mermaid\n{response_text}\n```",
"temperature": temp
}
dataset_entries.append(dataset_entry)
return dataset_entries
def generate_unique_responses(input_data, base_temperatures, stream, generator):
all_entries = []
unique_outputs = set()
for entry_number, entry in enumerate(input_data, start=1):
prompt = entry.get("input", "")
if prompt:
entries = generate_response(prompt, base_temperatures, stream, generator, entry_number, unique_outputs)
all_entries.extend(entries) # Extend the list with new entries
return all_entries
def main(input_source, stream=False):
generator = MermaidDiagramGenerator()
input_data = read_input(input_source)
base_temperatures = [i / 10 for i in range(5, 11)] # Adjusted for batch of unique outputs per input
output_file = "output.json"
all_entries = generate_unique_responses(input_data, base_temperatures, stream, generator)
# Write all entries to the JSON file at once
with open(output_file, "w") as f:
json.dump(all_entries, f, indent=4) # Dump the entire list of entries into the file
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Generate unique responses and validate Mermaid diagrams.")
parser.add_argument('input_source', type=str, help='A multi-line string, path to a .txt file, or a .json file with prompts.')
parser.add_argument('--stream', action='store_true', help='Use streaming responses.')
args = parser.parse_args()
main(args.input_source, args.stream)
### Response:
```mermaid
graph TB;
-----
 |
ch0t0n/ppo-LunarLander-v2-latest | ch0t0n | 2024-04-02T01:14:58Z | 0 | 0 | stable-baselines3 | [
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
]
| reinforcement-learning | 2024-04-02T01:14:45Z | ---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 272.65 +/- 21.28
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
SwimChoi/llama2-7b-alpaca-peft | SwimChoi | 2024-04-02T00:49:29Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
]
| null | 2024-04-02T00:49:23Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
lbaeriswyl/a2c-PandaReachDense-v3 | lbaeriswyl | 2024-04-02T00:48:13Z | 0 | 0 | stable-baselines3 | [
"stable-baselines3",
"PandaReachDense-v3",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
]
| reinforcement-learning | 2024-04-02T00:43:58Z | ---
library_name: stable-baselines3
tags:
- PandaReachDense-v3
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: A2C
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: PandaReachDense-v3
type: PandaReachDense-v3
metrics:
- type: mean_reward
value: -0.15 +/- 0.10
name: mean_reward
verified: false
---
# **A2C** Agent playing **PandaReachDense-v3**
This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
SwimChoi/llama2-7b-dolly-peft | SwimChoi | 2024-04-02T00:47:33Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
]
| null | 2024-04-02T00:47:29Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
GSBoom/Enlighten_Instruct | GSBoom | 2024-04-02T00:47:25Z | 0 | 0 | peft | [
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:mistralai/Mistral-7B-Instruct-v0.2",
"base_model:adapter:mistralai/Mistral-7B-Instruct-v0.2",
"region:us"
]
| null | 2024-04-02T00:47:11Z | ---
library_name: peft
base_model: mistralai/Mistral-7B-Instruct-v0.2
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.10.0 |
OnAnOrange/mistral-7B-claude-test-examples-true-instruction-format | OnAnOrange | 2024-04-02T00:45:12Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
]
| null | 2024-04-02T00:43:10Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
areegtarek/siglip-nih-1 | areegtarek | 2024-04-02T00:43:00Z | 109 | 0 | transformers | [
"transformers",
"safetensors",
"siglip",
"image-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| image-classification | 2024-04-02T00:41:50Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
ch0t0n/ppo-LunarLander-v2-linux | ch0t0n | 2024-04-02T00:36:14Z | 0 | 0 | stable-baselines3 | [
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
]
| reinforcement-learning | 2024-04-02T00:35:25Z | ---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 255.77 +/- 25.35
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
au2a/Mistral-7B-v0.1-tune | au2a | 2024-04-02T00:35:54Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
]
| null | 2024-04-02T00:35:35Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
habulaj/1712014835220x512940296104004600 | habulaj | 2024-04-02T00:31:34Z | 1 | 0 | diffusers | [
"diffusers",
"stable-diffusion-xl",
"stable-diffusion-xl-diffusers",
"text-to-image",
"lora",
"dataset:jamine23/jaminerubini",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"region:us"
]
| text-to-image | 2024-04-01T23:40:48Z |
---
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: A photo of TOK
tags:
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
- text-to-image
- diffusers
- lora
inference: false
datasets:
- jamine23/jaminerubini
---
# LoRA DreamBooth - squaadinc/1712014835220x512940296104004600
These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0 trained on @fffiloni's SD-XL trainer.
The weights were trained on the concept prompt:
```
A photo of TOK
```
Use this keyword to trigger your custom model in your prompts.
LoRA for the text encoder was enabled: False.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
## Usage
Make sure to upgrade diffusers to >= 0.19.0:
```
pip install diffusers --upgrade
```
In addition make sure to install transformers, safetensors, accelerate as well as the invisible watermark:
```
pip install invisible_watermark transformers accelerate safetensors
```
To just use the base model, you can run:
```python
import torch
from diffusers import DiffusionPipeline, AutoencoderKL
device = "cuda" if torch.cuda.is_available() else "cpu"
vae = AutoencoderKL.from_pretrained('madebyollin/sdxl-vae-fp16-fix', torch_dtype=torch.float16)
pipe = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
vae=vae, torch_dtype=torch.float16, variant="fp16",
use_safetensors=True
)
pipe.to(device)
# This is where you load your trained weights
specific_safetensors = "pytorch_lora_weights.safetensors"
lora_scale = 0.9
pipe.load_lora_weights(
'squaadinc/1712014835220x512940296104004600',
weight_name = specific_safetensors,
# use_auth_token = True
)
prompt = "A majestic A photo of TOK jumping from a big stone at night"
image = pipe(
prompt=prompt,
num_inference_steps=50,
cross_attention_kwargs={"scale": lora_scale}
).images[0]
```
|
SinclairSchneider/dbrx-instruct-quantization-fixed | SinclairSchneider | 2024-04-02T00:30:55Z | 8 | 9 | transformers | [
"transformers",
"safetensors",
"dbrx",
"text-generation",
"custom_code",
"arxiv:2211.15841",
"arxiv:2304.11277",
"license:other",
"autotrain_compatible",
"text-generation-inference",
"region:us"
]
| text-generation | 2024-03-29T01:33:45Z | ---
extra_gated_heading: You need to share contact information with Databricks to access this model
extra_gated_prompt: >-
### DBRX Terms of Use
Use of DBRX is governed by the [Databricks Open Model License](https://www.databricks.com/legal/open-model-license) and the [Databricks Open Model Acceptable Use Policy](https://www.databricks.com/legal/acceptable-use-policy-open-model).
extra_gated_fields:
First Name: text
Last Name: text
Organization: text
By clicking 'Submit' below, I accept the terms of the license and acknowledge that the information I provide will be collected, stored, processed, and shared in accordance with Databricks' Privacy Notice and I understand I can update my preferences at any time: checkbox
extra_gated_description: >-
The information you provide will be collected, stored, processed, and shared in accordance with Databricks [Privacy Notice](https://www.databricks.com/legal/privacynotice).
extra_gated_button_content: Submit
inference: false
license: other
license_name: databricks-open-model-license
license_link: https://www.databricks.com/legal/open-model-license
---
# This version is adjusted to enable 4 bit and 8 bit loading based on the comments from fahadh4ilyas https://huggingface.co/databricks/dbrx-instruct/discussions/10#660566f14f41c0c7c0e54ab9
Using the original version, it was not possible to load the model in 4 bit or 8 bit, resulting in an out of memory error.
This has now been fixed so people with smaller hardware might be able to run the model as well.
# DBRX Instruct
* DBRX Instruct is a mixture-of-experts (MoE) large language model trained from scratch by Databricks. DBRX Instruct specializes in few-turn interactions.
* We are releasing both DBRX Instruct and DBRX Base, the pretrained base model which underlies it, under [an open license](https://www.databricks.com/legal/open-model-license).
* This is the repository for DBRX Instruct. DBRX Base can be found [here](https://huggingface.co/databricks/dbrx-base).
* For full details on the DBRX models, please read our [technical blog post](https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm).
## Model Overview
DBRX is a [transformer-based](https://www.isattentionallyouneed.com/) decoder-only large language model (LLM) that was trained using next-token prediction.
It uses a *fine-grained* mixture-of-experts (MoE) architecture with 132B total parameters of which 36B parameters are active on any input.
It was pre-trained on 12T tokens of text and code data.
Compared to other open MoE models like Mixtral-8x7B and Grok-1, DBRX is fine-grained, meaning it uses a larger number of smaller experts. DBRX has 16 experts and chooses 4, while Mixtral-8x7B and Grok-1 have 8 experts and choose 2.
This provides 65x more possible combinations of experts and we found that this improves model quality.
DBRX uses rotary position encodings (RoPE), gated linear units (GLU), and grouped query attention (GQA).
It uses the GPT-4 tokenizer as provided in the [tiktoken](https://github.com/openai/tiktoken) repository.
We made these choices based on exhaustive evaluation and scaling experiments.
DBRX was pretrained on 12T tokens of carefully curated data and a maximum context length of 32K tokens.
We estimate that this data is at least 2x better token-for-token than the data we used to pretrain the MPT family of models.
This new dataset was developed using the full suite of Databricks tools, including Apache Spark™ and Databricks notebooks for data processing, and Unity Catalog for data management and governance.
We used curriculum learning for pretraining, changing the data mix during training in ways we found to substantially improve model quality.
* **Inputs:** DBRX only accepts text-based inputs and accepts a context length of up to 32768 tokens.
* **Outputs:** DBRX only produces text-based outputs.
* **Model Architecture:** More detailed information about DBRX Instruct and DBRX Base can be found in our [technical blog post](https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm).
* **License:** [Databricks Open Model License](https://www.databricks.com/legal/open-model-license)
* **Acceptable Use Policy:** [Databricks Open Model Acceptable Use Policy](https://www.databricks.com/legal/acceptable-use-policy-open-model)
* **Version:** 1.0
* **Owner:** Databricks, Inc.
## Usage
These are several general ways to use the DBRX models:
* DBRX Base and DBRX Instruct are available for download on HuggingFace (see our Quickstart guide below). This is the HF repository for DBRX Instruct; DBRX Base can be found [here](https://huggingface.co/databricks/dbrx-base).
* The DBRX model repository can be found on GitHub [here](https://github.com/databricks/dbrx).
* DBRX Base and DBRX Instruct are available with [Databricks Foundation Model APIs](https://docs.databricks.com/en/machine-learning/foundation-models/index.html) via both *Pay-per-token* and *Provisioned Throughput* endpoints. These are enterprise-ready deployments.
* For more information on how to fine-tune using LLM-Foundry, please take a look at our LLM pretraining and fine-tuning [documentation](https://github.com/mosaicml/llm-foundry/blob/main/scripts/train/README.md).
## Quickstart Guide
**NOTE: This is DBRX Instruct, and has been instruction finetuned.**
If you are looking for the base model, please use [DBRX Base](https://huggingface.co/databricks/dbrx-base).
Getting started with DBRX models is easy with the `transformers` library. The model requires ~264GB of RAM and the following packages:
```bash
pip install transformers tiktoken
```
If you'd like to speed up download time, you can use the `hf_transfer` package as described by Huggingface [here](https://huggingface.co/docs/huggingface_hub/en/guides/download#faster-downloads).
```bash
pip install hf_transfer
export HF_HUB_ENABLE_HF_TRANSFER=1
```
You will need to request access to this repository to download the model. Once this is granted,
[obtain an access token](https://huggingface.co/docs/hub/en/security-tokens) with `read` permission, and supply the token below.
### Run the model on a CPU:
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
tokenizer = AutoTokenizer.from_pretrained("databricks/dbrx-instruct", trust_remote_code=True, token="hf_YOUR_TOKEN")
model = AutoModelForCausalLM.from_pretrained("databricks/dbrx-instruct", device_map="cpu", torch_dtype=torch.bfloat16, trust_remote_code=True, token="hf_YOUR_TOKEN")
input_text = "What does it take to build a great LLM?"
messages = [{"role": "user", "content": input_text}]
input_ids = tokenizer.apply_chat_template(messages, return_dict=True, tokenize=True, add_generation_prompt=True, return_tensors="pt")
outputs = model.generate(**input_ids, max_new_tokens=200)
print(tokenizer.decode(outputs[0]))
```
### Run the model on multiple GPUs:
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
tokenizer = AutoTokenizer.from_pretrained("databricks/dbrx-instruct", trust_remote_code=True, token="hf_YOUR_TOKEN")
model = AutoModelForCausalLM.from_pretrained("databricks/dbrx-instruct", device_map="auto", torch_dtype=torch.bfloat16, trust_remote_code=True, token="hf_YOUR_TOKEN")
input_text = "What does it take to build a great LLM?"
messages = [{"role": "user", "content": input_text}]
input_ids = tokenizer.apply_chat_template(messages, return_dict=True, tokenize=True, add_generation_prompt=True, return_tensors="pt").to("cuda")
outputs = model.generate(**input_ids, max_new_tokens=200)
print(tokenizer.decode(outputs[0]))
```
If your GPU system supports [FlashAttention2](https://huggingface.co/docs/transformers/perf_infer_gpu_one#flashattention-2), you can add `attn_implementation=”flash_attention_2”` as a keyword to `AutoModelForCausalLM.from_pretrained()` to achieve faster inference.
## Limitations and Ethical Considerations
### Training Dataset Limitations
The DBRX models were trained on 12T tokens of text, with a knowledge cutoff date of December 2023.
The training mix used for DBRX contains both natural-language and code examples. The vast majority of our training data is in the English language. We did not test DBRX for non-English proficiency. Therefore, DBRX should be considered a generalist model for text-based use in the English language.
DBRX does not have multimodal capabilities.
### Associated Risks and Recommendations
All foundation models are novel technologies that carry various risks, and may output information that is inaccurate, incomplete, biased, or offensive.
Users should exercise judgment and evaluate such output for accuracy and appropriateness for their desired use case before using or sharing it.
Databricks recommends [using retrieval augmented generation (RAG)](https://www.databricks.com/glossary/retrieval-augmented-generation-rag) in scenarios where accuracy and fidelity are important.
We also recommend that anyone using or fine-tuning either DBRX Base or DBRX Instruct perform additional testing around safety in the context of their particular application and domain.
## Intended Uses
### Intended Use Cases
The DBRX models are open, general-purpose LLMs intended and licensed for both commercial and research applications.
They can be further fine-tuned for various domain-specific natural language and coding tasks.
DBRX Instruct can be used as an off-the-shelf model for few-turn question answering related to general English-language and coding tasks.
Please review the Associated Risks section above, as well as the [Databricks Open Model License](https://www.databricks.com/legal/open-model-license) and [Databricks Open Model Acceptable Use Policy](https://www.databricks.com/legal/acceptable-use-policy-open-model) for further information about permissible uses of DBRX Base and its derivatives.
### Out-of-Scope Use Cases
DBRX models are not intended to be used out-of-the-box in non-English languages and do not support native code execution, or other forms of function-calling.
DBRX models should not be used in any manner that violates applicable laws or regulations or in any other way that is prohibited by the [Databricks Open Model License](https://www.databricks.com/legal/open-model-license) and [Databricks Open Model Acceptable Use Policy](https://www.databricks.com/legal/acceptable-use-policy-open-model).
## Training Stack
MoE models are complicated to train, and the training of DBRX Base and DBRX Instruct was heavily supported by Databricks’ infrastructure for data processing and large-scale LLM training (e.g., [Composer](https://github.com/mosaicml/composer), [Streaming](https://github.com/mosaicml/streaming), [Megablocks](https://github.com/stanford-futuredata/megablocks), and [LLM Foundry](https://github.com/mosaicml/llm-foundry)).
Composer is our core library for large-scale training.
It provides an optimized training loop, easy [checkpointing](https://docs.mosaicml.com/projects/composer/en/latest/trainer/checkpointing.html) and [logging](https://docs.mosaicml.com/projects/composer/en/latest/trainer/logging.html#wood-logging),
[FSDP](https://pytorch.org/docs/stable/fsdp.html)-based [model sharding](https://docs.mosaicml.com/projects/composer/en/latest/notes/distributed_training.html#fullyshardeddataparallel-fsdp),
convenient [abstractions](https://docs.mosaicml.com/projects/composer/en/latest/trainer/time.html), extreme customizability via [callbacks](https://docs.mosaicml.com/projects/composer/en/latest/trainer/callbacks.html), and more.
Streaming enables fast, low cost, and scalable training on large datasets from cloud storage. It handles a variety of challenges around deterministic resumption as node counts change, avoiding redundant downloads across devices, high-quality shuffling at scale, sample-level random access, and speed.
Megablocks is a lightweight library for MoE training. Crucially, it supports “dropless MoE,” which avoids inefficient padding and is intended to provide deterministic outputs for a given sequence no matter what other sequences are in the batch.
LLM Foundry ties all of these libraries together to create a simple LLM pretraining, fine-tuning, and inference experience.
DBRX was trained using proprietary optimized versions of the above open source libraries, along with our [LLM training platform](https://www.databricks.com/product/machine-learning/mosaic-ai-training).
## Evaluation
We find that DBRX outperforms established open-source and open-weight base models on the [Databricks Model Gauntlet](https://www.databricks.com/blog/llm-evaluation-for-icl), the [Hugging Face Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard), and HumanEval.
The Databricks Model Gauntlet measures performance on more than 30 tasks across six categories: world knowledge, common sense reasoning, language understanding, reading comprehension, symbolic problem solving, and programming.
The Hugging Face Open LLM Leaderboard measures the average of ARC-Challenge, HellaSwag, MMLU, TruthfulQA, Winogrande and GSM8k.
HumanEval measures coding ability.
Full evaluation details can be found in our [technical blog post](https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm).
## Acknowledgements
The DBRX models were made possible thanks in large part to the open-source community, especially:
* The [MegaBlocks](https://arxiv.org/abs/2211.15841) library, which established a foundation for our MoE implementation.
* [PyTorch FSDP](https://arxiv.org/abs/2304.11277), which we built on for distributed training.
|
Muhammad2003/gemma-2b-CodeUltraFeedback-QLoRA | Muhammad2003 | 2024-04-02T00:23:21Z | 128 | 0 | transformers | [
"transformers",
"safetensors",
"gemma",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
]
| text-generation | 2024-04-02T00:20:29Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
Weni/WeniGPT-QA-Mixstral-7B-5.0.2-KTO | Weni | 2024-04-02T00:19:41Z | 0 | 0 | trl | [
"trl",
"safetensors",
"KTO",
"WeniGPT",
"pt",
"base_model:mistralai/Mixtral-8x7B-Instruct-v0.1",
"base_model:finetune:mistralai/Mixtral-8x7B-Instruct-v0.1",
"license:mit",
"region:us"
]
| null | 2024-04-01T00:00:18Z | ---
license: mit
library_name: "trl"
tags:
- KTO
- WeniGPT
base_model: mistralai/Mixtral-8x7B-Instruct-v0.1
model-index:
- name: Weni/WeniGPT-QA-Zephyr-7B-5.0.2-KTO
results: []
language: ['pt']
---
# Weni/WeniGPT-QA-Mixstral-7B-5.0.2-KTO
This model is a fine-tuned version of [mistralai/Mixtral-8x7B-Instruct-v0.1] on the dataset Weni/WeniGPT-QA-Binarized-1.2.0 with the KTO trainer. It is part of the WeniGPT project for [Weni](https://weni.ai/).
Description: WeniGPT Experiment using KTO trainer with no collator, Mixstral model and amnesia system prompt.
It achieves the following results on the evaluation set:
training interrupted beforehand
## Intended uses & limitations
This model has not been trained to avoid specific intructions.
## Training procedure
Finetuning was done on the model mistralai/Mixtral-8x7B-Instruct-v0.1 with the following prompt:
```
---------------------
Question:
<|system|>
Você é um médico tratando um paciente com amnésia. Para responder as perguntas do paciente, você irá ler um texto anteriormente para se contextualizar. Se você trouxer informações desconhecidas, fora do texto lido, poderá deixar o paciente confuso. Se o paciente fizer uma questão sobre informações não presentes no texto, você precisa responder de forma educada que você não tem informação suficiente para responder, pois se tentar responder, pode trazer informações que não ajudarão o paciente recuperar sua memória. Lembre, se não estiver no texto, você precisa responder de forma educada que você não tem informação suficiente para responder. Precisamos ajudar o paciente.
<|user|>
Contexto: {context}
Questão: {question}</s>
<|assistant|>
---------------------
Response:
{response}</s>
---------------------
```
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-4
- per_device_train_batch_size: 4
- per_device_eval_batch_size: 4
- gradient_accumulation_steps: 8
- num_gpus: 1
- total_train_batch_size: 32
- optimizer: AdamW
- lr_scheduler_type: cosine
- num_steps: 0
- quantization_type: bitsandbytes
- LoRA: ("\n - bits: 4\n - use_exllama: True\n - device_map: auto\n - use_cache: False\n - lora_r: 16\n - lora_alpha: 32\n - lora_dropout: 0.05\n - bias: none\n - target_modules: ['q_proj', 'k_proj', 'v_proj', 'o_proj']\n - task_type: CAUSAL_LM",)
### Training results
### Framework versions
- transformers==4.39.1
- datasets==2.18.0
- peft==0.10.0
- safetensors==0.4.2
- evaluate==0.4.1
- bitsandbytes==0.43
- huggingface_hub==0.20.3
- seqeval==1.2.2
- optimum==1.17.1
- auto-gptq==0.7.1
- gpustat==1.1.1
- deepspeed==0.14.0
- wandb==0.16.3
- # trl==0.8.1
- git+https://github.com/claralp/trl.git@fix_nans#egg=trl
- accelerate==0.28.0
- coloredlogs==15.0.1
- traitlets==5.14.1
- autoawq@https://github.com/casper-hansen/AutoAWQ/releases/download/v0.2.0/autoawq-0.2.0+cu118-cp310-cp310-linux_x86_64.whl
### Hardware
- Cloud provided: runpod.io
|
m0kr4n3/peft-starcoder-lora-a100 | m0kr4n3 | 2024-04-02T00:19:36Z | 6 | 0 | peft | [
"peft",
"tensorboard",
"safetensors",
"generated_from_trainer",
"base_model:bigcode/starcoderbase-1b",
"base_model:adapter:bigcode/starcoderbase-1b",
"license:bigcode-openrail-m",
"region:us"
]
| null | 2024-03-31T06:44:57Z | ---
license: bigcode-openrail-m
library_name: peft
tags:
- generated_from_trainer
base_model: bigcode/starcoderbase-1b
model-index:
- name: peft-starcoder-lora-a100
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# peft-starcoder-lora-a100
This model is a fine-tuned version of [bigcode/starcoderbase-1b](https://huggingface.co/bigcode/starcoderbase-1b) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 8.1829
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 30
- training_steps: 500
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 7.059 | 0.2 | 100 | 8.2764 |
| 6.3966 | 0.4 | 200 | 8.6218 |
| 6.1722 | 0.6 | 300 | 8.7766 |
| 7.2409 | 0.8 | 400 | 8.3845 |
| 6.9695 | 1.0 | 500 | 8.1829 |
### Framework versions
- PEFT 0.10.0
- Transformers 4.39.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2 |
TheRightHomeCareTeam/Sulis-7B-MedicalQA-v1a | TheRightHomeCareTeam | 2024-04-02T00:11:30Z | 0 | 0 | transformers | [
"transformers",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
]
| null | 2024-04-02T00:11:22Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
migtissera/Tess-2.0-Mixtral-8x7B | migtissera | 2024-04-01T23:53:42Z | 25 | 4 | transformers | [
"transformers",
"safetensors",
"mixtral",
"text-generation",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
]
| text-generation | 2024-04-01T04:25:14Z | ---
license: apache-2.0
---
# Join My General AI Discord (NeuroLattice):
https://discord.gg/Hz6GrwGFKD
# Tess-2.0-Mixtral
Tess, short for Tesoro (Treasure in Italian), is a general purpose Large Language Model series. Tess-2.0-Mixtral was trained on the mistralai/Mixtral-8x7B-v0.1 base.
# Prompt Format:
```
SYSTEM: <ANY SYSTEM CONTEXT>
USER:
ASSISTANT:
```
<br>

<br>
### Below shows a code example on how to use this model:
```python
import torch, json
from transformers import AutoModelForCausalLM, AutoTokenizer
model_path = "migtissera/Tess-2.0-Mixtral"
output_file_path = "./conversations.jsonl"
model = AutoModelForCausalLM.from_pretrained(
model_path,
torch_dtype=torch.float16,
device_map="auto",
load_in_8bit=False,
trust_remote_code=True,
)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
def generate_text(instruction):
tokens = tokenizer.encode(instruction)
tokens = torch.LongTensor(tokens).unsqueeze(0)
tokens = tokens.to("cuda")
instance = {
"input_ids": tokens,
"top_p": 1.0,
"temperature": 0.5,
"generate_len": 1024,
"top_k": 50,
}
length = len(tokens[0])
with torch.no_grad():
rest = model.generate(
input_ids=tokens,
max_length=length + instance["generate_len"],
use_cache=True,
do_sample=True,
top_p=instance["top_p"],
temperature=instance["temperature"],
top_k=instance["top_k"],
num_return_sequences=1,
)
output = rest[0][length:]
string = tokenizer.decode(output, skip_special_tokens=True)
answer = string.split("USER:")[0].strip()
return f"{answer}"
conversation = f"SYSTEM: Answer the question thoughtfully and intelligently. Always answer without hesitation."
while True:
user_input = input("You: ")
llm_prompt = f"{conversation} \nUSER: {user_input} \nASSISTANT: "
answer = generate_text(llm_prompt)
print(answer)
conversation = f"{llm_prompt}{answer}"
json_data = {"prompt": user_input, "answer": answer}
## Save your conversation
with open(output_file_path, "a") as output_file:
output_file.write(json.dumps(json_data) + "\n")
```
<br>
#### Limitations & Biases:
While this model aims for accuracy, it can occasionally produce inaccurate or misleading results.
Despite diligent efforts in refining the pretraining data, there remains a possibility for the generation of inappropriate, biased, or offensive content.
Exercise caution and cross-check information when necessary. This is an uncensored model.
<br> |
karsimkh/roberta-large-finetuned-abbr-Epoch24 | karsimkh | 2024-04-01T23:49:09Z | 125 | 0 | transformers | [
"transformers",
"safetensors",
"roberta",
"token-classification",
"generated_from_trainer",
"base_model:surrey-nlp/roberta-large-finetuned-abbr",
"base_model:finetune:surrey-nlp/roberta-large-finetuned-abbr",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2024-04-01T23:12:53Z | ---
license: mit
base_model: surrey-nlp/roberta-large-finetuned-abbr
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: roberta-large-finetuned-abbr-Epoch24
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-large-finetuned-abbr-Epoch24
This model is a fine-tuned version of [surrey-nlp/roberta-large-finetuned-abbr](https://huggingface.co/surrey-nlp/roberta-large-finetuned-abbr) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1935
- Precision: 0.9843
- Recall: 0.9779
- F1: 0.9811
- Accuracy: 0.9786
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 24
### Training results
### Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|
ssh1419/indi-deplot-5000 | ssh1419 | 2024-04-01T23:47:38Z | 48 | 0 | transformers | [
"transformers",
"safetensors",
"pix2struct",
"image-text-to-text",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
]
| image-text-to-text | 2024-04-01T21:16:26Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
maldaer/ppo-LunarLander-v2 | maldaer | 2024-04-01T23:46:33Z | 0 | 0 | stable-baselines3 | [
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
]
| reinforcement-learning | 2024-04-01T23:46:13Z | ---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 241.26 +/- 19.70
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
linoyts/huggy_dora_v1_pivotal | linoyts | 2024-04-01T23:40:36Z | 4 | 0 | diffusers | [
"diffusers",
"stable-diffusion-xl",
"stable-diffusion-xl-diffusers",
"diffusers-training",
"text-to-image",
"dora",
"template:sd-lora",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0",
"license:openrail++",
"region:us"
]
| text-to-image | 2024-04-01T22:37:21Z | ---
tags:
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
- diffusers-training
- text-to-image
- diffusers
- dora
- template:sd-lora
widget:
- text: 'a <s0><s1> emoji dressed as an easter bunny'
output:
url:
"image_0.png"
- text: 'a <s0><s1> emoji dressed as an easter bunny'
output:
url:
"image_1.png"
- text: 'a <s0><s1> emoji dressed as an easter bunny'
output:
url:
"image_2.png"
- text: 'a <s0><s1> emoji dressed as an easter bunny'
output:
url:
"image_3.png"
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: a <s0><s1> emoji
license: openrail++
---
# SDXL LoRA DreamBooth - linoyts/huggy_dora_v1_pivotal
<Gallery />
## Model description
### These are linoyts/huggy_dora_v1_pivotal LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.
## Download model
### Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke
- **LoRA**: download **[`huggy_dora_v1_pivotal.safetensors` here 💾](/linoyts/huggy_dora_v1_pivotal/blob/main/huggy_dora_v1_pivotal.safetensors)**.
- Place it on your `models/Lora` folder.
- On AUTOMATIC1111, load the LoRA by adding `<lora:huggy_dora_v1_pivotal:1>` to your prompt. On ComfyUI just [load it as a regular LoRA](https://comfyanonymous.github.io/ComfyUI_examples/lora/).
- *Embeddings*: download **[`huggy_dora_v1_pivotal_emb.safetensors` here 💾](/linoyts/huggy_dora_v1_pivotal/blob/main/huggy_dora_v1_pivotal_emb.safetensors)**.
- Place it on it on your `embeddings` folder
- Use it by adding `huggy_dora_v1_pivotal_emb` to your prompt. For example, `a huggy_dora_v1_pivotal_emb emoji`
(you need both the LoRA and the embeddings as they were trained together for this LoRA)
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('linoyts/huggy_dora_v1_pivotal', weight_name='pytorch_lora_weights.safetensors')
embedding_path = hf_hub_download(repo_id='linoyts/huggy_dora_v1_pivotal', filename='huggy_dora_v1_pivotal_emb.safetensors', repo_type="model")
state_dict = load_file(embedding_path)
pipeline.load_textual_inversion(state_dict["clip_l"], token=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder, tokenizer=pipeline.tokenizer)
pipeline.load_textual_inversion(state_dict["clip_g"], token=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder_2, tokenizer=pipeline.tokenizer_2)
image = pipeline('a <s0><s1> emoji dressed as an easter bunny').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## Trigger words
To trigger image generation of trained concept(or concepts) replace each concept identifier in you prompt with the new inserted tokens:
to trigger concept `TOK` → use `<s0><s1>` in your prompt
## Details
All [Files & versions](/linoyts/huggy_dora_v1_pivotal/tree/main).
The weights were trained using [🧨 diffusers Advanced Dreambooth Training Script](https://github.com/huggingface/diffusers/blob/main/examples/advanced_diffusion_training/train_dreambooth_lora_sdxl_advanced.py).
LoRA for the text encoder was enabled. False.
Pivotal tuning was enabled: True.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
|
happylayers/s4 | happylayers | 2024-04-01T23:33:18Z | 90 | 0 | transformers | [
"transformers",
"safetensors",
"stablelm",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| text-generation | 2024-04-01T23:30:49Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
anonauthors/test | anonauthors | 2024-04-01T23:32:22Z | 164 | 0 | transformers | [
"transformers",
"safetensors",
"convnext",
"image-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| image-classification | 2024-04-01T23:32:09Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
marksusol/distilroberta-base-finetuned-ner | marksusol | 2024-04-01T23:25:04Z | 69 | 0 | transformers | [
"transformers",
"tf",
"roberta",
"token-classification",
"generated_from_keras_callback",
"base_model:distilbert/distilroberta-base",
"base_model:finetune:distilbert/distilroberta-base",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2024-03-29T21:42:50Z | ---
base_model: distilbert/distilroberta-base
tags:
- generated_from_keras_callback
model-index:
- name: marksusol/distilroberta-base-finetuned-ner
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# marksusol/distilroberta-base-finetuned-ner
This model is a fine-tuned version of [distilbert/distilroberta-base](https://huggingface.co/distilbert/distilroberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0050
- Validation Loss: 0.0060
- Train Precision: 0.9435
- Train Recall: 0.9716
- Train F1: 0.9705
- Train Accuracy: 0.9988
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1686, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Train Precision | Train Recall | Train F1 | Train Accuracy | Epoch |
|:----------:|:---------------:|:---------------:|:------------:|:--------:|:--------------:|:-----:|
| 0.0643 | 0.0085 | 0.9223 | 0.9608 | 0.9593 | 0.9984 | 0 |
| 0.0066 | 0.0072 | 0.9303 | 0.9707 | 0.9690 | 0.9985 | 1 |
| 0.0050 | 0.0060 | 0.9435 | 0.9716 | 0.9705 | 0.9988 | 2 |
### Framework versions
- Transformers 4.38.2
- TensorFlow 2.15.0
- Datasets 2.18.0
- Tokenizers 0.15.2
|
NickyNicky/Hermes-2-Pro-Mistral-7B-4bit_g128-HQQ | NickyNicky | 2024-04-01T23:21:20Z | 4 | 1 | transformers | [
"transformers",
"mistral",
"text-generation",
"conversational",
"en",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| text-generation | 2024-03-29T06:07:11Z | ---
license: apache-2.0
language:
- en
---
```py
!python -m pip install --upgrade pip -q
!pip install -q accelerate safetensors deepspeed
!pip install -q bitsandbytes sentencepiece
!pip install -q scipy ninja -U
!pip install git+https://github.com/mobiusml/hqq/ transformers -U -q
```
```py
import transformers
print(transformers.__version__)
### output: 4.39.2
```
```py
model_id = 'NickyNicky/Hermes-2-Pro-Mistral-7B-4bit_g128-HQQ'
from hqq.engine.hf import HQQModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = HQQModelForCausalLM.from_quantized(model_id,device="cuda:0")
model.config.use_cache = True
model.eval();
```
```py
system=""""""
contenido="""escribe solo tres palabaras que contengan la letra 'T'"""
messages = [{"role": "system", "content": system+"eres un modelo de AI que responde adecuadamente a las tareas exactas que te pide el usuario, el idioma a la cual debes de responder es español."},
{"role": "user", "content": contenido},
]
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
input= tokenizer(prompt,
return_tensors="pt",
add_special_tokens=False).to(model.device)
generate_params = dict(
max_new_tokens = 1900,
do_sample = True,
top_p = 0.90,
top_k = 50,
temperature = 0.6,
repetition_penalty = 1.,
pad_token_id = tokenizer.eos_token_id,
eos_token_id = tokenizer.eos_token_id,
)
output= model.generate(**input,**generate_params)
print(tokenizer.decode(output[0], skip_special_tokens=True))
```

## use gpu.

## colab.
```
https://colab.research.google.com/drive/1oEoH0qScGzkLV4WLGrMEMgl4qnEsZhTs?usp=sharing
```
|
vikyi/my_awesome_billsum_model | vikyi | 2024-04-01T23:17:45Z | 105 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"t5",
"text2text-generation",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
]
| text2text-generation | 2024-04-01T23:12:26Z | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: my_awesome_billsum_model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# my_awesome_billsum_model
This model is a fine-tuned version of [google-t5/t5-small](https://huggingface.co/google-t5/t5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.5600
- Rouge1: 0.1405
- Rouge2: 0.0535
- Rougel: 0.118
- Rougelsum: 0.1181
- Gen Len: 19.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| No log | 1.0 | 62 | 2.8437 | 0.133 | 0.0412 | 0.1117 | 0.1115 | 19.0 |
| No log | 2.0 | 124 | 2.6355 | 0.1363 | 0.0503 | 0.1144 | 0.1144 | 19.0 |
| No log | 3.0 | 186 | 2.5755 | 0.1417 | 0.0544 | 0.1191 | 0.1191 | 19.0 |
| No log | 4.0 | 248 | 2.5600 | 0.1405 | 0.0535 | 0.118 | 0.1181 | 19.0 |
### Framework versions
- Transformers 4.30.0
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.13.3
|
lbaeriswyl/ppo-PyramidsRND | lbaeriswyl | 2024-04-01T23:17:05Z | 2 | 0 | ml-agents | [
"ml-agents",
"tensorboard",
"onnx",
"Pyramids",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Pyramids",
"region:us"
]
| reinforcement-learning | 2024-04-01T23:16:48Z | ---
library_name: ml-agents
tags:
- Pyramids
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Pyramids
---
# **ppo** Agent playing **Pyramids**
This is a trained model of a **ppo** agent playing **Pyramids**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: lbaeriswyl/ppo-PyramidsRND
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
SpinachGains/codeparrot-ds | SpinachGains | 2024-04-01T23:16:50Z | 125 | 0 | transformers | [
"transformers",
"safetensors",
"gpt2",
"text-generation",
"generated_from_trainer",
"dataset:generator",
"base_model:openai-community/gpt2",
"base_model:finetune:openai-community/gpt2",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
]
| text-generation | 2024-04-01T20:59:37Z | ---
license: mit
base_model: gpt2
tags:
- generated_from_trainer
datasets:
- generator
model-index:
- name: codeparrot-ds
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# codeparrot-ds
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset.
It achieves the following results on the evaluation set:
- Loss: 4.1599
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 1000
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 6.4743 | 0.2 | 30 | 5.0870 |
| 4.6204 | 0.4 | 60 | 4.1067 |
| 3.6208 | 0.6 | 90 | 3.3209 |
| 2.8321 | 0.79 | 120 | 3.0225 |
| 2.5107 | 0.99 | 150 | 2.7852 |
| 2.1614 | 1.19 | 180 | 2.7309 |
| 1.868 | 1.39 | 210 | 2.8328 |
| 1.7025 | 1.59 | 240 | 2.9077 |
| 1.4511 | 1.79 | 270 | 3.0556 |
| 1.1884 | 1.99 | 300 | 3.3297 |
| 1.0243 | 2.19 | 330 | 3.4177 |
| 0.9155 | 2.38 | 360 | 3.4031 |
| 0.7844 | 2.58 | 390 | 3.6728 |
| 0.688 | 2.78 | 420 | 4.0511 |
| 0.7049 | 2.98 | 450 | 4.1599 |
### Framework versions
- Transformers 4.39.2
- Pytorch 2.2.1
- Datasets 2.18.0
- Tokenizers 0.15.2
|
Ronysalem/Resume_sentence_classifier | Ronysalem | 2024-04-01T23:13:34Z | 106 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"distilbert",
"text-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| text-classification | 2024-04-01T22:49:39Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
0x0son0/m_305 | 0x0son0 | 2024-04-01T23:13:21Z | 4 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
]
| text-generation | 2024-04-01T22:19:17Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
shrenikb/hug32noaggtest | shrenikb | 2024-04-01T23:12:39Z | 0 | 0 | peft | [
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:huggyllama/llama-7b",
"base_model:adapter:huggyllama/llama-7b",
"region:us"
]
| null | 2024-04-01T23:12:12Z | ---
library_name: peft
base_model: huggyllama/llama-7b
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.10.0 |
karsimkh/roberta-large-finetuned-abbr-Epoch18 | karsimkh | 2024-04-01T23:12:06Z | 105 | 0 | transformers | [
"transformers",
"safetensors",
"roberta",
"token-classification",
"generated_from_trainer",
"base_model:surrey-nlp/roberta-large-finetuned-abbr",
"base_model:finetune:surrey-nlp/roberta-large-finetuned-abbr",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2024-04-01T22:44:23Z | ---
license: mit
base_model: surrey-nlp/roberta-large-finetuned-abbr
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: roberta-large-finetuned-abbr-Epoch18
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-large-finetuned-abbr-Epoch18
This model is a fine-tuned version of [surrey-nlp/roberta-large-finetuned-abbr](https://huggingface.co/surrey-nlp/roberta-large-finetuned-abbr) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1712
- Precision: 0.9881
- Recall: 0.9834
- F1: 0.9857
- Accuracy: 0.9836
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 18
### Training results
### Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|
shrenikb/hug24aggtest | shrenikb | 2024-04-01T23:12:00Z | 0 | 0 | peft | [
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:huggyllama/llama-7b",
"base_model:adapter:huggyllama/llama-7b",
"region:us"
]
| null | 2024-04-01T23:11:41Z | ---
library_name: peft
base_model: huggyllama/llama-7b
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.10.0 |
shrenikb/hug24noaggtest | shrenikb | 2024-04-01T23:11:40Z | 3 | 0 | peft | [
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:huggyllama/llama-7b",
"base_model:adapter:huggyllama/llama-7b",
"region:us"
]
| null | 2024-04-01T23:11:37Z | ---
library_name: peft
base_model: huggyllama/llama-7b
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.10.0 |
shrenikb/hug16noaggtest | shrenikb | 2024-04-01T23:08:07Z | 0 | 0 | peft | [
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:huggyllama/llama-7b",
"base_model:adapter:huggyllama/llama-7b",
"region:us"
]
| null | 2024-04-01T23:07:50Z | ---
library_name: peft
base_model: huggyllama/llama-7b
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.10.0 |
Banach311/RBarcenas-Mistral-7b-AbstractiveQA2 | Banach311 | 2024-04-01T22:49:25Z | 2 | 0 | transformers | [
"transformers",
"pytorch",
"safetensors",
"mistral",
"text-generation",
"text-generation-inference",
"unsloth",
"trl",
"en",
"base_model:Danielbrdz/Barcenas-Mistral-7b",
"base_model:finetune:Danielbrdz/Barcenas-Mistral-7b",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| text-generation | 2024-04-01T17:42:50Z | ---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- mistral
- trl
base_model: Danielbrdz/Barcenas-Mistral-7b
---
# Uploaded model
- **Developed by:** Banach311
- **License:** apache-2.0
- **Finetuned from model :** Danielbrdz/Barcenas-Mistral-7b
This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
shrenikb/hug16test | shrenikb | 2024-04-01T22:48:59Z | 0 | 0 | peft | [
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:huggyllama/llama-7b",
"base_model:adapter:huggyllama/llama-7b",
"region:us"
]
| null | 2024-04-01T22:48:49Z | ---
library_name: peft
base_model: huggyllama/llama-7b
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.10.0 |
ch0t0n/ppo-LunarLander-v2 | ch0t0n | 2024-04-01T22:46:47Z | 0 | 0 | stable-baselines3 | [
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
]
| reinforcement-learning | 2024-04-01T22:46:07Z | ---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 236.76 +/- 39.35
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
selmamani/fine-tuned-bert-base-arabic-camelbert-mix | selmamani | 2024-04-01T22:31:49Z | 48 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"bert",
"text-generation",
"generated_from_trainer",
"base_model:CAMeL-Lab/bert-base-arabic-camelbert-mix",
"base_model:finetune:CAMeL-Lab/bert-base-arabic-camelbert-mix",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| text-generation | 2024-03-28T22:06:05Z | ---
license: apache-2.0
base_model: CAMeL-Lab/bert-base-arabic-camelbert-mix
tags:
- generated_from_trainer
model-index:
- name: fine-tuned-bert-base-arabic-camelbert-mix
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# fine-tuned-bert-base-arabic-camelbert-mix
This model is a fine-tuned version of [CAMeL-Lab/bert-base-arabic-camelbert-mix](https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-mix) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0002
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.0107 | 1.0 | 2000 | 0.0011 |
| 0.0023 | 2.0 | 4000 | 0.0002 |
| 0.001 | 3.0 | 6000 | 0.0002 |
### Framework versions
- Transformers 4.39.2
- Pytorch 2.2.1+cu121
- Datasets 2.17.1
- Tokenizers 0.15.2
|
michaelw37/s2 | michaelw37 | 2024-04-01T22:15:45Z | 5 | 0 | transformers | [
"transformers",
"safetensors",
"stablelm",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| text-generation | 2024-04-01T05:35:33Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
AriyanH22/framing_classification_longformer_50 | AriyanH22 | 2024-04-01T22:15:23Z | 89 | 0 | transformers | [
"transformers",
"pytorch",
"longformer",
"text-classification",
"generated_from_trainer",
"base_model:allenai/longformer-base-4096",
"base_model:finetune:allenai/longformer-base-4096",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| text-classification | 2024-04-01T22:14:13Z | ---
license: apache-2.0
base_model: allenai/longformer-base-4096
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: framing_classification_longformer_50
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# framing_classification_longformer_50
This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3739
- Accuracy: 0.9332
- F1: 0.9608
- Precision: 0.9394
- Recall: 0.9832
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|:-------------:|:-----:|:------:|:---------------:|:--------:|:------:|:---------:|:------:|
| 0.8078 | 1.0 | 5152 | 0.8413 | 0.8323 | 0.9085 | 0.8323 | 1.0 |
| 0.7998 | 2.0 | 10304 | 0.8279 | 0.8323 | 0.9085 | 0.8323 | 1.0 |
| 0.9031 | 3.0 | 15456 | 0.9204 | 0.8323 | 0.9085 | 0.8323 | 1.0 |
| 0.7805 | 4.0 | 20608 | 0.8259 | 0.8323 | 0.9085 | 0.8323 | 1.0 |
| 0.8775 | 5.0 | 25760 | 0.8078 | 0.8323 | 0.9085 | 0.8323 | 1.0 |
| 0.7248 | 6.0 | 30912 | 0.7587 | 0.8323 | 0.9085 | 0.8323 | 1.0 |
| 0.8282 | 7.0 | 36064 | 0.7737 | 0.8323 | 0.9085 | 0.8323 | 1.0 |
| 0.774 | 8.0 | 41216 | 0.8283 | 0.8323 | 0.9085 | 0.8323 | 1.0 |
| 0.802 | 9.0 | 46368 | 0.7968 | 0.8323 | 0.9085 | 0.8323 | 1.0 |
| 0.8458 | 10.0 | 51520 | 0.8591 | 0.8323 | 0.9085 | 0.8323 | 1.0 |
| 0.7923 | 11.0 | 56672 | 0.8526 | 0.8323 | 0.9085 | 0.8323 | 1.0 |
| 0.8435 | 12.0 | 61824 | 0.8076 | 0.8323 | 0.9085 | 0.8323 | 1.0 |
| 0.8239 | 13.0 | 66976 | 0.8152 | 0.8323 | 0.9085 | 0.8323 | 1.0 |
| 0.7751 | 14.0 | 72128 | 0.8280 | 0.8323 | 0.9085 | 0.8323 | 1.0 |
| 0.7984 | 15.0 | 77280 | 0.8358 | 0.8323 | 0.9085 | 0.8323 | 1.0 |
| 0.8359 | 16.0 | 82432 | 0.8471 | 0.8323 | 0.9085 | 0.8323 | 1.0 |
| 0.9831 | 17.0 | 87584 | 0.8089 | 0.8323 | 0.9085 | 0.8323 | 1.0 |
| 0.9051 | 18.0 | 92736 | 0.8094 | 0.8323 | 0.9085 | 0.8323 | 1.0 |
| 0.9337 | 19.0 | 97888 | 0.8296 | 0.8323 | 0.9085 | 0.8323 | 1.0 |
| 0.9565 | 20.0 | 103040 | 0.8021 | 0.8323 | 0.9085 | 0.8323 | 1.0 |
| 0.8494 | 21.0 | 108192 | 0.8405 | 0.8323 | 0.9085 | 0.8323 | 1.0 |
| 0.822 | 22.0 | 113344 | 0.8481 | 0.8323 | 0.9085 | 0.8323 | 1.0 |
| 0.856 | 23.0 | 118496 | 0.8194 | 0.8323 | 0.9085 | 0.8323 | 1.0 |
| 0.8892 | 24.0 | 123648 | 0.8394 | 0.8323 | 0.9085 | 0.8323 | 1.0 |
| 0.7816 | 25.0 | 128800 | 0.7035 | 0.8649 | 0.9245 | 0.8639 | 0.9944 |
| 0.6349 | 26.0 | 133952 | 0.6452 | 0.8773 | 0.9309 | 0.8764 | 0.9925 |
| 0.6872 | 27.0 | 139104 | 0.6440 | 0.8820 | 0.9331 | 0.8833 | 0.9888 |
| 0.7452 | 28.0 | 144256 | 0.5578 | 0.8323 | 0.9085 | 0.8323 | 1.0 |
| 0.6425 | 29.0 | 149408 | 0.4712 | 0.8323 | 0.9085 | 0.8323 | 1.0 |
| 0.6705 | 30.0 | 154560 | 0.6447 | 0.8866 | 0.9357 | 0.8865 | 0.9907 |
| 0.5748 | 31.0 | 159712 | 0.4063 | 0.9239 | 0.9553 | 0.9340 | 0.9776 |
| 0.6543 | 32.0 | 164864 | 0.4753 | 0.9099 | 0.9482 | 0.9092 | 0.9907 |
| 0.5376 | 33.0 | 170016 | 0.4782 | 0.9099 | 0.9482 | 0.9092 | 0.9907 |
| 0.6895 | 34.0 | 175168 | 0.4383 | 0.9177 | 0.9524 | 0.9185 | 0.9888 |
| 0.5867 | 35.0 | 180320 | 0.4970 | 0.9130 | 0.9497 | 0.9152 | 0.9869 |
| 0.7092 | 36.0 | 185472 | 0.4719 | 0.9177 | 0.9521 | 0.9229 | 0.9832 |
| 0.6561 | 37.0 | 190624 | 0.4763 | 0.9146 | 0.9508 | 0.9139 | 0.9907 |
| 0.5693 | 38.0 | 195776 | 0.3947 | 0.9301 | 0.9591 | 0.9345 | 0.9851 |
| 0.4321 | 39.0 | 200928 | 0.4632 | 0.9161 | 0.9503 | 0.9382 | 0.9627 |
| 0.5156 | 40.0 | 206080 | 0.4012 | 0.9301 | 0.9593 | 0.9299 | 0.9907 |
| 0.5279 | 41.0 | 211232 | 0.4558 | 0.9224 | 0.9550 | 0.9219 | 0.9907 |
| 0.5489 | 42.0 | 216384 | 0.4438 | 0.9193 | 0.9532 | 0.9201 | 0.9888 |
| 0.5586 | 43.0 | 221536 | 0.4469 | 0.9177 | 0.9526 | 0.9157 | 0.9925 |
| 0.575 | 44.0 | 226688 | 0.4310 | 0.9270 | 0.9569 | 0.9405 | 0.9739 |
| 0.4589 | 45.0 | 231840 | 0.4117 | 0.9301 | 0.9591 | 0.9345 | 0.9851 |
| 0.4012 | 46.0 | 236992 | 0.4501 | 0.9239 | 0.9553 | 0.9356 | 0.9757 |
| 0.5395 | 47.0 | 242144 | 0.3989 | 0.9317 | 0.96 | 0.9362 | 0.9851 |
| 0.5009 | 48.0 | 247296 | 0.3739 | 0.9332 | 0.9608 | 0.9394 | 0.9832 |
| 0.5356 | 49.0 | 252448 | 0.3805 | 0.9348 | 0.9617 | 0.9395 | 0.9851 |
| 0.5729 | 50.0 | 257600 | 0.3833 | 0.9348 | 0.9617 | 0.9395 | 0.9851 |
### Framework versions
- Transformers 4.32.0.dev0
- Pytorch 2.0.1
- Datasets 2.14.4
- Tokenizers 0.13.3
|
ostris/sd15-big-g-alpha | ostris | 2024-04-01T22:15:14Z | 22 | 28 | diffusers | [
"diffusers",
"safetensors",
"text-to-image",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
]
| text-to-image | 2024-04-01T21:36:01Z | ---
license: creativeml-openrail-m
library_name: diffusers
pipeline_tag: text-to-image
---
# SD 1.5 Big G (alpha)
This is a Stable Diffusion 1.5 model, but it uses the [CLIP Big G](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k) text encoder instead of the original [CLIP-L](https://huggingface.co/openai/clip-vit-large-patch14) text encoder.
This is just a knowledge transfer pre-train with the goal of preserving the current knowledge of the model.
It was only trained using student/teacher training from my [SD 1.5 fine tune, Objective Reality v2](https://huggingface.co/ostris/objective-reality).
To fully realize the full potential of the much larger text encoder, it would need to be further fine tuned on a large dataset.
# Examples
Coming soon
# Usage
For diffusers, you can use it like any other stable diffusion model.
```python
from diffusers import StableDiffusionPipeline
import torch
model_id = "ostris/sd15-big-g-alpha"
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
pipe = pipe.to("cuda")
prompt = "a photo of an astronaut riding a horse on mars"
image = pipe(prompt).images[0]
image.save("astronaut_rides_horse.png")
```
It will not work out of the box with Comfy UI or Auto1111. There would need to be special code to load it. If there is any interest in this model, I may work on compatibility.
Overall, it won't be hard to add. The only architecture change is the text encoder the and cross attention weights.
# Alpha
This is just a pretrained alpha. There are some concepts that did not seem to transfer. It really needs proper training on a large dataset. Anyone is welcome to take this task on. I do not plan to at the time.
# Why make this?
In the words of George Mallory, "Because it's there"
# Training Method
As mentioned above, it was trained using student/teacher only. This was an iterative process over the corse of a few months, and I did not keep track of all of the exact numbers. The following are best estimates.
The cross attention layers were trained for 1-2 million steps with a batch size of 8 on a single 4090 GPU. Then the full unet was trained for around 100k steps with the same settings.
|
tsibbett/my_awesome_model | tsibbett | 2024-04-01T22:14:27Z | 110 | 0 | transformers | [
"transformers",
"safetensors",
"distilbert",
"text-classification",
"generated_from_trainer",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| text-classification | 2024-04-01T21:19:19Z | ---
license: apache-2.0
base_model: distilbert/distilbert-base-uncased
tags:
- generated_from_trainer
model-index:
- name: my_awesome_model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# my_awesome_model
This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Framework versions
- Transformers 4.39.2
- Pytorch 2.2.2+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|
jgibb/t-5-base-abs2abs | jgibb | 2024-04-01T22:01:43Z | 109 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"t5",
"text2text-generation",
"generated_from_trainer",
"base_model:google-t5/t5-base",
"base_model:finetune:google-t5/t5-base",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
]
| text2text-generation | 2024-03-30T22:54:01Z | ---
license: apache-2.0
base_model: t5-base
tags:
- generated_from_trainer
metrics:
- rouge
- wer
model-index:
- name: t-5-base-abs2abs
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t-5-base-abs2abs
This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3203
- Rouge1: 0.6446
- Rouge2: 0.3626
- Rougel: 0.5773
- Rougelsum: 0.5771
- Wer: 0.5292
- Bleurt: -0.1862
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 6
- eval_batch_size: 6
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Wer | Bleurt |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:------:|:-------:|
| No log | 0.14 | 250 | 1.4708 | 0.6226 | 0.3343 | 0.5514 | 0.5512 | 0.559 | -0.1681 |
| 1.9361 | 0.27 | 500 | 1.4181 | 0.6277 | 0.3422 | 0.5591 | 0.5588 | 0.5498 | -0.1527 |
| 1.9361 | 0.41 | 750 | 1.3918 | 0.6326 | 0.3467 | 0.5633 | 0.5632 | 0.5453 | -0.1653 |
| 1.5072 | 0.55 | 1000 | 1.3740 | 0.6352 | 0.3508 | 0.5664 | 0.5662 | 0.541 | -0.1653 |
| 1.5072 | 0.68 | 1250 | 1.3602 | 0.6369 | 0.3528 | 0.5687 | 0.5685 | 0.539 | -0.4817 |
| 1.4761 | 0.82 | 1500 | 1.3504 | 0.6388 | 0.3557 | 0.5711 | 0.571 | 0.5361 | -0.1653 |
| 1.4761 | 0.96 | 1750 | 1.3424 | 0.6399 | 0.3573 | 0.5728 | 0.5725 | 0.5341 | -0.1653 |
| 1.4475 | 1.09 | 2000 | 1.3368 | 0.6413 | 0.3586 | 0.5737 | 0.5735 | 0.5329 | -0.4817 |
| 1.4475 | 1.23 | 2250 | 1.3324 | 0.6422 | 0.36 | 0.5748 | 0.5746 | 0.5316 | -0.4726 |
| 1.4375 | 1.36 | 2500 | 1.3280 | 0.6435 | 0.3608 | 0.5757 | 0.5754 | 0.5309 | -0.3069 |
| 1.4375 | 1.5 | 2750 | 1.3246 | 0.644 | 0.3618 | 0.5765 | 0.5763 | 0.5304 | -0.1862 |
| 1.4053 | 1.64 | 3000 | 1.3222 | 0.6443 | 0.3622 | 0.5769 | 0.5767 | 0.5296 | -0.1862 |
| 1.4053 | 1.77 | 3250 | 1.3208 | 0.6446 | 0.3625 | 0.5771 | 0.5769 | 0.5293 | -0.1862 |
| 1.3911 | 1.91 | 3500 | 1.3203 | 0.6446 | 0.3626 | 0.5773 | 0.5771 | 0.5292 | -0.1862 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|
stablediffusionapi/brixel-brain | stablediffusionapi | 2024-04-01T21:57:09Z | 29 | 1 | diffusers | [
"diffusers",
"modelslab.com",
"stable-diffusion-api",
"text-to-image",
"ultra-realistic",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
]
| text-to-image | 2024-04-01T21:54:52Z | ---
license: creativeml-openrail-m
tags:
- modelslab.com
- stable-diffusion-api
- text-to-image
- ultra-realistic
pinned: true
---
# Brixel Brain API Inference

## Get API Key
Get API key from [ModelsLab API](http://modelslab.com), No Payment needed.
Replace Key in below code, change **model_id** to "brixel-brain"
Coding in PHP/Node/Java etc? Have a look at docs for more code examples: [View docs](https://modelslab.com/docs)
Try model for free: [Generate Images](https://modelslab.com/models/brixel-brain)
Model link: [View model](https://modelslab.com/models/brixel-brain)
View all models: [View Models](https://modelslab.com/models)
import requests
import json
url = "https://modelslab.com/api/v6/images/text2img"
payload = json.dumps({
"key": "your_api_key",
"model_id": "brixel-brain",
"prompt": "ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K",
"negative_prompt": "painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime",
"width": "512",
"height": "512",
"samples": "1",
"num_inference_steps": "30",
"safety_checker": "no",
"enhance_prompt": "yes",
"seed": None,
"guidance_scale": 7.5,
"multi_lingual": "no",
"panorama": "no",
"self_attention": "no",
"upscale": "no",
"embeddings": "embeddings_model_id",
"lora": "lora_model_id",
"webhook": None,
"track_id": None
})
headers = {
'Content-Type': 'application/json'
}
response = requests.request("POST", url, headers=headers, data=payload)
print(response.text)
> Use this coupon code to get 25% off **DMGG0RBN** |
Virt-io/Helen-v1_7B | Virt-io | 2024-04-01T21:55:47Z | 7 | 1 | transformers | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"mergekit",
"merge",
"roleplay",
"conversational",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
]
| text-generation | 2024-03-31T05:40:48Z | ---
tags:
- mergekit
- merge
- mistral
- roleplay
---
### Information
Uses ChatML, but Alpaca seems to work fine.
[**SillyTavern Presets**](https://huggingface.co/Virt-io/SillyTavern-Presets)
This is meant to be a smart RP model.
I did some unholy things to make the model load. (I removed all configs and replaced them with the ones from Hercules)
**Important**: When using this model it is necessary to include example messages, or it may sound bland. With examples it does pretty well.
### Reasoning behind the selected values
To my understanding layers in the middle have a lower effect than later layers on the final output.
So keeping this in mind, I only increase the % of the smart model, at the middle. As to increase its reasoning abilities, but keep it uncensored.
# Helen-v1
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
## Merge Details
### Merge Method
This model was merged using the SLERP merge method.
### Models Merged
The following models were included in the merge:
* [l3utterfly/mistral-7b-v0.2-layla-v4](https://huggingface.co/l3utterfly/mistral-7b-v0.2-layla-v4)
* [Locutusque/Hercules-4.0-Mistral-v0.2-7B](https://huggingface.co/Locutusque/Hercules-4.0-Mistral-v0.2-7B)
* [Weyaxi/Einstein-v5-v0.2-7B](https://huggingface.co/Weyaxi/Einstein-v5-v0.2-7B)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
slices:
- sources:
- model: l3utterfly/mistral-7b-v0.2-layla-v4
layer_range: [0, 32]
- model: Mergekit/Hercules-Einstein_low
layer_range: [0, 32]
merge_method: slerp
base_model: l3utterfly/mistral-7b-v0.2-layla-v4
parameters:
t:
- filter: self_attn
value: [0.15, 0.20, 0.35, 0.10, 0.15]
- filter: mlp
value: [0.15, 0.20, 0.35, 0.10, 0.15]
- value: 0.15 # fallback for rest of tensors
dtype: float16
```
|
0x0son0/m_304 | 0x0son0 | 2024-04-01T21:55:46Z | 4 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
]
| text-generation | 2024-04-01T20:59:16Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
AlignmentResearch/robust_llm_eowyn-ian-tt-v0 | AlignmentResearch | 2024-04-01T21:50:05Z | 106 | 0 | transformers | [
"transformers",
"safetensors",
"gpt2",
"text-classification",
"generated_from_trainer",
"base_model:stanford-crfm/eowyn-gpt2-medium-x777",
"base_model:finetune:stanford-crfm/eowyn-gpt2-medium-x777",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
]
| text-classification | 2024-04-01T21:49:02Z | ---
tags:
- generated_from_trainer
base_model: stanford-crfm/eowyn-gpt2-medium-x777
model-index:
- name: robust_llm_eowyn-ian-tt-v0
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# robust_llm_eowyn-ian-tt-v0
This model is a fine-tuned version of [stanford-crfm/eowyn-gpt2-medium-x777](https://huggingface.co/stanford-crfm/eowyn-gpt2-medium-x777) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
### Framework versions
- Transformers 4.37.2
- Pytorch 2.2.0
- Datasets 2.17.0
- Tokenizers 0.15.2
|
AlignmentResearch/robust_llm_celebrimbor-ian-tt-v0 | AlignmentResearch | 2024-04-01T21:49:58Z | 104 | 0 | transformers | [
"transformers",
"safetensors",
"gpt2",
"text-classification",
"generated_from_trainer",
"base_model:stanford-crfm/celebrimbor-gpt2-medium-x81",
"base_model:finetune:stanford-crfm/celebrimbor-gpt2-medium-x81",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
]
| text-classification | 2024-04-01T21:47:27Z | ---
tags:
- generated_from_trainer
base_model: stanford-crfm/celebrimbor-gpt2-medium-x81
model-index:
- name: robust_llm_celebrimbor-ian-tt-v0
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# robust_llm_celebrimbor-ian-tt-v0
This model is a fine-tuned version of [stanford-crfm/celebrimbor-gpt2-medium-x81](https://huggingface.co/stanford-crfm/celebrimbor-gpt2-medium-x81) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
### Framework versions
- Transformers 4.37.2
- Pytorch 2.2.0
- Datasets 2.17.0
- Tokenizers 0.15.2
|
stablediffusionapi/brainime | stablediffusionapi | 2024-04-01T21:49:10Z | 50 | 1 | diffusers | [
"diffusers",
"modelslab.com",
"stable-diffusion-api",
"text-to-image",
"ultra-realistic",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
]
| text-to-image | 2024-04-01T21:47:13Z | ---
license: creativeml-openrail-m
tags:
- modelslab.com
- stable-diffusion-api
- text-to-image
- ultra-realistic
pinned: true
---
# Brainime API Inference

## Get API Key
Get API key from [ModelsLab API](http://modelslab.com), No Payment needed.
Replace Key in below code, change **model_id** to "brainime"
Coding in PHP/Node/Java etc? Have a look at docs for more code examples: [View docs](https://modelslab.com/docs)
Try model for free: [Generate Images](https://modelslab.com/models/brainime)
Model link: [View model](https://modelslab.com/models/brainime)
View all models: [View Models](https://modelslab.com/models)
import requests
import json
url = "https://modelslab.com/api/v6/images/text2img"
payload = json.dumps({
"key": "your_api_key",
"model_id": "brainime",
"prompt": "ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K",
"negative_prompt": "painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime",
"width": "512",
"height": "512",
"samples": "1",
"num_inference_steps": "30",
"safety_checker": "no",
"enhance_prompt": "yes",
"seed": None,
"guidance_scale": 7.5,
"multi_lingual": "no",
"panorama": "no",
"self_attention": "no",
"upscale": "no",
"embeddings": "embeddings_model_id",
"lora": "lora_model_id",
"webhook": None,
"track_id": None
})
headers = {
'Content-Type': 'application/json'
}
response = requests.request("POST", url, headers=headers, data=payload)
print(response.text)
> Use this coupon code to get 25% off **DMGG0RBN** |
JorgeDeC/mistral-nl-7b-sft-qlora | JorgeDeC | 2024-04-01T21:43:31Z | 5 | 0 | peft | [
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:mistral-community/Mistral-7B-v0.2",
"base_model:adapter:mistral-community/Mistral-7B-v0.2",
"region:us"
]
| null | 2024-04-01T11:27:18Z | ---
library_name: peft
base_model: alpindale/Mistral-7B-v0.2-hf
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.7.1 |
habulaj/1712004574814x462405995856440600 | habulaj | 2024-04-01T21:41:59Z | 1 | 0 | diffusers | [
"diffusers",
"stable-diffusion-xl",
"stable-diffusion-xl-diffusers",
"text-to-image",
"lora",
"dataset:Shortyzzzz/SouthP",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"region:us"
]
| text-to-image | 2024-04-01T20:49:47Z |
---
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: in the style of TOK
tags:
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
- text-to-image
- diffusers
- lora
inference: false
datasets:
- Shortyzzzz/SouthP
---
# LoRA DreamBooth - squaadinc/1712004574814x462405995856440600
These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0 trained on @fffiloni's SD-XL trainer.
The weights were trained on the concept prompt:
```
in the style of TOK
```
Use this keyword to trigger your custom model in your prompts.
LoRA for the text encoder was enabled: False.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
## Usage
Make sure to upgrade diffusers to >= 0.19.0:
```
pip install diffusers --upgrade
```
In addition make sure to install transformers, safetensors, accelerate as well as the invisible watermark:
```
pip install invisible_watermark transformers accelerate safetensors
```
To just use the base model, you can run:
```python
import torch
from diffusers import DiffusionPipeline, AutoencoderKL
device = "cuda" if torch.cuda.is_available() else "cpu"
vae = AutoencoderKL.from_pretrained('madebyollin/sdxl-vae-fp16-fix', torch_dtype=torch.float16)
pipe = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
vae=vae, torch_dtype=torch.float16, variant="fp16",
use_safetensors=True
)
pipe.to(device)
# This is where you load your trained weights
specific_safetensors = "pytorch_lora_weights.safetensors"
lora_scale = 0.9
pipe.load_lora_weights(
'squaadinc/1712004574814x462405995856440600',
weight_name = specific_safetensors,
# use_auth_token = True
)
prompt = "A majestic in the style of TOK jumping from a big stone at night"
image = pipe(
prompt=prompt,
num_inference_steps=50,
cross_attention_kwargs={"scale": lora_scale}
).images[0]
```
|
prof-freakenstein/Ai-avatar-Generator | prof-freakenstein | 2024-04-01T21:39:04Z | 0 | 4 | transformers | [
"transformers",
"diffusers",
"text-to-image",
"en",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
]
| text-to-image | 2023-01-08T11:26:55Z | ---
license: apache-2.0
language:
- en
tags:
- text-to-image
metrics:
- accuracy
library_name: transformers
pipeline_tag: text-to-image
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
A generative model, that geneartive artistic images using stable diffusion
# Model Details
## Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [ANURAG Kr. SINGH]
- **Model type:** [TEXT-TO-IMAGE]
- **Language(s) (NLP):** [PYTHON]
- **License:** [APCAHE 2.0] |
linoyts/huggy_lora_v4_pivotal | linoyts | 2024-04-01T21:34:30Z | 9 | 0 | diffusers | [
"diffusers",
"stable-diffusion-xl",
"stable-diffusion-xl-diffusers",
"diffusers-training",
"text-to-image",
"lora",
"template:sd-lora",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:openrail++",
"region:us"
]
| text-to-image | 2024-04-01T20:51:33Z | ---
tags:
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
- diffusers-training
- text-to-image
- diffusers
- lora
- template:sd-lora
widget:
- text: 'a <s0><s1> emoji dressed as an easter bunny'
output:
url:
"image_0.png"
- text: 'a <s0><s1> emoji dressed as an easter bunny'
output:
url:
"image_1.png"
- text: 'a <s0><s1> emoji dressed as an easter bunny'
output:
url:
"image_2.png"
- text: 'a <s0><s1> emoji dressed as an easter bunny'
output:
url:
"image_3.png"
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: a <s0><s1> emoji
license: openrail++
---
# SDXL LoRA DreamBooth - linoyts/huggy_lora_v4_pivotal
<Gallery />
## Model description
### These are linoyts/huggy_lora_v4_pivotal LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.
## Download model
### Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke
- **LoRA**: download **[`huggy_lora_v4_pivotal.safetensors` here 💾](/linoyts/huggy_lora_v4_pivotal/blob/main/huggy_lora_v4_pivotal.safetensors)**.
- Place it on your `models/Lora` folder.
- On AUTOMATIC1111, load the LoRA by adding `<lora:huggy_lora_v4_pivotal:1>` to your prompt. On ComfyUI just [load it as a regular LoRA](https://comfyanonymous.github.io/ComfyUI_examples/lora/).
- *Embeddings*: download **[`huggy_lora_v4_pivotal_emb.safetensors` here 💾](/linoyts/huggy_lora_v4_pivotal/blob/main/huggy_lora_v4_pivotal_emb.safetensors)**.
- Place it on it on your `embeddings` folder
- Use it by adding `huggy_lora_v4_pivotal_emb` to your prompt. For example, `a huggy_lora_v4_pivotal_emb emoji`
(you need both the LoRA and the embeddings as they were trained together for this LoRA)
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('linoyts/huggy_lora_v4_pivotal', weight_name='pytorch_lora_weights.safetensors')
embedding_path = hf_hub_download(repo_id='linoyts/huggy_lora_v4_pivotal', filename='huggy_lora_v4_pivotal_emb.safetensors', repo_type="model")
state_dict = load_file(embedding_path)
pipeline.load_textual_inversion(state_dict["clip_l"], token=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder, tokenizer=pipeline.tokenizer)
pipeline.load_textual_inversion(state_dict["clip_g"], token=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder_2, tokenizer=pipeline.tokenizer_2)
image = pipeline('a <s0><s1> emoji dressed as an easter bunny').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## Trigger words
To trigger image generation of trained concept(or concepts) replace each concept identifier in you prompt with the new inserted tokens:
to trigger concept `TOK` → use `<s0><s1>` in your prompt
## Details
All [Files & versions](/linoyts/huggy_lora_v4_pivotal/tree/main).
The weights were trained using [🧨 diffusers Advanced Dreambooth Training Script](https://github.com/huggingface/diffusers/blob/main/examples/advanced_diffusion_training/train_dreambooth_lora_sdxl_advanced.py).
LoRA for the text encoder was enabled. False.
Pivotal tuning was enabled: True.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
|
stablediffusionapi/kohaku-v5 | stablediffusionapi | 2024-04-01T21:33:32Z | 29 | 1 | diffusers | [
"diffusers",
"modelslab.com",
"stable-diffusion-api",
"text-to-image",
"ultra-realistic",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
]
| text-to-image | 2024-04-01T21:31:16Z | ---
license: creativeml-openrail-m
tags:
- modelslab.com
- stable-diffusion-api
- text-to-image
- ultra-realistic
pinned: true
---
# Kohaku V5 API Inference

## Get API Key
Get API key from [ModelsLab API](http://modelslab.com), No Payment needed.
Replace Key in below code, change **model_id** to "kohaku-v5"
Coding in PHP/Node/Java etc? Have a look at docs for more code examples: [View docs](https://modelslab.com/docs)
Try model for free: [Generate Images](https://modelslab.com/models/kohaku-v5)
Model link: [View model](https://modelslab.com/models/kohaku-v5)
View all models: [View Models](https://modelslab.com/models)
import requests
import json
url = "https://modelslab.com/api/v6/images/text2img"
payload = json.dumps({
"key": "your_api_key",
"model_id": "kohaku-v5",
"prompt": "ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K",
"negative_prompt": "painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime",
"width": "512",
"height": "512",
"samples": "1",
"num_inference_steps": "30",
"safety_checker": "no",
"enhance_prompt": "yes",
"seed": None,
"guidance_scale": 7.5,
"multi_lingual": "no",
"panorama": "no",
"self_attention": "no",
"upscale": "no",
"embeddings": "embeddings_model_id",
"lora": "lora_model_id",
"webhook": None,
"track_id": None
})
headers = {
'Content-Type': 'application/json'
}
response = requests.request("POST", url, headers=headers, data=payload)
print(response.text)
> Use this coupon code to get 25% off **DMGG0RBN** |
janny127/autotrain-5e45b-p5z66 | janny127 | 2024-04-01T21:29:11Z | 97 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"llama",
"text-generation",
"autotrain",
"text-generation-inference",
"peft",
"conversational",
"license:other",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| text-generation | 2024-04-01T21:28:20Z | ---
tags:
- autotrain
- text-generation-inference
- text-generation
- peft
library_name: transformers
widget:
- messages:
- role: user
content: What is your favorite condiment?
license: other
---
# Model Trained Using AutoTrain
This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain).
# Usage
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_path = "PATH_TO_THIS_REPO"
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(
model_path,
device_map="auto",
torch_dtype='auto'
).eval()
# Prompt content: "hi"
messages = [
{"role": "user", "content": "hi"}
]
input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt')
output_ids = model.generate(input_ids.to('cuda'))
response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True)
# Model response: "Hello! How can I assist you today?"
print(response)
``` |
lbaeriswyl/ppo-SnowballTarget | lbaeriswyl | 2024-04-01T21:19:04Z | 0 | 0 | ml-agents | [
"ml-agents",
"tensorboard",
"onnx",
"SnowballTarget",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-SnowballTarget",
"region:us"
]
| reinforcement-learning | 2024-04-01T21:18:54Z | ---
library_name: ml-agents
tags:
- SnowballTarget
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-SnowballTarget
---
# **ppo** Agent playing **SnowballTarget**
This is a trained model of a **ppo** agent playing **SnowballTarget**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: lbaeriswyl/ppo-SnowballTarget
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
enriquesaou/phi2_med_v2 | enriquesaou | 2024-04-01T21:17:49Z | 0 | 0 | peft | [
"peft",
"tensorboard",
"safetensors",
"trl",
"sft",
"generated_from_trainer",
"base_model:microsoft/phi-2",
"base_model:adapter:microsoft/phi-2",
"license:mit",
"region:us"
]
| null | 2024-04-01T21:17:26Z | ---
license: mit
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
base_model: microsoft/phi-2
model-index:
- name: phi2_med_v2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# phi2_med_v2
This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- PEFT 0.10.1.dev0
- Transformers 4.40.0.dev0
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2 |
tollefj/norbert3-nordic-ner-v2 | tollefj | 2024-04-01T21:12:22Z | 138 | 0 | transformers | [
"transformers",
"safetensors",
"token-classification",
"custom_code",
"arxiv:1910.09700",
"autotrain_compatible",
"region:us"
]
| token-classification | 2024-04-01T21:11:29Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
SJChaudhuri/poolformer_s12-finetuned-IDRiD | SJChaudhuri | 2024-04-01T21:11:37Z | 220 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"poolformer",
"image-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| image-classification | 2024-04-01T20:44:13Z | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: poolformer_s12-finetuned-IDRiD
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# poolformer_s12-finetuned-IDRiD
This model is a fine-tuned version of [sail/poolformer_s12](https://huggingface.co/sail/poolformer_s12) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0484
- Accuracy: 0.4762
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 30
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 3 | 1.6953 | 0.0238 |
| No log | 2.0 | 6 | 1.6010 | 0.3333 |
| No log | 3.0 | 9 | 1.5131 | 0.2857 |
| 1.5842 | 4.0 | 12 | 1.4584 | 0.3810 |
| 1.5842 | 5.0 | 15 | 1.4097 | 0.4286 |
| 1.5842 | 6.0 | 18 | 1.3579 | 0.4524 |
| 1.2645 | 7.0 | 21 | 1.3034 | 0.4762 |
| 1.2645 | 8.0 | 24 | 1.2696 | 0.4762 |
| 1.2645 | 9.0 | 27 | 1.2298 | 0.4524 |
| 1.1011 | 10.0 | 30 | 1.2088 | 0.4762 |
| 1.1011 | 11.0 | 33 | 1.1945 | 0.4048 |
| 1.1011 | 12.0 | 36 | 1.1898 | 0.4524 |
| 1.1011 | 13.0 | 39 | 1.1668 | 0.4524 |
| 1.0024 | 14.0 | 42 | 1.1484 | 0.4286 |
| 1.0024 | 15.0 | 45 | 1.1374 | 0.4524 |
| 1.0024 | 16.0 | 48 | 1.1289 | 0.4524 |
| 0.9111 | 17.0 | 51 | 1.1166 | 0.4524 |
| 0.9111 | 18.0 | 54 | 1.1081 | 0.4286 |
| 0.9111 | 19.0 | 57 | 1.1011 | 0.4048 |
| 0.876 | 20.0 | 60 | 1.1005 | 0.4286 |
| 0.876 | 21.0 | 63 | 1.0999 | 0.4524 |
| 0.876 | 22.0 | 66 | 1.0933 | 0.4524 |
| 0.876 | 23.0 | 69 | 1.0714 | 0.4762 |
| 0.8375 | 24.0 | 72 | 1.0551 | 0.4762 |
| 0.8375 | 25.0 | 75 | 1.0427 | 0.4762 |
| 0.8375 | 26.0 | 78 | 1.0386 | 0.4762 |
| 0.8085 | 27.0 | 81 | 1.0413 | 0.4524 |
| 0.8085 | 28.0 | 84 | 1.0462 | 0.4762 |
| 0.8085 | 29.0 | 87 | 1.0480 | 0.4762 |
| 0.8125 | 30.0 | 90 | 1.0484 | 0.4762 |
### Framework versions
- Transformers 4.30.0
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.13.3
|
MnLgt/controlnet-depth-anything | MnLgt | 2024-04-01T21:11:37Z | 2 | 2 | diffusers | [
"diffusers",
"safetensors",
"arxiv:1910.09700",
"region:us"
]
| null | 2024-04-01T21:10:48Z | ---
library_name: diffusers
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🧨 diffusers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
happylayers/s3 | happylayers | 2024-04-01T21:09:14Z | 91 | 0 | transformers | [
"transformers",
"safetensors",
"stablelm",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| text-generation | 2024-04-01T21:04:22Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
rajevan123/STS-conventional-Fine-Tuning-Capstone-roberta-base-filtered-200 | rajevan123 | 2024-04-01T21:06:58Z | 107 | 0 | transformers | [
"transformers",
"safetensors",
"roberta",
"text-classification",
"generated_from_trainer",
"base_model:FacebookAI/roberta-base",
"base_model:finetune:FacebookAI/roberta-base",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| text-classification | 2024-04-01T20:52:25Z | ---
license: mit
base_model: FacebookAI/roberta-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: STS-conventional-Fine-Tuning-Capstone-roberta-base-filtered-200
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# STS-conventional-Fine-Tuning-Capstone-roberta-base-filtered-200
This model is a fine-tuned version of [FacebookAI/roberta-base](https://huggingface.co/FacebookAI/roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.1218
- Accuracy: 0.7322
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 113 | 0.7870 | 0.6704 |
| No log | 2.0 | 226 | 0.7207 | 0.6779 |
| No log | 3.0 | 339 | 0.7853 | 0.7022 |
| No log | 4.0 | 452 | 0.8490 | 0.6742 |
| 0.513 | 5.0 | 565 | 1.0300 | 0.6835 |
| 0.513 | 6.0 | 678 | 1.1645 | 0.7060 |
| 0.513 | 7.0 | 791 | 1.4119 | 0.7210 |
| 0.513 | 8.0 | 904 | 1.5641 | 0.7154 |
| 0.1552 | 9.0 | 1017 | 1.7410 | 0.6966 |
| 0.1552 | 10.0 | 1130 | 1.8357 | 0.7228 |
| 0.1552 | 11.0 | 1243 | 1.9442 | 0.7116 |
| 0.1552 | 12.0 | 1356 | 1.9521 | 0.7266 |
| 0.1552 | 13.0 | 1469 | 2.0899 | 0.7172 |
| 0.0481 | 14.0 | 1582 | 2.1138 | 0.7210 |
| 0.0481 | 15.0 | 1695 | 2.1218 | 0.7322 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|
jasonsgraham/ppo-LunarLander-v2 | jasonsgraham | 2024-04-01T21:01:43Z | 0 | 0 | stable-baselines3 | [
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
]
| reinforcement-learning | 2024-04-01T21:01:18Z | ---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 265.83 +/- 20.21
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
Mughees11/denim_jacket_1_LoRA_1500e | Mughees11 | 2024-04-01T21:00:27Z | 0 | 0 | diffusers | [
"diffusers",
"tensorboard",
"text-to-image",
"diffusers-training",
"lora",
"template:sd-lora",
"stable-diffusion-xl",
"stable-diffusion-xl-diffusers",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:openrail++",
"region:us"
]
| text-to-image | 2024-04-01T21:00:12Z | ---
license: openrail++
library_name: diffusers
tags:
- text-to-image
- text-to-image
- diffusers-training
- diffusers
- lora
- template:sd-lora
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: a photo of GCJ jacket
widget: []
---
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# SDXL LoRA DreamBooth - Mughees11/denim_jacket_1_LoRA_1500e
<Gallery />
## Model description
These are Mughees11/denim_jacket_1_LoRA_1500e LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.
The weights were trained using [DreamBooth](https://dreambooth.github.io/).
LoRA for the text encoder was enabled: False.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
## Trigger words
You should use a photo of GCJ jacket to trigger the image generation.
## Download model
Weights for this model are available in Safetensors format.
[Download](Mughees11/denim_jacket_1_LoRA_1500e/tree/main) them in the Files & versions tab.
## Intended uses & limitations
#### How to use
```python
# TODO: add an example code snippet for running this diffusion pipeline
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training details
[TODO: describe the data used to train the model] |
Subsets and Splits