modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-06-29 06:27:49
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 502
values | tags
sequencelengths 1
4.05k
| pipeline_tag
stringclasses 54
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-06-29 06:23:06
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
quangtran199hust/layoutlmv2_roige | quangtran199hust | 2021-10-28T07:32:00Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"layoutlmv2",
"token-classification",
"generated_from_trainer",
"license:cc-by-sa-4.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | token-classification | 2022-03-02T23:29:05Z | ---
license: cc-by-sa-4.0
tags:
- generated_from_trainer
model-index:
- name: layoutlmv2_roige
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# layoutlmv2_roige
This model is a fine-tuned version of [microsoft/layoutlmv2-base-uncased](https://huggingface.co/microsoft/layoutlmv2-base-uncased) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 1000
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.12.0.dev0
- Pytorch 1.8.0+cu101
- Datasets 1.14.0
- Tokenizers 0.10.3
|
aditeyabaral/sentencetransformer-indic-bert | aditeyabaral | 2021-10-28T02:17:50Z | 8 | 0 | sentence-transformers | [
"sentence-transformers",
"pytorch",
"albert",
"feature-extraction",
"sentence-similarity",
"transformers",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | sentence-similarity | 2022-03-02T23:29:05Z | ---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
---
# aditeyabaral/sentencetransformer-indic-bert
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('aditeyabaral/sentencetransformer-indic-bert')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('aditeyabaral/sentencetransformer-indic-bert')
model = AutoModel.from_pretrained('aditeyabaral/sentencetransformer-indic-bert')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=aditeyabaral/sentencetransformer-indic-bert)
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 9234 with parameters:
```
{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
Parameters of the fit()-Method:
```
{
"epochs": 10,
"evaluation_steps": 0,
"evaluator": "NoneType",
"max_grad_norm": 1,
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 100,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: AlbertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
<!--- Describe where people can find more information --> |
patrickvonplaten/sew-d-mid-400k-librispeech-clean-100h-ft | patrickvonplaten | 2021-10-27T23:44:33Z | 6 | 1 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"sew-d",
"automatic-speech-recognition",
"librispeech_asr",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- automatic-speech-recognition
- librispeech_asr
- generated_from_trainer
model-index:
- name: sew-d-mid-400k-librispeech-clean-100h-ft
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# sew-d-mid-400k-librispeech-clean-100h-ft
This model is a fine-tuned version of [asapp/sew-d-mid-400k](https://huggingface.co/asapp/sew-d-mid-400k) on the LIBRISPEECH_ASR - CLEAN dataset.
It achieves the following results on the evaluation set:
- Loss: 2.3540
- Wer: 1.0536
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 32
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 3.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 7.319 | 0.11 | 100 | 11.0572 | 1.0 |
| 3.6726 | 0.22 | 200 | 4.2003 | 1.0 |
| 2.981 | 0.34 | 300 | 3.5742 | 0.9919 |
| 2.9411 | 0.45 | 400 | 3.2599 | 1.0 |
| 2.903 | 0.56 | 500 | 2.9350 | 1.0 |
| 2.8597 | 0.67 | 600 | 2.9514 | 1.0 |
| 2.7771 | 0.78 | 700 | 2.8521 | 1.0 |
| 2.7926 | 0.9 | 800 | 2.7821 | 1.0120 |
| 2.6623 | 1.01 | 900 | 2.7027 | 0.9924 |
| 2.5893 | 1.12 | 1000 | 2.6667 | 1.0240 |
| 2.5733 | 1.23 | 1100 | 2.6341 | 1.0368 |
| 2.5455 | 1.35 | 1200 | 2.5928 | 1.0411 |
| 2.4919 | 1.46 | 1300 | 2.5695 | 1.0817 |
| 2.5182 | 1.57 | 1400 | 2.5559 | 1.1072 |
| 2.4766 | 1.68 | 1500 | 2.5229 | 1.1257 |
| 2.4267 | 1.79 | 1600 | 2.4991 | 1.1151 |
| 2.3919 | 1.91 | 1700 | 2.4768 | 1.1139 |
| 2.3883 | 2.02 | 1800 | 2.4452 | 1.0636 |
| 2.3737 | 2.13 | 1900 | 2.4304 | 1.0594 |
| 2.3569 | 2.24 | 2000 | 2.4095 | 1.0539 |
| 2.3641 | 2.35 | 2100 | 2.3997 | 1.0511 |
| 2.3281 | 2.47 | 2200 | 2.3856 | 1.0414 |
| 2.2912 | 2.58 | 2300 | 2.3750 | 1.0696 |
| 2.3028 | 2.69 | 2400 | 2.3684 | 1.0436 |
| 2.2906 | 2.8 | 2500 | 2.3613 | 1.0538 |
| 2.2822 | 2.91 | 2600 | 2.3558 | 1.0506 |
### Framework versions
- Transformers 4.12.0.dev0
- Pytorch 1.9.0+cu111
- Datasets 1.13.4.dev0
- Tokenizers 0.10.3
|
jwuthri/autonlp-shipping_status_2-27366103 | jwuthri | 2021-10-27T21:34:42Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"distilbert",
"text-classification",
"autonlp",
"unk",
"dataset:jwuthri/autonlp-data-shipping_status_2",
"co2_eq_emissions",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2022-03-02T23:29:05Z | ---
tags: autonlp
language: unk
widget:
- text: "I love AutoNLP 🤗"
datasets:
- jwuthri/autonlp-data-shipping_status_2
co2_eq_emissions: 32.912881644048
---
# Model Trained Using AutoNLP
- Problem type: Binary Classification
- Model ID: 27366103
- CO2 Emissions (in grams): 32.912881644048
## Validation Metrics
- Loss: 0.18175844848155975
- Accuracy: 0.9437683592110785
- Precision: 0.9416809605488851
- Recall: 0.8459167950693375
- AUC: 0.9815242330050846
- F1: 0.8912337662337663
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/jwuthri/autonlp-shipping_status_2-27366103
```
Or Python API:
```
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("jwuthri/autonlp-shipping_status_2-27366103", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("jwuthri/autonlp-shipping_status_2-27366103", use_auth_token=True)
inputs = tokenizer("I love AutoNLP", return_tensors="pt")
outputs = model(**inputs)
``` |
anton-l/distilhubert-ft-common-language | anton-l | 2021-10-27T21:29:13Z | 12 | 2 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"hubert",
"audio-classification",
"generated_from_trainer",
"dataset:common_language",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | audio-classification | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- audio-classification
- generated_from_trainer
datasets:
- common_language
metrics:
- accuracy
model-index:
- name: distilhubert-ft-common-language
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilhubert-ft-common-language
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the common_language dataset.
It achieves the following results on the evaluation set:
- Loss: 2.7214
- Accuracy: 0.2797
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 4
- seed: 0
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 3.6543 | 1.0 | 173 | 3.7611 | 0.0491 |
| 3.2221 | 2.0 | 346 | 3.4868 | 0.1352 |
| 2.9332 | 3.0 | 519 | 3.2732 | 0.1861 |
| 2.7299 | 4.0 | 692 | 3.0944 | 0.2172 |
| 2.5638 | 5.0 | 865 | 2.9790 | 0.2400 |
| 2.3871 | 6.0 | 1038 | 2.8668 | 0.2590 |
| 2.3384 | 7.0 | 1211 | 2.7972 | 0.2653 |
| 2.2648 | 8.0 | 1384 | 2.7625 | 0.2695 |
| 2.2162 | 9.0 | 1557 | 2.7405 | 0.2782 |
| 2.1915 | 10.0 | 1730 | 2.7214 | 0.2797 |
### Framework versions
- Transformers 4.12.0.dev0
- Pytorch 1.9.1+cu111
- Datasets 1.14.0
- Tokenizers 0.10.3
|
huggingtweets/void_vomicae | huggingtweets | 2021-10-27T21:01:11Z | 3 | 0 | transformers | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:05Z | ---
language: en
thumbnail: https://www.huggingtweets.com/void_vomicae/1635368467642/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1452295981517742087/v8HfhHLT_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">《 𝚟 o̶ 𝚒 𝚍 》</div>
<div style="text-align: center; font-size: 14px;">@void_vomicae</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from 《 𝚟 o̶ 𝚒 𝚍 》.
| Data | 《 𝚟 o̶ 𝚒 𝚍 》 |
| --- | --- |
| Tweets downloaded | 2083 |
| Retweets | 417 |
| Short tweets | 422 |
| Tweets kept | 1244 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/fju0lp9t/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @void_vomicae's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1wos3ytc) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1wos3ytc/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/void_vomicae')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/universal_lucas-void_vomicae | huggingtweets | 2021-10-27T20:48:34Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:05Z | ---
language: en
thumbnail: https://www.huggingtweets.com/universal_lucas-void_vomicae/1635367710499/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1433429860358049800/y-stiIg9_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1452295981517742087/v8HfhHLT_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">GWF HeyGirl & 《 𝚟 o̶ 𝚒 𝚍 》</div>
<div style="text-align: center; font-size: 14px;">@universal_lucas-void_vomicae</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from GWF HeyGirl & 《 𝚟 o̶ 𝚒 𝚍 》.
| Data | GWF HeyGirl | 《 𝚟 o̶ 𝚒 𝚍 》 |
| --- | --- | --- |
| Tweets downloaded | 292 | 2083 |
| Retweets | 46 | 417 |
| Short tweets | 30 | 422 |
| Tweets kept | 216 | 1244 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3hd0b7j8/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @universal_lucas-void_vomicae's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/24n8knho) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/24n8knho/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/universal_lucas-void_vomicae')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
prajjwal1/bert-small | prajjwal1 | 2021-10-27T18:31:52Z | 442,830 | 23 | transformers | [
"transformers",
"pytorch",
"BERT",
"MNLI",
"NLI",
"transformer",
"pre-training",
"en",
"arxiv:1908.08962",
"arxiv:2110.01518",
"license:mit",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
language:
- en
license:
- mit
tags:
- BERT
- MNLI
- NLI
- transformer
- pre-training
---
The following model is a Pytorch pre-trained model obtained from converting Tensorflow checkpoint found in the [official Google BERT repository](https://github.com/google-research/bert).
This is one of the smaller pre-trained BERT variants, together with [bert-tiny](https://huggingface.co/prajjwal1/bert-small), [bert-mini]([bert-small](https://huggingface.co/prajjwal1/bert-mini) and [bert-medium](https://huggingface.co/prajjwal1/bert-medium). They were introduced in the study `Well-Read Students Learn Better: On the Importance of Pre-training Compact Models` ([arxiv](https://arxiv.org/abs/1908.08962)), and ported to HF for the study `Generalization in NLI: Ways (Not) To Go Beyond Simple Heuristics` ([arXiv](https://arxiv.org/abs/2110.01518)). These models are supposed to be trained on a downstream task.
If you use the model, please consider citing both the papers:
```
@misc{bhargava2021generalization,
title={Generalization in NLI: Ways (Not) To Go Beyond Simple Heuristics},
author={Prajjwal Bhargava and Aleksandr Drozd and Anna Rogers},
year={2021},
eprint={2110.01518},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
@article{DBLP:journals/corr/abs-1908-08962,
author = {Iulia Turc and
Ming{-}Wei Chang and
Kenton Lee and
Kristina Toutanova},
title = {Well-Read Students Learn Better: The Impact of Student Initialization
on Knowledge Distillation},
journal = {CoRR},
volume = {abs/1908.08962},
year = {2019},
url = {http://arxiv.org/abs/1908.08962},
eprinttype = {arXiv},
eprint = {1908.08962},
timestamp = {Thu, 29 Aug 2019 16:32:34 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-1908-08962.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
Config of this model:
- `prajjwal1/bert-small` (L=4, H=512) [Model Link](https://huggingface.co/prajjwal1/bert-small)
Other models to check out:
- `prajjwal1/bert-tiny` (L=2, H=128) [Model Link](https://huggingface.co/prajjwal1/bert-tiny)
- `prajjwal1/bert-mini` (L=4, H=256) [Model Link](https://huggingface.co/prajjwal1/bert-mini)
- `prajjwal1/bert-medium` (L=8, H=512) [Model Link](https://huggingface.co/prajjwal1/bert-medium)
Original Implementation and more info can be found in [this Github repository](https://github.com/prajjwal1/generalize_lm_nli).
Twitter: [@prajjwal_1](https://twitter.com/prajjwal_1)
|
prajjwal1/bert-medium | prajjwal1 | 2021-10-27T18:30:16Z | 37,177 | 3 | transformers | [
"transformers",
"pytorch",
"BERT",
"MNLI",
"NLI",
"transformer",
"pre-training",
"en",
"arxiv:1908.08962",
"arxiv:2110.01518",
"license:mit",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
language:
- en
license:
- mit
tags:
- BERT
- MNLI
- NLI
- transformer
- pre-training
---
The following model is a Pytorch pre-trained model obtained from converting Tensorflow checkpoint found in the [official Google BERT repository](https://github.com/google-research/bert).
This is one of the smaller pre-trained BERT variants, together with [bert-tiny](https://huggingface.co/prajjwal1/bert-tiny), [bert-mini](https://huggingface.co/prajjwal1/bert-mini) and [bert-small](https://huggingface.co/prajjwal1/bert-small). They were introduced in the study `Well-Read Students Learn Better: On the Importance of Pre-training Compact Models` ([arxiv](https://arxiv.org/abs/1908.08962)), and ported to HF for the study `Generalization in NLI: Ways (Not) To Go Beyond Simple Heuristics` ([arXiv](https://arxiv.org/abs/2110.01518)). These models are supposed to be trained on a downstream task.
If you use the model, please consider citing both the papers:
```
@misc{bhargava2021generalization,
title={Generalization in NLI: Ways (Not) To Go Beyond Simple Heuristics},
author={Prajjwal Bhargava and Aleksandr Drozd and Anna Rogers},
year={2021},
eprint={2110.01518},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
@article{DBLP:journals/corr/abs-1908-08962,
author = {Iulia Turc and
Ming{-}Wei Chang and
Kenton Lee and
Kristina Toutanova},
title = {Well-Read Students Learn Better: The Impact of Student Initialization
on Knowledge Distillation},
journal = {CoRR},
volume = {abs/1908.08962},
year = {2019},
url = {http://arxiv.org/abs/1908.08962},
eprinttype = {arXiv},
eprint = {1908.08962},
timestamp = {Thu, 29 Aug 2019 16:32:34 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-1908-08962.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
Config of this model:
- `prajjwal1/bert-medium` (L=8, H=512) [Model Link](https://huggingface.co/prajjwal1/bert-medium)
Other models to check out:
- `prajjwal1/bert-tiny` (L=2, H=128) [Model Link](https://huggingface.co/prajjwal1/bert-tiny)
- `prajjwal1/bert-mini` (L=4, H=256) [Model Link](https://huggingface.co/prajjwal1/bert-mini)
- `prajjwal1/bert-small` (L=4, H=512) [Model Link](https://huggingface.co/prajjwal1/bert-small)
Original Implementation and more info can be found in [this Github repository](https://github.com/prajjwal1/generalize_lm_nli).
Twitter: [@prajjwal_1](https://twitter.com/prajjwal_1)
|
prajjwal1/bert-tiny | prajjwal1 | 2021-10-27T18:29:01Z | 487,487 | 103 | transformers | [
"transformers",
"pytorch",
"BERT",
"MNLI",
"NLI",
"transformer",
"pre-training",
"en",
"arxiv:1908.08962",
"arxiv:2110.01518",
"license:mit",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
language:
- en
license:
- mit
tags:
- BERT
- MNLI
- NLI
- transformer
- pre-training
---
The following model is a Pytorch pre-trained model obtained from converting Tensorflow checkpoint found in the [official Google BERT repository](https://github.com/google-research/bert).
This is one of the smaller pre-trained BERT variants, together with [bert-mini](https://huggingface.co/prajjwal1/bert-mini) [bert-small](https://huggingface.co/prajjwal1/bert-small) and [bert-medium](https://huggingface.co/prajjwal1/bert-medium). They were introduced in the study `Well-Read Students Learn Better: On the Importance of Pre-training Compact Models` ([arxiv](https://arxiv.org/abs/1908.08962)), and ported to HF for the study `Generalization in NLI: Ways (Not) To Go Beyond Simple Heuristics` ([arXiv](https://arxiv.org/abs/2110.01518)). These models are supposed to be trained on a downstream task.
If you use the model, please consider citing both the papers:
```
@misc{bhargava2021generalization,
title={Generalization in NLI: Ways (Not) To Go Beyond Simple Heuristics},
author={Prajjwal Bhargava and Aleksandr Drozd and Anna Rogers},
year={2021},
eprint={2110.01518},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
@article{DBLP:journals/corr/abs-1908-08962,
author = {Iulia Turc and
Ming{-}Wei Chang and
Kenton Lee and
Kristina Toutanova},
title = {Well-Read Students Learn Better: The Impact of Student Initialization
on Knowledge Distillation},
journal = {CoRR},
volume = {abs/1908.08962},
year = {2019},
url = {http://arxiv.org/abs/1908.08962},
eprinttype = {arXiv},
eprint = {1908.08962},
timestamp = {Thu, 29 Aug 2019 16:32:34 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-1908-08962.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
Config of this model:
- `prajjwal1/bert-tiny` (L=2, H=128) [Model Link](https://huggingface.co/prajjwal1/bert-tiny)
Other models to check out:
- `prajjwal1/bert-mini` (L=4, H=256) [Model Link](https://huggingface.co/prajjwal1/bert-mini)
- `prajjwal1/bert-small` (L=4, H=512) [Model Link](https://huggingface.co/prajjwal1/bert-small)
- `prajjwal1/bert-medium` (L=8, H=512) [Model Link](https://huggingface.co/prajjwal1/bert-medium)
Original Implementation and more info can be found in [this Github repository](https://github.com/prajjwal1/generalize_lm_nli).
Twitter: [@prajjwal_1](https://twitter.com/prajjwal_1)
|
patrickvonplaten/sew-d-small-100k-timit | patrickvonplaten | 2021-10-27T17:15:26Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"sew-d",
"automatic-speech-recognition",
"timit_asr",
"generated_from_trainer",
"dataset:timit_asr",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- automatic-speech-recognition
- timit_asr
- generated_from_trainer
datasets:
- timit_asr
model-index:
- name: sew-d-small-100k-timit
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# sew-d-small-100k-timit
This model is a fine-tuned version of [asapp/sew-d-small-100k](https://huggingface.co/asapp/sew-d-small-100k) on the TIMIT_ASR - NA dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7541
- Wer: 0.8061
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 20.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 4.2068 | 0.69 | 100 | 4.0802 | 1.0 |
| 2.9805 | 1.38 | 200 | 2.9792 | 1.0 |
| 2.9781 | 2.07 | 300 | 2.9408 | 1.0 |
| 2.9655 | 2.76 | 400 | 2.9143 | 1.0 |
| 2.8953 | 3.45 | 500 | 2.8775 | 1.0 |
| 2.7718 | 4.14 | 600 | 2.7787 | 1.0 |
| 2.6711 | 4.83 | 700 | 2.6401 | 0.9786 |
| 2.6403 | 5.52 | 800 | 2.5435 | 1.0392 |
| 2.4052 | 6.21 | 900 | 2.4580 | 1.0706 |
| 2.1708 | 6.9 | 1000 | 2.2800 | 1.0090 |
| 2.2555 | 7.59 | 1100 | 2.1493 | 0.9579 |
| 2.3673 | 8.28 | 1200 | 2.0709 | 0.9051 |
| 2.091 | 8.97 | 1300 | 2.0258 | 0.8926 |
| 1.8433 | 9.66 | 1400 | 1.9645 | 0.8243 |
| 1.6824 | 10.34 | 1500 | 1.9211 | 0.8707 |
| 2.2282 | 11.03 | 1600 | 1.8914 | 0.8695 |
| 1.9027 | 11.72 | 1700 | 1.8718 | 0.8343 |
| 1.6303 | 12.41 | 1800 | 1.8646 | 0.8232 |
| 1.648 | 13.1 | 1900 | 1.8297 | 0.8177 |
| 2.0429 | 13.79 | 2000 | 1.8127 | 0.8642 |
| 1.8833 | 14.48 | 2100 | 1.8005 | 0.8307 |
| 1.5996 | 15.17 | 2200 | 1.7926 | 0.8467 |
| 1.4876 | 15.86 | 2300 | 1.7795 | 0.8341 |
| 1.8925 | 16.55 | 2400 | 1.7716 | 0.8199 |
| 1.814 | 17.24 | 2500 | 1.7846 | 0.8086 |
| 1.536 | 17.93 | 2600 | 1.7655 | 0.8019 |
| 1.4476 | 18.62 | 2700 | 1.7599 | 0.8070 |
| 1.7629 | 19.31 | 2800 | 1.7589 | 0.8119 |
| 1.7646 | 20.0 | 2900 | 1.7541 | 0.8061 |
### Framework versions
- Transformers 4.12.0.dev0
- Pytorch 1.8.1
- Datasets 1.14.1.dev0
- Tokenizers 0.10.3
|
patrickvonplaten/wav2vec2-large-xlsr-129-turkish-colab | patrickvonplaten | 2021-10-27T17:08:13Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"dataset:common_voice",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:05Z | ---
tags:
- generated_from_trainer
datasets:
- common_voice
model-index:
- name: wav2vec2-large-xlsr-129-turkish-colab
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xlsr-129-turkish-colab
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-129](https://huggingface.co/facebook/wav2vec2-large-xlsr-129) on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3149
- Wer: 0.4748
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 6.4837 | 3.67 | 400 | 3.2526 | 1.0 |
| 3.0896 | 7.34 | 800 | 2.8037 | 1.0 |
| 1.5604 | 11.01 | 1200 | 0.5688 | 0.6613 |
| 0.6511 | 14.68 | 1600 | 0.3998 | 0.5580 |
| 0.4798 | 18.35 | 2000 | 0.3505 | 0.5118 |
| 0.4047 | 22.02 | 2400 | 0.3273 | 0.4858 |
| 0.3519 | 25.69 | 2800 | 0.3224 | 0.4796 |
| 0.343 | 29.36 | 3200 | 0.3149 | 0.4748 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu102
- Datasets 1.13.3
- Tokenizers 0.10.3
|
en/distilbert-base-uncased-finetuned-squad | en | 2021-10-27T15:09:11Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | question-answering | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: distilbert-base-uncased-finetuned-squad
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-squad
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1453
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 1.2065 | 1.0 | 5577 | 1.1289 |
| 0.9226 | 2.0 | 11154 | 1.1019 |
| 0.7411 | 3.0 | 16731 | 1.1453 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.9.0+cu111
- Datasets 1.14.0
- Tokenizers 0.10.3
|
suwani/BERT_NER_Ep5_PAD_50-finetuned-ner | suwani | 2021-10-27T13:13:15Z | 3 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"bert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | token-classification | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: BERT_NER_Ep5_PAD_50-finetuned-ner
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# BERT_NER_Ep5_PAD_50-finetuned-ner
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3893
- Precision: 0.6540
- Recall: 0.7348
- F1: 0.6920
- Accuracy: 0.9006
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 7
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 288 | 0.3705 | 0.5852 | 0.6215 | 0.6028 | 0.8793 |
| 0.4885 | 2.0 | 576 | 0.3351 | 0.5925 | 0.7317 | 0.6548 | 0.8865 |
| 0.4885 | 3.0 | 864 | 0.3196 | 0.6471 | 0.7138 | 0.6788 | 0.8994 |
| 0.2172 | 4.0 | 1152 | 0.3368 | 0.6454 | 0.7323 | 0.6861 | 0.8992 |
| 0.2172 | 5.0 | 1440 | 0.3491 | 0.6507 | 0.7312 | 0.6886 | 0.9008 |
| 0.1459 | 6.0 | 1728 | 0.3833 | 0.6715 | 0.7018 | 0.6863 | 0.9013 |
| 0.1045 | 7.0 | 2016 | 0.3893 | 0.6540 | 0.7348 | 0.6920 | 0.9006 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.9.0+cu111
- Datasets 1.14.0
- Tokenizers 0.10.3
|
patrickvonplaten/unispeech-sat-base-timit-ft | patrickvonplaten | 2021-10-27T10:51:18Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"unispeech-sat",
"automatic-speech-recognition",
"timit_asr",
"generated_from_trainer",
"dataset:timit_asr",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:05Z | ---
tags:
- automatic-speech-recognition
- timit_asr
- generated_from_trainer
datasets:
- timit_asr
model-index:
- name: unispeech-sat-base-timit-ft
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# unispeech-sat-base-timit-ft
This model is a fine-tuned version of [microsoft/unispeech-sat-base](https://huggingface.co/microsoft/unispeech-sat-base) on the TIMIT_ASR - NA dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6712
- Wer: 0.4101
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 20.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 3.2582 | 0.69 | 100 | 3.1651 | 1.0 |
| 2.9542 | 1.38 | 200 | 2.9567 | 1.0 |
| 2.9656 | 2.07 | 300 | 2.9195 | 1.0 |
| 2.8946 | 2.76 | 400 | 2.8641 | 1.0 |
| 1.9305 | 3.45 | 500 | 1.7680 | 1.0029 |
| 1.0134 | 4.14 | 600 | 1.0184 | 0.6942 |
| 0.8355 | 4.83 | 700 | 0.7769 | 0.6080 |
| 0.8724 | 5.52 | 800 | 0.7182 | 0.6035 |
| 0.5619 | 6.21 | 900 | 0.6823 | 0.5406 |
| 0.4247 | 6.9 | 1000 | 0.6279 | 0.5237 |
| 0.4257 | 7.59 | 1100 | 0.6056 | 0.5000 |
| 0.5007 | 8.28 | 1200 | 0.5870 | 0.4918 |
| 0.3854 | 8.97 | 1300 | 0.6200 | 0.4804 |
| 0.264 | 9.66 | 1400 | 0.6030 | 0.4600 |
| 0.1989 | 10.34 | 1500 | 0.6049 | 0.4588 |
| 0.3196 | 11.03 | 1600 | 0.5946 | 0.4599 |
| 0.2622 | 11.72 | 1700 | 0.6282 | 0.4422 |
| 0.1697 | 12.41 | 1800 | 0.6559 | 0.4413 |
| 0.1464 | 13.1 | 1900 | 0.6349 | 0.4328 |
| 0.2277 | 13.79 | 2000 | 0.6133 | 0.4284 |
| 0.221 | 14.48 | 2100 | 0.6617 | 0.4219 |
| 0.1391 | 15.17 | 2200 | 0.6705 | 0.4235 |
| 0.112 | 15.86 | 2300 | 0.6207 | 0.4218 |
| 0.1717 | 16.55 | 2400 | 0.6749 | 0.4184 |
| 0.2081 | 17.24 | 2500 | 0.6756 | 0.4169 |
| 0.1244 | 17.93 | 2600 | 0.6750 | 0.4181 |
| 0.0978 | 18.62 | 2700 | 0.6500 | 0.4115 |
| 0.128 | 19.31 | 2800 | 0.6750 | 0.4106 |
| 0.1791 | 20.0 | 2900 | 0.6712 | 0.4101 |
### Framework versions
- Transformers 4.12.0.dev0
- Pytorch 1.8.1
- Datasets 1.14.1.dev0
- Tokenizers 0.10.3
|
patrickvonplaten/unispeech-large-1500h-cv-timit | patrickvonplaten | 2021-10-27T10:50:16Z | 5,699 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"unispeech",
"automatic-speech-recognition",
"timit_asr",
"generated_from_trainer",
"dataset:timit_asr",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:05Z | ---
tags:
- automatic-speech-recognition
- timit_asr
- generated_from_trainer
datasets:
- timit_asr
model-index:
- name: unispeech-large-1500h-cv-timit
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# unispeech-large-1500h-cv-timit
This model is a fine-tuned version of [microsoft/unispeech-large-1500h-cv](https://huggingface.co/microsoft/unispeech-large-1500h-cv) on the TIMIT_ASR - NA dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3099
- Wer: 0.2196
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 20.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 4.64 | 0.69 | 100 | 3.9717 | 0.9981 |
| 2.6793 | 1.38 | 200 | 2.6264 | 1.0 |
| 1.2221 | 2.07 | 300 | 0.9999 | 0.7167 |
| 0.9009 | 2.76 | 400 | 0.6509 | 0.5570 |
| 0.4352 | 3.45 | 500 | 0.4682 | 0.4332 |
| 0.227 | 4.14 | 600 | 0.3661 | 0.3565 |
| 0.2169 | 4.83 | 700 | 0.3244 | 0.3203 |
| 0.2687 | 5.52 | 800 | 0.3137 | 0.2981 |
| 0.127 | 6.21 | 900 | 0.3220 | 0.2828 |
| 0.0922 | 6.9 | 1000 | 0.3075 | 0.2708 |
| 0.0965 | 7.59 | 1100 | 0.2779 | 0.2576 |
| 0.1298 | 8.28 | 1200 | 0.3111 | 0.2480 |
| 0.0855 | 8.97 | 1300 | 0.3021 | 0.2421 |
| 0.0629 | 9.66 | 1400 | 0.3122 | 0.2511 |
| 0.0471 | 10.34 | 1500 | 0.2965 | 0.2368 |
| 0.0871 | 11.03 | 1600 | 0.3247 | 0.2387 |
| 0.0503 | 11.72 | 1700 | 0.3359 | 0.2363 |
| 0.0402 | 12.41 | 1800 | 0.2976 | 0.2332 |
| 0.0336 | 13.1 | 1900 | 0.3139 | 0.2321 |
| 0.0634 | 13.79 | 2000 | 0.3188 | 0.2309 |
| 0.0429 | 14.48 | 2100 | 0.3145 | 0.2335 |
| 0.028 | 15.17 | 2200 | 0.3244 | 0.2242 |
| 0.0255 | 15.86 | 2300 | 0.2914 | 0.2196 |
| 0.0406 | 16.55 | 2400 | 0.3249 | 0.2202 |
| 0.0512 | 17.24 | 2500 | 0.3037 | 0.2198 |
| 0.0269 | 17.93 | 2600 | 0.3218 | 0.2242 |
| 0.0287 | 18.62 | 2700 | 0.3106 | 0.2185 |
| 0.0319 | 19.31 | 2800 | 0.3124 | 0.2217 |
| 0.0494 | 20.0 | 2900 | 0.3099 | 0.2196 |
### Framework versions
- Transformers 4.12.0.dev0
- Pytorch 1.8.1
- Datasets 1.14.1.dev0
- Tokenizers 0.10.3
|
patrickvonplaten/wav2vec2-base-timit-fine-tuned | patrickvonplaten | 2021-10-27T10:49:08Z | 8 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"timit_asr",
"generated_from_trainer",
"dataset:timit_asr",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- automatic-speech-recognition
- timit_asr
- generated_from_trainer
datasets:
- timit_asr
model-index:
- name: wav2vec2-base-timit-fine-tuned
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-base-timit-fine-tuned
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the TIMIT_ASR - NA dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3457
- Wer: 0.2151
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 20.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 3.1621 | 0.69 | 100 | 3.1102 | 1.0 |
| 2.9592 | 1.38 | 200 | 2.9603 | 1.0 |
| 2.9116 | 2.07 | 300 | 2.8921 | 1.0 |
| 2.1332 | 2.76 | 400 | 1.9718 | 0.9958 |
| 0.8477 | 3.45 | 500 | 0.7813 | 0.5237 |
| 0.4251 | 4.14 | 600 | 0.5166 | 0.3982 |
| 0.3743 | 4.83 | 700 | 0.4400 | 0.3578 |
| 0.4194 | 5.52 | 800 | 0.4077 | 0.3370 |
| 0.23 | 6.21 | 900 | 0.4018 | 0.3142 |
| 0.1554 | 6.9 | 1000 | 0.3623 | 0.2995 |
| 0.1511 | 7.59 | 1100 | 0.3433 | 0.2697 |
| 0.1983 | 8.28 | 1200 | 0.3539 | 0.2715 |
| 0.1443 | 8.97 | 1300 | 0.3622 | 0.2551 |
| 0.0971 | 9.66 | 1400 | 0.3580 | 0.2519 |
| 0.0764 | 10.34 | 1500 | 0.3529 | 0.2437 |
| 0.1203 | 11.03 | 1600 | 0.3455 | 0.2431 |
| 0.0881 | 11.72 | 1700 | 0.3648 | 0.2415 |
| 0.0521 | 12.41 | 1800 | 0.3564 | 0.2320 |
| 0.0434 | 13.1 | 1900 | 0.3485 | 0.2270 |
| 0.0864 | 13.79 | 2000 | 0.3517 | 0.2228 |
| 0.0651 | 14.48 | 2100 | 0.3506 | 0.2285 |
| 0.0423 | 15.17 | 2200 | 0.3428 | 0.2247 |
| 0.0302 | 15.86 | 2300 | 0.3372 | 0.2198 |
| 0.0548 | 16.55 | 2400 | 0.3496 | 0.2196 |
| 0.0674 | 17.24 | 2500 | 0.3407 | 0.2166 |
| 0.0291 | 17.93 | 2600 | 0.3512 | 0.2171 |
| 0.0298 | 18.62 | 2700 | 0.3363 | 0.2158 |
| 0.0419 | 19.31 | 2800 | 0.3493 | 0.2145 |
| 0.046 | 20.0 | 2900 | 0.3457 | 0.2151 |
### Framework versions
- Transformers 4.12.0.dev0
- Pytorch 1.8.1
- Datasets 1.14.1.dev0
- Tokenizers 0.10.3
|
doc2query/S2ORC-t5-base-v1 | doc2query | 2021-10-27T10:04:09Z | 35 | 4 | transformers | [
"transformers",
"pytorch",
"t5",
"text2text-generation",
"en",
"dataset:S2ORC",
"arxiv:1904.08375",
"arxiv:2104.08663",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2022-03-02T23:29:05Z | ---
language: en
datasets:
- S2ORC
widget:
- text: "Python is an interpreted, high-level and general-purpose programming language. Python's design philosophy emphasizes code readability with its notable use of significant whitespace. Its language constructs and object-oriented approach aim to help programmers write clear, logical code for small and large-scale projects."
license: apache-2.0
---
# doc2query/S2ORC-t5-base-v1
This is a [doc2query](https://arxiv.org/abs/1904.08375) model based on T5 (also known as [docT5query](https://cs.uwaterloo.ca/~jimmylin/publications/Nogueira_Lin_2019_docTTTTTquery-v2.pdf)).
It can be used for:
- **Document expansion**: You generate for your paragraphs 20-40 queries and index the paragraphs and the generates queries in a standard BM25 index like Elasticsearch, OpenSearch, or Lucene. The generated queries help to close the lexical gap of lexical search, as the generate queries contain synonyms. Further, it re-weights words giving important words a higher weight even if they appear seldomn in a paragraph. In our [BEIR](https://arxiv.org/abs/2104.08663) paper we showed that BM25+docT5query is a powerful search engine. In the [BEIR repository](https://github.com/UKPLab/beir) we have an example how to use docT5query with Pyserini.
- **Domain Specific Training Data Generation**: It can be used to generate training data to learn an embedding model. On [SBERT.net](https://www.sbert.net/examples/unsupervised_learning/query_generation/README.html) we have an example how to use the model to generate (query, text) pairs for a given collection of unlabeled texts. These pairs can then be used to train powerful dense embedding models.
## Usage
```python
from transformers import T5Tokenizer, T5ForConditionalGeneration
model_name = 'doc2query/S2ORC-t5-base-v1'
tokenizer = T5Tokenizer.from_pretrained(model_name)
model = T5ForConditionalGeneration.from_pretrained(model_name)
text = "Python is an interpreted, high-level and general-purpose programming language. Python's design philosophy emphasizes code readability with its notable use of significant whitespace. Its language constructs and object-oriented approach aim to help programmers write clear, logical code for small and large-scale projects."
input_ids = tokenizer.encode(text, max_length=320, truncation=True, return_tensors='pt')
outputs = model.generate(
input_ids=input_ids,
max_length=64,
do_sample=True,
top_p=0.95,
num_return_sequences=5)
print("Text:")
print(text)
print("\nGenerated Queries:")
for i in range(len(outputs)):
query = tokenizer.decode(outputs[i], skip_special_tokens=True)
print(f'{i + 1}: {query}')
```
**Note:** `model.generate()` is non-deterministic. It produces different queries each time you run it.
## Training
This model fine-tuned [google/t5-v1_1-base](https://huggingface.co/google/t5-v1_1-base) for 156k training steps. For the training script, see the `train_script.py` in this repository.
The input-text was truncated to 320 word pieces. Output text was generated up to 64 word pieces.
This model was trained on a (title, abstract) pairs from [S2ORC](https://github.com/allenai/s2orc).
|
VariableZee/DialoGPT-small-ivylia03 | VariableZee | 2021-10-27T08:50:29Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:05Z | ---
tags:
- conversational
---
|
lighteternal/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext-finetuned-mnli | lighteternal | 2021-10-27T07:47:56Z | 188 | 4 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"bert",
"text-classification",
"textual-entailment",
"nli",
"en",
"dataset:mnli",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2022-03-02T23:29:05Z | ---
language: en
tags:
- textual-entailment
- nli
- pytorch
datasets:
- mnli
license: mit
widget :
- text: "EpCAM is overexpressed in breast cancer. </s></s> EpCAM is downregulated in breast cancer."
---
# BiomedNLP-PubMedBERT finetuned on textual entailment (NLI)
The [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext?text=%5BMASK%5D+is+a+tumor+suppressor+gene) finetuned on the MNLI dataset. It should be useful in textual entailment tasks involving biomedical corpora.
## Usage
Given two sentences (a premise and a hypothesis), the model outputs the logits of entailment, neutral or contradiction.
You can test the model using the HuggingFace model widget on the side:
- Input two sentences (premise and hypothesis) one after the other.
- The model returns the probabilities of 3 labels: entailment(LABEL:0), neutral(LABEL:1) and contradiction(LABEL:2) respectively.
To use the model locally on your machine:
```python
# import torch
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
from transformers import AutoTokenizer, AutoModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained("lighteternal/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext-finetuned-mnli")
model = AutoModelForSequenceClassification.from_pretrained("lighteternal/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext-finetuned-mnli")
premise = 'EpCAM is overexpressed in breast cancer'
hypothesis = 'EpCAM is downregulated in breast cancer.'
# run through model pre-trained on MNLI
x = tokenizer.encode(premise, hypothesis, return_tensors='pt',
truncation_strategy='only_first')
logits = model(x)[0]
probs = logits.softmax(dim=1)
print('Probabilities for entailment, neutral, contradiction \n', np.around(probs.cpu().
detach().numpy(),3))
# Probabilities for entailment, neutral, contradiction
# 0.001 0.001 0.998
```
## Metrics
Evaluation on classification accuracy (entailment, contradiction, neutral) on MNLI test set:
| Metric | Value |
| --- | --- |
| Accuracy | 0.8338|
See Training Metrics tab for detailed info. |
espnet/pengcheng_guo_wenetspeech_asr_train_asr_raw_zh_char | espnet | 2021-10-27T02:55:53Z | 3 | 11 | espnet | [
"espnet",
"audio",
"automatic-speech-recognition",
"zh",
"dataset:wenetspeech",
"license:cc-by-4.0",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:05Z | ---
tags:
- espnet
- audio
- automatic-speech-recognition
language: zh
datasets:
- wenetspeech
license: cc-by-4.0
---
## ESPnet2 ASR model
### `espnet/pengcheng_guo_wenetspeech_asr_train_asr_raw_zh_char`
This model was trained by Pengcheng Guo using wenetspeech recipe in [espnet](https://github.com/espnet/espnet/).
### Demo: How to use in ESPnet2
```bash
cd espnet
git checkout 5c21f63e45e0961a5d817017c282b0cafd68a3aa
pip install -e .
cd egs2/wenetspeech/asr1
./run.sh --skip_data_prep false --skip_train true --download_model espnet/pengcheng_guo_wenetspeech_asr_train_asr_raw_zh_char
```
<!-- Generated by scripts/utils/show_asr_result.sh -->
# RESULTS
## Environments
- date: `Wed Oct 6 15:11:20 CST 2021`
- python version: `3.8.11 (default, Aug 3 2021, 15:09:35) [GCC 7.5.0]`
- espnet version: `espnet 0.10.2a1`
- pytorch version: `pytorch 1.9.0`
- Git hash: ``
- Commit date: ``
## asr_train_asr_conformer_raw_zh_char
### WER
|dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err|
|---|---|---|---|---|---|---|---|---|
|decode_asr_rnn_asr_model_valid.acc.ave_10best/aishell_test|7176|7176|67.1|32.9|0.0|0.1|33.0|32.9|
|decode_asr_rnn_asr_model_valid.acc.ave_10best/dev|13825|16684|32.1|54.1|13.8|0.1|68.0|64.2|
|decode_asr_rnn_asr_model_valid.acc.ave_10best/test_meeting|8370|8599|13.4|84.6|2.0|0.1|86.7|86.8|
|decode_asr_rnn_asr_model_valid.acc.ave_10best/test_net|24774|25995|46.2|50.4|3.4|1.1|54.9|52.5|
### CER
|dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err|
|---|---|---|---|---|---|---|---|---|
|decode_asr_rnn_asr_model_valid.acc.ave_10best/aishell_test|7176|104765|96.3|3.6|0.1|0.2|3.9|32.9|
|decode_asr_rnn_asr_model_valid.acc.ave_10bestdev|13825|333357|90.7|3.4|5.9|0.4|9.7|64.2|
|decode_asr_rnn_asr_model_valid.acc.ave_10best/test_meeting|8370|220614|84.6|5.0|10.4|0.5|15.9|86.8|
|decode_asr_rnn_asr_model_valid.acc.ave_10best/test_net|24774|416968|91.8|5.3|2.9|0.6|8.8|52.5|
### TER
|dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err|
|---|---|---|---|---|---|---|---|---|
## ASR config
<details><summary>expand</summary>
```
config: conf/train_asr_conformer.yaml
print_config: false
log_level: INFO
dry_run: false
iterator_type: sequence
output_dir: exp/asr_train_asr_conformer_raw_zh_char
ngpu: 1
seed: 0
num_workers: 1
num_att_plot: 3
dist_backend: nccl
dist_init_method: env://
dist_world_size: 8
dist_rank: 0
local_rank: 0
dist_master_addr: localhost
dist_master_port: 44205
dist_launcher: null
multiprocessing_distributed: true
unused_parameters: false
sharded_ddp: false
cudnn_enabled: true
cudnn_benchmark: false
cudnn_deterministic: true
collect_stats: false
write_collected_feats: false
max_epoch: 30
patience: null
val_scheduler_criterion:
- valid
- acc
early_stopping_criterion:
- valid
- loss
- min
best_model_criterion:
- - valid
- acc
- max
keep_nbest_models: 10
grad_clip: 5
grad_clip_type: 2.0
grad_noise: false
accum_grad: 4
no_forward_run: false
resume: true
train_dtype: float32
use_amp: false
log_interval: null
use_tensorboard: true
use_wandb: false
wandb_project: null
wandb_id: null
wandb_entity: null
wandb_name: null
wandb_model_log_interval: -1
detect_anomaly: false
pretrain_path: null
init_param: []
ignore_init_mismatch: false
freeze_param: []
num_iters_per_epoch: null
batch_size: 20
valid_batch_size: null
batch_bins: 30000000
valid_batch_bins: null
train_shape_file:
- exp/asr_stats_raw_zh_char/train/speech_shape
- exp/asr_stats_raw_zh_char/train/text_shape.char
valid_shape_file:
- exp/asr_stats_raw_zh_char/valid/speech_shape
- exp/asr_stats_raw_zh_char/valid/text_shape.char
batch_type: numel
valid_batch_type: null
fold_length:
- 51200
- 150
sort_in_batch: descending
sort_batch: descending
multiple_iterator: false
chunk_length: 500
chunk_shift_ratio: 0.5
num_cache_chunks: 1024
train_data_path_and_name_and_type:
- - dump/raw/train_l/wav.scp
- speech
- sound
- - dump/raw/train_l/text
- text
- text
valid_data_path_and_name_and_type:
- - dump/raw/dev/wav.scp
- speech
- sound
- - dump/raw/dev/text
- text
- text
allow_variable_data_keys: false
max_cache_size: 0.0
max_cache_fd: 32
valid_max_cache_size: null
optim: adam
optim_conf:
lr: 0.0015
scheduler: warmuplr
scheduler_conf:
warmup_steps: 30000
token_list:
- <blank>
- <unk>
- 的
- 我
- 是
- 你
- 了
- 一
- 不
- 这
- 个
- 有
- 就
- 们
- 在
- 他
- 人
- 么
- 来
- 说
- 那
- 要
- 好
- 啊
- 大
- 到
- 上
- 也
- 没
- 都
- 去
- 能
- 子
- 会
- 为
- 得
- 时
- 还
- 可
- 以
- 什
- 家
- 后
- 看
- 呢
- 对
- 事
- 天
- 下
- 过
- 想
- 多
- 小
- 出
- 自
- 儿
- 生
- 给
- 里
- 现
- 着
- 然
- 吧
- 样
- 道
- 吗
- 心
- 跟
- 中
- 很
- 点
- 年
- 和
- 地
- 怎
- 知
- 十
- 老
- 当
- 把
- 话
- 别
- 所
- 之
- 情
- 实
- 开
- 面
- 回
- 行
- 国
- 做
- 己
- 经
- 如
- 真
- 起
- 候
- 些
- 让
- 发
- 她
- 觉
- 但
- 成
- 定
- 意
- 二
- 长
- 最
- 方
- 三
- 前
- 因
- 用
- 呀
- 种
- 只
- 走
- 其
- 问
- 再
- 果
- 而
- 分
- 两
- 打
- 学
- 间
- 您
- 本
- 于
- 明
- 手
- 公
- 听
- 比
- 作
- 女
- 太
- 今
- 从
- 关
- 妈
- 同
- 法
- 动
- 已
- 见
- 才
- 孩
- 感
- 吃
- 常
- 次
- 它
- 进
- 先
- 找
- 身
- 全
- 理
- 又
- 力
- 正
- 主
- 应
- 高
- 被
- 钱
- 快
- 等
- 头
- 重
- 车
- 谢
- 日
- 东
- 放
- 无
- 工
- 咱
- 哪
- 五
- 者
- 像
- 西
- 该
- 干
- 相
- 信
- 机
- 百
- 特
- 业
- 活
- 师
- 边
- 爱
- 友
- 新
- 外
- 位
- 更
- 直
- 几
- 第
- 非
- 四
- 题
- 接
- 少
- 哥
- 死
- 完
- 刚
- 电
- 气
- 安
- 爸
- 白
- 告
- 美
- 解
- 叫
- 月
- 带
- 欢
- 谁
- 体
- 喜
- 部
- 场
- 姐
- 军
- 万
- 结
- 合
- 难
- 八
- 每
- 目
- 亲
- 朋
- 认
- 总
- 加
- 通
- 办
- 马
- 件
- 受
- 任
- 请
- 住
- 王
- 思
- 门
- 名
- 平
- 系
- 文
- 帮
- 路
- 变
- 记
- 水
- 九
- 算
- 将
- 口
- 男
- 度
- 报
- 六
- 张
- 管
- 够
- 性
- 表
- 提
- 何
- 讲
- 期
- 拿
- 保
- 嘛
- 司
- 原
- 始
- 此
- 诉
- 处
- 清
- 内
- 产
- 金
- 晚
- 早
- 交
- 离
- 眼
- 队
- 七
- 入
- 山
- 代
- 市
- 海
- 物
- 零
- 望
- 世
- 婚
- 命
- 越
- 收
- 向
- 花
- 房
- 错
- 节
- 父
- 反
- 战
- 买
- 量
- 或
- 员
- 号
- 千
- 怕
- 底
- 且
- 品
- 民
- 化
- 爷
- 并
- 与
- 服
- 需
- 资
- 求
- 教
- 娘
- 医
- 数
- 院
- 书
- 利
- 往
- 确
- 各
- 单
- 风
- 送
- 必
- 条
- 包
- 准
- 光
- 整
- 病
- 弟
- 嗯
- 计
- 照
- 强
- 务
- 影
- 城
- 夫
- 俩
- 决
- 声
- 连
- 乐
- 息
- 远
- 北
- 至
- 饭
- 留
- 宝
- 神
- 近
- 考
- 备
- 案
- 界
- 容
- 况
- 母
- 较
- 持
- 证
- 选
- 制
- 程
- 喝
- 害
- 字
- 失
- 立
- 台
- 玩
- 查
- 块
- 便
- 挺
- 段
- 周
- 由
- 句
- 紧
- 李
- 据
- 杀
- 南
- 商
- 识
- 网
- 式
- 愿
- 传
- 流
- 消
- 伤
- 根
- 演
- 希
- 故
- 坐
- 建
- 注
- 许
- 调
- 共
- 空
- 半
- 却
- 酒
- 联
- 微
- 言
- 肯
- 赶
- 跑
- 笑
- 区
- 岁
- 红
- 达
- 官
- 轻
- 易
- 火
- 线
- 拉
- 首
- 导
- 团
- 慢
- 指
- 写
- 深
- 论
- 片
- 改
- 啥
- 满
- 步
- 音
- 功
- 聊
- 客
- 未
- 格
- 基
- 睡
- 观
- 份
- 视
- 色
- 价
- 政
- 转
- 终
- 复
- 啦
- 呃
- 阿
- 倒
- 义
- 警
- 林
- 使
- 科
- 运
- 苦
- 待
- 费
- 随
- 救
- 试
- 班
- 敢
- 精
- 及
- 术
- 造
- 续
- 养
- 展
- 答
- 绝
- 众
- 站
- 妹
- 差
- 谈
- 卖
- 播
- 创
- 领
- 象
- 志
- 投
- 习
- 兄
- 元
- 皇
- 专
- 态
- 急
- 局
- 兴
- 楚
- 飞
- 护
- 装
- 热
- 奶
- 取
- 设
- 游
- 读
- 福
- 药
- 担
- 历
- 忙
- 规
- 掉
- 刘
- 切
- 断
- 尽
- 社
- 久
- 支
- 板
- 星
- 姑
- 曾
- 突
- 除
- 华
- 责
- 排
- 京
- 值
- 士
- 统
- 换
- 德
- 衣
- 组
- 示
- 脸
- 刻
- 黑
- 遇
- 虽
- 顾
- 戏
- 怪
- 懂
- 叔
- 夜
- 陈
- 亮
- 江
- 兵
- 负
- 布
- 青
- 落
- 推
- 假
- 类
- 令
- 技
- 英
- 质
- 黄
- 治
- 形
- 助
- 球
- 歌
- 参
- 广
- 继
- 简
- 画
- 奇
- 陪
- 阳
- 险
- 须
- 念
- 迎
- 幸
- 抓
- 破
- 另
- 争
- 竟
- 户
- 律
- 择
- 究
- 龙
- 足
- 店
- 脑
- 斯
- 党
- 权
- 约
- 疑
- 议
- 严
- 密
- 克
- 存
- 穿
- 承
- 校
- 击
- 际
- 标
- 云
- 营
- 察
- 超
- 食
- 集
- 级
- 礼
- 静
- 背
- 武
- 初
- 拍
- 梦
- 验
- 响
- 角
- 石
- 股
- 追
- 怀
- 婆
- 适
- 独
- 忘
- 血
- 醒
- 具
- 罪
- 享
- 毛
- 香
- 状
- 配
- 靠
- 语
- 仅
- 低
- 细
- 米
- 既
- 钟
- 极
- 停
- 味
- 则
- 油
- 器
- 楼
- 菜
- 研
- 互
- 压
- 贵
- 村
- 属
- 派
- 乎
- 坏
- 控
- 显
- 图
- 双
- 职
- 永
- 哈
- 鬼
- 依
- 料
- 按
- 府
- 坚
- 某
- 甚
- 居
- 练
- 顺
- 模
- 即
- 州
- 引
- 乱
- 速
- 庭
- 朝
- 室
- 似
- 付
- 划
- 尔
- 境
- 犯
- 烦
- 环
- 伙
- 巴
- 春
- 古
- 妇
- 势
- 款
- 增
- 财
- 河
- 守
- 虑
- 汉
- 枪
- 妻
- 爹
- 弄
- 委
- 企
- 冲
- 置
- 麻
- 育
- 项
- 防
- 胡
- 杨
- 致
- 辈
- 括
- 毕
- 卫
- 修
- 史
- 型
- 牌
- 嘴
- 苏
- 群
- 举
- 痛
- 座
- 概
- 搞
- 围
- 土
- 毒
- 唱
- 冷
- 累
- 玉
- 获
- 误
- 跳
- 脚
- 雨
- 剧
- 休
- 皮
- 止
- 济
- 肉
- 丽
- 借
- 铁
- 牛
- 哭
- 招
- 闹
- 银
- 优
- 温
- 狗
- 退
- 洗
- 拜
- 否
- 票
- 偷
- 抱
- 博
- 般
- 效
- 套
- 维
- 普
- 康
- 富
- 宫
- 索
- 罗
- 堂
- 智
- 省
- 介
- 孙
- 灵
- 评
- 藏
- 称
- 课
- 货
- 姨
- 艺
- 骗
- 雪
- 赛
- 景
- 昨
- 健
- 鱼
- 激
- 危
- 熟
- 圈
- 闻
- 监
- 替
- 君
- 恋
- 良
- 掌
- 草
- 松
- 供
- 努
- 例
- 短
- 帝
- 姓
- 率
- 族
- 亿
- 赵
- 蛋
- 判
- 预
- 频
- 卡
- 架
- 纪
- 弃
- 秀
- 兰
- 层
- 检
- 伴
- 抗
- 讨
- 源
- 夏
- 咋
- 惊
- 录
- 善
- 补
- 刀
- 充
- 升
- 章
- 午
- 若
- 私
- 吴
- 素
- 旅
- 临
- 挑
- 唐
- 露
- 树
- 斗
- 舞
- 左
- 叶
- 副
- 晓
- 厂
- 弹
- 印
- 秘
- 屋
- 田
- 木
- 困
- 园
- 封
- 逃
- 批
- 馆
- 疼
- 败
- 陆
- 敌
- 散
- 采
- 翻
- 缺
- 胜
- 免
- 销
- 鸡
- 降
- 波
- 测
- 限
- 释
- 忍
- 归
- 床
- 餐
- 茶
- 码
- 宁
- 乡
- 辛
- 彩
- 亚
- 浪
- 漂
- 庆
- 训
- 范
- 烧
- 词
- 吵
- 媳
- 探
- 余
- 恐
- 积
- 农
- 遍
- 舒
- 顶
- 构
- 呼
- 丝
- 执
- 雅
- 惯
- 右
- 脱
- 恩
- 野
- 折
- 趣
- 笔
- 谓
- 盘
- 贝
- 宣
- 绍
- 嘉
- 宋
- 抢
- 嫌
- 尊
- 碰
- 绪
- 丢
- 厉
- 沙
- 轮
- 施
- 织
- 托
- 县
- 策
- 杯
- 逼
- 傻
- 束
- 街
- 疗
- 益
- 骨
- 迷
- 姻
- 恶
- 默
- 寻
- 搜
- 哦
- 材
- 吸
- 劳
- 勇
- 占
- 暴
- 船
- 徐
- 虎
- 融
- 异
- 审
- 攻
- 雷
- 稳
- 呗
- 输
- 睛
- 臣
- 端
- 威
- 秋
- 欧
- 冰
- 韩
- 减
- <space>
- 操
- 混
- 汽
- 暗
- 隐
- 嫂
- 沉
- 烟
- 顿
- 凭
- 洋
- 嫁
- 购
- 粉
- 遗
- 杂
- 协
- 尝
- 键
- 亡
- 秦
- 纸
- 拥
- 革
- 猫
- 伯
- 祝
- 签
- 傅
- 牙
- 湖
- 莫
- 杰
- 旁
- 港
- 劲
- 宗
- 偏
- 触
- 唯
- 吓
- 辆
- 沈
- 列
- 梅
- 祖
- 舍
- 尤
- 赚
- 疫
- 腾
- 拼
- 奖
- 刺
- 齐
- 诚
- 媒
- 戴
- 账
- 炸
- 骂
- 避
- 麦
- 爆
- 域
- 烈
- 暖
- 季
- 猜
- 佳
- 净
- 腿
- 磨
- 曲
- 虚
- 阵
- 荣
- 访
- 核
- 鲜
- 阶
- 镇
- 灯
- 估
- 剩
- 硬
- 租
- 敬
- 损
- 惜
- 挂
- 董
- 巨
- 忆
- 登
- 丈
- 帅
- 童
- 耳
- 央
- 软
- 移
- 略
- 额
- 厅
- 挥
- 透
- 络
- 弱
- 珍
- 恨
- 巧
- 丁
- 谋
- 孤
- 豆
- 诗
- 冒
- 狼
- 渐
- 峰
- 售
- 凡
- 聚
- 洞
- 抽
- 劝
- 闭
- 摆
- 冬
- 凶
- 魔
- 灭
- 雄
- 挣
- 搬
- 龄
- 朱
- 编
- 航
- 席
- 驾
- 授
- 鼓
- 握
- 隔
- 猪
- 仙
- 颜
- 镜
- 胖
- 赢
- 仇
- 晨
- 欺
- 刑
- 谷
- 旦
- 亏
- 盖
- 症
- 喊
- 蓝
- 讯
- 殿
- 梁
- 躲
- 旧
- 针
- 箱
- 丰
- 洲
- 鞋
- 征
- 蒙
- 伟
- 袋
- 庄
- 患
- 怨
- 佛
- 稍
- 朵
- 纳
- 吉
- 川
- 典
- 迹
- 瑞
- 废
- 搭
- 涨
- 汤
- 启
- 桌
- 摸
- 赔
- 宜
- 纯
- 贴
- 聪
- 熊
- 延
- 瓶
- 版
- 缘
- 距
- 甜
- 析
- 盛
- 孕
- 彻
- 桥
- 尚
- 染
- 撞
- 途
- 沟
- 疯
- 敏
- 瞧
- 漫
- 胆
- 诺
- 刷
- 饿
- 仍
- 喂
- 辞
- 迟
- 淡
- 郑
- 歉
- 扰
- 宾
- 圆
- 赞
- 肚
- 慧
- 泪
- 吹
- 拖
- 遭
- 穷
- 罚
- 悔
- 绿
- 忽
- 唉
- 毫
- 绩
- 暂
- 射
- 岛
- 拾
- 珠
- 欠
- 忠
- 陷
- 阴
- 尼
- 悲
- 糊
- 撤
- 徒
- 剑
- 币
- 娜
- 违
- 泡
- 仗
- 粮
- 培
- 趟
- 菲
- 拒
- 棒
- 脾
- 赏
- 窗
- 宇
- 闲
- 附
- 踏
- 彼
- 涉
- 锁
- 撒
- 魂
- 羊
- 述
- 屈
- 库
- 滚
- 凉
- 颗
- 寒
- 呐
- 墙
- 娃
- 序
- 迪
- 丹
- 扬
- 瞎
- 递
- 凤
- 碗
- 屁
- 锅
- 奔
- 幅
- 债
- 糖
- 奋
- 汇
- 圣
- 订
- 偶
- 残
- 宽
- 狂
- 鼠
- 狠
- 幕
- 固
- 竞
- 蜜
- 吐
- 摄
- 骑
- 篇
- 毁
- 尾
- 摇
- 奥
- 厚
- 妖
- 禁
- 逐
- 均
- 尸
- 冠
- 阅
- 辑
- 捕
- 载
- 郭
- 俺
- 诊
- 欲
- 扎
- 鸟
- 柔
- 迫
- 豪
- 踪
- 扔
- 碎
- 末
- 娶
- 扫
- 朕
- 励
- 乔
- 闺
- 档
- 厨
- 倍
- 湾
- 郎
- 幼
- 纷
- 奴
- 阻
- 饮
- 怒
- 妙
- 琴
- 曹
- 脏
- 牵
- 瓜
- 滴
- 炮
- 缓
- 含
- 献
- 柜
- 仔
- 艾
- 潜
- 赌
- 震
- 础
- 添
- 兔
- 焦
- 躺
- 森
- 肥
- 洪
- 孝
- 偿
- 悉
- 撑
- 甘
- 桃
- 苹
- 魏
- 鲁
- 池
- 狱
- 厌
- 纠
- 朗
- 贷
- 铺
- 殊
- 坦
- 爬
- 擦
- 酸
- 钢
- 咖
- 瞒
- 蛮
- 谅
- 耐
- 申
- 夸
- 欣
- 诶
- 驶
- 屏
- 烂
- 凌
- 甲
- 胎
- 仪
- 貌
- 番
- 涂
- 抬
- 舅
- 扯
- 鹿
- 摩
- 诸
- 秒
- 泽
- 埋
- 蒋
- 隆
- 赖
- 奸
- 咬
- 恢
- 宿
- 乖
- 邀
- 抵
- 臭
- 闪
- 莉
- 熬
- 链
- 盯
- 侦
- 灾
- 堆
- 灰
- 卷
- 盾
- 障
- 截
- 恰
- 佩
- 戒
- 莲
- 裁
- 芬
- 戚
- 匪
- 滑
- 趁
- 询
- 绑
- 辣
- 挖
- 俗
- 祸
- 符
- 扣
- 插
- 仁
- 壁
- 腰
- 斤
- 燕
- 筑
- 柱
- 夺
- 援
- 映
- 壮
- 杜
- 摔
- 润
- 恭
- 乌
- 慰
- 啡
- 著
- 井
- 跌
- 牢
- 荐
- 拔
- 惹
- 侯
- 玲
- 炎
- 胸
- 旗
- 牲
- 喽
- 涛
- 衡
- 矛
- 伍
- 贤
- 惨
- 糟
- 慌
- 伏
- 醉
- 仓
- 拆
- 乘
- 疾
- 鼻
- 潮
- 予
- 奉
- 伦
- 劫
- 伊
- 怜
- 孟
- 肺
- 忧
- 倾
- 矩
- 荒
- 奏
- 塔
- 塞
- 迅
- 轨
- 瞬
- 丫
- 狐
- 叛
- 繁
- 眠
- 孔
- 谱
- 悄
- 泰
- 姜
- 侵
- 妃
- 冯
- 柳
- 洛
- 岸
- 凯
- 陛
- 幺
- 仿
- 氏
- 窝
- 曼
- 挡
- 浩
- 盟
- 轩
- 牺
- 贫
- 绕
- 谎
- 措
- 扶
- 梯
- 炼
- 勤
- 霸
- 横
- 罢
- 呆
- 税
- 桂
- 哎
- 慕
- 植
- 允
- 荡
- 洁
- 肖
- 耗
- 贼
- 艰
- 贺
- 幻
- 饱
- 胃
- 袭
- 廷
- 泥
- 丧
- 缩
- 砸
- 姥
- 拦
- 扮
- 糕
- 肤
- 猴
- 脆
- 炒
- 耀
- 盗
- 邓
- 扩
- 纵
- 振
- 敲
- 鹏
- 姆
- 湿
- 丑
- 召
- 苗
- 伸
- 惑
- 碍
- 萨
- 瘦
- 闯
- 迁
- 坑
- 弯
- 卑
- 尖
- 遥
- 侠
- 犹
- 押
- 冤
- 钻
- 汗
- 闷
- 邻
- 淘
- 抛
- 妆
- 贾
- 侧
- 傲
- 描
- 耍
- 猛
- 薇
- 裤
- 憾
- 督
- 贸
- 墨
- 勒
- 薄
- 嘞
- 渡
- 紫
- 悟
- 锦
- 溜
- 逆
- 惠
- 辉
- 贪
- 圾
- 垃
- 券
- 燃
- 虫
- 悠
- 伪
- 尿
- 懒
- 俊
- 寄
- 歇
- 盒
- 潘
- 储
- 愈
- 脉
- 粗
- 返
- 昌
- 泉
- 蔡
- 愧
- 赤
- 岳
- 婷
- 猎
- 饼
- 肩
- 勾
- 巡
- 竹
- 催
- 陌
- 踩
- 促
- 扭
- 堵
- 酷
- 芳
- 逛
- 陵
- 耽
- 凑
- 寿
- 缝
- 剪
- 郁
- 宅
- 抚
- 筹
- 沿
- 烤
- 奈
- 挨
- 晋
- 崩
- 浮
- 阁
- 彭
- 裂
- 崇
- 眉
- 桑
- 辩
- 漏
- 稀
- 液
- 汪
- 袁
- 掩
- 浑
- 坡
- 晕
- 缠
- 仰
- 挤
- 睁
- 羽
- 岗
- 捡
- 墓
- 综
- 矿
- 妥
- 厕
- 辱
- 惧
- 逗
- 帽
- 寸
- 搁
- 跨
- 渴
- 饰
- 璃
- 琳
- 爽
- 愤
- 饶
- 卧
- 誓
- 滋
- 鉴
- 腐
- 鸭
- 蛇
- 妮
- 莱
- 哟
- 钥
- 甄
- 肠
- 畅
- 慎
- 悬
- 逻
- 胁
- 辰
- 呈
- 棋
- 寨
- 萌
- 覆
- 姚
- 津
- 笨
- 轰
- 乏
- 匙
- 摊
- 陶
- 恼
- 昏
- 抑
- 姿
- 愁
- 誉
- 椅
- 羞
- 澡
- 踢
- 晶
- 萧
- 箭
- 罩
- 宠
- 羡
- 亦
- 祥
- 串
- 昆
- 煮
- 疏
- 纹
- 泄
- 痕
- 喷
- 册
- 跃
- 卢
- 岩
- 跪
- 兽
- 桶
- 飘
- 漠
- 堪
- 哄
- 寂
- 崔
- 腹
- 癌
- 拳
- 驻
- 霍
- 拨
- 诞
- 捐
- 御
- 榜
- 唤
- 荷
- 径
- 署
- 锋
- 玛
- 匆
- 恒
- 吕
- 邮
- 圳
- 黎
- 掏
- 莎
- 寞
- 佐
- 诈
- 牧
- 盐
- 叹
- 尬
- 匹
- 狸
- 膀
- 谨
- 尘
- 驱
- 乳
- 晒
- 宴
- 辜
- 哲
- 铜
- 薪
- 盆
- 割
- 忌
- 旋
- 翼
- 哀
- 咨
- 遵
- 夹
- 侣
- 译
- 胞
- 浅
- 邦
- 俄
- 弗
- 豫
- 甭
- 乃
- 扛
- 杭
- 瓦
- 槽
- 污
- 尴
- 琢
- 枝
- 详
- 柴
- 佑
- 盼
- 抖
- 惩
- 捷
- 葬
- 贡
- 艳
- 塑
- 茫
- 叨
- 浓
- 拐
- 捉
- 憋
- 稿
- 苍
- 葛
- 扑
- 娱
- 赋
- 杆
- 绘
- 聆
- 肌
- 婴
- 摘
- 岂
- 呵
- 冻
- 泳
- 揭
- 坤
- 盈
- 毅
- 撕
- 娇
- 唠
- 宏
- 吊
- 籍
- 楠
- 肃
- 抹
- 玄
- 湘
- 迈
- 酱
- 骄
- 咐
- 扇
- 幽
- 疲
- 邪
- 吞
- 趋
- 尺
- 玻
- 溃
- 诱
- 翠
- 兼
- 辅
- 岭
- 栏
- 柏
- 址
- 寺
- 逢
- 琪
- 慈
- 愣
- 契
- 渠
- 齿
- 薛
- 拟
- 填
- 坛
- 抄
- 痴
- 绳
- 役
- 擅
- 晃
- 斌
- 愉
- 届
- 悦
- 旨
- 砍
- 弥
- 挽
- 肝
- 鸣
- 庙
- 烫
- 聘
- 皆
- 婶
- 舌
- 枉
- 赫
- 蓉
- 瞅
- 阔
- 俱
- 循
- 鸿
- 彪
- 伺
- 堡
- 谦
- 剂
- 洒
- 赴
- 妨
- 磊
- 嘱
- 蝶
- 兆
- 豹
- 绣
- 篮
- 锻
- 陕
- 霉
- 涵
- 疆
- 丸
- 蠢
- 铃
- 浙
- 庞
- 萝
- 泛
- 芝
- 煤
- 甩
- 氛
- 页
- 逸
- 袖
- 携
- 躁
- 夕
- 匠
- 蹈
- 坊
- 雾
- 蹲
- 颠
- 脂
- 塌
- 棵
- 鹰
- 澳
- 哇
- 筋
- 纽
- 脖
- 棉
- 渣
- 寡
- 践
- 侄
- 披
- 魅
- 虹
- 肿
- 胶
- 霞
- 罐
- 晴
- 拓
- 卿
- 耻
- 砖
- 宪
- 歪
- 兜
- 衰
- 捧
- 歹
- 雕
- 穆
- 栋
- 瑶
- 毙
- 衷
- 膜
- 囊
- 莹
- 垫
- 吻
- 嘟
- 舰
- 虾
- 壳
- 穴
- 勉
- 裙
- 旺
- 柯
- 磕
- 贩
- 腻
- 蹦
- 卜
- 茹
- 驴
- 臂
- 删
- 菌
- 妾
- 蜂
- 祭
- 菊
- 咸
- 淑
- 笼
- 涯
- 碧
- 宙
- 骚
- 皓
- 赐
- 晰
- 腔
- 龟
- 泼
- 鹅
- 啪
- 巾
- 炉
- 沾
- 醋
- 澜
- 朴
- 棍
- 伞
- 雀
- 赠
- 妞
- 淋
- 刮
- 汁
- 椒
- 埃
- 嚷
- 盲
- 窃
- 辽
- 贱
- 滩
- 昭
- 贯
- 珊
- 涌
- 辨
- 捞
- 仲
- 拘
- 碑
- 侍
- 剿
- 搅
- 狮
- 藤
- 旭
- 翅
- 滨
- 禀
- 遮
- 瑟
- 斩
- 攒
- 犬
- 挫
- 僧
- 吩
- 渊
- 蒂
- 萍
- 庸
- 蓄
- 鼎
- 咪
- 姬
- 溪
- 郡
- 镖
- 怡
- 杉
- 畏
- 瓷
- 枚
- 煎
- 劣
- 饺
- 妄
- 卓
- 蔽
- 蒸
- 垂
- 嘲
- 慨
- 谊
- 蹭
- 逮
- 锐
- 钉
- 舟
- 沃
- 凝
- 翔
- 颈
- 靖
- 灌
- 膊
- 崖
- 娟
- 胳
- 铭
- 灿
- 亭
- 粒
- 卸
- 咕
- 坎
- 攀
- 婿
- 奢
- 茂
- 趴
- 耿
- 捏
- 怖
- 浴
- 婉
- 煌
- 霖
- 揍
- 昂
- 驰
- 壶
- 械
- 卦
- 粥
- 尹
- 瘾
- 雇
- 翰
- 肆
- 寇
- 曦
- 厢
- 杠
- 屠
- 芒
- 谣
- 沫
- 掘
- 酬
- 讼
- 乾
- 玫
- 瑰
- 逊
- 惦
- 儒
- 肾
- 粹
- 愚
- 渔
- 暑
- 伐
- 潇
- 喘
- 敦
- 翁
- 斥
- 帖
- 纱
- 梳
- 缴
- 茅
- 谭
- 氧
- 遣
- 履
- 刹
- 枕
- 婢
- 徽
- 轿
- 寓
- 咽
- 叉
- 嗓
- 捣
- 裹
- 览
- 拯
- 疚
- 蜀
- 丛
- 框
- 斑
- 宵
- 郝
- 蛙
- 熙
- 祁
- 哑
- 葱
- 唇
- 韦
- 媛
- 魄
- 锤
- 绵
- 炫
- 吨
- 稻
- 碌
- 刊
- 漆
- 搏
- 讶
- 痒
- 枫
- 妒
- 冥
- 郊
- 爵
- 逝
- 栽
- 叠
- 蚁
- 裕
- 帕
- 剥
- 谐
- 巫
- 颇
- 娥
- 廊
- 蕾
- 丘
- 丞
- 葡
- 坠
- 鸦
- 糗
- 虐
- 唬
- 屎
- 顽
- 巷
- 硅
- 罕
- 殖
- 嘿
- 韵
- 歧
- 垮
- 淮
- 馈
- 昊
- 宰
- 钦
- 霜
- 兑
- 萄
- 塘
- 胀
- 樱
- 枯
- 咳
- 窑
- 募
- 缸
- 昧
- 仑
- 恕
- 氓
- 叮
- 吼
- 坟
- 轴
- 贞
- 赎
- 帆
- 嫩
- 蚂
- 僵
- 颖
- 噜
- 咒
- 琐
- 勃
- 芯
- 绸
- 哼
- 仨
- 挪
- 狡
- 禅
- 粘
- 雯
- 扒
- 恳
- 蔬
- 匈
- 钓
- 桐
- 菇
- 哒
- 稚
- 膏
- 纲
- 狄
- 硕
- 廉
- 衙
- 艘
- 廖
- 腊
- 蟹
- 邱
- 缉
- 曝
- 桩
- 啤
- 嫉
- 棚
- 矮
- 汰
- 衍
- 拽
- 削
- 彤
- 斜
- 揉
- 樊
- 馨
- 钩
- 浦
- 肢
- 敷
- 喻
- 鞭
- 瞪
- 耕
- 掐
- 屡
- 榴
- 勋
- 泊
- 竭
- 鹤
- 溢
- 淳
- 倩
- 驳
- 抠
- 捅
- 筒
- 窄
- 鄙
- 嗦
- 袍
- 劈
- 炖
- 裸
- 贬
- 敞
- 嘎
- 淹
- 耶
- 秩
- 舱
- 厦
- 叙
- 孽
- 筷
- 浇
- 饥
- 噩
- 蚊
- 兮
- 皱
- 侃
- 辟
- 弊
- 袜
- 吾
- 俘
- 芸
- 夷
- 芦
- 囚
- 倡
- 琦
- 哨
- 巢
- 烛
- 帐
- 燥
- 讽
- 俞
- 馅
- 柿
- 墅
- 妍
- 瘤
- 沦
- 衬
- 瑜
- 蒜
- 蛛
- 窟
- 勿
- 沛
- 磁
- 狭
- 栈
- 懵
- 酿
- 戈
- 邵
- 龚
- 衫
- 勺
- 哗
- 叽
- 畜
- 爪
- 惫
- 颁
- 浸
- 摧
- 勘
- 惕
- 蔓
- 馒
- 挠
- 陀
- 豁
- 帘
- 淀
- 藩
- 蜡
- 凳
- 蘑
- 琼
- 棺
- 蝴
- 骆
- 掰
- 枣
- 遂
- 飙
- 咧
- 掀
- 梨
- 杏
- 嗑
- 棠
- 绽
- 捆
- 舆
- 肇
- 葩
- 呦
- 膝
- 鹊
- 揣
- 瓣
- 靓
- 卵
- 鲍
- 炭
- 戳
- 颤
- 禄
- 菩
- 崛
- 驸
- 佣
- 眨
- 聂
- 乙
- 嘻
- 拧
- 喵
- 佟
- 靳
- 阎
- 拢
- 厘
- 凰
- 疤
- 螺
- 淇
- 涩
- 拎
- 嗨
- 魁
- 薯
- 歼
- 沪
- 筛
- 谍
- 揪
- 刁
- 秃
- 谜
- 撇
- 肪
- 绊
- 逞
- 滥
- 寝
- 麟
- 奕
- 侮
- 喉
- 柄
- 荆
- 撼
- 窦
- 姗
- 乞
- 艇
- 竖
- 剖
- 嗽
- 捂
- 腕
- 鸽
- 刃
- 弓
- 辙
- 粤
- 泣
- 梗
- 茄
- 茜
- 驼
- 冈
- 倔
- 啃
- 蹄
- 唧
- 祈
- 腺
- 焰
- 睿
- 崽
- A
- 苛
- 窍
- 凿
- 倭
- 骤
- 槛
- 碳
- 诏
- 芽
- 浆
- 隶
- 搂
- 睦
- 彬
- 岔
- 诀
- 嚼
- 掺
- 殷
- 吁
- 啰
- 侈
- 亩
- 纤
- 倦
- 揽
- 媚
- 潭
- 莽
- 赃
- 睹
- 脊
- 逍
- 淼
- 沸
- 峡
- 仆
- 眷
- 屯
- 璐
- 雁
- 澄
- 渗
- 咔
- 啸
- 怂
- 娄
- 惶
- 恍
- 锡
- 秉
- 猾
- 挟
- 舔
- 弦
- 阱
- 俭
- 嚣
- 搓
- 懈
- 诡
- 隙
- 苟
- 倘
- 瘫
- 扁
- 鑫
- 撩
- 蓬
- 铲
- 峥
- 巅
- 葫
- 膳
- 狙
- 晏
- 祠
- 峻
- 尉
- 毯
- 沧
- 熏
- 咯
- 株
- 沐
- 奎
- 锣
- 霄
- 彦
- 叭
- 臻
- 昔
- 灶
- 傍
- 腥
- 屑
- 禾
- 彰
- 冉
- 矫
- 滞
- 瘩
- 匀
- 椎
- 槐
- 岚
- 跷
- 剔
- 倪
- 盏
- 泌
- 灸
- 隧
- 函
- 壤
- 剃
- 蹊
- 葵
- 拌
- 琅
- 炳
- 跋
- 瑾
- 哩
- 蔷
- 鳌
- 莺
- 诵
- 疙
- 吱
- 蓓
- 绎
- 匿
- 铮
- 怼
- 踹
- 嗅
- 焚
- 躯
- 蝇
- 橘
- 祟
- 辖
- 砂
- 韧
- 粪
- 诬
- 擒
- 黏
- 衔
- 溺
- 蜘
- 篷
- 贿
- 闫
- 焕
- 邢
- 兹
- 窖
- 旬
- 铸
- 咚
- 惭
- 佬
- 裴
- 裳
- 犀
- 弘
- 莓
- 钏
- 鄂
- 陋
- 伽
- 鞠
- 氪
- 垒
- 窜
- 橙
- 讳
- 甥
- 淫
- 拱
- 袱
- 坨
- 暧
- 渺
- 蕉
- 晗
- 茬
- 盔
- 妓
- 蚕
- 僻
- 朽
- 呛
- 挚
- 擎
- 绅
- 喇
- 鳄
- 巩
- 蜗
- 遛
- 俯
- 汹
- 猩
- 奠
- 钙
- 悍
- 躬
- 菱
- 翘
- 琉
- 虏
- 凄
- 稼
- 炕
- 皂
- 漱
- 斋
- 撂
- 敛
- 阮
- 芭
- 阀
- 缚
- 懦
- 亨
- 螃
- 侥
- 膨
- 筝
- 惟
- 黛
- 眯
- 茨
- 怠
- 辐
- 捎
- 殴
- 桓
- 瞄
- 冀
- 雍
- 霾
- 酵
- 檬
- 哺
- 裔
- 兢
- 麒
- 烹
- 绒
- 丐
- 娅
- 钞
- 垄
- 笛
- 赣
- 蕊
- 暮
- 噪
- 沮
- 肋
- 庇
- 橡
- 摁
- 痘
- 棘
- 拂
- 绷
- 刨
- 晾
- 蹬
- 鸥
- 璇
- 掠
- 瘟
- 俐
- 糙
- 骏
- 牡
- 撵
- 嘘
- 沥
- 庶
- 赁
- 喧
- 涡
- 瞳
- 迭
- 肘
- 颂
- 珑
- 觅
- 埔
- G
- 跤
- 朔
- 詹
- 梭
- 暇
- 惺
- 甸
- 怯
- 聋
- 赦
- 屉
- 闸
- 坝
- 吟
- 凸
- 拴
- 堤
- 矣
- 斧
- 呸
- 啼
- 韬
- 钧
- 坞
- 纺
- 氢
- 嵩
- 镯
- 髓
- 檐
- 涕
- 剁
- 稽
- 烨
- 钮
- 闽
- 仕
- 驯
- 吭
- 漓
- 眸
- 鞅
- 枢
- 煞
- 昕
- 畔
- 疹
- 矶
- 呱
- 熄
- 吏
- 泻
- 拙
- 蛤
- 禽
- 甫
- 厮
- 乍
- 蝉
- 撬
- 嘀
- 衅
- 鲨
- 萱
- 霹
- 旷
- 辫
- 坷
- 眶
- 蟆
- 呜
- 猬
- 嬷
- 萎
- 靶
- 雳
- 煲
- 溯
- 蚀
- 狈
- 滤
- 恙
- 瑛
- 栓
- 嫣
- 碟
- 祷
- 驿
- 犊
- 灼
- 哆
- 宛
- 榨
- 寥
- 翟
- 栗
- 滔
- 馋
- 杖
- 茉
- 饲
- 庐
- 隋
- 旱
- 崎
- 颅
- 焉
- 墩
- 篱
- 晟
- 扳
- 咎
- 竿
- 僚
- 溶
- 俏
- 霆
- 堕
- 冕
- 叩
- 绰
- 洽
- 襄
- 蛊
- 缅
- 侨
- 伶
- 蕴
- 酥
- 坂
- 拇
- 庚
- 卒
- 诛
- 禧
- 瓢
- 锯
- 扉
- 饷
- 诅
- 烘
- 浏
- 痰
- 榆
- 窥
- 鲸
- 捋
- 戎
- 笋
- 璋
- 诫
- 珈
- 癫
- 囤
- 厥
- 癖
- 翩
- 芹
- 匣
- 噬
- 栖
- 蝎
- 锄
- 玺
- 疮
- 缕
- 猥
- 槿
- 蔑
- 汝
- 珂
- 撮
- 坪
- 蒲
- 倚
- 嗷
- 撰
- 荧
- 芙
- 豚
- 筱
- 敖
- 孵
- 猝
- D
- 弈
- 徊
- 辗
- 赘
- 徘
- 烙
- 娲
- 嚎
- 迢
- 绥
- 羁
- 屌
- 铅
- 澎
- S
- 嬛
- 晦
- 煽
- 逾
- 饵
- 虞
- 筐
- 哧
- 抒
- 醇
- 祀
- 瑕
- 岐
- 潼
- 惚
- C
- 苑
- 靡
- 菠
- 赡
- 惰
- 梓
- 铛
- 澈
- 莞
- 呕
- 驭
- 邝
- 砰
- 轼
- 窒
- 慷
- 绞
- 絮
- 虔
- 惮
- 柬
- 嗡
- 拣
- 羲
- 蹋
- 隘
- 帜
- 卤
- 雌
- 唾
- 邹
- 俑
- 碾
- 婪
- 咏
- 粟
- 崭
- 钝
- 彝
- 陡
- 谛
- 秤
- 磅
- 淌
- 炊
- 鲤
- 羹
- 殉
- 曰
- 萤
- 阐
- 鬟
- 拭
- T
- 沁
- 滇
- 梧
- 烁
- 瞻
- 淤
- 凹
- 撸
- 棕
- 腌
- 缪
- 祺
- 痊
- 忑
- 柠
- 矜
- 忐
- 讹
- 瀚
- 尧
- 昼
- 芊
- 憨
- 鳞
- 匮
- 鸳
- 鸯
- 湃
- 屿
- 馍
- 沽
- 栾
- 蝠
- 窘
- 绛
- 巍
- 悯
- 焊
- 谴
- 浊
- 娴
- 畴
- 湛
- 螂
- 韭
- 哮
- 拷
- 攥
- 凛
- 颓
- 恺
- 蝙
- 襟
- 粑
- 洼
- 笃
- 渝
- 骁
- 殃
- 酌
- 乒
- 臊
- 疵
- 诧
- 谬
- 锈
- 袄
- 膛
- 瘸
- 嫖
- 梢
- 沼
- 棱
- 嚓
- 耸
- 喳
- 舵
- 橱
- 涮
- 檀
- 瞩
- 腑
- 岑
- 痪
- 墟
- 蔚
- 捍
- 徙
- 棣
- 猖
- 掷
- 恬
- 嫦
- 噔
- 饪
- 掂
- 恤
- 叱
- 芷
- 弩
- 楷
- 镶
- 茧
- 诠
- 咙
- 匡
- 擂
- 亵
- 杞
- 乓
- 渤
- 藉
- 憔
- 渭
- 禹
- 睐
- 趾
- 抉
- 悴
- 忒
- 茸
- 纬
- 懊
- 浚
- 溅
- 遏
- 琛
- 靴
- 戮
- 翎
- 谕
- 濒
- 锵
- 嬉
- 籽
- 殆
- 叼
- 苔
- 灏
- 嗖
- 俪
- 亢
- 冶
- 嗜
- 磋
- 汀
- 讪
- 萃
- 菁
- 镑
- 紊
- 脯
- 缆
- 哉
- 赂
- 婊
- B
- 蕃
- 迄
- 蜓
- 舜
- 嚏
- 昱
- 黔
- 犟
- 汐
- 昵
- 嗣
- 唆
- 蛾
- 黯
- 绯
- 瀑
- 憬
- 狩
- 掖
- 崴
- 褪
- 髦
- 酝
- 弧
- 咄
- 吝
- 馄
- 娩
- 窿
- 蜻
- 袒
- 玮
- 阙
- 篡
- 邯
- 朦
- 邑
- 喃
- 粽
- 捶
- 嫔
- 钗
- 穗
- 骼
- 胭
- 寐
- 噎
- M
- 碱
- 荤
- 笙
- 矢
- 芥
- 廓
- 扼
- 厄
- 毋
- 糯
- 惋
- 纶
- 碜
- 胧
- 懿
- 偃
- 沏
- 痹
- 慑
- 鹦
- 娠
- 铐
- 绢
- 傀
- 孜
- 饨
- 儡
- 孰
- 焱
- 峭
- 伎
- 幌
- 椰
- 譬
- 藕
- 坍
- 铝
- 鞍
- 蘸
- 貂
- 猿
- 炙
- 琊
- 峙
- 硝
- 幂
- 钰
- 眩
- 亥
- 簇
- 鹉
- 睫
- 斟
- 簧
- 颐
- 薰
- 癞
- 祛
- 燎
- 缎
- 簸
- 咣
- 绚
- 簿
- 邋
- 嵌
- 肮
- 稷
- 辍
- 闵
- 枸
- 撅
- 曙
- 苇
- K
- 悼
- 汶
- 匕
- 皖
- 腮
- 琶
- 汲
- 鼹
- 礁
- 颊
- 怔
- 汕
- 喀
- 砌
- 釜
- 畸
- 鹃
- 峨
- 奄
- 骡
- 斐
- 芈
- 莘
- 蟑
- 荔
- 缇
- 犒
- 宓
- 汾
- 沌
- 宦
- 憧
- 咤
- 吆
- 攘
- 漩
- 梵
- 阂
- 吒
- 芜
- 缔
- 秧
- 翊
- 晌
- 剐
- 蜕
- 芋
- 彷
- 牟
- 诲
- 臀
- 徨
- Q
- 杵
- 荫
- 榄
- 蹿
- 豌
- 迂
- 琵
- 拗
- 帷
- 楞
- 嘶
- 橄
- 胺
- 圭
- 砚
- 藻
- 凋
- 啄
- 褒
- 嗝
- 殡
- 嫡
- 恃
- 濡
- 缜
- 孺
- 泸
- 妊
- 衩
- 驹
- 榻
- 腆
- 鹂
- 箍
- 璧
- 熔
- 悚
- 遢
- 弛
- 诋
- 羚
- 鹭
- 嘚
- 骸
- 瘪
- 铠
- 瞿
- 屹
- 邸
- 痨
- 辘
- 浒
- 忏
- 钊
- 潦
- 怅
- 肴
- 蚯
- 胚
- 茵
- 蚓
- 戬
- 瘀
- 翡
- 恪
- 卉
- 蝌
- 雏
- 祯
- 谏
- 蚪
- 钵
- 馊
- 嗒
- 犁
- 寅
- V
- 锥
- 娼
- 晖
- 啬
- 纣
- 淆
- 丙
- 夯
- 竣
- 褚
- 褥
- 轧
- 氨
- 褂
- 钳
- 轲
- 竺
- 疡
- 淞
- 胤
- 摹
- 鳅
- 珀
- 偕
- 匾
- 觑
- 扈
- 傣
- 绫
- 枷
- 阑
- 柚
- 烊
- 怦
- 腼
- 珺
- 缀
- 裘
- 碉
- 峪
- 俸
- 羯
- 姊
- 疟
- 砺
- 盎
- 嘣
- 釉
- 溥
- 熠
- 垢
- 摞
- 哽
- 槟
- 囧
- 胰
- 遁
- 痞
- 熹
- 忡
- 稠
- 顷
- 瑚
- 卯
- 渎
- 炅
- 褶
- 烽
- 瞑
- 嘈
- 硫
- 壹
- 悖
- 酪
- 跺
- 阜
- 帛
- 漪
- 蝗
- 迦
- 蟒
- 咀
- 谤
- 睬
- 辕
- 绮
- 搀
- 裆
- 鳖
- 囡
- 羔
- 痣
- 滕
- 佘
- 樟
- 韶
- 霓
- 劾
- 赈
- 唏
- 闰
- 脐
- 沓
- 瓮
- 篓
- 笠
- 暄
- 涅
- 诽
- 洱
- 栅
- 蚱
- 囔
- 攸
- 酣
- 阪
- 榕
- 骇
- 婧
- 陨
- 憎
- 沂
- 磷
- 壕
- 醺
- 惬
- 璀
- 璨
- 喋
- P
- 炽
- 瘁
- 羿
- 褐
- 簪
- 冽
- 驮
- 芮
- 辄
- 咆
- 渍
- 觐
- 炷
- 蛰
- 驷
- 帚
- 蜷
- O
- X
- 邂
- 逅
- 缭
- 秽
- 琰
- 龌
- 龊
- 俨
- 涟
- 噼
- 掇
- 哔
- 炬
- 佯
- 粱
- 霁
- 鱿
- 夭
- 擀
- 陇
- 瞥
- 壑
- 盹
- 馁
- 蚌
- 焖
- 蛟
- 囱
- 蚝
- 抿
- 脓
- 蒿
- 飓
- 渲
- 宸
- 酗
- 荻
- 缥
- 弑
- 偎
- 宕
- 耘
- 瞌
- 瘴
- 溉
- 涝
- 咿
- 垛
- 垦
- 缈
- 苞
- 惆
- 汛
- 鹑
- 町
- 抡
- 慵
- 浣
- 耙
- 砥
- 噱
- 孬
- 札
- 弼
- 酋
- 镳
- 萦
- 泾
- 挞
- 钾
- 讷
- 圃
- 舶
- 穹
- 戾
- 汴
- 锂
- 昀
- 镀
- 眺
- 捺
- 猕
- 阚
- 骋
- 悸
- 蜚
- 咩
- 讥
- 篆
- 鸠
- 哐
- 锚
- 幢
- 翱
- 螳
- 徇
- 踞
- 蔗
- 蔼
- 漉
- 衲
- N
- 漳
- 枭
- 漾
- 歆
- 烬
- 曳
- 岌
- 孚
- 戛
- 呲
- 箫
- 娓
- 桨
- 涓
- 獭
- 芃
- 摒
- 戍
- 踝
- 轱
- 沱
- 锢
- 堰
- 抨
- 昙
- 鹌
- 蔻
- 迸
- 泯
- 龈
- 痔
- 骛
- 淄
- 泵
- 烯
- 蔫
- F
- 胥
- 忱
- 纫
- 搪
- 茎
- 暨
- 泞
- 踵
- 璞
- 佗
- 荃
- 鬓
- 蚣
- 罔
- 臆
- 贻
- 橇
- 麓
- 槌
- 琥
- I
- 纥
- 薅
- 樵
- 苓
- 熨
- 钨
- 骞
- 诣
- 涤
- 踊
- 醛
- 碴
- 蹴
- 缤
- 赊
- 岖
- 戊
- 禺
- 坯
- 戟
- 楂
- 隅
- 酶
- 邃
- 蛀
- 皎
- 炯
- 垣
- 锹
- 镰
- 夙
- 甬
- 叵
- 茁
- 珞
- 妲
- 涸
- 兀
- 嘤
- 谙
- 噗
- 榔
- 稣
- 剽
- 奚
- 啕
- 袅
- 讧
- 钠
- 怄
- 晤
- 肛
- 氰
- 迥
- 唰
- 诩
- 籁
- 砒
- 谩
- 诟
- 斓
- 泷
- 幡
- 爻
- 痫
- 眈
- 漕
- 惘
- 挎
- 噶
- 喱
- 氯
- U
- 跆
- 嗤
- 锏
- 睽
- 缮
- 蟋
- 蠕
- 扪
- 狞
- 飒
- 吮
- 弋
- 奘
- 蟠
- 梆
- 拈
- 帧
- 蟀
- 胯
- 掳
- 蝈
- 帼
- 瞰
- 嵇
- 阉
- 篝
- 笆
- 亘
- L
- 喔
- 愕
- 谚
- 轶
- 岱
- 丕
- 婕
- 羌
- 毡
- 呻
- 鼾
- 蜥
- 偌
- 庵
- 敝
- 蛐
- 麝
- 鞘
- 拮
- 涣
- 葆
- 雹
- 踌
- 蜈
- 馥
- 跻
- 狰
- 桀
- 毗
- 皿
- 缨
- 磐
- 啾
- 牒
- 缰
- 躇
- 踮
- 糠
- 嗲
- 刽
- 咫
- 殇
- 瀛
- 胱
- 炀
- 虱
- 砾
- 獒
- 涎
- 袤
- 鄱
- 瓯
- 锭
- 塾
- 蹉
- 珏
- 豺
- 锌
- 蜿
- 牦
- 瓒
- 莆
- 蜴
- 氮
- 跎
- 咛
- 骜
- 郸
- 搐
- 堑
- 涞
- 寰
- 跛
- 鸵
- 毂
- 妩
- 铤
- 薏
- 烩
- 遐
- 煦
- 仃
- 髅
- 酮
- 榷
- 腋
- 珩
- 臃
- 愫
- 蜒
- 荼
- 侬
- 淬
- 婵
- 偻
- 焯
- 骊
- 恻
- 濮
- 泱
- 庖
- 惴
- 鲫
- 硌
- 肓
- 芪
- 礴
- 磺
- 腱
- 冢
- 谪
- 骷
- 哏
- 腩
- 蓦
- 焙
- 桢
- 阖
- 睾
- 疱
- 郴
- 铿
- 铡
- 祉
- 跄
- 桦
- 椭
- 拄
- 皙
- 膈
- 裱
- 髋
- 伢
- 罹
- 鳍
- 赝
- 嬴
- 痤
- 藿
- 镐
- 铎
- 瘠
- 簌
- 杳
- 铢
- 阡
- 忤
- 舀
- 悻
- 媲
- 茗
- 湍
- 舫
- 瘙
- 瞟
- 擞
- 荀
- 刍
- J
- 潍
- 莴
- 斛
- 郦
- 栩
- 绾
- 蕙
- 黜
- 湄
- 藓
- 躏
- 锱
- 捻
- 佼
- 砝
- E
- 罡
- 忻
- 鹜
- 滟
- 傥
- 蛳
- W
- 铀
- 魇
- 觎
- 蹂
- 佞
- 诃
- 灞
- 镣
- 痱
- 侏
- 峦
- 榛
- 饽
- 龋
- 嗔
- 芍
- 椿
- 璎
- 渥
- 蟾
- 骰
- 吠
- 挛
- 倜
- 鳝
- 糜
- 噢
- 黝
- 藐
- 绡
- 掣
- 鳗
- 璜
- 犷
- 痉
- 膺
- 罄
- 阄
- 纨
- 纭
- 彗
- 嵘
- 埠
- 潢
- 桔
- 耷
- 逵
- 诓
- 怵
- 蚤
- 苯
- 邈
- 谑
- 颌
- 珐
- 踱
- 髻
- 倏
- 啷
- 篑
- 冗
- 蹶
- 荥
- 涧
- 镂
- 踉
- 呷
- 衢
- 荟
- 箴
- 桧
- 恿
- 坳
- 瑙
- 珅
- 莅
- 膘
- 宥
- 氟
- 秆
- 诙
- 蹑
- 茴
- 翳
- 渚
- H
- 唁
- 诿
- 窈
- 窕
- 膻
- 荨
- 蛔
- 筵
- 钛
- 獾
- 琏
- 箩
- 栀
- 隼
- 煸
- 罂
- 蛎
- 咂
- 谗
- 颦
- 佝
- 苣
- 搡
- 仄
- 垠
- 濂
- 泗
- 亟
- 蔺
- 蛆
- 霏
- 榈
- 裟
- 瑁
- 酚
- 蝼
- 怆
- 犄
- 沣
- 揖
- 斡
- 刎
- 鲟
- 峒
- 瞭
- 晁
- 袈
- 蓟
- 镁
- 骥
- 掸
- 玳
- 娑
- 馀
- 跚
- 槃
- 缄
- 猢
- 粕
- 隍
- 佃
- 獗
- 唢
- 菏
- 酰
- 腚
- 笈
- 哙
- 孢
- 飕
- 嘹
- 茱
- 蹒
- 殓
- 柩
- 谀
- 姣
- 戌
- 柑
- 粼
- 淅
- 啧
- 盅
- 鼬
- 啜
- 绉
- 咻
- 锲
- 铆
- Y
- 螨
- 茯
- 憩
- 臼
- 谄
- 讴
- 濠
- 雎
- 噻
- 淦
- 懋
- 尕
- 氦
- 褛
- 颉
- 喆
- 铬
- 褴
- 燮
- 銮
- 侗
- 蹙
- 煜
- 邺
- 锃
- 麋
- 矗
- 娆
- 匐
- 噌
- 潸
- 碘
- 浔
- 檄
- 皈
- 铂
- 遨
- 炜
- 曜
- 饴
- 舷
- 胫
- 叟
- 祎
- 沅
- 潺
- 楣
- 埂
- 瞠
- 幔
- 稞
- 抻
- 匝
- 幄
- 殒
- 瑭
- 袂
- 囫
- 瓴
- 攫
- 鲈
- 箔
- 哝
- 馗
- 蜍
- 痧
- 脘
- 姘
- 苒
- 缢
- 觞
- 蛹
- 饬
- 胄
- 筏
- 鸾
- 儆
- 痿
- 矬
- 酊
- 纾
- 铖
- 荏
- 掬
- 膑
- 贮
- 觊
- 囵
- 泓
- 搔
- 汞
- 蚩
- 婀
- 谧
- 恣
- 霎
- 饕
- 赅
- 鲶
- 梏
- 獠
- 俶
- 龛
- 桅
- 鹄
- 旌
- 鲲
- 姒
- 蠡
- 繇
- 祜
- 诨
- 汩
- 觥
- 孀
- R
- 谥
- 蕨
- 祐
- 榭
- 皑
- 纂
- 獐
- 覃
- 痂
- 孑
- 砧
- 圩
- 桎
- 啵
- 葚
- 嗫
- 浃
- 荠
- 阈
- 遴
- 枇
- 狒
- 秸
- 筠
- 硒
- 卞
- 玷
- 杈
- 狲
- 忿
- 俎
- 拚
- 颍
- 睢
- 颧
- 滦
- 霭
- 雉
- 毽
- 蓑
- 歙
- 鳃
- 鹬
- 墉
- 楔
- 舐
- 绔
- 弭
- 馏
- 挝
- 奂
- 嘭
- 忪
- 箕
- 诌
- 谒
- 颚
- 滂
- 醍
- 洵
- 鹫
- 虢
- 苋
- 玥
- 臾
- 蹩
- Z
- 杷
- 痍
- 酉
- 疸
- 鄢
- 垩
- 烷
- 湮
- 钎
- 樽
- 旮
- 葭
- 邬
- 缱
- 糍
- 亳
- 咦
- 苷
- 伉
- 隽
- 伫
- 聒
- 匍
- 飚
- 桠
- 睑
- 脍
- 焘
- 谶
- 赳
- 萸
- 讣
- 疽
- 臧
- 巽
- 毓
- 鸢
- 纰
- 啐
- 噙
- 舛
- 敕
- 醐
- 痢
- 嚯
- 婺
- 勖
- 岷
- 溧
- 骅
- 犸
- 麾
- 嗟
- 诘
- 懑
- 貔
- 貅
- 啉
- 崂
- 鸩
- 镭
- 绻
- 逑
- 煨
- 褓
- 姝
- 藜
- 溟
- 儋
- 谡
- 欸
- 郢
- 荚
- 疝
- 遽
- 陂
- 饯
- 孪
- 巳
- 荞
- 泔
- 岿
- 谆
- 镍
- 洙
- 佻
- 盂
- 睨
- 铄
- 餮
- 酯
- 癣
- 浜
- 酩
- 焗
- 挲
- 鬃
- 鲠
- 仞
- 诰
- 谔
- 胛
- 萼
- 涿
- 莠
- 珲
- 旯
- 蜢
- 黍
- 肽
- 涪
- 髡
- 氙
- 陉
- 鬶
- 侩
- 糅
- 氤
- 芾
- 砷
- 鳕
- 钣
- 锒
- 闱
- 铵
- 镊
- 玑
- 砀
- 癜
- 颔
- 楹
- 螈
- 醚
- 琮
- 铩
- 笄
- 瓤
- 裨
- 潋
- 悌
- 聿
- 祢
- 郜
- 汨
- 棂
- 氲
- 嶙
- 聩
- 菅
- 腧
- 妯
- 龇
- 谲
- 耄
- 耋
- 囿
- 黢
- 揄
- 鲇
- 仝
- 個
- 忖
- 峋
- 揶
- 迩
- 诳
- 踽
- 骐
- 趸
- 颞
- 撺
- 辇
- 猷
- 铉
- 羸
- 徜
- 徉
- 襁
- 镌
- 孱
- 钒
- 铣
- 呤
- 遑
- 俾
- 皋
- 笕
- 笺
- 趔
- 趄
- 辋
- 鄞
- 殚
- 岫
- 跬
- 嘌
- 苻
- 绶
- 郅
- 瑄
- 萋
- 蘼
- 湎
- 砣
- 钜
- 捭
- 喹
- 恹
- 娌
- 螯
- 锰
- 祚
- 阆
- 矾
- 厩
- 龅
- 炝
- 黠
- 妁
- 濑
- 鞑
- 柒
- 滁
- 淖
- 鸬
- 鬣
- 晔
- 恸
- 赓
- 侉
- 溏
- 還
- 珮
- 鸨
- 嚅
- 笤
- 靥
- 啮
- 滓
- 俚
- 唳
- 苜
- 蓿
- 鹚
- 耦
- 莜
- 麸
- 粳
- 綦
- 盱
- 噤
- 遒
- 玟
- 魍
- 魉
- 旖
- 栉
- 锷
- 醴
- 泮
- 恁
- 甾
- 琬
- 丶
- 擤
- 桉
- 踟
- 誊
- 谟
- 澧
- 玖
- 畿
- 顼
- 兖
- 贰
- 茏
- 愎
- 豇
- 旎
- 蹰
- 蜃
- 屐
- 芡
- 鎏
- 癸
- 卅
- 枥
- 陟
- 琨
- 粝
- 掮
- 妪
- 姹
- 鏖
- 捯
- 钴
- 竽
- 恽
- 佰
- 胗
- 崧
- 磴
- 绺
- 鳏
- 槁
- 啖
- 矍
- 徕
- 忾
- 烃
- 喏
- 囹
- 圄
- 砭
- 邕
- 犍
- 鸮
- 剜
- 琚
- 瘢
- 魑
- 眦
- 锉
- 柘
- 痦
- 苕
- 牯
- 湟
- 厝
- 濛
- 赭
- 馐
- 蜇
- 嶂
- 贲
- 靼
- 臬
- 陲
- 潞
- 芩
- 腓
- 锨
- 寮
- 於
- 洇
- 愠
- 疖
- 鹧
- 鸪
- 茕
- 戕
- 壬
- 庾
- 莒
- 鹈
- 鹕
- 蠹
- 勐
- 疥
- 辎
- 耒
- 嗬
- 沔
- 睥
- 邙
- 篾
- 揩
- 肱
- 胍
- 磬
- 菟
- 豢
- 垓
- 唑
- 剌
- 阗
- 汜
- 佤
- 璟
- 麽
- 鬻
- 怏
- 蕤
- 茭
- 睚
- 淙
- 牍
- 榫
- 濯
- 稹
- 媾
- 悱
- 骶
- 蛭
- 鞣
- 椁
- 槊
- 擢
- 滢
- 佚
- 菡
- 沭
- 扦
- 镆
- 闾
- 缛
- 窠
- 疣
- 骠
- 俅
- 喙
- 蹼
- 硼
- 黩
- 腴
- 醮
- 邛
- 漯
- 豉
- 昶
- 刿
- 凇
- 鲅
- 舸
- 邳
- 俟
- 铰
- 翌
- 鳟
- 葳
- 寤
- 碣
- 秭
- 揠
- 熵
- 燧
- 靛
- 嵊
- 窨
- 鹗
- 芎
- 颢
- 佶
- 骢
- 圜
- 岘
- 燊
- 壅
- 畲
- 萘
- 煊
- 粲
- 倌
- 嗳
- 橹
- 椽
- 夔
- 鲑
- 赧
- 殄
- 沆
- 瀣
- 廪
- 舢
- 狍
- 挈
- 鹳
- 蚜
- 彧
- 羟
- 盥
- 镛
- 痈
- 蜊
- 皲
- 篦
- 喑
- 鲢
- 邡
- 蕲
- 僳
- 秣
- 蛉
- 讫
- 祗
- 鹩
- 撷
- 狎
- 郓
- 镕
- 榉
- 鲷
- 娣
- 淝
- 桷
- 镉
- 郫
- 髌
- 醪
- 僭
- 伧
- 嵬
- 苁
- 鹘
- 徭
- 歃
- 阕
- 鸱
- 貉
- 闳
- 坻
- 缙
- 媪
- 莨
- 菪
- 绦
- 恫
- 崆
- 喟
- 葺
- 逶
- 迤
- 骈
- 馔
- 苎
- 溘
- 垭
- 樯
- 诤
- 魃
- 搽
- 绀
- 蚴
- 澶
- 蒺
- 罘
- 眙
- 怍
- 來
- 荪
- 贶
- 亓
- 唻
- 畈
- 谌
- 芨
- 鲀
- 窸
- 窣
- 荜
- 楫
- 衮
- 趵
- 勰
- 髯
- 椴
- 缶
- 荸
- 秫
- 菖
- 甙
- 翦
- 椟
- 峤
- 掼
- 謇
- 洄
- 鄯
- 妗
- 浐
- 颀
- 箸
- 畦
- 痼
- 橛
- 鲛
- 蝾
- 愍
- 蒹
- 嘁
- 韪
- 劭
- 垅
- 暹
- 僮
- 稗
- 筚
- 煅
- 嬅
- 蜉
- 骝
- 碚
- 冼
- 吶
- 洹
- 郧
- 炴
- 绌
- 泠
- 呓
- 簋
- 溴
- 篁
- 仟
- 锟
- 羧
- 鹞
- 嘬
- 渌
- 笸
- 霰
- 稔
- 钡
- 齁
- 胪
- 衾
- 尻
- 洮
- 蘅
- 鲳
- 殂
- 腭
- 涔
- 蝣
- 孳
- 澍
- 钼
- 蒡
- 枳
- 渑
- 茼
- 馕
- 埙
- 珣
- 菘
- 邰
- 樾
- 铱
- 鳐
- 唔
- 篙
- 箜
- 篌
- 耆
- 啫
- 枞
- 杼
- 嵋
- 舂
- 娉
- 铨
- 崃
- 笳
- 邗
- 逡
- 僖
- 泫
- 疴
- 捱
- 醅
- 堇
- 肄
- 荇
- 虬
- 谯
- 酞
- 桡
- 艮
- 膦
- 艹
- 啻
- 滏
- 茆
- 圪
- 磡
- 麼
- 闼
- 郯
- 仡
- 氐
- 贽
- 俦
- 蓖
- 跹
- 帏
- 氅
- 趿
- 暝
- 缟
- 棹
- 滹
- 毖
- 蝰
- 虻
- 缫
- 诮
- 闩
- ○
- 潴
- 樨
- 瘘
- 襦
- 妤
- 郾
- 衿
- 鸷
- 旰
- 镢
- 傈
- 倨
- 笏
- 蒽
- 醌
- 驽
- 浠
- 涠
- 蓁
- 柞
- 钺
- 蜮
- 诂
- 徵
- 锆
- 椋
- 叻
- 廿
- 藁
- 乜
- 摈
- 這
- 茌
- 辊
- 岬
- 郇
- 杓
- 轳
- 酎
- 蟥
- 時
- 镒
- 蚬
- 澹
- 赟
- 後
- 怿
- 箐
- 囍
- 揆
- 蹁
- 鬄
- 苫
- 蕖
- 卺
- 辔
- 偈
- 俳
- 吲
- 哚
- 瘆
- 蕞
- 笞
- 氩
- 嫘
- 墁
- 帔
- 褡
- 裢
- 乩
- 褊
- 颏
- 喒
- 錾
- 皌
- 戗
- 唪
- 啭
- 伥
- 茔
- 斫
- 齉
- 仵
- 赉
- 吡
- 啶
- 蹇
- 螅
- 汊
- 湓
- 凫
- 珙
- 腈
- 洌
- Ω
- 憷
- 跶
- 抔
- 濞
- 崤
- 殍
- 浥
- 铳
- 酽
- 馑
- 髂
- 隗
- 韫
- 晷
- 诒
- 埭
- 鹪
- 蕻
- 昃
- 瓠
- 萁
- 癔
- 怩
- 疳
- 跖
- 疔
- 簟
- 汆
- 疠
- 卟
- 墒
- 穰
- 铍
- 珥
- 钤
- 隻
- 樓
- 墎
- 鳜
- 沒
- 岀
- 杪
- 単
- 鲧
- 呋
- 彀
- 祇
- 豸
- 胴
- 唷
- 丨
- 燚
- 麴
- 觇
- 缑
- 橐
- 蚡
- 朊
- 俣
- 垡
- <sos/eos>
init: null
input_size: null
ctc_conf:
ignore_nan_grad: true
model_conf:
ctc_weight: 0.3
lsm_weight: 0.1
length_normalized_loss: false
use_preprocessor: true
use_preprocessor_valid: false
token_type: char
bpemodel: null
non_linguistic_symbols: null
cleaner: null
g2p: null
speech_volume_normalize: null
rir_scp: null
rir_utt_prefix: null
rir_apply_prob: 1.0
noise_scp: null
noise_utt_prefix: null
noise_apply_prob: 1.0
noise_db_range: '13_15'
frontend: default
frontend_conf:
fs: 16k
specaug: specaug
specaug_conf:
apply_time_warp: true
time_warp_window: 5
time_warp_mode: bicubic
apply_freq_mask: true
freq_mask_width_range:
- 0
- 30
num_freq_mask: 2
apply_time_mask: true
time_mask_width_range:
- 0
- 40
num_time_mask: 2
normalize: global_mvn
normalize_conf:
stats_file: exp/asr_stats_raw_zh_char/train/feats_stats.npz
preencoder: null
preencoder_conf: {}
encoder: conformer
encoder_conf:
output_size: 512
attention_heads: 8
linear_units: 2048
num_blocks: 12
dropout_rate: 0.1
positional_dropout_rate: 0.1
attention_dropout_rate: 0.0
input_layer: conv2d
normalize_before: true
rel_pos_type: latest
pos_enc_layer_type: rel_pos
selfattention_layer_type: rel_selfattn
activation_type: swish
macaron_style: true
use_cnn_module: true
cnn_module_kernel: 15
postencoder: null
postencoder_conf: {}
decoder: transformer
decoder_conf:
attention_heads: 8
linear_units: 2048
num_blocks: 6
dropout_rate: 0.1
positional_dropout_rate: 0.1
self_attention_dropout_rate: 0.0
src_attention_dropout_rate: 0.0
required:
- output_dir
- token_list
version: 0.10.2a1
distributed: true
```
</details>
## LM config
<details><summary>expand</summary>
```
NONE
```
</details>
|
huggingtweets/cliobscure-mmmalign-weftofsoul | huggingtweets | 2021-10-26T23:26:21Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:05Z | ---
language: en
thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1447655419430809609/PIJr1Fky_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1452658892132032513/m4mpoMLK_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1450907553769082881/spVYXld-_400x400.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">𝒟𝓇. 𝒞𝓁𝒾𝑜🌵🔪🌷🐍💕 & Marras 🖤 & 𝕄𝖆𝖑</div>
<div style="text-align: center; font-size: 14px;">@cliobscure-mmmalign-weftofsoul</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from 𝒟𝓇. 𝒞𝓁𝒾𝑜🌵🔪🌷🐍💕 & Marras 🖤 & 𝕄𝖆𝖑.
| Data | 𝒟𝓇. 𝒞𝓁𝒾𝑜🌵🔪🌷🐍💕 | Marras 🖤 | 𝕄𝖆𝖑 |
| --- | --- | --- | --- |
| Tweets downloaded | 3051 | 3230 | 3247 |
| Retweets | 2281 | 782 | 123 |
| Short tweets | 133 | 284 | 893 |
| Tweets kept | 637 | 2164 | 2231 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3turzf62/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cliobscure-mmmalign-weftofsoul's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1rw7flqz) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1rw7flqz/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/cliobscure-mmmalign-weftofsoul')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingartists/arctic-monkeys | huggingartists | 2021-10-26T17:28:49Z | 5 | 1 | transformers | [
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingartists",
"lyrics",
"lm-head",
"causal-lm",
"en",
"dataset:huggingartists/arctic-monkeys",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:05Z | ---
language: en
datasets:
- huggingartists/arctic-monkeys
tags:
- huggingartists
- lyrics
- lm-head
- causal-lm
widget:
- text: "I am"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://images.genius.com/12c27f4fbb06ef32dc1c1e432098f447.570x570x1.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Arctic Monkeys</div>
<a href="https://genius.com/artists/arctic-monkeys">
<div style="text-align: center; font-size: 14px;">@arctic-monkeys</div>
</a>
</div>
I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists).
Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)!
## How does it work?
To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist).
## Training data
The model was trained on lyrics from Arctic Monkeys.
Dataset is available [here](https://huggingface.co/datasets/huggingartists/arctic-monkeys).
And can be used with:
```python
from datasets import load_dataset
dataset = load_dataset("huggingartists/arctic-monkeys")
```
[Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1x4ii6qz/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Arctic Monkeys's lyrics.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/bmnqvn53) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/bmnqvn53/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingartists/arctic-monkeys')
generator("I am", num_return_sequences=5)
```
Or with Transformers library:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("huggingartists/arctic-monkeys")
model = AutoModelWithLMHead.from_pretrained("huggingartists/arctic-monkeys")
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
[](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
[](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingartists)
|
chaitanya97/german_trained | chaitanya97 | 2021-10-26T12:37:19Z | 3 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: german_trained
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# german_trained
This model is a fine-tuned version of [flozi00/wav2vec-xlsr-german](https://huggingface.co/flozi00/wav2vec-xlsr-german) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.9367
- Wer: 1.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 5
- num_epochs: 30
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:---:|
| 12.0352 | 5.0 | 5 | 12.6165 | 1.0 |
| 4.0249 | 10.0 | 10 | 6.6453 | 1.0 |
| 2.6661 | 15.0 | 15 | 5.7873 | 1.0 |
| 2.4123 | 20.0 | 20 | 4.3250 | 1.0 |
| 1.9481 | 25.0 | 25 | 3.9899 | 1.0 |
| 1.7533 | 30.0 | 30 | 3.9367 | 1.0 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu102
- Datasets 1.13.3
- Tokenizers 0.10.3
|
BSC-LT/RoBERTalex | BSC-LT | 2021-10-26T10:10:38Z | 12 | 5 | transformers | [
"transformers",
"pytorch",
"roberta",
"fill-mask",
"legal",
"spanish",
"es",
"dataset:legal_ES",
"dataset:temu_legal",
"arxiv:2110.12201",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | fill-mask | 2022-03-02T23:29:04Z | ---
language:
- es
license: apache-2.0
tags:
- legal
- spanish
datasets:
- legal_ES
- temu_legal
metrics:
- ppl
widget:
- text: "La ley fue <mask> finalmente."
- text: "El Tribunal <mask> desestimó el recurso de amparo."
- text: "Hay base legal dentro del marco <mask> actual."
---
**⚠️NOTICE⚠️: THIS MODEL HAS BEEN MOVED TO THE FOLLOWING URL AND WILL SOON BE REMOVED:** https://huggingface.co/PlanTL-GOB-ES/RoBERTalex
# Spanish Legal-domain RoBERTa
There are few models trained for the Spanish language. Some of the models have been trained with a low resource, unclean corpora. The ones derived from the Spanish National Plan for Language Technologies are proficient solving several tasks and have been trained using large scale clean corpora. However, the Spanish Legal domain language could be think of an independent language on its own. We therefore created a Spanish Legal model from scratch trained exclusively on legal corpora.
## Citing
```
@misc{gutierrezfandino2021legal,
title={Spanish Legalese Language Model and Corpora},
author={Asier Gutiérrez-Fandiño and Jordi Armengol-Estapé and Aitor Gonzalez-Agirre and Marta Villegas},
year={2021},
eprint={2110.12201},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
For more information visit our [GitHub repository](https://github.com/PlanTL-GOB-ES/lm-legal-es)
## Funding
This work was funded by the Spanish State Secretariat for Digitalization and Artificial Intelligence (SEDIA) within the framework of the Plan-TL. |
owen99630/catexp2 | owen99630 | 2021-10-26T04:58:10Z | 3 | 0 | transformers | [
"transformers",
"pytorch",
"roberta",
"text-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2022-03-02T23:29:05Z | {0: 'Anorexia',
1: 'Anxiety',
2: 'Bullying',
3: 'Care',
4: 'Creativity',
5: 'Culture',
6: 'Depression',
7: 'Friends',
8: 'Getting help',
9: 'Happiness',
10: 'Helping others',
11: 'Helping yourself',
12: 'Hope',
13: 'Learning',
14: 'Life Issues',
15: 'Mental Health',
16: 'Mental Health Matters',
17: 'Mental health awareness',
18: 'PTSD',
19: 'Positivity',
20: 'Resilience',
21: 'Self-care',
22: 'Sharing',
23: 'Support',
24: 'University'} |
kornesh/xlm-roberta-base | kornesh | 2021-10-26T01:25:22Z | 146 | 1 | transformers | [
"transformers",
"tf",
"xlm-roberta",
"feature-extraction",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] | feature-extraction | 2022-03-02T23:29:05Z | Converted for Tensorflow
```
!pip install transformers sentencepiece
from transformers import TFAutoModel, AutoTokenizer
name = "xlm-roberta-base"
model = TFAutoModel.from_pretrained(name, from_pt=True)
tokenizer = AutoTokenizer.from_pretrained(name)
model.save_pretrained("local-xlm-roberta-base")
tokenizer.save_pretrained("local-xlm-roberta-base")
``` |
espnet/siddhana_slurp_new_asr_train_asr_conformer_raw_en_word_valid.acc.ave_10best | espnet | 2021-10-25T23:23:39Z | 1 | 0 | espnet | [
"espnet",
"audio",
"automatic-speech-recognition",
"en",
"dataset:slurp",
"arxiv:1804.00015",
"license:cc-by-4.0",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:05Z | ---
tags:
- espnet
- audio
- automatic-speech-recognition
language: en
datasets:
- slurp
license: cc-by-4.0
---
## ESPnet2 SLU pretrained model
### `siddhana/slurp_new_asr_train_asr_conformer_raw_en_word_valid.acc.ave_10best`
♻️ Imported from https://zenodo.org/record/5590384
This model was trained by siddhana using slurp/asr1 recipe in [espnet](https://github.com/espnet/espnet/).
### Demo: How to use in ESPnet2
```python
# coming soon
```
### Citing ESPnet
```BibTex
@inproceedings{watanabe2018espnet,
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
title={{ESPnet}: End-to-End Speech Processing Toolkit},
year={2018},
booktitle={Proceedings of Interspeech},
pages={2207--2211},
doi={10.21437/Interspeech.2018-1456},
url={http://dx.doi.org/10.21437/Interspeech.2018-1456}
}
```
or arXiv:
```bibtex
@misc{watanabe2018espnet,
title={ESPnet: End-to-End Speech Processing Toolkit},
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
year={2018},
eprint={1804.00015},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
``` |
danielvasic/en_acnl_electra_pipeline | danielvasic | 2021-10-25T18:45:15Z | 4 | 0 | spacy | [
"spacy",
"token-classification",
"en",
"model-index",
"region:us"
] | token-classification | 2022-03-02T23:29:05Z | ---
tags:
- spacy
- token-classification
language:
- en
model-index:
- name: en_acnl_electra_pipeline
results:
- task:
name: POS
type: token-classification
metrics:
- name: POS Accuracy
type: accuracy
value: 0.9769257272
- task:
name: SENTER
type: token-classification
metrics:
- name: SENTER Precision
type: precision
value: 0.9508884151
- name: SENTER Recall
type: recall
value: 0.94805839
- name: SENTER F Score
type: f_score
value: 0.9494712937
- task:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Unlabeled Dependencies Accuracy
type: accuracy
value: 0.9577103137
- task:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Labeled Dependencies Accuracy
type: accuracy
value: 0.9577103137
---
| Feature | Description |
| --- | --- |
| **Name** | `en_acnl_electra_pipeline` |
| **Version** | `0.0.1` |
| **spaCy** | `>=3.1.3,<3.2.0` |
| **Default Pipeline** | `transformer`, `tagger`, `parser` |
| **Components** | `transformer`, `tagger`, `parser` |
| **Vectors** | 0 keys, 0 unique vectors (0 dimensions) |
| **Sources** | n/a |
| **License** | GPL |
| **Author** | Daniel Vasić() |
### Label Scheme
<details>
<summary>View label scheme (87 labels for 2 components)</summary>
| Component | Labels |
| --- | --- |
| **`tagger`** | `$`, `''`, `,`, `-LRB-`, `-RRB-`, `.`, `:`, `ADD`, `AFX`, `CC`, `CD`, `DT`, `EX`, `FW`, `HYPH`, `IN`, `JJ`, `JJR`, `JJS`, `LS`, `MD`, `NFP`, `NN`, `NNP`, `NNPS`, `NNS`, `PDT`, `POS`, `PRP`, `PRP$`, `RB`, `RBR`, `RBS`, `RP`, `SYM`, `TO`, `UH`, `VB`, `VBD`, `VBG`, `VBN`, `VBP`, `VBZ`, `VERB`, `WDT`, `WP`, `WP$`, `WRB`, `XX`, ```` |
| **`parser`** | `ROOT`, `acl`, `acomp`, `advcl`, `advmod`, `amod`, `appos`, `aux`, `auxpass`, `case`, `cc`, `ccomp`, `compound`, `conj`, `dative`, `dep`, `det`, `dobj`, `intj`, `mark`, `meta`, `neg`, `nmod`, `npadvmod`, `nummod`, `parataxis`, `pcomp`, `pobj`, `poss`, `preconj`, `predet`, `prep`, `prt`, `punct`, `quantmod`, `relcl`, `xcomp` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TAG_ACC` | 97.69 |
| `DEP_UAS` | 95.77 |
| `DEP_LAS` | 94.52 |
| `SENTS_P` | 95.09 |
| `SENTS_R` | 94.81 |
| `SENTS_F` | 94.95 |
| `TRANSFORMER_LOSS` | 6123357.72 |
| `TAGGER_LOSS` | 338995.26 |
| `PARSER_LOSS` | 4101825.66 | |
chaitanya97/custom_german | chaitanya97 | 2021-10-25T16:27:15Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: custom_german
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# custom_german
This model is a fine-tuned version of [flozi00/wav2vec-xlsr-german](https://huggingface.co/flozi00/wav2vec-xlsr-german) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 4.6832
- Wer: 1.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 5
- num_epochs: 30
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:---:|
| 8.7718 | 5.0 | 5 | 8.5148 | 1.0 |
| 3.7125 | 10.0 | 10 | 5.4304 | 1.0 |
| 2.7679 | 15.0 | 15 | 5.0388 | 1.0 |
| 2.0516 | 20.0 | 20 | 4.4628 | 1.0 |
| 1.6702 | 25.0 | 25 | 4.5341 | 1.0 |
| 1.515 | 30.0 | 30 | 4.6832 | 1.0 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu102
- Datasets 1.13.3
- Tokenizers 0.10.3
|
kwang2049/TSDAE-cqadupstack | kwang2049 | 2021-10-25T16:18:29Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"bert",
"feature-extraction",
"arxiv:2104.06979",
"endpoints_compatible",
"region:us"
] | feature-extraction | 2022-03-02T23:29:05Z | # kwang2049/TSDAE-cqadupstack2nli_stsb
This is a model from the paper ["TSDAE: Using Transformer-based Sequential Denoising Auto-Encoder for Unsupervised Sentence Embedding Learning"](https://arxiv.org/abs/2104.06979). This model was only trained with the TSDAE objective on cqadupstack in an unsupervised manner. Training procedure of this model:
1. Initialized with [bert-base-uncased](https://huggingface.co/bert-base-uncased);
2. Unsupervised training on cqadupstack with the TSDAE objective;
The pooling method is CLS-pooling.
## Usage
To use this model, an convenient way is through [SentenceTransformers](https://github.com/UKPLab/sentence-transformers). So please install it via:
```bash
pip install sentence-transformers
```
And then load the model and use it to encode sentences:
```python
from sentence_transformers import SentenceTransformer, models
dataset = 'cqadupstack'
model_name_or_path = f'kwang2049/TSDAE-{dataset}'
model = SentenceTransformer(model_name_or_path)
model[1] = models.Pooling(model[0].get_word_embedding_dimension(), pooling_mode='cls') # Note this model uses CLS-pooling
sentence_embeddings = model.encode(['This is the first sentence.', 'This is the second one.'])
```
## Evaluation
To evaluate the model against the datasets used in the paper, please install our evaluation toolkit [USEB](https://github.com/UKPLab/useb):
```bash
pip install useb # Or git clone and pip install .
python -m useb.downloading all # Download both training and evaluation data
```
And then do the evaluation:
```python
from sentence_transformers import SentenceTransformer, models
import torch
from useb import run_on
dataset = 'cqadupstack'
model_name_or_path = f'kwang2049/TSDAE-{dataset}'
model = SentenceTransformer(model_name_or_path)
model[1] = models.Pooling(model[0].get_word_embedding_dimension(), pooling_mode='cls') # Note this model uses CLS-pooling
@torch.no_grad()
def semb_fn(sentences) -> torch.Tensor:
return torch.Tensor(model.encode(sentences, show_progress_bar=False))
result = run_on(
dataset,
semb_fn=semb_fn,
eval_type='test',
data_eval_path='data-eval'
)
```
## Training
Please refer to [the page of TSDAE training](https://github.com/UKPLab/sentence-transformers/tree/master/examples/unsupervised_learning/TSDAE) in SentenceTransformers.
## Cite & Authors
If you use the code for evaluation, feel free to cite our publication [TSDAE: Using Transformer-based Sequential Denoising Auto-Encoderfor Unsupervised Sentence Embedding Learning](https://arxiv.org/abs/2104.06979):
```bibtex
@article{wang-2021-TSDAE,
title = "TSDAE: Using Transformer-based Sequential Denoising Auto-Encoderfor Unsupervised Sentence Embedding Learning",
author = "Wang, Kexin and Reimers, Nils and Gurevych, Iryna",
journal= "arXiv preprint arXiv:2104.06979",
month = "4",
year = "2021",
url = "https://arxiv.org/abs/2104.06979",
}
``` |
kwang2049/TSDAE-askubuntu | kwang2049 | 2021-10-25T16:17:47Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"bert",
"feature-extraction",
"arxiv:2104.06979",
"endpoints_compatible",
"region:us"
] | feature-extraction | 2022-03-02T23:29:05Z | # kwang2049/TSDAE-askubuntu2nli_stsb
This is a model from the paper ["TSDAE: Using Transformer-based Sequential Denoising Auto-Encoder for Unsupervised Sentence Embedding Learning"](https://arxiv.org/abs/2104.06979). This model was only trained with the TSDAE objective on AskUbuntu in an unsupervised manner. Training procedure of this model:
1. Initialized with [bert-base-uncased](https://huggingface.co/bert-base-uncased);
2. Unsupervised training on AskUbuntu with the TSDAE objective;
The pooling method is CLS-pooling.
## Usage
To use this model, an convenient way is through [SentenceTransformers](https://github.com/UKPLab/sentence-transformers). So please install it via:
```bash
pip install sentence-transformers
```
And then load the model and use it to encode sentences:
```python
from sentence_transformers import SentenceTransformer, models
dataset = 'askubuntu'
model_name_or_path = f'kwang2049/TSDAE-{dataset}'
model = SentenceTransformer(model_name_or_path)
model[1] = models.Pooling(model[0].get_word_embedding_dimension(), pooling_mode='cls') # Note this model uses CLS-pooling
sentence_embeddings = model.encode(['This is the first sentence.', 'This is the second one.'])
```
## Evaluation
To evaluate the model against the datasets used in the paper, please install our evaluation toolkit [USEB](https://github.com/UKPLab/useb):
```bash
pip install useb # Or git clone and pip install .
python -m useb.downloading all # Download both training and evaluation data
```
And then do the evaluation:
```python
from sentence_transformers import SentenceTransformer, models
import torch
from useb import run_on
dataset = 'askubuntu'
model_name_or_path = f'kwang2049/TSDAE-{dataset}'
model = SentenceTransformer(model_name_or_path)
model[1] = models.Pooling(model[0].get_word_embedding_dimension(), pooling_mode='cls') # Note this model uses CLS-pooling
@torch.no_grad()
def semb_fn(sentences) -> torch.Tensor:
return torch.Tensor(model.encode(sentences, show_progress_bar=False))
result = run_on(
dataset,
semb_fn=semb_fn,
eval_type='test',
data_eval_path='data-eval'
)
```
## Training
Please refer to [the page of TSDAE training](https://github.com/UKPLab/sentence-transformers/tree/master/examples/unsupervised_learning/TSDAE) in SentenceTransformers.
## Cite & Authors
If you use the code for evaluation, feel free to cite our publication [TSDAE: Using Transformer-based Sequential Denoising Auto-Encoderfor Unsupervised Sentence Embedding Learning](https://arxiv.org/abs/2104.06979):
```bibtex
@article{wang-2021-TSDAE,
title = "TSDAE: Using Transformer-based Sequential Denoising Auto-Encoderfor Unsupervised Sentence Embedding Learning",
author = "Wang, Kexin and Reimers, Nils and Gurevych, Iryna",
journal= "arXiv preprint arXiv:2104.06979",
month = "4",
year = "2021",
url = "https://arxiv.org/abs/2104.06979",
}
``` |
kwang2049/TSDAE-scidocs2nli_stsb | kwang2049 | 2021-10-25T16:15:23Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"bert",
"feature-extraction",
"arxiv:2104.06979",
"endpoints_compatible",
"region:us"
] | feature-extraction | 2022-03-02T23:29:05Z | # kwang2049/TSDAE-scidocs2nli_stsb
This is a model from the paper ["TSDAE: Using Transformer-based Sequential Denoising Auto-Encoder for Unsupervised Sentence Embedding Learning"](https://arxiv.org/abs/2104.06979). This model adapts the knowledge from the NLI and STSb data to the specific domain scidocs. Training procedure of this model:
1. Initialized with [bert-base-uncased](https://huggingface.co/bert-base-uncased);
2. Unsupervised training on scidocs with the TSDAE objective;
3. Supervised training on the NLI data with cross-entropy loss;
4. Supervised training on the STSb data with MSE loss.
The pooling method is CLS-pooling.
## Usage
To use this model, an convenient way is through [SentenceTransformers](https://github.com/UKPLab/sentence-transformers). So please install it via:
```bash
pip install sentence-transformers
```
And then load the model and use it to encode sentences:
```python
from sentence_transformers import SentenceTransformer, models
dataset = 'scidocs'
model_name_or_path = f'kwang2049/TSDAE-{dataset}2nli_stsb'
model = SentenceTransformer(model_name_or_path)
model[1] = models.Pooling(model[0].get_word_embedding_dimension(), pooling_mode='cls') # Note this model uses CLS-pooling
sentence_embeddings = model.encode(['This is the first sentence.', 'This is the second one.'])
```
## Evaluation
To evaluate the model against the datasets used in the paper, please install our evaluation toolkit [USEB](https://github.com/UKPLab/useb):
```bash
pip install useb # Or git clone and pip install .
python -m useb.downloading all # Download both training and evaluation data
```
And then do the evaluation:
```python
from sentence_transformers import SentenceTransformer, models
import torch
from useb import run_on
dataset = 'scidocs'
model_name_or_path = f'kwang2049/TSDAE-{dataset}2nli_stsb'
model = SentenceTransformer(model_name_or_path)
model[1] = models.Pooling(model[0].get_word_embedding_dimension(), pooling_mode='cls') # Note this model uses CLS-pooling
@torch.no_grad()
def semb_fn(sentences) -> torch.Tensor:
return torch.Tensor(model.encode(sentences, show_progress_bar=False))
result = run_on(
dataset,
semb_fn=semb_fn,
eval_type='test',
data_eval_path='data-eval'
)
```
## Training
Please refer to [the page of TSDAE training](https://github.com/UKPLab/sentence-transformers/tree/master/examples/unsupervised_learning/TSDAE) in SentenceTransformers.
## Cite & Authors
If you use the code for evaluation, feel free to cite our publication [TSDAE: Using Transformer-based Sequential Denoising Auto-Encoderfor Unsupervised Sentence Embedding Learning](https://arxiv.org/abs/2104.06979):
```bibtex
@article{wang-2021-TSDAE,
title = "TSDAE: Using Transformer-based Sequential Denoising Auto-Encoderfor Unsupervised Sentence Embedding Learning",
author = "Wang, Kexin and Reimers, Nils and Gurevych, Iryna",
journal= "arXiv preprint arXiv:2104.06979",
month = "4",
year = "2021",
url = "https://arxiv.org/abs/2104.06979",
}
``` |
kwang2049/TSDAE-cqadupstack2nli_stsb | kwang2049 | 2021-10-25T16:14:19Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"bert",
"feature-extraction",
"arxiv:2104.06979",
"endpoints_compatible",
"region:us"
] | feature-extraction | 2022-03-02T23:29:05Z | # kwang2049/TSDAE-cqadupstack2nli_stsb
This is a model from the paper ["TSDAE: Using Transformer-based Sequential Denoising Auto-Encoder for Unsupervised Sentence Embedding Learning"](https://arxiv.org/abs/2104.06979). This model adapts the knowledge from the NLI and STSb data to the specific domain cqadupstack. Training procedure of this model:
1. Initialized with [bert-base-uncased](https://huggingface.co/bert-base-uncased);
2. Unsupervised training on cqadupstack with the TSDAE objective;
3. Supervised training on the NLI data with cross-entropy loss;
4. Supervised training on the STSb data with MSE loss.
The pooling method is CLS-pooling.
## Usage
To use this model, an convenient way is through [SentenceTransformers](https://github.com/UKPLab/sentence-transformers). So please install it via:
```bash
pip install sentence-transformers
```
And then load the model and use it to encode sentences:
```python
from sentence_transformers import SentenceTransformer, models
dataset = 'cqadupstack'
model_name_or_path = f'kwang2049/TSDAE-{dataset}2nli_stsb'
model = SentenceTransformer(model_name_or_path)
model[1] = models.Pooling(model[0].get_word_embedding_dimension(), pooling_mode='cls') # Note this model uses CLS-pooling
sentence_embeddings = model.encode(['This is the first sentence.', 'This is the second one.'])
```
## Evaluation
To evaluate the model against the datasets used in the paper, please install our evaluation toolkit [USEB](https://github.com/UKPLab/useb):
```bash
pip install useb # Or git clone and pip install .
python -m useb.downloading all # Download both training and evaluation data
```
And then do the evaluation:
```python
from sentence_transformers import SentenceTransformer, models
import torch
from useb import run_on
dataset = 'cqadupstack'
model_name_or_path = f'kwang2049/TSDAE-{dataset}2nli_stsb'
model = SentenceTransformer(model_name_or_path)
model[1] = models.Pooling(model[0].get_word_embedding_dimension(), pooling_mode='cls') # Note this model uses CLS-pooling
@torch.no_grad()
def semb_fn(sentences) -> torch.Tensor:
return torch.Tensor(model.encode(sentences, show_progress_bar=False))
result = run_on(
dataset,
semb_fn=semb_fn,
eval_type='test',
data_eval_path='data-eval'
)
```
## Training
Please refer to [the page of TSDAE training](https://github.com/UKPLab/sentence-transformers/tree/master/examples/unsupervised_learning/TSDAE) in SentenceTransformers.
## Cite & Authors
If you use the code for evaluation, feel free to cite our publication [TSDAE: Using Transformer-based Sequential Denoising Auto-Encoderfor Unsupervised Sentence Embedding Learning](https://arxiv.org/abs/2104.06979):
```bibtex
@article{wang-2021-TSDAE,
title = "TSDAE: Using Transformer-based Sequential Denoising Auto-Encoderfor Unsupervised Sentence Embedding Learning",
author = "Wang, Kexin and Reimers, Nils and Gurevych, Iryna",
journal= "arXiv preprint arXiv:2104.06979",
month = "4",
year = "2021",
url = "https://arxiv.org/abs/2104.06979",
}
``` |
kwang2049/TSDAE-askubuntu2nli_stsb | kwang2049 | 2021-10-25T16:13:34Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"bert",
"feature-extraction",
"arxiv:2104.06979",
"endpoints_compatible",
"region:us"
] | feature-extraction | 2022-03-02T23:29:05Z | # kwang2049/TSDAE-askubuntu2nli_stsb
This is a model from the paper ["TSDAE: Using Transformer-based Sequential Denoising Auto-Encoder for Unsupervised Sentence Embedding Learning"](https://arxiv.org/abs/2104.06979). This model adapts the knowledge from the NLI and STSb data to the specific domain AskUbuntu. Training procedure of this model:
1. Initialized with [bert-base-uncased](https://huggingface.co/bert-base-uncased);
2. Unsupervised training on AskUbuntu with the TSDAE objective;
3. Supervised training on the NLI data with cross-entropy loss;
4. Supervised training on the STSb data with MSE loss.
The pooling method is CLS-pooling.
## Usage
To use this model, an convenient way is through [SentenceTransformers](https://github.com/UKPLab/sentence-transformers). So please install it via:
```bash
pip install sentence-transformers
```
And then load the model and use it to encode sentences:
```python
from sentence_transformers import SentenceTransformer, models
dataset = 'askubuntu'
model_name_or_path = f'kwang2049/TSDAE-{dataset}2nli_stsb'
model = SentenceTransformer(model_name_or_path)
model[1] = models.Pooling(model[0].get_word_embedding_dimension(), pooling_mode='cls') # Note this model uses CLS-pooling
sentence_embeddings = model.encode(['This is the first sentence.', 'This is the second one.'])
```
## Evaluation
To evaluate the model against the datasets used in the paper, please install our evaluation toolkit [USEB](https://github.com/UKPLab/useb):
```bash
pip install useb # Or git clone and pip install .
python -m useb.downloading all # Download both training and evaluation data
```
And then do the evaluation:
```python
from sentence_transformers import SentenceTransformer, models
import torch
from useb import run_on
dataset = 'askubuntu'
model_name_or_path = f'kwang2049/TSDAE-{dataset}2nli_stsb'
model = SentenceTransformer(model_name_or_path)
model[1] = models.Pooling(model[0].get_word_embedding_dimension(), pooling_mode='cls') # Note this model uses CLS-pooling
@torch.no_grad()
def semb_fn(sentences) -> torch.Tensor:
return torch.Tensor(model.encode(sentences, show_progress_bar=False))
result = run_on(
dataset,
semb_fn=semb_fn,
eval_type='test',
data_eval_path='data-eval'
)
```
## Training
Please refer to [the page of TSDAE training](https://github.com/UKPLab/sentence-transformers/tree/master/examples/unsupervised_learning/TSDAE) in SentenceTransformers.
## Cite & Authors
If you use the code for evaluation, feel free to cite our publication [TSDAE: Using Transformer-based Sequential Denoising Auto-Encoderfor Unsupervised Sentence Embedding Learning](https://arxiv.org/abs/2104.06979):
```bibtex
@article{wang-2021-TSDAE,
title = "TSDAE: Using Transformer-based Sequential Denoising Auto-Encoderfor Unsupervised Sentence Embedding Learning",
author = "Wang, Kexin and Reimers, Nils and Gurevych, Iryna",
journal= "arXiv preprint arXiv:2104.06979",
month = "4",
year = "2021",
url = "https://arxiv.org/abs/2104.06979",
}
``` |
napoler/bart-chinese-6-960-words-pkuseg | napoler | 2021-10-25T15:05:51Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"bart",
"text2text-generation",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2022-03-02T23:29:05Z | # 使用
这个模型是在uer/bart-chinese-6-960-cluecorpussmall基础上训练的,数据量不是很大,但是修改了默认分词。
使用pkuseg分词,禁用BertTokenizer的do_basic_tokenize分词,不禁用do_basic_tokenize的话会把正常词汇按照逐字分词,禁用后可以导入自己的分词方案。
pip install git+https://github.com/napoler/tkit-AutoTokenizerPosition
```python
import pkuseg
from tkitAutoTokenizerPosition.AutoPos import AutoPos
seg = pkuseg.pkuseg(model_name='medicine') # 程序会自动下载所对应的细领域模型
tokenizer = BertTokenizer.from_pretrained("uer/chinese_roberta_L-2_H-128",do_basic_tokenize=False)
ATP=AutoPos(seg,tokenizer)
# 清理文本中的问题
ATP.getTokenize(text)
```
分词结果如下
```
['他', '##们', '的', '伤', '##害', ',', '以', '##及', '陷', '##阱', '能', '##力', '的', '组', '##合', ',', '猎', '##人', '对', '##于', '任', '##何', '团', '##队', '都', '是', '最', '##好', '的', '拉', '##怪', '##者', '.'], 'cut': ['他们', '的', '伤害', ',', '以及', '陷阱', '能力', '的', '组合', ',', '猎人', '对于', '任何', '团队', '都', '是', '最好', '的', '拉怪者', '.']
```
https://www.kaggle.com/terrychanorg/napolerbartchinese6960wordspkuseg
https://www.kaggle.com/terrychanorg/buliddataforbert-7803feff2
https://www.kaggle.com/terrychanorg/bart-notebook8wewew6eeb0f8af
https://www.kaggle.com/terrychanorg/fork-of-bart-notebook8wewew6eeb0f8af/data?scriptVersionId=77962540
|
lvwerra/pegasus-samsum | lvwerra | 2021-10-25T14:57:33Z | 6 | 3 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"pegasus",
"text2text-generation",
"generated_from_trainer",
"dataset:samsum",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2022-03-02T23:29:05Z | ---
tags:
- generated_from_trainer
datasets:
- samsum
model-index:
- name: pegasus-samsum
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# pegasus-samsum
This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) on the samsum dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4177
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 0.4
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.6092 | 0.03 | 500 | 1.6488 |
| 1.9715 | 0.07 | 1000 | 1.5444 |
| 1.8325 | 0.1 | 1500 | 1.5093 |
| 1.876 | 0.14 | 2000 | 1.4890 |
| 1.3081 | 0.17 | 2500 | 1.4737 |
| 1.7769 | 0.2 | 3000 | 1.4496 |
| 1.6276 | 0.24 | 3500 | 1.4430 |
| 1.6624 | 0.27 | 4000 | 1.4288 |
| 1.9202 | 0.31 | 4500 | 1.4235 |
| 1.4404 | 0.34 | 5000 | 1.4189 |
| 1.8016 | 0.37 | 5500 | 1.4177 |
### Framework versions
- Transformers 4.12.0.dev0
- Pytorch 1.9.1+cu102
- Datasets 1.12.1
- Tokenizers 0.10.3
|
patrickvonplaten/wav2vec2-base-repro-960h-libri-85k-steps | patrickvonplaten | 2021-10-25T13:15:45Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"wav2vec2",
"pretraining",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z | https://wandb.ai/patrickvonplaten/test/reports/Wav2Vec2-Base--VmlldzoxMTUyODQ0?accessToken=rg6e8u9yizx964k8q47zctq1m4afpvtn1i3qi9exgdmzip6xwkfzvagfajpzj55n |
teacookies/autonlp-more_fine_tune_24465520-26265899 | teacookies | 2021-10-25T09:51:18Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"xlm-roberta",
"question-answering",
"autonlp",
"unk",
"dataset:teacookies/autonlp-data-more_fine_tune_24465520",
"co2_eq_emissions",
"endpoints_compatible",
"region:us"
] | question-answering | 2022-03-02T23:29:05Z | ---
tags:
- autonlp
- question-answering
language: unk
widget:
- text: "Who loves AutoNLP?"
context: "Everyone loves AutoNLP"
datasets:
- teacookies/autonlp-data-more_fine_tune_24465520
co2_eq_emissions: 124.66009281731397
---
# Model Trained Using AutoNLP
- Problem type: Extractive Question Answering
- Model ID: 26265899
- CO2 Emissions (in grams): 124.66009281731397
## Validation Metrics
- Loss: 0.7011443972587585
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"question": "Who loves AutoNLP?", "context": "Everyone loves AutoNLP"}' https://api-inference.huggingface.co/models/teacookies/autonlp-more_fine_tune_24465520-26265899
```
Or Python API:
```
import torch
from transformers import AutoModelForQuestionAnswering, AutoTokenizer
model = AutoModelForQuestionAnswering.from_pretrained("teacookies/autonlp-more_fine_tune_24465520-26265899", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("teacookies/autonlp-more_fine_tune_24465520-26265899", use_auth_token=True)
from transformers import BertTokenizer, BertForQuestionAnswering
question, text = "Who loves AutoNLP?", "Everyone loves AutoNLP"
inputs = tokenizer(question, text, return_tensors='pt')
start_positions = torch.tensor([1])
end_positions = torch.tensor([3])
outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions)
loss = outputs.loss
start_scores = outputs.start_logits
end_scores = outputs.end_logits
``` |
teacookies/autonlp-more_fine_tune_24465520-26265904 | teacookies | 2021-10-25T09:36:11Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"xlm-roberta",
"question-answering",
"autonlp",
"unk",
"dataset:teacookies/autonlp-data-more_fine_tune_24465520",
"co2_eq_emissions",
"endpoints_compatible",
"region:us"
] | question-answering | 2022-03-02T23:29:05Z | ---
tags:
- autonlp
- question-answering
language: unk
widget:
- text: "Who loves AutoNLP?"
context: "Everyone loves AutoNLP"
datasets:
- teacookies/autonlp-data-more_fine_tune_24465520
co2_eq_emissions: 108.63800043275934
---
# Model Trained Using AutoNLP
- Problem type: Extractive Question Answering
- Model ID: 26265904
- CO2 Emissions (in grams): 108.63800043275934
## Validation Metrics
- Loss: 0.5807144045829773
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"question": "Who loves AutoNLP?", "context": "Everyone loves AutoNLP"}' https://api-inference.huggingface.co/models/teacookies/autonlp-more_fine_tune_24465520-26265904
```
Or Python API:
```
import torch
from transformers import AutoModelForQuestionAnswering, AutoTokenizer
model = AutoModelForQuestionAnswering.from_pretrained("teacookies/autonlp-more_fine_tune_24465520-26265904", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("teacookies/autonlp-more_fine_tune_24465520-26265904", use_auth_token=True)
from transformers import BertTokenizer, BertForQuestionAnswering
question, text = "Who loves AutoNLP?", "Everyone loves AutoNLP"
inputs = tokenizer(question, text, return_tensors='pt')
start_positions = torch.tensor([1])
end_positions = torch.tensor([3])
outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions)
loss = outputs.loss
start_scores = outputs.start_logits
end_scores = outputs.end_logits
``` |
teacookies/autonlp-more_fine_tune_24465520-26265907 | teacookies | 2021-10-25T09:35:36Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"xlm-roberta",
"question-answering",
"autonlp",
"unk",
"dataset:teacookies/autonlp-data-more_fine_tune_24465520",
"co2_eq_emissions",
"endpoints_compatible",
"region:us"
] | question-answering | 2022-03-02T23:29:05Z | ---
tags:
- autonlp
- question-answering
language: unk
widget:
- text: "Who loves AutoNLP?"
context: "Everyone loves AutoNLP"
datasets:
- teacookies/autonlp-data-more_fine_tune_24465520
co2_eq_emissions: 103.5636883689371
---
# Model Trained Using AutoNLP
- Problem type: Extractive Question Answering
- Model ID: 26265907
- CO2 Emissions (in grams): 103.5636883689371
## Validation Metrics
- Loss: 0.6072460412979126
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"question": "Who loves AutoNLP?", "context": "Everyone loves AutoNLP"}' https://api-inference.huggingface.co/models/teacookies/autonlp-more_fine_tune_24465520-26265907
```
Or Python API:
```
import torch
from transformers import AutoModelForQuestionAnswering, AutoTokenizer
model = AutoModelForQuestionAnswering.from_pretrained("teacookies/autonlp-more_fine_tune_24465520-26265907", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("teacookies/autonlp-more_fine_tune_24465520-26265907", use_auth_token=True)
from transformers import BertTokenizer, BertForQuestionAnswering
question, text = "Who loves AutoNLP?", "Everyone loves AutoNLP"
inputs = tokenizer(question, text, return_tensors='pt')
start_positions = torch.tensor([1])
end_positions = torch.tensor([3])
outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions)
loss = outputs.loss
start_scores = outputs.start_logits
end_scores = outputs.end_logits
``` |
teacookies/autonlp-more_fine_tune_24465520-26265911 | teacookies | 2021-10-25T09:35:36Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"xlm-roberta",
"question-answering",
"autonlp",
"unk",
"dataset:teacookies/autonlp-data-more_fine_tune_24465520",
"co2_eq_emissions",
"endpoints_compatible",
"region:us"
] | question-answering | 2022-03-02T23:29:05Z | ---
tags:
- autonlp
- question-answering
language: unk
widget:
- text: "Who loves AutoNLP?"
context: "Everyone loves AutoNLP"
datasets:
- teacookies/autonlp-data-more_fine_tune_24465520
co2_eq_emissions: 97.58591836686978
---
# Model Trained Using AutoNLP
- Problem type: Extractive Question Answering
- Model ID: 26265911
- CO2 Emissions (in grams): 97.58591836686978
## Validation Metrics
- Loss: 6.2383246421813965
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"question": "Who loves AutoNLP?", "context": "Everyone loves AutoNLP"}' https://api-inference.huggingface.co/models/teacookies/autonlp-more_fine_tune_24465520-26265911
```
Or Python API:
```
import torch
from transformers import AutoModelForQuestionAnswering, AutoTokenizer
model = AutoModelForQuestionAnswering.from_pretrained("teacookies/autonlp-more_fine_tune_24465520-26265911", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("teacookies/autonlp-more_fine_tune_24465520-26265911", use_auth_token=True)
from transformers import BertTokenizer, BertForQuestionAnswering
question, text = "Who loves AutoNLP?", "Everyone loves AutoNLP"
inputs = tokenizer(question, text, return_tensors='pt')
start_positions = torch.tensor([1])
end_positions = torch.tensor([3])
outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions)
loss = outputs.loss
start_scores = outputs.start_logits
end_scores = outputs.end_logits
``` |
teacookies/autonlp-more_fine_tune_24465520-26265905 | teacookies | 2021-10-25T09:32:48Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"xlm-roberta",
"question-answering",
"autonlp",
"unk",
"dataset:teacookies/autonlp-data-more_fine_tune_24465520",
"co2_eq_emissions",
"endpoints_compatible",
"region:us"
] | question-answering | 2022-03-02T23:29:05Z | ---
tags:
- autonlp
- question-answering
language: unk
widget:
- text: "Who loves AutoNLP?"
context: "Everyone loves AutoNLP"
datasets:
- teacookies/autonlp-data-more_fine_tune_24465520
co2_eq_emissions: 103.35758036182682
---
# Model Trained Using AutoNLP
- Problem type: Extractive Question Answering
- Model ID: 26265905
- CO2 Emissions (in grams): 103.35758036182682
## Validation Metrics
- Loss: 0.5223112106323242
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"question": "Who loves AutoNLP?", "context": "Everyone loves AutoNLP"}' https://api-inference.huggingface.co/models/teacookies/autonlp-more_fine_tune_24465520-26265905
```
Or Python API:
```
import torch
from transformers import AutoModelForQuestionAnswering, AutoTokenizer
model = AutoModelForQuestionAnswering.from_pretrained("teacookies/autonlp-more_fine_tune_24465520-26265905", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("teacookies/autonlp-more_fine_tune_24465520-26265905", use_auth_token=True)
from transformers import BertTokenizer, BertForQuestionAnswering
question, text = "Who loves AutoNLP?", "Everyone loves AutoNLP"
inputs = tokenizer(question, text, return_tensors='pt')
start_positions = torch.tensor([1])
end_positions = torch.tensor([3])
outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions)
loss = outputs.loss
start_scores = outputs.start_logits
end_scores = outputs.end_logits
``` |
teacookies/autonlp-more_fine_tune_24465520-26265898 | teacookies | 2021-10-25T09:22:22Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"xlm-roberta",
"question-answering",
"autonlp",
"unk",
"dataset:teacookies/autonlp-data-more_fine_tune_24465520",
"co2_eq_emissions",
"endpoints_compatible",
"region:us"
] | question-answering | 2022-03-02T23:29:05Z | ---
tags:
- autonlp
- question-answering
language: unk
widget:
- text: "Who loves AutoNLP?"
context: "Everyone loves AutoNLP"
datasets:
- teacookies/autonlp-data-more_fine_tune_24465520
co2_eq_emissions: 82.78379967029494
---
# Model Trained Using AutoNLP
- Problem type: Extractive Question Answering
- Model ID: 26265898
- CO2 Emissions (in grams): 82.78379967029494
## Validation Metrics
- Loss: 0.5732079148292542
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"question": "Who loves AutoNLP?", "context": "Everyone loves AutoNLP"}' https://api-inference.huggingface.co/models/teacookies/autonlp-more_fine_tune_24465520-26265898
```
Or Python API:
```
import torch
from transformers import AutoModelForQuestionAnswering, AutoTokenizer
model = AutoModelForQuestionAnswering.from_pretrained("teacookies/autonlp-more_fine_tune_24465520-26265898", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("teacookies/autonlp-more_fine_tune_24465520-26265898", use_auth_token=True)
from transformers import BertTokenizer, BertForQuestionAnswering
question, text = "Who loves AutoNLP?", "Everyone loves AutoNLP"
inputs = tokenizer(question, text, return_tensors='pt')
start_positions = torch.tensor([1])
end_positions = torch.tensor([3])
outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions)
loss = outputs.loss
start_scores = outputs.start_logits
end_scores = outputs.end_logits
``` |
teacookies/autonlp-more_fine_tune_24465520-26265902 | teacookies | 2021-10-25T09:22:00Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"xlm-roberta",
"question-answering",
"autonlp",
"unk",
"dataset:teacookies/autonlp-data-more_fine_tune_24465520",
"co2_eq_emissions",
"endpoints_compatible",
"region:us"
] | question-answering | 2022-03-02T23:29:05Z | ---
tags:
- autonlp
- question-answering
language: unk
widget:
- text: "Who loves AutoNLP?"
context: "Everyone loves AutoNLP"
datasets:
- teacookies/autonlp-data-more_fine_tune_24465520
co2_eq_emissions: 83.78453848505326
---
# Model Trained Using AutoNLP
- Problem type: Extractive Question Answering
- Model ID: 26265902
- CO2 Emissions (in grams): 83.78453848505326
## Validation Metrics
- Loss: 0.5470030903816223
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"question": "Who loves AutoNLP?", "context": "Everyone loves AutoNLP"}' https://api-inference.huggingface.co/models/teacookies/autonlp-more_fine_tune_24465520-26265902
```
Or Python API:
```
import torch
from transformers import AutoModelForQuestionAnswering, AutoTokenizer
model = AutoModelForQuestionAnswering.from_pretrained("teacookies/autonlp-more_fine_tune_24465520-26265902", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("teacookies/autonlp-more_fine_tune_24465520-26265902", use_auth_token=True)
from transformers import BertTokenizer, BertForQuestionAnswering
question, text = "Who loves AutoNLP?", "Everyone loves AutoNLP"
inputs = tokenizer(question, text, return_tensors='pt')
start_positions = torch.tensor([1])
end_positions = torch.tensor([3])
outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions)
loss = outputs.loss
start_scores = outputs.start_logits
end_scores = outputs.end_logits
``` |
teacookies/autonlp-more_fine_tune_24465520-26265897 | teacookies | 2021-10-25T09:21:10Z | 4 | 1 | transformers | [
"transformers",
"pytorch",
"xlm-roberta",
"question-answering",
"autonlp",
"unk",
"dataset:teacookies/autonlp-data-more_fine_tune_24465520",
"co2_eq_emissions",
"endpoints_compatible",
"region:us"
] | question-answering | 2022-03-02T23:29:05Z | ---
tags:
- autonlp
- question-answering
language: unk
widget:
- text: "Who loves AutoNLP?"
context: "Everyone loves AutoNLP"
datasets:
- teacookies/autonlp-data-more_fine_tune_24465520
co2_eq_emissions: 81.7509252560808
---
# Model Trained Using AutoNLP
- Problem type: Extractive Question Answering
- Model ID: 26265897
- CO2 Emissions (in grams): 81.7509252560808
## Validation Metrics
- Loss: 0.5754176378250122
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"question": "Who loves AutoNLP?", "context": "Everyone loves AutoNLP"}' https://api-inference.huggingface.co/models/teacookies/autonlp-more_fine_tune_24465520-26265897
```
Or Python API:
```
import torch
from transformers import AutoModelForQuestionAnswering, AutoTokenizer
model = AutoModelForQuestionAnswering.from_pretrained("teacookies/autonlp-more_fine_tune_24465520-26265897", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("teacookies/autonlp-more_fine_tune_24465520-26265897", use_auth_token=True)
from transformers import BertTokenizer, BertForQuestionAnswering
question, text = "Who loves AutoNLP?", "Everyone loves AutoNLP"
inputs = tokenizer(question, text, return_tensors='pt')
start_positions = torch.tensor([1])
end_positions = torch.tensor([3])
outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions)
loss = outputs.loss
start_scores = outputs.start_logits
end_scores = outputs.end_logits
``` |
teacookies/autonlp-more_fine_tune_24465520-26265901 | teacookies | 2021-10-25T09:21:03Z | 3 | 0 | transformers | [
"transformers",
"pytorch",
"xlm-roberta",
"question-answering",
"autonlp",
"unk",
"dataset:teacookies/autonlp-data-more_fine_tune_24465520",
"co2_eq_emissions",
"endpoints_compatible",
"region:us"
] | question-answering | 2022-03-02T23:29:05Z | ---
tags:
- autonlp
- question-answering
language: unk
widget:
- text: "Who loves AutoNLP?"
context: "Everyone loves AutoNLP"
datasets:
- teacookies/autonlp-data-more_fine_tune_24465520
co2_eq_emissions: 80.04360178242067
---
# Model Trained Using AutoNLP
- Problem type: Extractive Question Answering
- Model ID: 26265901
- CO2 Emissions (in grams): 80.04360178242067
## Validation Metrics
- Loss: 0.5551259517669678
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"question": "Who loves AutoNLP?", "context": "Everyone loves AutoNLP"}' https://api-inference.huggingface.co/models/teacookies/autonlp-more_fine_tune_24465520-26265901
```
Or Python API:
```
import torch
from transformers import AutoModelForQuestionAnswering, AutoTokenizer
model = AutoModelForQuestionAnswering.from_pretrained("teacookies/autonlp-more_fine_tune_24465520-26265901", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("teacookies/autonlp-more_fine_tune_24465520-26265901", use_auth_token=True)
from transformers import BertTokenizer, BertForQuestionAnswering
question, text = "Who loves AutoNLP?", "Everyone loves AutoNLP"
inputs = tokenizer(question, text, return_tensors='pt')
start_positions = torch.tensor([1])
end_positions = torch.tensor([3])
outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions)
loss = outputs.loss
start_scores = outputs.start_logits
end_scores = outputs.end_logits
``` |
teacookies/autonlp-more_fine_tune_24465520-26265909 | teacookies | 2021-10-25T09:20:12Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"xlm-roberta",
"question-answering",
"autonlp",
"unk",
"dataset:teacookies/autonlp-data-more_fine_tune_24465520",
"co2_eq_emissions",
"endpoints_compatible",
"region:us"
] | question-answering | 2022-03-02T23:29:05Z | ---
tags:
- autonlp
- question-answering
language: unk
widget:
- text: "Who loves AutoNLP?"
context: "Everyone loves AutoNLP"
datasets:
- teacookies/autonlp-data-more_fine_tune_24465520
co2_eq_emissions: 80.25874179679201
---
# Model Trained Using AutoNLP
- Problem type: Extractive Question Answering
- Model ID: 26265909
- CO2 Emissions (in grams): 80.25874179679201
## Validation Metrics
- Loss: 5.950643062591553
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"question": "Who loves AutoNLP?", "context": "Everyone loves AutoNLP"}' https://api-inference.huggingface.co/models/teacookies/autonlp-more_fine_tune_24465520-26265909
```
Or Python API:
```
import torch
from transformers import AutoModelForQuestionAnswering, AutoTokenizer
model = AutoModelForQuestionAnswering.from_pretrained("teacookies/autonlp-more_fine_tune_24465520-26265909", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("teacookies/autonlp-more_fine_tune_24465520-26265909", use_auth_token=True)
from transformers import BertTokenizer, BertForQuestionAnswering
question, text = "Who loves AutoNLP?", "Everyone loves AutoNLP"
inputs = tokenizer(question, text, return_tensors='pt')
start_positions = torch.tensor([1])
end_positions = torch.tensor([3])
outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions)
loss = outputs.loss
start_scores = outputs.start_logits
end_scores = outputs.end_logits
``` |
tftransformers/t5-small | tftransformers | 2021-10-25T08:13:06Z | 4 | 0 | transformers | [
"transformers",
"summarization",
"translation",
"en",
"fr",
"ro",
"de",
"dataset:c4",
"arxiv:1910.10683",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | translation | 2022-03-02T23:29:05Z | ---
language:
- en
- fr
- ro
- de
datasets:
- c4
tags:
- summarization
- translation
license: apache-2.0
---
[Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html)
Pretraining Dataset: [C4](https://huggingface.co/datasets/c4)
Other Community Checkpoints: [here](https://huggingface.co/models?search=t5)
Paper: [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/pdf/1910.10683.pdf)
Authors: *Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu*
## Abstract
Transfer learning, where a model is first pre-trained on a data-rich task before being fine-tuned on a downstream task, has emerged as a powerful technique in natural language processing (NLP). The effectiveness of transfer learning has given rise to a diversity of approaches, methodology, and practice. In this paper, we explore the landscape of transfer learning techniques for NLP by introducing a unified framework that converts every language problem into a text-to-text format. Our systematic study compares pre-training objectives, architectures, unlabeled datasets, transfer approaches, and other factors on dozens of language understanding tasks. By combining the insights from our exploration with scale and our new “Colossal Clean Crawled Corpusâ€Â, we achieve state-of-the-art results on many benchmarks covering summarization, question answering, text classification, and more. To facilitate future work on transfer learning for NLP, we release our dataset, pre-trained models, and code.

## Usage
```
from tf_transformers.models import T5Model
# Any T5 model (t5-small, t5-base, t5-large etc)
model_name = 't5-small'
model = T5Model.from_pretrained(model_name)
``` |
yseop/distilbert-base-financial-relation-extraction | yseop | 2021-10-25T07:33:13Z | 24 | 5 | transformers | [
"transformers",
"pytorch",
"feature-extraction",
"text-classification",
"endpoints_compatible",
"region:us"
] | text-classification | 2022-03-02T23:29:05Z | ---
inference: true
pipeline_tag: text-classification
tags:
- feature-extraction
- text-classification
library: pytorch
---
<div style="clear: both;">
<div style="float: left; margin-right 1em;">
<h1><strong>FReE (Financial Relation Extraction)</strong></h1>
</div>
<div>
<h2><img src="https://pbs.twimg.com/profile_images/1333760924914753538/fQL4zLUw_400x400.png" alt="" width="25" height="25"></h2>
</div>
</div>
We present FReE, a [DistilBERT](https://huggingface.co/distilbert-base-uncased) base model fine-tuned on a custom financial dataset for financial relation type detection and classification.
## Process
Detecting the presence of a relationship between financial terms and qualifying the relationship in case of its presence. Example use cases:
* An A-B trust is a joint trust created by a married couple for the purpose of minimizing estate taxes. (<em>Relationship **exists**, type: **is**</em>)
* There are no withdrawal penalties. (<em>Relationship **does not exist**, type: **x**</em>)
## Data
The data consists of financial definitions collected from different sources (Wikimedia, IFRS, Investopedia) for financial indicators. Each definition has been split up into sentences, and term relationships in a sentence have been extracted using the [Stanford Open Information Extraction](https://nlp.stanford.edu/software/openie.html) module.
A typical row in the dataset consists of a definition sentence and its corresponding relationship label.
The labels were restricted to the 5 most-widely identified relationships, namely: **x** (no relationship), **has**, **is in**, **is** and **are**.
## Model
The model used is a standard DistilBERT-base transformer model from the Hugging Face library. See [HUGGING FACE DistilBERT base model](https://huggingface.co/distilbert-base-uncased) for more details about the model.
In addition, the model has been pretrained to initializa weigths that would otherwise be unused if loaded from an existing pretrained stock model.
## Metrics
The evaluation metrics used are: Precision, Recall and F1-score. The following is the classification report on the test set.
| relation | precision | recall | f1-score | support |
| ------------- |:-------------:|:-------------:|:-------------:| -----:|
| has | 0.7416 | 0.9674 | 0.8396 | 2362 |
| is in | 0.7813 | 0.7925 | 0.7869 | 2362 |
| is | 0.8650 | 0.6863 | 0.7653 | 2362 |
| are | 0.8365 | 0.8493 | 0.8429 | 2362 |
| x | 0.9515 | 0.8302 | 0.8867 | 2362 |
| | | | | |
| macro avg | 0.8352 | 0.8251 | 0.8243 | 11810 |
| weighted avg | 0.8352 | 0.8251 | 0.8243 | 11810 | |
Bhumika/roberta-base-finetuned-sst2 | Bhumika | 2021-10-25T06:17:25Z | 38 | 4 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"roberta",
"text-classification",
"generated_from_trainer",
"dataset:glue",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2022-03-02T23:29:04Z | ---
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: roberta-base-finetuned-sst2
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: glue
type: glue
args: sst2
metrics:
- name: Accuracy
type: accuracy
value: 0.944954128440367
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-base-finetuned-sst2
This model was trained from scratch on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3000
- Accuracy: 0.9450
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Accuracy | Validation Loss |
|:-------------:|:-----:|:-----:|:--------:|:---------------:|
| 0.1106 | 1.0 | 4210 | 0.9255 | 0.3326 |
| 0.1497 | 2.0 | 8420 | 0.9369 | 0.2858 |
| 0.1028 | 3.0 | 12630 | 0.3128 | 0.9335 |
| 0.0872 | 4.0 | 16840 | 0.3000 | 0.9450 |
| 0.0571 | 5.0 | 21050 | 0.3378 | 0.9427 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.9.0+cu111
- Datasets 1.14.0
- Tokenizers 0.10.3
|
TransQuest/monotransquest-hter-en_any | TransQuest | 2021-10-24T18:41:16Z | 8 | 0 | transformers | [
"transformers",
"pytorch",
"xlm-roberta",
"text-classification",
"Quality Estimation",
"monotransquest",
"HTER",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2022-03-02T23:29:05Z | ---
language: en-multilingual
tags:
- Quality Estimation
- monotransquest
- HTER
license: apache-2.0
---
# TransQuest: Translation Quality Estimation with Cross-lingual Transformers
The goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.
With TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in [WMT 2020](http://www.statmt.org/wmt20/quality-estimation-task.html). TransQuest outperforms current open-source quality estimation frameworks such as [OpenKiwi](https://github.com/Unbabel/OpenKiwi) and [DeepQuest](https://github.com/sheffieldnlp/deepQuest).
## Features
- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.
- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.
- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented.
- Pre-trained quality estimation models for fifteen language pairs are available in [HuggingFace.](https://huggingface.co/TransQuest)
## Installation
### From pip
```bash
pip install transquest
```
### From Source
```bash
git clone https://github.com/TharinduDR/TransQuest.git
cd TransQuest
pip install -r requirements.txt
```
## Using Pre-trained Models
```python
import torch
from transquest.algo.sentence_level.monotransquest.run_model import MonoTransQuestModel
model = MonoTransQuestModel("xlmroberta", "TransQuest/monotransquest-hter-en_any", num_labels=1, use_cuda=torch.cuda.is_available())
predictions, raw_outputs = model.predict([["Reducerea acestor conflicte este importantă pentru conservare.", "Reducing these conflicts is not important for preservation."]])
print(predictions)
```
## Documentation
For more details follow the documentation.
1. **[Installation](https://tharindudr.github.io/TransQuest/install/)** - Install TransQuest locally using pip.
2. **Architectures** - Checkout the architectures implemented in TransQuest
1. [Sentence-level Architectures](https://tharindudr.github.io/TransQuest/architectures/sentence_level_architectures/) - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation.
2. [Word-level Architecture](https://tharindudr.github.io/TransQuest/architectures/word_level_architecture/) - We have released MicroTransQuest to perform word level quality estimation.
3. **Examples** - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks.
1. [Sentence-level Examples](https://tharindudr.github.io/TransQuest/examples/sentence_level_examples/)
2. [Word-level Examples](https://tharindudr.github.io/TransQuest/examples/word_level_examples/)
4. **Pre-trained Models** - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level
1. [Sentence-level Models](https://tharindudr.github.io/TransQuest/models/sentence_level_pretrained/)
2. [Word-level Models](https://tharindudr.github.io/TransQuest/models/word_level_pretrained/)
5. **[Contact](https://tharindudr.github.io/TransQuest/contact/)** - Contact us for any issues with TransQuest
## Citations
If you are using the word-level architecture, please consider citing this paper which is accepted to [ACL 2021](https://2021.aclweb.org/).
```bash
@InProceedings{ranasinghe2021,
author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan},
title = {An Exploratory Analysis of Multilingual Word Level Quality Estimation with Cross-Lingual Transformers},
booktitle = {Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics},
year = {2021}
}
```
If you are using the sentence-level architectures, please consider citing these papers which were presented in [COLING 2020](https://coling2020.org/) and in [WMT 2020](http://www.statmt.org/wmt20/) at EMNLP 2020.
```bash
@InProceedings{transquest:2020a,
author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan},
title = {TransQuest: Translation Quality Estimation with Cross-lingual Transformers},
booktitle = {Proceedings of the 28th International Conference on Computational Linguistics},
year = {2020}
}
```
```bash
@InProceedings{transquest:2020b,
author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan},
title = {TransQuest at WMT2020: Sentence-Level Direct Assessment},
booktitle = {Proceedings of the Fifth Conference on Machine Translation},
year = {2020}
}
``` |
ThatSkyFox/DialoGPT-small-joshua | ThatSkyFox | 2021-10-24T17:12:13Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:05Z | ---
tags:
- conversational
---
#This is a chatbot trained on the transcript of the game "The World Ends with You" |
ydshieh/vit-gpt2-coco-en-ckpts | ydshieh | 2021-10-24T12:01:42Z | 32 | 11 | generic | [
"generic",
"pytorch",
"jax",
"tensorboard",
"vision-encoder-decoder",
"image-classification",
"region:us"
] | image-classification | 2022-03-02T23:29:05Z | ---
tags:
- image-classification
library_name: generic
---
## Example
The model is by no means a state-of-the-art model, but nevertheless
produces reasonable image captioning results. It was mainly fine-tuned
as a proof-of-concept for the 🤗 FlaxVisionEncoderDecoder Framework.
The model can be used as follows:
```python
import requests
from PIL import Image
from transformers import ViTFeatureExtractor, AutoTokenizer, FlaxVisionEncoderDecoderModel
loc = "ydshieh/vit-gpt2-coco-en"
feature_extractor = ViTFeatureExtractor.from_pretrained(loc)
tokenizer = AutoTokenizer.from_pretrained(loc)
model = FlaxVisionEncoderDecoderModel.from_pretrained(loc)
# We will verify our results on an image of cute cats
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
with Image.open(requests.get(url, stream=True).raw) as img:
pixel_values = feature_extractor(images=img, return_tensors="np").pixel_values
def generate_step(pixel_values):
output_ids = model.generate(pixel_values, max_length=16, num_beams=4).sequences
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
preds = [pred.strip() for pred in preds]
return preds
preds = generate_step(pixel_values)
print(preds)
# should produce
# ['a cat laying on top of a couch next to another cat']
``` |
Crasher222/kaggle-comp-test | Crasher222 | 2021-10-24T11:40:04Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"bert",
"text-classification",
"autonlp",
"en",
"dataset:Crasher222/autonlp-data-kaggle-test",
"co2_eq_emissions",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2022-03-02T23:29:04Z | ---
tags: autonlp
language: en
widget:
- text: "I love AutoNLP 🤗"
datasets:
- Crasher222/autonlp-data-kaggle-test
co2_eq_emissions: 60.744727079482495
---
# Model Finetuned from BERT-base for
- Problem type: Multi-class Classification
- Model ID: 25805800
## Validation Metrics
- Loss: 0.4422711133956909
- Accuracy: 0.8615328555811976
- Macro F1: 0.8642434650461513
- Micro F1: 0.8615328555811976
- Weighted F1: 0.8617743626671308
- Macro Precision: 0.8649112225076049
- Micro Precision: 0.8615328555811976
- Weighted Precision: 0.8625407179375096
- Macro Recall: 0.8640777539828228
- Micro Recall: 0.8615328555811976
- Weighted Recall: 0.8615328555811976
## Usage
```
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("Crasher222/kaggle-comp-test")
tokenizer = AutoTokenizer.from_pretrained("Crasher222/kaggle-comp-test")
inputs = tokenizer("I am in love with you", return_tensors="pt")
outputs = model(**inputs)
``` |
tftransformers/gpt2-medium | tftransformers | 2021-10-24T08:42:17Z | 3 | 0 | transformers | [
"transformers",
"exbert",
"en",
"license:mit",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
language: en
tags:
- exbert
license: mit
---
# GPT-2
Pretrained model on English language using a causal language modeling (CLM) objective. It was introduced in
[this paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf)
and first released at [this page](https://openai.com/blog/better-language-models/).
Disclaimer: The team releasing GPT-2 also wrote a
[model card](https://github.com/openai/gpt-2/blob/master/model_card.md) for their model. Content from this model card
has been written by the Hugging Face team to complete the information they provided and give specific examples of bias.
## Model description
GPT-2 is a transformers model pretrained on a very large corpus of English data in a self-supervised fashion. This
means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots
of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely,
it was trained to guess the next word in sentences.
More precisely, inputs are sequences of continuous text of a certain length and the targets are the same sequence,
shifted one token (word or piece of word) to the right. The model uses internally a mask-mechanism to make sure the
predictions for the token `i` only uses the inputs from `1` to `i` but not the future tokens.
This way, the model learns an inner representation of the English language that can then be used to extract features
useful for downstream tasks. The model is best at what it was pretrained for however, which is generating texts from a
prompt.
## Intended uses & limitations
You can use the raw model for text generation or fine-tune it to a downstream task. See the
[model hub](https://huggingface.co/models?filter=gpt2) to look for fine-tuned versions on a task that interests you.
### How to use
You can use this model directly with a pipeline for text generation. Since the generation relies on some randomness, we
set a seed for reproducibility:
```python
from tf_transformers.models import GPT2Model
from transformers import GPT2Tokenizer
tokenizer = GPT2Tokenizer.from_pretrained('gpt2-medium')
model = GPT2Model.from_pretrained("gpt2-medium")
text = "Replace me by any text you'd like."
inputs_tf = {}
inputs = tokenizer(text, return_tensors='tf')
inputs_tf["input_ids"] = inputs["input_ids"]
outputs_tf = model(inputs_tf)
```
### Limitations and bias
The training data used for this model has not been released as a dataset one can browse. We know it contains a lot of
unfiltered content from the internet, which is far from neutral. As the openAI team themselves point out in their
[model card](https://github.com/openai/gpt-2/blob/master/model_card.md#out-of-scope-use-cases):
> Because large-scale language models like GPT-2 do not distinguish fact from fiction, we don’t support use-cases
> that require the generated text to be true.
>
> Additionally, language models like GPT-2 reflect the biases inherent to the systems they were trained on, so we do
> not recommend that they be deployed into systems that interact with humans > unless the deployers first carry out a
> study of biases relevant to the intended use-case. We found no statistically significant difference in gender, race,
> and religious bias probes between 774M and 1.5B, implying all versions of GPT-2 should be approached with similar
> levels of caution around use cases that are sensitive to biases around human attributes.
## Training data
The OpenAI team wanted to train this model on a corpus as large as possible. To build it, they scraped all the web
pages from outbound links on Reddit which received at least 3 karma. Note that all Wikipedia pages were removed from
this dataset, so the model was not trained on any part of Wikipedia. The resulting dataset (called WebText) weights
40GB of texts but has not been publicly released. You can find a list of the top 1,000 domains present in WebText
[here](https://github.com/openai/gpt-2/blob/master/domains.txt).
## Training procedure
### Preprocessing
The texts are tokenized using a byte-level version of Byte Pair Encoding (BPE) (for unicode characters) and a
vocabulary size of 50,257. The inputs are sequences of 1024 consecutive tokens.
The larger model was trained on 256 cloud TPU v3 cores. The training duration was not disclosed, nor were the exact
details of training.
## Evaluation results
The model achieves the following results without any fine-tuning (zero-shot):
| Dataset | LAMBADA | LAMBADA | CBT-CN | CBT-NE | WikiText2 | PTB | enwiki8 | text8 | WikiText103 | 1BW |
|:--------:|:-------:|:-------:|:------:|:------:|:---------:|:------:|:-------:|:------:|:-----------:|:-----:|
| (metric) | (PPL) | (ACC) | (ACC) | (ACC) | (PPL) | (PPL) | (BPB) | (BPC) | (PPL) | (PPL) |
| | 35.13 | 45.99 | 87.65 | 83.4 | 29.41 | 65.85 | 1.16 | 1,17 | 37.50 | 75.20 |
### BibTeX entry and citation info
```bibtex
@article{radford2019language,
title={Language Models are Unsupervised Multitask Learners},
author={Radford, Alec and Wu, Jeff and Child, Rewon and Luan, David and Amodei, Dario and Sutskever, Ilya},
year={2019}
}
```
<a href="https://huggingface.co/exbert/?model=gpt2">
<img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png">
</a> |
tftransformers/gpt2 | tftransformers | 2021-10-24T08:41:46Z | 1 | 0 | transformers | [
"transformers",
"exbert",
"en",
"license:mit",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
language: en
tags:
- exbert
license: mit
---
# GPT-2
Pretrained model on English language using a causal language modeling (CLM) objective. It was introduced in
[this paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf)
and first released at [this page](https://openai.com/blog/better-language-models/).
Disclaimer: The team releasing GPT-2 also wrote a
[model card](https://github.com/openai/gpt-2/blob/master/model_card.md) for their model. Content from this model card
has been written by the Hugging Face team to complete the information they provided and give specific examples of bias.
## Model description
GPT-2 is a transformers model pretrained on a very large corpus of English data in a self-supervised fashion. This
means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots
of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely,
it was trained to guess the next word in sentences.
More precisely, inputs are sequences of continuous text of a certain length and the targets are the same sequence,
shifted one token (word or piece of word) to the right. The model uses internally a mask-mechanism to make sure the
predictions for the token `i` only uses the inputs from `1` to `i` but not the future tokens.
This way, the model learns an inner representation of the English language that can then be used to extract features
useful for downstream tasks. The model is best at what it was pretrained for however, which is generating texts from a
prompt.
## Intended uses & limitations
You can use the raw model for text generation or fine-tune it to a downstream task. See the
[model hub](https://huggingface.co/models?filter=gpt2) to look for fine-tuned versions on a task that interests you.
### How to use
You can use this model directly with a pipeline for text generation. Since the generation relies on some randomness, we
set a seed for reproducibility:
```python
from tf_transformers.models import GPT2Model
from transformers import GPT2Tokenizer
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
model = GPT2Model.from_pretrained("gpt2")
text = "Replace me by any text you'd like."
inputs_tf = {}
inputs = tokenizer(text, return_tensors='tf')
inputs_tf["input_ids"] = inputs["input_ids"]
outputs_tf = model(inputs_tf)
```
### Limitations and bias
The training data used for this model has not been released as a dataset one can browse. We know it contains a lot of
unfiltered content from the internet, which is far from neutral. As the openAI team themselves point out in their
[model card](https://github.com/openai/gpt-2/blob/master/model_card.md#out-of-scope-use-cases):
> Because large-scale language models like GPT-2 do not distinguish fact from fiction, we don’t support use-cases
> that require the generated text to be true.
>
> Additionally, language models like GPT-2 reflect the biases inherent to the systems they were trained on, so we do
> not recommend that they be deployed into systems that interact with humans > unless the deployers first carry out a
> study of biases relevant to the intended use-case. We found no statistically significant difference in gender, race,
> and religious bias probes between 774M and 1.5B, implying all versions of GPT-2 should be approached with similar
> levels of caution around use cases that are sensitive to biases around human attributes.
## Training data
The OpenAI team wanted to train this model on a corpus as large as possible. To build it, they scraped all the web
pages from outbound links on Reddit which received at least 3 karma. Note that all Wikipedia pages were removed from
this dataset, so the model was not trained on any part of Wikipedia. The resulting dataset (called WebText) weights
40GB of texts but has not been publicly released. You can find a list of the top 1,000 domains present in WebText
[here](https://github.com/openai/gpt-2/blob/master/domains.txt).
## Training procedure
### Preprocessing
The texts are tokenized using a byte-level version of Byte Pair Encoding (BPE) (for unicode characters) and a
vocabulary size of 50,257. The inputs are sequences of 1024 consecutive tokens.
The larger model was trained on 256 cloud TPU v3 cores. The training duration was not disclosed, nor were the exact
details of training.
## Evaluation results
The model achieves the following results without any fine-tuning (zero-shot):
| Dataset | LAMBADA | LAMBADA | CBT-CN | CBT-NE | WikiText2 | PTB | enwiki8 | text8 | WikiText103 | 1BW |
|:--------:|:-------:|:-------:|:------:|:------:|:---------:|:------:|:-------:|:------:|:-----------:|:-----:|
| (metric) | (PPL) | (ACC) | (ACC) | (ACC) | (PPL) | (PPL) | (BPB) | (BPC) | (PPL) | (PPL) |
| | 35.13 | 45.99 | 87.65 | 83.4 | 29.41 | 65.85 | 1.16 | 1,17 | 37.50 | 75.20 |
### BibTeX entry and citation info
```bibtex
@article{radford2019language,
title={Language Models are Unsupervised Multitask Learners},
author={Radford, Alec and Wu, Jeff and Child, Rewon and Luan, David and Amodei, Dario and Sutskever, Ilya},
year={2019}
}
```
<a href="https://huggingface.co/exbert/?model=gpt2">
<img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png">
</a> |
tftransformers/albert-xxlarge-v2 | tftransformers | 2021-10-24T08:39:00Z | 3 | 0 | transformers | [
"transformers",
"en",
"dataset:bookcorpus",
"dataset:wikipedia",
"arxiv:1909.11942",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
language: en
license: apache-2.0
datasets:
- bookcorpus
- wikipedia
---
# ALBERT XXLarge v2
Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in
[this paper](https://arxiv.org/abs/1909.11942) and first released in
[this repository](https://github.com/google-research/albert). This model, as all ALBERT models, is uncased: it does not make a difference
between english and English.
Disclaimer: The team releasing ALBERT did not write a model card for this model so this model card has been written by
the Hugging Face team.
## Model description
ALBERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it
was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of
publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it
was pretrained with two objectives:
- Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run
the entire masked sentence through the model and has to predict the masked words. This is different from traditional
recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like
GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the
sentence.
- Sentence Ordering Prediction (SOP): ALBERT uses a pretraining loss based on predicting the ordering of two consecutive segments of text.
This way, the model learns an inner representation of the English language that can then be used to extract features
useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard
classifier using the features produced by the ALBERT model as inputs.
ALBERT is particular in that it shares its layers across its Transformer. Therefore, all layers have the same weights. Using repeating layers results in a small memory footprint, however, the computational cost remains similar to a BERT-like architecture with the same number of hidden layers as it has to iterate through the same number of (repeating) layers.
This is the second version of the base model. Version 2 is different from version 1 due to different dropout rates, additional training data, and longer training. It has better results in nearly all downstream tasks.
This model has the following configuration:
- 12 repeating layers
- 128 embedding dimension
- 768 hidden dimension
- 12 attention heads
- 11M parameters
## Intended uses & limitations
You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to
be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=albert) to look for
fine-tuned versions on a task that interests you.
Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked)
to make decisions, such as sequence classification, token classification or question answering. For tasks such as text
generation you should look at model like GPT2.
### How to use
You can use this model directly with a pipeline for masked language modeling:
In tf_transformers
```python
from tf_transformers.models import AlbertModel
from transformers import AlbertTokenizer
tokenizer = AlbertTokenizer.from_pretrained('albert-xxlarge-v2')
model = AlbertModel.from_pretrained("albert-xxlarge-v2")
text = "Replace me by any text you'd like."
inputs_tf = {}
inputs = tokenizer(text, return_tensors='tf')
inputs_tf["input_ids"] = inputs["input_ids"]
inputs_tf["input_type_ids"] = inputs["token_type_ids"]
inputs_tf["input_mask"] = inputs["attention_mask"]
outputs_tf = model(inputs_tf)
```
## Training data
The ALBERT model was pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038
unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and
headers).
## Training procedure
### Preprocessing
The texts are lowercased and tokenized using SentencePiece and a vocabulary size of 30,000. The inputs of the model are
then of the form:
```
[CLS] Sentence A [SEP] Sentence B [SEP]
```
### Training
The ALBERT procedure follows the BERT setup.
The details of the masking procedure for each sentence are the following:
- 15% of the tokens are masked.
- In 80% of the cases, the masked tokens are replaced by `[MASK]`.
- In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace.
- In the 10% remaining cases, the masked tokens are left as is.
## Evaluation results
When fine-tuned on downstream tasks, the ALBERT models achieve the following results:
| | Average | SQuAD1.1 | SQuAD2.0 | MNLI | SST-2 | RACE |
|----------------|----------|----------|----------|----------|----------|----------|
|V2 |
|ALBERT-base |82.3 |90.2/83.2 |82.1/79.3 |84.6 |92.9 |66.8 |
|ALBERT-large |85.7 |91.8/85.2 |84.9/81.8 |86.5 |94.9 |75.2 |
|ALBERT-xlarge |87.9 |92.9/86.4 |87.9/84.1 |87.9 |95.4 |80.7 |
|ALBERT-xxlarge |90.9 |94.6/89.1 |89.8/86.9 |90.6 |96.8 |86.8 |
|V1 |
|ALBERT-base |80.1 |89.3/82.3 | 80.0/77.1|81.6 |90.3 | 64.0 |
|ALBERT-large |82.4 |90.6/83.9 | 82.3/79.4|83.5 |91.7 | 68.5 |
|ALBERT-xlarge |85.5 |92.5/86.1 | 86.1/83.1|86.4 |92.4 | 74.8 |
|ALBERT-xxlarge |91.0 |94.8/89.3 | 90.2/87.4|90.8 |96.9 | 86.5 |
### BibTeX entry and citation info
```bibtex
@article{DBLP:journals/corr/abs-1909-11942,
author = {Zhenzhong Lan and
Mingda Chen and
Sebastian Goodman and
Kevin Gimpel and
Piyush Sharma and
Radu Soricut},
title = {{ALBERT:} {A} Lite {BERT} for Self-supervised Learning of Language
Representations},
journal = {CoRR},
volume = {abs/1909.11942},
year = {2019},
url = {http://arxiv.org/abs/1909.11942},
archivePrefix = {arXiv},
eprint = {1909.11942},
timestamp = {Fri, 27 Sep 2019 13:04:21 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-1909-11942.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
``` |
tftransformers/albert-xlarge-v2 | tftransformers | 2021-10-24T08:37:58Z | 1 | 0 | transformers | [
"transformers",
"en",
"dataset:bookcorpus",
"dataset:wikipedia",
"arxiv:1909.11942",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
language: en
license: apache-2.0
datasets:
- bookcorpus
- wikipedia
---
# ALBERT XLarge v2
Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in
[this paper](https://arxiv.org/abs/1909.11942) and first released in
[this repository](https://github.com/google-research/albert). This model, as all ALBERT models, is uncased: it does not make a difference
between english and English.
Disclaimer: The team releasing ALBERT did not write a model card for this model so this model card has been written by
the Hugging Face team.
## Model description
ALBERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it
was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of
publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it
was pretrained with two objectives:
- Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run
the entire masked sentence through the model and has to predict the masked words. This is different from traditional
recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like
GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the
sentence.
- Sentence Ordering Prediction (SOP): ALBERT uses a pretraining loss based on predicting the ordering of two consecutive segments of text.
This way, the model learns an inner representation of the English language that can then be used to extract features
useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard
classifier using the features produced by the ALBERT model as inputs.
ALBERT is particular in that it shares its layers across its Transformer. Therefore, all layers have the same weights. Using repeating layers results in a small memory footprint, however, the computational cost remains similar to a BERT-like architecture with the same number of hidden layers as it has to iterate through the same number of (repeating) layers.
This is the second version of the base model. Version 2 is different from version 1 due to different dropout rates, additional training data, and longer training. It has better results in nearly all downstream tasks.
This model has the following configuration:
- 12 repeating layers
- 128 embedding dimension
- 768 hidden dimension
- 12 attention heads
- 11M parameters
## Intended uses & limitations
You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to
be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=albert) to look for
fine-tuned versions on a task that interests you.
Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked)
to make decisions, such as sequence classification, token classification or question answering. For tasks such as text
generation you should look at model like GPT2.
### How to use
You can use this model directly with a pipeline for masked language modeling:
In tf_transformers
```python
from tf_transformers.models import AlbertModel
from transformers import AlbertTokenizer
tokenizer = AlbertTokenizer.from_pretrained('albert-xlarge-v2')
model = AlbertModel.from_pretrained("albert-xlarge-v2")
text = "Replace me by any text you'd like."
inputs_tf = {}
inputs = tokenizer(text, return_tensors='tf')
inputs_tf["input_ids"] = inputs["input_ids"]
inputs_tf["input_type_ids"] = inputs["token_type_ids"]
inputs_tf["input_mask"] = inputs["attention_mask"]
outputs_tf = model(inputs_tf)
```
## Training data
The ALBERT model was pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038
unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and
headers).
## Training procedure
### Preprocessing
The texts are lowercased and tokenized using SentencePiece and a vocabulary size of 30,000. The inputs of the model are
then of the form:
```
[CLS] Sentence A [SEP] Sentence B [SEP]
```
### Training
The ALBERT procedure follows the BERT setup.
The details of the masking procedure for each sentence are the following:
- 15% of the tokens are masked.
- In 80% of the cases, the masked tokens are replaced by `[MASK]`.
- In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace.
- In the 10% remaining cases, the masked tokens are left as is.
## Evaluation results
When fine-tuned on downstream tasks, the ALBERT models achieve the following results:
| | Average | SQuAD1.1 | SQuAD2.0 | MNLI | SST-2 | RACE |
|----------------|----------|----------|----------|----------|----------|----------|
|V2 |
|ALBERT-base |82.3 |90.2/83.2 |82.1/79.3 |84.6 |92.9 |66.8 |
|ALBERT-large |85.7 |91.8/85.2 |84.9/81.8 |86.5 |94.9 |75.2 |
|ALBERT-xlarge |87.9 |92.9/86.4 |87.9/84.1 |87.9 |95.4 |80.7 |
|ALBERT-xxlarge |90.9 |94.6/89.1 |89.8/86.9 |90.6 |96.8 |86.8 |
|V1 |
|ALBERT-base |80.1 |89.3/82.3 | 80.0/77.1|81.6 |90.3 | 64.0 |
|ALBERT-large |82.4 |90.6/83.9 | 82.3/79.4|83.5 |91.7 | 68.5 |
|ALBERT-xlarge |85.5 |92.5/86.1 | 86.1/83.1|86.4 |92.4 | 74.8 |
|ALBERT-xxlarge |91.0 |94.8/89.3 | 90.2/87.4|90.8 |96.9 | 86.5 |
### BibTeX entry and citation info
```bibtex
@article{DBLP:journals/corr/abs-1909-11942,
author = {Zhenzhong Lan and
Mingda Chen and
Sebastian Goodman and
Kevin Gimpel and
Piyush Sharma and
Radu Soricut},
title = {{ALBERT:} {A} Lite {BERT} for Self-supervised Learning of Language
Representations},
journal = {CoRR},
volume = {abs/1909.11942},
year = {2019},
url = {http://arxiv.org/abs/1909.11942},
archivePrefix = {arXiv},
eprint = {1909.11942},
timestamp = {Fri, 27 Sep 2019 13:04:21 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-1909-11942.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
``` |
tftransformers/albert-xlarge-v1 | tftransformers | 2021-10-24T08:37:26Z | 3 | 0 | transformers | [
"transformers",
"en",
"dataset:bookcorpus",
"dataset:wikipedia",
"arxiv:1909.11942",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
language: en
license: apache-2.0
datasets:
- bookcorpus
- wikipedia
---
# ALBERT XLarge v1
Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in
[this paper](https://arxiv.org/abs/1909.11942) and first released in
[this repository](https://github.com/google-research/albert). This model, as all ALBERT models, is uncased: it does not make a difference
between english and English.
Disclaimer: The team releasing ALBERT did not write a model card for this model so this model card has been written by
the Hugging Face team.
## Model description
ALBERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it
was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of
publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it
was pretrained with two objectives:
- Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run
the entire masked sentence through the model and has to predict the masked words. This is different from traditional
recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like
GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the
sentence.
- Sentence Ordering Prediction (SOP): ALBERT uses a pretraining loss based on predicting the ordering of two consecutive segments of text.
This way, the model learns an inner representation of the English language that can then be used to extract features
useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard
classifier using the features produced by the ALBERT model as inputs.
ALBERT is particular in that it shares its layers across its Transformer. Therefore, all layers have the same weights. Using repeating layers results in a small memory footprint, however, the computational cost remains similar to a BERT-like architecture with the same number of hidden layers as it has to iterate through the same number of (repeating) layers.
This is the second version of the base model. Version 2 is different from version 1 due to different dropout rates, additional training data, and longer training. It has better results in nearly all downstream tasks.
This model has the following configuration:
- 12 repeating layers
- 128 embedding dimension
- 768 hidden dimension
- 12 attention heads
- 11M parameters
## Intended uses & limitations
You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to
be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=albert) to look for
fine-tuned versions on a task that interests you.
Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked)
to make decisions, such as sequence classification, token classification or question answering. For tasks such as text
generation you should look at model like GPT2.
### How to use
You can use this model directly with a pipeline for masked language modeling:
In tf_transformers
```python
from tf_transformers.models import AlbertModel
from transformers import AlbertTokenizer
tokenizer = AlbertTokenizer.from_pretrained('albert-xlarge-v1')
model = AlbertModel.from_pretrained("albert-xlarge-v1")
text = "Replace me by any text you'd like."
inputs_tf = {}
inputs = tokenizer(text, return_tensors='tf')
inputs_tf["input_ids"] = inputs["input_ids"]
inputs_tf["input_type_ids"] = inputs["token_type_ids"]
inputs_tf["input_mask"] = inputs["attention_mask"]
outputs_tf = model(inputs_tf)
```
## Training data
The ALBERT model was pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038
unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and
headers).
## Training procedure
### Preprocessing
The texts are lowercased and tokenized using SentencePiece and a vocabulary size of 30,000. The inputs of the model are
then of the form:
```
[CLS] Sentence A [SEP] Sentence B [SEP]
```
### Training
The ALBERT procedure follows the BERT setup.
The details of the masking procedure for each sentence are the following:
- 15% of the tokens are masked.
- In 80% of the cases, the masked tokens are replaced by `[MASK]`.
- In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace.
- In the 10% remaining cases, the masked tokens are left as is.
## Evaluation results
When fine-tuned on downstream tasks, the ALBERT models achieve the following results:
| | Average | SQuAD1.1 | SQuAD2.0 | MNLI | SST-2 | RACE |
|----------------|----------|----------|----------|----------|----------|----------|
|V2 |
|ALBERT-base |82.3 |90.2/83.2 |82.1/79.3 |84.6 |92.9 |66.8 |
|ALBERT-large |85.7 |91.8/85.2 |84.9/81.8 |86.5 |94.9 |75.2 |
|ALBERT-xlarge |87.9 |92.9/86.4 |87.9/84.1 |87.9 |95.4 |80.7 |
|ALBERT-xxlarge |90.9 |94.6/89.1 |89.8/86.9 |90.6 |96.8 |86.8 |
|V1 |
|ALBERT-base |80.1 |89.3/82.3 | 80.0/77.1|81.6 |90.3 | 64.0 |
|ALBERT-large |82.4 |90.6/83.9 | 82.3/79.4|83.5 |91.7 | 68.5 |
|ALBERT-xlarge |85.5 |92.5/86.1 | 86.1/83.1|86.4 |92.4 | 74.8 |
|ALBERT-xxlarge |91.0 |94.8/89.3 | 90.2/87.4|90.8 |96.9 | 86.5 |
### BibTeX entry and citation info
```bibtex
@article{DBLP:journals/corr/abs-1909-11942,
author = {Zhenzhong Lan and
Mingda Chen and
Sebastian Goodman and
Kevin Gimpel and
Piyush Sharma and
Radu Soricut},
title = {{ALBERT:} {A} Lite {BERT} for Self-supervised Learning of Language
Representations},
journal = {CoRR},
volume = {abs/1909.11942},
year = {2019},
url = {http://arxiv.org/abs/1909.11942},
archivePrefix = {arXiv},
eprint = {1909.11942},
timestamp = {Fri, 27 Sep 2019 13:04:21 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-1909-11942.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
``` |
tftransformers/albert-base-v2 | tftransformers | 2021-10-24T08:36:40Z | 3 | 0 | transformers | [
"transformers",
"en",
"dataset:bookcorpus",
"dataset:wikipedia",
"arxiv:1909.11942",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
language: en
license: apache-2.0
datasets:
- bookcorpus
- wikipedia
---
# ALBERT Base v2
Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in
[this paper](https://arxiv.org/abs/1909.11942) and first released in
[this repository](https://github.com/google-research/albert). This model, as all ALBERT models, is uncased: it does not make a difference
between english and English.
Disclaimer: The team releasing ALBERT did not write a model card for this model so this model card has been written by
the Hugging Face team.
## Model description
ALBERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it
was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of
publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it
was pretrained with two objectives:
- Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run
the entire masked sentence through the model and has to predict the masked words. This is different from traditional
recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like
GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the
sentence.
- Sentence Ordering Prediction (SOP): ALBERT uses a pretraining loss based on predicting the ordering of two consecutive segments of text.
This way, the model learns an inner representation of the English language that can then be used to extract features
useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard
classifier using the features produced by the ALBERT model as inputs.
ALBERT is particular in that it shares its layers across its Transformer. Therefore, all layers have the same weights. Using repeating layers results in a small memory footprint, however, the computational cost remains similar to a BERT-like architecture with the same number of hidden layers as it has to iterate through the same number of (repeating) layers.
This is the second version of the base model. Version 2 is different from version 1 due to different dropout rates, additional training data, and longer training. It has better results in nearly all downstream tasks.
This model has the following configuration:
- 12 repeating layers
- 128 embedding dimension
- 768 hidden dimension
- 12 attention heads
- 11M parameters
## Intended uses & limitations
You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to
be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=albert) to look for
fine-tuned versions on a task that interests you.
Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked)
to make decisions, such as sequence classification, token classification or question answering. For tasks such as text
generation you should look at model like GPT2.
### How to use
You can use this model directly with a pipeline for masked language modeling:
In tf_transformers
```python
from tf_transformers.models import AlbertModel
from transformers import AlbertTokenizer
tokenizer = AlbertTokenizer.from_pretrained('albert-base-v2')
model = AlbertModel.from_pretrained("albert-base-v2")
text = "Replace me by any text you'd like."
inputs_tf = {}
inputs = tokenizer(text, return_tensors='tf')
inputs_tf["input_ids"] = inputs["input_ids"]
inputs_tf["input_type_ids"] = inputs["token_type_ids"]
inputs_tf["input_mask"] = inputs["attention_mask"]
outputs_tf = model(inputs_tf)
```
## Training data
The ALBERT model was pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038
unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and
headers).
## Training procedure
### Preprocessing
The texts are lowercased and tokenized using SentencePiece and a vocabulary size of 30,000. The inputs of the model are
then of the form:
```
[CLS] Sentence A [SEP] Sentence B [SEP]
```
### Training
The ALBERT procedure follows the BERT setup.
The details of the masking procedure for each sentence are the following:
- 15% of the tokens are masked.
- In 80% of the cases, the masked tokens are replaced by `[MASK]`.
- In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace.
- In the 10% remaining cases, the masked tokens are left as is.
## Evaluation results
When fine-tuned on downstream tasks, the ALBERT models achieve the following results:
| | Average | SQuAD1.1 | SQuAD2.0 | MNLI | SST-2 | RACE |
|----------------|----------|----------|----------|----------|----------|----------|
|V2 |
|ALBERT-base |82.3 |90.2/83.2 |82.1/79.3 |84.6 |92.9 |66.8 |
|ALBERT-large |85.7 |91.8/85.2 |84.9/81.8 |86.5 |94.9 |75.2 |
|ALBERT-xlarge |87.9 |92.9/86.4 |87.9/84.1 |87.9 |95.4 |80.7 |
|ALBERT-xxlarge |90.9 |94.6/89.1 |89.8/86.9 |90.6 |96.8 |86.8 |
|V1 |
|ALBERT-base |80.1 |89.3/82.3 | 80.0/77.1|81.6 |90.3 | 64.0 |
|ALBERT-large |82.4 |90.6/83.9 | 82.3/79.4|83.5 |91.7 | 68.5 |
|ALBERT-xlarge |85.5 |92.5/86.1 | 86.1/83.1|86.4 |92.4 | 74.8 |
|ALBERT-xxlarge |91.0 |94.8/89.3 | 90.2/87.4|90.8 |96.9 | 86.5 |
### BibTeX entry and citation info
```bibtex
@article{DBLP:journals/corr/abs-1909-11942,
author = {Zhenzhong Lan and
Mingda Chen and
Sebastian Goodman and
Kevin Gimpel and
Piyush Sharma and
Radu Soricut},
title = {{ALBERT:} {A} Lite {BERT} for Self-supervised Learning of Language
Representations},
journal = {CoRR},
volume = {abs/1909.11942},
year = {2019},
url = {http://arxiv.org/abs/1909.11942},
archivePrefix = {arXiv},
eprint = {1909.11942},
timestamp = {Fri, 27 Sep 2019 13:04:21 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-1909-11942.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
``` |
tftransformers/albert-base-v1 | tftransformers | 2021-10-24T08:34:54Z | 2 | 0 | transformers | [
"transformers",
"exbert",
"en",
"dataset:bookcorpus",
"dataset:wikipedia",
"arxiv:1909.11942",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
tags:
- exbert
language: en
license: apache-2.0
datasets:
- bookcorpus
- wikipedia
---
# ALBERT Base v1
Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in
[this paper](https://arxiv.org/abs/1909.11942) and first released in
[this repository](https://github.com/google-research/albert). This model, as all ALBERT models, is uncased: it does not make a difference
between english and English.
Disclaimer: The team releasing ALBERT did not write a model card for this model so this model card has been written by
the Hugging Face team.
## Model description
ALBERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it
was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of
publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it
was pretrained with two objectives:
- Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run
the entire masked sentence through the model and has to predict the masked words. This is different from traditional
recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like
GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the
sentence.
- Sentence Ordering Prediction (SOP): ALBERT uses a pretraining loss based on predicting the ordering of two consecutive segments of text.
This way, the model learns an inner representation of the English language that can then be used to extract features
useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard
classifier using the features produced by the ALBERT model as inputs.
ALBERT is particular in that it shares its layers across its Transformer. Therefore, all layers have the same weights. Using repeating layers results in a small memory footprint, however, the computational cost remains similar to a BERT-like architecture with the same number of hidden layers as it has to iterate through the same number of (repeating) layers.
This is the first version of the base model. Version 2 is different from version 1 due to different dropout rates, additional training data, and longer training. It has better results in nearly all downstream tasks.
This model has the following configuration:
- 12 repeating layers
- 128 embedding dimension
- 768 hidden dimension
- 12 attention heads
- 11M parameters
## Intended uses & limitations
You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to
be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=albert) to look for
fine-tuned versions on a task that interests you.
Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked)
to make decisions, such as sequence classification, token classification or question answering. For tasks such as text
generation you should look at model like GPT2.
### How to use
You can use this model directly with a pipeline for masked language modeling:
In tf_transformers
```python
from tf_transformers.models import AlbertModel
from transformers import AlbertTokenizer
tokenizer = AlbertTokenizer.from_pretrained('albert-base-v1')
model = AlbertModel.from_pretrained("albert-base-v1")
text = "Replace me by any text you'd like."
inputs_tf = {}
inputs = tokenizer(text, return_tensors='tf')
inputs_tf["input_ids"] = inputs["input_ids"]
inputs_tf["input_type_ids"] = inputs["token_type_ids"]
inputs_tf["input_mask"] = inputs["attention_mask"]
outputs_tf = model(inputs_tf)
```
This bias will also affect all fine-tuned versions of this model.
## Training data
The ALBERT model was pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038
unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and
headers).
## Training procedure
### Preprocessing
The texts are lowercased and tokenized using SentencePiece and a vocabulary size of 30,000. The inputs of the model are
then of the form:
```
[CLS] Sentence A [SEP] Sentence B [SEP]
```
### Training
The ALBERT procedure follows the BERT setup.
The details of the masking procedure for each sentence are the following:
- 15% of the tokens are masked.
- In 80% of the cases, the masked tokens are replaced by `[MASK]`.
- In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace.
- In the 10% remaining cases, the masked tokens are left as is.
## Evaluation results
When fine-tuned on downstream tasks, the ALBERT models achieve the following results:
| | Average | SQuAD1.1 | SQuAD2.0 | MNLI | SST-2 | RACE |
|----------------|----------|----------|----------|----------|----------|----------|
|V2 |
|ALBERT-base |82.3 |90.2/83.2 |82.1/79.3 |84.6 |92.9 |66.8 |
|ALBERT-large |85.7 |91.8/85.2 |84.9/81.8 |86.5 |94.9 |75.2 |
|ALBERT-xlarge |87.9 |92.9/86.4 |87.9/84.1 |87.9 |95.4 |80.7 |
|ALBERT-xxlarge |90.9 |94.6/89.1 |89.8/86.9 |90.6 |96.8 |86.8 |
|V1 |
|ALBERT-base |80.1 |89.3/82.3 | 80.0/77.1|81.6 |90.3 | 64.0 |
|ALBERT-large |82.4 |90.6/83.9 | 82.3/79.4|83.5 |91.7 | 68.5 |
|ALBERT-xlarge |85.5 |92.5/86.1 | 86.1/83.1|86.4 |92.4 | 74.8 |
|ALBERT-xxlarge |91.0 |94.8/89.3 | 90.2/87.4|90.8 |96.9 | 86.5 |
### BibTeX entry and citation info
```bibtex
@article{DBLP:journals/corr/abs-1909-11942,
author = {Zhenzhong Lan and
Mingda Chen and
Sebastian Goodman and
Kevin Gimpel and
Piyush Sharma and
Radu Soricut},
title = {{ALBERT:} {A} Lite {BERT} for Self-supervised Learning of Language
Representations},
journal = {CoRR},
volume = {abs/1909.11942},
year = {2019},
url = {http://arxiv.org/abs/1909.11942},
archivePrefix = {arXiv},
eprint = {1909.11942},
timestamp = {Fri, 27 Sep 2019 13:04:21 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-1909-11942.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
<a href="https://huggingface.co/exbert/?model=albert-base-v1">
<img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png">
</a> |
tftransformers/bart-large | tftransformers | 2021-10-24T08:24:25Z | 2 | 0 | transformers | [
"transformers",
"en",
"arxiv:1910.13461",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
license: apache-2.0
language: en
---
# BART (large-sized model)
BART model pre-trained on English language. It was introduced in the paper [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/abs/1910.13461) by Lewis et al. and first released in [this repository](https://github.com/pytorch/fairseq/tree/master/examples/bart).
Disclaimer: The team releasing BART did not write a model card for this model so this model card has been written by the Hugging Face team.
## Model description
BART is a transformer encoder-encoder (seq2seq) model with a bidirectional (BERT-like) encoder and an autoregressive (GPT-like) decoder. BART is pre-trained by (1) corrupting text with an arbitrary noising function, and (2) learning a model to reconstruct the original text.
BART is particularly effective when fine-tuned for text generation (e.g. summarization, translation) but also works well for comprehension tasks (e.g. text classification, question answering).
## Intended uses & limitations
You can use the raw model for text infilling. However, the model is mostly meant to be fine-tuned on a supervised dataset. See the [model hub](https://huggingface.co/models?search=bart) to look for fine-tuned versions on a task that interests you.
### How to use
Here is how to use this model in tf_transformers:
```python
from tf_transformers.models import BartModel
from transformers import BartTokenizer
tokenizer = BartTokenizer.from_pretrained('facebook/bart-large')
model = BartModel.from_pretrained('facebook/bart-large')
inputs_tf = {}
inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
inputs_tf["encoder_input_ids"] = inputs["input_ids"]
inputs_tf["encoder_input_mask"] = inputs["attention_mask"]
inputs_tf["decoder_input_ids"] = decoder_input_ids
outputs_tf = model(inputs_tf)
```
### BibTeX entry and citation info
```bibtex
@article{DBLP:journals/corr/abs-1910-13461,
author = {Mike Lewis and
Yinhan Liu and
Naman Goyal and
Marjan Ghazvininejad and
Abdelrahman Mohamed and
Omer Levy and
Veselin Stoyanov and
Luke Zettlemoyer},
title = {{BART:} Denoising Sequence-to-Sequence Pre-training for Natural Language
Generation, Translation, and Comprehension},
journal = {CoRR},
volume = {abs/1910.13461},
year = {2019},
url = {http://arxiv.org/abs/1910.13461},
eprinttype = {arXiv},
eprint = {1910.13461},
timestamp = {Thu, 31 Oct 2019 14:02:26 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-1910-13461.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
``` |
tftransformers/bart-base | tftransformers | 2021-10-24T08:22:19Z | 2 | 1 | transformers | [
"transformers",
"en",
"arxiv:1910.13461",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
license: apache-2.0
language: en
---
# BART (base-sized model)
BART model pre-trained on English language. It was introduced in the paper [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/abs/1910.13461) by Lewis et al. and first released in [this repository](https://github.com/pytorch/fairseq/tree/master/examples/bart).
Disclaimer: The team releasing BART did not write a model card for this model so this model card has been written by the Hugging Face team.
## Model description
BART is a transformer encoder-encoder (seq2seq) model with a bidirectional (BERT-like) encoder and an autoregressive (GPT-like) decoder. BART is pre-trained by (1) corrupting text with an arbitrary noising function, and (2) learning a model to reconstruct the original text.
BART is particularly effective when fine-tuned for text generation (e.g. summarization, translation) but also works well for comprehension tasks (e.g. text classification, question answering).
## Intended uses & limitations
You can use the raw model for text infilling. However, the model is mostly meant to be fine-tuned on a supervised dataset. See the [model hub](https://huggingface.co/models?search=bart) to look for fine-tuned versions on a task that interests you.
### How to use
Here is how to use this model in tf_transformers:
```python
from tf_transformers.models import BartModel
from transformers import BartTokenizer
tokenizer = BartTokenizer.from_pretrained('facebook/bart-base')
model = BartModel.from_pretrained('facebook/bart-base')
inputs_tf = {}
inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
inputs_tf["encoder_input_ids"] = inputs["input_ids"]
inputs_tf["encoder_input_mask"] = inputs["attention_mask"]
inputs_tf["decoder_input_ids"] = decoder_input_ids
outputs_tf = model(inputs_tf)
```
### BibTeX entry and citation info
```bibtex
@article{DBLP:journals/corr/abs-1910-13461,
author = {Mike Lewis and
Yinhan Liu and
Naman Goyal and
Marjan Ghazvininejad and
Abdelrahman Mohamed and
Omer Levy and
Veselin Stoyanov and
Luke Zettlemoyer},
title = {{BART:} Denoising Sequence-to-Sequence Pre-training for Natural Language
Generation, Translation, and Comprehension},
journal = {CoRR},
volume = {abs/1910.13461},
year = {2019},
url = {http://arxiv.org/abs/1910.13461},
eprinttype = {arXiv},
eprint = {1910.13461},
timestamp = {Thu, 31 Oct 2019 14:02:26 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-1910-13461.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
``` |
tftransformers/mt5-small | tftransformers | 2021-10-24T08:18:10Z | 4 | 0 | transformers | [
"transformers",
"multilingual",
"dataset:mc4",
"arxiv:2010.11934",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
language: multilingual
datasets:
- mc4
license: apache-2.0
---
[Google's mT5](https://github.com/google-research/multilingual-t5)
mT5 is pretrained on the [mC4](https://www.tensorflow.org/datasets/catalog/c4#c4multilingual) corpus, covering 101 languages:
Afrikaans, Albanian, Amharic, Arabic, Armenian, Azerbaijani, Basque, Belarusian, Bengali, Bulgarian, Burmese, Catalan, Cebuano, Chichewa, Chinese, Corsican, Czech, Danish, Dutch, English, Esperanto, Estonian, Filipino, Finnish, French, Galician, Georgian, German, Greek, Gujarati, Haitian Creole, Hausa, Hawaiian, Hebrew, Hindi, Hmong, Hungarian, Icelandic, Igbo, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Korean, Kurdish, Kyrgyz, Lao, Latin, Latvian, Lithuanian, Luxembourgish, Macedonian, Malagasy, Malay, Malayalam, Maltese, Maori, Marathi, Mongolian, Nepali, Norwegian, Pashto, Persian, Polish, Portuguese, Punjabi, Romanian, Russian, Samoan, Scottish Gaelic, Serbian, Shona, Sindhi, Sinhala, Slovak, Slovenian, Somali, Sotho, Spanish, Sundanese, Swahili, Swedish, Tajik, Tamil, Telugu, Thai, Turkish, Ukrainian, Urdu, Uzbek, Vietnamese, Welsh, West Frisian, Xhosa, Yiddish, Yoruba, Zulu.
**Note**: mT5 was only pre-trained on mC4 excluding any supervised training. Therefore, this model has to be fine-tuned before it is useable on a downstream task.
Pretraining Dataset: [mC4](https://www.tensorflow.org/datasets/catalog/c4#c4multilingual)
Other Community Checkpoints: [here](https://huggingface.co/models?search=mt5)
Paper: [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934)
Authors: *Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel*
## Abstract
The recent "Text-to-Text Transfer Transformer" (T5) leveraged a unified text-to-text format and scale to attain state-of-the-art results on a wide variety of English-language NLP tasks. In this paper, we introduce mT5, a multilingual variant of T5 that was pre-trained on a new Common Crawl-based dataset covering 101 languages. We describe the design and modified training of mT5 and demonstrate its state-of-the-art performance on many multilingual benchmarks. All of the code and model checkpoints used in this work are publicly available.
## Usage
```
from tf_transformers.models import MT5Model
# Any MT5 model (mt5-small, mt5-base etc)
model_name = 'mt5-small'
model = MT5Model.from_pretrained(model_name)
``` |
huggingartists/sqwore | huggingartists | 2021-10-24T04:23:45Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingartists",
"lyrics",
"lm-head",
"causal-lm",
"en",
"dataset:huggingartists/sqwore",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:05Z | ---
language: en
datasets:
- huggingartists/sqwore
tags:
- huggingartists
- lyrics
- lm-head
- causal-lm
widget:
- text: "I am"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://images.genius.com/3557a234d4c5912569afbea078a23eff.1000x1000x1.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Sqwore</div>
<a href="https://genius.com/artists/sqwore">
<div style="text-align: center; font-size: 14px;">@sqwore</div>
</a>
</div>
I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists).
Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)!
## How does it work?
To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist).
## Training data
The model was trained on lyrics from Sqwore.
Dataset is available [here](https://huggingface.co/datasets/huggingartists/sqwore).
And can be used with:
```python
from datasets import load_dataset
dataset = load_dataset("huggingartists/sqwore")
```
[Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/3gzd5crq/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Sqwore's lyrics.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/vzeft23g) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/vzeft23g/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingartists/sqwore')
generator("I am", num_return_sequences=5)
```
Or with Transformers library:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("huggingartists/sqwore")
model = AutoModelWithLMHead.from_pretrained("huggingartists/sqwore")
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
[](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
[](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingartists)
|
huggingtweets/praisegodbarbon | huggingtweets | 2021-10-24T03:47:17Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:05Z | ---
language: en
thumbnail: https://www.huggingtweets.com/praisegodbarbon/1635047234116/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1381764452098437120/74IgKP07_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Boston Psychology PhD</div>
<div style="text-align: center; font-size: 14px;">@praisegodbarbon</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Boston Psychology PhD.
| Data | Boston Psychology PhD |
| --- | --- |
| Tweets downloaded | 3212 |
| Retweets | 810 |
| Short tweets | 265 |
| Tweets kept | 2137 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/h4r5tyq8/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @praisegodbarbon's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1o2225sd) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1o2225sd/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/praisegodbarbon')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
ddddd/EDCLasVegas | ddddd | 2021-10-24T01:16:07Z | 0 | 0 | null | [
"region:us"
] | null | 2022-03-02T23:29:05Z | https://teespring.com/dashboard/listings/113925135/edit |
huggingtweets/nikkihaleyfan93 | huggingtweets | 2021-10-23T22:45:26Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:05Z | ---
language: en
thumbnail: https://www.huggingtweets.com/nikkihaleyfan93/1635029077906/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1329566476987232256/wpiYdhhz_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Richard Smit 🦅 🚁 🚔 💰 🇻🇦 🇳🇱 🇺🇸 🇬🇧 🇮🇱</div>
<div style="text-align: center; font-size: 14px;">@nikkihaleyfan93</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Richard Smit 🦅 🚁 🚔 💰 🇻🇦 🇳🇱 🇺🇸 🇬🇧 🇮🇱.
| Data | Richard Smit 🦅 🚁 🚔 💰 🇻🇦 🇳🇱 🇺🇸 🇬🇧 🇮🇱 |
| --- | --- |
| Tweets downloaded | 3248 |
| Retweets | 406 |
| Short tweets | 255 |
| Tweets kept | 2587 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/20va5xqa/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @nikkihaleyfan93's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1v26x5ax) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1v26x5ax/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/nikkihaleyfan93')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
espnet/kan-bayashi_libritts_xvector_vits | espnet | 2021-10-23T20:52:03Z | 3 | 0 | espnet | [
"espnet",
"audio",
"text-to-speech",
"en",
"dataset:libritts",
"arxiv:1804.00015",
"license:cc-by-4.0",
"region:us"
] | text-to-speech | 2022-03-02T23:29:05Z | ---
tags:
- espnet
- audio
- text-to-speech
language: en
datasets:
- libritts
license: cc-by-4.0
---
## ESPnet2 TTS pretrained model
### `kan-bayashi/libritts_xvector_vits`
♻️ Imported from https://zenodo.org/record/5521416/
This model was trained by kan-bayashi using libritts/tts1 recipe in [espnet](https://github.com/espnet/espnet/).
### Demo: How to use in ESPnet2
```python
# coming soon
```
### Citing ESPnet
```BibTex
@inproceedings{watanabe2018espnet,
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
title={{ESPnet}: End-to-End Speech Processing Toolkit},
year={2018},
booktitle={Proceedings of Interspeech},
pages={2207--2211},
doi={10.21437/Interspeech.2018-1456},
url={http://dx.doi.org/10.21437/Interspeech.2018-1456}
}
@inproceedings{hayashi2020espnet,
title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit},
author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu},
booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
pages={7654--7658},
year={2020},
organization={IEEE}
}
```
or arXiv:
```bibtex
@misc{watanabe2018espnet,
title={ESPnet: End-to-End Speech Processing Toolkit},
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
year={2018},
eprint={1804.00015},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
``` |
espnet/kan-bayashi_tsukuyomi_full_band_vits_prosody | espnet | 2021-10-23T20:50:36Z | 2 | 3 | espnet | [
"espnet",
"audio",
"text-to-speech",
"ja",
"dataset:tsukuyomi",
"arxiv:1804.00015",
"license:cc-by-4.0",
"region:us"
] | text-to-speech | 2022-03-02T23:29:05Z | ---
tags:
- espnet
- audio
- text-to-speech
language: ja
datasets:
- tsukuyomi
license: cc-by-4.0
---
## ESPnet2 TTS pretrained model
### `kan-bayashi/tsukuyomi_full_band_vits_prosody`
♻️ Imported from https://zenodo.org/record/5521446/
This model was trained by kan-bayashi using tsukuyomi/tts1 recipe in [espnet](https://github.com/espnet/espnet/).
### Demo: How to use in ESPnet2
```python
# coming soon
```
### Citing ESPnet
```BibTex
@inproceedings{watanabe2018espnet,
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
title={{ESPnet}: End-to-End Speech Processing Toolkit},
year={2018},
booktitle={Proceedings of Interspeech},
pages={2207--2211},
doi={10.21437/Interspeech.2018-1456},
url={http://dx.doi.org/10.21437/Interspeech.2018-1456}
}
@inproceedings{hayashi2020espnet,
title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit},
author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu},
booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
pages={7654--7658},
year={2020},
organization={IEEE}
}
```
or arXiv:
```bibtex
@misc{watanabe2018espnet,
title={ESPnet: End-to-End Speech Processing Toolkit},
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
year={2018},
eprint={1804.00015},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
``` |
espnet/kan-bayashi_tsukuyomi_tts_finetune_full_band_jsut_vits_raw_phn_jaconv_pyopenjtalk_prosody_latest | espnet | 2021-10-23T20:50:21Z | 0 | 3 | espnet | [
"espnet",
"audio",
"text-to-speech",
"ja",
"dataset:tsukuyomi",
"arxiv:1804.00015",
"license:cc-by-4.0",
"region:us"
] | text-to-speech | 2022-03-02T23:29:05Z | ---
tags:
- espnet
- audio
- text-to-speech
language: ja
datasets:
- tsukuyomi
license: cc-by-4.0
---
## ESPnet2 TTS pretrained model
### `kan-bayashi/tsukuyomi_tts_finetune_full_band_jsut_vits_raw_phn_jaconv_pyopenjtalk_prosody_latest`
♻️ Imported from https://zenodo.org/record/5521446/
This model was trained by kan-bayashi using tsukuyomi/tts1 recipe in [espnet](https://github.com/espnet/espnet/).
### Demo: How to use in ESPnet2
```python
# coming soon
```
### Citing ESPnet
```BibTex
@inproceedings{watanabe2018espnet,
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
title={{ESPnet}: End-to-End Speech Processing Toolkit},
year={2018},
booktitle={Proceedings of Interspeech},
pages={2207--2211},
doi={10.21437/Interspeech.2018-1456},
url={http://dx.doi.org/10.21437/Interspeech.2018-1456}
}
@inproceedings{hayashi2020espnet,
title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit},
author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu},
booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
pages={7654--7658},
year={2020},
organization={IEEE}
}
```
or arXiv:
```bibtex
@misc{watanabe2018espnet,
title={ESPnet: End-to-End Speech Processing Toolkit},
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
year={2018},
eprint={1804.00015},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
``` |
espnet/kan-bayashi_jsut_full_band_vits_prosody | espnet | 2021-10-23T20:47:17Z | 11 | 0 | espnet | [
"espnet",
"audio",
"text-to-speech",
"ja",
"dataset:jsut",
"arxiv:1804.00015",
"license:cc-by-4.0",
"region:us"
] | text-to-speech | 2022-03-02T23:29:05Z | ---
tags:
- espnet
- audio
- text-to-speech
language: ja
datasets:
- jsut
license: cc-by-4.0
---
## ESPnet2 TTS pretrained model
### `kan-bayashi/jsut_full_band_vits_prosody`
♻️ Imported from https://zenodo.org/record/5521340/
This model was trained by kan-bayashi using jsut/tts1 recipe in [espnet](https://github.com/espnet/espnet/).
### Demo: How to use in ESPnet2
```python
# coming soon
```
### Citing ESPnet
```BibTex
@inproceedings{watanabe2018espnet,
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
title={{ESPnet}: End-to-End Speech Processing Toolkit},
year={2018},
booktitle={Proceedings of Interspeech},
pages={2207--2211},
doi={10.21437/Interspeech.2018-1456},
url={http://dx.doi.org/10.21437/Interspeech.2018-1456}
}
@inproceedings{hayashi2020espnet,
title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit},
author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu},
booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
pages={7654--7658},
year={2020},
organization={IEEE}
}
```
or arXiv:
```bibtex
@misc{watanabe2018espnet,
title={ESPnet: End-to-End Speech Processing Toolkit},
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
year={2018},
eprint={1804.00015},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
``` |
espnet/kan-bayashi_jsut_tts_train_full_band_vits_raw_phn_jaconv_pyopenjtalk_p-truncated-66d5fc | espnet | 2021-10-23T20:45:49Z | 0 | 0 | espnet | [
"espnet",
"audio",
"text-to-speech",
"ja",
"dataset:jsut",
"arxiv:1804.00015",
"license:cc-by-4.0",
"region:us"
] | text-to-speech | 2022-03-02T23:29:05Z | ---
tags:
- espnet
- audio
- text-to-speech
language: ja
datasets:
- jsut
license: cc-by-4.0
---
## ESPnet2 TTS pretrained model
### `kan-bayashi/jsut_tts_train_full_band_vits_raw_phn_jaconv_pyopenjtalk_prosody_train.total_count.ave`
♻️ Imported from https://zenodo.org/record/5521340/
This model was trained by kan-bayashi using jsut/tts1 recipe in [espnet](https://github.com/espnet/espnet/).
### Demo: How to use in ESPnet2
```python
# coming soon
```
### Citing ESPnet
```BibTex
@inproceedings{watanabe2018espnet,
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
title={{ESPnet}: End-to-End Speech Processing Toolkit},
year={2018},
booktitle={Proceedings of Interspeech},
pages={2207--2211},
doi={10.21437/Interspeech.2018-1456},
url={http://dx.doi.org/10.21437/Interspeech.2018-1456}
}
@inproceedings{hayashi2020espnet,
title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit},
author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu},
booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
pages={7654--7658},
year={2020},
organization={IEEE}
}
```
or arXiv:
```bibtex
@misc{watanabe2018espnet,
title={ESPnet: End-to-End Speech Processing Toolkit},
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
year={2018},
eprint={1804.00015},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
``` |
espnet/kan-bayashi_vctk_full_band_multi_spk_vits | espnet | 2021-10-23T20:44:14Z | 0 | 1 | espnet | [
"espnet",
"audio",
"text-to-speech",
"en",
"dataset:vctk",
"arxiv:1804.00015",
"license:cc-by-4.0",
"region:us"
] | text-to-speech | 2022-03-02T23:29:05Z | ---
tags:
- espnet
- audio
- text-to-speech
language: en
datasets:
- vctk
license: cc-by-4.0
---
## ESPnet2 TTS pretrained model
### `kan-bayashi/vctk_full_band_multi_spk_vits`
♻️ Imported from https://zenodo.org/record/5521431/
This model was trained by kan-bayashi using vctk/tts1 recipe in [espnet](https://github.com/espnet/espnet/).
### Demo: How to use in ESPnet2
```python
# coming soon
```
### Citing ESPnet
```BibTex
@inproceedings{watanabe2018espnet,
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
title={{ESPnet}: End-to-End Speech Processing Toolkit},
year={2018},
booktitle={Proceedings of Interspeech},
pages={2207--2211},
doi={10.21437/Interspeech.2018-1456},
url={http://dx.doi.org/10.21437/Interspeech.2018-1456}
}
@inproceedings{hayashi2020espnet,
title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit},
author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu},
booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
pages={7654--7658},
year={2020},
organization={IEEE}
}
```
or arXiv:
```bibtex
@misc{watanabe2018espnet,
title={ESPnet: End-to-End Speech Processing Toolkit},
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
year={2018},
eprint={1804.00015},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
``` |
espnet/kan-bayashi_vctk_multi_spk_vits | espnet | 2021-10-23T20:42:58Z | 2 | 0 | espnet | [
"espnet",
"audio",
"text-to-speech",
"en",
"dataset:vctk",
"arxiv:1804.00015",
"license:cc-by-4.0",
"region:us"
] | text-to-speech | 2022-03-02T23:29:05Z | ---
tags:
- espnet
- audio
- text-to-speech
language: en
datasets:
- vctk
license: cc-by-4.0
---
## ESPnet2 TTS pretrained model
### `kan-bayashi/vctk_multi_spk_vits`
♻️ Imported from https://zenodo.org/record/5500759/
This model was trained by kan-bayashi using vctk/tts1 recipe in [espnet](https://github.com/espnet/espnet/).
### Demo: How to use in ESPnet2
```python
# coming soon
```
### Citing ESPnet
```BibTex
@inproceedings{watanabe2018espnet,
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
title={{ESPnet}: End-to-End Speech Processing Toolkit},
year={2018},
booktitle={Proceedings of Interspeech},
pages={2207--2211},
doi={10.21437/Interspeech.2018-1456},
url={http://dx.doi.org/10.21437/Interspeech.2018-1456}
}
@inproceedings{hayashi2020espnet,
title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit},
author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu},
booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
pages={7654--7658},
year={2020},
organization={IEEE}
}
```
or arXiv:
```bibtex
@misc{watanabe2018espnet,
title={ESPnet: End-to-End Speech Processing Toolkit},
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
year={2018},
eprint={1804.00015},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
``` |
espnet/kan-bayashi_jsut_tts_train_conformer_fastspeech2_transformer_teacher_r-truncated-f43d8f | espnet | 2021-10-23T20:31:48Z | 0 | 0 | espnet | [
"espnet",
"audio",
"text-to-speech",
"ja",
"dataset:jsut",
"arxiv:1804.00015",
"license:cc-by-4.0",
"region:us"
] | text-to-speech | 2022-03-02T23:29:05Z | ---
tags:
- espnet
- audio
- text-to-speech
language: ja
datasets:
- jsut
license: cc-by-4.0
---
## ESPnet2 TTS pretrained model
### `kan-bayashi/jsut_tts_train_conformer_fastspeech2_transformer_teacher_raw_phn_jaconv_pyopenjtalk_prosody_train.loss.ave`
♻️ Imported from https://zenodo.org/record/5499066/
This model was trained by kan-bayashi using jsut/tts1 recipe in [espnet](https://github.com/espnet/espnet/).
### Demo: How to use in ESPnet2
```python
# coming soon
```
### Citing ESPnet
```BibTex
@inproceedings{watanabe2018espnet,
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
title={{ESPnet}: End-to-End Speech Processing Toolkit},
year={2018},
booktitle={Proceedings of Interspeech},
pages={2207--2211},
doi={10.21437/Interspeech.2018-1456},
url={http://dx.doi.org/10.21437/Interspeech.2018-1456}
}
@inproceedings{hayashi2020espnet,
title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit},
author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu},
booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
pages={7654--7658},
year={2020},
organization={IEEE}
}
```
or arXiv:
```bibtex
@misc{watanabe2018espnet,
title={ESPnet: End-to-End Speech Processing Toolkit},
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
year={2018},
eprint={1804.00015},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
``` |
espnet/kan-bayashi_csmsc_tts_train_vits_raw_phn_pypinyin_g2p_phone_train.total_count.ave | espnet | 2021-10-23T20:29:19Z | 2 | 0 | espnet | [
"espnet",
"audio",
"text-to-speech",
"zh",
"dataset:csmsc",
"arxiv:1804.00015",
"license:cc-by-4.0",
"region:us"
] | text-to-speech | 2022-03-02T23:29:05Z | ---
tags:
- espnet
- audio
- text-to-speech
language: zh
datasets:
- csmsc
license: cc-by-4.0
---
## ESPnet2 TTS pretrained model
### `kan-bayashi/csmsc_tts_train_vits_raw_phn_pypinyin_g2p_phone_train.total_count.ave`
♻️ Imported from https://zenodo.org/record/5499120/
This model was trained by kan-bayashi using csmsc/tts1 recipe in [espnet](https://github.com/espnet/espnet/).
### Demo: How to use in ESPnet2
```python
# coming soon
```
### Citing ESPnet
```BibTex
@inproceedings{watanabe2018espnet,
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
title={{ESPnet}: End-to-End Speech Processing Toolkit},
year={2018},
booktitle={Proceedings of Interspeech},
pages={2207--2211},
doi={10.21437/Interspeech.2018-1456},
url={http://dx.doi.org/10.21437/Interspeech.2018-1456}
}
@inproceedings{hayashi2020espnet,
title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit},
author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu},
booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
pages={7654--7658},
year={2020},
organization={IEEE}
}
```
or arXiv:
```bibtex
@misc{watanabe2018espnet,
title={ESPnet: End-to-End Speech Processing Toolkit},
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
year={2018},
eprint={1804.00015},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
``` |
espnet/kan-bayashi_csmsc_tts_train_full_band_vits_raw_phn_pypinyin_g2p_phone_train.total_count.ave | espnet | 2021-10-23T20:28:30Z | 1 | 0 | espnet | [
"espnet",
"audio",
"text-to-speech",
"zh",
"dataset:csmsc",
"arxiv:1804.00015",
"license:cc-by-4.0",
"region:us"
] | text-to-speech | 2022-03-02T23:29:05Z | ---
tags:
- espnet
- audio
- text-to-speech
language: zh
datasets:
- csmsc
license: cc-by-4.0
---
## ESPnet2 TTS pretrained model
### `kan-bayashi/csmsc_tts_train_full_band_vits_raw_phn_pypinyin_g2p_phone_train.total_count.ave`
♻️ Imported from https://zenodo.org/record/5443852/
This model was trained by kan-bayashi using csmsc/tts1 recipe in [espnet](https://github.com/espnet/espnet/).
### Demo: How to use in ESPnet2
```python
# coming soon
```
### Citing ESPnet
```BibTex
@inproceedings{watanabe2018espnet,
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
title={{ESPnet}: End-to-End Speech Processing Toolkit},
year={2018},
booktitle={Proceedings of Interspeech},
pages={2207--2211},
doi={10.21437/Interspeech.2018-1456},
url={http://dx.doi.org/10.21437/Interspeech.2018-1456}
}
@inproceedings{hayashi2020espnet,
title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit},
author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu},
booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
pages={7654--7658},
year={2020},
organization={IEEE}
}
```
or arXiv:
```bibtex
@misc{watanabe2018espnet,
title={ESPnet: End-to-End Speech Processing Toolkit},
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
year={2018},
eprint={1804.00015},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
``` |
espnet/kan-bayashi_ljspeech_vits | espnet | 2021-10-23T20:27:43Z | 2,253 | 218 | espnet | [
"espnet",
"audio",
"text-to-speech",
"en",
"dataset:ljspeech",
"arxiv:1804.00015",
"license:cc-by-4.0",
"region:us"
] | text-to-speech | 2022-03-02T23:29:05Z | ---
tags:
- espnet
- audio
- text-to-speech
language: en
datasets:
- ljspeech
license: cc-by-4.0
---
## ESPnet2 TTS pretrained model
### `kan-bayashi/ljspeech_vits`
♻️ Imported from https://zenodo.org/record/5443814/
This model was trained by kan-bayashi using ljspeech/tts1 recipe in [espnet](https://github.com/espnet/espnet/).
### Demo: How to use in ESPnet2
```python
# coming soon
```
### Citing ESPnet
```BibTex
@inproceedings{watanabe2018espnet,
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
title={{ESPnet}: End-to-End Speech Processing Toolkit},
year={2018},
booktitle={Proceedings of Interspeech},
pages={2207--2211},
doi={10.21437/Interspeech.2018-1456},
url={http://dx.doi.org/10.21437/Interspeech.2018-1456}
}
@inproceedings{hayashi2020espnet,
title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit},
author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu},
booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
pages={7654--7658},
year={2020},
organization={IEEE}
}
```
or arXiv:
```bibtex
@misc{watanabe2018espnet,
title={ESPnet: End-to-End Speech Processing Toolkit},
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
year={2018},
eprint={1804.00015},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
``` |
espnet/kan-bayashi_jvs_tts_finetune_jvs010_jsut_vits_raw_phn_jaconv_pyopenjta-truncated-d57a28 | espnet | 2021-10-23T20:25:39Z | 1 | 0 | espnet | [
"espnet",
"audio",
"text-to-speech",
"ja",
"dataset:jvs",
"arxiv:1804.00015",
"license:cc-by-4.0",
"region:us"
] | text-to-speech | 2022-03-02T23:29:05Z | ---
tags:
- espnet
- audio
- text-to-speech
language: ja
datasets:
- jvs
license: cc-by-4.0
---
## ESPnet2 TTS pretrained model
### `kan-bayashi/jvs_tts_finetune_jvs010_jsut_vits_raw_phn_jaconv_pyopenjtalk_accent_with_pause_latest`
♻️ Imported from https://zenodo.org/record/5432566/
This model was trained by kan-bayashi using jvs/tts1 recipe in [espnet](https://github.com/espnet/espnet/).
### Demo: How to use in ESPnet2
```python
# coming soon
```
### Citing ESPnet
```BibTex
@inproceedings{watanabe2018espnet,
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
title={{ESPnet}: End-to-End Speech Processing Toolkit},
year={2018},
booktitle={Proceedings of Interspeech},
pages={2207--2211},
doi={10.21437/Interspeech.2018-1456},
url={http://dx.doi.org/10.21437/Interspeech.2018-1456}
}
@inproceedings{hayashi2020espnet,
title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit},
author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu},
booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
pages={7654--7658},
year={2020},
organization={IEEE}
}
```
or arXiv:
```bibtex
@misc{watanabe2018espnet,
title={ESPnet: End-to-End Speech Processing Toolkit},
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
year={2018},
eprint={1804.00015},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
``` |
espnet/kan-bayashi_jvs_tts_finetune_jvs001_jsut_vits_raw_phn_jaconv_pyopenjta-truncated-178804 | espnet | 2021-10-23T20:24:54Z | 3 | 1 | espnet | [
"espnet",
"audio",
"text-to-speech",
"ja",
"dataset:jvs",
"arxiv:1804.00015",
"license:cc-by-4.0",
"region:us"
] | text-to-speech | 2022-03-02T23:29:05Z | ---
tags:
- espnet
- audio
- text-to-speech
language: ja
datasets:
- jvs
license: cc-by-4.0
---
## ESPnet2 TTS pretrained model
### `kan-bayashi/jvs_tts_finetune_jvs001_jsut_vits_raw_phn_jaconv_pyopenjtalk_accent_with_pause_latest`
♻️ Imported from https://zenodo.org/record/5432540/
This model was trained by kan-bayashi using jvs/tts1 recipe in [espnet](https://github.com/espnet/espnet/).
### Demo: How to use in ESPnet2
```python
# coming soon
```
### Citing ESPnet
```BibTex
@inproceedings{watanabe2018espnet,
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
title={{ESPnet}: End-to-End Speech Processing Toolkit},
year={2018},
booktitle={Proceedings of Interspeech},
pages={2207--2211},
doi={10.21437/Interspeech.2018-1456},
url={http://dx.doi.org/10.21437/Interspeech.2018-1456}
}
@inproceedings{hayashi2020espnet,
title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit},
author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu},
booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
pages={7654--7658},
year={2020},
organization={IEEE}
}
```
or arXiv:
```bibtex
@misc{watanabe2018espnet,
title={ESPnet: End-to-End Speech Processing Toolkit},
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
year={2018},
eprint={1804.00015},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
``` |
espnet/kan-bayashi_jsut_tts_train_vits_raw_phn_jaconv_pyopenjtalk_accent_with-truncated-ba3566 | espnet | 2021-10-23T20:20:33Z | 0 | 0 | espnet | [
"espnet",
"audio",
"text-to-speech",
"ja",
"dataset:jsut",
"arxiv:1804.00015",
"license:cc-by-4.0",
"region:us"
] | text-to-speech | 2022-03-02T23:29:05Z | ---
tags:
- espnet
- audio
- text-to-speech
language: ja
datasets:
- jsut
license: cc-by-4.0
---
## ESPnet2 TTS pretrained model
### `kan-bayashi/jsut_tts_train_vits_raw_phn_jaconv_pyopenjtalk_accent_with_pause_train.total_count.ave`
♻️ Imported from https://zenodo.org/record/5414980/
This model was trained by kan-bayashi using jsut/tts1 recipe in [espnet](https://github.com/espnet/espnet/).
### Demo: How to use in ESPnet2
```python
# coming soon
```
### Citing ESPnet
```BibTex
@inproceedings{watanabe2018espnet,
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
title={{ESPnet}: End-to-End Speech Processing Toolkit},
year={2018},
booktitle={Proceedings of Interspeech},
pages={2207--2211},
doi={10.21437/Interspeech.2018-1456},
url={http://dx.doi.org/10.21437/Interspeech.2018-1456}
}
@inproceedings{hayashi2020espnet,
title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit},
author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu},
booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
pages={7654--7658},
year={2020},
organization={IEEE}
}
```
or arXiv:
```bibtex
@misc{watanabe2018espnet,
title={ESPnet: End-to-End Speech Processing Toolkit},
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
year={2018},
eprint={1804.00015},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
``` |
espnet/Yushi_Ueda_mini_librispeech_diar_train_diar_raw_max_epoch20_valid.acc.best | espnet | 2021-10-23T20:10:22Z | 2 | 0 | espnet | [
"espnet",
"audio",
"speaker-diarization",
"en",
"dataset:mini_librispeech",
"arxiv:1804.00015",
"license:cc-by-4.0",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
tags:
- espnet
- audio
- speaker-diarization
language: en
datasets:
- mini_librispeech
license: cc-by-4.0
---
## ESPnet2 DIAR pretrained model
### `Yushi Ueda/mini_librispeech_diar_train_diar_raw_max_epoch20_valid.acc.best`
♻️ Imported from https://zenodo.org/record/5264020/
This model was trained by Yushi Ueda using mini_librispeech/diar1 recipe in [espnet](https://github.com/espnet/espnet/).
### Demo: How to use in ESPnet2
```python
# coming soon
```
### Citing ESPnet
```BibTex
@inproceedings{watanabe2018espnet,
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
title={{ESPnet}: End-to-End Speech Processing Toolkit},
year={2018},
booktitle={Proceedings of Interspeech},
pages={2207--2211},
doi={10.21437/Interspeech.2018-1456},
url={http://dx.doi.org/10.21437/Interspeech.2018-1456}
}
```
or arXiv:
```bibtex
@misc{watanabe2018espnet,
title={ESPnet: End-to-End Speech Processing Toolkit},
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
year={2018},
eprint={1804.00015},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
``` |
huggingtweets/islamocommunism | huggingtweets | 2021-10-23T18:38:04Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:05Z | ---
language: en
thumbnail: https://www.huggingtweets.com/islamocommunism/1635014280450/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1448436144388009985/zWh5cSQ3_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">نورهان</div>
<div style="text-align: center; font-size: 14px;">@islamocommunism</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from نورهان.
| Data | نورهان |
| --- | --- |
| Tweets downloaded | 3196 |
| Retweets | 1205 |
| Short tweets | 227 |
| Tweets kept | 1764 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2l8ikj22/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @islamocommunism's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2kngkxcq) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2kngkxcq/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/islamocommunism')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
2umm3r/distilbert-base-uncased-finetuned-cola | 2umm3r | 2021-10-23T11:46:51Z | 21 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:glue",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2022-03-02T23:29:04Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- matthews_correlation
model-index:
- name: distilbert-base-uncased-finetuned-cola
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: glue
type: glue
args: cola
metrics:
- name: Matthews Correlation
type: matthews_correlation
value: 0.5155709926752544
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-cola
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7816
- Matthews Correlation: 0.5156
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Matthews Correlation |
|:-------------:|:-----:|:----:|:---------------:|:--------------------:|
| 0.5291 | 1.0 | 535 | 0.5027 | 0.4092 |
| 0.3492 | 2.0 | 1070 | 0.5136 | 0.4939 |
| 0.2416 | 3.0 | 1605 | 0.6390 | 0.5056 |
| 0.1794 | 4.0 | 2140 | 0.7816 | 0.5156 |
| 0.1302 | 5.0 | 2675 | 0.8836 | 0.5156 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.9.0+cu111
- Datasets 1.14.0
- Tokenizers 0.10.3
|
stamas01/vgg19_skin_auto_encoder | stamas01 | 2021-10-23T06:04:31Z | 0 | 0 | null | [
"region:us"
] | null | 2022-03-02T23:29:05Z | A simple Auto Encoder made up of VGG19 trained to reconstruct skin lesion images. |
tiennvcs/bert-large-uncased-finetuned-infovqa | tiennvcs | 2021-10-23T06:01:27Z | 7 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"bert",
"question-answering",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | question-answering | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: bert-large-uncased-finetuned-infovqa
results:
- task:
name: Question Answering
type: question-answering
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-large-uncased-finetuned-infovqa
This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 6.3170
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 250500
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 3.7861 | 0.12 | 1000 | 3.2778 |
| 3.2186 | 0.23 | 2000 | 3.0658 |
| 2.8504 | 0.35 | 3000 | 3.0456 |
| 2.8621 | 0.46 | 4000 | 2.8758 |
| 2.7851 | 0.58 | 5000 | 2.8680 |
| 2.8016 | 0.69 | 6000 | 2.9244 |
| 2.7592 | 0.81 | 7000 | 2.7735 |
| 2.5737 | 0.93 | 8000 | 2.7640 |
| 2.3493 | 1.04 | 9000 | 2.7257 |
| 2.1041 | 1.16 | 10000 | 2.8442 |
| 2.1713 | 1.27 | 11000 | 2.7723 |
| 2.0594 | 1.39 | 12000 | 2.9982 |
| 2.1825 | 1.5 | 13000 | 2.8272 |
| 2.2486 | 1.62 | 14000 | 2.8897 |
| 2.097 | 1.74 | 15000 | 2.8557 |
| 2.1645 | 1.85 | 16000 | 2.6342 |
| 2.15 | 1.97 | 17000 | 2.8680 |
| 1.5662 | 2.08 | 18000 | 3.2126 |
| 1.6168 | 2.2 | 19000 | 3.1646 |
| 1.5886 | 2.32 | 20000 | 3.3139 |
| 1.6539 | 2.43 | 21000 | 3.2610 |
| 1.6486 | 2.55 | 22000 | 3.3144 |
| 1.637 | 2.66 | 23000 | 3.0437 |
| 1.7186 | 2.78 | 24000 | 2.9936 |
| 1.7543 | 2.89 | 25000 | 3.1641 |
| 1.5301 | 3.01 | 26000 | 4.0560 |
| 1.1436 | 3.13 | 27000 | 4.0116 |
| 1.1902 | 3.24 | 28000 | 4.0240 |
| 1.2728 | 3.36 | 29000 | 4.3068 |
| 1.2586 | 3.47 | 30000 | 3.7894 |
| 1.3164 | 3.59 | 31000 | 3.9242 |
| 1.3093 | 3.7 | 32000 | 4.0444 |
| 1.2812 | 3.82 | 33000 | 4.1779 |
| 1.3165 | 3.94 | 34000 | 3.6633 |
| 0.8357 | 4.05 | 35000 | 5.8137 |
| 0.9583 | 4.17 | 36000 | 5.3305 |
| 0.9135 | 4.28 | 37000 | 5.4973 |
| 1.0011 | 4.4 | 38000 | 5.0349 |
| 0.9553 | 4.51 | 39000 | 5.2086 |
| 1.0182 | 4.63 | 40000 | 5.1197 |
| 0.9569 | 4.75 | 41000 | 5.4579 |
| 0.9437 | 4.86 | 42000 | 5.4467 |
| 0.9791 | 4.98 | 43000 | 4.7657 |
| 0.648 | 5.09 | 44000 | 6.5780 |
| 0.7528 | 5.21 | 45000 | 6.2827 |
| 0.7247 | 5.33 | 46000 | 6.8500 |
| 0.702 | 5.44 | 47000 | 6.4572 |
| 0.6786 | 5.56 | 48000 | 6.5462 |
| 0.7272 | 5.67 | 49000 | 6.2406 |
| 0.6778 | 5.79 | 50000 | 6.4727 |
| 0.6446 | 5.9 | 51000 | 6.3170 |
### Framework versions
- Transformers 4.10.0
- Pytorch 1.8.0+cu101
- Datasets 1.11.0
- Tokenizers 0.10.3
|
espnet/sujay_catslu_map | espnet | 2021-10-22T21:01:58Z | 2 | 0 | espnet | [
"espnet",
"audio",
"automatic-speech-recognition",
"zh",
"dataset:catslu",
"license:cc-by-4.0",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:05Z | ---
tags:
- espnet
- audio
- automatic-speech-recognition
language: zh
datasets:
- catslu
license: cc-by-4.0
---
## ESPnet2 ASR model
### `espnet/sujay_catslu_map`
This model was trained by Sujay S Kumar using catslu recipe in [espnet](https://github.com/espnet/espnet/).
### Demo: How to use in ESPnet2
```bash
cd espnet
git checkout e31965d55993766461f0964216a0bb9aea3cfb7a
pip install -e .
cd egs2/catslu/asr1
./run.sh --skip_data_prep false --skip_train true --download_model espnet/sujay_catslu_map
```
<!-- Generated by scripts/utils/show_asr_result.sh -->
# RESULTS
## Environments
- date: `Sun Oct 3 12:53:16 EDT 2021`
- python version: `3.9.5 (default, Jun 4 2021, 12:28:51) [GCC 7.5.0]`
- espnet version: `espnet 0.10.3a3`
- pytorch version: `pytorch 1.8.1+cu102`
- Git hash: `b41391336042a4876e30d9fe5c66afb4e4be404c`
- Commit date: `Wed Sep 22 10:02:03 2021 -0400`
## asr_train_asr_smaller_aishell_xlsr_raw_zh_word
### WER
|dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err|
|---|---|---|---|---|---|---|---|---|
|inference_asr_model_valid.acc.ave_5best/test|1577|11441|46.1|30.1|23.7|2.5|56.4|81.3|
|inference_asr_model_valid.acc.ave_5best/valid|921|6438|49.4|29.2|21.4|2.7|53.4|79.2|
### CER
|dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err|
|---|---|---|---|---|---|---|---|---|
|inference_asr_model_valid.acc.ave_5best/test|1577|45924|74.4|13.0|12.5|3.2|28.8|81.3|
|inference_asr_model_valid.acc.ave_5best/valid|921|26110|77.0|11.9|11.1|2.7|25.7|79.2|
### TER
|dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err|
|---|---|---|---|---|---|---|---|---|
## ASR config
<details><summary>expand</summary>
```
config: conf/train_asr_smaller_aishell_xlsr.yaml
print_config: false
log_level: INFO
dry_run: false
iterator_type: sequence
output_dir: exp_train_asr_smaller_aishell_xlsr/asr_train_asr_smaller_aishell_xlsr_raw_zh_word
ngpu: 1
seed: 0
num_workers: 1
num_att_plot: 3
dist_backend: nccl
dist_init_method: env://
dist_world_size: null
dist_rank: null
local_rank: 0
dist_master_addr: null
dist_master_port: null
dist_launcher: null
multiprocessing_distributed: false
unused_parameters: false
sharded_ddp: false
cudnn_enabled: true
cudnn_benchmark: false
cudnn_deterministic: true
collect_stats: false
write_collected_feats: false
max_epoch: 100
patience: null
val_scheduler_criterion:
- valid
- loss
early_stopping_criterion:
- valid
- loss
- min
best_model_criterion:
- - train
- loss
- min
- - valid
- loss
- min
- - train
- acc
- max
- - valid
- acc
- max
keep_nbest_models: 5
grad_clip: 5.0
grad_clip_type: 2.0
grad_noise: false
accum_grad: 1
no_forward_run: false
resume: true
train_dtype: float32
use_amp: false
log_interval: null
use_tensorboard: true
use_wandb: false
wandb_project: null
wandb_id: null
wandb_entity: null
wandb_name: null
wandb_model_log_interval: -1
detect_anomaly: false
pretrain_path: null
init_param: []
ignore_init_mismatch: false
freeze_param:
- frontend.upstream
num_iters_per_epoch: null
batch_size: 20
valid_batch_size: null
batch_bins: 1000000
valid_batch_bins: null
train_shape_file:
- exp_train_asr_smaller_aishell_xlsr/asr_stats_raw_zh_word/train/speech_shape
- exp_train_asr_smaller_aishell_xlsr/asr_stats_raw_zh_word/train/text_shape.word
valid_shape_file:
- exp_train_asr_smaller_aishell_xlsr/asr_stats_raw_zh_word/valid/speech_shape
- exp_train_asr_smaller_aishell_xlsr/asr_stats_raw_zh_word/valid/text_shape.word
batch_type: folded
valid_batch_type: null
fold_length:
- 80000
- 150
sort_in_batch: descending
sort_batch: descending
multiple_iterator: false
chunk_length: 500
chunk_shift_ratio: 0.5
num_cache_chunks: 1024
train_data_path_and_name_and_type:
- - dump/raw/train/wav.scp
- speech
- sound
- - dump/raw/train/text
- text
- text
valid_data_path_and_name_and_type:
- - dump/raw/valid/wav.scp
- speech
- sound
- - dump/raw/valid/text
- text
- text
allow_variable_data_keys: false
max_cache_size: 0.0
max_cache_fd: 32
valid_max_cache_size: null
optim: adam
optim_conf:
lr: 0.0001
scheduler: warmuplr
scheduler_conf:
warmup_steps: 2500
token_list:
- <blank>
- <unk>
- 航
- 导
- inform_操作_none
- inform_终点名称_none
- 去
- none_none_none
- 我
- 到
- inform_poi名称_none
- unknown
- 要
- 市
- side
- 一
- 个
- 路
- 区
- 第
- 大
- 县
- 你
- inform_序列号_none
- 小
- 城
- 站
- 家
- 南
- 中
- 山
- 州
- 好
- 镇
- 场
- 的
- 院
- 西
- 店
- 东
- 车
- 阳
- 学
- 北
- 园
- dialect
- 安
- 新
- 海
- 回
- 公
- 医
- 二
- 不
- 三
- 广
- 天
- 村
- 有
- 闭
- 开
- 酒
- 下
- 江
- 消
- 人
- 帮
- 金
- 是
- 取
- 花
- 近
- 政
- 民
- 口
- 十
- 里
- 河
- 府
- 请
- 关
- 国
- 了
- 华
- 那
- 高
- robot
- 出
- 平
- 湖
- 在
- 省
- 定
- 号
- 门
- 想
- 街
- 四
- 道
- 水
- 龙
- 京
- 啊
- 地
- 行
- 么
- 五
- 都
- 桥
- 上
- 给
- 明
- 业
- 哪
- 附
- 八
- 宁
- 心
- 长
- 馆
- 百
- 这
- 汽
- 机
- 工
- 庄
- 方
- 商
- 司
- 石
- 确
- 兴
- 火
- 走
- 乡
- 万
- 通
- 加
- 银
- 青
- 发
- 校
- 速
- 交
- 退
- 德
- 际
- 电
- 楼
- 宾
- 找
- 苑
- 和
- 嗯
- 油
- 林
- 乐
- 景
- 打
- 达
- 来
- 七
- 川
- inform_请求类型_none
- 最
- noise
- 兰
- 湾
- 台
- 所
- 保
- 什
- 福
- 建
- 说
- 就
- 沙
- 页
- 宝
- 子
- 厂
- 科
- 尔
- 光
- inform_页码_none
- 六
- 费
- 环
- 成
- 昌
- 吗
- 汉
- 白
- 黄
- 限
- 局
- 泉
- 怎
- 云
- 武
- 源
- 吃
- 前
- 点
- 收
- 物
- 滨
- 溪
- 马
- 贵
- 务
- 世
- 岛
- 没
- 生
- 常
- 理
- 会
- 们
- 重
- 浦
- 名
- 合
- 运
- 顺
- 美
- 儿
- 头
- 乌
- 设
- 厦
- 化
- 郑
- 时
- inform_poi目标_none
- 现
- 农
- 港
- 泰
- 停
- 宜
- 昆
- 九
- 对
- 管
- 看
- 界
- 张
- 庆
- 文
- 博
- 嘉
- 零
- 苏
- 能
- 面
- 客
- 红
- 搜
- 远
- 古
- 津
- 始
- 王
- 呃
- 用
- 瑞
- 后
- 雅
- 带
- 流
- 木
- 之
- 汇
- 夏
- 他
- 还
- 清
- 临
- 服
- 渡
- 日
- 幺
- 济
- 田
- 锦
- 吉
- 呀
- 利
- 神
- 饭
- 香
- 太
- 双
- 永
- 图
- 洲
- 集
- 特
- 吧
- request_位置_none
- 技
- 把
- 寺
- 爱
- 丰
- 春
- 盛
- 罗
- 队
- 也
- 亚
- 线
- 玉
- 哦
- 贸
- 果
- 连
- 正
- 结
- 与
- 米
- 鲁
- 警
- 信
- 捷
- 样
- 温
- 岭
- 丽
- 育
- 凤
- 位
- 听
- 动
- 可
- 原
- 年
- 经
- 纪
- 齐
- 索
- inform_对象_none
- 义
- 多
- 叫
- 况
- 气
- 老
- 派
- 池
- 曲
- 营
- 返
- 置
- 品
- 程
- 同
- 辉
- 批
- 音
- 康
- 威
- 幼
- 斯
- 库
- 拉
- 星
- 团
- 风
- 岗
- 话
- 放
- 泽
- 晋
- 部
- 知
- 外
- 塔
- 沈
- 奇
- 卫
- 月
- 庭
- 眼
- 总
- 梅
- 房
- 千
- 哈
- 自
- 字
- 呢
- 豪
- 直
- 盘
- 屯
- 超
- 祥
- 佳
- 恒
- 过
- 以
- 两
- 蓝
- 修
- 入
- 松
- 铁
- 职
- 珠
- 凯
- 快
- 丹
- 体
- 书
- 游
- 转
- 莱
- 寨
- 克
- 当
- 李
- 钱
- s
- 货
- 惠
- 格
- 岳
- 淮
- 束
- 社
- 莞
- 森
- 堵
- 内
- 蒙
- 分
- 柏
- 富
- 碧
- 凰
- 陵
- 桐
- 边
- 坡
- 胶
- 得
- 力
- 滚
- 喀
- 旗
- 料
- 歌
- 块
- 滩
- 查
- 虹
- 续
- 为
- 驾
- 许
- 峰
- 问
- 真
- 视
- 选
- 接
- 语
- 洪
- 众
- 全
- 徽
- 鄂
- 实
- 未
- 杭
- 尚
- 胜
- 塘
- 产
- 鱼
- 叉
- 岸
- 洛
- 随
- 哎
- 配
- 丁
- 继
- 迪
- 牛
- 坪
- 无
- 深
- 圳
- 韩
- 法
- 灵
- 迁
- 间
- 逼
- 步
- 咸
- 期
- 菜
- 紫
- 邢
- 赣
- 横
- 播
- 鼎
- 进
- 止
- 铜
- 便
- 鸡
- 巴
- 仁
- 财
- 佛
- 桂
- 官
- 英
- 绵
- 奥
- 矿
- 波
- 治
- 元
- 首
- 钟
- 计
- 飞
- 坊
- 阿
- 代
- 周
- 朝
- 固
- 错
- 向
- 潭
- 隆
- 装
- 纳
- 伊
- 将
- 军
- 师
- 途
- 影
- 怀
- 择
- 药
- 术
- 手
- 于
- 离
- 族
- 莲
- 布
- 呼
- 峡
- 迈
- 委
- 叮
- 咚
- 阴
- 宏
- 郡
- 健
- 本
- 洋
- 再
- 支
- 划
- 郊
- 绿
- 妈
- 旅
- 堰
- 肥
- 玛
- 左
- 网
- inform_途经点名称_none
- 拜
- 材
- inform_终点修饰_none
- 辽
- 煤
- 谢
- 则
- 土
- 草
- 埠
- 伦
- 堂
- 卡
- 肉
- 底
- 灯
- 树
- 寻
- 掉
- 展
- 庙
- 赵
- 余
- 见
- 望
- 故
- 事
- 相
- 杨
- inform_终点目标_none
- 馨
- 税
- 属
- 资
- 井
- 艺
- 越
- 微
- 包
- 阜
- 记
- 窗
- 维
- 甲
- 鑫
- 休
- 啥
- 锡
- 渝
- 岩
- 彩
- 少
- 处
- 往
- 从
- 封
- 联
- 觉
- 验
- 容
- 萨
- 普
- 弄
- 干
- 强
- 鲜
- 柳
- 衡
- 规
- request_路况_none
- 靖
- 沃
- 板
- 防
- 约
- 球
- 居
- 至
- 坝
- 翠
- 持
- 具
- 烟
- 榆
- 枫
- 照
- 意
- 目
- t
- 凌
- 邦
- 报
- 码
- 轻
- 欣
- 复
- 买
- 玻
- 璃
- 住
- 恩
- 女
- 嘴
- 级
- 振
- 邵
- 浴
- 茂
- 黔
- 您
- 比
- 显
- 渭
- 钢
- 妇
- 易
- 党
- 版
- 介
- 姐
- 才
- 览
- k
- 崇
- 桃
- 厅
- 虎
- 皮
- 仪
- 赤
- 寓
- 洞
- 绍
- 饰
- 很
- 病
- 度
- 胡
- 像
- 邮
- 又
- 充
- 贤
- 御
- 然
- 潍
- 基
- 启
- 聊
- 驶
- inform_路线偏好_none
- 澄
- 几
- 等
- 塑
- 监
- 办
- 沧
- 亭
- 观
- 螺
- 领
- 秀
- 咋
- 坨
- 奎
- 优
- 半
- 贡
- 唐
- 写
- 今
- 慢
- 傻
- 反
- 次
- 甘
- 肃
- 它
- 泗
- 贺
- 拍
- 咱
- 留
- ktv
- 察
- 顶
- 啦
- 别
- 润
- 谷
- 仙
- 慧
- 朱
- 靠
- 座
- 锅
- 麦
- 雁
- 羊
- 共
- 邓
- 荣
- 食
- 陕
- 邑
- 右
- 铺
- 梁
- 宣
- 幸
- 哥
- 士
- 员
- 招
- 番
- 徐
- 检
- 巷
- 私
- 堡
- 跟
- 器
- 峪
- 立
- 氏
- 教
- 圣
- 购
- 印
- 黑
- 完
- 条
- 唉
- 燕
- 屿
- 闸
- 茶
- 任
- 种
- 蛋
- 荆
- 岔
- inform_value_none
- 黎
- 奉
- 准
- 熟
- 薛
- 朔
- 范
- 械
- 菲
- 雪
- 腾
- 备
- 琼
- 尹
- 垣
- 吴
- 示
- 嫖
- 宫
- 冲
- 毛
- 绘
- 菏
- 嘞
- 浙
- 遵
- 各
- 饶
- 嗷
- 简
- 施
- 俱
- 岚
- 豆
- 栋
- 险
- 岘
- 滇
- 叶
- 卓
- 荔
- 刘
- 滕
- 系
- 统
- e
- 做
- 巡
- 坐
- 研
- 究
- 盐
- 冀
- 象
- 斗
- 娄
- 先
- 陆
- deny_操作_none
- 户
- 额
- 价
- 更
- 拆
- 溧
- 量
- 帝
- 断
- 态
- 智
- 蜀
- 庐
- 舟
- 摄
- 泡
- 洗
- 历
- 咖
- 啡
- 湘
- 甸
- 泾
- 卖
- 朗
- 芜
- 棠
- 凉
- 嵩
- 焦
- 让
- 夫
- 吐
- 童
- 薇
- 旺
- 浩
- 息
- 裕
- 禄
- 睡
- 狮
- 质
- 樱
- 递
- 鸣
- 句
- 韶
- 色
- 典
- 厉
- 测
- 应
- 尉
- 汤
- 己
- 宸
- 漳
- 证
- 沟
- 巩
- 扬
- 笨
- 旁
- 湟
- 主
- 浪
- 殡
- request_前方路况_none
- 竹
- 列
- 季
- 唱
- 冠
- 泥
- 懂
- 秋
- 君
- 祁
- 声
- 拥
- 曹
- 嘛
- 静
- 嗨
- 起
- 刚
- 墨
- 宿
- 络
- 襄
- 葫
- 芦
- 漫
- 峨
- 需
- 眉
- 瓦
- 如
- 根
- 域
- 式
- 何
- 鞍
- 饺
- 票
- 冶
- 喷
- 映
- 组
- 昭
- 延
- 萌
- 角
- 解
- 玲
- 蟹
- 晃
- 瀑
- 纽
- 逸
- 些
- 猪
- 蹄
- 亲
- 野
- 蒋
- 喂
- 荷
- 窝
- 锁
- 试
- 桑
- 沥
- 非
- 制
- 督
- 贝
- 址
- 识
- 侬
- 烧
- 翡
- 堤
- 伟
- 驼
- 昊
- 牌
- 陶
- 室
- 轩
- 鹰
- 钉
- 空
- 着
- 蛳
- 已
- 砖
- 姓
- 顿
- 麓
- 亿
- 售
- 功
- 淄
- 澳
- 斜
- 击
- 活
- 缴
- 输
- 雍
- 鄄
- 降
- 革
- 恢
- 卸
- 承
- 箬
- 澧
- 栈
- 疗
- 传
- 媒
- 血
- 战
- 舞
- 姨
- 婆
- 辆
- 蚌
- 鹅
- 剧
- 湛
- 亳
- b
- 敦
- 煌
- 迎
- 味
- 数
- 妞
- 嫂
- 厚
- hi
- 邹
- 摁
- 榄
- 梨
- 亮
- 纺
- 婚
- 培
- 训
- inform_起点名称_none
- 护
- 霍
- 升
- 考
- m
- 呗
- 摩
- 送
- 段
- 悦
- 餐
- 早
- 议
- 互
- 助
- 抚
- 慈
- 按
- 调
- 杰
- 份
- 兵
- 粥
- 邻
- 墅
- 鬃
- 泳
- 朋
- 良
- 缘
- 鼓
- 赛
- 枝
- 藏
- 鸿
- 冷
- 匀
- 征
- 欢
- 闯
- 汝
- 讲
- 肤
- 响
- 浮
- 录
- 冰
- 圆
- 算
- 思
- 储
- 蓄
- 苗
- 聚
- 湿
- 肇
- 阆
- 拿
- 沣
- 渔
- 铝
- 植
- 托
- 盟
- 宇
- 但
- 渠
- 告
- 丘
- 拓
- 陇
- 鹤
- 操
- 珙
- deny_poi名称_none
- 询
- 攀
- 寿
- 副
- 或
- 假
- 焰
- 夜
- 妓
- 而
- 漆
- 濮
- 胥
- 密
- 志
- 苹
- 彭
- 陪
- 添
- 满
- 章
- 骨
- 栖
- 呦
- 善
- 乖
- 姑
- 爷
- 鸟
- 璧
- 专
- 洧
- 依
- 仔
- 晨
- 沂
- 券
- 晓
- 压
- 涨
- 闻
- 男
- 诊
- 融
- 怡
- 蓬
- 廊
- 殖
- 益
- 必
- 靓
- 蒲
- beyond
- i
- love
- you
- 旋
- 尖
- 驿
- 貂
- 蝉
- 足
- 迹
- 翰
- 杏
- 牡
- 帅
- 雨
- 呈
- 迷
- 哟
- 召
- 娼
- 辛
- 顾
- 殷
- 闵
- 潮
- 脑
- 彗
- 枣
- 杆
- 洁
- 画
- 片
- 认
- 灰
- 鞋
- 宠
- 劫
- 潘
- 烤
- 破
- 隶
- 搞
- 忠
- 仕
- 郴
- 梧
- 酌
- 涵
- 醍
- 候
- 俩
- 馈
- 磨
- 骤
- 翔
- 莘
- 希
- 娅
- 剑
- 权
- 壹
- 冕
- 蛟
- 拨
- 诶
- 盖
- 楠
- 只
- 编
- 虾
- 尽
- 尧
- 晚
- 珍
- 因
- 捆
- 绑
- 端
- 盱
- 眙
- 贩
- 卷
- 养
- 陂
- 晟
- 巧
- 椿
- 毕
- 沭
- 供
- 秒
- 眠
- 状
- 璟
- 受
- 伤
- 萍
- 奔
- 效
- 禽
- 玫
- 瑰
- request_剩余距离_none
- 序
- 鹃
- 齿
- 厕
- 厨
- 忻
- 埔
- 茅
- 芳
- 雕
- 刻
- 蜜
- 筝
- g
- 橄
- 畜
- 牧
- 仑
- 臣
- 溆
- 纱
- 卉
- 群
- 痛
- 疼
- 仟
- 赶
- 紧
- 闫
- 嘶
- 潼
- 烽
- 勾
- 驰
- 麻
- 烦
- 遍
- 樟
- 浜
- 极
- 酷
- 晶
- 穿
- 芽
- 害
- 钓
- 棍
- 核
- 橙
- 琴
- 滋
- 柯
- 箐
- 株
- 陌
- 坤
- 炳
- 槐
- 协
- 湄
- 滏
- 旦
- 策
- 虞
- 陈
- 情
- 潞
- 藁
- 豹
- 若
- 垃
- 圾
- 舰
- 造
- 珥
- 董
- 泼
- 乾
- 瑶
- 龚
- 撤
- 钛
- 责
- 吶
- 喜
- 隔
- 碗
- 倒
- 椰
- 冬
- 伯
- 乳
- 隐
- 尼
- 境
- 圩
- 卧
- 抱
- 使
- 玩
- 饮
- 峤
- 炉
- 终
- 霸
- 晴
- 糕
- 疫
- 弥
- 萧
- 围
- 邬
- 贞
- 逊
- 祠
- 泛
- 逯
- 侯
- 距
- 织
- 谋
- 嵋
- 楚
- 瑜
- 妹
- 误
- 念
- 镜
- 粮
- 涮
- 值
- 鹿
- 捞
- 沅
- 移
- 涉
- 模
- 饿
- 佩
- 汀
- 朐
- 魔
- 细
- 者
- 暖
- 汕
- 谛
- 棣
- 敖
- 此
- 背
- 鲅
- 圈
- 逻
- 绕
- 锋
- 班
- 珲
- 汾
- 著
- 参
- 且
- 摇
- 宕
- 缅
- 柔
- 脂
- 肪
- 变
- 谱
- 积
- 礼
- 凡
- 落
- 羽
- 歇
- 仰
- 聋
- 雷
- 磊
- 繁
- 吭
- 皇
- 晖
- 粤
- 腊
- 习
- 题
- 绅
- 畔
- 啤
- 弋
- 匹
- 订
- 单
- ok
- 灶
- 描
- 婺
- 沿
- 莉
- 弘
- 茵
- 换
- 屏
- 瞎
- 较
- 岁
- 湫
- 塞
- 疏
- 勒
- 涟
- 巫
- 违
- 戈
- 吾
- 脏
- 葛
- 轮
- 胎
- 霞
- 鹭
- 废
- 稍
- 谨
- 慎
- 淡
- 注
- 每
- 既
- 删
- 喝
- 付
- 诸
- 暨
- 戴
- 綦
- 伍
- 诚
- 坦
- 兜
- 残
- 韵
- 喽
- 廖
- 麒
- 麟
- n
- 感
- 籍
- 难
- 死
- 笑
- 哭
- 孩
- 频
- 舍
- 溶
- 垸
- 淀
- 奸
- 改
- 藤
- 狭
- 隧
- 翁
- 陀
- 扎
- 肯
- 揭
- 壁
- 件
- 刷
- 牙
- 节
- 恋
- 淹
- 桦
- 幢
- 棉
- 俺
- 屎
- 彬
- 牟
- 亩
- 傣
- 裴
- 翼
- 辰
- 剪
- 挡
- 凹
- 投
- 碣
- 妆
- 荡
- 驻
- 颍
- 狐
- 享
- 恐
- 汶
- 寅
- 仍
- 睿
- 搁
- 尊
- 泊
- 仲
- 午
- 枞
- 仓
- 卞
- 瀚
- 佰
- 暮
- 拐
- 崔
- 榭
- 棵
- 孕
- 潜
- 俏
- 葡
- 萄
- 采
- 摘
- 癜
- 屑
- 芙
- 蓉
- 咏
- 忙
- 漂
- 父
- 母
- 差
- 彻
- 魏
- 绥
- 闲
- 遥
- 棕
- 榈
- 壶
- 疆
- 苍
- 磁
- 辅
- 泸
- 淅
- a
- 呐
- 燃
- 沱
- 禺
- 宛
- 友
- 俊
- 筑
- 贾
- 宋
- 梯
- 吨
- inform_poi修饰_none
- 础
- 碑
- request_剩余路程_none
- 创
- 孙
- 枢
- 翟
- 浑
- 糖
- 舜
- 橱
- 柜
- 浠
- 莒
- 乔
- 幕
- 磅
- 嘿
- 曼
- 昔
- 衣
- 铭
- 浏
- 喆
- 垦
- 墓
- 戍
- <sos/eos>
init: null
input_size: null
ctc_conf:
dropout_rate: 0.0
ctc_type: builtin
reduce: true
ignore_nan_grad: true
model_conf:
ctc_weight: 0.3
lsm_weight: 0.1
length_normalized_loss: false
extract_feats_in_collect_stats: false
use_preprocessor: true
token_type: word
bpemodel: null
non_linguistic_symbols: null
cleaner: null
g2p: null
speech_volume_normalize: null
rir_scp: null
rir_apply_prob: 1.0
noise_scp: null
noise_apply_prob: 1.0
noise_db_range: '13_15'
frontend: s3prl
frontend_conf:
frontend_conf:
upstream: wav2vec2_xlsr
download_dir: ./hub
multilayer_feature: true
fs: 16k
specaug: specaug
specaug_conf:
apply_time_warp: true
time_warp_window: 5
time_warp_mode: bicubic
apply_freq_mask: true
freq_mask_width_range:
- 0
- 30
num_freq_mask: 2
apply_time_mask: true
time_mask_width_range:
- 0
- 40
num_time_mask: 2
normalize: utterance_mvn
normalize_conf: {}
preencoder: linear
preencoder_conf:
input_size: 1024
output_size: 80
encoder: conformer
encoder_conf:
output_size: 256
attention_heads: 4
linear_units: 2048
num_blocks: 6
dropout_rate: 0.1
positional_dropout_rate: 0.1
attention_dropout_rate: 0.0
input_layer: conv2d
normalize_before: true
macaron_style: true
pos_enc_layer_type: rel_pos
selfattention_layer_type: rel_selfattn
activation_type: swish
use_cnn_module: true
cnn_module_kernel: 15
postencoder: null
postencoder_conf: {}
decoder: transformer
decoder_conf:
attention_heads: 4
linear_units: 2048
num_blocks: 4
dropout_rate: 0.1
positional_dropout_rate: 0.1
self_attention_dropout_rate: 0.0
src_attention_dropout_rate: 0.0
required:
- output_dir
- token_list
version: 0.10.3a3
distributed: false
```
</details>
## LM config
<details><summary>expand</summary>
```
NONE
```
</details>
|
sienog/autonlp-mt5-xlsum-25085641 | sienog | 2021-10-22T17:20:30Z | 3 | 0 | transformers | [
"transformers",
"pytorch",
"mt5",
"text2text-generation",
"autonlp",
"unk",
"dataset:sienog/autonlp-data-mt5-xlsum",
"co2_eq_emissions",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2022-03-02T23:29:05Z | ---
tags: autonlp
language: unk
widget:
- text: "I love AutoNLP 🤗"
datasets:
- sienog/autonlp-data-mt5-xlsum
co2_eq_emissions: 11.166602089650883
---
# Model Trained Using AutoNLP
- Problem type: Summarization
- Model ID: 25085641
- CO2 Emissions (in grams): 11.166602089650883
## Validation Metrics
- Loss: 1.173471212387085
- Rouge1: 51.7353
- Rouge2: 36.6771
- RougeL: 45.4129
- RougeLsum: 48.8512
- Gen Len: 82.9375
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/sienog/autonlp-mt5-xlsum-25085641
``` |
mamlong34/t5_large_race_cosmos_qa | mamlong34 | 2021-10-22T15:58:00Z | 8 | 0 | transformers | [
"transformers",
"pytorch",
"t5",
"text2text-generation",
"generated_from_trainer",
"dataset:race",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- race
metrics:
- accuracy
model-index:
- name: t5_large_race_cosmos_qa
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5_large_race_cosmos_qa
This model is a fine-tuned version of [t5-large](https://huggingface.co/t5-large) on the race dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4382
- Accuracy: 0.8023
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Accuracy | Validation Loss |
|:-------------:|:-----:|:-----:|:--------:|:---------------:|
| 0.3513 | 1.0 | 10983 | 0.7714 | 0.3165 |
| 0.2109 | 2.0 | 21966 | 0.7986 | 0.3329 |
| 0.0929 | 3.0 | 32949 | 0.4382 | 0.8023 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.9.0
- Datasets 1.14.0
- Tokenizers 0.10.3
|
muhtasham/autonlp-Doctor_DE-24595547 | muhtasham | 2021-10-22T14:04:29Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"electra",
"text-classification",
"autonlp",
"de",
"dataset:muhtasham/autonlp-data-Doctor_DE",
"co2_eq_emissions",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2022-03-02T23:29:05Z | ---
tags: autonlp
language: de
widget:
- text: "I love AutoNLP 🤗"
datasets:
- muhtasham/autonlp-data-Doctor_DE
co2_eq_emissions: 396.5529429198159
---
# Model Trained Using AutoNLP
- Problem type: Single Column Regression
- Model ID: 24595547
- CO2 Emissions (in grams): 396.5529429198159
## Validation Metrics
- Loss: 1.9565489292144775
- MSE: 1.9565489292144775
- MAE: 0.9890901446342468
- R2: -7.68965036332947e-05
- RMSE: 1.3987668752670288
- Explained Variance: 0.0
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/muhtasham/autonlp-Doctor_DE-24595547
```
Or Python API:
```
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("muhtasham/autonlp-Doctor_DE-24595547", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("muhtasham/autonlp-Doctor_DE-24595547", use_auth_token=True)
inputs = tokenizer("I love AutoNLP", return_tensors="pt")
outputs = model(**inputs)
``` |
laurauzcategui/xlm-roberta-base-finetuned-marc-en | laurauzcategui | 2021-10-22T13:20:51Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"xlm-roberta",
"text-classification",
"generated_from_trainer",
"dataset:amazon_reviews_multi",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2022-03-02T23:29:05Z | ---
license: mit
tags:
- generated_from_trainer
datasets:
- amazon_reviews_multi
model-index:
- name: xlm-roberta-base-finetuned-marc-en
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-marc-en
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the amazon_reviews_multi dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8945
- Mae: 0.5
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mae |
|:-------------:|:-----:|:----:|:---------------:|:---:|
| 1.1411 | 1.0 | 235 | 0.9358 | 0.5 |
| 0.9653 | 2.0 | 470 | 0.8945 | 0.5 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.9.0+cu111
- Datasets 1.14.0
- Tokenizers 0.10.3
|
daveccampbell/xlm-roberta-base-finetuned-marc-en | daveccampbell | 2021-10-22T13:20:31Z | 10 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"xlm-roberta",
"text-classification",
"generated_from_trainer",
"dataset:amazon_reviews_multi",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2022-03-02T23:29:05Z | ---
license: mit
tags:
- generated_from_trainer
datasets:
- amazon_reviews_multi
model-index:
- name: xlm-roberta-base-finetuned-marc-en
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-marc-en
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the amazon_reviews_multi dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9199
- Mae: 0.4756
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mae |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 1.1705 | 1.0 | 235 | 0.9985 | 0.5854 |
| 0.9721 | 2.0 | 470 | 0.9199 | 0.4756 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.9.0+cu111
- Datasets 1.14.0
- Tokenizers 0.10.3
|
shaer/xlm-roberta-base-finetuned-marc-en-test-run | shaer | 2021-10-22T13:12:39Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"xlm-roberta",
"text-classification",
"generated_from_trainer",
"dataset:amazon_reviews_multi",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2022-03-02T23:29:05Z | ---
license: mit
tags:
- generated_from_trainer
datasets:
- amazon_reviews_multi
model-index:
- name: xlm-roberta-base-finetuned-marc-en-test-run
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-marc-en-test-run
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the amazon_reviews_multi dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8957
- Mae: 0.4390
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mae |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 1.1079 | 1.0 | 235 | 0.9742 | 0.5366 |
| 0.9488 | 2.0 | 470 | 0.8957 | 0.4390 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.9.0+cu111
- Datasets 1.14.0
- Tokenizers 0.10.3
|
danwilbury/xlm-roberta-base-finetuned-marc-en | danwilbury | 2021-10-22T13:04:48Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"xlm-roberta",
"text-classification",
"generated_from_trainer",
"dataset:amazon_reviews_multi",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2022-03-02T23:29:05Z | ---
license: mit
tags:
- generated_from_trainer
datasets:
- amazon_reviews_multi
model-index:
- name: xlm-roberta-base-finetuned-marc-en
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-marc-en
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the amazon_reviews_multi dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9302
- Mae: 0.5
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mae |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 1.1253 | 1.0 | 235 | 0.9756 | 0.5488 |
| 0.9465 | 2.0 | 470 | 0.9302 | 0.5 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.9.0+cu111
- Datasets 1.14.0
- Tokenizers 0.10.3
|
muhtasham/autonlp-Doctor_DE-24595546 | muhtasham | 2021-10-22T12:23:10Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"bert",
"text-classification",
"autonlp",
"de",
"dataset:muhtasham/autonlp-data-Doctor_DE",
"co2_eq_emissions",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2022-03-02T23:29:05Z | ---
tags: autonlp
language: de
widget:
- text: "I love AutoNLP 🤗"
datasets:
- muhtasham/autonlp-data-Doctor_DE
co2_eq_emissions: 210.5957437893554
---
# Model Trained Using AutoNLP
- Problem type: Single Column Regression
- Model ID: 24595546
- CO2 Emissions (in grams): 210.5957437893554
## Validation Metrics
- Loss: 0.3092539310455322
- MSE: 0.30925390124320984
- MAE: 0.25015318393707275
- R2: 0.841926941198094
- RMSE: 0.5561060309410095
- Explained Variance: 0.8427215218544006
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/muhtasham/autonlp-Doctor_DE-24595546
```
Or Python API:
```
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("muhtasham/autonlp-Doctor_DE-24595546", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("muhtasham/autonlp-Doctor_DE-24595546", use_auth_token=True)
inputs = tokenizer("I love AutoNLP", return_tensors="pt")
outputs = model(**inputs)
``` |
muhtasham/autonlp-Doctor_DE-24595545 | muhtasham | 2021-10-22T11:59:58Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"bert",
"text-classification",
"autonlp",
"de",
"dataset:muhtasham/autonlp-data-Doctor_DE",
"co2_eq_emissions",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2022-03-02T23:29:05Z | ---
tags: autonlp
language: de
widget:
- text: "I love AutoNLP 🤗"
datasets:
- muhtasham/autonlp-data-Doctor_DE
co2_eq_emissions: 203.30658367993382
---
# Model Trained Using AutoNLP
- Problem type: Single Column Regression
- Model ID: 24595545
- CO2 Emissions (in grams): 203.30658367993382
## Validation Metrics
- Loss: 0.30214861035346985
- MSE: 0.30214861035346985
- MAE: 0.25911855697631836
- R2: 0.8455587614373526
- RMSE: 0.5496804714202881
- Explained Variance: 0.8476610779762268
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/muhtasham/autonlp-Doctor_DE-24595545
```
Or Python API:
```
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("muhtasham/autonlp-Doctor_DE-24595545", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("muhtasham/autonlp-Doctor_DE-24595545", use_auth_token=True)
inputs = tokenizer("I love AutoNLP", return_tensors="pt")
outputs = model(**inputs)
``` |
meghana/hitalm-xlmroberta-finetuned | meghana | 2021-10-22T11:51:18Z | 3 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"xlm-roberta",
"fill-mask",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | fill-mask | 2022-03-02T23:29:05Z | ---
license: mit
tags:
- generated_from_trainer
model-index:
- name: hitalm-xlmroberta-finetuned
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hitalm-xlmroberta-finetuned
This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 4.7745
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 1.0 | 48 | 5.4501 |
| No log | 2.0 | 96 | 5.2843 |
| No log | 3.0 | 144 | 4.7745 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.9.0+cu111
- Datasets 1.14.0
- Tokenizers 0.10.3
|
anditya/xlm-roberta-base-finetuned-marc-en | anditya | 2021-10-22T11:18:11Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"xlm-roberta",
"text-classification",
"generated_from_trainer",
"dataset:amazon_reviews_multi",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2022-03-02T23:29:05Z | ---
license: mit
tags:
- generated_from_trainer
datasets:
- amazon_reviews_multi
model-index:
- name: xlm-roberta-base-finetuned-marc-en
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-marc-en
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the amazon_reviews_multi dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8885
- Mae: 0.4390
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mae |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 1.1089 | 1.0 | 235 | 0.9027 | 0.4756 |
| 0.9674 | 2.0 | 470 | 0.8885 | 0.4390 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.9.0+cu111
- Datasets 1.14.0
- Tokenizers 0.10.3
|
Subsets and Splits