modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-06-29 06:27:49
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
502 values
tags
sequencelengths
1
4.05k
pipeline_tag
stringclasses
54 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-06-29 06:23:06
card
stringlengths
11
1.01M
teacookies/autonlp-roberta-base-squad2-24465516
teacookies
2021-10-22T08:21:22Z
4
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "question-answering", "autonlp", "unk", "dataset:teacookies/autonlp-data-roberta-base-squad2", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- tags: - autonlp - question-answering language: unk widget: - text: "Who loves AutoNLP?" context: "Everyone loves AutoNLP" datasets: - teacookies/autonlp-data-roberta-base-squad2 co2_eq_emissions: 65.5797497320557 --- # Model Trained Using AutoNLP - Problem type: Extractive Question Answering - Model ID: 24465516 - CO2 Emissions (in grams): 65.5797497320557 ## Validation Metrics - Loss: 0.6545609831809998 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"question": "Who loves AutoNLP?", "context": "Everyone loves AutoNLP"}' https://api-inference.huggingface.co/models/teacookies/autonlp-roberta-base-squad2-24465516 ``` Or Python API: ``` import torch from transformers import AutoModelForQuestionAnswering, AutoTokenizer model = AutoModelForQuestionAnswering.from_pretrained("teacookies/autonlp-roberta-base-squad2-24465516", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("teacookies/autonlp-roberta-base-squad2-24465516", use_auth_token=True) from transformers import BertTokenizer, BertForQuestionAnswering question, text = "Who loves AutoNLP?", "Everyone loves AutoNLP" inputs = tokenizer(question, text, return_tensors='pt') start_positions = torch.tensor([1]) end_positions = torch.tensor([3]) outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions) loss = outputs.loss start_scores = outputs.start_logits end_scores = outputs.end_logits ```
teacookies/autonlp-roberta-base-squad2-24465524
teacookies
2021-10-22T08:14:00Z
3
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "question-answering", "autonlp", "unk", "dataset:teacookies/autonlp-data-roberta-base-squad2", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- tags: - autonlp - question-answering language: unk widget: - text: "Who loves AutoNLP?" context: "Everyone loves AutoNLP" datasets: - teacookies/autonlp-data-roberta-base-squad2 co2_eq_emissions: 58.51753681929935 --- # Model Trained Using AutoNLP - Problem type: Extractive Question Answering - Model ID: 24465524 - CO2 Emissions (in grams): 58.51753681929935 ## Validation Metrics - Loss: 0.5759999752044678 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"question": "Who loves AutoNLP?", "context": "Everyone loves AutoNLP"}' https://api-inference.huggingface.co/models/teacookies/autonlp-roberta-base-squad2-24465524 ``` Or Python API: ``` import torch from transformers import AutoModelForQuestionAnswering, AutoTokenizer model = AutoModelForQuestionAnswering.from_pretrained("teacookies/autonlp-roberta-base-squad2-24465524", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("teacookies/autonlp-roberta-base-squad2-24465524", use_auth_token=True) from transformers import BertTokenizer, BertForQuestionAnswering question, text = "Who loves AutoNLP?", "Everyone loves AutoNLP" inputs = tokenizer(question, text, return_tensors='pt') start_positions = torch.tensor([1]) end_positions = torch.tensor([3]) outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions) loss = outputs.loss start_scores = outputs.start_logits end_scores = outputs.end_logits ```
teacookies/autonlp-roberta-base-squad2-24465519
teacookies
2021-10-22T08:13:26Z
3
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "question-answering", "autonlp", "unk", "dataset:teacookies/autonlp-data-roberta-base-squad2", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- tags: - autonlp - question-answering language: unk widget: - text: "Who loves AutoNLP?" context: "Everyone loves AutoNLP" datasets: - teacookies/autonlp-data-roberta-base-squad2 co2_eq_emissions: 58.19097299648645 --- # Model Trained Using AutoNLP - Problem type: Extractive Question Answering - Model ID: 24465519 - CO2 Emissions (in grams): 58.19097299648645 ## Validation Metrics - Loss: 0.566668689250946 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"question": "Who loves AutoNLP?", "context": "Everyone loves AutoNLP"}' https://api-inference.huggingface.co/models/teacookies/autonlp-roberta-base-squad2-24465519 ``` Or Python API: ``` import torch from transformers import AutoModelForQuestionAnswering, AutoTokenizer model = AutoModelForQuestionAnswering.from_pretrained("teacookies/autonlp-roberta-base-squad2-24465519", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("teacookies/autonlp-roberta-base-squad2-24465519", use_auth_token=True) from transformers import BertTokenizer, BertForQuestionAnswering question, text = "Who loves AutoNLP?", "Everyone loves AutoNLP" inputs = tokenizer(question, text, return_tensors='pt') start_positions = torch.tensor([1]) end_positions = torch.tensor([3]) outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions) loss = outputs.loss start_scores = outputs.start_logits end_scores = outputs.end_logits ```
teacookies/autonlp-roberta-base-squad2-24465523
teacookies
2021-10-22T08:13:18Z
4
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "question-answering", "autonlp", "unk", "dataset:teacookies/autonlp-data-roberta-base-squad2", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- tags: - autonlp - question-answering language: unk widget: - text: "Who loves AutoNLP?" context: "Everyone loves AutoNLP" datasets: - teacookies/autonlp-data-roberta-base-squad2 co2_eq_emissions: 56.99866929988893 --- # Model Trained Using AutoNLP - Problem type: Extractive Question Answering - Model ID: 24465523 - CO2 Emissions (in grams): 56.99866929988893 ## Validation Metrics - Loss: 0.5468788146972656 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"question": "Who loves AutoNLP?", "context": "Everyone loves AutoNLP"}' https://api-inference.huggingface.co/models/teacookies/autonlp-roberta-base-squad2-24465523 ``` Or Python API: ``` import torch from transformers import AutoModelForQuestionAnswering, AutoTokenizer model = AutoModelForQuestionAnswering.from_pretrained("teacookies/autonlp-roberta-base-squad2-24465523", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("teacookies/autonlp-roberta-base-squad2-24465523", use_auth_token=True) from transformers import BertTokenizer, BertForQuestionAnswering question, text = "Who loves AutoNLP?", "Everyone loves AutoNLP" inputs = tokenizer(question, text, return_tensors='pt') start_positions = torch.tensor([1]) end_positions = torch.tensor([3]) outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions) loss = outputs.loss start_scores = outputs.start_logits end_scores = outputs.end_logits ```
teacookies/autonlp-roberta-base-squad2-24465515
teacookies
2021-10-22T08:11:45Z
4
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "question-answering", "autonlp", "unk", "dataset:teacookies/autonlp-data-roberta-base-squad2", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- tags: - autonlp - question-answering language: unk widget: - text: "Who loves AutoNLP?" context: "Everyone loves AutoNLP" datasets: - teacookies/autonlp-data-roberta-base-squad2 co2_eq_emissions: 56.45146749922553 --- # Model Trained Using AutoNLP - Problem type: Extractive Question Answering - Model ID: 24465515 - CO2 Emissions (in grams): 56.45146749922553 ## Validation Metrics - Loss: 0.5932255387306213 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"question": "Who loves AutoNLP?", "context": "Everyone loves AutoNLP"}' https://api-inference.huggingface.co/models/teacookies/autonlp-roberta-base-squad2-24465515 ``` Or Python API: ``` import torch from transformers import AutoModelForQuestionAnswering, AutoTokenizer model = AutoModelForQuestionAnswering.from_pretrained("teacookies/autonlp-roberta-base-squad2-24465515", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("teacookies/autonlp-roberta-base-squad2-24465515", use_auth_token=True) from transformers import BertTokenizer, BertForQuestionAnswering question, text = "Who loves AutoNLP?", "Everyone loves AutoNLP" inputs = tokenizer(question, text, return_tensors='pt') start_positions = torch.tensor([1]) end_positions = torch.tensor([3]) outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions) loss = outputs.loss start_scores = outputs.start_logits end_scores = outputs.end_logits ```
Gigworks/ASR_id
Gigworks
2021-10-22T07:28:30Z
4
0
transformers
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
# Wav2Vec2-Large-XLSR-Indonesian Fine-tuned: facebook/wav2vec2-large-xlsr-53
aditeyabaral/sentencetransformer-distilbert-base-cased
aditeyabaral
2021-10-21T22:30:29Z
129
0
sentence-transformers
[ "sentence-transformers", "pytorch", "distilbert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # aditeyabaral/sentencetransformer-distilbert-base-cased This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('aditeyabaral/sentencetransformer-distilbert-base-cased') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('aditeyabaral/sentencetransformer-distilbert-base-cased') model = AutoModel.from_pretrained('aditeyabaral/sentencetransformer-distilbert-base-cased') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=aditeyabaral/sentencetransformer-distilbert-base-cased) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 9234 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 100, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
pritoms/distilgpt2-finetuned-wikitext2
pritoms
2021-10-21T21:16:24Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-wikitext2 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.0540 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 130 | 3.1733 | | No log | 2.0 | 260 | 3.0756 | | No log | 3.0 | 390 | 3.0540 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
JonatanGk/roberta-base-bne-finetuned-sqac
JonatanGk
2021-10-21T21:06:47Z
6
1
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "question-answering", "generated_from_trainer", "dataset:sqac", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - sqac model-index: - name: roberta-base-bne-finetuned-sqac results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-bne-finetuned-sqac This model is a fine-tuned version of [PlanTL-GOB-ES/roberta-base-bne](https://huggingface.co/PlanTL-GOB-ES/roberta-base-bne) on the sqac dataset. It achieves the following results on the evaluation set: - Loss: 1.2066 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.9924 | 1.0 | 1196 | 0.8670 | | 0.474 | 2.0 | 2392 | 0.8923 | | 0.1637 | 3.0 | 3588 | 1.2066 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
huggingtweets/darthvivien
huggingtweets
2021-10-21T20:49:22Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/darthvivien/1634849358388/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1425505571503886339/1ikaFh5K_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">๐Ÿค– AI BOT ๐Ÿค–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">vvn</div> <div style="text-align: center; font-size: 14px;">@darthvivien</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from vvn. | Data | vvn | | --- | --- | | Tweets downloaded | 3175 | | Retweets | 460 | | Short tweets | 114 | | Tweets kept | 2601 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/ple9op7w/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @darthvivien's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2pt4wq49) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2pt4wq49/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/darthvivien') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/degg-dril-fred_delicious
huggingtweets
2021-10-21T19:39:06Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/degg-dril-fred_delicious/1634845142916/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/847818629840228354/VXyQHfn0_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/58546628/goat22_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/726824334002638848/BEZFr1k8_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">๐Ÿค– AI CYBORG ๐Ÿค–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">wint & deg & Fred Delicious</div> <div style="text-align: center; font-size: 14px;">@degg-dril-fred_delicious</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from wint & deg & Fred Delicious. | Data | wint | deg | Fred Delicious | | --- | --- | --- | --- | | Tweets downloaded | 3227 | 3152 | 3235 | | Retweets | 473 | 142 | 429 | | Short tweets | 318 | 42 | 398 | | Tweets kept | 2436 | 2968 | 2408 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1mwoed1f/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @degg-dril-fred_delicious's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1a691ucn) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1a691ucn/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/degg-dril-fred_delicious') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
lewtun/xlm-roberta-base-finetuned-marc-en
lewtun
2021-10-21T18:53:52Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "text-classification", "generated_from_trainer", "dataset:amazon_reviews_multi", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer datasets: - amazon_reviews_multi model-index: - name: xlm-roberta-base-finetuned-marc-en results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-marc-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.8850 - Mae: 0.4390 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.1589 | 1.0 | 235 | 0.9769 | 0.5122 | | 0.974 | 2.0 | 470 | 0.8850 | 0.4390 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.1+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
aditeyabaral/sentencetransformer-roberta-base
aditeyabaral
2021-10-21T18:03:26Z
5
1
sentence-transformers
[ "sentence-transformers", "pytorch", "roberta", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # aditeyabaral/sentencetransformer-roberta-base This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('aditeyabaral/sentencetransformer-roberta-base') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('aditeyabaral/sentencetransformer-roberta-base') model = AutoModel.from_pretrained('aditeyabaral/sentencetransformer-roberta-base') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=aditeyabaral/sentencetransformer-roberta-base) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 9234 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 100, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
patrickvonplaten/unispeech-sat-large-timit-ft
patrickvonplaten
2021-10-21T16:38:43Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "unispeech-sat", "automatic-speech-recognition", "timit_asr", "generated_from_trainer", "dataset:timit_asr", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- tags: - automatic-speech-recognition - timit_asr - generated_from_trainer datasets: - timit_asr model-index: - name: unispeech-sat-large-timit-ft results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # unispeech-sat-large-timit-ft This model is a fine-tuned version of [microsoft/unispeech-sat-large](https://huggingface.co/microsoft/unispeech-sat-large) on the TIMIT_ASR - NA dataset. It achieves the following results on the evaluation set: - Loss: 0.6074 - Wer: 0.3880 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 20.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 6.2516 | 0.69 | 100 | 5.8638 | 1.0 | | 2.9596 | 1.38 | 200 | 2.9550 | 1.0 | | 2.8831 | 2.07 | 300 | 2.8547 | 1.0 | | 2.3223 | 2.76 | 400 | 2.2044 | 1.0063 | | 1.2104 | 3.45 | 500 | 1.0845 | 0.7706 | | 0.6779 | 4.14 | 600 | 0.7342 | 0.5663 | | 0.6319 | 4.83 | 700 | 0.6054 | 0.4881 | | 0.664 | 5.52 | 800 | 0.5808 | 0.4913 | | 0.402 | 6.21 | 900 | 0.5647 | 0.4611 | | 0.3176 | 6.9 | 1000 | 0.5211 | 0.4440 | | 0.3392 | 7.59 | 1100 | 0.5187 | 0.4359 | | 0.3888 | 8.28 | 1200 | 0.5501 | 0.4391 | | 0.2874 | 8.97 | 1300 | 0.5249 | 0.4148 | | 0.208 | 9.66 | 1400 | 0.5407 | 0.4152 | | 0.1457 | 10.34 | 1500 | 0.5722 | 0.4155 | | 0.2375 | 11.03 | 1600 | 0.5780 | 0.4059 | | 0.2111 | 11.72 | 1700 | 0.5823 | 0.4094 | | 0.1422 | 12.41 | 1800 | 0.5754 | 0.3977 | | 0.125 | 13.1 | 1900 | 0.5784 | 0.4031 | | 0.1996 | 13.79 | 2000 | 0.5630 | 0.3956 | | 0.1747 | 14.48 | 2100 | 0.5880 | 0.3964 | | 0.1263 | 15.17 | 2200 | 0.5987 | 0.3951 | | 0.11 | 15.86 | 2300 | 0.5688 | 0.3964 | | 0.1411 | 16.55 | 2400 | 0.6223 | 0.3906 | | 0.1647 | 17.24 | 2500 | 0.6135 | 0.3960 | | 0.1162 | 17.93 | 2600 | 0.6224 | 0.3960 | | 0.098 | 18.62 | 2700 | 0.6017 | 0.3907 | | 0.1183 | 19.31 | 2800 | 0.6121 | 0.3885 | | 0.1717 | 20.0 | 2900 | 0.6074 | 0.3880 | ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.8.1 - Datasets 1.14.1.dev0 - Tokenizers 0.10.3
abhishek/autonlp-hindi-question-answering-23865268
abhishek
2021-10-21T13:51:44Z
14
5
transformers
[ "transformers", "pytorch", "xlm-roberta", "question-answering", "autonlp", "hi", "dataset:abhishek/autonlp-data-hindi-question-answering", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- tags: - autonlp - question-answering language: hi widget: - text: "ยดเคธเคคเฅ€เคถ เคงเคตเคจ เค…เค‚เคคเคฐเคฟเค•เฅเคท เค•เฅ‡เค‚เคฆเฅเคฐยด เค•เคฟเคธ เคฐเคพเคœเฅเคฏ เคฎเฅ‡เค‚ เคธเฅเคฅเคฟเคค เคนเฅˆ?" context: "เคธเคคเฅ€เคถ เคงเคตเคจ เค…เค‚เคคเคฐเคฟเค•เฅเคท เค•เฅ‡เค‚เคฆเฅเคฐ, เคญเคพเคฐเคคเฅ€เคฏ เค…เค‚เคคเคฐเคฟเค•เฅเคท เค…เคจเฅเคธเค‚เคงเคพเคจ เคธเค‚เค—เค เคจ (เค‡เคธเคฐเฅ‹) เค•เคพ เคชเฅเคฐเค•เฅเคทเฅ‡เคชเคฃ เค•เฅ‡เค‚เคฆเฅเคฐ เคนเฅˆเฅค เคฏเคน เค†เค‚เคงเฅเคฐ เคชเฅเคฐเคฆเฅ‡เคถ เค•เฅ‡ เคถเฅเคฐเฅ€เคนเคฐเฅ€เค•เฅ‹เคŸเคพ เคฎเฅ‡เค‚ เคธเฅเคฅเคฟเคค เคนเฅˆ, เค‡เคธเฅ‡ 'เคถเฅเคฐเฅ€เคนเคฐเฅ€เค•เฅ‹เคŸเคพ เคฐเฅ‡เค‚เคœ' เคฏเคพ 'เคถเฅเคฐเฅ€เคนเคฐเฅ€เค•เฅ‹เคŸเคพ เคฒเคพเคเคšเคฟเค‚เค— เคฐเฅ‡เค‚เคœ' เค•เฅ‡ เคจเคพเคฎ เคธเฅ‡ เคญเฅ€ เคœเคพเคจเคพ เคœเคพเคคเคพ เคนเฅˆเฅค 2002 เคฎเฅ‡เค‚ เค‡เคธเคฐเฅ‹ เค•เฅ‡ เคชเฅ‚เคฐเฅเคต เคชเฅเคฐเคฌเค‚เคงเค• เค”เคฐ เคตเฅˆเคœเฅเคžเคพเคจเคฟเค• เคธเคคเฅ€เคถ เคงเคตเคจ เค•เฅ‡ เคฎเคฐเคฃเฅ‹เคชเคฐเคพเค‚เคค เค‰เคจเค•เฅ‡ เคธเคฎเฅเคฎเคพเคจ เคฎเฅ‡เค‚ เค‡เคธเค•เคพ เคจเคพเคฎ เคฌเคฆเคฒเคพ เค—เคฏเคพเฅค เคชเฅเคฐเค•เฅเคทเฅ‡เคชเคฃ เคฏเคพเคจ เค•เฅ€ เค…เคธเฅ‡เคฎเฅ\u200dเคฌเคฒเฅ€ เค•เฅ‡ เคฒเคฟเค เคฆเฅ‚เคธเคฐเคพ เคญเคตเคจ เค•เฅ‡เคจเฅ\u200dเคฆเฅเคฐเฅ€เคฏ เคฎเค‚เคคเฅเคฐเคฟเคฎเค‚เคกเคฒ เคจเฅ‡ 12 เคธเคฟเคคเคฎเฅ\u200dเคฌเคฐ, 2013 เค•เฅ‹ เคธเคคเฅ€เคถ เคงเคตเคจ เค…เค‚เคคเคฐเคฟเค•เฅเคท เค•เฅ‡เคจเฅ\u200dเคฆเฅเคฐ, เคถเฅเคฐเฅ€เคนเคฐเคฟเค•เฅ‹เคŸเคพ เคฎเฅ‡เค‚ เคชเฅเคฐเค•เฅเคทเฅ‡เคชเคฃ เคฏเคพเคจ เค•เฅ€ เค…เคธเฅ‡เคฎเฅ\u200dเคฌเคฒเฅ€ เค•เฅ‡ เคฒเคฟเค เคฆเฅ‚เคธเคฐเฅ‡ เคญเคตเคจ เค•เฅ‡ เคจเคฟเคฐเฅเคฎเคพเคฃ เค•เฅ€ เคฎเค‚เคœเฅ‚เคฐเฅ€ เคฆเฅ€เฅค เค‡เคธ เคชเคฐ 363.95 เค•เคฐเฅ‹เคกเคผ เคฐเฅเคชเคฏเฅ‡ เค•เฅ€ เค…เคจเฅเคฎเคพเคจเคฟเคค เคฒเคพเค—เคค เค†เคเค—เฅ€, เคœเคฟเคธเคฎเฅ‡เค‚ เคธเคพเคค เค•เคฐเฅ‹เคกเคผ เคฐเฅเคชเคฏเฅ‡ เค•เคพ เค–เคฐเฅเคš เคตเคฟเคฆเฅ‡เคถเฅ€ เคฎเฅเคฆเฅเคฐเคพ เคฎเฅ‡เค‚ เคนเฅ‹เค—เคพเฅค เค‡เคธ เคฆเฅ‚เคธเคฐเฅ€ เคฌเคฟเคฒเฅเคกเคฟเค‚เค— เค•เฅ‡ เค‰เคชเคฒเคฌเฅ\u200dเคง เคนเฅ‹ เคœเคพเคจเฅ‡ เคธเฅ‡ เคชเฅ€เคเคธเคเคฒเคตเฅ€ เค”เคฐ เคœเฅ€เคเคธเคเคฒเคตเฅ€ เค•เฅ€ เคชเฅเคฐเค•เฅเคทเฅ‡เคชเคฃ เคซเฅเคฐเฅ€เค•เฅเคตเฅ‡เค‚เคธเฅ€ เคฌเคขเคผเฅ‡เค—เฅ€เฅค เคฏเคน เคœเฅ€เคเคธเคเคฒเคตเฅ€ เคเคฎเค•เฅ‡-III เค•เฅ‡ เคเค•เฅ€เค•เคฐเคฃ เค•เฅ‡ เคฒเคฟเค เคตเคฐเฅเคคเคฎเคพเคจ เคตเฅ\u200dเคนเฅ€เค•เคฒ เค…เคธเฅ‡เคฎเฅ\u200dเคฌเคฒเฅ€ เคฌเคฟเคฒเฅเคกเคฟเค‚เค— เค•เฅ‹ เค…เคคเคฟเคฐเคฟเค•เฅ\u200dเคค เคธเฅเคตเคฟเคงเคพ เคฎเฅเคนเฅˆเคฏเคพ เค•เคฐเคพเคฏเฅ‡เค—เฅ€เฅค เคคเฅ€เคธเคฐเฅ‡ เคชเฅเคฐเค•เฅเคทเฅ‡เคชเคฃ เคชเฅˆเคก เคคเคฅเคพ เคญเคตเคฟเคทเฅ\u200dเคฏ เคฎเฅ‡เค‚ เคธเคพเคฎเคพเคจเฅ\u200dเคฏ เคฏเคพเคจ เคชเฅเคฐเค•เฅเคทเฅ‡เคชเคฃ เค•เฅ‡ เคฒเคฟเค เคญเฅ€ เค‡เคธเคธเฅ‡ เค•เคพเคซเฅ€ เคธเฅเคตเคฟเคงเคพ เคฎเคฟเคฒเฅ‡เค—เฅ€เฅค[1]\nเคฒเคพเค‚เคš เคชเฅˆเคก\nเค‰เคชเค—เฅเคฐเคน เคชเฅเคฐเค•เฅเคทเฅ‡เคชเคฃ เคฏเคพเคจ เคฒเฅ‰เคจเฅเคš เคชเฅˆเคก\nเค‡เคธ เคฒเคพเค‚เคš เคชเฅˆเคก เคธเฅ‡ เค‰เคชเค—เฅเคฐเคน เคชเฅเคฐเค•เฅเคทเฅ‡เคชเคฃ เคฏเคพเคจ เค”เคฐ เคธเค‚เคตเคฐเฅเคงเคฟเคค เค‰เคชเค—เฅเคฐเคน เคชเฅเคฐเค•เฅเคทเฅ‡เคชเคฃ เคฏเคพเคจ เค•เฅ‹ เคฒเคพเค‚เคš เค•เคฟเคฏเคพ เค—เคฏเคพ เคฅเคพเฅค เคฏเคน เคตเคฐเฅเคคเคฎเคพเคจ เคชเฅเคฐเค•เฅเคทเฅ‡เคชเคฃ เคธเฅเคฅเคฒ เค•เฅ‡ เคฆเค•เฅเคทเคฟเคฃเฅ€ เคธเคฟเคฐเฅ‡ เคชเคฐ เคธเฅเคฅเคฟเคค เคนเฅˆเฅค เค‡เคธเฅ‡ เคธเฅ‡เคตเคพเคฎเฅเค•เฅเคค เค•เคฐ เคฆเคฟเคฏเคพ เค—เคฏเคพ เคนเฅˆเฅค เคถเฅเคฐเฅ‚ เคฎเฅ‡เค‚ เค‡เคธเฅ‡ เค‰เคชเค—เฅเคฐเคน เคชเฅเคฐเค•เฅเคทเฅ‡เคชเคฃ เคฏเคพเคจ เคฒเคพเค‚เคš เค•เคฐเคจเฅ‡ เค•เฅ‡ เคฒเคฟเค เคฌเคจเคพเคฏเคพ เค—เคฏเคพ เคฅเคพเฅค เคฒเฅ‡เค•เคฟเคจ เคฌเคพเคฆ เคฎเฅ‡เค‚ เค‡เคธเฅ‡ เคธเค‚เคตเคฐเฅเคงเคฟเคค เค‰เคชเค—เฅเคฐเคน เคชเฅเคฐเค•เฅเคทเฅ‡เคชเคฃ เคฏเคพเคจ เคชเฅเคฐเค•เฅเคทเฅ‡เคชเคฃ เคชเคฐเคฟเคธเคฐ เค•เฅ‡ เคฐเฅ‚เคช เคฎเฅ‡เค‚ เค‡เคธเฅเคคเฅ‡เคฎเคพเคฒ เค•เคฟเคฏเคพ เค—เคฏเคพ เคฅเคพเฅค\nเคชเฅเคฐเคฅเคฎ เคฒเคพเค‚เคš เคชเฅˆเคก\nเคฆเฅเคตเคฟเคคเฅ€เคฏ เคฒเฅ‰เคจเฅเคš เคชเฅˆเคก\nเคคเฅƒเคคเฅ€เคฏ เคฒเคพเค‚เคš เคชเฅˆเคก\nเคธเคจเฅเคฆเคฐเฅเคญ เคถเฅเคฐเฅ‡เคฃเฅ€:เคญเคพเคฐเคคเฅ€เคฏ เค…เค‚เคคเคฐเคฟเค•เฅเคท เค…เคจเฅเคธเค‚เคงเคพเคจ เคธเค‚เค—เค เคจ\nเคถเฅเคฐเฅ‡เคฃเฅ€:เคญเคพเคฐเคค เค•เฅ‡ เคฐเฅ‰เค•เฅ‡เคŸ เคชเฅเคฐเค•เฅเคทเฅ‡เคชเคฃ เคธเฅเคฅเคฒ" datasets: - abhishek/autonlp-data-hindi-question-answering co2_eq_emissions: 39.76330395590446 --- # Model Trained Using AutoNLP - Problem type: Extractive Question Answering - CO2 Emissions (in grams): 39.76330395590446 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"question": "Who loves AutoNLP?", "context": "Everyone loves AutoNLP"}' https://api-inference.huggingface.co/models/abhishek/autonlp-hindi-question-answering-23865268 ``` Or Python API: ``` import torch from transformers import AutoModelForQuestionAnswering, AutoTokenizer model = AutoModelForQuestionAnswering.from_pretrained("abhishek/autonlp-hindi-question-answering-23865268", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("abhishek/autonlp-hindi-question-answering-23865268", use_auth_token=True) from transformers import BertTokenizer, BertForQuestionAnswering question, text = "Who loves AutoNLP?", "Everyone loves AutoNLP" inputs = tokenizer(question, text, return_tensors='pt') start_positions = torch.tensor([1]) end_positions = torch.tensor([3]) outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions) loss = outputs.loss start_scores = outputs.start_logits end_scores = outputs.end_logits ```
tucan9389/kcbert-base-finetuned
tucan9389
2021-10-21T11:53:00Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:klue", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer datasets: - klue metrics: - accuracy model-index: - name: kcbert-base-finetuned results: - task: name: Text Classification type: text-classification dataset: name: klue type: klue args: ynat metrics: - name: Accuracy type: accuracy value: 0.8329856154606347 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # kcbert-base-finetuned This model is a fine-tuned version of [beomi/kcbert-base](https://huggingface.co/beomi/kcbert-base) on the klue dataset. It achieves the following results on the evaluation set: - Loss: 0.7393 - Accuracy: 0.8330 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.4612 | 1.0 | 2855 | 0.5216 | 0.8143 | | 0.3061 | 2.0 | 5710 | 0.5130 | 0.8248 | | 0.2129 | 3.0 | 8565 | 0.6062 | 0.8257 | | 0.1337 | 4.0 | 11420 | 0.7393 | 0.8330 | | 0.0653 | 5.0 | 14275 | 0.8651 | 0.8302 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
tiennvcs/distilbert-base-uncased-finetuned-infovqa
tiennvcs
2021-10-21T11:37:56Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-infovqa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-infovqa This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.8872 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 250500 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0.02 | 100 | 4.7706 | | No log | 0.05 | 200 | 4.4399 | | No log | 0.07 | 300 | 3.8175 | | No log | 0.09 | 400 | 3.8306 | | 3.3071 | 0.12 | 500 | 3.6480 | | 3.3071 | 0.14 | 600 | 3.6451 | | 3.3071 | 0.16 | 700 | 3.4974 | | 3.3071 | 0.19 | 800 | 3.4686 | | 3.3071 | 0.21 | 900 | 3.4703 | | 3.5336 | 0.23 | 1000 | 3.3165 | | 3.5336 | 0.25 | 1100 | 3.3634 | | 3.5336 | 0.28 | 1200 | 3.3466 | | 3.5336 | 0.3 | 1300 | 3.3411 | | 3.5336 | 0.32 | 1400 | 3.2456 | | 3.3593 | 0.35 | 1500 | 3.3257 | | 3.3593 | 0.37 | 1600 | 3.2941 | | 3.3593 | 0.39 | 1700 | 3.2581 | | 3.3593 | 0.42 | 1800 | 3.1680 | | 3.3593 | 0.44 | 1900 | 3.2077 | | 3.2436 | 0.46 | 2000 | 3.2422 | | 3.2436 | 0.49 | 2100 | 3.2529 | | 3.2436 | 0.51 | 2200 | 3.2681 | | 3.2436 | 0.53 | 2300 | 3.1055 | | 3.2436 | 0.56 | 2400 | 3.0174 | | 3.093 | 0.58 | 2500 | 3.0608 | | 3.093 | 0.6 | 2600 | 3.0200 | | 3.093 | 0.63 | 2700 | 2.9884 | | 3.093 | 0.65 | 2800 | 3.0041 | | 3.093 | 0.67 | 2900 | 2.9700 | | 3.0087 | 0.69 | 3000 | 3.0993 | | 3.0087 | 0.72 | 3100 | 3.0499 | | 3.0087 | 0.74 | 3200 | 2.9317 | | 3.0087 | 0.76 | 3300 | 3.0817 | | 3.0087 | 0.79 | 3400 | 3.0035 | | 2.9694 | 0.81 | 3500 | 3.0850 | | 2.9694 | 0.83 | 3600 | 2.9948 | | 2.9694 | 0.86 | 3700 | 2.9874 | | 2.9694 | 0.88 | 3800 | 2.9202 | | 2.9694 | 0.9 | 3900 | 2.9322 | | 2.8277 | 0.93 | 4000 | 2.9195 | | 2.8277 | 0.95 | 4100 | 2.8638 | | 2.8277 | 0.97 | 4200 | 2.8809 | | 2.8277 | 1.0 | 4300 | 2.8872 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
anton-l/wav2vec2-base-finetuned-ks
anton-l
2021-10-21T11:04:30Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "audio-classification", "generated_from_trainer", "dataset:superb", "license:apache-2.0", "endpoints_compatible", "region:us" ]
audio-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - superb metrics: - accuracy model-index: - name: wav2vec2-base-finetuned-ks results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-finetuned-ks This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the superb dataset. It achieves the following results on the evaluation set: - Loss: 0.0952 - Accuracy: 0.9823 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7908 | 1.0 | 399 | 0.6776 | 0.9009 | | 0.3202 | 2.0 | 798 | 0.2061 | 0.9763 | | 0.221 | 3.0 | 1197 | 0.1257 | 0.9785 | | 0.1773 | 4.0 | 1596 | 0.0990 | 0.9813 | | 0.1729 | 5.0 | 1995 | 0.0952 | 0.9823 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
BSC-LT/roberta-large-bne-capitel-ner
BSC-LT
2021-10-21T10:31:30Z
13
0
transformers
[ "transformers", "pytorch", "roberta", "token-classification", "national library of spain", "spanish", "bne", "capitel", "ner", "es", "dataset:bne", "dataset:capitel", "arxiv:1907.11692", "arxiv:2107.07253", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:04Z
--- language: - es license: apache-2.0 tags: - "national library of spain" - "spanish" - "bne" - "capitel" - "ner" datasets: - "bne" - "capitel" metrics: - "f1" --- **โš ๏ธNOTICEโš ๏ธ: THIS MODEL HAS BEEN MOVED TO THE FOLLOWING URL AND WILL SOON BE REMOVED:** https://huggingface.co/PlanTL-GOB-ES/roberta-large-bne-capitel-ner # Spanish RoBERTa-large trained on BNE finetuned for CAPITEL Named Entity Recognition (NER) dataset. RoBERTa-large-bne is a transformer-based masked language model for the Spanish language. It is based on the [RoBERTa](https://arxiv.org/abs/1907.11692) large model and has been pre-trained using the largest Spanish corpus known to date, with a total of 570GB of clean and deduplicated text processed for this work, compiled from the web crawlings performed by the [National Library of Spain (Biblioteca Nacional de Espaรฑa)](http://www.bne.es/en/Inicio/index.html) from 2009 to 2019. Original pre-trained model can be found here: https://huggingface.co/BSC-TeMU/roberta-large-bne ## Dataset The dataset used is the one from the [CAPITEL competition at IberLEF 2020](https://sites.google.com/view/capitel2020) (sub-task 1). ## Evaluation and results F1 Score: 0.8998 For evaluation details visit our [GitHub repository](https://github.com/PlanTL-SANIDAD/lm-spanish). ## Citing Check out our paper for all the details: https://arxiv.org/abs/2107.07253 ``` @misc{gutierrezfandino2021spanish, title={Spanish Language Models}, author={Asier Gutiรฉrrez-Fandiรฑo and Jordi Armengol-Estapรฉ and Marc Pร mies and Joan Llop-Palao and Joaquรญn Silveira-Ocampo and Casimiro Pio Carrino and Aitor Gonzalez-Agirre and Carme Armentano-Oller and Carlos Rodriguez-Penagos and Marta Villegas}, year={2021}, eprint={2107.07253}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
BSC-LT/roberta-base-bne
BSC-LT
2021-10-21T10:30:31Z
2,054
9
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "national library of spain", "spanish", "bne", "es", "dataset:bne", "arxiv:1907.11692", "arxiv:2107.07253", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- language: - es license: apache-2.0 tags: - "national library of spain" - "spanish" - "bne" datasets: - "bne" metrics: - "ppl" widget: - text: "Este aรฑo las campanadas de La Sexta las presentarรก <mask>." - text: "David Broncano es un presentador de La <mask>." - text: "Gracias a los datos de la BNE se ha podido <mask> este modelo del lenguaje." - text: "Hay base legal dentro del marco <mask> actual." --- **โš ๏ธNOTICEโš ๏ธ: THIS MODEL HAS BEEN MOVED TO THE FOLLOWING URL AND WILL SOON BE REMOVED:** https://huggingface.co/PlanTL-GOB-ES/roberta-base-bne # RoBERTa base trained with data from National Library of Spain (BNE) ## Model Description RoBERTa-base-bne is a transformer-based masked language model for the Spanish language. It is based on the [RoBERTa](https://arxiv.org/abs/1907.11692) base model and has been pre-trained using the largest Spanish corpus known to date, with a total of 570GB of clean and deduplicated text processed for this work, compiled from the web crawlings performed by the [National Library of Spain (Biblioteca Nacional de Espaรฑa)](http://www.bne.es/en/Inicio/index.html) from 2009 to 2019. ## Training corpora and preprocessing The [National Library of Spain (Biblioteca Nacional de Espaรฑa)](http://www.bne.es/en/Inicio/index.html) crawls all .es domains once a year. The training corpus consists of 59TB of WARC files from these crawls, carried out from 2009 to 2019. To obtain a high-quality training corpus, the corpus has been preprocessed with a pipeline of operations, including among the others, sentence splitting, language detection, filtering of bad-formed sentences and deduplication of repetitive contents. During the process document boundaries are kept. This resulted into 2TB of Spanish clean corpus. Further global deduplication among the corpus is applied, resulting into 570GB of text. Some of the statistics of the corpus: | Corpora | Number of documents | Number of tokens | Size (GB) | |---------|---------------------|------------------|-----------| | BNE | 201,080,084 | 135,733,450,668 | 570GB | ## Tokenization and pre-training The training corpus has been tokenized using a byte version of Byte-Pair Encoding (BPE) used in the original [RoBERTA](https://arxiv.org/abs/1907.11692) model with a vocabulary size of 50,262 tokens. The RoBERTa-base-bne pre-training consists of a masked language model training that follows the approach employed for the RoBERTa base. The training lasted a total of 48 hours with 16 computing nodes each one with 4 NVIDIA V100 GPUs of 16GB VRAM. ## Evaluation and results For evaluation details visit our [GitHub repository](https://github.com/PlanTL-SANIDAD/lm-spanish). ## Citing Check out our paper for all the details: https://arxiv.org/abs/2107.07253 ``` @misc{gutierrezfandino2021spanish, title={Spanish Language Models}, author={Asier Gutiรฉrrez-Fandiรฑo and Jordi Armengol-Estapรฉ and Marc Pร mies and Joan Llop-Palao and Joaquรญn Silveira-Ocampo and Casimiro Pio Carrino and Aitor Gonzalez-Agirre and Carme Armentano-Oller and Carlos Rodriguez-Penagos and Marta Villegas}, year={2021}, eprint={2107.07253}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
BSC-LT/roberta-base-bne-capitel-pos
BSC-LT
2021-10-21T10:29:55Z
27
3
transformers
[ "transformers", "pytorch", "roberta", "token-classification", "national library of spain", "spanish", "bne", "capitel", "pos", "es", "dataset:bne", "dataset:capitel", "arxiv:1907.11692", "arxiv:2107.07253", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:04Z
--- language: - es license: apache-2.0 tags: - "national library of spain" - "spanish" - "bne" - "capitel" - "pos" datasets: - "bne" - "capitel" metrics: - "f1" widget: - text: "Festival de San Sebastiรกn: Johnny Depp recibirรก el premio Donostia en pleno rifirrafe judicial con Amber Heard" - text: "El alcalde de Vigo, Abel Caballero, ha comenzado a colocar las luces de Navidad en agosto." - text: "Gracias a los datos de la BNE, se ha podido lograr este modelo del lenguaje." - text: "El Tribunal Superior de Justicia se pronunciรณ ayer: \"Hay base legal dentro del marco jurรญdico actual\"." --- **โš ๏ธNOTICEโš ๏ธ: THIS MODEL HAS BEEN MOVED TO THE FOLLOWING URL AND WILL SOON BE REMOVED:** https://huggingface.co/PlanTL-GOB-ES/roberta-base-bne-capitel-pos # Spanish RoBERTa-base trained on BNE finetuned for CAPITEL Part of Speech (POS) dataset RoBERTa-base-bne is a transformer-based masked language model for the Spanish language. It is based on the [RoBERTa](https://arxiv.org/abs/1907.11692) base model and has been pre-trained using the largest Spanish corpus known to date, with a total of 570GB of clean and deduplicated text processed for this work, compiled from the web crawlings performed by the [National Library of Spain (Biblioteca Nacional de Espaรฑa)](http://www.bne.es/en/Inicio/index.html) from 2009 to 2019. Original pre-trained model can be found here: https://huggingface.co/BSC-TeMU/roberta-base-bne ## Dataset The dataset used is the one from the [CAPITEL competition at IberLEF 2020](https://sites.google.com/view/capitel2020) (sub-task 2). ## Evaluation and results F1 Score: 0.9846 (average of 5 runs). For evaluation details visit our [GitHub repository](https://github.com/PlanTL-SANIDAD/lm-spanish). ## Citing Check out our paper for all the details: https://arxiv.org/abs/2107.07253 ``` @misc{gutierrezfandino2021spanish, title={Spanish Language Models}, author={Asier Gutiรฉrrez-Fandiรฑo and Jordi Armengol-Estapรฉ and Marc Pร mies and Joan Llop-Palao and Joaquรญn Silveira-Ocampo and Casimiro Pio Carrino and Aitor Gonzalez-Agirre and Carme Armentano-Oller and Carlos Rodriguez-Penagos and Marta Villegas}, year={2021}, eprint={2107.07253}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
aditeyabaral/sentencetransformer-bert-base-cased
aditeyabaral
2021-10-21T09:50:09Z
6
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # aditeyabaral/sentencetransformer-bert-base-cased This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('aditeyabaral/sentencetransformer-bert-base-cased') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('aditeyabaral/sentencetransformer-bert-base-cased') model = AutoModel.from_pretrained('aditeyabaral/sentencetransformer-bert-base-cased') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=aditeyabaral/sentencetransformer-bert-base-cased) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 9234 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 100, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Roberta55/deberta-base-mnli-finetuned-cola
Roberta55
2021-10-21T09:07:56Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "deberta", "text-classification", "generated_from_trainer", "dataset:glue", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- license: mit tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: deberta-base-mnli-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.6281691768918801 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-base-mnli-finetuned-cola This model is a fine-tuned version of [microsoft/deberta-base-mnli](https://huggingface.co/microsoft/deberta-base-mnli) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8205 - Matthews Correlation: 0.6282 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.4713 | 1.0 | 535 | 0.5110 | 0.5797 | | 0.2678 | 2.0 | 1070 | 0.6648 | 0.5154 | | 0.1811 | 3.0 | 1605 | 0.6681 | 0.6121 | | 0.113 | 4.0 | 2140 | 0.8205 | 0.6282 | | 0.0831 | 5.0 | 2675 | 1.0413 | 0.6057 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
bochaowei/t5-small-finetuned-xsum-wei2
bochaowei
2021-10-21T07:21:16Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:xsum", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - xsum metrics: - rouge model-index: - name: t5-small-finetuned-xsum-wei2 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: xsum type: xsum args: default metrics: - name: Rouge1 type: rouge value: 29.2287 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xsum-wei2 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xsum dataset. It achieves the following results on the evaluation set: - Loss: 2.4131 - Rouge1: 29.2287 - Rouge2: 8.4073 - Rougel: 23.0934 - Rougelsum: 23.0954 - Gen Len: 18.8236 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 2.633 | 1.0 | 17004 | 2.4131 | 29.2287 | 8.4073 | 23.0934 | 23.0954 | 18.8236 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
huggingtweets/raquelbaron__
huggingtweets
2021-10-21T02:55:21Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/raquelbaron__/1634784917653/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1384354978374950920/RwG59WAc_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">๐Ÿค– AI BOT ๐Ÿค–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Raquel Baron</div> <div style="text-align: center; font-size: 14px;">@raquelbaron__</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Raquel Baron. | Data | Raquel Baron | | --- | --- | | Tweets downloaded | 120 | | Retweets | 19 | | Short tweets | 15 | | Tweets kept | 86 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/39wuu832/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @raquelbaron__'s tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2cnx0lr4) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2cnx0lr4/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/raquelbaron__') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
tucan9389/distilbert-base-uncased-finetuned-cola
tucan9389
2021-10-21T00:28:21Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5308757570358055 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.7501 - Matthews Correlation: 0.5309 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5286 | 1.0 | 535 | 0.5067 | 0.4301 | | 0.3469 | 2.0 | 1070 | 0.5216 | 0.4802 | | 0.2343 | 3.0 | 1605 | 0.6431 | 0.5002 | | 0.1753 | 4.0 | 2140 | 0.7501 | 0.5309 | | 0.1251 | 5.0 | 2675 | 0.8695 | 0.5222 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
AyushPJ/ai-club-inductions-21-nlp-distilBERT
AyushPJ
2021-10-20T23:38:45Z
5
0
transformers
[ "transformers", "pytorch", "distilbert", "question-answering", "generated_from_trainer", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:04Z
--- tags: - generated_from_trainer model-index: - name: ai-club-inductions-21-nlp-distilBERT results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ai-club-inductions-21-nlp-distilBERT This model was trained from scratch on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Framework versions - Transformers 4.11.3 - Pytorch 1.7.1+cu110 - Datasets 1.14.0 - Tokenizers 0.10.3
huggingtweets/s66jewelevans
huggingtweets
2021-10-20T23:06:38Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/s66jewelevans/1634771194675/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1313199276852342784/fJ8Lb2C__400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">๐Ÿค– AI BOT ๐Ÿค–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Jewel Evans</div> <div style="text-align: center; font-size: 14px;">@s66jewelevans</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Jewel Evans. | Data | Jewel Evans | | --- | --- | | Tweets downloaded | 1714 | | Retweets | 2 | | Short tweets | 20 | | Tweets kept | 1692 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1ec5yuuj/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @s66jewelevans's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1kxbfdnt) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1kxbfdnt/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/s66jewelevans') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
bochaowei/t5-small-finetuned-xsum-wei1
bochaowei
2021-10-20T18:33:31Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
20% of the training data --- license: apache-2.0 tags: - generated_from_trainer datasets: - xsum metrics: - rouge model-index: - name: t5-small-finetuned-xsum-wei1 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: xsum type: xsum args: default metrics: - name: Rouge1 type: rouge value: 27.5875 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xsum-wei1 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xsum dataset. It achieves the following results on the evaluation set: - Loss: 2.5287 - Rouge1: 27.5875 - Rouge2: 7.4083 - Rougel: 21.5654 - Rougelsum: 21.5716 - Gen Len: 18.8205 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 2.7677 | 1.0 | 3401 | 2.5441 | 27.4235 | 7.2208 | 21.3535 | 21.3636 | 18.8311 | | 2.735 | 2.0 | 6802 | 2.5287 | 27.5875 | 7.4083 | 21.5654 | 21.5716 | 18.8205 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
monologg/koelectra-base-discriminator
monologg
2021-10-20T16:55:57Z
1,292
1
transformers
[ "transformers", "pytorch", "electra", "pretraining", "korean", "ko", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: ko license: apache-2.0 tags: - korean --- # KoELECTRA (Base Discriminator) Pretrained ELECTRA Language Model for Korean (`koelectra-base-discriminator`) For more detail, please see [original repository](https://github.com/monologg/KoELECTRA/blob/master/README_EN.md). ## Usage ### Load model and tokenizer ```python >>> from transformers import ElectraModel, ElectraTokenizer >>> model = ElectraModel.from_pretrained("monologg/koelectra-base-discriminator") >>> tokenizer = ElectraTokenizer.from_pretrained("monologg/koelectra-base-discriminator") ``` ### Tokenizer example ```python >>> from transformers import ElectraTokenizer >>> tokenizer = ElectraTokenizer.from_pretrained("monologg/koelectra-base-discriminator") >>> tokenizer.tokenize("[CLS] ํ•œ๊ตญ์–ด ELECTRA๋ฅผ ๊ณต์œ ํ•ฉ๋‹ˆ๋‹ค. [SEP]") ['[CLS]', 'ํ•œ๊ตญ์–ด', 'E', '##L', '##EC', '##T', '##RA', '##๋ฅผ', '๊ณต์œ ', '##ํ•ฉ๋‹ˆ๋‹ค', '.', '[SEP]'] >>> tokenizer.convert_tokens_to_ids(['[CLS]', 'ํ•œ๊ตญ์–ด', 'E', '##L', '##EC', '##T', '##RA', '##๋ฅผ', '๊ณต์œ ', '##ํ•ฉ๋‹ˆ๋‹ค', '.', '[SEP]']) [2, 18429, 41, 6240, 15229, 6204, 20894, 5689, 12622, 10690, 18, 3] ``` ## Example using ElectraForPreTraining ```python import torch from transformers import ElectraForPreTraining, ElectraTokenizer discriminator = ElectraForPreTraining.from_pretrained("monologg/koelectra-base-discriminator") tokenizer = ElectraTokenizer.from_pretrained("monologg/koelectra-base-discriminator") sentence = "๋‚˜๋Š” ๋ฐฉ๊ธˆ ๋ฐฅ์„ ๋จน์—ˆ๋‹ค." fake_sentence = "๋‚˜๋Š” ๋‚ด์ผ ๋ฐฅ์„ ๋จน์—ˆ๋‹ค." fake_tokens = tokenizer.tokenize(fake_sentence) fake_inputs = tokenizer.encode(fake_sentence, return_tensors="pt") discriminator_outputs = discriminator(fake_inputs) predictions = torch.round((torch.sign(discriminator_outputs[0]) + 1) / 2) print(list(zip(fake_tokens, predictions.tolist()[1:-1]))) ```
monologg/koelectra-base-generator
monologg
2021-10-20T16:55:00Z
7
0
transformers
[ "transformers", "pytorch", "electra", "fill-mask", "korean", "ko", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: ko license: apache-2.0 tags: - korean --- # KoELECTRA (Base Generator) Pretrained ELECTRA Language Model for Korean (`koelectra-base-generator`) For more detail, please see [original repository](https://github.com/monologg/KoELECTRA/blob/master/README_EN.md). ## Usage ### Load model and tokenizer ```python >>> from transformers import ElectraModel, ElectraTokenizer >>> model = ElectraModel.from_pretrained("monologg/koelectra-base-generator") >>> tokenizer = ElectraTokenizer.from_pretrained("monologg/koelectra-base-generator") ``` ### Tokenizer example ```python >>> from transformers import ElectraTokenizer >>> tokenizer = ElectraTokenizer.from_pretrained("monologg/koelectra-base-generator") >>> tokenizer.tokenize("[CLS] ํ•œ๊ตญ์–ด ELECTRA๋ฅผ ๊ณต์œ ํ•ฉ๋‹ˆ๋‹ค. [SEP]") ['[CLS]', 'ํ•œ๊ตญ์–ด', 'E', '##L', '##EC', '##T', '##RA', '##๋ฅผ', '๊ณต์œ ', '##ํ•ฉ๋‹ˆ๋‹ค', '.', '[SEP]'] >>> tokenizer.convert_tokens_to_ids(['[CLS]', 'ํ•œ๊ตญ์–ด', 'E', '##L', '##EC', '##T', '##RA', '##๋ฅผ', '๊ณต์œ ', '##ํ•ฉ๋‹ˆ๋‹ค', '.', '[SEP]']) [2, 18429, 41, 6240, 15229, 6204, 20894, 5689, 12622, 10690, 18, 3] ``` ## Example using ElectraForMaskedLM ```python from transformers import pipeline fill_mask = pipeline( "fill-mask", model="monologg/koelectra-base-generator", tokenizer="monologg/koelectra-base-generator" ) print(fill_mask("๋‚˜๋Š” {} ๋ฐฅ์„ ๋จน์—ˆ๋‹ค.".format(fill_mask.tokenizer.mask_token))) ```
monologg/koelectra-base-v3-discriminator
monologg
2021-10-20T16:53:40Z
31,234
30
transformers
[ "transformers", "pytorch", "electra", "pretraining", "korean", "ko", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: ko license: apache-2.0 tags: - korean --- # KoELECTRA v3 (Base Discriminator) Pretrained ELECTRA Language Model for Korean (`koelectra-base-v3-discriminator`) For more detail, please see [original repository](https://github.com/monologg/KoELECTRA/blob/master/README_EN.md). ## Usage ### Load model and tokenizer ```python >>> from transformers import ElectraModel, ElectraTokenizer >>> model = ElectraModel.from_pretrained("monologg/koelectra-base-v3-discriminator") >>> tokenizer = ElectraTokenizer.from_pretrained("monologg/koelectra-base-v3-discriminator") ``` ### Tokenizer example ```python >>> from transformers import ElectraTokenizer >>> tokenizer = ElectraTokenizer.from_pretrained("monologg/koelectra-base-v3-discriminator") >>> tokenizer.tokenize("[CLS] ํ•œ๊ตญ์–ด ELECTRA๋ฅผ ๊ณต์œ ํ•ฉ๋‹ˆ๋‹ค. [SEP]") ['[CLS]', 'ํ•œ๊ตญ์–ด', 'EL', '##EC', '##TRA', '##๋ฅผ', '๊ณต์œ ', '##ํ•ฉ๋‹ˆ๋‹ค', '.', '[SEP]'] >>> tokenizer.convert_tokens_to_ids(['[CLS]', 'ํ•œ๊ตญ์–ด', 'EL', '##EC', '##TRA', '##๋ฅผ', '๊ณต์œ ', '##ํ•ฉ๋‹ˆ๋‹ค', '.', '[SEP]']) [2, 11229, 29173, 13352, 25541, 4110, 7824, 17788, 18, 3] ``` ## Example using ElectraForPreTraining ```python import torch from transformers import ElectraForPreTraining, ElectraTokenizer discriminator = ElectraForPreTraining.from_pretrained("monologg/koelectra-base-v3-discriminator") tokenizer = ElectraTokenizer.from_pretrained("monologg/koelectra-base-v3-discriminator") sentence = "๋‚˜๋Š” ๋ฐฉ๊ธˆ ๋ฐฅ์„ ๋จน์—ˆ๋‹ค." fake_sentence = "๋‚˜๋Š” ๋‚ด์ผ ๋ฐฅ์„ ๋จน์—ˆ๋‹ค." fake_tokens = tokenizer.tokenize(fake_sentence) fake_inputs = tokenizer.encode(fake_sentence, return_tensors="pt") discriminator_outputs = discriminator(fake_inputs) predictions = torch.round((torch.sign(discriminator_outputs[0]) + 1) / 2) print(list(zip(fake_tokens, predictions.tolist()[1:-1]))) ```
jbarry/irish-gpt2
jbarry
2021-10-20T16:40:12Z
6
0
transformers
[ "transformers", "pytorch", "jax", "tensorboard", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
This model was trained on the OSCAR ga dataset for experimental purposes. The files used for training the tokenizer and model are included in this repository.
YushiUeda/test
YushiUeda
2021-10-20T14:48:21Z
4
0
espnet
[ "espnet", "audio", "diarization", "dataset:mini_librispeech", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05Z
--- tags: - espnet - audio - diarization language: datasets: - mini_librispeech license: cc-by-4.0 --- ## ESPnet2 DIAR model ### `YushiUeda/test` This model was trained by Yushi Ueda using mini_librispeech recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet git checkout 4dfa2be4331d3d68f124aa5fd81f63217a7278a4 pip install -e . cd egs2/mini_librispeech/diar1 ./run.sh --skip_data_prep false --skip_train true --download_model YushiUeda/test ``` <!-- Generated by scripts/utils/show_diar_result.sh --> # RESULTS ## Environments - date: `Wed Aug 25 23:29:07 EDT 2021` - python version: `3.7.11 (default, Jul 27 2021, 14:32:16) [GCC 7.5.0]` - espnet version: `espnet 0.10.2a1` - pytorch version: `pytorch 1.9.0+cu102` - Git hash: `19bcd34f9395e01e54a97c4db5ecbcedb429dd92` - Commit date: `Tue Aug 24 19:50:44 2021 -0400` ## `diar_train_diar_raw_max_epoch20` ### DER `dev_clean_2_ns2_beta2_500` |threshold_median_collar|DER| |---|---| |result_th0.3_med1_collar0.0|32.42| |result_th0.3_med11_collar0.0|32.03| |result_th0.4_med1_collar0.0|30.96| |result_th0.4_med11_collar0.0|30.26| |result_th0.5_med1_collar0.0|30.35| |result_th0.5_med11_collar0.0|29.37| |result_th0.6_med1_collar0.0|30.77| |result_th0.6_med11_collar0.0|29.52| |result_th0.7_med1_collar0.0|32.60| |result_th0.7_med11_collar0.0|31.03| ## DIAR config <details><summary>expand</summary> ``` config: conf/train_diar.yaml print_config: false log_level: INFO dry_run: false iterator_type: chunk output_dir: exp/diar_train_diar_raw_max_epoch20 ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 20 patience: 3 val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - acc - max keep_nbest_models: 3 grad_clip: 5 grad_clip_type: 2.0 grad_noise: false accum_grad: 2 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: null batch_size: 16 valid_batch_size: null batch_bins: 1000000 valid_batch_bins: null train_shape_file: - exp/diar_stats_8k/train/speech_shape - exp/diar_stats_8k/train/spk_labels_shape valid_shape_file: - exp/diar_stats_8k/valid/speech_shape - exp/diar_stats_8k/valid/spk_labels_shape batch_type: folded valid_batch_type: null fold_length: - 80000 - 800 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 200000 chunk_shift_ratio: 0.5 num_cache_chunks: 64 train_data_path_and_name_and_type: - - dump/raw/simu/data/train_clean_5_ns2_beta2_500/wav.scp - speech - sound - - dump/raw/simu/data/train_clean_5_ns2_beta2_500/espnet_rttm - spk_labels - rttm valid_data_path_and_name_and_type: - - dump/raw/simu/data/dev_clean_2_ns2_beta2_500/wav.scp - speech - sound - - dump/raw/simu/data/dev_clean_2_ns2_beta2_500/espnet_rttm - spk_labels - rttm allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.01 scheduler: noamlr scheduler_conf: warmup_steps: 1000 num_spk: 2 init: xavier_uniform input_size: null model_conf: loss_type: pit use_preprocessor: true frontend: default frontend_conf: fs: 8k hop_length: 128 normalize: global_mvn normalize_conf: stats_file: exp/diar_stats_8k/train/feats_stats.npz encoder: transformer encoder_conf: input_layer: linear num_blocks: 2 linear_units: 512 dropout_rate: 0.1 output_size: 256 attention_heads: 4 attention_dropout_rate: 0.0 decoder: linear decoder_conf: {} label_aggregator: label_aggregator label_aggregator_conf: {} required: - output_dir version: 0.10.2a1 distributed: false ``` </details>
Monsia/autonlp-tweets-classification-23044997
Monsia
2021-10-20T14:38:58Z
5
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "autonlp", "en", "dataset:Monsia/autonlp-data-tweets-classification", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- tags: autonlp language: en widget: - text: "I love AutoNLP ๐Ÿค—" datasets: - Monsia/autonlp-data-tweets-classification co2_eq_emissions: 4.819872182577655 --- # Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 23044997 - CO2 Emissions (in grams): 4.819872182577655 ## Validation Metrics - Loss: 0.001594889909029007 - Accuracy: 0.9997478885667465 - Macro F1: 0.9991190902836993 - Micro F1: 0.9997478885667465 - Weighted F1: 0.9997476735518704 - Macro Precision: 0.9998014460161265 - Micro Precision: 0.9997478885667465 - Weighted Precision: 0.9997479944069787 - Macro Recall: 0.9984426545713851 - Micro Recall: 0.9997478885667465 - Weighted Recall: 0.9997478885667465 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/Monsia/autonlp-tweets-classification-23044997 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("Monsia/autonlp-tweets-classification-23044997", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("Monsia/autonlp-tweets-classification-23044997", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
pere/norwegian-gptneo-blue-highlr
pere
2021-10-20T10:57:21Z
2
0
transformers
[ "transformers", "jax", "tensorboard", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
# Norwegian GTPNeo Blue. The first Norwegian GPTNeo model. This one is trained only on a administrative corpus.
aditeyabaral/sentencetransformer-distilbert-hinglish-small
aditeyabaral
2021-10-20T09:04:04Z
173
0
sentence-transformers
[ "sentence-transformers", "pytorch", "distilbert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # aditeyabaral/sentencetransformer-distilbert-hinglish-small This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('aditeyabaral/sentencetransformer-distilbert-hinglish-small') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('aditeyabaral/sentencetransformer-distilbert-hinglish-small') model = AutoModel.from_pretrained('aditeyabaral/sentencetransformer-distilbert-hinglish-small') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=aditeyabaral/sentencetransformer-distilbert-hinglish-small) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 4617 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 100, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
mrm8488/t5-base-finetuned-break_data
mrm8488
2021-10-20T08:31:28Z
962
3
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "en", "dataset:break_data", "arxiv:1910.10683", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - break_data widget: - text: "paraphrase: The composer of Sands Theme plays what type of guitar?" --- # T5-base fine-tuned on break_data / QDMR-high-level โ“โžก๏ธ๐Ÿ“‹ [Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) fine-tuned on [break_data](https://huggingface.co/nlp/viewer/?dataset=break_data&config=QDMR-high-level) dataset for **QDMRs**. ## Details of T5 ๐Ÿ“œ โžก๏ธ ๐Ÿ“œ The **T5** model was presented in [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/pdf/1910.10683.pdf) by *Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu* in Here the abstract: Transfer learning, where a model is first pre-trained on a data-rich task before being fine-tuned on a downstream task, has emerged as a powerful technique in natural language processing (NLP). The effectiveness of transfer learning has given rise to a diversity of approaches, methodology, and practice. In this paper, we explore the landscape of transfer learning techniques for NLP by introducing a unified framework that converts every language problem into a text-to-text format. Our systematic study compares pre-training objectives, architectures, unlabeled datasets, transfer approaches, and other factors on dozens of language understanding tasks. By combining the insights from our exploration with scale and our new โ€œColossal Clean Crawled Corpusโ€, we achieve state-of-the-art results on many benchmarks covering summarization, question answering, text classification, and more. To facilitate future work on transfer learning for NLP, we release our dataset, pre-trained models, and code. ![model image](https://i.imgur.com/jVFMMWR.png) ## Details of the downstream task (QDMRs) - Dataset ๐Ÿ“š Break is a human annotated dataset of natural language questions and their Question Decomposition Meaning Representations (QDMRs). Break consists of 83,978 examples sampled from 10 question answering datasets over text, images and databases. This repository contains the Break dataset along with information on the exact data format. | Dataset | Split | # samples | | -------- | ----- | --------- | | break_data | train | 17503 | | break_data | valid | 3130 | Check out more about this dataset and others in [NLP Viewer](https://huggingface.co/nlp/viewer/) ## Model fine-tuning ๐Ÿ‹๏ธโ€ The training script is a slightly modified version of [this awesome one](https://colab.research.google.com/github/patil-suraj/exploring-T5/blob/master/T5_on_TPU.ipynb) by [Suraj Patil](https://twitter.com/psuraj28). The main change is at preprocessing ```inputs``` and ```targets``` we feed to the model. We do it as a *paraphrasing task*. ## Model in Action ๐Ÿš€ ```python # Tip: By now, install transformers from source from transformers import AutoModelForSeq2SeqLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("mrm8488/t5-base-finetuned-break_data") model = AutoModelForSeq2SeqLM.from_pretrained("mrm8488/t5-base-finetuned-break_data") def get_decomposition(question): input_text = "paraphrase: %s </s>" % question features = tokenizer([input_text], return_tensors='pt') output = model.generate(input_ids=features['input_ids'], attention_mask=features['attention_mask'], max_length=32) return tokenizer.decode(output[0]) question = "The composer of Sands Theme plays what type of guitar?" get_decomposition(question) # output: 'return Sands Theme ;return composer of #1 ;return guitar that #2 plays' ``` > Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488) | [LinkedIn](https://www.linkedin.com/in/manuel-romero-cs/) > Made with <span style="color: #e25555;">&hearts;</span> in Spain
aditeyabaral/sentencetransformer-bert-hinglish-small
aditeyabaral
2021-10-20T06:28:16Z
9
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # aditeyabaral/sentencetransformer-bert-hinglish-small This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('aditeyabaral/sentencetransformer-bert-hinglish-small') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('aditeyabaral/sentencetransformer-bert-hinglish-small') model = AutoModel.from_pretrained('aditeyabaral/sentencetransformer-bert-hinglish-small') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=aditeyabaral/sentencetransformer-bert-hinglish-small) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 4617 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 100, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
chrisjay/masakhane_benchmarks
chrisjay
2021-10-20T05:55:51Z
0
0
null
[ "african-languages", "machine-translation", "text", "license:apache-2.0", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: african-languages tags: - african-languages - machine-translation - text license: apache-2.0 model-index: - name: Masakhane Benchmark Models results: - task: name: Machine Translation type: machine-translation dataset: name: masakhane benchmarks args: african-languages --- # Interacting with the Masakhane Benchmark Models I created this demo for very easy interaction with the [benchmark models on Masakhane](https://github.com/masakhane-io/masakhane-mt/tree/master/benchmarks) which were trained with [JoeyNMT](https://github.com/chrisemezue/joeynmt)(my forked version). To access the space click [here](https://huggingface.co/spaces/chrisjay/masakhane-benchmarks). To include your language, all you need to do is: 1. Create a folder in the format *src-tgt/main* for your language pair, if it does not exist. 2. Inside the *main* folder put the following files: 1. model checkpoint. Rename it to `best.ckpt`. 2. `config.yaml` file. This is the JoeyNMT config file which loads the model an pre-processing parameters. 3. `src_vocab.txt` file. 4. `trg_vocab.txt` file. The space currently supports these languages: | source language | target language | |:---------------:|:---------------:| | English | Swahili | | English | Afrikaans | | English | Arabic | | English | Urhobo | | English | แบธฬ€dรณ | | Efik | English | | English | Hausa | | English | Igbo | | English | Fon | | English | Twi | | English | Dendi | | English | แบธฬ€sรกn | | English | Isoko | | English | Kamba | | English | Luo | | English | Southern Ndebele | | English | Tshivenda | | Shona | English | | Swahili | English | | Yoruba | English | TO DO: 1. Include more languages from the benchmark.
Manishl7/xlm-roberta-large-language-detection
Manishl7
2021-10-20T05:20:44Z
20
1
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
Language Detection Model for Nepali, English, Hindi and Spanish Model fine tuned on xlm-roberta-large
aditeyabaral/sentencetransformer-distilbert-hinglish-big
aditeyabaral
2021-10-20T01:24:00Z
153
0
sentence-transformers
[ "sentence-transformers", "pytorch", "distilbert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # aditeyabaral/sentencetransformer-distilbert-hinglish-big This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('aditeyabaral/sentencetransformer-distilbert-hinglish-big') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('aditeyabaral/sentencetransformer-distilbert-hinglish-big') model = AutoModel.from_pretrained('aditeyabaral/sentencetransformer-distilbert-hinglish-big') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=aditeyabaral/sentencetransformer-distilbert-hinglish-big) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 4617 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 100, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
yazdipour/text-to-sparql-t5-base-qald9
yazdipour
2021-10-19T23:25:20Z
12
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer model-index: - name: sparql-qald9-t5-base-2021-10-19_23-02 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sparql-qald9-t5-base-2021-10-19_23-02 This model is a fine-tuned version of [yazdipour/text-to-sparql-t5-base-2021-10-19_15-35_lastDS](https://huggingface.co/yazdipour/text-to-sparql-t5-base-2021-10-19_15-35_lastDS) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Gen Len | P | R | F1 | Bleu-score | Bleu-precisions | Bleu-bp | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:------:|:------:|:----------:|:-----------------------------------------------------------------------------:|:-------:| | No log | 1.0 | 51 | 1.8300 | 19.0 | 0.3640 | 0.0346 | 0.1943 | 10.0358 | [72.88988261598658, 50.27455765710799, 35.93015446608462, 28.454070201643017] | 0.2281 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
aguilara42/audacity-Wav2Vec2-Base
aguilara42
2021-10-19T21:23:28Z
0
1
null
[ "audacity", "region:us" ]
null
2022-03-02T23:29:05Z
--- tags: - audacity inference: false --- # Text to Speech Model ## Being used for the `Audio Labeler` effect in Audacity metadata: ``` { metadata = { 'sample_rate': 16000, 'domain_tags': ['speech'], 'short_description': 'I will label your speech into text :]', 'long_description': 'This is an Audacity wrapper for the model, ' 'forked from the repository ' 'facebook/s2t-medium-librispeech-asr' 'This model was trained by Changhan Wang' 'and Yun Tang and Xutai Ma and Anne Wu' 'and Dmytro Okhonko and Juan Pino.', 'tags': ['speech-to-text'], 'effect_type': 'waveform-to-labels', 'multichannel': False, 'labels': ["<pad>", "<s>", "</s>", "<unk>", "|", "E", "T", "A", "O", "N", "I", "H", "S", "R", "D", "L", "U", "M", "W", "C", "F", "G", "Y", "P", "B", "V", "K", "'", "X", "J", "Q", "Z"], } ```
aditeyabaral/sentencetransformer-bert-hinglish-big
aditeyabaral
2021-10-19T19:38:38Z
6
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # aditeyabaral/sentencetransformer-bert-hinglish-big This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('aditeyabaral/sentencetransformer-bert-hinglish-big') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('aditeyabaral/sentencetransformer-bert-hinglish-big') model = AutoModel.from_pretrained('aditeyabaral/sentencetransformer-bert-hinglish-big') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=aditeyabaral/sentencetransformer-bert-hinglish-big) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 4617 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 100, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
hugggof/ConvTasNet-DAMP-Vocals
hugggof
2021-10-19T19:28:08Z
0
2
null
[ "audacity", "region:us" ]
null
2022-03-02T23:29:05Z
--- tags: - audacity inference: false sample_rate: 8000 --- This is an Audacity wrapper for the model, forked from the repository `groadabike/ConvTasNet_DAMP-VSEP_enhboth`, This model was trained using the Asteroid library: https://github.com/asteroid-team/asteroid. The following info was copied directly from `groadabike/ConvTasNet_DAMP-VSEP_enhboth`: ### Description: This model was trained by Gerardo Roa Dabike using Asteroid. It was trained on the enh_both task of the DAMP-VSEP dataset. ### Training config: ```yaml data: channels: 1 n_src: 2 root_path: data sample_rate: 16000 samples_per_track: 10 segment: 3.0 task: enh_both filterbank: kernel_size: 20 n_filters: 256 stride: 10 main_args: exp_dir: exp/train_convtasnet help: None masknet: bn_chan: 256 conv_kernel_size: 3 hid_chan: 512 mask_act: relu n_blocks: 8 n_repeats: 4 n_src: 2 norm_type: gLN skip_chan: 256 optim: lr: 0.0003 optimizer: adam weight_decay: 0.0 positional arguments: training: batch_size: 12 early_stop: True epochs: 50 half_lr: True num_workers: 12 ``` ### Results: ```yaml si_sdr: 14.018196157142519 si_sdr_imp: 14.017103133809577 sdr: 14.498517291333885 sdr_imp: 14.463389151567865 sir: 24.149634529133372 sir_imp: 24.11450638936735 sar: 15.338597389045935 sar_imp: -137.30634122401517 stoi: 0.7639416744417206 stoi_imp: 0.1843383526963759 ``` ### License notice: This work "ConvTasNet_DAMP-VSEP_enhboth" is a derivative of DAMP-VSEP: Smule Digital Archive of Mobile Performances - Vocal Separation (Version 1.0.1) by Smule, Inc, used under Smule's Research Data License Agreement (Research only). "ConvTasNet_DAMP-VSEP_enhboth" is licensed under Attribution-ShareAlike 3.0 Unported by Gerardo Roa Dabike.
hugggof/ConvTasNet_Libri3Mix_sepnoisy_16k
hugggof
2021-10-19T19:26:57Z
0
1
null
[ "audacity", "region:us" ]
null
2022-03-02T23:29:05Z
--- tags: - audacity inference: false --- This is an Audacity wrapper for the model, forked from the repository `JorisCos/ConvTasNet_Libri3Mix_sepnoisy_16k`, This model was trained using the Asteroid library: https://github.com/asteroid-team/asteroid. The following info was copied directly from `JorisCos/ConvTasNet_Libri3Mix_sepnoisy_16k`: Description: This model was trained by Joris Cosentino using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid). It was trained on the `sep_noisy` task of the Libri3Mix dataset. Training config: ```yml data: n_src: 3 sample_rate: 16000 segment: 3 task: sep_noisy train_dir: data/wav16k/min/train-360 valid_dir: data/wav16k/min/dev filterbank: kernel_size: 32 n_filters: 512 stride: 16 masknet: bn_chan: 128 hid_chan: 512 mask_act: relu n_blocks: 8 n_repeats: 3 n_src: 3 skip_chan: 128 optim: lr: 0.001 optimizer: adam weight_decay: 0.0 training: batch_size: 8 early_stop: true epochs: 200 half_lr: true num_workers: 4 ``` Results: On Libri3Mix min test set : ```yml si_sdr: 5.926151147554517 si_sdr_imp: 10.282912158535625 sdr: 6.700975236867358 sdr_imp: 10.882972447337504 sir: 15.364110064569388 sir_imp: 18.574476587171688 sar: 7.918866830474568 sar_imp: -0.9638973409971135 stoi: 0.7713777027310713 stoi_imp: 0.2078696167973911 ``` License notice: This work "ConvTasNet_Libri3Mix_sepnoisy_16k" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by Vassil Panayotov, used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/); of The WSJ0 Hipster Ambient Mixtures dataset by [Whisper.ai](http://wham.whisper.ai/), used under [CC BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/). "ConvTasNet_Libri3Mix_sepnoisy_16k" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Joris Cosentino
hugggof/ConvTasNet_WHAM_sepclean
hugggof
2021-10-19T19:25:37Z
0
0
null
[ "audacity", "region:us" ]
null
2022-03-02T23:29:05Z
--- tags: - audacity inference: false --- This is an Audacity wrapper for the model, forked from the repository mpariente/ConvTasNet_WHAM_sepclean, This model was trained using the Asteroid library: https://github.com/asteroid-team/asteroid. The following info was copied from `mpariente/ConvTasNet_WHAM_sepclean`: ### Description: This model was trained by Manuel Pariente using the wham/ConvTasNet recipe in [Asteroid](https://github.com/asteroid-team/asteroid). It was trained on the `sep_clean` task of the WHAM! dataset. ### Training config: ```yaml data: n_src: 2 mode: min nondefault_nsrc: None sample_rate: 8000 segment: 3 task: sep_clean train_dir: data/wav8k/min/tr/ valid_dir: data/wav8k/min/cv/ filterbank: kernel_size: 16 n_filters: 512 stride: 8 main_args: exp_dir: exp/wham gpus: -1 help: None masknet: bn_chan: 128 hid_chan: 512 mask_act: relu n_blocks: 8 n_repeats: 3 n_src: 2 skip_chan: 128 optim: lr: 0.001 optimizer: adam weight_decay: 0.0 positional arguments: training: batch_size: 24 early_stop: True epochs: 200 half_lr: True num_workers: 4 ``` ### Results: ```yaml si_sdr: 16.21326632846293 si_sdr_imp: 16.21441705664987 sdr: 16.615180021738933 sdr_imp: 16.464137807433435 sir: 26.860503975131923 sir_imp: 26.709461760826414 sar: 17.18312813480803 sar_imp: -131.99332048277296 stoi: 0.9619940905157323 stoi_imp: 0.2239480672473015 ``` ### License notice: This work "ConvTasNet_WHAM!_sepclean" is a derivative of [CSR-I (WSJ0) Complete](https://catalog.ldc.upenn.edu/LDC93S6A) by [LDC](https://www.ldc.upenn.edu/), used under [LDC User Agreement for Non-Members](https://catalog.ldc.upenn.edu/license/ldc-non-members-agreement.pdf) (Research only). "ConvTasNet_WHAM!_sepclean" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Manuel Pariente.
hugggof/demucs_extra
hugggof
2021-10-19T19:23:31Z
0
0
null
[ "audacity", "region:us" ]
null
2022-03-02T23:29:05Z
--- tags: audacity --- ## Music Source Separation in the Waveform Domain This is the Demucs model, serialized from Facebook Research's pretrained models. From Facebook research: Demucs is based on U-Net convolutional architecture inspired by Wave-U-Net and SING, with GLUs, a BiLSTM between the encoder and decoder, specific initialization of weights and transposed convolutions in the decoder. This is the `demucs_extra` version, meaning that is was trained on the MusDB dataset, along with 150 extra songs of data. See [facebookresearch's repository](https://github.com/facebookresearch/demucs) for more information on Demucs.
huggingtweets/gerardsans
huggingtweets
2021-10-19T19:13:05Z
6
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/gerardsans/1634670781074/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1431241007421665284/qoHnns8I_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">๐Ÿค– AI BOT ๐Ÿค–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">แธGerardSans/แณ๐Ÿคฃ๐Ÿ‡ฌ๐Ÿ‡ง</div> <div style="text-align: center; font-size: 14px;">@gerardsans</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from แธGerardSans/แณ๐Ÿคฃ๐Ÿ‡ฌ๐Ÿ‡ง. | Data | แธGerardSans/แณ๐Ÿคฃ๐Ÿ‡ฌ๐Ÿ‡ง | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 648 | | Short tweets | 586 | | Tweets kept | 2016 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/115pr1rh/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @gerardsans's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/10heg4by) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/10heg4by/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/gerardsans') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
maxspaziani/bert-base-italian-xxl-uncased-finetuned-ComunaliRoma
maxspaziani
2021-10-19T17:58:13Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer model-index: - name: bert-base-italian-xxl-uncased-finetuned-ComunaliRoma results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-italian-xxl-uncased-finetuned-ComunaliRoma This model is a fine-tuned version of [dbmdz/bert-base-italian-xxl-uncased](https://huggingface.co/dbmdz/bert-base-italian-xxl-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.5095 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.6717 | 1.0 | 1014 | 2.6913 | | 2.4869 | 2.0 | 2028 | 2.5843 | | 2.3411 | 3.0 | 3042 | 2.5095 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
meghana/hitalmqa-finetuned-squad
meghana
2021-10-19T17:34:53Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "question-answering", "generated_from_trainer", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer model-index: - name: hitalmqa-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hitalmqa-finetuned-squad This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
patrickvonplaten/wav2vec2-large-xlsr-turkish-demo-colab
patrickvonplaten
2021-10-19T17:18:47Z
5
2
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xlsr-turkish-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-turkish-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.4055 - Wer: 0.4800 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.0179 | 4.21 | 400 | 1.4935 | 1.0249 | | 0.7075 | 8.42 | 800 | 0.4546 | 0.6071 | | 0.3072 | 12.63 | 1200 | 0.3947 | 0.5401 | | 0.2145 | 16.84 | 1600 | 0.4049 | 0.5194 | | 0.1647 | 21.05 | 2000 | 0.4199 | 0.5003 | | 0.1338 | 25.26 | 2400 | 0.4144 | 0.4859 | | 0.116 | 29.47 | 2800 | 0.4055 | 0.4800 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.1+cu102 - Datasets 1.13.3 - Tokenizers 0.10.3
Recognai/selectra_small
Recognai
2021-10-19T15:28:17Z
6
5
transformers
[ "transformers", "pytorch", "electra", "pretraining", "es", "dataset:oscar", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04Z
--- language: - es thumbnail: "url to a thumbnail used in social sharing" license: apache-2.0 datasets: - oscar --- # SELECTRA: A Spanish ELECTRA SELECTRA is a Spanish pre-trained language model based on [ELECTRA](https://github.com/google-research/electra). We release a `small` and `medium` version with the following configuration: | Model | Layers | Embedding/Hidden Size | Params | Vocab Size | Max Sequence Length | Cased | | --- | --- | --- | --- | --- | --- | --- | | **SELECTRA small** | **12** | **256** | **22M** | **50k** | **512** | **True** | | [SELECTRA medium](https://huggingface.co/Recognai/selectra_medium) | 12 | 384 | 41M | 50k | 512 | True | **SELECTRA small (medium) is about 5 (3) times smaller than BETO but achieves comparable results** (see Metrics section below). ## Usage From the original [ELECTRA model card](https://huggingface.co/google/electra-small-discriminator): "ELECTRA models are trained to distinguish "real" input tokens vs "fake" input tokens generated by another neural network, similar to the discriminator of a GAN." The discriminator should therefore activate the logit corresponding to the fake input token, as the following example demonstrates: ```python from transformers import ElectraForPreTraining, ElectraTokenizerFast discriminator = ElectraForPreTraining.from_pretrained("Recognai/selectra_small") tokenizer = ElectraTokenizerFast.from_pretrained("Recognai/selectra_small") sentence_with_fake_token = "Estamos desayunando pan rosa con tomate y aceite de oliva." inputs = tokenizer.encode(sentence_with_fake_token, return_tensors="pt") logits = discriminator(inputs).logits.tolist()[0] print("\t".join(tokenizer.tokenize(sentence_with_fake_token))) print("\t".join(map(lambda x: str(x)[:4], logits[1:-1]))) """Output: Estamos desayun ##ando pan rosa con tomate y aceite de oliva . -3.1 -3.6 -6.9 -3.0 0.19 -4.5 -3.3 -5.1 -5.7 -7.7 -4.4 -4.2 """ ``` However, you probably want to use this model to fine-tune it on a downstream task. We provide models fine-tuned on the [XNLI dataset](https://huggingface.co/datasets/xnli), which can be used together with the zero-shot classification pipeline: - [Zero-shot SELECTRA small](https://huggingface.co/Recognai/zeroshot_selectra_small) - [Zero-shot SELECTRA medium](https://huggingface.co/Recognai/zeroshot_selectra_medium) ## Metrics We fine-tune our models on 3 different down-stream tasks: - [XNLI](https://huggingface.co/datasets/xnli) - [PAWS-X](https://huggingface.co/datasets/paws-x) - [CoNLL2002 - NER](https://huggingface.co/datasets/conll2002) For each task, we conduct 5 trials and state the mean and standard deviation of the metrics in the table below. To compare our results to other Spanish language models, we provide the same metrics taken from the [evaluation table](https://github.com/PlanTL-SANIDAD/lm-spanish#evaluation-) of the [Spanish Language Model](https://github.com/PlanTL-SANIDAD/lm-spanish) repo. | Model | CoNLL2002 - NER (f1) | PAWS-X (acc) | XNLI (acc) | Params | | --- | --- | --- | --- | --- | | SELECTRA small | 0.865 +- 0.004 | 0.896 +- 0.002 | 0.784 +- 0.002 | 22M | | SELECTRA medium | 0.873 +- 0.003 | 0.896 +- 0.002 | 0.804 +- 0.002 | 41M | | | | | | | | [mBERT](https://huggingface.co/bert-base-multilingual-cased) | 0.8691 | 0.8955 | 0.7876 | 178M | | [BETO](https://huggingface.co/dccuchile/bert-base-spanish-wwm-cased) | 0.8759 | 0.9000 | 0.8130 | 110M | | [RoBERTa-b](https://huggingface.co/BSC-TeMU/roberta-base-bne) | 0.8851 | 0.9000 | 0.8016 | 125M | | [RoBERTa-l](https://huggingface.co/BSC-TeMU/roberta-large-bne) | 0.8772 | 0.9060 | 0.7958 | 355M | | [Bertin](https://huggingface.co/bertin-project/bertin-roberta-base-spanish/tree/v1-512) | 0.8835 | 0.8990 | 0.7890 | 125M | | [ELECTRICIDAD](https://huggingface.co/mrm8488/electricidad-base-discriminator) | 0.7954 | 0.9025 | 0.7878 | 109M | Some details of our fine-tuning runs: - epochs: 5 - batch-size: 32 - learning rate: 1e-4 - warmup proportion: 0.1 - linear learning rate decay - layerwise learning rate decay For all the details, check out our [selectra repo](https://github.com/recognai/selectra). ## Training We pre-trained our SELECTRA models on the Spanish portion of the [Oscar](https://huggingface.co/datasets/oscar) dataset, which is about 150GB in size. Each model version is trained for 300k steps, with a warm restart of the learning rate after the first 150k steps. Some details of the training: - steps: 300k - batch-size: 128 - learning rate: 5e-4 - warmup steps: 10k - linear learning rate decay - TPU cores: 8 (v2-8) For all details, check out our [selectra repo](https://github.com/recognai/selectra). **Note:** Due to a misconfiguration in the pre-training scripts the embeddings of the vocabulary containing an accent were not optimized. If you fine-tune this model on a down-stream task, you might consider using a tokenizer that does not strip the accents: ```python tokenizer = ElectraTokenizerFast.from_pretrained("Recognai/selectra_small", strip_accents=False) ``` ## Motivation Despite the abundance of excellent Spanish language models (BETO, BSC-BNE, Bertin, ELECTRICIDAD, etc.), we felt there was still a lack of distilled or compact Spanish language models and a lack of comparing those to their bigger siblings. ## Acknowledgment This research was supported by the Google TPU Research Cloud (TRC) program. ## Authors - David Fidalgo ([GitHub](https://github.com/dcfidalgo)) - Javier Lopez ([GitHub](https://github.com/javispp)) - Daniel Vila ([GitHub](https://github.com/dvsrepo)) - Francisco Aranda ([GitHub](https://github.com/frascuchon))
Fhrozen/test_an4
Fhrozen
2021-10-19T15:20:32Z
3
0
espnet
[ "espnet", "audio", "automatic-speech-recognition", "en", "dataset:an4", "license:cc-by-4.0", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- tags: - espnet - audio - automatic-speech-recognition language: en datasets: - an4 license: cc-by-4.0 --- ## ESPnet2 ASR model ### `Fhrozen/test_an4` This model was trained by Fhrozen using an4 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet git checkout b8df4c928e132acff78d196988bdb68a66987952 pip install -e . cd egs2/an4/asr1 ./run.sh --skip_data_prep false --skip_train true --download_model Fhrozen/test_an4 ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Wed Oct 20 00:00:46 JST 2021` - python version: `3.9.7 (default, Sep 16 2021, 13:09:58) [GCC 7.5.0]` - espnet version: `espnet 0.10.4a1` - pytorch version: `pytorch 1.9.0` - Git hash: `b8df4c928e132acff78d196988bdb68a66987952` - Commit date: `Tue Oct 19 07:48:11 2021 -0400` ## asr_train_raw_en_bpe30 ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |inference_lm_lm_train_lm_en_bpe30_valid.loss.ave_asr_model_valid.acc.best/test|130|773|4.0|22.3|73.7|0.1|96.1|100.0| |inference_lm_lm_train_lm_en_bpe30_valid.loss.ave_asr_model_valid.acc.best/train_dev|100|591|2.7|21.8|75.5|0.0|97.3|100.0| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |inference_lm_lm_train_lm_en_bpe30_valid.loss.ave_asr_model_valid.acc.best/test|130|2565|17.2|16.4|66.4|1.0|83.8|100.0| |inference_lm_lm_train_lm_en_bpe30_valid.loss.ave_asr_model_valid.acc.best/train_dev|100|1915|15.5|16.4|68.1|0.9|85.5|100.0| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |inference_lm_lm_train_lm_en_bpe30_valid.loss.ave_asr_model_valid.acc.best/test|130|2695|21.1|15.6|63.3|0.9|79.9|100.0| |inference_lm_lm_train_lm_en_bpe30_valid.loss.ave_asr_model_valid.acc.best/train_dev|100|2015|19.4|15.6|65.0|0.9|81.5|100.0| ## ASR config <details><summary>expand</summary> ``` config: null print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_train_raw_en_bpe30 ngpu: 0 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: null dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 40 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - train - loss - min - - valid - loss - min - - train - acc - max - - valid - acc - max keep_nbest_models: - 10 grad_clip: 5.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: null batch_size: 20 valid_batch_size: null batch_bins: 1000000 valid_batch_bins: null train_shape_file: - exp/asr_stats_raw_en_bpe30/train/speech_shape - exp/asr_stats_raw_en_bpe30/train/text_shape.bpe valid_shape_file: - exp/asr_stats_raw_en_bpe30/valid/speech_shape - exp/asr_stats_raw_en_bpe30/valid/text_shape.bpe batch_type: folded valid_batch_type: null fold_length: - 80000 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/train_nodev/wav.scp - speech - sound - - dump/raw/train_nodev/text - text - text valid_data_path_and_name_and_type: - - dump/raw/train_dev/wav.scp - speech - sound - - dump/raw/train_dev/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adadelta optim_conf: {} scheduler: null scheduler_conf: {} token_list: - <blank> - <unk> - โ– - T - E - O - R - Y - A - H - U - S - I - F - B - L - P - D - G - M - C - V - X - J - K - Z - W - N - Q - <sos/eos> init: null input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: true model_conf: ctc_weight: 0.5 ignore_id: -1 lsm_weight: 0.0 length_normalized_loss: false report_cer: true report_wer: true sym_space: <space> sym_blank: <blank> extract_feats_in_collect_stats: true use_preprocessor: true token_type: bpe bpemodel: data/en_token_list/bpe_unigram30/bpe.model non_linguistic_symbols: null cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' frontend: default frontend_conf: fs: 16k specaug: null specaug_conf: {} normalize: global_mvn normalize_conf: stats_file: exp/asr_stats_raw_en_bpe30/train/feats_stats.npz preencoder: null preencoder_conf: {} encoder: rnn encoder_conf: {} postencoder: null postencoder_conf: {} decoder: rnn decoder_conf: {} required: - output_dir - token_list version: 0.10.4a1 distributed: false ``` </details> ## LM config <details><summary>expand</summary> ``` config: conf/train_lm.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/lm_train_lm_en_bpe30 ngpu: 0 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: null dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 40 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - loss - min keep_nbest_models: 1 grad_clip: 5.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: null batch_size: 256 valid_batch_size: null batch_bins: 1000000 valid_batch_bins: null train_shape_file: - exp/lm_stats_en_bpe30/train/text_shape.bpe valid_shape_file: - exp/lm_stats_en_bpe30/valid/text_shape.bpe batch_type: folded valid_batch_type: null fold_length: - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/lm_train.txt - text - text valid_data_path_and_name_and_type: - - dump/raw/train_dev/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.1 scheduler: null scheduler_conf: {} token_list: - <blank> - <unk> - โ– - T - E - O - R - Y - A - H - U - S - I - F - B - L - P - D - G - M - C - V - X - J - K - Z - W - N - Q - <sos/eos> init: null model_conf: ignore_id: 0 use_preprocessor: true token_type: bpe bpemodel: data/en_token_list/bpe_unigram30/bpe.model non_linguistic_symbols: null cleaner: null g2p: null lm: seq_rnn lm_conf: unit: 650 nlayers: 2 required: - output_dir - token_list version: 0.10.4a1 distributed: false ``` </details>
doc2query/all-with_prefix-t5-base-v1
doc2query
2021-10-19T12:52:47Z
1,990
10
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "en", "dataset:sentence-transformers/reddit-title-body", "dataset:sentence-transformers/embedding-training-data", "arxiv:1904.08375", "arxiv:2104.08663", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - sentence-transformers/reddit-title-body - sentence-transformers/embedding-training-data widget: - text: "text2reddit: Python is an interpreted, high-level and general-purpose programming language. Python's design philosophy emphasizes code readability with its notable use of significant whitespace. Its language constructs and object-oriented approach aim to help programmers write clear, logical code for small and large-scale projects." license: apache-2.0 --- # doc2query/all-with_prefix-t5-base-v1 This is a [doc2query](https://arxiv.org/abs/1904.08375) model based on T5 (also known as [docT5query](https://cs.uwaterloo.ca/~jimmylin/publications/Nogueira_Lin_2019_docTTTTTquery-v2.pdf)). It can be used for: - **Document expansion**: You generate for your paragraphs 20-40 queries and index the paragraphs and the generates queries in a standard BM25 index like Elasticsearch, OpenSearch, or Lucene. The generated queries help to close the lexical gap of lexical search, as the generate queries contain synonyms. Further, it re-weights words giving important words a higher weight even if they appear seldomn in a paragraph. In our [BEIR](https://arxiv.org/abs/2104.08663) paper we showed that BM25+docT5query is a powerful search engine. In the [BEIR repository](https://github.com/UKPLab/beir) we have an example how to use docT5query with Pyserini. - **Domain Specific Training Data Generation**: It can be used to generate training data to learn an embedding model. On [SBERT.net](https://www.sbert.net/examples/unsupervised_learning/query_generation/README.html) we have an example how to use the model to generate (query, text) pairs for a given collection of unlabeled texts. These pairs can then be used to train powerful dense embedding models. ## Usage ```python from transformers import T5Tokenizer, T5ForConditionalGeneration model_name = 'doc2query/all-with_prefix-t5-base-v1' tokenizer = T5Tokenizer.from_pretrained(model_name) model = T5ForConditionalGeneration.from_pretrained(model_name) prefix = "answer2question" text = "Python is an interpreted, high-level and general-purpose programming language. Python's design philosophy emphasizes code readability with its notable use of significant whitespace. Its language constructs and object-oriented approach aim to help programmers write clear, logical code for small and large-scale projects." text = prefix+": "+text input_ids = tokenizer.encode(text, max_length=384, truncation=True, return_tensors='pt') outputs = model.generate( input_ids=input_ids, max_length=64, do_sample=True, top_p=0.95, num_return_sequences=5) print("Text:") print(text) print("\nGenerated Queries:") for i in range(len(outputs)): query = tokenizer.decode(outputs[i], skip_special_tokens=True) print(f'{i + 1}: {query}') ``` **Note:** `model.generate()` is non-deterministic. It produces different queries each time you run it. ## Training This model fine-tuned [google/t5-v1_1-base](https://huggingface.co/google/t5-v1_1-base) for 575k training steps. For the training script, see the `train_script.py` in this repository. The input-text was truncated to 384 word pieces. Output text was generated up to 64 word pieces. This model was trained on a large collection of datasets. For the exact datasets names and weights see the `data_config.json` in this repository. Most of the datasets are available at [https://huggingface.co/sentence-transformers](https://huggingface.co/sentence-transformers). The datasets include besides others: - (title, body) pairs from [Reddit](https://huggingface.co/datasets/sentence-transformers/reddit-title-body) - (title, body) pairs and (title, answer) pairs from StackExchange and Yahoo Answers! - (title, review) pairs from Amazon reviews - (query, paragraph) pairs from MS MARCO, NQ, and GooAQ - (question, duplicate_question) from Quora and WikiAnswers - (title, abstract) pairs from S2ORC ## Prefix This model was trained **with a prefix**: You start the text with a specific index that defines what type out output text you would like to receive. Depending on the prefix, the output is different. E.g. the above text about Python produces the following output: | Prefix | Output | | --- | --- | | answer2question | Why should I use python in my business? ; What is the difference between Python and.NET? ; what is the python design philosophy? | | review2title | Python a powerful and useful language ; A new and improved programming language ; Object-oriented, practical and accessibl | | abstract2title | Python: A Software Development Platform ; A Research Guide for Python X: Conceptual Approach to Programming ; Python : Language and Approach | | text2query | is python a low level language? ; what is the primary idea of python? ; is python a programming language? | These are all available pre-fixes: - text2reddit - question2title - answer2question - abstract2title - review2title - news2title - text2query - question2question For the datasets and weights for the different pre-fixes see `data_config.json` in this repository.
Jeska/autonlp-vaccinfaq-22144706
Jeska
2021-10-19T12:33:52Z
4
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autonlp", "unk", "dataset:Jeska/autonlp-data-vaccinfaq", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- tags: autonlp language: unk widget: - text: "I love AutoNLP ๐Ÿค—" datasets: - Jeska/autonlp-data-vaccinfaq co2_eq_emissions: 27.135492487925884 --- # Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 22144706 - CO2 Emissions (in grams): 27.135492487925884 ## Validation Metrics - Loss: 1.81697416305542 - Accuracy: 0.6377269139700079 - Macro F1: 0.5181293370145044 - Micro F1: 0.6377269139700079 - Weighted F1: 0.631117826235572 - Macro Precision: 0.5371452512845428 - Micro Precision: 0.6377269139700079 - Weighted Precision: 0.6655055695465463 - Macro Recall: 0.5609328178925124 - Micro Recall: 0.6377269139700079 - Weighted Recall: 0.6377269139700079 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/Jeska/autonlp-vaccinfaq-22144706 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("Jeska/autonlp-vaccinfaq-22144706", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("Jeska/autonlp-vaccinfaq-22144706", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
ringabelle/bert-base-cased-finetuned-COVID-tweets
ringabelle
2021-10-19T11:38:14Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-base-cased-finetuned-COVID-tweets results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-finetuned-COVID-tweets This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.2694 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 194 | 2.4419 | | No log | 2.0 | 388 | 2.4230 | | 2.5821 | 3.0 | 582 | 2.3678 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
yazdipour/text-to-sparql-t5-small
yazdipour
2021-10-19T11:17:46Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - null metrics: - f1 model-index: - name: text-to-sparql-t5-small-2021-10-19_10-17_lastDS results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation metrics: - name: F1 type: f1 value: 0.3129461705684662 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # text-to-sparql-t5-small-2021-10-19_10-17_lastDS This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2335 - Gen Len: 19.0 - P: 0.5580 - R: 0.0884 - F1: 0.3129 - Score: 5.9585 - Bleu-precisions: [90.11303396628615, 80.34125695971072, 73.81487011728768, 69.48796722990271] - Bleu-bp: 0.0763 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Gen Len | P | R | F1 | Score | Bleu-precisions | Bleu-bp | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:------:|:------:|:------:|:----------------------------------------------------------------------------:|:-------:| | 0.3166 | 1.0 | 4807 | 0.2335 | 19.0 | 0.5580 | 0.0884 | 0.3129 | 5.9585 | [90.11303396628615, 80.34125695971072, 73.81487011728768, 69.48796722990271] | 0.0763 | ### Framework versions - Transformers 4.10.0 - Pytorch 1.9.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
DeepESP/gpt2-spanish
DeepESP
2021-10-19T08:52:48Z
5,155
36
transformers
[ "transformers", "pytorch", "tf", "jax", "gpt2", "text-generation", "GPT-2", "Spanish", "ebooks", "nlg", "es", "dataset:ebooks", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:04Z
--- language: es tags: - GPT-2 - Spanish - ebooks - nlg datasets: - ebooks widget: - text: "Quisiera saber que va a suceder" license: mit --- # GPT2-Spanish GPT2-Spanish is a language generation model trained from scratch with 11.5GB of Spanish texts and with a Byte Pair Encoding (BPE) tokenizer that was trained for this purpose. The parameters used are the same as the small version of the original OpenAI GPT2 model. ## Corpus This model was trained with a corpus of 11.5GB of texts corresponding to 3.5GB of Wikipedia articles and 8GB of books (narrative, short stories, theater, poetry, essays, and popularization). ## Tokenizer The texts are tokenized using a byte-level version of Byte Pair Encoding (BPE) (for Unicode characters) and a vocabulary size of 50257. The inputs are sequences of 1024 consecutive tokens. This tokenizer was trained from scratch with the Spanish corpus, since it was evidenced that the tokenizer of the English models presented limitations to capture the semantic relations of Spanish, due to the morphosyntactic differences between both languages. Apart from the special token "<|endoftext|>" for text ending in the OpenAI GPT-2 models, the tokens "<|talk|>", "<|ax1|>", "<|ax2|>" (..)"<|ax9|>" were included so that they can serve as prompts in future training. ## Training The model and tokenizer were trained using the Hugging Face libraries with an Nvidia Tesla V100 GPU with 16GB memory on Google Colab servers. ## Authors The model was trained by Alejandro Oรฑate Latorre (Spain) and Jorge Ortiz Fuentes (Chile), members of -Deep ESP-, an open-source community on Natural Language Processing in Spanish (https://t.me/joinchat/VoEp1bPrDYEexc6h). Thanks to the members of the community who collaborated with funding for the initial tests. ## Cautions The model generates texts according to the patterns learned in the training corpus. These data were not filtered, therefore, the model could generate offensive or discriminatory content.
hiiamsid/autonlp-Summarization-20684328
hiiamsid
2021-10-19T05:09:38Z
4
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "autonlp", "es", "dataset:hiiamsid/autonlp-data-Summarization", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- tags: autonlp language: es widget: - text: "I love AutoNLP ๐Ÿค—" datasets: - hiiamsid/autonlp-data-Summarization co2_eq_emissions: 1133.9679082840014 --- # Model Trained Using AutoNLP - Problem type: Summarization - Model ID: 20684328 - CO2 Emissions (in grams): 1133.9679082840014 ## Validation Metrics - Loss: nan - Rouge1: 9.4193 - Rouge2: 0.91 - RougeL: 7.9376 - RougeLsum: 8.0076 - Gen Len: 10.65 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/hiiamsid/autonlp-Summarization-20684328 ```
yazdipour/text-to-sparql-t5-small-2021-10-18_23-00
yazdipour
2021-10-19T00:01:17Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - null model-index: - name: text-to-sparql-t5-small-2021-10-18_23-00 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # text-to-sparql-t5-small-2021-10-18_23-00 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2284 - Gen Len: 19.0 - Bertscorer-p: 0.5644 - Bertscorer-r: 0.0815 - Bertscorer-f1: 0.3120 - Sacrebleu-score: 5.5690 - Sacrebleu-precisions: [89.6746395837541, 79.06489438259324, 71.93407601726916, 67.21220306665607] - Bleu-bp: 0.0728 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Gen Len | Bertscorer-p | Bertscorer-r | Bertscorer-f1 | Sacrebleu-score | Sacrebleu-precisions | Bleu-bp | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------------:|:------------:|:-------------:|:---------------:|:---------------------------------------------------------------------------:|:-------:| | 0.2808 | 1.0 | 4772 | 0.2284 | 19.0 | 0.5644 | 0.0815 | 0.3120 | 5.5690 | [89.6746395837541, 79.06489438259324, 71.93407601726916, 67.21220306665607] | 0.0728 | ### Framework versions - Transformers 4.10.0 - Pytorch 1.9.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
mmcquade11/autonlp-imdb-test-21134442
mmcquade11
2021-10-18T20:16:41Z
4
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autonlp", "en", "dataset:mmcquade11/autonlp-data-imdb-test", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- tags: autonlp language: en widget: - text: "I love AutoNLP ๐Ÿค—" datasets: - mmcquade11/autonlp-data-imdb-test co2_eq_emissions: 298.7849611952843 --- # Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 21134442 - CO2 Emissions (in grams): 298.7849611952843 ## Validation Metrics - Loss: 0.21618066728115082 - Accuracy: 0.9393 - Precision: 0.9360730593607306 - Recall: 0.943 - AUC: 0.98362804 - F1: 0.9395237620803029 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/mmcquade11/autonlp-imdb-test-21134442 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("mmcquade11/autonlp-imdb-test-21134442", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("mmcquade11/autonlp-imdb-test-21134442", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
gagan3012/pickuplines
gagan3012
2021-10-18T19:53:36Z
7
2
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer model-index: - name: pickuplines results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pickuplines This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 5.7873 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100.0 ### Training results ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
yazdipour/text-to-sparql-t5-base-2021-10-18_16-15
yazdipour
2021-10-18T18:58:01Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - null model-index: - name: text-to-sparql-t5-base-2021-10-18_16-15 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # text-to-sparql-t5-base-2021-10-18_16-15 This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1294 - Gen Len: 19.0 - Bertscorer-p: 0.5827 - Bertscorer-r: 0.0812 - Bertscorer-f1: 0.3202 - Sacrebleu-score: 5.9410 - Sacrebleu-precisions: [92.24641734333713, 84.24354361048307, 78.78523204758982, 75.43428275229601] - Bleu-bp: 0.0721 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Gen Len | Bertscorer-p | Bertscorer-r | Bertscorer-f1 | Sacrebleu-score | Sacrebleu-precisions | Bleu-bp | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------------:|:------------:|:-------------:|:---------------:|:----------------------------------------------------------------------------:|:-------:| | nan | 1.0 | 4772 | 0.1294 | 19.0 | 0.5827 | 0.0812 | 0.3202 | 5.9410 | [92.24641734333713, 84.24354361048307, 78.78523204758982, 75.43428275229601] | 0.0721 | ### Framework versions - Transformers 4.10.0 - Pytorch 1.9.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
mmcquade11/autonlp-imdb-test-21134453
mmcquade11
2021-10-18T17:47:59Z
5
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "autonlp", "en", "dataset:mmcquade11/autonlp-data-imdb-test", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- tags: autonlp language: en widget: - text: "I love AutoNLP ๐Ÿค—" datasets: - mmcquade11/autonlp-data-imdb-test co2_eq_emissions: 38.102565360610484 --- # Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 21134453 - CO2 Emissions (in grams): 38.102565360610484 ## Validation Metrics - Loss: 0.172550767660141 - Accuracy: 0.9355 - Precision: 0.9362853135644159 - Recall: 0.9346 - AUC: 0.98267064 - F1: 0.9354418977079372 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/mmcquade11/autonlp-imdb-test-21134453 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("mmcquade11/autonlp-imdb-test-21134453", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("mmcquade11/autonlp-imdb-test-21134453", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
cambridgeltl/trans-encoder-bi-simcse-roberta-base
cambridgeltl
2021-10-18T13:29:56Z
4
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "arxiv:2109.13059", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
--- language: en tags: - sentence-embeddings - sentence-similarity - dual-encoder ### cambridgeltl/trans-encoder-bi-simcse-roberta-base An unsupervised sentence encoder (bi-encoder) proposed by [Liu et al. (2021)](https://arxiv.org/pdf/2109.13059.pdf). The model is trained with unlabelled sentence pairs sampled from STS2012-2016, STS-b, and SICK-R, using [princeton-nlp/unsup-simcse-roberta-base](https://huggingface.co/princeton-nlp/unsup-simcse-roberta-base) as the base model. Please use `[CLS]` (before pooler) as the representation of the input. ### Citation ```bibtex @article{liu2021trans, title={Trans-Encoder: Unsupervised sentence-pair modelling through self-and mutual-distillations}, author={Liu, Fangyu and Jiao, Yunlong and Massiah, Jordan and Yilmaz, Emine and Havrylov, Serhii}, journal={arXiv preprint arXiv:2109.13059}, year={2021} } ```
yazdipour/text-to-sparql-t5-small-2021-10-18_12-12
yazdipour
2021-10-18T13:14:26Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - null model-index: - name: text-to-sparql-t5-small-2021-10-18_12-12 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # text-to-sparql-t5-small-2021-10-18_12-12 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3284 - Gen Len: 19.0 - Bertscorer-p: 0.5420 - Bertscorer-r: 0.0732 - Bertscorer-f1: 0.2972 - Sacrebleu-score: 4.8763 - Sacrebleu-precisions: [87.2581084764241, 73.48869132519009, 64.19139944127409, 58.342420937840785] - Bleu-bp: 0.0697 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Gen Len | Bertscorer-p | Bertscorer-r | Bertscorer-f1 | Sacrebleu-score | Sacrebleu-precisions | Bleu-bp | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------------:|:------------:|:-------------:|:---------------:|:----------------------------------------------------------------------------:|:-------:| | 0.4209 | 1.0 | 4772 | 0.3284 | 19.0 | 0.5420 | 0.0732 | 0.2972 | 4.8763 | [87.2581084764241, 73.48869132519009, 64.19139944127409, 58.342420937840785] | 0.0697 | ### Framework versions - Transformers 4.10.0 - Pytorch 1.9.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
yazdipour/text-to-sparql-t5-small-2021-10-18_09-32
yazdipour
2021-10-18T10:33:05Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - null metrics: - f1 model-index: - name: text-to-sparql-t5-small-2021-10-18_09-32 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation metrics: - name: F1 type: f1 value: 0.26458749175071716 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # text-to-sparql-t5-small-2021-10-18_09-32 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5119 - Gen Len: 19.0 - P: 0.4884 - R: 0.0583 - F1: 0.2646 - Score: 3.5425 - Bleu-precisions: [82.80295919500207, 62.695879280325016, 50.2215675749897, 44.03052700138759] - Bleu-bp: 0.0609 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Gen Len | P | R | F1 | Score | Bleu-precisions | Bleu-bp | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:------:|:------:|:------:|:----------------------------------------------------------------------------:|:-------:| | 0.7088 | 1.0 | 4772 | 0.5119 | 19.0 | 0.4884 | 0.0583 | 0.2646 | 3.5425 | [82.80295919500207, 62.695879280325016, 50.2215675749897, 44.03052700138759] | 0.0609 | ### Framework versions - Transformers 4.10.0 - Pytorch 1.9.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
Ching/negation_detector
Ching
2021-10-18T10:32:43Z
11
0
transformers
[ "transformers", "pytorch", "roberta", "question-answering", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:04Z
This question answering model was fine tuned to detect negation expressions How to use: question: negation context: That is not safe! Answer: not question: negation context: Weren't we going to go to the moon? Answer: Weren't
CAMeL-Lab/bert-base-arabic-camelbert-ca-pos-egy
CAMeL-Lab
2021-10-18T10:18:01Z
134
2
transformers
[ "transformers", "pytorch", "tf", "bert", "token-classification", "ar", "arxiv:2103.06678", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:04Z
--- language: - ar license: apache-2.0 widget: - text: 'ุนุงู…ู„ ุงูŠู‡ ุŸ' --- # CAMeLBERT-CA POS-EGY Model ## Model description **CAMeLBERT-CA POS-EGY Model** is a Egyptian Arabic POS tagging model that was built by fine-tuning the [CAMeLBERT-CA](https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-ca/) model. For the fine-tuning, we used the ARZTB dataset . Our fine-tuning procedure and the hyperparameters we used can be found in our paper *"[The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models](https://arxiv.org/abs/2103.06678)."* Our fine-tuning code can be found [here](https://github.com/CAMeL-Lab/CAMeLBERT). ## Intended uses You can use the CAMeLBERT-CA POS-EGY model as part of the transformers pipeline. This model will also be available in [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools) soon. #### How to use To use the model with a transformers pipeline: ```python >>> from transformers import pipeline >>> pos = pipeline('token-classification', model='CAMeL-Lab/bert-base-arabic-camelbert-ca-pos-egy') >>> text = 'ุนุงู…ู„ ุงูŠู‡ ุŸ' >>> pos(text) [{'entity': 'adj', 'score': 0.9990943, 'index': 1, 'word': 'ุนุงู…ู„', 'start': 0, 'end': 4}, {'entity': 'pron_interrog', 'score': 0.99863535, 'index': 2, 'word': 'ุงูŠู‡', 'start': 5, 'end': 8}, {'entity': 'punc', 'score': 0.99990875, 'index': 3, 'word': 'ุŸ', 'start': 9, 'end': 10}] ``` *Note*: to download our models, you would need `transformers>=3.5.0`. Otherwise, you could download the models manually. ## Citation ```bibtex @inproceedings{inoue-etal-2021-interplay, title = "The Interplay of Variant, Size, and Task Type in {A}rabic Pre-trained Language Models", author = "Inoue, Go and Alhafni, Bashar and Baimukan, Nurpeiis and Bouamor, Houda and Habash, Nizar", booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop", month = apr, year = "2021", address = "Kyiv, Ukraine (Online)", publisher = "Association for Computational Linguistics", abstract = "In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a mix of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.", } ```
CAMeL-Lab/bert-base-arabic-camelbert-mix-pos-egy
CAMeL-Lab
2021-10-18T10:15:57Z
12
3
transformers
[ "transformers", "pytorch", "tf", "bert", "token-classification", "ar", "arxiv:2103.06678", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:04Z
--- language: - ar license: apache-2.0 widget: - text: 'ุนุงู…ู„ ุงูŠู‡ ุŸ' --- # CAMeLBERT-Mix POS-EGY Model ## Model description **CAMeLBERT-Mix POS-EGY Model** is a Egyptian Arabic POS tagging model that was built by fine-tuning the [CAMeLBERT-Mix](https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-mix/) model. For the fine-tuning, we used the ARZTB dataset . Our fine-tuning procedure and the hyperparameters we used can be found in our paper *"[The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models](https://arxiv.org/abs/2103.06678)."* Our fine-tuning code can be found [here](https://github.com/CAMeL-Lab/CAMeLBERT). ## Intended uses You can use the CAMeLBERT-Mix POS-EGY model as part of the transformers pipeline. This model will also be available in [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools) soon. #### How to use To use the model with a transformers pipeline: ```python >>> from transformers import pipeline >>> pos = pipeline('token-classification', model='CAMeL-Lab/bert-base-arabic-camelbert-mix-pos-egy') >>> text = 'ุนุงู…ู„ ุงูŠู‡ ุŸ' >>> pos(text) [{'entity': 'adj', 'score': 0.9972628, 'index': 1, 'word': 'ุนุงู…ู„', 'start': 0, 'end': 4}, {'entity': 'pron_interrog', 'score': 0.9525163, 'index': 2, 'word': 'ุงูŠู‡', 'start': 5, 'end': 8}, {'entity': 'punc', 'score': 0.99869114, 'index': 3, 'word': 'ุŸ', 'start': 9, 'end': 10}] ``` *Note*: to download our models, you would need `transformers>=3.5.0`. Otherwise, you could download the models manually. ## Citation ```bibtex @inproceedings{inoue-etal-2021-interplay, title = "The Interplay of Variant, Size, and Task Type in {A}rabic Pre-trained Language Models", author = "Inoue, Go and Alhafni, Bashar and Baimukan, Nurpeiis and Bouamor, Houda and Habash, Nizar", booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop", month = apr, year = "2021", address = "Kyiv, Ukraine (Online)", publisher = "Association for Computational Linguistics", abstract = "In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a mix of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.", } ```
CAMeL-Lab/bert-base-arabic-camelbert-da-pos-egy
CAMeL-Lab
2021-10-18T10:15:37Z
9
1
transformers
[ "transformers", "pytorch", "tf", "bert", "token-classification", "ar", "arxiv:2103.06678", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:04Z
--- language: - ar license: apache-2.0 widget: - text: 'ุนุงู…ู„ ุงูŠู‡ ุŸ' --- # CAMeLBERT-DA POS-EGY Model ## Model description **CAMeLBERT-DA POS-EGY Model** is a Egyptian Arabic POS tagging model that was built by fine-tuning the [CAMeLBERT-DA](https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-da/) model. For the fine-tuning, we used the ARZTB dataset . Our fine-tuning procedure and the hyperparameters we used can be found in our paper *"[The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models](https://arxiv.org/abs/2103.06678)."* Our fine-tuning code can be found [here](https://github.com/CAMeL-Lab/CAMeLBERT). ## Intended uses You can use the CAMeLBERT-DA POS-EGY model as part of the transformers pipeline. This model will also be available in [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools) soon. #### How to use To use the model with a transformers pipeline: ```python >>> from transformers import pipeline >>> pos = pipeline('token-classification', model='CAMeL-Lab/bert-base-arabic-camelbert-da-pos-egy') >>> text = 'ุนุงู…ู„ ุงูŠู‡ ุŸ' >>> pos(text) [{'entity': 'adj', 'score': 0.99843216, 'index': 1, 'word': 'ุนุงู…ู„', 'start': 0, 'end': 4}, {'entity': 'pron_interrog', 'score': 0.9990083, 'index': 2, 'word': 'ุงูŠู‡', 'start': 5, 'end': 8}, {'entity': 'punc', 'score': 0.82973784, 'index': 3, 'word': 'ุŸ', 'start': 9, 'end': 10}] ``` *Note*: to download our models, you would need `transformers>=3.5.0`. Otherwise, you could download the models manually. ## Citation ```bibtex @inproceedings{inoue-etal-2021-interplay, title = "The Interplay of Variant, Size, and Task Type in {A}rabic Pre-trained Language Models", author = "Inoue, Go and Alhafni, Bashar and Baimukan, Nurpeiis and Bouamor, Houda and Habash, Nizar", booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop", month = apr, year = "2021", address = "Kyiv, Ukraine (Online)", publisher = "Association for Computational Linguistics", abstract = "In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a mix of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.", } ```
CAMeL-Lab/bert-base-arabic-camelbert-ca-pos-glf
CAMeL-Lab
2021-10-18T10:13:34Z
10
1
transformers
[ "transformers", "pytorch", "tf", "bert", "token-classification", "ar", "arxiv:2103.06678", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:04Z
--- language: - ar license: apache-2.0 widget: - text: 'ุดู„ูˆู†ูƒ ุŸ ุดุฎุจุงุฑูƒ ุŸ' --- # CAMeLBERT-CA POS-GLF Model ## Model description **CAMeLBERT-CA POS-GLF Model** is a Gulf Arabic POS tagging model that was built by fine-tuning the [CAMeLBERT-CA](https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-ca/) model. For the fine-tuning, we used the [Gumar](https://camel.abudhabi.nyu.edu/annotated-gumar-corpus/) dataset. Our fine-tuning procedure and the hyperparameters we used can be found in our paper *"[The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models](https://arxiv.org/abs/2103.06678)."* Our fine-tuning code can be found [here](https://github.com/CAMeL-Lab/CAMeLBERT). ## Intended uses You can use the CAMeLBERT-CA POS-GLF model as part of the transformers pipeline. This model will also be available in [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools) soon. #### How to use To use the model with a transformers pipeline: ```python >>> from transformers import pipeline >>> pos = pipeline('token-classification', model='CAMeL-Lab/bert-base-arabic-camelbert-ca-pos-glf') >>> text = 'ุดู„ูˆู†ูƒ ุŸ ุดุฎุจุงุฑูƒ ุŸ' >>> pos(text) [{'entity': 'noun', 'score': 0.99572617, 'index': 1, 'word': 'ุดู„ูˆู†', 'start': 0, 'end': 4}, {'entity': 'noun', 'score': 0.9411187, 'index': 2, 'word': '##ูƒ', 'start': 4, 'end': 5}, {'entity': 'punc', 'score': 0.9999661, 'index': 3, 'word': 'ุŸ', 'start': 6, 'end': 7}, {'entity': 'noun', 'score': 0.99286526, 'index': 4, 'word': 'ุด', 'start': 8, 'end': 9}, {'entity': 'noun', 'score': 0.9983397, 'index': 5, 'word': '##ุฎุจุงุฑ', 'start': 9, 'end': 13}, {'entity': 'noun', 'score': 0.9609381, 'index': 6, 'word': '##ูƒ', 'start': 13, 'end': 14}, {'entity': 'punc', 'score': 0.9999668, 'index': 7, 'word': 'ุŸ', 'start': 15, 'end': 16}] ``` *Note*: to download our models, you would need `transformers>=3.5.0`. Otherwise, you could download the models manually. ## Citation ```bibtex @inproceedings{inoue-etal-2021-interplay, title = "The Interplay of Variant, Size, and Task Type in {A}rabic Pre-trained Language Models", author = "Inoue, Go and Alhafni, Bashar and Baimukan, Nurpeiis and Bouamor, Houda and Habash, Nizar", booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop", month = apr, year = "2021", address = "Kyiv, Ukraine (Online)", publisher = "Association for Computational Linguistics", abstract = "In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a mix of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.", } ```
CAMeL-Lab/bert-base-arabic-camelbert-da-pos-glf
CAMeL-Lab
2021-10-18T09:58:40Z
9
0
transformers
[ "transformers", "pytorch", "tf", "bert", "token-classification", "ar", "arxiv:2103.06678", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:04Z
--- language: - ar license: apache-2.0 widget: - text: 'ุดู„ูˆู†ูƒ ุŸ ุดุฎุจุงุฑูƒ ุŸ' --- # CAMeLBERT-DA POS-GLF Model ## Model description **CAMeLBERT-DA POS-GLF Model** is a Gulf Arabic POS tagging model that was built by fine-tuning the [CAMeLBERT-DA](https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-da/) model. For the fine-tuning, we used the [Gumar](https://camel.abudhabi.nyu.edu/annotated-gumar-corpus/) dataset. Our fine-tuning procedure and the hyperparameters we used can be found in our paper *"[The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models](https://arxiv.org/abs/2103.06678)."* Our fine-tuning code can be found [here](https://github.com/CAMeL-Lab/CAMeLBERT). ## Intended uses You can use the CAMeLBERT-DA POS-GLF model as part of the transformers pipeline. This model will also be available in [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools) soon. #### How to use To use the model with a transformers pipeline: ```python >>> from transformers import pipeline >>> pos = pipeline('token-classification', model='CAMeL-Lab/bert-base-arabic-camelbert-da-pos-glf') >>> text = 'ุดู„ูˆู†ูƒ ุŸ ุดุฎุจุงุฑูƒ ุŸ' >>> pos(text) [{'entity': 'noun', 'score': 0.84596395, 'index': 1, 'word': 'ุดู„ูˆู†', 'start': 0, 'end': 4}, {'entity': 'prep', 'score': 0.7230489, 'index': 2, 'word': '##ูƒ', 'start': 4, 'end': 5}, {'entity': 'punc', 'score': 0.99996364, 'index': 3, 'word': 'ุŸ', 'start': 6, 'end': 7}, {'entity': 'noun', 'score': 0.9990874, 'index': 4, 'word': 'ุด', 'start': 8, 'end': 9}, {'entity': 'noun', 'score': 0.99985224, 'index': 5, 'word': '##ุฎุจุงุฑ', 'start': 9, 'end': 13}, {'entity': 'noun', 'score': 0.9988868, 'index': 6, 'word': '##ูƒ', 'start': 13, 'end': 14}, {'entity': 'punc', 'score': 0.9999683, 'index': 7, 'word': 'ุŸ', 'start': 15, 'end': 16}] ``` *Note*: to download our models, you would need `transformers>=3.5.0`. Otherwise, you could download the models manually. ## Citation ```bibtex @inproceedings{inoue-etal-2021-interplay, title = "The Interplay of Variant, Size, and Task Type in {A}rabic Pre-trained Language Models", author = "Inoue, Go and Alhafni, Bashar and Baimukan, Nurpeiis and Bouamor, Houda and Habash, Nizar", booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop", month = apr, year = "2021", address = "Kyiv, Ukraine (Online)", publisher = "Association for Computational Linguistics", abstract = "In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a mix of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.", } ```
CAMeL-Lab/bert-base-arabic-camelbert-ca-pos-msa
CAMeL-Lab
2021-10-18T09:44:57Z
7
0
transformers
[ "transformers", "pytorch", "tf", "bert", "token-classification", "ar", "arxiv:2103.06678", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:04Z
--- language: - ar license: apache-2.0 widget: - text: 'ุฅู…ุงุฑุฉ ุฃุจูˆุธุจูŠ ู‡ูŠ ุฅุญุฏู‰ ุฅู…ุงุฑุงุช ุฏูˆู„ุฉ ุงู„ุฅู…ุงุฑุงุช ุงู„ุนุฑุจูŠุฉ ุงู„ู…ุชุญุฏุฉ ุงู„ุณุจุน' --- # CAMeLBERT-CA POS-MSA Model ## Model description **CAMeLBERT-CA POS-MSA Model** is a Modern Standard Arabic (MSA) POS tagging model that was built by fine-tuning the [CAMeLBERT-CA](https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-ca/) model. For the fine-tuning, we used the [PATB](https://dl.acm.org/doi/pdf/10.5555/1621804.1621808) dataset. Our fine-tuning procedure and the hyperparameters we used can be found in our paper *"[The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models](https://arxiv.org/abs/2103.06678)."* Our fine-tuning code can be found [here](https://github.com/CAMeL-Lab/CAMeLBERT). ## Intended uses You can use the CAMeLBERT-CA POS-MSA model as part of the transformers pipeline. This model will also be available in [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools) soon. #### How to use To use the model with a transformers pipeline: ```python >>> from transformers import pipeline >>> pos = pipeline('token-classification', model='CAMeL-Lab/bert-base-arabic-camelbert-ca-pos-msa') >>> text = 'ุฅู…ุงุฑุฉ ุฃุจูˆุธุจูŠ ู‡ูŠ ุฅุญุฏู‰ ุฅู…ุงุฑุงุช ุฏูˆู„ุฉ ุงู„ุฅู…ุงุฑุงุช ุงู„ุนุฑุจูŠุฉ ุงู„ู…ุชุญุฏุฉ ุงู„ุณุจุน' >>> pos(text) [{'entity': 'noun', 'score': 0.9999758, 'index': 1, 'word': 'ุฅู…ุงุฑุฉ', 'start': 0, 'end': 5}, {'entity': 'noun_prop', 'score': 0.9997559, 'index': 2, 'word': 'ุฃุจูˆุธุจูŠ', 'start': 6, 'end': 12}, {'entity': 'pron', 'score': 0.99996257, 'index': 3, 'word': 'ู‡ูŠ', 'start': 13, 'end': 15}, {'entity': 'noun', 'score': 0.9958452, 'index': 4, 'word': 'ุฅุญุฏู‰', 'start': 16, 'end': 20}, {'entity': 'noun', 'score': 0.9999635, 'index': 5, 'word': 'ุฅู…ุง', 'start': 21, 'end': 24}, {'entity': 'noun', 'score': 0.99991685, 'index': 6, 'word': '##ุฑุงุช', 'start': 24, 'end': 27}, {'entity': 'noun', 'score': 0.99997497, 'index': 7, 'word': 'ุฏูˆู„ุฉ', 'start': 28, 'end': 32}, {'entity': 'noun', 'score': 0.9999795, 'index': 8, 'word': 'ุงู„ุฅู…ุงุฑุงุช', 'start': 33, 'end': 41}, {'entity': 'adj', 'score': 0.99924207, 'index': 9, 'word': 'ุงู„ุนุฑุจูŠุฉ', 'start': 42, 'end': 49}, {'entity': 'adj', 'score': 0.99994195, 'index': 10, 'word': 'ุงู„ู…ุชุญุฏุฉ', 'start': 50, 'end': 57}, {'entity': 'noun_num', 'score': 0.9997414, 'index': 11, 'word': 'ุงู„ุณุจุน', 'start': 58, 'end': 63}] ``` *Note*: to download our models, you would need `transformers>=3.5.0`. Otherwise, you could download the models manually. ## Citation ```bibtex @inproceedings{inoue-etal-2021-interplay, title = "The Interplay of Variant, Size, and Task Type in {A}rabic Pre-trained Language Models", author = "Inoue, Go and Alhafni, Bashar and Baimukan, Nurpeiis and Bouamor, Houda and Habash, Nizar", booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop", month = apr, year = "2021", address = "Kyiv, Ukraine (Online)", publisher = "Association for Computational Linguistics", abstract = "In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a mix of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.", } ```
CAMeL-Lab/bert-base-arabic-camelbert-msa-pos-msa
CAMeL-Lab
2021-10-18T09:34:42Z
22
0
transformers
[ "transformers", "pytorch", "tf", "bert", "token-classification", "ar", "arxiv:2103.06678", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:04Z
--- language: - ar license: apache-2.0 widget: - text: 'ุฅู…ุงุฑุฉ ุฃุจูˆุธุจูŠ ู‡ูŠ ุฅุญุฏู‰ ุฅู…ุงุฑุงุช ุฏูˆู„ุฉ ุงู„ุฅู…ุงุฑุงุช ุงู„ุนุฑุจูŠุฉ ุงู„ู…ุชุญุฏุฉ ุงู„ุณุจุน' --- # CAMeLBERT-MSA POS-MSA Model ## Model description **CAMeLBERT-MSA POS-MSA Model** is a Modern Standard Arabic (MSA) POS tagging model that was built by fine-tuning the [CAMeLBERT-MSA](https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-msa/) model. For the fine-tuning, we used the [PATB](https://dl.acm.org/doi/pdf/10.5555/1621804.1621808) dataset . Our fine-tuning procedure and the hyperparameters we used can be found in our paper *"[The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models](https://arxiv.org/abs/2103.06678)."* Our fine-tuning code can be found [here](https://github.com/CAMeL-Lab/CAMeLBERT). ## Intended uses You can use the CAMeLBERT-MSA POS-MSA model as part of the transformers pipeline. This model will also be available in [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools) soon. #### How to use To use the model with a transformers pipeline: ```python >>> from transformers import pipeline >>> pos = pipeline('token-classification', model='CAMeL-Lab/bert-base-arabic-camelbert-msa-pos-msa') >>> text = 'ุฅู…ุงุฑุฉ ุฃุจูˆุธุจูŠ ู‡ูŠ ุฅุญุฏู‰ ุฅู…ุงุฑุงุช ุฏูˆู„ุฉ ุงู„ุฅู…ุงุฑุงุช ุงู„ุนุฑุจูŠุฉ ุงู„ู…ุชุญุฏุฉ ุงู„ุณุจุน' >>> pos(text) [{'entity': 'noun', 'score': 0.9999764, 'index': 1, 'word': 'ุฅู…ุงุฑุฉ', 'start': 0, 'end': 5}, {'entity': 'noun_prop', 'score': 0.99991846, 'index': 2, 'word': 'ุฃุจูˆุธุจูŠ', 'start': 6, 'end': 12}, {'entity': 'pron', 'score': 0.9998356, 'index': 3, 'word': 'ู‡ูŠ', 'start': 13, 'end': 15}, {'entity': 'noun', 'score': 0.99368894, 'index': 4, 'word': 'ุฅุญุฏู‰', 'start': 16, 'end': 20}, {'entity': 'noun', 'score': 0.9999426, 'index': 5, 'word': 'ุฅู…ุง', 'start': 21, 'end': 24}, {'entity': 'noun', 'score': 0.9999339, 'index': 6, 'word': '##ุฑุงุช', 'start': 24, 'end': 27}, {'entity': 'noun', 'score': 0.99996775, 'index': 7, 'word': 'ุฏูˆู„ุฉ', 'start': 28, 'end': 32}, {'entity': 'noun', 'score': 0.99996895, 'index': 8, 'word': 'ุงู„ุฅู…ุงุฑุงุช', 'start': 33, 'end': 41}, {'entity': 'adj', 'score': 0.99990183, 'index': 9, 'word': 'ุงู„ุนุฑุจูŠุฉ', 'start': 42, 'end': 49}, {'entity': 'adj', 'score': 0.9999347, 'index': 10, 'word': 'ุงู„ู…ุชุญุฏุฉ', 'start': 50, 'end': 57}, {'entity': 'noun_num', 'score': 0.99931145, 'index': 11, 'word': 'ุงู„ุณุจุน', 'start': 58, 'end': 63}] ``` *Note*: to download our models, you would need `transformers>=3.5.0`. Otherwise, you could download the models manually. ## Citation ```bibtex @inproceedings{inoue-etal-2021-interplay, title = "The Interplay of Variant, Size, and Task Type in {A}rabic Pre-trained Language Models", author = "Inoue, Go and Alhafni, Bashar and Baimukan, Nurpeiis and Bouamor, Houda and Habash, Nizar", booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop", month = apr, year = "2021", address = "Kyiv, Ukraine (Online)", publisher = "Association for Computational Linguistics", abstract = "In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a mix of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.", } ```
yazdipour/text-to-sparql-t5-base-2021-10-17_23-40
yazdipour
2021-10-18T02:23:08Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - null metrics: - f1 model-index: - name: text-to-sparql-t5-base-2021-10-17_23-40 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation metrics: - name: F1 type: f1 value: 0.2649857699871063 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # text-to-sparql-t5-base-2021-10-17_23-40 This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2645 - Gen Len: 19.0 - P: 0.5125 - R: 0.0382 - F1: 0.2650 - Score: 5.1404 - Bleu-precisions: [88.49268497650789, 75.01025204252232, 66.60779038484033, 63.18383699935422] - Bleu-bp: 0.0707 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Gen Len | P | R | F1 | Score | Bleu-precisions | Bleu-bp | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:------:|:------:|:------:|:----------------------------------------------------------------------------:|:-------:| | 0.3513 | 1.0 | 4807 | 0.2645 | 19.0 | 0.5125 | 0.0382 | 0.2650 | 5.1404 | [88.49268497650789, 75.01025204252232, 66.60779038484033, 63.18383699935422] | 0.0707 | ### Framework versions - Transformers 4.10.0 - Pytorch 1.9.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
airKlizz/bart-large-multi-fr-wiki-news
airKlizz
2021-10-17T20:10:41Z
4
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "fr", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: fr license: mit ---
yazdipour/text-to-sparql-t5-small-2021-10-17_18-47
yazdipour
2021-10-17T19:48:35Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - null metrics: - f1 model-index: - name: text-to-sparql-t5-small-2021-10-17_18-47 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation metrics: - name: F1 type: f1 value: 0.2345714420080185 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # text-to-sparql-t5-small-2021-10-17_18-47 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5258 - Gen Len: 19.0 - P: 0.4582 - R: 0.0278 - F1: 0.2346 - Score: 3.5848 - Bleu-precisions: [82.57739877107295, 62.13358857503344, 48.43062944877681, 41.90172321318059] - Bleu-bp: 0.0631 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Gen Len | P | R | F1 | Score | Bleu-precisions | Bleu-bp | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:------:|:------:|:------:|:----------------------------------------------------------------------------:|:-------:| | 0.7575 | 1.0 | 4807 | 0.5258 | 19.0 | 0.4582 | 0.0278 | 0.2346 | 3.5848 | [82.57739877107295, 62.13358857503344, 48.43062944877681, 41.90172321318059] | 0.0631 | ### Framework versions - Transformers 4.10.0 - Pytorch 1.9.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
MariamD/my-t5-qa-legal
MariamD
2021-10-17T13:20:41Z
2
1
transformers
[ "transformers", "pytorch", "question-answering", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:04Z
--- language: english datasets: - legal dataset pipeline_tag: question-answering ---
CAMeL-Lab/bert-base-arabic-camelbert-mix-poetry
CAMeL-Lab
2021-10-17T12:10:17Z
8
0
transformers
[ "transformers", "pytorch", "tf", "bert", "text-classification", "ar", "arxiv:1905.05700", "arxiv:2103.06678", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- language: - ar license: apache-2.0 widget: - text: 'ุงู„ุฎูŠู„ ูˆุงู„ู„ูŠู„ ูˆุงู„ุจูŠุฏุงุก ุชุนุฑูู†ูŠ [SEP] ูˆุงู„ุณูŠู ูˆุงู„ุฑู…ุญ ูˆุงู„ู‚ุฑุทุงุณ ูˆุงู„ู‚ู„ู…' --- # CAMeLBERT-Mix Poetry Classification Model ## Model description **CAMeLBERT-Mix Poetry Classification Model** is a poetry classification model that was built by fine-tuning the [CAMeLBERT Mix](https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-mix/) model. For the fine-tuning, we used the [APCD](https://arxiv.org/pdf/1905.05700.pdf) dataset. Our fine-tuning procedure and the hyperparameters we used can be found in our paper *"[The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models](https://arxiv.org/abs/2103.06678)."* Our fine-tuning code can be found [here](https://github.com/CAMeL-Lab/CAMeLBERT). ## Intended uses You can use the CAMeLBERT-Mix Poetry Classification model as part of the transformers pipeline. This model will also be available in [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools) soon. #### How to use To use the model with a transformers pipeline: ```python >>> from transformers import pipeline >>> poetry = pipeline('text-classification', model='CAMeL-Lab/bert-base-arabic-camelbert-mix-poetry') >>> # A list of verses where each verse consists of two parts. >>> verses = [ ['ุงู„ุฎูŠู„ ูˆุงู„ู„ูŠู„ ูˆุงู„ุจูŠุฏุงุก ุชุนุฑูู†ูŠ' ,'ูˆุงู„ุณูŠู ูˆุงู„ุฑู…ุญ ูˆุงู„ู‚ุฑุทุงุณ ูˆุงู„ู‚ู„ู…'], ['ู‚ู… ู„ู„ู…ุนู„ู… ูˆูู‡ ุงู„ุชุจุฌูŠู„ุง' ,'ูƒุงุฏ ุงู„ู…ุนู„ู… ุงู† ูŠูƒูˆู† ุฑุณูˆู„ุง'] ] >>> # A function that concatenates the halves of each verse by using the [SEP] token. >>> join_verse = lambda half: ' [SEP] '.join(half) >>> # Apply this to all the verses in the list. >>> verses = [join_verse(verse) for verse in verses] >>> poetry(sentences) [{'label': 'ุงู„ุจุณูŠุท', 'score': 0.9937475919723511}, {'label': 'ุงู„ูƒุงู…ู„', 'score': 0.971284031867981}] ``` *Note*: to download our models, you would need `transformers>=3.5.0`. Otherwise, you could download the models manually. ## Citation ```bibtex @inproceedings{inoue-etal-2021-interplay, title = "The Interplay of Variant, Size, and Task Type in {A}rabic Pre-trained Language Models", author = "Inoue, Go and Alhafni, Bashar and Baimukan, Nurpeiis and Bouamor, Houda and Habash, Nizar", booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop", month = apr, year = "2021", address = "Kyiv, Ukraine (Online)", publisher = "Association for Computational Linguistics", abstract = "In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a mix of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.", } ```
CAMeL-Lab/bert-base-arabic-camelbert-ca-poetry
CAMeL-Lab
2021-10-17T12:09:38Z
13
4
transformers
[ "transformers", "pytorch", "tf", "bert", "text-classification", "ar", "arxiv:1905.05700", "arxiv:2103.06678", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- language: - ar license: apache-2.0 widget: - text: 'ุงู„ุฎูŠู„ ูˆุงู„ู„ูŠู„ ูˆุงู„ุจูŠุฏุงุก ุชุนุฑูู†ูŠ [SEP] ูˆุงู„ุณูŠู ูˆุงู„ุฑู…ุญ ูˆุงู„ู‚ุฑุทุงุณ ูˆุงู„ู‚ู„ู…' --- # CAMeLBERT-CA Poetry Classification Model ## Model description **CAMeLBERT-CA Poetry Classification Model** is a poetry classification model that was built by fine-tuning the [CAMeLBERT Classical Arabic (CA)](https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-ca/) model. For the fine-tuning, we used the [APCD](https://arxiv.org/pdf/1905.05700.pdf) dataset. Our fine-tuning procedure and the hyperparameters we used can be found in our paper *"[The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models](https://arxiv.org/abs/2103.06678)."* Our fine-tuning code can be found [here](https://github.com/CAMeL-Lab/CAMeLBERT). ## Intended uses You can use the CAMeLBERT-CA Poetry Classification model as part of the transformers pipeline. This model will also be available in [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools) soon. #### How to use To use the model with a transformers pipeline: ```python >>> from transformers import pipeline >>> poetry = pipeline('text-classification', model='CAMeL-Lab/bert-base-arabic-camelbert-ca-poetry') >>> # A list of verses where each verse consists of two parts. >>> verses = [ ['ุงู„ุฎูŠู„ ูˆุงู„ู„ูŠู„ ูˆุงู„ุจูŠุฏุงุก ุชุนุฑูู†ูŠ' ,'ูˆุงู„ุณูŠู ูˆุงู„ุฑู…ุญ ูˆุงู„ู‚ุฑุทุงุณ ูˆุงู„ู‚ู„ู…'], ['ู‚ู… ู„ู„ู…ุนู„ู… ูˆูู‡ ุงู„ุชุจุฌูŠู„ุง' ,'ูƒุงุฏ ุงู„ู…ุนู„ู… ุงู† ูŠูƒูˆู† ุฑุณูˆู„ุง'] ] >>> # A function that concatenates the halves of each verse by using the [SEP] token. >>> join_verse = lambda half: ' [SEP] '.join(half) >>> # Apply this to all the verses in the list. >>> verses = [join_verse(verse) for verse in verses] >>> poetry(sentences) [{'label': 'ุงู„ุจุณูŠุท', 'score': 0.9845284819602966}, {'label': 'ุงู„ูƒุงู…ู„', 'score': 0.752918004989624}] ``` *Note*: to download our models, you would need `transformers>=3.5.0`. Otherwise, you could download the models manually. ## Citation ```bibtex @inproceedings{inoue-etal-2021-interplay, title = "The Interplay of Variant, Size, and Task Type in {A}rabic Pre-trained Language Models", author = "Inoue, Go and Alhafni, Bashar and Baimukan, Nurpeiis and Bouamor, Houda and Habash, Nizar", booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop", month = apr, year = "2021", address = "Kyiv, Ukraine (Online)", publisher = "Association for Computational Linguistics", abstract = "In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a mix of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.", } ```
CAMeL-Lab/bert-base-arabic-camelbert-msa-sentiment
CAMeL-Lab
2021-10-17T12:08:30Z
475
5
transformers
[ "transformers", "pytorch", "tf", "bert", "text-classification", "ar", "arxiv:2103.06678", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- language: - ar license: apache-2.0 widget: - text: "ุฃู†ุง ุจุฎูŠุฑ" --- # CAMeLBERT MSA SA Model ## Model description **CAMeLBERT MSA SA Model** is a Sentiment Analysis (SA) model that was built by fine-tuning the [CAMeLBERT Modern Standard Arabic (MSA)](https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-msa/) model. For the fine-tuning, we used the [ASTD](https://aclanthology.org/D15-1299.pdf), [ArSAS](http://lrec-conf.org/workshops/lrec2018/W30/pdf/22_W30.pdf), and [SemEval](https://aclanthology.org/S17-2088.pdf) datasets. Our fine-tuning procedure and the hyperparameters we used can be found in our paper *"[The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models](https://arxiv.org/abs/2103.06678)."* Our fine-tuning code can be found [here](https://github.com/CAMeL-Lab/CAMeLBERT). ## Intended uses You can use the CAMeLBERT MSA SA model directly as part of our [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools) SA component (*recommended*) or as part of the transformers pipeline. #### How to use To use the model with the [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools) SA component: ```python >>> from camel_tools.sentiment import SentimentAnalyzer >>> sa = SentimentAnalyzer("CAMeL-Lab/bert-base-arabic-camelbert-msa-sentiment") >>> sentences = ['ุฃู†ุง ุจุฎูŠุฑ', 'ุฃู†ุง ู„ุณุช ุจุฎูŠุฑ'] >>> sa.predict(sentences) >>> ['positive', 'negative'] ``` You can also use the SA model directly with a transformers pipeline: ```python >>> from transformers import pipeline >>> sa = pipeline('sentiment-analysis', model='CAMeL-Lab/bert-base-arabic-camelbert-msa-sentiment') >>> sentences = ['ุฃู†ุง ุจุฎูŠุฑ', 'ุฃู†ุง ู„ุณุช ุจุฎูŠุฑ'] >>> sa(sentences) [{'label': 'positive', 'score': 0.9616648554801941}, {'label': 'negative', 'score': 0.9779177904129028}] ``` *Note*: to download our models, you would need `transformers>=3.5.0`. Otherwise, you could download the models manually. ## Citation ```bibtex @inproceedings{inoue-etal-2021-interplay, title = "The Interplay of Variant, Size, and Task Type in {A}rabic Pre-trained Language Models", author = "Inoue, Go and Alhafni, Bashar and Baimukan, Nurpeiis and Bouamor, Houda and Habash, Nizar", booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop", month = apr, year = "2021", address = "Kyiv, Ukraine (Online)", publisher = "Association for Computational Linguistics", abstract = "In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a mix of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.", } ```
castorini/monot5-base-msmarco-10k
castorini
2021-10-17T11:24:22Z
3,178
14
transformers
[ "transformers", "pytorch", "jax", "t5", "text2text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
This model is a T5-base reranker fine-tuned on the MS MARCO passage dataset for 10k steps (or 1 epoch). This model usually has a better zero-shot performance than `monot5-base-msmarco`, i.e., it performs better on datasets different from MS MARCO. For more details on how to use it, check the following links: - [A simple reranking example](https://github.com/castorini/pygaggle#a-simple-reranking-example) - [Rerank MS MARCO passages](https://github.com/castorini/pygaggle/blob/master/docs/experiments-msmarco-passage-subset.md) - [Rerank Robust04 documents](https://github.com/castorini/pygaggle/blob/master/docs/experiments-robust04-monot5-gpu.md) Paper describing the model: [Document Ranking with a Pretrained Sequence-to-Sequence Model](https://www.aclweb.org/anthology/2020.findings-emnlp.63/)
castorini/monot5-large-msmarco
castorini
2021-10-17T11:20:56Z
576
3
transformers
[ "transformers", "pytorch", "jax", "t5", "feature-extraction", "text-generation-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
This model is a T5-large reranker fine-tuned on the MS MARCO passage dataset for 100k steps (or 10 epochs). For more details on how to use it, check the following links: - [A simple reranking example](https://github.com/castorini/pygaggle#a-simple-reranking-example) - [Rerank MS MARCO passages](https://github.com/castorini/pygaggle/blob/master/docs/experiments-msmarco-passage-subset.md) - [Rerank Robust04 documents](https://github.com/castorini/pygaggle/blob/master/docs/experiments-robust04-monot5-gpu.md) Paper describing the model: [Document Ranking with a Pretrained Sequence-to-Sequence Model](https://www.aclweb.org/anthology/2020.findings-emnlp.63/)
CAMeL-Lab/bert-base-arabic-camelbert-ca-sentiment
CAMeL-Lab
2021-10-17T11:15:12Z
35
3
transformers
[ "transformers", "pytorch", "tf", "bert", "text-classification", "ar", "arxiv:2103.06678", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- language: - ar license: apache-2.0 widget: - text: "ุฃู†ุง ุจุฎูŠุฑ" --- # CAMeLBERT-CA SA Model ## Model description **CAMeLBERT-CA SA Model** is a Sentiment Analysis (SA) model that was built by fine-tuning the [CAMeLBERT Classical Arabic (CA)](https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-ca/) model. For the fine-tuning, we used the [ASTD](https://aclanthology.org/D15-1299.pdf), [ArSAS](http://lrec-conf.org/workshops/lrec2018/W30/pdf/22_W30.pdf), and [SemEval](https://aclanthology.org/S17-2088.pdf) datasets. Our fine-tuning procedure and the hyperparameters we used can be found in our paper *"[The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models](https://arxiv.org/abs/2103.06678)." * Our fine-tuning code can be found [here](https://github.com/CAMeL-Lab/CAMeLBERT). ## Intended uses You can use the CAMeLBERT-CA SA model directly as part of our [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools) SA component (*recommended*) or as part of the transformers pipeline. #### How to use To use the model with the [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools) SA component: ```python >>> from camel_tools.sentiment import SentimentAnalyzer >>> sa = SentimentAnalyzer("CAMeL-Lab/bert-base-arabic-camelbert-ca-sentiment") >>> sentences = ['ุฃู†ุง ุจุฎูŠุฑ', 'ุฃู†ุง ู„ุณุช ุจุฎูŠุฑ'] >>> sa.predict(sentences) >>> ['positive', 'negative'] ``` You can also use the SA model directly with a transformers pipeline: ```python >>> from transformers import pipeline e >>> sa = pipeline('text-classification', model='CAMeL-Lab/bert-base-arabic-camelbert-ca-sentiment') >>> sentences = ['ุฃู†ุง ุจุฎูŠุฑ', 'ุฃู†ุง ู„ุณุช ุจุฎูŠุฑ'] >>> sa(sentences) [{'label': 'positive', 'score': 0.9616648554801941}, {'label': 'negative', 'score': 0.9779177904129028}] ``` *Note*: to download our models, you would need `transformers>=3.5.0`. Otherwise, you could download the models manually. ## Citation ```bibtex @inproceedings{inoue-etal-2021-interplay, title = "The Interplay of Variant, Size, and Task Type in {A}rabic Pre-trained Language Models", author = "Inoue, Go and Alhafni, Bashar and Baimukan, Nurpeiis and Bouamor, Houda and Habash, Nizar", booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop", month = apr, year = "2021", address = "Kyiv, Ukraine (Online)", publisher = "Association for Computational Linguistics", abstract = "In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a mix of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.", } ```
CAMeL-Lab/bert-base-arabic-camelbert-msa-ner
CAMeL-Lab
2021-10-17T11:07:13Z
1,851
5
transformers
[ "transformers", "pytorch", "tf", "bert", "token-classification", "ar", "arxiv:2103.06678", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:04Z
--- language: - ar license: apache-2.0 widget: - text: "ุฅู…ุงุฑุฉ ุฃุจูˆุธุจูŠ ู‡ูŠ ุฅุญุฏู‰ ุฅู…ุงุฑุงุช ุฏูˆู„ุฉ ุงู„ุฅู…ุงุฑุงุช ุงู„ุนุฑุจูŠุฉ ุงู„ู…ุชุญุฏุฉ ุงู„ุณุจุน" --- # CAMeLBERT MSA NER Model ## Model description **CAMeLBERT MSA NER Model** is a Named Entity Recognition (NER) model that was built by fine-tuning the [CAMeLBERT Modern Standard Arabic (MSA)](https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-msa/) model. For the fine-tuning, we used the [ANERcorp](https://camel.abudhabi.nyu.edu/anercorp/) dataset. Our fine-tuning procedure and the hyperparameters we used can be found in our paper *"[The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models](https://arxiv.org/abs/2103.06678). "* Our fine-tuning code can be found [here](https://github.com/CAMeL-Lab/CAMeLBERT). ## Intended uses You can use the CAMeLBERT MSA NER model directly as part of our [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools) NER component (*recommended*) or as part of the transformers pipeline. #### How to use To use the model with the [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools) NER component: ```python >>> from camel_tools.ner import NERecognizer >>> from camel_tools.tokenizers.word import simple_word_tokenize >>> ner = NERecognizer('CAMeL-Lab/bert-base-arabic-camelbert-msa-ner') >>> sentence = simple_word_tokenize('ุฅู…ุงุฑุฉ ุฃุจูˆุธุจูŠ ู‡ูŠ ุฅุญุฏู‰ ุฅู…ุงุฑุงุช ุฏูˆู„ุฉ ุงู„ุฅู…ุงุฑุงุช ุงู„ุนุฑุจูŠุฉ ุงู„ู…ุชุญุฏุฉ ุงู„ุณุจุน') >>> ner.predict_sentence(sentence) >>> ['O', 'B-LOC', 'O', 'O', 'O', 'O', 'B-LOC', 'I-LOC', 'I-LOC', 'O'] ``` You can also use the NER model directly with a transformers pipeline: ```python >>> from transformers import pipeline >>> ner = pipeline('ner', model='CAMeL-Lab/bert-base-arabic-camelbert-msa-ner') >>> ner("ุฅู…ุงุฑุฉ ุฃุจูˆุธุจูŠ ู‡ูŠ ุฅุญุฏู‰ ุฅู…ุงุฑุงุช ุฏูˆู„ุฉ ุงู„ุฅู…ุงุฑุงุช ุงู„ุนุฑุจูŠุฉ ุงู„ู…ุชุญุฏุฉ ุงู„ุณุจุน") [{'word': 'ุฃุจูˆุธุจูŠ', 'score': 0.9895730018615723, 'entity': 'B-LOC', 'index': 2, 'start': 6, 'end': 12}, {'word': 'ุงู„ุฅู…ุงุฑุงุช', 'score': 0.8156259655952454, 'entity': 'B-LOC', 'index': 8, 'start': 33, 'end': 41}, {'word': 'ุงู„ุนุฑุจูŠุฉ', 'score': 0.890906810760498, 'entity': 'I-LOC', 'index': 9, 'start': 42, 'end': 49}, {'word': 'ุงู„ู…ุชุญุฏุฉ', 'score': 0.8169114589691162, 'entity': 'I-LOC', 'index': 10, 'start': 50, 'end': 57}] ``` *Note*: to download our models, you would need `transformers>=3.5.0`. Otherwise, you could download the models manually. ## Citation ```bibtex @inproceedings{inoue-etal-2021-interplay, title = "The Interplay of Variant, Size, and Task Type in {A}rabic Pre-trained Language Models", author = "Inoue, Go and Alhafni, Bashar and Baimukan, Nurpeiis and Bouamor, Houda and Habash, Nizar", booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop", month = apr, year = "2021", address = "Kyiv, Ukraine (Online)", publisher = "Association for Computational Linguistics", abstract = "In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a mix of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.", } ```
CAMeL-Lab/bert-base-arabic-camelbert-mix-did-nadi
CAMeL-Lab
2021-10-17T11:05:12Z
5
0
transformers
[ "transformers", "pytorch", "tf", "bert", "text-classification", "ar", "arxiv:2103.06678", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- language: - ar license: apache-2.0 widget: - text: "ุนุงู…ู„ ุงูŠู‡ ุŸ" --- # CAMeLBERT-Mix DID NADI Model ## Model description **CAMeLBERT-Mix DID NADI Model** is a dialect identification (DID) model that was built by fine-tuning the [CAMeLBERT-Mix](https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-mix/) model. For the fine-tuning, we used the [NADI Coountry-level](https://sites.google.com/view/nadi-shared-task) dataset, which includes 21 labels. Our fine-tuning procedure and the hyperparameters we used can be found in our paper *"[The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models](https://arxiv.org/abs/2103.06678)."* Our fine-tuning code can be found [here](https://github.com/CAMeL-Lab/CAMeLBERT). ## Intended uses You can use the CAMeLBERT-Mix DID NADI model as part of the transformers pipeline. This model will also be available in [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools) soon. #### How to use To use the model with a transformers pipeline: ```python >>> from transformers import pipeline >>> did = pipeline('text-classification', model='CAMeL-Lab/bert-base-arabic-camelbert-mix-did-nadi') >>> sentences = ['ุนุงู…ู„ ุงูŠู‡ ุŸ', 'ุดู„ูˆู†ูƒ ุŸ ุดุฎุจุงุฑูƒ ุŸ'] >>> did(sentences) [{'label': 'Egypt', 'score': 0.920274019241333}, {'label': 'Saudi_Arabia', 'score': 0.26750022172927856}] ``` *Note*: to download our models, you would need `transformers>=3.5.0`. Otherwise, you could download the models manually. ## Citation ```bibtex @inproceedings{inoue-etal-2021-interplay, title = "The Interplay of Variant, Size, and Task Type in {A}rabic Pre-trained Language Models", author = "Inoue, Go and Alhafni, Bashar and Baimukan, Nurpeiis and Bouamor, Houda and Habash, Nizar", booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop", month = apr, year = "2021", address = "Kyiv, Ukraine (Online)", publisher = "Association for Computational Linguistics", abstract = "In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a mix of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.", } ```
gwima/ryan-sackmott
gwima
2021-10-17T03:15:08Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- tags: - conversational ---
huggingtweets/rias_hot
huggingtweets
2021-10-17T02:28:08Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/rias_hot/1634437684641/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1427157680863522818/jqfniv6o_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">๐Ÿค– AI BOT ๐Ÿค–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">RiasHot</div> <div style="text-align: center; font-size: 14px;">@rias_hot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from RiasHot. | Data | RiasHot | | --- | --- | | Tweets downloaded | 3245 | | Retweets | 136 | | Short tweets | 905 | | Tweets kept | 2204 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2bwco1hp/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @rias_hot's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/n6fp7izq) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/n6fp7izq/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/rias_hot') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
amansolanki/autonlp-Tweet-Sentiment-Extraction-20114061
amansolanki
2021-10-17T00:32:35Z
1,906
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "autonlp", "en", "dataset:amansolanki/autonlp-data-Tweet-Sentiment-Extraction", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- tags: autonlp language: en widget: - text: "I love AutoNLP ๐Ÿค—" datasets: - amansolanki/autonlp-data-Tweet-Sentiment-Extraction co2_eq_emissions: 3.651199395353127 --- # Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 20114061 - CO2 Emissions (in grams): 3.651199395353127 ## Validation Metrics - Loss: 0.5046541690826416 - Accuracy: 0.8036219581211093 - Macro F1: 0.807095210403678 - Micro F1: 0.8036219581211093 - Weighted F1: 0.8039634739225368 - Macro Precision: 0.8076842795233988 - Micro Precision: 0.8036219581211093 - Weighted Precision: 0.8052135235094771 - Macro Recall: 0.8075241470527056 - Micro Recall: 0.8036219581211093 - Weighted Recall: 0.8036219581211093 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/amansolanki/autonlp-Tweet-Sentiment-Extraction-20114061 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("amansolanki/autonlp-Tweet-Sentiment-Extraction-20114061", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("amansolanki/autonlp-Tweet-Sentiment-Extraction-20114061", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
pere/norwegian-gptneo-red-highlr
pere
2021-10-16T19:14:34Z
3
0
transformers
[ "transformers", "jax", "tensorboard", "gpt_neo", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
# Norwegian GTPNeo Blue. The first Norwegian GPTNeo model. This one is trained only on a administrative corpus.
huggingtweets/the_nftking
huggingtweets
2021-10-16T14:11:01Z
4
3
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/the_nftking/1634393457706/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1434700639649599488/J63TSf--_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">๐Ÿค– AI BOT ๐Ÿค–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">NFT KING ๐Ÿ‘‘</div> <div style="text-align: center; font-size: 14px;">@the_nftking</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from NFT KING ๐Ÿ‘‘. | Data | NFT KING ๐Ÿ‘‘ | | --- | --- | | Tweets downloaded | 163 | | Retweets | 23 | | Short tweets | 36 | | Tweets kept | 104 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/26d96n9m/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @the_nftking's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/f7wd0e6f) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/f7wd0e6f/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/the_nftking') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingartists/6ix9ine
huggingartists
2021-10-16T12:01:20Z
6
0
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/6ix9ine", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - huggingartists/6ix9ine tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/b2b164a7c6c02dd0843ad597df5dbf4b.1000x1000x1.png&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">๐Ÿค– HuggingArtists Model ๐Ÿค–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">6ix9ine</div> <a href="https://genius.com/artists/6ix9ine"> <div style="text-align: center; font-size: 14px;">@6ix9ine</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from 6ix9ine. Dataset is available [here](https://huggingface.co/datasets/huggingartists/6ix9ine). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/6ix9ine") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/eqmcaj0r/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on 6ix9ine's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/s5dpg3h2) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/s5dpg3h2/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/6ix9ine') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/6ix9ine") model = AutoModelWithLMHead.from_pretrained("huggingartists/6ix9ine") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
lewtun/xlm-roberta-base-finetuned-marc-de
lewtun
2021-10-16T11:38:18Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "text-classification", "generated_from_trainer", "dataset:amazon_reviews_multi", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer datasets: - amazon_reviews_multi model-index: - name: xlm-roberta-base-finetuned-marc-de results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-marc-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.9934 - Mae: 0.4867 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.1514 | 1.0 | 308 | 1.0455 | 0.5221 | | 0.9997 | 2.0 | 616 | 0.9934 | 0.4867 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
Yuri/xlm-roberta-base-finetuned-marc
Yuri
2021-10-16T11:36:47Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "text-classification", "generated_from_trainer", "dataset:amazon_reviews_multi", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer datasets: - amazon_reviews_multi model-index: - name: xlm-roberta-base-finetuned-marc results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-marc This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.9825 - Mae: 0.4956 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.1432 | 1.0 | 308 | 1.0559 | 0.5133 | | 0.9883 | 2.0 | 616 | 0.9825 | 0.4956 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
ashish-chouhan/xlm-roberta-base-finetuned-marc
ashish-chouhan
2021-10-16T11:34:29Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "text-classification", "generated_from_trainer", "dataset:amazon_reviews_multi", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer datasets: - amazon_reviews_multi model-index: - name: xlm-roberta-base-finetuned-marc results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-marc This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 1.0171 - Mae: 0.5310 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.1404 | 1.0 | 308 | 1.0720 | 0.5398 | | 0.9805 | 2.0 | 616 | 1.0171 | 0.5310 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
DongHyoungLee/distilbert-base-uncased-finetuned-cola
DongHyoungLee
2021-10-16T11:30:42Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.535587402888147 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.7335 - Matthews Correlation: 0.5356 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5309 | 1.0 | 535 | 0.5070 | 0.4239 | | 0.3568 | 2.0 | 1070 | 0.5132 | 0.4913 | | 0.24 | 3.0 | 1605 | 0.6081 | 0.4990 | | 0.1781 | 4.0 | 2140 | 0.7335 | 0.5356 | | 0.1243 | 5.0 | 2675 | 0.8705 | 0.5242 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
lewtun/xlm-roberta-base-finetuned-marc
lewtun
2021-10-15T21:10:49Z
7
1
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "text-classification", "generated_from_trainer", "dataset:amazon_reviews_multi", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer datasets: - amazon_reviews_multi model-index: - name: xlm-roberta-base-finetuned-marc results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-marc This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.9932 - Mae: 0.4838 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.05 | 1.0 | 860 | 1.0007 | 0.5074 | | 0.9166 | 2.0 | 1720 | 0.9932 | 0.4838 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.1+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3