modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-06-27 18:27:39
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
500 values
tags
sequencelengths
1
4.05k
pipeline_tag
stringclasses
54 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-06-27 18:23:41
card
stringlengths
11
1.01M
good-ai-club/NBB
good-ai-club
2022-06-16T08:51:44Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-06-16T08:37:56Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 3188 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 5, "evaluation_steps": 355, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1594, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
QuickSilver007/dqn-SpaceInvadersNoFrameskip-v4
QuickSilver007
2022-06-16T08:24:26Z
3
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-16T08:23:46Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 580.00 +/- 135.59 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga QuickSilver007 -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga QuickSilver007 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 2000000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
Jayaprakash/Grammar_correction
Jayaprakash
2022-06-16T07:50:18Z
3
0
transformers
[ "transformers", "t5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-10T10:00:53Z
https://github.com/kranti-gloify/grammarly/tree/Django_API_Final
waboucay/camembert-base-finetuned-repnum_wl-rua_wl_3_classes
waboucay
2022-06-16T07:44:53Z
3
0
transformers
[ "transformers", "pytorch", "camembert", "text-classification", "nli", "fr", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-16T07:27:43Z
--- language: - fr tags: - nli metrics: - f1 --- ## Eval results We obtain the following results on ```validation``` and ```test``` sets: | Set | F1<sub>micro</sub> | F1<sub>macro</sub> | |------------|--------------------|--------------------| | validation | 75.6 | 75.3 | | test | 76.1 | 75.8 |
Corianas/PPO-QbertNoFrameskip-v4_1
Corianas
2022-06-16T07:17:48Z
3
0
stable-baselines3
[ "stable-baselines3", "QbertNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-16T07:17:21Z
--- library_name: stable-baselines3 tags: - QbertNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 570.00 +/- 192.94 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: QbertNoFrameskip-v4 type: QbertNoFrameskip-v4 --- # **PPO** Agent playing **QbertNoFrameskip-v4** This is a trained model of a **PPO** agent playing **QbertNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo ppo --env QbertNoFrameskip-v4 -orga Corianas -f logs/ python enjoy.py --algo ppo --env QbertNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo ppo --env QbertNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo ppo --env QbertNoFrameskip-v4 -f logs/ -orga Corianas ``` ## Hyperparameters ```python OrderedDict([('batch_size', 256), ('clip_range', 'lin_0.1'), ('ent_coef', 0.01), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('frame_stack', 4), ('learning_rate', 'lin_2.5e-4'), ('n_envs', 8), ('n_epochs', 4), ('n_steps', 128), ('n_timesteps', 1000000.0), ('policy', 'CnnPolicy'), ('vf_coef', 0.5), ('normalize', False)]) ```
twieland/MIX2_en-ja_helsinki
twieland
2022-06-16T06:23:56Z
17
0
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-14T07:24:46Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: MIX2_en-ja_helsinki results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # MIX2_en-ja_helsinki This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-jap](https://huggingface.co/Helsinki-NLP/opus-mt-en-jap) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.6703 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 96 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:------:|:---------------:| | 3.5357 | 0.02 | 4000 | 2.9519 | | 2.8601 | 0.04 | 8000 | 2.6962 | | 2.6183 | 0.06 | 12000 | 2.5156 | | 2.4731 | 0.08 | 16000 | 2.4312 | | 2.3731 | 0.1 | 20000 | 2.3575 | | 2.2964 | 0.11 | 24000 | 2.3319 | | 2.238 | 0.13 | 28000 | 2.2802 | | 2.1919 | 0.15 | 32000 | 2.2552 | | 2.1479 | 0.17 | 36000 | 2.2354 | | 2.1104 | 0.19 | 40000 | 2.2210 | | 2.0788 | 0.21 | 44000 | 2.1835 | | 2.0552 | 0.23 | 48000 | 2.1391 | | 2.0228 | 0.25 | 52000 | 2.1338 | | 2.0062 | 0.27 | 56000 | 2.1115 | | 1.9868 | 0.29 | 60000 | 2.1025 | | 1.9628 | 0.31 | 64000 | 2.1334 | | 1.9474 | 0.32 | 68000 | 2.0935 | | 1.9318 | 0.34 | 72000 | 2.1030 | | 1.9187 | 0.36 | 76000 | 2.0605 | | 1.9019 | 0.38 | 80000 | 2.0388 | | 1.8916 | 0.4 | 84000 | 2.0360 | | 1.8775 | 0.42 | 88000 | 2.0356 | | 1.8689 | 0.44 | 92000 | 2.0315 | | 1.8558 | 0.46 | 96000 | 2.0169 | | 1.8431 | 0.48 | 100000 | 2.0213 | | 1.8373 | 0.5 | 104000 | 2.0071 | | 1.8224 | 0.52 | 108000 | 2.0093 | | 1.8181 | 0.53 | 112000 | 1.9952 | | 1.8087 | 0.55 | 116000 | 1.9927 | | 1.7998 | 0.57 | 120000 | 1.9726 | | 1.7947 | 0.59 | 124000 | 1.9817 | | 1.7874 | 0.61 | 128000 | 1.9650 | | 1.7781 | 0.63 | 132000 | 1.9688 | | 1.7712 | 0.65 | 136000 | 1.9655 | | 1.7631 | 0.67 | 140000 | 1.9561 | | 1.7577 | 0.69 | 144000 | 1.9529 | | 1.7528 | 0.71 | 148000 | 1.9447 | | 1.746 | 0.73 | 152000 | 1.9700 | | 1.7386 | 0.74 | 156000 | 1.9413 | | 1.7329 | 0.76 | 160000 | 1.9329 | | 1.7285 | 0.78 | 164000 | 1.9289 | | 1.7227 | 0.8 | 168000 | 1.9337 | | 1.7186 | 0.82 | 172000 | 1.9263 | | 1.7116 | 0.84 | 176000 | 1.9407 | | 1.7072 | 0.86 | 180000 | 1.9059 | | 1.7032 | 0.88 | 184000 | 1.9380 | | 1.6932 | 0.9 | 188000 | 1.9183 | | 1.6921 | 0.92 | 192000 | 1.9131 | | 1.6875 | 0.94 | 196000 | 1.9180 | | 1.6846 | 0.96 | 200000 | 1.9040 | | 1.6797 | 0.97 | 204000 | 1.9089 | | 1.6725 | 0.99 | 208000 | 1.9024 | | 1.6589 | 1.01 | 212000 | 1.8909 | | 1.6507 | 1.03 | 216000 | 1.8837 | | 1.6441 | 1.05 | 220000 | 1.8906 | | 1.6445 | 1.07 | 224000 | 1.8914 | | 1.6394 | 1.09 | 228000 | 1.8833 | | 1.6382 | 1.11 | 232000 | 1.8837 | | 1.6376 | 1.13 | 236000 | 1.8869 | | 1.6329 | 1.15 | 240000 | 1.8829 | | 1.6294 | 1.17 | 244000 | 1.8845 | | 1.6273 | 1.18 | 248000 | 1.8888 | | 1.6243 | 1.2 | 252000 | 1.8709 | | 1.6226 | 1.22 | 256000 | 1.8418 | | 1.6177 | 1.24 | 260000 | 1.8587 | | 1.6151 | 1.26 | 264000 | 1.8526 | | 1.6111 | 1.28 | 268000 | 1.8494 | | 1.6084 | 1.3 | 272000 | 1.8781 | | 1.6043 | 1.32 | 276000 | 1.8390 | | 1.6011 | 1.34 | 280000 | 1.8603 | | 1.5999 | 1.36 | 284000 | 1.8515 | | 1.5954 | 1.38 | 288000 | 1.8356 | | 1.5936 | 1.39 | 292000 | 1.8530 | | 1.5916 | 1.41 | 296000 | 1.8475 | | 1.5886 | 1.43 | 300000 | 1.8410 | | 1.5883 | 1.45 | 304000 | 1.8153 | | 1.5828 | 1.47 | 308000 | 1.8254 | | 1.582 | 1.49 | 312000 | 1.8139 | | 1.578 | 1.51 | 316000 | 1.8366 | | 1.5723 | 1.53 | 320000 | 1.8353 | | 1.5705 | 1.55 | 324000 | 1.8230 | | 1.5691 | 1.57 | 328000 | 1.8194 | | 1.5656 | 1.59 | 332000 | 1.8069 | | 1.566 | 1.6 | 336000 | 1.8204 | | 1.5604 | 1.62 | 340000 | 1.8307 | | 1.5573 | 1.64 | 344000 | 1.8209 | | 1.5547 | 1.66 | 348000 | 1.8320 | | 1.5545 | 1.68 | 352000 | 1.8179 | | 1.5519 | 1.7 | 356000 | 1.8323 | | 1.545 | 1.72 | 360000 | 1.8005 | | 1.5483 | 1.74 | 364000 | 1.8034 | | 1.5454 | 1.76 | 368000 | 1.7997 | | 1.5393 | 1.78 | 372000 | 1.8078 | | 1.5381 | 1.8 | 376000 | 1.8204 | | 1.5347 | 1.81 | 380000 | 1.8071 | | 1.5327 | 1.83 | 384000 | 1.7997 | | 1.529 | 1.85 | 388000 | 1.8012 | | 1.5287 | 1.87 | 392000 | 1.8028 | | 1.5273 | 1.89 | 396000 | 1.8103 | | 1.5194 | 1.91 | 400000 | 1.8008 | | 1.5197 | 1.93 | 404000 | 1.8004 | | 1.5218 | 1.95 | 408000 | 1.8024 | | 1.514 | 1.97 | 412000 | 1.7852 | | 1.5146 | 1.99 | 416000 | 1.7908 | | 1.5045 | 2.01 | 420000 | 1.7864 | | 1.4876 | 2.02 | 424000 | 1.7813 | | 1.4846 | 2.04 | 428000 | 1.7822 | | 1.4865 | 2.06 | 432000 | 1.7737 | | 1.4857 | 2.08 | 436000 | 1.7668 | | 1.4825 | 2.1 | 440000 | 1.7681 | | 1.4828 | 2.12 | 444000 | 1.7685 | | 1.4821 | 2.14 | 448000 | 1.7636 | | 1.4778 | 2.16 | 452000 | 1.7778 | | 1.4803 | 2.18 | 456000 | 1.7834 | | 1.4766 | 2.2 | 460000 | 1.7801 | | 1.4741 | 2.22 | 464000 | 1.7601 | | 1.4705 | 2.23 | 468000 | 1.7665 | | 1.4739 | 2.25 | 472000 | 1.7604 | | 1.4694 | 2.27 | 476000 | 1.7803 | | 1.4665 | 2.29 | 480000 | 1.7835 | | 1.4668 | 2.31 | 484000 | 1.7670 | | 1.4605 | 2.33 | 488000 | 1.7629 | | 1.4626 | 2.35 | 492000 | 1.7612 | | 1.4627 | 2.37 | 496000 | 1.7612 | | 1.4569 | 2.39 | 500000 | 1.7557 | | 1.455 | 2.41 | 504000 | 1.7599 | | 1.4547 | 2.43 | 508000 | 1.7569 | | 1.453 | 2.44 | 512000 | 1.7589 | | 1.4515 | 2.46 | 516000 | 1.7679 | | 1.4501 | 2.48 | 520000 | 1.7574 | | 1.4446 | 2.5 | 524000 | 1.7526 | | 1.4456 | 2.52 | 528000 | 1.7506 | | 1.4445 | 2.54 | 532000 | 1.7484 | | 1.4428 | 2.56 | 536000 | 1.7447 | | 1.439 | 2.58 | 540000 | 1.7468 | | 1.441 | 2.6 | 544000 | 1.7609 | | 1.4358 | 2.62 | 548000 | 1.7498 | | 1.4318 | 2.64 | 552000 | 1.7592 | | 1.4276 | 2.65 | 556000 | 1.7452 | | 1.4317 | 2.67 | 560000 | 1.7500 | | 1.4277 | 2.69 | 564000 | 1.7392 | | 1.4259 | 2.71 | 568000 | 1.7351 | | 1.4239 | 2.73 | 572000 | 1.7385 | | 1.4191 | 2.75 | 576000 | 1.7487 | | 1.4204 | 2.77 | 580000 | 1.7392 | | 1.4176 | 2.79 | 584000 | 1.7372 | | 1.4147 | 2.81 | 588000 | 1.7347 | | 1.4154 | 2.83 | 592000 | 1.7085 | | 1.4134 | 2.85 | 596000 | 1.7103 | | 1.4091 | 2.87 | 600000 | 1.7124 | | 1.4091 | 2.88 | 604000 | 1.7369 | | 1.406 | 2.9 | 608000 | 1.7142 | | 1.4028 | 2.92 | 612000 | 1.7376 | | 1.4019 | 2.94 | 616000 | 1.7201 | | 1.4018 | 2.96 | 620000 | 1.7230 | | 1.3959 | 2.98 | 624000 | 1.7206 | | 1.3985 | 3.0 | 628000 | 1.7183 | | 1.3681 | 3.02 | 632000 | 1.7283 | | 1.3668 | 3.04 | 636000 | 1.7330 | | 1.3687 | 3.06 | 640000 | 1.7187 | | 1.3681 | 3.08 | 644000 | 1.7163 | | 1.3687 | 3.09 | 648000 | 1.7249 | | 1.364 | 3.11 | 652000 | 1.7283 | | 1.364 | 3.13 | 656000 | 1.7091 | | 1.3652 | 3.15 | 660000 | 1.7030 | | 1.3623 | 3.17 | 664000 | 1.7058 | | 1.3604 | 3.19 | 668000 | 1.7101 | | 1.3598 | 3.21 | 672000 | 1.7104 | | 1.3577 | 3.23 | 676000 | 1.7028 | | 1.3574 | 3.25 | 680000 | 1.7023 | | 1.3546 | 3.27 | 684000 | 1.7197 | | 1.3549 | 3.29 | 688000 | 1.7045 | | 1.3534 | 3.3 | 692000 | 1.6990 | | 1.3511 | 3.32 | 696000 | 1.6971 | | 1.3504 | 3.34 | 700000 | 1.6894 | | 1.346 | 3.36 | 704000 | 1.6820 | | 1.3467 | 3.38 | 708000 | 1.6920 | | 1.3461 | 3.4 | 712000 | 1.6897 | | 1.3425 | 3.42 | 716000 | 1.6962 | | 1.34 | 3.44 | 720000 | 1.6864 | | 1.3408 | 3.46 | 724000 | 1.6860 | | 1.3387 | 3.48 | 728000 | 1.6924 | | 1.3377 | 3.5 | 732000 | 1.6919 | | 1.3378 | 3.51 | 736000 | 1.6858 | | 1.334 | 3.53 | 740000 | 1.6816 | | 1.3347 | 3.55 | 744000 | 1.6867 | | 1.3307 | 3.57 | 748000 | 1.6859 | | 1.3316 | 3.59 | 752000 | 1.6896 | | 1.3257 | 3.61 | 756000 | 1.6824 | | 1.3222 | 3.63 | 760000 | 1.6819 | | 1.3247 | 3.65 | 764000 | 1.6809 | | 1.3207 | 3.67 | 768000 | 1.6775 | | 1.3227 | 3.69 | 772000 | 1.6807 | | 1.3203 | 3.71 | 776000 | 1.6750 | | 1.3203 | 3.72 | 780000 | 1.6758 | | 1.316 | 3.74 | 784000 | 1.6787 | | 1.3147 | 3.76 | 788000 | 1.6747 | | 1.3146 | 3.78 | 792000 | 1.6718 | | 1.3137 | 3.8 | 796000 | 1.6744 | | 1.3143 | 3.82 | 800000 | 1.6733 | | 1.3123 | 3.84 | 804000 | 1.6754 | | 1.3069 | 3.86 | 808000 | 1.6734 | | 1.3122 | 3.88 | 812000 | 1.6742 | | 1.3074 | 3.9 | 816000 | 1.6742 | | 1.3006 | 3.92 | 820000 | 1.6709 | | 1.308 | 3.93 | 824000 | 1.6714 | | 1.3063 | 3.95 | 828000 | 1.6727 | | 1.3036 | 3.97 | 832000 | 1.6711 | | 1.3048 | 3.99 | 836000 | 1.6703 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
Corianas/SkiingNoFrameskip-v4_ScoringTest
Corianas
2022-06-16T06:22:47Z
1
0
stable-baselines3
[ "stable-baselines3", "SkiingNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-16T06:20:38Z
--- library_name: stable-baselines3 tags: - SkiingNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: -30000.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SkiingNoFrameskip-v4 type: SkiingNoFrameskip-v4 --- # **PPO** Agent playing **SkiingNoFrameskip-v4** This is a trained model of a **PPO** agent playing **SkiingNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo ppo --env SkiingNoFrameskip-v4 -orga Corianas -f logs/ python enjoy.py --algo ppo --env SkiingNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo ppo --env SkiingNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo ppo --env SkiingNoFrameskip-v4 -f logs/ -orga Corianas ``` ## Hyperparameters ```python OrderedDict([('batch_size', 256), ('clip_range', 'lin_0.1'), ('ent_coef', 0.01), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('frame_stack', 4), ('learning_rate', 'lin_2.5e-4'), ('n_envs', 8), ('n_epochs', 4), ('n_steps', 128), ('n_timesteps', 10000000.0), ('policy', 'CnnPolicy'), ('vf_coef', 0.5), ('normalize', False)]) ```
ouiame/T5_mlsum
ouiame
2022-06-16T05:31:30Z
4
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "autotrain", "fr", "dataset:ouiame/autotrain-data-trainproject", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-15T13:51:07Z
--- tags: autotrain language: fr widget: - text: "I love AutoTrain 🤗" datasets: - ouiame/autotrain-data-trainproject co2_eq_emissions: 976.8219757938544 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 985232789 - CO2 Emissions (in grams): 976.8219757938544 ## Validation Metrics - Loss: 1.7047555446624756 - Rouge1: 20.2108 - Rouge2: 7.8633 - RougeL: 16.9554 - RougeLsum: 17.3178 - Gen Len: 18.9874 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/ouiame/autotrain-trainproject-985232789 ```
huggingtweets/shammytv
huggingtweets
2022-06-16T05:07:23Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-16T04:38:10Z
--- language: en thumbnail: http://www.huggingtweets.com/shammytv/1655356038315/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1191610860973764608/vH0nHzO8_400x400.png&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Swift</div> <div style="text-align: center; font-size: 14px;">@shammytv</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Swift. | Data | Swift | | --- | --- | | Tweets downloaded | 3203 | | Retweets | 173 | | Short tweets | 449 | | Tweets kept | 2581 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/12udt9tp/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @shammytv's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/wp1epufz) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/wp1epufz/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/shammytv') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
YYSH/Test-demo-colab
YYSH
2022-06-16T04:40:10Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-06-16T02:32:08Z
--- tags: - generated_from_trainer model-index: - name: Test-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Test-demo-colab This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9479 - Wer: 0.6856 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 4.2676 | 1.0 | 500 | 2.2725 | 1.0013 | | 2.0086 | 2.01 | 1000 | 1.2788 | 0.8053 | | 1.6389 | 3.01 | 1500 | 1.1333 | 0.7458 | | 1.4908 | 4.02 | 2000 | 1.0369 | 0.7356 | | 1.4137 | 5.02 | 2500 | 0.9894 | 0.7111 | | 1.3507 | 6.02 | 3000 | 0.9394 | 0.7098 | | 1.3101 | 7.03 | 3500 | 0.9531 | 0.6966 | | 1.2682 | 8.03 | 4000 | 0.9255 | 0.6892 | | 1.239 | 9.04 | 4500 | 0.9222 | 0.6818 | | 1.2161 | 10.04 | 5000 | 0.9079 | 0.6911 | | 1.1871 | 11.04 | 5500 | 0.9100 | 0.7033 | | 1.1688 | 12.05 | 6000 | 0.9080 | 0.6924 | | 1.1383 | 13.05 | 6500 | 0.9097 | 0.6910 | | 1.1304 | 14.06 | 7000 | 0.9052 | 0.6810 | | 1.1181 | 15.06 | 7500 | 0.9025 | 0.6847 | | 1.0905 | 16.06 | 8000 | 0.9296 | 0.6832 | | 1.0744 | 17.07 | 8500 | 0.9120 | 0.6912 | | 1.0675 | 18.07 | 9000 | 0.9039 | 0.6864 | | 1.0511 | 19.08 | 9500 | 0.9157 | 0.7004 | | 1.0401 | 20.08 | 10000 | 0.9259 | 0.6792 | | 1.0319 | 21.08 | 10500 | 0.9478 | 0.6976 | | 1.0194 | 22.09 | 11000 | 0.9438 | 0.6820 | | 1.0117 | 23.09 | 11500 | 0.9577 | 0.6891 | | 1.0038 | 24.1 | 12000 | 0.9670 | 0.6918 | | 0.9882 | 25.1 | 12500 | 0.9579 | 0.6884 | | 0.9979 | 26.1 | 13000 | 0.9502 | 0.6869 | | 0.9767 | 27.11 | 13500 | 0.9537 | 0.6833 | | 0.964 | 28.11 | 14000 | 0.9525 | 0.6880 | | 0.9867 | 29.12 | 14500 | 0.9479 | 0.6856 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
huggingtweets/pronewchaos
huggingtweets
2022-06-16T04:13:17Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-16T01:03:53Z
--- language: en thumbnail: http://www.huggingtweets.com/pronewchaos/1655352793305/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1519208550865653760/gxiNIWdv_400x400.png&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Saitoshi Nanomoto 🌑⚛️🟥</div> <div style="text-align: center; font-size: 14px;">@pronewchaos</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Saitoshi Nanomoto 🌑⚛️🟥. | Data | Saitoshi Nanomoto 🌑⚛️🟥 | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 18 | | Short tweets | 617 | | Tweets kept | 2615 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3b2f6bkt/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @pronewchaos's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1lho9s4n) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1lho9s4n/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/pronewchaos') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
sasuke/bert-base-uncased-finetuned-sst2
sasuke
2022-06-16T03:58:09Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-13T03:38:03Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: bert-base-uncased-finetuned-sst2 results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: sst2 metrics: - name: Accuracy type: accuracy value: 0.9323394495412844 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-sst2 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.2982 - Accuracy: 0.9323 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.1817 | 1.0 | 4210 | 0.2920 | 0.9186 | | 0.1297 | 2.0 | 8420 | 0.3069 | 0.9209 | | 0.0978 | 3.0 | 12630 | 0.2982 | 0.9323 | | 0.062 | 4.0 | 16840 | 0.3278 | 0.9312 | | 0.0303 | 5.0 | 21050 | 0.3642 | 0.9323 | ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0 - Datasets 2.2.2 - Tokenizers 0.12.1
huggingtweets/acai28
huggingtweets
2022-06-16T03:39:49Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-16T03:32:47Z
--- language: en thumbnail: http://www.huggingtweets.com/acai28/1655350773093/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1527251112604184576/3dKVjGwK_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">alec</div> <div style="text-align: center; font-size: 14px;">@acai28</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from alec. | Data | alec | | --- | --- | | Tweets downloaded | 3245 | | Retweets | 165 | | Short tweets | 488 | | Tweets kept | 2592 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/rd31m5h3/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @acai28's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/w8y3ix5h) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/w8y3ix5h/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/acai28') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Willy/bert-base-spanish-wwm-cased-finetuned-NLP-IE
Willy
2022-06-15T23:52:05Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-15T23:25:26Z
--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-base-spanish-wwm-cased-finetuned-NLP-IE results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-spanish-wwm-cased-finetuned-NLP-IE This model is a fine-tuned version of [dccuchile/bert-base-spanish-wwm-cased](https://huggingface.co/dccuchile/bert-base-spanish-wwm-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6260 - Accuracy: 0.7015 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6052 | 1.0 | 9 | 0.6370 | 0.7015 | | 0.5501 | 2.0 | 18 | 0.6260 | 0.7015 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
huggingtweets/hotdogsladies
huggingtweets
2022-06-15T23:01:56Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-15T23:00:51Z
--- language: en thumbnail: http://www.huggingtweets.com/hotdogsladies/1655334112277/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1474526156430798849/0Z_zfYqH_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Merlin Mann</div> <div style="text-align: center; font-size: 14px;">@hotdogsladies</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Merlin Mann. | Data | Merlin Mann | | --- | --- | | Tweets downloaded | 314 | | Retweets | 41 | | Short tweets | 48 | | Tweets kept | 225 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/epnyc8a1/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @hotdogsladies's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3bjnvmjn) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3bjnvmjn/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/hotdogsladies') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
fourthbrain-demo/finetuning-sentiment-model-3000-samples
fourthbrain-demo
2022-06-15T22:51:47Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-15T22:18:52Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3023 - Accuracy: 0.8767 - F1: 0.8771 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Tokenizers 0.12.1
emilys/BERTweet-WNUT17
emilys
2022-06-15T22:31:22Z
8
0
transformers
[ "transformers", "pytorch", "roberta", "token-classification", "NER", "en", "dataset:wnut_17", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-14T22:59:18Z
--- language: - en tags: - NER datasets: - wnut_17 --- bertweet-base (https://huggingface.co/vinai/bertweet-base) finetuned on WNUT (2017), following https://github.com/huggingface/transformers/tree/main/examples/legacy/token-classification
ml6team/distilbert-base-german-cased-toxic-comments
ml6team
2022-06-15T22:10:04Z
117
11
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "german", "classification", "de", "dataset:germeval21", "arxiv:1701.08118", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- language: - de tags: - distilbert - german - classification datasets: - germeval21 widget: - text: "Das ist ein guter Punkt, so hatte ich das noch nicht betrachtet." example_title: "Agreement (non-toxic)" - text: "Wow, was ein geiles Spiel. Glückwunsch." example_title: "Football (non-toxic)" - text: "Halt deine scheiß Fresse, du Arschloch" example_title: "Silence (toxic)" - text: "Verpiss dich, du dreckiger Hurensohn." example_title: "Dismiss (toxic)" --- # German Toxic Comment Classification ## Model Description This model was created with the purpose to detect toxic or potentially harmful comments. For this model, we fine-tuned a German DistilBERT model [distilbert-base-german-cased](https://huggingface.co/distilbert-base-german-cased) on a combination of five German datasets containing toxicity, profanity, offensive, or hate speech. ## Intended Uses & Limitations This model can be used to detect toxicity in German comments. However, the definition of toxicity is vague and the model might not be able to detect all instances of toxicity. It will not be able to detect toxicity in languages other than German. ## How to Use ```python from transformers import pipeline model_hub_url = 'https://huggingface.co/ml6team/distilbert-base-german-cased-toxic-comments' model_name = 'ml6team/distilbert-base-german-cased-toxic-comments' toxicity_pipeline = pipeline('text-classification', model=model_name, tokenizer=model_name) comment = "Ein harmloses Beispiel" result = toxicity_pipeline(comment)[0] print(f"Comment: {comment}\nLabel: {result['label']}, score: {result['score']}") ``` ## Limitations and Bias The model was trained on a combinations of datasets that contain examples gathered from different social networks and internet communities. This only represents a narrow subset of possible instances of toxicity and instances in other domains might not be detected reliably. ## Training Data The training dataset combines the following five datasets: * GermEval18 [[dataset](https://github.com/uds-lsv/GermEval-2018-Data)] * Labels: abuse, profanity, toxicity * GermEval21 [[dataset](https://github.com/germeval2021toxic/SharedTask/tree/main/Data%20Sets)] * Labels: toxicity * IWG Hatespeech dataset [[paper](https://arxiv.org/pdf/1701.08118.pdf), [dataset](https://github.com/UCSM-DUE/IWG_hatespeech_public)] * Labels: hate speech * Detecting Offensive Statements Towards Foreigners in Social Media (2017) by Breitschneider and Peters [[dataset](http://ub-web.de/research/)] * Labels: hate * HASOC: 2019 Hate Speech and Offensive Content [[dataset](https://hasocfire.github.io/hasoc/2019/index.html)] * Labels: offensive, profanity, hate The datasets contains different labels ranging from profanity, over hate speech to toxicity. In the combined dataset these labels were subsumed as `toxic` and `non-toxic` and contains 23,515 examples in total. Note that the datasets vary substantially in the number of examples. ## Training Procedure The training and test set were created using either the predefined train/test splits where available and otherwise 80% of the examples for training and 20% for testing. This resulted in in 17,072 training examples and 6,443 test examples. The model was trained for 2 epochs with the following arguments: ```python training_args = TrainingArguments( per_device_train_batch_size=batch_size, per_device_eval_batch_size=batch_size, num_train_epochs=2, evaluation_strategy="steps", logging_strategy="steps", logging_steps=100, save_total_limit=5, learning_rate=2e-5, weight_decay=0.01, metric_for_best_model='accuracy', load_best_model_at_end=True ) ``` ## Evaluation Results Model evaluation was done on 1/10th of the dataset, which served as the test dataset. | Accuracy | F1 Score | Recall | Precision | | -------- | -------- | -------- | ----------- | | 78.50 | 50.34 | 39.22 | 70.27 |
tuni/xlm-roberta-large-xnli-finetuned-mnli
tuni
2022-06-15T21:46:28Z
21
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "text-classification", "generated_from_trainer", "dataset:glue", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-15T09:57:35Z
--- license: mit tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: xlm-roberta-large-xnli-finetuned-mnli results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: mnli metrics: - name: Accuracy type: accuracy value: 0.8548888888888889 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-large-xnli-finetuned-mnli This model is a fine-tuned version of [joeddav/xlm-roberta-large-xnli](https://huggingface.co/joeddav/xlm-roberta-large-xnli) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 1.2542 - Accuracy: 0.8549 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.7468 | 1.0 | 2250 | 0.8551 | 0.8348 | | 0.567 | 2.0 | 4500 | 0.8935 | 0.8377 | | 0.318 | 3.0 | 6750 | 0.9892 | 0.8492 | | 0.1146 | 4.0 | 9000 | 1.2373 | 0.8446 | | 0.0383 | 5.0 | 11250 | 1.2542 | 0.8549 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.3.0 - Tokenizers 0.12.1
emilys/BERTweet-CoNLL
emilys
2022-06-15T21:19:05Z
11
0
transformers
[ "transformers", "pytorch", "roberta", "token-classification", "NER", "en", "dataset:conll2003", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-14T22:41:31Z
--- language: - en tags: - NER datasets: - conll2003 --- bertweet-base (https://huggingface.co/vinai/bertweet-base) finetuned on CoNLL (2003) English, following https://github.com/huggingface/transformers/tree/main/examples/legacy/token-classification
jianyang/dqn-SpaceInvadersNoFrameskip-v4
jianyang
2022-06-15T20:31:27Z
2
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-15T20:30:43Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 699.00 +/- 184.58 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga jianyang -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga jianyang ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
ouiame/bert2gpt2Summy
ouiame
2022-06-15T19:31:08Z
4
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "autotrain", "fr", "dataset:ouiame/autotrain-data-trainproject", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-15T13:08:46Z
--- tags: autotrain language: fr widget: - text: "I love AutoTrain 🤗" datasets: - ouiame/autotrain-data-trainproject co2_eq_emissions: 894.9753853627794 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 985232782 - CO2 Emissions (in grams): 894.9753853627794 ## Validation Metrics - Loss: 1.9692628383636475 - Rouge1: 19.3642 - Rouge2: 7.3644 - RougeL: 16.148 - RougeLsum: 16.4988 - Gen Len: 18.9975 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/ouiame/autotrain-trainproject-985232782 ```
castorini/afriberta_small
castorini
2022-06-15T18:20:16Z
158
1
transformers
[ "transformers", "pytorch", "tf", "xlm-roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
Hugging Face's logo --- language: - om - am - rw - rn - ha - ig - pcm - so - sw - ti - yo - multilingual --- # afriberta_small ## Model description AfriBERTa small is a pretrained multilingual language model with around 97 million parameters. The model has 4 layers, 6 attention heads, 768 hidden units and 3072 feed forward size. The model was pretrained on 11 African languages namely - Afaan Oromoo (also called Oromo), Amharic, Gahuza (a mixed language containing Kinyarwanda and Kirundi), Hausa, Igbo, Nigerian Pidgin, Somali, Swahili, Tigrinya and Yorùbá. The model has been shown to obtain competitive downstream performances on text classification and Named Entity Recognition on several African languages, including those it was not pretrained on. ## Intended uses & limitations #### How to use You can use this model with Transformers for any downstream task. For example, assuming we want to finetune this model on a token classification task, we do the following: ```python >>> from transformers import AutoTokenizer, AutoModelForTokenClassification >>> model = AutoModelForTokenClassification.from_pretrained("castorini/afriberta_small") >>> tokenizer = AutoTokenizer.from_pretrained("castorini/afriberta_small") # we have to manually set the model max length because it is an imported trained sentencepiece model, which huggingface does not properly support right now >>> tokenizer.model_max_length = 512 ``` #### Limitations and bias - This model is possibly limited by its training dataset which are majorly obtained from news articles from a specific span of time. Thus, it may not generalize well. - This model is trained on very little data (less than 1 GB), hence it may not have seen enough data to learn very complex linguistic relations. ## Training data The model was trained on an aggregation of datasets from the BBC news website and Common Crawl. ## Training procedure For information on training procedures, please refer to the AfriBERTa [paper]() or [repository](https://github.com/keleog/afriberta) ### BibTeX entry and citation info ``` @inproceedings{ogueji-etal-2021-small, title = "Small Data? No Problem! Exploring the Viability of Pretrained Multilingual Language Models for Low-resourced Languages", author = "Ogueji, Kelechi and Zhu, Yuxin and Lin, Jimmy", booktitle = "Proceedings of the 1st Workshop on Multilingual Representation Learning", month = nov, year = "2021", address = "Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.mrl-1.11", pages = "116--126", } ```
Vkt/model-960hfacebook-2022.06.08
Vkt
2022-06-15T18:17:56Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-06-08T16:16:13Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: model-960hfacebook-2022.06.08 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # model-960hfacebook-2022.06.08 This model is a fine-tuned version of [facebook/wav2vec2-large-960h-lv60-self](https://huggingface.co/facebook/wav2vec2-large-960h-lv60-self) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.2907 - Wer: 0.1804 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 25 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 6.7634 | 0.21 | 300 | 2.9743 | 0.9998 | | 1.6536 | 0.43 | 600 | 0.8605 | 0.7529 | | 0.9823 | 0.64 | 900 | 0.6600 | 0.6286 | | 0.8708 | 0.86 | 1200 | 0.5780 | 0.5736 | | 0.7878 | 1.07 | 1500 | 0.5386 | 0.5326 | | 0.7033 | 1.29 | 1800 | 0.4986 | 0.4992 | | 0.681 | 1.5 | 2100 | 0.4575 | 0.4778 | | 0.6537 | 1.72 | 2400 | 0.4591 | 0.4482 | | 0.6263 | 1.93 | 2700 | 0.4317 | 0.4353 | | 0.5811 | 2.14 | 3000 | 0.4149 | 0.4159 | | 0.5565 | 2.36 | 3300 | 0.4170 | 0.3956 | | 0.5501 | 2.57 | 3600 | 0.4007 | 0.3929 | | 0.5444 | 2.79 | 3900 | 0.3930 | 0.3851 | | 0.5177 | 3.0 | 4200 | 0.4006 | 0.3630 | | 0.4682 | 3.22 | 4500 | 0.3707 | 0.3713 | | 0.4805 | 3.43 | 4800 | 0.3564 | 0.3583 | | 0.4715 | 3.65 | 5100 | 0.3596 | 0.3434 | | 0.4482 | 3.86 | 5400 | 0.3555 | 0.3394 | | 0.4407 | 4.07 | 5700 | 0.3680 | 0.3312 | | 0.4134 | 4.29 | 6000 | 0.3534 | 0.3328 | | 0.4165 | 4.5 | 6300 | 0.3294 | 0.3259 | | 0.4196 | 4.72 | 6600 | 0.3353 | 0.3214 | | 0.4117 | 4.93 | 6900 | 0.3266 | 0.3211 | | 0.3847 | 5.15 | 7200 | 0.3365 | 0.3156 | | 0.3687 | 5.36 | 7500 | 0.3233 | 0.3014 | | 0.376 | 5.58 | 7800 | 0.3345 | 0.2979 | | 0.3732 | 5.79 | 8100 | 0.3105 | 0.2882 | | 0.3705 | 6.0 | 8400 | 0.3252 | 0.2935 | | 0.3311 | 6.22 | 8700 | 0.3266 | 0.2911 | | 0.3386 | 6.43 | 9000 | 0.2975 | 0.2765 | | 0.337 | 6.65 | 9300 | 0.3070 | 0.2826 | | 0.3458 | 6.86 | 9600 | 0.3090 | 0.2766 | | 0.3218 | 7.08 | 9900 | 0.3117 | 0.2748 | | 0.3041 | 7.29 | 10200 | 0.2989 | 0.2651 | | 0.3031 | 7.51 | 10500 | 0.3210 | 0.2672 | | 0.3037 | 7.72 | 10800 | 0.3040 | 0.2667 | | 0.3126 | 7.93 | 11100 | 0.2867 | 0.2613 | | 0.3005 | 8.15 | 11400 | 0.3075 | 0.2610 | | 0.2802 | 8.36 | 11700 | 0.3129 | 0.2608 | | 0.2785 | 8.58 | 12000 | 0.3002 | 0.2579 | | 0.2788 | 8.79 | 12300 | 0.3063 | 0.2476 | | 0.286 | 9.01 | 12600 | 0.2971 | 0.2495 | | 0.2534 | 9.22 | 12900 | 0.2766 | 0.2452 | | 0.2542 | 9.44 | 13200 | 0.2893 | 0.2405 | | 0.2576 | 9.65 | 13500 | 0.3038 | 0.2518 | | 0.2552 | 9.86 | 13800 | 0.2851 | 0.2429 | | 0.2487 | 10.08 | 14100 | 0.2858 | 0.2356 | | 0.2441 | 10.29 | 14400 | 0.2999 | 0.2364 | | 0.2345 | 10.51 | 14700 | 0.2907 | 0.2373 | | 0.2352 | 10.72 | 15000 | 0.2885 | 0.2402 | | 0.2464 | 10.94 | 15300 | 0.2896 | 0.2339 | | 0.2219 | 11.15 | 15600 | 0.2999 | 0.2351 | | 0.2257 | 11.37 | 15900 | 0.2930 | 0.2326 | | 0.2184 | 11.58 | 16200 | 0.2980 | 0.2353 | | 0.2182 | 11.79 | 16500 | 0.2832 | 0.2296 | | 0.2224 | 12.01 | 16800 | 0.2797 | 0.2285 | | 0.1991 | 12.22 | 17100 | 0.2810 | 0.2296 | | 0.1993 | 12.44 | 17400 | 0.2949 | 0.2253 | | 0.2042 | 12.65 | 17700 | 0.2864 | 0.2207 | | 0.2083 | 12.87 | 18000 | 0.2860 | 0.2278 | | 0.1998 | 13.08 | 18300 | 0.2872 | 0.2232 | | 0.1919 | 13.3 | 18600 | 0.2894 | 0.2247 | | 0.1925 | 13.51 | 18900 | 0.3007 | 0.2234 | | 0.1966 | 13.72 | 19200 | 0.2831 | 0.2176 | | 0.1942 | 13.94 | 19500 | 0.2811 | 0.2161 | | 0.1778 | 14.15 | 19800 | 0.2901 | 0.2196 | | 0.1755 | 14.37 | 20100 | 0.2864 | 0.2188 | | 0.1795 | 14.58 | 20400 | 0.2927 | 0.2170 | | 0.1817 | 14.8 | 20700 | 0.2846 | 0.2156 | | 0.1754 | 15.01 | 21000 | 0.3036 | 0.2137 | | 0.1674 | 15.23 | 21300 | 0.2876 | 0.2156 | | 0.171 | 15.44 | 21600 | 0.2812 | 0.2106 | | 0.1603 | 15.65 | 21900 | 0.2692 | 0.2093 | | 0.1663 | 15.87 | 22200 | 0.2745 | 0.2094 | | 0.1608 | 16.08 | 22500 | 0.2807 | 0.2043 | | 0.1555 | 16.3 | 22800 | 0.2872 | 0.2036 | | 0.1546 | 16.51 | 23100 | 0.2837 | 0.2049 | | 0.1515 | 16.73 | 23400 | 0.2746 | 0.2031 | | 0.1571 | 16.94 | 23700 | 0.2767 | 0.2047 | | 0.1498 | 17.16 | 24000 | 0.2837 | 0.2050 | | 0.143 | 17.37 | 24300 | 0.2745 | 0.2038 | | 0.1471 | 17.58 | 24600 | 0.2787 | 0.2004 | | 0.1442 | 17.8 | 24900 | 0.2779 | 0.2005 | | 0.1481 | 18.01 | 25200 | 0.2906 | 0.2021 | | 0.1318 | 18.23 | 25500 | 0.2936 | 0.1991 | | 0.1396 | 18.44 | 25800 | 0.2913 | 0.1984 | | 0.144 | 18.66 | 26100 | 0.2806 | 0.1953 | | 0.1341 | 18.87 | 26400 | 0.2896 | 0.1972 | | 0.1375 | 19.09 | 26700 | 0.2937 | 0.2002 | | 0.1286 | 19.3 | 27000 | 0.2929 | 0.1954 | | 0.1242 | 19.51 | 27300 | 0.2968 | 0.1962 | | 0.1305 | 19.73 | 27600 | 0.2879 | 0.1944 | | 0.1287 | 19.94 | 27900 | 0.2850 | 0.1937 | | 0.1286 | 20.16 | 28200 | 0.2910 | 0.1961 | | 0.121 | 20.37 | 28500 | 0.2908 | 0.1912 | | 0.1264 | 20.59 | 28800 | 0.2853 | 0.1904 | | 0.1238 | 20.8 | 29100 | 0.2913 | 0.1926 | | 0.117 | 21.02 | 29400 | 0.2907 | 0.1922 | | 0.1154 | 21.23 | 29700 | 0.2902 | 0.1888 | | 0.1142 | 21.44 | 30000 | 0.2854 | 0.1907 | | 0.1168 | 21.66 | 30300 | 0.2918 | 0.1873 | | 0.1168 | 21.87 | 30600 | 0.2897 | 0.1873 | | 0.1105 | 22.09 | 30900 | 0.2951 | 0.1856 | | 0.1134 | 22.3 | 31200 | 0.2842 | 0.1847 | | 0.1111 | 22.52 | 31500 | 0.2884 | 0.1829 | | 0.1088 | 22.73 | 31800 | 0.2991 | 0.1840 | | 0.1139 | 22.94 | 32100 | 0.2876 | 0.1839 | | 0.1078 | 23.16 | 32400 | 0.2899 | 0.1830 | | 0.1087 | 23.37 | 32700 | 0.2927 | 0.1803 | | 0.1076 | 23.59 | 33000 | 0.2924 | 0.1801 | | 0.11 | 23.8 | 33300 | 0.2877 | 0.1804 | | 0.1067 | 24.02 | 33600 | 0.2918 | 0.1799 | | 0.1104 | 24.23 | 33900 | 0.2908 | 0.1809 | | 0.1023 | 24.45 | 34200 | 0.2939 | 0.1807 | | 0.0993 | 24.66 | 34500 | 0.2925 | 0.1802 | | 0.1053 | 24.87 | 34800 | 0.2907 | 0.1804 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.8.1+cu111 - Datasets 2.2.1 - Tokenizers 0.12.1
SimulSt/xlm-roberta-base-finetuned-panx-de
SimulSt
2022-06-15T16:59:24Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-15T16:20:48Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8620945214069894 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1372 - F1: 0.8621 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2575 | 1.0 | 525 | 0.1621 | 0.8292 | | 0.1287 | 2.0 | 1050 | 0.1378 | 0.8526 | | 0.0831 | 3.0 | 1575 | 0.1372 | 0.8621 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
Marscen/roberta-base-squad2-finetuned-squad2
Marscen
2022-06-15T16:15:26Z
23
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "question-answering", "generated_from_trainer", "dataset:squad_v2", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
question-answering
2022-06-14T14:50:48Z
--- license: cc-by-4.0 tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: roberta-base-squad2-finetuned-squad2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-squad2-finetuned-squad2 This model is a fine-tuned version of [deepset/roberta-base-squad2](https://huggingface.co/deepset/roberta-base-squad2) on the squad_v2 dataset. It achieves the following results on the evaluation set: - Loss: 0.8815 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.6979 | 1.0 | 16478 | 0.8815 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.8.1+cu111 - Datasets 2.2.2 - Tokenizers 0.12.1
ksabeh/albert-base-v2-attribute-correction-mlm
ksabeh
2022-06-15T15:49:41Z
5
0
transformers
[ "transformers", "tf", "albert", "question-answering", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-06-15T07:46:56Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: ksabeh/albert-base-v2-mlm-electronics-attribute-correction results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # ksabeh/albert-base-v2-mlm-electronics-attribute-correction This model is a fine-tuned version of [ksabeh/albert-base-v2-mlm-electronics](https://huggingface.co/ksabeh/albert-base-v2-mlm-electronics) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0541 - Validation Loss: 0.0570 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 36852, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.1364 | 0.0743 | 0 | | 0.0541 | 0.0570 | 1 | ### Framework versions - Transformers 4.18.0 - TensorFlow 2.6.4 - Datasets 2.1.0 - Tokenizers 0.12.1
ncfrey/ChemGPT-1.2B
ncfrey
2022-06-15T15:44:24Z
116
13
transformers
[ "transformers", "pytorch", "gpt_neo", "text-generation", "chemistry", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-05-11T20:16:48Z
--- tags: - chemistry --- # ChemGPT 1.2B ChemGPT is based on the GPT-Neo model and was introduced in the paper [Neural Scaling of Deep Chemical Models](https://chemrxiv.org/engage/chemrxiv/article-details/627bddd544bdd532395fb4b5). ## Model description ChemGPT is a transformers model for generative molecular modeling, which was pretrained on the PubChem10M dataset. ## Intended uses & limitations ### How to use You can use this model directly from the 🤗/transformers library. ### Limitations and bias This model was trained on a subset of molecules from PubChem. You can use this model to generate molecules, but it is mostly intended to be used for investigations of the effects of pre-training and fine-tuning on downstream datasets. ## Training data PubChem10M, a dataset of SMILES strings from PubChem, available via [DeepChem](https://deepchemdata.s3-us-west-1.amazonaws.com/datasets/pubchem_10m.txt.zip). ## Training procedure ### Preprocessing SMILES strings were converted to SELFIES using version 1.0.4 of the SELFIES library. ### Pretraining See code in the [LitMatter repository](https://github.com/ncfrey/litmatter/blob/main/lit_models/lit_chemgpt.py). ### BibTeX entry and citation info ``` @article{frey_soklaski_axelrod_samsi_gomez-bombarelli_coley_gadepally_2022, place={Cambridge}, title={Neural Scaling of Deep Chemical Models}, DOI={10.26434/chemrxiv-2022-3s512}, journal={ChemRxiv}, publisher={Cambridge Open Engage}, author={Frey, Nathan and Soklaski, Ryan and Axelrod, Simon and Samsi, Siddharth and Gomez-Bombarelli, Rafael and Coley, Connor and Gadepally, Vijay}, year={2022}} This content is a preprint and has not been peer-reviewed. ``` ``` Frey, Nathan, Ryan Soklaski, Simon Axelrod, Siddharth Samsi, Rafael Gomez-Bombarelli, Connor Coley, and Vijay Gadepally. "Neural Scaling of Deep Chemical Models." ChemRxiv (2022). Print. This content is a preprint and has not been peer-reviewed. ```
ncfrey/ChemGPT-19M
ncfrey
2022-06-15T15:19:57Z
384
5
transformers
[ "transformers", "pytorch", "gpt_neo", "text-generation", "chemistry", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-05-11T20:02:27Z
--- tags: - chemistry --- # ChemGPT 19M ChemGPT is based on the GPT-Neo model and was introduced in the paper [Neural Scaling of Deep Chemical Models](https://chemrxiv.org/engage/chemrxiv/article-details/627bddd544bdd532395fb4b5). ## Model description ChemGPT is a transformers model for generative molecular modeling, which was pretrained on the PubChem10M dataset. ## Intended uses & limitations ### How to use You can use this model directly from the 🤗/transformers library. ### Limitations and bias This model was trained on a subset of molecules from PubChem. You can use this model to generate molecules, but it is mostly intended to be used for investigations of the effects of pre-training and fine-tuning on downstream datasets. ## Training data PubChem10M, a dataset of SMILES strings from PubChem, available via [DeepChem](https://deepchemdata.s3-us-west-1.amazonaws.com/datasets/pubchem_10m.txt.zip). ## Training procedure ### Preprocessing SMILES strings were converted to SELFIES using version 1.0.4 of the SELFIES library. ### Pretraining See code in the [LitMatter repository](https://github.com/ncfrey/litmatter/blob/main/lit_models/lit_chemgpt.py). ### BibTeX entry and citation info ``` @article{frey_soklaski_axelrod_samsi_gomez-bombarelli_coley_gadepally_2022, place={Cambridge}, title={Neural Scaling of Deep Chemical Models}, DOI={10.26434/chemrxiv-2022-3s512}, journal={ChemRxiv}, publisher={Cambridge Open Engage}, author={Frey, Nathan and Soklaski, Ryan and Axelrod, Simon and Samsi, Siddharth and Gomez-Bombarelli, Rafael and Coley, Connor and Gadepally, Vijay}, year={2022}} This content is a preprint and has not been peer-reviewed. ``` ``` Frey, Nathan, Ryan Soklaski, Simon Axelrod, Siddharth Samsi, Rafael Gomez-Bombarelli, Connor Coley, and Vijay Gadepally. "Neural Scaling of Deep Chemical Models." ChemRxiv (2022). Print. This content is a preprint and has not been peer-reviewed. ```
ncfrey/ChemGPT-4.7M
ncfrey
2022-06-15T15:17:11Z
391
19
transformers
[ "transformers", "pytorch", "gpt_neo", "text-generation", "chemistry", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-05-11T19:54:55Z
--- tags: - chemistry --- # ChemGPT 4.7M ChemGPT is based on the GPT-Neo model and was introduced in the paper [Neural Scaling of Deep Chemical Models](https://chemrxiv.org/engage/chemrxiv/article-details/627bddd544bdd532395fb4b5). ## Model description ChemGPT is a transformers model for generative molecular modeling, which was pretrained on the PubChem10M dataset. ## Intended uses & limitations ### How to use You can use this model directly from the 🤗/transformers library. ### Limitations and bias This model was trained on a subset of molecules from PubChem. You can use this model to generate molecules, but it is mostly intended to be used for investigations of the effects of pre-training and fine-tuning on downstream datasets. ## Training data PubChem10M, a dataset of SMILES strings from PubChem, available via [DeepChem](https://deepchemdata.s3-us-west-1.amazonaws.com/datasets/pubchem_10m.txt.zip). ## Training procedure ### Preprocessing SMILES strings were converted to SELFIES using version 1.0.4 of the SELFIES library. ### Pretraining See code in the [LitMatter repository](https://github.com/ncfrey/litmatter/blob/main/lit_models/lit_chemgpt.py). ### BibTeX entry and citation info ``` @article{frey_soklaski_axelrod_samsi_gomez-bombarelli_coley_gadepally_2022, place={Cambridge}, title={Neural Scaling of Deep Chemical Models}, DOI={10.26434/chemrxiv-2022-3s512}, journal={ChemRxiv}, publisher={Cambridge Open Engage}, author={Frey, Nathan and Soklaski, Ryan and Axelrod, Simon and Samsi, Siddharth and Gomez-Bombarelli, Rafael and Coley, Connor and Gadepally, Vijay}, year={2022}} This content is a preprint and has not been peer-reviewed. ``` ``` Frey, Nathan, Ryan Soklaski, Simon Axelrod, Siddharth Samsi, Rafael Gomez-Bombarelli, Connor Coley, and Vijay Gadepally. "Neural Scaling of Deep Chemical Models." ChemRxiv (2022). Print. This content is a preprint and has not been peer-reviewed. ```
jkhan447/sarcasm-detection-Bert-base-uncased-CR-POS
jkhan447
2022-06-15T12:59:12Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-15T04:05:31Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: sarcasm-detection-Bert-base-uncased-CR-POS results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sarcasm-detection-Bert-base-uncased-CR-POS This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.1816 - Accuracy: 0.5783 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.3.0 - Tokenizers 0.12.1
tuni/distilbert-base-uncased-finetuned-mnli
tuni
2022-06-15T12:57:52Z
10
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-14T21:50:51Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-mnli results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: mnli metrics: - name: Accuracy type: accuracy value: 0.8204788588894549 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-mnli This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6574 - Accuracy: 0.8205 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:------:|:---------------:|:--------:| | 0.5188 | 1.0 | 24544 | 0.4979 | 0.8047 | | 0.4153 | 2.0 | 49088 | 0.4845 | 0.8147 | | 0.3008 | 3.0 | 73632 | 0.5631 | 0.8204 | | 0.2226 | 4.0 | 98176 | 0.6574 | 0.8205 | | 0.189 | 5.0 | 122720 | 0.8209 | 0.8194 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.3.0 - Tokenizers 0.12.1
mikeluck/wav2vec2-base-timit-demo-google-colab
mikeluck
2022-06-15T12:43:38Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-06-15T10:44:28Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-google-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-google-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5351 - Wer: 0.3384 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.6311 | 1.0 | 500 | 2.6700 | 1.0 | | 1.0104 | 2.01 | 1000 | 0.5289 | 0.5277 | | 0.4483 | 3.01 | 1500 | 0.4576 | 0.4623 | | 0.3089 | 4.02 | 2000 | 0.4483 | 0.4255 | | 0.2278 | 5.02 | 2500 | 0.4463 | 0.4022 | | 0.1886 | 6.02 | 3000 | 0.4653 | 0.3938 | | 0.1578 | 7.03 | 3500 | 0.4624 | 0.3855 | | 0.1429 | 8.03 | 4000 | 0.4420 | 0.3854 | | 0.1244 | 9.04 | 4500 | 0.4980 | 0.3787 | | 0.1126 | 10.04 | 5000 | 0.4311 | 0.3785 | | 0.1082 | 11.04 | 5500 | 0.5114 | 0.3782 | | 0.0888 | 12.05 | 6000 | 0.5392 | 0.3725 | | 0.0835 | 13.05 | 6500 | 0.6011 | 0.3941 | | 0.074 | 14.06 | 7000 | 0.5030 | 0.3652 | | 0.0667 | 15.06 | 7500 | 0.5041 | 0.3583 | | 0.0595 | 16.06 | 8000 | 0.5125 | 0.3605 | | 0.0578 | 17.07 | 8500 | 0.5206 | 0.3592 | | 0.0573 | 18.07 | 9000 | 0.5208 | 0.3643 | | 0.0469 | 19.08 | 9500 | 0.4670 | 0.3537 | | 0.0442 | 20.08 | 10000 | 0.5388 | 0.3497 | | 0.0417 | 21.08 | 10500 | 0.5213 | 0.3581 | | 0.0361 | 22.09 | 11000 | 0.5096 | 0.3465 | | 0.0338 | 23.09 | 11500 | 0.5178 | 0.3459 | | 0.0333 | 24.1 | 12000 | 0.5240 | 0.3490 | | 0.0256 | 25.1 | 12500 | 0.5438 | 0.3464 | | 0.0248 | 26.1 | 13000 | 0.5182 | 0.3412 | | 0.0231 | 27.11 | 13500 | 0.5628 | 0.3423 | | 0.0228 | 28.11 | 14000 | 0.5416 | 0.3419 | | 0.0223 | 29.12 | 14500 | 0.5351 | 0.3384 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
magelang1337/Backlinks
magelang1337
2022-06-15T11:56:54Z
0
0
null
[ "region:us" ]
null
2022-06-15T11:56:30Z
https://www.beesource.com/members/magelang1337.142760/#about https://leasedadspace.com/frame.php?bfm_page=members/magelang1337&aid=magelang1337 https://www.jqwidgets.com/community/users/magelang1337/ https://metalstorm.net/users/magelang1337/profile https://myanimelist.net/profile/mnhblog https://forum.codeigniter.com/member.php?action=profile&uid=50438 https://purothemes.com/support/users/magelang1337/ https://talkmarkets.com/member/nutrisi25/ https://www.ngemu.com/members/magelang1337.723290/ https://lunarxtest.com/horizondrifters/community/profile/magelang1337/ https://lifedonefree.com/community/profile/magelang1337/ https://multijoueur.online/forum/profile/magelang1337/ https://www.prevailingtruth.net/community/profile/magelang1337/ https://confidentkidsborntosparkle.com/community/profile/magelng1337/ https://cyborg-guide.ru/forum/profile/magelang1337/ https://nvridersforum.com/profile/magelang1337/ http://cubeengine.com/forum.php?action=display_thread&thread_id=2745 https://forums.opensuse.org/showthread.php/564850-Full-system-crash-when-playing-games?p=3133991#post3133991 https://www.askalondoner.co.uk/community/profile/magelang1337/
AnyaSchen/rugpt3_esenin
AnyaSchen
2022-06-15T11:26:44Z
10
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-15T10:28:01Z
This model was created as a fine-tuned GPT-3 medium model, which is tuned to the style of Yesenin's poetry in Russian. You can give her a word, a phrase, or just an empty line as an input, and she will give out a poem in Yesenin's style. ![alt text](https://lh3.googleusercontent.com/GFvLjpEgChuXAalHquE3zl22Cqx7ipO233pNHxI_A3tK3jAF0ylRnNuDRdki9O19vVQ=w2400)
ChrisUPM/BioBERT_Re_trained
ChrisUPM
2022-06-15T11:10:39Z
4
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-18T12:54:24Z
PyTorch trained model on GAD dataset for relation classification, using BioBert weights.
Corianas/dqn-BeamRiderNoFrameskip-v4
Corianas
2022-06-15T10:41:50Z
5
0
stable-baselines3
[ "stable-baselines3", "BeamRiderNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-15T08:55:40Z
--- library_name: stable-baselines3 tags: - BeamRiderNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 3983.00 +/- 1512.41 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: BeamRiderNoFrameskip-v4 type: BeamRiderNoFrameskip-v4 --- # **DQN** Agent playing **BeamRiderNoFrameskip-v4** This is a trained model of a **DQN** agent playing **BeamRiderNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env BeamRiderNoFrameskip-v4 -orga Corianas -f logs/ python enjoy.py --algo dqn --env BeamRiderNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env BeamRiderNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env BeamRiderNoFrameskip-v4 -f logs/ -orga Corianas ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 10000000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
fabiochiu/dqn-SpaceInvadersNoFrameskip-v4
fabiochiu
2022-06-15T10:32:49Z
2
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-15T10:32:10Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 631.50 +/- 84.41 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga fabiochiu -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga fabiochiu ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
rajendra-ml/Chandrayaan
rajendra-ml
2022-06-15T10:16:42Z
2
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-15T10:16:00Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 176.75 +/- 18.07 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
TinySuitStarfish/q-FrozenLake-v1-4x4-Slippery
TinySuitStarfish
2022-06-15T10:09:42Z
0
0
null
[ "FrozenLake-v1-4x4", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-06-15T10:09:31Z
--- tags: - FrozenLake-v1-4x4 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-Slippery results: - metrics: - type: mean_reward value: 0.72 +/- 0.45 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4 type: FrozenLake-v1-4x4 --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="TinySuitStarfish/q-FrozenLake-v1-4x4-Slippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
FritzOS/TEdetection_distiBERT_NER_final_8e
FritzOS
2022-06-15T09:37:10Z
4
0
transformers
[ "transformers", "tf", "distilbert", "token-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-15T09:36:53Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: TEdetection_distiBERT_NER_final_8e results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # TEdetection_distiBERT_NER_final_8e This model is a fine-tuned version of [FritzOS/TEdetection_distiBERT_mLM_final_8e](https://huggingface.co/FritzOS/TEdetection_distiBERT_mLM_final_8e) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0032 - Validation Loss: 0.0037 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 220743, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.0032 | 0.0037 | 0 | ### Framework versions - Transformers 4.19.4 - TensorFlow 2.8.2 - Datasets 2.3.0 - Tokenizers 0.12.1
pere/eu-jav-categorisation
pere
2022-06-15T08:20:30Z
0
0
null
[ "region:us" ]
null
2022-03-29T20:40:09Z
Private sample code for running categorisation on the mT5X
facebook/wav2vec2-conformer-rope-large-100h-ft
facebook
2022-06-15T08:16:47Z
46
0
transformers
[ "transformers", "pytorch", "wav2vec2-conformer", "automatic-speech-recognition", "speech", "audio", "hf-asr-leaderboard", "en", "dataset:librispeech_asr", "arxiv:2010.05171", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-04-18T09:48:47Z
--- language: en datasets: - librispeech_asr tags: - speech - audio - automatic-speech-recognition - hf-asr-leaderboard license: apache-2.0 --- # Wav2Vec2-Conformer-Large-100h with Rotary Position Embeddings Wav2Vec2 Conformer with rotary position embeddings, pretrained on 960h hours of Librispeech and fine-tuned on **100 hours of Librispeech** on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. **Paper**: [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171) **Authors**: Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino The results of Wav2Vec2-Conformer can be found in Table 3 and Table 4 of the [official paper](https://arxiv.org/abs/2010.05171). The original model can be found under https://github.com/pytorch/fairseq/tree/master/examples/wav2vec#wav2vec-20. # Usage To transcribe audio files the model can be used as a standalone acoustic model as follows: ```python from transformers import Wav2Vec2Processor, Wav2Vec2ConformerForCTC from datasets import load_dataset import torch # load model and processor processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-conformer-rope-large-100h-ft") model = Wav2Vec2ConformerForCTC.from_pretrained("facebook/wav2vec2-conformer-rope-large-100h-ft") # load dummy dataset and read soundfiles ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation") # tokenize input_values = processor(ds[0]["audio"]["array"], return_tensors="pt", padding="longest").input_values # retrieve logits logits = model(input_values).logits # take argmax and decode predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(predicted_ids) ```
facebook/wav2vec2-conformer-rel-pos-large-960h-ft
facebook
2022-06-15T08:12:40Z
659
5
transformers
[ "transformers", "pytorch", "wav2vec2-conformer", "automatic-speech-recognition", "speech", "audio", "hf-asr-leaderboard", "en", "dataset:librispeech_asr", "arxiv:2010.05171", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-04-18T09:17:37Z
--- language: en datasets: - librispeech_asr tags: - speech - audio - automatic-speech-recognition - hf-asr-leaderboard license: apache-2.0 model-index: - name: wav2vec2-conformer-rel-pos-large-960h-ft results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: LibriSpeech (clean) type: librispeech_asr config: clean split: test args: language: en metrics: - name: Test WER type: wer value: 1.85 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: LibriSpeech (other) type: librispeech_asr config: other split: test args: language: en metrics: - name: Test WER type: wer value: 3.83 --- # Wav2Vec2-Conformer-Large-960h with Relative Position Embeddings Wav2Vec2-Conformer with relative position embeddings, pretrained and **fine-tuned on 960 hours of Librispeech** on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. **Paper**: [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171) **Authors**: Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino The results of Wav2Vec2-Conformer can be found in Table 3 and Table 4 of the [official paper](https://arxiv.org/abs/2010.05171). The original model can be found under https://github.com/pytorch/fairseq/tree/master/examples/wav2vec#wav2vec-20. # Usage To transcribe audio files the model can be used as a standalone acoustic model as follows: ```python from transformers import Wav2Vec2Processor, Wav2Vec2ConformerForCTC from datasets import load_dataset import torch # load model and processor processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-conformer-rel-pos-large-960h-ft") model = Wav2Vec2ConformerForCTC.from_pretrained("facebook/wav2vec2-conformer-rel-pos-large-960h-ft") # load dummy dataset and read soundfiles ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation") # tokenize input_values = processor(ds[0]["audio"]["array"], return_tensors="pt", padding="longest").input_values # retrieve logits logits = model(input_values).logits # take argmax and decode predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(predicted_ids) ``` ## Evaluation This code snippet shows how to evaluate **facebook/wav2vec2-conformer-rel-pos-large-960h-ft** on LibriSpeech's "clean" and "other" test data. ```python from datasets import load_dataset from transformers import Wav2Vec2ConformerForCTC, Wav2Vec2Processor import torch from jiwer import wer librispeech_eval = load_dataset("librispeech_asr", "clean", split="test") model = Wav2Vec2ConformerForCTC.from_pretrained("facebook/wav2vec2-large-960h-lv60-self").to("cuda") processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-960h-lv60-self") def map_to_pred(batch): inputs = processor(batch["audio"]["array"], return_tensors="pt", padding="longest") input_values = inputs.input_values.to("cuda") attention_mask = inputs.attention_mask.to("cuda") with torch.no_grad(): logits = model(input_values, attention_mask=attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(predicted_ids) batch["transcription"] = transcription return batch result = librispeech_eval.map(map_to_pred, remove_columns=["audio"]) print("WER:", wer(result["text"], result["transcription"])) ``` *Result (WER)*: | "clean" | "other" | |---|---| | 1.85 | 3.82 |
facebook/wav2vec2-conformer-rope-large
facebook
2022-06-15T08:12:09Z
33
2
transformers
[ "transformers", "pytorch", "wav2vec2-conformer", "pretraining", "speech", "en", "dataset:librispeech_asr", "arxiv:2010.05171", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-04-18T09:26:53Z
--- language: en datasets: - librispeech_asr tags: - speech license: apache-2.0 --- # Wav2Vec2-Conformer-Large with Rotary Position Embeddings Wav2Vec2 Conformer with rotary position embeddings, pretrained on 960 hours of Librispeech on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. **Note**: This model does not have a tokenizer as it was pretrained on audio alone. In order to use this model **speech recognition**, a tokenizer should be created and the model should be fine-tuned on labeled text data. Check out [this blog](https://huggingface.co/blog/fine-tune-wav2vec2-english) for more in-detail explanation of how to fine-tune the model. **Paper**: [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171) **Authors**: Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino The results of Wav2Vec2-Conformer can be found in Table 3 and Table 4 of the [official paper](https://arxiv.org/abs/2010.05171). The original model can be found under https://github.com/pytorch/fairseq/tree/master/examples/wav2vec#wav2vec-20. # Usage See [this notebook](https://colab.research.google.com/drive/1FjTsqbYKphl9kL-eILgUc-bl4zVThL8F?usp=sharing) for more information on how to fine-tune the model.
FritzOS/TEdetection_distiBERT_mLM_final_8e
FritzOS
2022-06-15T07:55:31Z
3
0
transformers
[ "transformers", "tf", "distilbert", "fill-mask", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-06-15T07:55:17Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: TEdetection_distiBERT_mLM_final_8e results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # TEdetection_distiBERT_mLM_final_8e This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 5e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 208018, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results ### Framework versions - Transformers 4.19.4 - TensorFlow 2.8.2 - Datasets 2.3.0 - Tokenizers 0.12.1
lewtun/dog-vs-chicken
lewtun
2022-06-15T07:09:02Z
52
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-06-15T07:08:51Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: dog-vs-chicken results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 1.0 --- # dog-vs-chicken Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### crispy fried chicken ![crispy fried chicken](images/crispy_fried_chicken.jpg) #### poodle ![poodle](images/poodle.jpg)
eslamxm/xlmroberta-finetuned-fa
eslamxm
2022-06-15T06:53:15Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "summarization", "fa", "xlmroberta", "Abstractive Summarization", "generated_from_trainer", "dataset:pn_summary", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-06-14T22:08:51Z
--- tags: - summarization - fa - xlmroberta - Abstractive Summarization - generated_from_trainer datasets: - pn_summary model-index: - name: xlmroberta-finetuned-fa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlmroberta-finetuned-fa This model is a fine-tuned version of [](https://huggingface.co/) on the pn_summary dataset. It achieves the following results on the evaluation set: - Loss: 8.2286 - Rouge-1: 4.99 - Rouge-2: 0.0 - Rouge-l: 4.99 - Gen Len: 20.0 - Bertscore: 51.89 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 250 - num_epochs: 5 - label_smoothing_factor: 0.1 ### Training results ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.3.0 - Tokenizers 0.12.1
seomh/distilbert-base-uncased-finetuned-squad
seomh
2022-06-15T06:49:56Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-06-11T14:04:20Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 0.0083 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2258 | 1.0 | 5533 | 0.0560 | | 0.952 | 2.0 | 11066 | 0.0096 | | 0.7492 | 3.0 | 16599 | 0.0083 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
eslamxm/mt5-base-finetuned-Spanish
eslamxm
2022-06-15T05:13:08Z
94
2
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "summarization", "es", "spanish", "abstractive summarization", "generated_from_trainer", "dataset:wiki_lingua", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-06-14T18:45:17Z
--- license: apache-2.0 tags: - summarization - mt5 - es - spanish - abstractive summarization - generated_from_trainer datasets: - wiki_lingua model-index: - name: mt5-base-finetuned-Spanish results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-base-finetuned-Spanish This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on the wiki_lingua dataset. It achieves the following results on the evaluation set: - Loss: 3.1727 - Rouge-1: 28.11 - Rouge-2: 12.09 - Rouge-l: 24.62 - Gen Len: 18.73 - Bertscore: 72.25 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 250 - num_epochs: 5 - label_smoothing_factor: 0.1 ### Training results ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.3.0 - Tokenizers 0.12.1
huggingtweets/danny_macaskill-martynashton
huggingtweets
2022-06-15T04:59:30Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-15T04:58:54Z
--- language: en thumbnail: http://www.huggingtweets.com/danny_macaskill-martynashton/1655269165002/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/770573812991754240/gyUr23bS_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/616596420230021120/w-kK8IT6_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Danny MacAskill & Martyn Ashton</div> <div style="text-align: center; font-size: 14px;">@danny_macaskill-martynashton</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Danny MacAskill & Martyn Ashton. | Data | Danny MacAskill | Martyn Ashton | | --- | --- | --- | | Tweets downloaded | 2971 | 3179 | | Retweets | 505 | 810 | | Short tweets | 79 | 136 | | Tweets kept | 2387 | 2233 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/31ege8zb/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @danny_macaskill-martynashton's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/g4d86tk2) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/g4d86tk2/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/danny_macaskill-martynashton') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
steven123/Teeth_A
steven123
2022-06-15T02:42:35Z
53
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-06-15T02:42:24Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: Teeth_A results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.4545454680919647 --- # Teeth_A Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### Good Teeth ![Good Teeth](images/Good_Teeth.jpg) #### Missing Teeth ![Missing Teeth](images/Missing_Teeth.jpg) #### Rotten Teeth ![Rotten Teeth](images/Rotten_Teeth.jpg)
DLochmelis33/22s-dl-sentiment-1
DLochmelis33
2022-06-15T01:07:08Z
5
1
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:yelp_review_full", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-15T01:01:07Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - yelp_review_full metrics: - accuracy model-index: - name: 22s-dl-sentiment-1 results: - task: name: Text Classification type: text-classification dataset: name: yelp_review_full type: yelp_review_full args: yelp_review_full metrics: - name: Accuracy type: accuracy value: 0.9542333333333334 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 22s-dl-sentiment-1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the yelp_review_full dataset. It achieves the following results on the evaluation set: - Loss: 0.2574 - Accuracy: 0.9542 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.3.0 - Tokenizers 0.12.1
tanbwilson/q-Taxi-v3
tanbwilson
2022-06-15T01:04:48Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-06-15T01:04:42Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - metrics: - type: mean_reward value: 7.54 +/- 2.69 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="tanbwilson/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
enoriega/rule_learning_margin_1mm_spanpred
enoriega
2022-06-15T00:55:38Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "generated_from_trainer", "dataset:enoriega/odinsynth_dataset", "endpoints_compatible", "region:us" ]
null
2022-06-11T02:59:23Z
--- tags: - generated_from_trainer datasets: - enoriega/odinsynth_dataset model-index: - name: rule_learning_margin_1mm_spanpred results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # rule_learning_margin_1mm_spanpred This model is a fine-tuned version of [enoriega/rule_softmatching](https://huggingface.co/enoriega/rule_softmatching) on the enoriega/odinsynth_dataset dataset. It achieves the following results on the evaluation set: - Loss: 0.3250 - Margin Accuracy: 0.8518 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2000 - total_train_batch_size: 8000 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Margin Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------------:| | 0.5448 | 0.16 | 20 | 0.5229 | 0.7717 | | 0.4571 | 0.32 | 40 | 0.4292 | 0.8109 | | 0.4296 | 0.48 | 60 | 0.4009 | 0.8193 | | 0.4028 | 0.64 | 80 | 0.3855 | 0.8296 | | 0.3878 | 0.8 | 100 | 0.3757 | 0.8334 | | 0.3831 | 0.96 | 120 | 0.3643 | 0.8367 | | 0.3591 | 1.12 | 140 | 0.3582 | 0.8393 | | 0.3598 | 1.28 | 160 | 0.3533 | 0.8401 | | 0.3635 | 1.44 | 180 | 0.3442 | 0.8427 | | 0.3478 | 1.6 | 200 | 0.3406 | 0.8472 | | 0.342 | 1.76 | 220 | 0.3352 | 0.8479 | | 0.3327 | 1.92 | 240 | 0.3352 | 0.8486 | | 0.3487 | 2.08 | 260 | 0.3293 | 0.8487 | | 0.3387 | 2.24 | 280 | 0.3298 | 0.8496 | | 0.3457 | 2.4 | 300 | 0.3279 | 0.8505 | | 0.3483 | 2.56 | 320 | 0.3286 | 0.8510 | | 0.3421 | 2.72 | 340 | 0.3245 | 0.8517 | | 0.3332 | 2.88 | 360 | 0.3252 | 0.8517 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0 - Datasets 2.2.1 - Tokenizers 0.12.1
steven123/Teeth_B
steven123
2022-06-15T00:31:50Z
50
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-06-15T00:31:36Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: Teeth_B results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.6800000071525574 --- # Teeth_B Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### Good Teeth ![Good Teeth](images/Good_Teeth.jpg) #### Missing Teeth ![Missing Teeth](images/Missing_Teeth.jpg) #### Rotten Teeth ![Rotten Teeth](images/Rotten_Teeth.jpg)
Tstarshak/ppo-LunarLander-v2
Tstarshak
2022-06-15T00:17:22Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-14T23:30:41Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 184.36 +/- 74.26 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
steven123/teeth_test
steven123
2022-06-14T23:57:13Z
51
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-06-14T23:46:08Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: teeth_test results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.5555555820465088 --- # teeth_test Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### Good Teeth ![Good Teeth](images/Good_Teeth.jpg) #### Missing Teeth ![Missing Teeth](images/Missing_Teeth.jpg) #### Rotten Teeth ![Rotten Teeth](images/Rotten_Teeth.jpg)
tanbwilson/test2ppo-LunarLander-v2
tanbwilson
2022-06-14T23:53:55Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-14T23:53:24Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 196.23 +/- 70.55 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
huggingtweets/rangersfc
huggingtweets
2022-06-14T20:58:46Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-14T20:58:15Z
--- language: en thumbnail: http://www.huggingtweets.com/rangersfc/1655240322192/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1513529336107839491/OQuphidQ_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Rangers Football Club</div> <div style="text-align: center; font-size: 14px;">@rangersfc</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Rangers Football Club. | Data | Rangers Football Club | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 315 | | Short tweets | 338 | | Tweets kept | 2597 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3150wqc2/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @rangersfc's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3bzvo1hp) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3bzvo1hp/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/rangersfc') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
ahmeddbahaa/AraBART-finetuned-ar
ahmeddbahaa
2022-06-14T20:41:43Z
24
0
transformers
[ "transformers", "pytorch", "tensorboard", "mbart", "text2text-generation", "summarization", "generated_from_trainer", "dataset:xlsum", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-04-04T14:58:44Z
--- license: apache-2.0 tags: - summarization - generated_from_trainer datasets: - xlsum model-index: - name: AraBART-finetune-ar-xlsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # AraBART-finetuned-ar This model is a fine-tuned version of [moussaKam/AraBART](https://huggingface.co/moussaKam/AraBART) on the xlsum dataset. It achieves the following results on the evaluation set: - Loss: 3.7449 - Rouge-1: 31.08 - Rouge-2: 14.68 - Rouge-l: 27.36 - Gen Len: 19.64 - Bertscore: 73.86 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 250 - num_epochs: 10 - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge-1 | Rouge-2 | Rouge-l | Gen Len | Bertscore | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:-------:|:---------:| | 4.4318 | 1.0 | 2345 | 3.7996 | 28.93 | 13.2 | 25.56 | 19.51 | 73.17 | | 4.0338 | 2.0 | 4690 | 3.7483 | 30.29 | 14.24 | 26.73 | 19.5 | 73.59 | | 3.8586 | 3.0 | 7035 | 3.7281 | 30.44 | 14.44 | 26.92 | 19.75 | 73.58 | | 3.7289 | 4.0 | 9380 | 3.7204 | 30.55 | 14.49 | 26.88 | 19.66 | 73.73 | | 3.6245 | 5.0 | 11725 | 3.7199 | 30.73 | 14.63 | 27.11 | 19.69 | 73.68 | | 3.5392 | 6.0 | 14070 | 3.7221 | 30.85 | 14.65 | 27.21 | 19.7 | 73.77 | | 3.4694 | 7.0 | 16415 | 3.7286 | 31.08 | 14.8 | 27.41 | 19.62 | 73.84 | | 3.4126 | 8.0 | 18760 | 3.7384 | 31.06 | 14.77 | 27.41 | 19.64 | 73.82 | | 3.3718 | 9.0 | 21105 | 3.7398 | 31.18 | 14.89 | 27.49 | 19.67 | 73.87 | | 3.3428 | 10.0 | 23450 | 3.7449 | 31.19 | 14.88 | 27.44 | 19.68 | 73.87 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
tanbwilson/ppo-LunarLander-v2
tanbwilson
2022-06-14T20:31:40Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-14T20:31:12Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 270.14 +/- 22.06 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Alireza1044/mobilebert_QNLI
Alireza1044
2022-06-14T19:54:02Z
16
0
transformers
[ "transformers", "pytorch", "tensorboard", "mobilebert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-14T15:54:12Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: qnli results: - task: name: Text Classification type: text-classification dataset: name: GLUE QNLI type: glue args: qnli metrics: - name: Accuracy type: accuracy value: 0.9068277503203368 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # qnli This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE QNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.3731 - Accuracy: 0.9068 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0 - Datasets 2.2.2 - Tokenizers 0.12.1
cindy203cc/finetuning-sentiment-model-3000-samples
cindy203cc
2022-06-14T19:16:33Z
9
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-14T18:55:35Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8633333333333333 - name: F1 type: f1 value: 0.8628762541806019 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3187 - Accuracy: 0.8633 - F1: 0.8629 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.3.0 - Tokenizers 0.12.1
eslamxm/mt5-base-arabic
eslamxm
2022-06-14T18:08:07Z
18
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "summarization", "arabic", "ar", "Abstractive Summarization", "generated_from_trainer", "dataset:xlsum", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-05-09T06:32:04Z
--- license: apache-2.0 tags: - summarization - arabic - ar - mt5 - Abstractive Summarization - generated_from_trainer datasets: - xlsum model-index: - name: mt5-base-arabic results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-base-arabic This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on arabic subset on the xlsum dataset. It achieves the following results on the evaluation set: - Loss: 3.2742 - Rouge-1: 22.86 - Rouge-2: 10.31 - Rouge-l: 20.85 - Gen Len: 19.0 - Bertscore: 71.52 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge-1 | Rouge-2 | Rouge-l | Gen Len | Bertscore | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:-------:|:---------:| | 4.2331 | 1.0 | 1172 | 3.5051 | 18.54 | 6.63 | 16.77 | 19.0 | 70.28 | | 3.7075 | 2.0 | 2344 | 3.3737 | 19.99 | 7.94 | 18.19 | 19.0 | 70.79 | | 3.5132 | 3.0 | 3516 | 3.3171 | 20.76 | 8.57 | 18.96 | 19.0 | 70.95 | | 3.3859 | 4.0 | 4688 | 3.2811 | 21.49 | 8.99 | 19.51 | 19.0 | 71.19 | | 3.3012 | 5.0 | 5860 | 3.2742 | 21.79 | 9.18 | 19.77 | 19.0 | 71.25 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
jkhan447/sarcasm-detection-RoBerta-base-CR-POS
jkhan447
2022-06-14T16:55:38Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-14T08:00:20Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: sarcasm-detection-RoBerta-base-CR-POS results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sarcasm-detection-RoBerta-base-CR-POS This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6933 - Accuracy: 0.4977 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
danieladejumo/darknet-coco-object_detection
danieladejumo
2022-06-14T16:40:32Z
0
2
null
[ "object-detection", "COCO", "YOLO", "Darknet", "model-index", "region:us" ]
object-detection
2022-06-13T14:43:12Z
--- tags: - object-detection - COCO - YOLO - Darknet model-index: - name: darknet-coco-object_detection results: - metrics: - type: None value: '1' name: None task: type: object-detection name: object-detection dataset: name: COCO type: COCO --- ## Darknet Object Detection on the COCO dataset This model uses a pretrained YOLO Darknet model to perform object detection on an input image. The model is able to identify 80 classes from the COCO dataset. The classes are listed here `config/coco.names`. ### Usage Clone the repository using ```python repo = Repository("/local_repo_name", clone_from="danieladejumo/darknet-coco-object_detection") ``` Run a detection by using the function `detect(path_to_image)` in the notebook `darknet-coco-object_detection.ipynb`. The output image with the detection rectangle and classes will be saved to `images/image_file_name-det.jpg`
chiranthans23/xlm-roberta-base-finetuned-panx-de
chiranthans23
2022-06-14T16:13:11Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-13T16:40:42Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8620945214069894 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1372 - F1: 0.8621 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2575 | 1.0 | 525 | 0.1621 | 0.8292 | | 0.1287 | 2.0 | 1050 | 0.1378 | 0.8526 | | 0.0831 | 3.0 | 1575 | 0.1372 | 0.8621 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
Sebabrata/lmv2-g-aadhaar-236doc-06-14
Sebabrata
2022-06-14T15:12:43Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "layoutlmv2", "token-classification", "generated_from_trainer", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-14T14:24:48Z
--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer model-index: - name: lmv2-g-aadhaar-236doc-06-14 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # lmv2-g-aadhaar-236doc-06-14 This model is a fine-tuned version of [microsoft/layoutlmv2-base-uncased](https://huggingface.co/microsoft/layoutlmv2-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0427 - Aadhaar Precision: 0.9783 - Aadhaar Recall: 1.0 - Aadhaar F1: 0.9890 - Aadhaar Number: 45 - Dob Precision: 0.9787 - Dob Recall: 1.0 - Dob F1: 0.9892 - Dob Number: 46 - Gender Precision: 1.0 - Gender Recall: 0.9787 - Gender F1: 0.9892 - Gender Number: 47 - Name Precision: 0.9574 - Name Recall: 0.9375 - Name F1: 0.9474 - Name Number: 48 - Overall Precision: 0.9785 - Overall Recall: 0.9785 - Overall F1: 0.9785 - Overall Accuracy: 0.9939 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Aadhaar Precision | Aadhaar Recall | Aadhaar F1 | Aadhaar Number | Dob Precision | Dob Recall | Dob F1 | Dob Number | Gender Precision | Gender Recall | Gender F1 | Gender Number | Name Precision | Name Recall | Name F1 | Name Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:-----:|:----:|:---------------:|:-----------------:|:--------------:|:----------:|:--------------:|:-------------:|:----------:|:------:|:----------:|:----------------:|:-------------:|:---------:|:-------------:|:--------------:|:-----------:|:-------:|:-----------:|:-----------------:|:--------------:|:----------:|:----------------:| | 1.0024 | 1.0 | 188 | 0.5819 | 0.9348 | 0.9556 | 0.9451 | 45 | 1.0 | 1.0 | 1.0 | 46 | 1.0 | 0.9574 | 0.9783 | 47 | 0.5172 | 0.625 | 0.5660 | 48 | 0.8410 | 0.8817 | 0.8609 | 0.9744 | | 0.4484 | 2.0 | 376 | 0.3263 | 0.8980 | 0.9778 | 0.9362 | 45 | 1.0 | 1.0 | 1.0 | 46 | 1.0 | 0.9787 | 0.9892 | 47 | 0.6842 | 0.8125 | 0.7429 | 48 | 0.8838 | 0.9409 | 0.9115 | 0.9733 | | 0.2508 | 3.0 | 564 | 0.2230 | 0.9318 | 0.9111 | 0.9213 | 45 | 1.0 | 1.0 | 1.0 | 46 | 1.0 | 0.9787 | 0.9892 | 47 | 0.8913 | 0.8542 | 0.8723 | 48 | 0.9560 | 0.9355 | 0.9457 | 0.9811 | | 0.165 | 4.0 | 752 | 0.1728 | 0.9362 | 0.9778 | 0.9565 | 45 | 1.0 | 1.0 | 1.0 | 46 | 1.0 | 0.9787 | 0.9892 | 47 | 0.8444 | 0.7917 | 0.8172 | 48 | 0.9457 | 0.9355 | 0.9405 | 0.9844 | | 0.1081 | 5.0 | 940 | 0.0987 | 0.8958 | 0.9556 | 0.9247 | 45 | 1.0 | 1.0 | 1.0 | 46 | 1.0 | 0.9787 | 0.9892 | 47 | 1.0 | 0.9167 | 0.9565 | 48 | 0.9728 | 0.9624 | 0.9676 | 0.9928 | | 0.0834 | 6.0 | 1128 | 0.0984 | 0.8980 | 0.9778 | 0.9362 | 45 | 1.0 | 1.0 | 1.0 | 46 | 1.0 | 0.9574 | 0.9783 | 47 | 0.8148 | 0.9167 | 0.8627 | 48 | 0.9227 | 0.9624 | 0.9421 | 0.9833 | | 0.0676 | 7.0 | 1316 | 0.0773 | 0.9362 | 0.9778 | 0.9565 | 45 | 1.0 | 1.0 | 1.0 | 46 | 1.0 | 0.9787 | 0.9892 | 47 | 0.9111 | 0.8542 | 0.8817 | 48 | 0.9620 | 0.9516 | 0.9568 | 0.9894 | | 0.0572 | 8.0 | 1504 | 0.0786 | 0.8235 | 0.9333 | 0.8750 | 45 | 1.0 | 1.0 | 1.0 | 46 | 1.0 | 0.9787 | 0.9892 | 47 | 0.8936 | 0.875 | 0.8842 | 48 | 0.9263 | 0.9462 | 0.9362 | 0.9872 | | 0.0481 | 9.0 | 1692 | 0.0576 | 0.9375 | 1.0 | 0.9677 | 45 | 1.0 | 1.0 | 1.0 | 46 | 1.0 | 0.9787 | 0.9892 | 47 | 0.9362 | 0.9167 | 0.9263 | 48 | 0.9679 | 0.9731 | 0.9705 | 0.99 | | 0.0349 | 10.0 | 1880 | 0.0610 | 0.9574 | 1.0 | 0.9783 | 45 | 1.0 | 1.0 | 1.0 | 46 | 1.0 | 0.9787 | 0.9892 | 47 | 0.8958 | 0.8958 | 0.8958 | 48 | 0.9626 | 0.9677 | 0.9651 | 0.9894 | | 0.0287 | 11.0 | 2068 | 0.0978 | 0.9091 | 0.8889 | 0.8989 | 45 | 1.0 | 1.0 | 1.0 | 46 | 1.0 | 0.9787 | 0.9892 | 47 | 0.9348 | 0.8958 | 0.9149 | 48 | 0.9615 | 0.9409 | 0.9511 | 0.985 | | 0.0297 | 12.0 | 2256 | 0.0993 | 0.9375 | 1.0 | 0.9677 | 45 | 1.0 | 1.0 | 1.0 | 46 | 1.0 | 0.9787 | 0.9892 | 47 | 0.7959 | 0.8125 | 0.8041 | 48 | 0.9312 | 0.9462 | 0.9387 | 0.9833 | | 0.0395 | 13.0 | 2444 | 0.0824 | 0.9362 | 0.9778 | 0.9565 | 45 | 1.0 | 1.0 | 1.0 | 46 | 1.0 | 0.9787 | 0.9892 | 47 | 0.875 | 0.875 | 0.875 | 48 | 0.9519 | 0.9570 | 0.9544 | 0.9872 | | 0.0333 | 14.0 | 2632 | 0.0788 | 0.8913 | 0.9111 | 0.9011 | 45 | 1.0 | 1.0 | 1.0 | 46 | 1.0 | 0.9787 | 0.9892 | 47 | 0.9556 | 0.8958 | 0.9247 | 48 | 0.9617 | 0.9462 | 0.9539 | 0.9867 | | 0.0356 | 15.0 | 2820 | 0.0808 | 0.84 | 0.9333 | 0.8842 | 45 | 1.0 | 1.0 | 1.0 | 46 | 1.0 | 0.9787 | 0.9892 | 47 | 0.9565 | 0.9167 | 0.9362 | 48 | 0.9468 | 0.9570 | 0.9519 | 0.9867 | | 0.0192 | 16.0 | 3008 | 0.0955 | 0.8462 | 0.9778 | 0.9072 | 45 | 0.9787 | 1.0 | 0.9892 | 46 | 0.9583 | 0.9787 | 0.9684 | 47 | 0.9070 | 0.8125 | 0.8571 | 48 | 0.9211 | 0.9409 | 0.9309 | 0.9822 | | 0.016 | 17.0 | 3196 | 0.0936 | 0.9130 | 0.9333 | 0.9231 | 45 | 1.0 | 1.0 | 1.0 | 46 | 1.0 | 0.9787 | 0.9892 | 47 | 0.9318 | 0.8542 | 0.8913 | 48 | 0.9615 | 0.9409 | 0.9511 | 0.9867 | | 0.0218 | 18.0 | 3384 | 0.1009 | 0.9545 | 0.9333 | 0.9438 | 45 | 1.0 | 1.0 | 1.0 | 46 | 1.0 | 0.9787 | 0.9892 | 47 | 0.8571 | 0.875 | 0.8660 | 48 | 0.9514 | 0.9462 | 0.9488 | 0.9844 | | 0.0165 | 19.0 | 3572 | 0.0517 | 0.9574 | 1.0 | 0.9783 | 45 | 1.0 | 1.0 | 1.0 | 46 | 1.0 | 0.9787 | 0.9892 | 47 | 0.9333 | 0.875 | 0.9032 | 48 | 0.9728 | 0.9624 | 0.9676 | 0.9906 | | 0.0198 | 20.0 | 3760 | 0.0890 | 0.9167 | 0.9778 | 0.9462 | 45 | 1.0 | 1.0 | 1.0 | 46 | 1.0 | 0.9787 | 0.9892 | 47 | 0.9149 | 0.8958 | 0.9053 | 48 | 0.9572 | 0.9624 | 0.9598 | 0.9867 | | 0.0077 | 21.0 | 3948 | 0.0835 | 0.9574 | 1.0 | 0.9783 | 45 | 1.0 | 1.0 | 1.0 | 46 | 1.0 | 0.9787 | 0.9892 | 47 | 0.88 | 0.9167 | 0.8980 | 48 | 0.9577 | 0.9731 | 0.9653 | 0.9872 | | 0.0088 | 22.0 | 4136 | 0.0427 | 0.9783 | 1.0 | 0.9890 | 45 | 0.9787 | 1.0 | 0.9892 | 46 | 1.0 | 0.9787 | 0.9892 | 47 | 0.9574 | 0.9375 | 0.9474 | 48 | 0.9785 | 0.9785 | 0.9785 | 0.9939 | | 0.0078 | 23.0 | 4324 | 0.0597 | 0.9574 | 1.0 | 0.9783 | 45 | 1.0 | 1.0 | 1.0 | 46 | 1.0 | 0.9787 | 0.9892 | 47 | 0.8654 | 0.9375 | 0.9 | 48 | 0.9529 | 0.9785 | 0.9655 | 0.9889 | | 0.0178 | 24.0 | 4512 | 0.0524 | 0.9574 | 1.0 | 0.9783 | 45 | 1.0 | 1.0 | 1.0 | 46 | 1.0 | 0.9787 | 0.9892 | 47 | 1.0 | 0.875 | 0.9333 | 48 | 0.9890 | 0.9624 | 0.9755 | 0.9922 | | 0.012 | 25.0 | 4700 | 0.0637 | 0.9375 | 1.0 | 0.9677 | 45 | 1.0 | 1.0 | 1.0 | 46 | 1.0 | 0.9787 | 0.9892 | 47 | 0.8491 | 0.9375 | 0.8911 | 48 | 0.9430 | 0.9785 | 0.9604 | 0.9867 | | 0.0135 | 26.0 | 4888 | 0.0668 | 0.9184 | 1.0 | 0.9574 | 45 | 1.0 | 1.0 | 1.0 | 46 | 1.0 | 0.9787 | 0.9892 | 47 | 0.86 | 0.8958 | 0.8776 | 48 | 0.9424 | 0.9677 | 0.9549 | 0.9867 | | 0.0123 | 27.0 | 5076 | 0.0713 | 0.9565 | 0.9778 | 0.9670 | 45 | 1.0 | 1.0 | 1.0 | 46 | 1.0 | 0.9787 | 0.9892 | 47 | 0.9375 | 0.9375 | 0.9375 | 48 | 0.9731 | 0.9731 | 0.9731 | 0.9911 | | 0.0074 | 28.0 | 5264 | 0.0675 | 0.9362 | 0.9778 | 0.9565 | 45 | 1.0 | 1.0 | 1.0 | 46 | 1.0 | 0.9787 | 0.9892 | 47 | 0.9 | 0.9375 | 0.9184 | 48 | 0.9577 | 0.9731 | 0.9653 | 0.99 | | 0.0051 | 29.0 | 5452 | 0.0713 | 0.9362 | 0.9778 | 0.9565 | 45 | 1.0 | 1.0 | 1.0 | 46 | 1.0 | 0.9787 | 0.9892 | 47 | 0.9167 | 0.9167 | 0.9167 | 48 | 0.9626 | 0.9677 | 0.9651 | 0.9906 | | 0.0027 | 30.0 | 5640 | 0.0725 | 0.9362 | 0.9778 | 0.9565 | 45 | 1.0 | 1.0 | 1.0 | 46 | 1.0 | 0.9787 | 0.9892 | 47 | 0.9167 | 0.9167 | 0.9167 | 48 | 0.9626 | 0.9677 | 0.9651 | 0.9906 | ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
olivia371/finetuning-sentiment-model-3000-samples
olivia371
2022-06-14T15:05:10Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-14T11:52:14Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.925 - name: F1 type: f1 value: 0.9253731343283581 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.2348 - Accuracy: 0.925 - F1: 0.9254 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
Alireza1044/mobilebert_qqp
Alireza1044
2022-06-14T14:57:04Z
12
0
transformers
[ "transformers", "pytorch", "tensorboard", "mobilebert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-14T12:25:57Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: qqp results: - task: name: Text Classification type: text-classification dataset: name: GLUE QQP type: glue args: qqp metrics: - name: Accuracy type: accuracy value: 0.8988869651249073 - name: F1 type: f1 value: 0.8670050100852366 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # qqp This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE QQP dataset. It achieves the following results on the evaluation set: - Loss: 0.2458 - Accuracy: 0.8989 - F1: 0.8670 - Combined Score: 0.8829 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.5 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0 - Datasets 2.2.2 - Tokenizers 0.12.1
LDD/bert_from_scratch_wwm_new
LDD
2022-06-14T14:32:41Z
3
0
transformers
[ "transformers", "pytorch", "bert", "feature-extraction", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-06-14T14:27:55Z
用新闻数据集从头开始进行全词mask预训练bert
erin2321232/sad
erin2321232
2022-06-14T14:11:43Z
0
0
null
[ "license:bigscience-bloom-rail-1.0", "region:us" ]
null
2022-06-14T14:11:43Z
--- license: bigscience-bloom-rail-1.0 ---
Alireza1044/mobilebert_mnli
Alireza1044
2022-06-14T11:22:34Z
9
0
transformers
[ "transformers", "pytorch", "tensorboard", "mobilebert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-14T09:30:21Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: mnli results: - task: name: Text Classification type: text-classification dataset: name: GLUE MNLI type: glue args: mnli metrics: - name: Accuracy type: accuracy value: 0.8230268510984541 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mnli This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE MNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.4595 - Accuracy: 0.8230 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 48 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.3 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0 - Datasets 2.2.2 - Tokenizers 0.12.1
Rekcul/q-Taxi-v3
Rekcul
2022-06-14T10:19:14Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-06-14T10:10:20Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="Rekcul/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
jkhan447/sarcasm-detection-RoBerta-base-POS
jkhan447
2022-06-14T09:55:14Z
8
1
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-14T06:56:15Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: sarcasm-detection-RoBerta-base-POS results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sarcasm-detection-RoBerta-base-POS This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6651 - Accuracy: 0.607 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
saiharsha/vit-base-beans
saiharsha
2022-06-14T09:54:53Z
56
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "vision", "generated_from_trainer", "dataset:beans", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-06-14T09:44:21Z
--- license: apache-2.0 tags: - image-classification - vision - generated_from_trainer datasets: - beans metrics: - accuracy model-index: - name: vit-base-beans results: - task: name: Image Classification type: image-classification dataset: name: beans type: beans args: default metrics: - name: Accuracy type: accuracy value: 0.9699248120300752 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-beans This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 0.1824 - Accuracy: 0.9699 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 1337 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.672 | 1.0 | 44 | 0.5672 | 0.9398 | | 0.411 | 2.0 | 88 | 0.3027 | 0.9699 | | 0.2542 | 3.0 | 132 | 0.2078 | 0.9699 | | 0.1886 | 4.0 | 176 | 0.1882 | 0.9699 | | 0.1931 | 5.0 | 220 | 0.1824 | 0.9699 | ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu102 - Datasets 2.2.2 - Tokenizers 0.12.1
zdreiosis/ff_analysis_4
zdreiosis
2022-06-14T09:44:05Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "gen_ffa", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-14T05:02:34Z
--- license: apache-2.0 tags: - gen_ffa - generated_from_trainer metrics: - f1 - accuracy model-index: - name: ff_analysis_4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ff_analysis_4 This model is a fine-tuned version of [zdreiosis/ff_analysis_4](https://huggingface.co/zdreiosis/ff_analysis_4) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0022 - F1: 1.0 - Roc Auc: 1.0 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---:|:-------:|:--------:| | No log | 1.47 | 50 | 0.0055 | 1.0 | 1.0 | 1.0 | | No log | 2.94 | 100 | 0.0052 | 1.0 | 1.0 | 1.0 | | No log | 4.41 | 150 | 0.0044 | 1.0 | 1.0 | 1.0 | | No log | 5.88 | 200 | 0.0037 | 1.0 | 1.0 | 1.0 | | No log | 7.35 | 250 | 0.0030 | 1.0 | 1.0 | 1.0 | | No log | 8.82 | 300 | 0.0030 | 1.0 | 1.0 | 1.0 | | No log | 10.29 | 350 | 0.0028 | 1.0 | 1.0 | 1.0 | | No log | 11.76 | 400 | 0.0027 | 1.0 | 1.0 | 1.0 | | No log | 13.24 | 450 | 0.0025 | 1.0 | 1.0 | 1.0 | | 0.0078 | 14.71 | 500 | 0.0022 | 1.0 | 1.0 | 1.0 | | 0.0078 | 16.18 | 550 | 0.0025 | 1.0 | 1.0 | 1.0 | | 0.0078 | 17.65 | 600 | 0.0023 | 1.0 | 1.0 | 1.0 | | 0.0078 | 19.12 | 650 | 0.0022 | 1.0 | 1.0 | 1.0 | | 0.0078 | 20.59 | 700 | 0.0022 | 1.0 | 1.0 | 1.0 | | 0.0078 | 22.06 | 750 | 0.0021 | 1.0 | 1.0 | 1.0 | | 0.0078 | 23.53 | 800 | 0.0020 | 1.0 | 1.0 | 1.0 | | 0.0078 | 25.0 | 850 | 0.0020 | 1.0 | 1.0 | 1.0 | | 0.0078 | 26.47 | 900 | 0.0019 | 1.0 | 1.0 | 1.0 | | 0.0078 | 27.94 | 950 | 0.0019 | 1.0 | 1.0 | 1.0 | | 0.0025 | 29.41 | 1000 | 0.0019 | 1.0 | 1.0 | 1.0 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.10.3
nboudad/Maghribert
nboudad
2022-06-14T09:27:08Z
3
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-06-09T19:07:37Z
--- widget: - text: "جاب ليا [MASK] ." example_title: "example1" - text: "مشيت نجيب [MASK] فالفرماسيان ." example_title: "example2" ---
Marscen/distilbert-base-uncased-finetuned-squad
Marscen
2022-06-14T09:21:08Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad_v2", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-06-13T09:09:18Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad_v2 dataset. It achieves the following results on the evaluation set: - Loss: 1.4052 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2178 | 1.0 | 8235 | 1.1827 | | 0.9355 | 2.0 | 16470 | 1.3283 | | 0.761 | 3.0 | 24705 | 1.4052 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.8.1+cu111 - Datasets 2.2.2 - Tokenizers 0.12.1
dksari/en_pipeline
dksari
2022-06-14T08:46:56Z
3
0
spacy
[ "spacy", "token-classification", "en", "license:mit", "model-index", "region:us" ]
token-classification
2022-06-14T08:34:43Z
--- tags: - spacy - token-classification language: - en license: mit model-index: - name: en_pipeline results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 100.00 - name: NER Recall type: recall value: 100.00 - name: NER F Score type: f_score value: 100.00 --- | Feature | Description | | --- | --- | | **Name** | `en_pipeline` | | **Version** | `0.0.0` | | **spaCy** | `>=3.3.1,<3.4.0` | | **Default Pipeline** | `tok2vec`, `ner` | | **Components** | `tok2vec`, `ner` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | n/a | | **License** | MIT | | **Author** | [Dian Kurniasari]() | ### Label Scheme <details> <summary>View label scheme (6 labels for 1 components)</summary> | Component | Labels | | --- | --- | | **`ner`** | `geneexpression`, `localization`, `negativeregulation`, `phosphorylation`, `positiveregulation`, `proteincatabolism` | </details> ### Accuracy | Type | Score | | --- | --- | | `ENTS_F` | 100.00 | | `ENTS_P` | 100.00 | | `ENTS_R` | 100.00 | | `TOK2VEC_LOSS` | 92639.74 | | `NER_LOSS` | 12636.18 |
efederici/mmarco-sentence-BERTino
efederici
2022-06-14T08:36:11Z
51
2
sentence-transformers
[ "sentence-transformers", "pytorch", "distilbert", "feature-extraction", "sentence-similarity", "transformers", "it", "dataset:unicamp-dl/mmarco", "license:apache-2.0", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-06-01T18:20:17Z
--- pipeline_tag: sentence-similarity license: apache-2.0 language: - it tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers datasets: - unicamp-dl/mmarco --- # mmarco-sentence-BERTino This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. It was trained on [mmarco](https://huggingface.co/datasets/unicamp-dl/mmarco/viewer/italian/train). <p align="center"> <img src="https://media.tate.org.uk/art/images/work/L/L04/L04294_9.jpg" width="600"> </br> Mohan Samant, Midnight Fishing Party, 1978 </p> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["Questo è un esempio di frase", "Questo è un ulteriore esempio"] model = SentenceTransformer('efederici/mmarco-sentence-BERTino') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ["Questo è un esempio di frase", "Questo è un ulteriore esempio"] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('efederici/mmarco-sentence-BERTino') model = AutoModel.from_pretrained('efederici/mmarco-sentence-BERTino') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ```
Alireza1044/mobilebert_mrpc
Alireza1044
2022-06-14T08:16:32Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "mobilebert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-14T08:06:49Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: mrpc results: - task: name: Text Classification type: text-classification dataset: name: GLUE MRPC type: glue args: mrpc metrics: - name: Accuracy type: accuracy value: 0.8382352941176471 - name: F1 type: f1 value: 0.8888888888888888 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mrpc This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.3672 - Accuracy: 0.8382 - F1: 0.8889 - Combined Score: 0.8636 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0 - Datasets 2.2.2 - Tokenizers 0.12.1
shaojie/distilbert-base-uncased-finetuned-squad
shaojie
2022-06-14T07:26:48Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-06-13T07:35:28Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - eval_loss: 1.1585 - eval_runtime: 138.1018 - eval_samples_per_second: 78.087 - eval_steps_per_second: 4.88 - epoch: 1.0 - step: 5533 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
crodri/roberta-base-ca-v2-qa-catalanqa
crodri
2022-06-14T06:11:33Z
18
0
transformers
[ "transformers", "pytorch", "roberta", "question-answering", "license:cc0-1.0", "endpoints_compatible", "region:us" ]
question-answering
2022-06-13T15:05:05Z
--- license: cc0-1.0 --- The roberta-base-ca-cased-qa is a Question Answering (QA) model for the Catalan language fine-tuned from the BERTa model, a RoBERTa base model pre-trained on a medium-size corpus collected from publicly available corpora and crawlers (check the BERTa model card for more details). Datasets We used the Catalan QA datasets called ViquiQuAD, VilaQuad and XQuad\_ca with test, training and evaluation (90-10-10) splits, balanced by type of questions. Test: 2255 Evaluation: 2276 Train: 18082
LDD/bert_mlm_new
LDD
2022-06-14T05:43:53Z
3
0
transformers
[ "transformers", "pytorch", "bert", "feature-extraction", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-06-11T09:46:01Z
在bert-base-chinese基础上进行新闻语料库的增量预训练的模型,token采用的是hfl/chinese-bert-wwm-ext
Wikidepia/albert-punctuation
Wikidepia
2022-06-14T04:53:52Z
10
0
transformers
[ "transformers", "pytorch", "albert", "token-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-13T12:41:47Z
--- tags: - generated_from_trainer model-index: - name: albert-puncapital results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # albert-puncapital This model is a fine-tuned version of [indobert-lite-base-p2](https://huggingface.co/indobert-lite-base-p2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 64 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0 - Datasets 2.2.2 - Tokenizers 0.12.1
praf-choub/bart-mofe-rl-xsum
praf-choub
2022-06-14T04:52:41Z
13
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "summarization", "en", "dataset:xsum", "arxiv:2110.07166", "license:bsd-3-clause", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-05-03T18:08:08Z
--- language: en tags: - summarization license: bsd-3-clause datasets: - xsum --- Citation ``` @article{DBLP:journals/corr/abs-2110-07166, author = {Prafulla Kumar Choubey and Jesse Vig and Wenhao Liu and Nazneen Fatema Rajani}, title = {MoFE: Mixture of Factual Experts for Controlling Hallucinations in Abstractive Summarization}, journal = {CoRR}, volume = {abs/2110.07166}, year = {2021}, url = {https://arxiv.org/abs/2110.07166}, eprinttype = {arXiv}, eprint = {2110.07166}, timestamp = {Fri, 22 Oct 2021 13:33:09 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2110-07166.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
AngelUrq/q-Taxi-v3
AngelUrq
2022-06-14T04:09:09Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-06-14T04:09:02Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - metrics: - type: mean_reward value: 7.40 +/- 2.79 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
eslamxm/AraT5-base-finetune-ar-wikilingua
eslamxm
2022-06-14T02:30:20Z
13
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "summarization", "ar", "Abstractive Summarization", "generated_from_trainer", "dataset:wiki_lingua", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
summarization
2022-06-13T19:22:56Z
--- tags: - summarization - ar - Abstractive Summarization - generated_from_trainer datasets: - wiki_lingua model-index: - name: AraT5-base-finetune-ar-wikilingua results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # AraT5-base-finetune-ar-wikilingua This model is a fine-tuned version of [UBC-NLP/AraT5-base](https://huggingface.co/UBC-NLP/AraT5-base) on the wiki_lingua dataset. It achieves the following results on the evaluation set: - Loss: 4.6110 - Rouge-1: 19.97 - Rouge-2: 6.9 - Rouge-l: 18.25 - Gen Len: 18.45 - Bertscore: 69.44 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 250 - num_epochs: 10 - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge-1 | Rouge-2 | Rouge-l | Gen Len | Bertscore | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:-------:|:---------:| | 11.5412 | 1.0 | 312 | 6.8825 | 5.2 | 0.69 | 5.04 | 19.0 | 63.2 | | 6.5212 | 2.0 | 624 | 5.8992 | 8.89 | 1.4 | 8.36 | 17.92 | 63.9 | | 5.8302 | 3.0 | 936 | 5.3712 | 9.99 | 2.21 | 9.54 | 15.87 | 65.08 | | 5.406 | 4.0 | 1248 | 5.0632 | 13.94 | 3.5 | 13.0 | 15.95 | 66.83 | | 5.1109 | 5.0 | 1560 | 4.8718 | 15.28 | 4.34 | 14.27 | 18.26 | 66.83 | | 4.9004 | 6.0 | 1872 | 4.7631 | 16.65 | 4.92 | 15.46 | 17.73 | 67.75 | | 4.754 | 7.0 | 2184 | 4.6920 | 18.31 | 5.79 | 16.9 | 18.17 | 68.55 | | 4.6369 | 8.0 | 2496 | 4.6459 | 18.6 | 6.12 | 17.16 | 18.16 | 68.66 | | 4.5595 | 9.0 | 2808 | 4.6153 | 18.94 | 6.1 | 17.39 | 17.82 | 68.99 | | 4.4967 | 10.0 | 3120 | 4.6110 | 19.15 | 6.25 | 17.55 | 17.91 | 69.09 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
nestoralvaro/mt5-base-finetuned-xsum-RAW_data_prep_2021_12_26___t22027_162754.csv__g_mt5_base_L2
nestoralvaro
2022-06-14T02:06:07Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-13T17:15:32Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: mt5-base-finetuned-xsum-RAW_data_prep_2021_12_26___t22027_162754.csv__g_mt5_base_L2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-base-finetuned-xsum-RAW_data_prep_2021_12_26___t22027_162754.csv__g_mt5_base_L2 This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: nan - Rouge1: 0.0127 - Rouge2: 0.0 - Rougel: 0.0128 - Rougelsum: 0.0129 - Gen Len: 6.329 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:------:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 0.0 | 1.0 | 131773 | nan | 0.0127 | 0.0 | 0.0128 | 0.0129 | 6.329 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
huggingtweets/honiemun
huggingtweets
2022-06-13T23:11:55Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-13T23:11:47Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1509372264424296448/HVPI1lQu_400x400.png&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">𝘏𝘰𝘯𝘪𝘦 ♡</div> <div style="text-align: center; font-size: 14px;">@honiemun</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from 𝘏𝘰𝘯𝘪𝘦 ♡. | Data | 𝘏𝘰𝘯𝘪𝘦 ♡ | | --- | --- | | Tweets downloaded | 3207 | | Retweets | 231 | | Short tweets | 381 | | Tweets kept | 2595 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/teqt0sk7/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @honiemun's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3bqoay71) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3bqoay71/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/honiemun') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
TeamHaltmannSusanaHWCEO/DALL-X-1.0A
TeamHaltmannSusanaHWCEO
2022-06-13T22:49:44Z
0
0
null
[ "region:us" ]
null
2022-06-13T22:48:18Z
from gpt2_client import * gpt2 = GPT2() streamlit_code_base = gpt2.generate( prompt="Enter prompt here", temperature=0.7, top_p=0.9, nsamples=1, batch_size=1, length=1000, include_prefix=True ) print(streamlit_code_base)
evangeloc/t5-small-finetuned-xsum_3epoch_batch8
evangeloc
2022-06-13T22:46:59Z
5
0
transformers
[ "transformers", "tf", "tensorboard", "t5", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-12T15:13:36Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: evangeloc/t5-small-finetuned-xsum_3epoch_batch8 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # evangeloc/t5-small-finetuned-xsum_3epoch_batch8 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.5178 - Validation Loss: 2.3002 - Train Rouge1: 31.6237 - Train Rouge2: 10.4288 - Train Rougel: 25.3564 - Train Rougelsum: 25.3203 - Train Gen Len: 18.86 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Rouge1 | Train Rouge2 | Train Rougel | Train Rougelsum | Train Gen Len | Epoch | |:----------:|:---------------:|:------------:|:------------:|:------------:|:---------------:|:-------------:|:-----:| | 2.7208 | 2.4024 | 30.3441 | 9.9367 | 24.4023 | 24.4171 | 18.83 | 0 | | 2.5818 | 2.3390 | 30.5249 | 9.9161 | 24.1981 | 24.2080 | 18.825 | 1 | | 2.5178 | 2.3002 | 31.6237 | 10.4288 | 25.3564 | 25.3203 | 18.86 | 2 | ### Framework versions - Transformers 4.19.4 - TensorFlow 2.8.2 - Datasets 2.2.2 - Tokenizers 0.12.1
laboyle1/distilbert-finetuned
laboyle1
2022-06-13T21:03:49Z
15
0
transformers
[ "transformers", "pytorch", "distilbert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-06-13T14:38:50Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-finetuned This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9895 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.2103 | 1.0 | 10024 | 2.0834 | | 2.1146 | 2.0 | 20048 | 2.0387 | | 2.0721 | 3.0 | 30072 | 2.0095 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu102 - Datasets 2.2.2 - Tokenizers 0.12.1
simecek/DNAPerceiver1_2epochs
simecek
2022-06-13T20:40:40Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "perceiver", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-06-10T11:38:17Z
--- tags: - generated_from_trainer model-index: - name: DNAPerceiver1_2epochs results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # DNAPerceiver1_2epochs This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3330 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 36000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.3597 | 0.3 | 6000 | 1.3565 | | 1.3566 | 0.6 | 12000 | 1.3557 | | 1.3514 | 0.89 | 18000 | 1.3474 | | 1.345 | 1.19 | 24000 | 1.3410 | | 1.3386 | 1.49 | 30000 | 1.3357 | | 1.3348 | 1.79 | 36000 | 1.3330 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
Andrey1989/mbert-finetuned-ner
Andrey1989
2022-06-13T19:46:59Z
26
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:wikiann", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wikiann metrics: - precision - recall - f1 - accuracy model-index: - name: mbert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: wikiann type: wikiann args: lv metrics: - name: Precision type: precision value: 0.9304986338797814 - name: Recall type: recall value: 0.9375430144528561 - name: F1 type: f1 value: 0.9340075419952005 - name: Accuracy type: accuracy value: 0.9699674740348558 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mbert-finetuned-ner This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the wikiann dataset. It achieves the following results on the evaluation set: - Loss: 0.1264 - Precision: 0.9305 - Recall: 0.9375 - F1: 0.9340 - Accuracy: 0.9700 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.301 | 1.0 | 625 | 0.1756 | 0.8843 | 0.9067 | 0.8953 | 0.9500 | | 0.1259 | 2.0 | 1250 | 0.1248 | 0.9285 | 0.9335 | 0.9310 | 0.9688 | | 0.0895 | 3.0 | 1875 | 0.1264 | 0.9305 | 0.9375 | 0.9340 | 0.9700 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
caio13/dalle-mono
caio13
2022-06-13T19:37:40Z
0
0
null
[ "arxiv:2102.08981", "arxiv:2012.09841", "arxiv:1910.13461", "arxiv:1910.09700", "region:us" ]
null
2022-06-13T19:27:12Z
# DALL·E Mini Model Card This dont is a copy, credits for https://huggingface.co/dalle-mini/dalle-mini/tree/main This model card focuses on the model associated with the DALL·E mini space on Hugging Face, available [here](https://huggingface.co/spaces/dalle-mini/dalle-mini). The app is called “dalle-mini”, but incorporates “[DALL·E Mini](https://wandb.ai/dalle-mini/dalle-mini/reports/DALL-E-mini-Generate-images-from-any-text-prompt--VmlldzoyMDE4NDAy)’’ and “[DALL·E Mega](https://wandb.ai/dalle-mini/dalle-mini/reports/DALL-E-Mega-Training-Journal--VmlldzoxODMxMDI2)” models (further details on this distinction forthcoming). ## Model Details * **Developed by:** Boris Dayma, Suraj Patil, Pedro Cuenca, Khalid Saifullah, Tanishq Abraham, Phúc Lê, Luke, Luke Melas, Ritobrata Ghosh * **Modified by:** Caio13m * **Model type:** Transformer-based text-to-image generation model * **Language(s):** English * **License:** Apache 2.0 * **Model Description:** This is a model that can be used to generate images based on text prompts. As the model developers wrote in the [project report](https://wandb.ai/dalle-mini/dalle-mini/reports/DALL-E-mini-Generate-images-from-any-text-prompt--VmlldzoyMDE4NDAy) about DALL·E mini, “OpenAI had the first impressive model for generating images with [DALL·E](https://openai.com/blog/dall-e/). DALL·E mini is an attempt at reproducing those results with an open-source model.” * **Resources for more information:** See OpenAI’s website for more information about [DALL·E](https://openai.com/blog/dall-e/), including the [DALL·E model card](https://github.com/openai/DALL-E/blob/master/model_card.md). See the [project report](https://wandb.ai/dalle-mini/dalle-mini/reports/DALL-E-mini-Generate-images-from-any-text-prompt--VmlldzoyMDE4NDAy) for more information from the model’s developers. To learn more about DALL·E Mega, see the DALL·E Mega [training journal](https://wandb.ai/dalle-mini/dalle-mini/reports/DALL-E-Mega-Training--VmlldzoxODMxMDI2#training-parameters). * **Cite as:** ```bib text @misc{Dayma_DALL·E_Mini_2021, author = {Dayma, Boris and Patil, Suraj and Cuenca, Pedro and Saifullah, Khalid and Abraham, Tanishq and Lê Khắc, Phúc and Melas, Luke and Ghosh, Ritobrata}, doi = {10.5281/zenodo.5146400}, month = {7}, title = {DALL·E Mini}, url = {https://github.com/borisdayma/dalle-mini}, year = {2021} } ``` ## Uses ### Direct Use The model is intended to be used to generate images based on text prompts for research and personal consumption. Intended uses include supporting creativity, creating humorous content, and providing generations for people curious about the model’s behavior. Intended uses exclude those described in the [Misuse and Out-of-Scope Use](#misuse-malicious-use-and-out-of-scope-use) section. ### Downstream Use The model could also be used for downstream use cases, including: * Research efforts, such as probing and better understanding the limitations and biases of generative models to further improve the state of science * Development of educational or creative tools * Generation of artwork and use in design and artistic processes. * Other uses that are newly discovered by users. This currently includes poetry illustration (give a poem as prompt), fan art (putting a character in various other visual universes), visual puns, fairy tale illustrations (give a fantasy situation as prompt), concept mashups (applying a texture to something completely different), style transfers (portraits in the style of), … We hope you will find your own application! Downstream uses exclude the uses described in [Misuse and Out-of-Scope Use](#misuse-malicious-use-and-out-of-scope-use). ### Misuse, Malicious Use, and Out-of-Scope Use The model should not be used to intentionally create or disseminate images that create hostile or alienating environments for people. This includes generating images that people would foreseeably find disturbing, distressing, or offensive; or content that propagates historical or current stereotypes. #### Out-of-Scope Use The model was not trained to be factual or true representations of people or events, and therefore using the model to generate such content is out-of-scope for the abilities of this model. #### Misuse and Malicious Use Using the model to generate content that is cruel to individuals is a misuse of this model. This includes: * Generating demeaning, dehumanizing, or otherwise harmful representations of people or their environments, cultures, religions, etc. * Intentionally promoting or propagating discriminatory content or harmful stereotypes. * Impersonating individuals without their consent. * Sexual content without consent of the people who might see it. * Mis- and disinformation * Representations of egregious violence and gore * Sharing of copyrighted or licensed material in violation of its terms of use. * Sharing content that is an alteration of copyrighted or licensed material in violation of its terms of use. ## Limitations and Bias ### Limitations The model developers discuss the limitations of the model further in the DALL·E Mini [technical report](https://wandb.ai/dalle-mini/dalle-mini/reports/DALL-E-Mini-Explained-with-Demo--Vmlldzo4NjIxODA): * Faces and people in general are not generated properly. * Animals are usually unrealistic. * It is hard to predict where the model excels or falls short…Good prompt engineering will lead to the best results. * The model has only been trained with English descriptions and will not perform as well in other languages ### Bias **CONTENT WARNING: Readers should be aware this section contains content that is disturbing, offensive, and can propagate historical and current stereotypes.** The model was trained on unfiltered data from the Internet, limited to pictures with English descriptions. Text and images from communities and cultures using other languages were not utilized. This affects all output of the model, with white and Western culture asserted as a default, and the model’s ability to generate content using non-English prompts is observably lower quality than prompts in English. While the capabilities of image generation models are impressive, they may also reinforce or exacerbate societal biases. The extent and nature of the biases of DALL·E Mini and DALL·E Mega models have yet to be fully documented, but initial testing demonstrates that they may generate images that contain negative stereotypes against minoritized groups. Work to analyze the nature and extent of the models’ biases and limitations is ongoing. Our current analyses demonstrate that: * Images generated by the model can include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups. * When the model generates images with people in them, it tends to output people who we perceive to be white, while people of color are underrepresented. * Images generated by the model can contain biased content that depicts power differentials between people of color and people who are white, with white people in positions of privilege. * The model is generally only usable for generating images based on text in English, limiting accessibility of the model for non-English speakers and potentially contributing to the biases in images generated by the model. The [technical report](https://wandb.ai/dalle-mini/dalle-mini/reports/DALL-E-Mini-Explained-with-Demo--Vmlldzo4NjIxODA) discusses these issues in more detail, and also highlights potential sources of bias in the model development process. ### Limitations and Bias Recommendations * Users (both direct and downstream) should be made aware of the biases and limitations. * Content that is potentially problematic should be filtered out, e.g., via automated models that detect violence or pornography. * Further work on this model should include methods for balanced and just representations of people and cultures, for example, by curating the training dataset to be both diverse and inclusive. ## Training ### Training Data The model developers used 3 datasets for the model: * [Conceptual Captions Dataset](https://aclanthology.org/P18-1238/), which contains 3 million image and caption pairs. * [Conceptual 12M](https://arxiv.org/abs/2102.08981), which contains 12 million image and caption pairs. * The [OpenAI subset](https://github.com/openai/CLIP/blob/main/data/yfcc100m.md) of [YFCC100M](https://multimediacommons.wordpress.com/yfcc100m-core-dataset/), which contains about 15 million images and that we further sub-sampled to 2 million images due to limitations in storage space. They used both title and description as caption and removed html tags, new lines and extra spaces. For fine-tuning the image encoder, a subset of 2 million images were used. All images (about 15 million) were used for training the Seq2Seq model. ### Training Procedure As described further in the [technical report](https://wandb.ai/dalle-mini/dalle-mini/reports/DALL-E-Mini-Explained-with-Demo--Vmlldzo4NjIxODA#our-dall-e-model-architecture) for DALL·E Mini, during training, images and descriptions are both available and pass through the system as follows: * Images are encoded through a [VQGAN](https://arxiv.org/abs/2012.09841) encoder, which turns images into a sequence of tokens. * Descriptions are encoded through a [BART](https://arxiv.org/abs/1910.13461) encoder. * The output of the BART encoder and encoded images are fed through the BART decoder, which is an auto-regressive model whose goal is to predict the next token. * Loss is the [softmax cross-entropy](https://wandb.ai/sauravm/Activation-Functions/reports/Activation-Functions-Softmax--VmlldzoxNDU1Njgy#%F0%9F%93%A2-softmax-+-cross-entropy-loss-(caution:-math-alert)) between the model prediction logits and the actual image encodings from the VQGAN. The simplified training procedure for DALL·E Mega is as follows: * **Hardware:** 1 pod TPU v3-256 = 32 nodes of TPU VM v3-8 (8 TPU per node) = 256 TPU v3 * **Optimizer:** Distributed Shampoo * **Model Partition Specificiations:** 8 model parallel x 32 data parallel * **Batch:** 44 samples per model x 32 data parallel x 3 gradient accumulation steps = 4224 increasing samples per update * **Learning rate:** warmup to 0.0001 for 10,000 steps and then kept constant until plateau * Gradient checkpointing used on each Encoder/Decoder layer (ie, MHA + FFN) * Distributed Shampoo + Normformer Optimizations have proved to be effective and efficiently scaling this model. * It should also be noted that the learning rate and other parameters are sometimes adjusted on the fly, and batch size increased over time as well. There is more information about the full procedure and technical material in the DALL·E Mega [training journal](https://wandb.ai/dalle-mini/dalle-mini/reports/DALL-E-Mega-Training--VmlldzoxODMxMDI2#training-parameters). ## Evaluation Results The model developers discuss their results extensively in their [technical report](https://wandb.ai/dalle-mini/dalle-mini/reports/DALL-E-Mini-Explained-with-Demo--Vmlldzo4NjIxODA#the-results-of-our-dall-e-experiment) for DALL·E Mini, which provides comparisons between DALL·E Mini’s results with [DALL·E-pytorch](https://github.com/lucidrains/DALLE-pytorch), OpenAI’s [DALL·E](https://openai.com/blog/dall-e/), and models consisting of a generator coupled with the [CLIP neural network model](https://openai.com/blog/clip/). For evaluation results related to DALL·E Mega, see this [technical report](https://wandb.ai/dalle-mini/dalle-mini/reports/DALL-E-mini-Generate-images-from-any-text-prompt--VmlldzoyMDE4NDAy). ## Environmental Impact ### DALL·E Mini Estimated Emissions *The model is 27 times smaller than the original DALL·E and was trained on a single TPU v3-8 for only 3 days.* Based on that information, we estimate the following CO2 emissions using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). The hardware, runtime, cloud provider, and compute region were utilized to estimate the carbon impact. * **Hardware Type:** TPU v3-8 * **Hours used:** 72 (3 days) * **Cloud Provider:** GCP (as mentioned in the technical report) * **Compute Region:** us-east1 (provided by model developers) * **Carbon Emitted (Power consumption x Time x Carbon produced based on location of power grid):** 7.54 kg CO2 eq. ### DALL·E Mega Estimated Emissions DALL·E Mega is still training. So far, as on June 9, 2022, the model developers report that DALL·E Mega has been training for about 40-45 days on a TPU v3-256. Using those numbers, we estimate the following CO2 emissions using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). The hardware, runtime, cloud provider, and compute region were utilized to estimate the carbon impact. * **Hardware Type:** TPU v3-256 * **Hours used:** 960 - 1080 hours (40-45 days) * **Cloud Provider:** Unknown * **Compute Region:** Unknown * **Carbon Emitted (Power consumption x Time x Carbon produced based on location of power grid):** Unknown ## Citation ```bibtext @misc{Dayma_DALL·E_Mini_2021, author = {Dayma, Boris and Patil, Suraj and Cuenca, Pedro and Saifullah, Khalid and Abraham, Tanishq and Lê Khắc, Phúc and Melas, Luke and Ghosh, Ritobrata}, doi = {10.5281/zenodo.5146400}, month = {7}, title = {DALL·E Mini}, url = {https://github.com/borisdayma/dalle-mini}, year = {2021} } ``` *This model card was written by: Boris Dayma, Margaret Mitchell, Ezi Ozoani, Marissa Gerchick, Irene Solaiman, Clémentine Fourrier, Sasha Luccioni, Emily Witko, Nazneen Rajani, and Julian Herrera.*
QuentinKemperino/ECHR_test_Merged
QuentinKemperino
2022-06-13T19:29:46Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:lex_glue", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-13T11:25:32Z
--- license: cc-by-sa-4.0 tags: - generated_from_trainer datasets: - lex_glue model-index: - name: ECHR_test_Merged results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ECHR_test_Merged This model is a fine-tuned version of [nlpaueb/legal-bert-base-uncased](https://huggingface.co/nlpaueb/legal-bert-base-uncased) on the lex_glue dataset. It achieves the following results on the evaluation set: - Loss: 0.2162 - Macro-f1: 0.5607 - Micro-f1: 0.6726 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Macro-f1 | Micro-f1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:| | 0.2278 | 0.44 | 500 | 0.3196 | 0.2394 | 0.4569 | | 0.1891 | 0.89 | 1000 | 0.2827 | 0.3255 | 0.5112 | | 0.1803 | 1.33 | 1500 | 0.2603 | 0.3961 | 0.5698 | | 0.1676 | 1.78 | 2000 | 0.2590 | 0.4251 | 0.6003 | | 0.1635 | 2.22 | 2500 | 0.2489 | 0.4186 | 0.6030 | | 0.1784 | 2.67 | 3000 | 0.2445 | 0.4627 | 0.6159 | | 0.1556 | 3.11 | 3500 | 0.2398 | 0.4757 | 0.6170 | | 0.151 | 3.56 | 4000 | 0.2489 | 0.4725 | 0.6163 | | 0.1564 | 4.0 | 4500 | 0.2289 | 0.5019 | 0.6416 | | 0.1544 | 4.44 | 5000 | 0.2406 | 0.5013 | 0.6408 | | 0.1516 | 4.89 | 5500 | 0.2351 | 0.5145 | 0.6510 | | 0.1487 | 5.33 | 6000 | 0.2354 | 0.5164 | 0.6394 | | 0.1385 | 5.78 | 6500 | 0.2385 | 0.5205 | 0.6486 | | 0.145 | 6.22 | 7000 | 0.2337 | 0.5197 | 0.6529 | | 0.1332 | 6.67 | 7500 | 0.2294 | 0.5421 | 0.6526 | | 0.1293 | 7.11 | 8000 | 0.2167 | 0.5576 | 0.6652 | | 0.1475 | 7.56 | 8500 | 0.2218 | 0.5676 | 0.6649 | | 0.1376 | 8.0 | 9000 | 0.2203 | 0.5565 | 0.6709 | | 0.1408 | 8.44 | 9500 | 0.2178 | 0.5541 | 0.6716 | | 0.133 | 8.89 | 10000 | 0.2212 | 0.5692 | 0.6640 | | 0.1363 | 9.33 | 10500 | 0.2148 | 0.5642 | 0.6736 | | 0.1344 | 9.78 | 11000 | 0.2162 | 0.5607 | 0.6726 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
ahmeddbahaa/mT5_multilingual_XLSum-finetune-ar-xlsum
ahmeddbahaa
2022-06-13T19:20:20Z
18
0
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "summarization", "mT5_multilingual_XLSum", "abstractive summarization", "ar", "xlsum", "generated_from_trainer", "dataset:xlsum", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-06-11T19:48:24Z
--- tags: - summarization - mT5_multilingual_XLSum - mt5 - abstractive summarization - ar - xlsum - generated_from_trainer datasets: - xlsum model-index: - name: mT5_multilingual_XLSum-finetune-ar-xlsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mT5_multilingual_XLSum-finetune-ar-xlsum This model is a fine-tuned version of [csebuetnlp/mT5_multilingual_XLSum](https://huggingface.co/csebuetnlp/mT5_multilingual_XLSum) on the xlsum dataset. It achieves the following results on the evaluation set: - Loss: 3.2497 - Rouge-1: 32.52 - Rouge-2: 14.71 - Rouge-l: 27.88 - Gen Len: 41.45 - Bertscore: 74.65 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 250 - num_epochs: 8 - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge-1 | Rouge-2 | Rouge-l | Gen Len | Bertscore | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:-------:|:---------:| | 3.5465 | 1.0 | 585 | 3.3215 | 30.09 | 13.23 | 26.07 | 36.31 | 73.97 | | 3.3564 | 2.0 | 1170 | 3.2547 | 31.29 | 13.93 | 26.75 | 41.68 | 74.22 | | 3.2185 | 3.0 | 1755 | 3.2421 | 31.78 | 14.1 | 27.07 | 41.64 | 74.4 | | 3.1145 | 4.0 | 2340 | 3.2241 | 31.98 | 14.38 | 27.51 | 40.29 | 74.46 | | 3.031 | 5.0 | 2925 | 3.2313 | 32.3 | 14.67 | 27.83 | 39.81 | 74.61 | | 2.9627 | 6.0 | 3510 | 3.2348 | 32.39 | 14.65 | 27.76 | 40.02 | 74.6 | | 2.9088 | 7.0 | 4095 | 3.2439 | 32.5 | 14.66 | 27.81 | 41.2 | 74.65 | | 2.8649 | 8.0 | 4680 | 3.2497 | 32.52 | 14.71 | 27.88 | 41.45 | 74.65 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1