modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-06-26 12:28:48
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
498 values
tags
sequencelengths
1
4.05k
pipeline_tag
stringclasses
54 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-06-26 12:28:16
card
stringlengths
11
1.01M
BigSalmon/Points4
BigSalmon
2022-04-02T03:04:08Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-04-02T02:57:31Z
``` from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("BigSalmon/Points4") model = AutoModelForCausalLM.from_pretrained("BigSalmon/Points4") ``` ``` - moviepass to return - this summer - swooped up by - original co-founder stacy spikes text: the re-launch of moviepass is set to transpire this summer, ( rescued at the hands of / under the stewardship of / spearheaded by ) its founding father, stacy spikes. *** - middle schools do not have recess - should get back to doing it - amazing for communication - and getting kids to move around text: a casualty of the education reform craze, recess has been excised from middle schools. this is tragic, for it is instrumental in honing children's communication skills and encouraging physical activity. *** - ``` It should also be able to do all that this can: https://huggingface.co/BigSalmon/InformalToFormalLincoln27 Keywords to sentences or sentence.
TheJarmanitor/fatima-fellowship-model
TheJarmanitor
2022-04-02T03:03:42Z
0
0
null
[ "region:us" ]
null
2022-04-02T03:01:06Z
model and notebook for the Fatima Fellowship 2022 coding Challenge
vicl/canine-s-finetuned-stsb
vicl
2022-04-01T23:25:04Z
4
1
transformers
[ "transformers", "pytorch", "tensorboard", "canine", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-01T19:47:18Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - spearmanr model-index: - name: canine-s-finetuned-stsb results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: stsb metrics: - name: Spearmanr type: spearmanr value: 0.8397182061195433 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # canine-s-finetuned-stsb This model is a fine-tuned version of [google/canine-s](https://huggingface.co/google/canine-s) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.7223 - Pearson: 0.8397 - Spearmanr: 0.8397 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr | |:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:| | No log | 1.0 | 360 | 0.7938 | 0.8083 | 0.8077 | | 1.278 | 2.0 | 720 | 0.7349 | 0.8322 | 0.8305 | | 0.6765 | 3.0 | 1080 | 0.7075 | 0.8374 | 0.8366 | | 0.6765 | 4.0 | 1440 | 0.7586 | 0.8360 | 0.8376 | | 0.4629 | 5.0 | 1800 | 0.7223 | 0.8397 | 0.8397 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
huggingtweets/chapocheck
huggingtweets
2022-04-01T22:07:43Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-04-01T22:06:55Z
--- language: en thumbnail: http://www.huggingtweets.com/chapocheck/1648850858747/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1191821996759404547/HY5C5aOW_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Cum Town (mostly Nick Mullen) quotes</div> <div style="text-align: center; font-size: 14px;">@chapocheck</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Cum Town (mostly Nick Mullen) quotes. | Data | Cum Town (mostly Nick Mullen) quotes | | --- | --- | | Tweets downloaded | 1264 | | Retweets | 90 | | Short tweets | 75 | | Tweets kept | 1099 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/x77h239f/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @chapocheck's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/18r1isa5) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/18r1isa5/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/chapocheck') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
lgris/bp400-xlsr
lgris
2022-04-01T20:31:02Z
91
3
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "pt", "portuguese-speech-corpus", "PyTorch", "hf-asr-leaderboard", "dataset:common_voice", "dataset:mls", "dataset:cetuc", "dataset:lapsbm", "dataset:voxforge", "dataset:tedx", "dataset:sid", "arxiv:2107.11414", "arxiv:2012.03411", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: pt datasets: - common_voice - mls - cetuc - lapsbm - voxforge - tedx - sid metrics: - wer tags: - audio - speech - wav2vec2 - pt - portuguese-speech-corpus - automatic-speech-recognition - speech - PyTorch - hf-asr-leaderboard model-index: - name: bp400-xlsr results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7.0 type: mozilla-foundation/common_voice_7_0 args: pt metrics: - name: Test WER type: wer value: 14.0 license: apache-2.0 --- # bp400-xlsr: Wav2vec 2.0 with Brazilian Portuguese (BP) Dataset **Paper:** https://arxiv.org/abs/2107.11414 This is a the demonstration of a fine-tuned Wav2vec model for Brazilian Portuguese using the following datasets: - [CETUC](http://www02.smt.ufrj.br/~igor.quintanilha/alcaim.tar.gz): contains approximately 145 hours of Brazilian Portuguese speech distributed among 50 male and 50 female speakers, each pronouncing approximately 1,000 phonetically balanced sentences selected from the [CETEN-Folha](https://www.linguateca.pt/cetenfolha/) corpus. - [Common Voice 7.0](https://commonvoice.mozilla.org/pt): is a project proposed by Mozilla Foundation with the goal to create a wide open dataset in different languages. In this project, volunteers donate and validate speech using the [oficial site](https://commonvoice.mozilla.org/pt). - [Lapsbm](https://github.com/falabrasil/gitlab-resources): "Falabrasil - UFPA" is a dataset used by the Fala Brasil group to benchmark ASR systems in Brazilian Portuguese. Contains 35 speakers (10 females), each one pronouncing 20 unique sentences, totalling 700 utterances in Brazilian Portuguese. The audios were recorded in 22.05 kHz without environment control. - [Multilingual Librispeech (MLS)](https://arxiv.org/abs/2012.03411): a massive dataset available in many languages. The MLS is based on audiobook recordings in public domain like [LibriVox](https://librivox.org/). The dataset contains a total of 6k hours of transcribed data in many languages. The set in Portuguese [used in this work](http://www.openslr.org/94/) (mostly Brazilian variant) has approximately 284 hours of speech, obtained from 55 audiobooks read by 62 speakers. - [Multilingual TEDx](http://www.openslr.org/100): a collection of audio recordings from TEDx talks in 8 source languages. The Portuguese set (mostly Brazilian Portuguese variant) contains 164 hours of transcribed speech. - [Sidney](https://igormq.github.io/datasets/) (SID): contains 5,777 utterances recorded by 72 speakers (20 women) from 17 to 59 years old with fields such as place of birth, age, gender, education, and occupation; - [VoxForge](http://www.voxforge.org/): is a project with the goal to build open datasets for acoustic models. The corpus contains approximately 100 speakers and 4,130 utterances of Brazilian Portuguese, with sample rates varying from 16kHz to 44.1kHz. These datasets were combined to build a larger Brazilian Portuguese dataset. All data was used for training except Common Voice dev/test sets, that were used for validation/test respectively. We also made test sets for all the gathered datasets. | Dataset | Train | Valid | Test | |--------------------------------|-------:|------:|------:| | CETUC | 93.9h | -- | 5.4h | | Common Voice | 37.6h | 8.9h | 9.5h | | LaPS BM | 0.8h | -- | 0.1h | | MLS | 161.0h | -- | 3.7h | | Multilingual TEDx (Portuguese) | 144.2h | -- | 1.8h | | SID | 5.0h | -- | 1.0h | | VoxForge | 2.8h | -- | 0.1h | | Total | 437.2h | 8.9h | 21.6h | The original model was fine-tuned using [fairseq](https://github.com/pytorch/fairseq). This notebook uses a converted version of the original one. The link to the original fairseq model is available [here](https://drive.google.com/drive/folders/1eRUExXRF2XK8JxUjIzbLBkLa5wuR3nig?usp=sharing). #### Summary | | CETUC | CV | LaPS | MLS | SID | TEDx | VF | AVG | |----------------------|---------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------| | bp\_400 (demonstration below) | 0.052 | 0.140 | 0.074 | 0.117 | 0.121 | 0.245 | 0.118 | 0.124 | | bp\_400 + 3-gram | 0.033 | 0.095 | 0.046 | 0.123 | 0.112 | 0.212 | 0.123 | 0.106 | | bp\_400 + 4-gram (demonstration below) | **0.030** | 0.096 | 0.043 | **0.106** | 0.118 | 0.229 | **0.117** | **0.105** | | bp\_400 + 5-gram | 0.033 | 0.094 | 0.043 | 0.123 | **0.111** | **0.210** | 0.123 | **0.105** | | bp\_400 + Transf. | 0.032 | **0.092** | **0.036** | 0.130 | 0.115 | 0.215 | 0.125 | 0.106 | #### Transcription examples | Text | Transcription | |------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------| |alguém sabe a que horas começa o jantar | alguém sabe a que horas **começo** jantar | |lila covas ainda não sabe o que vai fazer no fundo|**lilacovas** ainda não sabe o que vai fazer no fundo| |que tal um pouco desse bom spaghetti|**quetá** um pouco **deste** bom **ispaguete**| |hong kong em cantonês significa porto perfumado|**rongkong** **en** **cantones** significa porto perfumado| |vamos hackear esse problema|vamos **rackar** esse problema| |apenas a poucos metros há uma estação de ônibus|apenas **ha** poucos metros **á** uma estação de ônibus| |relâmpago e trovão sempre andam juntos|**relampagotrevão** sempre andam juntos| ## Demonstration ```python MODEL_NAME = "lgris/bp400-xlsr" ``` ### Imports and dependencies ```python %%capture !pip install torch==1.8.2+cu111 torchvision==0.9.2+cu111 torchaudio===0.8.2 -f https://download.pytorch.org/whl/lts/1.8/torch_lts.html !pip install datasets !pip install jiwer !pip install transformers !pip install soundfile !pip install pyctcdecode !pip install https://github.com/kpu/kenlm/archive/master.zip ``` ```python import jiwer import torchaudio from datasets import load_dataset, load_metric from transformers import ( Wav2Vec2ForCTC, Wav2Vec2Processor, ) from pyctcdecode import build_ctcdecoder import torch import re import sys ``` ### Helpers ```python chars_to_ignore_regex = '[\,\?\.\!\;\:\"]' # noqa: W605 def map_to_array(batch): speech, _ = torchaudio.load(batch["path"]) batch["speech"] = speech.squeeze(0).numpy() batch["sampling_rate"] = 16_000 batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("’", "'") batch["target"] = batch["sentence"] return batch ``` ```python def calc_metrics(truths, hypos): wers = [] mers = [] wils = [] for t, h in zip(truths, hypos): try: wers.append(jiwer.wer(t, h)) mers.append(jiwer.mer(t, h)) wils.append(jiwer.wil(t, h)) except: # Empty string? pass wer = sum(wers)/len(wers) mer = sum(mers)/len(mers) wil = sum(wils)/len(wils) return wer, mer, wil ``` ```python def load_data(dataset): data_files = {'test': f'{dataset}/test.csv'} dataset = load_dataset('csv', data_files=data_files)["test"] return dataset.map(map_to_array) ``` ### Model ```python class STT: def __init__(self, model_name, device='cuda' if torch.cuda.is_available() else 'cpu', lm=None): self.model_name = model_name self.model = Wav2Vec2ForCTC.from_pretrained(model_name).to(device) self.processor = Wav2Vec2Processor.from_pretrained(model_name) self.vocab_dict = self.processor.tokenizer.get_vocab() self.sorted_dict = { k.lower(): v for k, v in sorted(self.vocab_dict.items(), key=lambda item: item[1]) } self.device = device self.lm = lm if self.lm: self.lm_decoder = build_ctcdecoder( list(self.sorted_dict.keys()), self.lm ) def batch_predict(self, batch): features = self.processor(batch["speech"], sampling_rate=batch["sampling_rate"][0], padding=True, return_tensors="pt") input_values = features.input_values.to(self.device) attention_mask = features.attention_mask.to(self.device) with torch.no_grad(): logits = self.model(input_values, attention_mask=attention_mask).logits if self.lm: logits = logits.cpu().numpy() batch["predicted"] = [] for sample_logits in logits: batch["predicted"].append(self.lm_decoder.decode(sample_logits)) else: pred_ids = torch.argmax(logits, dim=-1) batch["predicted"] = self.processor.batch_decode(pred_ids) return batch ``` ### Download datasets ```python %%capture !gdown --id 1HFECzIizf-bmkQRLiQD0QVqcGtOG5upI !mkdir bp_dataset !unzip bp_dataset -d bp_dataset/ ``` ### Tests ```python stt = STT(MODEL_NAME) ``` #### CETUC ```python ds = load_data('cetuc_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("CETUC WER:", wer) ``` CETUC WER: 0.05159104708285062 #### Common Voice ```python ds = load_data('commonvoice_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("CV WER:", wer) ``` CV WER: 0.14031426198658084 #### LaPS ```python ds = load_data('lapsbm_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("Laps WER:", wer) ``` Laps WER: 0.07432133838383838 #### MLS ```python ds = load_data('mls_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("MLS WER:", wer) ``` MLS WER: 0.11678793514817509 #### SID ```python ds = load_data('sid_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("Sid WER:", wer) ``` Sid WER: 0.12152357273433984 #### TEDx ```python ds = load_data('tedx_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("TEDx WER:", wer) ``` TEDx WER: 0.24666815906766504 #### VoxForge ```python ds = load_data('voxforge_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("VoxForge WER:", wer) ``` VoxForge WER: 0.11873106060606062 ### Tests with LM ```python !rm -rf ~/.cache !gdown --id 1GJIKseP5ZkTbllQVgOL98R4yYAcIySFP # trained with wikipedia stt = STT(MODEL_NAME, lm='pt-BR-wiki.word.4-gram.arpa') # !gdown --id 1dLFldy7eguPtyJj5OAlI4Emnx0BpFywg # trained with bp # stt = STT(MODEL_NAME, lm='pt-BR.word.4-gram.arpa') ``` ### Cetuc ```python ds = load_data('cetuc_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("CETUC WER:", wer) ``` CETUC WER: 0.030266462438593742 #### Common Voice ```python ds = load_data('commonvoice_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("CV WER:", wer) ``` CV WER: 0.09577710237417715 #### LaPS ```python ds = load_data('lapsbm_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("Laps WER:", wer) ``` Laps WER: 0.043617424242424235 #### MLS ```python ds = load_data('mls_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("MLS WER:", wer) ``` MLS WER: 0.10642133314350002 #### SID ```python ds = load_data('sid_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("Sid WER:", wer) ``` Sid WER: 0.11839021001747055 #### TEDx ```python ds = load_data('tedx_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("TEDx WER:", wer) ``` TEDx WER: 0.22929952467810416 #### VoxForge ```python ds = load_data('voxforge_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("VoxForge WER:", wer) ``` VoxForge WER: 0.11716314935064935
birgermoell/psst-libri960_big
birgermoell
2022-04-01T20:17:17Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-04-01T19:05:31Z
pssteval INFO: ASR metrics for split `valid` FER: 9.8% PER: 20.9%
juaner/distilbert-base-uncased-finetuned-cola
juaner
2022-04-01T18:20:42Z
5
0
transformers
[ "transformers", "tf", "tensorboard", "distilbert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-01T17:59:52Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: juaner/distilbert-base-uncased-finetuned-cola results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # juaner/distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1909 - Validation Loss: 0.5553 - Train Matthews Correlation: 0.5279 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2670, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Matthews Correlation | Epoch | |:----------:|:---------------:|:--------------------------:|:-----:| | 0.5191 | 0.4491 | 0.4718 | 0 | | 0.3270 | 0.4571 | 0.5196 | 1 | | 0.1909 | 0.5553 | 0.5279 | 2 | ### Framework versions - Transformers 4.16.2 - TensorFlow 2.8.0 - Datasets 1.18.3 - Tokenizers 0.11.0
FrankCorrigan/results
FrankCorrigan
2022-04-01T18:15:40Z
3
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "generated_from_trainer", "dataset:samsum", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-01T01:41:22Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - samsum model-index: - name: results results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # results This model is a fine-tuned version of [linydub/bart-large-samsum](https://huggingface.co/linydub/bart-large-samsum) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 1.0158 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 1 | 0.9563 | | No log | 2.0 | 2 | 0.9877 | | No log | 3.0 | 3 | 1.0158 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0 - Datasets 2.0.0 - Tokenizers 0.11.6
FrankCorrigan/test-model
FrankCorrigan
2022-04-01T17:54:00Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2022-04-01T01:46:45Z
--- license: apache-2.0 ---
McGill-NLP/bart-qg-nq-checkpoint
McGill-NLP
2022-04-01T17:35:04Z
26
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "arxiv:1910.13461", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-01T16:32:49Z
--- license: cc-by-4.0 --- # BART-base fine-tuned on NaturalQuestions for **Question Generation** [BART Model](https://arxiv.org/pdf/1910.13461.pdf) fine-tuned on [Google NaturalQuestions](https://ai.google.com/research/NaturalQuestions/) for **Question Generation** by treating long answer as input, and question as output. ## Details of BART The **BART** model was presented in [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/pdf/1910.13461.pdf) by *Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov, Luke Zettlemoyer* in Here the abstract: We present BART, a denoising autoencoder for pretraining sequence-to-sequence models. BART is trained by (1) corrupting text with an arbitrary noising function, and (2) learning a model to reconstruct the original text. It uses a standard Tranformer-based neural machine translation architecture which, despite its simplicity, can be seen as generalizing BERT (due to the bidirectional encoder), GPT (with the left-to-right decoder), and many other more recent pretraining schemes. We evaluate a number of noising approaches, finding the best performance by both randomly shuffling the order of the original sentences and using a novel in-filling scheme, where spans of text are replaced with a single mask token. BART is particularly effective when fine tuned for text generation but also works well for comprehension tasks. It matches the performance of RoBERTa with comparable training resources on GLUE and SQuAD, achieves new state-of-the-art results on a range of abstractive dialogue, question answering, and summarization tasks, with gains of up to 6 ROUGE. BART also provides a 1.1 BLEU increase over a back-translation system for machine translation, with only target language pretraining. We also report ablation experiments that replicate other pretraining schemes within the BART framework, to better measure which factors most influence end-task performance. ## Details of the downstream task (QG) - Dataset 📚 🧐 Dataset: ```NaturalQuestions``` from Google (https://ai.google.com/research/NaturalQuestions/) | Dataset | Split | # samples | | -------- | ----- | --------- | | NaturalQuestions | train | 97650 | | NaturalQuestions | valid | 10850 | ## Model fine-tuning 🏋️‍ The training script can be found [here](https://github.com/McGill-NLP/MLQuestions/blob/main/QG/train.py) ## Model in Action 🚀 ```python from transformers import AutoModel, BartTokenizer #Load the tokenizer tokenizer = BartTokenizer.from_pretrained('facebook/bart-base') #Load the model model = AutoModelForSeq2SeqLM.from_pretrained("McGill-NLP/bart-qg-nq-checkpoint") ``` ## Citation If you want to cite this model you can use this: ```bibtex @inproceedings{kulshreshtha-etal-2021-back, title = "Back-Training excels Self-Training at Unsupervised Domain Adaptation of Question Generation and Passage Retrieval", author = "Kulshreshtha, Devang and Belfer, Robert and Serban, Iulian Vlad and Reddy, Siva", booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.566", pages = "7064--7078", abstract = "In this work, we introduce back-training, an alternative to self-training for unsupervised domain adaptation (UDA). While self-training generates synthetic training data where natural inputs are aligned with noisy outputs, back-training results in natural outputs aligned with noisy inputs. This significantly reduces the gap between target domain and synthetic data distribution, and reduces model overfitting to source domain. We run UDA experiments on question generation and passage retrieval from the Natural Questions domain to machine learning and biomedical domains. We find that back-training vastly outperforms self-training by a mean improvement of 7.8 BLEU-4 points on generation, and 17.6{\%} top-20 retrieval accuracy across both domains. We further propose consistency filters to remove low-quality synthetic data before training. We also release a new domain-adaptation dataset - MLQuestions containing 35K unaligned questions, 50K unaligned passages, and 3K aligned question-passage pairs.", } ``` > Created by [Devang Kulshreshtha](https://geekydevu.netlify.app/) > Made with <span style="color: #e25555;">&hearts;</span> in Spain
bitsanlp/distilbert-base-uncased-distilbert-fakenews-detection
bitsanlp
2022-04-01T17:17:55Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-01T16:12:00Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-distilbert-fakenews-detection results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-distilbert-fakenews-detection This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0000 - Accuracy: 1.0 - F1: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---:| | 0.0125 | 1.0 | 978 | 0.0000 | 1.0 | 1.0 | | 0.0 | 2.0 | 1956 | 0.0000 | 1.0 | 1.0 | | 0.0 | 3.0 | 2934 | 0.0000 | 1.0 | 1.0 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.2+cu102 - Datasets 2.0.0 - Tokenizers 0.11.6
ahmedzaky91/Fatima-Fake_news_calssifier
ahmedzaky91
2022-04-01T16:54:24Z
0
0
null
[ "region:us" ]
null
2022-04-01T00:00:39Z
## This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on Fake and real dataset on kaggle ## The following hyperparameters were used during training: learning_rate: 5e-05 train_batch_size: 8 num_epochs: 2
ydshieh/bert-base-uncased-yelp-polarity
ydshieh
2022-04-01T15:20:05Z
103
0
transformers
[ "transformers", "tf", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-01T15:17:35Z
## TextAttack Model Card This `bert-base-uncased` model was fine-tuned for sequence classification using TextAttack and the yelp_polarity dataset loaded using the `nlp` library. The model was fine-tuned for 5 epochs with a batch size of 16, a learning rate of 5e-05, and a maximum sequence length of 256. Since this was a classification task, the model was trained with a cross-entropy loss function. The best score the model achieved on this task was 0.9699473684210527, as measured by the eval set accuracy, found after 4 epochs. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
avialfont/ner-dummy-model
avialfont
2022-04-01T14:59:22Z
5
0
transformers
[ "transformers", "tf", "bert", "token-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-04-01T10:59:27Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: ner-dummy-model results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # ner-dummy-model This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2631, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results ### Framework versions - Transformers 4.16.2 - TensorFlow 2.8.0 - Datasets 1.18.3 - Tokenizers 0.11.6
somosnlp-hackathon-2022/es_tweets_laboral
somosnlp-hackathon-2022
2022-04-01T14:50:40Z
1
1
spacy
[ "spacy", "text-classification", "es", "region:us" ]
text-classification
2022-04-01T13:48:09Z
--- tags: - spacy - text-classification language: es widget: - text: "todos merecemos un salario justo" --- ## es_tweets_laboral ## Modelo creado por @hucruz, @DanielaGarciaQuezada, @hylandude, @BloodBoy21
eren23/pneumonia_test_attempt
eren23
2022-04-01T14:41:01Z
57
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-19T16:31:28Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: pneumonia_test_attempt results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9783163070678711 --- # pneumonia-bielefeld-dl-course This registry contains the model for making pneumonia predictions and was prepared for Bielefeld University Deep Learning course homework. The code used for this implementation mostly comes from here: https://github.com/nateraw/huggingpics it was a ready pipeline for model fine-tuning with huggingface and PyTorch Lightning for another dataset.
notexist/ttt
notexist
2022-04-01T13:16:50Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-04-01T12:45:30Z
--- license: apache-2.0 ---
bmichele/poetry-generation-firstline-mbart-ws-fi-sorted
bmichele
2022-04-01T13:03:49Z
0
0
null
[ "pytorch", "region:us" ]
null
2022-04-01T12:58:00Z
TODO: This is still a demo model, the file does not match with the model card!!! # poetry-generation-firstline-mbart-ws-fi-sorted * `nextline`: generates the first poem line from keywords * `mbart`: base model is [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) * `ws`: trained on Wikisource data * `fi`: Finnish language * `sorted`: the order of input keywords matter when generating candidates
bharatR/up_down
bharatR
2022-04-01T12:38:05Z
0
0
null
[ "classification", "en", "dataset:cifar10-custom", "region:us" ]
null
2022-04-01T12:19:00Z
--- language: en tags: - classification datasets: - cifar10-custom metrics: - accuracy --- # Up-Down Classification This repo has the weights of resnet-18 model training on cifar-10 custom data, where some images are made upside down, and the goal is to predict the orientation of the image(0/1 classification task).
birgermoell/psst-base-rep
birgermoell
2022-04-01T12:02:45Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-04-01T07:58:20Z
The model is a reproduction of the baseline trained with Wav2vec2-small on PSST pssteval INFO: ASR metrics for split `valid` FER: 10.4% PER: 23.1%
bmichele/poetry-generation-nextline-mbart-ws-fi-single
bmichele
2022-04-01T11:51:32Z
0
0
null
[ "pytorch", "region:us" ]
null
2022-04-01T11:35:07Z
# poetry-generation-nextline-mbart-ws-fi-single * `nextline`: generates a poem line from previous line(s) * `mbart`: base model is [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) * `ws`: trained on Wikisource data * `fi`: Finnish language * `single`: uses only last poem line as input for generation
z5ying/distilgpt2-finetuned-wikitext2
z5ying
2022-04-01T10:47:57Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-04-01T07:10:02Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-wikitext2 This model is a fine-tuned version of [z5ying/distilgpt2-finetuned-wikitext2](https://huggingface.co/z5ying/distilgpt2-finetuned-wikitext2) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 118 | 3.0306 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.12.0
blacktree/distilbert-base-uncased-finetuned-cola
blacktree
2022-04-01T09:00:33Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-31T15:48:48Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5285676961321106 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.4883 - Matthews Correlation: 0.5286 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5269 | 1.0 | 535 | 0.5197 | 0.4187 | | 0.3477 | 2.0 | 1070 | 0.4883 | 0.5286 | | 0.2333 | 3.0 | 1605 | 0.6530 | 0.5079 | | 0.17 | 4.0 | 2140 | 0.7567 | 0.5272 | | 0.1271 | 5.0 | 2675 | 0.8887 | 0.5259 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.12.0
Basedino/GPT-RO
Basedino
2022-04-01T07:47:41Z
0
0
null
[ "license:gpl-3.0", "region:us" ]
null
2022-03-31T08:19:30Z
--- license: gpl-3.0 --- So i made this model because i had nothing to do. it's gpt 2 124m finetuned to a bunch of italian recipes. I made it using aitextgen, so you can use that to play with the model easily.
yy642/bert-base-uncased-finetuned-mnli-rte-wnli-10
yy642
2022-04-01T06:04:00Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-31T23:51:06Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-base-uncased-finetuned-mnli-rte-wnli-10 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-mnli-rte-wnli-10 This model is a fine-tuned version of [yy642/bert-base-uncased-finetuned-mnli-rte-wnli-5](https://huggingface.co/yy642/bert-base-uncased-finetuned-mnli-rte-wnli-5) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5876 - Accuracy: 0.9206 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.0641 | 1.0 | 16558 | 0.4528 | 0.9138 | | 0.0479 | 2.0 | 33116 | 0.5116 | 0.9153 | | 0.0363 | 3.0 | 49674 | 0.5660 | 0.9138 | | 0.0244 | 4.0 | 66232 | 0.5876 | 0.9206 | | 0.0145 | 5.0 | 82790 | 0.6156 | 0.9192 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0a0+17540c5 - Datasets 2.0.0 - Tokenizers 0.11.6
z5ying/mbart-large-cc25-finetuned-source-to-target
z5ying
2022-04-01T03:43:40Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "mbart", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-07T18:25:31Z
--- tags: - generated_from_trainer model-index: - name: mbart-large-cc25-finetuned-source-to-target results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mbart-large-cc25-finetuned-source-to-target This model is a fine-tuned version of [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.002 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.12.0
dchung117/distilbert-base-uncased-finetuned-squad-d5716d28
dchung117
2022-04-01T02:02:28Z
5
0
transformers
[ "transformers", "pytorch", "distilbert", "fill-mask", "question-answering", "en", "dataset:squad", "arxiv:1910.01108", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
question-answering
2022-04-01T01:51:41Z
--- language: - en thumbnail: https://github.com/karanchahal/distiller/blob/master/distiller.jpg tags: - question-answering license: apache-2.0 datasets: - squad metrics: - squad --- # DistilBERT with a second step of distillation ## Model description This model replicates the "DistilBERT (D)" model from Table 2 of the [DistilBERT paper](https://arxiv.org/pdf/1910.01108.pdf). In this approach, a DistilBERT student is fine-tuned on SQuAD v1.1, but with a BERT model (also fine-tuned on SQuAD v1.1) acting as a teacher for a second step of task-specific distillation. In this version, the following pre-trained models were used: * Student: `distilbert-base-uncased` * Teacher: `lewtun/bert-base-uncased-finetuned-squad-v1` ## Training data This model was trained on the SQuAD v1.1 dataset which can be obtained from the `datasets` library as follows: ```python from datasets import load_dataset squad = load_dataset('squad') ``` ## Training procedure ## Eval results | | Exact Match | F1 | |------------------|-------------|------| | DistilBERT paper | 79.1 | 86.9 | | Ours | 78.4 | 86.5 | The scores were calculated using the `squad` metric from `datasets`. ### BibTeX entry and citation info ```bibtex @misc{sanh2020distilbert, title={DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter}, author={Victor Sanh and Lysandre Debut and Julien Chaumond and Thomas Wolf}, year={2020}, eprint={1910.01108}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
Mr-Wick/xlnet-base-cased
Mr-Wick
2022-04-01T01:31:59Z
3
0
transformers
[ "transformers", "tf", "xlnet", "question-answering", "generated_from_keras_callback", "endpoints_compatible", "region:us" ]
question-answering
2022-03-26T12:52:07Z
--- tags: - generated_from_keras_callback model-index: - name: xlnet-base-cased results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # xlnet-base-cased This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 16530, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results ### Framework versions - Transformers 4.17.0 - TensorFlow 2.8.0 - Datasets 2.0.0 - Tokenizers 0.12.0
emre/distilgpt2-pretrained-tr-10e
emre
2022-03-31T22:10:43Z
4
0
transformers
[ "transformers", "jax", "gpt2", "text-generation", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-31T21:59:43Z
--- license: apache-2.0 ---
arjundd/dosma-models
arjundd
2022-03-31T21:39:54Z
0
0
null
[ "mri", "knee", "segmentation", "en", "region:us" ]
null
2022-03-31T18:30:03Z
--- language: en tags: - mri - knee - segmentation --- # DOSMA models These models are those that are made publicly available in the [DOSMA](https://github.com/ad12/DOSMA). More information on these models can be found in the [documentation](https://dosma.readthedocs.io/en/latest/models.html). ## Citation If you use any models, please cite any reference for the model in addition to the DOSMA reference below: ``` @inproceedings{desai2019dosma, title={DOSMA: A deep-learning, open-source framework for musculoskeletal MRI analysis}, author={Desai, Arjun D and Barbieri, Marco and Mazzoli, Valentina and Rubin, Elka and Black, Marianne S and Watkins, Lauren E and Gold, Garry E and Hargreaves, Brian A and Chaudhari, Akshay S}, booktitle={Proc 27th Annual Meeting ISMRM, Montreal}, pages={1135}, year={2019} } ```
israel/fake-news-classification
israel
2022-03-31T21:03:49Z
4
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-31T16:35:48Z
--- license: mit --- # Fake and real news classification task Model : [DistilRoBERTa base model](https://huggingface.co/distilroberta-base) Dataset : [Fake and real news dataset](https://www.kaggle.com/datasets/clmentbisaillon/fake-and-real-news-dataset)
magitz/distilbert-base-uncased-finetuned-emotion
magitz
2022-03-31T20:48:43Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-31T20:41:54Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9265 - name: F1 type: f1 value: 0.9267965474109292 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2235 - Accuracy: 0.9265 - F1: 0.9268 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8101 | 1.0 | 250 | 0.3177 | 0.9045 | 0.9010 | | 0.2472 | 2.0 | 500 | 0.2235 | 0.9265 | 0.9268 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.8.1 - Datasets 1.18.3 - Tokenizers 0.11.0
WENGSYX/Deberta-Chinese-Large
WENGSYX
2022-03-31T20:08:59Z
56
16
transformers
[ "transformers", "pytorch", "deberta", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
# Deberta-Chinese ​ 本项目,基于微软开源的Deberta模型,在中文领域进行预训练。开源本模型,旨在为其他人提供更多预训练语言模型选择。 ​ 本预训练模型,基于WuDaoCorpora语料库预训练而成。WuDaoCorpora是北京智源人工智能研究院(智源研究院)构建的大规模、高质量数据集,用于支撑“悟道”大模型项目研究。 ​ 使用WWM与n-gramMLM 等预训练方法进行预训练。 | 预训练模型 | 学习率 | batchsize | 设备 | 语料库 | 时间 | 优化器 | | --------------------- | ------ | --------- | ------ | ------ | ---- | ------ | | Deberta-Chinese-Large | 1e-5 | 512 | 2*3090 | 200G | 14天 | AdamW | ​ ### 加载与使用 依托于huggingface-transformers ``` tokenizer = BertTokenizer.from_pretrained("WENGSYX/Deberta-Chinese-Large") model = AutoModel.from_pretrained("WENGSYX/Deberta-Chinese-Large") ``` #### 注意,请使用BertTokenizer加载中文词表
novarac23/distilbert-base-uncased-finetuned-emotion
novarac23
2022-03-31T19:39:15Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-31T19:05:57Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.925 - name: F1 type: f1 value: 0.9251919899321654 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2234 - Accuracy: 0.925 - F1: 0.9252 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8213 | 1.0 | 250 | 0.3210 | 0.9025 | 0.8989 | | 0.2463 | 2.0 | 500 | 0.2234 | 0.925 | 0.9252 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
deepspeechvision/wav2vec2_hindi_asr
deepspeechvision
2022-03-31T18:03:34Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-31T17:22:14Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2_hindi_asr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2_hindi_asr This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
israfelsr/UpsideDownClassifier
israfelsr
2022-03-31T17:06:27Z
0
0
null
[ "region:us" ]
null
2022-03-31T15:41:33Z
# UpsideDownClassifier This classifier was trained using the [auto-cats-and-dogs](https://huggingface.co/datasets/nateraw/auto-cats-and-dogs) dataset. It was trained over 5 epochs using a pretrained resent18. The configuration for the model was ``` config = { "batch_size": 64, "num_epochs": 5, "lr": 0.005, "betas": (0.9, 0.999), "eps": 1e-6, "lr": 8e-3, "do_eval": True } ``` ## Traning Plots We can see in the figures below the training plots for accuracy and the loss in both, training and validation sets. ### Accuracy Plot ![Accuracy](https://huggingface.co/israfelsr/UpsideDownClassifier/blob/main/accuracy.png) ### Loss Plot ![Loss](https://huggingface.co/israfelsr/UpsideDownClassifier/blob/main/loss.png) ## Some Results Evaluating on the Test Set, we obtain: - Accuracy = 0.9696 A batch with some missclassifications can be seen in the picture below. ![Results](https://huggingface.co/israfelsr/UpsideDownClassifier/blob/main/results.png)
eren23/pneumonia-bielefeld-dl-course
eren23
2022-03-31T15:55:27Z
61
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-27T12:17:21Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: pneumonia-bielefeld-dl-course results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.8456632494926453 --- # pneumonia-bielefeld-dl-course This registry contains the model for making pneumonia predictions and was prepared for Bielefeld University Deep Learning course homework. The code used for this implementation mostly comes from here: https://github.com/nateraw/huggingpics it was a ready pipeline for model fine-tuning with huggingface and PyTorch Lightning for another dataset.
huggingtweets/timdingmanlive
huggingtweets
2022-03-31T14:30:05Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-31T14:26:57Z
--- language: en thumbnail: http://www.huggingtweets.com/timdingmanlive/1648736999131/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/2844974270/7bb6450b90b65f8712d9433b8d5e1971_400x400.jpeg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Tim Dingman</div> <div style="text-align: center; font-size: 14px;">@timdingmanlive</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Tim Dingman. | Data | Tim Dingman | | --- | --- | | Tweets downloaded | 3240 | | Retweets | 555 | | Short tweets | 138 | | Tweets kept | 2547 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/7yvdv2z7/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @timdingmanlive's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/311pu3zj) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/311pu3zj/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/timdingmanlive') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/youtube
huggingtweets
2022-03-31T14:06:33Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-31T14:05:50Z
--- language: en thumbnail: http://www.huggingtweets.com/youtube/1648735587597/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1427292844612595720/RC1YSvuT_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">YouTube</div> <div style="text-align: center; font-size: 14px;">@youtube</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from YouTube. | Data | YouTube | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 23 | | Short tweets | 104 | | Tweets kept | 3123 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2dx34obn/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @youtube's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/p527w5q3) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/p527w5q3/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/youtube') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Edresson/wav2vec2-large-xlsr-coraa-portuguese
Edresson
2022-03-31T13:28:43Z
632
15
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "pt", "portuguese-speech-corpus", "hf-asr-leaderboard", "PyTorch", "dataset:CORAA", "arxiv:2110.15731", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: pt datasets: - CORAA metrics: - wer tags: - audio - speech - wav2vec2 - pt - portuguese-speech-corpus - automatic-speech-recognition - hf-asr-leaderboard - speech - PyTorch license: apache-2.0 model-index: - name: Edresson Casanova XLSR Wav2Vec2 Large 53 Portuguese results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: CORAA type: CORAA args: pt metrics: - name: Test CORAA WER type: wer value: 25.26 - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: pt metrics: - name: Test WER on Common Voice 7 type: wer value: 20.08 --- # Wav2vec 2.0 trained with CORAA Portuguese Dataset This a the demonstration of a fine-tuned Wav2vec model for Portuguese using the following [CORAA dataset](https://github.com/nilc-nlp/CORAA) # Use this model ```python from transformers import AutoTokenizer, Wav2Vec2ForCTC tokenizer = AutoTokenizer.from_pretrained("Edresson/wav2vec2-large-xlsr-coraa-portuguese") model = Wav2Vec2ForCTC.from_pretrained("Edresson/wav2vec2-large-xlsr-coraa-portuguese") ``` # Results For the results check the [CORAA article](https://arxiv.org/abs/2110.15731) # Example test with Common Voice Dataset ```python dataset = load_dataset("common_voice", "pt", split="test", data_dir="./cv-corpus-6.1-2020-12-11") resampler = torchaudio.transforms.Resample(orig_freq=48_000, new_freq=16_000) def map_to_array(batch): speech, _ = torchaudio.load(batch["path"]) batch["speech"] = resampler.forward(speech.squeeze(0)).numpy() batch["sampling_rate"] = resampler.new_freq batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("’", "'") return batch ``` ```python ds = dataset.map(map_to_array) result = ds.map(map_to_pred, batched=True, batch_size=1, remove_columns=list(ds.features.keys())) print(wer.compute(predictions=result["predicted"], references=result["target"])) ```
Visual-Attention-Network/van-large
Visual-Attention-Network
2022-03-31T12:45:46Z
122
1
transformers
[ "transformers", "pytorch", "van", "image-classification", "vision", "dataset:imagenet-1k", "arxiv:2202.09741", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-09T18:03:37Z
--- license: apache-2.0 tags: - vision - image-classification datasets: - imagenet-1k widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace --- # Van Van model trained on imagenet-1k. It was introduced in the paper [Visual Attention Network](https://arxiv.org/abs/2202.09741) and first released in [this repository](https://github.com/Visual-Attention-Network/VAN-Classification). Disclaimer: The team releasing Van did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description This paper introduces a new attention layer based on convolution operations able to capture both local and distant relationships. This is done by combining normal and large kernel convolution layers. The latter uses a dilated convolution to capture distant correlations. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/van_architecture.png) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=van) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model: ```python >>> from transformers import AutoFeatureExtractor, VanForImageClassification >>> import torch >>> from datasets import load_dataset >>> dataset = load_dataset("huggingface/cats-image") >>> image = dataset["test"]["image"][0] >>> feature_extractor = AutoFeatureExtractor.from_pretrained("Visual-Attention-Network/van-base") >>> model = VanForImageClassification.from_pretrained("Visual-Attention-Network/van-base") >>> inputs = feature_extractor(image, return_tensors="pt") >>> with torch.no_grad(): ... logits = model(**inputs).logits >>> # model predicts one of the 1000 ImageNet classes >>> predicted_label = logits.argmax(-1).item() >>> print(model.config.id2label[predicted_label]) tabby, tabby cat ``` For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/van).
Visual-Attention-Network/van-base
Visual-Attention-Network
2022-03-31T12:45:44Z
185
1
transformers
[ "transformers", "pytorch", "van", "image-classification", "vision", "dataset:imagenet-1k", "arxiv:2202.09741", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-16T15:06:37Z
--- license: apache-2.0 tags: - vision - image-classification datasets: - imagenet-1k widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace --- # Van Van model trained on imagenet-1k. It was introduced in the paper [Visual Attention Network](https://arxiv.org/abs/2202.09741) and first released in [this repository](https://github.com/Visual-Attention-Network/VAN-Classification). Disclaimer: The team releasing Van did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description This paper introduces a new attention layer based on convolution operations able to capture both local and distant relationships. This is done by combining normal and large kernel convolution layers. The latter uses a dilated convolution to capture distant correlations. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/van_architecture.png) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=van) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model: ```python >>> from transformers import AutoFeatureExtractor, VanForImageClassification >>> import torch >>> from datasets import load_dataset >>> dataset = load_dataset("huggingface/cats-image") >>> image = dataset["test"]["image"][0] >>> feature_extractor = AutoFeatureExtractor.from_pretrained("Visual-Attention-Network/van-base") >>> model = VanForImageClassification.from_pretrained("Visual-Attention-Network/van-base") >>> inputs = feature_extractor(image, return_tensors="pt") >>> with torch.no_grad(): ... logits = model(**inputs).logits >>> # model predicts one of the 1000 ImageNet classes >>> predicted_label = logits.argmax(-1).item() >>> print(model.config.id2label[predicted_label]) tabby, tabby cat ``` For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/van).
mustapha/flipped-image-ViT
mustapha
2022-03-31T12:30:19Z
61
2
transformers
[ "transformers", "pytorch", "vit", "image-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-30T21:57:42Z
Hello world, This model have been created in the context of ` Fatima Fellowship Programme`. The model was trained on the Cifar10 dataset with a googd final accuracy of arround 98%. This model determines wether an image is flipped of not.
Khalsuu/2nd-wav2vec2-l-xls-r-300m-turkish-test
Khalsuu
2022-03-31T12:09:32Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-31T08:45:25Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: 2nd-wav2vec2-l-xls-r-300m-turkish-test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 2nd-wav2vec2-l-xls-r-300m-turkish-test This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.6019 - Wer: 0.4444 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.0522 | 3.67 | 400 | 0.7773 | 0.7296 | | 0.5369 | 7.34 | 800 | 0.6282 | 0.5888 | | 0.276 | 11.01 | 1200 | 0.5998 | 0.5330 | | 0.1725 | 14.68 | 1600 | 0.5859 | 0.4908 | | 0.1177 | 18.35 | 2000 | 0.6019 | 0.4444 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
Neulvo/bert-finetuned-squad
Neulvo
2022-03-31T12:08:42Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-31T10:54:31Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2 - Datasets 1.18.3 - Tokenizers 0.11.0
YiTian/wav2vec2-common_voice-tr-demo
YiTian
2022-03-31T11:40:04Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "common_voice", "generated_from_trainer", "tr", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-31T09:39:08Z
--- language: - tr license: apache-2.0 tags: - automatic-speech-recognition - common_voice - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-common_voice-tr-demo results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-common_voice-tr-demo This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the COMMON_VOICE - TR dataset. It achieves the following results on the evaluation set: - Loss: 2.9841 - Wer: 0.9999 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 128 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 15.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 7.14 | 100 | 3.6689 | 1.0 | | No log | 14.29 | 200 | 3.0280 | 0.9999 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.9.0 - Datasets 1.18.0 - Tokenizers 0.11.6
frtna/jwt300_mt-Italian-to-Spanish_transformers
frtna
2022-03-31T11:18:09Z
4
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "dataset:new_dataset", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-29T09:49:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - new_dataset metrics: - sacrebleu model-index: - name: jwt300_mt-Italian-to-Spanish_transformers results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: new_dataset type: new_dataset args: jwt300_mt metrics: - name: Sacrebleu type: sacrebleu value: 0.9057 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # jwt300_mt-Italian-to-Spanish_transformers This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the new_dataset dataset. It achieves the following results on the evaluation set: - Loss: 2.4425 - Sacrebleu: 0.9057 - Gen Len: 18.1276 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Sacrebleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:---------:|:-------:| | 2.7545 | 1.0 | 2229 | 2.4425 | 0.9057 | 18.1276 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0 - Datasets 2.0.0 - Tokenizers 0.11.6
nikhil6041/wav2vec2-commonvoice-tamil
nikhil6041
2022-03-31T09:24:01Z
18
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:mit", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-31T04:00:23Z
--- license: mit tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-commonvoice-tamil results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-commonvoice-tamil This model is a fine-tuned version of [Harveenchadha/vakyansh-wav2vec2-tamil-tam-250](https://huggingface.co/Harveenchadha/vakyansh-wav2vec2-tamil-tam-250) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 3.3415 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 400 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 5.384 | 1.69 | 200 | 3.3400 | 1.0 | | 3.3085 | 3.39 | 400 | 3.3609 | 1.0 | | 3.3008 | 5.08 | 600 | 3.3331 | 1.0 | | 3.2852 | 6.78 | 800 | 3.3492 | 1.0 | | 3.2908 | 8.47 | 1000 | 3.3318 | 1.0 | | 3.2865 | 10.17 | 1200 | 3.3501 | 1.0 | | 3.2826 | 11.86 | 1400 | 3.3403 | 1.0 | | 3.2875 | 13.56 | 1600 | 3.3335 | 1.0 | | 3.2899 | 15.25 | 1800 | 3.3311 | 1.0 | | 3.2755 | 16.95 | 2000 | 3.3617 | 1.0 | | 3.2877 | 18.64 | 2200 | 3.3317 | 1.0 | | 3.2854 | 20.34 | 2400 | 3.3560 | 1.0 | | 3.2878 | 22.03 | 2600 | 3.3332 | 1.0 | | 3.2766 | 23.73 | 2800 | 3.3317 | 1.0 | | 3.2943 | 25.42 | 3000 | 3.3737 | 1.0 | | 3.2845 | 27.12 | 3200 | 3.3347 | 1.0 | | 3.2765 | 28.81 | 3400 | 3.3415 | 1.0 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
emiyasstar/ch-w2v-conformer
emiyasstar
2022-03-31T08:48:13Z
0
2
null
[ "region:us" ]
null
2022-03-29T15:44:56Z
The ch-w2v-conformer model uses following datasets to pretrain: ISML datasets (6 languages,70k hours): internal dataset contains 40k hours Chinese, Cantonese, Tibetan, Inner Mongolian, Inner Kazakh, Uighur. Babel datasets (17 languages, 2k hours): Assamese, Bengali, Cantonese, Cebuano, Georgian, Haitian, Kazakh, Kurmanji, Lao, Pashto, Swahili, Tagalog, Tamil, Tok, Turkish, Vietnamese, Zulu After pretraining, we build ASR system based on CTC-Attention structure. In very low resource task, we find that if too many initialization network structures are constructed in the upper layer of pre-training conformer encoder, the migration performance of the pre-training model will be destroyed, so we only build a single-layer transformer decoder for joint training. pretrained model link: ## constrained-plus Task Performance * Languages: Cantonese,mongolian,kazakh * config: conf/train_conformer_large_10h.yaml * Feature info: using mfcc feature, with dither 1.0, without cmvn * Training info: lr 0.001, batch size 10, 4 gpus on V100, acc_grad 1, 80 epochs * Decoding info: ctc_weight 0.5, average_num 35 dev set results trained only with 10 hours training set ## w2v-Conformer | decoding_method | Cantonese(CER) | mongolian(WER) | |:-------------------:|:----:|:----:| | ctc_greedy_search | 31.46 | 53.64 | | ctc_prefix_search | 31.47 | 53.50 | | attention_rescoring | 31.45 | 52.96 | ## Conformer (train from scartch) | decoding_method | Cantonese(CER) | mongolian(WER) | |:-------------------:|----:|:----:| | ctc_greedy_search | 61.43 | 89.38 | | ctc_prefix_search | 61.37 | 89.53| | attention_rescoring | 60.61 | 89.60|
DrishtiSharma/poem-gen-spanish-t5-small-test
DrishtiSharma
2022-03-31T03:53:52Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-30T19:55:28Z
--- license: mit tags: - generated_from_trainer model-index: - name: poem-gen-spanish-t5-small-test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # poem-gen-spanish-t5-small-test This model is a fine-tuned version of [hackathon-pln-es/poem-gen-spanish-t5-small](https://huggingface.co/hackathon-pln-es/poem-gen-spanish-t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.2170 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 12 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:------:|:---------------:| | 2.8391 | 0.73 | 30000 | 2.9486 | | 2.6782 | 1.46 | 60000 | 2.8990 | | 2.5323 | 2.19 | 90000 | 2.9193 | | 2.5191 | 2.93 | 120000 | 2.8982 | | 2.4007 | 3.66 | 150000 | 2.9241 | | 2.2909 | 4.39 | 180000 | 2.9418 | | 2.1741 | 5.12 | 210000 | 2.9783 | | 2.1973 | 5.85 | 240000 | 2.9671 | | 2.0969 | 6.58 | 270000 | 3.0179 | | 1.9818 | 7.31 | 300000 | 3.0582 | | 1.8639 | 8.05 | 330000 | 3.0918 | | 1.8824 | 8.78 | 360000 | 3.1095 | | 1.7929 | 9.51 | 390000 | 3.1502 | | 1.7247 | 10.24 | 420000 | 3.1855 | | 1.7039 | 10.97 | 450000 | 3.1953 | | 1.6475 | 11.7 | 480000 | 3.2180 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
lazyturtl/roomclassifier
lazyturtl
2022-03-31T01:09:57Z
2,692
16
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-31T01:09:48Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: roomclassifier results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9402984976768494 --- # roomclassifier Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### Bathroom ![Bathroom](images/Bathroom.jpg) #### Bedroom ![Bedroom](images/Bedroom.jpg) #### DinningRoom ![DinningRoom](images/DinningRoom.jpg) #### Kitchen ![Kitchen](images/Kitchen.jpg) #### Laundry room ![Laundry room](images/Laundry_room.jpg) #### Livingroom ![Livingroom](images/Livingroom.jpg)
michiyasunaga/BioLinkBERT-large
michiyasunaga
2022-03-31T00:54:57Z
4,470
33
transformers
[ "transformers", "pytorch", "bert", "feature-extraction", "exbert", "linkbert", "biolinkbert", "fill-mask", "question-answering", "text-classification", "token-classification", "en", "dataset:pubmed", "arxiv:2203.15827", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text-classification
2022-03-08T06:20:38Z
--- license: apache-2.0 language: en datasets: - pubmed tags: - bert - exbert - linkbert - biolinkbert - feature-extraction - fill-mask - question-answering - text-classification - token-classification widget: - text: "Sunitinib is a tyrosine kinase inhibitor" --- ## BioLinkBERT-large BioLinkBERT-large model pretrained on [PubMed](https://pubmed.ncbi.nlm.nih.gov/) abstracts along with citation link information. It is introduced in the paper [LinkBERT: Pretraining Language Models with Document Links (ACL 2022)](https://arxiv.org/abs/2203.15827). The code and data are available in [this repository](https://github.com/michiyasunaga/LinkBERT). This model achieves state-of-the-art performance on several biomedical NLP benchmarks such as [BLURB](https://microsoft.github.io/BLURB/) and [MedQA-USMLE](https://github.com/jind11/MedQA). ## Model description LinkBERT is a transformer encoder (BERT-like) model pretrained on a large corpus of documents. It is an improvement of BERT that newly captures **document links** such as hyperlinks and citation links to include knowledge that spans across multiple documents. Specifically, it was pretrained by feeding linked documents into the same language model context, besides a single document. LinkBERT can be used as a drop-in replacement for BERT. It achieves better performance for general language understanding tasks (e.g. text classification), and is also particularly effective for **knowledge-intensive** tasks (e.g. question answering) and **cross-document** tasks (e.g. reading comprehension, document retrieval). ## Intended uses & limitations The model can be used by fine-tuning on a downstream task, such as question answering, sequence classification, and token classification. You can also use the raw model for feature extraction (i.e. obtaining embeddings for input text). ### How to use To use the model to get the features of a given text in PyTorch: ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained('michiyasunaga/BioLinkBERT-large') model = AutoModel.from_pretrained('michiyasunaga/BioLinkBERT-large') inputs = tokenizer("Sunitinib is a tyrosine kinase inhibitor", return_tensors="pt") outputs = model(**inputs) last_hidden_states = outputs.last_hidden_state ``` For fine-tuning, you can use [this repository](https://github.com/michiyasunaga/LinkBERT) or follow any other BERT fine-tuning codebases. ## Evaluation results When fine-tuned on downstream tasks, LinkBERT achieves the following results. **Biomedical benchmarks ([BLURB](https://microsoft.github.io/BLURB/), [MedQA](https://github.com/jind11/MedQA), [MMLU](https://github.com/hendrycks/test), etc.):** BioLinkBERT attains new state-of-the-art. | | BLURB score | PubMedQA | BioASQ | MedQA-USMLE | | ---------------------- | -------- | -------- | ------- | -------- | | PubmedBERT-base | 81.10 | 55.8 | 87.5 | 38.1 | | **BioLinkBERT-base** | **83.39** | **70.2** | **91.4** | **40.0** | | **BioLinkBERT-large** | **84.30** | **72.2** | **94.8** | **44.6** | | | MMLU-professional medicine | | ---------------------- | -------- | | GPT-3 (175 params) | 38.7 | | UnifiedQA (11B params) | 43.2 | | **BioLinkBERT-large (340M params)** | **50.7** | ## Citation If you find LinkBERT useful in your project, please cite the following: ```bibtex @InProceedings{yasunaga2022linkbert, author = {Michihiro Yasunaga and Jure Leskovec and Percy Liang}, title = {LinkBERT: Pretraining Language Models with Document Links}, year = {2022}, booktitle = {Association for Computational Linguistics (ACL)}, } ```
michiyasunaga/LinkBERT-large
michiyasunaga
2022-03-31T00:27:01Z
1,297
11
transformers
[ "transformers", "pytorch", "bert", "feature-extraction", "exbert", "linkbert", "fill-mask", "question-answering", "text-classification", "token-classification", "en", "dataset:wikipedia", "dataset:bookcorpus", "arxiv:2203.15827", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text-classification
2022-03-08T01:42:14Z
--- license: apache-2.0 language: en datasets: - wikipedia - bookcorpus tags: - bert - exbert - linkbert - feature-extraction - fill-mask - question-answering - text-classification - token-classification --- ## LinkBERT-large LinkBERT-large model pretrained on English Wikipedia articles along with hyperlink information. It is introduced in the paper [LinkBERT: Pretraining Language Models with Document Links (ACL 2022)](https://arxiv.org/abs/2203.15827). The code and data are available in [this repository](https://github.com/michiyasunaga/LinkBERT). ## Model description LinkBERT is a transformer encoder (BERT-like) model pretrained on a large corpus of documents. It is an improvement of BERT that newly captures **document links** such as hyperlinks and citation links to include knowledge that spans across multiple documents. Specifically, it was pretrained by feeding linked documents into the same language model context, besides a single document. LinkBERT can be used as a drop-in replacement for BERT. It achieves better performance for general language understanding tasks (e.g. text classification), and is also particularly effective for **knowledge-intensive** tasks (e.g. question answering) and **cross-document** tasks (e.g. reading comprehension, document retrieval). ## Intended uses & limitations The model can be used by fine-tuning on a downstream task, such as question answering, sequence classification, and token classification. You can also use the raw model for feature extraction (i.e. obtaining embeddings for input text). ### How to use To use the model to get the features of a given text in PyTorch: ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained('michiyasunaga/LinkBERT-large') model = AutoModel.from_pretrained('michiyasunaga/LinkBERT-large') inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") outputs = model(**inputs) last_hidden_states = outputs.last_hidden_state ``` For fine-tuning, you can use [this repository](https://github.com/michiyasunaga/LinkBERT) or follow any other BERT fine-tuning codebases. ## Evaluation results When fine-tuned on downstream tasks, LinkBERT achieves the following results. **General benchmarks ([MRQA](https://github.com/mrqa/MRQA-Shared-Task-2019) and [GLUE](https://gluebenchmark.com/)):** | | HotpotQA | TriviaQA | SearchQA | NaturalQ | NewsQA | SQuAD | GLUE | | ---------------------- | -------- | -------- | -------- | -------- | ------ | ----- | -------- | | | F1 | F1 | F1 | F1 | F1 | F1 | Avg score | | BERT-base | 76.0 | 70.3 | 74.2 | 76.5 | 65.7 | 88.7 | 79.2 | | **LinkBERT-base** | **78.2** | **73.9** | **76.8** | **78.3** | **69.3** | **90.1** | **79.6** | | BERT-large | 78.1 | 73.7 | 78.3 | 79.0 | 70.9 | 91.1 | 80.7 | | **LinkBERT-large** | **80.8** | **78.2** | **80.5** | **81.0** | **72.6** | **92.7** | **81.1** | ## Citation If you find LinkBERT useful in your project, please cite the following: ```bibtex @InProceedings{yasunaga2022linkbert, author = {Michihiro Yasunaga and Jure Leskovec and Percy Liang}, title = {LinkBERT: Pretraining Language Models with Document Links}, year = {2022}, booktitle = {Association for Computational Linguistics (ACL)}, } ```
GleamEyeBeast/ascend_with_english
GleamEyeBeast
2022-03-30T23:35:00Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:timit_asr", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-30T22:09:15Z
--- tags: - generated_from_trainer datasets: - timit_asr model-index: - name: ascend_with_english results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ascend_with_english This model is a fine-tuned version of [GleamEyeBeast/ascend](https://huggingface.co/GleamEyeBeast/ascend) on the timit_asr dataset. It achieves the following results on the evaluation set: - Loss: 0.3049 - Wer: 0.2251 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 289 | 0.3524 | 0.3016 | | 0.4246 | 2.0 | 578 | 0.3132 | 0.2607 | | 0.4246 | 3.0 | 867 | 0.3044 | 0.2373 | | 0.2008 | 4.0 | 1156 | 0.3075 | 0.2302 | | 0.2008 | 5.0 | 1445 | 0.3049 | 0.2251 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
mrm8488/legalectra-small-spanish
mrm8488
2022-03-30T21:06:31Z
41
3
transformers
[ "transformers", "pytorch", "electra", "pretraining", "Spanish", "Electra", "Legal", "es", "dataset:Spanish-legal-corpora", "arxiv:1406.2661", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: es tags: - Spanish - Electra - Legal datasets: - Spanish-legal-corpora --- ## LEGALECTRA ⚖️ **LEGALECTRA** (small) is an Electra like model (discriminator in this case) trained on [A collection of corpora of Spanish legal domain](https://zenodo.org/record/5495529#.YZItp3vMLJw). As mentioned in the original [paper](https://openreview.net/pdf?id=r1xMH1BtvB): **ELECTRA** is a new method for self-supervised language representation learning. It can be used to pre-train transformer networks using relatively little compute. ELECTRA models are trained to distinguish "real" input tokens vs "fake" input tokens generated by another neural network, similar to the discriminator of a [GAN](https://arxiv.org/pdf/1406.2661.pdf). At small scale, ELECTRA achieves strong results even when trained on a single GPU. At large scale, ELECTRA achieves state-of-the-art results on the [SQuAD 2.0](https://rajpurkar.github.io/SQuAD-explorer/) dataset. For a detailed description and experimental results, please refer the paper [ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators](https://openreview.net/pdf?id=r1xMH1BtvB). ## Training details The model was trained using the Electra base code for 3 days on 1 Tesla V100 16GB. ## Model details ⚙ |Param| # Value| |-----|--------| |Layers| 12 | |Hidden | 256 | |Params| 14M | ## Evaluation metrics (for discriminator) 🧾 |Metric | # Score | |-------|---------| |Accuracy| 0.955| |Precision| 0.790| |AUC | 0.971| ## Benchmarks 🔨 WIP 🚧 ## How to use the discriminator in `transformers` TBA ## Acknowledgments TBA ## Citation If you want to cite this model you can use this: ```bibtex @misc{mromero2022legalectra, title={Spanish Legal Electra (small)}, author={Romero, Manuel}, publisher={Hugging Face}, journal={Hugging Face Hub}, howpublished={\url{https://huggingface.co/mrm8488/legalectra-small-spanish}, year={2022} } ``` > Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488) > Made with <span style="color: #e25555;">&hearts;</span> in Spain
vlsb/autotrain-security-texts-classification-roberta-688020754
vlsb
2022-03-30T20:55:42Z
15
2
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain", "unk", "dataset:vlsb/autotrain-data-security-texts-classification-roberta", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-30T20:52:41Z
--- tags: autotrain language: unk widget: - text: "I love AutoTrain 🤗" datasets: - vlsb/autotrain-data-security-texts-classification-roberta co2_eq_emissions: 3.1151249696839685 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 688020754 - CO2 Emissions (in grams): 3.1151249696839685 ## Validation Metrics - Loss: 0.2810373902320862 - Accuracy: 0.8928571428571429 - Precision: 0.9272727272727272 - Recall: 0.8869565217391304 - AUC: 0.9500805152979066 - F1: 0.9066666666666666 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/vlsb/autotrain-security-texts-classification-roberta-688020754 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("vlsb/autotrain-security-texts-classification-roberta-688020754", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("vlsb/autotrain-security-texts-classification-roberta-688020754", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
mrm8488/electricidad-base-discriminator
mrm8488
2022-03-30T20:42:47Z
74
4
transformers
[ "transformers", "pytorch", "electra", "pretraining", "Spanish", "Electra", "es", "dataset:-large_spanish_corpus", "arxiv:1406.2661", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: es thumbnail: https://i.imgur.com/uxAvBfh.png tags: - Spanish - Electra datasets: -large_spanish_corpus --- ## ELECTRICIDAD: The Spanish Electra [Imgur](https://imgur.com/uxAvBfh) **Electricidad-base-discriminator** (uncased) is a ```base``` Electra like model (discriminator in this case) trained on a [Large Spanish Corpus](https://github.com/josecannete/spanish-corpora) (aka BETO's corpus) As mentioned in the original [paper](https://openreview.net/pdf?id=r1xMH1BtvB): **ELECTRA** is a new method for self-supervised language representation learning. It can be used to pre-train transformer networks using relatively little compute. ELECTRA models are trained to distinguish "real" input tokens vs "fake" input tokens generated by another neural network, similar to the discriminator of a [GAN](https://arxiv.org/pdf/1406.2661.pdf). At small scale, ELECTRA achieves strong results even when trained on a single GPU. At large scale, ELECTRA achieves state-of-the-art results on the [SQuAD 2.0](https://rajpurkar.github.io/SQuAD-explorer/) dataset. For a detailed description and experimental results, please refer the paper [ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators](https://openreview.net/pdf?id=r1xMH1BtvB). ## Model details ⚙ |Name| # Value| |-----|--------| |Layers| 12 | |Hidden | 768 | |Params| 110M | ## Evaluation metrics (for discriminator) 🧾 |Metric | # Score | |-------|---------| |Accuracy| 0.985| |Precision| 0.726| |AUC | 0.922| ## Fast example of usage 🚀 ```python from transformers import ElectraForPreTraining, ElectraTokenizerFast import torch discriminator = ElectraForPreTraining.from_pretrained("mrm8488/electricidad-base-discriminator") tokenizer = ElectraTokenizerFast.from_pretrained("mrm8488/electricidad-base-discriminator") sentence = "El rápido zorro marrón salta sobre el perro perezoso" fake_sentence = "El rápido zorro marrón amar sobre el perro perezoso" fake_tokens = tokenizer.tokenize(fake_sentence) fake_inputs = tokenizer.encode(fake_sentence, return_tensors="pt") discriminator_outputs = discriminator(fake_inputs) predictions = torch.round((torch.sign(discriminator_outputs[0]) + 1) / 2) [print("%7s" % token, end="") for token in fake_tokens] [print("%7s" % prediction, end="") for prediction in predictions.tolist()] # Output: ''' el rapido zorro marro ##n amar sobre el perro pere ##zoso 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0[None, None, None, None, None, None, None, None, None, None, None, None, None ''' ``` As you can see there are **1s** in the places where the model detected a fake token. So, it works! 🎉 ### Some models fine-tuned on a downstream task 🛠️ [Question Answering](https://huggingface.co/mrm8488/electricidad-base-finetuned-squadv1-es) [POS](https://huggingface.co/mrm8488/electricidad-base-finetuned-pos) [NER](https://huggingface.co/mrm8488/electricidad-base-finetuned-ner) ### Spanish LM model comparison 📊 | Dataset | Metric | RoBERTa-b | RoBERTa-l | BETO | mBERT | BERTIN | Electricidad-b | |-------------|----------|-----------|-----------|--------|--------|--------|---------| | UD-POS | F1 | 0.9907 | 0.9901 | 0.9900 | 0.9886 | 0.9904 | 0.9818 | | Conll-NER | F1 | 0.8851 | 0.8772 | 0.8759 | 0.8691 | 0.8627 | 0.7954 | | Capitel-POS | F1 | 0.9846 | 0.9851 | 0.9836 | 0.9839 | 0.9826 | 0.9816 | | Capitel-NER | F1 | 0.8959 | 0.8998 | 0.8771 | 0.8810 | 0.8741 | 0.8035 | | STS | Combined | 0.8423 | 0.8420 | 0.8216 | 0.8249 | 0.7822 | 0.8065 | | MLDoc | Accuracy | 0.9595 | 0.9600 | 0.9650 | 0.9560 | 0.9673 | 0.9490 | | PAWS-X | F1 | 0.9035 | 0.9000 | 0.8915 | 0.9020 | 0.8820 | **0.9045** | | XNLI | Accuracy | 0.8016 | 0.7958 | 0.8130 | 0.7876 | 0.7864 | 0.7878 | ## Acknowledgments I thank [🤗/transformers team](https://github.com/huggingface/transformers) for allowing me to train the model (specially to [Julien Chaumond](https://twitter.com/julien_c)). ## Citation If you want to cite this model you can use this: ```bibtex @misc{mromero2020electricidad-base-discriminator, title={Spanish Electra by Manuel Romero}, author={Romero, Manuel}, publisher={Hugging Face}, journal={Hugging Face Hub}, howpublished={\url{https://huggingface.co/mrm8488/electricidad-base-discriminator/}}, year={2020} } ``` > Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488) > Made with <span style="color: #e25555;">&hearts;</span> in Spain
mrm8488/longformer-base-4096-spanish
mrm8488
2022-03-30T20:36:36Z
49
16
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "Long documents", "longformer", "bertin", "spanish", "es", "dataset:spanish_large_corpus", "arxiv:2004.05150", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: - es license: mit widget: - text: "Manuel Romero ha creado con el equipo de BERTIN un modelo que procesa documentos <mask> largos." tags: - Long documents - longformer - bertin - spanish datasets: - spanish_large_corpus --- # longformer-base-4096-spanish ## [Longformer](https://arxiv.org/abs/2004.05150) is a Transformer model for long documents. `longformer-base-4096` is a BERT-like model started from the RoBERTa checkpoint (**BERTIN** in this case) and pre-trained for *MLM* on long documents (from BETO's `all_wikis`). It supports sequences of length up to 4,096! **Longformer** uses a combination of a sliding window (*local*) attention and *global* attention. Global attention is user-configured based on the task to allow the model to learn task-specific representations. This model was made following the research done by [Iz Beltagy and Matthew E. Peters and Arman Cohan](https://arxiv.org/abs/2004.05150). ## Citation If you want to cite this model you can use this: ```bibtex @misc{mromero2022longformer-base-4096-spanish, title={Spanish LongFormer by Manuel Romero}, author={Romero, Manuel}, publisher={Hugging Face}, journal={Hugging Face Hub}, howpublished={\url{https://huggingface.co/mrm8488/longformer-base-4096-spanish}}, year={2022} } ```
horsbug98/Part_2_XLM_Model_E1
horsbug98
2022-03-30T18:29:46Z
5
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "question-answering", "generated_from_trainer", "dataset:tydiqa", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-03-16T17:32:47Z
--- license: mit tags: - generated_from_trainer datasets: - tydiqa model-index: - name: debug_xlm_task2_1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # debug_xlm_task2_1 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the tydiqa secondary_task dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 ### Training results ### Framework versions - Transformers 4.15.0 - Pytorch 1.9.1 - Datasets 2.0.0 - Tokenizers 0.10.3
waboucay/camembert-base-finetuned-xnli_fr
waboucay
2022-03-30T17:47:05Z
5
0
transformers
[ "transformers", "pytorch", "camembert", "text-classification", "nli", "fr", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-11T08:54:07Z
--- language: - fr tags: - nli metrics: - f1 --- ## Eval results We obtain the following results on ```validation``` and ```test``` sets: | Set | F1<sub>micro</sub> | F1<sub>macro</sub> | |------------|--------------------|--------------------| | validation | 89.2 | 87.6 | | test | 88.9 | 87.4 |
abdusah/aradia-ctc-v1
abdusah
2022-03-30T13:48:41Z
23
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "abdusahmbzuai/arabic_speech_massive_300hrs", "generated_from_trainer", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-23T10:58:05Z
--- tags: - automatic-speech-recognition - abdusahmbzuai/arabic_speech_massive_300hrs - generated_from_trainer model-index: - name: aradia-ctc-v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # aradia-ctc-v1 This model is a fine-tuned version of [/l/users/abdulwahab.sahyoun/aradia/aradia-ctc-v1](https://huggingface.co//l/users/abdulwahab.sahyoun/aradia/aradia-ctc-v1) on the ABDUSAHMBZUAI/ARABIC_SPEECH_MASSIVE_300HRS - NA dataset. It achieves the following results on the evaluation set: - Loss: 0.7171 - Wer: 0.3336 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 20.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 0.22 | 100 | 5.1889 | 1.0 | | No log | 0.43 | 200 | 3.1129 | 1.0 | | No log | 0.65 | 300 | 3.0503 | 1.0 | | No log | 0.87 | 400 | 3.0279 | 1.0 | | 6.2756 | 1.09 | 500 | 2.9965 | 1.0 | | 6.2756 | 1.3 | 600 | 2.3618 | 0.9993 | | 6.2756 | 1.52 | 700 | 1.2715 | 0.8758 | | 6.2756 | 1.74 | 800 | 0.9971 | 0.7156 | | 6.2756 | 1.96 | 900 | 0.8927 | 0.6382 | | 1.712 | 2.17 | 1000 | 0.8252 | 0.5926 | | 1.712 | 2.39 | 1100 | 0.7794 | 0.5434 | | 1.712 | 2.61 | 1200 | 0.7557 | 0.5092 | | 1.712 | 2.83 | 1300 | 0.7347 | 0.5203 | | 1.712 | 3.04 | 1400 | 0.7189 | 0.4929 | | 0.9305 | 3.26 | 1500 | 0.6820 | 0.4595 | | 0.9305 | 3.48 | 1600 | 0.6792 | 0.4504 | | 0.9305 | 3.69 | 1700 | 0.6596 | 0.4442 | | 0.9305 | 3.91 | 1800 | 0.6756 | 0.4432 | | 0.9305 | 4.13 | 1900 | 0.6663 | 0.4392 | | 0.737 | 4.35 | 2000 | 0.6479 | 0.4372 | | 0.737 | 4.56 | 2100 | 0.6353 | 0.4203 | | 0.737 | 4.78 | 2200 | 0.6251 | 0.4088 | | 0.737 | 5.0 | 2300 | 0.6209 | 0.4177 | | 0.737 | 5.22 | 2400 | 0.6639 | 0.4094 | | 0.6247 | 5.43 | 2500 | 0.6408 | 0.3970 | | 0.6247 | 5.65 | 2600 | 0.6373 | 0.3932 | | 0.6247 | 5.87 | 2700 | 0.6411 | 0.3928 | | 0.6247 | 6.09 | 2800 | 0.6378 | 0.3897 | | 0.6247 | 6.3 | 2900 | 0.6396 | 0.3929 | | 0.5443 | 6.52 | 3000 | 0.6544 | 0.3864 | | 0.5443 | 6.74 | 3100 | 0.6218 | 0.3786 | | 0.5443 | 6.96 | 3200 | 0.6200 | 0.3784 | | 0.5443 | 7.17 | 3300 | 0.6157 | 0.3791 | | 0.5443 | 7.39 | 3400 | 0.6317 | 0.3798 | | 0.4845 | 7.61 | 3500 | 0.6540 | 0.3771 | | 0.4845 | 7.83 | 3600 | 0.6436 | 0.3670 | | 0.4845 | 8.04 | 3700 | 0.6335 | 0.3695 | | 0.4845 | 8.26 | 3800 | 0.6579 | 0.3610 | | 0.4845 | 8.48 | 3900 | 0.6170 | 0.3613 | | 0.4279 | 8.69 | 4000 | 0.6523 | 0.3617 | | 0.4279 | 8.91 | 4100 | 0.6349 | 0.3577 | | 0.4279 | 9.13 | 4200 | 0.6344 | 0.3673 | | 0.4279 | 9.35 | 4300 | 0.6215 | 0.3641 | | 0.4279 | 9.56 | 4400 | 0.6513 | 0.3608 | | 0.3825 | 9.78 | 4500 | 0.6386 | 0.3605 | | 0.3825 | 10.0 | 4600 | 0.6724 | 0.3549 | | 0.3825 | 10.22 | 4700 | 0.6776 | 0.3602 | | 0.3825 | 10.43 | 4800 | 0.6739 | 0.3544 | | 0.3825 | 10.65 | 4900 | 0.6688 | 0.3557 | | 0.3477 | 10.87 | 5000 | 0.6674 | 0.3564 | | 0.3477 | 11.09 | 5100 | 0.6786 | 0.3476 | | 0.3477 | 11.3 | 5200 | 0.6818 | 0.3478 | | 0.3477 | 11.52 | 5300 | 0.6874 | 0.3470 | | 0.3477 | 11.74 | 5400 | 0.6993 | 0.3424 | | 0.3101 | 11.96 | 5500 | 0.6950 | 0.3404 | | 0.3101 | 12.17 | 5600 | 0.6872 | 0.3406 | | 0.3101 | 12.39 | 5700 | 0.6846 | 0.3424 | | 0.3101 | 12.61 | 5800 | 0.7051 | 0.3405 | | 0.3101 | 12.83 | 5900 | 0.7051 | 0.3378 | | 0.2859 | 13.04 | 6000 | 0.6955 | 0.3403 | | 0.2859 | 13.26 | 6100 | 0.7115 | 0.3390 | | 0.2859 | 13.48 | 6200 | 0.7074 | 0.3384 | | 0.2859 | 13.69 | 6300 | 0.7002 | 0.3376 | | 0.2859 | 13.91 | 6400 | 0.7171 | 0.3360 | | 0.2714 | 14.13 | 6500 | 0.7193 | 0.3341 | | 0.2714 | 14.35 | 6600 | 0.7132 | 0.3347 | | 0.2714 | 14.56 | 6700 | 0.7184 | 0.3353 | | 0.2714 | 14.78 | 6800 | 0.7171 | 0.3331 | ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.10.2+cu113 - Datasets 1.18.4 - Tokenizers 0.11.6
huggingtweets/cnn
huggingtweets
2022-03-30T13:44:36Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: http://www.huggingtweets.com/cnn/1648647871411/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1278259160644227073/MfCyF7CG_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">CNN</div> <div style="text-align: center; font-size: 14px;">@cnn</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from CNN. | Data | CNN | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 16 | | Short tweets | 5 | | Tweets kept | 3229 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/q0qwmbzx/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cnn's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/ozw5h8lm) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/ozw5h8lm/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cnn') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
javilonso/classificationEsp1_Attraction
javilonso
2022-03-30T13:25:38Z
6
0
transformers
[ "transformers", "tf", "roberta", "text-classification", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-23T15:27:21Z
--- tags: - generated_from_keras_callback model-index: - name: classificationEsp1_Attraction results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # classificationEsp1_Attraction This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.17.0 - TensorFlow 2.6.0 - Datasets 2.0.0 - Tokenizers 0.11.6
shalpin87/dialoGPT-homer-simpson
shalpin87
2022-03-30T13:06:45Z
6
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "arxiv:1911.00536", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-29T20:28:40Z
--- thumbnail: https://huggingface.co/front/thumbnails/dialogpt.png tags: - conversational license: mit --- ## dialogGPT-homer-simpson This model has been fine tuned with the entire scripts of Homer Simpson from the T.V. show The Simpsons It will give some nice answers seemingly from Homers brain in the Simpsons Universe during single turn conversation, letting you chat to Homer Simpson ## A State-of-the-Art Large-scale Pretrained Response generation model (DialoGPT) DialoGPT is a SOTA large-scale pretrained dialogue response generation model for multiturn conversations. The [human evaluation results](https://github.com/dreasysnail/Dialogpt_dev#human-evaluation) indicate that the response generated from DialoGPT is comparable to human response quality under a single-turn conversation Turing test. The model is trained on 147M multi-turn dialogue from Reddit discussion thread. * Multi-turn generation examples from an interactive environment: |Role | Response | |---------|--------| |User | Who are you? | | HomerBot | Homer Simpson .| |User | What is your favorite Restaurant ? | | HomerBot | Moes Tavern. | |User | Have you ever been in a band?! | | HomerBot | no. | Please find the information about preprocessing, training and full details of the DialoGPT in the [original DialoGPT repository](https://github.com/microsoft/DialoGPT) ArXiv paper: [https://arxiv.org/abs/1911.00536](https://arxiv.org/abs/1911.00536) ### How to use Multi-Turn #### NOTE: Multi-Turn seems to be broken, after a few exchanges the output will mostly be exclamation marks. Now we are ready to try out how the model works as a chatting partner! ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch tokenizer = AutoTokenizer.from_pretrained("shalpin87/dialoGPT-homer-simpson") model = AutoModelForCausalLM.from_pretrained("shalpin87/dialoGPT-homer-simpson") # Let's chat for 5 lines for step in range(5): # encode the new user input, add the eos_token and return a tensor in Pytorch new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt') # append the new user input tokens to the chat history bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids # generated a response while limiting the total chat history to 1000 tokens, chat_history_ids = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id) # pretty print last ouput tokens from bot print("DialoG-PT-HomerBot: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True))) ``` ### How to use Single Turn ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch tokenizer = AutoTokenizer.from_pretrained("shalpin87/dialoGPT-homer-simpson") model = AutoModelForCausalLM.from_pretrained("shalpin87/dialoGPT-homer-simpson") questions = [ "What is your name?", "Who are you?", "Where do you work?", "Who really killed Mr Burns?", "Have you ever stolen from the Kwik-E-Mart?", "Did you kill Frank Grimes?", "Who was the worst member of the Be Sharps?", "Hey where did Barney go?", "What is your favorite bar to have a beer?", "What is the best beer in Springfield?", "Is Bart working for the Mob?", "I think there was an incident in sector 7 G", "Is Ned Flanders house okay?", "Oh my god it's Sideshow Bob", "What is a Flaming Moe?", "What is happening to Apu?", "Who quit the band?" ] # Let's chat for step in range(len(questions)): print("***************************************") print("Q. {}".format(questions[step])) new_user_input_ids = tokenizer.encode(questions[step] + tokenizer.eos_token, return_tensors='pt') # new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt') bot_input_ids = new_user_input_ids num_return_seqs=1 chat_history_ids = model.generate( bot_input_ids, max_length=200, pad_token_id=tokenizer.eos_token_id, no_repeat_ngram_size=3, do_sample=True, top_k=200, top_p=0.55, temperature = 0.85, num_return_sequences=num_return_seqs ) botname = "HomerBot" for i in range(0,num_return_seqs): print("{}:{}: {}".format(i, botname, tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][i], skip_special_tokens=True))) chat_history_ids = [] ``` Sample Output ``` *************************************** Q. What is your name? 0:HomerBot: Homer Simpson. *************************************** Q. Who are you? 0:HomerBot: Homer Simpson. *************************************** Q. Where do you work? 0:HomerBot: I work at a nuclear power plant. *************************************** Q. Who really killed Mr Burns? 0:HomerBot: I dunno. Some guy named Ot-to. *************************************** Q. Have you ever stolen from the Kwik-E-Mart? 0:HomerBot: No. *************************************** Q. Did you kill Frank Grimes? 0:HomerBot: No. *************************************** Q. Who was the worst member of the Be Sharps? 0:HomerBot: Homer Simpson, sir. *************************************** Q. Hey where did Barney go? 0:HomerBot: He's been eating that thing for a week. *************************************** Q. What is your favorite bar to have a beer? 0:HomerBot: The Flanders' Club. *************************************** Q. What is the best beer in Springfield? 0:HomerBot: Pepi! *************************************** Q. Is Bart working for the Mob? 0:HomerBot: I think he's trying to tell us something. *************************************** Q. I think there was an incident in sector 7 G 0:HomerBot: Uh, let's not jump to any conclusions. The dog didn't run away. ```
yinde/dummy-model
yinde
2022-03-30T11:59:15Z
10
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-30T11:37:44Z
Fake news classifier This model trains a text classification model to detect fake news articles, it uses distilbert-base-uncased-finetuned-sst-2-english pretrained model to work on fake and real news dataset from kaggle (https://www.kaggle.com/clmentbisaillon/fake-and-real-news-dataset)
Peltarion/xlm-roberta-longformer-base-4096
Peltarion
2022-03-30T09:23:58Z
75
8
transformers
[ "transformers", "pytorch", "xlm-roberta", "fill-mask", "longformer", "multilingual", "dataset:wikitext", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- tags: - longformer language: multilingual license: apache-2.0 datasets: - wikitext --- ## XLM-R Longformer Model XLM-R Longformer is a XLM-R model, that has been extended to allow sequence lengths up to 4096 tokens, instead of the regular 512. The model was pre-trained from the XLM-RoBERTa checkpoint using the Longformer [pre-training scheme](https://github.com/allenai/longformer/blob/master/scripts/convert_model_to_long.ipynb) on the English WikiText-103 corpus. The reason for this was to investigate methods for creating efficient Transformers for low-resource languages, such as Swedish, without the need to pre-train them on long-context datasets in each respecitve language. The trained model came as a result of a master thesis project at [Peltarion](https://peltarion.com/) and was fine-tuned on multilingual quesion-answering tasks, with code available [here](https://github.com/MarkusSagen/Master-Thesis-Multilingual-Longformer#xlm-r). Since both XLM-R model and Longformer models are large models, it it recommended to run the models with NVIDIA Apex (16bit precision), large GPU and several gradient accumulation steps. ## How to Use The model can be used as expected to fine-tune on a downstream task. For instance for QA. ```python import torch from transformers import AutoModel, AutoTokenizer MAX_SEQUENCE_LENGTH = 4096 MODEL_NAME_OR_PATH = "markussagen/xlm-roberta-longformer-base-4096" tokenizer = AutoTokenizer.from_pretrained( MODEL_NAME_OR_PATH, max_length=MAX_SEQUENCE_LENGTH, padding="max_length", truncation=True, ) model = AutoModelForQuestionAnswering.from_pretrained( MODEL_NAME_OR_PATH, max_length=MAX_SEQUENCE_LENGTH, ) ``` ## Training Procedure The model have been trained on the WikiText-103 corpus, using a **48GB** GPU with the following training script and parameters. The model was pre-trained for 6000 iterations and took ~5 days. See the full [training script](https://github.com/MarkusSagen/Master-Thesis-Multilingual-Longformer/blob/main/scripts/finetune_qa_models.py) and [Github repo](https://github.com/MarkusSagen/Master-Thesis-Multilingual-Longformer) for more information ```sh wget https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-103-raw-v1.zip unzip wikitext-103-raw-v1.zip export DATA_DIR=./wikitext-103-raw scripts/run_long_lm.py \ --model_name_or_path xlm-roberta-base \ --model_name xlm-roberta-to-longformer \ --output_dir ./output \ --logging_dir ./logs \ --val_file_path $DATA_DIR/wiki.valid.raw \ --train_file_path $DATA_DIR/wiki.train.raw \ --seed 42 \ --max_pos 4096 \ --adam_epsilon 1e-8 \ --warmup_steps 500 \ --learning_rate 3e-5 \ --weight_decay 0.01 \ --max_steps 6000 \ --evaluate_during_training \ --logging_steps 50 \ --eval_steps 50 \ --save_steps 6000 \ --max_grad_norm 1.0 \ --per_device_eval_batch_size 2 \ --per_device_train_batch_size 1 \ --gradient_accumulation_steps 64 \ --overwrite_output_dir \ --fp16 \ --do_train \ --do_eval ```
Aureliano/electra-if
Aureliano
2022-03-30T09:07:27Z
6
0
transformers
[ "transformers", "pytorch", "tf", "electra", "feature-extraction", "en", "arxiv:1406.2661", "license:apache-2.0", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-11T15:40:21Z
--- language: en license: apache-2.0 --- ## ELECTRA for IF **ELECTRA** is a method for self-supervised language representation learning. They are trained to distinguish "real" input tokens vs "fake" input tokens generated by another neural network, similar to the discriminator of a [GAN](https://arxiv.org/pdf/1406.2661.pdf). For a detailed description and experimental results, please refer to the original paper [ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators](https://openreview.net/pdf?id=r1xMH1BtvB). This repository contains a small ELECTRA discriminator finetuned on a corpus of interactive fiction commands labelled with the WordNet synset offset of the verb in the sentence. The original dataset has been collected from the list of action in the walkthroughs for the game included in the [Jericho](https://github.com/microsoft/jericho) framework and manually annotated. For more information visit https://github.com/aporporato/electra and https://github.com/aporporato/jericho-corpora. ## How to use the discriminator in `transformers` (Heavily based on: https://github.com/huggingface/notebooks/blob/master/examples/text_classification-tf.ipynb) ```python import math import numpy as np import tensorflow as tf from datasets import load_metric, Dataset, DatasetDict from transformers import TFAutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, create_optimizer from transformers.keras_callbacks import KerasMetricCallback # This example shows how this model can be used: # you should finetune the model of your specific corpus if commands, bigger than this dict_train = { "idx": ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "20"], "sentence": ["e", "get pen", "drop book", "x paper", "i", "south", "get paper", "drop the pen", "x book", "inventory", "n", "get the book", "drop paper", "look at Pen", "inv", "g", "s", "get sandwich", "drop sandwich", "x sandwich", "agin"], "label": ["travel.v.01", "take.v.04", "drop.v.01", "examine.v.02", "inventory.v.01", "travel.v.01", "take.v.04", "drop.v.01", "examine.v.02", "inventory.v.01", "travel.v.01", "take.v.04", "drop.v.01", "examine.v.02", "inventory.v.01", "repeat.v.01", "travel.v.01", "take.v.04", "drop.v.01", "examine.v.02", "repeat.v.01"] } dict_val = { "idx": ["0", "1", "2", "3", "4", "5"], "sentence": ["w", "get shield", "drop sword", "x spikes", "i", "repeat"], "label": ["travel.v.01", "take.v.04", "drop.v.01", "examine.v.02", "inventory.v.01", "repeat.v.01"] } raw_train_dataset = Dataset.from_dict(dict_train) raw_val_dataset = Dataset.from_dict(dict_val) raw_dataset = DatasetDict() raw_dataset["train"] = raw_train_dataset raw_dataset["val"] = raw_val_dataset raw_dataset = raw_dataset.class_encode_column("label") print(raw_dataset) print(raw_dataset["train"].features) print(raw_dataset["val"].features) print(raw_dataset["train"][1]) label2id = {} id2label = {} for i, l in enumerate(raw_dataset["train"].features["label"].names): label2id[l] = i id2label[i] = l discriminator = TFAutoModelForSequenceClassification.from_pretrained("Aureliano/electra-if", label2id=label2id, id2label=id2label) tokenizer = AutoTokenizer.from_pretrained("Aureliano/electra-if") tokenize_function = lambda example: tokenizer(example["sentence"], truncation=True) pre_tokenizer_columns = set(raw_dataset["train"].features) encoded_dataset = raw_dataset.map(tokenize_function, batched=True) tokenizer_columns = list(set(encoded_dataset["train"].features) - pre_tokenizer_columns) data_collator = DataCollatorWithPadding(tokenizer=tokenizer, return_tensors="tf") batch_size = len(encoded_dataset["train"]) tf_train_dataset = encoded_dataset["train"].to_tf_dataset( columns=tokenizer_columns, label_cols=["labels"], shuffle=True, batch_size=batch_size, collate_fn=data_collator ) tf_validation_dataset = encoded_dataset["val"].to_tf_dataset( columns=tokenizer_columns, label_cols=["labels"], shuffle=False, batch_size=batch_size, collate_fn=data_collator ) loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) num_epochs = 25 batches_per_epoch = math.ceil(len(encoded_dataset["train"]) / batch_size) total_train_steps = int(batches_per_epoch * num_epochs) optimizer, schedule = create_optimizer( init_lr=5e-5, num_warmup_steps=total_train_steps // 5, num_train_steps=total_train_steps ) metric = load_metric("accuracy") def compute_metrics(eval_predictions): logits, labels = eval_predictions predictions = np.argmax(logits, axis=-1) return metric.compute(predictions=predictions, references=labels) metric_callback = KerasMetricCallback(metric_fn=compute_metrics, eval_dataset=tf_validation_dataset) callbacks = [metric_callback] discriminator.compile(optimizer=optimizer, loss=loss, metrics=["sparse_categorical_accuracy"]) discriminator.fit( tf_train_dataset, epochs=num_epochs, validation_data=tf_validation_dataset, callbacks=callbacks ) print("Evaluate on test data") results = discriminator.evaluate(tf_validation_dataset) print("test loss, test acc:", results) text = "i" encoded_input = tokenizer(text, return_tensors='tf') output = discriminator(encoded_input) prediction = tf.nn.softmax(output["logits"][0], -1) label = id2label[tf.math.argmax(prediction).numpy()] print("\n", text, ":", label, "\n") # ideally 'inventory.v.01' (-> "make or include in an itemized record or report"), but probably only with a better finetuning dataset text = "get lamp" encoded_input = tokenizer(text, return_tensors='tf') output = discriminator(encoded_input) prediction = tf.nn.softmax(output["logits"][0], -1) label = id2label[tf.math.argmax(prediction).numpy()] print("\n", text, ":", label, "\n") # ideally 'take.v.04' (-> "get into one's hands, take physically"), but probably only with a better finetuning dataset text = "w" encoded_input = tokenizer(text, return_tensors='tf') output = discriminator(encoded_input) prediction = tf.nn.softmax(output["logits"][0], -1) label = id2label[tf.math.argmax(prediction).numpy()] print("\n", text, ":", label, "\n") # ideally 'travel.v.01' (-> "change location; move, travel, or proceed, also metaphorically"), but probably only with a better finetuning dataset ```
javilonso/classificationPolEsp1
javilonso
2022-03-30T09:02:50Z
3
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-30T07:49:20Z
--- license: mit tags: - generated_from_keras_callback model-index: - name: javilonso/classificationPolEsp1 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # javilonso/classificationPolEsp1 This model is a fine-tuned version of [nlptown/bert-base-multilingual-uncased-sentiment](https://huggingface.co/nlptown/bert-base-multilingual-uncased-sentiment) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.3728 - Validation Loss: 0.6217 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 17958, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.6282 | 0.6017 | 0 | | 0.5129 | 0.6177 | 1 | | 0.3728 | 0.6217 | 2 | ### Framework versions - Transformers 4.17.0 - TensorFlow 2.6.0 - Datasets 2.0.0 - Tokenizers 0.11.6
neibla/distilbert-base-uncased-finetuned-emotion
neibla
2022-03-30T08:56:26Z
9
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-30T08:22:55Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9255 - name: F1 type: f1 value: 0.9254917237562972 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2187 - Accuracy: 0.9255 - F1: 0.9255 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.855 | 1.0 | 250 | 0.3211 | 0.905 | 0.9017 | | 0.2561 | 2.0 | 500 | 0.2187 | 0.9255 | 0.9255 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
loulou/distilbert-base-uncased-finetuned-emotion
loulou
2022-03-30T04:57:58Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-22T04:55:48Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.922 - name: F1 type: f1 value: 0.9221931901873676 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2285 - Accuracy: 0.922 - F1: 0.9222 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8366 | 1.0 | 250 | 0.3212 | 0.9025 | 0.8990 | | 0.2588 | 2.0 | 500 | 0.2285 | 0.922 | 0.9222 | ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
lazyturtl/roomidentifier
lazyturtl
2022-03-30T04:10:41Z
89
3
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-30T04:10:32Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: roomidentifier results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9375 --- # roomidentifier Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### Bathroom ![Bathroom](images/Bathroom.jpg) #### Bedroom ![Bedroom](images/Bedroom.jpg) #### DinningRoom ![DinningRoom](images/DinningRoom.jpg) #### Kitchen ![Kitchen](images/Kitchen.jpg) #### LivingRoom ![LivingRoom](images/LivingRoom.jpg)
samayash/finetuning-financial-news-sentiment
samayash
2022-03-30T03:36:40Z
4
3
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-30T03:27:02Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: finetuning-financial-news-sentiment results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-financial-news-sentiment This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3345 - Accuracy: 0.8751 - F1: 0.8751 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
ntt123/hifigan_ljs_22k
ntt123
2022-03-30T01:47:26Z
0
0
null
[ "tensorboard", "license:cc-by-nc-sa-4.0", "region:us" ]
null
2022-03-29T02:20:52Z
--- license: cc-by-nc-sa-4.0 ---
aaraki/vit-base-patch16-224-in21k-finetuned-cifar10
aaraki
2022-03-30T01:41:47Z
8,239
10
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "dataset:cifar10", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-30T00:18:26Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - cifar10 metrics: - accuracy model-index: - name: vit-base-patch16-224-in21k-finetuned-cifar10 results: - task: name: Image Classification type: image-classification dataset: name: cifar10 type: cifar10 args: plain_text metrics: - name: Accuracy type: accuracy value: 0.9788 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch16-224-in21k-finetuned-cifar10 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the cifar10 dataset. It achieves the following results on the evaluation set: - Loss: 0.2564 - Accuracy: 0.9788 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4291 | 1.0 | 390 | 0.2564 | 0.9788 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
cammiemw/bert-marco-hdct
cammiemw
2022-03-30T01:21:38Z
3
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-30T01:09:55Z
--- license: cc-by-nc-4.0 ---
DrishtiSharma/poem-gen-spanish-t5-small-v6
DrishtiSharma
2022-03-29T23:45:09Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-29T18:58:46Z
--- license: mit tags: - generated_from_trainer model-index: - name: poem-gen-spanish-t5-small-v6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # poem-gen-spanish-t5-small-v6 This model is a fine-tuned version of [hackathon-pln-es/poem-gen-spanish-t5-small](https://huggingface.co/hackathon-pln-es/poem-gen-spanish-t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.8831 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:------:|:---------------:| | 2.8551 | 0.73 | 30000 | 2.9296 | | 2.6961 | 1.46 | 60000 | 2.9005 | | 2.5756 | 2.19 | 90000 | 2.8786 | | 2.5095 | 2.93 | 120000 | 2.8621 | | 2.4061 | 3.66 | 150000 | 2.8830 | | 2.3161 | 4.39 | 180000 | 2.8865 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
DrishtiSharma/poem-gen-spanish-t5-small-v5
DrishtiSharma
2022-03-29T23:25:30Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-29T18:54:38Z
--- license: mit tags: - generated_from_trainer model-index: - name: poem-gen-spanish-t5-small-v5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # poem-gen-spanish-t5-small-v5 This model is a fine-tuned version of [hackathon-pln-es/poem-gen-spanish-t5-small](https://huggingface.co/hackathon-pln-es/poem-gen-spanish-t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.8881 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000125 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:------:|:---------------:| | 2.9366 | 0.73 | 30000 | 2.9656 | | 2.7518 | 1.46 | 60000 | 2.9120 | | 2.6018 | 2.19 | 90000 | 2.8870 | | 2.5262 | 2.93 | 120000 | 2.8646 | | 2.3886 | 3.66 | 150000 | 2.8816 | | 2.2758 | 4.39 | 180000 | 2.8900 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
efederici/sentence-it5-base
efederici
2022-03-29T23:09:01Z
35
4
sentence-transformers
[ "sentence-transformers", "pytorch", "t5", "feature-extraction", "sentence-similarity", "transformers", "it", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-29T19:57:59Z
--- pipeline_tag: sentence-similarity language: - it tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # sentence-IT5-base This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 512 dimensional dense vector space and can be used for tasks like clustering or semantic search. It is a T5 ([IT5](https://huggingface.co/gsarti/it5-base)) base model. It is trained on a dataset made from question/context pairs ([squad-it](https://github.com/crux82/squad-it)), tags/news-article pairs, headline/text pairs ([change-it](https://huggingface.co/datasets/gsarti/change_it)) and on [stsb](https://huggingface.co/datasets/stsb_multi_mt/viewer/it/train). ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["Questo è un esempio di frase", "Questo è un ulteriore esempio"] model = SentenceTransformer('efederici/sentence-IT5-base') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ["Questo è un esempio di frase", "Questo è un ulteriore esempio"] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('efederici/sentence-IT5-base') model = AutoModel.from_pretrained('efederici/sentence-IT5-base') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': None, 'do_lower_case': False}) with Transformer model: T5EncoderModel (1): Pooling({'word_embedding_dimension': 512, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ```
espnet/bur_openslr80_hubert
espnet
2022-03-29T22:19:50Z
0
0
null
[ "region:us" ]
null
2022-03-28T22:04:54Z
<!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Mon Mar 21 22:59:35 UTC 2022` - python version: `3.9.7 (default, Sep 16 2021, 13:09:58) [GCC 7.5.0]` - espnet version: `espnet 0.10.7a1` - pytorch version: `pytorch 1.10.1` - Git hash: `7ae4efd81778436a98b822483e8123adba6aa430` - Commit date: `Tue Mar 15 20:11:18 2022 -0400` ## asr_train_asr_hubert_transformer_adam_specaug_raw_bpe150 ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_batch_size1_lm_lm_train_lm_bpe150_valid.loss.ave_asr_model_valid.acc.best/bur_test|480|4227|39.1|50.4|10.5|6.1|67.0|99.8| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_batch_size1_lm_lm_train_lm_bpe150_valid.loss.ave_asr_model_valid.acc.best/bur_test|480|33345|82.2|7.6|10.1|3.6|21.4|99.8| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_batch_size1_lm_lm_train_lm_bpe150_valid.loss.ave_asr_model_valid.acc.best/bur_test|480|18237|70.7|17.7|11.6|2.5|31.8|99.8|
BigSalmon/PointsOneSent
BigSalmon
2022-03-29T21:26:49Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-29T21:19:54Z
``` from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("BigSalmon/PointsOneSent") model = AutoModelForCausalLM.from_pretrained("BigSalmon/PointsOneSent") ``` ``` - moviepass to return - this summer - swooped up by - original co-founder stacy spikes text: the re-launch of moviepass is set to transpire this summer, ( rescued at the hands of / under the stewardship of / spearheaded by ) its founding father, stacy spikes. *** - ``` It should also be able to do all that this can: https://huggingface.co/BigSalmon/InformalToFormalLincoln27
Chikashi/t5-small-finetuned-cnndm_3epoch
Chikashi
2022-03-29T19:28:09Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:cnn_dailymail", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-29T00:14:31Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - cnn_dailymail metrics: - rouge model-index: - name: t5-small-finetuned-cnndm_3epoch results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: cnn_dailymail type: cnn_dailymail args: 3.0.0 metrics: - name: Rouge1 type: rouge value: 24.5435 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-cnndm_3epoch This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the cnn_dailymail dataset. It achieves the following results on the evaluation set: - Loss: 1.6622 - Rouge1: 24.5435 - Rouge2: 11.7919 - Rougel: 20.2929 - Rougelsum: 23.1661 - Gen Len: 18.9996 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:------:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.9113 | 0.14 | 5000 | 1.7162 | 24.4374 | 11.6932 | 20.1741 | 23.0427 | 18.9997 | | 1.8772 | 0.28 | 10000 | 1.7008 | 24.3715 | 11.6699 | 20.1387 | 22.9772 | 18.9997 | | 1.8609 | 0.42 | 15000 | 1.6911 | 24.4174 | 11.6986 | 20.1756 | 23.0205 | 18.9997 | | 1.8564 | 0.56 | 20000 | 1.6871 | 24.4374 | 11.6801 | 20.1663 | 23.0366 | 18.9995 | | 1.8495 | 0.7 | 25000 | 1.6796 | 24.4019 | 11.6901 | 20.177 | 23.034 | 18.999 | | 1.8448 | 0.84 | 30000 | 1.6787 | 24.4813 | 11.7227 | 20.1985 | 23.0847 | 18.999 | | 1.8427 | 0.98 | 35000 | 1.6762 | 24.4905 | 11.7591 | 20.2548 | 23.1006 | 18.9993 | | 1.8341 | 1.11 | 40000 | 1.6747 | 24.4743 | 11.7124 | 20.1782 | 23.0726 | 18.9996 | | 1.822 | 1.25 | 45000 | 1.6753 | 24.4797 | 11.7292 | 20.2319 | 23.0816 | 18.9993 | | 1.8262 | 1.39 | 50000 | 1.6713 | 24.4865 | 11.7079 | 20.2214 | 23.0919 | 18.9986 | | 1.8281 | 1.53 | 55000 | 1.6702 | 24.5095 | 11.7364 | 20.2534 | 23.1264 | 18.9991 | | 1.8228 | 1.67 | 60000 | 1.6678 | 24.5153 | 11.7595 | 20.2544 | 23.1138 | 18.9993 | | 1.824 | 1.81 | 65000 | 1.6662 | 24.5324 | 11.7804 | 20.2671 | 23.1498 | 18.9997 | | 1.8265 | 1.95 | 70000 | 1.6648 | 24.5795 | 11.7917 | 20.2935 | 23.1855 | 18.9992 | | 1.8179 | 2.09 | 75000 | 1.6658 | 24.5426 | 11.804 | 20.2861 | 23.1586 | 18.9996 | | 1.8147 | 2.23 | 80000 | 1.6646 | 24.5429 | 11.7914 | 20.2889 | 23.1542 | 18.9993 | | 1.8026 | 2.37 | 85000 | 1.6632 | 24.5451 | 11.8045 | 20.2781 | 23.1555 | 18.9996 | | 1.8141 | 2.51 | 90000 | 1.6643 | 24.5078 | 11.7781 | 20.2631 | 23.121 | 18.9996 | | 1.8124 | 2.65 | 95000 | 1.6628 | 24.5728 | 11.7958 | 20.2875 | 23.178 | 18.9996 | | 1.8098 | 2.79 | 100000 | 1.6635 | 24.5534 | 11.7998 | 20.2979 | 23.169 | 18.9996 | | 1.8153 | 2.93 | 105000 | 1.6622 | 24.5435 | 11.7919 | 20.2929 | 23.1661 | 18.9996 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
efederici/sentence-it5-small
efederici
2022-03-29T17:29:14Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "t5", "feature-extraction", "sentence-similarity", "transformers", "it", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-27T15:19:10Z
--- pipeline_tag: sentence-similarity language: - it tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # sentence-IT5-small This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 512 dimensional dense vector space and can be used for tasks like clustering or semantic search. It is a T5 ([IT5](https://huggingface.co/gsarti/it5-small)) small model trained for asymmetric semantic search. Query is a keyword, Paragraph is a short news article. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["Questo è un esempio di frase", "Questo è un ulteriore esempio"] model = SentenceTransformer('efederici/sentence-IT5-small') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ["Questo è un esempio di frase", "Questo è un ulteriore esempio"] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('efederici/sentence-IT5-small') model = AutoModel.from_pretrained('efederici/sentence-IT5-small') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': None, 'do_lower_case': False}) with Transformer model: T5EncoderModel (1): Pooling({'word_embedding_dimension': 512, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ```
GleamEyeBeast/ascend
GleamEyeBeast
2022-03-29T16:49:48Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-29T01:37:59Z
--- tags: - generated_from_trainer model-index: - name: ascend results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ascend This model is a fine-tuned version of [GleamEyeBeast/ascend](https://huggingface.co/GleamEyeBeast/ascend) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3718 - Wer: 0.6412 - Cer: 0.2428 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:| | 0.5769 | 1.0 | 688 | 1.1864 | 0.7716 | 0.3159 | | 0.5215 | 2.0 | 1376 | 1.1613 | 0.7504 | 0.2965 | | 0.4188 | 3.0 | 2064 | 1.1644 | 0.7389 | 0.2950 | | 0.3695 | 4.0 | 2752 | 1.1937 | 0.7184 | 0.2815 | | 0.3404 | 5.0 | 3440 | 1.1947 | 0.7083 | 0.2719 | | 0.2885 | 6.0 | 4128 | 1.2314 | 0.7108 | 0.2685 | | 0.2727 | 7.0 | 4816 | 1.2243 | 0.6850 | 0.2616 | | 0.2417 | 8.0 | 5504 | 1.2506 | 0.6767 | 0.2608 | | 0.2207 | 9.0 | 6192 | 1.2804 | 0.6922 | 0.2595 | | 0.2195 | 10.0 | 6880 | 1.2582 | 0.6818 | 0.2575 | | 0.1896 | 11.0 | 7568 | 1.3101 | 0.6814 | 0.2545 | | 0.1961 | 12.0 | 8256 | 1.2793 | 0.6706 | 0.2526 | | 0.1752 | 13.0 | 8944 | 1.2643 | 0.6584 | 0.2509 | | 0.1638 | 14.0 | 9632 | 1.3152 | 0.6588 | 0.2482 | | 0.1522 | 15.0 | 10320 | 1.3098 | 0.6433 | 0.2439 | | 0.1351 | 16.0 | 11008 | 1.3253 | 0.6537 | 0.2447 | | 0.1266 | 17.0 | 11696 | 1.3394 | 0.6365 | 0.2418 | | 0.1289 | 18.0 | 12384 | 1.3718 | 0.6412 | 0.2443 | | 0.1204 | 19.0 | 13072 | 1.3708 | 0.6433 | 0.2433 | | 0.1189 | 20.0 | 13760 | 1.3718 | 0.6412 | 0.2428 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
tbosse/bert-base-german-cased-finetuned-subj_v1
tbosse
2022-03-29T15:59:49Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-29T14:22:30Z
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-german-cased-finetuned-subj_v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-german-cased-finetuned-subj_v1 This model is a fine-tuned version of [bert-base-german-cased](https://huggingface.co/bert-base-german-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1594 - Precision: 0.1875 - Recall: 0.0077 - F1: 0.0147 - Accuracy: 0.9508 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 136 | 0.1591 | 1.0 | 0.0051 | 0.0102 | 0.9523 | | No log | 2.0 | 272 | 0.1571 | 0.375 | 0.0077 | 0.015 | 0.9518 | | No log | 3.0 | 408 | 0.1594 | 0.1875 | 0.0077 | 0.0147 | 0.9508 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
sayef/fsner-bert-base-uncased
sayef
2022-03-29T14:20:35Z
9
6
transformers
[ "transformers", "pytorch", "bert", "feature-extraction", "arxiv:2008.10570", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
# FSNER Implemented by [sayef](https://huggingface.co/sayef). # Overview The FSNER model was proposed in [Example-Based Named Entity Recognition](https://arxiv.org/abs/2008.10570) by Morteza Ziyadi, Yuting Sun, Abhishek Goswami, Jade Huang, Weizhu Chen. To identify entity spans in a new domain, it uses a train-free few-shot learning approach inspired by question-answering. ## Abstract > We present a novel approach to named entity recognition (NER) in the presence of scarce data that we call example-based NER. Our train-free few-shot learning approach takes inspiration from question-answering to identify entity spans in a new and unseen domain. In comparison with the current state-of-the-art, the proposed method performs significantly better, especially when using a low number of support examples. ## Model Training Details | identifier | epochs | datasets | | ---------- |:------:|:-----------------------------------------------------------------------------------------------:| | [sayef/fsner-bert-base-uncased](https://huggingface.co/sayef/fsner-bert-base-uncased) | 25 | ontonotes5, conll2003, wnut2017, mit_movie_trivia, mit_restaurant and fin (Alvarado et al.). | ## Installation and Example Usage You can use the FSNER model in 3 ways: 1. Install directly from PyPI: `pip install fsner` and import the model as shown in the code example below or 2. Install from source: `python install .` and import the model as shown in the code example below or 3. Clone [repo](https://github.com/sayef/fsner) and add absolute path of `fsner/src` directory to your PYTHONPATH and import the model as shown in the code example below ```python import json from fsner import FSNERModel, FSNERTokenizerUtils, pretty_embed query_texts = [ "Does Luke's serve lunch?", "Chang does not speak Taiwanese very well.", "I like Berlin." ] # Each list in supports are the examples of one entity type # Wrap entities around with [E] and [/E] in the examples. # Each sentence should have only one pair of [E] ... [/E] support_texts = { "Restaurant": [ "What time does [E] Subway [/E] open for breakfast?", "Is there a [E] China Garden [/E] restaurant in newark?", "Does [E] Le Cirque [/E] have valet parking?", "Is there a [E] McDonalds [/E] on main street?", "Does [E] Mike's Diner [/E] offer huge portions and outdoor dining?" ], "Language": [ "Although I understood no [E] French [/E] in those days , I was prepared to spend the whole day with Chien - chien .", "like what the hell 's that called in [E] English [/E] ? I have to register to be here like since I 'm a foreigner .", "So , I 'm also working on an [E] English [/E] degree because that 's my real interest .", "Al - Jazeera TV station , established in November 1996 in Qatar , is an [E] Arabic - language [/E] news TV station broadcasting global news and reports nonstop around the clock .", "They think it 's far better for their children to be here improving their [E] English [/E] than sitting at home in front of a TV . \"", "The only solution seemed to be to have her learn [E] French [/E] .", "I have to read sixty pages of [E] Russian [/E] today ." ] } device = 'cpu' tokenizer = FSNERTokenizerUtils("sayef/fsner-bert-base-uncased") queries = tokenizer.tokenize(query_texts).to(device) supports = tokenizer.tokenize(list(support_texts.values())).to(device) model = FSNERModel("sayef/fsner-bert-base-uncased") model.to(device) p_starts, p_ends = model.predict(queries, supports) # One can prepare supports once and reuse multiple times with different queries # ------------------------------------------------------------------------------ # start_token_embeddings, end_token_embeddings = model.prepare_supports(supports) # p_starts, p_ends = model.predict(queries, start_token_embeddings=start_token_embeddings, # end_token_embeddings=end_token_embeddings) output = tokenizer.extract_entity_from_scores(query_texts, queries, p_starts, p_ends, entity_keys=list(support_texts.keys()), thresh=0.50) print(json.dumps(output, indent=2)) # install displacy for pretty embed pretty_embed(query_texts, output, list(support_texts.keys())) ``` <!DOCTYPE html> <html lang="en"> <head> <title>displaCy</title> </head> <body style="font-size: 16px; font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Helvetica, Arial, sans-serif, 'Apple Color Emoji', 'Segoe UI Emoji', 'Segoe UI Symbol'; padding: 4rem 2rem; direction: ltr"> <figure style="margin-bottom: 6rem"> <div class="entities" style="line-height: 2.5; direction: ltr"> <div class="entities" style="line-height: 2.5; direction: ltr">Does <mark class="entity" style="background: #7aecec; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;"> Luke's <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">Restaurant</span> </mark> serve lunch?</div> <div class="entities" style="line-height: 2.5; direction: ltr">Chang does not speak <mark class="entity" style="background: #bfeeb7; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;"> Taiwanese <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">Language</span> </mark> very well.</div> <div class="entities" style="line-height: 2.5; direction: ltr">I like Berlin.</div> </div> </figure> </body> </html> ## Datasets preparation 1. We need to convert dataset into the following format. Let's say we have a dataset file train.json like following. 2. Each list in supports are the examples of one entity type 3. Wrap entities around with [E] and [/E] in the examples. 4. Each example should have only one pair of [E] ... [/E]. ```json { "CARDINAL_NUMBER": [ "Washington , cloudy , [E] 2 [/E] to 6 degrees .", "New Dehli , sunny , [E] 6 [/E] to 19 degrees .", "Well this is number [E] two [/E] .", "....." ], "LANGUAGE": [ "They do n't have the Quicken [E] Dutch [/E] version ?", "they learned a lot of [E] German [/E] .", "and then [E] Dutch [/E] it 's Mifrau", "...." ], "MONEY": [ "Per capita personal income ranged from $ [E] 11,116 [/E] in Mississippi to $ 23,059 in Connecticut ... .", "The trade surplus was [E] 582 million US dollars [/E] .", "It settled with a loss of 4.95 cents at $ [E] 1.3210 [/E] a pound .", "...." ] } ``` 2. Converted ontonotes5 dataset can be found here: 1. [train](https://gist.githubusercontent.com/sayef/46deaf7e6c6e1410b430ddc8aff9c557/raw/ea7ae2ae933bfc9c0daac1aa52a9dc093d5b36f4/ontonotes5.train.json) 2. [dev](https://gist.githubusercontent.com/sayef/46deaf7e6c6e1410b430ddc8aff9c557/raw/ea7ae2ae933bfc9c0daac1aa52a9dc093d5b36f4/ontonotes5.dev.json) 3. Then trainer script can be used to train/evaluate your fsner model. ```bash fsner trainer --pretrained-model bert-base-uncased --mode train --train-data train.json --val-data val.json \ --train-batch-size 6 --val-batch-size 6 --n-examples-per-entity 10 --neg-example-batch-ratio 1/3 --max-epochs 25 --device gpu \ --gpus -1 --strategy ddp ```
Daryaflp/roberta-retrained_ru_covid_papers
Daryaflp
2022-03-29T13:30:45Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-29T07:12:02Z
--- tags: - generated_from_trainer model-index: - name: roberta-retrained_ru_covid_papers results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-retrained_ru_covid_papers This model is a fine-tuned version of [Daryaflp/roberta-retrained_ru_covid](https://huggingface.co/Daryaflp/roberta-retrained_ru_covid) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.9998 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 1 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
ArtemChistyakov-2/f
ArtemChistyakov-2
2022-03-29T12:21:18Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2022-03-29T12:21:18Z
--- license: apache-2.0 ---
gayanin/bart-med-term-conditional-masking-0
gayanin
2022-03-29T12:03:56Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-28T22:12:30Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bart-med-term-conditional-masking-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-med-term-conditional-masking-0 This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5041 - Rouge2 Precision: 0.7497 - Rouge2 Recall: 0.5246 - Rouge2 Fmeasure: 0.5986 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | |:-------------:|:-----:|:-----:|:---------------:|:----------------:|:-------------:|:---------------:| | 0.6381 | 1.0 | 13915 | 0.5595 | 0.734 | 0.5152 | 0.5873 | | 0.5429 | 2.0 | 27830 | 0.5243 | 0.7441 | 0.5225 | 0.5956 | | 0.5002 | 3.0 | 41745 | 0.5078 | 0.7482 | 0.5238 | 0.5976 | | 0.4607 | 4.0 | 55660 | 0.5041 | 0.7497 | 0.5246 | 0.5986 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
scasutt/wav2vec2-large-xlsr-53_toy_train_data_masked_audio_10ms
scasutt
2022-03-29T11:29:52Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-28T18:54:42Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-large-xlsr-53_toy_train_data_masked_audio_10ms results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-53_toy_train_data_masked_audio_10ms This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5945 - Wer: 0.4929 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.4049 | 1.05 | 250 | 3.3497 | 1.0 | | 3.0851 | 2.1 | 500 | 3.4440 | 1.0 | | 2.3512 | 3.15 | 750 | 1.5938 | 0.9317 | | 1.1762 | 4.2 | 1000 | 0.8481 | 0.7333 | | 0.903 | 5.25 | 1250 | 0.7180 | 0.6484 | | 0.6754 | 6.3 | 1500 | 0.6603 | 0.6044 | | 0.5961 | 7.35 | 1750 | 0.6410 | 0.5778 | | 0.5325 | 8.4 | 2000 | 0.6245 | 0.5545 | | 0.4685 | 9.45 | 2250 | 0.5925 | 0.5359 | | 0.4526 | 10.5 | 2500 | 0.5991 | 0.5345 | | 0.3975 | 11.55 | 2750 | 0.5916 | 0.5228 | | 0.3672 | 12.6 | 3000 | 0.5882 | 0.5037 | | 0.3774 | 13.65 | 3250 | 0.5693 | 0.5028 | | 0.3489 | 14.7 | 3500 | 0.5645 | 0.5018 | | 0.3593 | 15.75 | 3750 | 0.5977 | 0.5043 | | 0.3167 | 16.81 | 4000 | 0.6049 | 0.5018 | | 0.3225 | 17.86 | 4250 | 0.6172 | 0.4921 | | 0.2807 | 18.91 | 4500 | 0.5937 | 0.4923 | | 0.2889 | 19.96 | 4750 | 0.5945 | 0.4929 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu102 - Datasets 2.0.0 - Tokenizers 0.11.6
KeithHorgan/TweetClimateAnalysis
KeithHorgan
2022-03-29T10:01:24Z
4
1
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain", "unk", "dataset:KeithHorgan98/autotrain-data-TweetClimateAnalysis", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-29T10:16:42Z
--- tags: autotrain language: unk widget: - text: "Climate Change is a hoax" - text: "It is freezing, where is global warming" datasets: - KeithHorgan98/autotrain-data-TweetClimateAnalysis co2_eq_emissions: 133.19491276284793 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 678720226 - CO2 Emissions (in grams): 133.19491276284793 ## Validation Metrics - Loss: 0.4864234924316406 - Accuracy: 0.865424430641822 - Macro F1: 0.7665472174344069 - Micro F1: 0.8654244306418221 - Weighted F1: 0.8586375445115083 - Macro Precision: 0.8281449061702826 - Micro Precision: 0.865424430641822 - Weighted Precision: 0.8619727477790186 - Macro Recall: 0.736576343905098 - Micro Recall: 0.865424430641822 - Weighted Recall: 0.865424430641822 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/KeithHorgan98/autotrain-TweetClimateAnalysis-678720226 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("KeithHorgan98/autotrain-TweetClimateAnalysis-678720226", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("KeithHorgan98/autotrain-TweetClimateAnalysis-678720226", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
ai4bharat/MultiIndicWikiBioUnified
ai4bharat
2022-03-29T09:25:58Z
5
1
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "wikibio", "multilingual", "nlp", "indicnlp", "as", "bn", "hi", "kn", "ml", "or", "pa", "ta", "te", "dataset:ai4bharat/IndicWikiBio", "arxiv:2203.05437", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-16T11:35:33Z
--- tags: - wikibio - multilingual - nlp - indicnlp datasets: - ai4bharat/IndicWikiBio language: - as - bn - hi - kn - ml - or - pa - ta - te licenses: - cc-by-nc-4.0 widget: - <TAG> name </TAG> नवतेज भारती <TAG> image </TAG> NavtejBharati . jpg <TAG> birth name </TAG> नवतेज <TAG> birth date </TAG> 1938 <TAG> birth place </TAG> रोडे , भारतीय पंजाब , भारत । पंजाब <TAG> occupation </TAG> लेखक , कवि <TAG> nationality </TAG> कैनेडा । कैनेडियन <TAG> ethnicity </TAG> पंजाबी लोक । पंजाबी </s> <2hi> --- # MultiIndicWikiBioUnified MultiIndicWikiBioUnified is a multilingual, sequence-to-sequence pre-trained model, a [IndicBART](https://huggingface.co/ai4bharat/IndicBART) checkpoint fine-tuned on the 9 languages of [IndicWikiBio](https://huggingface.co/datasets/ai4bharat/IndicWikiBio) dataset. For fine-tuning details, see the [paper](https://arxiv.org/abs/2203.05437). You can use MultiIndicWikiBio to build biography generation applications for Indian languages by fine-tuning the model with supervised training data. Some salient features of the MultiIndicWikiBio are: <ul> <li >Supported languages: Assamese, Bengali, Hindi, Oriya, Punjabi, Kannada, Malayalam, Tamil, and Telugu. Not all of these languages are supported by mBART50 and mT5. </li> <li >The model is much smaller than the mBART and mT5(-base) models, so less computationally expensive for fine-tuning and decoding. </li> <li> Fine-tuned on an Indic language corpora (34,653 examples). </li> <li> All languages have been represented in Devanagari script to encourage transfer learning among the related languages. </li> </ul> You can read more about MultiIndicWikiBioUnified in this <a href="https://arxiv.org/abs/2203.05437">paper</a>. ## Using this model in `transformers` ``` from transformers import MBartForConditionalGeneration, AutoModelForSeq2SeqLM from transformers import AlbertTokenizer, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("ai4bharat/MultiIndicWikiBioUnified", do_lower_case=False, use_fast=False, keep_accents=True) # Or use tokenizer = AlbertTokenizer.from_pretrained("ai4bharat/MultiIndicWikiBioUnified", do_lower_case=False, use_fast=False, keep_accents=True) model = AutoModelForSeq2SeqLM.from_pretrained("ai4bharat/MultiIndicWikiBioUnified") # Or use model = MBartForConditionalGeneration.from_pretrained("ai4bharat/MultiIndicWikiBioUnified") # Some initial mapping bos_id = tokenizer._convert_token_to_id_with_added_voc("<s>") eos_id = tokenizer._convert_token_to_id_with_added_voc("</s>") pad_id = tokenizer._convert_token_to_id_with_added_voc("<pad>") # To get lang_id use any of ['<2as>', '<2bn>', '<2hi>', '<2kn>', '<2ml>', '<2or>', '<2pa>', '<2ta>', '<2te>'] # First tokenize the input and outputs. The format below is how IndicBART was trained so the input should be "Sentence </s> <2xx>" where xx is the language code. Similarly, the output should be "<2yy> Sentence </s>". inp = tokenizer("<TAG> name </TAG> भीखा लाल <TAG> office </TAG> विधायक - 318 - हसनगंज विधान सभा निर्वाचन क्षेत्र , उत्तर प्रदेश <TAG> term </TAG> 1957 से 1962 <TAG> nationality </TAG> भारतीय</s><2hi>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids out = tokenizer("<2hi> भीखा लाल ,भारत के उत्तर प्रदेश की दूसरी विधानसभा सभा में विधायक रहे। </s>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids model_outputs=model(input_ids=inp, decoder_input_ids=out[:,0:-1], labels=out[:,1:]) # For loss model_outputs.loss ## This is not label smoothed. # For logits model_outputs.logits # For generation. Pardon the messiness. Note the decoder_start_token_id. model.eval() # Set dropouts to zero model_output=model.generate(inp, use_cache=True,no_repeat_ngram_size=3,encoder_no_repeat_ngram_size=3, num_beams=4, max_length=20, min_length=1, early_stopping=True, pad_token_id=pad_id, bos_token_id=bos_id, eos_token_id=eos_id, decoder_start_token_id=tokenizer._convert_token_to_id_with_added_voc("<2hi>")) # Decode to get output strings decoded_output=tokenizer.decode(model_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False) print(decoded_output) # भीखा लाल ,भारत के उत्तर प्रदेश की दूसरी विधानसभा सभा में विधायक रहे। # Disclaimer Note that if your output language is not Hindi or Marathi, you should convert its script from Devanagari to the desired language using the [Indic NLP Library](https://github.com/AI4Bharat/indic-bart/blob/main/indic_scriptmap.py). ``` # Note: If you wish to use any language written in a non-Devanagari script, then you should first convert it to Devanagari using the <a href="https://github.com/anoopkunchukuttan/indic_nlp_library">Indic NLP Library</a>. After you get the output, you should convert it back into the original script. ## Benchmarks Scores on the `IndicWikiBio` test sets are as follows: Language | RougeL ---------|---------------------------- as | 56.28 bn | 57.42 hi | 67.48 kn | 40.01 ml | 38.84 or | 67.13 pa | 52.88 ta | 51.82 te | 51.43 ## Citation If you use this model, please cite the following paper: ``` @inproceedings{Kumar2022IndicNLGSM, title={IndicNLG Suite: Multilingual Datasets for Diverse NLG Tasks in Indic Languages}, author={Aman Kumar and Himani Shrotriya and Prachi Sahu and Raj Dabre and Ratish Puduppully and Anoop Kunchukuttan and Amogh Mishra and Mitesh M. Khapra and Pratyush Kumar}, year={2022}, url = "https://arxiv.org/abs/2203.05437" } ``` # License The model is available under the MIT License.
Davlan/m2m100_418M-eng-yor-mt
Davlan
2022-03-29T09:21:53Z
820
1
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "arxiv:2103.08647", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
Hugging Face's logo --- language: - yo - en datasets: - JW300 + [Menyo-20k](https://huggingface.co/datasets/menyo20k_mt) --- # m2m100_418M-eng-yor-mt ## Model description **m2m100_418M-eng-yor-mt** is a **machine translation** model from English language to Yorùbá language based on a fine-tuned facebook/m2m100_418M model. It establishes a **strong baseline** for automatically translating texts from English to Yorùbá. Specifically, this model is a *facebook/m2m100_418M* model that was fine-tuned on JW300 Yorùbá corpus and [Menyo-20k](https://huggingface.co/datasets/menyo20k_mt). #### Limitations and bias This model is limited by its training dataset. This may not generalize well for all use cases in different domains. ## Training data This model was fine-tuned on JW300 corpus and [Menyo-20k](https://huggingface.co/datasets/menyo20k_mt) dataset ## Training procedure This model was trained on NVIDIA V100 GPU ## Eval results on Test set (BLEU score) Fine-tuning m2m100_418M achieves **13.39 BLEU** on [Menyo-20k test set](https://arxiv.org/abs/2103.08647) while mt5-base achieves 9.82 ### BibTeX entry and citation info By David Adelani ``` ```
Davlan/m2m100_418M-yor-eng-mt
Davlan
2022-03-29T09:21:03Z
5
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "arxiv:2103.08647", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
Hugging Face's logo --- language: - yo - en datasets: - JW300 + [Menyo-20k](https://huggingface.co/datasets/menyo20k_mt) --- # m2m100_418M-eng-yor-mt ## Model description **m2m100_418M-yor-eng-mt** is a **machine translation** model from Yorùbá language to English language based on a fine-tuned facebook/m2m100_418M model. It establishes a **strong baseline** for automatically translating texts from Yorùbá to English. Specifically, this model is a *facebook/m2m100_418M* model that was fine-tuned on JW300 Yorùbá corpus and [Menyo-20k](https://huggingface.co/datasets/menyo20k_mt). #### Limitations and bias This model is limited by its training dataset. This may not generalize well for all use cases in different domains. ## Training data This model was fine-tuned on JW300 corpus and [Menyo-20k](https://huggingface.co/datasets/menyo20k_mt) dataset ## Training procedure This model was trained on NVIDIA V100 GPU ## Eval results on Test set (BLEU score) Fine-tuning m2m100_418M achieves **16.76 BLEU** on [Menyo-20k test set](https://arxiv.org/abs/2103.08647) while mt5-base achieves 15.57 ### BibTeX entry and citation info By David Adelani ``` ```
PereLluis13/Wav2Vec2-Large-XLSR-53-catalan
PereLluis13
2022-03-29T08:51:28Z
6,942
2
transformers
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "ca", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: ca datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: Catalan XLSR Wav2Vec Large 53 #TODO: replace {human_readable_name} with a name of your model as it should appear on the leaderboard. It could be something like `Elgeish XLSR Wav2Vec2 Large 53` results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice ca type: common_voice args: ca #TODO: metrics: - name: Test WER type: wer value: 8.11 --- # Disclaimer This model was trained on Common Voice 6, if you need a catalan model for ASR, I recommend checking [wav2vec2-xls-r-1b-ca-lm](https://huggingface.co/PereLluis13/wav2vec2-xls-r-1b-ca-lm) which is a 1b model with a LM on top trained on CV8+ with much better performance or [wav2vec2-xls-r-300m-ca-lm](https://huggingface.co/PereLluis13/wav2vec2-xls-r-300m-ca-lm) which has the same size (300m) as this model but trained on CV8+ and the same LM. # Wav2Vec2-Large-XLSR-53-ca Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on catalan using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "ca", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("PereLluis13/Wav2Vec2-Large-XLSR-53-catalan") model = Wav2Vec2ForCTC.from_pretrained("PereLluis13/Wav2Vec2-Large-XLSR-53-catalan") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the catalan test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "ca", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("PereLluis13/Wav2Vec2-Large-XLSR-53-catalan") model = Wav2Vec2ForCTC.from_pretrained("PereLluis13/Wav2Vec2-Large-XLSR-53-catalan") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\;\:\"\“]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) import jiwer # Chunk WER computation due to memory issues, taken from https://huggingface.co/pcuenq/wav2vec2-large-xlsr-53-es def chunked_wer(targets, predictions, chunk_size=None): if chunk_size is None: return jiwer.wer(targets, predictions) start = 0 end = chunk_size H, S, D, I = 0, 0, 0, 0 while start < len(targets): chunk_metrics = jiwer.compute_measures(targets[start:end], predictions[start:end]) H = H + chunk_metrics["hits"] S = S + chunk_metrics["substitutions"] D = D + chunk_metrics["deletions"] I = I + chunk_metrics["insertions"] start += chunk_size end += chunk_size return float(S + D + I) / float(H + S + D) print("WER: {:2f}".format(100 * chunked_wer(result["sentence"], result["pred_strings"], chunk_size=4000))) ``` **Test Result**: 8.11 % ## Training The Common Voice `train`, `validation` datasets were used for training. At the second epoch training was halted due to a memory issue, and was continued with lower batch size, but acc. gradient steps were scaled to keep it at 32 batch size during all training. Then the model was trained for an additional 10 epochs where half the male samples were pitched up. The script used for training can be found [here](https://github.com/huggingface/transformers/blob/master/examples/research_projects/wav2vec2/run_common_voice.py). Slight modifications were done in order to speed up the ordering by length during training, which can be found [here](https://discuss.huggingface.co/t/spanish-asr-fine-tuning-wav2vec2/4586/6). Another version trained for catalan can be found [here](https://huggingface.co/ccoreilly/wav2vec2-large-xlsr-catala), which may be better than this one since it was trained with extra data and for longer time. Whoever, since it used different splits that include part of the Common Voice test set, this version can be used to get a baseline on the Common Voice dataset.
PereLluis13/wav2vec2-xls-r-1b-ca
PereLluis13
2022-03-29T08:44:49Z
17
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "collectivat/tv3_parla", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "projecte-aina/parlament_parla", "robust-speech-event", "ca", "dataset:mozilla-foundation/common_voice_8_0", "dataset:collectivat/tv3_parla", "dataset:projecte-aina/parlament_parla", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - ca license: apache-2.0 tags: - automatic-speech-recognition - collectivat/tv3_parla - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_8_0 - projecte-aina/parlament_parla - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 - collectivat/tv3_parla - projecte-aina/parlament_parla model-index: - name: wav2vec2-xls-r-1b-ca results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_8_0 ca type: mozilla-foundation/common_voice_8_0 args: ca metrics: - name: Test WER type: wer value: 11.030639657300516 - name: Test CER type: cer value: 2.8405630530040634 - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: projecte-aina/parlament_parla ca type: projecte-aina/parlament_parla args: clean metrics: - name: Test WER type: wer value: 6.483115660665961 - name: Test CER type: cer value: 2.0212863746191828 - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: collectivat/tv3_parla ca type: collectivat/tv3_parla args: ca metrics: - name: Test WER type: wer value: 17.917773414943988 - name: Test CER type: cer value: 8.872589572206396 - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Catalan Dev Data type: speech-recognition-community-v2/dev_data args: ca metrics: - name: Test WER type: wer value: 27.126683954209097 - name: Test CER type: cer value: 14.213308815078726 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: ca metrics: - name: Test WER type: wer value: 18.7 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-1b-ca This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - CA, the [tv3_parla](https://huggingface.co/datasets/collectivat/tv3_parla) and [parlament_parla](https://huggingface.co/datasets/projecte-aina/parlament_parla) datasets. ## Model description Please check the original [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) Model card. This is just a finetuned version of that model. ## Intended uses & limitations As any model trained on crowdsourced data, this model can show the biases and particularities of the data and model used to train this model. Moreover, since this is a speech recognition model, it may underperform for some lower-resourced dialects for the catalan language. ## Training and evaluation data ## Training procedure The data is preprocessed to remove characters not on the catalan alphabet. Moreover, numbers are verbalized using code provided by [@ccoreilly](https://github.com/ccoreilly), which can be found on the text/ folder or [here](https://github.com/CollectivaT-dev/catotron-cpu/blob/master/text/numbers_ca.py). ### Training results Check the Tensorboard tab to check the training profile and evaluation results along training. The model was evaluated on the test splits for each of the datasets used during training. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0 # Thanks Want to thank both [@ccoreilly](https://github.com/ccoreilly) and [@gullabi](https://github.com/gullabi) who have contributed with their own resources and knowledge into making this model possible.
PereLluis13/wav2vec2-xls-r-300m-ca
PereLluis13
2022-03-29T08:43:53Z
52
2
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "collectivat/tv3_parla", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "projecte-aina/parlament_parla", "robust-speech-event", "ca", "dataset:mozilla-foundation/common_voice_8_0", "dataset:collectivat/tv3_parla", "dataset:projecte-aina/parlament_parla", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - ca license: apache-2.0 tags: - automatic-speech-recognition - collectivat/tv3_parla - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_8_0 - projecte-aina/parlament_parla - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 - collectivat/tv3_parla - projecte-aina/parlament_parla model-index: - name: wav2vec2-xls-r-300m-ca results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_8_0 ca type: mozilla-foundation/common_voice_8_0 args: ca metrics: - name: Test WER type: wer value: 13.170091241317552 - name: Test CER type: cer value: 3.356726205534543 - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: projecte-aina/parlament_parla ca type: projecte-aina/parlament_parla args: clean metrics: - name: Test WER type: wer value: 8.048005647723261 - name: Test CER type: cer value: 2.240912911020065 - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: collectivat/tv3_parla ca type: collectivat/tv3_parla args: ca metrics: - name: Test WER type: wer value: 23.320629787889285 - name: Test CER type: cer value: 10.439216202089989 - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: speech-recognition-community-v2/dev_data ca type: speech-recognition-community-v2/dev_data args: ca metrics: - name: Test WER type: wer value: 31.99671115046487 - name: Test CER type: cer value: 15.820020687277325 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: ca metrics: - name: Test WER type: wer value: 22.04 --- # wav2vec2-xls-r-300m-ca This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - CA, the [tv3_parla](https://huggingface.co/datasets/collectivat/tv3_parla) and [parlament_parla](https://huggingface.co/datasets/projecte-aina/parlament_parla) datasets. It achieves the following results on the evaluation set (for the three datasets): - Loss: 0.2472 - Wer: 0.1499 ## Model description Please check the original [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) Model card. This is just a finetuned version of that model. ## Intended uses & limitations As any model trained on crowdsourced data, this model can show the biases and particularities of the data and model used to train this model. Moreover, since this is a speech recognition model, it may underperform for some lower-resourced dialects for the catalan language. ## Training and evaluation data More information needed ## Training procedure The data is preprocessed to remove characters not on the catalan alphabet. Moreover, numbers are verbalized using code provided by [@ccoreilly](https://github.com/ccoreilly), which can be found on the text/ folder or [here](https://github.com/CollectivaT-dev/catotron-cpu/blob/master/text/numbers_ca.py). ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 18.0 - mixed_precision_training: Native AMP ### Training results Check the Tensorboard tab to check the training profile and evaluation results along training. The model was evaluated on the test splits for each of the datasets used during training. | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 6.2099 | 0.09 | 500 | 3.4125 | 1.0 | | 2.9961 | 0.18 | 1000 | 2.9224 | 1.0 | | 2.2147 | 0.26 | 1500 | 0.6521 | 0.5568 | | 1.3017 | 0.35 | 2000 | 0.3153 | 0.2761 | | 1.1196 | 0.44 | 2500 | 0.2444 | 0.2367 | | 1.0712 | 0.53 | 3000 | 0.2324 | 0.2132 | | 1.052 | 0.62 | 3500 | 0.2173 | 0.2032 | | 1.2813 | 2.13 | 4000 | 0.3326 | 0.2099 | | 1.2365 | 2.4 | 4500 | 0.3224 | 0.2003 | | 1.2193 | 2.66 | 5000 | 0.3198 | 0.1957 | | 1.2072 | 2.93 | 5500 | 0.3063 | 0.1933 | | 1.213 | 3.2 | 6000 | 0.3051 | 0.1980 | | 1.2074 | 3.46 | 6500 | 0.3012 | 0.1879 | | 1.1918 | 3.73 | 7000 | 0.2947 | 0.1829 | | 1.1893 | 4.0 | 7500 | 0.2895 | 0.1807 | | 1.1751 | 4.26 | 8000 | 0.2878 | 0.1776 | | 1.1628 | 4.53 | 8500 | 0.2835 | 0.1731 | | 1.1577 | 4.79 | 9000 | 0.2816 | 0.1761 | | 1.1448 | 5.06 | 9500 | 0.2757 | 0.1740 | | 1.1407 | 5.33 | 10000 | 0.2768 | 0.1798 | | 1.1401 | 5.59 | 10500 | 0.2780 | 0.1816 | | 1.1333 | 5.86 | 11000 | 0.2748 | 0.1750 | | 1.1571 | 6.13 | 11500 | 0.2808 | 0.1708 | | 1.1505 | 6.39 | 12000 | 0.2726 | 0.1692 | | 1.1519 | 6.66 | 12500 | 0.2749 | 0.1654 | | 1.136 | 6.93 | 13000 | 0.2765 | 0.1643 | | 1.1326 | 7.19 | 13500 | 0.2706 | 0.1668 | | 1.1342 | 7.46 | 14000 | 0.2665 | 0.1638 | | 1.1286 | 7.72 | 14500 | 0.2669 | 0.1636 | | 1.1243 | 7.99 | 15000 | 0.2619 | 0.1623 | | 1.1173 | 8.26 | 15500 | 0.2652 | 0.1604 | | 1.1129 | 8.52 | 16000 | 0.2610 | 0.1598 | | 1.1091 | 8.79 | 16500 | 0.2608 | 0.1584 | | 1.1053 | 9.06 | 17000 | 0.2633 | 0.1664 | | 1.1004 | 9.32 | 17500 | 0.2594 | 0.1662 | | 1.0995 | 9.59 | 18000 | 0.2623 | 0.1569 | | 1.0964 | 9.86 | 18500 | 0.2624 | 0.1597 | | 1.09 | 10.12 | 19000 | 0.2577 | 0.1578 | | 1.089 | 10.39 | 19500 | 0.2574 | 0.1531 | | 1.0864 | 10.66 | 20000 | 0.2556 | 0.1546 | | 1.0806 | 10.92 | 20500 | 0.2548 | 0.1583 | | 1.0842 | 11.19 | 21000 | 0.2550 | 0.1542 | | 1.0805 | 11.45 | 21500 | 0.2561 | 0.1524 | | 1.0722 | 11.72 | 22000 | 0.2540 | 0.1566 | | 1.0763 | 11.99 | 22500 | 0.2549 | 0.1572 | | 1.0835 | 12.25 | 23000 | 0.2586 | 0.1521 | | 1.0883 | 12.52 | 23500 | 0.2583 | 0.1519 | | 1.0888 | 12.79 | 24000 | 0.2551 | 0.1582 | | 1.0933 | 13.05 | 24500 | 0.2628 | 0.1537 | | 1.0799 | 13.32 | 25000 | 0.2600 | 0.1508 | | 1.0804 | 13.59 | 25500 | 0.2620 | 0.1475 | | 1.0814 | 13.85 | 26000 | 0.2537 | 0.1517 | | 1.0693 | 14.12 | 26500 | 0.2560 | 0.1542 | | 1.0724 | 14.38 | 27000 | 0.2540 | 0.1574 | | 1.0704 | 14.65 | 27500 | 0.2548 | 0.1626 | | 1.0729 | 14.92 | 28000 | 0.2548 | 0.1601 | | 1.0724 | 15.18 | 28500 | 0.2511 | 0.1512 | | 1.0655 | 15.45 | 29000 | 0.2498 | 0.1490 | | 1.0608 | 15.98 | 30000 | 0.2487 | 0.1481 | | 1.0541 | 16.52 | 31000 | 0.2468 | 0.1504 | | 1.0584 | 17.05 | 32000 | 0.2467 | 0.1493 | | 1.0507 | 17.58 | 33000 | 0.2481 | 0.1517 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0 # Thanks Want to thank both [@ccoreilly](https://github.com/ccoreilly) and [@gullabi](https://github.com/gullabi) who have contributed with their own resources and knowledge into making this model possible.
PereLluis13/wav2vec2-xls-r-300m-ca-lm
PereLluis13
2022-03-29T08:42:55Z
20
1
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "collectivat/tv3_parla", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "projecte-aina/parlament_parla", "robust-speech-event", "ca", "dataset:mozilla-foundation/common_voice_8_0", "dataset:collectivat/tv3_parla", "dataset:projecte-aina/parlament_parla", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - ca license: apache-2.0 tags: - automatic-speech-recognition - collectivat/tv3_parla - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_8_0 - projecte-aina/parlament_parla - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 - collectivat/tv3_parla - projecte-aina/parlament_parla model-index: - name: wav2vec2-xls-r-300m-ca-lm results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_8_0 ca type: mozilla-foundation/common_voice_8_0 args: ca metrics: - name: Test WER type: wer value: 6.771703090587865 - name: Test CER type: cer value: 2.1007777843712293 - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: projecte-aina/parlament_parla ca type: projecte-aina/parlament_parla args: clean metrics: - name: Test WER type: wer value: 5.565360630662431 - name: Test CER type: cer value: 1.8594390167034354 - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: collectivat/tv3_parla ca type: collectivat/tv3_parla args: ca metrics: - name: Test WER type: wer value: 13.53312545713516 - name: Test CER type: cer value: 8.684635913340556 - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Catalan Dev Data type: speech-recognition-community-v2/dev_data args: ca metrics: - name: Test WER type: wer value: 26.04515843400164 - name: Test CER type: cer value: 15.056890012642224 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: ca metrics: - name: Test WER type: wer value: 17.68 --- # wav2vec2-xls-r-300m-ca-lm This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - CA, the [tv3_parla](https://huggingface.co/datasets/collectivat/tv3_parla) and [parlament_parla](https://huggingface.co/datasets/projecte-aina/parlament_parla) datasets. It achieves the following results on the evaluation set (for the three datasets and without the LM): - Loss: 0.2472 - Wer: 0.1499 ## Model description Please check the original [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) Model card. This is just a finetuned version of that model. ## Intended uses & limitations As any model trained on crowdsourced data, this model can show the biases and particularities of the data and model used to train this model. Moreover, since this is a speech recognition model, it may underperform for some lower-resourced dialects for the catalan language. ## Training and evaluation data More information needed ## Training procedure The data is preprocessed to remove characters not on the catalan alphabet. Moreover, numbers are verbalized using code provided by [@ccoreilly](https://github.com/ccoreilly), which can be found on the text/ folder or [here](https://github.com/CollectivaT-dev/catotron-cpu/blob/master/text/numbers_ca.py). ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 18.0 - mixed_precision_training: Native AMP ### Training results Check the Tensorboard tab to check the training profile and evaluation results along training. The model was evaluated on the test splits for each of the datasets used during training. | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 6.2099 | 0.09 | 500 | 3.4125 | 1.0 | | 2.9961 | 0.18 | 1000 | 2.9224 | 1.0 | | 2.2147 | 0.26 | 1500 | 0.6521 | 0.5568 | | 1.3017 | 0.35 | 2000 | 0.3153 | 0.2761 | | 1.1196 | 0.44 | 2500 | 0.2444 | 0.2367 | | 1.0712 | 0.53 | 3000 | 0.2324 | 0.2132 | | 1.052 | 0.62 | 3500 | 0.2173 | 0.2032 | | 1.2813 | 2.13 | 4000 | 0.3326 | 0.2099 | | 1.2365 | 2.4 | 4500 | 0.3224 | 0.2003 | | 1.2193 | 2.66 | 5000 | 0.3198 | 0.1957 | | 1.2072 | 2.93 | 5500 | 0.3063 | 0.1933 | | 1.213 | 3.2 | 6000 | 0.3051 | 0.1980 | | 1.2074 | 3.46 | 6500 | 0.3012 | 0.1879 | | 1.1918 | 3.73 | 7000 | 0.2947 | 0.1829 | | 1.1893 | 4.0 | 7500 | 0.2895 | 0.1807 | | 1.1751 | 4.26 | 8000 | 0.2878 | 0.1776 | | 1.1628 | 4.53 | 8500 | 0.2835 | 0.1731 | | 1.1577 | 4.79 | 9000 | 0.2816 | 0.1761 | | 1.1448 | 5.06 | 9500 | 0.2757 | 0.1740 | | 1.1407 | 5.33 | 10000 | 0.2768 | 0.1798 | | 1.1401 | 5.59 | 10500 | 0.2780 | 0.1816 | | 1.1333 | 5.86 | 11000 | 0.2748 | 0.1750 | | 1.1571 | 6.13 | 11500 | 0.2808 | 0.1708 | | 1.1505 | 6.39 | 12000 | 0.2726 | 0.1692 | | 1.1519 | 6.66 | 12500 | 0.2749 | 0.1654 | | 1.136 | 6.93 | 13000 | 0.2765 | 0.1643 | | 1.1326 | 7.19 | 13500 | 0.2706 | 0.1668 | | 1.1342 | 7.46 | 14000 | 0.2665 | 0.1638 | | 1.1286 | 7.72 | 14500 | 0.2669 | 0.1636 | | 1.1243 | 7.99 | 15000 | 0.2619 | 0.1623 | | 1.1173 | 8.26 | 15500 | 0.2652 | 0.1604 | | 1.1129 | 8.52 | 16000 | 0.2610 | 0.1598 | | 1.1091 | 8.79 | 16500 | 0.2608 | 0.1584 | | 1.1053 | 9.06 | 17000 | 0.2633 | 0.1664 | | 1.1004 | 9.32 | 17500 | 0.2594 | 0.1662 | | 1.0995 | 9.59 | 18000 | 0.2623 | 0.1569 | | 1.0964 | 9.86 | 18500 | 0.2624 | 0.1597 | | 1.09 | 10.12 | 19000 | 0.2577 | 0.1578 | | 1.089 | 10.39 | 19500 | 0.2574 | 0.1531 | | 1.0864 | 10.66 | 20000 | 0.2556 | 0.1546 | | 1.0806 | 10.92 | 20500 | 0.2548 | 0.1583 | | 1.0842 | 11.19 | 21000 | 0.2550 | 0.1542 | | 1.0805 | 11.45 | 21500 | 0.2561 | 0.1524 | | 1.0722 | 11.72 | 22000 | 0.2540 | 0.1566 | | 1.0763 | 11.99 | 22500 | 0.2549 | 0.1572 | | 1.0835 | 12.25 | 23000 | 0.2586 | 0.1521 | | 1.0883 | 12.52 | 23500 | 0.2583 | 0.1519 | | 1.0888 | 12.79 | 24000 | 0.2551 | 0.1582 | | 1.0933 | 13.05 | 24500 | 0.2628 | 0.1537 | | 1.0799 | 13.32 | 25000 | 0.2600 | 0.1508 | | 1.0804 | 13.59 | 25500 | 0.2620 | 0.1475 | | 1.0814 | 13.85 | 26000 | 0.2537 | 0.1517 | | 1.0693 | 14.12 | 26500 | 0.2560 | 0.1542 | | 1.0724 | 14.38 | 27000 | 0.2540 | 0.1574 | | 1.0704 | 14.65 | 27500 | 0.2548 | 0.1626 | | 1.0729 | 14.92 | 28000 | 0.2548 | 0.1601 | | 1.0724 | 15.18 | 28500 | 0.2511 | 0.1512 | | 1.0655 | 15.45 | 29000 | 0.2498 | 0.1490 | | 1.0608 | 15.98 | 30000 | 0.2487 | 0.1481 | | 1.0541 | 16.52 | 31000 | 0.2468 | 0.1504 | | 1.0584 | 17.05 | 32000 | 0.2467 | 0.1493 | | 1.0507 | 17.58 | 33000 | 0.2481 | 0.1517 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0 # Thanks Want to thank both [@ccoreilly](https://github.com/ccoreilly) and [@gullabi](https://github.com/gullabi) who have contributed with their own resources and knowledge into making this model possible.
STARBORN/MMC
STARBORN
2022-03-29T07:14:35Z
0
1
null
[ "license:mit", "region:us" ]
null
2022-03-29T07:12:26Z
--- license: mit --- Metamodel Card (MMC) builds on MC and DC schemas by adding system level abstraction to the data. MMC instantiations follow
jorge-henao/gpt2-small-spanish-disco-poetry-15
jorge-henao
2022-03-29T05:17:49Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-29T04:20:26Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: gpt2-small-spanish-disco-poetry-15 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-small-spanish-disco-poetry-15 This model is a fine-tuned version of [datificate/gpt2-small-spanish](https://huggingface.co/datificate/gpt2-small-spanish) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 4.2465 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
rampasek/prot_bert_bfd_rosetta204060aa
rampasek
2022-03-29T04:35:10Z
5
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "protein language model", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-29T04:02:40Z
--- language: protein tags: - protein language model datasets: - BFD - Custom Rosetta --- # ProtBert-BFD finetuned on Rosetta 20,40,60AA dataset This model is finetuned to predict Rosetta fold energy using a dataset of 300k protein sequences: 100k of 20AA, 100k of 40AA, and 100k of 60AA Current model in this repo: `prot_bert_bfd-finetuned-032822_1323` ## Performance - 20AA sequences (1k eval set):\ Metrics: 'mae': 0.100418, 'r2': 0.989028, 'mse': 0.016266, 'rmse': 0.127537 - 40AA sequences (10k eval set):\ Metrics: 'mae': 0.173888, 'r2': 0.963361, 'mse': 0.048218, 'rmse': 0.219587 - 60AA sequences (10k eval set):\ Metrics: 'mae': 0.235238, 'r2': 0.930164, 'mse': 0.088131, 'rmse': 0.2968 ## `prot_bert_bfd` from ProtTrans The starting pretrained model is from ProtTrans, trained on 2.1 billion proteins from BFD. It was trained on protein sequences using a masked language modeling (MLM) objective. It was introduced in [this paper](https://doi.org/10.1101/2020.07.12.199554) and first released in [this repository](https://github.com/agemagician/ProtTrans). > Created by [Ladislav Rampasek](https://rampasek.github.io)