modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-06-27 06:27:46
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 499
values | tags
sequencelengths 1
4.05k
| pipeline_tag
stringclasses 54
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-06-27 06:26:25
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
Helsinki-NLP/opus-mt-de-eu | Helsinki-NLP | 2023-08-16T11:27:50Z | 166 | 1 | transformers | [
"transformers",
"pytorch",
"tf",
"marian",
"text2text-generation",
"translation",
"de",
"eu",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2022-03-02T23:29:04Z | ---
language:
- de
- eu
tags:
- translation
license: apache-2.0
---
### deu-eus
* source group: German
* target group: Basque
* OPUS readme: [deu-eus](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/deu-eus/README.md)
* model: transformer-align
* source language(s): deu
* target language(s): eus
* model: transformer-align
* pre-processing: normalization + SentencePiece (spm12k,spm12k)
* download original weights: [opus-2020-06-16.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/deu-eus/opus-2020-06-16.zip)
* test set translations: [opus-2020-06-16.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/deu-eus/opus-2020-06-16.test.txt)
* test set scores: [opus-2020-06-16.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/deu-eus/opus-2020-06-16.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| Tatoeba-test.deu.eus | 31.8 | 0.574 |
### System Info:
- hf_name: deu-eus
- source_languages: deu
- target_languages: eus
- opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/deu-eus/README.md
- original_repo: Tatoeba-Challenge
- tags: ['translation']
- languages: ['de', 'eu']
- src_constituents: {'deu'}
- tgt_constituents: {'eus'}
- src_multilingual: False
- tgt_multilingual: False
- prepro: normalization + SentencePiece (spm12k,spm12k)
- url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/deu-eus/opus-2020-06-16.zip
- url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/deu-eus/opus-2020-06-16.test.txt
- src_alpha3: deu
- tgt_alpha3: eus
- short_pair: de-eu
- chrF2_score: 0.574
- bleu: 31.8
- brevity_penalty: 0.9209999999999999
- ref_len: 2829.0
- src_name: German
- tgt_name: Basque
- train_date: 2020-06-16
- src_alpha2: de
- tgt_alpha2: eu
- prefer_old: False
- long_pair: deu-eus
- helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535
- transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b
- port_machine: brutasse
- port_time: 2020-08-21-14:41 |
Nextcloud-AI/opus-mt-de-es | Nextcloud-AI | 2023-08-16T11:27:48Z | 119 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"marian",
"text2text-generation",
"translation",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2024-02-23T10:38:02Z | ---
tags:
- translation
license: apache-2.0
---
### opus-mt-de-es
* source languages: de
* target languages: es
* OPUS readme: [de-es](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/de-es/README.md)
* dataset: opus
* model: transformer-align
* pre-processing: normalization + SentencePiece
* download original weights: [opus-2020-01-15.zip](https://object.pouta.csc.fi/OPUS-MT-models/de-es/opus-2020-01-15.zip)
* test set translations: [opus-2020-01-15.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/de-es/opus-2020-01-15.test.txt)
* test set scores: [opus-2020-01-15.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/de-es/opus-2020-01-15.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| Tatoeba.de.es | 48.5 | 0.676 |
|
Helsinki-NLP/opus-mt-de-es | Helsinki-NLP | 2023-08-16T11:27:48Z | 32,010 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"marian",
"text2text-generation",
"translation",
"de",
"es",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2022-03-02T23:29:04Z | ---
tags:
- translation
license: apache-2.0
---
### opus-mt-de-es
* source languages: de
* target languages: es
* OPUS readme: [de-es](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/de-es/README.md)
* dataset: opus
* model: transformer-align
* pre-processing: normalization + SentencePiece
* download original weights: [opus-2020-01-15.zip](https://object.pouta.csc.fi/OPUS-MT-models/de-es/opus-2020-01-15.zip)
* test set translations: [opus-2020-01-15.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/de-es/opus-2020-01-15.test.txt)
* test set scores: [opus-2020-01-15.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/de-es/opus-2020-01-15.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| Tatoeba.de.es | 48.5 | 0.676 |
|
Helsinki-NLP/opus-mt-de-en | Helsinki-NLP | 2023-08-16T11:27:46Z | 673,311 | 44 | transformers | [
"transformers",
"pytorch",
"tf",
"rust",
"marian",
"text2text-generation",
"translation",
"de",
"en",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2022-03-02T23:29:04Z | ---
tags:
- translation
license: apache-2.0
---
### opus-mt-de-en
* source languages: de
* target languages: en
* OPUS readme: [de-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/de-en/README.md)
* dataset: opus
* model: transformer-align
* pre-processing: normalization + SentencePiece
* download original weights: [opus-2020-02-26.zip](https://object.pouta.csc.fi/OPUS-MT-models/de-en/opus-2020-02-26.zip)
* test set translations: [opus-2020-02-26.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/de-en/opus-2020-02-26.test.txt)
* test set scores: [opus-2020-02-26.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/de-en/opus-2020-02-26.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| newssyscomb2009.de.en | 29.4 | 0.557 |
| news-test2008.de.en | 27.8 | 0.548 |
| newstest2009.de.en | 26.8 | 0.543 |
| newstest2010.de.en | 30.2 | 0.584 |
| newstest2011.de.en | 27.4 | 0.556 |
| newstest2012.de.en | 29.1 | 0.569 |
| newstest2013.de.en | 32.1 | 0.583 |
| newstest2014-deen.de.en | 34.0 | 0.600 |
| newstest2015-ende.de.en | 34.2 | 0.599 |
| newstest2016-ende.de.en | 40.4 | 0.649 |
| newstest2017-ende.de.en | 35.7 | 0.610 |
| newstest2018-ende.de.en | 43.7 | 0.667 |
| newstest2019-deen.de.en | 40.1 | 0.642 |
| Tatoeba.de.en | 55.4 | 0.707 |
|
Helsinki-NLP/opus-mt-de-efi | Helsinki-NLP | 2023-08-16T11:27:43Z | 101 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"marian",
"text2text-generation",
"translation",
"de",
"efi",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2022-03-02T23:29:04Z | ---
tags:
- translation
license: apache-2.0
---
### opus-mt-de-efi
* source languages: de
* target languages: efi
* OPUS readme: [de-efi](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/de-efi/README.md)
* dataset: opus
* model: transformer-align
* pre-processing: normalization + SentencePiece
* download original weights: [opus-2020-01-20.zip](https://object.pouta.csc.fi/OPUS-MT-models/de-efi/opus-2020-01-20.zip)
* test set translations: [opus-2020-01-20.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/de-efi/opus-2020-01-20.test.txt)
* test set scores: [opus-2020-01-20.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/de-efi/opus-2020-01-20.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| JW300.de.efi | 24.2 | 0.451 |
|
Helsinki-NLP/opus-mt-de-ee | Helsinki-NLP | 2023-08-16T11:27:42Z | 113 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"marian",
"text2text-generation",
"translation",
"de",
"ee",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2022-03-02T23:29:04Z | ---
tags:
- translation
license: apache-2.0
---
### opus-mt-de-ee
* source languages: de
* target languages: ee
* OPUS readme: [de-ee](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/de-ee/README.md)
* dataset: opus
* model: transformer-align
* pre-processing: normalization + SentencePiece
* download original weights: [opus-2020-01-20.zip](https://object.pouta.csc.fi/OPUS-MT-models/de-ee/opus-2020-01-20.zip)
* test set translations: [opus-2020-01-20.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/de-ee/opus-2020-01-20.test.txt)
* test set scores: [opus-2020-01-20.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/de-ee/opus-2020-01-20.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| JW300.de.ee | 24.6 | 0.463 |
|
Helsinki-NLP/opus-mt-de-de | Helsinki-NLP | 2023-08-16T11:27:41Z | 207 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"marian",
"text2text-generation",
"translation",
"de",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2022-03-02T23:29:04Z | ---
tags:
- translation
license: apache-2.0
---
### opus-mt-de-de
* source languages: de
* target languages: de
* OPUS readme: [de-de](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/de-de/README.md)
* dataset: opus
* model: transformer-align
* pre-processing: normalization + SentencePiece
* download original weights: [opus-2020-01-20.zip](https://object.pouta.csc.fi/OPUS-MT-models/de-de/opus-2020-01-20.zip)
* test set translations: [opus-2020-01-20.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/de-de/opus-2020-01-20.test.txt)
* test set scores: [opus-2020-01-20.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/de-de/opus-2020-01-20.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| Tatoeba.de.de | 40.7 | 0.616 |
|
Helsinki-NLP/opus-mt-de-ca | Helsinki-NLP | 2023-08-16T11:27:37Z | 181 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"marian",
"text2text-generation",
"translation",
"de",
"ca",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2022-03-02T23:29:04Z | ---
language:
- de
- ca
tags:
- translation
license: apache-2.0
---
### deu-cat
* source group: German
* target group: Catalan
* OPUS readme: [deu-cat](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/deu-cat/README.md)
* model: transformer-align
* source language(s): deu
* target language(s): cat
* model: transformer-align
* pre-processing: normalization + SentencePiece (spm12k,spm12k)
* download original weights: [opus-2020-06-16.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/deu-cat/opus-2020-06-16.zip)
* test set translations: [opus-2020-06-16.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/deu-cat/opus-2020-06-16.test.txt)
* test set scores: [opus-2020-06-16.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/deu-cat/opus-2020-06-16.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| Tatoeba-test.deu.cat | 37.4 | 0.582 |
### System Info:
- hf_name: deu-cat
- source_languages: deu
- target_languages: cat
- opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/deu-cat/README.md
- original_repo: Tatoeba-Challenge
- tags: ['translation']
- languages: ['de', 'ca']
- src_constituents: {'deu'}
- tgt_constituents: {'cat'}
- src_multilingual: False
- tgt_multilingual: False
- prepro: normalization + SentencePiece (spm12k,spm12k)
- url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/deu-cat/opus-2020-06-16.zip
- url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/deu-cat/opus-2020-06-16.test.txt
- src_alpha3: deu
- tgt_alpha3: cat
- short_pair: de-ca
- chrF2_score: 0.5820000000000001
- bleu: 37.4
- brevity_penalty: 0.956
- ref_len: 5507.0
- src_name: German
- tgt_name: Catalan
- train_date: 2020-06-16
- src_alpha2: de
- tgt_alpha2: ca
- prefer_old: False
- long_pair: deu-cat
- helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535
- transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b
- port_machine: brutasse
- port_time: 2020-08-21-14:41 |
Helsinki-NLP/opus-mt-de-bi | Helsinki-NLP | 2023-08-16T11:27:35Z | 110 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"marian",
"text2text-generation",
"translation",
"de",
"bi",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2022-03-02T23:29:04Z | ---
tags:
- translation
license: apache-2.0
---
### opus-mt-de-bi
* source languages: de
* target languages: bi
* OPUS readme: [de-bi](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/de-bi/README.md)
* dataset: opus
* model: transformer-align
* pre-processing: normalization + SentencePiece
* download original weights: [opus-2020-01-20.zip](https://object.pouta.csc.fi/OPUS-MT-models/de-bi/opus-2020-01-20.zip)
* test set translations: [opus-2020-01-20.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/de-bi/opus-2020-01-20.test.txt)
* test set scores: [opus-2020-01-20.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/de-bi/opus-2020-01-20.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| JW300.de.bi | 25.7 | 0.450 |
|
Helsinki-NLP/opus-mt-de-bcl | Helsinki-NLP | 2023-08-16T11:27:33Z | 105 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"marian",
"text2text-generation",
"translation",
"de",
"bcl",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2022-03-02T23:29:04Z | ---
tags:
- translation
license: apache-2.0
---
### opus-mt-de-bcl
* source languages: de
* target languages: bcl
* OPUS readme: [de-bcl](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/de-bcl/README.md)
* dataset: opus
* model: transformer-align
* pre-processing: normalization + SentencePiece
* download original weights: [opus-2020-01-20.zip](https://object.pouta.csc.fi/OPUS-MT-models/de-bcl/opus-2020-01-20.zip)
* test set translations: [opus-2020-01-20.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/de-bcl/opus-2020-01-20.test.txt)
* test set scores: [opus-2020-01-20.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/de-bcl/opus-2020-01-20.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| JW300.de.bcl | 34.6 | 0.563 |
|
Helsinki-NLP/opus-mt-de-af | Helsinki-NLP | 2023-08-16T11:27:29Z | 259 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"marian",
"text2text-generation",
"translation",
"de",
"af",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2022-03-02T23:29:04Z | ---
language:
- de
- af
tags:
- translation
license: apache-2.0
---
### deu-afr
* source group: German
* target group: Afrikaans
* OPUS readme: [deu-afr](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/deu-afr/README.md)
* model: transformer-align
* source language(s): deu
* target language(s): afr
* model: transformer-align
* pre-processing: normalization + SentencePiece (spm32k,spm32k)
* download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/deu-afr/opus-2020-06-17.zip)
* test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/deu-afr/opus-2020-06-17.test.txt)
* test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/deu-afr/opus-2020-06-17.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| Tatoeba-test.deu.afr | 51.3 | 0.690 |
### System Info:
- hf_name: deu-afr
- source_languages: deu
- target_languages: afr
- opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/deu-afr/README.md
- original_repo: Tatoeba-Challenge
- tags: ['translation']
- languages: ['de', 'af']
- src_constituents: {'deu'}
- tgt_constituents: {'afr'}
- src_multilingual: False
- tgt_multilingual: False
- prepro: normalization + SentencePiece (spm32k,spm32k)
- url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/deu-afr/opus-2020-06-17.zip
- url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/deu-afr/opus-2020-06-17.test.txt
- src_alpha3: deu
- tgt_alpha3: afr
- short_pair: de-af
- chrF2_score: 0.69
- bleu: 51.3
- brevity_penalty: 1.0
- ref_len: 9507.0
- src_name: German
- tgt_name: Afrikaans
- train_date: 2020-06-17
- src_alpha2: de
- tgt_alpha2: af
- prefer_old: False
- long_pair: deu-afr
- helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535
- transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b
- port_machine: brutasse
- port_time: 2020-08-21-14:41 |
Helsinki-NLP/opus-mt-de-ZH | Helsinki-NLP | 2023-08-16T11:27:28Z | 379 | 2 | transformers | [
"transformers",
"pytorch",
"tf",
"marian",
"text2text-generation",
"translation",
"de",
"zh",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2022-03-02T23:29:04Z | ---
tags:
- translation
license: apache-2.0
---
### opus-mt-de-ZH
* source languages: de
* target languages: cmn,cn,yue,ze_zh,zh_cn,zh_CN,zh_HK,zh_tw,zh_TW,zh_yue,zhs,zht,zh
* OPUS readme: [de-cmn+cn+yue+ze_zh+zh_cn+zh_CN+zh_HK+zh_tw+zh_TW+zh_yue+zhs+zht+zh](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/de-cmn+cn+yue+ze_zh+zh_cn+zh_CN+zh_HK+zh_tw+zh_TW+zh_yue+zhs+zht+zh/README.md)
* dataset: opus
* model: transformer-align
* pre-processing: normalization + SentencePiece
* a sentence initial language token is required in the form of `>>id<<` (id = valid target language ID)
* download original weights: [opus-2020-01-20.zip](https://object.pouta.csc.fi/OPUS-MT-models/de-cmn+cn+yue+ze_zh+zh_cn+zh_CN+zh_HK+zh_tw+zh_TW+zh_yue+zhs+zht+zh/opus-2020-01-20.zip)
* test set translations: [opus-2020-01-20.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/de-cmn+cn+yue+ze_zh+zh_cn+zh_CN+zh_HK+zh_tw+zh_TW+zh_yue+zhs+zht+zh/opus-2020-01-20.test.txt)
* test set scores: [opus-2020-01-20.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/de-cmn+cn+yue+ze_zh+zh_cn+zh_CN+zh_HK+zh_tw+zh_TW+zh_yue+zhs+zht+zh/opus-2020-01-20.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| bible-uedin.de.zh | 24.4 | 0.335 |
|
Nextcloud-AI/opus-mt-de-zh | Nextcloud-AI | 2023-08-16T11:27:28Z | 106 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"marian",
"text2text-generation",
"translation",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2024-02-23T10:38:53Z | ---
tags:
- translation
license: apache-2.0
---
### opus-mt-de-ZH
* source languages: de
* target languages: cmn,cn,yue,ze_zh,zh_cn,zh_CN,zh_HK,zh_tw,zh_TW,zh_yue,zhs,zht,zh
* OPUS readme: [de-cmn+cn+yue+ze_zh+zh_cn+zh_CN+zh_HK+zh_tw+zh_TW+zh_yue+zhs+zht+zh](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/de-cmn+cn+yue+ze_zh+zh_cn+zh_CN+zh_HK+zh_tw+zh_TW+zh_yue+zhs+zht+zh/README.md)
* dataset: opus
* model: transformer-align
* pre-processing: normalization + SentencePiece
* a sentence initial language token is required in the form of `>>id<<` (id = valid target language ID)
* download original weights: [opus-2020-01-20.zip](https://object.pouta.csc.fi/OPUS-MT-models/de-cmn+cn+yue+ze_zh+zh_cn+zh_CN+zh_HK+zh_tw+zh_TW+zh_yue+zhs+zht+zh/opus-2020-01-20.zip)
* test set translations: [opus-2020-01-20.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/de-cmn+cn+yue+ze_zh+zh_cn+zh_CN+zh_HK+zh_tw+zh_TW+zh_yue+zhs+zht+zh/opus-2020-01-20.test.txt)
* test set scores: [opus-2020-01-20.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/de-cmn+cn+yue+ze_zh+zh_cn+zh_CN+zh_HK+zh_tw+zh_TW+zh_yue+zhs+zht+zh/opus-2020-01-20.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| bible-uedin.de.zh | 24.4 | 0.335 |
|
Helsinki-NLP/opus-mt-da-fi | Helsinki-NLP | 2023-08-16T11:27:24Z | 315 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"marian",
"text2text-generation",
"translation",
"da",
"fi",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2022-03-02T23:29:04Z | ---
tags:
- translation
license: apache-2.0
---
### opus-mt-da-fi
* source languages: da
* target languages: fi
* OPUS readme: [da-fi](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/da-fi/README.md)
* dataset: opus
* model: transformer-align
* pre-processing: normalization + SentencePiece
* download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/da-fi/opus-2020-01-08.zip)
* test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/da-fi/opus-2020-01-08.test.txt)
* test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/da-fi/opus-2020-01-08.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| Tatoeba.da.fi | 39.0 | 0.629 |
|
Helsinki-NLP/opus-mt-da-eo | Helsinki-NLP | 2023-08-16T11:27:22Z | 108 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"marian",
"text2text-generation",
"translation",
"da",
"eo",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2022-03-02T23:29:04Z | ---
language:
- da
- eo
tags:
- translation
license: apache-2.0
---
### dan-epo
* source group: Danish
* target group: Esperanto
* OPUS readme: [dan-epo](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/dan-epo/README.md)
* model: transformer-align
* source language(s): dan
* target language(s): epo
* model: transformer-align
* pre-processing: normalization + SentencePiece (spm4k,spm4k)
* download original weights: [opus-2020-06-16.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/dan-epo/opus-2020-06-16.zip)
* test set translations: [opus-2020-06-16.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/dan-epo/opus-2020-06-16.test.txt)
* test set scores: [opus-2020-06-16.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/dan-epo/opus-2020-06-16.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| Tatoeba-test.dan.epo | 23.6 | 0.432 |
### System Info:
- hf_name: dan-epo
- source_languages: dan
- target_languages: epo
- opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/dan-epo/README.md
- original_repo: Tatoeba-Challenge
- tags: ['translation']
- languages: ['da', 'eo']
- src_constituents: {'dan'}
- tgt_constituents: {'epo'}
- src_multilingual: False
- tgt_multilingual: False
- prepro: normalization + SentencePiece (spm4k,spm4k)
- url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/dan-epo/opus-2020-06-16.zip
- url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/dan-epo/opus-2020-06-16.test.txt
- src_alpha3: dan
- tgt_alpha3: epo
- short_pair: da-eo
- chrF2_score: 0.43200000000000005
- bleu: 23.6
- brevity_penalty: 0.9420000000000001
- ref_len: 69856.0
- src_name: Danish
- tgt_name: Esperanto
- train_date: 2020-06-16
- src_alpha2: da
- tgt_alpha2: eo
- prefer_old: False
- long_pair: dan-epo
- helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535
- transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b
- port_machine: brutasse
- port_time: 2020-08-21-14:41 |
Helsinki-NLP/opus-mt-da-de | Helsinki-NLP | 2023-08-16T11:27:20Z | 16,695 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"marian",
"text2text-generation",
"translation",
"da",
"de",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2022-03-02T23:29:04Z | ---
tags:
- translation
license: apache-2.0
---
### opus-mt-da-de
* source languages: da
* target languages: de
* OPUS readme: [da-de](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/da-de/README.md)
* dataset: opus
* model: transformer-align
* pre-processing: normalization + SentencePiece
* download original weights: [opus-2020-01-26.zip](https://object.pouta.csc.fi/OPUS-MT-models/da-de/opus-2020-01-26.zip)
* test set translations: [opus-2020-01-26.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/da-de/opus-2020-01-26.test.txt)
* test set scores: [opus-2020-01-26.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/da-de/opus-2020-01-26.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| Tatoeba.da.de | 57.4 | 0.740 |
|
Helsinki-NLP/opus-mt-cy-en | Helsinki-NLP | 2023-08-16T11:27:19Z | 4,822 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"marian",
"text2text-generation",
"translation",
"cy",
"en",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2022-03-02T23:29:04Z | ---
tags:
- translation
license: apache-2.0
---
### opus-mt-cy-en
* source languages: cy
* target languages: en
* OPUS readme: [cy-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/cy-en/README.md)
* dataset: opus
* model: transformer-align
* pre-processing: normalization + SentencePiece
* download original weights: [opus-2019-12-18.zip](https://object.pouta.csc.fi/OPUS-MT-models/cy-en/opus-2019-12-18.zip)
* test set translations: [opus-2019-12-18.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/cy-en/opus-2019-12-18.test.txt)
* test set scores: [opus-2019-12-18.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/cy-en/opus-2019-12-18.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| Tatoeba.cy.en | 33.0 | 0.525 |
|
Helsinki-NLP/opus-mt-csg-es | Helsinki-NLP | 2023-08-16T11:27:15Z | 117 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"marian",
"text2text-generation",
"translation",
"csg",
"es",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2022-03-02T23:29:04Z | ---
tags:
- translation
license: apache-2.0
---
### opus-mt-csg-es
* source languages: csg
* target languages: es
* OPUS readme: [csg-es](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/csg-es/README.md)
* dataset: opus
* model: transformer-align
* pre-processing: normalization + SentencePiece
* download original weights: [opus-2020-01-15.zip](https://object.pouta.csc.fi/OPUS-MT-models/csg-es/opus-2020-01-15.zip)
* test set translations: [opus-2020-01-15.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/csg-es/opus-2020-01-15.test.txt)
* test set scores: [opus-2020-01-15.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/csg-es/opus-2020-01-15.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| JW300.csg.es | 93.1 | 0.952 |
|
Helsinki-NLP/opus-mt-cs-uk | Helsinki-NLP | 2023-08-16T11:27:14Z | 119 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"marian",
"text2text-generation",
"translation",
"cs",
"uk",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2022-03-02T23:29:04Z | ---
language:
- cs
- uk
tags:
- translation
license: apache-2.0
---
### ces-ukr
* source group: Czech
* target group: Ukrainian
* OPUS readme: [ces-ukr](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ces-ukr/README.md)
* model: transformer-align
* source language(s): ces
* target language(s): ukr
* model: transformer-align
* pre-processing: normalization + SentencePiece (spm32k,spm32k)
* download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/ces-ukr/opus-2020-06-17.zip)
* test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ces-ukr/opus-2020-06-17.test.txt)
* test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ces-ukr/opus-2020-06-17.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| Tatoeba-test.ces.ukr | 50.9 | 0.680 |
### System Info:
- hf_name: ces-ukr
- source_languages: ces
- target_languages: ukr
- opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ces-ukr/README.md
- original_repo: Tatoeba-Challenge
- tags: ['translation']
- languages: ['cs', 'uk']
- src_constituents: {'ces'}
- tgt_constituents: {'ukr'}
- src_multilingual: False
- tgt_multilingual: False
- prepro: normalization + SentencePiece (spm32k,spm32k)
- url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/ces-ukr/opus-2020-06-17.zip
- url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/ces-ukr/opus-2020-06-17.test.txt
- src_alpha3: ces
- tgt_alpha3: ukr
- short_pair: cs-uk
- chrF2_score: 0.68
- bleu: 50.9
- brevity_penalty: 0.9940000000000001
- ref_len: 8891.0
- src_name: Czech
- tgt_name: Ukrainian
- train_date: 2020-06-17
- src_alpha2: cs
- tgt_alpha2: uk
- prefer_old: False
- long_pair: ces-ukr
- helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535
- transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b
- port_machine: brutasse
- port_time: 2020-08-21-14:41 |
Helsinki-NLP/opus-mt-cs-fr | Helsinki-NLP | 2023-08-16T11:27:12Z | 124 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"marian",
"text2text-generation",
"translation",
"cs",
"fr",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2022-03-02T23:29:04Z | ---
tags:
- translation
license: apache-2.0
---
### opus-mt-cs-fr
* source languages: cs
* target languages: fr
* OPUS readme: [cs-fr](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/cs-fr/README.md)
* dataset: opus
* model: transformer-align
* pre-processing: normalization + SentencePiece
* download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/cs-fr/opus-2020-01-08.zip)
* test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/cs-fr/opus-2020-01-08.test.txt)
* test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/cs-fr/opus-2020-01-08.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| GlobalVoices.cs.fr | 21.0 | 0.488 |
|
Helsinki-NLP/opus-mt-cs-fi | Helsinki-NLP | 2023-08-16T11:27:11Z | 117 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"marian",
"text2text-generation",
"translation",
"cs",
"fi",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2022-03-02T23:29:04Z | ---
tags:
- translation
license: apache-2.0
---
### opus-mt-cs-fi
* source languages: cs
* target languages: fi
* OPUS readme: [cs-fi](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/cs-fi/README.md)
* dataset: opus
* model: transformer-align
* pre-processing: normalization + SentencePiece
* download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/cs-fi/opus-2020-01-08.zip)
* test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/cs-fi/opus-2020-01-08.test.txt)
* test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/cs-fi/opus-2020-01-08.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| JW300.cs.fi | 25.5 | 0.523 |
|
Helsinki-NLP/opus-mt-cs-eo | Helsinki-NLP | 2023-08-16T11:27:10Z | 111 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"marian",
"text2text-generation",
"translation",
"cs",
"eo",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2022-03-02T23:29:04Z | ---
language:
- cs
- eo
tags:
- translation
license: apache-2.0
---
### ces-epo
* source group: Czech
* target group: Esperanto
* OPUS readme: [ces-epo](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ces-epo/README.md)
* model: transformer-align
* source language(s): ces
* target language(s): epo
* model: transformer-align
* pre-processing: normalization + SentencePiece (spm4k,spm4k)
* download original weights: [opus-2020-06-16.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/ces-epo/opus-2020-06-16.zip)
* test set translations: [opus-2020-06-16.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ces-epo/opus-2020-06-16.test.txt)
* test set scores: [opus-2020-06-16.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ces-epo/opus-2020-06-16.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| Tatoeba-test.ces.epo | 26.0 | 0.459 |
### System Info:
- hf_name: ces-epo
- source_languages: ces
- target_languages: epo
- opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ces-epo/README.md
- original_repo: Tatoeba-Challenge
- tags: ['translation']
- languages: ['cs', 'eo']
- src_constituents: {'ces'}
- tgt_constituents: {'epo'}
- src_multilingual: False
- tgt_multilingual: False
- prepro: normalization + SentencePiece (spm4k,spm4k)
- url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/ces-epo/opus-2020-06-16.zip
- url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/ces-epo/opus-2020-06-16.test.txt
- src_alpha3: ces
- tgt_alpha3: epo
- short_pair: cs-eo
- chrF2_score: 0.45899999999999996
- bleu: 26.0
- brevity_penalty: 0.94
- ref_len: 24901.0
- src_name: Czech
- tgt_name: Esperanto
- train_date: 2020-06-16
- src_alpha2: cs
- tgt_alpha2: eo
- prefer_old: False
- long_pair: ces-epo
- helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535
- transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b
- port_machine: brutasse
- port_time: 2020-08-21-14:41 |
Helsinki-NLP/opus-mt-crs-fr | Helsinki-NLP | 2023-08-16T11:27:06Z | 111 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"marian",
"text2text-generation",
"translation",
"crs",
"fr",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2022-03-02T23:29:04Z | ---
tags:
- translation
license: apache-2.0
---
### opus-mt-crs-fr
* source languages: crs
* target languages: fr
* OPUS readme: [crs-fr](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/crs-fr/README.md)
* dataset: opus
* model: transformer-align
* pre-processing: normalization + SentencePiece
* download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/crs-fr/opus-2020-01-08.zip)
* test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/crs-fr/opus-2020-01-08.test.txt)
* test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/crs-fr/opus-2020-01-08.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| JW300.crs.fr | 29.4 | 0.475 |
|
Helsinki-NLP/opus-mt-crs-fi | Helsinki-NLP | 2023-08-16T11:27:05Z | 119 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"marian",
"text2text-generation",
"translation",
"crs",
"fi",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2022-03-02T23:29:04Z | ---
tags:
- translation
license: apache-2.0
---
### opus-mt-crs-fi
* source languages: crs
* target languages: fi
* OPUS readme: [crs-fi](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/crs-fi/README.md)
* dataset: opus
* model: transformer-align
* pre-processing: normalization + SentencePiece
* download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/crs-fi/opus-2020-01-08.zip)
* test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/crs-fi/opus-2020-01-08.test.txt)
* test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/crs-fi/opus-2020-01-08.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| JW300.crs.fi | 25.6 | 0.479 |
|
Helsinki-NLP/opus-mt-crs-de | Helsinki-NLP | 2023-08-16T11:27:02Z | 112 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"marian",
"text2text-generation",
"translation",
"crs",
"de",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2022-03-02T23:29:04Z | ---
tags:
- translation
license: apache-2.0
---
### opus-mt-crs-de
* source languages: crs
* target languages: de
* OPUS readme: [crs-de](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/crs-de/README.md)
* dataset: opus
* model: transformer-align
* pre-processing: normalization + SentencePiece
* download original weights: [opus-2020-01-20.zip](https://object.pouta.csc.fi/OPUS-MT-models/crs-de/opus-2020-01-20.zip)
* test set translations: [opus-2020-01-20.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/crs-de/opus-2020-01-20.test.txt)
* test set scores: [opus-2020-01-20.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/crs-de/opus-2020-01-20.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| JW300.crs.de | 20.4 | 0.397 |
|
Helsinki-NLP/opus-mt-cpf-en | Helsinki-NLP | 2023-08-16T11:26:59Z | 112 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"marian",
"text2text-generation",
"translation",
"ht",
"cpf",
"en",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2022-03-02T23:29:04Z | ---
language:
- ht
- cpf
- en
tags:
- translation
license: apache-2.0
---
### cpf-eng
* source group: Creoles and pidgins, French‑based
* target group: English
* OPUS readme: [cpf-eng](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/cpf-eng/README.md)
* model: transformer
* source language(s): gcf_Latn hat mfe
* target language(s): eng
* model: transformer
* pre-processing: normalization + SentencePiece (spm32k,spm32k)
* download original weights: [opus2m-2020-07-31.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/cpf-eng/opus2m-2020-07-31.zip)
* test set translations: [opus2m-2020-07-31.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/cpf-eng/opus2m-2020-07-31.test.txt)
* test set scores: [opus2m-2020-07-31.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/cpf-eng/opus2m-2020-07-31.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| Tatoeba-test.gcf-eng.gcf.eng | 8.4 | 0.229 |
| Tatoeba-test.hat-eng.hat.eng | 28.0 | 0.421 |
| Tatoeba-test.mfe-eng.mfe.eng | 66.0 | 0.808 |
| Tatoeba-test.multi.eng | 16.3 | 0.323 |
### System Info:
- hf_name: cpf-eng
- source_languages: cpf
- target_languages: eng
- opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/cpf-eng/README.md
- original_repo: Tatoeba-Challenge
- tags: ['translation']
- languages: ['ht', 'cpf', 'en']
- src_constituents: {'gcf_Latn', 'hat', 'mfe'}
- tgt_constituents: {'eng'}
- src_multilingual: True
- tgt_multilingual: False
- prepro: normalization + SentencePiece (spm32k,spm32k)
- url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/cpf-eng/opus2m-2020-07-31.zip
- url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/cpf-eng/opus2m-2020-07-31.test.txt
- src_alpha3: cpf
- tgt_alpha3: eng
- short_pair: cpf-en
- chrF2_score: 0.32299999999999995
- bleu: 16.3
- brevity_penalty: 1.0
- ref_len: 990.0
- src_name: Creoles and pidgins, French‑based
- tgt_name: English
- train_date: 2020-07-31
- src_alpha2: cpf
- tgt_alpha2: en
- prefer_old: False
- long_pair: cpf-eng
- helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535
- transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b
- port_machine: brutasse
- port_time: 2020-08-21-14:41 |
Helsinki-NLP/opus-mt-chk-sv | Helsinki-NLP | 2023-08-16T11:26:58Z | 112 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"marian",
"text2text-generation",
"translation",
"chk",
"sv",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2022-03-02T23:29:04Z | ---
tags:
- translation
license: apache-2.0
---
### opus-mt-chk-sv
* source languages: chk
* target languages: sv
* OPUS readme: [chk-sv](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/chk-sv/README.md)
* dataset: opus
* model: transformer-align
* pre-processing: normalization + SentencePiece
* download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/chk-sv/opus-2020-01-08.zip)
* test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/chk-sv/opus-2020-01-08.test.txt)
* test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/chk-sv/opus-2020-01-08.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| JW300.chk.sv | 23.6 | 0.406 |
|
Helsinki-NLP/opus-mt-ceb-sv | Helsinki-NLP | 2023-08-16T11:26:53Z | 111 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"marian",
"text2text-generation",
"translation",
"ceb",
"sv",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2022-03-02T23:29:04Z | ---
tags:
- translation
license: apache-2.0
---
### opus-mt-ceb-sv
* source languages: ceb
* target languages: sv
* OPUS readme: [ceb-sv](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/ceb-sv/README.md)
* dataset: opus
* model: transformer-align
* pre-processing: normalization + SentencePiece
* download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/ceb-sv/opus-2020-01-08.zip)
* test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/ceb-sv/opus-2020-01-08.test.txt)
* test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/ceb-sv/opus-2020-01-08.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| JW300.ceb.sv | 35.5 | 0.552 |
|
Helsinki-NLP/opus-mt-ceb-es | Helsinki-NLP | 2023-08-16T11:26:50Z | 111 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"marian",
"text2text-generation",
"translation",
"ceb",
"es",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2022-03-02T23:29:04Z | ---
tags:
- translation
license: apache-2.0
---
### opus-mt-ceb-es
* source languages: ceb
* target languages: es
* OPUS readme: [ceb-es](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/ceb-es/README.md)
* dataset: opus
* model: transformer-align
* pre-processing: normalization + SentencePiece
* download original weights: [opus-2020-01-15.zip](https://object.pouta.csc.fi/OPUS-MT-models/ceb-es/opus-2020-01-15.zip)
* test set translations: [opus-2020-01-15.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/ceb-es/opus-2020-01-15.test.txt)
* test set scores: [opus-2020-01-15.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/ceb-es/opus-2020-01-15.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| JW300.ceb.es | 31.6 | 0.508 |
|
Helsinki-NLP/opus-mt-ceb-en | Helsinki-NLP | 2023-08-16T11:26:49Z | 1,276 | 1 | transformers | [
"transformers",
"pytorch",
"tf",
"marian",
"text2text-generation",
"translation",
"ceb",
"en",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2022-03-02T23:29:04Z | ---
language:
- ceb
- en
tags:
- translation
license: apache-2.0
---
### ceb-eng
* source group: Cebuano
* target group: English
* OPUS readme: [ceb-eng](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ceb-eng/README.md)
* model: transformer-align
* source language(s): ceb
* target language(s): eng
* model: transformer-align
* pre-processing: normalization + SentencePiece (spm32k,spm32k)
* download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/ceb-eng/opus-2020-06-17.zip)
* test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ceb-eng/opus-2020-06-17.test.txt)
* test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ceb-eng/opus-2020-06-17.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| Tatoeba-test.ceb.eng | 21.5 | 0.387 |
### System Info:
- hf_name: ceb-eng
- source_languages: ceb
- target_languages: eng
- opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ceb-eng/README.md
- original_repo: Tatoeba-Challenge
- tags: ['translation']
- languages: ['ceb', 'en']
- src_constituents: {'ceb'}
- tgt_constituents: {'eng'}
- src_multilingual: False
- tgt_multilingual: False
- prepro: normalization + SentencePiece (spm32k,spm32k)
- url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/ceb-eng/opus-2020-06-17.zip
- url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/ceb-eng/opus-2020-06-17.test.txt
- src_alpha3: ceb
- tgt_alpha3: eng
- short_pair: ceb-en
- chrF2_score: 0.387
- bleu: 21.5
- brevity_penalty: 1.0
- ref_len: 2293.0
- src_name: Cebuano
- tgt_name: English
- train_date: 2020-06-17
- src_alpha2: ceb
- tgt_alpha2: en
- prefer_old: False
- long_pair: ceb-eng
- helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535
- transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b
- port_machine: brutasse
- port_time: 2020-08-21-14:41 |
Helsinki-NLP/opus-mt-cau-en | Helsinki-NLP | 2023-08-16T11:26:47Z | 119 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"marian",
"text2text-generation",
"translation",
"ab",
"ka",
"ce",
"cau",
"en",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2022-03-02T23:29:04Z | ---
language:
- ab
- ka
- ce
- cau
- en
tags:
- translation
license: apache-2.0
---
### cau-eng
* source group: Caucasian languages
* target group: English
* OPUS readme: [cau-eng](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/cau-eng/README.md)
* model: transformer
* source language(s): abk ady che kat
* target language(s): eng
* model: transformer
* pre-processing: normalization + SentencePiece (spm32k,spm32k)
* download original weights: [opus2m-2020-07-31.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/cau-eng/opus2m-2020-07-31.zip)
* test set translations: [opus2m-2020-07-31.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/cau-eng/opus2m-2020-07-31.test.txt)
* test set scores: [opus2m-2020-07-31.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/cau-eng/opus2m-2020-07-31.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| Tatoeba-test.abk-eng.abk.eng | 0.3 | 0.134 |
| Tatoeba-test.ady-eng.ady.eng | 0.4 | 0.104 |
| Tatoeba-test.che-eng.che.eng | 0.6 | 0.128 |
| Tatoeba-test.kat-eng.kat.eng | 18.6 | 0.366 |
| Tatoeba-test.multi.eng | 16.6 | 0.351 |
### System Info:
- hf_name: cau-eng
- source_languages: cau
- target_languages: eng
- opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/cau-eng/README.md
- original_repo: Tatoeba-Challenge
- tags: ['translation']
- languages: ['ab', 'ka', 'ce', 'cau', 'en']
- src_constituents: {'abk', 'kat', 'che', 'ady'}
- tgt_constituents: {'eng'}
- src_multilingual: True
- tgt_multilingual: False
- prepro: normalization + SentencePiece (spm32k,spm32k)
- url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/cau-eng/opus2m-2020-07-31.zip
- url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/cau-eng/opus2m-2020-07-31.test.txt
- src_alpha3: cau
- tgt_alpha3: eng
- short_pair: cau-en
- chrF2_score: 0.35100000000000003
- bleu: 16.6
- brevity_penalty: 1.0
- ref_len: 6285.0
- src_name: Caucasian languages
- tgt_name: English
- train_date: 2020-07-31
- src_alpha2: cau
- tgt_alpha2: en
- prefer_old: False
- long_pair: cau-eng
- helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535
- transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b
- port_machine: brutasse
- port_time: 2020-08-21-14:41 |
Helsinki-NLP/opus-mt-ca-uk | Helsinki-NLP | 2023-08-16T11:26:46Z | 145 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"marian",
"text2text-generation",
"translation",
"ca",
"uk",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2022-03-02T23:29:04Z | ---
language:
- ca
- uk
tags:
- translation
license: apache-2.0
---
### cat-ukr
* source group: Catalan
* target group: Ukrainian
* OPUS readme: [cat-ukr](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/cat-ukr/README.md)
* model: transformer-align
* source language(s): cat
* target language(s): ukr
* model: transformer-align
* pre-processing: normalization + SentencePiece (spm4k,spm4k)
* download original weights: [opus-2020-06-16.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/cat-ukr/opus-2020-06-16.zip)
* test set translations: [opus-2020-06-16.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/cat-ukr/opus-2020-06-16.test.txt)
* test set scores: [opus-2020-06-16.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/cat-ukr/opus-2020-06-16.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| Tatoeba-test.cat.ukr | 28.6 | 0.503 |
### System Info:
- hf_name: cat-ukr
- source_languages: cat
- target_languages: ukr
- opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/cat-ukr/README.md
- original_repo: Tatoeba-Challenge
- tags: ['translation']
- languages: ['ca', 'uk']
- src_constituents: {'cat'}
- tgt_constituents: {'ukr'}
- src_multilingual: False
- tgt_multilingual: False
- prepro: normalization + SentencePiece (spm4k,spm4k)
- url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/cat-ukr/opus-2020-06-16.zip
- url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/cat-ukr/opus-2020-06-16.test.txt
- src_alpha3: cat
- tgt_alpha3: ukr
- short_pair: ca-uk
- chrF2_score: 0.503
- bleu: 28.6
- brevity_penalty: 0.9670000000000001
- ref_len: 2438.0
- src_name: Catalan
- tgt_name: Ukrainian
- train_date: 2020-06-16
- src_alpha2: ca
- tgt_alpha2: uk
- prefer_old: False
- long_pair: cat-ukr
- helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535
- transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b
- port_machine: brutasse
- port_time: 2020-08-21-14:41 |
Helsinki-NLP/opus-mt-ca-pt | Helsinki-NLP | 2023-08-16T11:26:45Z | 132 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"marian",
"text2text-generation",
"translation",
"ca",
"pt",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2022-03-02T23:29:04Z | ---
language:
- ca
- pt
tags:
- translation
license: apache-2.0
---
### cat-por
* source group: Catalan
* target group: Portuguese
* OPUS readme: [cat-por](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/cat-por/README.md)
* model: transformer-align
* source language(s): cat
* target language(s): por
* model: transformer-align
* pre-processing: normalization + SentencePiece (spm12k,spm12k)
* download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/cat-por/opus-2020-06-17.zip)
* test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/cat-por/opus-2020-06-17.test.txt)
* test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/cat-por/opus-2020-06-17.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| Tatoeba-test.cat.por | 44.9 | 0.658 |
### System Info:
- hf_name: cat-por
- source_languages: cat
- target_languages: por
- opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/cat-por/README.md
- original_repo: Tatoeba-Challenge
- tags: ['translation']
- languages: ['ca', 'pt']
- src_constituents: {'cat'}
- tgt_constituents: {'por'}
- src_multilingual: False
- tgt_multilingual: False
- prepro: normalization + SentencePiece (spm12k,spm12k)
- url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/cat-por/opus-2020-06-17.zip
- url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/cat-por/opus-2020-06-17.test.txt
- src_alpha3: cat
- tgt_alpha3: por
- short_pair: ca-pt
- chrF2_score: 0.6579999999999999
- bleu: 44.9
- brevity_penalty: 0.953
- ref_len: 5847.0
- src_name: Catalan
- tgt_name: Portuguese
- train_date: 2020-06-17
- src_alpha2: ca
- tgt_alpha2: pt
- prefer_old: False
- long_pair: cat-por
- helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535
- transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b
- port_machine: brutasse
- port_time: 2020-08-21-14:41 |
Helsinki-NLP/opus-mt-ca-es | Helsinki-NLP | 2023-08-16T11:26:40Z | 832 | 1 | transformers | [
"transformers",
"pytorch",
"tf",
"marian",
"text2text-generation",
"translation",
"ca",
"es",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2022-03-02T23:29:04Z | ---
tags:
- translation
license: apache-2.0
---
### opus-mt-ca-es
* source languages: ca
* target languages: es
* OPUS readme: [ca-es](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/ca-es/README.md)
* dataset: opus
* model: transformer-align
* pre-processing: normalization + SentencePiece
* download original weights: [opus-2020-01-15.zip](https://object.pouta.csc.fi/OPUS-MT-models/ca-es/opus-2020-01-15.zip)
* test set translations: [opus-2020-01-15.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/ca-es/opus-2020-01-15.test.txt)
* test set scores: [opus-2020-01-15.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/ca-es/opus-2020-01-15.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| Tatoeba.ca.es | 74.9 | 0.863 |
|
Helsinki-NLP/opus-mt-ca-en | Helsinki-NLP | 2023-08-16T11:26:39Z | 8,325 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"marian",
"text2text-generation",
"translation",
"ca",
"en",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2022-03-02T23:29:04Z | ---
tags:
- translation
license: apache-2.0
---
### opus-mt-ca-en
* source languages: ca
* target languages: en
* OPUS readme: [ca-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/ca-en/README.md)
* dataset: opus
* model: transformer-align
* pre-processing: normalization + SentencePiece
* download original weights: [opus-2019-12-18.zip](https://object.pouta.csc.fi/OPUS-MT-models/ca-en/opus-2019-12-18.zip)
* test set translations: [opus-2019-12-18.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/ca-en/opus-2019-12-18.test.txt)
* test set scores: [opus-2019-12-18.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/ca-en/opus-2019-12-18.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| Tatoeba.ca.en | 51.4 | 0.678 |
|
Helsinki-NLP/opus-mt-bzs-sv | Helsinki-NLP | 2023-08-16T11:26:37Z | 122 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"marian",
"text2text-generation",
"translation",
"bzs",
"sv",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2022-03-02T23:29:04Z | ---
tags:
- translation
license: apache-2.0
---
### opus-mt-bzs-sv
* source languages: bzs
* target languages: sv
* OPUS readme: [bzs-sv](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/bzs-sv/README.md)
* dataset: opus
* model: transformer-align
* pre-processing: normalization + SentencePiece
* download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/bzs-sv/opus-2020-01-08.zip)
* test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/bzs-sv/opus-2020-01-08.test.txt)
* test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/bzs-sv/opus-2020-01-08.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| JW300.bzs.sv | 30.7 | 0.489 |
|
Helsinki-NLP/opus-mt-bzs-en | Helsinki-NLP | 2023-08-16T11:26:32Z | 261 | 1 | transformers | [
"transformers",
"pytorch",
"tf",
"marian",
"text2text-generation",
"translation",
"bzs",
"en",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2022-03-02T23:29:04Z | ---
tags:
- translation
license: apache-2.0
---
### opus-mt-bzs-en
* source languages: bzs
* target languages: en
* OPUS readme: [bzs-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/bzs-en/README.md)
* dataset: opus
* model: transformer-align
* pre-processing: normalization + SentencePiece
* download original weights: [opus-2019-12-18.zip](https://object.pouta.csc.fi/OPUS-MT-models/bzs-en/opus-2019-12-18.zip)
* test set translations: [opus-2019-12-18.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/bzs-en/opus-2019-12-18.test.txt)
* test set scores: [opus-2019-12-18.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/bzs-en/opus-2019-12-18.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| JW300.bzs.en | 44.5 | 0.605 |
|
Helsinki-NLP/opus-mt-bnt-en | Helsinki-NLP | 2023-08-16T11:26:31Z | 198 | 2 | transformers | [
"transformers",
"pytorch",
"tf",
"marian",
"text2text-generation",
"translation",
"sn",
"zu",
"rw",
"lg",
"ts",
"ln",
"ny",
"xh",
"rn",
"bnt",
"en",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2022-03-02T23:29:04Z | ---
language:
- sn
- zu
- rw
- lg
- ts
- ln
- ny
- xh
- rn
- bnt
- en
tags:
- translation
license: apache-2.0
---
### bnt-eng
* source group: Bantu languages
* target group: English
* OPUS readme: [bnt-eng](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/bnt-eng/README.md)
* model: transformer
* source language(s): kin lin lug nya run sna swh toi_Latn tso umb xho zul
* target language(s): eng
* model: transformer
* pre-processing: normalization + SentencePiece (spm32k,spm32k)
* download original weights: [opus2m-2020-07-31.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/bnt-eng/opus2m-2020-07-31.zip)
* test set translations: [opus2m-2020-07-31.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/bnt-eng/opus2m-2020-07-31.test.txt)
* test set scores: [opus2m-2020-07-31.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/bnt-eng/opus2m-2020-07-31.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| Tatoeba-test.kin-eng.kin.eng | 31.7 | 0.481 |
| Tatoeba-test.lin-eng.lin.eng | 8.3 | 0.271 |
| Tatoeba-test.lug-eng.lug.eng | 5.3 | 0.128 |
| Tatoeba-test.multi.eng | 23.1 | 0.394 |
| Tatoeba-test.nya-eng.nya.eng | 38.3 | 0.527 |
| Tatoeba-test.run-eng.run.eng | 26.6 | 0.431 |
| Tatoeba-test.sna-eng.sna.eng | 27.5 | 0.440 |
| Tatoeba-test.swa-eng.swa.eng | 4.6 | 0.195 |
| Tatoeba-test.toi-eng.toi.eng | 16.2 | 0.342 |
| Tatoeba-test.tso-eng.tso.eng | 100.0 | 1.000 |
| Tatoeba-test.umb-eng.umb.eng | 8.4 | 0.231 |
| Tatoeba-test.xho-eng.xho.eng | 37.2 | 0.554 |
| Tatoeba-test.zul-eng.zul.eng | 40.9 | 0.576 |
### System Info:
- hf_name: bnt-eng
- source_languages: bnt
- target_languages: eng
- opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/bnt-eng/README.md
- original_repo: Tatoeba-Challenge
- tags: ['translation']
- languages: ['sn', 'zu', 'rw', 'lg', 'ts', 'ln', 'ny', 'xh', 'rn', 'bnt', 'en']
- src_constituents: {'sna', 'zul', 'kin', 'lug', 'tso', 'lin', 'nya', 'xho', 'swh', 'run', 'toi_Latn', 'umb'}
- tgt_constituents: {'eng'}
- src_multilingual: True
- tgt_multilingual: False
- prepro: normalization + SentencePiece (spm32k,spm32k)
- url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/bnt-eng/opus2m-2020-07-31.zip
- url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/bnt-eng/opus2m-2020-07-31.test.txt
- src_alpha3: bnt
- tgt_alpha3: eng
- short_pair: bnt-en
- chrF2_score: 0.39399999999999996
- bleu: 23.1
- brevity_penalty: 1.0
- ref_len: 14565.0
- src_name: Bantu languages
- tgt_name: English
- train_date: 2020-07-31
- src_alpha2: bnt
- tgt_alpha2: en
- prefer_old: False
- long_pair: bnt-eng
- helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535
- transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b
- port_machine: brutasse
- port_time: 2020-08-21-14:41 |
Helsinki-NLP/opus-mt-bi-fr | Helsinki-NLP | 2023-08-16T11:26:28Z | 109 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"marian",
"text2text-generation",
"translation",
"bi",
"fr",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2022-03-02T23:29:04Z | ---
tags:
- translation
license: apache-2.0
---
### opus-mt-bi-fr
* source languages: bi
* target languages: fr
* OPUS readme: [bi-fr](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/bi-fr/README.md)
* dataset: opus
* model: transformer-align
* pre-processing: normalization + SentencePiece
* download original weights: [opus-2020-01-20.zip](https://object.pouta.csc.fi/OPUS-MT-models/bi-fr/opus-2020-01-20.zip)
* test set translations: [opus-2020-01-20.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/bi-fr/opus-2020-01-20.test.txt)
* test set scores: [opus-2020-01-20.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/bi-fr/opus-2020-01-20.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| JW300.bi.fr | 21.5 | 0.382 |
|
Helsinki-NLP/opus-mt-bi-es | Helsinki-NLP | 2023-08-16T11:26:27Z | 112 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"marian",
"text2text-generation",
"translation",
"bi",
"es",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2022-03-02T23:29:04Z | ---
tags:
- translation
license: apache-2.0
---
### opus-mt-bi-es
* source languages: bi
* target languages: es
* OPUS readme: [bi-es](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/bi-es/README.md)
* dataset: opus
* model: transformer-align
* pre-processing: normalization + SentencePiece
* download original weights: [opus-2020-01-20.zip](https://object.pouta.csc.fi/OPUS-MT-models/bi-es/opus-2020-01-20.zip)
* test set translations: [opus-2020-01-20.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/bi-es/opus-2020-01-20.test.txt)
* test set scores: [opus-2020-01-20.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/bi-es/opus-2020-01-20.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| JW300.bi.es | 21.1 | 0.388 |
|
Helsinki-NLP/opus-mt-bi-en | Helsinki-NLP | 2023-08-16T11:26:26Z | 142 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"marian",
"text2text-generation",
"translation",
"bi",
"en",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2022-03-02T23:29:04Z | ---
tags:
- translation
license: apache-2.0
---
### opus-mt-bi-en
* source languages: bi
* target languages: en
* OPUS readme: [bi-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/bi-en/README.md)
* dataset: opus
* model: transformer-align
* pre-processing: normalization + SentencePiece
* download original weights: [opus-2020-01-20.zip](https://object.pouta.csc.fi/OPUS-MT-models/bi-en/opus-2020-01-20.zip)
* test set translations: [opus-2020-01-20.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/bi-en/opus-2020-01-20.test.txt)
* test set scores: [opus-2020-01-20.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/bi-en/opus-2020-01-20.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| JW300.bi.en | 30.3 | 0.458 |
|
Helsinki-NLP/opus-mt-bg-uk | Helsinki-NLP | 2023-08-16T11:26:25Z | 139 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"marian",
"text2text-generation",
"translation",
"bg",
"uk",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2022-03-02T23:29:04Z | ---
language:
- bg
- uk
tags:
- translation
license: apache-2.0
---
### bul-ukr
* source group: Bulgarian
* target group: Ukrainian
* OPUS readme: [bul-ukr](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/bul-ukr/README.md)
* model: transformer-align
* source language(s): bul
* target language(s): ukr
* model: transformer-align
* pre-processing: normalization + SentencePiece (spm32k,spm32k)
* download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/bul-ukr/opus-2020-06-17.zip)
* test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/bul-ukr/opus-2020-06-17.test.txt)
* test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/bul-ukr/opus-2020-06-17.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| Tatoeba-test.bul.ukr | 49.2 | 0.683 |
### System Info:
- hf_name: bul-ukr
- source_languages: bul
- target_languages: ukr
- opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/bul-ukr/README.md
- original_repo: Tatoeba-Challenge
- tags: ['translation']
- languages: ['bg', 'uk']
- src_constituents: {'bul', 'bul_Latn'}
- tgt_constituents: {'ukr'}
- src_multilingual: False
- tgt_multilingual: False
- prepro: normalization + SentencePiece (spm32k,spm32k)
- url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/bul-ukr/opus-2020-06-17.zip
- url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/bul-ukr/opus-2020-06-17.test.txt
- src_alpha3: bul
- tgt_alpha3: ukr
- short_pair: bg-uk
- chrF2_score: 0.6829999999999999
- bleu: 49.2
- brevity_penalty: 0.983
- ref_len: 4932.0
- src_name: Bulgarian
- tgt_name: Ukrainian
- train_date: 2020-06-17
- src_alpha2: bg
- tgt_alpha2: uk
- prefer_old: False
- long_pair: bul-ukr
- helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535
- transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b
- port_machine: brutasse
- port_time: 2020-08-21-14:41 |
Helsinki-NLP/opus-mt-bg-tr | Helsinki-NLP | 2023-08-16T11:26:23Z | 114 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"marian",
"text2text-generation",
"translation",
"bg",
"tr",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2022-03-02T23:29:04Z | ---
language:
- bg
- tr
tags:
- translation
license: apache-2.0
---
### bul-tur
* source group: Bulgarian
* target group: Turkish
* OPUS readme: [bul-tur](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/bul-tur/README.md)
* model: transformer
* source language(s): bul bul_Latn
* target language(s): tur
* model: transformer
* pre-processing: normalization + SentencePiece (spm32k,spm32k)
* download original weights: [opus-2020-07-03.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/bul-tur/opus-2020-07-03.zip)
* test set translations: [opus-2020-07-03.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/bul-tur/opus-2020-07-03.test.txt)
* test set scores: [opus-2020-07-03.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/bul-tur/opus-2020-07-03.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| Tatoeba-test.bul.tur | 40.9 | 0.687 |
### System Info:
- hf_name: bul-tur
- source_languages: bul
- target_languages: tur
- opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/bul-tur/README.md
- original_repo: Tatoeba-Challenge
- tags: ['translation']
- languages: ['bg', 'tr']
- src_constituents: {'bul', 'bul_Latn'}
- tgt_constituents: {'tur'}
- src_multilingual: False
- tgt_multilingual: False
- prepro: normalization + SentencePiece (spm32k,spm32k)
- url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/bul-tur/opus-2020-07-03.zip
- url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/bul-tur/opus-2020-07-03.test.txt
- src_alpha3: bul
- tgt_alpha3: tur
- short_pair: bg-tr
- chrF2_score: 0.687
- bleu: 40.9
- brevity_penalty: 0.946
- ref_len: 4948.0
- src_name: Bulgarian
- tgt_name: Turkish
- train_date: 2020-07-03
- src_alpha2: bg
- tgt_alpha2: tr
- prefer_old: False
- long_pair: bul-tur
- helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535
- transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b
- port_machine: brutasse
- port_time: 2020-08-21-14:41 |
Helsinki-NLP/opus-mt-bg-sv | Helsinki-NLP | 2023-08-16T11:26:22Z | 119 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"marian",
"text2text-generation",
"translation",
"bg",
"sv",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2022-03-02T23:29:04Z | ---
tags:
- translation
license: apache-2.0
---
### opus-mt-bg-sv
* source languages: bg
* target languages: sv
* OPUS readme: [bg-sv](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/bg-sv/README.md)
* dataset: opus
* model: transformer-align
* pre-processing: normalization + SentencePiece
* download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/bg-sv/opus-2020-01-08.zip)
* test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/bg-sv/opus-2020-01-08.test.txt)
* test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/bg-sv/opus-2020-01-08.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| JW300.bg.sv | 29.1 | 0.494 |
|
Helsinki-NLP/opus-mt-bg-it | Helsinki-NLP | 2023-08-16T11:26:20Z | 115 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"marian",
"text2text-generation",
"translation",
"bg",
"it",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2022-03-02T23:29:04Z | ---
language:
- bg
- it
tags:
- translation
license: apache-2.0
---
### bul-ita
* source group: Bulgarian
* target group: Italian
* OPUS readme: [bul-ita](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/bul-ita/README.md)
* model: transformer
* source language(s): bul
* target language(s): ita
* model: transformer
* pre-processing: normalization + SentencePiece (spm32k,spm32k)
* download original weights: [opus-2020-07-03.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/bul-ita/opus-2020-07-03.zip)
* test set translations: [opus-2020-07-03.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/bul-ita/opus-2020-07-03.test.txt)
* test set scores: [opus-2020-07-03.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/bul-ita/opus-2020-07-03.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| Tatoeba-test.bul.ita | 43.1 | 0.653 |
### System Info:
- hf_name: bul-ita
- source_languages: bul
- target_languages: ita
- opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/bul-ita/README.md
- original_repo: Tatoeba-Challenge
- tags: ['translation']
- languages: ['bg', 'it']
- src_constituents: {'bul', 'bul_Latn'}
- tgt_constituents: {'ita'}
- src_multilingual: False
- tgt_multilingual: False
- prepro: normalization + SentencePiece (spm32k,spm32k)
- url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/bul-ita/opus-2020-07-03.zip
- url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/bul-ita/opus-2020-07-03.test.txt
- src_alpha3: bul
- tgt_alpha3: ita
- short_pair: bg-it
- chrF2_score: 0.653
- bleu: 43.1
- brevity_penalty: 0.987
- ref_len: 16951.0
- src_name: Bulgarian
- tgt_name: Italian
- train_date: 2020-07-03
- src_alpha2: bg
- tgt_alpha2: it
- prefer_old: False
- long_pair: bul-ita
- helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535
- transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b
- port_machine: brutasse
- port_time: 2020-08-21-14:41 |
Helsinki-NLP/opus-mt-bg-fr | Helsinki-NLP | 2023-08-16T11:26:19Z | 160 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"marian",
"text2text-generation",
"translation",
"bg",
"fr",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2022-03-02T23:29:04Z | ---
language:
- bg
- fr
tags:
- translation
license: apache-2.0
---
### bul-fra
* source group: Bulgarian
* target group: French
* OPUS readme: [bul-fra](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/bul-fra/README.md)
* model: transformer
* source language(s): bul
* target language(s): fra
* model: transformer
* pre-processing: normalization + SentencePiece (spm32k,spm32k)
* download original weights: [opus-2020-07-03.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/bul-fra/opus-2020-07-03.zip)
* test set translations: [opus-2020-07-03.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/bul-fra/opus-2020-07-03.test.txt)
* test set scores: [opus-2020-07-03.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/bul-fra/opus-2020-07-03.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| Tatoeba-test.bul.fra | 53.7 | 0.693 |
### System Info:
- hf_name: bul-fra
- source_languages: bul
- target_languages: fra
- opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/bul-fra/README.md
- original_repo: Tatoeba-Challenge
- tags: ['translation']
- languages: ['bg', 'fr']
- src_constituents: {'bul', 'bul_Latn'}
- tgt_constituents: {'fra'}
- src_multilingual: False
- tgt_multilingual: False
- prepro: normalization + SentencePiece (spm32k,spm32k)
- url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/bul-fra/opus-2020-07-03.zip
- url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/bul-fra/opus-2020-07-03.test.txt
- src_alpha3: bul
- tgt_alpha3: fra
- short_pair: bg-fr
- chrF2_score: 0.693
- bleu: 53.7
- brevity_penalty: 0.977
- ref_len: 3669.0
- src_name: Bulgarian
- tgt_name: French
- train_date: 2020-07-03
- src_alpha2: bg
- tgt_alpha2: fr
- prefer_old: False
- long_pair: bul-fra
- helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535
- transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b
- port_machine: brutasse
- port_time: 2020-08-21-14:41 |
Helsinki-NLP/opus-mt-bg-eo | Helsinki-NLP | 2023-08-16T11:26:15Z | 114 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"marian",
"text2text-generation",
"translation",
"bg",
"eo",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2022-03-02T23:29:04Z | ---
language:
- bg
- eo
tags:
- translation
license: apache-2.0
---
### bul-epo
* source group: Bulgarian
* target group: Esperanto
* OPUS readme: [bul-epo](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/bul-epo/README.md)
* model: transformer-align
* source language(s): bul
* target language(s): epo
* model: transformer-align
* pre-processing: normalization + SentencePiece (spm4k,spm4k)
* download original weights: [opus-2020-06-16.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/bul-epo/opus-2020-06-16.zip)
* test set translations: [opus-2020-06-16.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/bul-epo/opus-2020-06-16.test.txt)
* test set scores: [opus-2020-06-16.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/bul-epo/opus-2020-06-16.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| Tatoeba-test.bul.epo | 24.5 | 0.438 |
### System Info:
- hf_name: bul-epo
- source_languages: bul
- target_languages: epo
- opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/bul-epo/README.md
- original_repo: Tatoeba-Challenge
- tags: ['translation']
- languages: ['bg', 'eo']
- src_constituents: {'bul', 'bul_Latn'}
- tgt_constituents: {'epo'}
- src_multilingual: False
- tgt_multilingual: False
- prepro: normalization + SentencePiece (spm4k,spm4k)
- url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/bul-epo/opus-2020-06-16.zip
- url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/bul-epo/opus-2020-06-16.test.txt
- src_alpha3: bul
- tgt_alpha3: epo
- short_pair: bg-eo
- chrF2_score: 0.43799999999999994
- bleu: 24.5
- brevity_penalty: 0.9670000000000001
- ref_len: 4043.0
- src_name: Bulgarian
- tgt_name: Esperanto
- train_date: 2020-06-16
- src_alpha2: bg
- tgt_alpha2: eo
- prefer_old: False
- long_pair: bul-epo
- helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535
- transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b
- port_machine: brutasse
- port_time: 2020-08-21-14:41 |
Helsinki-NLP/opus-mt-bg-de | Helsinki-NLP | 2023-08-16T11:26:13Z | 123 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"marian",
"text2text-generation",
"translation",
"bg",
"de",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2022-03-02T23:29:04Z | ---
language:
- bg
- de
tags:
- translation
license: apache-2.0
---
### bul-deu
* source group: Bulgarian
* target group: German
* OPUS readme: [bul-deu](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/bul-deu/README.md)
* model: transformer
* source language(s): bul
* target language(s): deu
* model: transformer
* pre-processing: normalization + SentencePiece (spm32k,spm32k)
* download original weights: [opus-2020-07-03.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/bul-deu/opus-2020-07-03.zip)
* test set translations: [opus-2020-07-03.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/bul-deu/opus-2020-07-03.test.txt)
* test set scores: [opus-2020-07-03.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/bul-deu/opus-2020-07-03.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| Tatoeba-test.bul.deu | 49.3 | 0.676 |
### System Info:
- hf_name: bul-deu
- source_languages: bul
- target_languages: deu
- opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/bul-deu/README.md
- original_repo: Tatoeba-Challenge
- tags: ['translation']
- languages: ['bg', 'de']
- src_constituents: {'bul', 'bul_Latn'}
- tgt_constituents: {'deu'}
- src_multilingual: False
- tgt_multilingual: False
- prepro: normalization + SentencePiece (spm32k,spm32k)
- url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/bul-deu/opus-2020-07-03.zip
- url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/bul-deu/opus-2020-07-03.test.txt
- src_alpha3: bul
- tgt_alpha3: deu
- short_pair: bg-de
- chrF2_score: 0.6759999999999999
- bleu: 49.3
- brevity_penalty: 1.0
- ref_len: 2218.0
- src_name: Bulgarian
- tgt_name: German
- train_date: 2020-07-03
- src_alpha2: bg
- tgt_alpha2: de
- prefer_old: False
- long_pair: bul-deu
- helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535
- transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b
- port_machine: brutasse
- port_time: 2020-08-21-14:41 |
Helsinki-NLP/opus-mt-ber-fr | Helsinki-NLP | 2023-08-16T11:26:12Z | 133 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"marian",
"text2text-generation",
"translation",
"ber",
"fr",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2022-03-02T23:29:04Z | ---
tags:
- translation
license: apache-2.0
---
### opus-mt-ber-fr
* source languages: ber
* target languages: fr
* OPUS readme: [ber-fr](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/ber-fr/README.md)
* dataset: opus
* model: transformer-align
* pre-processing: normalization + SentencePiece
* download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/ber-fr/opus-2020-01-08.zip)
* test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/ber-fr/opus-2020-01-08.test.txt)
* test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/ber-fr/opus-2020-01-08.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| Tatoeba.ber.fr | 60.2 | 0.754 |
|
Helsinki-NLP/opus-mt-ber-es | Helsinki-NLP | 2023-08-16T11:26:11Z | 119 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"marian",
"text2text-generation",
"translation",
"ber",
"es",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2022-03-02T23:29:04Z | ---
tags:
- translation
license: apache-2.0
---
### opus-mt-ber-es
* source languages: ber
* target languages: es
* OPUS readme: [ber-es](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/ber-es/README.md)
* dataset: opus
* model: transformer-align
* pre-processing: normalization + SentencePiece
* download original weights: [opus-2020-01-15.zip](https://object.pouta.csc.fi/OPUS-MT-models/ber-es/opus-2020-01-15.zip)
* test set translations: [opus-2020-01-15.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/ber-es/opus-2020-01-15.test.txt)
* test set scores: [opus-2020-01-15.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/ber-es/opus-2020-01-15.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| Tatoeba.ber.es | 33.8 | 0.487 |
|
Helsinki-NLP/opus-mt-ber-en | Helsinki-NLP | 2023-08-16T11:26:10Z | 138 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"marian",
"text2text-generation",
"translation",
"ber",
"en",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2022-03-02T23:29:04Z | ---
tags:
- translation
license: apache-2.0
---
### opus-mt-ber-en
* source languages: ber
* target languages: en
* OPUS readme: [ber-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/ber-en/README.md)
* dataset: opus
* model: transformer-align
* pre-processing: normalization + SentencePiece
* download original weights: [opus-2019-12-18.zip](https://object.pouta.csc.fi/OPUS-MT-models/ber-en/opus-2019-12-18.zip)
* test set translations: [opus-2019-12-18.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/ber-en/opus-2019-12-18.test.txt)
* test set scores: [opus-2019-12-18.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/ber-en/opus-2019-12-18.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| Tatoeba.ber.en | 37.3 | 0.566 |
|
Helsinki-NLP/opus-mt-bem-fi | Helsinki-NLP | 2023-08-16T11:26:07Z | 113 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"marian",
"text2text-generation",
"translation",
"bem",
"fi",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2022-03-02T23:29:04Z | ---
tags:
- translation
license: apache-2.0
---
### opus-mt-bem-fi
* source languages: bem
* target languages: fi
* OPUS readme: [bem-fi](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/bem-fi/README.md)
* dataset: opus
* model: transformer-align
* pre-processing: normalization + SentencePiece
* download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/bem-fi/opus-2020-01-08.zip)
* test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/bem-fi/opus-2020-01-08.test.txt)
* test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/bem-fi/opus-2020-01-08.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| JW300.bem.fi | 22.8 | 0.439 |
|
Helsinki-NLP/opus-mt-bcl-fr | Helsinki-NLP | 2023-08-16T11:26:02Z | 106 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"marian",
"text2text-generation",
"translation",
"bcl",
"fr",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2022-03-02T23:29:04Z | ---
tags:
- translation
license: apache-2.0
---
### opus-mt-bcl-fr
* source languages: bcl
* target languages: fr
* OPUS readme: [bcl-fr](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/bcl-fr/README.md)
* dataset: opus
* model: transformer-align
* pre-processing: normalization + SentencePiece
* download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/bcl-fr/opus-2020-01-08.zip)
* test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/bcl-fr/opus-2020-01-08.test.txt)
* test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/bcl-fr/opus-2020-01-08.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| JW300.bcl.fr | 35.0 | 0.527 |
|
Helsinki-NLP/opus-mt-bat-en | Helsinki-NLP | 2023-08-16T11:25:57Z | 134 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"marian",
"text2text-generation",
"translation",
"lt",
"lv",
"bat",
"en",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2022-03-02T23:29:04Z | ---
language:
- lt
- lv
- bat
- en
tags:
- translation
license: apache-2.0
---
### bat-eng
* source group: Baltic languages
* target group: English
* OPUS readme: [bat-eng](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/bat-eng/README.md)
* model: transformer
* source language(s): lav lit ltg prg_Latn sgs
* target language(s): eng
* model: transformer
* pre-processing: normalization + SentencePiece (spm32k,spm32k)
* download original weights: [opus2m-2020-07-31.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/bat-eng/opus2m-2020-07-31.zip)
* test set translations: [opus2m-2020-07-31.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/bat-eng/opus2m-2020-07-31.test.txt)
* test set scores: [opus2m-2020-07-31.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/bat-eng/opus2m-2020-07-31.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| newsdev2017-enlv-laveng.lav.eng | 27.5 | 0.566 |
| newsdev2019-enlt-liteng.lit.eng | 27.8 | 0.557 |
| newstest2017-enlv-laveng.lav.eng | 21.1 | 0.512 |
| newstest2019-lten-liteng.lit.eng | 30.2 | 0.592 |
| Tatoeba-test.lav-eng.lav.eng | 51.5 | 0.687 |
| Tatoeba-test.lit-eng.lit.eng | 55.1 | 0.703 |
| Tatoeba-test.multi.eng | 50.6 | 0.662 |
| Tatoeba-test.prg-eng.prg.eng | 1.0 | 0.159 |
| Tatoeba-test.sgs-eng.sgs.eng | 16.5 | 0.265 |
### System Info:
- hf_name: bat-eng
- source_languages: bat
- target_languages: eng
- opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/bat-eng/README.md
- original_repo: Tatoeba-Challenge
- tags: ['translation']
- languages: ['lt', 'lv', 'bat', 'en']
- src_constituents: {'lit', 'lav', 'prg_Latn', 'ltg', 'sgs'}
- tgt_constituents: {'eng'}
- src_multilingual: True
- tgt_multilingual: False
- prepro: normalization + SentencePiece (spm32k,spm32k)
- url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/bat-eng/opus2m-2020-07-31.zip
- url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/bat-eng/opus2m-2020-07-31.test.txt
- src_alpha3: bat
- tgt_alpha3: eng
- short_pair: bat-en
- chrF2_score: 0.662
- bleu: 50.6
- brevity_penalty: 0.9890000000000001
- ref_len: 30772.0
- src_name: Baltic languages
- tgt_name: English
- train_date: 2020-07-31
- src_alpha2: bat
- tgt_alpha2: en
- prefer_old: False
- long_pair: bat-eng
- helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535
- transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b
- port_machine: brutasse
- port_time: 2020-08-21-14:41 |
Helsinki-NLP/opus-mt-az-tr | Helsinki-NLP | 2023-08-16T11:25:56Z | 344 | 1 | transformers | [
"transformers",
"pytorch",
"tf",
"marian",
"text2text-generation",
"translation",
"az",
"tr",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2022-03-02T23:29:04Z | ---
language:
- az
- tr
tags:
- translation
license: apache-2.0
---
### aze-tur
* source group: Azerbaijani
* target group: Turkish
* OPUS readme: [aze-tur](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/aze-tur/README.md)
* model: transformer-align
* source language(s): aze_Latn
* target language(s): tur
* model: transformer-align
* pre-processing: normalization + SentencePiece (spm4k,spm4k)
* download original weights: [opus-2020-06-16.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/aze-tur/opus-2020-06-16.zip)
* test set translations: [opus-2020-06-16.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/aze-tur/opus-2020-06-16.test.txt)
* test set scores: [opus-2020-06-16.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/aze-tur/opus-2020-06-16.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| Tatoeba-test.aze.tur | 24.4 | 0.529 |
### System Info:
- hf_name: aze-tur
- source_languages: aze
- target_languages: tur
- opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/aze-tur/README.md
- original_repo: Tatoeba-Challenge
- tags: ['translation']
- languages: ['az', 'tr']
- src_constituents: {'aze_Latn'}
- tgt_constituents: {'tur'}
- src_multilingual: False
- tgt_multilingual: False
- prepro: normalization + SentencePiece (spm4k,spm4k)
- url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/aze-tur/opus-2020-06-16.zip
- url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/aze-tur/opus-2020-06-16.test.txt
- src_alpha3: aze
- tgt_alpha3: tur
- short_pair: az-tr
- chrF2_score: 0.529
- bleu: 24.4
- brevity_penalty: 0.956
- ref_len: 5380.0
- src_name: Azerbaijani
- tgt_name: Turkish
- train_date: 2020-06-16
- src_alpha2: az
- tgt_alpha2: tr
- prefer_old: False
- long_pair: aze-tur
- helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535
- transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b
- port_machine: brutasse
- port_time: 2020-08-21-14:41 |
Helsinki-NLP/opus-mt-ase-sv | Helsinki-NLP | 2023-08-16T11:25:52Z | 127 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"marian",
"text2text-generation",
"translation",
"ase",
"sv",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2022-03-02T23:29:04Z | ---
tags:
- translation
license: apache-2.0
---
### opus-mt-ase-sv
* source languages: ase
* target languages: sv
* OPUS readme: [ase-sv](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/ase-sv/README.md)
* dataset: opus
* model: transformer-align
* pre-processing: normalization + SentencePiece
* download original weights: [opus-2020-01-20.zip](https://object.pouta.csc.fi/OPUS-MT-models/ase-sv/opus-2020-01-20.zip)
* test set translations: [opus-2020-01-20.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/ase-sv/opus-2020-01-20.test.txt)
* test set scores: [opus-2020-01-20.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/ase-sv/opus-2020-01-20.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| JW300.ase.sv | 39.7 | 0.576 |
|
Helsinki-NLP/opus-mt-ase-en | Helsinki-NLP | 2023-08-16T11:25:49Z | 137 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"marian",
"text2text-generation",
"translation",
"ase",
"en",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2022-03-02T23:29:04Z | ---
tags:
- translation
license: apache-2.0
---
### opus-mt-ase-en
* source languages: ase
* target languages: en
* OPUS readme: [ase-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/ase-en/README.md)
* dataset: opus
* model: transformer-align
* pre-processing: normalization + SentencePiece
* download original weights: [opus-2020-01-20.zip](https://object.pouta.csc.fi/OPUS-MT-models/ase-en/opus-2020-01-20.zip)
* test set translations: [opus-2020-01-20.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/ase-en/opus-2020-01-20.test.txt)
* test set scores: [opus-2020-01-20.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/ase-en/opus-2020-01-20.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| JW300.ase.en | 99.5 | 0.997 |
|
Nextcloud-AI/opus-mt-ar-tr | Nextcloud-AI | 2023-08-16T11:25:46Z | 101 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"marian",
"text2text-generation",
"translation",
"ar",
"tr",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2024-02-23T10:37:39Z | ---
language:
- ar
- tr
tags:
- translation
license: apache-2.0
---
### ara-tur
* source group: Arabic
* target group: Turkish
* OPUS readme: [ara-tur](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ara-tur/README.md)
* model: transformer
* source language(s): apc_Latn ara ara_Latn arq_Latn
* target language(s): tur
* model: transformer
* pre-processing: normalization + SentencePiece (spm32k,spm32k)
* download original weights: [opus-2020-07-03.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/ara-tur/opus-2020-07-03.zip)
* test set translations: [opus-2020-07-03.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ara-tur/opus-2020-07-03.test.txt)
* test set scores: [opus-2020-07-03.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ara-tur/opus-2020-07-03.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| Tatoeba-test.ara.tur | 33.1 | 0.619 |
### System Info:
- hf_name: ara-tur
- source_languages: ara
- target_languages: tur
- opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ara-tur/README.md
- original_repo: Tatoeba-Challenge
- tags: ['translation']
- languages: ['ar', 'tr']
- src_constituents: {'apc', 'ara', 'arq_Latn', 'arq', 'afb', 'ara_Latn', 'apc_Latn', 'arz'}
- tgt_constituents: {'tur'}
- src_multilingual: False
- tgt_multilingual: False
- prepro: normalization + SentencePiece (spm32k,spm32k)
- url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/ara-tur/opus-2020-07-03.zip
- url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/ara-tur/opus-2020-07-03.test.txt
- src_alpha3: ara
- tgt_alpha3: tur
- short_pair: ar-tr
- chrF2_score: 0.619
- bleu: 33.1
- brevity_penalty: 0.9570000000000001
- ref_len: 6949.0
- src_name: Arabic
- tgt_name: Turkish
- train_date: 2020-07-03
- src_alpha2: ar
- tgt_alpha2: tr
- prefer_old: False
- long_pair: ara-tur
- helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535
- transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b
- port_machine: brutasse
- port_time: 2020-08-21-14:41 |
Helsinki-NLP/opus-mt-ar-it | Helsinki-NLP | 2023-08-16T11:25:43Z | 250 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"marian",
"text2text-generation",
"translation",
"ar",
"it",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2022-03-02T23:29:04Z | ---
language:
- ar
- it
tags:
- translation
license: apache-2.0
---
### ara-ita
* source group: Arabic
* target group: Italian
* OPUS readme: [ara-ita](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ara-ita/README.md)
* model: transformer
* source language(s): ara
* target language(s): ita
* model: transformer
* pre-processing: normalization + SentencePiece (spm32k,spm32k)
* download original weights: [opus-2020-07-03.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/ara-ita/opus-2020-07-03.zip)
* test set translations: [opus-2020-07-03.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ara-ita/opus-2020-07-03.test.txt)
* test set scores: [opus-2020-07-03.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ara-ita/opus-2020-07-03.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| Tatoeba-test.ara.ita | 44.2 | 0.658 |
### System Info:
- hf_name: ara-ita
- source_languages: ara
- target_languages: ita
- opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ara-ita/README.md
- original_repo: Tatoeba-Challenge
- tags: ['translation']
- languages: ['ar', 'it']
- src_constituents: {'apc', 'ara', 'arq_Latn', 'arq', 'afb', 'ara_Latn', 'apc_Latn', 'arz'}
- tgt_constituents: {'ita'}
- src_multilingual: False
- tgt_multilingual: False
- prepro: normalization + SentencePiece (spm32k,spm32k)
- url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/ara-ita/opus-2020-07-03.zip
- url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/ara-ita/opus-2020-07-03.test.txt
- src_alpha3: ara
- tgt_alpha3: ita
- short_pair: ar-it
- chrF2_score: 0.6579999999999999
- bleu: 44.2
- brevity_penalty: 0.9890000000000001
- ref_len: 1495.0
- src_name: Arabic
- tgt_name: Italian
- train_date: 2020-07-03
- src_alpha2: ar
- tgt_alpha2: it
- prefer_old: False
- long_pair: ara-ita
- helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535
- transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b
- port_machine: brutasse
- port_time: 2020-08-21-14:41 |
Nextcloud-AI/opus-mt-ar-it | Nextcloud-AI | 2023-08-16T11:25:43Z | 111 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"marian",
"text2text-generation",
"translation",
"ar",
"it",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2024-02-23T10:37:30Z | ---
language:
- ar
- it
tags:
- translation
license: apache-2.0
---
### ara-ita
* source group: Arabic
* target group: Italian
* OPUS readme: [ara-ita](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ara-ita/README.md)
* model: transformer
* source language(s): ara
* target language(s): ita
* model: transformer
* pre-processing: normalization + SentencePiece (spm32k,spm32k)
* download original weights: [opus-2020-07-03.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/ara-ita/opus-2020-07-03.zip)
* test set translations: [opus-2020-07-03.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ara-ita/opus-2020-07-03.test.txt)
* test set scores: [opus-2020-07-03.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ara-ita/opus-2020-07-03.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| Tatoeba-test.ara.ita | 44.2 | 0.658 |
### System Info:
- hf_name: ara-ita
- source_languages: ara
- target_languages: ita
- opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ara-ita/README.md
- original_repo: Tatoeba-Challenge
- tags: ['translation']
- languages: ['ar', 'it']
- src_constituents: {'apc', 'ara', 'arq_Latn', 'arq', 'afb', 'ara_Latn', 'apc_Latn', 'arz'}
- tgt_constituents: {'ita'}
- src_multilingual: False
- tgt_multilingual: False
- prepro: normalization + SentencePiece (spm32k,spm32k)
- url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/ara-ita/opus-2020-07-03.zip
- url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/ara-ita/opus-2020-07-03.test.txt
- src_alpha3: ara
- tgt_alpha3: ita
- short_pair: ar-it
- chrF2_score: 0.6579999999999999
- bleu: 44.2
- brevity_penalty: 0.9890000000000001
- ref_len: 1495.0
- src_name: Arabic
- tgt_name: Italian
- train_date: 2020-07-03
- src_alpha2: ar
- tgt_alpha2: it
- prefer_old: False
- long_pair: ara-ita
- helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535
- transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b
- port_machine: brutasse
- port_time: 2020-08-21-14:41 |
Nextcloud-AI/opus-mt-ar-fr | Nextcloud-AI | 2023-08-16T11:25:41Z | 104 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"marian",
"text2text-generation",
"translation",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2024-02-23T10:37:21Z | ---
tags:
- translation
license: apache-2.0
---
### opus-mt-ar-fr
* source languages: ar
* target languages: fr
* OPUS readme: [ar-fr](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/ar-fr/README.md)
* dataset: opus
* model: transformer-align
* pre-processing: normalization + SentencePiece
* download original weights: [opus-2020-01-24.zip](https://object.pouta.csc.fi/OPUS-MT-models/ar-fr/opus-2020-01-24.zip)
* test set translations: [opus-2020-01-24.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/ar-fr/opus-2020-01-24.test.txt)
* test set scores: [opus-2020-01-24.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/ar-fr/opus-2020-01-24.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| Tatoeba.ar.fr | 43.5 | 0.602 |
|
Nextcloud-AI/opus-mt-ar-es | Nextcloud-AI | 2023-08-16T11:25:40Z | 113 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"marian",
"text2text-generation",
"translation",
"ar",
"es",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2024-02-23T10:37:11Z | ---
language:
- ar
- es
tags:
- translation
license: apache-2.0
---
### ara-spa
* source group: Arabic
* target group: Spanish
* OPUS readme: [ara-spa](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ara-spa/README.md)
* model: transformer
* source language(s): apc apc_Latn ara arq
* target language(s): spa
* model: transformer
* pre-processing: normalization + SentencePiece (spm32k,spm32k)
* download original weights: [opus-2020-07-03.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/ara-spa/opus-2020-07-03.zip)
* test set translations: [opus-2020-07-03.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ara-spa/opus-2020-07-03.test.txt)
* test set scores: [opus-2020-07-03.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ara-spa/opus-2020-07-03.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| Tatoeba-test.ara.spa | 46.0 | 0.641 |
### System Info:
- hf_name: ara-spa
- source_languages: ara
- target_languages: spa
- opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ara-spa/README.md
- original_repo: Tatoeba-Challenge
- tags: ['translation']
- languages: ['ar', 'es']
- src_constituents: {'apc', 'ara', 'arq_Latn', 'arq', 'afb', 'ara_Latn', 'apc_Latn', 'arz'}
- tgt_constituents: {'spa'}
- src_multilingual: False
- tgt_multilingual: False
- prepro: normalization + SentencePiece (spm32k,spm32k)
- url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/ara-spa/opus-2020-07-03.zip
- url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/ara-spa/opus-2020-07-03.test.txt
- src_alpha3: ara
- tgt_alpha3: spa
- short_pair: ar-es
- chrF2_score: 0.6409999999999999
- bleu: 46.0
- brevity_penalty: 0.9620000000000001
- ref_len: 9708.0
- src_name: Arabic
- tgt_name: Spanish
- train_date: 2020-07-03
- src_alpha2: ar
- tgt_alpha2: es
- prefer_old: False
- long_pair: ara-spa
- helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535
- transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b
- port_machine: brutasse
- port_time: 2020-08-21-14:41 |
Helsinki-NLP/opus-mt-ar-eo | Helsinki-NLP | 2023-08-16T11:25:37Z | 132 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"marian",
"text2text-generation",
"translation",
"ar",
"eo",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2022-03-02T23:29:04Z | ---
language:
- ar
- eo
tags:
- translation
license: apache-2.0
---
### ara-epo
* source group: Arabic
* target group: Esperanto
* OPUS readme: [ara-epo](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ara-epo/README.md)
* model: transformer-align
* source language(s): apc apc_Latn ara arq arq_Latn arz
* target language(s): epo
* model: transformer-align
* pre-processing: normalization + SentencePiece (spm4k,spm4k)
* download original weights: [opus-2020-06-16.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/ara-epo/opus-2020-06-16.zip)
* test set translations: [opus-2020-06-16.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ara-epo/opus-2020-06-16.test.txt)
* test set scores: [opus-2020-06-16.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ara-epo/opus-2020-06-16.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| Tatoeba-test.ara.epo | 18.9 | 0.376 |
### System Info:
- hf_name: ara-epo
- source_languages: ara
- target_languages: epo
- opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ara-epo/README.md
- original_repo: Tatoeba-Challenge
- tags: ['translation']
- languages: ['ar', 'eo']
- src_constituents: {'apc', 'ara', 'arq_Latn', 'arq', 'afb', 'ara_Latn', 'apc_Latn', 'arz'}
- tgt_constituents: {'epo'}
- src_multilingual: False
- tgt_multilingual: False
- prepro: normalization + SentencePiece (spm4k,spm4k)
- url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/ara-epo/opus-2020-06-16.zip
- url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/ara-epo/opus-2020-06-16.test.txt
- src_alpha3: ara
- tgt_alpha3: epo
- short_pair: ar-eo
- chrF2_score: 0.376
- bleu: 18.9
- brevity_penalty: 0.948
- ref_len: 4506.0
- src_name: Arabic
- tgt_name: Esperanto
- train_date: 2020-06-16
- src_alpha2: ar
- tgt_alpha2: eo
- prefer_old: False
- long_pair: ara-epo
- helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535
- transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b
- port_machine: brutasse
- port_time: 2020-08-21-14:41 |
Nextcloud-AI/opus-mt-ar-de | Nextcloud-AI | 2023-08-16T11:25:33Z | 104 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"marian",
"text2text-generation",
"translation",
"ar",
"de",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2024-02-23T10:36:36Z | ---
language:
- ar
- de
tags:
- translation
license: apache-2.0
---
### ara-deu
* source group: Arabic
* target group: German
* OPUS readme: [ara-deu](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ara-deu/README.md)
* model: transformer-align
* source language(s): afb apc ara ara_Latn arq arz
* target language(s): deu
* model: transformer-align
* pre-processing: normalization + SentencePiece (spm32k,spm32k)
* download original weights: [opus-2020-07-03.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/ara-deu/opus-2020-07-03.zip)
* test set translations: [opus-2020-07-03.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ara-deu/opus-2020-07-03.test.txt)
* test set scores: [opus-2020-07-03.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ara-deu/opus-2020-07-03.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| Tatoeba-test.ara.deu | 44.7 | 0.629 |
### System Info:
- hf_name: ara-deu
- source_languages: ara
- target_languages: deu
- opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ara-deu/README.md
- original_repo: Tatoeba-Challenge
- tags: ['translation']
- languages: ['ar', 'de']
- src_constituents: {'apc', 'ara', 'arq_Latn', 'arq', 'afb', 'ara_Latn', 'apc_Latn', 'arz'}
- tgt_constituents: {'deu'}
- src_multilingual: False
- tgt_multilingual: False
- prepro: normalization + SentencePiece (spm32k,spm32k)
- url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/ara-deu/opus-2020-07-03.zip
- url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/ara-deu/opus-2020-07-03.test.txt
- src_alpha3: ara
- tgt_alpha3: deu
- short_pair: ar-de
- chrF2_score: 0.629
- bleu: 44.7
- brevity_penalty: 0.986
- ref_len: 8371.0
- src_name: Arabic
- tgt_name: German
- train_date: 2020-07-03
- src_alpha2: ar
- tgt_alpha2: de
- prefer_old: False
- long_pair: ara-deu
- helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535
- transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b
- port_machine: brutasse
- port_time: 2020-08-21-14:41 |
Helsinki-NLP/opus-mt-ar-de | Helsinki-NLP | 2023-08-16T11:25:33Z | 757 | 1 | transformers | [
"transformers",
"pytorch",
"tf",
"marian",
"text2text-generation",
"translation",
"ar",
"de",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2022-03-02T23:29:04Z | ---
language:
- ar
- de
tags:
- translation
license: apache-2.0
---
### ara-deu
* source group: Arabic
* target group: German
* OPUS readme: [ara-deu](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ara-deu/README.md)
* model: transformer-align
* source language(s): afb apc ara ara_Latn arq arz
* target language(s): deu
* model: transformer-align
* pre-processing: normalization + SentencePiece (spm32k,spm32k)
* download original weights: [opus-2020-07-03.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/ara-deu/opus-2020-07-03.zip)
* test set translations: [opus-2020-07-03.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ara-deu/opus-2020-07-03.test.txt)
* test set scores: [opus-2020-07-03.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ara-deu/opus-2020-07-03.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| Tatoeba-test.ara.deu | 44.7 | 0.629 |
### System Info:
- hf_name: ara-deu
- source_languages: ara
- target_languages: deu
- opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ara-deu/README.md
- original_repo: Tatoeba-Challenge
- tags: ['translation']
- languages: ['ar', 'de']
- src_constituents: {'apc', 'ara', 'arq_Latn', 'arq', 'afb', 'ara_Latn', 'apc_Latn', 'arz'}
- tgt_constituents: {'deu'}
- src_multilingual: False
- tgt_multilingual: False
- prepro: normalization + SentencePiece (spm32k,spm32k)
- url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/ara-deu/opus-2020-07-03.zip
- url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/ara-deu/opus-2020-07-03.test.txt
- src_alpha3: ara
- tgt_alpha3: deu
- short_pair: ar-de
- chrF2_score: 0.629
- bleu: 44.7
- brevity_penalty: 0.986
- ref_len: 8371.0
- src_name: Arabic
- tgt_name: German
- train_date: 2020-07-03
- src_alpha2: ar
- tgt_alpha2: de
- prefer_old: False
- long_pair: ara-deu
- helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535
- transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b
- port_machine: brutasse
- port_time: 2020-08-21-14:41 |
Helsinki-NLP/opus-mt-am-sv | Helsinki-NLP | 2023-08-16T11:25:32Z | 122 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"marian",
"text2text-generation",
"translation",
"am",
"sv",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2022-03-02T23:29:04Z | ---
tags:
- translation
license: apache-2.0
---
### opus-mt-am-sv
* source languages: am
* target languages: sv
* OPUS readme: [am-sv](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/am-sv/README.md)
* dataset: opus
* model: transformer-align
* pre-processing: normalization + SentencePiece
* download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/am-sv/opus-2020-01-08.zip)
* test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/am-sv/opus-2020-01-08.test.txt)
* test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/am-sv/opus-2020-01-08.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| JW300.am.sv | 21.0 | 0.377 |
|
Helsinki-NLP/opus-mt-afa-en | Helsinki-NLP | 2023-08-16T11:25:29Z | 141 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"marian",
"text2text-generation",
"translation",
"so",
"ti",
"am",
"he",
"mt",
"ar",
"afa",
"en",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2022-03-02T23:29:04Z | ---
language:
- so
- ti
- am
- he
- mt
- ar
- afa
- en
tags:
- translation
license: apache-2.0
---
### afa-eng
* source group: Afro-Asiatic languages
* target group: English
* OPUS readme: [afa-eng](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/afa-eng/README.md)
* model: transformer
* source language(s): acm afb amh apc ara arq ary arz hau_Latn heb kab mlt rif_Latn shy_Latn som tir
* target language(s): eng
* model: transformer
* pre-processing: normalization + SentencePiece (spm32k,spm32k)
* download original weights: [opus2m-2020-07-31.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/afa-eng/opus2m-2020-07-31.zip)
* test set translations: [opus2m-2020-07-31.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/afa-eng/opus2m-2020-07-31.test.txt)
* test set scores: [opus2m-2020-07-31.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/afa-eng/opus2m-2020-07-31.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| Tatoeba-test.amh-eng.amh.eng | 35.9 | 0.550 |
| Tatoeba-test.ara-eng.ara.eng | 36.6 | 0.543 |
| Tatoeba-test.hau-eng.hau.eng | 11.9 | 0.327 |
| Tatoeba-test.heb-eng.heb.eng | 42.7 | 0.591 |
| Tatoeba-test.kab-eng.kab.eng | 4.3 | 0.213 |
| Tatoeba-test.mlt-eng.mlt.eng | 44.3 | 0.618 |
| Tatoeba-test.multi.eng | 27.1 | 0.464 |
| Tatoeba-test.rif-eng.rif.eng | 3.5 | 0.141 |
| Tatoeba-test.shy-eng.shy.eng | 0.6 | 0.125 |
| Tatoeba-test.som-eng.som.eng | 23.6 | 0.472 |
| Tatoeba-test.tir-eng.tir.eng | 13.1 | 0.328 |
### System Info:
- hf_name: afa-eng
- source_languages: afa
- target_languages: eng
- opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/afa-eng/README.md
- original_repo: Tatoeba-Challenge
- tags: ['translation']
- languages: ['so', 'ti', 'am', 'he', 'mt', 'ar', 'afa', 'en']
- src_constituents: {'som', 'rif_Latn', 'tir', 'kab', 'arq', 'afb', 'amh', 'arz', 'heb', 'shy_Latn', 'apc', 'mlt', 'thv', 'ara', 'hau_Latn', 'acm', 'ary'}
- tgt_constituents: {'eng'}
- src_multilingual: True
- tgt_multilingual: False
- prepro: normalization + SentencePiece (spm32k,spm32k)
- url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/afa-eng/opus2m-2020-07-31.zip
- url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/afa-eng/opus2m-2020-07-31.test.txt
- src_alpha3: afa
- tgt_alpha3: eng
- short_pair: afa-en
- chrF2_score: 0.46399999999999997
- bleu: 27.1
- brevity_penalty: 1.0
- ref_len: 69373.0
- src_name: Afro-Asiatic languages
- tgt_name: English
- train_date: 2020-07-31
- src_alpha2: afa
- tgt_alpha2: en
- prefer_old: False
- long_pair: afa-eng
- helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535
- transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b
- port_machine: brutasse
- port_time: 2020-08-21-14:41 |
Helsinki-NLP/opus-mt-af-sv | Helsinki-NLP | 2023-08-16T11:25:27Z | 116 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"marian",
"text2text-generation",
"translation",
"af",
"sv",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2022-03-02T23:29:04Z | ---
tags:
- translation
license: apache-2.0
---
### opus-mt-af-sv
* source languages: af
* target languages: sv
* OPUS readme: [af-sv](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/af-sv/README.md)
* dataset: opus
* model: transformer-align
* pre-processing: normalization + SentencePiece
* download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/af-sv/opus-2020-01-08.zip)
* test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/af-sv/opus-2020-01-08.test.txt)
* test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/af-sv/opus-2020-01-08.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| JW300.af.sv | 40.4 | 0.599 |
|
Helsinki-NLP/opus-mt-af-nl | Helsinki-NLP | 2023-08-16T11:25:25Z | 144 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"marian",
"text2text-generation",
"translation",
"af",
"nl",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2022-03-02T23:29:04Z | ---
language:
- af
- nl
tags:
- translation
license: apache-2.0
---
### afr-nld
* source group: Afrikaans
* target group: Dutch
* OPUS readme: [afr-nld](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/afr-nld/README.md)
* model: transformer-align
* source language(s): afr
* target language(s): nld
* model: transformer-align
* pre-processing: normalization + SentencePiece (spm32k,spm32k)
* download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/afr-nld/opus-2020-06-17.zip)
* test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/afr-nld/opus-2020-06-17.test.txt)
* test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/afr-nld/opus-2020-06-17.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| Tatoeba-test.afr.nld | 55.2 | 0.715 |
### System Info:
- hf_name: afr-nld
- source_languages: afr
- target_languages: nld
- opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/afr-nld/README.md
- original_repo: Tatoeba-Challenge
- tags: ['translation']
- languages: ['af', 'nl']
- src_constituents: {'afr'}
- tgt_constituents: {'nld'}
- src_multilingual: False
- tgt_multilingual: False
- prepro: normalization + SentencePiece (spm32k,spm32k)
- url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/afr-nld/opus-2020-06-17.zip
- url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/afr-nld/opus-2020-06-17.test.txt
- src_alpha3: afr
- tgt_alpha3: nld
- short_pair: af-nl
- chrF2_score: 0.715
- bleu: 55.2
- brevity_penalty: 0.995
- ref_len: 6710.0
- src_name: Afrikaans
- tgt_name: Dutch
- train_date: 2020-06-17
- src_alpha2: af
- tgt_alpha2: nl
- prefer_old: False
- long_pair: afr-nld
- helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535
- transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b
- port_machine: brutasse
- port_time: 2020-08-21-14:41 |
Helsinki-NLP/opus-mt-af-fr | Helsinki-NLP | 2023-08-16T11:25:24Z | 129 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"marian",
"text2text-generation",
"translation",
"af",
"fr",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2022-03-02T23:29:04Z | ---
tags:
- translation
license: apache-2.0
---
### opus-mt-af-fr
* source languages: af
* target languages: fr
* OPUS readme: [af-fr](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/af-fr/README.md)
* dataset: opus
* model: transformer-align
* pre-processing: normalization + SentencePiece
* download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/af-fr/opus-2020-01-08.zip)
* test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/af-fr/opus-2020-01-08.test.txt)
* test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/af-fr/opus-2020-01-08.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| JW300.af.fr | 35.3 | 0.543 |
|
Helsinki-NLP/opus-mt-af-es | Helsinki-NLP | 2023-08-16T11:25:22Z | 123 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"marian",
"text2text-generation",
"translation",
"af",
"es",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2022-03-02T23:29:04Z | ---
language:
- af
- es
tags:
- translation
license: apache-2.0
---
### afr-spa
* source group: Afrikaans
* target group: Spanish
* OPUS readme: [afr-spa](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/afr-spa/README.md)
* model: transformer-align
* source language(s): afr
* target language(s): spa
* model: transformer-align
* pre-processing: normalization + SentencePiece (spm32k,spm32k)
* download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/afr-spa/opus-2020-06-17.zip)
* test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/afr-spa/opus-2020-06-17.test.txt)
* test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/afr-spa/opus-2020-06-17.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| Tatoeba-test.afr.spa | 49.9 | 0.680 |
### System Info:
- hf_name: afr-spa
- source_languages: afr
- target_languages: spa
- opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/afr-spa/README.md
- original_repo: Tatoeba-Challenge
- tags: ['translation']
- languages: ['af', 'es']
- src_constituents: {'afr'}
- tgt_constituents: {'spa'}
- src_multilingual: False
- tgt_multilingual: False
- prepro: normalization + SentencePiece (spm32k,spm32k)
- url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/afr-spa/opus-2020-06-17.zip
- url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/afr-spa/opus-2020-06-17.test.txt
- src_alpha3: afr
- tgt_alpha3: spa
- short_pair: af-es
- chrF2_score: 0.68
- bleu: 49.9
- brevity_penalty: 1.0
- ref_len: 2783.0
- src_name: Afrikaans
- tgt_name: Spanish
- train_date: 2020-06-17
- src_alpha2: af
- tgt_alpha2: es
- prefer_old: False
- long_pair: afr-spa
- helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535
- transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b
- port_machine: brutasse
- port_time: 2020-08-21-14:41 |
Helsinki-NLP/opus-mt-af-en | Helsinki-NLP | 2023-08-16T11:25:20Z | 4,596 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"marian",
"text2text-generation",
"translation",
"af",
"en",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2022-03-02T23:29:04Z | ---
tags:
- translation
license: apache-2.0
---
### opus-mt-af-en
* source languages: af
* target languages: en
* OPUS readme: [af-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/af-en/README.md)
* dataset: opus
* model: transformer-align
* pre-processing: normalization + SentencePiece
* download original weights: [opus-2019-12-18.zip](https://object.pouta.csc.fi/OPUS-MT-models/af-en/opus-2019-12-18.zip)
* test set translations: [opus-2019-12-18.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/af-en/opus-2019-12-18.test.txt)
* test set scores: [opus-2019-12-18.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/af-en/opus-2019-12-18.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| Tatoeba.af.en | 60.8 | 0.736 |
|
Helsinki-NLP/opus-mt-af-de | Helsinki-NLP | 2023-08-16T11:25:19Z | 150 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"marian",
"text2text-generation",
"translation",
"af",
"de",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2022-03-02T23:29:04Z | ---
tags:
- translation
license: apache-2.0
---
### opus-mt-af-de
* source languages: af
* target languages: de
* OPUS readme: [af-de](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/af-de/README.md)
* dataset: opus
* model: transformer-align
* pre-processing: normalization + SentencePiece
* download original weights: [opus-2020-01-19.zip](https://object.pouta.csc.fi/OPUS-MT-models/af-de/opus-2020-01-19.zip)
* test set translations: [opus-2020-01-19.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/af-de/opus-2020-01-19.test.txt)
* test set scores: [opus-2020-01-19.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/af-de/opus-2020-01-19.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| Tatoeba.af.de | 48.6 | 0.681 |
|
Helsinki-NLP/opus-mt-aed-es | Helsinki-NLP | 2023-08-16T11:25:17Z | 116 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"marian",
"text2text-generation",
"translation",
"aed",
"es",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2022-03-02T23:29:04Z | ---
tags:
- translation
license: apache-2.0
---
### opus-mt-aed-es
* source languages: aed
* target languages: es
* OPUS readme: [aed-es](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/aed-es/README.md)
* dataset: opus
* model: transformer-align
* pre-processing: normalization + SentencePiece
* download original weights: [opus-2020-01-15.zip](https://object.pouta.csc.fi/OPUS-MT-models/aed-es/opus-2020-01-15.zip)
* test set translations: [opus-2020-01-15.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/aed-es/opus-2020-01-15.test.txt)
* test set scores: [opus-2020-01-15.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/aed-es/opus-2020-01-15.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| JW300.aed.es | 89.1 | 0.915 |
|
Helsinki-NLP/opus-mt-ROMANCE-en | Helsinki-NLP | 2023-08-16T11:25:14Z | 88,075 | 8 | transformers | [
"transformers",
"pytorch",
"tf",
"rust",
"marian",
"text2text-generation",
"translation",
"roa",
"en",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2022-03-02T23:29:04Z | ---
tags:
- translation
license: apache-2.0
---
### opus-mt-ROMANCE-en
* source languages: fr,fr_BE,fr_CA,fr_FR,wa,frp,oc,ca,rm,lld,fur,lij,lmo,es,es_AR,es_CL,es_CO,es_CR,es_DO,es_EC,es_ES,es_GT,es_HN,es_MX,es_NI,es_PA,es_PE,es_PR,es_SV,es_UY,es_VE,pt,pt_br,pt_BR,pt_PT,gl,lad,an,mwl,it,it_IT,co,nap,scn,vec,sc,ro,la
* target languages: en
* OPUS readme: [fr+fr_BE+fr_CA+fr_FR+wa+frp+oc+ca+rm+lld+fur+lij+lmo+es+es_AR+es_CL+es_CO+es_CR+es_DO+es_EC+es_ES+es_GT+es_HN+es_MX+es_NI+es_PA+es_PE+es_PR+es_SV+es_UY+es_VE+pt+pt_br+pt_BR+pt_PT+gl+lad+an+mwl+it+it_IT+co+nap+scn+vec+sc+ro+la-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fr+fr_BE+fr_CA+fr_FR+wa+frp+oc+ca+rm+lld+fur+lij+lmo+es+es_AR+es_CL+es_CO+es_CR+es_DO+es_EC+es_ES+es_GT+es_HN+es_MX+es_NI+es_PA+es_PE+es_PR+es_SV+es_UY+es_VE+pt+pt_br+pt_BR+pt_PT+gl+lad+an+mwl+it+it_IT+co+nap+scn+vec+sc+ro+la-en/README.md)
* dataset: opus
* model: transformer
* pre-processing: normalization + SentencePiece
* download original weights: [opus-2020-04-01.zip](https://object.pouta.csc.fi/OPUS-MT-models/fr+fr_BE+fr_CA+fr_FR+wa+frp+oc+ca+rm+lld+fur+lij+lmo+es+es_AR+es_CL+es_CO+es_CR+es_DO+es_EC+es_ES+es_GT+es_HN+es_MX+es_NI+es_PA+es_PE+es_PR+es_SV+es_UY+es_VE+pt+pt_br+pt_BR+pt_PT+gl+lad+an+mwl+it+it_IT+co+nap+scn+vec+sc+ro+la-en/opus-2020-04-01.zip)
* test set translations: [opus-2020-04-01.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fr+fr_BE+fr_CA+fr_FR+wa+frp+oc+ca+rm+lld+fur+lij+lmo+es+es_AR+es_CL+es_CO+es_CR+es_DO+es_EC+es_ES+es_GT+es_HN+es_MX+es_NI+es_PA+es_PE+es_PR+es_SV+es_UY+es_VE+pt+pt_br+pt_BR+pt_PT+gl+lad+an+mwl+it+it_IT+co+nap+scn+vec+sc+ro+la-en/opus-2020-04-01.test.txt)
* test set scores: [opus-2020-04-01.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fr+fr_BE+fr_CA+fr_FR+wa+frp+oc+ca+rm+lld+fur+lij+lmo+es+es_AR+es_CL+es_CO+es_CR+es_DO+es_EC+es_ES+es_GT+es_HN+es_MX+es_NI+es_PA+es_PE+es_PR+es_SV+es_UY+es_VE+pt+pt_br+pt_BR+pt_PT+gl+lad+an+mwl+it+it_IT+co+nap+scn+vec+sc+ro+la-en/opus-2020-04-01.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| Tatoeba.fr.en | 62.2 | 0.750 |
|
Hansaht/Text_classification_model_1_pytorch | Hansaht | 2023-08-16T11:22:15Z | 118 | 1 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"safetensors",
"distilbert",
"text-classification",
"generated_from_trainer",
"en",
"dataset:imdb",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2023-07-20T08:51:58Z | ---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
datasets:
- imdb
metrics:
- accuracy
model-index:
- name: Text_classification_model_1_pytorch
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: imdb
type: imdb
config: plain_text
split: test
args: plain_text
metrics:
- name: Accuracy
type: accuracy
value: 0.93292
language:
- en
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Text_classification_model_1_pytorch
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3494
- Accuracy: 0.9329
## Model description
**Introduction:**
In the realm of natural language processing and sentiment analysis, the utilization of pre-trained language models has proven to be highly effective. One such model is DistilBERT Uncased, a distilled and smaller version of the powerful BERT model. In this project, we explore the application of DistilBERT Uncased for text classification, specifically focusing on sentiment analysis using the IMDb dataset.
**Model Overview:**
Our text classification model is built upon the foundation of DistilBERT Uncased. This model, developed by Hugging Face, is a variant of BERT that retains much of BERT's effectiveness while being lighter and faster. DistilBERT retains the bidirectional attention mechanism and the masked language model pre-training objective of BERT. Our aim is to fine-tune this pre-trained model to accurately predict the sentiment of movie reviews as either positive or negative.
## Intended uses & limitations
we've demonstrated the effectiveness of fine-tuning DistilBERT Uncased for text classification, specifically for sentiment analysis using the IMDb dataset. Our model showcases the power of transfer learning, allowing it to leverage pre-trained knowledge and adapt it to a specific task. The fine-tuned model can accurately classify movie reviews as positive or negative, paving the way for efficient sentiment analysis in various applications.
## Training and evaluation data
**Dataset:**
The IMDb dataset, a widely-used benchmark for sentiment analysis, consists of movie reviews labeled as positive or negative based on their sentiment. This dataset encompasses a wide range of reviews from IMDb, offering a diverse set of language patterns, tones, and opinions. By training our model on this dataset, we aim to enable it to learn the nuances of positive and negative sentiment expression.
## Training procedure
### Fine-Tuning Process:
Fine-tuning the DistilBERT Uncased model for sentiment analysis involves adapting the pre-trained model to our specific task. This process entails:
Data Preprocessing: The IMDb dataset is preprocessed, tokenized, and encoded into input features that DistilBERT Uncased can understand. These features include tokenized text and segment IDs, which differentiate between the actual text and padding tokens.
Fine-Tuning Architecture: We attach a classification layer on top of DistilBERT's transformer layers. This additional layer learns to map the contextualized embeddings generated by DistilBERT to sentiment labels (positive or negative).
Training: The model is trained using the training subset of the IMDb dataset. During training, the classification layer's weights are updated based on the model's predictions and the ground truth labels. We use cross-entropy loss as the optimization objective.
Validation: The model's performance is evaluated on a separate validation subset of the IMDb dataset. This helps us monitor its learning progress and make adjustments if needed.
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.2336 | 1.0 | 1563 | 0.2718 | 0.903 |
| 0.162 | 2.0 | 3126 | 0.2392 | 0.9277 |
| 0.0971 | 3.0 | 4689 | 0.3191 | 0.9312 |
| 0.0535 | 4.0 | 6252 | 0.3211 | 0.9334 |
| 0.034 | 5.0 | 7815 | 0.3494 | 0.9329 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3 |
Vertti/TuumaPEFTExperiment | Vertti | 2023-08-16T11:01:41Z | 0 | 0 | null | [
"region:us"
] | null | 2023-08-16T08:11:40Z | ### A completely useless adapter trained on nothing.
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.5.0.dev0
|
mindreader/llama-recipe-7b-1epoch-8batch | mindreader | 2023-08-16T10:52:06Z | 4 | 0 | peft | [
"peft",
"pytorch",
"llama",
"region:us"
] | null | 2023-08-15T06:37:14Z | ---
library_name: peft
---
!python llama-recipes/llama_finetuning.py \
--use_peft \
--num_epochs 1 \
--peft_method lora \
--run_validation false \
--quantization \
--dataset alpaca_dataset \
--model_name meta-llama/Llama-2-7b-chat-hf \
--save_model \
--save_optimizer \
--batch_size_training 8 \
--output_dir ./save
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: True
- load_in_4bit: False
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: fp4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float32
### Framework versions
- PEFT 0.5.0.dev0
|
bhushan4401/xyz | bhushan4401 | 2023-08-16T10:45:48Z | 61 | 0 | transformers | [
"transformers",
"tf",
"distilbert",
"text-classification",
"generated_from_keras_callback",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2023-08-16T10:33:43Z | ---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_keras_callback
model-index:
- name: bhushan4401/xyz
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# bhushan4401/xyz
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.5297
- Validation Loss: 0.2912
- Train Accuracy: 1.0
- Epoch: 0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 7810, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Train Accuracy | Epoch |
|:----------:|:---------------:|:--------------:|:-----:|
| 0.5297 | 0.2912 | 1.0 | 0 |
### Framework versions
- Transformers 4.31.0
- TensorFlow 2.12.0
- Datasets 2.14.4
- Tokenizers 0.13.3
|
ELggman/distilbert-base-uncased-finetuned-imdb | ELggman | 2023-08-16T10:34:54Z | 115 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"fill-mask",
"generated_from_trainer",
"dataset:imdb",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | fill-mask | 2023-08-16T10:29:46Z | ---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
datasets:
- imdb
model-index:
- name: distilbert-base-uncased-finetuned-imdb
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-imdb
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset.
It achieves the following results on the evaluation set:
- Loss: 2.4252
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.6961 | 1.0 | 157 | 2.5442 |
| 2.5696 | 2.0 | 314 | 2.4639 |
| 2.5438 | 3.0 | 471 | 2.4252 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3
|
CyberHarem/hestia_isitwrongtotrytopickupgirlsinadungeon | CyberHarem | 2023-08-16T10:21:29Z | 0 | 1 | null | [
"art",
"text-to-image",
"dataset:CyberHarem/hestia_isitwrongtotrytopickupgirlsinadungeon",
"license:mit",
"region:us"
] | text-to-image | 2023-08-16T10:15:43Z | ---
license: mit
datasets:
- CyberHarem/hestia_isitwrongtotrytopickupgirlsinadungeon
pipeline_tag: text-to-image
tags:
- art
---
# Lora of hestia_isitwrongtotrytopickupgirlsinadungeon
This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs).
After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora.
For example, if you want to use the model from step 1500, you need to download `1500/hestia_isitwrongtotrytopickupgirlsinadungeon.pt` as the embedding and `1500/hestia_isitwrongtotrytopickupgirlsinadungeon.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters.
**The trigger word is `hestia_isitwrongtotrytopickupgirlsinadungeon`.**
These are available steps:
| Steps | pattern_1 | pattern_2 | bikini | free | nude | Download |
|--------:|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------|:-------------------------------------|:-----------------------------------------------|:------------------------------------------------------------------|
| 1500 |  |  |  |  | [<NSFW, click to see>](1500/previews/nude.png) | [Download](1500/hestia_isitwrongtotrytopickupgirlsinadungeon.zip) |
| 1400 |  |  |  |  | [<NSFW, click to see>](1400/previews/nude.png) | [Download](1400/hestia_isitwrongtotrytopickupgirlsinadungeon.zip) |
| 1300 |  |  |  |  | [<NSFW, click to see>](1300/previews/nude.png) | [Download](1300/hestia_isitwrongtotrytopickupgirlsinadungeon.zip) |
| 1200 |  |  |  |  | [<NSFW, click to see>](1200/previews/nude.png) | [Download](1200/hestia_isitwrongtotrytopickupgirlsinadungeon.zip) |
| 1100 |  |  |  |  | [<NSFW, click to see>](1100/previews/nude.png) | [Download](1100/hestia_isitwrongtotrytopickupgirlsinadungeon.zip) |
| 1000 |  |  |  |  | [<NSFW, click to see>](1000/previews/nude.png) | [Download](1000/hestia_isitwrongtotrytopickupgirlsinadungeon.zip) |
| 900 |  |  |  |  | [<NSFW, click to see>](900/previews/nude.png) | [Download](900/hestia_isitwrongtotrytopickupgirlsinadungeon.zip) |
| 800 |  |  |  |  | [<NSFW, click to see>](800/previews/nude.png) | [Download](800/hestia_isitwrongtotrytopickupgirlsinadungeon.zip) |
| 700 |  |  |  |  | [<NSFW, click to see>](700/previews/nude.png) | [Download](700/hestia_isitwrongtotrytopickupgirlsinadungeon.zip) |
| 600 |  |  |  |  | [<NSFW, click to see>](600/previews/nude.png) | [Download](600/hestia_isitwrongtotrytopickupgirlsinadungeon.zip) |
| 500 |  |  |  |  | [<NSFW, click to see>](500/previews/nude.png) | [Download](500/hestia_isitwrongtotrytopickupgirlsinadungeon.zip) |
| 400 |  |  |  |  | [<NSFW, click to see>](400/previews/nude.png) | [Download](400/hestia_isitwrongtotrytopickupgirlsinadungeon.zip) |
| 300 |  |  |  |  | [<NSFW, click to see>](300/previews/nude.png) | [Download](300/hestia_isitwrongtotrytopickupgirlsinadungeon.zip) |
| 200 |  |  |  |  | [<NSFW, click to see>](200/previews/nude.png) | [Download](200/hestia_isitwrongtotrytopickupgirlsinadungeon.zip) |
| 100 |  |  |  |  | [<NSFW, click to see>](100/previews/nude.png) | [Download](100/hestia_isitwrongtotrytopickupgirlsinadungeon.zip) |
|
toastyfrosty/controlearth-sct | toastyfrosty | 2023-08-16T10:20:34Z | 4 | 0 | diffusers | [
"diffusers",
"license:apache-2.0",
"region:us"
] | null | 2023-08-14T06:59:31Z | ---
license: apache-2.0
---
*(Note that this model is for comparison purposes only.
A better performing model can be found [here](https://huggingface.co/tostyfrosty/controlearth).)*
# Model description
ControlNet model conditioned on OpenStreetMaps (OSM) to generate
the corresponding satellite images.
Trained on the region of Scotland.
*To access the **better performing model** trained on the WorldImagery Clarity dataset, see [this model](https://huggingface.co/tostyfrosty/controlearth).*
## Dataset used for training
The dataset used for the training procedure is the
[WorldImagery dataset](https://www.arcgis.com/home/item.html?id=10df2279f9684e4a9f6a7f08febac2a9).
This dataset is qualitatively worse than its predecessor
[WorldImagery Clarity dataset](https://www.arcgis.com/home/item.html?id=ab399b847323487dba26809bf11ea91a).
The code for the dataset construction can be accessed in https://github.com/tostyfrosty/map-sat.
 |
AptaArkana/indonesian_toxic_classification | AptaArkana | 2023-08-16T10:20:10Z | 103 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"bert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2023-08-16T07:58:01Z | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: kata_kasar_test
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# kata_kasar_test
This model is a fine-tuned version of [indolem/indobertweet-base-uncased](https://huggingface.co/indolem/indobertweet-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0099
- Accuracy: 0.9963
- Precision: 0.9926
- Recall: 1.0
- F1: 0.9963
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 0.053 | 1.0 | 547 | 0.0215 | 0.9963 | 0.9944 | 0.9981 | 0.9963 |
| 0.0043 | 2.0 | 1094 | 0.0099 | 0.9963 | 0.9926 | 1.0 | 0.9963 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cpu
- Datasets 2.11.0
- Tokenizers 0.13.2
|
dantepalacio/ruLongT5-Large | dantepalacio | 2023-08-16T10:13:07Z | 80 | 0 | transformers | [
"transformers",
"pytorch",
"longt5",
"text2text-generation",
"ru",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2023-08-14T08:56:57Z | ---
language:
- ru
---
original model: agemagician/mlong-t5-tglobal-large
adaptation guide: https://towardsdatascience.com/how-to-adapt-a-multilingual-t5-model-for-a-single-language-b9f94f3d9c90
import torch
from transformers import MT5Tokenizer, LongT5ForConditionalGeneration
model_name = "dantepalacio/ruLongT5-Large"
tokenizer = MT5Tokenizer.from_pretrained(model_name)
model = LongT5ForConditionalGeneration.from_pretrained(model_name, ignore_mismatched_sizes=True)
|
DrasticActions/gok-so-vits-svc-models | DrasticActions | 2023-08-16T10:11:14Z | 0 | 0 | null | [
"license:cc",
"region:us"
] | null | 2023-08-15T12:54:36Z | ---
license: cc
---
# GOK so-vits-svc models
## How to use
- Install https://github.com/voicepaw/so-vits-svc-fork
- [Download the models](https://huggingface.co/DrasticActions/gok-so-vits-svc-models/tree/main/Models) from this repo
- Open the svc GUI
- Under Paths, set the model path to the specific "G_*.pth" file you want to use.
- Set the config path to the config.json from the same model path folder.
- The Input Audio should only be a (single) speaker's voice. For that, you can use https://ultimatevocalremover.com/
- To create the file, click "Infer" |
manuu01/xtremedistil-l6-h256-uncased-nli | manuu01 | 2023-08-16T10:09:36Z | 69 | 0 | transformers | [
"transformers",
"tf",
"bert",
"text-classification",
"generated_from_keras_callback",
"dataset:scitail",
"dataset:multi_nli",
"dataset:anli",
"dataset:snli",
"dataset:bias-amplified-splits/wanli",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2023-08-13T21:37:40Z | ---
tags:
- generated_from_keras_callback
model-index:
- name: xtremedistil-l6-h256-uncased-nli
results: []
datasets:
- scitail
- multi_nli
- anli
- snli
- bias-amplified-splits/wanli
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# xtremedistil-l6-h256-uncased-nli
The model base is [xtremedistil-l6-h256-uncased](https://huggingface.co/microsoft/xtremedistil-l6-h256-uncased).
It has been fine-tuned on: [snli](https://huggingface.co/datasets/snli), [wanli](https://huggingface.co/datasets/alisawuffles/WANLI),
[mnli](https://huggingface.co/datasets/multi_nli), [anli](https://huggingface.co/datasets/anli),
[scitail](https://huggingface.co/datasets/scitail)
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
### Training results
It achieved the following accuracy during training (on validation sets):
SNLI: 87.90%
MNLI: 82.27%
ANLI_r3: 44.83%
scitail: 91.02%
### Framework versions
- Transformers 4.31.0
- TensorFlow 2.12.0
- Datasets 2.14.4
- Tokenizers 0.13.3 |
maroti/q-taxiv3 | maroti | 2023-08-16T09:54:03Z | 0 | 0 | null | [
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] | reinforcement-learning | 2023-08-16T09:54:01Z | ---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-taxiv3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.48 +/- 2.78
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="maroti/q-taxiv3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
ailabturkiye/epha | ailabturkiye | 2023-08-16T09:52:45Z | 0 | 0 | null | [
"music",
"tr",
"license:openrail",
"region:us"
] | null | 2023-08-16T09:48:53Z | ---
license: openrail
language:
- tr
tags:
- music
---
Epha'nın videosunun sesiyle oluşturulan ses modeli. Train benim tarafımdan yapılmıştır. |
maroti/q-FrozenLake-v1-4x4-noSlippery | maroti | 2023-08-16T09:51:38Z | 0 | 0 | null | [
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] | reinforcement-learning | 2023-08-16T09:51:35Z | ---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="maroti/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
huangyuyang/Qwen-7B-Chat-int8.flm | huangyuyang | 2023-08-16T09:51:01Z | 0 | 4 | null | [
"license:apache-2.0",
"region:us"
] | null | 2023-08-16T09:06:35Z | ---
license: apache-2.0
---
fastllm model for Qwen-7B-Chat-int8
Github address: https://github.com/ztxz16/fastllm |
qgallouedec/tqc-PandaReach-v1-2232459529 | qgallouedec | 2023-08-16T09:43:21Z | 5 | 0 | stable-baselines3 | [
"stable-baselines3",
"PandaReach-v1",
"deep-reinforcement-learning",
"reinforcement-learning",
"arxiv:2106.13687",
"model-index",
"region:us"
] | reinforcement-learning | 2023-02-27T15:36:34Z | ---
library_name: stable-baselines3
tags:
- PandaReach-v1
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: TQC
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: PandaReach-v1
type: PandaReach-v1
metrics:
- type: mean_reward
value: -2.20 +/- 0.75
name: mean_reward
verified: false
---
# **TQC** Agent playing **PandaReach-v1**
This is a trained model of a **TQC** agent playing **PandaReach-v1** (arxiv.org/abs/2106.13687)
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
Install the RL Zoo (with SB3 and SB3-Contrib):
```bash
pip install rl_zoo3
```
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo tqc --env PandaReach-v1 -orga qgallouedec -f logs/
python -m rl_zoo3.enjoy --algo tqc --env PandaReach-v1 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo tqc --env PandaReach-v1 -orga qgallouedec -f logs/
python -m rl_zoo3.enjoy --algo tqc --env PandaReach-v1 -f logs/
```
## Training (with the RL Zoo)
```
python -m rl_zoo3.train --algo tqc --env PandaReach-v1 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo tqc --env PandaReach-v1 -f logs/ -orga qgallouedec
```
## Hyperparameters
```python
OrderedDict([('batch_size', 256),
('buffer_size', 1000000),
('ent_coef', 'auto'),
('env_wrapper', 'sb3_contrib.common.wrappers.TimeFeatureWrapper'),
('gamma', 0.95),
('learning_rate', 0.001),
('learning_starts', 1000),
('n_timesteps', 20000.0),
('normalize', True),
('policy', 'MultiInputPolicy'),
('policy_kwargs', 'dict(net_arch=[64, 64], n_critics=1)'),
('replay_buffer_class', 'HerReplayBuffer'),
('replay_buffer_kwargs',
"dict( online_sampling=True, goal_selection_strategy='future', "
'n_sampled_goal=4 )'),
('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})])
```
# Environment Arguments
```python
{'render': True}
```
|
AXX1995/homarekittenv1 | AXX1995 | 2023-08-16T09:35:21Z | 0 | 0 | null | [
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-08-16T09:10:48Z | ---
license: creativeml-openrail-m
---
|
PhysHunter/whisper-tiny-en | PhysHunter | 2023-08-16T09:16:59Z | 85 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"whisper",
"automatic-speech-recognition",
"generated_from_trainer",
"dataset:PolyAI/minds14",
"base_model:openai/whisper-tiny",
"base_model:finetune:openai/whisper-tiny",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2023-08-16T08:05:42Z | ---
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_trainer
datasets:
- PolyAI/minds14
metrics:
- wer
model-index:
- name: whisper-tiny-en
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: PolyAI/minds14
type: PolyAI/minds14
config: en-US
split: train
args: en-US
metrics:
- name: Wer
type: wer
value: 0.3020257826887661
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-tiny-en
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the PolyAI/minds14 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5262
- Wer Ortho: 0.3119
- Wer: 0.3020
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 20
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|
| 0.4823 | 3.57 | 50 | 0.5315 | 0.3202 | 0.3088 |
| 0.1361 | 7.14 | 100 | 0.4843 | 0.3253 | 0.3161 |
| 0.0563 | 10.71 | 150 | 0.5113 | 0.3106 | 0.3020 |
| 0.0374 | 14.29 | 200 | 0.5262 | 0.3119 | 0.3020 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3
|
fp16-guy/YesMix_2.0_fp16_cleaned | fp16-guy | 2023-08-16T09:12:55Z | 0 | 1 | null | [
"text-to-image",
"region:us"
] | text-to-image | 2023-08-05T09:17:35Z | ---
pipeline_tag: text-to-image
---
【Checkpoint】YesMix, but fp16/cleaned - smaller size, same result.
========
///
**[**original checkpoint link**](https://civitai.com/models/9139/checkpointyesmix)**
*(all rights to the model belong to zakp)*
---
*[*grid 01*](https://huggingface.co/datasets/fp16-guy/grids/blob/main/yesmix%2020%2001%2020230805110225-111-CheckpointYesmix_v20-Euler%20a-6.png) *(1.99gb version)*
*[*grid 02*](https://huggingface.co/datasets/fp16-guy/grids/blob/main/yesmix%2020%2002%2020230805110340-111-CheckpointYesmix_v20-Euler%20a-6.png) *(1.83gb version - no vae)*
*[*grid 03*](https://huggingface.co/datasets/fp16-guy/grids_inp/blob/main/CheckpointYesmix_v20%20inp%2001%2020230815215238-111-CheckpointYesmix_v20_fp16-Euler%20a-5.5.png) *(1.99gb inpainting version)*
*[*grid 04*](https://huggingface.co/datasets/fp16-guy/grids_inp/blob/main/CheckpointYesmix_v20%20inp%2002%2020230816120951-111-CheckpointYesmix_v20_fp16_no_vae-Euler%20a-5.5.png) *(1.83gb inpainting version - no vae)*
|
Old-Shatterhand/esm_fine_fluorescence | Old-Shatterhand | 2023-08-16T09:08:34Z | 108 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"esm",
"text-classification",
"protein",
"classification",
"fluorescence",
"en",
"dataset:proteinea/fluorescence",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2023-08-12T06:24:24Z | ---
license: mit
datasets:
- proteinea/fluorescence
language:
- en
metrics:
- accuracy
library_name: transformers
pipeline_tag: text-classification
tags:
- protein
- esm
- classification
- fluorescence
--- |
huangyuyang/Qwen-7B-Chat-int4.flm | huangyuyang | 2023-08-16T09:04:11Z | 0 | 3 | null | [
"license:apache-2.0",
"region:us"
] | null | 2023-08-16T08:08:01Z | ---
license: apache-2.0
---
fastllm model for Qweb-7B-Chat-int4
Github address: https://github.com/ztxz16/fastllm |
harshit989/my_awesome_billsum_model | harshit989 | 2023-08-16T08:59:17Z | 103 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"t5",
"text2text-generation",
"generated_from_trainer",
"dataset:billsum",
"base_model:google-t5/t5-small",
"base_model:finetune:google-t5/t5-small",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2023-08-16T08:33:35Z | ---
license: apache-2.0
base_model: t5-small
tags:
- generated_from_trainer
datasets:
- billsum
metrics:
- rouge
model-index:
- name: my_awesome_billsum_model
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: billsum
type: billsum
config: default
split: ca_test
args: default
metrics:
- name: Rouge1
type: rouge
value: 0.1416
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# my_awesome_billsum_model
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the billsum dataset.
It achieves the following results on the evaluation set:
- Loss: 2.4956
- Rouge1: 0.1416
- Rouge2: 0.0491
- Rougel: 0.1176
- Rougelsum: 0.1175
- Gen Len: 19.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| No log | 1.0 | 62 | 2.7923 | 0.1292 | 0.0404 | 0.1095 | 0.1094 | 19.0 |
| No log | 2.0 | 124 | 2.5788 | 0.1378 | 0.0491 | 0.1166 | 0.1165 | 19.0 |
| No log | 3.0 | 186 | 2.5125 | 0.1409 | 0.0486 | 0.1174 | 0.1172 | 19.0 |
| No log | 4.0 | 248 | 2.4956 | 0.1416 | 0.0491 | 0.1176 | 0.1175 | 19.0 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3
|
phatpt/q-FrozenLake-v1-4x4-noSlippery | phatpt | 2023-08-16T08:30:59Z | 0 | 0 | null | [
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] | reinforcement-learning | 2023-08-16T08:30:00Z | ---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="phatpt/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
linoyts/lora-trained-xl-colab-woman-5e-06-1000 | linoyts | 2023-08-16T08:30:30Z | 0 | 1 | diffusers | [
"diffusers",
"stable-diffusion-xl",
"stable-diffusion-xl-diffusers",
"text-to-image",
"lora",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:openrail++",
"region:us"
] | text-to-image | 2023-08-16T06:27:57Z |
---
license: openrail++
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: a photo of sks woman
tags:
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
- text-to-image
- diffusers
- lora
inference: true
---
# LoRA DreamBooth - LinoyTsaban/lora-trained-xl-colab-woman-5e-06-1000
These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained on a photo of sks woman using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following.
LoRA for the text encoder was enabled: False.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
|
tulayturanmaku/bert2bert_law_summarization | tulayturanmaku | 2023-08-16T08:03:17Z | 103 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"encoder-decoder",
"text2text-generation",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2023-08-16T07:37:48Z | ---
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: bert2bert_law_summarization
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert2bert_law_summarization
This model is a fine-tuned version of [mrm8488/bert2bert_shared-turkish-summarization](https://huggingface.co/mrm8488/bert2bert_shared-turkish-summarization) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1184
- Rouge1: 0.6064
- Rouge2: 0.5608
- Rougel: 0.5828
- Rougelsum: 0.5836
- Gen Len: 63.2615
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| 1.5546 | 1.0 | 520 | 1.2699 | 0.6047 | 0.5588 | 0.5795 | 0.5799 | 62.7038 |
| 1.071 | 2.0 | 1040 | 1.1607 | 0.6075 | 0.5598 | 0.5814 | 0.5824 | 63.2269 |
| 0.9101 | 3.0 | 1560 | 1.1268 | 0.6129 | 0.569 | 0.5884 | 0.5891 | 62.9654 |
| 0.798 | 4.0 | 2080 | 1.1184 | 0.6064 | 0.5608 | 0.5828 | 0.5836 | 63.2615 |
### Framework versions
- Transformers 4.28.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3
|
Subsets and Splits