modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-06-25 06:27:54
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 495
values | tags
sequencelengths 1
4.05k
| pipeline_tag
stringclasses 54
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-06-25 06:24:22
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
huggingtweets/profdemirtas | huggingtweets | 2021-11-25T12:37:19Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:05Z | ---
language: en
thumbnail: http://www.huggingtweets.com/profdemirtas/1637843815628/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1374615485573165057/-AzXW69D_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Özgür Demirtaş</div>
<div style="text-align: center; font-size: 14px;">@profdemirtas</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Özgür Demirtaş.
| Data | Özgür Demirtaş |
| --- | --- |
| Tweets downloaded | 3205 |
| Retweets | 930 |
| Short tweets | 526 |
| Tweets kept | 1749 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1ijpxe11/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @profdemirtas's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1pvxmqhr) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1pvxmqhr/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/profdemirtas')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
mbeukman/xlm-roberta-base-finetuned-wolof-finetuned-ner-swahili | mbeukman | 2021-11-25T09:05:10Z | 10 | 0 | transformers | [
"transformers",
"pytorch",
"xlm-roberta",
"token-classification",
"NER",
"sw",
"dataset:masakhaner",
"arxiv:2103.11811",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | token-classification | 2022-03-02T23:29:05Z | ---
language:
- sw
tags:
- NER
datasets:
- masakhaner
metrics:
- f1
- precision
- recall
widget:
- text: "Wizara ya afya ya Tanzania imeripoti Jumatatu kuwa , watu takriban 14 zaidi wamepata maambukizi ya Covid - 19 ."
---
# xlm-roberta-base-finetuned-wolof-finetuned-ner-swahili
This is a token classification (specifically NER) model that fine-tuned [xlm-roberta-base-finetuned-wolof](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-wolof) on the [MasakhaNER](https://arxiv.org/abs/2103.11811) dataset, specifically the Swahili part.
More information, and other similar models can be found in the [main Github repository](https://github.com/Michael-Beukman/NERTransfer).
## About
This model is transformer based and was fine-tuned on the MasakhaNER dataset. It is a named entity recognition dataset, containing mostly news articles in 10 different African languages.
The model was fine-tuned for 50 epochs, with a maximum sequence length of 200, 32 batch size, 5e-5 learning rate. This process was repeated 5 times (with different random seeds), and this uploaded model performed the best out of those 5 seeds (aggregate F1 on test set).
This model was fine-tuned by me, Michael Beukman while doing a project at the University of the Witwatersrand, Johannesburg. This is version 1, as of 20 November 2021.
This model is licensed under the [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0).
### Contact & More information
For more information about the models, including training scripts, detailed results and further resources, you can visit the the [main Github repository](https://github.com/Michael-Beukman/NERTransfer). You can contact me by filing an issue on this repository.
### Training Resources
In the interest of openness, and reporting resources used, we list here how long the training process took, as well as what the minimum resources would be to reproduce this. Fine-tuning each model on the NER dataset took between 10 and 30 minutes, and was performed on a NVIDIA RTX3090 GPU. To use a batch size of 32, at least 14GB of GPU memory was required, although it was just possible to fit these models in around 6.5GB's of VRAM when using a batch size of 1.
## Data
The train, evaluation and test datasets were taken directly from the MasakhaNER [Github](https://github.com/masakhane-io/masakhane-ner) repository, with minimal to no preprocessing, as the original dataset is already of high quality.
The motivation for the use of this data is that it is the "first large, publicly available, high quality dataset for named entity recognition (NER) in ten African languages" ([source](https://arxiv.org/pdf/2103.11811.pdf)). The high-quality data, as well as the groundwork laid by the paper introducing it are some more reasons why this dataset was used. For evaluation, the dedicated test split was used, which is from the same distribution as the training data, so this model may not generalise to other distributions, and further testing would need to be done to investigate this. The exact distribution of the data is covered in detail [here](https://arxiv.org/abs/2103.11811).
## Intended Use
This model are intended to be used for NLP research into e.g. interpretability or transfer learning. Using this model in production is not supported, as generalisability and downright performance is limited. In particular, this is not designed to be used in any important downstream task that could affect people, as harm could be caused by the limitations of the model, described next.
## Limitations
This model was only trained on one (relatively small) dataset, covering one task (NER) in one domain (news articles) and in a set span of time. The results may not generalise, and the model may perform badly, or in an unfair / biased way if used on other tasks. Although the purpose of this project was to investigate transfer learning, the performance on languages that the model was not trained for does suffer.
Because this model used xlm-roberta-base as its starting point (potentially with domain adaptive fine-tuning on specific languages), this model's limitations can also apply here. These can include being biased towards the hegemonic viewpoint of most of its training data, being ungrounded and having subpar results on other languages (possibly due to unbalanced training data).
As [Adelani et al. (2021)](https://arxiv.org/abs/2103.11811) showed, the models in general struggled with entities that were either longer than 3 words and entities that were not contained in the training data. This could bias the models towards not finding, e.g. names of people that have many words, possibly leading to a misrepresentation in the results. Similarly, names that are uncommon, and may not have been found in the training data (due to e.g. different languages) would also be predicted less often.
Additionally, this model has not been verified in practice, and other, more subtle problems may become prevalent if used without any verification that it does what it is supposed to.
### Privacy & Ethical Considerations
The data comes from only publicly available news sources, the only available data should cover public figures and those that agreed to be reported on. See the original MasakhaNER paper for more details.
No explicit ethical considerations or adjustments were made during fine-tuning of this model.
## Metrics
The language adaptive models achieve (mostly) superior performance over starting with xlm-roberta-base. Our main metric was the aggregate F1 score for all NER categories.
These metrics are on the test set for MasakhaNER, so the data distribution is similar to the training set, so these results do not directly indicate how well these models generalise.
We do find large variation in transfer results when starting from different seeds (5 different seeds were tested), indicating that the fine-tuning process for transfer might be unstable.
The metrics used were chosen to be consistent with previous work, and to facilitate research. Other metrics may be more appropriate for other purposes.
## Caveats and Recommendations
In general, this model performed worse on the 'date' category compared to others, so if dates are a critical factor, then that might need to be taken into account and addressed, by for example collecting and annotating more data.
## Model Structure
Here are some performance details on this specific model, compared to others we trained.
All of these metrics were calculated on the test set, and the seed was chosen that gave the best overall F1 score. The first three result columns are averaged over all categories, and the latter 4 provide performance broken down by category.
This model can predict the following label for a token ([source](https://huggingface.co/Davlan/xlm-roberta-large-masakhaner)):
Abbreviation|Description
-|-
O|Outside of a named entity
B-DATE |Beginning of a DATE entity right after another DATE entity
I-DATE |DATE entity
B-PER |Beginning of a person’s name right after another person’s name
I-PER |Person’s name
B-ORG |Beginning of an organisation right after another organisation
I-ORG |Organisation
B-LOC |Beginning of a location right after another location
I-LOC |Location
| Model Name | Staring point | Evaluation / Fine-tune Language | F1 | Precision | Recall | F1 (DATE) | F1 (LOC) | F1 (ORG) | F1 (PER) |
| -------------------------------------------------- | -------------------- | -------------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- |
| [xlm-roberta-base-finetuned-wolof-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-wolof-finetuned-ner-swahili) (This model) | [wol](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-wolof) | swa | 87.80 | 86.50 | 89.14 | 86.00 | 90.00 | 78.00 | 93.00 |
| [xlm-roberta-base-finetuned-hausa-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-hausa-finetuned-ner-swahili) | [hau](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-hausa) | swa | 88.36 | 86.95 | 89.82 | 86.00 | 91.00 | 77.00 | 94.00 |
| [xlm-roberta-base-finetuned-igbo-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-igbo-finetuned-ner-swahili) | [ibo](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-igbo) | swa | 87.75 | 86.55 | 88.97 | 85.00 | 92.00 | 77.00 | 91.00 |
| [xlm-roberta-base-finetuned-kinyarwanda-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-kinyarwanda-finetuned-ner-swahili) | [kin](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-kinyarwanda) | swa | 87.26 | 85.15 | 89.48 | 83.00 | 91.00 | 75.00 | 93.00 |
| [xlm-roberta-base-finetuned-luganda-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-luganda-finetuned-ner-swahili) | [lug](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-luganda) | swa | 88.93 | 87.64 | 90.25 | 83.00 | 92.00 | 79.00 | 95.00 |
| [xlm-roberta-base-finetuned-luo-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-luo-finetuned-ner-swahili) | [luo](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-luo) | swa | 87.93 | 86.91 | 88.97 | 83.00 | 91.00 | 76.00 | 94.00 |
| [xlm-roberta-base-finetuned-naija-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-naija-finetuned-ner-swahili) | [pcm](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-naija) | swa | 87.26 | 85.15 | 89.48 | 83.00 | 91.00 | 75.00 | 93.00 |
| [xlm-roberta-base-finetuned-swahili-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-swahili-finetuned-ner-swahili) | [swa](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-swahili) | swa | 90.36 | 88.59 | 92.20 | 86.00 | 93.00 | 79.00 | 96.00 |
| [xlm-roberta-base-finetuned-yoruba-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-yoruba-finetuned-ner-swahili) | [yor](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-yoruba) | swa | 87.73 | 86.67 | 88.80 | 85.00 | 91.00 | 75.00 | 93.00 |
| [xlm-roberta-base-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-ner-swahili) | [base](https://huggingface.co/xlm-roberta-base) | swa | 88.71 | 86.84 | 90.67 | 83.00 | 91.00 | 79.00 | 95.00 |
## Usage
To use this model (or others), you can do the following, just changing the model name ([source](https://huggingface.co/dslim/bert-base-NER)):
```
from transformers import AutoTokenizer, AutoModelForTokenClassification
from transformers import pipeline
model_name = 'mbeukman/xlm-roberta-base-finetuned-wolof-finetuned-ner-swahili'
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForTokenClassification.from_pretrained(model_name)
nlp = pipeline("ner", model=model, tokenizer=tokenizer)
example = "Wizara ya afya ya Tanzania imeripoti Jumatatu kuwa , watu takriban 14 zaidi wamepata maambukizi ya Covid - 19 ."
ner_results = nlp(example)
print(ner_results)
```
|
mbeukman/xlm-roberta-base-finetuned-swahili-finetuned-ner-yoruba | mbeukman | 2021-11-25T09:05:08Z | 8 | 1 | transformers | [
"transformers",
"pytorch",
"xlm-roberta",
"token-classification",
"NER",
"yo",
"dataset:masakhaner",
"arxiv:2103.11811",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | token-classification | 2022-03-02T23:29:05Z | ---
language:
- yo
tags:
- NER
datasets:
- masakhaner
metrics:
- f1
- precision
- recall
widget:
- text: "Kò sí ẹ̀rí tí ó fi ẹsẹ̀ rinlẹ̀ ."
---
# xlm-roberta-base-finetuned-swahili-finetuned-ner-yoruba
This is a token classification (specifically NER) model that fine-tuned [xlm-roberta-base-finetuned-swahili](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-swahili) on the [MasakhaNER](https://arxiv.org/abs/2103.11811) dataset, specifically the Yoruba part.
More information, and other similar models can be found in the [main Github repository](https://github.com/Michael-Beukman/NERTransfer).
## About
This model is transformer based and was fine-tuned on the MasakhaNER dataset. It is a named entity recognition dataset, containing mostly news articles in 10 different African languages.
The model was fine-tuned for 50 epochs, with a maximum sequence length of 200, 32 batch size, 5e-5 learning rate. This process was repeated 5 times (with different random seeds), and this uploaded model performed the best out of those 5 seeds (aggregate F1 on test set).
This model was fine-tuned by me, Michael Beukman while doing a project at the University of the Witwatersrand, Johannesburg. This is version 1, as of 20 November 2021.
This model is licensed under the [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0).
### Contact & More information
For more information about the models, including training scripts, detailed results and further resources, you can visit the the [main Github repository](https://github.com/Michael-Beukman/NERTransfer). You can contact me by filing an issue on this repository.
### Training Resources
In the interest of openness, and reporting resources used, we list here how long the training process took, as well as what the minimum resources would be to reproduce this. Fine-tuning each model on the NER dataset took between 10 and 30 minutes, and was performed on a NVIDIA RTX3090 GPU. To use a batch size of 32, at least 14GB of GPU memory was required, although it was just possible to fit these models in around 6.5GB's of VRAM when using a batch size of 1.
## Data
The train, evaluation and test datasets were taken directly from the MasakhaNER [Github](https://github.com/masakhane-io/masakhane-ner) repository, with minimal to no preprocessing, as the original dataset is already of high quality.
The motivation for the use of this data is that it is the "first large, publicly available, high quality dataset for named entity recognition (NER) in ten African languages" ([source](https://arxiv.org/pdf/2103.11811.pdf)). The high-quality data, as well as the groundwork laid by the paper introducing it are some more reasons why this dataset was used. For evaluation, the dedicated test split was used, which is from the same distribution as the training data, so this model may not generalise to other distributions, and further testing would need to be done to investigate this. The exact distribution of the data is covered in detail [here](https://arxiv.org/abs/2103.11811).
## Intended Use
This model are intended to be used for NLP research into e.g. interpretability or transfer learning. Using this model in production is not supported, as generalisability and downright performance is limited. In particular, this is not designed to be used in any important downstream task that could affect people, as harm could be caused by the limitations of the model, described next.
## Limitations
This model was only trained on one (relatively small) dataset, covering one task (NER) in one domain (news articles) and in a set span of time. The results may not generalise, and the model may perform badly, or in an unfair / biased way if used on other tasks. Although the purpose of this project was to investigate transfer learning, the performance on languages that the model was not trained for does suffer.
Because this model used xlm-roberta-base as its starting point (potentially with domain adaptive fine-tuning on specific languages), this model's limitations can also apply here. These can include being biased towards the hegemonic viewpoint of most of its training data, being ungrounded and having subpar results on other languages (possibly due to unbalanced training data).
As [Adelani et al. (2021)](https://arxiv.org/abs/2103.11811) showed, the models in general struggled with entities that were either longer than 3 words and entities that were not contained in the training data. This could bias the models towards not finding, e.g. names of people that have many words, possibly leading to a misrepresentation in the results. Similarly, names that are uncommon, and may not have been found in the training data (due to e.g. different languages) would also be predicted less often.
Additionally, this model has not been verified in practice, and other, more subtle problems may become prevalent if used without any verification that it does what it is supposed to.
### Privacy & Ethical Considerations
The data comes from only publicly available news sources, the only available data should cover public figures and those that agreed to be reported on. See the original MasakhaNER paper for more details.
No explicit ethical considerations or adjustments were made during fine-tuning of this model.
## Metrics
The language adaptive models achieve (mostly) superior performance over starting with xlm-roberta-base. Our main metric was the aggregate F1 score for all NER categories.
These metrics are on the test set for MasakhaNER, so the data distribution is similar to the training set, so these results do not directly indicate how well these models generalise.
We do find large variation in transfer results when starting from different seeds (5 different seeds were tested), indicating that the fine-tuning process for transfer might be unstable.
The metrics used were chosen to be consistent with previous work, and to facilitate research. Other metrics may be more appropriate for other purposes.
## Caveats and Recommendations
In general, this model performed worse on the 'date' category compared to others, so if dates are a critical factor, then that might need to be taken into account and addressed, by for example collecting and annotating more data.
## Model Structure
Here are some performance details on this specific model, compared to others we trained.
All of these metrics were calculated on the test set, and the seed was chosen that gave the best overall F1 score. The first three result columns are averaged over all categories, and the latter 4 provide performance broken down by category.
This model can predict the following label for a token ([source](https://huggingface.co/Davlan/xlm-roberta-large-masakhaner)):
Abbreviation|Description
-|-
O|Outside of a named entity
B-DATE |Beginning of a DATE entity right after another DATE entity
I-DATE |DATE entity
B-PER |Beginning of a person’s name right after another person’s name
I-PER |Person’s name
B-ORG |Beginning of an organisation right after another organisation
I-ORG |Organisation
B-LOC |Beginning of a location right after another location
I-LOC |Location
| Model Name | Staring point | Evaluation / Fine-tune Language | F1 | Precision | Recall | F1 (DATE) | F1 (LOC) | F1 (ORG) | F1 (PER) |
| -------------------------------------------------- | -------------------- | -------------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- |
| [xlm-roberta-base-finetuned-swahili-finetuned-ner-yoruba](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-swahili-finetuned-ner-yoruba) (This model) | [swa](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-swahili) | yor | 80.29 | 78.34 | 82.35 | 77.00 | 82.00 | 73.00 | 86.00 |
| [xlm-roberta-base-finetuned-yoruba-finetuned-ner-yoruba](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-yoruba-finetuned-ner-yoruba) | [yor](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-yoruba) | yor | 83.68 | 79.92 | 87.82 | 78.00 | 86.00 | 74.00 | 92.00 |
| [xlm-roberta-base-finetuned-ner-yoruba](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-ner-yoruba) | [base](https://huggingface.co/xlm-roberta-base) | yor | 78.22 | 77.21 | 79.26 | 77.00 | 80.00 | 71.00 | 82.00 |
## Usage
To use this model (or others), you can do the following, just changing the model name ([source](https://huggingface.co/dslim/bert-base-NER)):
```
from transformers import AutoTokenizer, AutoModelForTokenClassification
from transformers import pipeline
model_name = 'mbeukman/xlm-roberta-base-finetuned-swahili-finetuned-ner-yoruba'
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForTokenClassification.from_pretrained(model_name)
nlp = pipeline("ner", model=model, tokenizer=tokenizer)
example = "Kò sí ẹ̀rí tí ó fi ẹsẹ̀ rinlẹ̀ ."
ner_results = nlp(example)
print(ner_results)
```
|
mbeukman/xlm-roberta-base-finetuned-swahili-finetuned-ner-wolof | mbeukman | 2021-11-25T09:05:05Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"xlm-roberta",
"token-classification",
"NER",
"wo",
"dataset:masakhaner",
"arxiv:2103.11811",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | token-classification | 2022-03-02T23:29:05Z | ---
language:
- wo
tags:
- NER
datasets:
- masakhaner
metrics:
- f1
- precision
- recall
widget:
- text: "SAFIYETU BÉEY Céy Koronaa !"
---
# xlm-roberta-base-finetuned-swahili-finetuned-ner-wolof
This is a token classification (specifically NER) model that fine-tuned [xlm-roberta-base-finetuned-swahili](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-swahili) on the [MasakhaNER](https://arxiv.org/abs/2103.11811) dataset, specifically the Wolof part.
More information, and other similar models can be found in the [main Github repository](https://github.com/Michael-Beukman/NERTransfer).
## About
This model is transformer based and was fine-tuned on the MasakhaNER dataset. It is a named entity recognition dataset, containing mostly news articles in 10 different African languages.
The model was fine-tuned for 50 epochs, with a maximum sequence length of 200, 32 batch size, 5e-5 learning rate. This process was repeated 5 times (with different random seeds), and this uploaded model performed the best out of those 5 seeds (aggregate F1 on test set).
This model was fine-tuned by me, Michael Beukman while doing a project at the University of the Witwatersrand, Johannesburg. This is version 1, as of 20 November 2021.
This model is licensed under the [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0).
### Contact & More information
For more information about the models, including training scripts, detailed results and further resources, you can visit the the [main Github repository](https://github.com/Michael-Beukman/NERTransfer). You can contact me by filing an issue on this repository.
### Training Resources
In the interest of openness, and reporting resources used, we list here how long the training process took, as well as what the minimum resources would be to reproduce this. Fine-tuning each model on the NER dataset took between 10 and 30 minutes, and was performed on a NVIDIA RTX3090 GPU. To use a batch size of 32, at least 14GB of GPU memory was required, although it was just possible to fit these models in around 6.5GB's of VRAM when using a batch size of 1.
## Data
The train, evaluation and test datasets were taken directly from the MasakhaNER [Github](https://github.com/masakhane-io/masakhane-ner) repository, with minimal to no preprocessing, as the original dataset is already of high quality.
The motivation for the use of this data is that it is the "first large, publicly available, high quality dataset for named entity recognition (NER) in ten African languages" ([source](https://arxiv.org/pdf/2103.11811.pdf)). The high-quality data, as well as the groundwork laid by the paper introducing it are some more reasons why this dataset was used. For evaluation, the dedicated test split was used, which is from the same distribution as the training data, so this model may not generalise to other distributions, and further testing would need to be done to investigate this. The exact distribution of the data is covered in detail [here](https://arxiv.org/abs/2103.11811).
## Intended Use
This model are intended to be used for NLP research into e.g. interpretability or transfer learning. Using this model in production is not supported, as generalisability and downright performance is limited. In particular, this is not designed to be used in any important downstream task that could affect people, as harm could be caused by the limitations of the model, described next.
## Limitations
This model was only trained on one (relatively small) dataset, covering one task (NER) in one domain (news articles) and in a set span of time. The results may not generalise, and the model may perform badly, or in an unfair / biased way if used on other tasks. Although the purpose of this project was to investigate transfer learning, the performance on languages that the model was not trained for does suffer.
Because this model used xlm-roberta-base as its starting point (potentially with domain adaptive fine-tuning on specific languages), this model's limitations can also apply here. These can include being biased towards the hegemonic viewpoint of most of its training data, being ungrounded and having subpar results on other languages (possibly due to unbalanced training data).
As [Adelani et al. (2021)](https://arxiv.org/abs/2103.11811) showed, the models in general struggled with entities that were either longer than 3 words and entities that were not contained in the training data. This could bias the models towards not finding, e.g. names of people that have many words, possibly leading to a misrepresentation in the results. Similarly, names that are uncommon, and may not have been found in the training data (due to e.g. different languages) would also be predicted less often.
Additionally, this model has not been verified in practice, and other, more subtle problems may become prevalent if used without any verification that it does what it is supposed to.
### Privacy & Ethical Considerations
The data comes from only publicly available news sources, the only available data should cover public figures and those that agreed to be reported on. See the original MasakhaNER paper for more details.
No explicit ethical considerations or adjustments were made during fine-tuning of this model.
## Metrics
The language adaptive models achieve (mostly) superior performance over starting with xlm-roberta-base. Our main metric was the aggregate F1 score for all NER categories.
These metrics are on the test set for MasakhaNER, so the data distribution is similar to the training set, so these results do not directly indicate how well these models generalise.
We do find large variation in transfer results when starting from different seeds (5 different seeds were tested), indicating that the fine-tuning process for transfer might be unstable.
The metrics used were chosen to be consistent with previous work, and to facilitate research. Other metrics may be more appropriate for other purposes.
## Caveats and Recommendations
In general, this model performed worse on the 'date' category compared to others, so if dates are a critical factor, then that might need to be taken into account and addressed, by for example collecting and annotating more data.
## Model Structure
Here are some performance details on this specific model, compared to others we trained.
All of these metrics were calculated on the test set, and the seed was chosen that gave the best overall F1 score. The first three result columns are averaged over all categories, and the latter 4 provide performance broken down by category.
This model can predict the following label for a token ([source](https://huggingface.co/Davlan/xlm-roberta-large-masakhaner)):
Abbreviation|Description
-|-
O|Outside of a named entity
B-DATE |Beginning of a DATE entity right after another DATE entity
I-DATE |DATE entity
B-PER |Beginning of a person’s name right after another person’s name
I-PER |Person’s name
B-ORG |Beginning of an organisation right after another organisation
I-ORG |Organisation
B-LOC |Beginning of a location right after another location
I-LOC |Location
| Model Name | Staring point | Evaluation / Fine-tune Language | F1 | Precision | Recall | F1 (DATE) | F1 (LOC) | F1 (ORG) | F1 (PER) |
| -------------------------------------------------- | -------------------- | -------------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- |
| [xlm-roberta-base-finetuned-swahili-finetuned-ner-wolof](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-swahili-finetuned-ner-wolof) (This model) | [swa](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-swahili) | wol | 69.01 | 73.25 | 65.23 | 27.00 | 85.00 | 52.00 | 67.00 |
| [xlm-roberta-base-finetuned-wolof-finetuned-ner-wolof](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-wolof-finetuned-ner-wolof) | [wol](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-wolof) | wol | 69.02 | 67.60 | 70.51 | 30.00 | 84.00 | 44.00 | 71.00 |
| [xlm-roberta-base-finetuned-ner-wolof](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-ner-wolof) | [base](https://huggingface.co/xlm-roberta-base) | wol | 66.12 | 69.46 | 63.09 | 30.00 | 84.00 | 54.00 | 59.00 |
## Usage
To use this model (or others), you can do the following, just changing the model name ([source](https://huggingface.co/dslim/bert-base-NER)):
```
from transformers import AutoTokenizer, AutoModelForTokenClassification
from transformers import pipeline
model_name = 'mbeukman/xlm-roberta-base-finetuned-swahili-finetuned-ner-wolof'
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForTokenClassification.from_pretrained(model_name)
nlp = pipeline("ner", model=model, tokenizer=tokenizer)
example = "SAFIYETU BÉEY Céy Koronaa !"
ner_results = nlp(example)
print(ner_results)
```
|
mbeukman/xlm-roberta-base-finetuned-swahili-finetuned-ner-swahili | mbeukman | 2021-11-25T09:05:03Z | 33 | 1 | transformers | [
"transformers",
"pytorch",
"xlm-roberta",
"token-classification",
"NER",
"sw",
"dataset:masakhaner",
"arxiv:2103.11811",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | token-classification | 2022-03-02T23:29:05Z | ---
language:
- sw
tags:
- NER
datasets:
- masakhaner
metrics:
- f1
- precision
- recall
widget:
- text: "Wizara ya afya ya Tanzania imeripoti Jumatatu kuwa , watu takriban 14 zaidi wamepata maambukizi ya Covid - 19 ."
---
# xlm-roberta-base-finetuned-swahili-finetuned-ner-swahili
This is a token classification (specifically NER) model that fine-tuned [xlm-roberta-base-finetuned-swahili](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-swahili) on the [MasakhaNER](https://arxiv.org/abs/2103.11811) dataset, specifically the Swahili part.
More information, and other similar models can be found in the [main Github repository](https://github.com/Michael-Beukman/NERTransfer).
## About
This model is transformer based and was fine-tuned on the MasakhaNER dataset. It is a named entity recognition dataset, containing mostly news articles in 10 different African languages.
The model was fine-tuned for 50 epochs, with a maximum sequence length of 200, 32 batch size, 5e-5 learning rate. This process was repeated 5 times (with different random seeds), and this uploaded model performed the best out of those 5 seeds (aggregate F1 on test set).
This model was fine-tuned by me, Michael Beukman while doing a project at the University of the Witwatersrand, Johannesburg. This is version 1, as of 20 November 2021.
This model is licensed under the [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0).
### Contact & More information
For more information about the models, including training scripts, detailed results and further resources, you can visit the the [main Github repository](https://github.com/Michael-Beukman/NERTransfer). You can contact me by filing an issue on this repository.
### Training Resources
In the interest of openness, and reporting resources used, we list here how long the training process took, as well as what the minimum resources would be to reproduce this. Fine-tuning each model on the NER dataset took between 10 and 30 minutes, and was performed on a NVIDIA RTX3090 GPU. To use a batch size of 32, at least 14GB of GPU memory was required, although it was just possible to fit these models in around 6.5GB's of VRAM when using a batch size of 1.
## Data
The train, evaluation and test datasets were taken directly from the MasakhaNER [Github](https://github.com/masakhane-io/masakhane-ner) repository, with minimal to no preprocessing, as the original dataset is already of high quality.
The motivation for the use of this data is that it is the "first large, publicly available, high quality dataset for named entity recognition (NER) in ten African languages" ([source](https://arxiv.org/pdf/2103.11811.pdf)). The high-quality data, as well as the groundwork laid by the paper introducing it are some more reasons why this dataset was used. For evaluation, the dedicated test split was used, which is from the same distribution as the training data, so this model may not generalise to other distributions, and further testing would need to be done to investigate this. The exact distribution of the data is covered in detail [here](https://arxiv.org/abs/2103.11811).
## Intended Use
This model are intended to be used for NLP research into e.g. interpretability or transfer learning. Using this model in production is not supported, as generalisability and downright performance is limited. In particular, this is not designed to be used in any important downstream task that could affect people, as harm could be caused by the limitations of the model, described next.
## Limitations
This model was only trained on one (relatively small) dataset, covering one task (NER) in one domain (news articles) and in a set span of time. The results may not generalise, and the model may perform badly, or in an unfair / biased way if used on other tasks. Although the purpose of this project was to investigate transfer learning, the performance on languages that the model was not trained for does suffer.
Because this model used xlm-roberta-base as its starting point (potentially with domain adaptive fine-tuning on specific languages), this model's limitations can also apply here. These can include being biased towards the hegemonic viewpoint of most of its training data, being ungrounded and having subpar results on other languages (possibly due to unbalanced training data).
As [Adelani et al. (2021)](https://arxiv.org/abs/2103.11811) showed, the models in general struggled with entities that were either longer than 3 words and entities that were not contained in the training data. This could bias the models towards not finding, e.g. names of people that have many words, possibly leading to a misrepresentation in the results. Similarly, names that are uncommon, and may not have been found in the training data (due to e.g. different languages) would also be predicted less often.
Additionally, this model has not been verified in practice, and other, more subtle problems may become prevalent if used without any verification that it does what it is supposed to.
### Privacy & Ethical Considerations
The data comes from only publicly available news sources, the only available data should cover public figures and those that agreed to be reported on. See the original MasakhaNER paper for more details.
No explicit ethical considerations or adjustments were made during fine-tuning of this model.
## Metrics
The language adaptive models achieve (mostly) superior performance over starting with xlm-roberta-base. Our main metric was the aggregate F1 score for all NER categories.
These metrics are on the test set for MasakhaNER, so the data distribution is similar to the training set, so these results do not directly indicate how well these models generalise.
We do find large variation in transfer results when starting from different seeds (5 different seeds were tested), indicating that the fine-tuning process for transfer might be unstable.
The metrics used were chosen to be consistent with previous work, and to facilitate research. Other metrics may be more appropriate for other purposes.
## Caveats and Recommendations
In general, this model performed worse on the 'date' category compared to others, so if dates are a critical factor, then that might need to be taken into account and addressed, by for example collecting and annotating more data.
## Model Structure
Here are some performance details on this specific model, compared to others we trained.
All of these metrics were calculated on the test set, and the seed was chosen that gave the best overall F1 score. The first three result columns are averaged over all categories, and the latter 4 provide performance broken down by category.
This model can predict the following label for a token ([source](https://huggingface.co/Davlan/xlm-roberta-large-masakhaner)):
Abbreviation|Description
-|-
O|Outside of a named entity
B-DATE |Beginning of a DATE entity right after another DATE entity
I-DATE |DATE entity
B-PER |Beginning of a person’s name right after another person’s name
I-PER |Person’s name
B-ORG |Beginning of an organisation right after another organisation
I-ORG |Organisation
B-LOC |Beginning of a location right after another location
I-LOC |Location
| Model Name | Staring point | Evaluation / Fine-tune Language | F1 | Precision | Recall | F1 (DATE) | F1 (LOC) | F1 (ORG) | F1 (PER) |
| -------------------------------------------------- | -------------------- | -------------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- |
| [xlm-roberta-base-finetuned-swahili-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-swahili-finetuned-ner-swahili) (This model) | [swa](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-swahili) | swa | 90.36 | 88.59 | 92.20 | 86.00 | 93.00 | 79.00 | 96.00 |
| [xlm-roberta-base-finetuned-hausa-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-hausa-finetuned-ner-swahili) | [hau](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-hausa) | swa | 88.36 | 86.95 | 89.82 | 86.00 | 91.00 | 77.00 | 94.00 |
| [xlm-roberta-base-finetuned-igbo-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-igbo-finetuned-ner-swahili) | [ibo](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-igbo) | swa | 87.75 | 86.55 | 88.97 | 85.00 | 92.00 | 77.00 | 91.00 |
| [xlm-roberta-base-finetuned-kinyarwanda-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-kinyarwanda-finetuned-ner-swahili) | [kin](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-kinyarwanda) | swa | 87.26 | 85.15 | 89.48 | 83.00 | 91.00 | 75.00 | 93.00 |
| [xlm-roberta-base-finetuned-luganda-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-luganda-finetuned-ner-swahili) | [lug](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-luganda) | swa | 88.93 | 87.64 | 90.25 | 83.00 | 92.00 | 79.00 | 95.00 |
| [xlm-roberta-base-finetuned-luo-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-luo-finetuned-ner-swahili) | [luo](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-luo) | swa | 87.93 | 86.91 | 88.97 | 83.00 | 91.00 | 76.00 | 94.00 |
| [xlm-roberta-base-finetuned-naija-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-naija-finetuned-ner-swahili) | [pcm](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-naija) | swa | 87.26 | 85.15 | 89.48 | 83.00 | 91.00 | 75.00 | 93.00 |
| [xlm-roberta-base-finetuned-wolof-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-wolof-finetuned-ner-swahili) | [wol](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-wolof) | swa | 87.80 | 86.50 | 89.14 | 86.00 | 90.00 | 78.00 | 93.00 |
| [xlm-roberta-base-finetuned-yoruba-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-yoruba-finetuned-ner-swahili) | [yor](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-yoruba) | swa | 87.73 | 86.67 | 88.80 | 85.00 | 91.00 | 75.00 | 93.00 |
| [xlm-roberta-base-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-ner-swahili) | [base](https://huggingface.co/xlm-roberta-base) | swa | 88.71 | 86.84 | 90.67 | 83.00 | 91.00 | 79.00 | 95.00 |
## Usage
To use this model (or others), you can do the following, just changing the model name ([source](https://huggingface.co/dslim/bert-base-NER)):
```
from transformers import AutoTokenizer, AutoModelForTokenClassification
from transformers import pipeline
model_name = 'mbeukman/xlm-roberta-base-finetuned-swahili-finetuned-ner-swahili'
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForTokenClassification.from_pretrained(model_name)
nlp = pipeline("ner", model=model, tokenizer=tokenizer)
example = "Wizara ya afya ya Tanzania imeripoti Jumatatu kuwa , watu takriban 14 zaidi wamepata maambukizi ya Covid - 19 ."
ner_results = nlp(example)
print(ner_results)
```
|
mbeukman/xlm-roberta-base-finetuned-swahili-finetuned-ner-luganda | mbeukman | 2021-11-25T09:04:55Z | 3 | 0 | transformers | [
"transformers",
"pytorch",
"xlm-roberta",
"token-classification",
"NER",
"lug",
"dataset:masakhaner",
"arxiv:2103.11811",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | token-classification | 2022-03-02T23:29:05Z | ---
language:
- lug
tags:
- NER
datasets:
- masakhaner
metrics:
- f1
- precision
- recall
widget:
- text: "Empaka zaakubeera mu kibuga Liverpool e Bungereza , okutandika nga July 12 ."
---
# xlm-roberta-base-finetuned-swahili-finetuned-ner-luganda
This is a token classification (specifically NER) model that fine-tuned [xlm-roberta-base-finetuned-swahili](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-swahili) on the [MasakhaNER](https://arxiv.org/abs/2103.11811) dataset, specifically the luganda part.
More information, and other similar models can be found in the [main Github repository](https://github.com/Michael-Beukman/NERTransfer).
## About
This model is transformer based and was fine-tuned on the MasakhaNER dataset. It is a named entity recognition dataset, containing mostly news articles in 10 different African languages.
The model was fine-tuned for 50 epochs, with a maximum sequence length of 200, 32 batch size, 5e-5 learning rate. This process was repeated 5 times (with different random seeds), and this uploaded model performed the best out of those 5 seeds (aggregate F1 on test set).
This model was fine-tuned by me, Michael Beukman while doing a project at the University of the Witwatersrand, Johannesburg. This is version 1, as of 20 November 2021.
This model is licensed under the [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0).
### Contact & More information
For more information about the models, including training scripts, detailed results and further resources, you can visit the the [main Github repository](https://github.com/Michael-Beukman/NERTransfer). You can contact me by filing an issue on this repository.
### Training Resources
In the interest of openness, and reporting resources used, we list here how long the training process took, as well as what the minimum resources would be to reproduce this. Fine-tuning each model on the NER dataset took between 10 and 30 minutes, and was performed on a NVIDIA RTX3090 GPU. To use a batch size of 32, at least 14GB of GPU memory was required, although it was just possible to fit these models in around 6.5GB's of VRAM when using a batch size of 1.
## Data
The train, evaluation and test datasets were taken directly from the MasakhaNER [Github](https://github.com/masakhane-io/masakhane-ner) repository, with minimal to no preprocessing, as the original dataset is already of high quality.
The motivation for the use of this data is that it is the "first large, publicly available, high quality dataset for named entity recognition (NER) in ten African languages" ([source](https://arxiv.org/pdf/2103.11811.pdf)). The high-quality data, as well as the groundwork laid by the paper introducing it are some more reasons why this dataset was used. For evaluation, the dedicated test split was used, which is from the same distribution as the training data, so this model may not generalise to other distributions, and further testing would need to be done to investigate this. The exact distribution of the data is covered in detail [here](https://arxiv.org/abs/2103.11811).
## Intended Use
This model are intended to be used for NLP research into e.g. interpretability or transfer learning. Using this model in production is not supported, as generalisability and downright performance is limited. In particular, this is not designed to be used in any important downstream task that could affect people, as harm could be caused by the limitations of the model, described next.
## Limitations
This model was only trained on one (relatively small) dataset, covering one task (NER) in one domain (news articles) and in a set span of time. The results may not generalise, and the model may perform badly, or in an unfair / biased way if used on other tasks. Although the purpose of this project was to investigate transfer learning, the performance on languages that the model was not trained for does suffer.
Because this model used xlm-roberta-base as its starting point (potentially with domain adaptive fine-tuning on specific languages), this model's limitations can also apply here. These can include being biased towards the hegemonic viewpoint of most of its training data, being ungrounded and having subpar results on other languages (possibly due to unbalanced training data).
As [Adelani et al. (2021)](https://arxiv.org/abs/2103.11811) showed, the models in general struggled with entities that were either longer than 3 words and entities that were not contained in the training data. This could bias the models towards not finding, e.g. names of people that have many words, possibly leading to a misrepresentation in the results. Similarly, names that are uncommon, and may not have been found in the training data (due to e.g. different languages) would also be predicted less often.
Additionally, this model has not been verified in practice, and other, more subtle problems may become prevalent if used without any verification that it does what it is supposed to.
### Privacy & Ethical Considerations
The data comes from only publicly available news sources, the only available data should cover public figures and those that agreed to be reported on. See the original MasakhaNER paper for more details.
No explicit ethical considerations or adjustments were made during fine-tuning of this model.
## Metrics
The language adaptive models achieve (mostly) superior performance over starting with xlm-roberta-base. Our main metric was the aggregate F1 score for all NER categories.
These metrics are on the test set for MasakhaNER, so the data distribution is similar to the training set, so these results do not directly indicate how well these models generalise.
We do find large variation in transfer results when starting from different seeds (5 different seeds were tested), indicating that the fine-tuning process for transfer might be unstable.
The metrics used were chosen to be consistent with previous work, and to facilitate research. Other metrics may be more appropriate for other purposes.
## Caveats and Recommendations
In general, this model performed worse on the 'date' category compared to others, so if dates are a critical factor, then that might need to be taken into account and addressed, by for example collecting and annotating more data.
## Model Structure
Here are some performance details on this specific model, compared to others we trained.
All of these metrics were calculated on the test set, and the seed was chosen that gave the best overall F1 score. The first three result columns are averaged over all categories, and the latter 4 provide performance broken down by category.
This model can predict the following label for a token ([source](https://huggingface.co/Davlan/xlm-roberta-large-masakhaner)):
Abbreviation|Description
-|-
O|Outside of a named entity
B-DATE |Beginning of a DATE entity right after another DATE entity
I-DATE |DATE entity
B-PER |Beginning of a person’s name right after another person’s name
I-PER |Person’s name
B-ORG |Beginning of an organisation right after another organisation
I-ORG |Organisation
B-LOC |Beginning of a location right after another location
I-LOC |Location
| Model Name | Staring point | Evaluation / Fine-tune Language | F1 | Precision | Recall | F1 (DATE) | F1 (LOC) | F1 (ORG) | F1 (PER) |
| -------------------------------------------------- | -------------------- | -------------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- |
| [xlm-roberta-base-finetuned-swahili-finetuned-ner-luganda](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-swahili-finetuned-ner-luganda) (This model) | [swa](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-swahili) | lug | 82.57 | 80.38 | 84.89 | 75.00 | 80.00 | 82.00 | 87.00 |
| [xlm-roberta-base-finetuned-luganda-finetuned-ner-luganda](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-luganda-finetuned-ner-luganda) | [lug](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-luganda) | lug | 85.37 | 82.75 | 88.17 | 78.00 | 82.00 | 80.00 | 92.00 |
| [xlm-roberta-base-finetuned-ner-luganda](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-ner-luganda) | [base](https://huggingface.co/xlm-roberta-base) | lug | 80.91 | 78.59 | 83.37 | 73.00 | 78.00 | 77.00 | 86.00 |
## Usage
To use this model (or others), you can do the following, just changing the model name ([source](https://huggingface.co/dslim/bert-base-NER)):
```
from transformers import AutoTokenizer, AutoModelForTokenClassification
from transformers import pipeline
model_name = 'mbeukman/xlm-roberta-base-finetuned-swahili-finetuned-ner-luganda'
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForTokenClassification.from_pretrained(model_name)
nlp = pipeline("ner", model=model, tokenizer=tokenizer)
example = "Empaka zaakubeera mu kibuga Liverpool e Bungereza , okutandika nga July 12 ."
ner_results = nlp(example)
print(ner_results)
```
|
Manyman3231/lowlight-enhancement | Manyman3231 | 2021-11-25T09:04:50Z | 0 | 1 | null | [
"region:us"
] | null | 2022-03-02T23:29:04Z | return im
def main():
st.title("Lowlight Enhancement")
st.write("This is a simple lowlight enhancement app with great performance and does not require paired images to train.")
st.write("The model runs at 1000/11 FPS on single GPU/CPU on images with a size of 1200*900*3")
uploaded_file = st.file_uploader("Lowlight Image")
if uploaded_file:
data_lowlight = Image.open(uploaded_file)
col1, col2 = st.columns(2)
col1.write("Original (Lowlight)")
col1.image(data_lowlight, caption="Lowlight Image", use_column_width=True)
|
mbeukman/xlm-roberta-base-finetuned-swahili-finetuned-ner-igbo | mbeukman | 2021-11-25T09:04:50Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"xlm-roberta",
"token-classification",
"NER",
"ig",
"dataset:masakhaner",
"arxiv:2103.11811",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | token-classification | 2022-03-02T23:29:05Z | ---
language:
- ig
tags:
- NER
datasets:
- masakhaner
metrics:
- f1
- precision
- recall
widget:
- text: "Ike ịda jụụ otụ nkeji banyere oke ogbugbu na - eme n'ala Naijiria agwụla Ekweremmadụ"
---
# xlm-roberta-base-finetuned-swahili-finetuned-ner-igbo
This is a token classification (specifically NER) model that fine-tuned [xlm-roberta-base-finetuned-swahili](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-swahili) on the [MasakhaNER](https://arxiv.org/abs/2103.11811) dataset, specifically the Igbo part.
More information, and other similar models can be found in the [main Github repository](https://github.com/Michael-Beukman/NERTransfer).
## About
This model is transformer based and was fine-tuned on the MasakhaNER dataset. It is a named entity recognition dataset, containing mostly news articles in 10 different African languages.
The model was fine-tuned for 50 epochs, with a maximum sequence length of 200, 32 batch size, 5e-5 learning rate. This process was repeated 5 times (with different random seeds), and this uploaded model performed the best out of those 5 seeds (aggregate F1 on test set).
This model was fine-tuned by me, Michael Beukman while doing a project at the University of the Witwatersrand, Johannesburg. This is version 1, as of 20 November 2021.
This model is licensed under the [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0).
### Contact & More information
For more information about the models, including training scripts, detailed results and further resources, you can visit the the [main Github repository](https://github.com/Michael-Beukman/NERTransfer). You can contact me by filing an issue on this repository.
### Training Resources
In the interest of openness, and reporting resources used, we list here how long the training process took, as well as what the minimum resources would be to reproduce this. Fine-tuning each model on the NER dataset took between 10 and 30 minutes, and was performed on a NVIDIA RTX3090 GPU. To use a batch size of 32, at least 14GB of GPU memory was required, although it was just possible to fit these models in around 6.5GB's of VRAM when using a batch size of 1.
## Data
The train, evaluation and test datasets were taken directly from the MasakhaNER [Github](https://github.com/masakhane-io/masakhane-ner) repository, with minimal to no preprocessing, as the original dataset is already of high quality.
The motivation for the use of this data is that it is the "first large, publicly available, high quality dataset for named entity recognition (NER) in ten African languages" ([source](https://arxiv.org/pdf/2103.11811.pdf)). The high-quality data, as well as the groundwork laid by the paper introducing it are some more reasons why this dataset was used. For evaluation, the dedicated test split was used, which is from the same distribution as the training data, so this model may not generalise to other distributions, and further testing would need to be done to investigate this. The exact distribution of the data is covered in detail [here](https://arxiv.org/abs/2103.11811).
## Intended Use
This model are intended to be used for NLP research into e.g. interpretability or transfer learning. Using this model in production is not supported, as generalisability and downright performance is limited. In particular, this is not designed to be used in any important downstream task that could affect people, as harm could be caused by the limitations of the model, described next.
## Limitations
This model was only trained on one (relatively small) dataset, covering one task (NER) in one domain (news articles) and in a set span of time. The results may not generalise, and the model may perform badly, or in an unfair / biased way if used on other tasks. Although the purpose of this project was to investigate transfer learning, the performance on languages that the model was not trained for does suffer.
Because this model used xlm-roberta-base as its starting point (potentially with domain adaptive fine-tuning on specific languages), this model's limitations can also apply here. These can include being biased towards the hegemonic viewpoint of most of its training data, being ungrounded and having subpar results on other languages (possibly due to unbalanced training data).
As [Adelani et al. (2021)](https://arxiv.org/abs/2103.11811) showed, the models in general struggled with entities that were either longer than 3 words and entities that were not contained in the training data. This could bias the models towards not finding, e.g. names of people that have many words, possibly leading to a misrepresentation in the results. Similarly, names that are uncommon, and may not have been found in the training data (due to e.g. different languages) would also be predicted less often.
Additionally, this model has not been verified in practice, and other, more subtle problems may become prevalent if used without any verification that it does what it is supposed to.
### Privacy & Ethical Considerations
The data comes from only publicly available news sources, the only available data should cover public figures and those that agreed to be reported on. See the original MasakhaNER paper for more details.
No explicit ethical considerations or adjustments were made during fine-tuning of this model.
## Metrics
The language adaptive models achieve (mostly) superior performance over starting with xlm-roberta-base. Our main metric was the aggregate F1 score for all NER categories.
These metrics are on the test set for MasakhaNER, so the data distribution is similar to the training set, so these results do not directly indicate how well these models generalise.
We do find large variation in transfer results when starting from different seeds (5 different seeds were tested), indicating that the fine-tuning process for transfer might be unstable.
The metrics used were chosen to be consistent with previous work, and to facilitate research. Other metrics may be more appropriate for other purposes.
## Caveats and Recommendations
In general, this model performed worse on the 'date' category compared to others, so if dates are a critical factor, then that might need to be taken into account and addressed, by for example collecting and annotating more data.
## Model Structure
Here are some performance details on this specific model, compared to others we trained.
All of these metrics were calculated on the test set, and the seed was chosen that gave the best overall F1 score. The first three result columns are averaged over all categories, and the latter 4 provide performance broken down by category.
This model can predict the following label for a token ([source](https://huggingface.co/Davlan/xlm-roberta-large-masakhaner)):
Abbreviation|Description
-|-
O|Outside of a named entity
B-DATE |Beginning of a DATE entity right after another DATE entity
I-DATE |DATE entity
B-PER |Beginning of a person’s name right after another person’s name
I-PER |Person’s name
B-ORG |Beginning of an organisation right after another organisation
I-ORG |Organisation
B-LOC |Beginning of a location right after another location
I-LOC |Location
| Model Name | Staring point | Evaluation / Fine-tune Language | F1 | Precision | Recall | F1 (DATE) | F1 (LOC) | F1 (ORG) | F1 (PER) |
| -------------------------------------------------- | -------------------- | -------------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- |
| [xlm-roberta-base-finetuned-swahili-finetuned-ner-igbo](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-swahili-finetuned-ner-igbo) (This model) | [swa](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-swahili) | ibo | 84.93 | 83.63 | 86.26 | 70.00 | 88.00 | 89.00 | 84.00 |
| [xlm-roberta-base-finetuned-igbo-finetuned-ner-igbo](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-igbo-finetuned-ner-igbo) | [ibo](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-igbo) | ibo | 88.39 | 87.08 | 89.74 | 74.00 | 91.00 | 90.00 | 91.00 |
| [xlm-roberta-base-finetuned-ner-igbo](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-ner-igbo) | [base](https://huggingface.co/xlm-roberta-base) | ibo | 86.06 | 85.20 | 86.94 | 76.00 | 86.00 | 90.00 | 87.00 |
## Usage
To use this model (or others), you can do the following, just changing the model name ([source](https://huggingface.co/dslim/bert-base-NER)):
```
from transformers import AutoTokenizer, AutoModelForTokenClassification
from transformers import pipeline
model_name = 'mbeukman/xlm-roberta-base-finetuned-swahili-finetuned-ner-igbo'
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForTokenClassification.from_pretrained(model_name)
nlp = pipeline("ner", model=model, tokenizer=tokenizer)
example = "Ike ịda jụụ otụ nkeji banyere oke ogbugbu na - eme n'ala Naijiria agwụla Ekweremmadụ"
ner_results = nlp(example)
print(ner_results)
```
|
mbeukman/xlm-roberta-base-finetuned-swahili-finetuned-ner-hausa | mbeukman | 2021-11-25T09:04:48Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"xlm-roberta",
"token-classification",
"NER",
"ha",
"dataset:masakhaner",
"arxiv:2103.11811",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | token-classification | 2022-03-02T23:29:05Z | ---
language:
- ha
tags:
- NER
datasets:
- masakhaner
metrics:
- f1
- precision
- recall
widget:
- text: "A saurari cikakken rahoton wakilin Muryar Amurka Ibrahim Abdul'aziz"
---
# xlm-roberta-base-finetuned-swahili-finetuned-ner-hausa
This is a token classification (specifically NER) model that fine-tuned [xlm-roberta-base-finetuned-swahili](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-swahili) on the [MasakhaNER](https://arxiv.org/abs/2103.11811) dataset, specifically the Hausa part.
More information, and other similar models can be found in the [main Github repository](https://github.com/Michael-Beukman/NERTransfer).
## About
This model is transformer based and was fine-tuned on the MasakhaNER dataset. It is a named entity recognition dataset, containing mostly news articles in 10 different African languages.
The model was fine-tuned for 50 epochs, with a maximum sequence length of 200, 32 batch size, 5e-5 learning rate. This process was repeated 5 times (with different random seeds), and this uploaded model performed the best out of those 5 seeds (aggregate F1 on test set).
This model was fine-tuned by me, Michael Beukman while doing a project at the University of the Witwatersrand, Johannesburg. This is version 1, as of 20 November 2021.
This model is licensed under the [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0).
### Contact & More information
For more information about the models, including training scripts, detailed results and further resources, you can visit the the [main Github repository](https://github.com/Michael-Beukman/NERTransfer). You can contact me by filing an issue on this repository.
### Training Resources
In the interest of openness, and reporting resources used, we list here how long the training process took, as well as what the minimum resources would be to reproduce this. Fine-tuning each model on the NER dataset took between 10 and 30 minutes, and was performed on a NVIDIA RTX3090 GPU. To use a batch size of 32, at least 14GB of GPU memory was required, although it was just possible to fit these models in around 6.5GB's of VRAM when using a batch size of 1.
## Data
The train, evaluation and test datasets were taken directly from the MasakhaNER [Github](https://github.com/masakhane-io/masakhane-ner) repository, with minimal to no preprocessing, as the original dataset is already of high quality.
The motivation for the use of this data is that it is the "first large, publicly available, high quality dataset for named entity recognition (NER) in ten African languages" ([source](https://arxiv.org/pdf/2103.11811.pdf)). The high-quality data, as well as the groundwork laid by the paper introducing it are some more reasons why this dataset was used. For evaluation, the dedicated test split was used, which is from the same distribution as the training data, so this model may not generalise to other distributions, and further testing would need to be done to investigate this. The exact distribution of the data is covered in detail [here](https://arxiv.org/abs/2103.11811).
## Intended Use
This model are intended to be used for NLP research into e.g. interpretability or transfer learning. Using this model in production is not supported, as generalisability and downright performance is limited. In particular, this is not designed to be used in any important downstream task that could affect people, as harm could be caused by the limitations of the model, described next.
## Limitations
This model was only trained on one (relatively small) dataset, covering one task (NER) in one domain (news articles) and in a set span of time. The results may not generalise, and the model may perform badly, or in an unfair / biased way if used on other tasks. Although the purpose of this project was to investigate transfer learning, the performance on languages that the model was not trained for does suffer.
Because this model used xlm-roberta-base as its starting point (potentially with domain adaptive fine-tuning on specific languages), this model's limitations can also apply here. These can include being biased towards the hegemonic viewpoint of most of its training data, being ungrounded and having subpar results on other languages (possibly due to unbalanced training data).
As [Adelani et al. (2021)](https://arxiv.org/abs/2103.11811) showed, the models in general struggled with entities that were either longer than 3 words and entities that were not contained in the training data. This could bias the models towards not finding, e.g. names of people that have many words, possibly leading to a misrepresentation in the results. Similarly, names that are uncommon, and may not have been found in the training data (due to e.g. different languages) would also be predicted less often.
Additionally, this model has not been verified in practice, and other, more subtle problems may become prevalent if used without any verification that it does what it is supposed to.
### Privacy & Ethical Considerations
The data comes from only publicly available news sources, the only available data should cover public figures and those that agreed to be reported on. See the original MasakhaNER paper for more details.
No explicit ethical considerations or adjustments were made during fine-tuning of this model.
## Metrics
The language adaptive models achieve (mostly) superior performance over starting with xlm-roberta-base. Our main metric was the aggregate F1 score for all NER categories.
These metrics are on the test set for MasakhaNER, so the data distribution is similar to the training set, so these results do not directly indicate how well these models generalise.
We do find large variation in transfer results when starting from different seeds (5 different seeds were tested), indicating that the fine-tuning process for transfer might be unstable.
The metrics used were chosen to be consistent with previous work, and to facilitate research. Other metrics may be more appropriate for other purposes.
## Caveats and Recommendations
In general, this model performed worse on the 'date' category compared to others, so if dates are a critical factor, then that might need to be taken into account and addressed, by for example collecting and annotating more data.
## Model Structure
Here are some performance details on this specific model, compared to others we trained.
All of these metrics were calculated on the test set, and the seed was chosen that gave the best overall F1 score. The first three result columns are averaged over all categories, and the latter 4 provide performance broken down by category.
This model can predict the following label for a token ([source](https://huggingface.co/Davlan/xlm-roberta-large-masakhaner)):
Abbreviation|Description
-|-
O|Outside of a named entity
B-DATE |Beginning of a DATE entity right after another DATE entity
I-DATE |DATE entity
B-PER |Beginning of a person’s name right after another person’s name
I-PER |Person’s name
B-ORG |Beginning of an organisation right after another organisation
I-ORG |Organisation
B-LOC |Beginning of a location right after another location
I-LOC |Location
| Model Name | Staring point | Evaluation / Fine-tune Language | F1 | Precision | Recall | F1 (DATE) | F1 (LOC) | F1 (ORG) | F1 (PER) |
| -------------------------------------------------- | -------------------- | -------------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- |
| [xlm-roberta-base-finetuned-swahili-finetuned-ner-hausa](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-swahili-finetuned-ner-hausa) (This model) | [swa](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-swahili) | hau | 89.14 | 87.18 | 91.20 | 82.00 | 93.00 | 76.00 | 93.00 |
| [xlm-roberta-base-finetuned-hausa-finetuned-ner-hausa](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-hausa-finetuned-ner-hausa) | [hau](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-hausa) | hau | 92.27 | 90.46 | 94.16 | 85.00 | 95.00 | 80.00 | 97.00 |
| [xlm-roberta-base-finetuned-ner-hausa](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-ner-hausa) | [base](https://huggingface.co/xlm-roberta-base) | hau | 89.94 | 87.74 | 92.25 | 84.00 | 94.00 | 74.00 | 93.00 |
## Usage
To use this model (or others), you can do the following, just changing the model name ([source](https://huggingface.co/dslim/bert-base-NER)):
```
from transformers import AutoTokenizer, AutoModelForTokenClassification
from transformers import pipeline
model_name = 'mbeukman/xlm-roberta-base-finetuned-swahili-finetuned-ner-hausa'
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForTokenClassification.from_pretrained(model_name)
nlp = pipeline("ner", model=model, tokenizer=tokenizer)
example = "A saurari cikakken rahoton wakilin Muryar Amurka Ibrahim Abdul'aziz"
ner_results = nlp(example)
print(ner_results)
```
|
mbeukman/xlm-roberta-base-finetuned-ner-swahili | mbeukman | 2021-11-25T09:04:40Z | 7 | 1 | transformers | [
"transformers",
"pytorch",
"xlm-roberta",
"token-classification",
"NER",
"sw",
"dataset:masakhaner",
"arxiv:2103.11811",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | token-classification | 2022-03-02T23:29:05Z | ---
language:
- sw
tags:
- NER
datasets:
- masakhaner
metrics:
- f1
- precision
- recall
widget:
- text: "Wizara ya afya ya Tanzania imeripoti Jumatatu kuwa , watu takriban 14 zaidi wamepata maambukizi ya Covid - 19 ."
---
# xlm-roberta-base-finetuned-ner-swahili
This is a token classification (specifically NER) model that fine-tuned [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the [MasakhaNER](https://arxiv.org/abs/2103.11811) dataset, specifically the Swahili part.
More information, and other similar models can be found in the [main Github repository](https://github.com/Michael-Beukman/NERTransfer).
## About
This model is transformer based and was fine-tuned on the MasakhaNER dataset. It is a named entity recognition dataset, containing mostly news articles in 10 different African languages.
The model was fine-tuned for 50 epochs, with a maximum sequence length of 200, 32 batch size, 5e-5 learning rate. This process was repeated 5 times (with different random seeds), and this uploaded model performed the best out of those 5 seeds (aggregate F1 on test set).
This model was fine-tuned by me, Michael Beukman while doing a project at the University of the Witwatersrand, Johannesburg. This is version 1, as of 20 November 2021.
This model is licensed under the [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0).
### Contact & More information
For more information about the models, including training scripts, detailed results and further resources, you can visit the the [main Github repository](https://github.com/Michael-Beukman/NERTransfer). You can contact me by filing an issue on this repository.
### Training Resources
In the interest of openness, and reporting resources used, we list here how long the training process took, as well as what the minimum resources would be to reproduce this. Fine-tuning each model on the NER dataset took between 10 and 30 minutes, and was performed on a NVIDIA RTX3090 GPU. To use a batch size of 32, at least 14GB of GPU memory was required, although it was just possible to fit these models in around 6.5GB's of VRAM when using a batch size of 1.
## Data
The train, evaluation and test datasets were taken directly from the MasakhaNER [Github](https://github.com/masakhane-io/masakhane-ner) repository, with minimal to no preprocessing, as the original dataset is already of high quality.
The motivation for the use of this data is that it is the "first large, publicly available, high quality dataset for named entity recognition (NER) in ten African languages" ([source](https://arxiv.org/pdf/2103.11811.pdf)). The high-quality data, as well as the groundwork laid by the paper introducing it are some more reasons why this dataset was used. For evaluation, the dedicated test split was used, which is from the same distribution as the training data, so this model may not generalise to other distributions, and further testing would need to be done to investigate this. The exact distribution of the data is covered in detail [here](https://arxiv.org/abs/2103.11811).
## Intended Use
This model are intended to be used for NLP research into e.g. interpretability or transfer learning. Using this model in production is not supported, as generalisability and downright performance is limited. In particular, this is not designed to be used in any important downstream task that could affect people, as harm could be caused by the limitations of the model, described next.
## Limitations
This model was only trained on one (relatively small) dataset, covering one task (NER) in one domain (news articles) and in a set span of time. The results may not generalise, and the model may perform badly, or in an unfair / biased way if used on other tasks. Although the purpose of this project was to investigate transfer learning, the performance on languages that the model was not trained for does suffer.
Because this model used xlm-roberta-base as its starting point (potentially with domain adaptive fine-tuning on specific languages), this model's limitations can also apply here. These can include being biased towards the hegemonic viewpoint of most of its training data, being ungrounded and having subpar results on other languages (possibly due to unbalanced training data).
As [Adelani et al. (2021)](https://arxiv.org/abs/2103.11811) showed, the models in general struggled with entities that were either longer than 3 words and entities that were not contained in the training data. This could bias the models towards not finding, e.g. names of people that have many words, possibly leading to a misrepresentation in the results. Similarly, names that are uncommon, and may not have been found in the training data (due to e.g. different languages) would also be predicted less often.
Additionally, this model has not been verified in practice, and other, more subtle problems may become prevalent if used without any verification that it does what it is supposed to.
### Privacy & Ethical Considerations
The data comes from only publicly available news sources, the only available data should cover public figures and those that agreed to be reported on. See the original MasakhaNER paper for more details.
No explicit ethical considerations or adjustments were made during fine-tuning of this model.
## Metrics
The language adaptive models achieve (mostly) superior performance over starting with xlm-roberta-base. Our main metric was the aggregate F1 score for all NER categories.
These metrics are on the test set for MasakhaNER, so the data distribution is similar to the training set, so these results do not directly indicate how well these models generalise.
We do find large variation in transfer results when starting from different seeds (5 different seeds were tested), indicating that the fine-tuning process for transfer might be unstable.
The metrics used were chosen to be consistent with previous work, and to facilitate research. Other metrics may be more appropriate for other purposes.
## Caveats and Recommendations
In general, this model performed worse on the 'date' category compared to others, so if dates are a critical factor, then that might need to be taken into account and addressed, by for example collecting and annotating more data.
## Model Structure
Here are some performance details on this specific model, compared to others we trained.
All of these metrics were calculated on the test set, and the seed was chosen that gave the best overall F1 score. The first three result columns are averaged over all categories, and the latter 4 provide performance broken down by category.
This model can predict the following label for a token ([source](https://huggingface.co/Davlan/xlm-roberta-large-masakhaner)):
Abbreviation|Description
-|-
O|Outside of a named entity
B-DATE |Beginning of a DATE entity right after another DATE entity
I-DATE |DATE entity
B-PER |Beginning of a person’s name right after another person’s name
I-PER |Person’s name
B-ORG |Beginning of an organisation right after another organisation
I-ORG |Organisation
B-LOC |Beginning of a location right after another location
I-LOC |Location
| Model Name | Staring point | Evaluation / Fine-tune Language | F1 | Precision | Recall | F1 (DATE) | F1 (LOC) | F1 (ORG) | F1 (PER) |
| -------------------------------------------------- | -------------------- | -------------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- |
| [xlm-roberta-base-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-ner-swahili) (This model) | [base](https://huggingface.co/xlm-roberta-base) | swa | 88.71 | 86.84 | 90.67 | 83.00 | 91.00 | 79.00 | 95.00 |
| [xlm-roberta-base-finetuned-hausa-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-hausa-finetuned-ner-swahili) | [hau](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-hausa) | swa | 88.36 | 86.95 | 89.82 | 86.00 | 91.00 | 77.00 | 94.00 |
| [xlm-roberta-base-finetuned-igbo-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-igbo-finetuned-ner-swahili) | [ibo](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-igbo) | swa | 87.75 | 86.55 | 88.97 | 85.00 | 92.00 | 77.00 | 91.00 |
| [xlm-roberta-base-finetuned-kinyarwanda-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-kinyarwanda-finetuned-ner-swahili) | [kin](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-kinyarwanda) | swa | 87.26 | 85.15 | 89.48 | 83.00 | 91.00 | 75.00 | 93.00 |
| [xlm-roberta-base-finetuned-luganda-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-luganda-finetuned-ner-swahili) | [lug](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-luganda) | swa | 88.93 | 87.64 | 90.25 | 83.00 | 92.00 | 79.00 | 95.00 |
| [xlm-roberta-base-finetuned-luo-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-luo-finetuned-ner-swahili) | [luo](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-luo) | swa | 87.93 | 86.91 | 88.97 | 83.00 | 91.00 | 76.00 | 94.00 |
| [xlm-roberta-base-finetuned-naija-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-naija-finetuned-ner-swahili) | [pcm](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-naija) | swa | 87.26 | 85.15 | 89.48 | 83.00 | 91.00 | 75.00 | 93.00 |
| [xlm-roberta-base-finetuned-swahili-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-swahili-finetuned-ner-swahili) | [swa](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-swahili) | swa | 90.36 | 88.59 | 92.20 | 86.00 | 93.00 | 79.00 | 96.00 |
| [xlm-roberta-base-finetuned-wolof-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-wolof-finetuned-ner-swahili) | [wol](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-wolof) | swa | 87.80 | 86.50 | 89.14 | 86.00 | 90.00 | 78.00 | 93.00 |
| [xlm-roberta-base-finetuned-yoruba-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-yoruba-finetuned-ner-swahili) | [yor](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-yoruba) | swa | 87.73 | 86.67 | 88.80 | 85.00 | 91.00 | 75.00 | 93.00 |
## Usage
To use this model (or others), you can do the following, just changing the model name ([source](https://huggingface.co/dslim/bert-base-NER)):
```
from transformers import AutoTokenizer, AutoModelForTokenClassification
from transformers import pipeline
model_name = 'mbeukman/xlm-roberta-base-finetuned-ner-swahili'
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForTokenClassification.from_pretrained(model_name)
nlp = pipeline("ner", model=model, tokenizer=tokenizer)
example = "Wizara ya afya ya Tanzania imeripoti Jumatatu kuwa , watu takriban 14 zaidi wamepata maambukizi ya Covid - 19 ."
ner_results = nlp(example)
print(ner_results)
```
|
mbeukman/xlm-roberta-base-finetuned-ner-luganda | mbeukman | 2021-11-25T09:04:33Z | 7 | 1 | transformers | [
"transformers",
"pytorch",
"xlm-roberta",
"token-classification",
"NER",
"lug",
"dataset:masakhaner",
"arxiv:2103.11811",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | token-classification | 2022-03-02T23:29:05Z | ---
language:
- lug
tags:
- NER
datasets:
- masakhaner
metrics:
- f1
- precision
- recall
widget:
- text: "Empaka zaakubeera mu kibuga Liverpool e Bungereza , okutandika nga July 12 ."
---
# xlm-roberta-base-finetuned-ner-luganda
This is a token classification (specifically NER) model that fine-tuned [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the [MasakhaNER](https://arxiv.org/abs/2103.11811) dataset, specifically the luganda part.
More information, and other similar models can be found in the [main Github repository](https://github.com/Michael-Beukman/NERTransfer).
## About
This model is transformer based and was fine-tuned on the MasakhaNER dataset. It is a named entity recognition dataset, containing mostly news articles in 10 different African languages.
The model was fine-tuned for 50 epochs, with a maximum sequence length of 200, 32 batch size, 5e-5 learning rate. This process was repeated 5 times (with different random seeds), and this uploaded model performed the best out of those 5 seeds (aggregate F1 on test set).
This model was fine-tuned by me, Michael Beukman while doing a project at the University of the Witwatersrand, Johannesburg. This is version 1, as of 20 November 2021.
This model is licensed under the [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0).
### Contact & More information
For more information about the models, including training scripts, detailed results and further resources, you can visit the the [main Github repository](https://github.com/Michael-Beukman/NERTransfer). You can contact me by filing an issue on this repository.
### Training Resources
In the interest of openness, and reporting resources used, we list here how long the training process took, as well as what the minimum resources would be to reproduce this. Fine-tuning each model on the NER dataset took between 10 and 30 minutes, and was performed on a NVIDIA RTX3090 GPU. To use a batch size of 32, at least 14GB of GPU memory was required, although it was just possible to fit these models in around 6.5GB's of VRAM when using a batch size of 1.
## Data
The train, evaluation and test datasets were taken directly from the MasakhaNER [Github](https://github.com/masakhane-io/masakhane-ner) repository, with minimal to no preprocessing, as the original dataset is already of high quality.
The motivation for the use of this data is that it is the "first large, publicly available, high quality dataset for named entity recognition (NER) in ten African languages" ([source](https://arxiv.org/pdf/2103.11811.pdf)). The high-quality data, as well as the groundwork laid by the paper introducing it are some more reasons why this dataset was used. For evaluation, the dedicated test split was used, which is from the same distribution as the training data, so this model may not generalise to other distributions, and further testing would need to be done to investigate this. The exact distribution of the data is covered in detail [here](https://arxiv.org/abs/2103.11811).
## Intended Use
This model are intended to be used for NLP research into e.g. interpretability or transfer learning. Using this model in production is not supported, as generalisability and downright performance is limited. In particular, this is not designed to be used in any important downstream task that could affect people, as harm could be caused by the limitations of the model, described next.
## Limitations
This model was only trained on one (relatively small) dataset, covering one task (NER) in one domain (news articles) and in a set span of time. The results may not generalise, and the model may perform badly, or in an unfair / biased way if used on other tasks. Although the purpose of this project was to investigate transfer learning, the performance on languages that the model was not trained for does suffer.
Because this model used xlm-roberta-base as its starting point (potentially with domain adaptive fine-tuning on specific languages), this model's limitations can also apply here. These can include being biased towards the hegemonic viewpoint of most of its training data, being ungrounded and having subpar results on other languages (possibly due to unbalanced training data).
As [Adelani et al. (2021)](https://arxiv.org/abs/2103.11811) showed, the models in general struggled with entities that were either longer than 3 words and entities that were not contained in the training data. This could bias the models towards not finding, e.g. names of people that have many words, possibly leading to a misrepresentation in the results. Similarly, names that are uncommon, and may not have been found in the training data (due to e.g. different languages) would also be predicted less often.
Additionally, this model has not been verified in practice, and other, more subtle problems may become prevalent if used without any verification that it does what it is supposed to.
### Privacy & Ethical Considerations
The data comes from only publicly available news sources, the only available data should cover public figures and those that agreed to be reported on. See the original MasakhaNER paper for more details.
No explicit ethical considerations or adjustments were made during fine-tuning of this model.
## Metrics
The language adaptive models achieve (mostly) superior performance over starting with xlm-roberta-base. Our main metric was the aggregate F1 score for all NER categories.
These metrics are on the test set for MasakhaNER, so the data distribution is similar to the training set, so these results do not directly indicate how well these models generalise.
We do find large variation in transfer results when starting from different seeds (5 different seeds were tested), indicating that the fine-tuning process for transfer might be unstable.
The metrics used were chosen to be consistent with previous work, and to facilitate research. Other metrics may be more appropriate for other purposes.
## Caveats and Recommendations
In general, this model performed worse on the 'date' category compared to others, so if dates are a critical factor, then that might need to be taken into account and addressed, by for example collecting and annotating more data.
## Model Structure
Here are some performance details on this specific model, compared to others we trained.
All of these metrics were calculated on the test set, and the seed was chosen that gave the best overall F1 score. The first three result columns are averaged over all categories, and the latter 4 provide performance broken down by category.
This model can predict the following label for a token ([source](https://huggingface.co/Davlan/xlm-roberta-large-masakhaner)):
Abbreviation|Description
-|-
O|Outside of a named entity
B-DATE |Beginning of a DATE entity right after another DATE entity
I-DATE |DATE entity
B-PER |Beginning of a person’s name right after another person’s name
I-PER |Person’s name
B-ORG |Beginning of an organisation right after another organisation
I-ORG |Organisation
B-LOC |Beginning of a location right after another location
I-LOC |Location
| Model Name | Staring point | Evaluation / Fine-tune Language | F1 | Precision | Recall | F1 (DATE) | F1 (LOC) | F1 (ORG) | F1 (PER) |
| -------------------------------------------------- | -------------------- | -------------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- |
| [xlm-roberta-base-finetuned-ner-luganda](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-ner-luganda) (This model) | [base](https://huggingface.co/xlm-roberta-base) | lug | 80.91 | 78.59 | 83.37 | 73.00 | 78.00 | 77.00 | 86.00 |
| [xlm-roberta-base-finetuned-luganda-finetuned-ner-luganda](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-luganda-finetuned-ner-luganda) | [lug](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-luganda) | lug | 85.37 | 82.75 | 88.17 | 78.00 | 82.00 | 80.00 | 92.00 |
| [xlm-roberta-base-finetuned-swahili-finetuned-ner-luganda](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-swahili-finetuned-ner-luganda) | [swa](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-swahili) | lug | 82.57 | 80.38 | 84.89 | 75.00 | 80.00 | 82.00 | 87.00 |
## Usage
To use this model (or others), you can do the following, just changing the model name ([source](https://huggingface.co/dslim/bert-base-NER)):
```
from transformers import AutoTokenizer, AutoModelForTokenClassification
from transformers import pipeline
model_name = 'mbeukman/xlm-roberta-base-finetuned-ner-luganda'
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForTokenClassification.from_pretrained(model_name)
nlp = pipeline("ner", model=model, tokenizer=tokenizer)
example = "Empaka zaakubeera mu kibuga Liverpool e Bungereza , okutandika nga July 12 ."
ner_results = nlp(example)
print(ner_results)
```
|
mbeukman/xlm-roberta-base-finetuned-ner-kinyarwanda | mbeukman | 2021-11-25T09:04:30Z | 8 | 0 | transformers | [
"transformers",
"pytorch",
"xlm-roberta",
"token-classification",
"NER",
"rw",
"dataset:masakhaner",
"arxiv:2103.11811",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | token-classification | 2022-03-02T23:29:05Z | ---
language:
- rw
tags:
- NER
datasets:
- masakhaner
metrics:
- f1
- precision
- recall
widget:
- text: "Ambasaderi wa EU mu Rwanda , Nicola Bellomo yagize ati “ Inkunga yacu ni imwe mu nkunga yagutse yiswe # TeamEurope ."
---
# xlm-roberta-base-finetuned-ner-kinyarwanda
This is a token classification (specifically NER) model that fine-tuned [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the [MasakhaNER](https://arxiv.org/abs/2103.11811) dataset, specifically the Kinyarwanda part.
More information, and other similar models can be found in the [main Github repository](https://github.com/Michael-Beukman/NERTransfer).
## About
This model is transformer based and was fine-tuned on the MasakhaNER dataset. It is a named entity recognition dataset, containing mostly news articles in 10 different African languages.
The model was fine-tuned for 50 epochs, with a maximum sequence length of 200, 32 batch size, 5e-5 learning rate. This process was repeated 5 times (with different random seeds), and this uploaded model performed the best out of those 5 seeds (aggregate F1 on test set).
This model was fine-tuned by me, Michael Beukman while doing a project at the University of the Witwatersrand, Johannesburg. This is version 1, as of 20 November 2021.
This model is licensed under the [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0).
### Contact & More information
For more information about the models, including training scripts, detailed results and further resources, you can visit the the [main Github repository](https://github.com/Michael-Beukman/NERTransfer). You can contact me by filing an issue on this repository.
### Training Resources
In the interest of openness, and reporting resources used, we list here how long the training process took, as well as what the minimum resources would be to reproduce this. Fine-tuning each model on the NER dataset took between 10 and 30 minutes, and was performed on a NVIDIA RTX3090 GPU. To use a batch size of 32, at least 14GB of GPU memory was required, although it was just possible to fit these models in around 6.5GB's of VRAM when using a batch size of 1.
## Data
The train, evaluation and test datasets were taken directly from the MasakhaNER [Github](https://github.com/masakhane-io/masakhane-ner) repository, with minimal to no preprocessing, as the original dataset is already of high quality.
The motivation for the use of this data is that it is the "first large, publicly available, high quality dataset for named entity recognition (NER) in ten African languages" ([source](https://arxiv.org/pdf/2103.11811.pdf)). The high-quality data, as well as the groundwork laid by the paper introducing it are some more reasons why this dataset was used. For evaluation, the dedicated test split was used, which is from the same distribution as the training data, so this model may not generalise to other distributions, and further testing would need to be done to investigate this. The exact distribution of the data is covered in detail [here](https://arxiv.org/abs/2103.11811).
## Intended Use
This model are intended to be used for NLP research into e.g. interpretability or transfer learning. Using this model in production is not supported, as generalisability and downright performance is limited. In particular, this is not designed to be used in any important downstream task that could affect people, as harm could be caused by the limitations of the model, described next.
## Limitations
This model was only trained on one (relatively small) dataset, covering one task (NER) in one domain (news articles) and in a set span of time. The results may not generalise, and the model may perform badly, or in an unfair / biased way if used on other tasks. Although the purpose of this project was to investigate transfer learning, the performance on languages that the model was not trained for does suffer.
Because this model used xlm-roberta-base as its starting point (potentially with domain adaptive fine-tuning on specific languages), this model's limitations can also apply here. These can include being biased towards the hegemonic viewpoint of most of its training data, being ungrounded and having subpar results on other languages (possibly due to unbalanced training data).
As [Adelani et al. (2021)](https://arxiv.org/abs/2103.11811) showed, the models in general struggled with entities that were either longer than 3 words and entities that were not contained in the training data. This could bias the models towards not finding, e.g. names of people that have many words, possibly leading to a misrepresentation in the results. Similarly, names that are uncommon, and may not have been found in the training data (due to e.g. different languages) would also be predicted less often.
Additionally, this model has not been verified in practice, and other, more subtle problems may become prevalent if used without any verification that it does what it is supposed to.
### Privacy & Ethical Considerations
The data comes from only publicly available news sources, the only available data should cover public figures and those that agreed to be reported on. See the original MasakhaNER paper for more details.
No explicit ethical considerations or adjustments were made during fine-tuning of this model.
## Metrics
The language adaptive models achieve (mostly) superior performance over starting with xlm-roberta-base. Our main metric was the aggregate F1 score for all NER categories.
These metrics are on the test set for MasakhaNER, so the data distribution is similar to the training set, so these results do not directly indicate how well these models generalise.
We do find large variation in transfer results when starting from different seeds (5 different seeds were tested), indicating that the fine-tuning process for transfer might be unstable.
The metrics used were chosen to be consistent with previous work, and to facilitate research. Other metrics may be more appropriate for other purposes.
## Caveats and Recommendations
In general, this model performed worse on the 'date' category compared to others, so if dates are a critical factor, then that might need to be taken into account and addressed, by for example collecting and annotating more data.
## Model Structure
Here are some performance details on this specific model, compared to others we trained.
All of these metrics were calculated on the test set, and the seed was chosen that gave the best overall F1 score. The first three result columns are averaged over all categories, and the latter 4 provide performance broken down by category.
This model can predict the following label for a token ([source](https://huggingface.co/Davlan/xlm-roberta-large-masakhaner)):
Abbreviation|Description
-|-
O|Outside of a named entity
B-DATE |Beginning of a DATE entity right after another DATE entity
I-DATE |DATE entity
B-PER |Beginning of a person’s name right after another person’s name
I-PER |Person’s name
B-ORG |Beginning of an organisation right after another organisation
I-ORG |Organisation
B-LOC |Beginning of a location right after another location
I-LOC |Location
| Model Name | Staring point | Evaluation / Fine-tune Language | F1 | Precision | Recall | F1 (DATE) | F1 (LOC) | F1 (ORG) | F1 (PER) |
| -------------------------------------------------- | -------------------- | -------------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- |
| [xlm-roberta-base-finetuned-ner-kinyarwanda](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-ner-kinyarwanda) (This model) | [base](https://huggingface.co/xlm-roberta-base) | kin | 74.59 | 72.17 | 77.17 | 70.00 | 75.00 | 70.00 | 82.00 |
| [xlm-roberta-base-finetuned-kinyarwanda-finetuned-ner-kinyarwanda](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-kinyarwanda-finetuned-ner-kinyarwanda) | [kin](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-kinyarwanda) | kin | 79.55 | 75.56 | 83.99 | 69.00 | 79.00 | 77.00 | 90.00 |
| [xlm-roberta-base-finetuned-swahili-finetuned-ner-kinyarwanda](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-swahili-finetuned-ner-kinyarwanda) | [swa](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-swahili) | kin | 76.31 | 72.64 | 80.37 | 70.00 | 76.00 | 75.00 | 84.00 |
## Usage
To use this model (or others), you can do the following, just changing the model name ([source](https://huggingface.co/dslim/bert-base-NER)):
```
from transformers import AutoTokenizer, AutoModelForTokenClassification
from transformers import pipeline
model_name = 'mbeukman/xlm-roberta-base-finetuned-ner-kinyarwanda'
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForTokenClassification.from_pretrained(model_name)
nlp = pipeline("ner", model=model, tokenizer=tokenizer)
example = "Ambasaderi wa EU mu Rwanda , Nicola Bellomo yagize ati “ Inkunga yacu ni imwe mu nkunga yagutse yiswe # TeamEurope ."
ner_results = nlp(example)
print(ner_results)
```
|
mbeukman/xlm-roberta-base-finetuned-naija-finetuned-ner-naija | mbeukman | 2021-11-25T09:04:20Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"xlm-roberta",
"token-classification",
"NER",
"pcm",
"dataset:masakhaner",
"arxiv:2103.11811",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | token-classification | 2022-03-02T23:29:05Z | ---
language:
- pcm
tags:
- NER
datasets:
- masakhaner
metrics:
- f1
- precision
- recall
widget:
- text: "Mixed Martial Arts joinbodi , Ultimate Fighting Championship , UFC don decide say dem go enta back di octagon on Saturday , 9 May , for Jacksonville , Florida ."
---
# xlm-roberta-base-finetuned-naija-finetuned-ner-naija
This is a token classification (specifically NER) model that fine-tuned [xlm-roberta-base-finetuned-naija](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-naija) on the [MasakhaNER](https://arxiv.org/abs/2103.11811) dataset, specifically the Nigerian Pidgin part.
More information, and other similar models can be found in the [main Github repository](https://github.com/Michael-Beukman/NERTransfer).
## About
This model is transformer based and was fine-tuned on the MasakhaNER dataset. It is a named entity recognition dataset, containing mostly news articles in 10 different African languages.
The model was fine-tuned for 50 epochs, with a maximum sequence length of 200, 32 batch size, 5e-5 learning rate. This process was repeated 5 times (with different random seeds), and this uploaded model performed the best out of those 5 seeds (aggregate F1 on test set).
This model was fine-tuned by me, Michael Beukman while doing a project at the University of the Witwatersrand, Johannesburg. This is version 1, as of 20 November 2021.
This model is licensed under the [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0).
### Contact & More information
For more information about the models, including training scripts, detailed results and further resources, you can visit the the [main Github repository](https://github.com/Michael-Beukman/NERTransfer). You can contact me by filing an issue on this repository.
### Training Resources
In the interest of openness, and reporting resources used, we list here how long the training process took, as well as what the minimum resources would be to reproduce this. Fine-tuning each model on the NER dataset took between 10 and 30 minutes, and was performed on a NVIDIA RTX3090 GPU. To use a batch size of 32, at least 14GB of GPU memory was required, although it was just possible to fit these models in around 6.5GB's of VRAM when using a batch size of 1.
## Data
The train, evaluation and test datasets were taken directly from the MasakhaNER [Github](https://github.com/masakhane-io/masakhane-ner) repository, with minimal to no preprocessing, as the original dataset is already of high quality.
The motivation for the use of this data is that it is the "first large, publicly available, high quality dataset for named entity recognition (NER) in ten African languages" ([source](https://arxiv.org/pdf/2103.11811.pdf)). The high-quality data, as well as the groundwork laid by the paper introducing it are some more reasons why this dataset was used. For evaluation, the dedicated test split was used, which is from the same distribution as the training data, so this model may not generalise to other distributions, and further testing would need to be done to investigate this. The exact distribution of the data is covered in detail [here](https://arxiv.org/abs/2103.11811).
## Intended Use
This model are intended to be used for NLP research into e.g. interpretability or transfer learning. Using this model in production is not supported, as generalisability and downright performance is limited. In particular, this is not designed to be used in any important downstream task that could affect people, as harm could be caused by the limitations of the model, described next.
## Limitations
This model was only trained on one (relatively small) dataset, covering one task (NER) in one domain (news articles) and in a set span of time. The results may not generalise, and the model may perform badly, or in an unfair / biased way if used on other tasks. Although the purpose of this project was to investigate transfer learning, the performance on languages that the model was not trained for does suffer.
Because this model used xlm-roberta-base as its starting point (potentially with domain adaptive fine-tuning on specific languages), this model's limitations can also apply here. These can include being biased towards the hegemonic viewpoint of most of its training data, being ungrounded and having subpar results on other languages (possibly due to unbalanced training data).
As [Adelani et al. (2021)](https://arxiv.org/abs/2103.11811) showed, the models in general struggled with entities that were either longer than 3 words and entities that were not contained in the training data. This could bias the models towards not finding, e.g. names of people that have many words, possibly leading to a misrepresentation in the results. Similarly, names that are uncommon, and may not have been found in the training data (due to e.g. different languages) would also be predicted less often.
Additionally, this model has not been verified in practice, and other, more subtle problems may become prevalent if used without any verification that it does what it is supposed to.
### Privacy & Ethical Considerations
The data comes from only publicly available news sources, the only available data should cover public figures and those that agreed to be reported on. See the original MasakhaNER paper for more details.
No explicit ethical considerations or adjustments were made during fine-tuning of this model.
## Metrics
The language adaptive models achieve (mostly) superior performance over starting with xlm-roberta-base. Our main metric was the aggregate F1 score for all NER categories.
These metrics are on the test set for MasakhaNER, so the data distribution is similar to the training set, so these results do not directly indicate how well these models generalise.
We do find large variation in transfer results when starting from different seeds (5 different seeds were tested), indicating that the fine-tuning process for transfer might be unstable.
The metrics used were chosen to be consistent with previous work, and to facilitate research. Other metrics may be more appropriate for other purposes.
## Caveats and Recommendations
In general, this model performed worse on the 'date' category compared to others, so if dates are a critical factor, then that might need to be taken into account and addressed, by for example collecting and annotating more data.
## Model Structure
Here are some performance details on this specific model, compared to others we trained.
All of these metrics were calculated on the test set, and the seed was chosen that gave the best overall F1 score. The first three result columns are averaged over all categories, and the latter 4 provide performance broken down by category.
This model can predict the following label for a token ([source](https://huggingface.co/Davlan/xlm-roberta-large-masakhaner)):
Abbreviation|Description
-|-
O|Outside of a named entity
B-DATE |Beginning of a DATE entity right after another DATE entity
I-DATE |DATE entity
B-PER |Beginning of a person’s name right after another person’s name
I-PER |Person’s name
B-ORG |Beginning of an organisation right after another organisation
I-ORG |Organisation
B-LOC |Beginning of a location right after another location
I-LOC |Location
| Model Name | Staring point | Evaluation / Fine-tune Language | F1 | Precision | Recall | F1 (DATE) | F1 (LOC) | F1 (ORG) | F1 (PER) |
| -------------------------------------------------- | -------------------- | -------------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- |
| [xlm-roberta-base-finetuned-naija-finetuned-ner-naija](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-naija-finetuned-ner-naija) (This model) | [pcm](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-naija) | pcm | 88.06 | 87.04 | 89.12 | 90.00 | 88.00 | 81.00 | 92.00 |
| [xlm-roberta-base-finetuned-swahili-finetuned-ner-naija](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-swahili-finetuned-ner-naija) | [swa](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-swahili) | pcm | 89.12 | 87.84 | 90.42 | 90.00 | 89.00 | 82.00 | 94.00 |
| [xlm-roberta-base-finetuned-ner-naija](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-ner-naija) | [base](https://huggingface.co/xlm-roberta-base) | pcm | 88.89 | 88.13 | 89.66 | 92.00 | 87.00 | 82.00 | 94.00 |
## Usage
To use this model (or others), you can do the following, just changing the model name ([source](https://huggingface.co/dslim/bert-base-NER)):
```
from transformers import AutoTokenizer, AutoModelForTokenClassification
from transformers import pipeline
model_name = 'mbeukman/xlm-roberta-base-finetuned-naija-finetuned-ner-naija'
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForTokenClassification.from_pretrained(model_name)
nlp = pipeline("ner", model=model, tokenizer=tokenizer)
example = "Mixed Martial Arts joinbodi , Ultimate Fighting Championship , UFC don decide say dem go enta back di octagon on Saturday , 9 May , for Jacksonville , Florida ."
ner_results = nlp(example)
print(ner_results)
```
|
mbeukman/xlm-roberta-base-finetuned-luo-finetuned-ner-swahili | mbeukman | 2021-11-25T09:04:18Z | 7 | 1 | transformers | [
"transformers",
"pytorch",
"xlm-roberta",
"token-classification",
"NER",
"sw",
"dataset:masakhaner",
"arxiv:2103.11811",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | token-classification | 2022-03-02T23:29:05Z | ---
language:
- sw
tags:
- NER
datasets:
- masakhaner
metrics:
- f1
- precision
- recall
widget:
- text: "Wizara ya afya ya Tanzania imeripoti Jumatatu kuwa , watu takriban 14 zaidi wamepata maambukizi ya Covid - 19 ."
---
# xlm-roberta-base-finetuned-luo-finetuned-ner-swahili
This is a token classification (specifically NER) model that fine-tuned [xlm-roberta-base-finetuned-luo](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-luo) on the [MasakhaNER](https://arxiv.org/abs/2103.11811) dataset, specifically the Swahili part.
More information, and other similar models can be found in the [main Github repository](https://github.com/Michael-Beukman/NERTransfer).
## About
This model is transformer based and was fine-tuned on the MasakhaNER dataset. It is a named entity recognition dataset, containing mostly news articles in 10 different African languages.
The model was fine-tuned for 50 epochs, with a maximum sequence length of 200, 32 batch size, 5e-5 learning rate. This process was repeated 5 times (with different random seeds), and this uploaded model performed the best out of those 5 seeds (aggregate F1 on test set).
This model was fine-tuned by me, Michael Beukman while doing a project at the University of the Witwatersrand, Johannesburg. This is version 1, as of 20 November 2021.
This model is licensed under the [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0).
### Contact & More information
For more information about the models, including training scripts, detailed results and further resources, you can visit the the [main Github repository](https://github.com/Michael-Beukman/NERTransfer). You can contact me by filing an issue on this repository.
### Training Resources
In the interest of openness, and reporting resources used, we list here how long the training process took, as well as what the minimum resources would be to reproduce this. Fine-tuning each model on the NER dataset took between 10 and 30 minutes, and was performed on a NVIDIA RTX3090 GPU. To use a batch size of 32, at least 14GB of GPU memory was required, although it was just possible to fit these models in around 6.5GB's of VRAM when using a batch size of 1.
## Data
The train, evaluation and test datasets were taken directly from the MasakhaNER [Github](https://github.com/masakhane-io/masakhane-ner) repository, with minimal to no preprocessing, as the original dataset is already of high quality.
The motivation for the use of this data is that it is the "first large, publicly available, high quality dataset for named entity recognition (NER) in ten African languages" ([source](https://arxiv.org/pdf/2103.11811.pdf)). The high-quality data, as well as the groundwork laid by the paper introducing it are some more reasons why this dataset was used. For evaluation, the dedicated test split was used, which is from the same distribution as the training data, so this model may not generalise to other distributions, and further testing would need to be done to investigate this. The exact distribution of the data is covered in detail [here](https://arxiv.org/abs/2103.11811).
## Intended Use
This model are intended to be used for NLP research into e.g. interpretability or transfer learning. Using this model in production is not supported, as generalisability and downright performance is limited. In particular, this is not designed to be used in any important downstream task that could affect people, as harm could be caused by the limitations of the model, described next.
## Limitations
This model was only trained on one (relatively small) dataset, covering one task (NER) in one domain (news articles) and in a set span of time. The results may not generalise, and the model may perform badly, or in an unfair / biased way if used on other tasks. Although the purpose of this project was to investigate transfer learning, the performance on languages that the model was not trained for does suffer.
Because this model used xlm-roberta-base as its starting point (potentially with domain adaptive fine-tuning on specific languages), this model's limitations can also apply here. These can include being biased towards the hegemonic viewpoint of most of its training data, being ungrounded and having subpar results on other languages (possibly due to unbalanced training data).
As [Adelani et al. (2021)](https://arxiv.org/abs/2103.11811) showed, the models in general struggled with entities that were either longer than 3 words and entities that were not contained in the training data. This could bias the models towards not finding, e.g. names of people that have many words, possibly leading to a misrepresentation in the results. Similarly, names that are uncommon, and may not have been found in the training data (due to e.g. different languages) would also be predicted less often.
Additionally, this model has not been verified in practice, and other, more subtle problems may become prevalent if used without any verification that it does what it is supposed to.
### Privacy & Ethical Considerations
The data comes from only publicly available news sources, the only available data should cover public figures and those that agreed to be reported on. See the original MasakhaNER paper for more details.
No explicit ethical considerations or adjustments were made during fine-tuning of this model.
## Metrics
The language adaptive models achieve (mostly) superior performance over starting with xlm-roberta-base. Our main metric was the aggregate F1 score for all NER categories.
These metrics are on the test set for MasakhaNER, so the data distribution is similar to the training set, so these results do not directly indicate how well these models generalise.
We do find large variation in transfer results when starting from different seeds (5 different seeds were tested), indicating that the fine-tuning process for transfer might be unstable.
The metrics used were chosen to be consistent with previous work, and to facilitate research. Other metrics may be more appropriate for other purposes.
## Caveats and Recommendations
In general, this model performed worse on the 'date' category compared to others, so if dates are a critical factor, then that might need to be taken into account and addressed, by for example collecting and annotating more data.
## Model Structure
Here are some performance details on this specific model, compared to others we trained.
All of these metrics were calculated on the test set, and the seed was chosen that gave the best overall F1 score. The first three result columns are averaged over all categories, and the latter 4 provide performance broken down by category.
This model can predict the following label for a token ([source](https://huggingface.co/Davlan/xlm-roberta-large-masakhaner)):
Abbreviation|Description
-|-
O|Outside of a named entity
B-DATE |Beginning of a DATE entity right after another DATE entity
I-DATE |DATE entity
B-PER |Beginning of a person’s name right after another person’s name
I-PER |Person’s name
B-ORG |Beginning of an organisation right after another organisation
I-ORG |Organisation
B-LOC |Beginning of a location right after another location
I-LOC |Location
| Model Name | Staring point | Evaluation / Fine-tune Language | F1 | Precision | Recall | F1 (DATE) | F1 (LOC) | F1 (ORG) | F1 (PER) |
| -------------------------------------------------- | -------------------- | -------------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- |
| [xlm-roberta-base-finetuned-luo-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-luo-finetuned-ner-swahili) (This model) | [luo](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-luo) | swa | 87.93 | 86.91 | 88.97 | 83.00 | 91.00 | 76.00 | 94.00 |
| [xlm-roberta-base-finetuned-hausa-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-hausa-finetuned-ner-swahili) | [hau](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-hausa) | swa | 88.36 | 86.95 | 89.82 | 86.00 | 91.00 | 77.00 | 94.00 |
| [xlm-roberta-base-finetuned-igbo-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-igbo-finetuned-ner-swahili) | [ibo](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-igbo) | swa | 87.75 | 86.55 | 88.97 | 85.00 | 92.00 | 77.00 | 91.00 |
| [xlm-roberta-base-finetuned-kinyarwanda-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-kinyarwanda-finetuned-ner-swahili) | [kin](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-kinyarwanda) | swa | 87.26 | 85.15 | 89.48 | 83.00 | 91.00 | 75.00 | 93.00 |
| [xlm-roberta-base-finetuned-luganda-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-luganda-finetuned-ner-swahili) | [lug](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-luganda) | swa | 88.93 | 87.64 | 90.25 | 83.00 | 92.00 | 79.00 | 95.00 |
| [xlm-roberta-base-finetuned-naija-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-naija-finetuned-ner-swahili) | [pcm](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-naija) | swa | 87.26 | 85.15 | 89.48 | 83.00 | 91.00 | 75.00 | 93.00 |
| [xlm-roberta-base-finetuned-swahili-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-swahili-finetuned-ner-swahili) | [swa](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-swahili) | swa | 90.36 | 88.59 | 92.20 | 86.00 | 93.00 | 79.00 | 96.00 |
| [xlm-roberta-base-finetuned-wolof-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-wolof-finetuned-ner-swahili) | [wol](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-wolof) | swa | 87.80 | 86.50 | 89.14 | 86.00 | 90.00 | 78.00 | 93.00 |
| [xlm-roberta-base-finetuned-yoruba-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-yoruba-finetuned-ner-swahili) | [yor](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-yoruba) | swa | 87.73 | 86.67 | 88.80 | 85.00 | 91.00 | 75.00 | 93.00 |
| [xlm-roberta-base-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-ner-swahili) | [base](https://huggingface.co/xlm-roberta-base) | swa | 88.71 | 86.84 | 90.67 | 83.00 | 91.00 | 79.00 | 95.00 |
## Usage
To use this model (or others), you can do the following, just changing the model name ([source](https://huggingface.co/dslim/bert-base-NER)):
```
from transformers import AutoTokenizer, AutoModelForTokenClassification
from transformers import pipeline
model_name = 'mbeukman/xlm-roberta-base-finetuned-luo-finetuned-ner-swahili'
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForTokenClassification.from_pretrained(model_name)
nlp = pipeline("ner", model=model, tokenizer=tokenizer)
example = "Wizara ya afya ya Tanzania imeripoti Jumatatu kuwa , watu takriban 14 zaidi wamepata maambukizi ya Covid - 19 ."
ner_results = nlp(example)
print(ner_results)
```
|
mbeukman/xlm-roberta-base-finetuned-luganda-finetuned-ner-swahili | mbeukman | 2021-11-25T09:04:12Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"xlm-roberta",
"token-classification",
"NER",
"sw",
"dataset:masakhaner",
"arxiv:2103.11811",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | token-classification | 2022-03-02T23:29:05Z | ---
language:
- sw
tags:
- NER
datasets:
- masakhaner
metrics:
- f1
- precision
- recall
widget:
- text: "Wizara ya afya ya Tanzania imeripoti Jumatatu kuwa , watu takriban 14 zaidi wamepata maambukizi ya Covid - 19 ."
---
# xlm-roberta-base-finetuned-luganda-finetuned-ner-swahili
This is a token classification (specifically NER) model that fine-tuned [xlm-roberta-base-finetuned-luganda](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-luganda) on the [MasakhaNER](https://arxiv.org/abs/2103.11811) dataset, specifically the Swahili part.
More information, and other similar models can be found in the [main Github repository](https://github.com/Michael-Beukman/NERTransfer).
## About
This model is transformer based and was fine-tuned on the MasakhaNER dataset. It is a named entity recognition dataset, containing mostly news articles in 10 different African languages.
The model was fine-tuned for 50 epochs, with a maximum sequence length of 200, 32 batch size, 5e-5 learning rate. This process was repeated 5 times (with different random seeds), and this uploaded model performed the best out of those 5 seeds (aggregate F1 on test set).
This model was fine-tuned by me, Michael Beukman while doing a project at the University of the Witwatersrand, Johannesburg. This is version 1, as of 20 November 2021.
This model is licensed under the [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0).
### Contact & More information
For more information about the models, including training scripts, detailed results and further resources, you can visit the the [main Github repository](https://github.com/Michael-Beukman/NERTransfer). You can contact me by filing an issue on this repository.
### Training Resources
In the interest of openness, and reporting resources used, we list here how long the training process took, as well as what the minimum resources would be to reproduce this. Fine-tuning each model on the NER dataset took between 10 and 30 minutes, and was performed on a NVIDIA RTX3090 GPU. To use a batch size of 32, at least 14GB of GPU memory was required, although it was just possible to fit these models in around 6.5GB's of VRAM when using a batch size of 1.
## Data
The train, evaluation and test datasets were taken directly from the MasakhaNER [Github](https://github.com/masakhane-io/masakhane-ner) repository, with minimal to no preprocessing, as the original dataset is already of high quality.
The motivation for the use of this data is that it is the "first large, publicly available, high quality dataset for named entity recognition (NER) in ten African languages" ([source](https://arxiv.org/pdf/2103.11811.pdf)). The high-quality data, as well as the groundwork laid by the paper introducing it are some more reasons why this dataset was used. For evaluation, the dedicated test split was used, which is from the same distribution as the training data, so this model may not generalise to other distributions, and further testing would need to be done to investigate this. The exact distribution of the data is covered in detail [here](https://arxiv.org/abs/2103.11811).
## Intended Use
This model are intended to be used for NLP research into e.g. interpretability or transfer learning. Using this model in production is not supported, as generalisability and downright performance is limited. In particular, this is not designed to be used in any important downstream task that could affect people, as harm could be caused by the limitations of the model, described next.
## Limitations
This model was only trained on one (relatively small) dataset, covering one task (NER) in one domain (news articles) and in a set span of time. The results may not generalise, and the model may perform badly, or in an unfair / biased way if used on other tasks. Although the purpose of this project was to investigate transfer learning, the performance on languages that the model was not trained for does suffer.
Because this model used xlm-roberta-base as its starting point (potentially with domain adaptive fine-tuning on specific languages), this model's limitations can also apply here. These can include being biased towards the hegemonic viewpoint of most of its training data, being ungrounded and having subpar results on other languages (possibly due to unbalanced training data).
As [Adelani et al. (2021)](https://arxiv.org/abs/2103.11811) showed, the models in general struggled with entities that were either longer than 3 words and entities that were not contained in the training data. This could bias the models towards not finding, e.g. names of people that have many words, possibly leading to a misrepresentation in the results. Similarly, names that are uncommon, and may not have been found in the training data (due to e.g. different languages) would also be predicted less often.
Additionally, this model has not been verified in practice, and other, more subtle problems may become prevalent if used without any verification that it does what it is supposed to.
### Privacy & Ethical Considerations
The data comes from only publicly available news sources, the only available data should cover public figures and those that agreed to be reported on. See the original MasakhaNER paper for more details.
No explicit ethical considerations or adjustments were made during fine-tuning of this model.
## Metrics
The language adaptive models achieve (mostly) superior performance over starting with xlm-roberta-base. Our main metric was the aggregate F1 score for all NER categories.
These metrics are on the test set for MasakhaNER, so the data distribution is similar to the training set, so these results do not directly indicate how well these models generalise.
We do find large variation in transfer results when starting from different seeds (5 different seeds were tested), indicating that the fine-tuning process for transfer might be unstable.
The metrics used were chosen to be consistent with previous work, and to facilitate research. Other metrics may be more appropriate for other purposes.
## Caveats and Recommendations
In general, this model performed worse on the 'date' category compared to others, so if dates are a critical factor, then that might need to be taken into account and addressed, by for example collecting and annotating more data.
## Model Structure
Here are some performance details on this specific model, compared to others we trained.
All of these metrics were calculated on the test set, and the seed was chosen that gave the best overall F1 score. The first three result columns are averaged over all categories, and the latter 4 provide performance broken down by category.
This model can predict the following label for a token ([source](https://huggingface.co/Davlan/xlm-roberta-large-masakhaner)):
Abbreviation|Description
-|-
O|Outside of a named entity
B-DATE |Beginning of a DATE entity right after another DATE entity
I-DATE |DATE entity
B-PER |Beginning of a person’s name right after another person’s name
I-PER |Person’s name
B-ORG |Beginning of an organisation right after another organisation
I-ORG |Organisation
B-LOC |Beginning of a location right after another location
I-LOC |Location
| Model Name | Staring point | Evaluation / Fine-tune Language | F1 | Precision | Recall | F1 (DATE) | F1 (LOC) | F1 (ORG) | F1 (PER) |
| -------------------------------------------------- | -------------------- | -------------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- |
| [xlm-roberta-base-finetuned-luganda-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-luganda-finetuned-ner-swahili) (This model) | [lug](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-luganda) | swa | 88.93 | 87.64 | 90.25 | 83.00 | 92.00 | 79.00 | 95.00 |
| [xlm-roberta-base-finetuned-hausa-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-hausa-finetuned-ner-swahili) | [hau](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-hausa) | swa | 88.36 | 86.95 | 89.82 | 86.00 | 91.00 | 77.00 | 94.00 |
| [xlm-roberta-base-finetuned-igbo-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-igbo-finetuned-ner-swahili) | [ibo](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-igbo) | swa | 87.75 | 86.55 | 88.97 | 85.00 | 92.00 | 77.00 | 91.00 |
| [xlm-roberta-base-finetuned-kinyarwanda-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-kinyarwanda-finetuned-ner-swahili) | [kin](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-kinyarwanda) | swa | 87.26 | 85.15 | 89.48 | 83.00 | 91.00 | 75.00 | 93.00 |
| [xlm-roberta-base-finetuned-luo-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-luo-finetuned-ner-swahili) | [luo](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-luo) | swa | 87.93 | 86.91 | 88.97 | 83.00 | 91.00 | 76.00 | 94.00 |
| [xlm-roberta-base-finetuned-naija-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-naija-finetuned-ner-swahili) | [pcm](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-naija) | swa | 87.26 | 85.15 | 89.48 | 83.00 | 91.00 | 75.00 | 93.00 |
| [xlm-roberta-base-finetuned-swahili-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-swahili-finetuned-ner-swahili) | [swa](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-swahili) | swa | 90.36 | 88.59 | 92.20 | 86.00 | 93.00 | 79.00 | 96.00 |
| [xlm-roberta-base-finetuned-wolof-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-wolof-finetuned-ner-swahili) | [wol](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-wolof) | swa | 87.80 | 86.50 | 89.14 | 86.00 | 90.00 | 78.00 | 93.00 |
| [xlm-roberta-base-finetuned-yoruba-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-yoruba-finetuned-ner-swahili) | [yor](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-yoruba) | swa | 87.73 | 86.67 | 88.80 | 85.00 | 91.00 | 75.00 | 93.00 |
| [xlm-roberta-base-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-ner-swahili) | [base](https://huggingface.co/xlm-roberta-base) | swa | 88.71 | 86.84 | 90.67 | 83.00 | 91.00 | 79.00 | 95.00 |
## Usage
To use this model (or others), you can do the following, just changing the model name ([source](https://huggingface.co/dslim/bert-base-NER)):
```
from transformers import AutoTokenizer, AutoModelForTokenClassification
from transformers import pipeline
model_name = 'mbeukman/xlm-roberta-base-finetuned-luganda-finetuned-ner-swahili'
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForTokenClassification.from_pretrained(model_name)
nlp = pipeline("ner", model=model, tokenizer=tokenizer)
example = "Wizara ya afya ya Tanzania imeripoti Jumatatu kuwa , watu takriban 14 zaidi wamepata maambukizi ya Covid - 19 ."
ner_results = nlp(example)
print(ner_results)
```
|
mbeukman/xlm-roberta-base-finetuned-luganda-finetuned-ner-luganda | mbeukman | 2021-11-25T09:04:10Z | 10 | 0 | transformers | [
"transformers",
"pytorch",
"xlm-roberta",
"token-classification",
"NER",
"lug",
"dataset:masakhaner",
"arxiv:2103.11811",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | token-classification | 2022-03-02T23:29:05Z | ---
language:
- lug
tags:
- NER
datasets:
- masakhaner
metrics:
- f1
- precision
- recall
widget:
- text: "Empaka zaakubeera mu kibuga Liverpool e Bungereza , okutandika nga July 12 ."
---
# xlm-roberta-base-finetuned-luganda-finetuned-ner-luganda
This is a token classification (specifically NER) model that fine-tuned [xlm-roberta-base-finetuned-luganda](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-luganda) on the [MasakhaNER](https://arxiv.org/abs/2103.11811) dataset, specifically the luganda part.
More information, and other similar models can be found in the [main Github repository](https://github.com/Michael-Beukman/NERTransfer).
## About
This model is transformer based and was fine-tuned on the MasakhaNER dataset. It is a named entity recognition dataset, containing mostly news articles in 10 different African languages.
The model was fine-tuned for 50 epochs, with a maximum sequence length of 200, 32 batch size, 5e-5 learning rate. This process was repeated 5 times (with different random seeds), and this uploaded model performed the best out of those 5 seeds (aggregate F1 on test set).
This model was fine-tuned by me, Michael Beukman while doing a project at the University of the Witwatersrand, Johannesburg. This is version 1, as of 20 November 2021.
This model is licensed under the [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0).
### Contact & More information
For more information about the models, including training scripts, detailed results and further resources, you can visit the the [main Github repository](https://github.com/Michael-Beukman/NERTransfer). You can contact me by filing an issue on this repository.
### Training Resources
In the interest of openness, and reporting resources used, we list here how long the training process took, as well as what the minimum resources would be to reproduce this. Fine-tuning each model on the NER dataset took between 10 and 30 minutes, and was performed on a NVIDIA RTX3090 GPU. To use a batch size of 32, at least 14GB of GPU memory was required, although it was just possible to fit these models in around 6.5GB's of VRAM when using a batch size of 1.
## Data
The train, evaluation and test datasets were taken directly from the MasakhaNER [Github](https://github.com/masakhane-io/masakhane-ner) repository, with minimal to no preprocessing, as the original dataset is already of high quality.
The motivation for the use of this data is that it is the "first large, publicly available, high quality dataset for named entity recognition (NER) in ten African languages" ([source](https://arxiv.org/pdf/2103.11811.pdf)). The high-quality data, as well as the groundwork laid by the paper introducing it are some more reasons why this dataset was used. For evaluation, the dedicated test split was used, which is from the same distribution as the training data, so this model may not generalise to other distributions, and further testing would need to be done to investigate this. The exact distribution of the data is covered in detail [here](https://arxiv.org/abs/2103.11811).
## Intended Use
This model are intended to be used for NLP research into e.g. interpretability or transfer learning. Using this model in production is not supported, as generalisability and downright performance is limited. In particular, this is not designed to be used in any important downstream task that could affect people, as harm could be caused by the limitations of the model, described next.
## Limitations
This model was only trained on one (relatively small) dataset, covering one task (NER) in one domain (news articles) and in a set span of time. The results may not generalise, and the model may perform badly, or in an unfair / biased way if used on other tasks. Although the purpose of this project was to investigate transfer learning, the performance on languages that the model was not trained for does suffer.
Because this model used xlm-roberta-base as its starting point (potentially with domain adaptive fine-tuning on specific languages), this model's limitations can also apply here. These can include being biased towards the hegemonic viewpoint of most of its training data, being ungrounded and having subpar results on other languages (possibly due to unbalanced training data).
As [Adelani et al. (2021)](https://arxiv.org/abs/2103.11811) showed, the models in general struggled with entities that were either longer than 3 words and entities that were not contained in the training data. This could bias the models towards not finding, e.g. names of people that have many words, possibly leading to a misrepresentation in the results. Similarly, names that are uncommon, and may not have been found in the training data (due to e.g. different languages) would also be predicted less often.
Additionally, this model has not been verified in practice, and other, more subtle problems may become prevalent if used without any verification that it does what it is supposed to.
### Privacy & Ethical Considerations
The data comes from only publicly available news sources, the only available data should cover public figures and those that agreed to be reported on. See the original MasakhaNER paper for more details.
No explicit ethical considerations or adjustments were made during fine-tuning of this model.
## Metrics
The language adaptive models achieve (mostly) superior performance over starting with xlm-roberta-base. Our main metric was the aggregate F1 score for all NER categories.
These metrics are on the test set for MasakhaNER, so the data distribution is similar to the training set, so these results do not directly indicate how well these models generalise.
We do find large variation in transfer results when starting from different seeds (5 different seeds were tested), indicating that the fine-tuning process for transfer might be unstable.
The metrics used were chosen to be consistent with previous work, and to facilitate research. Other metrics may be more appropriate for other purposes.
## Caveats and Recommendations
In general, this model performed worse on the 'date' category compared to others, so if dates are a critical factor, then that might need to be taken into account and addressed, by for example collecting and annotating more data.
## Model Structure
Here are some performance details on this specific model, compared to others we trained.
All of these metrics were calculated on the test set, and the seed was chosen that gave the best overall F1 score. The first three result columns are averaged over all categories, and the latter 4 provide performance broken down by category.
This model can predict the following label for a token ([source](https://huggingface.co/Davlan/xlm-roberta-large-masakhaner)):
Abbreviation|Description
-|-
O|Outside of a named entity
B-DATE |Beginning of a DATE entity right after another DATE entity
I-DATE |DATE entity
B-PER |Beginning of a person’s name right after another person’s name
I-PER |Person’s name
B-ORG |Beginning of an organisation right after another organisation
I-ORG |Organisation
B-LOC |Beginning of a location right after another location
I-LOC |Location
| Model Name | Staring point | Evaluation / Fine-tune Language | F1 | Precision | Recall | F1 (DATE) | F1 (LOC) | F1 (ORG) | F1 (PER) |
| -------------------------------------------------- | -------------------- | -------------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- |
| [xlm-roberta-base-finetuned-luganda-finetuned-ner-luganda](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-luganda-finetuned-ner-luganda) (This model) | [lug](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-luganda) | lug | 85.37 | 82.75 | 88.17 | 78.00 | 82.00 | 80.00 | 92.00 |
| [xlm-roberta-base-finetuned-swahili-finetuned-ner-luganda](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-swahili-finetuned-ner-luganda) | [swa](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-swahili) | lug | 82.57 | 80.38 | 84.89 | 75.00 | 80.00 | 82.00 | 87.00 |
| [xlm-roberta-base-finetuned-ner-luganda](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-ner-luganda) | [base](https://huggingface.co/xlm-roberta-base) | lug | 80.91 | 78.59 | 83.37 | 73.00 | 78.00 | 77.00 | 86.00 |
## Usage
To use this model (or others), you can do the following, just changing the model name ([source](https://huggingface.co/dslim/bert-base-NER)):
```
from transformers import AutoTokenizer, AutoModelForTokenClassification
from transformers import pipeline
model_name = 'mbeukman/xlm-roberta-base-finetuned-luganda-finetuned-ner-luganda'
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForTokenClassification.from_pretrained(model_name)
nlp = pipeline("ner", model=model, tokenizer=tokenizer)
example = "Empaka zaakubeera mu kibuga Liverpool e Bungereza , okutandika nga July 12 ."
ner_results = nlp(example)
print(ner_results)
```
|
mbeukman/xlm-roberta-base-finetuned-igbo-finetuned-ner-swahili | mbeukman | 2021-11-25T09:04:02Z | 6 | 1 | transformers | [
"transformers",
"pytorch",
"xlm-roberta",
"token-classification",
"NER",
"sw",
"dataset:masakhaner",
"arxiv:2103.11811",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | token-classification | 2022-03-02T23:29:05Z | ---
language:
- sw
tags:
- NER
datasets:
- masakhaner
metrics:
- f1
- precision
- recall
widget:
- text: "Wizara ya afya ya Tanzania imeripoti Jumatatu kuwa , watu takriban 14 zaidi wamepata maambukizi ya Covid - 19 ."
---
# xlm-roberta-base-finetuned-igbo-finetuned-ner-swahili
This is a token classification (specifically NER) model that fine-tuned [xlm-roberta-base-finetuned-igbo](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-igbo) on the [MasakhaNER](https://arxiv.org/abs/2103.11811) dataset, specifically the Swahili part.
More information, and other similar models can be found in the [main Github repository](https://github.com/Michael-Beukman/NERTransfer).
## About
This model is transformer based and was fine-tuned on the MasakhaNER dataset. It is a named entity recognition dataset, containing mostly news articles in 10 different African languages.
The model was fine-tuned for 50 epochs, with a maximum sequence length of 200, 32 batch size, 5e-5 learning rate. This process was repeated 5 times (with different random seeds), and this uploaded model performed the best out of those 5 seeds (aggregate F1 on test set).
This model was fine-tuned by me, Michael Beukman while doing a project at the University of the Witwatersrand, Johannesburg. This is version 1, as of 20 November 2021.
This model is licensed under the [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0).
### Contact & More information
For more information about the models, including training scripts, detailed results and further resources, you can visit the the [main Github repository](https://github.com/Michael-Beukman/NERTransfer). You can contact me by filing an issue on this repository.
### Training Resources
In the interest of openness, and reporting resources used, we list here how long the training process took, as well as what the minimum resources would be to reproduce this. Fine-tuning each model on the NER dataset took between 10 and 30 minutes, and was performed on a NVIDIA RTX3090 GPU. To use a batch size of 32, at least 14GB of GPU memory was required, although it was just possible to fit these models in around 6.5GB's of VRAM when using a batch size of 1.
## Data
The train, evaluation and test datasets were taken directly from the MasakhaNER [Github](https://github.com/masakhane-io/masakhane-ner) repository, with minimal to no preprocessing, as the original dataset is already of high quality.
The motivation for the use of this data is that it is the "first large, publicly available, high quality dataset for named entity recognition (NER) in ten African languages" ([source](https://arxiv.org/pdf/2103.11811.pdf)). The high-quality data, as well as the groundwork laid by the paper introducing it are some more reasons why this dataset was used. For evaluation, the dedicated test split was used, which is from the same distribution as the training data, so this model may not generalise to other distributions, and further testing would need to be done to investigate this. The exact distribution of the data is covered in detail [here](https://arxiv.org/abs/2103.11811).
## Intended Use
This model are intended to be used for NLP research into e.g. interpretability or transfer learning. Using this model in production is not supported, as generalisability and downright performance is limited. In particular, this is not designed to be used in any important downstream task that could affect people, as harm could be caused by the limitations of the model, described next.
## Limitations
This model was only trained on one (relatively small) dataset, covering one task (NER) in one domain (news articles) and in a set span of time. The results may not generalise, and the model may perform badly, or in an unfair / biased way if used on other tasks. Although the purpose of this project was to investigate transfer learning, the performance on languages that the model was not trained for does suffer.
Because this model used xlm-roberta-base as its starting point (potentially with domain adaptive fine-tuning on specific languages), this model's limitations can also apply here. These can include being biased towards the hegemonic viewpoint of most of its training data, being ungrounded and having subpar results on other languages (possibly due to unbalanced training data).
As [Adelani et al. (2021)](https://arxiv.org/abs/2103.11811) showed, the models in general struggled with entities that were either longer than 3 words and entities that were not contained in the training data. This could bias the models towards not finding, e.g. names of people that have many words, possibly leading to a misrepresentation in the results. Similarly, names that are uncommon, and may not have been found in the training data (due to e.g. different languages) would also be predicted less often.
Additionally, this model has not been verified in practice, and other, more subtle problems may become prevalent if used without any verification that it does what it is supposed to.
### Privacy & Ethical Considerations
The data comes from only publicly available news sources, the only available data should cover public figures and those that agreed to be reported on. See the original MasakhaNER paper for more details.
No explicit ethical considerations or adjustments were made during fine-tuning of this model.
## Metrics
The language adaptive models achieve (mostly) superior performance over starting with xlm-roberta-base. Our main metric was the aggregate F1 score for all NER categories.
These metrics are on the test set for MasakhaNER, so the data distribution is similar to the training set, so these results do not directly indicate how well these models generalise.
We do find large variation in transfer results when starting from different seeds (5 different seeds were tested), indicating that the fine-tuning process for transfer might be unstable.
The metrics used were chosen to be consistent with previous work, and to facilitate research. Other metrics may be more appropriate for other purposes.
## Caveats and Recommendations
In general, this model performed worse on the 'date' category compared to others, so if dates are a critical factor, then that might need to be taken into account and addressed, by for example collecting and annotating more data.
## Model Structure
Here are some performance details on this specific model, compared to others we trained.
All of these metrics were calculated on the test set, and the seed was chosen that gave the best overall F1 score. The first three result columns are averaged over all categories, and the latter 4 provide performance broken down by category.
This model can predict the following label for a token ([source](https://huggingface.co/Davlan/xlm-roberta-large-masakhaner)):
Abbreviation|Description
-|-
O|Outside of a named entity
B-DATE |Beginning of a DATE entity right after another DATE entity
I-DATE |DATE entity
B-PER |Beginning of a person’s name right after another person’s name
I-PER |Person’s name
B-ORG |Beginning of an organisation right after another organisation
I-ORG |Organisation
B-LOC |Beginning of a location right after another location
I-LOC |Location
| Model Name | Staring point | Evaluation / Fine-tune Language | F1 | Precision | Recall | F1 (DATE) | F1 (LOC) | F1 (ORG) | F1 (PER) |
| -------------------------------------------------- | -------------------- | -------------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- |
| [xlm-roberta-base-finetuned-igbo-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-igbo-finetuned-ner-swahili) (This model) | [ibo](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-igbo) | swa | 87.75 | 86.55 | 88.97 | 85.00 | 92.00 | 77.00 | 91.00 |
| [xlm-roberta-base-finetuned-hausa-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-hausa-finetuned-ner-swahili) | [hau](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-hausa) | swa | 88.36 | 86.95 | 89.82 | 86.00 | 91.00 | 77.00 | 94.00 |
| [xlm-roberta-base-finetuned-kinyarwanda-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-kinyarwanda-finetuned-ner-swahili) | [kin](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-kinyarwanda) | swa | 87.26 | 85.15 | 89.48 | 83.00 | 91.00 | 75.00 | 93.00 |
| [xlm-roberta-base-finetuned-luganda-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-luganda-finetuned-ner-swahili) | [lug](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-luganda) | swa | 88.93 | 87.64 | 90.25 | 83.00 | 92.00 | 79.00 | 95.00 |
| [xlm-roberta-base-finetuned-luo-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-luo-finetuned-ner-swahili) | [luo](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-luo) | swa | 87.93 | 86.91 | 88.97 | 83.00 | 91.00 | 76.00 | 94.00 |
| [xlm-roberta-base-finetuned-naija-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-naija-finetuned-ner-swahili) | [pcm](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-naija) | swa | 87.26 | 85.15 | 89.48 | 83.00 | 91.00 | 75.00 | 93.00 |
| [xlm-roberta-base-finetuned-swahili-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-swahili-finetuned-ner-swahili) | [swa](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-swahili) | swa | 90.36 | 88.59 | 92.20 | 86.00 | 93.00 | 79.00 | 96.00 |
| [xlm-roberta-base-finetuned-wolof-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-wolof-finetuned-ner-swahili) | [wol](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-wolof) | swa | 87.80 | 86.50 | 89.14 | 86.00 | 90.00 | 78.00 | 93.00 |
| [xlm-roberta-base-finetuned-yoruba-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-yoruba-finetuned-ner-swahili) | [yor](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-yoruba) | swa | 87.73 | 86.67 | 88.80 | 85.00 | 91.00 | 75.00 | 93.00 |
| [xlm-roberta-base-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-ner-swahili) | [base](https://huggingface.co/xlm-roberta-base) | swa | 88.71 | 86.84 | 90.67 | 83.00 | 91.00 | 79.00 | 95.00 |
## Usage
To use this model (or others), you can do the following, just changing the model name ([source](https://huggingface.co/dslim/bert-base-NER)):
```
from transformers import AutoTokenizer, AutoModelForTokenClassification
from transformers import pipeline
model_name = 'mbeukman/xlm-roberta-base-finetuned-igbo-finetuned-ner-swahili'
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForTokenClassification.from_pretrained(model_name)
nlp = pipeline("ner", model=model, tokenizer=tokenizer)
example = "Wizara ya afya ya Tanzania imeripoti Jumatatu kuwa , watu takriban 14 zaidi wamepata maambukizi ya Covid - 19 ."
ner_results = nlp(example)
print(ner_results)
```
|
jpabbuehl/distilbert-base-uncased-finetuned-cola | jpabbuehl | 2021-11-25T08:49:51Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:glue",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- matthews_correlation
model-index:
- name: distilbert-base-uncased-finetuned-cola
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: glue
type: glue
args: cola
metrics:
- name: Matthews Correlation
type: matthews_correlation
value: 0.5229586822934302
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-cola
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7588
- Matthews Correlation: 0.5230
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Matthews Correlation |
|:-------------:|:-----:|:----:|:---------------:|:--------------------:|
| 0.5261 | 1.0 | 535 | 0.5125 | 0.4124 |
| 0.3502 | 2.0 | 1070 | 0.5439 | 0.5076 |
| 0.2378 | 3.0 | 1605 | 0.6629 | 0.4946 |
| 0.1809 | 4.0 | 2140 | 0.7588 | 0.5230 |
| 0.1309 | 5.0 | 2675 | 0.8901 | 0.5056 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu111
- Datasets 1.15.1
- Tokenizers 0.10.3
|
arnolfokam/mbert-base-uncased-pcm | arnolfokam | 2021-11-24T21:17:52Z | 8 | 0 | transformers | [
"transformers",
"pytorch",
"bert",
"token-classification",
"NER",
"pcm",
"dataset:masakhaner",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | token-classification | 2022-03-02T23:29:05Z | ---
language:
- pcm
tags:
- NER
datasets:
- masakhaner
metrics:
- f1
- precision
- recall
license: apache-2.0
widget:
- text: "Mixed Martial Arts joinbodi, Ultimate Fighting Championship, UFC don decide say dem go enta back di octagon on Saturday, 9 May, for Jacksonville, Florida."
---
# Model description
**mbert-base-uncased-pcm** is a model based on the fine-tuned Multilingual BERT base uncased model. It has been trained to recognize four types of entities:
- dates & time (DATE)
- Location (LOC)
- Organizations (ORG)
- Person (PER)
# Intended Use
- Intended to be used for research purposes concerning Named Entity Recognition for African Languages.
- Not intended for practical purposes.
# Training Data
This model was fine-tuned on the Nigerian Pidgin corpus **(pcm)** of the [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) dataset. However, we thresholded the number of entity groups per sentence in this dataset to 10 entity groups.
# Training procedure
This model was trained on a single NVIDIA P5000 from [Paperspace](https://www.paperspace.com)
#### Hyperparameters
- **Learning Rate:** 5e-5
- **Batch Size:** 32
- **Maximum Sequence Length:** 164
- **Epochs:** 30
# Evaluation Data
We evaluated this model on the test split of the Swahili corpus **(pcm)** present in the [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) with no thresholding.
# Metrics
- Precision
- Recall
- F1-score
# Limitations
- The size of the pre-trained language model prevents its usage in anything other than research.
- Lack of analysis concerning the bias and fairness in these models may make them dangerous if deployed into production system.
- The train data is a less populated version of the original dataset in terms of entity groups per sentence. Therefore, this can negatively impact the performance.
# Caveats and Recommendations
- The topics in the dataset corpus are centered around **News**. Future training could be done with a more diverse corpus.
# Results
Model Name| Precision | Recall | F1-score
-|-|-|-
**mbert-base-uncased-pcm**| 90.46 | 83.23 | 86.69
# Usage
```python
from transformers import AutoTokenizer, AutoModelForTokenClassification
from transformers import pipeline
tokenizer = AutoTokenizer.from_pretrained("arnolfokam/mbert-base-uncased-pcm")
model = AutoModelForTokenClassification.from_pretrained("arnolfokam/mbert-base-uncased-pcm")
nlp = pipeline("ner", model=model, tokenizer=tokenizer)
example = "Mixed Martial Arts joinbodi, Ultimate Fighting Championship, UFC don decide say dem go enta back di octagon on Saturday, 9 May, for Jacksonville, Florida."
ner_results = nlp(example)
print(ner_results)
``` |
arnolfokam/mbert-base-uncased-ner-pcm | arnolfokam | 2021-11-24T21:17:06Z | 14 | 0 | transformers | [
"transformers",
"pytorch",
"bert",
"token-classification",
"NER",
"pcm",
"dataset:masakhaner",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | token-classification | 2022-03-02T23:29:05Z | ---
language:
- pcm
tags:
- NER
datasets:
- masakhaner
metrics:
- f1
- precision
- recall
license: apache-2.0
widget:
- text: "Mixed Martial Arts joinbodi, Ultimate Fighting Championship, UFC don decide say dem go enta back di octagon on Saturday, 9 May, for Jacksonville, Florida."
---
# Model description
**mbert-base-uncased-ner-pcm** is a model based on the fine-tuned Multilingual BERT base uncased model, previously fine-tuned for Named Entity Recognition using 10 high-resourced languages. It has been trained to recognize four types of entities:
- dates & time (DATE)
- Location (LOC)
- Organizations (ORG)
- Person (PER)
# Intended Use
- Intended to be used for research purposes concerning Named Entity Recognition for African Languages.
- Not intended for practical purposes.
# Training Data
This model was fine-tuned on the Nigerian Pidgin corpus **(pcm)** of the [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) dataset. However, we thresholded the number of entity groups per sentence in this dataset to 10 entity groups.
# Training procedure
This model was trained on a single NVIDIA P5000 from [Paperspace](https://www.paperspace.com)
#### Hyperparameters
- **Learning Rate:** 5e-5
- **Batch Size:** 32
- **Maximum Sequence Length:** 164
- **Epochs:** 30
# Evaluation Data
We evaluated this model on the test split of the Swahili corpus **(pcm)** present in the [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) with no thresholding.
# Metrics
- Precision
- Recall
- F1-score
# Limitations
- The size of the pre-trained language model prevents its usage in anything other than research.
- Lack of analysis concerning the bias and fairness in these models may make them dangerous if deployed into production system.
- The train data is a less populated version of the original dataset in terms of entity groups per sentence. Therefore, this can negatively impact the performance.
# Caveats and Recommendations
- The topics in the dataset corpus are centered around **News**. Future training could be done with a more diverse corpus.
# Results
Model Name| Precision | Recall | F1-score
-|-|-|-
**mbert-base-uncased-ner-pcm**| 90.38 | 82.44 | 86.23
# Usage
```python
from transformers import AutoTokenizer, AutoModelForTokenClassification
from transformers import pipeline
tokenizer = AutoTokenizer.from_pretrained("arnolfokam/mbert-base-uncased-ner-pcm")
model = AutoModelForTokenClassification.from_pretrained("arnolfokam/mbert-base-uncased-ner-pcm")
nlp = pipeline("ner", model=model, tokenizer=tokenizer)
example = "Mixed Martial Arts joinbodi, Ultimate Fighting Championship, UFC don decide say dem go enta back di octagon on Saturday, 9 May, for Jacksonville, Florida."
ner_results = nlp(example)
print(ner_results)
``` |
arnolfokam/bert-base-uncased-pcm | arnolfokam | 2021-11-24T21:14:03Z | 7 | 0 | transformers | [
"transformers",
"pytorch",
"bert",
"token-classification",
"NER",
"pcm",
"dataset:masakhaner",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | token-classification | 2022-03-02T23:29:05Z | ---
language:
- pcm
tags:
- NER
datasets:
- masakhaner
metrics:
- f1
- precision
- recall
license: apache-2.0
widget:
- text: "Mixed Martial Arts joinbodi, Ultimate Fighting Championship, UFC don decide say dem go enta back di octagon on Saturday, 9 May, for Jacksonville, Florida."
---
# Model description
**bert-base-uncased-pcm** is a model based on the fine-tuned BERT base uncased model. It has been trained to recognize four types of entities:
- dates & time (DATE)
- Location (LOC)
- Organizations (ORG)
- Person (PER)
# Intended Use
- Intended to be used for research purposes concerning Named Entity Recognition for African Languages.
- Not intended for practical purposes.
# Training Data
This model was fine-tuned on the Nigerian Pidgin corpus **(pcm)** of the [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) dataset. However, we thresholded the number of entity groups per sentence in this dataset to 10 entity groups.
# Training procedure
This model was trained on a single NVIDIA P5000 from [Paperspace](https://www.paperspace.com)
#### Hyperparameters
- **Learning Rate:** 5e-5
- **Batch Size:** 32
- **Maximum Sequence Length:** 164
- **Epochs:** 30
# Evaluation Data
We evaluated this model on the test split of the Swahili corpus **(pcm)** present in the [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) with no thresholding.
# Metrics
- Precision
- Recall
- F1-score
# Limitations
- The size of the pre-trained language model prevents its usage in anything other than research.
- Lack of analysis concerning the bias and fairness in these models may make them dangerous if deployed into production system.
- The train data is a less populated version of the original dataset in terms of entity groups per sentence. Therefore, this can negatively impact the performance.
# Caveats and Recommendations
- The topics in the dataset corpus are centered around **News**. Future training could be done with a more diverse corpus.
# Results
Model Name| Precision | Recall | F1-score
-|-|-|-
**bert-base-uncased-pcm**| 88.61 | 84.17 | 86.33
# Usage
```python
from transformers import AutoTokenizer, AutoModelForTokenClassification
from transformers import pipeline
tokenizer = AutoTokenizer.from_pretrained("arnolfokam/bert-base-uncased-pcm")
model = AutoModelForTokenClassification.from_pretrained("arnolfokam/bert-base-uncased-pcm")
nlp = pipeline("ner", model=model, tokenizer=tokenizer)
example = "Mixed Martial Arts joinbodi, Ultimate Fighting Championship, UFC don decide say dem go enta back di octagon on Saturday, 9 May, for Jacksonville, Florida."
ner_results = nlp(example)
print(ner_results)
``` |
huggingtweets/emirtarik | huggingtweets | 2021-11-24T20:31:24Z | 3 | 0 | transformers | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:05Z | ---
language: en
thumbnail: https://www.huggingtweets.com/emirtarik/1637785880110/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1435194184294707207/s3hAS9Pv_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Emir</div>
<div style="text-align: center; font-size: 14px;">@emirtarik</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Emir.
| Data | Emir |
| --- | --- |
| Tweets downloaded | 1917 |
| Retweets | 421 |
| Short tweets | 368 |
| Tweets kept | 1128 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2bk4sb83/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @emirtarik's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3abibhtt) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3abibhtt/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/emirtarik')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
bgoel4132/twitter-sentiment | bgoel4132 | 2021-11-24T19:39:02Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"bert",
"text-classification",
"autonlp",
"en",
"dataset:bgoel4132/autonlp-data-twitter-sentiment",
"co2_eq_emissions",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2022-03-02T23:29:05Z | ---
tags: autonlp
language: en
widget:
- text: "I love AutoNLP 🤗"
datasets:
- bgoel4132/autonlp-data-twitter-sentiment
co2_eq_emissions: 186.8637425115097
---
# Model Trained Using AutoNLP
- Problem type: Multi-class Classification
- Model ID: 35868888
- CO2 Emissions (in grams): 186.8637425115097
## Validation Metrics
- Loss: 0.2020547091960907
- Accuracy: 0.9233253193796257
- Macro F1: 0.9240407542958707
- Micro F1: 0.9233253193796257
- Weighted F1: 0.921800586774046
- Macro Precision: 0.9432284179846658
- Micro Precision: 0.9233253193796257
- Weighted Precision: 0.9247263361914827
- Macro Recall: 0.9139437626409382
- Micro Recall: 0.9233253193796257
- Weighted Recall: 0.9233253193796257
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/bgoel4132/autonlp-twitter-sentiment-35868888
```
Or Python API:
```
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("bgoel4132/autonlp-twitter-sentiment-35868888", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("bgoel4132/autonlp-twitter-sentiment-35868888", use_auth_token=True)
inputs = tokenizer("I love AutoNLP", return_tensors="pt")
outputs = model(**inputs)
``` |
castorini/doc2query-t5-large-msmarco | castorini | 2021-11-24T19:16:08Z | 6 | 1 | transformers | [
"transformers",
"pytorch",
"jax",
"t5",
"text2text-generation",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2022-03-02T23:29:05Z | For more information, check [doc2query.ai](http://doc2query.ai) |
castorini/monot5-large-msmarco-10k | castorini | 2021-11-24T19:15:14Z | 149 | 1 | transformers | [
"transformers",
"pytorch",
"jax",
"t5",
"text2text-generation",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2022-03-02T23:29:05Z | This model is a T5-large reranker fine-tuned on the MS MARCO passage dataset for 10k steps (or 1 epoch).
This model usually has a better zero-shot performance than `monot5-large-msmarco`, i.e., it performs better on datasets different from MS MARCO.
For more details on how to use it, check the following links:
- [A simple reranking example](https://github.com/castorini/pygaggle#a-simple-reranking-example)
- [Rerank MS MARCO passages](https://github.com/castorini/pygaggle/blob/master/docs/experiments-msmarco-passage-subset.md)
- [Rerank Robust04 documents](https://github.com/castorini/pygaggle/blob/master/docs/experiments-robust04-monot5-gpu.md)
Paper describing the model: [Document Ranking with a Pretrained Sequence-to-Sequence Model](https://www.aclweb.org/anthology/2020.findings-emnlp.63/) |
sagteam/xlm-roberta-large-sag | sagteam | 2021-11-24T18:19:22Z | 5 | 1 | transformers | [
"transformers",
"pytorch",
"xlm-roberta",
"fill-mask",
"exbert",
"multilingual",
"arxiv:1911.02116",
"arxiv:2004.03659",
"arxiv:2105.00059",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | fill-mask | 2022-03-02T23:29:05Z | ---
language: multilingual
thumbnail: "url to a thumbnail used in social sharing"
tags: exbert
license: apache-2.0
---
# XLM-RoBERTa-large-sag
## Model description
This is a model based on the [XLM-RoBERTa large](https://huggingface.co/xlm-roberta-large) topology (provided by Facebook, see original [paper](https://arxiv.org/abs/1911.02116)) with additional training on two sets of medicine-domain texts:
* about 250.000 text reviews on medicines (1000-tokens-long in average) collected from the site irecommend.ru;
* the raw part of the [RuDReC corpus](https://github.com/cimm-kzn/RuDReC) (about 1.4 million texts, see [paper](https://arxiv.org/abs/2004.03659)).
The XLM-RoBERTa-large calculations for one epoch on this data were performed using one Nvidia Tesla v100 and the Huggingface Transformers library.
## BibTeX entry and citation info
If you have found our results helpful in your work, feel free to cite our publication as:
```
@article{sboev2021analysis,
title={An analysis of full-size Russian complexly NER labelled corpus of Internet user reviews on the drugs based on deep learning and language neural nets},
author={Sboev, Alexander and Sboeva, Sanna and Moloshnikov, Ivan and Gryaznov, Artem and Rybka, Roman and Naumov, Alexander and Selivanov, Anton and Rylkov, Gleb and Ilyin, Viacheslav},
journal={arXiv preprint arXiv:2105.00059},
year={2021}
}
``` |
castorini/doc2query-t5-base-msmarco | castorini | 2021-11-24T17:57:59Z | 138 | 13 | transformers | [
"transformers",
"pytorch",
"jax",
"t5",
"text2text-generation",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2022-03-02T23:29:05Z | For more information, check [doc2query.ai](http://doc2query.ai) |
AdapterHub/roberta-base-pf-wic | AdapterHub | 2021-11-24T16:32:55Z | 6 | 0 | adapter-transformers | [
"adapter-transformers",
"text-classification",
"roberta",
"adapterhub:wordsence/wic",
"en",
"arxiv:2104.08247",
"region:us"
] | text-classification | 2022-03-02T23:29:04Z | ---
tags:
- text-classification
- roberta
- adapterhub:wordsence/wic
- adapter-transformers
language:
- en
---
# Adapter `AdapterHub/roberta-base-pf-wic` for roberta-base
An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [wordsence/wic](https://adapterhub.ml/explore/wordsence/wic/) dataset and includes a prediction head for classification.
This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library.
## Usage
First, install `adapter-transformers`:
```
pip install -U adapter-transformers
```
_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_
Now, the adapter can be loaded and activated like this:
```python
from transformers import AutoModelWithHeads
model = AutoModelWithHeads.from_pretrained("roberta-base")
adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-wic", source="hf")
model.active_adapters = adapter_name
```
## Architecture & Training
The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer.
In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs).
## Evaluation results
Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results.
## Citation
If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247):
```bibtex
@inproceedings{poth-etal-2021-pre,
title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection",
author = {Poth, Clifton and
Pfeiffer, Jonas and
R{"u}ckl{'e}, Andreas and
Gurevych, Iryna},
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2021",
address = "Online and Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.emnlp-main.827",
pages = "10585--10605",
}
``` |
AdapterHub/roberta-base-pf-swag | AdapterHub | 2021-11-24T16:32:26Z | 0 | 0 | adapter-transformers | [
"adapter-transformers",
"roberta",
"en",
"dataset:swag",
"arxiv:2104.08247",
"region:us"
] | null | 2022-03-02T23:29:04Z | ---
tags:
- roberta
- adapter-transformers
datasets:
- swag
language:
- en
---
# Adapter `AdapterHub/roberta-base-pf-swag` for roberta-base
An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [swag](https://huggingface.co/datasets/swag/) dataset and includes a prediction head for multiple choice.
This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library.
## Usage
First, install `adapter-transformers`:
```
pip install -U adapter-transformers
```
_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_
Now, the adapter can be loaded and activated like this:
```python
from transformers import AutoModelWithHeads
model = AutoModelWithHeads.from_pretrained("roberta-base")
adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-swag", source="hf")
model.active_adapters = adapter_name
```
## Architecture & Training
The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer.
In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs).
## Evaluation results
Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results.
## Citation
If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247):
```bibtex
@inproceedings{poth-etal-2021-what-to-pre-train-on,
title={What to Pre-Train on? Efficient Intermediate Task Selection},
author={Clifton Poth and Jonas Pfeiffer and Andreas Rücklé and Iryna Gurevych},
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
month = nov,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/2104.08247",
pages = "to appear",
}
``` |
AdapterHub/roberta-base-pf-social_i_qa | AdapterHub | 2021-11-24T16:32:05Z | 5 | 0 | adapter-transformers | [
"adapter-transformers",
"roberta",
"en",
"dataset:social_i_qa",
"arxiv:2104.08247",
"region:us"
] | null | 2022-03-02T23:29:04Z | ---
tags:
- roberta
- adapter-transformers
datasets:
- social_i_qa
language:
- en
---
# Adapter `AdapterHub/roberta-base-pf-social_i_qa` for roberta-base
An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [social_i_qa](https://huggingface.co/datasets/social_i_qa/) dataset and includes a prediction head for multiple choice.
This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library.
## Usage
First, install `adapter-transformers`:
```
pip install -U adapter-transformers
```
_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_
Now, the adapter can be loaded and activated like this:
```python
from transformers import AutoModelWithHeads
model = AutoModelWithHeads.from_pretrained("roberta-base")
adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-social_i_qa", source="hf")
model.active_adapters = adapter_name
```
## Architecture & Training
The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer.
In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs).
## Evaluation results
Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results.
## Citation
If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247):
```bibtex
@inproceedings{poth-etal-2021-what-to-pre-train-on,
title={What to Pre-Train on? Efficient Intermediate Task Selection},
author={Clifton Poth and Jonas Pfeiffer and Andreas Rücklé and Iryna Gurevych},
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
month = nov,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/2104.08247",
pages = "to appear",
}
``` |
AdapterHub/roberta-base-pf-quartz | AdapterHub | 2021-11-24T16:31:03Z | 4 | 0 | adapter-transformers | [
"adapter-transformers",
"roberta",
"en",
"dataset:quartz",
"arxiv:2104.08247",
"region:us"
] | null | 2022-03-02T23:29:04Z | ---
tags:
- roberta
- adapter-transformers
datasets:
- quartz
language:
- en
---
# Adapter `AdapterHub/roberta-base-pf-quartz` for roberta-base
An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [quartz](https://huggingface.co/datasets/quartz/) dataset and includes a prediction head for multiple choice.
This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library.
## Usage
First, install `adapter-transformers`:
```
pip install -U adapter-transformers
```
_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_
Now, the adapter can be loaded and activated like this:
```python
from transformers import AutoModelWithHeads
model = AutoModelWithHeads.from_pretrained("roberta-base")
adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-quartz", source="hf")
model.active_adapters = adapter_name
```
## Architecture & Training
The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer.
In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs).
## Evaluation results
Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results.
## Citation
If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247):
```bibtex
@inproceedings{poth-etal-2021-what-to-pre-train-on,
title={What to Pre-Train on? Efficient Intermediate Task Selection},
author={Clifton Poth and Jonas Pfeiffer and Andreas Rücklé and Iryna Gurevych},
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
month = nov,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/2104.08247",
pages = "to appear",
}
``` |
AdapterHub/roberta-base-pf-quail | AdapterHub | 2021-11-24T16:30:55Z | 2 | 0 | adapter-transformers | [
"adapter-transformers",
"roberta",
"en",
"dataset:quail",
"arxiv:2104.08247",
"region:us"
] | null | 2022-03-02T23:29:04Z | ---
tags:
- roberta
- adapter-transformers
datasets:
- quail
language:
- en
---
# Adapter `AdapterHub/roberta-base-pf-quail` for roberta-base
An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [quail](https://huggingface.co/datasets/quail/) dataset and includes a prediction head for multiple choice.
This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library.
## Usage
First, install `adapter-transformers`:
```
pip install -U adapter-transformers
```
_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_
Now, the adapter can be loaded and activated like this:
```python
from transformers import AutoModelWithHeads
model = AutoModelWithHeads.from_pretrained("roberta-base")
adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-quail", source="hf")
model.active_adapters = adapter_name
```
## Architecture & Training
The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer.
In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs).
## Evaluation results
Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results.
## Citation
If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247):
```bibtex
@inproceedings{poth-etal-2021-what-to-pre-train-on,
title={What to Pre-Train on? Efficient Intermediate Task Selection},
author={Clifton Poth and Jonas Pfeiffer and Andreas Rücklé and Iryna Gurevych},
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
month = nov,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/2104.08247",
pages = "to appear",
}
``` |
AdapterHub/roberta-base-pf-qqp | AdapterHub | 2021-11-24T16:30:48Z | 4 | 0 | adapter-transformers | [
"adapter-transformers",
"text-classification",
"adapterhub:sts/qqp",
"roberta",
"en",
"arxiv:2104.08247",
"region:us"
] | text-classification | 2022-03-02T23:29:04Z | ---
tags:
- text-classification
- adapter-transformers
- adapterhub:sts/qqp
- roberta
language:
- en
---
# Adapter `AdapterHub/roberta-base-pf-qqp` for roberta-base
An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [sts/qqp](https://adapterhub.ml/explore/sts/qqp/) dataset and includes a prediction head for classification.
This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library.
## Usage
First, install `adapter-transformers`:
```
pip install -U adapter-transformers
```
_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_
Now, the adapter can be loaded and activated like this:
```python
from transformers import AutoModelWithHeads
model = AutoModelWithHeads.from_pretrained("roberta-base")
adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-qqp", source="hf")
model.active_adapters = adapter_name
```
## Architecture & Training
The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer.
In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs).
## Evaluation results
Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results.
## Citation
If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247):
```bibtex
@inproceedings{poth-etal-2021-pre,
title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection",
author = {Poth, Clifton and
Pfeiffer, Jonas and
R{"u}ckl{'e}, Andreas and
Gurevych, Iryna},
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2021",
address = "Online and Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.emnlp-main.827",
pages = "10585--10605",
}
``` |
AdapterHub/roberta-base-pf-multirc | AdapterHub | 2021-11-24T16:30:32Z | 2 | 0 | adapter-transformers | [
"adapter-transformers",
"text-classification",
"adapterhub:rc/multirc",
"roberta",
"en",
"arxiv:2104.08247",
"region:us"
] | text-classification | 2022-03-02T23:29:04Z | ---
tags:
- text-classification
- adapterhub:rc/multirc
- roberta
- adapter-transformers
language:
- en
---
# Adapter `AdapterHub/roberta-base-pf-multirc` for roberta-base
An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [rc/multirc](https://adapterhub.ml/explore/rc/multirc/) dataset and includes a prediction head for classification.
This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library.
## Usage
First, install `adapter-transformers`:
```
pip install -U adapter-transformers
```
_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_
Now, the adapter can be loaded and activated like this:
```python
from transformers import AutoModelWithHeads
model = AutoModelWithHeads.from_pretrained("roberta-base")
adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-multirc", source="hf")
model.active_adapters = adapter_name
```
## Architecture & Training
The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer.
In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs).
## Evaluation results
Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results.
## Citation
If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247):
```bibtex
@inproceedings{poth-etal-2021-pre,
title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection",
author = {Poth, Clifton and
Pfeiffer, Jonas and
R{"u}ckl{'e}, Andreas and
Gurevych, Iryna},
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2021",
address = "Online and Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.emnlp-main.827",
pages = "10585--10605",
}
``` |
AdapterHub/roberta-base-pf-mnli | AdapterHub | 2021-11-24T16:30:17Z | 1 | 0 | adapter-transformers | [
"adapter-transformers",
"text-classification",
"roberta",
"adapterhub:nli/multinli",
"en",
"dataset:multi_nli",
"arxiv:2104.08247",
"region:us"
] | text-classification | 2022-03-02T23:29:04Z | ---
tags:
- text-classification
- roberta
- adapterhub:nli/multinli
- adapter-transformers
datasets:
- multi_nli
language:
- en
---
# Adapter `AdapterHub/roberta-base-pf-mnli` for roberta-base
An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [nli/multinli](https://adapterhub.ml/explore/nli/multinli/) dataset and includes a prediction head for classification.
This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library.
## Usage
First, install `adapter-transformers`:
```
pip install -U adapter-transformers
```
_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_
Now, the adapter can be loaded and activated like this:
```python
from transformers import AutoModelWithHeads
model = AutoModelWithHeads.from_pretrained("roberta-base")
adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-mnli", source="hf")
model.active_adapters = adapter_name
```
## Architecture & Training
The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer.
In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs).
## Evaluation results
Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results.
## Citation
If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247):
```bibtex
@inproceedings{poth-etal-2021-pre,
title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection",
author = {Poth, Clifton and
Pfeiffer, Jonas and
R{"u}ckl{'e}, Andreas and
Gurevych, Iryna},
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2021",
address = "Online and Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.emnlp-main.827",
pages = "10585--10605",
}
``` |
AdapterHub/roberta-base-pf-hellaswag | AdapterHub | 2021-11-24T16:29:56Z | 3 | 0 | adapter-transformers | [
"adapter-transformers",
"roberta",
"adapterhub:comsense/hellaswag",
"en",
"dataset:hellaswag",
"arxiv:2104.08247",
"region:us"
] | null | 2022-03-02T23:29:04Z | ---
tags:
- roberta
- adapterhub:comsense/hellaswag
- adapter-transformers
datasets:
- hellaswag
language:
- en
---
# Adapter `AdapterHub/roberta-base-pf-hellaswag` for roberta-base
An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [comsense/hellaswag](https://adapterhub.ml/explore/comsense/hellaswag/) dataset and includes a prediction head for multiple choice.
This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library.
## Usage
First, install `adapter-transformers`:
```
pip install -U adapter-transformers
```
_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_
Now, the adapter can be loaded and activated like this:
```python
from transformers import AutoModelWithHeads
model = AutoModelWithHeads.from_pretrained("roberta-base")
adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-hellaswag", source="hf")
model.active_adapters = adapter_name
```
## Architecture & Training
The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer.
In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs).
## Evaluation results
Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results.
## Citation
If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247):
```bibtex
@inproceedings{poth-etal-2021-what-to-pre-train-on,
title={What to Pre-Train on? Efficient Intermediate Task Selection},
author={Clifton Poth and Jonas Pfeiffer and Andreas Rücklé and Iryna Gurevych},
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
month = nov,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/2104.08247",
pages = "to appear",
}
``` |
AdapterHub/roberta-base-pf-emotion | AdapterHub | 2021-11-24T16:29:46Z | 9 | 0 | adapter-transformers | [
"adapter-transformers",
"text-classification",
"roberta",
"en",
"dataset:emotion",
"arxiv:2104.08247",
"region:us"
] | text-classification | 2022-03-02T23:29:04Z | ---
tags:
- text-classification
- roberta
- adapter-transformers
datasets:
- emotion
language:
- en
---
# Adapter `AdapterHub/roberta-base-pf-emotion` for roberta-base
An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [emotion](https://huggingface.co/datasets/emotion/) dataset and includes a prediction head for classification.
This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library.
## Usage
First, install `adapter-transformers`:
```
pip install -U adapter-transformers
```
_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_
Now, the adapter can be loaded and activated like this:
```python
from transformers import AutoModelWithHeads
model = AutoModelWithHeads.from_pretrained("roberta-base")
adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-emotion", source="hf")
model.active_adapters = adapter_name
```
## Architecture & Training
The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer.
In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs).
## Evaluation results
Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results.
## Citation
If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247):
```bibtex
@inproceedings{poth-etal-2021-pre,
title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection",
author = {Poth, Clifton and
Pfeiffer, Jonas and
R{"u}ckl{'e}, Andreas and
Gurevych, Iryna},
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2021",
address = "Online and Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.emnlp-main.827",
pages = "10585--10605",
}
``` |
AdapterHub/roberta-base-pf-cosmos_qa | AdapterHub | 2021-11-24T16:29:17Z | 2 | 0 | adapter-transformers | [
"adapter-transformers",
"roberta",
"adapterhub:comsense/cosmosqa",
"en",
"dataset:cosmos_qa",
"arxiv:2104.08247",
"region:us"
] | null | 2022-03-02T23:29:04Z | ---
tags:
- roberta
- adapterhub:comsense/cosmosqa
- adapter-transformers
datasets:
- cosmos_qa
language:
- en
---
# Adapter `AdapterHub/roberta-base-pf-cosmos_qa` for roberta-base
An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [comsense/cosmosqa](https://adapterhub.ml/explore/comsense/cosmosqa/) dataset and includes a prediction head for multiple choice.
This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library.
## Usage
First, install `adapter-transformers`:
```
pip install -U adapter-transformers
```
_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_
Now, the adapter can be loaded and activated like this:
```python
from transformers import AutoModelWithHeads
model = AutoModelWithHeads.from_pretrained("roberta-base")
adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-cosmos_qa", source="hf")
model.active_adapters = adapter_name
```
## Architecture & Training
The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer.
In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs).
## Evaluation results
Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results.
## Citation
If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247):
```bibtex
@inproceedings{poth-etal-2021-what-to-pre-train-on,
title={What to Pre-Train on? Efficient Intermediate Task Selection},
author={Clifton Poth and Jonas Pfeiffer and Andreas Rücklé and Iryna Gurevych},
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
month = nov,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/2104.08247",
pages = "to appear",
}
``` |
AdapterHub/roberta-base-pf-copa | AdapterHub | 2021-11-24T16:29:10Z | 6 | 0 | adapter-transformers | [
"adapter-transformers",
"roberta",
"adapterhub:comsense/copa",
"en",
"arxiv:2104.08247",
"region:us"
] | null | 2022-03-02T23:29:04Z | ---
tags:
- roberta
- adapterhub:comsense/copa
- adapter-transformers
language:
- en
---
# Adapter `AdapterHub/roberta-base-pf-copa` for roberta-base
An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [comsense/copa](https://adapterhub.ml/explore/comsense/copa/) dataset and includes a prediction head for multiple choice.
This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library.
## Usage
First, install `adapter-transformers`:
```
pip install -U adapter-transformers
```
_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_
Now, the adapter can be loaded and activated like this:
```python
from transformers import AutoModelWithHeads
model = AutoModelWithHeads.from_pretrained("roberta-base")
adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-copa", source="hf")
model.active_adapters = adapter_name
```
## Architecture & Training
The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer.
In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs).
## Evaluation results
Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results.
## Citation
If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247):
```bibtex
@inproceedings{poth-etal-2021-what-to-pre-train-on,
title={What to Pre-Train on? Efficient Intermediate Task Selection},
author={Clifton Poth and Jonas Pfeiffer and Andreas Rücklé and Iryna Gurevych},
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
month = nov,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/2104.08247",
pages = "to appear",
}
``` |
AdapterHub/roberta-base-pf-conll2003 | AdapterHub | 2021-11-24T16:28:56Z | 7 | 1 | adapter-transformers | [
"adapter-transformers",
"token-classification",
"roberta",
"adapterhub:ner/conll2003",
"en",
"dataset:conll2003",
"arxiv:2104.08247",
"region:us"
] | token-classification | 2022-03-02T23:29:04Z | ---
tags:
- token-classification
- roberta
- adapterhub:ner/conll2003
- adapter-transformers
datasets:
- conll2003
language:
- en
---
# Adapter `AdapterHub/roberta-base-pf-conll2003` for roberta-base
An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [ner/conll2003](https://adapterhub.ml/explore/ner/conll2003/) dataset and includes a prediction head for tagging.
This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library.
## Usage
First, install `adapter-transformers`:
```
pip install -U adapter-transformers
```
_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_
Now, the adapter can be loaded and activated like this:
```python
from transformers import AutoModelWithHeads
model = AutoModelWithHeads.from_pretrained("roberta-base")
adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-conll2003", source="hf")
model.active_adapters = adapter_name
```
## Architecture & Training
The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer.
In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs).
## Evaluation results
Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results.
## Citation
If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247):
```bibtex
@inproceedings{poth-etal-2021-pre,
title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection",
author = {Poth, Clifton and
Pfeiffer, Jonas and
R{"u}ckl{'e}, Andreas and
Gurevych, Iryna},
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2021",
address = "Online and Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.emnlp-main.827",
pages = "10585--10605",
}
``` |
AdapterHub/roberta-base-pf-conll2000 | AdapterHub | 2021-11-24T16:28:49Z | 5 | 0 | adapter-transformers | [
"adapter-transformers",
"token-classification",
"roberta",
"adapterhub:chunk/conll2000",
"en",
"dataset:conll2000",
"arxiv:2104.08247",
"region:us"
] | token-classification | 2022-03-02T23:29:04Z | ---
tags:
- token-classification
- roberta
- adapterhub:chunk/conll2000
- adapter-transformers
datasets:
- conll2000
language:
- en
---
# Adapter `AdapterHub/roberta-base-pf-conll2000` for roberta-base
An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [chunk/conll2000](https://adapterhub.ml/explore/chunk/conll2000/) dataset and includes a prediction head for tagging.
This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library.
## Usage
First, install `adapter-transformers`:
```
pip install -U adapter-transformers
```
_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_
Now, the adapter can be loaded and activated like this:
```python
from transformers import AutoModelWithHeads
model = AutoModelWithHeads.from_pretrained("roberta-base")
adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-conll2000", source="hf")
model.active_adapters = adapter_name
```
## Architecture & Training
The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer.
In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs).
## Evaluation results
Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results.
## Citation
If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247):
```bibtex
@inproceedings{poth-etal-2021-pre,
title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection",
author = {Poth, Clifton and
Pfeiffer, Jonas and
R{"u}ckl{'e}, Andreas and
Gurevych, Iryna},
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2021",
address = "Online and Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.emnlp-main.827",
pages = "10585--10605",
}
``` |
AdapterHub/roberta-base-pf-art | AdapterHub | 2021-11-24T16:27:34Z | 1 | 0 | adapter-transformers | [
"adapter-transformers",
"roberta",
"en",
"dataset:art",
"arxiv:2104.08247",
"region:us"
] | null | 2022-03-02T23:29:04Z | ---
tags:
- roberta
- adapter-transformers
datasets:
- art
language:
- en
---
# Adapter `AdapterHub/roberta-base-pf-art` for roberta-base
An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [art](https://huggingface.co/datasets/art/) dataset and includes a prediction head for multiple choice.
This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library.
## Usage
First, install `adapter-transformers`:
```
pip install -U adapter-transformers
```
_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_
Now, the adapter can be loaded and activated like this:
```python
from transformers import AutoModelWithHeads
model = AutoModelWithHeads.from_pretrained("roberta-base")
adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-art", source="hf")
model.active_adapters = adapter_name
```
## Architecture & Training
The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer.
In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs).
## Evaluation results
Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results.
## Citation
If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247):
```bibtex
@inproceedings{poth-etal-2021-what-to-pre-train-on,
title={What to Pre-Train on? Efficient Intermediate Task Selection},
author={Clifton Poth and Jonas Pfeiffer and Andreas Rücklé and Iryna Gurevych},
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
month = nov,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/2104.08247",
pages = "to appear",
}
``` |
AdapterHub/bert-base-uncased-pf-yelp_polarity | AdapterHub | 2021-11-24T16:27:20Z | 4 | 0 | adapter-transformers | [
"adapter-transformers",
"text-classification",
"bert",
"en",
"dataset:yelp_polarity",
"arxiv:2104.08247",
"region:us"
] | text-classification | 2022-03-02T23:29:04Z | ---
tags:
- text-classification
- bert
- adapter-transformers
datasets:
- yelp_polarity
language:
- en
---
# Adapter `AdapterHub/bert-base-uncased-pf-yelp_polarity` for bert-base-uncased
An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [yelp_polarity](https://huggingface.co/datasets/yelp_polarity/) dataset and includes a prediction head for classification.
This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library.
## Usage
First, install `adapter-transformers`:
```
pip install -U adapter-transformers
```
_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_
Now, the adapter can be loaded and activated like this:
```python
from transformers import AutoModelWithHeads
model = AutoModelWithHeads.from_pretrained("bert-base-uncased")
adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-yelp_polarity", source="hf")
model.active_adapters = adapter_name
```
## Architecture & Training
The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer.
In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs).
## Evaluation results
Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results.
## Citation
If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247):
```bibtex
@inproceedings{poth-etal-2021-pre,
title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection",
author = {Poth, Clifton and
Pfeiffer, Jonas and
R{"u}ckl{'e}, Andreas and
Gurevych, Iryna},
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2021",
address = "Online and Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.emnlp-main.827",
pages = "10585--10605",
}
``` |
AdapterHub/bert-base-uncased-pf-wnut_17 | AdapterHub | 2021-11-24T16:27:13Z | 3 | 0 | adapter-transformers | [
"adapter-transformers",
"token-classification",
"bert",
"en",
"dataset:wnut_17",
"arxiv:2104.08247",
"region:us"
] | token-classification | 2022-03-02T23:29:04Z | ---
tags:
- token-classification
- bert
- adapter-transformers
datasets:
- wnut_17
language:
- en
---
# Adapter `AdapterHub/bert-base-uncased-pf-wnut_17` for bert-base-uncased
An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [wnut_17](https://huggingface.co/datasets/wnut_17/) dataset and includes a prediction head for tagging.
This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library.
## Usage
First, install `adapter-transformers`:
```
pip install -U adapter-transformers
```
_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_
Now, the adapter can be loaded and activated like this:
```python
from transformers import AutoModelWithHeads
model = AutoModelWithHeads.from_pretrained("bert-base-uncased")
adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-wnut_17", source="hf")
model.active_adapters = adapter_name
```
## Architecture & Training
The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer.
In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs).
## Evaluation results
Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results.
## Citation
If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247):
```bibtex
@inproceedings{poth-etal-2021-pre,
title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection",
author = {Poth, Clifton and
Pfeiffer, Jonas and
R{"u}ckl{'e}, Andreas and
Gurevych, Iryna},
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2021",
address = "Online and Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.emnlp-main.827",
pages = "10585--10605",
}
``` |
AdapterHub/bert-base-uncased-pf-ud_pos | AdapterHub | 2021-11-24T16:26:47Z | 11 | 0 | adapter-transformers | [
"adapter-transformers",
"token-classification",
"bert",
"adapterhub:pos/ud_ewt",
"en",
"dataset:universal_dependencies",
"arxiv:2104.08247",
"region:us"
] | token-classification | 2022-03-02T23:29:04Z | ---
tags:
- token-classification
- bert
- adapterhub:pos/ud_ewt
- adapter-transformers
datasets:
- universal_dependencies
language:
- en
---
# Adapter `AdapterHub/bert-base-uncased-pf-ud_pos` for bert-base-uncased
An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [pos/ud_ewt](https://adapterhub.ml/explore/pos/ud_ewt/) dataset and includes a prediction head for tagging.
This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library.
## Usage
First, install `adapter-transformers`:
```
pip install -U adapter-transformers
```
_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_
Now, the adapter can be loaded and activated like this:
```python
from transformers import AutoModelWithHeads
model = AutoModelWithHeads.from_pretrained("bert-base-uncased")
adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-ud_pos", source="hf")
model.active_adapters = adapter_name
```
## Architecture & Training
The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer.
In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs).
## Evaluation results
Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results.
## Citation
If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247):
```bibtex
@inproceedings{poth-etal-2021-pre,
title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection",
author = {Poth, Clifton and
Pfeiffer, Jonas and
R{"u}ckl{'e}, Andreas and
Gurevych, Iryna},
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2021",
address = "Online and Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.emnlp-main.827",
pages = "10585--10605",
}
``` |
AdapterHub/bert-base-uncased-pf-snli | AdapterHub | 2021-11-24T16:25:59Z | 2 | 0 | adapter-transformers | [
"adapter-transformers",
"text-classification",
"bert",
"en",
"dataset:snli",
"arxiv:2104.08247",
"region:us"
] | text-classification | 2022-03-02T23:29:04Z | ---
tags:
- text-classification
- bert
- adapter-transformers
datasets:
- snli
language:
- en
---
# Adapter `AdapterHub/bert-base-uncased-pf-snli` for bert-base-uncased
An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [snli](https://huggingface.co/datasets/snli/) dataset and includes a prediction head for classification.
This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library.
## Usage
First, install `adapter-transformers`:
```
pip install -U adapter-transformers
```
_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_
Now, the adapter can be loaded and activated like this:
```python
from transformers import AutoModelWithHeads
model = AutoModelWithHeads.from_pretrained("bert-base-uncased")
adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-snli", source="hf")
model.active_adapters = adapter_name
```
## Architecture & Training
The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer.
In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs).
## Evaluation results
Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results.
## Citation
If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247):
```bibtex
@inproceedings{poth-etal-2021-pre,
title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection",
author = {Poth, Clifton and
Pfeiffer, Jonas and
R{"u}ckl{'e}, Andreas and
Gurevych, Iryna},
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2021",
address = "Online and Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.emnlp-main.827",
pages = "10585--10605",
}
``` |
AdapterHub/bert-base-uncased-pf-sick | AdapterHub | 2021-11-24T16:25:52Z | 4 | 0 | adapter-transformers | [
"adapter-transformers",
"text-classification",
"bert",
"adapterhub:nli/sick",
"en",
"dataset:sick",
"arxiv:2104.08247",
"region:us"
] | text-classification | 2022-03-02T23:29:04Z | ---
tags:
- text-classification
- adapter-transformers
- bert
- adapterhub:nli/sick
datasets:
- sick
language:
- en
---
# Adapter `AdapterHub/bert-base-uncased-pf-sick` for bert-base-uncased
An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [nli/sick](https://adapterhub.ml/explore/nli/sick/) dataset and includes a prediction head for classification.
This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library.
## Usage
First, install `adapter-transformers`:
```
pip install -U adapter-transformers
```
_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_
Now, the adapter can be loaded and activated like this:
```python
from transformers import AutoModelWithHeads
model = AutoModelWithHeads.from_pretrained("bert-base-uncased")
adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-sick", source="hf")
model.active_adapters = adapter_name
```
## Architecture & Training
The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer.
In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs).
## Evaluation results
Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results.
## Citation
If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247):
```bibtex
@inproceedings{poth-etal-2021-pre,
title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection",
author = {Poth, Clifton and
Pfeiffer, Jonas and
R{"u}ckl{'e}, Andreas and
Gurevych, Iryna},
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2021",
address = "Online and Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.emnlp-main.827",
pages = "10585--10605",
}
``` |
AdapterHub/bert-base-uncased-pf-race | AdapterHub | 2021-11-24T16:25:17Z | 4 | 0 | adapter-transformers | [
"adapter-transformers",
"adapterhub:rc/race",
"bert",
"en",
"dataset:race",
"arxiv:2104.08247",
"region:us"
] | null | 2022-03-02T23:29:04Z | ---
tags:
- adapterhub:rc/race
- bert
- adapter-transformers
datasets:
- race
language:
- en
---
# Adapter `AdapterHub/bert-base-uncased-pf-race` for bert-base-uncased
An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [rc/race](https://adapterhub.ml/explore/rc/race/) dataset and includes a prediction head for multiple choice.
This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library.
## Usage
First, install `adapter-transformers`:
```
pip install -U adapter-transformers
```
_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_
Now, the adapter can be loaded and activated like this:
```python
from transformers import AutoModelWithHeads
model = AutoModelWithHeads.from_pretrained("bert-base-uncased")
adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-race", source="hf")
model.active_adapters = adapter_name
```
## Architecture & Training
The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer.
In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs).
## Evaluation results
Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results.
## Citation
If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247):
```bibtex
@inproceedings{poth-etal-2021-what-to-pre-train-on,
title={What to Pre-Train on? Efficient Intermediate Task Selection},
author={Clifton Poth and Jonas Pfeiffer and Andreas Rücklé and Iryna Gurevych},
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
month = nov,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/2104.08247",
pages = "to appear",
}
``` |
AdapterHub/bert-base-uncased-pf-multirc | AdapterHub | 2021-11-24T16:24:33Z | 4 | 0 | adapter-transformers | [
"adapter-transformers",
"text-classification",
"adapterhub:rc/multirc",
"bert",
"en",
"arxiv:2104.08247",
"region:us"
] | text-classification | 2022-03-02T23:29:04Z | ---
tags:
- text-classification
- adapterhub:rc/multirc
- bert
- adapter-transformers
language:
- en
---
# Adapter `AdapterHub/bert-base-uncased-pf-multirc` for bert-base-uncased
An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [rc/multirc](https://adapterhub.ml/explore/rc/multirc/) dataset and includes a prediction head for classification.
This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library.
## Usage
First, install `adapter-transformers`:
```
pip install -U adapter-transformers
```
_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_
Now, the adapter can be loaded and activated like this:
```python
from transformers import AutoModelWithHeads
model = AutoModelWithHeads.from_pretrained("bert-base-uncased")
adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-multirc", source="hf")
model.active_adapters = adapter_name
```
## Architecture & Training
The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer.
In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs).
## Evaluation results
Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results.
## Citation
If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247):
```bibtex
@inproceedings{poth-etal-2021-pre,
title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection",
author = {Poth, Clifton and
Pfeiffer, Jonas and
R{"u}ckl{'e}, Andreas and
Gurevych, Iryna},
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2021",
address = "Online and Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.emnlp-main.827",
pages = "10585--10605",
}
``` |
AdapterHub/bert-base-uncased-pf-mrpc | AdapterHub | 2021-11-24T16:24:25Z | 3 | 0 | adapter-transformers | [
"adapter-transformers",
"text-classification",
"bert",
"adapterhub:sts/mrpc",
"en",
"arxiv:2104.08247",
"region:us"
] | text-classification | 2022-03-02T23:29:04Z | ---
tags:
- text-classification
- bert
- adapterhub:sts/mrpc
- adapter-transformers
language:
- en
---
# Adapter `AdapterHub/bert-base-uncased-pf-mrpc` for bert-base-uncased
An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [sts/mrpc](https://adapterhub.ml/explore/sts/mrpc/) dataset and includes a prediction head for classification.
This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library.
## Usage
First, install `adapter-transformers`:
```
pip install -U adapter-transformers
```
_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_
Now, the adapter can be loaded and activated like this:
```python
from transformers import AutoModelWithHeads
model = AutoModelWithHeads.from_pretrained("bert-base-uncased")
adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-mrpc", source="hf")
model.active_adapters = adapter_name
```
## Architecture & Training
The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer.
In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs).
## Evaluation results
Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results.
## Citation
If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247):
```bibtex
@inproceedings{poth-etal-2021-pre,
title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection",
author = {Poth, Clifton and
Pfeiffer, Jonas and
R{"u}ckl{'e}, Andreas and
Gurevych, Iryna},
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2021",
address = "Online and Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.emnlp-main.827",
pages = "10585--10605",
}
``` |
AdapterHub/bert-base-uncased-pf-mnli | AdapterHub | 2021-11-24T16:24:19Z | 4 | 0 | adapter-transformers | [
"adapter-transformers",
"text-classification",
"bert",
"adapterhub:nli/multinli",
"en",
"dataset:multi_nli",
"arxiv:2104.08247",
"region:us"
] | text-classification | 2022-03-02T23:29:04Z | ---
tags:
- text-classification
- bert
- adapterhub:nli/multinli
- adapter-transformers
datasets:
- multi_nli
language:
- en
---
# Adapter `AdapterHub/bert-base-uncased-pf-mnli` for bert-base-uncased
An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [nli/multinli](https://adapterhub.ml/explore/nli/multinli/) dataset and includes a prediction head for classification.
This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library.
## Usage
First, install `adapter-transformers`:
```
pip install -U adapter-transformers
```
_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_
Now, the adapter can be loaded and activated like this:
```python
from transformers import AutoModelWithHeads
model = AutoModelWithHeads.from_pretrained("bert-base-uncased")
adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-mnli", source="hf")
model.active_adapters = adapter_name
```
## Architecture & Training
The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer.
In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs).
## Evaluation results
Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results.
## Citation
If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247):
```bibtex
@inproceedings{poth-etal-2021-pre,
title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection",
author = {Poth, Clifton and
Pfeiffer, Jonas and
R{"u}ckl{'e}, Andreas and
Gurevych, Iryna},
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2021",
address = "Online and Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.emnlp-main.827",
pages = "10585--10605",
}
``` |
AdapterHub/bert-base-uncased-pf-hellaswag | AdapterHub | 2021-11-24T16:23:47Z | 0 | 0 | adapter-transformers | [
"adapter-transformers",
"bert",
"adapterhub:comsense/hellaswag",
"en",
"dataset:hellaswag",
"arxiv:2104.08247",
"region:us"
] | null | 2022-03-02T23:29:04Z | ---
tags:
- bert
- adapterhub:comsense/hellaswag
- adapter-transformers
datasets:
- hellaswag
language:
- en
---
# Adapter `AdapterHub/bert-base-uncased-pf-hellaswag` for bert-base-uncased
An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [comsense/hellaswag](https://adapterhub.ml/explore/comsense/hellaswag/) dataset and includes a prediction head for multiple choice.
This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library.
## Usage
First, install `adapter-transformers`:
```
pip install -U adapter-transformers
```
_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_
Now, the adapter can be loaded and activated like this:
```python
from transformers import AutoModelWithHeads
model = AutoModelWithHeads.from_pretrained("bert-base-uncased")
adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-hellaswag", source="hf")
model.active_adapters = adapter_name
```
## Architecture & Training
The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer.
In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs).
## Evaluation results
Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results.
## Citation
If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247):
```bibtex
@inproceedings{poth-etal-2021-what-to-pre-train-on,
title={What to Pre-Train on? Efficient Intermediate Task Selection},
author={Clifton Poth and Jonas Pfeiffer and Andreas Rücklé and Iryna Gurevych},
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
month = nov,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/2104.08247",
pages = "to appear",
}
``` |
AdapterHub/bert-base-uncased-pf-emotion | AdapterHub | 2021-11-24T16:23:08Z | 4 | 0 | adapter-transformers | [
"adapter-transformers",
"text-classification",
"bert",
"en",
"dataset:emotion",
"arxiv:2104.08247",
"region:us"
] | text-classification | 2022-03-02T23:29:04Z | ---
tags:
- text-classification
- bert
- adapter-transformers
datasets:
- emotion
language:
- en
---
# Adapter `AdapterHub/bert-base-uncased-pf-emotion` for bert-base-uncased
An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [emotion](https://huggingface.co/datasets/emotion/) dataset and includes a prediction head for classification.
This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library.
## Usage
First, install `adapter-transformers`:
```
pip install -U adapter-transformers
```
_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_
Now, the adapter can be loaded and activated like this:
```python
from transformers import AutoModelWithHeads
model = AutoModelWithHeads.from_pretrained("bert-base-uncased")
adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-emotion", source="hf")
model.active_adapters = adapter_name
```
## Architecture & Training
The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer.
In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs).
## Evaluation results
Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results.
## Citation
If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247):
```bibtex
@inproceedings{poth-etal-2021-pre,
title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection",
author = {Poth, Clifton and
Pfeiffer, Jonas and
R{"u}ckl{'e}, Andreas and
Gurevych, Iryna},
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2021",
address = "Online and Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.emnlp-main.827",
pages = "10585--10605",
}
``` |
AdapterHub/bert-base-uncased-pf-copa | AdapterHub | 2021-11-24T16:22:33Z | 5 | 0 | adapter-transformers | [
"adapter-transformers",
"bert",
"adapterhub:comsense/copa",
"en",
"arxiv:2104.08247",
"region:us"
] | null | 2022-03-02T23:29:04Z | ---
tags:
- bert
- adapterhub:comsense/copa
- adapter-transformers
language:
- en
---
# Adapter `AdapterHub/bert-base-uncased-pf-copa` for bert-base-uncased
An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [comsense/copa](https://adapterhub.ml/explore/comsense/copa/) dataset and includes a prediction head for multiple choice.
This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library.
## Usage
First, install `adapter-transformers`:
```
pip install -U adapter-transformers
```
_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_
Now, the adapter can be loaded and activated like this:
```python
from transformers import AutoModelWithHeads
model = AutoModelWithHeads.from_pretrained("bert-base-uncased")
adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-copa", source="hf")
model.active_adapters = adapter_name
```
## Architecture & Training
The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer.
In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs).
## Evaluation results
Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results.
## Citation
If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247):
```bibtex
@inproceedings{poth-etal-2021-what-to-pre-train-on,
title={What to Pre-Train on? Efficient Intermediate Task Selection},
author={Clifton Poth and Jonas Pfeiffer and Andreas Rücklé and Iryna Gurevych},
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
month = nov,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/2104.08247",
pages = "to appear",
}
``` |
AdapterHub/bert-base-uncased-pf-conll2003_pos | AdapterHub | 2021-11-24T16:22:26Z | 12 | 0 | adapter-transformers | [
"adapter-transformers",
"token-classification",
"bert",
"adapterhub:pos/conll2003",
"en",
"dataset:conll2003",
"arxiv:2104.08247",
"region:us"
] | token-classification | 2022-03-02T23:29:04Z | ---
tags:
- token-classification
- bert
- adapterhub:pos/conll2003
- adapter-transformers
datasets:
- conll2003
language:
- en
---
# Adapter `AdapterHub/bert-base-uncased-pf-conll2003_pos` for bert-base-uncased
An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [pos/conll2003](https://adapterhub.ml/explore/pos/conll2003/) dataset and includes a prediction head for tagging.
This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library.
## Usage
First, install `adapter-transformers`:
```
pip install -U adapter-transformers
```
_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_
Now, the adapter can be loaded and activated like this:
```python
from transformers import AutoModelWithHeads
model = AutoModelWithHeads.from_pretrained("bert-base-uncased")
adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-conll2003_pos", source="hf")
model.active_adapters = adapter_name
```
## Architecture & Training
The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer.
In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs).
## Evaluation results
Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results.
## Citation
If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247):
```bibtex
@inproceedings{poth-etal-2021-pre,
title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection",
author = {Poth, Clifton and
Pfeiffer, Jonas and
R{"u}ckl{'e}, Andreas and
Gurevych, Iryna},
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2021",
address = "Online and Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.emnlp-main.827",
pages = "10585--10605",
}
``` |
Lowin/chinese-bigbird-small-1024 | Lowin | 2021-11-24T16:07:28Z | 8 | 3 | transformers | [
"transformers",
"pytorch",
"big_bird",
"feature-extraction",
"zh",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | feature-extraction | 2022-03-02T23:29:04Z | ---
language:
- zh
license:
- apache-2.0
---
```python
import jieba_fast
from transformers import BertTokenizer
from transformers import BigBirdModel
class JiebaTokenizer(BertTokenizer):
def __init__(
self, pre_tokenizer=lambda x: jieba_fast.cut(x, HMM=False), *args, **kwargs
):
super().__init__(*args, **kwargs)
self.pre_tokenizer = pre_tokenizer
def _tokenize(self, text, *arg, **kwargs):
split_tokens = []
for text in self.pre_tokenizer(text):
if text in self.vocab:
split_tokens.append(text)
else:
split_tokens.extend(super()._tokenize(text))
return split_tokens
model = BigBirdModel.from_pretrained('Lowin/chinese-bigbird-small-1024')
tokenizer = JiebaTokenizer.from_pretrained('Lowin/chinese-bigbird-small-1024')
```
https://github.com/LowinLi/chinese-bigbird
|
Lowin/chinese-bigbird-mini-1024 | Lowin | 2021-11-24T16:05:17Z | 127 | 1 | transformers | [
"transformers",
"pytorch",
"big_bird",
"fill-mask",
"zh",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | fill-mask | 2022-03-02T23:29:04Z | ---
language:
- zh
license:
- apache-2.0
---
```python
import jieba_fast
from transformers import BertTokenizer
from transformers import BigBirdModel
class JiebaTokenizer(BertTokenizer):
def __init__(
self, pre_tokenizer=lambda x: jieba_fast.cut(x, HMM=False), *args, **kwargs
):
super().__init__(*args, **kwargs)
self.pre_tokenizer = pre_tokenizer
def _tokenize(self, text, *arg, **kwargs):
split_tokens = []
for text in self.pre_tokenizer(text):
if text in self.vocab:
split_tokens.append(text)
else:
split_tokens.extend(super()._tokenize(text))
return split_tokens
model = BigBirdModel.from_pretrained('Lowin/chinese-bigbird-mini-1024')
tokenizer = JiebaTokenizer.from_pretrained('Lowin/chinese-bigbird-mini-1024')
```
https://github.com/LowinLi/chinese-bigbird |
Lowin/chinese-bigbird-tiny-1024 | Lowin | 2021-11-24T16:03:15Z | 52 | 2 | transformers | [
"transformers",
"pytorch",
"big_bird",
"feature-extraction",
"zh",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | feature-extraction | 2022-03-02T23:29:04Z | ---
language:
- zh
license:
- apache-2.0
---
```python
import jieba_fast
from transformers import BertTokenizer
from transformers import BigBirdModel
class JiebaTokenizer(BertTokenizer):
def __init__(
self, pre_tokenizer=lambda x: jieba_fast.cut(x, HMM=False), *args, **kwargs
):
super().__init__(*args, **kwargs)
self.pre_tokenizer = pre_tokenizer
def _tokenize(self, text, *arg, **kwargs):
split_tokens = []
for text in self.pre_tokenizer(text):
if text in self.vocab:
split_tokens.append(text)
else:
split_tokens.extend(super()._tokenize(text))
return split_tokens
model = BigBirdModel.from_pretrained('Lowin/chinese-bigbird-tiny-1024')
tokenizer = JiebaTokenizer.from_pretrained('Lowin/chinese-bigbird-tiny-1024')
```
https://github.com/LowinLi/chinese-bigbird |
huggingtweets/cupcakkesays | huggingtweets | 2021-11-24T12:56:57Z | 3 | 0 | transformers | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:05Z | ---
language: en
thumbnail: https://www.huggingtweets.com/cupcakkesays/1637758613095/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1061608813730635776/boCDIPDX_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">cupcakKe lyrics</div>
<div style="text-align: center; font-size: 14px;">@cupcakkesays</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from cupcakKe lyrics.
| Data | cupcakKe lyrics |
| --- | --- |
| Tweets downloaded | 3200 |
| Retweets | 0 |
| Short tweets | 44 |
| Tweets kept | 3156 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3beoi9ei/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cupcakkesays's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2kye6z0e) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2kye6z0e/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/cupcakkesays')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
arnolfokam/mbert-base-uncased-ner-kin | arnolfokam | 2021-11-24T11:57:38Z | 14 | 0 | transformers | [
"transformers",
"pytorch",
"bert",
"token-classification",
"NER",
"kin",
"dataset:masakhaner",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | token-classification | 2022-03-02T23:29:05Z | ---
language:
- kin
tags:
- NER
datasets:
- masakhaner
metrics:
- f1
- precision
- recall
license: apache-2.0
widget:
- text: "Ambasaderi Bellomo yavuze ko bishimira ubufatanye burambye hagati ya EU n’u Rwanda, bushingiye nanone ku bufatanye hagati y’imigabane ya Afurika n’u Burayi."
---
# Model description
**mbert-base-uncased-ner-kin** is a model based on the fine-tuned Multilingual BERT base uncased model, previously fine-tuned for Named Entity Recognition using 10 high-resourced languages. It has been trained to recognize four types of entities:
- dates & time (DATE)
- Location (LOC)
- Organizations (ORG)
- Person (PER)
# Intended Use
- Intended to be used for research purposes concerning Named Entity Recognition for African Languages.
- Not intended for practical purposes.
# Training Data
This model was fine-tuned on the Kinyarwanda corpus **(kin)** of the [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) dataset. However, we thresholded the number of entity groups per sentence in this dataset to 10 entity groups.
# Training procedure
This model was trained on a single NVIDIA P5000 from [Paperspace](https://www.paperspace.com)
#### Hyperparameters
- **Learning Rate:** 5e-5
- **Batch Size:** 32
- **Maximum Sequence Length:** 164
- **Epochs:** 30
# Evaluation Data
We evaluated this model on the test split of the Kinyarwandan corpus **(kin)** present in the [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) with no thresholding.
# Metrics
- Precision
- Recall
- F1-score
# Limitations
- The size of the pre-trained language model prevents its usage in anything other than research.
- Lack of analysis concerning the bias and fairness in these models may make them dangerous if deployed into production system.
- The train data is a less populated version of the original dataset in terms of entity groups per sentence. Therefore, this can negatively impact the performance.
# Caveats and Recommendations
- The topics in the dataset corpus are centered around **News**. Future training could be done with a more diverse corpus.
# Results
Model Name| Precision | Recall | F1-score
-|-|-|-
**mbert-base-uncased-ner-kin**| 81.95 |81.55 |81.75
# Usage
```python
from transformers import AutoTokenizer, AutoModelForTokenClassification
from transformers import pipeline
tokenizer = AutoTokenizer.from_pretrained("arnolfokam/mbert-base-uncased-ner-kin")
model = AutoModelForTokenClassification.from_pretrained("arnolfokam/mbert-base-uncased-ner-kin")
nlp = pipeline("ner", model=model, tokenizer=tokenizer)
example = "Rayon Sports yasinyishije rutahizamu w’Umurundi"
ner_results = nlp(example)
print(ner_results)
``` |
arnolfokam/bert-base-uncased-swa | arnolfokam | 2021-11-24T11:55:34Z | 10 | 0 | transformers | [
"transformers",
"pytorch",
"bert",
"token-classification",
"NER",
"swa",
"dataset:masakhaner",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | token-classification | 2022-03-02T23:29:05Z | ---
language:
- swa
tags:
- NER
datasets:
- masakhaner
metrics:
- f1
- precision
- recall
license: apache-2.0
widget:
- text: "Wizara ya afya ya Tanzania imeripoti Jumatatu kuwa, watu takriban 14 zaidi wamepata maambukizi ya Covid-19."
---
# Model description
**bert-base-uncased-swa** is a model based on the fine-tuned BERT base uncased model. It has been trained to recognize four types of entities:
- dates & time (DATE)
- Location (LOC)
- Organizations (ORG)
- Person (PER)
# Intended Use
- Intended to be used for research purposes concerning Named Entity Recognition for African Languages.
- Not intended for practical purposes.
# Training Data
This model was fine-tuned on the Swahili corpus **(swa)** of the [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) dataset. However, we thresholded the number of entity groups per sentence in this dataset to 10 entity groups.
# Training procedure
This model was trained on a single NVIDIA P5000 from [Paperspace](https://www.paperspace.com)
#### Hyperparameters
- **Learning Rate:** 5e-5
- **Batch Size:** 32
- **Maximum Sequence Length:** 164
- **Epochs:** 30
# Evaluation Data
We evaluated this model on the test split of the Swahili corpus **(swa)** present in the [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) with no thresholding.
# Metrics
- Precision
- Recall
- F1-score
# Limitations
- The size of the pre-trained language model prevents its usage in anything other than research.
- Lack of analysis concerning the bias and fairness in these models may make them dangerous if deployed into production system.
- The train data is a less populated version of the original dataset in terms of entity groups per sentence. Therefore, this can negatively impact the performance.
# Caveats and Recommendations
- The topics in the dataset corpus are centered around **News**. Future training could be done with a more diverse corpus.
# Results
Model Name| Precision | Recall | F1-score
-|-|-|-
**bert-base-uncased-swa**| 83.38 | 89.32 | 86.26
# Usage
```python
from transformers import AutoTokenizer, AutoModelForTokenClassification
from transformers import pipeline
tokenizer = AutoTokenizer.from_pretrained("arnolfokam/bert-base-uncased-swa")
model = AutoModelForTokenClassification.from_pretrained("bert-base-uncased-swa")
nlp = pipeline("ner", model=model, tokenizer=tokenizer)
example = "Wizara ya afya ya Tanzania imeripoti Jumatatu kuwa, watu takriban 14 zaidi wamepata maambukizi ya Covid-19."
ner_results = nlp(example)
print(ner_results)
``` |
arnolfokam/roberta-base-kin | arnolfokam | 2021-11-24T11:46:30Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"roberta",
"token-classification",
"NER",
"kin",
"dataset:masakhaner",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | token-classification | 2022-03-02T23:29:05Z | ---
language:
- kin
tags:
- NER
datasets:
- masakhaner
metrics:
- f1
- precision
- recall
license: apache-2.0
widget:
- text: "Ambasaderi Bellomo yavuze ko bishimira ubufatanye burambye hagati ya EU n’u Rwanda, bushingiye nanone ku bufatanye hagati y’imigabane ya Afurika n’u Burayi."
---
# Model description
**roberta-base-kin** is a model based on the fine-tuned RoBERTa base model. It has been trained to recognize four types of entities:
- dates & time (DATE)
- Location (LOC)
- Organizations (ORG)
- Person (PER)
# Intended Use
- Intended to be used for research purposes concerning Named Entity Recognition for African Languages.
- Not intended for practical purposes.
# Training Data
This model was fine-tuned on the Kinyarwanda corpus **(kin)** of the [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) dataset. However, we thresholded the number of entity groups per sentence in this dataset to 10 entity groups.
# Training procedure
This model was trained on a single NVIDIA P5000 from [Paperspace](https://www.paperspace.com)
#### Hyperparameters
- **Learning Rate:** 5e-5
- **Batch Size:** 32
- **Maximum Sequence Length:** 164
- **Epochs:** 30
# Evaluation Data
We evaluated this model on the test split of the Kinyarwandan corpus **(kin)** present in the [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) with no thresholding.
# Metrics
- Precision
- Recall
- F1-score
# Limitations
- The size of the pre-trained language model prevents its usage in anything other than research.
- Lack of analysis concerning the bias and fairness in these models may make them dangerous if deployed into production system.
- The train data is a less populated version of the original dataset in terms of entity groups per sentence. Therefore, this can negatively impact the performance.
# Caveats and Recommendations
- The topics in the dataset corpus are centered around **News**. Future training could be done with a more diverse corpus.
# Results
Model Name| Precision | Recall | F1-score
-|-|-|-
**roberta-base-kin**| 76.26 | 80.58 |78.36
# Usage
```python
from transformers import AutoTokenizer, AutoModelForTokenClassification
from transformers import pipeline
tokenizer = AutoTokenizer.from_pretrained("arnolfokam/roberta-base-kin")
model = AutoModelForTokenClassification.from_pretrained("arnolfokam/roberta-base-kin")
nlp = pipeline("ner", model=model, tokenizer=tokenizer)
example = "Rayon Sports yasinyishije rutahizamu w’Umurundi"
ner_results = nlp(example)
print(ner_results)
``` |
arnolfokam/roberta-base-swa | arnolfokam | 2021-11-24T11:41:03Z | 13 | 0 | transformers | [
"transformers",
"pytorch",
"roberta",
"token-classification",
"NER",
"swa",
"dataset:masakhaner",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | token-classification | 2022-03-02T23:29:05Z | ---
language:
- swa
tags:
- NER
datasets:
- masakhaner
metrics:
- f1
- precision
- recall
license: apache-2.0
widget:
- text: "Wizara ya afya ya Tanzania imeripoti Jumatatu kuwa, watu takriban 14 zaidi wamepata maambukizi ya Covid-19."
---
# Model description
**roberta-base-swa** is a model based on the fine-tuned RoBERTa base model. It has been trained to recognize four types of entities:
- dates & time (DATE)
- Location (LOC)
- Organizations (ORG)
- Person (PER)
# Intended Use
- Intended to be used for research purposes concerning Named Entity Recognition for African Languages.
- Not intended for practical purposes.
# Training Data
This model was fine-tuned on the Swahili corpus **(swa)** of the [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) dataset. However, we thresholded the number of entity groups per sentence in this dataset to 10 entity groups.
# Training procedure
This model was trained on a single NVIDIA P5000 from [Paperspace](https://www.paperspace.com)
#### Hyperparameters
- **Learning Rate:** 5e-5
- **Batch Size:** 32
- **Maximum Sequence Length:** 164
- **Epochs:** 30
# Evaluation Data
We evaluated this model on the test split of the Swahili corpus **(swa)** present in the [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) with no thresholding.
# Metrics
- Precision
- Recall
- F1-score
# Limitations
- The size of the pre-trained language model prevents its usage in anything other than research.
- Lack of analysis concerning the bias and fairness in these models may make them dangerous if deployed into production system.
- The train data is a less populated version of the original dataset in terms of entity groups per sentence. Therefore, this can negatively impact the performance.
# Caveats and Recommendations
- The topics in the dataset corpus are centered around **News**. Future training could be done with a more diverse corpus.
# Results
Model Name| Precision | Recall | F1-score
-|-|-|-
**roberta-base-swa**| 80.58 | 86.79 | 83.57
# Usage
```python
from transformers import AutoTokenizer, AutoModelForTokenClassification
from transformers import pipeline
tokenizer = AutoTokenizer.from_pretrained("arnolfokam/roberta-base-swa")
model = AutoModelForTokenClassification.from_pretrained("arnolfokam/roberta-base-swa")
nlp = pipeline("ner", model=model, tokenizer=tokenizer)
example = "Wizara ya afya ya Tanzania imeripoti Jumatatu kuwa, watu takriban 14 zaidi wamepata maambukizi ya Covid-19."
ner_results = nlp(example)
print(ner_results)
``` |
arnolfokam/mbert-base-uncased-ner-swa | arnolfokam | 2021-11-24T11:31:30Z | 11 | 0 | transformers | [
"transformers",
"pytorch",
"bert",
"token-classification",
"NER",
"swa",
"dataset:masakhaner",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | token-classification | 2022-03-02T23:29:05Z | ---
language:
- swa
tags:
- NER
datasets:
- masakhaner
metrics:
- f1
- precision
- recall
license: apache-2.0
widget:
- text: "Wizara ya afya ya Tanzania imeripoti Jumatatu kuwa, watu takriban 14 zaidi wamepata maambukizi ya Covid-19."
---
# Model description
**mbert-base-uncased-ner-swa** is a model based on the fine-tuned Multilingual BERT base uncased model, previously fine-tuned for Named Entity Recognition using 10 high-resourced languages. It has been trained to recognize four types of entities:
- dates & time (DATE)
- Location (LOC)
- Organizations (ORG)
- Person (PER)
# Intended Use
- Intended to be used for research purposes concerning Named Entity Recognition for African Languages.
- Not intended for practical purposes.
# Training Data
This model was fine-tuned on the Swahili corpus **(swa)** of the [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) dataset. However, we thresholded the number of entity groups per sentence in this dataset to 10 entity groups.
# Training procedure
This model was trained on a single NVIDIA P5000 from [Paperspace](https://www.paperspace.com)
#### Hyperparameters
- **Learning Rate:** 5e-5
- **Batch Size:** 32
- **Maximum Sequence Length:** 164
- **Epochs:** 30
# Evaluation Data
We evaluated this model on the test split of the Swahili corpus **(swa)** present in the [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) with no thresholding.
# Metrics
- Precision
- Recall
- F1-score
# Limitations
- The size of the pre-trained language model prevents its usage in anything other than research.
- Lack of analysis concerning the bias and fairness in these models may make them dangerous if deployed into production system.
- The train data is a less populated version of the original dataset in terms of entity groups per sentence. Therefore, this can negatively impact the performance.
# Caveats and Recommendations
- The topics in the dataset corpus are centered around **News**. Future training could be done with a more diverse corpus.
# Results
Model Name| Precision | Recall | F1-score
-|-|-|-
**mbert-base-uncased-ner-swa**| 82.85 | 88.13 | 85.41
# Usage
```python
from transformers import AutoTokenizer, AutoModelForTokenClassification
from transformers import pipeline
tokenizer = AutoTokenizer.from_pretrained("arnolfokam/mbert-base-uncased-ner-swa")
model = AutoModelForTokenClassification.from_pretrained("arnolfokam/mbert-base-uncased-ner-swa")
nlp = pipeline("ner", model=model, tokenizer=tokenizer)
example = "Wizara ya afya ya Tanzania imeripoti Jumatatu kuwa, watu takriban 14 zaidi wamepata maambukizi ya Covid-19."
ner_results = nlp(example)
print(ner_results)
``` |
arnolfokam/mbert-base-uncased-kin | arnolfokam | 2021-11-24T11:13:53Z | 10 | 0 | transformers | [
"transformers",
"pytorch",
"bert",
"token-classification",
"NER",
"kin",
"dataset:masakhaner",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | token-classification | 2022-03-02T23:29:05Z | ---
language:
- kin
tags:
- NER
datasets:
- masakhaner
metrics:
- f1
- precision
- recall
license: apache-2.0
widget:
- text: "Ambasaderi Bellomo yavuze ko bishimira ubufatanye burambye hagati ya EU n’u Rwanda, bushingiye nanone ku bufatanye hagati y’imigabane ya Afurika n’u Burayi."
---
# Model description
**mbert-base-uncased-kin** is a model based on the fine-tuned multilingual BERT base uncased model. It has been trained to recognize four types of entities:
- dates & time (DATE)
- Location (LOC)
- Organizations (ORG)
- Person (PER)
# Intended Use
- Intended to be used for research purposes concerning Named Entity Recognition for African Languages.
- Not intended for practical purposes.
# Training Data
This model was fine-tuned on the Kinyarwanda corpus **(kin)** of the [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) dataset. However, we thresholded the number of entity groups per sentence in this dataset to 10 entity groups.
# Training procedure
This model was trained on a single NVIDIA P5000 from [Paperspace](https://www.paperspace.com)
#### Hyperparameters
- **Learning Rate:** 5e-5
- **Batch Size:** 32
- **Maximum Sequence Length:** 164
- **Epochs:** 30
# Evaluation Data
We evaluated this model on the test split of the Kinyarwandan corpus **(kin)** present in the [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) with no thresholding.
# Metrics
- Precision
- Recall
- F1-score
# Limitations
- The size of the pre-trained language model prevents its usage in anything other than research.
- Lack of analysis concerning the bias and fairness in these models may make them dangerous if deployed into production system.
- The train data is a less populated version of the original dataset in terms of entity groups per sentence. Therefore, this can negatively impact the performance.
# Caveats and Recommendations
- The topics in the dataset corpus are centered around **News**. Future training could be done with a more diverse corpus.
# Results
Model Name| Precision | Recall | F1-score
-|-|-|-
**mbert-base-uncased-kin**| 81.35 | 83.98 | 82.64
# Usage
```python
from transformers import AutoTokenizer, AutoModelForTokenClassification
from transformers import pipeline
tokenizer = AutoTokenizer.from_pretrained("arnolfokam/mbert-base-uncased-kin")
model = AutoModelForTokenClassification.from_pretrained("arnolfokam/mbert-base-uncased-kin")
nlp = pipeline("ner", model=model, tokenizer=tokenizer)
example = "Rayon Sports yasinyishije rutahizamu w’Umurundi"
ner_results = nlp(example)
print(ner_results)
``` |
arnolfokam/bert-base-uncased-kin | arnolfokam | 2021-11-24T11:07:08Z | 15 | 0 | transformers | [
"transformers",
"pytorch",
"bert",
"token-classification",
"NER",
"kin",
"dataset:masakhaner",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | token-classification | 2022-03-02T23:29:05Z | ---
language:
- kin
tags:
- NER
datasets:
- masakhaner
metrics:
- f1
- precision
- recall
license: apache-2.0
widget:
- text: "Ambasaderi Bellomo yavuze ko bishimira ubufatanye burambye hagati ya EU n’u Rwanda, bushingiye nanone ku bufatanye hagati y’imigabane ya Afurika n’u Burayi."
---
# Model description
**bert-base-uncased-kin** is a model based on the fine-tuned BERT base uncased model. It has been trained to recognize four types of entities:
- dates & time (DATE)
- Location (LOC)
- Organizations (ORG)
- Person (PER)
# Intended Use
- Intended to be used for research purposes concerning Named Entity Recognition for African Languages.
- Not intended for practical purposes.
# Training Data
This model was fine-tuned on the Kinyarwanda corpus **(kin)** of the [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) dataset. However, we thresholded the number of entity groups per sentence in this dataset to 10 entity groups.
# Training procedure
This model was trained on a single NVIDIA P5000 from [Paperspace](https://www.paperspace.com)
#### Hyperparameters
- **Learning Rate:** 5e-5
- **Batch Size:** 32
- **Maximum Sequence Length:** 164
- **Epochs:** 30
# Evaluation Data
We evaluated this model on the test split of the Kinyarwandan corpus **(kin)** present in the [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) with no thresholding.
# Metrics
- Precision
- Recall
- F1-score
# Limitations
- The size of the pre-trained language model prevents its usage in anything other than research.
- Lack of analysis concerning the bias and fairness in these models may make them dangerous if deployed into production system.
- The train data is a less populated version of the original dataset in terms of entity groups per sentence. Therefore, this can negatively impact the performance.
# Caveats and Recommendations
- The topics in the dataset corpus are centered around **News**. Future training could be done with a more diverse corpus.
# Results
Model Name| Precision | Recall | F1-score
-|-|-|-
**bert-base-uncased-kin**| 75.00 |80.09|77.47
# Usage
```python
from transformers import AutoTokenizer, AutoModelForTokenClassification
from transformers import pipeline
tokenizer = AutoTokenizer.from_pretrained("arnolfokam/bert-base-uncased-kin")
model = AutoModelForTokenClassification.from_pretrained("arnolfokam/bert-base-uncased-kin")
nlp = pipeline("ner", model=model, tokenizer=tokenizer)
example = "Rayon Sports yasinyishije rutahizamu w’Umurundi"
ner_results = nlp(example)
print(ner_results)
``` |
Peterard/distilbert_bug_classifier | Peterard | 2021-11-24T04:01:55Z | 4 | 2 | transformers | [
"transformers",
"pytorch",
"distilbert",
"text-classification",
"en",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2022-03-02T23:29:04Z | ---
language:
- en
tags:
- text-classification
widget:
- text: "The app crashed when I opened it this morning. Can you fix this please?"
example_title: "Likely bug report"
- text: "Please add a like button!"
example_title: "Unlikely bug report"
---
How to use this classifier:
```
from transformers import pipeline
pipe = pipeline("text-classification", model="Peterard/distilbert_bug_classifier")
pipe("The app crashed when I opened it this morning. Can you fix this please?")
# [{'label': 'bug', 'score': 0.9042391180992126}]
pipe("Please add a like button!")
# [{'label': 'no_bug', 'score': 0.9977496266365051}]
```
N.B. The label will change depending on which is the likelier class |
ueb1/IceBERT-finetuned-grouped | ueb1 | 2021-11-24T00:18:29Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"roberta",
"text-classification",
"generated_from_trainer",
"license:gpl-3.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2022-03-02T23:29:05Z | ---
license: gpl-3.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: IceBERT-finetuned-grouped
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# IceBERT-finetuned-grouped
This model is a fine-tuned version of [vesteinn/IceBERT](https://huggingface.co/vesteinn/IceBERT) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 3.5660
- Accuracy: 0.2259
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 269 | 4.1727 | 0.1172 |
| 4.3535 | 2.0 | 538 | 3.8406 | 0.1632 |
| 4.3535 | 3.0 | 807 | 3.6718 | 0.2113 |
| 3.6711 | 4.0 | 1076 | 3.5660 | 0.2259 |
| 3.6711 | 5.0 | 1345 | 3.5332 | 0.2176 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu111
- Datasets 1.15.1
- Tokenizers 0.10.3
|
vitusya/distilbert-base-uncased-finetuned-squad | vitusya | 2021-11-23T21:15:03Z | 8 | 0 | transformers | [
"transformers",
"pytorch",
"distilbert",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | question-answering | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: distilbert-base-uncased-finetuned-squad
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-squad
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1610
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 1.2137 | 1.0 | 5533 | 1.1625 |
| 0.9496 | 2.0 | 11066 | 1.1263 |
| 0.7591 | 3.0 | 16599 | 1.1610 |
### Framework versions
- Transformers 4.13.0.dev0
- Pytorch 1.10.0+cu102
- Datasets 1.15.1
- Tokenizers 0.10.3
|
Hellisotherpeople/debate2vec | Hellisotherpeople | 2021-11-23T18:45:27Z | 34 | 7 | fasttext | [
"fasttext",
"text-classification",
"region:us"
] | text-classification | 2022-03-02T23:29:04Z | ---
tags:
- text-classification
library_name: fasttext
widget:
- text: "dialectics"
example_title: "dialectics"
- text: "schizoanalysis"
example_title: "schizoanalysis"
- text: "praxis"
example_title: "praxis"
- text: "topicality"
example_title: "topicality"
---
# debate2vec
Word-vectors created from a large corpus of competitive debate evidence, and data extraction / processing scripts
#usage
```
import fasttext.util
ft = fasttext.load_model('debate2vec.bin')
ft.get_word_vector('dialectics')
```
# Download Link
Github won't let me store large files in their repos.
* [FastText Vectors Here](https://drive.google.com/file/d/1m-CwPcaIUun4qvg69Hx2gom9dMScuQwS/view?usp=sharing) (~260mb)
# About
Created from all publically available Cross Examination Competitive debate evidence posted by the community on [Open Evidence](https://openev.debatecoaches.org/) (From 2013-2020)
Search through the original evidence by going to [debate.cards](http://debate.cards/)
Stats about this corpus:
* 222485 unique documents larger than 200 words (DebateSum plus some additional debate docs that weren't well-formed enough for inclusion into DebateSum)
* 107555 unique words (showing up more than 10 times in the corpus)
* 101 million total words
Stats about debate2vec vectors:
* 300 dimensions, minimum number of appearances of a word was 10, trained for 100 epochs with lr set to 0.10 using FastText
* lowercased (will release cased)
* No subword information
The corpus includes the following topics
* 2013-2014 Cuba/Mexico/Venezuela Economic Engagement
* 2014-2015 Oceans
* 2015-2016 Domestic Surveillance
* 2016-2017 China
* 2017-2018 Education
* 2018-2019 Immigration
* 2019-2020 Reducing Arms Sales
Other topics that this word vector model will handle extremely well
* Philosophy (Especially Left-Wing / Post-modernist)
* Law
* Government
* Politics
Initial release is of fasttext vectors without subword information. Future releases will include fine-tuned GPT-2 and other high end models as my GPU compute allows.
# Screenshots



|
AryanLala/autonlp-Scientific_Title_Generator-34558227 | AryanLala | 2021-11-23T16:51:34Z | 8 | 19 | transformers | [
"transformers",
"pytorch",
"pegasus",
"text2text-generation",
"autonlp",
"en",
"dataset:AryanLala/autonlp-data-Scientific_Title_Generator",
"co2_eq_emissions",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2022-03-02T23:29:04Z | ---
tags: autonlp
language: en
widget:
- text: "The scale, variety, and quantity of publicly-available NLP datasets has grown rapidly as researchers propose new tasks, larger models, and novel benchmarks. Datasets is a community library for contemporary NLP designed to support this ecosystem. Datasets aims to standardize end-user interfaces, versioning, and documentation, while providing a lightweight front-end that behaves similarly for small datasets as for internet-scale corpora. The design of the library incorporates a distributed, community-driven approach to adding datasets and documenting usage. After a year of development, the library now includes more than 650 unique datasets, has more than 250 contributors, and has helped support a variety of novel cross-dataset research projects and shared tasks. The library is available at https://github.com/huggingface/datasets."
datasets:
- AryanLala/autonlp-data-Scientific_Title_Generator
co2_eq_emissions: 137.60574081887984
---
# Model Trained Using AutoNLP
- Model: Google's Pegasus (https://huggingface.co/google/pegasus-xsum)
- Problem type: Summarization
- Model ID: 34558227
- CO2 Emissions (in grams): 137.60574081887984
- Spaces: https://huggingface.co/spaces/TitleGenerators/ArxivTitleGenerator
- Dataset: arXiv Dataset (https://www.kaggle.com/Cornell-University/arxiv)
- Data subset used: https://huggingface.co/datasets/AryanLala/autonlp-data-Scientific_Title_Generator
## Validation Metrics
- Loss: 2.578599214553833
- Rouge1: 44.8482
- Rouge2: 24.4052
- RougeL: 40.1716
- RougeLsum: 40.1396
- Gen Len: 11.4675
## Social
- LinkedIn: https://www.linkedin.com/in/aryanlala/
- Twitter: https://twitter.com/AryanLala20
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/AryanLala/autonlp-Scientific_Title_Generator-34558227
``` |
Bharathdamu/wav2vec2-large-xls-r-300m-hindi-colab | Bharathdamu | 2021-11-23T09:32:23Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"dataset:common_voice",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:04Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- common_voice
model-index:
- name: wav2vec2-large-xls-r-300m-hindi-colab
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-300m-hindi-colab
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu111
- Datasets 1.13.3
- Tokenizers 0.10.3
|
Aimendo/autonlp-triage-35248482 | Aimendo | 2021-11-23T08:03:14Z | 8 | 0 | transformers | [
"transformers",
"pytorch",
"bert",
"text-classification",
"autonlp",
"en",
"dataset:Aimendo/autonlp-data-triage",
"co2_eq_emissions",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2022-03-02T23:29:04Z | ---
tags: autonlp
language: en
widget:
- text: "I love AutoNLP 🤗"
datasets:
- Aimendo/autonlp-data-triage
co2_eq_emissions: 7.989144645413398
---
# Model Trained Using AutoNLP
- Problem type: Multi-class Classification
- Model ID: 35248482
- CO2 Emissions (in grams): 7.989144645413398
## Validation Metrics
- Loss: 0.13783401250839233
- Accuracy: 0.9728654124457308
- Macro F1: 0.949537871674076
- Micro F1: 0.9728654124457308
- Weighted F1: 0.9732422812610365
- Macro Precision: 0.9380372699332605
- Micro Precision: 0.9728654124457308
- Weighted Precision: 0.974548513256663
- Macro Recall: 0.9689346153591594
- Micro Recall: 0.9728654124457308
- Weighted Recall: 0.9728654124457308
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/Aimendo/autonlp-triage-35248482
```
Or Python API:
```
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("Aimendo/autonlp-triage-35248482", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("Aimendo/autonlp-triage-35248482", use_auth_token=True)
inputs = tokenizer("I love AutoNLP", return_tensors="pt")
outputs = model(**inputs)
``` |
DeepPavlov/rubert-base-cased | DeepPavlov | 2021-11-23T08:03:04Z | 205,575 | 95 | transformers | [
"transformers",
"pytorch",
"jax",
"bert",
"feature-extraction",
"ru",
"arxiv:1905.07213",
"endpoints_compatible",
"region:us"
] | feature-extraction | 2022-03-02T23:29:04Z | ---
language:
- ru
---
# rubert-base-cased
RuBERT \(Russian, cased, 12‑layer, 768‑hidden, 12‑heads, 180M parameters\) was trained on the Russian part of Wikipedia and news data. We used this training data to build a vocabulary of Russian subtokens and took a multilingual version of BERT‑base as an initialization for RuBERT\[1\].
08.11.2021: upload model with MLM and NSP heads
\[1\]: Kuratov, Y., Arkhipov, M. \(2019\). Adaptation of Deep Bidirectional Multilingual Transformers for Russian Language. arXiv preprint [arXiv:1905.07213](https://arxiv.org/abs/1905.07213).
|
artursz/wav2vec2-large-xls-r-300m-lv-v05 | artursz | 2021-11-23T02:47:04Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"dataset:common_voice",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- common_voice
model-index:
- name: wav2vec2-large-xls-r-300m-lv-v05
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-300m-lv-v05
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3862
- Wer: 0.2588
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 4.8836 | 2.81 | 400 | 0.8722 | 0.7244 |
| 0.5365 | 5.63 | 800 | 0.4622 | 0.4812 |
| 0.277 | 8.45 | 1200 | 0.4348 | 0.4056 |
| 0.1947 | 11.27 | 1600 | 0.4223 | 0.3636 |
| 0.1655 | 14.08 | 2000 | 0.4084 | 0.3465 |
| 0.1441 | 16.9 | 2400 | 0.4329 | 0.3497 |
| 0.121 | 19.72 | 2800 | 0.4371 | 0.3324 |
| 0.1062 | 22.53 | 3200 | 0.4202 | 0.3198 |
| 0.0937 | 25.35 | 3600 | 0.4063 | 0.3265 |
| 0.0871 | 28.17 | 4000 | 0.4253 | 0.3255 |
| 0.0755 | 30.98 | 4400 | 0.4368 | 0.3194 |
| 0.0627 | 33.8 | 4800 | 0.4067 | 0.2908 |
| 0.0595 | 36.62 | 5200 | 0.3929 | 0.2973 |
| 0.0523 | 39.44 | 5600 | 0.3748 | 0.2817 |
| 0.0434 | 42.25 | 6000 | 0.3769 | 0.2711 |
| 0.0391 | 45.07 | 6400 | 0.3901 | 0.2653 |
| 0.0319 | 47.88 | 6800 | 0.3862 | 0.2588 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu111
- Datasets 1.13.3
- Tokenizers 0.10.3
|
huggingtweets/kylelchong | huggingtweets | 2021-11-23T01:12:59Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:05Z | ---
language: en
thumbnail: https://www.huggingtweets.com/kylelchong/1637629975064/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1363977743021584394/17Z8FHm2_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Kyle L. Chong (he.him.his)</div>
<div style="text-align: center; font-size: 14px;">@kylelchong</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Kyle L. Chong (he.him.his).
| Data | Kyle L. Chong (he.him.his) |
| --- | --- |
| Tweets downloaded | 1072 |
| Retweets | 213 |
| Short tweets | 76 |
| Tweets kept | 783 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2xlb7d6c/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @kylelchong's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/5bvgy2zz) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/5bvgy2zz/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/kylelchong')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
deepklarity/poster2plot | deepklarity | 2021-11-22T19:56:30Z | 39 | 4 | transformers | [
"transformers",
"pytorch",
"vision-encoder-decoder",
"image-text-to-text",
"image-classification",
"image-captioning",
"en",
"endpoints_compatible",
"region:us"
] | image-classification | 2022-03-02T23:29:05Z | ---
language: en
tags:
- image-classification
- image-captioning
---
# Poster2Plot
An image captioning model to generate movie/t.v show plot from poster. It generates decent plots but is no way perfect. We are still working on improving the model.
## Live demo on Hugging Face Spaces: https://huggingface.co/spaces/deepklarity/poster2plot
# Model Details
The base model uses a Vision Transformer (ViT) model as an image encoder and GPT-2 as a decoder.
We used the following models:
* Encoder: [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k)
* Decoder: [gpt2](https://huggingface.co/gpt2)
# Datasets
Publicly available IMDb datasets were used to train the model.
# How to use
## In PyTorch
```python
import torch
import re
import requests
from PIL import Image
from transformers import AutoTokenizer, AutoFeatureExtractor, VisionEncoderDecoderModel
# Pattern to ignore all the text after 2 or more full stops
regex_pattern = "[.]{2,}"
def post_process(text):
try:
text = text.strip()
text = re.split(regex_pattern, text)[0]
except Exception as e:
print(e)
pass
return text
def predict(image, max_length=64, num_beams=4):
pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values
pixel_values = pixel_values.to(device)
with torch.no_grad():
output_ids = model.generate(
pixel_values,
max_length=max_length,
num_beams=num_beams,
return_dict_in_generate=True,
).sequences
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
pred = post_process(preds[0])
return pred
model_name_or_path = "deepklarity/poster2plot"
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Load model.
model = VisionEncoderDecoderModel.from_pretrained(model_name_or_path)
model.to(device)
print("Loaded model")
feature_extractor = AutoFeatureExtractor.from_pretrained(model.encoder.name_or_path)
print("Loaded feature_extractor")
tokenizer = AutoTokenizer.from_pretrained(model.decoder.name_or_path, use_fast=True)
if model.decoder.name_or_path == "gpt2":
tokenizer.pad_token = tokenizer.eos_token
print("Loaded tokenizer")
url = "https://upload.wikimedia.org/wikipedia/en/2/26/Moana_Teaser_Poster.jpg"
with Image.open(requests.get(url, stream=True).raw) as image:
pred = predict(image)
print(pred)
```
|
samantharhay/wav2vec2-base-myst-demo-colab | samantharhay | 2021-11-22T18:15:21Z | 7 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
name: wav2vec2-base-myst-demo-colab
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-base-myst-demo-colab
This model is a fine-tuned version of [facebook/wav2vec2-base-960h](https://huggingface.co/facebook/wav2vec2-base-960h) on an unknown dataset.
It achieves the following results on the evaluation set:
- eval_loss: 1.3125
- eval_wer: 0.3139
- eval_runtime: 57.3226
- eval_samples_per_second: 9.996
- eval_steps_per_second: 1.256
- epoch: 18.68
- step: 17000
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 30
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu111
- Datasets 1.13.3
- Tokenizers 0.10.3
|
JorisCos/VAD_Net | JorisCos | 2021-11-22T17:17:23Z | 7 | 0 | asteroid | [
"asteroid",
"pytorch",
"audio",
"VADNet",
"VAD",
"Voice Activity Detection",
"dataset:LibriVAD",
"license:cc-by-sa-4.0",
"region:us"
] | null | 2022-03-02T23:29:04Z | ---
tags:
- asteroid
- audio
- VADNet
- VAD
- Voice Activity Detection
datasets:
- LibriVAD
license: cc-by-sa-4.0
---
## Asteroid model `JorisCos/VAD_Net`
Description:
This model was trained by Joris Cosentino using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid).
It was trained on the `enh_single` task of the Libri1Mix dataset.
Training config:
```yml
data:
segment: 3
train_dir: /home/jcosentino/VAD_dataset/metadata/sets/train.json
valid_dir: /home/jcosentino/VAD_dataset/metadata/sets/dev.json
filterbank:
kernel_size: 16
n_filters: 512
stride: 8
main_args:
exp_dir: exp/full_not_causal_f1/
help: null
masknet:
bn_chan: 128
causal: false
hid_chan: 512
mask_act: relu
n_blocks: 3
n_repeats: 5
skip_chan: 128
optim:
lr: 0.001
optimizer: adam
weight_decay: 0.0
positional arguments: {}
training:
batch_size: 8
early_stop: true
epochs: 200
half_lr: true
num_workers: 4
```
Results:
On LibriVAD min test set :
```yml
accuracy: 0.8196149023502931,
precision: 0.8305009048356607,
recall: 0.8869202491310206,
f1_score: 0.8426184545700124
```
License notice:
This work "VAD_Net" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by Vassil Panayotov,
used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/); of The [DNS challenge](https://github.com/microsoft/DNS-Challenge) noises, [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/).
"VAD_Net" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Joris Cosentino |
renBaikau/alphaDelay | renBaikau | 2021-11-22T12:21:47Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: alphaDelay
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# alphaDelay
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.6648
- Wer: 1.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 20
- num_epochs: 15
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:---:|
| 82.3335 | 5.0 | 25 | 14.0648 | 1.0 |
| 6.1049 | 10.0 | 50 | 3.7145 | 1.0 |
| 3.9873 | 15.0 | 75 | 3.6648 | 1.0 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu111
- Datasets 1.15.1
- Tokenizers 0.10.3
|
kssteven/ibert-roberta-base | kssteven | 2021-11-22T10:09:32Z | 2,805 | 1 | transformers | [
"transformers",
"pytorch",
"ibert",
"fill-mask",
"arxiv:1907.11692",
"arxiv:2101.01321",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | fill-mask | 2022-03-02T23:29:05Z | # I-BERT base model
This model, `ibert-roberta-base`, is an integer-only quantized version of [RoBERTa](https://arxiv.org/abs/1907.11692), and was introduced in [this paper](https://arxiv.org/abs/2101.01321).
I-BERT stores all parameters with INT8 representation, and carries out the entire inference using integer-only arithmetic.
In particular, I-BERT replaces all floating point operations in the Transformer architectures (e.g., MatMul, GELU, Softmax, and LayerNorm) with closely approximating integer operations.
This can result in upto 4x inference speed up as compared to floating point counterpart when tested on an Nvidia T4 GPU.
The best model parameters searched via quantization-aware finetuning can be then exported (e.g., to TensorRT) for integer-only deployment of the model.
## Finetuning Procedure
Finetuning of I-BERT consists of 3 stages: (1) Full-precision finetuning from the pretrained model on a down-stream task, (2) model quantization, and (3) integer-only finetuning (i.e., quantization-aware training) of the quantized model.
### Full-precision finetuning
Full-precision finetuning of I-BERT is similar to RoBERTa finetuning.
For instance, you can run the following command to finetune on the [MRPC](https://www.microsoft.com/en-us/download/details.aspx?id=52398) text classification task.
```
python examples/text-classification/run_glue.py \
--model_name_or_path kssteven/ibert-roberta-base \
--task_name MRPC \
--do_eval \
--do_train \
--evaluation_strategy epoch \
--max_seq_length 128 \
--per_device_train_batch_size 32 \
--save_steps 115 \
--learning_rate 2e-5 \
--num_train_epochs 10 \
--output_dir $OUTPUT_DIR
```
### Model Quantization
Once you are done with full-precision finetuning, open up `config.json` in your checkpoint directory and set the `quantize` attribute as `true`.
```
{
"_name_or_path": "kssteven/ibert-roberta-base",
"architectures": [
"IBertForSequenceClassification"
],
"attention_probs_dropout_prob": 0.1,
"bos_token_id": 0,
"eos_token_id": 2,
"finetuning_task": "mrpc",
"force_dequant": "none",
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"hidden_size": 768,
"initializer_range": 0.02,
"intermediate_size": 3072,
"layer_norm_eps": 1e-05,
"max_position_embeddings": 514,
"model_type": "ibert",
"num_attention_heads": 12,
"num_hidden_layers": 12,
"pad_token_id": 1,
"position_embedding_type": "absolute",
"quant_mode": true,
"tokenizer_class": "RobertaTokenizer",
"transformers_version": "4.4.0.dev0",
"type_vocab_size": 1,
"vocab_size": 50265
}
```
Then, your model will automatically run as the integer-only mode when you load the checkpoint.
Also, make sure to delete `optimizer.pt`, `scheduler.pt` and `trainer_state.json` in the same directory.
Otherwise, HF will not reset the optimizer, scheduler, or trainer state for the following integer-only finetuning.
### Integer-only finetuning (Quantization-aware training)
Finally, you will be able to run integer-only finetuning simply by loading the checkpoint file you modified.
Note that the only difference in the example command below is `model_name_or_path`.
```
python examples/text-classification/run_glue.py \
--model_name_or_path $CHECKPOINT_DIR
--task_name MRPC \
--do_eval \
--do_train \
--evaluation_strategy epoch \
--max_seq_length 128 \
--per_device_train_batch_size 32 \
--save_steps 115 \
--learning_rate 1e-6 \
--num_train_epochs 10 \
--output_dir $OUTPUT_DIR
```
## Citation info
If you use I-BERT, please cite [our papaer](https://arxiv.org/abs/2101.01321).
```
@article{kim2021bert,
title={I-BERT: Integer-only BERT Quantization},
author={Kim, Sehoon and Gholami, Amir and Yao, Zhewei and Mahoney, Michael W and Keutzer, Kurt},
journal={arXiv preprint arXiv:2101.01321},
year={2021}
}
```
|
ThomasSimonini/mlagents-snowballfight-1vs1-ppo | ThomasSimonini | 2021-11-22T09:54:35Z | 0 | 0 | null | [
"deep-reinforcement-learning",
"reinforcement-learning",
"mlagents",
"license:apache-2.0",
"region:us"
] | reinforcement-learning | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- deep-reinforcement-learning
- reinforcement-learning
- mlagents
environment:
- MLAgents: Snowballfight-1vs1-ppo
model-index:
- name: mlagents-snowballfight-1vs1-ppo
---
# mlagents-snowballfight-1vs1-ppo ☃️
This is a saved model of a PPO 1vs1 agent playing Snowball Fight.
|
huggingtweets/ctrlcreep | huggingtweets | 2021-11-22T09:35:47Z | 4 | 1 | transformers | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:05Z | ---
language: en
thumbnail: http://www.huggingtweets.com/ctrlcreep/1637573720314/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/855460243152801793/cxX82P3V_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">infineot</div>
<div style="text-align: center; font-size: 14px;">@ctrlcreep</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from infineot.
| Data | infineot |
| --- | --- |
| Tweets downloaded | 3241 |
| Retweets | 171 |
| Short tweets | 51 |
| Tweets kept | 3019 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/26459hr9/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ctrlcreep's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1prcdcpn) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1prcdcpn/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/ctrlcreep')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
wukevin/tcr-bert | wukevin | 2021-11-22T08:32:15Z | 162 | 5 | transformers | [
"transformers",
"pytorch",
"bert",
"text-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2022-03-02T23:29:05Z | # TCR transformer model
See our full [codebase](https://github.com/wukevin/tcr-bert) and our [preprint](https://www.biorxiv.org/content/10.1101/2021.11.18.469186v1) for more information.
This model is on:
- Masked language modeling (masked amino acid or MAA modeling)
- Classification across antigen labels from PIRD
If you are looking for a model trained only on MAA, please see our [other model](https://huggingface.co/wukevin/tcr-bert-mlm-only).
Example inputs:
* `C A S S P V T G G I Y G Y T F` (binds to NLVPMVATV CMV antigen)
* `C A T S G R A G V E Q F F` (binds to GILGFVFTL flu antigen) |
snunlp/KR-Medium | snunlp | 2021-11-22T06:19:42Z | 173 | 7 | transformers | [
"transformers",
"pytorch",
"jax",
"bert",
"ko",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
language:
- ko
---
# KR-BERT-MEDIUM
A pretrained Korean-specific BERT model developed by Computational Linguistics Lab at Seoul National University.
It is based on our character-level [KR-BERT](https://github.com/snunlp/KR-BERT) model which utilize WordPiece tokenizer.
Here, the model name has a suffix 'MEDIUM' since its training data grew from KR-BERT's original dataset. We have another additional model, KR-BERT-EXPANDED with more extensive training data expanded from those of KR-BERT-MEDIUM, so the suffix 'MEDIUM' is used.
<br>
### Vocab, Parameters and Data
| | Mulitlingual BERT<br>(Google) | KorBERT<br>(ETRI) | KoBERT<br>(SKT) | KR-BERT character | KR-BERT-MEDIUM |
| -------------: | ---------------------------------------------: | ---------------------: | ----------------------------------: | -------------------------------------: | -------------------------------------: |
| vocab size | 119,547 | 30,797 | 8,002 | 16,424 | 20,000 |
| parameter size | 167,356,416 | 109,973,391 | 92,186,880 | 99,265,066 | 102,015,010 |
| data size | -<br>(The Wikipedia data<br>for 104 languages) | 23GB<br>4.7B morphemes | -<br>(25M sentences,<br>233M words) | 2.47GB<br>20M sentences,<br>233M words | 12.37GB<br>91M sentences,<br>1.17B words |
<br>
The training data for this model is expanded from those of KR-BERT, texts from Korean Wikipedia, and news articles, by addition of legal texts crawled from the National Law Information Center and [Korean Comments dataset](https://www.kaggle.com/junbumlee/kcbert-pretraining-corpus-korean-news-comments). This data expansion is to collect texts from more various domains than those of KR-BERT. The total data size is about 12.37GB, consisting of 91M and 1.17B words.
The user-generated comment dataset is expected to have similar stylistic properties to the task datasets of NSMC and HSD. Such text includes abbreviations, coinages, emoticons, spacing errors, and typos. Therefore, we added the dataset containing such on-line properties to our existing formal data such as news articles and Wikipedia texts to compose the training data for KR-BERT-MEDIUM. Accordingly, KR-BERT-MEDIUM reported better results in sentiment analysis than other models, and the performances improved with the model of the more massive, more various training data.
This model’s vocabulary size is 20,000, whose tokens are trained based on the expanded training data using the WordPiece tokenizer.
KR-BERT-MEDIUM is trained for 2M steps with the maxlen of 128, training batch size of 64, and learning rate of 1e-4, taking 22 hours to train the model using a Google Cloud TPU v3-8.
### Models
#### TensorFlow
* BERT tokenizer, character-based model ([download](https://drive.google.com/file/d/1OWXGqr2Z2PWD6ST3MsFmcjM8c2mr8PkE/view?usp=sharing))
#### PyTorch
* You can import it from Transformers!
```sh
# pytorch, transformers
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("snunlp/KR-Medium", do_lower_case=False)
model = AutoModel.from_pretrained("snunlp/KR-Medium")
```
### Requirements
- transformers == 4.0.0
- tensorflow < 2.0
## Downstream tasks
* Movie Review Classification on Naver Sentiment Movie Corpus [(NSMC)](https://github.com/e9t/nsmc)
* Hate Speech Detection [(Moon et al., 2020)](https://github.com/kocohub/korean-hate-speech)
#### tensorflow
* After downloading our pre-trained models, put them in a `models` directory.
* Set the output directory (for fine-tuning)
* Select task name: `NSMC` for Movie Review Classification, and `HATE` for Hate Speech Detection
```sh
# tensorflow
python3 run_classifier.py \
--task_name={NSMC, HATE} \
--do_train=true \
--do_eval=true \
--do_predict=true \
--do_lower_case=False\
--max_seq_length=128 \
--train_batch_size=128 \
--learning_rate=5e-05 \
--num_train_epochs=5.0 \
--output_dir={output_dir}
```
<br>
### Performances
TensorFlow, test set performances
| | multilingual BERT | KorBERT<br>character | KR-BERT<br>character<br>WordPiece | KR-BERT-MEDIUM |
|:-----:|-------------------:|----------------:|----------------------------:|-----------------------------------------:|
| NSMC (Acc) | 86.82 | 89.81 | 89.74 | 90.29 |
| Hate Speech (F1) | 52.03 | 54.33 | 54.53 | 57.91 |
<br>
## Contacts
[email protected]
|
jsylee/scibert_scivocab_uncased-finetuned-ner | jsylee | 2021-11-22T03:52:41Z | 6,334 | 14 | transformers | [
"transformers",
"pytorch",
"bert",
"token-classification",
"Named Entity Recognition",
"SciBERT",
"Adverse Effect",
"Drug",
"Medical",
"en",
"dataset:ade_corpus_v2",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | token-classification | 2022-03-02T23:29:05Z | ---
language:
- en
tags:
- Named Entity Recognition
- SciBERT
- Adverse Effect
- Drug
- Medical
datasets:
- ade_corpus_v2
widget:
- text: "Abortion, miscarriage or uterine hemorrhage associated with misoprostol (Cytotec), a labor-inducing drug."
example_title: "Abortion, miscarriage, ..."
- text: "Addiction to many sedatives and analgesics, such as diazepam, morphine, etc."
example_title: "Addiction to many..."
- text: "Birth defects associated with thalidomide"
example_title: "Birth defects associated..."
- text: "Bleeding of the intestine associated with aspirin therapy"
example_title: "Bleeding of the intestine..."
- text: "Cardiovascular disease associated with COX-2 inhibitors (i.e. Vioxx)"
example_title: "Cardiovascular disease..."
---
This is a SciBERT-based model fine-tuned to perform Named Entity Recognition for drug names and adverse drug effects.

This model classifies input tokens into one of five classes:
- `B-DRUG`: beginning of a drug entity
- `I-DRUG`: within a drug entity
- `B-EFFECT`: beginning of an AE entity
- `I-EFFECT`: within an AE entity
- `O`: outside either of the above entities
To get started using this model for inference, simply set up an NER `pipeline` like below:
```python
from transformers import (AutoModelForTokenClassification,
AutoTokenizer,
pipeline,
)
model_checkpoint = "jsylee/scibert_scivocab_uncased-finetuned-ner"
model = AutoModelForTokenClassification.from_pretrained(model_checkpoint, num_labels=5,
id2label={0: 'O', 1: 'B-DRUG', 2: 'I-DRUG', 3: 'B-EFFECT', 4: 'I-EFFECT'}
)
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
model_pipeline = pipeline(task="ner", model=model, tokenizer=tokenizer)
print( model_pipeline ("Abortion, miscarriage or uterine hemorrhage associated with misoprostol (Cytotec), a labor-inducing drug."))
```
SciBERT: https://huggingface.co/allenai/scibert_scivocab_uncased
Dataset: https://huggingface.co/datasets/ade_corpus_v2
|
teven/roberta_kelm_tekgen | teven | 2021-11-22T01:04:55Z | 3 | 0 | sentence-transformers | [
"sentence-transformers",
"pytorch",
"roberta",
"feature-extraction",
"sentence-similarity",
"transformers",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] | sentence-similarity | 2022-03-02T23:29:05Z | ---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
---
# teven/roberta_kelm_tekgen
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('teven/roberta_kelm_tekgen')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('teven/roberta_kelm_tekgen')
model = AutoModel.from_pretrained('teven/roberta_kelm_tekgen')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=teven/roberta_kelm_tekgen)
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 976035 with parameters:
```
{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
```
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
```
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 394379 with parameters:
```
{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
```
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
```
Parameters of the fit()-Method:
```
[
{
"epochs": 1,
"evaluation_steps": 1000,
"evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 1000,
"weight_decay": 0.01
}
]
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 300, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
<!--- Describe where people can find more information --> |
Ulto/pythonCoPilot2 | Ulto | 2021-11-22T00:24:53Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"gpt2",
"text-generation",
"generated_from_trainer",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:05Z | ---
tags:
- generated_from_trainer
model-index:
- name: pythonCoPilot2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# pythonCoPilot2
This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 4.0479
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 1.0 | 427 | 4.3782 |
| 4.6698 | 2.0 | 854 | 4.0718 |
| 3.3953 | 3.0 | 1281 | 4.0479 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu111
- Datasets 1.15.1
- Tokenizers 0.10.3
|
Ulto/pythonCoPilot | Ulto | 2021-11-21T23:49:37Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"gpt2",
"text-generation",
"generated_from_trainer",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:05Z | ---
tags:
- generated_from_trainer
model-index:
- name: pythonCoPilot
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# pythonCoPilot
This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu111
- Datasets 1.15.1
- Tokenizers 0.10.3
|
abhibisht89/spanbert-large-cased-finetuned-ade_corpus_v2 | abhibisht89 | 2021-11-21T15:23:59Z | 79 | 1 | transformers | [
"transformers",
"pytorch",
"bert",
"token-classification",
"spanbert",
"en",
"dataset:ade_corpus_v2",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | token-classification | 2022-03-02T23:29:05Z | ---
language: en
tags:
- spanbert
datasets:
- ade_corpus_v2
widget:
- text: "Having fever after taking paracetamol."
example_title: "NER"
- text: "Birth defects associated with thalidomide."
example_title: "NER"
- text: "Deafness and kidney failure associated with gentamicin (an antibiotic)."
example_title: "NER"
- text: "Bleeding of the intestine associated with aspirin therapy."
example_title: "NER"
---
spanbert-large-cased fine-tuned for <b>"Adverse drug reaction"</b> and <b>"Drug"</b> span Extraction.
<b>Details of spanbert-large-cased:</b>
https://huggingface.co/SpanBERT/spanbert-large-cased
<b>Details of the downstream task (Adverse drug reaction and Drug Extraction) - Dataset</b>
https://huggingface.co/datasets/ade_corpus_v2 |
huggingtweets/mo_turse | huggingtweets | 2021-11-21T11:39:55Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:05Z | ---
language: en
thumbnail: https://www.huggingtweets.com/mo_turse/1637494790715/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1458151390505734144/QnD5NomB_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">⬅️To_Murse💉</div>
<div style="text-align: center; font-size: 14px;">@mo_turse</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from ⬅️To_Murse💉.
| Data | ⬅️To_Murse💉 |
| --- | --- |
| Tweets downloaded | 3199 |
| Retweets | 1128 |
| Short tweets | 198 |
| Tweets kept | 1873 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/18gmbfdi/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mo_turse's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/72halqv5) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/72halqv5/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/mo_turse')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
Leisa/marian-finetuned-kde4-en-to-fr | Leisa | 2021-11-21T05:25:45Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"marian",
"text2text-generation",
"translation",
"generated_from_trainer",
"dataset:kde4",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2022-03-02T23:29:04Z | ---
license: apache-2.0
tags:
- translation
- generated_from_trainer
datasets:
- kde4
metrics:
- bleu
model-index:
- name: marian-finetuned-kde4-en-to-fr
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: kde4
type: kde4
args: en-fr
metrics:
- name: Bleu
type: bleu
value: 52.94538305859332
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# marian-finetuned-kde4-en-to-fr
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-fr](https://huggingface.co/Helsinki-NLP/opus-mt-en-fr) on the kde4 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8558
- Bleu: 52.9454
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0
- Datasets 1.15.1
- Tokenizers 0.10.3
|
xiongjie/lightweight-real-ESRGAN-anime | xiongjie | 2021-11-21T04:36:38Z | 0 | 1 | null | [
"onnx",
"region:us"
] | null | 2022-03-02T23:29:05Z | This is super resolution model for anime like illustration that can upscale image 4x.
This model can upscale 256x256 image to 1024x1024 within around 30[ms] on GPU and around 300[ms] on CPU.
Example is [here](https://github.com/xiong-jie-y/ml-examples/tree/master/lightweight_real_esrgan_anime).
License: MIT License |
arvalinno/distilbert-base-uncased-finetuned-indosquad-v2 | arvalinno | 2021-11-21T04:15:31Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"question-answering",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | question-answering | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: distilbert-base-uncased-finetuned-indosquad-v2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-indosquad-v2
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6650
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 1.9015 | 1.0 | 9676 | 1.5706 |
| 1.6438 | 2.0 | 19352 | 1.5926 |
| 1.4714 | 3.0 | 29028 | 1.5253 |
| 1.3486 | 4.0 | 38704 | 1.6650 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu111
- Datasets 1.15.1
- Tokenizers 0.10.3
|
Ulto/avengers2 | Ulto | 2021-11-21T01:13:26Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"gpt2",
"text-generation",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- null
model-index:
- name: avengers2
results:
- task:
name: Causal Language Modeling
type: text-generation
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# avengers2
This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 4.0131
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 1.0 | 56 | 3.9588 |
| No log | 2.0 | 112 | 3.9996 |
| No log | 3.0 | 168 | 4.0131 |
### Framework versions
- Transformers 4.10.0
- Pytorch 1.9.0
- Datasets 1.2.1
- Tokenizers 0.10.1
|
MistahCase/distilroberta-base-testingSB | MistahCase | 2021-11-20T18:25:06Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"roberta",
"fill-mask",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | fill-mask | 2022-03-02T23:29:04Z | ---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: distilroberta-base-testingSB
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilroberta-base-testingSB
This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on a company specific, Danish dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0403
## Model description
Customer-specific model used to embed asset management work orders in Danish
## Intended uses & limitations
Customer-specific and trained for unsupervised categorization tasks
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
Epoch Training Loss Validation Loss
1 0.988500 1.056376
2 0.996300 1.027803
3 0.990300 1.040270
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.98850 | 1.0 | 1461 | 1.5211 |
| 1.3179 | 2.0 | 2922 | 1.3314 |
| 1.1931 | 3.0 | 4383 | 1.2530 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu111
- Datasets 1.15.1
- Tokenizers 0.10.3
|
arvalinno/distilbert-base-uncased-finetuned-squad | arvalinno | 2021-11-20T17:31:23Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"question-answering",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | question-answering | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: distilbert-base-uncased-finetuned-squad
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-squad
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4232
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 1.7604 | 1.0 | 6366 | 1.5329 |
| 1.4784 | 2.0 | 12732 | 1.3930 |
| 1.3082 | 3.0 | 19098 | 1.4232 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu111
- Datasets 1.15.1
- Tokenizers 0.10.3
|
jpabbuehl/sagemaker-distilbert-emotion | jpabbuehl | 2021-11-20T14:22:59Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:emotion",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- emotion
metrics:
- accuracy
model-index:
- name: sagemaker-distilbert-emotion
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: emotion
type: emotion
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.929
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# sagemaker-distilbert-emotion
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1446
- Accuracy: 0.929
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.9345 | 1.0 | 500 | 0.2509 | 0.918 |
| 0.1855 | 2.0 | 1000 | 0.1626 | 0.928 |
| 0.1036 | 3.0 | 1500 | 0.1446 | 0.929 |
### Framework versions
- Transformers 4.12.3
- Pytorch 1.9.1
- Datasets 1.15.1
- Tokenizers 0.10.3
|
Leisa/distilbert-base-uncased-finetuned-imdb | Leisa | 2021-11-20T12:12:24Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"distilbert",
"fill-mask",
"generated_from_trainer",
"dataset:imdb",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | fill-mask | 2022-03-02T23:29:04Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imdb
model-index:
- name: distilbert-base-uncased-finetuned-imdb
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-imdb
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset.
It achieves the following results on the evaluation set:
- Loss: 2.3114
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.5561 | 1.0 | 782 | 2.3738 |
| 2.4474 | 2.0 | 1564 | 2.3108 |
| 2.4037 | 3.0 | 2346 | 2.3017 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0
- Datasets 1.15.1
- Tokenizers 0.10.3
|
Yah216/Sentiment_Analysis_CAMelBERT_msa_sixteenth_HARD | Yah216 | 2021-11-20T09:02:24Z | 17 | 2 | transformers | [
"transformers",
"tf",
"bert",
"text-classification",
"ar",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2022-03-02T23:29:05Z | ---
language: ar
widget:
- text: "ممتاز"
- text: "أنا حزين"
- text: "لا شيء"
---
# Model description
This model is an Arabic language sentiment analysis pretrained model.
The model is built on top of the CAMelBERT_msa_sixteenth BERT-based model.
We used the HARD dataset of hotels review to fine tune the model.
The dataset original labels based on a five-star rating were modified to a 3 label data:
- POSITIVE: for ratings > 3 stars
- NEUTRAL: for a 3 star rating
- NEGATIVE: for ratings < 3 stars
This first prototype was trained on 3 epochs for 1 hours using Colab and a TPU acceleration.
# Examples
Here are some examples in Arabic to test :
- Excellent -> ممتاز(Happy)
- I'am sad -> أنا حزين (Sad)
- Nothing -> لا شيء (Neutral)
# Contact
If you have questions or improvement remarks, feel free to contact me on my LinkedIn profile: https://www.linkedin.com/in/yahya-ghrab/ |
Subsets and Splits